Meta-Analyses of the Associations of Respiratory Health Effectswith Dampness and Mold in Homes
Fisk, William J.; Lei-Gomez, Quanhong; Mendell, Mark J.
2006-01-01
The Institute of Medicine (IOM) of the National Academy of Sciences recently completed a critical review of the scientific literature pertaining to the association of indoor dampness and mold contamination with adverse health effects. In this paper, we report the results of quantitative meta-analysis of the studies reviewed in the IOM report. We developed point estimates and confidence intervals (CIs) to summarize the association of several respiratory and asthma-related health outcomes with the presence of dampness and mold in homes. The odds ratios and confidence intervals from the original studies were transformed to the log scale and random effect models were applied to the log odds ratios and their variance. Models were constructed both accounting for the correlation between multiple results within the studies analyzed and ignoring such potential correlation. Central estimates of ORs for the health outcomes ranged from 1.32 to 2.10, with most central estimates between 1.3 and 1.8. Confidence intervals (95%) excluded unity except in two of 28 instances, and in most cases the lower bound of the CI exceeded 1.2. In general, the two meta-analysis methods produced similar estimates for ORs and CIs. Based on the results of the meta-analyses, building dampness and mold are associated with approximately 30% to 80% increases in a variety of respiratory and asthma-related health outcomes. The results of these meta-analyses reinforce the IOM's recommendation that actions be taken to prevent and reduce building dampness problems.
Dampness in buildings and health
Bornehag, Carl-Gustaf; Blomquist, G.; Gyntelberg, F.
2001-01-01
Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy The aim of the present interdisciplinary review is to evaluate this association as shown in the epidem......Several epidemiological investigations concerning indoor environments have indicated that "dampness" in buildings is associated to health effects such as respiratory symptoms, asthma and allergy The aim of the present interdisciplinary review is to evaluate this association as shown...... in the epidemiological literature. A literature search identified 590 peer-reviewed articles of which 61 have been the foundation for this review. The review shows that "dampness" in buildings appears to increase the risk for health effects in the airways, such as cough, wheeze and asthma. Relative risks...... definitions of dampness have been used in the studies, but all seems to be associated with health problems. Sensitisation to mites may be one but obviously not the only mechanism. Even if the mechanisms are unknown, there is sufficient evidence to take preventive measures against dampness in buildings....
Dampness in Buildings and Health
Clausen, Geo; Rode, Carsten; Bornehag, Carl-Gustaf
1999-01-01
will maintain close contact with international, not the least Nordic, research groups by facilitating possibilities for exchange visits and guest positions. The centre will be very active in educating new Ph.D.'s.Next to presenting the setting, the paper gives an overview of the research tasks within the centre...... academic positions. It is anticipated that the research council's support for the centre will be prolonged for another five years, during which period it will be gradually reduced and the centre will be indulged as a permanent activity at DTU.The ambition of the research is to extend the knowledge....... The main themes are:· Continued research in human perception of indoor air quality, especially by identification of the factors that may cause annoyance to the occupants. Such annoyances may be emissions from materials or biological activity, and is often linked to the dampness of buildings.· Studies...
Hagerhed, L.; Bornehag, Carl-Gustaf; Sundell, Jan
2002-01-01
Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type of found...... of "Dry air" in 17.3 and 33.7% respectively. Older buildings and the use of natural ventilation were associated with increased frequency of dampness indicators as well as to increased frequencies of complaints on bad indoor air quality.......Questionnaire data on 8681 dwellings included in the Swedish study "Dampness in Buildings and Health" have been analysed for associations between dampness indicators, perceptions of indoor air quality and building characteristics such as time of construction, type of ventilation and type...
Allergy and respiratory health effects of dampness and dampness-related agents in schools and homes
Holst, G; Høst, Arne; Doekes, G;
2016-01-01
Little is known about the health effects of school-related indoor dampness and microbial exposures. In this study we investigated dampness and dampness-related agents in both homes and schools and their association with allergy and respiratory health effects in 330 Danish pupils. Classroom dampness...... ), forced vital capacity (zFVC) and the ratio zFEV1 /zFVC using GLI-2012-prediction-equations. The parents reported children's allergies, airway symptoms and doctor-diagnosed asthma. High classroom dampness, but not bedroom dampness, was negatively associated with zFEV1 (β-coef. -0.71; 95%CI -1.17 - -0.......23), zFVC (β-coef. -0.52; 95%CI -0.98 - -0.06) and positively with wheezing (OR 8.09; 95%CI 1.49-43.97). No consistent findings were found between any individual microbial components or combination of microbial components and health outcomes. Among other indoor risk factors, environmental tobacco smoke...
Public health and economic impact of dampness and mold
Mudarri, David; Fisk, William J.
2007-06-01
The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.
Chen, D
The $\\textbf{DA}$rk $\\textbf{M}$atter $\\textbf{P}$article $\\textbf{E}$xplorer (DAMPE) experiment is a high-energy astroparticle physics satellite mission to search for Dark Matter signatures in space, study the cosmic ray spectrum and composition up to 100 TeV, and perform high-energy gamma astronomy. The launch is planned for end 2015, initially for 3 years, to compliment existing space missions FERMI, AMS and CALET.
Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Computational Cosmology Center
2015-05-28
This report briefly summarizes, based on recent review articles and selected more recent research reports, current scientific knowledge on two topics: assessing unhealthy levels of indoor D/M in homes and remediating home dampness-related problems to protect health. Based on a comparison of current scientific knowledge to that required to support effective, evidence-based, health-protective policies on home D/M, gaps in knowledge are highlighted, prior questions and research questions specified, and necessary research activities and approaches recommended.
Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
2015-06-01
This report briefly summarizes, based on recent review articles and selected more recent research reports, current scientific knowledge on two topics: assessing unhealthy levels of indoor D/M in homes and remediating home dampness-related problems to protect health. Based on a comparison of current scientific knowledge to that required to support effective, evidence-based, health-protective policies on home D/M, gaps in knowledge are highlighted, prior questions and research questions specified, and necessary research activities and approaches recommended.
Bornehag, Carl-Gustaf; Sundell, Jan; Hagerhed, L.;
2002-01-01
-sectional questionnaire study on 14 077 children (1-6 years) focusing on their health and their home environment. There were strong and consistent associations between different "dampness"-indicators and symptoms among children. The combination of floor moisture problems and PVC as flooring material significantly...
Jacobs, Jose; Borras-Santos, Alicia; Krop, Esmeralda; Taubel, Martin; Leppanen, Hanna; Haverinen-Shaughnessy, Ulla; Pekkanen, Juha; Hyvarinen, Anne; Doekes, Gert; Zock, Jan-Paul; Heederik, Dick
2014-01-01
Background Respiratory health effects of damp housing are well recognised, but less is known about the effect of dampness and water damage in schools. The HITEA study previously reported a higher prevalence of respiratory symptoms in pupils from moisture damaged schools, but the role of specific mic
Bornehag, Carl-Gustaf; Sundell, Jan
2002-01-01
The scientific literature on health effects associated with "dampness" in buildings including literature between 1998 and 2000 has been reviewed by a European group (EUROEXPO). The group consisted of scientists with experience from medicine, epidemiology, toxicology and engineering. Of the 104...... reviewed articles 52 were excluded as they were judged as background papers or "non-informative" or "inconclusive" or the study did not present data on exposure, health effects or analysis of the association between exposure and health. The review group concluded that "dampness" in buildings is a risk...
Damping Undulators vs Damping Wigglers
Muchnoi, Nickolai
2016-01-01
Use of damping wigglers is a common technique for beam emittance reduction in the electron storage rings. The general approach to estimate damping effect is based on evaluation of several radiation integrals for a storage ring itself as well as for insertion devices. In this letter we show that a wiggler radiation integrals should be tweaked to account for the impact of lower harmonics of undulator radiation, which is an equivalent of Thomson scattering. Under certain conditions, these amendments play a decisive role in a formation of equilibrium emittance.
Damp building-related illnesses (DBRI) include a myriad of respiratory, immunologic, and neurologic symptoms that are sometimes etiologically linked to aberrant indoor growth of the toxic black mold, Stachybotrys chartarum. Although supportive evidence for such linkages is limite...
Hofmann, A
2006-01-01
Abstract Landau damping is the suppression of an instability by a spread of frequencies in the beam. It is treated here from an experimental point of view. To introduce the concept we consider a set of oscillators having a spread in resonant frequencies !r and calculate the response of their there center-of-mass to an external driving force. A pulse excitation gives each oscillator the same initial velocity but, due to their different frequencies, the center-of-mass motion will decay with time. A harmonic excitation with a frequency ! being inside the distribution in !r results in oscillators responding with different phases and only a few of them having !r ! will grow to large amplitudes and absorb energy. The oscillator response to a pulse excitation, called Green function, and the one to a harmonic excitation, called transfer function, serve as a basis to calculate Landau damping which suppresses an instability at infinitesimal level before any large amplitudes are reached. This is illustrated by a negativ...
Power oscillation damping controller
2012-01-01
A power oscillation damping controller is provided for a power generation device such as a wind turbine device. The power oscillation damping controller receives an oscillation indicating signal indicative of a power oscillation in an electricity network and provides an oscillation damping control...
Introduction to Landau Damping
Herr, W
2014-01-01
The mechanism of Landau damping is observed in various systems from plasma oscillations to accelerators. Despite its widespread use, some confusion has been created, partly because of the different mechanisms producing the damping but also due to the mathematical subtleties treating the effects. In this article the origin of Landau damping is demonstrated for the damping of plasma oscillations. In the second part it is applied to the damping of coherent oscillations in particle accelerators. The physical origin, the mathematical treatment leading to the concept of stability diagrams and the applications are discussed.
Johanning, Eckardt; Auger, Pierre; Morey, Philip R; Yang, Chin S; Olmsted, Ed
2014-03-01
Health problems and illnesses encountered by unprotected workers, first-responders, home-owners, and volunteers in recovery and restoration of moldy indoor environments after hurricanes, typhoons, tropical storms, and flooding damage are a growing concern for healthcare providers and disaster medicine throughout the world. Damp building materials, particularly cellulose-containing substrates, are prone to fungal (mold) and bacterial infestation. During remediation and demolition work, the airborne concentrations of such microbes and their by-products can rise significantly and result in an exposure risk. Symptoms reported by unprotected workers and volunteers may relate to reactions of the airways, skin, mucous membranes, or internal organs. Dampness-related fungi are primarily associated with allergies, respiratory symptoms or diseases such as dermatitis, rhinosinusitis, bronchitis, and asthma, as well as changes of the immunological system. Also, cognitive, endocrine, or rheumatological changes have been reported. Based on the consensus among experts at a recent scientific conference and a literature review, it is generally recommended to avoid and minimize unnecessary fungal exposure and use appropriate personal protective equipment (PPE) in disaster response and recovery work. Mycologists recommend addressing any moisture or water intrusion rapidly, since significant mold growth can occur within 48 h. Systematic source removal, cleaning with "soap and water," and "bulk removal" followed by high-efficiency particulate air vacuuming is recommended in most cases; use of "biocides" should be avoided in occupied areas. Public health agencies recommend use of adequate respiratory, skin, and eye protection. Workers can be protected against these diseases by use of dust control measures and appropriate personal protective equipment. At a minimum, a facial dust mask such as the National Institute for Occupational Safety and Health (NIOSH)-approved N95 respirator should
Passive damping technology demonstration
Holman, Robert E.; Spencer, Susan M.; Austin, Eric M.; Johnson, Conor D.
1995-05-01
A Hughes Space Company study was undertaken to (1) acquire the analytical capability to design effective passive damping treatments and to predict the damped dynamic performance with reasonable accuracy; (2) demonstrate reasonable test and analysis agreement for both baseline and damped baseline hardware; and (3) achieve a 75% reduction in peak transmissibility and 50% reduction in rms random vibration response. Hughes Space Company teamed with CSA Engineering to learn how to apply passive damping technology to their products successfully in a cost-effective manner. Existing hardware was selected for the demonstration because (1) previous designs were lightly damped and had difficulty in vibration test; (2) multiple damping concepts could be investigated; (3) the finite element model, hardware, and test fixture would be available; and (4) damping devices could be easily implemented. Bracket, strut, and sandwich panel damping treatments that met the performance goals were developed by analysis. The baseline, baseline with damped bracket, and baseline with damped strut designs were built and tested. The test results were in reasonable agreement with the analytical predictions and demonstrated that the desired reduction in dynamic response could be achieved. Having successfully demonstrated this approach, it can now be used with confidence for future designs as a means for reducing weight and enhancing reliability.
Norbäck, D; Zock, J-P; Plana, E; Heinrich, J; Tischer, C; Jacobsen Bertelsen, R; Sunyer, J; Künzli, N; Villani, S; Olivieri, M; Verlato, G; Soon, A; Schlünssen, V; Gunnbjörnsdottir, M I; Jarvis, D
2017-02-11
We studied dampness and mold in homes in relation to climate, building characteristics and socio-economic status (SES) across Europe, for 7127 homes in 22 centers. A subsample of 3118 homes was inspected. Multilevel analysis was applied, including age, gender, center, SES, climate, and building factors. Self-reported water damage (10%), damp spots (21%), and mold (16%) in past year were similar as observed data (19% dampness and 14% mold). Ambient temperature was associated with self-reported water damage (OR=1.63 per 10°C; 95% CI 1.02-2.63), damp spots (OR=2.95; 95% CI 1.98-4.39), and mold (OR=2.28; 95% CI 1.04-4.67). Precipitation was associated with water damage (OR=1.12 per 100 mm; 95% CI 1.02-1.23) and damp spots (OR=1.11; 95% CI 1.02-1.20). Ambient relative air humidity was not associated with indoor dampness and mold. Older buildings had more dampness and mold (Pmanagerial/professional workers. There were correlations between reported and observed data at center level (Spearman rho 0.61 for dampness and 0.73 for mold). In conclusion, high ambient temperature and precipitation and high building age can be risk factors for dampness and mold in homes in Europe.
Critically damped quantum search.
Mizel, Ari
2009-04-17
Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we find that there is a critical damping value that divides between the quantum O(sqrt[N]) and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-point quantum search algorithm in which ignorance of the number of targets increases the number of oracle queries only by a factor of 1.5.
Critically damped quantum search
Mizel, Ari
2008-01-01
Although measurement and unitary processes can accomplish any quantum evolution in principle, thinking in terms of dissipation and damping can be powerful. We propose a modification of Grover's algorithm in which the idea of damping plays a natural role. Remarkably, we have found that there is a critical damping value that divides between the quantum $O(\\sqrt{N})$ and classical O(N) search regimes. In addition, by allowing the damping to vary in a fashion we describe, one obtains a fixed-poin...
Pestka, James J; Yike, Iwona; Dearborn, Dorr G; Ward, Marsha D W; Harkema, Jack R
2008-07-01
Damp building-related illnesses (DBRI) include a myriad of respiratory, immunologic, and neurologic symptoms that are sometimes etiologically linked to aberrant indoor growth of the toxic black mold, Stachybotrys chartarum. Although supportive evidence for such linkages is limited, there are exciting new findings about this enigmatic organism relative to its environmental dissemination, novel bioactive components, unique cellular targets, and molecular mechanisms of action which provide insight into the S. chartarum's potential to evoke allergic sensitization, inflammation, and cytotoxicity in the upper and lower respiratory tracts. Macrocyclic trichothecene mycotoxins, produced by one chemotype of this fungus, are potent translational inhibitors and stress kinase activators that appear to be a critical underlying cause for a number of adverse effects. Notably, these toxins form covalent protein adducts in vitro and in vivo and, furthermore, cause neurotoxicity and inflammation in the nose and brain of the mouse. A second S. chartarum chemotype has recently been shown to produce atranones-mycotoxins that can induce pulmonary inflammation. Other biologically active products of this fungus that might contribute to pathophysiologic effects include proteinases, hemolysins, beta-glucan, and spirocyclic drimanes. Solving the enigma of whether Stachybotrys inhalation indeed contributes to DBRI will require studies of the pathophysiologic effects of low dose chronic exposure to well-characterized, standardized preparations of S. chartarum spores and mycelial fragments, and, coexposures with other environmental cofactors. Such studies must be linked to improved assessments of human exposure to this fungus and its bioactive constituents in indoor air using both state-of-the-art sampling/analytical methods and relevant biomarkers.
Palmer, R.B.
1988-07-01
Structures with slots to strongly damp higher order longitudinal and transverse modes should allow the use, in linear colliders, of multiple bunches, and thus attain luminosities of over 10/sup 34/cm/sup /minus/2/sec/sup /minus/1/. Preliminary measurements on model structures suggest that such damping can be achieved. 10 refs., 9 figs.
Rees, John; Chao, Alexander; /SLAC
2008-12-01
Landau damping, as the term is used in accelerator science, is a physical process in which an ensemble of harmonic oscillators--an accelerator beam, for example--that would otherwise be unstable is stabilized by a spread in the natural frequencies of the oscillators. This is a study of the most basic aspects of that process. It has two main goals: to gain a deeper insight into the mechanism of Landau damping and to find the coherent motion of the ensemble and thus the dependence of the total damping rate on the frequency spread.
Introduction to the scientific application system of DAMPE (On behalf of DAMPE collaboration)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. The science data processing and payload operation maintenance for DAMPE will be provided by the DAMPE Scientific Application System (SAS) at the Purple Mountain Observatory (PMO) of Chinese Academy of Sciences. SAS is consisted of three subsystems - scientific operation subsystem, science data and user management subsystem and science data processing subsystem. In cooperation with the Ground Support System (Beijing), the scientific operation subsystem is responsible for proposing observation plans, monitoring the health of satellite, generating payload control commands and participating in all activities related to payload operation. Several databases developed by the science data and user management subsystem of DAMPE methodically manage all collected and reconstructed science data, down linked housekeeping data, payload configuration and calibration data. Under the leadership of DAMPE Scientific Committee, this subsystem is also responsible for publication of high level science data and supporting all science activities of the DAMPE collaboration. The science data processing subsystem of DAMPE has already developed a series of physics analysis software to reconstruct basic information about detected cosmic ray particle. This subsystem also maintains the high performance computing system of SAS to processing all down linked science data and automatically monitors the qualities of all produced data. In this talk, we will describe all functionalities of whole DAMPE SAS system and show you main performances of data processing ability.
Control System Damps Vibrations
Kopf, E. H., Jr.; Brown, T. K.; Marsh, E. L.
1983-01-01
New control system damps vibrations in rotating equipment with help of phase-locked-loop techniques. Vibrational modes are controlled by applying suitable currents to drive motor. Control signals are derived from sensors mounted on equipment.
DAMPs, ageing, and cancer: The 'DAMP Hypothesis'.
Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J; Kang, Rui; Lotze, Michael T; Tang, Daolin
2015-11-01
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. Copyright © 2014 Elsevier B.V. All rights reserved.
Anisotropic Internal Friction Damping
Peters, R D
2003-01-01
The mechanical damping properties of sheet polaroid material have been studied with a physical pendulum. The polaroid samples were placed under the knife-edges of the pendulum, which was operated in free-decay at a period in the vicinity of 10 s. With the edges oriented parallel to the direction of the long molecular chains in the polaroid, it was found that the damping was more than 10% smaller than when oriented perpendicular to the chains.
洪峰
2002-01-01
In this paper, existing damping theories are briefly reviewed. On the basis of the existing damping theories, a new kind of damping theory, i.e., the time-delay damping theory, is developed. In the time-delay damping theory, the damping force is considered to be directly proportional to the increment of displacement. The response analysis of an SDOF time-delay damping system is carried out, and the methods for obtaining the solution for a time-delay damping system in the time domain as well as the frequency domain are given. The comparison between results from different damping theories shows that the time-delay damping theory is both reasonable and convenient.
Damping modeling in Timoshenko beams
Banks, H. T.; Wang, Y.
1992-01-01
Theoretical and numerical results of damping model studies for composite material beams using the Timoshenko theory is presented. Based on the damping models developed for Euler-Bernoulli beams, the authors develop damping methods for both bending and shear in investigation of Timoshenko beams. A computational method for the estimation of the damping parameters is given. Experimental data with high-frequency excitation were used to test Timoshenko beam equations with different types of damping models for bending and shear in various combinations.
Dampness in Buildings and Health
Clausen, Geo; Rode, Carsten; Bornehag, Carl-Gustaf
1999-01-01
A so-called Engineering Research Centre on Indoor Climate and Energy has been established in 1998 at the Technical University of Denmark (DTU). For the first five years the centre is supported by the Danish Technical Research Council by almost 8 million DKK per year and by DTU by 6 permanent...... academic positions. It is anticipated that the research council's support for the centre will be prolonged for another five years, during which period it will be gradually reduced and the centre will be indulged as a permanent activity at DTU.The ambition of the research is to extend the knowledge...... on air distribution in indoor spaces. Particularly, using CFD models, it should be possible to study the local conditions in the vicinity of the human body.· Modelling and experimental investigation of humidity transfer and energy consumption in buildings. The research aims at establishing complete...
Radiation damping on cryoprobes.
Shishmarev, Dmitry; Otting, Gottfried
2011-12-01
Radiation damping on 600 and 800 MHz cryoprobes was investigated. The phase angle β between a vector 90° phase shifted to the precessing magnetization and the rf field induced in the coil was found to depend markedly on whether an FID was being acquired or not. The magnitude of the radiation damping field was sufficiently strong to restore 95% of the equilibrium water magnetization of a 90% H2O sample in a 5 mm sample tube within about 5 ms following a 165° pulse. This can be exploited in water flip-back versions of NOESY and TOCSY experiments of proteins, but care must be taken to limit the effect of the radiation damping field from the water on the Ha protons. Long water-selective pulses can be applied only following corrections. We developed a program for correcting pulse shapes if β is non-zero. The WATERGATE scheme is shown to be insensitive to imperfections introduced by radiation damping.
Burns, J. A.; Sharma, I.
2000-10-01
Motivated by the recent detection of complex rotational states for several asteroids and comets, as well as by the ongoing and planned spacecraft missions to such bodies, which should allow their rotational states to be accurately determined, we revisit the problem of the nutational damping of small solar system bodies. The nutational damping of asteroids has been approximately analyzed by Prendergast (1958), Burns and Safronov (1973), and Efroimsky and Lazarian (2000). Many other similar dynamical studies concern planetary wobble decay (e.g., Peale 1973; Yoder and Ward 1979), interstellar dust grain alignment (e.g., Purcell 1979; Lazarian and Efroimsky 1999) and damping of Earth's Chandler wobble (Lambeck 1980). Recall that rotational energy loss for an isolated body aligns the body's angular momentum vector with its axis of maximum inertia. Assuming anelastic dissipation, simple dimensional analysis determines a functional form of the damping timescale, on which all the above authors agree. However, the numerical coefficients of published results are claimed to differ by orders of magnitude. Differences have been ascribed to absent physics, to solutions that fail to satisfy boundary conditions perfectly, and to unphysical choices for the Q parameter. The true reasons for the discrepancy are unclear since, despite contrary claims, the full 3D problem (nutational damping of an anelastic ellipsoid) is analytically intractable so far. To move the debate forward, we compare the solution of a related 2D problem to the expressions found previously, and we present results from a finite element model. On this basis, we feel that previous rates for the decay of asteroidal tumbling (Harris 1994), derived from Burns and Safronov (1973), are likely to be accurate, at least to a factor of a few. Funded by NASA.
Mouhot, Clément
2011-09-01
Going beyond the linearized study has been a longstanding problem in the theory of Landau damping. In this paper we establish exponential Landau damping in analytic regularity. The damping phenomenon is reinterpreted in terms of transfer of regularity between kinetic and spatial variables, rather than exchanges of energy; phase mixing is the driving mechanism. The analysis involves new families of analytic norms, measuring regularity by comparison with solutions of the free transport equation; new functional inequalities; a control of non-linear echoes; sharp "deflection" estimates; and a Newton approximation scheme. Our results hold for any potential no more singular than Coulomb or Newton interaction; the limit cases are included with specific technical effort. As a side result, the stability of homogeneous equilibria of the non-linear Vlasov equation is established under sharp assumptions. We point out the strong analogy with the KAM theory, and discuss physical implications. Finally, we extend these results to some Gevrey (non-analytic) distribution functions. © 2011 Institut Mittag-Leffler.
Magnetically Damped Furnace (MDF)
1998-01-01
The Magnetically Damped Furnace (MDF) breadboard is being developed in response to NASA's mission and goals to advance the scientific knowledge of microgravity research, materials science, and related technologies. The objective of the MDF is to dampen the fluid flows due to density gradients and surface tension gradients in conductive melts by introducing a magnetic field during the sample processing. The MDF breadboard will serve as a proof of concept that the MDF performance requirements can be attained within the International Space Station resource constraints.
The Duffing oscillator with damping
Johannessen, Kim
2015-01-01
An analytical solution to the differential equation describing the Duffing oscillator with damping is presented. The damping term of the differential equation and the initial conditions satisfy an algebraic equation, and thus the solution is specific for this type of damping. The nonlinear term....... It is established that the period of oscillation is shorter compared to that of a linearized model but increasing with time and asymptotically approaching the period of oscillation of the linear damped model. An explicit expression for the period of oscillation has been derived, and it is found to be very accurate....
Bullock, Jack C.; Kelly, Benjamin E.
1980-01-01
A valve having a mechanism for damping out flow surges in a vacuum system which utilizes a slotted spring-loaded disk positioned adjacent the valve's vacuum port. Under flow surge conditions, the differential pressure forces the disk into sealing engagement with the vacuum port, thereby restricting the flow path to the slots in the disk damping out the flow surge.
Gilbert Damping in Noncollinear Ferromagnets
Yuan, Zhe; Hals, Kjetil M.D.; Liu, Yi; Starikov, Anton A.; Brataas, Arne; Kelly, Paul J.
2014-01-01
The precession and damping of a collinear magnetization displaced from its equilibrium are well described by the Landau-Lifshitz-Gilbert equation. The theoretical and experimental complexity of noncollinear magnetizations is such that it is not known how the damping is modified by the noncollinearit
Oscillations with three damping effects
Wang Xiaojun [Department of Physics, Georgia Southern University, Statesboro, GA (United States)]. E-mail: xwang@gasou.edu; Schmitt, Chris; Payne, Marvin [Department of Physics, Georgia Southern University, Statesboro, GA (United States)
2002-03-01
Experiments on oscillatory motion are described with three different damping effects. The first experiment is a physical pendulum whose damping mechanism is due to sliding friction; the second is magnetic resistance due to eddy currents; and the third experiment involves a pendulum setup where air resistance is the dominant factor. These three damping mechanisms yield constant ({nu}-bar/ vertical bar {nu}-bar vertical bar), linear, and quadratic resistances in velocity respectively. Approximation methods are described for treating the three damping effects and a general solution is derived for the damping with a very general velocity dependence. A sonic rangefinder is used to record the oscillatory motions of the pendulums. The experimental measurements and theoretical calculations are in a good agreement. (author)
Damping Bearings In High-Speed Turbomachines
Von Pragenau, George L.
1994-01-01
Paper presents comparison of damping bearings with traditional ball, roller, and hydrostatic bearings in high-speed cryogenic turbopumps. Concept of damping bearings described in "Damping Seals and Bearings for a Turbomachine" (MFS-28345).
Landau damping in space plasmas
Thorne, Richard M.; Summers, Danny
1991-01-01
The Landau damping of electrostatic Langmuir waves and ion-acoustic waves in a hot, isotropic, nonmagnetized, generalized Lorentzian plasma is analyzed using the modified plasma dispersion function. Numerical solutions for the real and imaginary parts of the wave frequency omega sub 0 - (i)(gamma) have been obtained as a function of the normalized wave number (k)(lambda sub D), where lambda sub D is the electron Debye length. For both particle distributions the electrostatic modes are found to be strongly damped at short wavelengths. At long wavelengths, this damping becomes less severe, but the attenuation of Langmuir waves is much stronger for a generalized Lorentzian plasma than for a Maxwellian plasma. It is concluded that Landau damping of ion-acoustic waves is only slightly affected by the presence of a high energy tail, but is strongly dependent on the ion temperature.
DAMPs and influenza virus infection in ageing.
Samy, Ramar Perumal; Lim, Lina H K
2015-11-01
Influenza A virus (IAV) is a serious global health problem worldwide due to frequent and severe outbreaks. IAV causes significant morbidity and mortality in the elderly population, due to the ineffectiveness of the vaccine and the alteration of T cell immunity with ageing. The cellular and molecular link between ageing and virus infection is unclear and it is possible that damage associated molecular patterns (DAMPs) may play a role in the raised severity and susceptibility of virus infections in the elderly. DAMPs which are released from damaged cells following activation, injury or cell death can activate the immune response through the stimulation of the inflammasome through several types of receptors found on the plasma membrane, inside endosomes after endocytosis as well as in the cytosol. In this review, the detriment in the immune system during ageing and the links between influenza virus infection and ageing will be discussed. In addition, the role of DAMPs such as HMGB1 and S100/Annexin in ageing, and the enhanced morbidity and mortality to severe influenza infection in ageing will be highlighted. Copyright © 2015 Elsevier B.V. All rights reserved.
Simple suppression of radiation damping.
Khitrin, A K; Jerschow, Alexej
2012-12-01
Radiation damping is known to cause line-broadening and frequency shifts of strong resonances in NMR spectra. While several techniques exist for the suppression of these effects, many require specialized hardware, or are only compatible with the presence of few strong resonances. We describe a simple pulse sequence for radiation damping suppression in spectra with many strong resonances. The sequence can be used as-is to generate simple spectra or as a signal excitation part in more advanced experiments.
Damping mechanisms of a pendulum
Dolfo, Gilles; Castex, Daniel; Vigué, Jacques
2016-11-01
In this paper, we study the damping mechanisms of a pendulum. The originality of our setup is the use of a metal strip suspension and the development of extremely sensitive electric measurements of the pendulum velocity and position. Their sensitivity is absolutely necessary for a reliable measurement of the pendulum damping time constant because this measurement is possible only for very low oscillation amplitudes, when air friction forces quadratic in velocity have a negligible contribution to the observed damping. We have thus carefully studied damping by air friction forces, which is the dominant mechanism for large values of the Reynolds number Re but which is negligible in the Stokes regime, {Re} ∼ 1. In this last case, we have found that the dominant damping is due to internal friction in the metal strip, a universal effect called anelasticity, and, for certain frequencies, to resonant coupling to the support of the pendulum. All our measurements are well explained by theory. We believe this paper would be of interest to students in an undergraduate classical mechanics course.
High Damping Alloys and Their Application
Fuxing Yin
2000-01-01
Damping alloys show prospective applications in the elimination of unwanted vibrations and acoustic noise. The basic definitions and characterization methods of damping capacity are reviewed in this paper. Several physical mechanisms controlled by the alloy microstructure are responsible for the damping behavior in the damping alloys. Composite, dislocation, ferromagnetic and planar defect types are commonly classified for the alloys, which show the different damping behavior against temperature, frequency of vibration,amplitude of vibration and damping modes. Development of practically applicable damping alloys requires the higher mechanical properties and adequate workability, besides the high damping capacity. A new Mn-Cu damping alloy, named as M2052 alloy, is recently developed with possible industrial applications.
Landau damping of auroral hiss
Morgan, D. D.; Gurnett, D. A.; Menietti, J. D.; Winningham, J. D.; Burch, J. L.
1994-01-01
Auroral hiss is observed to propagate over distances comparable to an Earth radius from its source in the auroral oval. The role of Landau damping is investigated for upward propagating auroral hiss. By using a ray tracing code and a simplified model of the distribution function, the effect of Landau damping is calculated for auroral hiss propagation through the environment around the auroral oval. Landau damping is found to be the likely mechanism for explaining some of the one-sided auroral hiss funnels observed by Dynamics Explorer 1. It is also found that Landau damping puts a lower limit on the wavelength of auroral hiss. Poleward of the auroral oval, Landau damping is found in a typical case to limit omega/k(sub parallel) to values of 3.4 x 10(exp 4) km/s or greater, corresponding to resonance energies of 3.2 keV or greater and wavelengths of 2 km or greater. For equatorward propagation, omega/k(sub parallel) is limited to values greater than 6.8 x 10(exp 4) km/s, corresponding to resonance energies greater than 13 keV and wavelengths greater than 3 km. Independent estimates based on measured ratios of the magnetic to electric field intensity also show that omega/k(sub parallel) corresponds to resonance energies greater than 1 keV and wavelengths greater than 1 km. These results lead to the difficulty that upgoing electron beams sufficiently energetic to directly generate auroral hiss of the inferred wavelength are not usually observed. A partial transmission mechanism utilizing density discontinuities oblique to the magnetic field is proposed for converting auroral hiss to wavelengths long enough to avoid damping of the wave over long distances. Numerous reflections of the wave in an upwardly flared density cavity could convert waves to significantly increased wavelengths and resonance velocities.
IMPACT GRINDING OF DAMP MATERIALS
Ladaev Nikolay Mikhaylovich
2012-10-01
Centrifugal grinders were used to analyze the grinding process. The experimental data have proven that the probability of destruction of damp samples is a lot higher than the one of dry samples, given the same initial dimensions of particles and the loading intensity. The rise in the probability of destruction is stipulated by the fact that that the grinder speed at which crushing is triggered is lower in case of damp samples than in case of dry ones. Expressions for speed that describes destruction initiation and the probability of destruction depending on the type of materials, the moisture content and the loading intensity have been derived.
Magnetic damping of ski vibrations
Yonnet, J.-P. [CNRS, St. Martin d' Heres (France). Lab. d' Electrotech. de Grenoble; Patton, A.C.; Philippe; Arnould; Bressan, C. [CNRS, St. Martin d' Heres (France). Lab. d' Electrotech. de Grenoble]|[Skis Dynastar S.A., Sallanches (France)
1998-07-01
An original damping device has been developed to reduce ski vibrations. Ski movement is transmitted to a conductive sheet situated in a multipole magnetic field created by permanent magnets. The conductive sheet is simultaneously submitted to eddy current and friction forces, giving the damping effect. The eddy current damper is more efficient for high frequency than for low frequency vibrations and consequently is very well adapted to ski vibrations. Bench and snow tests show the positive effects of the damper, which will be commercially available before the end of this year. (orig.)
Physically Damped Noise Canceling Hydrophone
2016-06-24
300075 1 of 10 PHYSICALLY DAMPED NOISE CANCELING HYDROPHONE STATEMENT OF GOVERNMENT INTEREST [0001] The invention described herein may be...transducer with an electromechanical driver comprising a plurality of single crystal piezoelectric elements joined to an inner surface and arranged to form...an electromechanical stack assembly. Each single crystal piezoelectric element has a surface, an opposite surface, and a Attorney Docket No
Waves, damped wave and observation
Phung, Kim Dang
2009-01-01
We consider the wave equation in a bounded domain (eventually convex). Two kinds of inequality are described when occurs trapped ray. Applications to control theory are given. First, we link such kind of estimate with the damped wave equation and its decay rate. Next, we describe the design of an approximate control function by an iterative time reversal method.
Red cell DAMPs and inflammation.
Mendonça, Rafaela; Silveira, Angélica A A; Conran, Nicola
2016-09-01
Intravascular hemolysis, or the destruction of red blood cells in the circulation, can occur in numerous diseases, including the acquired hemolytic anemias, sickle cell disease and β-thalassemia, as well as during some transfusion reactions, preeclampsia and infections, such as those caused by malaria or Clostridium perfringens. Hemolysis results in the release of large quantities of red cell damage-associated molecular patterns (DAMPs) into the circulation, which, if not neutralized by innate protective mechanisms, have the potential to activate multiple inflammatory pathways. One of the major red cell DAMPs, heme, is able to activate converging inflammatory pathways, such as toll-like receptor signaling, neutrophil extracellular trap formation and inflammasome formation, suggesting that this DAMP both activates and amplifies inflammation. Other potent DAMPs that may be released by the erythrocytes upon their rupture include heat shock proteins (Hsp), such as Hsp70, interleukin-33 and Adenosine 5' triphosphate. As such, hemolysis represents a major inflammatory mechanism that potentially contributes to the clinical manifestations that have been associated with the hemolytic diseases, such as pulmonary hypertension and leg ulcers, and likely plays a role in specific complications of sickle cell disease such as endothelial activation, vaso-occlusive processes and tissue injury.
Damped Oscillator with Delta-Kicked Frequency
Manko, O. V.
1996-01-01
Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.
Marhauser, Frank
2017-06-01
Research and development for superconducting radio-frequency cavities has made enormous progress over the last decades from the understanding of theoretical limitations to the industrial mass fabrication of cavities for large-scale particle accelerators. Key technologies remain hot topics due to continuously growing demands on cavity performance, particularly when in pursuit of high quality beams at higher beam currents or higher luminosities than currently achievable. This relates to higher order mode (HOM) damping requirements. Meeting the desired beam properties implies avoiding coupled multi-bunch or beam break-up instabilities depending on the machine and beam parameters that will set the acceptable cavity impedance thresholds. The use of cavity HOM-dampers is crucial to absorb the wakefields, comprised by all beam-induced cavity Eigenmodes, to beam-dynamically safe levels and to reduce the heat load at cryogenic temperature. Cavity damping concepts may vary, but are principally based on coaxial and waveguide couplers as well as beam line absorbers or any combination. Next generation energy recovery linacs and circular colliders call for cavities with strong HOM-damping that can exceed the state-of-the-art, while the operating mode efficiency shall not be significantly compromised concurrently. This imposes major challenges given the rather limited damping concepts. A detailed survey of established cavities is provided scrutinizing the achieved damping performance, shortcomings, and potential improvements. The scaling of the highest passband mode impedances is numerically evaluated in dependence on the number of cells for a single-cell up to a nine-cell cavity, which reveals the increased probability of trapped modes. This is followed by simulations for single-cell and five-cell cavities, which incorporate multiple damping schemes to assess the most efficient concepts. The usage and viability of on-cell dampers is elucidated for the single-cell cavity since it
Modal approximations to damped linear systems
Veseli/'c, K
2009-01-01
We consider a finite dimensional damped second order system and obtain spectral inclusion theorems for the related quadratic eigenvalue problem. The inclusion sets are the 'quasi Cassini ovals' which may greatly outperform standard Gershgorin circles. As the unperturbed system we take a modally damped part of the system; this includes the known proportionally damped models, but may give much sharper estimates. These inclusions are then applied to derive some easily calculable sufficient conditions for the overdampedness of a given damped system.
Decoherence and damping in ideal gases
Polonyi, Janos
2010-01-01
The particle and current densities are shown to display damping and undergo decoherence in ideal quantum gases. The damping is read off from the equations of motion reminiscent of the Navier-Stokes equations and shows some formal similarity with Landau damping. The decoherence leads to consistent density and current histories with characteristic length and time scales given by the ideal gas.
Review: Modeling Damping in Mechanical Engineering Structures
Michel Lalanne
2000-01-01
Full Text Available This paper is concerned with the introduction of damping effects in the analysis of mechanical engineering structures. Damping can be considered as being generated by concentrated elements, by distributed elements, or by several effects existing simultaneously. Modeling damping for different engineering situations is described and some applications are presented briefly.
DAMPs, Ageing, and Cancer: The ‘DAMP Hypothesis’
Huang, Jin; Xie, Yangchun; Sun, Xiaofang; Zeh, Herbert J.; Kang, Rui; Lotze, Michael T.; Tang, Daolin
2014-01-01
Ageing is a complex and multifactorial process characterized by the accumulation of many forms of damage at the molecular, cellular, and tissue level with advancing age. Ageing increases the risk of the onset of chronic inflammation-associated diseases such as cancer, diabetes, stroke, and neurodegenerative disease. In particular, ageing and cancer share some common origins and hallmarks such as genomic instability, epigenetic alteration, aberrant telomeres, inflammation and immune injury, reprogrammed metabolism, and degradation system impairment (including within the ubiquitin-proteasome system and the autophagic machinery). Recent advances indicate that damage-associated molecular pattern molecules (DAMPs) such as high mobility group box 1, histones, S100, and heat shock proteins play location-dependent roles inside and outside the cell. These provide interaction platforms at molecular levels linked to common hallmarks of ageing and cancer. They can act as inducers, sensors, and mediators of stress through individual plasma membrane receptors, intracellular recognition receptors (e.g., advanced glycosylation end product-specific receptors, AIM2-like receptors, RIG-I-like receptors, and NOD1-like receptors, and toll-like receptors), or following endocytic uptake. Thus, the DAMP Hypothesis is novel and complements other theories that explain the features of ageing. DAMPs represent ideal biomarkers of ageing and provide an attractive target for interventions in ageing and age-associated diseases. PMID:25446804
Modelling of Dampers and Damping in Structures
Høgsberg, Jan Riess
2006-01-01
The present thesis consists of an extended summary and four papers concerning damping of structures and algorithmic damping in numerical analysis. The first part of the thesis deals with the efficiency and the tuning of external collocated dampers acting on flexible structures. The dynamics...... and the maximum attainable damping are found by maximizing the expression for the damping ratio. The theory is formulated for linear damper models, but may also be applied for non-linear dampers in terms of equivalent linear parameters for stiffness and damping, respectively. The format of the expressions...... only realizable by means of active control. The present thesis demonstrates how stiffness affects both the performance and the tuning of the damper. The final part of the thesis considers algorithmic damping in connection with Newmark time integration. The damping characteristics of the Newmark method...
The Damped String Problem Revisited
Gesztesy, Fritz
2010-01-01
We revisit the damped string equation on a compact interval with a variety of boundary conditions and derive an infinite sequence of trace formulas associated with it, employing methods familiar from supersymmetric quantum mechanics. We also derive completeness and Riesz basis results (with parentheses) for the associated root functions under less smoothness assumptions on the coefficients than usual, using operator theoretic methods (rather than detailed eigenvalue and root function asymptotics) only.
Active damping of unidimensional structures
Tartakovskiy, B. D.
1973-01-01
The vibration characteristics of an unidimensional structure are discussed. The cases considered are: (1) a rigid pipe in which a wave propagates, (2) an infinite string along which a transverse wave propagates, (3) a rod along which longitudinal or torsional columns propagate, and (4) generally a unidimensional propagation of some one mode of vibrations which is nondegenerating with distance. Mathematical models are developed to show the performance of the mechanical devices under various damping conditions.
Radiation damping in real time.
Mendes, A C; Takakura, F I
2001-11-01
We study the nonequilibrium dynamics of a charge interacting with its own radiation, which originates the radiation damping. The real-time equation of motion for the charge and the associated Langevin equation is found in classical limit. The equation of motion for the charge allows one to obtain the frequency-dependent coefficient of friction. In the lowest order we find that although the coefficient of static friction vanishes, there is dynamical dissipation represented by a non-Markovian dissipative kernel.
The DAMPE silicon tungsten tracker
Gallo, Valentina; Asfandiyarov, R; Azzarello, P; Bernardini, P; Bertucci, B; Bolognini, A; Cadoux, F; Caprai, M; Domenjoz, M; Dong, Y; Duranti, M; Fan, R; Franco, M; Fusco, P; Gargano, F; Gong, K; Guo, D; Husi, C; Ionica, M; Lacalamita, N; Loparco, F; Marsella, G; Mazziotta, M N; Mongelli, M; Nardinocchi, A; Nicola, L; Pelleriti, G; Peng, W; Pohl, M; Postolache, V; Qiao, R; Surdo, A; Tykhonov, A; Vitillo, S; Wang, H; Weber, M; Wu, D; Wu, X; Zhang, F; De Mitri, I; La Marra, D
2017-01-01
The DArk Matter Particle Explorer (DAMPE) satellite has been successfully launched on the 17th December 2015. It is a powerful space detector designed for the identification of possible Dark Matter signatures thanks to its capability to detect electrons and photons with an unprecedented energy resolution in an energy range going from few GeV up to 10 TeV. Moreover, the DAMPE satellite will contribute to a better understanding of the propagation mechanisms of high energy cosmic rays measuring the nuclei flux up to 100 TeV. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon-tungsten tracker-converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is made of twelve layers of single-sided AC-coupled silicon micro-strip detectors for a total silicon area of about 7 $m^2$ . To promote the conversion of incident photons into electron-positron pairs, tungsten foils are inserted into the supporting structure. In this document, a detailed description of the STK constructi...
Nonlinear damping identification from transient data
Smith, Clifford B.; Wereley, Norman M.
1999-06-01
To study new damping augmentation methods for helicopter rotor systems, accurate and reliable nonlinear damping identification techniques are needed. For example, current studies on applications of magnetorheological (MR) dampers for rotor stability augmentation suggest that a strong Coulomb damping characteristic will be manifested as the field applied to the MR fluid is maximized. Therefore, in this work, a single degree of freedom (SDOF) system having either nonlinear Coulomb or quadratic damping is considered. This paper evaluates three analyses for identifying damping from transient test data; an FFT-based moving block analysis, an analysis based on a periodic Fourier series decomposition, and a Hilbert transform based technique. Analytical studies are used to determine the effects of block length, noise, and error in identified modal frequency on the accuracy of the identified damping level. The FFT-based moving block has unacceptable performance for systems with nonlinear damping. These problems were remedied in the Fourier series based analysis and acceptable performance is obtained for nonlinear damping identification from both this technique and the Hilbert transform based method. To more closely simulate a helicopter rotor system test, these techniques were then applied to a signal composed of two closely spaced modes. This data was developed to simulate a response containing the first lag and 1/rev modes. The primary mode of interest (simulated lag mode) had either Coulomb or quadratic damping, and the close mode (1/rev) was either undamped or had a specified viscous damping level. A comprehensive evaluation of the effects of close mode amplitude, frequency, and damping level was performed. A classifier was also developed to identify the dominant damping mechanism in a signal of 'unknown' composition. This classifier is based on the LMS error of a fit of the analytical envelope expression to the experimentally identified envelope signal. In most
Introduction to DAMPE event reconstruction (On behalf of DAMPE collaboration)
Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer (DAMPE) is a high energy particle physics experiment satellite, launched on 17 Dec 2015. To measure basic attributes of cosmic ray particles, DAMPE is equipped with four sub-detectors, BGO calorimeter (BGO), plastic scintillator detector (PSD), silicon tungsten tracker (STK) and neutron detector (NUD). On orbit, the high energy particle data are acquired and recorded by well-designed Data Acquisition system. After that, a series of elaborate event reconstruction algorithms are implemented to determine the energy, direction and particle ID of each event. The energy reconstruction algorithm firstly treats the sum of the BGO crystal energy as the overall energy estimator and various corrections are performed to calculate energy leakage from side and back of the calorimeter. The track reconstruction starts with cluster finding in STK, then shower axis of BGO and barycentre of clusters are used to extract seed of tracks. These seeds will be projected on the next layer by Kalman Filter method which will finally give location and direction of particle tracks. Based on shower development in BGO and tracks reconstructed by STK, we also combine data from PSD and NUD and developed a series of algorithms to evaluate particle's charge and identification. In this talk, we will describe technical strategies of event reconstruction and provide their basic performance.
Air Damping Analysis in Comb Microaccelerometer
Wu Zhou
2014-04-01
Full Text Available Air damping significantly influences the dynamical characteristics of MEMS accelerometers. Its effects at micro-scale level sharply depend on the structure layouts and size of MEMS devices. The damping phenomenon of comb microaccelerometers is investigated. The air between fixed plate electrodes and movable plate electrodes cannot flow freely and is compressed. The air damping, therefore, exhibits both viscous effects and stiffness effects. The former generates a drag force like that in macromechanical systems, and the damping force is proportional to the velocity of movable electrodes. The latter stiffens the rigidity of structure, and the stiffening level is related to the gap value of capacitors, internal pressure, and temperature. This paper focuses on the dependence of the squeeze film air damping on capacitor gaps. The simulation and experiments indicate that the squeeze film effect is sharply affected by the gap value when the structural dimensions decrease. And the influence of fabrication errors is considered in damping design in comb microaccelerometers.
Damped transverse oscillations of interacting coronal loops
Soler, Roberto
2015-01-01
Damped transverse oscillations of magnetic loops are routinely observed in the solar corona. This phenomenon is interpreted as standing kink magnetohydrodynamic waves, which are damped by resonant absorption owing to plasma inhomogeneity across the magnetic field. The periods and damping times of these oscillations can be used to probe the physical conditions of the coronal medium. Some observations suggest that interaction between neighboring oscillating loops in an active region may be important and can modify the properties of the oscillations compared to those of an isolated loop. Here we theoretically investigate resonantly damped transverse oscillations of interacting non-uniform coronal loops. We provide a semi-analytic method, based on the T-matrix theory of scattering, to compute the frequencies and damping rates of collective oscillations of an arbitrary configuration of parallel cylindrical loops. The effect of resonant damping is included in the T-matrix scheme in the thin boundary approximation. ...
Quantizing the damped harmonic oscillator
Latimer, D C [Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee 37235 (United States)
2005-03-04
We consider the Fermi quantization of the classical damped harmonic oscillator (dho). In past work on the subject, authors double the phase space of the dho in order to close the system at each moment in time. For an infinite-dimensional phase space, this method requires one to construct a representation of the CAR algebra for each time. We show that the unitary dilation of the contraction semigroup governing the dynamics of the system is a logical extension of the doubling procedure, and it allows one to avoid the mathematical difficulties encountered with the previous method.
Vitreous Enamel Damping Material Development.
1982-11-01
PROCEDURES 3 2.1. EXPERIMENTAL 3 2.1.1. GLASS PREPARATION 3 2.1.2. METHOD OF COATING APPLICATION 3 2.1.3. VIBRATION DAMPING MEASUREMENTS 3 2.2. CALCULATION OF...discussion in this report. fL 2 SECTION II TECHNICAL PROCEDURES 2.1 EXPERIMENTAL 2.1.1 Glass Preparation All of the compositions, except the standard...After heat treatments of composition "B", a- cristobalite and devitrite (Na20.3CaO-6SiO 2) appear as crystalline phases; a- cristobalite being the major
Radiation damping in metal nanoparticle pairs.
Dahmen, Christian; Schmidt, Benjamin; von Plessen, Gero
2007-02-01
The radiation damping rate of plasmon resonances in pairs of spherical gold nanoparticles is calculated. The radiative line width of the plasmon resonance indicates significant far-field coupling between the nanoparticles over distances many times the particle diameter. The radiation damping of the coupled particle-plasmon mode alternates between superradiant and subradiant behavior when the particle spacing is varied. At small particle spacings where near-field coupling occurs, the radiation damping rate lies far below that of an isolated particle.
Parametric Landau damping of space charge modes
Macridin, Alexandru; Stern, Eric; Amundson, James; Spentzouris, Panagiotis
2016-01-01
Landau damping is the mechanism of plasma and beam stabilization; it is caused by energy transfer from collective modes to incoherent motion of resonant particles. Normally this resonance requires the wave frequency in the particle frame to match the resonant particles frequency. Using the Synergia modeling package to study transverse coherent modes of bunched beams with space charge, we have identified a new kind of damping mechanism, parametric Landau damping, driven by the modulation of the wave-particle interaction.
Nonlinear theory of magnetic Landau damping
Kirpichnikov, A.P.; Yusupov, I.U.
1978-05-01
The nonlinear Cerenkov damping of helical electromagnetic waves in a magnetized plasma is analyzed. The nonlinear mechanism which leads to oscillations in the wave amplitude and limits the damping is the trapping of resonant particles in the potential well of the wave, as in the O'Neil problem. The factors of the type exp (-..cap alpha..t/sup 2/) in the expression for the nonlinear damping rate for a Maxwellian particle distribution lead to a damping of the amplitude oscillations of the helical wave which is much more rapid than for a plasma wave.
Phenomenology of chiral damping in noncentrosymmetric magnets
Akosa, Collins Ashu
2016-06-21
A phenomenology of magnetic chiral damping is proposed in the context of magnetic materials lacking inversion symmetry. We show that the magnetic damping tensor acquires a component linear in magnetization gradient in the form of Lifshitz invariants. We propose different microscopic mechanisms that can produce such a damping in ferromagnetic metals, among which local spin pumping in the presence of an anomalous Hall effect and an effective “s-d” Dzyaloshinskii-Moriya antisymmetric exchange. The implication of this chiral damping in terms of domain-wall motion is investigated in the flow and creep regimes.
The next linear collider damping ring lattices
Wolski, Andrzej; Corlett, John N.
2001-06-20
We report on the lattice design of the Next Linear Collider (NLC) damping rings. The damping rings are required to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. We present an optical design, based on a theoretical minimum emittance (TME) lattice, to produce the required normalized extracted beam emittances gex = 3 mm-mrad and gey = 0.02 mm mrad. An assessment of dynamic aperture and non-linear effects is given. The positron pre-damping ring, required to reduce the emittance of the positron beam such that it may be accepted by a main damping ring, is also described.
Hysteretic damping in rotordynamics: An equivalent formulation
Genta, Giancarlo; Amati, Nicola
2010-10-01
The hysteretic damping model cannot be applied to time domain dynamic simulations: this is a well-known feature that has been discussed in the literature since the time when analog computers were widespread. The constant equivalent damping often introduced to overcome this problem is also discussed, and its limitations are stated, in particular those linked with its application in rotordynamics to simulate rotating damping. An alternative model based on the nonviscous damping (NVD) model, but with a limited number of additional degrees of freedom, is proposed, and the relevant equations are derived. Some examples show applications to the rotordynamics field.
Petitjean, P.; Ledoux, C.
Recently, Prochaska & Wolfe (1997) have used Keck spectra of 17 DLA absorbers to investigate the kinematics of the neutral gas using unsaturated low excitation transitions such as Si iiλ 1808. They show that the absorption profiles are inconsistent with models of galactic haloes with random motions, spherically infalling gas and slowly rotating hot disks. The CDM model (Kauffmann 1996) is rejected as it produces disks with rotation velocities too small to account for the large observed velocity broadening of the absorption lines. Models of thick disks (h ~0.3 R, where h is the vertical scale and R the radius) with large rotational velocity (v 225kms-1) can reproduce the data. By combining new data on five damped systems with information gathered in the literature, we study the kinematics of the low and high-ionization phases in a sample of 26 damped Lyman-α systems in the redshift range 1.17 - 4.38. We show that the broader the line the more asymmetric, as expected in case rotation dominates the line broadening. However this correlation does not hold for velocities larger than 150 km/s indicating that evidence for rotational motions if any is restricted to velocity broadenings Δ V 200kms-1 are peculiar with kinematics consistent with random motions. They show sub-systems as those expected if the objects are in the process of merging.
Damped and detuned accelerator structures
Deruyter, H.; Farkas, Z.D; Hoag, H.A.; Ko, K.; Kroll, N.; Loew, G.A.; Miller, R.; Palmer, R.B.; Paterson, J.M.; Thompson, K.A.; Wang, J.W.; Wilson, P.B.
1990-09-01
This paper reports continuing work on accelerator structures for future TeV linear colliders. These structures, in addition to having to operate at high gradients, must minimize the effects of wakefield modes which are induced by e{sup {plus minus}} bunch trains. Two types of modified disk-loaded waveguides are under investigation: damped structures in which the wakefield power is coupled out to lossy regions through radial slots in the disks and/or azimuthal rectangular waveguides, whereby the external Q of the undesirable HEM{sub 11} mode is lowered to values below 20, and detuned structures in which the frequencies of these modes are modified from one end to the other of each section by {approximately}10%, thereby scrambling their effects on the beam. Beam dynamics calculations indicate that these two approaches are roughly equivalent. MAFIA, ARGUS and URMEL codes have been used extensively in conjunction with low-power tests on S- and X-band models to identify mode patterns, dispersion curves and Q values, and to demonstrate damping or detuning of the HEM modes. Results of calculations and measurements on the various structures are presented and evaluated.
Acoustic transducer with damping means
Smith, Richard W.; Adamson, Gerald E.
1976-11-02
An ultrasonic transducer specifically suited to high temperature sodium applications is described. A piezoelectric active element is joined to the transducer faceplate by coating the faceplate and juxtaposed active element face with wetting agents specifically compatible with the bonding procedure employed to achieve the joint. The opposite face of the active element is fitted with a backing member designed to assure continued electrical continuity during adverse operating conditions which can result in the fracturing of the active element. The fit is achieved employing a spring-loaded electrode operably arranged to electrically couple the internal transducer components, enclosed in a hermetically sealed housing, to accessory components normally employed in transducer applications. Two alternative backing members are taught for assuring electrical continuity. The first employs a resilient, discrete multipoint contact electrode in electrical communication with the active element face. The second employs a resilient, elastomeric, electrically conductive, damped member in electrical communication with the active element face in a manner to effect ring-down of the transducer. Each embodiment provides continued electrical continuity within the transducer in the event the active element fractures, while the second provides the added benefit of damping.
Quasienergy formulation of damped response theory.
Kristensen, Kasper; Kauczor, Joanna; Kjaergaard, Thomas; Jørgensen, Poul
2009-07-28
We present a quasienergy-based formulation of damped response theory where a common effective lifetime parameter has been introduced for all excited states in terms of complex excitation energies. The introduction of finite excited state lifetimes leads to a set of (complex) damped response equations, which have the same form to all orders in the perturbation. An algorithm is presented for solving the damped response equations in Hartree-Fock theory and Kohn-Sham density functional theory. The use of the quasienergy formulation allows us to obtain directly the computationally simplest expressions for damped response functions by applying a set of response parameter elimination rules, which minimize the total number of damped response equations to be solved. In standard response theory broadened absorption spectra are obtained by ad hoc superimposing lineshape functions onto the absorption stick spectra, whereas an empirical lineshape function common to all excitations is an integrated part of damped response theory. By superimposing the lineshape functions inherent in damped response theory onto the stick spectra of standard response theory, we show that the absorption spectra obtained in standard and damped response theory calculations are identical. We demonstrate that damped response theory may be applied to obtain absorption spectra in all frequency ranges, also those that are not readily addressed using standard response theory. This makes damped response theory an effective tool, e.g., for determining absorption spectra for large molecules, where the density of the excited states may be very high, and where standard response theory therefore is not applicable in practice. A thorough comparison is given between our formulation of damped response theory and the formulation by Norman et al. [J. Chem. Phys. 123, 194103 (2005)].
Passivation of Underactuated Systems with Physical Damping
Gómez-Estern, F.; Schaft, A.J. van der; Acosta, J.A.
2004-01-01
In recent works, Interconnection and Damping Assignment Passivity-Based Control (IDA-PBC) has been succesfully applied to mechanical control problems with no physical damping present. In some cases, the friction terms can be obviated without compromising stability in closed loop. However in method
Magnetic dipole oscillations and radiation damping
Stump, Daniel R.; Pollack, Gerald L.
1997-01-01
We consider the problem of radiation damping for a magnetic dipole oscillating in a magnetic field. An equation for the radiation reaction torque is derived, and the damping of the oscillations is described. Also discussed are runaway solutions for a rotating magnetic dipole moving under the influence of the reaction torque, with no external torque.
Gyroscopic Stabilization of Indefinite Damped Systems
Kliem, Wolfhard; Müller, Peter C.
1997-01-01
Modelling of mechanical systems with sliding bearings, or with dry friction, can lead to linear systems with an indefinite damping matrix. We ask under what conditions such a system is unstable (the indefiniteness of the damping matrix is not enough) and under what conditions we can stabilize...
Understanding the Damped SHM without ODEs
Ng, Chiu-king
2016-01-01
Instead of solving ordinary differential equations (ODEs), the damped simple harmonic motion (SHM) is surveyed qualitatively from basic mechanics and quantitatively by the instrumentality of a graph of velocity against displacement. In this way, the condition b ? [square root]4mk for the occurrence of the non-oscillating critical damping and…
Damping Characteristics of Metal Matrix Composites
1989-05-25
Sin . ........... Inches x 106 (Microinches) IR&D ......................... n e t Research and Development.K ...................... Kelvin LPSS...Proper Sitan Ampliutde Dependence for a Dislocation Damping Mechanism 5.4 SUMMARY Damping measurements of pitch 55 graphite fiber reinforcement in high
Anisotropic damping of Timoshenko beam elements
Hansen, M.H.
2001-01-01
This report contains a description of a structural damping model for Timoshenko beam elements used in the aeroelastic code HawC developed at Risø for modeling wind turbines. The model has been developed to enable modeling of turbine blades which oftenhave different damping characteristics...
On Collisionless Damping of Ion Acoustic Waves
Jensen, Vagn Orla; Petersen, P.I.
1973-01-01
Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero.......Exact theoretical treatments show that the damping of ion acoustic waves in collisionless plasmas does not vanish when the derivative of the undisturbed distribution function at the phase velocity equals zero....
Magnetic damping of rotation. [in satellites
Opik, E. J.
1977-01-01
Based on Wilson's (1977) article on the magnetic effects on space vehicles and other celestial bodies, the magnetic damping of rotation is considered. The inadequacy of the interstellar magnetic field in overcoming solar wind shielding and thus influencing the rotation of bodies is described. The ionospheric shielding of the interstellar field is discussed along with the permeability and magnetic damping by the solar or stellar wind. Star formation and angular momentum is discussed and attention is given to the magnetic damping of unshielded small bodies. Calculations of the rate for damping through random particle impact are made. Theories concerning the rotation of asteroids and the origin of meteorites are reviewed. The shielding process of ionospheric plasmas is outlined and the damping effect of the geomagnetic field on the rotation of artificial satellites is evaluated.
Quantum dynamics of the damped harmonic oscillator
Philbin, T G
2012-01-01
The quantum theory of the damped harmonic oscillator has been a subject of continual investigation since the 1930s. The obstacle to quantization created by the dissipation of energy is usually dealt with by including a discrete set of additional harmonic oscillators as a reservoir. But a discrete reservoir cannot directly yield dynamics such as Ohmic damping (proportional to velocity) of the oscillator of interest. By using a continuum of oscillators as a reservoir, we canonically quantize the harmonic oscillator with Ohmic damping and also with general damping behaviour. The dynamics of a damped oscillator is determined by an arbitrary effective susceptibility that obeys Kramers-Kronig relations. This approach offers an alternative description of nano-mechanical oscillators and opto-mechanical systems.
Damping characteristics of damaged fiber composite components
Eberle, K.
1986-01-01
Defects in fiber composite components produce changes with respect to the vibrational characteristics of the material. These changes can be recognized in the form of a frequency shift or an alteration of the damping process. The present investigation is concerned with questions regarding the possibility of a utilization of the changes in suitable defect-detecting inspection procedures. A description is given of a method for measuring the damping characteristics of a specimen. This method provides a spectrum of the damping coefficients of the sample as a basis for a comprehensive evaluation of the damping behavior. The correlation between defects and change in the damping characteristics is demonstrated with the aid of results obtained in measurements involving specimens of carbon-fiber composites and a component consisting of glass-fiber-reinforced plastics.
Practical Damping Identification of FAST Cable Suspension
Jinghai Sun
2014-03-01
Full Text Available FAST focus cabin is suspended and driven by 6 parallel large span cables. Low stiffness of cables makes the cabin sensitive to disturbance and difficult to control. Structural damping then becomes a key factor that can improve control ability. Therefore, a reasonable damping estimation is important for system design. In this paper, a practical damping identification method is developed based on Ibrahim-time-domain algorithm. The method shows satisfied performance on accuracy and reliability in simulation test and is utilized in vibration experiments to identify damping ratios of both single cable model and FAST 3 m scale cable suspension model. Finally, a preliminary analysis of the damping properties is given out based on the results of identification.
A New Fine Damping Method for Solid ESG Rotor
LIU Chun-ning; TIAN Wei-feng; JIN Zhi-hua
2006-01-01
For the electrostatically suspended gyro(ESG) with solid rotor, because the equatorial photoelectric sensor won't sense the equatorial marking line and output the correct damping control information when the nutation angle is small, the active damping with equatorial marking line will bring considerable error. The passive damping method by applying strong DC magnetic field requires too much time. So an active damping method by longitude marking lines is proposed to fulfill the fine damping for solid ESG rotor. The shape of rotor marking lines and the principle of fine damping are introduced. The simulation results prove that this fine damping method can effectively solve the problem of damping error introduced by active damping with equatorial marking line. The estimating results for damping time indicate that the fine damping time is less than 10 percent of passive damping time.
Chortis, D I; Chrysochoidis, N A; Saravanos, D A [Department of Mechanical Engineering and Aeronautics, University of Patras, Patras 26500 (Greece)
2007-07-15
The paper presents a brief description of composite damping mechanics for blade sections of arbitrary lamination and geometry. A damped 3-D shear beam element is presented enabling the assembly of damped structural dynamic models of blades with hollow multi-cell tubular laminated sections. Emphasis is placed to the inclusion of composite material coupling effects, first in the blade section stiffness and damping matrices and finally into the stiffness and damping matrices of the finite element. Evaluations of the beam element are presented, to quantify the material coupling effect on composite beams of simple box sections. Correlations between predicted and measured modal frequencies and damping values in small model Glass/Epoxy are also shown. Finally, the damped modal characteristics of a 35m realistic wind-turbine blade model design, are predicted.
Cracks Detection Using Active Modal Damping and Piezoelectric Components
B. Chomette
2013-01-01
Full Text Available The dynamics of a system and its safety can be considerably affected by the presence of cracks. Health monitoring strategies attract so a great deal of interest from industry. Cracks detection methods based on modal parameters variation are particularly efficient in the case of large cracks but are difficult to implement in the case of small cracks due to measurement difficulties in the case of small parameters variation. Therefore the present study proposes a new method to detect small cracks based on active modal damping and piezoelectric components. This method uses the active damping variation identificated with the Rational Fraction Polynomial algorithm as an indicator of cracks detection. The efficiency of the proposed method is demonstrated through numerical simulations corresponding to different crack depth and locations in the case of a finite element model of a clamped-clamped beam including four piezoelectric transducers.
A Resonant Damping Study Using Piezoelectric Materials
Min, J. B.; Duffy, K. P.; Choi, B. B.; Morrison, C. R.; Jansen, R. H.; Provenza, A. J.
2008-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue (HCF) problems requiring damping treatments to mitigate vibration levels. Based on the technical challenges and requirements learned from previous turbomachinery blade research, a feasibility study of resonant damping control using shunted piezoelectric patches with passive and active control techniques has been conducted on cantilever beam specimens. Test results for the passive damping circuit show that the optimum resistive shunt circuit reduces the third bending resonant vibration by almost 50%, and the optimum inductive circuit reduces the vibration by 90%. In a separate test, active control reduced vibration by approximately 98%.
Structural dynamic modification using additive damping
B C Nakra
2000-06-01
In order to control dynamic response in structures and machines, modofications using additive viscoelastic damping materials are highlighted. The techniques described for analysis include analytical methods for structural elements, FEM and perturbation methods for reanalysis or structural dynamic modifications for complex structures. Optimisation techniques are used for damping effectiveness include multi-parameter optimisatoin techniques and a technique using dynamic sensitivity analysis and structural dynamic modification. These have been applied for optimum dynamic design of structures incorporating viscoelastic damping. Some current trends for vibraton control are also discussed.
Radiation damping of a polarizable particle
Novotny, Lukas
2017-09-01
A polarizable body moving in an external electromagnetic field will slow down. This effect is referred to as radiation damping and is analogous to Doppler cooling in atomic physics. Using the principles of special relativity we derive an expression for the radiation damping force and find that it solely depends on the scattered power. The cooling of the particle's center-of-mass motion is balanced by heating due to radiation pressure shot noise, giving rise to an equilibrium that depends on the ratio of the field's frequency and the particle's mass. While damping is of relativistic nature, heating has its roots in quantum mechanics.
Damping Properties of Flexible Epoxy Resin
WANG Xiang; LIU Hanxing; OUYANG Shixi
2008-01-01
Amino-terminated polyethers and amino-terminated polyurethane were used as curing agent to cure the epoxy resin together and get a series of cured products. The damping properties of the composites were studied by DMA test at different measurement frequencies. Damping mechanical tests show that the flexible epoxy resin has higher loss factor than common epoxy. The highest loss factor reaches 1.57. Also the height and position of loss factor peak of the flexible epoxy resin varies by changing the content of amino-terminated polyethers. Results shows that the flexible epoxy resin can be used as damping polymer materials at room temperature or in common frequency range.
Identification of Light Damping in Structures
Jensen, Jacob Laigaard; Brincker, Rune; Rytter, Anders
Different methods to identification of linear and nonlinear damping in lightly damped structures are discussed in this paper. The discussion is based on experiments with a 4 meter high monopile. Two alternative methods have been used for experimental cases of linear and nonlinear damping. Method 1...... is identification by ARMA models assuming a white noise input. Method 2 is identification by simulation of a free decay response. Experimental data on the free decay response has been obtained directly by measurement as well as by the random decrement technique. Two experimental cases has been considered. The first...
Nonlinear Landau damping of Alfven waves.
Hollweg, J. V.
1971-01-01
Demonstration that large-amplitude linearly or elliptically polarized Alfven waves propagating parallel to the average magnetic field can be dissipated by nonlinear Landau damping. The damping is due to the longitudinal electric field associated with the ion sound wave which is driven (in second order) by the Alfven wave. The damping rate can be large even in a cold plasma (beta much less than 1, but not zero), and the mechanism proposed may be the dominant one in many plasmas of astrophysical interest.
Resonant Electromagnetic Shunt Damping of Flexible Structures
Høgsberg, Jan Becker
2016-01-01
Electromagnetic transducers convert mechanical energy to electrical energy and vice versa. Effective passive vibration damping of flexible structures can therefore be introduced by shunting with an accurately calibrated resonant electrical network thatcontains a capacitor to create the desired...
DAMPING PERFORMANCE OF EUCOMMIA ULMOIDES GUM
Ji-chuan Zhang; Zhao-hong Xue; Rui-fang Yan
2011-01-01
Eucommia ulmoides gum (EU gum), known as gutta percha in Southeast Asia, is a natural polymer with double characteristics of rubber and plastic. In present paper, tanδ-T curve and hysteresis loss (HL) were chosen to characterize its damping property. The results indicated that its tanδvalue would increase with rising of temperature when T＞ 0°C and form another damping peak at 40-80°C besides Tg peak. This phenomenon resulted fiom meltage of crystals of EU gum could increase its damping property at ambient-high temperature. Its tanδ value even exceeded those of conventional damping rubbers, such as nitrile-butadiene rubber (NBR) and chlorinated isobutene-isoprene rubber (CIIR).
Simplified Model of Nonlinear Landau Damping
N. A. Yampolsky and N. J. Fisch
2009-07-16
The nonlinear interaction of a plasma wave with resonant electrons results in a plateau in the electron distribution function close to the phase velocity of the plasma wave. As a result, Landau damping of the plasma wave vanishes and the resonant frequency of the plasma wave downshifts. However, this simple picture is invalid when the external driving force changes the plasma wave fast enough so that the plateau cannot be fully developed. A new model to describe amplification of the plasma wave including the saturation of Landau damping and the nonlinear frequency shift is proposed. The proposed model takes into account the change of the plasma wave amplitude and describes saturation of the Landau damping rate in terms of a single fluid equation, which simplifies the description of the inherently kinetic nature of Landau damping. A proposed fluid model, incorporating these simplifications, is verified numerically using a kinetic Vlasov code.
Damping by branching: a bioinspiration from trees
Theckes, Benoit; Boutillon, Xavier
2011-01-01
Man-made slender structures are known to be sensitive to high levels of vibration, due to their flexibility, which often cause irreversible damage. In nature, trees repeatedly endure large amplitudes of motion, mostly caused by strong climatic events, yet with minor or no damage in most cases. A new damping mechanism inspired by the architecture of trees is here identified and characterized in the simplest tree-like structure, a Y-shape branched structure. Through analytical and numerical analyses of a simple two-degree-of-freedom model, branching is shown to be the key ingredient in this protective mechanism that we call damping-by-branching. It originates in the geometrical nonlinearities so that it is specifically efficient to damp out large amplitudes of motion. A more realistic model, using flexible beam approximation, shows that the mechanism is robust. Finally, two bioinspired architectures are analyzed, showing significant levels of damping achieved via branching with typically 30% of the energy being...
Piezoelectric RL shunt damping of flexible structures
Høgsberg, Jan Becker; Krenk, Steen
2015-01-01
Resonant RL shunt circuits represent a robust and effective approach to piezoelectric damping, provided that the individual shunt circuit components are calibrated accurately with respect to the dynamic properties of the corresponding flexible structure. The balanced calibration procedure applied...
Modification of spastic gait through mechanical damping.
Maki, B E; Rosen, M J; Simon, S R
1985-01-01
The effect of dissipative mechanical loads on spastic gait has been studied, to evaluate the feasibility of using mechanically damped orthoses to effect functional improvements in the gait of spastic patients. This concept is based on a hypothesis citing uninhibited, velocity-dependent stretch reflexes as a possible causal factor in spastic gait abnormalities, such as equinus and back-kneeing. In order to screen potential experimental subjects and to quantify velocity-dependent reflex behaviour, ankle rotation experiments and filmed gait analysis were performed. The results supported the existence of a velocity threshold. Orthosis simulation experiments were performed with one spastic subject, using a wearable, computer-controlled, electromechanical, below-knee orthosis simulator to apply a variety of damping loads to the ankle as the subject walked. Results indicated that appropriate damping can improve local joint kinematics. The damping causes a reduction in muscle stretch velocity which apparently results in reduced spastic reflex activity.
Dynamic damping property of magnetorheological elastomer
李剑锋; 龚兴龙
2008-01-01
Magnetorheological elastomer(MRE) is a new kind of smart materials,its dynamic mechanic performances can be controlled by an applied magnetic field.MRE is usually used as a stiffness-changeable spring in the semi-active vibration absorber.In order to get perfect vibration control effect,low dynamic damping of MRE is need.But the dynamic damping of MRE was not studied deeply in the past.The dynamic damping of MRE was studied and analyzed.The influences of different test conditions including test strain amplitude,test frequency and test magnetic field were deeply studied.MRE sample and pure silicone rubber sample were prepared and tested under different conditions.The test results show that the main source of dynamic damping is the friction between iron particles and rubber matrix.And the friction is mainly influenced by the strain amplitude and test magnetic field.
Techniques for Thermal Damping in Tube Bundles
QAMAR IQBAL
2010-10-01
Full Text Available Flow-induced vibration in heat exchangers has been a source of concern in the process, power generation and nuclear industry for several decades. Damping has a major influence on the flow induced vibrations and is dependant on a variety of factors such as mechanical properties of the tube material, geometry of intermediate supports, the physical properties of shell-side fluid, type of tube motion, number of supports, tube frequency, shell-side temperature etc. Various damping mechanisms have been identified and quantified. Generally the effects of the higher operating temperatures on the various damping mechanisms are neglected in the general design procedure. This paper focuses on the thermal aspects of damping mechanisms subjected to single phase cross-flow in shell and tube heat exchanger and a comparison is carried out safer design based on experimental and empirical formulations.
Damping Wiggler Study at KEK-ATF
Naito, Takashi; Honda, Yosuke; Korostelev, Maxim S; Kubo, Kiyoshi; Kuriki, Masao; Kuroda, Shigeru; Muto, Toshiya; Nakamura, Norio; Ross, Marc; Sakai, Hiroshi; Terunuma, Nobuhiro; Urakawa, Junji; Zimmermann, Frank
2005-01-01
The effects by damping wiggler magnets have been studied at KEK-ATF. The damping ring of the KEK-ATF is a 1.3 GeV storage ring capable of producing ultra-low emittance electron beams. It is significant issue to realize fast damping in the damping ring. The tuning method with 4 sets of wiggler was investigated for the ultra-low emittance beam. The performance on the beam quality, which is related to the transverse (x and y) and the longitudinal (z and dp/p), has been measured by the SR monitor, the laser wire, the streak camera and the energy spread monitor at the extraction line. We report on the operation condition and the measurement results.
2011-05-25
... No: 2011-12935] DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention [Docket Number NIOSH-238] Draft Alert Entitled ``Preventing Occupational Respiratory Disease From Dampness..., Director, National Institute for Occupational Safety and Health, Centers for Disease Control and...
ON DAMPING COEFFICIENT DUE TO PHASE TRANSFORMATION
Din-YuHSIEH
2003-01-01
The damping coefficient of capillary waves due to the evaporation-condensation process at the interface of the two phases of a fluid is evaluated. To highlight the mechanism of the effect of heat and mass transfer across the interface between regions of liquid and vapor, potential flow of incompressible fluids are assumed. Thus other mechanisms of damping are neglected. To fascilitate the analysis, the method of multiple-scale is employed in the analysis, even though the problem is linear.
Diffusion-damped domain wall dynamics
Varga, R; Infante, G [Inst. Phys., Fac. Sci., UPJS, Park Angelinum 9, 04154 Kosice (Slovakia); Badini-Confalonieri, G A; Vazquez, M, E-mail: rvarga@upjs.s [Instituto de Ciencia de Materiales de Madrid, CSIC, Cantoblanco, 28049, Madrid (Spain)
2010-01-01
In the given work, the influence of diffusional damping on the domain wall dynamics of heat treated FeSiBP microwires is presented. Two regions of the domain wall dynamics have been found. At low applied fields diffusion damping prevails, keeping the domain wall velocity and mobility low. At higher fields, the diffusional effects are overcomed and domain wall velocity increases steeply and so does the domain wall mobility.
Optimal constrained layer damping with partial coverage
Marcelin, J.-L.; Trompette, Ph.; Smati, A.
1992-12-01
This paper deals with the optimal damping of beams constrained by viscoelastic layers when only one or several portions of the beam are covered. An efficient finite element model for dynamic analysis of such beams is used. The design variables are the dimensions and prescribed locations of the viscoelastic layers and the objective is the maximum viscoelastic damping factor. The method for nonlinear programming in structural optimization is the so-called method of moving asymptotes.
Turbine blade with tuned damping structure
Campbell, Christian X.; Messmann, Stephen J.
2015-09-01
A turbine blade is provided comprising: a root; an airfoil comprising an external wall extending radially from the root and having a radially outermost portion; and a damping structure. The external wall may comprise first and second side walls joined together to define an inner cavity of the airfoil. The damping structure may be positioned within the airfoil inner cavity and coupled to the airfoil so as to define a tuned mass damper.
On a Nonlocal Damping Model in Ferromagnetism
M. Moumni
2015-01-01
Full Text Available We consider a mathematical model describing nonlocal damping in magnetization dynamics. The model consists of a modified form of the Landau-Lifshitz-Gilbert (LLG equation for the evolution of the magnetization vector in a rigid ferromagnet. We give a global existence result and characterize the long time behaviour of the obtained solutions. The sensitivity of the model with respect to large and small nonlocal damping parameters is also discussed.
Analysis of nonlinear damping properties of carbon
Kazakova, Olga I.; Smolin, Igor Yu.; Bezmozgiy, Iosif M.
2016-11-01
This paper describes research results of nonlinear damping properties of carbon fiber reinforced plastics. The experimental and computational research is performed on flat composite specimens with the gradual structure complication (from 1 to 12 layers). Specimens are subjected to three types of testing which are modal, harmonic and transient analyses. Relationships between the amplitude response and damping ratio are obtained by means of the analysis of variance as the result of this research.
Numerical studies of shear damped composite beams using a constrained damping layer
Kristensen, R.F.; Nielsen, Kim Lau; Mikkelsen, Lars Pilgaard
2008-01-01
Composite beams containing one or more damping layers are studied numerically. The work is based on a semi-analytical model using a Timoshenko beam theory and a full 2D finite element model. The material system analysed, is inspired by a train wagon suspension system used in a EUREKA project Sigma......!1841. For the material system, the study shows that the effect of the damping layer is strongly influenced by the presence of a stiff constraining layer, that enforces large shear strain amplitudes. The thickness of the damping rubber layer itself has only a minor influence on the overall damping...
Smith, Clifford B.; Wereley, Norman M.
1996-10-01
The first objective of this paper is to evaluate the performance of damping identification algorithms. The second objective is to determine the feasibility of damping augmentation in rotating composite beams via passive constrained layer damping (PCLD). Damping identification schemes were applied to four rectangular cross-section laminated composite beams with cocured integral damping layers over the span of the beam. The cocured beam consisted of a twenty-ply balanced and symmetric cross-ply Gr/Ep composite host structure, a top and bottom damping layer of viscoelastic material (VEM), and a 2-ply Gr/Ep constraining layer sandwiching the viscoelastic material to the host structure. Four VEM thicknesses were considered: 0, 5, 10, and 15 mils. The cantilevered beams were tested at rotational speeds ranging from 0 to 900 RPM in a vacuum chamber. Excitation in bending was provided using piezo actuators, and the bending response was measured using full strain gauge bridges. Transient data were analysed using logarithmic decrement, a Hilbert transform technique, and an FFT- based moving block analysis. When compared to the beam with no VEM, a 19.2% volume fraction (15 mil layer) of viscoelastic in the beam produced a 400% increase in damping ratio in the non-rotating case, while at 900 RPM, the damping ratio increased only 360%. Overall structural damping was reduced as a function of RPM, due to centrifugal stiffening.
Linear control strategies for damping of flexible structures
Høgsberg, Jan Riess; Krenk, Steen
2006-01-01
Starting from the two-component representation technique for damping of structures the possible increase in damping efficiency obtained by introducing collocated active damping is illustrated. The two-component representation of the damped vibration mode is constructed as a linear combination of ...
EXPERIMENTAL MODAL ANALYSIS OF VISCO-ELASTICALLY DAMPED STRUCTURES
1998-01-01
The form of the modal analysis of viscoelastically damped structures is simplified and this simplified form is similar to the form of the modal analysis of linear viscously damped structures. As a result of this simplified form, the experimental modal analysis methods of linear viscously damped structures are applied to the experimental modal analysis of viscoelastically damped structures.
Thermal damping and retardation in karst conduits
A. J. Luhmann
2014-08-01
Full Text Available Water temperature is a non-conservative tracer in the environment. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. However, within karst aquifers, seasonal and short-term fluctuations in recharge temperature are often transmitted over long distances before they are fully damped. Using analytical solutions and numerical simulations, we develop relationships that describe the effect of flow path properties, flow-through time, recharge characteristics, and water and rock physical properties on the damping and retardation of thermal peaks/troughs in karst conduits. Using these relationships, one can estimate the thermal retardation and damping that would occur under given conditions with a given conduit geometry. Ultimately, these relationships can be used with thermal damping and retardation field data to estimate parameters such as conduit diameter. We also examine sets of numerical experiments where we relax some of the assumptions used to develop these relationships, testing the effects of variable diameter, variable velocity, open channels, and recharge shape on thermal damping and retardation to provide some constraints on uncertainty. Finally, we discuss a tracer experiment that provides field confirmation of our relationships. High temporal resolution water temperature data are required to obtain sufficient constraints on the magnitude and timing of thermal peaks and troughs in order to take full advantage of water temperature as a tracer.
Damp heat stable doped zinc oxide films
Hüpkes, J., E-mail: j.huepkes@fz-juelich.de [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Owen, J.I. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Wimmer, M.; Ruske, F. [Institute of Silicon Photovoltaics, Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489 Berlin (Germany); Greiner, D.; Klenk, R. [Institute for Heterogeneous Materials Systems, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin (Germany); Zastrow, U. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Hotovy, J. [IEK5–Photovoltaik, Forschungszentrum Jülich GmbH, 52425 Jülich (Germany); Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovicova 3, 812 19 Bratislava (Slovakia)
2014-03-31
Zinc oxide is widely used as transparent contact in thin film solar cells. We investigate the damp heat stability of aluminum doped ZnO (ZnO:Al) films sputter deposited at different conditions. Increase in resistivity upon damp heat exposure was observed for as-deposited ZnO:Al films and the water penetration was directly linked to this degradation. Deuterium was used as isotopic marker to identify the amount of water taken up by the films. Finally, we applied a special annealing step to prepare highly stable ZnO:Al films with charge carrier mobility of 70 cm{sup 2}/Vs after 1000 h of damp heat treatment. A grain boundary reconstruction model is proposed to explain the high stability of ZnO:Al films after annealing. - Highlights: • Study of damp heat degradation on electrical properties of ZnO:Al • Demonstration of fast water penetration and replacement mechanism • Damp heat stable ZnO:Al films with high mobility after damp heat treatment.
The next linear collider damping ring complex
Corlett,J.; Atkinson,D.; De Santis,S.; Hartman, N.; Kennedy, K.; Li, D.; Marks, S.; Minamihara, Y.; Nishimura, H.; Pivi, M.; Reavill, D.; Rimmer, R.; Schlueter, R.; Wolski, A.; Anderson,S.; McKee,B.; Raubenheimer, T.; Ross, M.; Sheppard, J.C.
2001-06-12
We report progress on the design of the Next Linear Collider (NLC) Damping Rings complexes. The purpose of the damping rings is to provide low emittance electron and positron bunch trains to the NLC linacs, at a rate of 120 Hz. As an option to operate at the higher rate of 180 Hz, two 1.98 GeV main damping rings per beam are proposed, and one positron pre-damping ring. The main damping rings store up to 0.8 amp in 3 trains of 190 bunches each and have normalized extracted beam emittances {gamma}{var_epsilon}x = 3 mm-mrad and {gamma}{var_epsilon}y = 0.02 mm-mrad. The optical designs, based on a theoretical minimum emittance lattice (TME), are described, with an analysis of dynamic aperture and non-linear effects. Key subsystems and components are described, including the wiggler, the vacuum systems and photon stop design, and the higher-order-mode damped RF cavities. Impedance and instabilities are discussed.
SELF TUNING CONTROLLERS FOR DAMPING LOW FREQUENCY OSCILLATIONS
SANGU RAVINDRA
2012-09-01
Full Text Available This paper presents a new control methods based on adaptive Neuro-Fuzzy damping controller and adaptive Artificial Neural Networks damping controller techniques to control a Unified Power Flow controller (UPFC installed in a single machine infinite bus Power System. The objective of Neuro-Fuzzy and ANN based UPFC controller is to damp power system oscillations.Phillips-Herffron model of a single machine power system equipped with a UPFC is used to model the system. In order to damp power system oscillations, adaptive neuro-fuzzy damping controller and adaptive ANN damping controller for UPFC are designed and simulated. Simulation is performed for various types of loads and for different disturbances. Simulation results demonstrate that the developed adaptive ANN damping controller has an excellent capability in damping electromechanical oscillations which exhibits a superior damping performance in comparison to the neuro-fuzzy damping controller as well as conventional lead-lag controller.
Vibration damping characteristics of laminated steel sheet
Chen, Y. S.; Hsu, T. J.; Chen, S. I.
1991-03-01
The use of laminated steel sheets as vibration damping materials was studied. The laminate consisted of a viscoelastic layer which was sandwiched between two steel sheets. The study sought to identify parameters affecting the damping efficiency of the laminate. Two viscoelastic materials, a copolymer based on ethylene and acrylic acid (PEAA) and polyvinyl butyral (PVB), were used. A frequency analyzer was used to measure the loss factor of the laminates. A theoretical analysis of damping efficiency based on a model described by Ungar[2] was also carried out. The results showed that the loss factor of the PEAA-based laminates increased monotonically with increasing thickness of the viscoelastic layer and leveled off at 25.9 pct of total thickness. Ungar’s theory predicted a higher loss factor than the experimental data. This might have resulted from interfacial adhesive bonding, a nonuniform viscoelastic layer thickness, and the extrapolation of the rheological data from low to high frequencies. The loss factor of the laminate increased with increasing temperature, reached a maximum value, and then decreased. An optimum temperature for maximum damping was found for each laminate configuration. The PEAA-based laminates possessed higher damping efficiency than the PVB-based laminates at room temperature. The symmetric laminate (with the same steel sheet thickness) possessed a better damping efficiency than asymmetric laminates. The maximum damping peak of the laminates using a polymer blend, when compared to the laminates using unblended resin, exhibited a lower loss factor value, became broader, and occurred at a temperature between the T g’s of the individual components of the polymer blend.
Ming Li; Zeng He; Huiming Zheng; Ning Zhang
2008-01-01
A cantilever beam with Damping Material Applying Rubber Magnetic Powder (DRM)has been investigated.Two methods are selected to hold DRM to a vibrating steel beam,one is to attach DRM by the magnetic attractive force (called DRM beam) and the other by adhesive bonding (called AB-DRM beam).Different from the damping property of AB-DRM beam caused by shear deformation of damping material,the damping property of DRM beam is characterized by the sliding frictional loss together with the internal loss of damping material.The authors established a formulation to predict the damping characteristics of DRM beam,which was validated experimentally.It is found that rubber material loss factor/β has a decisive influence on damping improvement of DRM beam versus AB-DRM beam.If/β is smaller than the critical value around 0.8255,a valid range of vibratory amplitude always exists in which DRM beam can achieve better damping than AB-DRM beam;conversely,if/β is bigger than the critical value,the valid range does not exist when slide occurs.Such results are used to determine the merits and limitations of DRM and develop design guidelines.
Notes on the nonlinear beam dynamics with strong damping in the CLIC Damping Ring
Levichev, Eugene; Shatilov, Dmitry
2010-01-01
The beam is injected into the CLIC damping ring with the relatively large emittance and energy spread and then is damped to the extremely low phase volume. During the damping process the betatron frequency of each particle changes due to the space charge tune shift and nonlinear dependence of the betatron tune on the amplitude. This nonlinearity is produced by the strong chromatic sextupoles, wiggler nonlinear field components and, again, by the space charge force. During the damping, the particle cross resonances, which can trap some fraction of the beam, cause the loss of intensity, the beam blow up and degrade the beam quality. In this paper we study the evolution of the beam distribution in time during the damping for the original lattice of the CLIC DR (May 2005). Geneva, Switzerland June 2010 CLIC – Note – 850
Unwrapped phase inversion with an exponential damping
Choi, Yun Seok
2015-07-28
Full-waveform inversion (FWI) suffers from the phase wrapping (cycle skipping) problem when the frequency of data is not low enough. Unless we obtain a good initial velocity model, the phase wrapping problem in FWI causes a result corresponding to a local minimum, usually far away from the true solution, especially at depth. Thus, we have developed an inversion algorithm based on a space-domain unwrapped phase, and we also used exponential damping to mitigate the nonlinearity associated with the reflections. We construct the 2D phase residual map, which usually contains the wrapping discontinuities, especially if the model is complex and the frequency is high. We then unwrap the phase map and remove these cycle-based jumps. However, if the phase map has several residues, the unwrapping process becomes very complicated. We apply a strong exponential damping to the wavefield to eliminate much of the residues in the phase map, thus making the unwrapping process simple. We finally invert the unwrapped phases using the back-propagation algorithm to calculate the gradient. We progressively reduce the damping factor to obtain a high-resolution image. Numerical examples determined that the unwrapped phase inversion with a strong exponential damping generated convergent long-wavelength updates without low-frequency information. This model can be used as a good starting model for a subsequent inversion with a reduced damping, eventually leading to conventional waveform inversion.
Radiation damping in microcoil NMR probes.
Krishnan, V V
2006-04-01
Radiation damping arises from the field induced in the receiver coil by large bulk magnetization and tends to selectively drive this magnetization back to equilibrium much faster than relaxation processes. The demand for increased sensitivity in mass-limited samples has led to the development of microcoil NMR probes that are capable of obtaining high quality NMR spectra with small sample volumes (nL-microL). Microcoil probes are optimized to increase sensitivity by increasing either the sample-to-coil ratio (filling factor) of the probe or quality factor of the detection coil. Though radiation damping effects have been studied in standard NMR probes, these effects have not been measured in the microcoil probes. Here a systematic evaluation of radiation damping effects in a microcoil NMR probe is presented and the results are compared with similar measurements in conventional large volume samples. These results show that radiation-damping effects in microcoil probe is much more pronounced than in 5 mm probes, and that it is critically important to optimize NMR experiments to minimize these effects. As microcoil probes provide better control of the bulk magnetization, with good RF and B0 inhomogeneity, in addition to negligible dipolar field effects due to nearly spherical sample volumes, these probes can be used exclusively to study the complex behavior of radiation damping.
Anti-damping effect of radiation reaction
Wang, G.; Li, H.; Shen, Y. F.; Yuan, X. Z.; Zi, J.
2010-01-01
The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges (~10-15 m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.
Fluid damping of cylindrical liquid storage tanks.
Habenberger, Joerg
2015-01-01
A method is proposed in order to calculate the damping effects of viscous fluids in liquid storage tanks subjected to earthquakes. The potential equation of an ideal fluid can satisfy only the boundary conditions normal to the surface of the liquid. To satisfy also the tangential interaction conditions between liquid and tank wall and tank bottom, the potential flow is superimposed by a one-dimensional shear flow. The shear flow in this boundary layer yields to a decrease of the mechanical energy of the shell-liquid-system. A damping factor is derived from the mean value of the energy dissipation in time. Depending on shell geometry and fluid viscosity, modal damping ratios are calculated for the convective component.
Biomimetic Gradient Polymers with Enhanced Damping Capacities.
Wang, Dong; Zhang, Huan; Guo, Jing; Cheng, Beichen; Cao, Yuan; Lu, Shengjun; Zhao, Ning; Xu, Jian
2016-04-01
Designing gradient structures, mimicking biological materials, such as pummelo peels and tendon, is a promising strategy for developing advanced materials with superior energy damping capacities. Here a facile and effective approach for fabricating polymers with composition gradients at millimeter length scale is presented. The gradient thiol-ene polymers (TEPs) are created by the use of density difference of ternary thiol-ene-ene precursors and the subsequent photo-crosslinking via thiol-ene reaction. The compositional gradients are analyzed via differential scanning calorimeter (DSC), compressive modulus testing, atomic force microscopy (AFM) indentation, and swelling measurements. In contrast to homogeneous TEPs networks, the resultant gradient polymer shows a broader effective damping temperature range combining with good mechanical properties. The present result provides an effective route toward high damping materials by the fabrication of gradient structures.
Resolving photons from cosmic ray in DAMPE
Xu, Zunlei; Chang, Jin; Li, Xiang; Dong, TieKuang; Zang, Jingjing
2016-07-01
The Dark Matter Particle Explorer(DAMPE), which took to the skies on 17 December, is designed for high energy cosmic ray ion detection. The proportion of photons in the cosmic ray is very small, so it's difficult to distinguish between photons and 'background', but necessary for any DAMPE gamma-ray science goals.The paper present a algorithm to identify photons from 'background' mainly by the tracker/converter, which promote pair conversion and measure the directions of incident particles, and an anticoincidence detector,featuring an array of plastic scintillator to detect the charged particles.The method has been studied by simulating using the GEANT4 Monte Carlo simulation code and adjusted by the BeamTest at CERN in December,2014.In addition,DAMPE photon detection capabilities can be checked using the flight data.
Damping of wind turbine tower vibrations
Brodersen, Mark Laier; Pedersen, Mikkel Melters
Damping of wind turbine vibrations by supplemental dampers is a key ingredient for the continuous use of monopiles as support for offshore wind turbines. The present thesis consists of an extended summary with four parts and appended papers [P1-P4] concerning novel strategies for damping of tower...... dominated vibrations.The first part of the thesis presents the theoretical framework for implementation of supplemental dampers in wind turbines. It is demonstrated that the feasibility of installing dampers at the bottom of the tower is significantly increased when placing passive or semiactive dampers...... that a minimum of three braces in a symmetric circumferential configuration are needed to introduce homogeneous damping in the two lowest vibration modes, independent of the rotor direction. A novel hybrid viscous damper concept is described in the second part. The hybriddamper consists of a viscous dash...
Radiation Damping in a Focusing Channel
Ruth, Ronald D.
1996-05-01
In electron storage rings synchrotron radiation leads to the damping of the three degrees of freedom of the particle trajectory towards a stable closed orbit transversely and a fixed stable phase longitudinally. At the same time, the emission of discrete quanta leads to diffusion in all three degrees of freedom. These two competing effects result in an equilibrium beam emittance that depends upon the parameters of the storage ring. In the case above, the radiation in the bending fields dominates, and the radiation due to the focusing fields is either neglected or taken into account perturbatively. In this talk we study the opposite case, a continuous focusing channel in which the radiation and its reaction are dominated by the strong focusing field. If there is a bending field, it is much weaker than the focusing field. In such focusing systems, we find that the radiation is synchrotron-like for larger betatron oscillation amplitudes and undulator-like for smaller amplitudes. However, quantum excitation is absent for any oscillation amplitude, and the damping exhibits asymmetry in favor of the transverse degree of freedom as the amplitude becomes smaller. In the undulator regime, the damping turns into exponential in the transverse direction, much faster than the total energy damping in this system. In principle, the particle could damp to the transverse ground state of the harmonic oscillator, reaching a minimum normalized emittance, γ ɛ_min = hbar/2mc, limited only by the uncertainty principle. In the case of a bent focusing system, we find that the lack of quantum excitation and asymmetric damping still hold provided that the bending field is sufficiently weak.
Damping Functions correct over-dissipation of the Smagorinsky Model
Pakzad, Ali
2016-01-01
This paper studies the time-averaged energy dissipation rate $\\langle \\varepsilon_{SMD} (u)\\rangle$ for the combination of the Smagorinsky model and damping function. The Smagorinsky model is well known to over-damp. One common correction is to include damping functions that reduce the effects of model viscosity near walls. Mathematical analysis is given here that allows evaluation of $\\langle \\varepsilon_{SMD} (u)\\rangle $ for any damping function. Moreover, the analysis motivates a modified van Driest damping. It is proven that the combination of the Smagorinsky with this modified damping function does not over dissipate and is also consistent with Kolmogorov phenomenology.
Variable stiffness and damping magnetorheological isolator
Yang ZHOU; Xingyu WANG; Xianzhou ZHANG; Weihua LI
2009-01-01
This paper presents the development and characterization of a magnetorheological (MR) fluid-based variable stiffness and damping isolator. The prototype of the MR fluid isolator is fabricated, and its dynamic behavior is measured under various applied magnetic fields. The parameters of the model under various magnetic fields are identified, and the dynamic perfor-mance of the isolator is evaluated in simulation. Experi-mental results indicate that both the stiffness and damping capability of the developed MR isolator can be controlled by an external magnetic field.
Classical Statistical Mechanics and Landau Damping
1997-01-01
We study the retarded response function in scalar $\\phi^4$-theory at finite temperature. We find that in the high-temperature limit the imaginary part of the self-energy is given by the classical theory to leading order in the coupling. In particular the plasmon damping rate is a purely classical effect to leading order, as shown by Aarts and Smit. The dominant contribution to Landau damping is given by the propagation of classical fields in a heat bath of non-interacting fields.
Wind turbine blade with viscoelastic damping
Sievers, Ryan A.; Mullings, Justin L.
2017-01-10
A wind turbine blade (60) damped by viscoelastic material (54, 54A-F) sandwiched between stiffer load-bearing sublayers (52A, 52B, 56A, 56B) in portions of the blade effective to damp oscillations (38) of the blade. The viscoelastic material may be located in one or more of: a forward portion (54A) of the shell, an aft portion (54D) of the shell, pressure and suction side end caps (54B) of an internal spar, internal webbing walls (54C, 54E), and a trailing edge core (54F).
System Reduction and Damping of Flexible Structures
Høgsberg, Jan Riess; Krenk, Steen
2007-01-01
An increasing number of flexible structures such as cable-stayed bridges, pedestrian bridges and high-rise buildings are fitted with local dampers to mitigate vibration problems. In principle the effect of local dampers can be analyzed by use of complex modes, e.g. in conjunction with an averaging...... frequency - containing the resulting modal damping via the imaginary part - is given by an explicit formula. For very flexible structures, e.g. cables, only moderate damping is involved, and the explicit approximation is very accurate. However, even for stiffer structures the explicit form gives a quite...
Shock Performance of Different Semiactive Damping Strategies
N. Ferguson
2010-08-01
Full Text Available The problem of shock generated vibration is presented and analyzed. The fundamental background is explainedbased on the analysis of a single degree-of-freedom model with passive stiffness and damping. The advantages andlimitations of such a shock mount are discussed. Afterwards, different semi-active strategies involving variabledamping are presented. These strategies have been used for harmonic excitation but it is not clear how they willperform during a shock. This paper analyzes the different variable damping schemes already used for harmonicvibration in order to find any potential advantages or issues for theoretical shock pulses.
Damping of the wrist joint during voluntary movement.
Milner, T E; Cloutier, C
1998-10-01
Damping characteristics of the musculoskeletal system were investigated during rapid voluntary wrist flexion movements. Oscillations about the final position were induced by introducing a load with the characteristics of negative damping, which artificially reduced the damping of the wrist. Subjects responded to increases in the negatively damped load by stronger cocontraction of wrist flexor and extensor muscles during the stabilization phase of the movement. However, their ability to counteract the effects of the negatively damped load diminished as the negative damping increased. Consequently, the number and frequency of oscillations increased. The oscillations were accompanied by phase-locked muscle activity superimposed on underlying tonic muscle activation. The wrist stiffness and damping coefficient increased with the increased cocontraction that accompanied more negatively damped loads, although changes in the damping coefficient were less systematic than the stiffness. Analysis of successive half-cycles of the oscillation revealed that the wrist stiffness and damping coefficient increased, despite decreasing muscle activation, as oscillation amplitude and velocity declined. This indicates that the inverse dependence of the damping coefficient on oscillation velocity contributes significantly to damping of joint motion. It is suggested that this property helps to offset a negative contribution to damping from the stretch reflex.
Active Damping Using Distributed Anisotropic Actuators
Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.
2010-01-01
A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.
Damping of Crank–Nicolson error oscillations
Britz, Dieter; Østerby, Ole; Strutwolf, J.
2003-01-01
The Crank–Nicolson (CN) simulation method has an oscillatory response to sharp initial transients. The technique is convenient but the oscillations make it less popular. Several ways of damping the oscillations in two types of electrochemical computations are investigated. For a simple one...
The DAMPE silicon–tungsten tracker
Azzarello, P., E-mail: philipp.azzarello@unige.ch [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Ambrosi, G. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Asfandiyarov, R. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Bernardini, P. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Bertucci, B.; Bolognini, A. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Cadoux, F. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Caprai, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); De Mitri, I. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento, Lecce (Italy); Istituto Nazionale di Fisica Nucleare Sezione di Lecce, Lecce (Italy); Domenjoz, M. [Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva (Switzerland); Dong, Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); Duranti, M. [Istituto Nazionale di Fisica Nucleare Sezione di Perugia, Perugia (Italy); Dipartimento di Fisica e Geologia, Università di Perugia, Perugia (Italy); Fan, R. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China); and others
2016-09-21
The DArk Matter Particle Explorer (DAMPE) is a spaceborne astroparticle physics experiment, launched on 17 December 2015. DAMPE will identify possible dark matter signatures by detecting electrons and photons in the 5 GeV–10 TeV energy range. It will also measure the flux of nuclei up to 100 TeV, for the study of the high energy cosmic ray origin and propagation mechanisms. DAMPE is composed of four sub-detectors: a plastic strip scintillator, a silicon–tungsten tracker–converter (STK), a BGO imaging calorimeter and a neutron detector. The STK is composed of six tracking planes of 2 orthogonal layers of single-sided micro-strip detectors, for a total detector surface of ca. 7 m{sup 2}. The STK has been extensively tested for space qualification. Also, numerous beam tests at CERN have been done to study particle detection at silicon module level, and at full detector level. After description of the DAMPE payload and its scientific mission, we will describe the STK characteristics and assembly. We will then focus on some results of single ladder performance tests done with particle beams at CERN.
Radiation Damping at a Bubble Wall
Lee, J; Lee, C H; Jang, J; Lee, Jae-weon; Kim, Kyungsub; Lee, Chul H.; Jang, Ji-ho
1999-01-01
The first order phase transition proceeds via nucleation and growth of true vacuum bubbles. When charged particles collide with the bubble they could radiate electromagnetic wave. We show that, due to an energy loss of the particles by the radiation, the damping pressure acting on the bubble wall depends on the velocity of the wall even in a thermal equilibrium state.
The Nonlinear Spatial Damping Rate in QGP
Jiarong, L
1998-01-01
The derivative expansion method has been used to solve the semiclassical kinetic equations of quark-gluon plasma (QGP). The nonlinear spatial damping rate, the imaginary part of the wave vector, for the longitudinal secondary color waves in the long wavelength limit has been calculated numerically.
First stars in Damped Lyman Alpha systems
Salvadori, Stefania; Ferrara, Andrea
2011-01-01
In order to characterize Damped Lyman Alpha systems (DLAs) potentially host- ing first stars, we present a novel approach to investigate DLAs in the context of Milky Way (MW) formation, along with their connection with the most metal-poor stars and local dwarf galaxies. The merger tree method previo
Passivation of underactuated systems with physical damping
Gomez-Estern, F.; Schaft, van der A.J.; Acosta, J.A.; Allgöwer, Frank; Zeitz, Michael
2005-01-01
In recent works, IDA-PBC has been succesfully applied to mechanical control problems with no physical damping present. In some cases, the friction terms can be obviated without compromising stability in closed loop. However in methods that modify the kinetic energy, a controller designed for stabili
Damping mechanisms and models in structural dynamics
Krenk, Steen
2002-01-01
Several aspects of damping models for dynamic analysis of structures are investigated. First the causality condition for structural response is used to identify rules for the use of complex-valued frequency dependent material models, illustrated by the shortcomings of the elastic hysteretic model...
Active damping in precision equipment using piezo
Babakhani, B.; de Vries, Theodorus J.A.
2010-01-01
In this paper, the rotational vibration in the linearly actuated precision machines with low damping is discussed. This so called Rocking mode is e.g. caused by the compliance in the guiding system of a linear actuator and leads to a long settling time of the end-effector. Another problem occurs
DETERMINISTIC HOMOGENIZATION OF QUASILINEAR DAMPED HYPERBOLIC EQUATIONS
Gabriel Nguetseng; Hubert Nnang; Nils Svanstedt
2011-01-01
Deterministic homogenization is studied for quasilinear monotone hyperbolic problems with a linear damping term.It is shown by the sigma-convergence method that the sequence of solutions to a class of multi-scale highly oscillatory hyperbolic problems converges to the solution to a homogenized quasilinear hyperbolic problem.
Chiral damping of magnetic domain walls
Jué, Emilie
2015-12-21
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics1, current-induced spin–orbit torques2, 3, 4, 5, 6, 7 and some topological magnetic structures8, 9, 10, 11, 12. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii–Moriya interaction (DMI) exhibit identical spatial symmetry13, 14, 15, 16, 17, 18, 19. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. 20).
Active damping based on decoupled collocated control
Holterman, J.; de Vries, Theodorus J.A.; Auer, Frank; Gardonio, P.; Rafaely, B.
2002-01-01
High-precision machines typically suffer from small but persistent vibrations. As it is difficult to damp these vibrations by passive means, research at the Drebbel Institute at the University of Twente is aimed at the development of an active structural element that can be used for vibration
First stars in Damped Lyman Alpha systems
Salvadori, Stefania; Ferrara, Andrea
In order to characterize Damped Lyman Alpha systems (DLAs) potentially host- ing first stars, we present a novel approach to investigate DLAs in the context of Milky Way (MW) formation, along with their connection with the most metal-poor stars and local dwarf galaxies. The merger tree method
First Stars in Damped Lyman Alpha systems
Salvadori, Stefania; Ferrara, Andrea
In order to characterize Damped Lyα Absorption systems (DLAs) potentially hosting first stars, we present a novel approach to investigate DLAs in the context of Milky Way (MW) formation, along with their connection with the most metal-poor stars and local dwarf galaxies. The model explains the
Nonlinear Landau damping and Alfven wave dissipation
Vinas, Adolfo F.; Miller, James A.
1995-01-01
Nonlinear Landau damping has been often suggested to be the cause of the dissipation of Alfven waves in the solar wind as well as the mechanism for ion heating and selective preacceleration in solar flares. We discuss the viability of these processes in light of our theoretical and numerical results. We present one-dimensional hybrid plasma simulations of the nonlinear Landau damping of parallel Alfven waves. In this scenario, two Alfven waves nonresonantly combine to create second-order magnetic field pressure gradients, which then drive density fluctuations, which in turn drive a second-order longitudinal electric field. Under certain conditions, this electric field strongly interacts with the ambient ions via the Landau resonance which leads to a rapid dissipation of the Alfven wave energy. While there is a net flux of energy from the waves to the ions, one of the Alfven waves will grow if both have the same polarization. We compare damping and growth rates from plasma simulations with those predicted by Lee and Volk (1973), and also discuss the evolution of the ambient ion distribution. We then consider this nonlinear interaction in the presence of a spectrum of Alfven waves, and discuss the spectrum's influence on the growth or damping of a single wave. We also discuss the implications for wave dissipation and ion heating in the solar wind.
An Equivalent Circuit for Landau Damping
Pécseli, Hans
1976-01-01
An equivalent circuit simulating the effect of Landau damping in a stable plasma‐loaded parallel‐plate capacitor is presented. The circuit contains a double infinity of LC components. The transition from stable to unstable plasmas is simulated by the introduction of active elements into the circuit....
Chiral damping of magnetic domain walls
Jué, Emilie; Safeer, C. K.; Drouard, Marc; Lopez, Alexandre; Balint, Paul; Buda-Prejbeanu, Liliana; Boulle, Olivier; Auffret, Stephane; Schuhl, Alain; Manchon, Aurelien; Miron, Ioan Mihai; Gaudin, Gilles
2016-03-01
Structural symmetry breaking in magnetic materials is responsible for the existence of multiferroics, current-induced spin-orbit torques and some topological magnetic structures. In this Letter we report that the structural inversion asymmetry (SIA) gives rise to a chiral damping mechanism, which is evidenced by measuring the field-driven domain-wall (DW) motion in perpendicularly magnetized asymmetric Pt/Co/Pt trilayers. The DW dynamics associated with the chiral damping and those with Dzyaloshinskii-Moriya interaction (DMI) exhibit identical spatial symmetry. However, both scenarios are differentiated by their time reversal properties: whereas DMI is a conservative effect that can be modelled by an effective field, the chiral damping is purely dissipative and has no influence on the equilibrium magnetic texture. When the DW motion is modulated by an in-plane magnetic field, it reveals the structure of the internal fields experienced by the DWs, allowing one to distinguish the physical mechanism. The chiral damping enriches the spectrum of physical phenomena engendered by the SIA, and is essential for conceiving DW and skyrmion devices owing to its coexistence with DMI (ref. ).
The structural damping of composite beams with tapered boundaries
Coni, M.; Benchekchou, B.; White, R. G.
1994-11-01
Most metallic and composite structures of conventional construction are lightly damped. It is obviously advantageous, in terms of response to in-service dynamic loading, if damping can be increased with minimal weight addition. This report describes finite element analyses and complementary experiments carried out on composite, carbon fiber reinforced plastic, beams with tapered boundaries composed of layers of highly damped composite material. It is shown that modal damping of the structure may be significantly increased by this method.
Anti-damping effect of radiation reaction
Wang, G; Yuan, X Z [School of Physics and Electric Information, Wenzhou University, Wenzhou 325035 (China); Li, H [Department of Physics, Yantai University, Yantai 264005 (China); Shen, Y F [Department of Physics, China University of Mining and Technology, Xuzhou 221008 (China); Zi, J [National Laboratory of Surface Physics, Fudan University, Shanghai 200433 (China)], E-mail: gz_wang131@yahoo.cn
2010-01-15
The anti-damping effect of radiation reaction, which means the radiation reaction does non-negative work on a radiating charge, is investigated at length by using the Lorentz-Dirac equation (LDE) for the motion of a point charge respectively acted on by (a) a pure electric field, (b) a pure magnetic field and (c) the fields of an electromagnetic wave. We found that the curvature of the charge's trajectory plays an important role in the radiation reaction force, and the anti-damping effect cannot take place for the real macroscopic motions of a point charge. The condition for this anti-damping effect to take place is that the gradient of the external force field must exceed a certain value over the region of magnitude of the classical radius of massive charges ({approx}10{sup -15} m). Our results are potentially helpful to lessen the controversy on LDE and justify it as the correct classical equation describing the radiating charge's motion. If this anti-damping effect of LDE were a real existing physical process, it could serve as a mechanism within the context of classical electrodynamics for the stability of hydrogen atoms. Using the picture of an electron in quantum electrodynamics, namely the negative bare charge surrounded by the polarized positive charges of vacuum, we can obtain a reasonable explanation for the energy transferred to the electron during the occurrence of the anti-damping effect, on which the venerable work of Wheeler and Feynman has thrown some light.
Recovering the damping rates of cyclotron damped plasma waves from simulation data
Schreiner, Cedric; Spanier, Felix
2016-01-01
Plasma waves with frequencies close to the particular gyrofrequencies of the charged particles in the plasma lose energy due to cyclotron damping. We briefly discuss the gyro-resonance of low frequency plasma waves and ions particularly with regard to particle-in-cell (PiC) simulations. A setup is outlined which uses artificially excited waves in the damped regime of the wave mode's dispersion relation to track the damping of the wave's electromagnetic fields. Extracting the damping rate directly from the field data in real or Fourier space is an intricate and non-trivial task. We therefore present a simple method of obtaining the damping rate {\\Gamma} from the simulation data. This method is described in detail, focusing on a step-by-step explanation of the course of actions. In a first application to a test simulation we find that the damping rates obtained from this simulation generally are in good agreement with theoretical predictions. We then compare the results of one-, two- and three-dimensional simul...
Tai-Hong Cheng
2015-01-01
Full Text Available Composite materials are increasingly used in wind blade because of their superior mechanical properties such as high strength-to-weight and stiffness-to-weight ratio. This paper presents vibration and damping analysis of fiberreinforced composite wind turbine blade with viscoelastic damping treatment. The finite element method based on full layerwise displacement theory was employed to analyze the damping, natural frequency, and modal loss factor of composite shell structure. The lamination angle was considered in mathematical modeling. The curved geometry, transverse shear, and normal strains were exactly considered in present layerwise shell model, which can depict the zig-zag in-plane and out-of-plane displacements. The frequency response functions of curved composite shell structure and wind blade were calculated. The results show that the damping ratio of viscoelastic layer is found to be very sensitive to determination of magnitude of composite structures. The frequency response functions with variety of thickness of damping layer were investigated. Moreover, the natural frequency, modal loss factor, and mode shapes of composite fiber reinforced wind blade with viscoelastic damping control were calculated.
Preliminary Study on the Damping Effect of a Lateral Damping Buffer under a Debris Flow Load
Zheng Lu
2017-02-01
Full Text Available Simulating the impact of debris flows on structures and exploring the feasibility of applying energy dissipation devices or shock isolators to reduce the damage caused by debris flows can make great contribution to the design of disaster prevention structures. In this paper, we propose a new type of device, a lateral damping buffer, to reduce the vulnerability of building structures to debris flows. This lateral damping buffer has two mechanisms of damage mitigation: when debris flows impact on a building, it acts as a buffer, and when the structure vibrates due to the impact, it acts as a shock absorber, which can reduce the maximum acceleration response and subsequent vibration respectively. To study the effectiveness of such a lateral damping buffer, an impact test is conducted, which mainly involves a lateral damping buffer attached to a two-degree-of-freedom structure under a simulated debris flow load. To enable the numerical study, the equation of motion of the structure along with the lateral damping buffer is derived. A subsequent parametric study is performed to optimize the lateral damping buffer. Finally, a practical design procedure is also provided.
Effects of Landau-Lifshitz-Gilbert damping on domain growth.
Kudo, Kazue
2016-12-01
Domain patterns are simulated by the Landau-Lifshitz-Gilbert (LLG) equation with an easy-axis anisotropy. If the Gilbert damping is removed from the LLG equation, it merely describes the precession of magnetization with a ferromagnetic interaction. However, even without the damping, domains that look similar to those of scalar fields are formed, and they grow with time. It is demonstrated that the damping has no significant effects on domain growth laws and large-scale domain structure. In contrast, small-scale domain structure is affected by the damping. The difference in small-scale structure arises from energy dissipation due to the damping.
Topology Optimization in Damping Structure Based on ESO
GUO Zhong-ze; CHEN Yu-ze; HOU Qiang
2008-01-01
The damping material optimal placement for the structure with damping layer is studied based on evolutionary structural optimization (ESO) to maximize modal loss factors. A mathematical model is constructed with the objective function defined as the maximum of modal loss factors of the structure and design constraints function defined as volume fraction ofdamping material. The optimal placement is found. Several examples are presented for verification. The results demonstratethat the method based on ESO is effective in solving the topology optimization of the structure with uncon-strained damping layer and constrained damping layer. This optimization method suits for free and constrained damping structures.
Effects of Landau-Lifshitz-Gilbert damping on domain growth
Kudo, Kazue
2016-12-01
Domain patterns are simulated by the Landau-Lifshitz-Gilbert (LLG) equation with an easy-axis anisotropy. If the Gilbert damping is removed from the LLG equation, it merely describes the precession of magnetization with a ferromagnetic interaction. However, even without the damping, domains that look similar to those of scalar fields are formed, and they grow with time. It is demonstrated that the damping has no significant effects on domain growth laws and large-scale domain structure. In contrast, small-scale domain structure is affected by the damping. The difference in small-scale structure arises from energy dissipation due to the damping.
A soft damping function for dispersion corrections with less overfitting
Ucak, Umit V.; Ji, Hyunjun; Singh, Yashpal; Jung, Yousung
2016-11-01
The use of damping functions in empirical dispersion correction schemes is common and widespread. These damping functions contain scaling and damping parameters, and they are usually optimized for the best performance in practical systems. In this study, it is shown that the overfitting problem can be present in current damping functions, which can sometimes yield erroneous results for real applications beyond the nature of training sets. To this end, we present a damping function called linear soft damping (lsd) that suffers less from this overfitting. This linear damping function damps the asymptotic curve more softly than existing damping functions, attempting to minimize the usual overcorrection. The performance of the proposed damping function was tested with benchmark sets for thermochemistry, reaction energies, and intramolecular interactions, as well as intermolecular interactions including nonequilibrium geometries. For noncovalent interactions, all three damping schemes considered in this study (lsd, lg, and BJ) roughly perform comparably (approximately within 1 kcal/mol), but for atomization energies, lsd clearly exhibits a better performance (up to 2-6 kcal/mol) compared to other schemes due to an overfitting in lg and BJ. The number of unphysical parameters resulting from global optimization also supports the overfitting symptoms shown in the latter numerical tests.
Barotropic FRW cosmologies with Chiellini damping
Rosu, Haret C., E-mail: hcr@ipicyt.edu.mx [IPICyT, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San José 2055, Col. Lomas 4a Sección, 78216 San Luis Potosí, SLP (Mexico); Mancas, Stefan C., E-mail: stefan.mancas@erau.edu [Department of Mathematics, Embry–Riddle Aeronautical University, Daytona Beach, FL 32114-3900 (United States); Chen, Pisin, E-mail: pisinchen@phys.ntu.edu.tw [Leung Center for Cosmology and Particle Astrophysics (LeCosPA) and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)
2015-05-08
It is known that barotropic FRW equations written in the conformal time variable can be reduced to simple linear equations for an exponential function involving the conformal Hubble rate. Here, we show that an interesting class of barotropic universes can be obtained in the linear limit of a special type of nonlinear dissipative Ermakov–Pinney equations with the nonlinear dissipation built from Chiellini's integrability condition. These cosmologies, which evolutionary are similar to the standard ones, correspond to barotropic fluids with adiabatic indices rescaled by a particular factor and have amplitudes of the scale factors inverse proportional to the adiabatic index. - Highlights: • Chiellini-damped Ermakov–Pinney equations are used in barotropic FRW cosmological context. • Chiellini-damped scale factors of the barotropic FRW universes are introduced. • These scale factors are similar to the undamped ones.
DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS
JAGADEESH PASUPULETI
2006-06-01
Full Text Available The IEEE bench mark model 2 series compensated system is considered for analysis. It consists of single machine supplying power to infinite bus through two parallel lines one of which is series compensated. The mechanical system considered consists of six mass, viz, high pressure turbine, intermediate pressure turbine, two low pressure turbines, generator and an exciter. The excitation system considered is IEEE type 1 with saturation. The auxiliary controls considered to damp the unstable subsynchronous modes of oscillations are Power System Stabilizer (PSS and Static var Compensator (SVC. The different cases of power system stabilizer and reactive power controls are adapted to study the effectiveness of damping these unstable subsynchronous modes of oscillations.
Study on damping properties of magnetorheological damper
ZHOU Yu-feng; CHEN Hua-ling
2006-01-01
To research the properties of a new kind of smart controllable MR (magnetorheological) fluid,in this paper,the rheological models are discussed.On the basis of analyzing the structural forms of MR dampers,an improved structure of the MR damper is introduced;the properties of the novel MR damper are then tested.The experimental resuits reveal that the Herschel-Bulkley model predicts the force-velocity well;the damping properties of the ameliorated structure of the MR damper have improved;when the excitation is a trigonal signal,the MR damper reveals a thinning effect at high velocity;and when the excitation is a sinusoidal signal,the MR damper reveals a nonlinear hysteretic property between the damping force and relative velocity.Finally,the main unsolved problems have been put forward.
Wakefield Damping for the CLIC Crab Cavity
Ambattu, P.K.; Burt, G.; Dexter, A.C.; Carter, R.G.; /Cockcroft Inst. Accel. Sci. Tech. /Lancaster U.; Khan, V.; Jones, R.M.; /Cockcroft Inst. Accel. Sci. Tech. /Manchester U.; Dolgashev, V.; /SLAC
2011-12-01
A crab cavity is required in the CLIC to allow effective head-on collision of bunches at the IP. A high operating frequency is preferred as the deflection voltage required for a given rotation angle and the RF phase tolerance for a crab cavity are inversely proportional to the operating frequency. The short bunch spacing of the CLIC scheme and the high sensitivity of the crab cavity to dipole kicks demand very high damping of the inter-bunch wakes, the major contributor to the luminosity loss of colliding bunches. This paper investigates the nature of the wakefields in the CLIC crab cavity and the possibility of using various damping schemes to suppress them effectively.
Nonlinear Dynamics of A Damped Magnetic Oscillator
Kim, S Y
1999-01-01
We consider a damped magnetic oscillator, consisting of a permanent magnet in a periodically oscillating magnetic field. A detailed investigation of the dynamics of this dissipative magnetic system is made by varying the field amplitude $A$. As $A$ is increased, the damped magnetic oscillator, albeit simple looking, exhibits rich dynamical behaviors such as symmetry-breaking pitchfork bifurcations, period-doubling transitions to chaos, symmetry-restoring attractor-merging crises, and saddle-node bifurcations giving rise to new periodic attractors. Besides these familiar behaviors, a cascade of ``resurrections'' (i.e., an infinite sequence of alternating restabilizations and destabilizations) of the stationary points also occurs. It is found that the stationary points restabilize (destabilize) through alternating subcritical (supercritical) period-doubling and pitchfork bifurcations. We also discuss the critical behaviors in the period-doubling cascades.
Damping effects in Penning trap mass spectrometry
George, S; Kowalska, M; Dworschak, M; Neidherr, D; Blaum, K; Schweikhard, L; Ramirez, E M; Breitenfeldt, M; Kretzschmar, M; Herfurth, F; Schwarz, S; Herlert, A
2011-01-01
Collisions of ions with residual gas atoms in a Penning trap can have a strong influence on the trajectories of the ions, depending on the atom species and the gas pressure. We report on investigations of damping effects in time-of-flight ion-cyclotron resonance mass spectrometry with the Penning trap mass spectrometers ISOLTRAP at ISOLDE/CERN (Geneva, Switzerland) and SHIPTRAP at GSI (Darmstadt, Germany). The work focuses on the interconversion of the magnetron and cyclotron motional modes, in particular the modification of the resonance profiles for quadrupolar excitation due to the damping effect of the residual gas. Extensive experiments have been performed with standard and Ramsey excitation schemes. The results are in good agreement with predictions obtained by analytical continuation of the formulae for the undamped case.
Accelerator physics measurements at the damping ring
Rivkin, L.; Delahaye, J. P.; Wille, K.; Allen, M. A.; Bane, K.; Fieguth, T.; Hofmann, A.; Button, A.; Lee, M.; Linebarger, W.
1985-05-01
Besides the optics measurements described elsewhere, machine experiments were done at the Stanford Linear Collider (SLC) damping ring to determine some of its parameters. The synchrotron radiation energy loss which gives the damping rates was measured by observing the RF-voltage dependence of the synchronous phase angle. The emittance was obtained from the synchrotron light monitor, scraper measurements and by extracting the beam through a doublet and measuring its size for different quadrupole settings. Current dependent effects such as parasitic mode losses, head tail instabilities, synchrotron and betatron frequency shifts were measured to estimate the impedance. RF-cavity beam loading and its compensation were also studied and ion collection was investigated. All results agree reasonably well with expectations and indicate no limitations to the design performance.
Linear Inviscid Damping for Monotone Shear Flows
Zillinger, Christian
2014-01-01
In this article we prove linear stability, inviscid damping and scattering of the 2D Euler equations around regular, strictly monotone shear flows $(U(y),0)$ in a periodic channel under Sobolev perturbations. We treat the settings of an infinite channel, $\\mathbb{T} \\times \\mathbb{R}$, as well as a finite channel, $\\mathbb{T} \\times [0,1]$, with impermeable boundary. We first prove inviscid damping with optimal algebraic rates for strictly monotone shear flows under the assumption of controlling the regularity of the scattered vorticity. Subsequently, we establish linear stability of the scattering equation in Sobolev spaces under perturbations which are of not too large wave-length with respect to $x$, depending on $U''$.
Power Oscillations Damping in DC Microgrids
Hamzeh, Mohsen; Ghafouri, Mohsen; Karimi, Houshang
2016-01-01
This paper proposes a new control strategy for damping of power oscillations in a multi-source dc microgrid. A parallel combination of a fuel cell (FC), a photovoltaic (PV) system and a supercapacitor (SC) are used as a hybrid power conversion system (HPCS). The SC compensates for the slow...... transient response of the FC stack. The HPCS controller comprises a multi-loop voltage controller and a virtual impedance loop for power management. The virtual impedance loop uses a dynamic droop gain to actively damp the low-frequency oscillations of the power sharing control unit. The gain of virtual...... impedance loop is determined using small signal analysis and pole placement method. The Mesh analysis is employed to further study the stability of low-frequency modes of the overall dc microgrid. Moreover, based on the guardian map theorem, a robust stability analysis is carried out to determine...
Relativity Damps OPEP in Nuclear Matter
Banerjee, Manoj K.
1998-09-01
Using a relativistic Dirac--Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of M*/M with increasing density. We point out that if derivative-coupled OPEP is the preferred form of nuclear effective Lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of M* it cannot replicate the damping. We suggest an examination of the feasibility of using pseudoscalar coupled πN interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Relativity Damps OPEP in Nuclear Matter
Banerjee, M K
1998-01-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of $M^*/M$ with increasing density. We point out that if derivative-coupled OPEP is the preferred form of nuclear effective lagrangian nonrelativistic treatment of nuclear matter is in trouble. Lacking the notion of $M^*$ it cannot replicate the damping. We suggest an examination of the feasibility of using pseudoscalar coupled $\\pi$N interaction before reaching a final conclusion about nonrelativistic treatment of nuclear matter.
Radiation Damping in Einstein-Aether Theory
Foster, B Z
2006-01-01
This work concerns the loss of energy of a material system due to gravitational radiation in Einstein-aether theory-an alternative theory of gravity in which the metric couples to a dynamical, timelike, unit-norm vector field. Derived to lowest post-Newtonian-order are waveforms for the metric and vector fields far from a nearly-Newtonian system and the rate of energy radiated by the system. The expressions depend on the quadrupole moment of the source, as in standard general relativity, but also contain monopolar and dipolar terms. There exists a one-parameter family of Einstein-aether theories for which only the quadrupolar contribution is present, and for which the expression for the damping rate is identical to that of general relativity to lowest order. Because observations from binary pulsar systems already test the damping rate beyond this order, this family cannot yet be declared observationally viable.
Damping behavior of synthetic graphite beams
Luiz Cláudio Pardini
2006-06-01
Full Text Available The main objective of this work was to obtain the damping factor (xi as well as the elasticity modulus (E of two kinds of synthetic graphite (HLM and ATJ, using the modal analysis technique. Prismatic beams of square section (~ 11 x 11 mm and length over thickness ratio (L/t of about 22.7 were tested in the free - free boundary condition. The first four modes of vibration were taken into account in the non-destructive evaluation of the materials. In addition, numerical simulations were also carried out in this investigation. The agreement between the theoretical and the experimental results was quite good. The average values of E and xi for the HLM graphite were 20% and 90% higher, respectively, than those presented by the ATJ graphite, indicating that the HLM graphite has, proportionally, more damping mechanisms than the ATJ graphite.
Experimental investigation of damping force of twin tube shock absorber
Sandip K. Kadu
2014-09-01
Full Text Available A shock absorber is a mechanical device to damp shock impulse and convert kinetic energy into thermal energy. The damping effect of shock absorber depends on damping force and damping force is affected by various process parameters. In this analysis three process parameters damping diameter(A, number of holes(B and suspension velocity(C were considered and their effect on damping force of shock absorber was studied and accordingly suitable orthogonal array was selected by taguchi method. Experiment conducted on servo hydraulic testing machine and after conducting experiments damping force was measured and with the help of S/N ratio, ANOVA, Regression analysis optimum parameter values can be obtained and confirmation experiments was carried out. Twin tube shock absorber was used to carry out experimentation.
Beam halo study on ATF damping ring
Wang, Dou; Yokoya, Kaoru; Naito, Takashi; Gao, Jie
2016-01-01
Halo distribution is a key topic for background study. This paper has developed an analytical method to give an estimation of ATF beam halo distribution. The equilibrium particle distribution of the beam tail in the ATF damping ring is calculated analytically with different emittance and different vacuum degree. The analytical results agree the measurements very well. This is a general method which can be applied to any electron rings.
Cubic Lienard Equations with Quadratic Damping (Ⅱ)
Yu-quan Wang; Zhu-jun Jing
2002-01-01
Applying Hopf bifurcation theory and qualitative theory, we show that the general cubic Lienard equations with quadratic damping have at most three limit cycles. This implies that the guess in which the system has at most two limit cycles is false. We give the sufficient conditions for the system has at most three limit cycles or two limit cycles. We present two examples with three limit cycles or two limit cycles by using numerical simulation.
On circular flows: linear stability and damping
Zillinger, Christian
2016-01-01
In this article we establish linear inviscid damping with optimal decay rates around 2D Taylor-Couette flow and similar monotone flows in an annular domain $B_{r_{2}}(0) \\setminus B_{r_{1}}(0) \\subset \\mathbb{R}^{2}$. Following recent results by Wei, Zhang and Zhao, we establish stability in weighted norms, which allow for a singularity formation at the boundary, and additional provide a description of the blow-up behavior.
Proceedings of Damping Volume 2 of 3
1993-06-01
Inc., 1979. [101 N. Balabanian and T. Bickert. Electrical Network Theory. Jonh Wiley and Sons, Inc., 1969. [111 D. Wang and M. Vidyasagar. Passive...1987). Dynamics of Polymeric Liquids, J. Wiley , New York, NY. Dargush, G.E and Banerjee, P.K. (1991a). "A Time-dependent Incompressible Viscous BEM for...414. 11. Nashif, A. D., Jones, D. I. G. and Henderson, J. P. (1985). Vibration Damping, Wiley -Interscience Publication, New York. 12. Bland, D. R. and
Active Compliance And Damping In Telemanipulator Control
Kim, Won S.; Bejczy, Antal K.; Hannaford, Blake
1991-01-01
Experimental telemanipulator system of force-reflecting-hand-controller type provides for active compliance and damping in remote, robotic manipulator hand. Distributed-computing and -control system for research in various combinations of force-reflecting and active-compliance control regimes. Shared compliance control implemented by low-pass-filtered force/torque feedback. Variable simulated springs and shock absorbers soften collisions and increase dexterity.
Damping of roll vibrations of vehicle suspension
Le, K. C.; Pieper, A.
2014-04-01
Small forced vibrations of an axle model of independent suspensions having four degrees of freedom are studied. The exact analytical solution of the generalised Lagrange equation enables one to produce 3D plots of the normalised amplitudes of forced vibrations versus frequency and excitation ratio or phase difference of the road inputs. The analysis of these plots exhibits some deficiency in damping of roll vibrations of conventional vehicle suspensions. The possibilities of improvement are discussed.
Coulomb collision effects on linear Landau damping
Callen, J. D., E-mail: callen@engr.wisc.edu [University of Wisconsin, Madison, Wisconsin 53706-1609 (United States)
2014-05-15
Coulomb collisions at rate ν produce slightly probabilistic rather than fully deterministic charged particle trajectories in weakly collisional plasmas. Their diffusive velocity scattering effects on the response to a wave yield an effective collision rate ν{sub eff} ≫ ν and a narrow dissipative boundary layer for particles with velocities near the wave phase velocity. These dissipative effects produce temporal irreversibility for times t ≳ 1/ν{sub eff} during Landau damping of a small amplitude Langmuir wave.
Accurate integration of forced and damped oscillators
García Alonso, Fernando Luis; Cortés Molina, Mónica; Villacampa, Yolanda; Reyes Perales, José Antonio
2016-01-01
The new methods accurately integrate forced and damped oscillators. A family of analytical functions is introduced known as T-functions which are dependent on three parameters. The solution is expressed as a series of T-functions calculating their coefficients by means of recurrences which involve the perturbation function. In the T-functions series method the perturbation parameter is the factor in the local truncation error. Furthermore, this method is zero-stable and convergent. An applica...
Damping of liquid sloshing by foams
Sauret, Alban; Cappello, Jean; Dressaire, Emilie; Stone, Howard A
2014-01-01
When a container is set in motion, the free surface of the liquid starts to oscillate or slosh. Such effects can be observed when a glass of wa ter is handled carelessly and the fluid sloshes or even spills over the rims of the container. However, beer does not slosh as readily as water, wh ich suggests that foam could be used to damp sloshing. In this work, we study experimentally the effect on sloshing of a liquid foam placed on top of a liquid bath. We generate a monodisperse two-dimensional liquid foam in a rectangular container and track the motion of the foam. The influence of the foam on the sloshing dynamics is experimentally characterized: only a few layers of bubbles are sufficient to significantly damp the oscill ations. We rationalize our experimental findings with a model that describes the foam contribution to the damping coefficient through viscous dissi pation on the walls of the container. Then we extend our study to confined three-dimensional liquid foam and observe that the behavior of 2D a...
Synchrosqueezed wavelet transform for damping identification
Mihalec, Marko; Slavič, Janko; Boltežar, Miha
2016-12-01
Synchrosqueezing is a procedure for improving the frequency localization of a continuous wavelet transform. This research focuses on using a synchrosqueezed wavelet transform (SWT) to determine the damping ratios of a vibrating system using a free-response signal. While synchrosqueezing is advantageous due to its localisation in the frequency, damping identification with the original SWT is not sufficiently accurate. Here, the synchrosqueezing was researched in detail, and it was found that an error in the frequency occurs as a result of the numerical calculation of the preliminary frequencies. If this error were to be compensated, a better damping identification would be expected. To minimize the frequency-shift error, three different strategies are investigated: the scale-dependent coefficient method, the shifted-coefficient method and the autocorrelated-frequency method. Furthermore, to improve the SWT, two synchrosqueezing criteria are introduced: the average SWT and the proportional SWT. Finally, the proposed modifications are tested against close modes and the noise in the signals. It was numerically and experimentally confirmed that the SWT with the proportional criterion offers better frequency localization and performs better than the continuous wavelet transform when tested against noisy signals.
Radiative damping in plasma-based accelerators
Kostyukov, I. Yu.; Nerush, E. N.; Litvak, A. G.
2012-11-01
The electrons accelerated in a plasma-based accelerator undergo betatron oscillations and emit synchrotron radiation. The energy loss to synchrotron radiation may seriously affect electron acceleration. The electron dynamics under combined influence of the constant accelerating force and the classical radiation reaction force is studied. It is shown that electron acceleration cannot be limited by radiation reaction. If initially the accelerating force was stronger than the radiation reaction force, then the electron acceleration is unlimited. Otherwise the electron is decelerated by radiative damping up to a certain instant of time and then accelerated without limits. It is shown that regardless of the initial conditions the infinite-time asymptotic behavior of an electron is governed by a self-similar solution providing that the radiative damping becomes exactly equal to 2/3 of the accelerating force. The relative energy spread induced by the radiative damping decreases with time in the infinite-time limit. The multistage schemes operating in the asymptotic acceleration regime when electron dynamics is determined by the radiation reaction are discussed.
Radiation damping in pulsed Gaussian beams
Harvey, Chris; Marklund, Mattias
2012-01-01
We consider the effects of radiation damping on the electron dynamics in a Gaussian-beam model of a laser field. For high intensities, i.e., with dimensionless intensity a0≫1, it is found that the dynamics divides into three regimes. For low-energy electrons (low initial γ factor, γ0) the radiation damping effects are negligible. At higher energies, but still at 2γ0a0 one is in a regime of radiation-reaction-induced electron capture. This capture is found to be stable with respect to the spatial properties of the electron beam and results in a significant energy loss of the electrons. In this regime the plane-wave model of the laser field provides a good description of the dynamics, whereas for lower energies the Gaussian-beam and plane-wave models differ significantly. Finally the dynamics is considered for the case of an x-ray free-electron laser field. It is found that the significantly lower intensities of such fields inhibit the damping effects.
Collisional damping rates for plasma waves
Tigik, S. F.; Ziebell, L. F.; Yoon, P. H.
2016-06-01
The distinction between the plasma dynamics dominated by collisional transport versus collective processes has never been rigorously addressed until recently. A recent paper [P. H. Yoon et al., Phys. Rev. E 93, 033203 (2016)] formulates for the first time, a unified kinetic theory in which collective processes and collisional dynamics are systematically incorporated from first principles. One of the outcomes of such a formalism is the rigorous derivation of collisional damping rates for Langmuir and ion-acoustic waves, which can be contrasted to the heuristic customary approach. However, the results are given only in formal mathematical expressions. The present brief communication numerically evaluates the rigorous collisional damping rates by considering the case of plasma particles with Maxwellian velocity distribution function so as to assess the consequence of the rigorous formalism in a quantitative manner. Comparison with the heuristic ("Spitzer") formula shows that the accurate damping rates are much lower in magnitude than the conventional expression, which implies that the traditional approach over-estimates the importance of attenuation of plasma waves by collisional relaxation process. Such a finding may have a wide applicability ranging from laboratory to space and astrophysical plasmas.
Damping of acoustic vibrations in gold nanoparticles
Pelton, Matthew; Sader, John E.; Burgin, Julien; Liu, Mingzhao; Guyot-Sionnest, Philippe; Gosztola, David
2009-08-01
Studies of acoustic vibrations in nanometre-scale particles can provide fundamental insights into the mechanical properties of materials because it is possible to precisely characterize and control the crystallinity and geometry of such nanostructures. Metal nanoparticles are of particular interest because they allow the use of ultrafast laser pulses to generate and probe high-frequency acoustic vibrations, which have the potential to be used in a variety of sensing applications. So far, the decay of these vibrations has been dominated by dephasing due to variations in nanoparticle size. Such inhomogeneities can be eliminated by performing measurements on single nanoparticles deposited on a substrate, but unknown interactions between the nanoparticles and the substrate make it difficult to interpret the results of such experiments. Here, we show that the effects of inhomogeneous damping can be reduced by using bipyramidal gold nanoparticles with highly uniform sizes. The inferred homogeneous damping is due to the combination of damping intrinsic to the nanoparticles and the surrounding solvent; the latter is quantitatively described by a parameter-free model.
Metallic materials for mechanical damping capacity applications
Crăciun, R. C.; Stanciu, S.; Cimpoeșu, R.; (Dragoș Ursanu, A. I.; Manole, V.; Paraschiv, P.; Chicet, D. L.
2016-08-01
Some metallic materials exhibit good damping capacity of mechanical energy into thermal energy. This property along with the others metallic characteristics make this materials interesting for a big number of applications. These materials can be used as bumpers in different applications including automotive field. Beside grey cast iron and shape memory alloys few new metallic materials are presented for the supposition of high damping capacity. We analyze the causes that increase the internal friction of some metallic materials and possibilities to enhance this property through different mechanical, physical or chemical methods. Shape memory alloys, especially those based on copper, present a different damping capacity on martensite, austenite or transition state. In the transformation range M ↔A, which in case of copper base shape memory alloys is quite large, the metallic intelligent materials present a high internal friction, almost comparable with natural rubber behavior that can transform mechanical energy into thermal energy till a certain value of the external solicitation. These materials can be used as noise or small vibrations bumpers or even as shock absorbers in automotive industry.
Damped and zero-damped quasinormal modes of charged, nearly-extremal black holes
Zimmerman, Aaron
2015-01-01
Despite recent progress, the complete understanding of the perturbations of charged, rotating black holes as described by the Kerr-Newman metric remains an open and fundamental problem in relativity. In this study, we explore the existence of families of quasinormal modes of Kerr-Newman black holes whose decay rates limit to zero at extremality, called zero-damped modes in past studies. We review the nearly-extremal and WKB approximation methods for spin-weighted scalar fields (governed by the Dudley-Finley equation) and give an accounting of the regimes where scalar zero-damped and damped modes exist. Using Leaver's continued fraction method, we verify that these approximations give accurate predictions for the frequencies in their regimes of validity. In the non-rotating limit, we argue that gravito-electromagnetic perturbations of nearly-extremal Reissner-Nordstr\\"{o}m black holes have zero-damped modes in addition to the well-known spectrum of damped modes. We provide an analytic formula for the frequenci...
Nembach, Hans T; Shaw, Justin M; Boone, Carl T; Silva, T J
2013-03-15
We demonstrate a strong dependence of the effective damping on the nanomagnet size and the particular spin-wave mode that can be explained by the theory of intralayer transverse-spin pumping. The effective Landau-Lifshitz damping is measured optically in individual, isolated nanomagnets as small as 100 nm. The measurements are accomplished by use of a novel heterodyne magneto-optical microwave microscope with unprecedented sensitivity. Experimental data reveal multiple standing spin-wave modes that we identify by use of micromagnetic modeling as having either localized or delocalized character, described generically as end and center modes. The damping parameter of the two modes depends on both the size of the nanomagnet as well as the particular spin-wave mode that is excited, with values that are enhanced by as much as 40% relative to that measured for an extended film. Contrary to expectations based on the ad hoc consideration of lithography-induced edge damage, the damping for the end mode decreases as the size of the nanomagnet decreases. The data agree with the theory for damping caused by the flow of intralayer transverse spin currents driven by the magnetization curvature. These results have serious implications for the performance of nanoscale spintronic devices such as spin-torque-transfer magnetic random access memory.
Prevalence of Residential Dampness and Mold Exposure in a University Student Population
Mathieu Lanthier-Veilleux
2016-02-01
Full Text Available The impact of residential dampness or mold on respiratory health is well established but few studies have focused on university students. This study aims to: (a describe the prevalence of exposure to residential dampness or mold in university students according to socio-geographic factors and (b identify associated housing characteristics. A web survey was conducted in 2014 among the 26,676 students registered at the Université de Sherbrooke (QC, Canada. Residential dampness and mold being closely intertwined, they were considered as a single exposure and assessed using a validated questionnaire. Exposure was compared according to socio-geographic and housing characteristics using chi-square tests and logistic regressions. Among the 2097 participants included in the study (response rate: 8.1%, over 80% were tenants. Residential exposure to dampness or mold was frequent (36.0%, 95% CI: 33.9–38.1. Marked differences for this exposure were noted according to home ownership (39.7% vs. 25.5% among tenants and owners respectively; OR = 1.92%, 95% CI: 1.54–2.38. Campus affiliation, household composition and the number of residents per building were associated with exposure to dampness or mold (p < 0.01, while sex and age were not. Exposure was also associated with older buildings, and buildings in need of renovations and lacking proper ventilation (p < 0.001. This study highlights the potential risk of university students suffering from mold-related health effects given their frequent exposure to this agent. Further research is needed to fully evaluate the mold-related health impact in this at risk group.
Damping of Inter-Area Low Frequency Oscillation Using an Adaptive Wide-Area Damping Controller
Yao, Wei; Jiang, L.; Fang, Jiakun
2013-01-01
This paper presents an adaptive wide-area damping controller (WADC) based on generalized predictive control (GPC) and model identification for damping the inter-area low frequency oscillations in large-scale inter-connected power system. A recursive least-squares algorithm (RLSA) with a varying...... forgetting factor is applied to identify online the reduced-order linearlized model which contains dominant inter-area low frequency oscillations. Based on this linearlized model, the generalized predictive control scheme considering control output constraints is employed to obtain the optimal control signal...... in each sampling interval. Case studies are undertaken on a two-area fourmachine power system and the New England 10-machine 39-bus power system, respectively. Simulation results show that the proposed adaptive WADC not only can damp the inter-area oscillations effectively under a wide range of operation...
Reliable Damping of Free Surface Waves in Numerical Simulations
Peric, Robinson
2015-01-01
This paper generalizes existing approaches for free-surface wave damping via momentum sinks for flow simulations based on the Navier-Stokes equations. It is shown in 2D flow simulations that, to obtain reliable wave damping, the coefficients in the damping functions must be adjusted to the wave parameters. A scaling law for selecting these damping coefficients is presented, which enables similarity of the damping in model- and full-scale. The influence of the thickness of the damping layer, the wave steepness, the mesh fineness and the choice of the damping coefficients are examined. An efficient approach for estimating the optimal damping setup is presented. Results of 3D ship resistance computations show that the scaling laws apply to such simulations as well, so the damping coefficients should be adjusted for every simulation to ensure convergence of the solution in both model and full scale. Finally, practical recommendations for the setup of reliable damping in flow simulations with regular and irregular...
Damping in high-temperature superconducting levitation systems
Hull, John R.
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
Whistler damping at oblique propagation - Laminar shock precursors
Gary, S. P.; Mellott, M. M.
1985-01-01
This paper addresses the collisionless damping of whistlers observed as precursors standing upstream of oblique, low-Mach number terrestrial bow shocks. The linear theory of electromagnetic waves in a homogeneous Vlasov plasma with Maxwellian distribution functions and a magnetic field is considered. Numerical solutions of the full dispersion equation are presented for whistlers propagating at an arbitrary angle with respect to the magnetic field. It is demonstrated that electron Landau damping attenuates oblique whistlers and that the parameter which determines this damping is beta-e. In a well-defined range of parameters, this theory provides damping lengths which are the same order of magnitude as those observed. Thus electron Landau damping is a plausible process in the dissipation of upstream whistlers. Nonlinear plasma processes which may contribute to precursor damping are also discussed, and criteria for distinguishing among these are described.
Damping in high-temperature superconducting levitation systems
Hull, John R.
2009-12-15
Methods and apparatuses for improved damping in high-temperature superconducting levitation systems are disclosed. A superconducting element (e.g., a stator) generating a magnetic field and a magnet (e.g. a rotor) supported by the magnetic field are provided such that the superconducting element is supported relative to a ground state with damped motion substantially perpendicular to the support of the magnetic field on the magnet. Applying this, a cryostat housing the superconducting bearing may be coupled to the ground state with high damping but low radial stiffness, such that its resonant frequency is less than that of the superconducting bearing. The damping of the cryostat may be substantially transferred to the levitated magnetic rotor, thus, providing damping without affecting the rotational loss, as can be derived applying coupled harmonic oscillator theory in rotor dynamics. Thus, damping can be provided to a levitated object, without substantially affecting the rotational loss.
Digital notch filter based active damping for LCL filters
Yao, Wenli; Yang, Yongheng; Zhang, Xiaobin
2015-01-01
. In contrast, the active damping does not require any dissipation elements, and thus has become of increasing interest. As a result, a vast of active damping solutions have been reported, among which multi-loop control systems and additional sensors are necessary, leading to increased cost and complexity....... In this paper, a notch filter based active damping without the requirement of additional sensors is proposed, where the inverter current is employed as the feedback variable. Firstly, a design method of the notch filter for active damping is presented. The entire system stability has then been investigated...... in the z-domain. Simulations and experiments are carried out to verify the proposed active damping method. Both results have confirmed that the notch filter based active damping can ensure the entire system stability in the case of resonances with a good system performance....
Damping behaviors of metal matrix composites with interface layer
无
2001-01-01
A novel technique of designing the interface layer in metal matrix composites of high damping capacity was developed via different CVD coatings on carbon fibers in Cf/Al composites. It was shown that the interface layer improved the tensile strength, elastic modulus and damping capacity of the Cf/Al composites. A carbon layer showed the highest improvement and a silicon layer the lowest, while a mixed carbon and silicon layer exhibited an intermediate effect. Moreover, the thickness of interface layer also influences the damping capacity. A thicker carbon layer produced a better damping capacity because the dependence of damping capacity on strain amplitude was increased. It is suggested that a micro-sliding action occurring in the interface layer is the main mechanism responsible for the high damping capacity of the composites.
The damping performance of aluminum-based composites
Updike, C.A.; Bhagat, R.B.; Pechersky, M.J.; Amateau, M.F. (Harris Corp., Government Aerospace Systems Div., Melbourne, FL (USA) Pennsylvania State Univ., University Park (USA))
1990-03-01
Metal-matrix-composites may offer better damping properties than unreinforced alloys. Because damping properties (and metal-matrix composites) are becoming important in airframe design, the damping capabilities of a number of aluminum-matrix composites were measured over a wide range of frequencies at low strain amplitudes, using a new laser vibrometer technique. Silicon carbide and alumina reinforcements resulted in a material with damping properties similar to that of unreinforced aluminum 6061-T6, but unidirectional and planar-random graphite continuous-fiber reinforcements increased the damping by 5 and 14 times, respectively. The increased damping of the continuous fiber composites is attributed to the absence of interfacial reaction resulting from the high-pressure infiltration method used for their manufacture. 25 refs.
Active member bridge feedback control for damping augmentation
Chen, Gun-Shing; Lurie, Boris J.
1992-01-01
An active damping augmentation approach using active members in a structural system is described. The problem of maximizing the vibration damping in a lightly damped structural system is considered using the analogy of impedance matching between the load and source impedances in an electrical network. The proposed active damping augmentation approach therefore consists of finding the desired active member impedances that maximize the vibration damping, and designing a feedback control in order to achieve desired active member impedances. This study uses a bridge feedback concept that feeds back a combination of signals from sensors of the axial force and relative velocity across the active member to realize the desired active member impedance. The proposed active damping augmentation approach and bridge feedback concept were demonstrated on a three-longeron softly suspended truss structure.
Design of damping valve for vehicle hydro pneumatic suspension
Mingming DONG; Hua HUANG; Lian GU
2008-01-01
According to the design features of a hydro pneumatic spring, the necessity of a separate damping valve is proposed. Based on a 1/4 vehicle linear suspension model, the optimum damping coefficient is worked out and the parameters of the damping valve are determined with the equivalent linearization method. A practical structure of the damping valve is proposed having a small size, high flowrate when the valve opens, and the ability of enduring high back pressure. Based on bench tests, the damping valve has been found to properly work and be suitable. The design method and damping valve structure are useful guides for hydro pneumatic suspension, especially for the design of heavy-duty vehicles.
Dynamic analyses of viscoelastic dielectric elastomers incorporating viscous damping effect
Zhang, Junshi; Zhao, Jianwen; Chen, Hualing; Li, Dichen
2017-01-01
In this paper, based on the standard linear solid rheological model, a dynamics model of viscoelastic dielectric elastomers (DEs) is developed with incorporation of viscous damping effect. Numerical calculations are employed to predict the damping effect on the dynamic performance of DEs. With increase of damping force, the DEs show weak nonlinearity and vibration strength. Phase diagrams and Poincaré maps are utilized to detect the dynamic stability of DEs, and the results indicate that a transition from aperiodic vibration to quasi-periodic vibration occurs with enlargement of damping force. The resonance properties of DEs including damping effect are subsequently analyzed, demonstrating a reduction of resonant frequency and resonance peak with increase of damping force.
Researches on Track Reconstruction for DAMPE
Lu, T. S.; Lei, S. J.; Zang, J. J.; Chang, J.; Wu, J.
2016-05-01
The Dark Matter Particle Explorer (DAMPE) is aimed to study the existence and distribution of dark matter via observation of high energy particles in space with unprecedented large energy bandwidth, high energy resolution, and high space resolution. The track reconstruction is to restore the positions and angles of the incident particles using the multiple observations of different channels at different positions, and its accuracy determines the angular resolution of the detector. The track reconstruction is mainly based on the observations of two sub-detectors, namely, the Silicon Tracker (STK) detector and the BGO (Bi_4Ge_3O12) calorimeter. In accordance with the design and structure of the two sub-detectors and using the data collected during the beam tests and ground tests, we provide a detailed introduction of the track reconstruction of DAMPE data, including three basic steps, the selection of track hits, the fitting of track hits, and the judgement of the best track among (most probably) many of them. Since a high energy particle most probably leaves more than one hit in each level of the STK and BGO, we first provide a method to constrain the STK clusters for the track reconstruction using the rough result of the BGO reconstruction. We apply two different algorithms, the Kalman filter and the least square linear fitting, to fit the track hits. The consistency of the results obtained independently via the two algorithms confirms the validity of our track reconstruction results, and we discuss the advantages/disadvantages of each method. Several criteria combining the BGO and STK detection are discussed for picking out the most possible track among all the tracks found in the track reconstruction. Using the track reconstruction methods mentioned in this article and the beam test data, we confirm that the angular resolution of DAMPE satisfies the requirement in design.
System Reduction and Damping of Flexible Structures
Høgsberg, Jan Riess; Krenk, Steen
2007-01-01
technique for local linearization of the damper characteristics. However, the complex mode shapes and frequencies depend on the magnitude of the damper and therefore are less suitable for design of the damper system. An efficient alternative consists in the use of a two-component representation...... good estimate for use in design calculations. The efficiency of the damper configuration depends on damper placement as well as damper properties. Thus a stiffness component in the damper characteristic leads to a decrease in damping efficiency. The method is illustrated by some simple examples, also...
PENDULUM WITH LINEAR DAMPING AND VARIABLE LENGTH
蔡建平; 杨翠红; 李怡平
2004-01-01
The methods of multiple scales and approximate potential are used to study pendulums with linear damping and variable length. According to the order of the coefficient of friction compared with that of the slowly varying parameter of length, three different cases are discussed in details. Asymptotic analytical expressions of amplitude, frequency and solution are obtained. The method of approximate potential makes the results effective for large oscillations. A modified multiple scales method is used to get more accurate leading order approximations when the coefficient friction is not small. Comparisons are also made with numerical results to show the efficiency of the present method.
System for damping vibrations in a turbine
Roberts, III, Herbert Chidsey; Johnson, Curtis Alan; Taxacher, Glenn Curtis
2015-11-24
A system for damping vibrations in a turbine includes a first rotating blade having a first ceramic airfoil, a first ceramic platform connected to the first ceramic airfoil, and a first root connected to the first ceramic platform. A second rotating blade adjacent to the first rotating blade includes a second ceramic airfoil, a second ceramic platform connected to the second ceramic airfoil, and a second root connected to the second ceramic platform. A non-metallic platform damper has a first position in simultaneous contact with the first and second ceramic platforms.
Problem of the gyroscopic stabilizer damping
Šklíba J.
2009-06-01
Full Text Available The gyroscopic stabilization of the vibro-isolation system of an ambulance couch is analyzed. This paper follows several previous papers, which concern the derivation of the complete system of appropriate differential equations and some analyses were provided there, as well. It was supposed that mass matrix, stiffness matrix and gyroscope impulse-moment remain constant and the stability of equilibrium state was solved according to different alternatives of the damping and of the radial correction. Little known theorems of the stability were used there. With respect to these theorems, vibro-isolation systems can be classified according to odd or even number of generalized coordinates.
Mode damping in a commensurate monolayer solid
Bruch, Ludwig Walter; Hansen, Flemming Yssing
1997-01-01
with an elastic-continuum theory of the response of modes of either parallel or perpendicular polarization for a spherical adsorbate on a hexagonal substrate. The results are applied to the discussion of computer simulations and inelastic atomic-scattering experiments for adsorbates on graphite. The extreme...... anisotropy of the elastic behavior of the graphite leads to quite different wave-vector dependence of the damping for modes polarized perpendicular and parallel to the substrate. A phenomenological extension of the elasticity theory of the graphite to include bond-bending energies improves the description...
Gyroscopic Stabilization of Indefinite Damped Systems
Kliem, Wolfhard; Müller, Peter C.
1996-01-01
The paper deals with linear systems of differential equationswith symmetric system matrices M,D, and K.The mass matrix M and the stiffness matrix K are both assumed to bepositive definite. The damping matrix D is indefinite. Three questionsare of interest: 1) When is the system unstable? Apparently...... not always,if the matrix D is indefinite. 2) What can we say about conditions whichensure that an unstable system can be stabilized by adding a gyroscopicterm Gdx/dt? 3) What is, in this case, a suitable or optimal matrixG? The questions are answered in the frame of a first order perturbationapproach....
Glued trees algorithm under phase damping
Lockhart, J. [School of Electronics, Electrical Engineering and Computer Science, Queen' s University, Belfast, BT7 1NN (United Kingdom); Di Franco, C., E-mail: c.difranco@qub.ac.uk [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast, BT7 1NN (United Kingdom); Paternostro, M. [Centre for Theoretical Atomic, Molecular and Optical Physics, School of Mathematics and Physics, Queen' s University, Belfast, BT7 1NN (United Kingdom)
2014-01-17
We study the behaviour of the glued trees algorithm described by Childs et al. in [1] under decoherence. We consider a discrete time reformulation of the continuous time quantum walk protocol and apply a phase damping channel to the coin state, investigating the effect of such a mechanism on the probability of the walker appearing on the target vertex of the graph. We pay particular attention to any potential advantage coming from the use of weak decoherence for the spreading of the walk across the glued trees graph.
Radiation damping in closed expanding universes
Bernui, Armando
The dynamics of a coupled model (harmonic oscillator-relativistic scalar field) in Conformal Robertson-Walker (k = +1) spacetimes is investigated. The exact radiation-reaction equation of the source-including the retarded radiation terms due to the closed space geometry - is obtained and analyzed. A suitable family of Lyapunov functions is constructed to show that, if the spacetime expands monotonely, then the source's energy damps. A numerical simulation of this equation for expanding Universes, with and without Future Event Horizon, is performed.
Relativity Damps OPEP in Nuclear Matter
Banerjee, Manoj K.
1998-01-01
Using a relativistic Dirac-Brueckner analysis the OPEP contribution to the ground state energy of nuclear matter is studied. In the study the pion is derivative-coupled. We find that the role of the tensor force in the saturation mechanism is substantially reduced compared to its dominant role in a usual nonrelativistic treatment. We show that the damping of derivative-coupled OPEP is actually due to the decrease of $M^*/M$ with increasing density. We point out that if derivative-coupled OPEP...
Bridge feedback for active damping augmentation
Chen, G.-S.; Lurie, B. J.
1990-01-01
A method is described for broadband damping augmentation of a structural system in which the active members (with feedback control) were developed such that their mechanical input impedance can be electrically adjusted to maximize the energy dissipation rate in the structural system. The active member consists of sensors, an actuator, and a control scheme. A mechanical/electrical analogy is described to model the passive structures and the active members in terms of their impedance representation. As a result, the problem of maximizing dissipative power is analogous to the problem of impedance matching in the electrical network. Closed-loop performance was demonstrated for single- and multiple-active-member controlled truss structure.
Optimal Constrained Layer Damping of Beams: Experimental and Numerical Studies
J.-L. Marcelin
1995-01-01
Full Text Available This article deals with the optimal damping of beams constrained by viscoelastic layers when only one or several portions of the beam are covered. The design variables are the dimensions and locations of the viscoelastic layers and the objective function is the maximum damping factor. The discrete design variable optimization problem is solved using a genetic algorithm. Numerical results for minimum and maximum damping are compared to experimental results. This is done for a various number of materials and beams.
Test particle study of Landau damping of steepening magnetosonic waves
Matsumoto, H.; Barnes, A.
1982-01-01
A test particle study of Landau damping of steepening large-amplitude magnetosonic waves is made. Motions of test particles in a model of a steepening large-amplitude magnetosonic wave are traced. The kinetic energy change of the ensemble of test particles is computed to estimate the effective Landau damping rate of the magnetosonic wave. The numerical results are compared with the linear kinetic theory of Landau damping and interpreted in terms of a simple physical picture for particle trapping.
Damping of Torsional Beam Vibrations by Control of Warping Displacement
Høgsberg, Jan Becker; Hoffmeyer, David; Ejlersen, Christian
2016-01-01
Supplemental damping of torsional beam vibrations is considered by viscous bimoments acting on the axial warping displacement at the beam supports. The concept is illustrated by solving the governing eigenvalue problem for various support configurations with the applied bimoments represented...... as viscous boundary conditions. It is demonstrated that properly calibrated viscous bimoments introduce a significant level of supplemental damping to the targeted vibration mode and that the attainable damping can be accurately estimated from the two undamped problems associated with vanishing and infinite...
Structural dynamic analysis with generalized damping models analysis
Adhikari , Sondipon
2013-01-01
Since Lord Rayleigh introduced the idea of viscous damping in his classic work ""The Theory of Sound"" in 1877, it has become standard practice to use this approach in dynamics, covering a wide range of applications from aerospace to civil engineering. However, in the majority of practical cases this approach is adopted more for mathematical convenience than for modeling the physics of vibration damping. Over the past decade, extensive research has been undertaken on more general ""non-viscous"" damping models and vibration of non-viscously damped systems. This book, along with a related book
Excitation of magnetization using a modulated radiation damping field.
Walls, Jamie D; Huang, Susie Y; Lin, Yung-Ya
2006-10-12
In this work, pulsed-field gradients are used to modulate the radiation damping field generated by the detection coil in an NMR experiment in order that spins with significantly different chemical shifts can affect one another via the radiation damping field. Experiments performed on solutions of acetone/water and acetone/DMSO/water demonstrate that spins with chemical shift differences much greater than the effective radiation damping field strength can still be coupled by modulating the radiation damping field. Implications for applications in high-field NMR and for developing sensitive magnetization detectors are discussed.
Design Rules for High Damping in Mobile Hydraulic Systems
Axin, Mikael; Krus, Petter
2013-01-01
This paper analyses the damping in pressure compensated closed centre mobile working hydraulic systems. Both rotational and linear loads are covered and the analysis applies to any type of pump controller. Only the outlet orifice in the directional valve will provide damping to a pressure compensated system. Design rules are proposed for how the system should be dimensioned in order to obtain a high damping. The volumes on each side of the load have a high impact on the damping. In case of a ...
Damping factor estimation using spin wave attenuation in permalloy film
Manago, Takashi, E-mail: manago@fukuoka-u.ac.jp [Department of Applied Physics, Fukuoka University, 8-19-1 Nanakuma, Jonan, Fukuoka 814-0180 (Japan); Yamanoi, Kazuto [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Kasai, Shinya; Mitani, Seiji [National Institute for Materials Science (NIMS), Tsukuba, Ibaraki 305-0047 (Japan)
2015-05-07
Damping factor of a Permalloy (Py) thin film is estimated by using the magnetostatic spin wave propagation. The attenuation lengths are obtained by the dependence of the transmission intensity on the antenna distance, and decrease with increasing magnetic fields. The relationship between the attenuation length, damping factor, and external magnetic field is derived theoretically, and the damping factor was determined to be 0.0063 by fitting the magnetic field dependence of the attenuation length, using the derived equation. The obtained value is in good agreement with the general value of Py. Thus, this estimation method of the damping factor using spin waves attenuation can be useful tool for ferromagnetic thin films.
Characterization of damping in microfibrous material
Soobramaney, Pregassen; Flowers, George T.; Dean, Robert N.
2012-04-01
MEMS gyroscopes are used in many applications including harsh environments such as high-power, high-frequency acoustic noise. If the latter is at the natural frequency of the gyroscope, the proof mass will be overexcited giving rise to a corrupted gyroscope output. To mitigate the effect of the high-power, high-frequency acoustic noise, it is proposed to use nickel microfibrous sheets as an acoustic damper. For this purpose, the characterization of vibration damping in Nickel microfibrous sheets was examined in the present research effort. The sheets were made from nickel fibers with cellulose as a binding agent using a wet-lay papermaking technique. Sintering was done at 1000 °C to remove all the cellulose giving rise to a porous material. Square sheets of 20 cm were made from three diameters of nickel fibers namely 4, 8, and 12 microns. The sheets were cut into smaller pieces to fit the requirements of a fixture specially designed for this study. The fixture was attached to a LDS V408 shaker with a mass resting on a stack of the microfibrous sheets to simulate transmitted vibration by base motion with the sheet stack acting as a damper. A series of experiments was conducted using these 3 fiber diameters, different number of layers of microfibrous sheets and varying the vibration amplitude. From the collected vibration data, the stiffness and damping ratio of the microfibrous material was characterized.
Gyroscopic stabilization and indefimite damped systems
Pommer, Christian
a class of feasibel skew-Hermitian matrices A depending on the choise of M. The theory can be applied to dynamical systems of the form x''(t) + ( dD + g G) x'(t) + K x(t) = 0 where G is a skew symmetric gyrocopic matrix, D is a symmetric indefinite damping matrix and K > 0 is a positive definite stiffness......An important issue is how to modify a given unstable matrix in such a way that the resulting matrix is stable. We investigate in general under which condition a matrix M+A is stable,where M is an arbitrary matrix and A is skew-Hermitian. We show that if trace(M) > 0 it is always possible to find...... matrix. d and g are scaling factors used to control the stability of the system. It is quite astonnishing that when the damping matrix D is indefinite the system can under certain conditions be stable even if there are no gyroscopic forces G present The Lyapunov matrix equation is used to predict...
Quantifying acoustic damping using flame chemiluminescence
Boujo, E.; Denisov, A.; Schuermans, B.; Noiray, N.
2016-12-01
Thermoacoustic instabilities in gas turbines and aeroengine combustors falls within the category of complex systems. They can be described phenomenologically using nonlinear stochastic differential equations, which constitute the grounds for output-only model-based system identification. It has been shown recently that one can extract the governing parameters of the instabilities, namely the linear growth rate and the nonlinear component of the thermoacoustic feedback, using dynamic pressure time series only. This is highly relevant for practical systems, which cannot be actively controlled due to a lack of cost-effective actuators. The thermoacoustic stability is given by the linear growth rate, which results from the combination of the acoustic damping and the coherent feedback from the flame. In this paper, it is shown that it is possible to quantify the acoustic damping of the system, and thus to separate its contribution to the linear growth rate from the one of the flame. This is achieved by post-processing in a simple way simultaneously acquired chemiluminescence and acoustic pressure data. It provides an additional approach to further unravel from observed time series the key mechanisms governing the system dynamics. This straightforward method is illustrated here using experimental data from a combustion chamber operated at several linearly stable and unstable operating conditions.
Asymptotic stability of solutions to elastic systems with structural damping
Hongxia Fan
2014-11-01
Full Text Available In this article, we study the asymptotic stability of solutions for the initial value problems of second order evolution equations in Banach spaces, which can model elastic systems with structural damping. The discussion is based on exponentially stable semigroups theory. Applications to the vibration equation of elastic beams with structural damping are also considered.
Global well-posedness of damped multidimensional generalized Boussinesq equations
Yi Niu
2015-04-01
Full Text Available We study the Cauchy problem for a sixth-order Boussinesq equations with the generalized source term and damping term. By using Galerkin approximations and potential well methods, we prove the existence of a global weak solution. Furthermore, we study the conditions for the damped coefficient to obtain the finite time blow up of the solution.
Nonlinear Landau damping in quark-gluon plasma
Xiaofei, Zhang; Jiarong, Li
1995-08-01
The semiclassical kinetic equations for the quark-gluon plasma (QGP) are discussed by the multiple time-scale method. The mechanism of nonlinear Landau damping owing to non-Abelian and nonlinear wave-particle interactions in QGP is investigated, and the nonlinear Landau damping rate for the longitudinal color eigenwaves in the long-wavelength limit is calculated.
Damping characteristics of a footbridge: Mysteries and truths
Cantieni, Reto; Bajric, Anela; Brincker, Rune
2016-01-01
As a consequence of a paper presented by Michael Mistler at the VDI-Baudynamik-Tagung in Kassel, Germany, in April 2015, the authors checked the damping coefficients having been estimated for a footbridge in autumn 2014. Mistler stated that the critical damping ratio estimated from a halfpower ba...
Simple model with damping of the mode-coupling instability
Pestrikov, D.V. [AN SSSR, Novosibirsk (Russian Federation). Inst. Yadernoj Fiziki
1996-08-01
In this paper we use a simple model to study the suppression of the transverse mode-coupling instability. Two possibilities are considered. One is due to the damping of particular synchrobetatron modes, and another - due to Landau damping, caused by the nonlinearity of betatron oscillations. (author)
PID motion control tuning rules in a damping injection framework
Tadele, Tadele Shiferaw; Vries, de Theo; Stramigioli, Stefano
2013-01-01
This paper presents a general design approach for a performance based tuning of a damping injection framework impedance controller by using insights from PID motion control tuning rules. The damping injection framework impedance controller is suitable for human friendly robots as it enhances safety
Translational damping on high-frequency flapping wings
Parks, Perry A.
Flapping fliers such as insects and birds depend on passive translational and rotational damping to terminate quick maneuvers and to provide a source of partial stability in an otherwise unstable dynamic system. Additionally, passive translational and rotational damping reduce the amount of active kinematic changes that must be made to terminate maneuvers and maintain stability. The study of flapping-induced damping phenomena also improves the understanding of micro air vehicle (MAV) dynamics needed for the synthesis of effective flight control strategies. Aerodynamic processes which create passive translational and rotational damping as a direct result of symmetric flapping with no active changes in wing kinematics have been previously studied and were termed flapping counter-force (FCF) and flapping counter-torque (FCT), respectively. In this first study of FCF measurement in air, FCF generation is measured using a pendulum system designed to isolate and measure the relationship of translational flapping-induced damping with wingbeat frequency for a 2.86 gram mechanical flapper equipped with real cicada wings. Analysis reveals that FCF generation and wingbeat frequency are directly proportional, as expected from previous work. The quasi-steady FCF model using Blade-Element-Theory is used as an estimate for translational flapping-induced damping. In most cases, the model proves to be accurate in predicting the relationship between flapping-induced damping and wingbeat frequency. "Forward-backward" motion proves to have the strongest flapping-induced damping while "up-down" motion has the weakest.
Interdigitated interdigital transducer for surface elastometry of soft damping tissue.
Danicki, Eugene; Nowicki, Andrzej; Tasinkevych, Yuriy
2013-06-01
Measurement of the shear elastic constant of soft and highly damping tissue of high Poisson ratio is quite a challenging task. It is proposed to evaluate shear wave velocity and damping of tissue by measuring the shear skimming bulk waves using one interdigitated interdigital transducer on a piezoelectric layer, such as polyvinylidene fluoride, applied to the surface of the small tissue sample.
The Holevo capacity of a generalized amplitude-damping channel
Hou Li-Zhen; Fang Mao-Fa
2007-01-01
The Holevo capacity of a generalized amplitude-damping channel is investigated by using a numerical method.It is shown that the Holevo capacity depends on the channel parameters representing the ambient temperature and fidelity. In particular, under a special condition, the Holevo capacity of the generalized amplitude-damping channel can be written as an analytical expression.
Exponential decay for solutions to semilinear damped wave equation
Gerbi, Stéphane
2011-10-01
This paper is concerned with decay estimate of solutions to the semilinear wave equation with strong damping in a bounded domain. Intro- ducing an appropriate Lyapunov function, we prove that when the damping is linear, we can find initial data, for which the solution decays exponentially. This result improves an early one in [4].
On aspects of boundary damping for cables and vertical beams
Hijmissen, J.W.
2008-01-01
Elastic structures are susceptible to wind- and earthquake-induced vibrations. These vibrations can damage a structure or cause human discomfort. To suppress structural vibrations, various types of damping mechanisms, active or passive, can be applied. In this thesis the model of a weakly damped, st
Complex modes and frequencies in damped structural vibrations
Krenk, Steen
2004-01-01
It is demonstrated that the state space formulation of the equation of motion of damped structural elements like cables and beams leads to a symmetric eigenvalue problem if the stiffness and damping operators are self-adjoint, and that this is typically the case in the absence of gyroscopic force...
Hu, Y; Liu, W; Huang, C; Zou, Z J; Zhao, Z H; Shen, L; Sundell, J
2014-10-01
Numerous studies of associations between dampness and respiratory diseases have been conducted, but their implications remain inconclusive. In this study of 13,335 parent-reported questionnaires (response rate: 85.3%), we analyzed associations between home dampness and asthma and related symptoms in 4- to 6-year-old children in a cross-sectional study of Shanghai. Indicators of home dampness were strongly and significantly associated with dry cough, wheeze, and rhinitis symptoms. In the current residence, children with visible mold spots (VMS) exposure had 32% higher risk of asthma (adjusted OR, 95% CI: 1.32, 1.07-1.64); damp clothing and/or bedding (frequently) was strongly associated with dry cough (1.78, 1.37-2.30); condensation on windows was strongly associated with hay fever (1.60, 1.27-2.01). In the early-life residence, VMS or damp stains (frequently) were strongly associated with dry cough (2.20, 1.55-3.11) and rhinitis ever (1.57, 1.11-2.21). Associations between dampness and diseases among children with or without family history of atopy were similar. The total number of dampness indicators had strong dose-response relationships with investigated health outcomes. Actions, including opening windows of the child's room at night and cleaning the child's room frequently, could potentially mitigate 25% of home VMS, thereby preventing more than 1.5% of attributable risk of the studied symptoms. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Cost damping and functional form in transport models
Rich, Jeppe; Mabit, Stefan Lindhard
2015-01-01
take different forms and be represented as a non-linear-in-parameter form such as the well-known Box–Cox function. However, it could also be specified as non-linear-in-cost but linear-in-parameter forms, which are easier to estimate and improve model fit without increasing the number of parameters....... The specific contributions of the paper are as follows. Firstly, we discuss the phenomenon of cost damping in details and specifically why it occurs. Secondly, we provide a test of damping and an easy assessment of the (linear) damping rate for any variable by estimating two auxiliary linear models. This turns......Transport models allowing for cost damping are characterised by marginally decreasing cost sensitivities in demand. As a result, cost damping is a model extension of the simple linear-in-cost model requiring an appropriate non-linear link function between utility and cost. The link function may...
Passively Shunted Piezoelectric Damping of Centrifugally-Loaded Plates
Duffy, Kirsten P.; Provenza, Andrew J.; Trudell, Jeffrey J.; Min, James B.
2009-01-01
Researchers at NASA Glenn Research Center have been investigating shunted piezoelectric circuits as potential damping treatments for turbomachinery rotor blades. This effort seeks to determine the effects of centrifugal loading on passively-shunted piezoelectric - damped plates. Passive shunt circuit parameters are optimized for the plate's third bending mode. Tests are performed both non-spinning and in the Dynamic Spin Facility to verify the analysis, and to determine the effectiveness of the damping under centrifugal loading. Results show that a resistive shunt circuit will reduce resonant vibration for this configuration. However, a tuned shunt circuit will be required to achieve the desired damping level. The analysis and testing address several issues with passive shunt circuit implementation in a rotating system, including piezoelectric material integrity under centrifugal loading, shunt circuit implementation, and tip mode damping.
Estimation of damping ratio of soil sites using microtremor
郭迅; 黄玉龍; 袁一凡
2002-01-01
It is widely known that the seismic response characteristics of a soil site depends heavily on several key dynamicproperties of the soil stratum, such as predominant frequency and damping ratio. A widely used method for estimating thepredominant frequency of a soil site by using microtremor records, proposed by Nakamura, is investigated to determine itseffectiveness in estimating the damping ratio. The authors conducted some microtremor measurements of soil sites in HongKong and found that Nakamura's method might also be used to estimate the damping ratio of a soil site. Damping ratio datafrom several typical soil sites were obtained from both Nakamura's ratio curves using the half power point method and resonantcolumn tests. Regression analysis indicates that there is a strong correlation between the damping ratios derived from thesetwo different approaches.
On the Damping Properties of Modified Ground Rubber Tires
无
2002-01-01
Large amounts of used rubber tires are discarded annually. A long time is neededfor them to degrade naturally. This poses two major problems: environmental pollutionand wastage of valuable rubber. On the other hand, with the harm of vibration and noisewidely recognized, desires to control them intensify. As an important means of vibrationcontrol, viscoelastic damping technology has advanced greatly. The need for cheap andhigh quality viscoelastic damping materials increases rapidly. This paper made a trial touse ground rubber tire (GRT) recovered from old tires to make damping materials. TheGRT is treated specially first. Then it was pressed into slabs and vulcanized. Finally, theproduct was cut into test samples. An Oberst beam was used to determine the loss factor βand storage modulus E. Results show that the damping materials exhibit good damping ability.
Damping Analyses of Structural Vibrations and Shunted Piezoelectric Transducers
Saber Mohammadi
2012-01-01
Full Text Available Piezoelectric transducers in conjunction with appropriate electric networks can be used as a mechanical energy dissipation device. Alternatively, undesired mechanical energy of a structure could be converted into electrical energy that can be dissipated through a shunt network in the form of Joule heating. This paper presents an experimental method to calculate damping energy in mechanical systems. However, the mathematical description of damping mechanism is much more complicated, and any process responsible for the occurrence of damping is very intricate. Structural and piezoelectric damping are calculated and analysed in the case of pulse switching or SSDI semiactive vibration control technique. This technique which was developed in the field of piezoelectric damping consists in triggering the inverting switch on each extremum of the piezoelectric voltage which induces an increase of the electromechanical energy conversion.
Cost damping and functional form in transport models
Rich, Jeppe; Mabit, Stefan Lindhard
2016-01-01
Transport models allowing for cost damping are characterised by marginally decreasing cost sensitivities in demand. As a result, cost damping is a model extension of the simple linear-in-cost model requiring an appropriate non-linear link function between utility and cost. The link function may...... take different forms and be represented as a non-linear-in-parameter form such as the well-known Box–Cox function. However, it could also be specified as non-linear-in-cost but linear-in-parameter forms, which are easier to estimate and improve model fit without increasing the number of parameters....... The specific contributions of the paper are as follows. Firstly, we discuss the phenomenon of cost damping in details and specifically why it occurs. Secondly, we provide a test of damping and an easy assessment of the (linear) damping rate for any variable by estimating two auxiliary linear models. This turns...
Damping strapdown inertial navigation system based on a Kalman filter
Zhao, Lin; Li, Jiushun; Cheng, Jianhua; Hao, Yong
2016-11-01
A damping strapdown inertial navigation system (DSINS) can effectively suppress oscillation errors of strapdown inertial navigation systems (SINSs) and improve the navigation accuracy of SINSs. Aiming at overcoming the disadvantages of traditional damping methods, a DSINS, based on a Kalman filter (KF), is proposed in this paper. Using the measurement data of accelerometers and calculated navigation parameters during the navigation process, the expression of the observation equation is derived. The calculation process of the observation in both the internal damping state and the external damping state is presented. Finally, system oscillation errors are compensated by a KF. Simulation and test results show that, compared with traditional damping methods, the proposed method can reduce system overshoot errors and shorten the convergence time of oscillation errors effectively.
A new solvent suppression method via radiation damping effect
Cui Xiao-Hong; Peng Ling; Zhang Zhen-Min; Cai Shu-Hui; Chen Zhong
2011-01-01
Radiation damping effects induced by the dominated solvent in a solution sample can be applied to suppress the solvent signal.The precession pathway and rate back to equilibrium state between solute and solvent spins are different under radiation damping.In this paper,a series of pulse sequences using radiation damping were designed for the solvent suppression in nuclear magnetic resonance (NMR) spectroscopy.Compared to the WATERGATE method,the solute signals adjacent to the solvent would not be influenced by using the radiation damping method.The one-dimensional (1D) 1H NMR,two-dimensional (2D) gCOSY,and J-resolved experimental results show the practicability of solvent suppression via radiation damping effects in 1D and 2D NMR spectroscopy.
Fast damping in mismatched high intensity beam transportation
V. Variale
2001-08-01
Full Text Available A very fast damping of beam envelope oscillation amplitudes was recently observed in simulations of high intensity beam transport, through periodic FODO cells, in mismatched conditions [V. Variale, Nuovo Cimento Soc. Ital. Fis. 112A, 1571–1582 (1999 and T. Clauser et al., in Proceedings of the Particle Accelerator Conference, New York, 1999 (IEEE, Piscataway, NJ, 1999, p. 1779]. A Landau damping mechanism was proposed at the origin of observed effect. In this paper, to further investigate the source of this fast damping, extensive simulations have been carried out. The results presented here support the interpretation of the mechanism at the origin of the fast damping as a Landau damping effect.
problem for the damped Boussinesq equation
Vladimir V. Varlamov
1997-01-01
Full Text Available For the damped Boussinesq equation utt−2butxx=−αuxxxx+uxx+β(u2xx,x∈(0,π,t>0;α,b=const>0,β=const∈R1, the second initial-boundary value problem is considered with small initial data. Its classical solution is constructed in the form of a series in small parameter present in the initial conditions and the uniqueness of solutions is proved. The long-time asymptotics is obtained in the explicit form and the question of the blow up of the solution in a certain case is examined. The possibility of passing to the limit b→+0 in the constructed solution is investigated.
Magnetomechanical damping and magnetoelastic hysteresis in permalloy
Ercuta, A.; Mihalca, I.
2002-11-01
The inverse Wiedemann effect (IWE) consisting in longitudinal magnetization reversals was detected with a cylindrical permalloy layer subjected to circular DC magnetic fields while performing low frequency (~1 Hz) free torsion oscillations. Hysteresis occurring in the magnetization vs elastic strain dependence (the `magnetoelastic hysteresis') suggested irreversible processes activated mechanically. Joint vibration and magnetization time records were carried out by means of an experimental set-up including inverted pendulum and conventional integrating fluxmeter, in order to compare the relative energy losses ascribed to the magnetomechanical damping (MMD) and to the magnetoelastic hysteresis, respectively. The experimental results clearly pointed out a close connection between IWE and MMD providing evidence that, when simultaneously examined, both effects reflect the same basic phenomenon: the irreversible magnetization changes induced by the elastic strain.
Radiation damping in atomic photonic crystals.
Horsley, S A R; Artoni, M; La Rocca, G C
2011-07-22
The force exerted on a material by an incident beam of light is dependent upon the material's velocity in the laboratory frame of reference. This velocity dependence is known to be difficult to measure, as it is proportional to the incident optical power multiplied by the ratio of the material velocity to the speed of light. Here we show that this typically tiny effect is greatly amplified in multilayer systems composed of resonantly absorbing atoms exhibiting ultranarrow photonic band gaps. The amplification effect for optically trapped 87Rb is shown to be as much as 3 orders of magnitude greater than for conventional photonic-band-gap materials. For a specific pulsed regime, damping remains observable without destroying the system and significant for material velocities of a few ms(-1).
Vibration damping for the Segmented Mirror Telescope
Maly, Joseph R.; Yingling, Adam J.; Griffin, Steven F.; Agrawal, Brij N.; Cobb, Richard G.; Chambers, Trevor S.
2012-09-01
The Segmented Mirror Telescope (SMT) at the Naval Postgraduate School (NPS) in Monterey is a next-generation deployable telescope, featuring a 3-meter 6-segment primary mirror and advanced wavefront sensing and correction capabilities. In its stowed configuration, the SMT primary mirror segments collapse into a small volume; once on location, these segments open to the full 3-meter diameter. The segments must be very accurately aligned after deployment and the segment surfaces are actively controlled using numerous small, embedded actuators. The SMT employs a passive damping system to complement the actuators and mitigate the effects of low-frequency (operating deflection shapes of the mirror and to quantify segment edge displacements; relative alignment of λ/4 or better was desired. The TMDs attenuated the vibration amplitudes by 80% and reduced adjacent segment phase mismatches to acceptable levels.
Investigating viscous damping using a webcam
Shamim, Sohaib; Anwar, Muhammad Sabieh
2011-01-01
We describe an experiment involving a mass oscillating in a viscous fluid and analyze viscous damping of harmonic motion. The mechanical oscillator is tracked using a simple webcam and an image processing algorithm records the position of the geometrical center as a function of time. Interesting information can be extracted from the displacement-time graphs, in particular for the underdamped case. For example, we use these oscillations to determine the viscosity of the fluid. Our mean value of 1.08 \\pm 0.07 mPa s for distilled water is in good agreement with the accepted value at 20\\circC. This experiment has been successfully employed in the freshman lab setting.
Eddy-current-damped microelectromechanical switch
Christenson, Todd R. (Albuquerque, NM); Polosky, Marc A. (Tijeras, NM)
2007-10-30
A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).
Eddy-current-damped microelectromechanical switch
Christenson, Todd R. (Albuquerque, NM); Polosky, Marc A. (Tijeras, NM)
2009-12-15
A microelectromechanical (MEM) device is disclosed that includes a shuttle suspended for movement above a substrate. A plurality of permanent magnets in the shuttle of the MEM device interact with a metal plate which forms the substrate or a metal portion thereof to provide an eddy-current damping of the shuttle, thereby making the shuttle responsive to changes in acceleration or velocity of the MEM device. Alternately, the permanent magnets can be located in the substrate, and the metal portion can form the shuttle. An electrical switch closure in the MEM device can occur in response to a predetermined acceleration-time event. The MEM device, which can be fabricated either by micromachining or LIGA, can be used for sensing an acceleration or deceleration event (e.g. in automotive applications such as airbag deployment or seat belt retraction).
Magnetoacoustic heating by ion Landau damping
Turner, L.
1980-01-01
The Vlasov-fluid model of Freidberg (1972) is used to study the resonance heating of a sharp-boundary screw pinch. The analysis provides the first treatment of the magnetoacoustic heating of a cylindrical plasma by means of ion Landau damping, which was identified as a viable dissipative mechanism for the conversion of magnetoacoustic wave energy into ion thermal energy. In addition, local and global energy conservation are considered, and formulae and numerical results for the thermal energy doubling time and the associated induced rf electric fields are presented. It is shown that collisionless absorption can provide a heating mechanism when an equilibrium plasma column is pumped by oscillations of the confining magnetic field at a frequency near the oblique magnetoacoustic frequency.
Loss of Landau Damping for Bunch Oscillations
Burov, A
2012-01-01
Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increa...
Magnetic Damping of Solid Solution Semiconductor Alloys
Szofran, Frank R.; Benz, K. W.; Croell, Arne; Dold, Peter; Cobb, Sharon D.; Volz, Martin P.; Motakef, Shariar
1999-01-01
The objective of this study is to: (1) experimentally test the validity of the modeling predictions applicable to the magnetic damping of convective flows in electrically conductive melts as this applies to the bulk growth of solid solution semiconducting materials; and (2) assess the effectiveness of steady magnetic fields in reducing the fluid flows occurring in these materials during processing. To achieve the objectives of this investigation, we are carrying out a comprehensive program in the Bridgman and floating-zone configurations using the solid solution alloy system Ge-Si. This alloy system has been studied extensively in environments that have not simultaneously included both low gravity and an applied magnetic field. Also, all compositions have a high electrical conductivity, and the materials parameters permit reasonable growth rates. An important supporting investigation is determining the role, if any, that thermoelectromagnetic convection (TEMC) plays during growth of these materials in a magnetic field. TEMC has significant implications for the deployment of a Magnetic Damping Furnace in space. This effect will be especially important in solid solutions where the growth interface is, in general, neither isothermal nor isoconcentrational. It could be important in single melting point materials, also, if faceting takes place producing a non-isothermal interface. In conclusion, magnetic fields up to 5 Tesla are sufficient to eliminate time-dependent convection in silicon floating zones and possibly Bridgman growth of Ge-Si alloys. In both cases, steady convection appears to be more significant for mass transport than diffusion, even at 5 Tesla in the geometries used here. These results are corroborated in both growth configurations by calculations.
Prognostic and predictive value of DAMPs and DAMP-associated processes in cancer
Jitka eFucikova
2015-08-01
Full Text Available It is now clear that human neoplasms form, progress and respond to therapy in the context of an intimate crosstalk with the host immune system. In particular, accumulating evidence demonstrates that the efficacy of most, if not all, chemo- and radiotherapeutic agents commonly employed in the clinic critically depends on the (reactivation of tumor-targeting immune response. One of the mechanisms whereby conventional chemotherapeutics, targeted anticancer agents and radiotherapy can provoke a therapeutically relevant, adaptive immune response against malignant cells is commonly known as „immunogenic cell death (ICD. Importantly, dying cancer cells are perceived as immunogenic only when they emit a set of immunostimulatory signals upon the activation of intracellular stress response pathways. The emission of these signals, which are generally referred to as „damage-associated molecular patterns (DAMPs, may therefore predict whether patients will respond to chemotherapy or not, at least in some settings. Here, we review clinical data indicating that DAMPs and DAMP-associated stress responses might have prognostic or predictive value for cancer patients.
Damped and sub-damped Lyman-alpha absorbers in z > 4 QSOs
Guimaraes, Rodney; De Carvalho, Reinaldo Ramos; Djorgovski, George; Noterdaeme, Pasquier; Castro, Sandra; Poppe, Paulo Da Rocha; Aghaee, Ali
2009-01-01
We present the results of a survey for damped (DLA, log N(H I) > 20.3) and sub-damped Lyman-? systems (19.5 2.55 along the lines-of-sight to 77 quasars with emission redshifts in the range 4 19.5 are detected of which 40 systems are damped Lyman-? systems for an absorption length of ?X = 378. About half of the lines of sight of this homogeneous survey have never been investigated for DLAs. We study the evolution with redshift of the cosmological density of the neutral gas and ?nd, consis- tently with previous studies at similar resolution, that ?DLA,H I decreases at z > 3.5. The overall cosmological evolution of ?HI shows a peak around this redshift. The H I column density distribution for log N(H I) ? 20.3 is ?tted, consistently with previous surveys, with a single power-law of index ? ? -1.8$\\pm$0.25. This power-law overpredicts data at the high-end and a second, much steeper, power-law (or a gamma function) is needed. There is a ?attening of the function at lower H I column densities with an index of ? ?...
Atomistic Mechanisms for Viscoelastic Damping in Inorganic Solids
Ranganathan, Raghavan
Viscoelasticity, a ubiquitous material property, can be tuned to engineer a wide range of fascinating applications such as mechanical dampers, artificial tissues, functional foams and optoelectronics, among others. Traditionally, soft matter such as polymers and polymer composites have been used extensively for viscoelastic damping applications, owing to the inherent viscous nature of interactions between polymer chains. Although this leads to good damping characteristics, the stiffness in these materials is low, which in turn leads to limitations. In this context, hard inorganic materials and composites are promising candidates for enhanced damping, owing to their large stiffness and, in some cases large loss modulus. Viscoelasticity in these materials has been relatively unexplored and atomistic mechanisms responsible for damping are not apparent. Therefore, the overarching goal of this work is to understand mechanisms for viscoelastic damping in various classes of inorganic composites and alloys at an atomistic level from molecular dynamics simulations. We show that oscillatory shear deformation serves as a powerful probe to explain mechanisms for exceptional damping in hitherto unexplored systems. The first class of inorganic materials consists of crystalline phases of a stiff inclusion in a soft matrix. The two crystals within the composite, namely the soft and a stiff phase, individually show a highly elastic behavior and a very small loss modulus. On the other hand, a composite with the two phases is seen to exhibit damping that is about 20 times larger than predicted theoretical bounds. The primary reason for the damping is due to large anharmonicity in phonon-phonon coupling, resulting from the composite microstructure. A concomitant effect is the distribution of shear strain, which is observed to be highly inhomogeneous and mostly concentrated in the soft phase. Interestingly, the shear frequency at which the damping is greatest is observed to scale with
Cellular Magnesium Matrix Foam Composites for Mechanical Damping Applications
Shunmugasamy, Vasanth Chakravarthy; Mansoor, Bilal; Gupta, Nikhil
2016-01-01
The damping characteristics of metal alloys and metal matrix composites are relevant to the automotive, aerospace, and marine structures. Use of lightweight materials can help in increasing payload capacity and in decreasing fuel consumption. Lightweight composite materials possessing high damping capabilities that can be designed as structural members can greatly benefit in addressing these needs. In this context, the damping properties of lightweight metals such as aluminum and magnesium and their respective composites have been studied in the existing literature. This review focuses on analyzing the damping properties of aluminum and magnesium alloys and their cellular composites. The damping properties of various lightweight alloys and composites are compared on the basis of their density to understand the potential for weight saving in structural applications. Magnesium alloys are observed to possess better damping properties in comparison to aluminum. However, aluminum matrix syntactic foams reinforced with silicon carbide hollow particles possess a damping capacity and density comparable to magnesium alloy. By using the data presented in the study, composites with specific compositions and properties can be selected for a given application. In addition, the comparison of the results helps in identifying the areas where attention needs to be focused to address the future needs.
Nonlinear damping calculation in cylindrical gear dynamic modeling
Guilbault, Raynald; Lalonde, Sébastien; Thomas, Marc
2012-04-01
The nonlinear dynamic problem posed by cylindrical gear systems has been extensively covered in the literature. Nonetheless, a significant proportion of the mechanisms involved in damping generation remains to be investigated and described. The main objective of this study is to contribute to this task. Overall, damping is assumed to consist of three sources: surrounding element contribution, hysteresis of the teeth, and oil squeeze damping. The first two contributions are considered to be commensurate with the supported load; for its part however, squeeze damping is formulated using expressions developed from the Reynolds equation. A lubricated impact analysis between the teeth is introduced in this study for the minimum film thickness calculation during contact losses. The dynamic transmission error (DTE) obtained from the final model showed close agreement with experimental measurements available in the literature. The nonlinear damping ratio calculated at different mesh frequencies and torque amplitudes presented average values between 5.3 percent and 8 percent, which is comparable to the constant 8 percent ratio used in published numerical simulations of an equivalent gear pair. A close analysis of the oil squeeze damping evidenced the inverse relationship between this damping effect and the applied load.
Damping of Ni-Mn-Ga epoxy resin composites
Wei Liang; He Yu; Liu Yufeng; Yang Naibin
2013-01-01
By combining the advantages of efficient damping and high mechanical properties, Ni-Mn-Ga particle composites have a very good prospect for applications in damping structure design. In this paper, a ferromagnetic shape memory alloy Ni-Mn-Ga composite is prepared. Ni-Mn-Ga particle/bisphenol-A epoxy composite cantilever beam vibration tests under a magnetic field and without the magnetic field are conducted to analyze the structural damping ratios n. Meanwhile, the damping characteristics of the Ni-Mn-Ga composite are studied through the axial loading-unloading method and the acoustic emission signals method. The damping coefficient of the composite for different Ni-Mn-Ga volume fractions is obtained. The interface properties of the composite are discussed by micro examination and axial loading. The relationships between the damping of the composite and that of the component materials are discussed. The specific damping capacity (SDC) and acoustic emission counts diagram of different specimens with different Ni-Mn-Ga volume fractions are analyzed.
Experiences with active damping and impedance-matching compensators
Betros, Robert S.; Alvarez, Oscar S.; Bronowicki, Allen J.
1993-09-01
TRW has been implementing active damping compensators on smart structures for the past five years. Since that time there have been numerous publications on the use of impedance matching techniques for structural damping augmentation. The idea of impedance matching compensators came about by considering the flow of power in a structure undergoing vibration. The goal of these compensators is to electronically dissipate as much of this flowing power as possible. This paper shows the performance of impedance matching compensators used in smart structures to be comparable to that of active damping compensators. Theoretical comparisons between active damping and impedance matching methods are made using PZT actuators and sensors. The effects of these collocated and non-collocated PZT sensors and actuators on the types of signals they sense and actuate are investigated. A method for automatically synthesizing impedance matching compensators is presented. Problems with implementing broad band active damping and impedance matching compensators on standard Digital Signal Processing (DSP) chips are discussed. Simulations and measurements that compare the performance of active damping and impedance matching techniques for a lightly damped cantilevered beam are shown.
Bunching for Shorter Damping Rings for the ILC
Neuffer, David V
2005-01-01
A variant rearrangement of the bunch trains for the ILC that enables much shorter damping rings is presented. In a particular example the ~2280 bunches are regrouped into ~450 subtrains of five adjacent bunches. These subtrains are extracted from the damping rings at ~2.2 ms intervals, obtaining the 1ms macrobunch length of the baseline TESLA collider scenario. If the baseline damping rf frequency is 325 MHz and the kicker rise and fall times are ~20 ns, a ring circumference of ~4.5km is required. Variations of the scheme could easily reduce the circumference to ~3km, and faster kickers could reduce it even further.
Damping and support in high-temperature superconducting levitation systems
Hull, John R. (Sammamish, WA); McIver, Carl R. (Everett, WA); Mittleider, John A. (Kent, WA)
2009-12-15
Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.
Spatial Damping of Linear Compressional Magnetoacoustic Waves in Quiescent Prominences
K. A. P. Singh
2006-06-01
We study the spatial damping of magnetoacoustic waves in an unbounded quiescent prominence invoking the technique of MHD seismology. We consider Newtonian radiation in the energy equation and derive a fourth order general dispersion relation in terms of wavenumber . Numerical solution of dispersion relation suggests that slow mode is more affected by radiation. The high frequency waves have been found to be highly damped. The uncertainty in the radiative relaxation time, however, does not allow us to conclude if the radiation is a dominant damping mechanism in quiescent prominence.
Damping and support in high-temperature superconducting levitation systems
Hull, John R.; McIver, Carl R.; Mittleider, John A.
2009-12-15
Methods and apparatuses to provide improved auxiliary damping for superconducting bearings in superconducting levitation systems are disclosed. In a superconducting bearing, a cryostat housing the superconductors is connected to a ground state with a combination of a damping strip of material, a set of linkage arms to provide vertical support, and spring washers to provide stiffness. Alternately, the superconducting bearing may be supported by a cryostat connected to a ground state by posts constructed from a mesh of fibers, with the damping and stiffness controlled by the fiber composition, size, and mesh geometry.
Damping capacity in shape memory alloy honeycomb structures
Boucher, M.-A.; Smith, C. W.; Scarpa, F.; Miller, W.; Hassan, M. R.
2010-04-01
SMA honeycombs have been recently developed by several Authors [1, 2] as innovative cellular structures with selfhealing capability following mechanical indentation, unusual deformation (negative Poisson's ratio [3]), and possible enhanced damping capacity due to the natural vibration dissipation characteristics of SMAs under pseudoelastic and superelastic regime. In this work we describe the nonlinear damping effects of novel shape memory alloy honeycomb assemblies subjected to combine mechanical sinusoidal and thermal loading. The SMA honeycomb structures made with Ni48Ti46Cu6 are designed with single and two-phase polymeric components (epoxy), to enhance the damping characteristics of the base SMA for broadband frequency vibration.
Linear Landau damping in strongly relativistic quark gluon plasma
Murtaza, G.; Khattak, N.A.D.; Shah, H.A. [Salam Chair in Physics, G C Univ., Lahore (Pakistan)]|[Dept. of Physics, G C Univ., Lahore (Pakistan)
2004-07-01
On the basis of semi classical kinetic Vlasov equation for Quark-Gluon plasma (QGP) and Yang-Mills equation in covariant gauge, linear Landau damping for electrostatic perturbations like Langmuir waves is investigated. For the extreme relativistic case, wherein the thermal speed of the particles exceeds the phase velocity of the perturbations, the linear Landau damping is absent. However, a departure from extreme relativistic case generates an imaginary component of the frequency giving rise to linear Landau damping effect. The relevant integral for the conductivity tensor has been evaluated and the dispersion relation for the longitudinal part of the oscillation obtained. (orig.)
Frequency-dependent Drude damping in Casimir force calculations
Esquivel-Sirvent, R, E-mail: raul@fisica.unam.m [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apdo. Postal 20-364, Mexico D.F. 01000 (Mexico)
2009-04-01
The Casimir force is calculated between Au thin films that are described by a Drude model with a frequency dependent damping function. The model parameters are obtained from available experimental data for Au thin films. Two cases are considered; annealed and nonannealed films that have a different damping function. Compared with the calculations using a Drude model with a constant damping parameter, we observe changes in the Casimir force of a few percent. This behavior is only observed in films of no more than 300 A thick.
Indirect linear locally distributed damping of coupled systems
Annick BEYRATH
2004-11-01
Full Text Available The aim of this paper is to prove indirect internal stabilization results for diﬀerent coupled systems with linear locally distributed damping (coupled wave equations, wave equations with diﬀerent speeds of propagation. In our case, a linear local damping term appears only in the ﬁrst equation whereas no damping term is applied to the second one (this is indirect stabilization, see [11]. Using thepiecewise multiplier method we prove that the full system is stabilized and that the total energy of the solution of this system decays polynomially.
Comparing Sources of Damping of Cross-Wind Motion
Tarp-Johansen, Niels Jacob; Andersen, Lars; Christensen, Erik Damgaard
2009-01-01
driving if there is a significant wind-wave misalignment. In order to avoid unnecessary conservatism it is therefore important to know if there is more damping available than assumed in the today's practise. The paper treats this issue. Contents Based on engineering judgement it is expected...... assessment and load calculations. The paper proposes a strategy for analysis and demonstrates its potential considering an example site. Conclusions Damping is higher than assumed and tower dampers dominate implying damping can be stated site-independently neglecting any other contribution. Further proper...
Damping and Frequency Shift of Large Amplitude Electron Plasma Waves
Thomsen, Kenneth; Juul Rasmussen, Jens
1983-01-01
The initial evolution of large-amplitude one-dimensional electron waves is investigated by applying a numerical simulation. The initial wave damping is found to be strongly enhanced relative to the linear damping and it increases with increasing amplitude. The temporal evolution of the nonlinear...... damping rate γ(t) shows that it increases with time within the initial phase of propagation, t≲π/ωB (ωB is the bounce frequency), whereafter it decreases and changes sign implying a regrowth of the wave. The shift in the wave frequency δω is observed to be positive for t≲π/ωB; then δω changes sign...
Loss of Landau Damping for Bunch Oscillations
Burov, A.; /Fermilab
2011-04-11
Conditions for the existence, uniqueness and stability of self-consistent bunch steady states are considered. For the existence and uniqueness problems, simple algebraic criteria are derived for both the action and Hamiltonian domain distributions. For the stability problem, van Kampen theory is used. The onset of a discrete van Kampen mode means the emergence of a coherent mode without any Landau damping; thus, even a tiny couple-bunch or multi-turn wake is sufficient to drive the instability. The method presented here assumes an arbitrary impedance, RF shape, and beam distribution function. Available areas on the intensity-emittance plane are shown for resistive wall wake and single harmonic, bunch shortening and bunch lengthening RF configurations. Thresholds calculated for the Tevatron parameters and impedance model are in agreement with the observations. These thresholds are found to be extremely sensitive to the small-argument behaviour of the bunch distribution function. Accordingly, a method to increase the LLD threshold is suggested. This article summarizes and extends recent author's publications.
Coherent Instabilities of ILC Damping Ring
Heifets, S.; Stupakov, G.; Bane, K.; /SLAC
2006-09-27
The paper presents the first attempt to estimates the ILC damping ring impedance and compare thresholds of the classical instabilities for several designs initially proposed for the DR. The work was carried out in the spring of 2006. Since then the choice of the DR is narrowed. Nevertheless, the analysis described may be useful for the next iterations of the beam stability. Overall, the conventional instabilities will have little impact on the ring performance provided the careful design of the ring minimizes the impedance below acceptable level indicated above. The only exception is the transverse CB instability. The longitudinal CB is less demanding. However, even the transverse CB instability would have threshold current above nominal provided the aperture in the wigglers is increased from 8 mm to 16 mm. The microwave instability needs more studies. Nevertheless, we should remember that the ILC DR is different from existing high-current machines at least in two respects: absence of the beam-beam tune spread stabilizing beams in colliders, and unusual strict requirements for low emittance. That may cause new problems such as bunch emittance dilution due to high-frequency wakes (BPMs, grooves), etc. Even if such a possibility exists, it probably universal for all machines and ought be addressed in the design of vacuum components rather than have effect on the choice of the machine design.
Ion Landau Damping on Drift Tearing Modes
Connor, J W; Zocco, A
2012-01-01
The equations governing the ion Landau damping (ILD) layers for a drift tearing mode are derived and solved to provide a matching to ideal MHD solutions at large $x$ and to the drift tearing solution emerging from the ion kinetic region, $k\\rho_{i}\\sim1$, at small $x,$ the distance from the rational surface. The ILD layers lie on either side of the mode rational surface at locations defined by $k_{y}xV_{Ti}/L_{s}=\\omega_{*e}(1+0.73\\eta_{e})$ and have been ignored in many previous analyses of linear drift tearing stability. The effect of the ILD layer on the drift tearing mode is to introduce an additional stabilizing contribution, requiring even larger values of the stability index, $\\Delta^{\\prime}$ for instability, than predicted by Connor Hastie and Zocco [PPCF,54, 035003, (2012)] and Cowley, Kulsrud and Hahm [Phys. Fluids,29, 3230, (1986)]. The magnitude and scaling of the new stabilizing effect in slab geometry is discussed.
Investigation of damping liquids for aircraft instruments
Keulegan, G H
1929-01-01
This report covers the results of an investigation carried on at the Bureau of Standards under a research authorization from, and with the financial assistance of, the National Advisory Committee for Aeronautics. The choice of a damping liquid for aircraft instruments is difficult owing to the range of temperature at which aircraft operate. Temperature changes affect the viscosity tremendously. The investigation was undertaken with the object of finding liquids of various viscosities otherwise suitable which had a minimum change in viscosity with temperature. The new data relate largely to solutions. The effect of temperature on the kinematic viscosity of the following liquids and solutions was determined in the temperature interval -18 degrees to +30 degrees C. (1) solutions of animal and vegetable oils in xylene. These were poppy-seed oil, two samples of neat's-foot oils, castor oil, and linseed oil. (2) solutions of mineral oil in xylene. These were Squibb's petrolatum of naphthene base and transformer oil. (3) glycerine solutions in ethyl alcohol and in mixture of 50-50 ethyl alcohol and water. (4) mixtures of normal butyl alcohol with methyl alcohol. (5) individual liquids, kerosene, mineral spirits, xylene, recoil oil. The apparatus consisted of four capillary-tube viscometers, which were immersed in a liquid bath in order to secure temperature control. The method of calibration and the related experimental data are presented.
Root parsley protection against damping off
Bogdan Nowicki
2013-12-01
Full Text Available Seed treatment ofroot parsley was done to protect Petroselinum santivum seedlings against damping off. Fungicides used as seed dressers were applied in 3 doses: 3, 5 and 10 g/kg. Seeds were treated with 7 dressers (Table l used separately and in mixture with 3 g/kg of Rovral 50 WP (50% iprodione and 1 g/kg of Apron 35 SD (35% metalaxyl. Two seed samples of Berlińska cultivar were used: first sample was strongly infected by Alternaria petroselini and A.radicina both 27,6% and also by Fusarium spp. 5,4% (Test I, and second sample revealed lower percentage of infection 4,6% and 1,2%, respectively (Test II. The experiments were conducted under laboratory, glasshouse and field conditions. Complete seedlings protection in all experiments was achieved for treatments when fungicide mixture was used in the highest dose (10 g/kg. Decrease of fungicides concentrations were connected with lower effectiveness of disease control. No phytotoxic effects of the tested fungicide mixtures were observed under the glasshouse or field conditions.
Damping of forward neutrons in pp collisions
Kopeliovich, B. Z.; Potashnikova, I. K.; Schmidt, Ivan; Soffer, J.
2008-07-01
We calculate absorptive corrections to single pion exchange in the production of leading neutrons in pp collisions. Contrary to the usual procedure of convolving the survival probability with the cross section, we apply corrections to the spin amplitudes. The nonflip amplitude turns out to be much more suppressed by absorption than the spin-flip one. We identify the projectile proton Fock state responsible for the absorptive corrections as a color octet-octet 5-quarks configuration. Calculations within two very different models, color-dipole light-cone description, and in hadronic representation, lead to rather similar absorptive corrections. We found a much stronger damping of leading neutrons than in some of previous estimates. Correspondingly, the cross section is considerably smaller than was measured at ISR. However, comparison with recent measurements by the ZEUS collaboration of neutron production in deep-inelastic scattering provides a strong motivation for challenging the normalization of the ISR data. This conjecture is also supported by preliminary data from the NA49 experiment for neutron production in pp collisions at SPS.
Nonlinear Landau damping in the ionosphere
Kiwamoto, Y.; Benson, R. F.
1979-01-01
A model which explains the nonresonant waves which produce the diffuse resonance observed near 3/2 f(H) by the Alouette and Isis topside sounders, where f(H) is the ambient electron cyclotron frequency, is presented. These waves are the result of plasma wave instabilities driven by anisotropic electron velocity distributions initiated by the high-power short-duration sounder pulse. Calculations of the nonlinear wave-particle coupling coefficients show that the diffuse resonance wave can be maintained by nonlinear Landau damping of the sounder-stimulated 2f(H) wave which is observed with a time duration longer than that of the diffuse resonance wave. The time duration of the diffuse resonance is determined by the transit time of the instability-generated and nonlinearly maintained diffuse resonance wave from the remote short-lived hot region back to the antenna. The model is consistent with the Alouette/Isis observations and it demonstrates the existence of nonlinear wave-particle interactions in the ionosphere.
Seismic Analysis of a Viscoelastic Damping Isolator
Bo-Wun Huang
2015-01-01
Full Text Available Seismic prevention issues are discussed much more seriously around the world after Fukushima earthquake, Japan, April 2011, especially for those countries which are near the earthquake zone. Approximately 1.8×1012 kilograms of explosive energy will be released from a magnitude 9 earthquake. It destroys most of the unprotected infrastructure within several tens of miles in diameter from the epicenter. People can feel the earthquake even if living hundreds of miles away. This study is a seismic simulation analysis for an innovated and improved design of viscoelastic damping isolator, which can be more effectively applied to earthquake prevention and damage reduction of high-rise buildings, roads, bridges, power generation facilities, and so forth, from earthquake disaster. Solidworks graphic software is used to draw the 3D geometric model of the viscoelastic isolator. The dynamic behavior of the viscoelastic isolator through shock impact of specific earthquake loading, recorded by a seismometer, is obtained via ANSYS finite element package. The amplitude of the isolator is quickly reduced by the viscoelastic material in the device and is shown in a time response diagram. The result of this analysis can be a crucial reference when improving the design of a seismic isolator.
Evaluation of Damping Using Time Domain OMA Techniques
Bajric, Anela; Brincker, Rune; Georgakis, Christos T.
2014-01-01
. In this paper a comparison is made of the effectiveness of three existing OMA techniques in providing accurate damping estimates for varying loadings, levels of noise, number of added measurement channels and structural damping. The evaluated techniques are derived in the time domain and are namely the Ibrahim...... Time Domain (ITD), Eigenvalue Realization Algorithm (ERA) and the Polyreference Time Domain (PTD). The response of a two degree-of-freedom (2DOF) system is numerically established from specified modal parameters with well separated and closely spaced modes. Two types of response are considered, free...... response and random response from white noise loading. Finally, the results of the numerical study are presented, in which the error of the structural damping estimates obtained by each OMA technique is shown for a range of damping levels. From this, it is clear that there are notable differences...
An Active Damping at Blade Resonances Using Piezoelectric Transducers
Choi, Benjamin; Morrison, Carlos; Duffy, Kirsten
2008-01-01
The NASA Glenn Research Center (GRC) is developing an active damping at blade resonances using piezoelectric structure to reduce excessive vibratory stresses that lead to high cycle fatigue (HCF) failures in aircraft engine turbomachinery. Conventional passive damping work was shown first on a nonrotating beam made by Ti-6A1-4V with a pair of identical piezoelectric patches, and then active feedback control law was derived in terms of inductor, resister, and capacitor to control resonant frequency only. Passive electronic circuit components and adaptive feature could be easily programmable into control algorithm. Experimental active damping was demonstrated on two test specimens achieving significant damping on tip displacement and patch location. Also a multimode control technique was shown to control several modes.
Mooring Line Damping Estimation for a Floating Wind Turbine
Dongsheng Qiao
2014-01-01
Full Text Available The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT. Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.
Mooring line damping estimation for a floating wind turbine.
Qiao, Dongsheng; Ou, Jinping
2014-01-01
The dynamic responses of mooring line serve important functions in the station keeping of a floating wind turbine (FWT). Mooring line damping significantly influences the global motions of a FWT. This study investigates the estimation of mooring line damping on the basis of the National Renewable Energy Laboratory 5 MW offshore wind turbine model that is mounted on the ITI Energy barge. A numerical estimation method is derived from the energy absorption of a mooring line resulting from FWT motion. The method is validated by performing a 1/80 scale model test. Different parameter changes are analyzed for mooring line damping induced by horizontal and vertical motions. These parameters include excitation amplitude, excitation period, and drag coefficient. Results suggest that mooring line damping must be carefully considered in the FWT design.
Airborne Cladosporium and other fungi in damp versus reference residences
Pasanen, A.-L.; Niininen, M.; Kalliokoski, P.; Nevalainen, A.; Jantunen, M. J.
Our previous study (Nevalainen et al., 1991, Envir. Int.17, 299-302) showed that airborne counts of total viable fungal spores in damp residences did not remarkably differ from those in reference residences. The results of the present study confirmed this finding. Indoor air spore counts varied considerably from residence to residence and even within the same residence. Thus, the counts were only occasionally high in the damp residences. Counts of airborne Cladosporium spp. spores and yeast cells were significantly higher in the damp residences than in the reference ones. The difference of yeast cell counts between the residence groups was explained by the difference in outdoor air, whereas Cladosporium spp. spores were mainly derived from indoors. Prevalence of Aspergillus spp. spores was also slightly higher in the damp residences than in the reference ones.
Landau damping of Langmuir twisted waves with kappa distributed electrons
Arshad, Kashif, E-mail: kashif.arshad.butt@gmail.com; Aman-ur-Rehman [Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650 (Pakistan); Mahmood, Shahzad [Pakistan Institute of Engineering and Applied Sciences, P. O. Nilore, Islamabad 45650 (Pakistan); Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad 44000 (Pakistan)
2015-11-15
The kinetic theory of Landau damping of Langmuir twisted modes is investigated in the presence of orbital angular momentum of the helical (twisted) electric field in plasmas with kappa distributed electrons. The perturbed distribution function and helical electric field are considered to be decomposed by Laguerre-Gaussian mode function defined in cylindrical geometry. The Vlasov-Poisson equation is obtained and solved analytically to obtain the weak damping rates of the Langmuir twisted waves in a nonthermal plasma. The strong damping effects of the Langmuir twisted waves at wavelengths approaching Debye length are also obtained by using an exact numerical method and are illustrated graphically. The damping rates of the planar Langmuir waves are found to be larger than the twisted Langmuir waves in plasmas which shows opposite behavior as depicted in Fig. 3 by J. T. Mendoça [Phys. Plasmas 19, 112113 (2012)].
Analysis of damping characteristics of arterial catheter blood ...
part, by the damping characteristics of the arterial catheter blood pressure ... A cross-sectional, observational study of arterial line measurements in a large general ICU. ... and perfusion pressure, whilst preventing excessively high pressures.
The moment problem and vibrations damping of beams and plates
Atamuratov, Andrey G. [Pepsico Holding LTD, Leningrad Avenue, 72/4, 125315 Moscow (Russian Federation); Mikhailov, Igor E. [Dorodnicyn Computing Centre of RAS, Vavilov str., 40, 119333 Moscow (Russian Federation); Muravey, Leonid A. [Russian State Technological University, Orshanskaya str., 3, 121552 Moscow (Russian Federation)
2016-06-08
Beams and plates are the elements of different complex mechanical structures, for example, pipelines and aerospace platforms. That is why the problem of damping of their vibrations caused by unwanted perturbations is actual task.
Nonlinear damped Schrodinger equation in two space dimensions
Tarek Saanouni
2015-04-01
Full Text Available In this article, we study the initial value problem for a semi-linear damped Schrodinger equation with exponential growth nonlinearity in two space dimensions. We show global well-posedness and exponential decay.
Jeans instability and hydrodynamic roots of Landau damping
Ershkovich, Alexander
2015-01-01
Landau damping of Langmuir waves is shown to have hydrodynamic roots, and, in principle, might have been predicted (along with Langmuir waves) several decades earlier, soon after Jeans (1902) paper appeared.
Tuned mass absorbers on damped structures under random load
Krenk, Steen; Høgsberg, Jan Becker
2008-01-01
A substantial literature exists on the optimal choice of parameters of a tuned mass absorber on a structure excited by a force or by ground acceleration with random characteristics in the form of white noise. In the absence of structural damping the optimal frequency tuning is determined from...... the mass ratio alone, and the damping can be determined subsequently. Only approximate results are available for the influence of damping in the original structure, typically in the form of series expansions. In the present paper it is demonstrated that for typical mass ratios in the order of a few percent...... the classic stochastic frequency tuning gives the same standard deviation of the response amplitude within a margin of 0.001 as when using the classic frequency tuning for harmonic load variation, and then optimizing the damping separately. Simple approximate, but very accurate, expressions are obtained...
Fluid damping clearance in a control valve of injector
ZHANG Jianming; ZHANG Weigang; YANG Bing; WANG Yawei
2007-01-01
A force model of a control valve of injector is set up, and the changes of the fluid damping clearance are investigated on the basis of the results of the computational fluid dynamics (CFD) and the experiments of control valve of injector. Results indicate that a damping clearance of 0.02-0.03 mm between the poppet and the valve guide is the most sufficient to dampen any excessive control valve poppet bouncing.
Photon and electron Landau damping in quantum plasmas
Mendonça, J. T.; Serbeto, A.
2016-09-01
Using a quantum kinetic description, we establish a general expression for the dispersion relation of electron plasma waves in the presence of an arbitrary spectrum of electromagnetic waves. This includes both electron and photon Landau damping. The quantum kinetic description allows us to compare directly these two distinct processes, and to show that they are indeed quite similar. The present work also extends previous results on photon Landau damping onto the quantum domain.
Eddy damping effect of additional conductors in superconducting levitation systems
Jiang, Zhao-Fei; Gou, Xiao-Fan, E-mail: xfgou@hhu.edu.cn
2015-12-15
Highlights: • In this article, for the eddy current damper attached to the HTSC, we • quantitatively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. • presented four different arrangements of the copper damper, and comparatively studied their damping effects and Joule heating, and finally proposed the most advisable arrangement. - Abstract: Passive superconducting levitation systems consisting of a high temperature superconductor (HTSC) and a permanent magnet (PM) have demonstrated several fascinating applications such as the maglev system, flywheel energy storage. Generally, for the HTSC–PM levitation system, the HTSC with higher critical current density J{sub c} can obtain larger magnetic force to make the PM levitate over the HTSC (or suspended below the HTSC), however, the process of the vibration of the levitated PM, provides very limited inherent damping (essentially hysteresis). To improve the dynamic stability of the levitated PM, eddy damping of additional conductors can be considered as the most simple and effective approach. In this article, for the HTSC–PM levitation system with an additional copper damper attached to the HTSC, we numerically and comprehensively investigated the damping coefficient c, damping ratio, Joule heating of the copper damper, and the vibration frequency of the PM as well. Furthermore, we comparatively studied four different arrangements of the copper damper, on the comprehensive analyzed the damping effect, efficiency (defined by c/V{sub Cu}, in which V{sub Cu} is the volume of the damper) and Joule heating, and finally presented the most advisable arrangement.
Landau damping of geodesic acoustic mode in toroidally rotating tokamaks
Ren, Haijun, E-mail: hjren@ustc.edu.cn [CAS Key Laboratory of Geospace Environment, The Collaborative Innovation Center for Advanced Fusion Energy and Plasma Science, and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China); Cao, Jintao [Bejing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-06-15
Geodesic acoustic mode (GAM) is analyzed by using modified gyro-kinetic (MGK) equation applicable to low-frequency microinstabilities in a rotating axisymmetric plasma. Dispersion relation of GAM in the presence of arbitrary toroidal Mach number is analytically derived. The effects of toroidal rotation on the GAM frequency and damping rate do not depend on the orientation of equilibrium flow. It is shown that the toroidal Mach number M increases the GAM frequency and dramatically decreases the Landau damping rate.
Screening and damping effects on the thermodynamic potential in QGP
王欣; 李家荣
2003-01-01
By using the spectral functions of gluons, which contain Debye screening and soft damping effects,the effective two-loop thermodynamic potential in quark-gluon plasma was evaluated via real-time temperatureQCD. The result that depends on screening and damping of gluons as physical parameters is obtained. It canbe seen that our analytical result and the recent lattice results are in agreement for T〉～2Tc.
Derivatives of repeated eigenvalues and corresponding eigenvectors of damped systems
XIE Hui-qing; DAI Hua
2007-01-01
A procedure is presented for computing the derivatives of repeated eigenvalues and the corresponding eigenvectors of damped systems. The derivatives are calculated in terms of the eigenvalues and eigenvectors of the second-order system, and the use of rather undesirable state space representation is avoided. Hence the cost of computation is greatly reduced. The efficiency of the proposed procedure is illustrated by considering a 5-DOF non-proportionally damped system.
Fermion Damping Rate Effects in Cold Dense Matter
Manuel, C
2000-01-01
We review the non-Fermi or marginal liquid behavior of a relativistic QED plasma. In this medium a quasiparticle has a damping rate that depends linearly on the distance between its energy and the Fermi surface. We stress that this dependence is due to the long-range character of the magnetic interactions in the medium. Finally, we study how the quark damping rate modifies the gap equation of color superconductivity, reducing the value of the gap at the Fermi surface.
Soil Damping at Walney 2 Offshore Wind Farm
Andersen, Lars
The present report presents the results of a finite-element analysis carried out in order to quantify the soil damping for a specific offshore wind turbine to be placed at the Walney 2 site.......The present report presents the results of a finite-element analysis carried out in order to quantify the soil damping for a specific offshore wind turbine to be placed at the Walney 2 site....
Damping rates for moving particles in hot QCD
Pisarski, R D
1993-01-01
Using a program of perturbative resummation I compute the damping rates for fields at nonzero spatial momentum to leading order in weak coupling in hot $QCD$. Sum rules for spectral densities are used to simplify the calculations. For massless fields the damping rate has an apparent logarithmic divergence in the infrared limit, which is cut off by the screening of static magnetic fields (``magnetic mass''). This demonstrates how at high temperature even perturbative quantities are sensitive to nonperturbative phenomenon.
Inverse design of nonlinearity in energy harvesters for optimum damping
Ghandchi Tehrani, Maryam; Elliott, S. J.
2016-09-01
This paper presents the inverse design method for the nonlinearity in an energy harvester in order to achieve an optimum damping. A single degree-of-freedom electromechanical oscillator is considered as an energy harvester, which is subjected to a harmonic base excitation. The harvester has a limited throw due to the physical constraint of the device, which means that the amplitude of the relative displacement between the mass of the harvester and the base cannot exceed a threshold when the device is driven at resonance and beyond a particular amplitude. This physical constraint requires the damping of the harvester to be adjusted for different excitation amplitudes, such that the relative displacement is controlled and maintained below the limit. For example, the damping can be increased to reduce the amplitude of the relative displacement. For high excitation amplitudes, the optimum damping is, therefore, dependent on the amplitude of the base excitation, and can be synthesised by a nonlinear function. In this paper, a nonlinear function in the form of a bilinear is considered to represent the damping model of the device. A numerical optimisation using Matlab is carried out to fit a curve to the amplitude-dependent damping in order to determine the optimum bilinear model. The nonlinear damping is then used in the time-domain simulations and the relative displacement and the average harvested power are obtained. It is demonstrated that the proposed nonlinear damping can maintain the relative displacement of the harvester at its maximum level for a wide range of excitation, therefore providing the optimum condition for power harvesting.
On the role of nonsynchronous rotating damping in rotordynamics
Giancarlo Genta; Eugenio Brusa
2000-01-01
Nonsynchronous rotating damping, i.e. energy dissipations occurring in elements rotating at a speed different from the spin speed of a rotor, can have substantial effects on the dynamic behaviour and above all on the stability of rotating systems.The free whirling and unbalance response for systems with nonsynchronous damping are studied using Jeffcott rotor model. The system parameters affecting stability are identified and the threshold of instability is computed. A general model for a mult...
Controlling the Gilbert damping using spin pumping and magnetic impurities
Verhagen, Tim; Tinkey, Holly; van Ruitenbeek, Jan; Aarts, Jan
2013-03-01
The ability to control the magnetic damping parameter of thin magnetic films is an important issue when designing for example giant magnetoresistance (GMR) devices. A well-known way to influence the damping of the ferromagnetic (F) layer is by using the spin pumping effect in which a spin current is emitted into an adjacent normal (N) layer by bringing the F-layer into ferromagnetic resonance (FMR). As N layer, we used the well studied strongly spin sinking material Pt and the bad spin sink Cu, but also a Cu layer with Co impurities. We find that by adding a small amount of Co impurities, the Cu layer becomes as effective in damping as a Pt layer. In the latter case, the damping is caused by the strong spin orbit coupling. Using magnetic impurities, we rather make use of the inelastic spin scattering. This opens up new ways to control the damping of a ferromagnetic thin layer, for example in current-in-plane (CIP) GMR sensors, where the extra damping can suppress the spin transfer torque which becomes dominant with the further decrease of the size of the sensor.
Spin amplification in solution magnetic resonance using radiation damping.
Walls, Jamie D; Huang, Susie Y; Lin, Yung-Ya
2007-08-07
The sensitive detection of dilute solute spins is critical to biomolecular NMR. In this work, a spin amplifier for detecting dilute solute magnetization is developed using the radiation damping interaction in solution magnetic resonance. The evolution of the solvent magnetization, initially placed along the unstable -z direction, is triggered by the radiation damping field generated by the dilute solute magnetization. As long as the radiation damping field generated by the solute is larger than the corresponding thermal noise field generated by the sample coil, the solute magnetization can effectively trigger the evolution of the water magnetization under radiation damping. The coupling between the solute and solvent magnetizations via the radiation damping field can be further improved through a novel bipolar gradient scheme, which allows solute spins with chemical shift differences much greater than the effective radiation damping field strength to affect the solvent magnetizations more efficiently. Experiments performed on an aqueous acetone solution indicate that solute concentrations on the order of 10(-5) that of the solvent concentration can be readily detected using this spin amplifier.
Design and responses of Butterworth and critically damped digital filters.
Robertson, D Gordon E; Dowling, James J
2003-12-01
For many years the Butterworth lowpass filter has been used to smooth many kinds of biomechanical data, despite the fact that it is underdamped and therefore overshoots and/or undershoots data during rapid transitions. A comparison of the conventional Butterworth filter with a critically damped filter shows that the critically damped filter not only removes the undershooting and overshooting, but has a superior rise time during rapid transitions. While analog filters always create phase distortion, both the critically damped and Butterworth filters can be modified to become zero-lag filters when the data are processed in both the forward and reverse directions. In such cases little improvement is realized by applying multiple passes. The Butterworth filter has superior 'roll-off' (attenuation of noise above the cutoff frequency) than the critically damped filter, but by increasing the number of passes of the critically damped filter the same 'roll-off' can be achieved. In summary, the critically damped filter was shown to have superior performance in the time domain than the Butterworth filter, but for data that need to be double differentiated (e.g. displacement data) the Butterworth filter may still be the better choice.
Zheng, Ling; Zhang, Dongdong; Wang, Yi
2011-02-01
In this paper, the application of active constrained layer damping (ACLD) treatments is extended to the vibration control of cylindrical shells. The governing equation of motion of cylindrical shells partially treated with ACLD treatments is derived on the basis of the constitutive equations of elastic, piezoelectric and visco-elastic materials and an energy approach. The damping of a visco-elastic layer is modeled by the complex modulus formula. A finite element model is developed to describe and predict the vibration characteristics of cylindrical shells partially treated with ACLD treatments. A closed-loop control system based on proportional and derivative feedback of the sensor voltage generated by the piezo-sensor of the ACLD patches is established. The dynamic behaviors of cylindrical shells with ACLD treatments such as natural frequencies, loss factors and responses in the frequency domain are further investigated. The effects of several key parameters such as control gains, location and coverage of ACLD treatments on vibration suppression of cylindrical shells are also discussed. The numerical results indicate the validity of the finite element model and the control strategy approach. The potential of ACLD treatments in controlling vibration and sound radiation of cylindrical shells used as major critical structures such as cabins of aircraft, hulls of submarines and bodies of rockets and missiles is thus demonstrated.
Lian, Yeda; Zhang, Xunan; Sheldon, Cherry
2007-06-01
Based on energy dissipation and structural control principle, a new structural configuration, called the mega-sub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
Lian Yeda; Zhang Xunan; Sheldon Cherry
2007-01-01
Based on energy dissipation and structural control principle, a new structural configuration, called the megasub controlled structure (MSCS) with friction damped braces (FDBs), is first presented. Meanwhile, to calculate the damping coefficient in the slipping state a new analytical method is proposed. The damping characteristics of one-storey friction damped braced frame (FDBF) are investigated, and the influence of the structural parameters on the energy dissipation and the practical engineering design are discussed. The nonlinear dynamic equations and the analytical model of the MSCS with FDBs are established. Three building structures with different structural configurations, which were designed with reference to the conventional mega-sub structures such as used in Tokyo City Hall, are comparatively investigated. The results illustrate that the structure presented in the paper has excellent dynamic properties and satisfactory control effectiveness.
Rubin, David L. [Cornell Univ., Ithaca, NY (United States). Dept. of Physics
2015-01-23
Accelerators that collide high energy beams of matter and anti-matter are essential tools for the investigation of the fundamental constituents of matter, and the search for new forms of matter and energy. A “Linear Collider” is a machine that would bring high energy and very compact bunches of electrons and positrons (anti-electrons) into head-on collision. Such a machine would produce (among many other things) the newly discovered Higgs particle, enabling a detailed study of its properties. Among the most critical and challenging components of a linear collider are the damping rings that produce the very compact and intense beams of electrons and positrons that are to be accelerated into collision. Hot dilute particle beams are injected into the damping rings, where they are compressed and cooled. The size of the positron beam must be reduced more than a thousand fold in the damping ring, and this compression must be accomplished in a fraction of a second. The cold compact beams are then extracted from the damping ring and accelerated into collision at high energy. The proposed International Linear Collider (ILC), would require damping rings that routinely produce such cold, compact and intense beams. The goal of the Cornell study was a credible design for the damping rings for the ILC. Among the technical challenges of the damping rings; the development of instrumentation that can measure the properties of the very small beams in a very narrow window of time, and mitigation of the forces that can destabilize the beams and prevent adequate cooling, or worse lead to beam loss. One of the most pernicious destabilizing forces is due to the formation of clouds of electrons in the beam pipe. The electron cloud effect is a phenomenon in particle accelerators in which a high density of low energy electrons, build up inside the vacuum chamber. At the outset of the study, it was anticipated that electron cloud effects would limit the intensity of the positron ring
Damping of toroidal ion temperature gradient modes
Sugama, H. [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-04-01
The temporal evolution of linear toroidal ion temperature gradient (ITG) modes is studied based on a kinetic integral equation including an initial condition. It is shown how to evaluate the analytic continuation of the integral kernel as a function of a complex-valued frequency, which is useful for analytical and numerical calculations of the asymptotic damping behavior of the ITG mode. In the presence of the toroidal {nabla}B-curvature drift, the temporal dependence of the density and potential perturbations consists of normal modes and a continuum mode, which correspond to contributions from poles and from an integral along a branch cut, respectively, of the Laplace-transformed potential function of the complex-valued frequency. The normal modes have exponential time dependence with frequencies and growth rates determined by the dispersion relation while the continuum mode, which has a ballooning structure, shows a power law decay {proportional_to} t{sup -2} in the asymptotic limit, where t is the time variable. Therefore, the continuum mode dominantly describes the long-time asymptotic behavior of the density and potential perturbations for the stable system where all normal modes have negative growth rates. By performing proper analytic continuation for the homogeneous version of the kinetic integral equation, dependences of the normal modes` growth rate, real frequency, and eigenfunction on {eta}{sub i} (the ratio of the ion temperature gradient to the density gradient), k{sub {theta}} (the poloidal wavenumber), s (the magnetic shear parameter), and {theta}{sub k} (the ballooning angle corresponding to the minimum radial wavenumber) are numerically obtained for both stable and unstable cases. (author)
2010-01-01
Background Dampness and mold have been shown in qualitative reviews to be associated with a variety of adverse respiratory health effects, including respiratory tract infections. Several published meta-analyses have provided quantitative summaries for some of these associations, but not for respiratory infections. Demonstrating a causal relationship between dampness-related agents, which are preventable exposures, and respiratory tract infections would suggest important new public health strategies. We report the results of quantitative meta-analyses of published studies that examined the association of dampness or mold in homes with respiratory infections and bronchitis. Methods For primary studies meeting eligibility criteria, we transformed reported odds ratios (ORs) and confidence intervals (CIs) to the log scale. Both fixed and random effects models were applied to the log ORs and their variances. Most studies contained multiple estimated ORs. Models accounted for the correlation between multiple results within the studies analyzed. One set of analyses was performed with all eligible studies, and another set restricted to studies that controlled for age, gender, smoking, and socioeconomic status. Subgroups of studies were assessed to explore heterogeneity. Funnel plots were used to assess publication bias. Results The resulting summary estimates of ORs from random effects models based on all studies ranged from 1.38 to 1.50, with 95% CIs excluding the null in all cases. Use of different analysis models and restricting analyses based on control of multiple confounding variables changed findings only slightly. ORs (95% CIs) from random effects models using studies adjusting for major confounding variables were, for bronchitis, 1.45 (1.32-1.59); for respiratory infections, 1.44 (1.31-1.59); for respiratory infections excluding nonspecific upper respiratory infections, 1.50 (1.32-1.70), and for respiratory infections in children or infants, 1.48 (1
Fisk, William J.; Eliseeva, Ekaterina A.; Mendell, Mark J.
2010-11-15
Dampness and mold have been shown in qualitative reviews to be associated with a variety of adverse respiratory health effects, including respiratory tract infections. Several published meta-analyses have provided quantitative summaries for some of these associations, but not for respiratory infections. Demonstrating a causal relationship between dampness-related agents, which are preventable exposures, and respiratory tract infections would suggest important new public health strategies. We report the results of quantitative meta-analyses of published studies that examined the association of dampness or mold in homes with respiratory infections and bronchitis. For primary studies meeting eligibility criteria, we transformed reported odds ratios (ORs) and confidence intervals (CIs) to the log scale. Both fixed and random effects models were applied to the log ORs and their variances. Most studies contained multiple estimated ORs. Models accounted for the correlation between multiple results within the studies analyzed. One set of analyses was performed with all eligible studies, and another set restricted to studies that controlled for age, gender, smoking, and socioeconomic status. Subgroups of studies were assessed to explore heterogeneity. Funnel plots were used to assess publication bias. The resulting summary estimates of ORs from random effects models based on all studies ranged from 1.38 to 1.50, with 95% CIs excluding the null in all cases. Use of different analysis models and restricting analyses based on control of multiple confounding variables changed findings only slightly. ORs (95% CIs) from random effects models using studies adjusting for major confounding variables were, for bronchitis, 1.45 (1.32-1.59); for respiratory infections, 1.44 (1.31-1.59); for respiratory infections excluding nonspecific upper respiratory infections, 1.50 (1.32-1.70), and for respiratory infections in children or infants, 1.48 (1.33-1.65). Little effect of publication
Frequency and damping rate of fast sausage waves
Farahani, S. Vasheghani; Van Doorsselaere, T.; Goossens, M. [Centre for Mathematical Plasma Astrophysics, Department of Mathematics, KU Leuven, Celestijnenlaan 200B bus 2400, B-3001 Heverlee (Belgium); Hornsey, C. [Centre for Fusion, Space, and Astrophysics, Physics Department, University of Warwick, Coventry CV4 7AL (United Kingdom)
2014-02-01
We investigate the frequency and damping rate of fast axisymmetric waves that are subject to wave leakage for a one-dimensional magnetic cylindrical structure in the solar corona. We consider the ideal magnetohydrodynamic (MHD) dispersion relation for axisymmetric MHD waves superimposed on a straight magnetic cylinder in the zero β limit, similar to a jet or loop in the solar corona. An analytic study accompanied by numerical calculations has been carried out to model the frequency, damping rate, and phase speed of the sausage wave around the cut-off frequency and in the long wavelength limit. Analytic expressions have been obtained based on equations around the points of interest. They are linear approximations of the dependence of the sausage frequency on the wave number around the cut-off wavelength for both leaky and non-leaky regimes and in the long wavelength limit. Moreover, an expression for the damping rate of the leaky sausage wave has been obtained both around the cut-off frequency and in the long wavelength limit. These analytic results are compared with numerical computations. The expressions show that the complex frequencies are mainly dominated by the density ratio. In addition, it is shown that the damping eventually becomes independent of the wave number in the long wavelength limit. We conclude that the sausage mode damping directly depends on the density ratios of the internal and external media where the damping declines in higher density contrasts. Even in the long wavelength limit, the sausage mode is weakly damped for high-density contrasts. As such, sausage modes could be observed for a significant number of periods in high-density contrast loops or jets.
Damped and sub-damped Lyman-α absorbers in z > 4 QSOs
Guimarães, R.; Petitjean, P.; de Carvalho, R. R.; Djorgovski, S. G.; Noterdaeme, P.; Castro, S.; Poppe, P. C. Da R.; Aghaee, A.
2009-12-01
We present the results of a survey of damped (DLA, log~N(H i)>20.3) and sub-damped Lyman-α systems (19.5 2.55 along the lines-of-sight to 77 quasars with emission redshifts in the range 419.5 were detected of which 40 systems are damped Lyman-α systems for an absorption length of Δ X = 378. About half of the lines of sight of this homogeneous survey have never been investigated for DLAs. We study the evolution with redshift of the cosmological density of the neutral gas and find, consistent with previous studies at similar resolution, that ΩDLA, H_I decreases at z>3.5. The overall cosmological evolution of Ω_HI shows a peak around this redshift. The H i column density distribution for log N(H i)≥20.3 is fitted, consistent with previous surveys, with a single power-law of index α ˜ -1.8 ±0.25. This power-law overpredicts data at the high-end and a second, much steeper, power-law (or a gamma function) is needed. There is a flattening of the function at lower H i column densities with an index of α ˜ -1.4 for the column density range log N(H i)=19.5-21. The fraction of H i mass in sub-DLAs is of the order of 30%. The H i column density distribution does not evolve strongly from z˜ 2.5 to z˜ 4.5. The observations reported here were obtained with the W. M. Keck Observatory, which is operated by the California Association for Research in Astronomy, a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. Tables 1, 2 and Appendices are only available in electronic form at http://www.aanda.org
Landau damping of magnetospherically reflected whistlers
Thorne, Richard M.; Horne, Richard B.
1994-01-01
Unducted VLF signals produced by lightning activity can form a population of magnetospherically reflected (MR) whistlers in the inner magnetosphere. It has been suggested recently that in the absence of significant attenuation such waves could merge into a broadband continuum with sufficient intensity to account for plasmaspheric hiss. To test this conjecture we have evaluated the path-integrated attenuation of MR whistlers along representative ray paths using the HOTRAY code. Using a realistic plasma distribution modeled on in-situ data, we find that the majority of MR waves experience significant damping after a few transits across the equator. This is primarily due to Landau resonance with suprathermal (0.1-1 keV) electrons. The attenuation is most pronounced for waves that propagate through the outer plasmasphere; this can readily account for the infrequent occurrence of multiple-hop MR waves for L greater than or equal to 3.5. Selected waves that originate at intermediate latitudes (15 deg is less than or equal to lambda is less than or equal to 35 deg) and whose ray paths are confined to the inner plasma- sphere may experience up to 10 magnetospheric reflections before substantial attentuation occurs. These waves should form the population of observed MR waves. Wave attenuation becomes more pronounced at higher frequencies; this can account for the absence of multiple-hop waves above 5 kHz. Weakly attenuated MR waves tend to migrate outward to the L shell, where their frequency is comparable to the equatorial lower hybrid frequency. The enhanced concentration of waves due to a merging of ray paths would produce a spectral feature that rises in frequency at lower L. This is quite distinct from the reported properties of plasmaspheric hiss, which maintains a constant frequency band throughout the entire plasmasphere. Furthermore, in the absence of mode conversion, waves below 500 Hz, which often form an important if not dominant part of the spectral properties
Dellve, L; Cernerud, L; Hallberg, L R
2000-01-01
The aim of this qualitative study was to describe, from their own perspective and experiences, how siblings of children with deficits in attention, motor control and perception (DAMP) and Asperger syndrome cope with their life situations in their families. Fifteen adolescent females 12-18 years old, siblings of boys with DAMP (8 subjects) and Asperger syndrome (7 subjects), were interviewed. The method used in sampling and analysis of interview protocols was the constant comparative method for grounded theory. The inductive categorization of data produced two core concepts, one about the siblings' life situations in DAMP and Asperger syndrome ('dilemma of requirements and concerns') and one about the siblings' coping processes ('harmonizing'). Of the six categories identified, four were categories of the processes of coping ('gaining understanding', 'gaining independence', 'following a bonding responsibility' and 'balancing'). The qualitative differences between coping processes were related to the two categories of context to cope within the experienced dilemma 'requirements' and 'concerns'. The findings contribute to a deeper understanding of the siblings' life situations, and may be important for health personnel in encounter families and for identifying siblings with special needs. The findings may also aid in the development of preventive programs for siblings of children with DAMP and Asperger syndrome.
Analysis of event-related potentials (ERP) by damped sinusoids.
Demiralp, T; Ademoglu, A; Istefanopulos, Y; Gülçür, H O
1998-06-01
Several researchers propose that event-related potentials (ERPs) can be explained by a superposition of transient oscillations at certain frequency bands in response to external or internal events. The transient nature of the ERP is more suitable to be modelled as a sum of damped sinusoids. These damped sinusoids can be completely characterized by four sets of parameters, namely the amplitude, the damping coefficient, the phase and the frequency. The Prony method is used to estimate these parameters. In this study, the long-latency auditory-evoked potentials (AEP) and the auditory oddball responses (P300) of 10 healthy subjects are analysed by this method. It is shown that the original waveforms can be reconstructed by summing a small number of damped sinusoids. This allows for a parsimonious representation of the ERPs. Furthermore, the method shows that the oddball target responses contain higher amplitude, slower delta and slower damped theta components than those of the AEPs. With this technique, we show that the differentiation of sensory and cognitive potentials are not inherent in their overall frequency content but in their frequency components at certain bands.
Damping properties of fly ash/epoxy composites
Jian Gu; Gaohui Wu; Xiao Zhao
2008-01-01
An inexpensive fly ash (FA), which is from a waste product, was employed to prepare fly ash/epoxy composites. The purpose of this study is to characterize the contributions of matrix viscoelasticity, hollow structure characteristic (porosity), and filler/matrix interface friction to the high vibration damping capacity of such composites. The damping properties of the composites were investigated in the temperature range of-40 to 150℃C and in the frequency range of 10 to 800 Hz by using a tension-compression mode. The results indicate that the peak value of damping loss factor (tanδ) for the fly ash/epoxy composites can reach 0.70-0.90 in test specification, and the attenuation of damping loss factor is inconspicuous with increasing frequency. In addition, scanning electron microscope (SEM) was used to observe the morphology of the fly ash as well as its distribution in the matrix, which will help to analyze the effect of fly ash on the damping properties of the fly ash/epoxy composites.
Superconducting wiggler magnets for beam-emittance damping rings
Schoerling, Daniel
2012-01-01
Ultra-low emittance beams with a high bunch charge are necessary for the luminosity performance of linear electron-positron colliders, such as the Compact Linear Collider (CLIC). An effective way to create ultra-low emittance beams with a high bunch charge is to use damping rings, or storage rings equipped with strong damping wiggler magnets. The remanent field of the permanent magnet materials and the ohmic losses in normal conductors limit the economically achievable pole field in accelerator magnets operated at around room temperature to below the magnetic saturation induction, which is 2.15 T for iron. In wiggler magnets, the pole field in the center of the gap is reduced further like the hyperbolic cosine of the ratio of the gap size and the period length multiplied by pi. Moreover, damping wiggler magnets require relatively large gaps because they have to accept the un-damped beam and to generate, at a small period length, a large magnetic flux density amplitude to effectively damp the beam emittance....
Damping Effects Induced by a Mass Moving along a Pendulum
E. Gandino
2014-01-01
Full Text Available The experimental study of damping in a time-varying inertia pendulum is presented. The system consists of a disk travelling along an oscillating pendulum: large swinging angles are reached, so that its equation of motion is not only time-varying but also nonlinear. Signals are acquired from a rotary sensor, but some remarks are also proposed as regards signals measured by piezoelectric or capacitive accelerometers. Time-varying inertia due to the relative motion of the mass is associated with the Coriolis-type effects appearing in the system, which can reduce and also amplify the oscillations. The analytical model of the pendulum is introduced and an equivalent damping ratio is estimated by applying energy considerations. An accurate model is obtained by updating the viscous damping coefficient in accordance with the experimental data. The system is analysed through the application of a subspace-based technique devoted to the identification of linear time-varying systems: the so-called short-time stochastic subspace identification (ST-SSI. This is a very simple method recently adopted for estimating the instantaneous frequencies of a system. In this paper, the ST-SSI method is demonstrated to be capable of accurately estimating damping ratios, even in the challenging cases when damping may turn to negative due to the Coriolis-type effects, thus causing amplifications of the system response.
Damping of High-temperature Shape Memory Alloys
Duffy, Kirsten P.; Padula, Santo A., II; Scheiman, Daniel A.
2008-01-01
Researchers at NASA Glenn Research Center have been investigating high temperature shape memory alloys as potential damping materials for turbomachinery rotor blades. Analysis shows that a thin layer of SMA with a loss factor of 0.04 or more would be effective at reducing the resonant response of a titanium alloy beam. Two NiTiHf shape memory alloy compositions were tested to determine their loss factors at frequencies from 0.1 to 100 Hz, at temperatures from room temperature to 300 C, and at alternating strain levels of 34-35x10(exp -6). Elevated damping was demonstrated between the M(sub s) and M(sub f) phase transformation temperatures and between the A(sub s) and A(sub f) temperatures. The highest damping occurred at the lowest frequencies, with a loss factor of 0.2-0.26 at 0.1 Hz. However, the peak damping decreased with increasing frequency, and showed significant temperature hysteresis in heating and cooling. Keywords: High-temperature, shape memory alloy, damping, aircraft engine blades, NiTiHf
Hydro-dynamic damping theory in flowing water
Monette, C.; Nennemann, B.; Seeley, C.; Coutu, A.; Marmont, H.
2014-03-01
Fluid-structure interaction (FSI) has a major impact on the dynamic response of the structural components of hydroelectric turbines. On mid-head to high-head Francis runners, the rotor-stator interaction (RSI) phenomenon always has to be considered carefully during the design phase to avoid operational issues later on. The RSI dynamic response amplitudes are driven by three main factors: (1) pressure forcing amplitudes, (2) excitation frequencies in relation to natural frequencies and (3) damping. The prediction of the two first factors has been largely documented in the literature. However, the prediction of fluid damping has received less attention in spite of being critical when the runner is close to resonance. Experimental damping measurements in flowing water on hydrofoils were presented previously. Those results showed that the hydro-dynamic damping increased linearly with the flow. This paper presents development and validation of a mathematical model, based on momentum exchange, to predict damping due to fluid structure interaction in flowing water. The model is implemented as an analytical procedure for simple structures, such as cantilever beams, but is also implemented in more general ways using three different approaches for more complex structures such as runner blades: a finite element procedure, a CFD modal work based approach and a CFD 1DOF approach. The mathematical model and all three implementation approaches are shown to agree well with experimental results.
Spatial damping identification in the frequency domain-A theoretical and experimental comparison
Brumat, Matija; Slavič, Janko; Boltežar, Miha
2016-08-01
This paper deals with spatial damping identification methods. In contrast to the commonly used damping methods (modal, proportional) the spatial damping information improves structural models with a known location of the damping sources. The Lee-Kim, Chen-Ju-Tsuei, Fritzen IV and local equation of motion methods were theoretically and experimentally compared. Experimentally, the spatial damping identification was tested against: modal and spatial incompleteness, differences in viscous and hysteretic damping models, the performance of identification methods and the effect of damping treatments. It was found that for a structure with a known equation of motion (beam, plate) the local equation of motion method is more efficient and gives a more precise location of the damping. Full frequency response function (FRF) matrix methods can also identify the spatial damping, but are more demanding because the numerical and measurement effort increases with n2, where n is the number of measurement points and, consequently, the size of the FRF matrix.
Study of modal coupling procedures for the shuttle: A matrix method for damping synthesis
Hasselman, T. K.
1972-01-01
The damping method was applied successfully to real structures as well as analytical models. It depends on the ability to determine an appropriate modal damping matrix for each substructure. In the past, modal damping matrices were assumed diagonal for lack of being able to determine the coupling terms which are significant in the general case of nonproportional damping. This problem was overcome by formulating the damped equations of motion as a linear perturbation of the undamped equations for light structural damping. Damped modes are defined as complex vectors derived from the complex frequency response vectors of each substructure and are obtained directly from sinusoidal vibration tests. The damped modes are used to compute first order approximations to the modal damping matrices. The perturbation approach avoids ever having to solve a complex eigenvalue problem.
Vibration Damping Via Acoustic Treatment Attached To Vehicle Body Panels
Gambino, Carlo
Currently, in the automotive industry, the control of noise and vibration is the subject of much research, oriented towards the creation of innovative solutions to improve the comfort of the vehicle and to reduce its cost and weight. This thesis fits into this particular framework, as it aims to investigate the possibility of integrating the functions of sound absorptioninsulation and vibration damping in a unique component. At present the bituminous viscoelastic treatments, which are bonded to the car body panels, take charge of the vibration damping, while the sound absorption and insulation is obtained by means of the poroacoustic treatments. The solution proposed here consists of employing porous materials to perform both these functions, thus allowing the partial or complete removal of the viscoelastic damping treatments from the car body. This should decrease the weight of the vehicle, reducing fuel consumption and emissions, and it might also benefit production costs.
HYBRID FUZZY CONTROL FOR ELECTRO-HYDRAULIC ACTIVE DAMPING SUSPENSION
无
2002-01-01
A new control scheme, the hybrid fuzzy control method, for active damping suspension system is presented. The scheme is the result of effective combination of the statistical optimal control method based on the statistical property of suspension system, with the bang-bang control method based on the real-time characteristics of suspension system. Computer simulations are performed to compare the effectiveness of hybrid fuzzy control scheme with that of optimal damping control, bang-bang control, and passive suspension. It takes the effects of time-variant factors into full account. The superiority of the proposed hybrid fuzzy control scheme for active damping suspension to the passive suspension is verified in the experiment study.
UPFC control parameter identification for effective power oscillation damping
Pandey, R.K.; Singh, N.K. [Dept. of Electrical Engineering, Institute of Technology, Banaras Hindu University, Varanasi, UP 22100 (India)
2009-07-15
This paper presents UPFC control parameter identification for effective power oscillation damping (POD). A comparative analysis with minimum singular value (MSV), Hankel singular value (HSV), direct component of torque (DCT) and residue has been proposed for finding the most appropriate control input parameters of unified power flow controller (UPFC) for damping power system oscillations. The basic objective of the paper is to identify the control parameters of UPFC in order to provide adequate damping in power network with changing system conditions. The results presented in this paper are studied widely on single machine infinite bus. The test has also been carried for two area systems and same trend has been observed. The results show the suitability of this approach in identification of UPFC control parameters. (author)
Characterization of the International Linear Collider damping ring optics
Shanks, James; Sagan, David
2013-01-01
A method is presented for characterizing the emittance dilution and dynamic aperture for an arbitrary closed lattice that includes guide field magnet errors, multipole errors and misalignments. This method, developed and tested at CesrTA, has been applied to the damping ring lattice for the International Linear Collider (ILC). The effectiveness of beam based emittance tuning is limited by beam position monitor (BPM) measurement errors, disposition of corrector magnets, and tuning algorithm. The specifications for damping ring magnet alignment, multipoles, and number and precision of the BPMs are shown to be consistent with the required emittances and dynamic aperture. Further analysis of the ILC damping ring lattice demonstrates the implications of reducing the number of BPMs and relaxing the constraints on guide field multipoles.
Optomechanical damping of a nanomembrane inside an optical ring cavity
Yilmaz, Arzu; Wolf, Philip; Schmidt, Dag; Eisele, Max; Zimmermann, Claus; Slama, Sebastian
2016-01-01
We experimentally and theoretically investigate mechanical nanooscillators coupled to the light in an optical ring resonator made of dielectric mirrors. We identify an optomechanical damping mechanism that is fundamentally different to the well known cooling in standing wave cavities. While, in a standing wave cavity the mechanical oscillation shifts the resonance frequency of the cavity in a ring resonator the frequency does not change. Instead the position of the nodes is shifted with the mechanical excursion. We derive the damping rates and test the results experimentally with a silicon-nitride nanomembrane. It turns out that scattering from small imperfections of the dielectric mirror coatings has to be taken into account to explain the value of the measured damping rate. We extend our theoretical model and regard a second reflector in the cavity that captures the effects of mirror back scattering. This model can be used to also describe the situation of two membranes that both interact with the cavity fi...
The offline software framework of the DAMPE experiment
Wang, Chi; Liu, Dong; Wei, Yifeng; Zhang, Zhiyong; Zhang, Yunlong; Wang, Xiaolian; Xu, Zizong; Huang, Guangshun; Tykhonov, Andrii; Wu, Xin; Zang, Jingjing; Jiang, Wei; Wu, Jian; Chang, Jin
2016-01-01
A software framework has been developed for the DArk Matter Particle Explorer (DAMPE) mission, a satellite based experiment. The software framework of DAMPE is mainly written in C++ while the application under this framework is steered in Python script. The framework is comprised of four principal parts: an event data model which contains all reconstruction and simulation information based on ROOT input/output (I/O) streaming; a collection of processing models which are used to process each event data, called as algorithms; common tools which provide general functionalities like data communication between algorithms; and event filters. This article presents an overview of the DAMPE offline software framework, and the major architecture design choices during the development.
Detection of directional energy damping in vibrating systems
B R Amruth; Souri Banerjee
2009-04-01
The transmission efficiency, frequency and amplitude alteration have been measured by a simple technique of coupled oscillators with a frequency gradient and in a system of non-Newtonian fluid in the form of corn-flour slime. The system of coupled oscillators was found to exhibit preferential energy transfer towards the low frequency end with the reverse propagation severely damped. Energy transfer in all directions was damped in the non-Newtonian fluid in comparison with water. Also the damping in non-Newtonian fluids works only after a lower limit for input amplitude. While most of the previous studies focussed on dissipation of energy within shock-absorbing systems, we demonstrate the contribution of re-distribution of energy reaching the output end to achieve shock absorbing.
Endurance of Damping Properties of Foam-Filled Tubes.
Strano, Matteo; Marra, Alessandro; Mussi, Valerio; Goletti, Massimo; Bocher, Philippe
2015-07-07
The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1) square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2) round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve) with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.
STATISTIC LINEARIZATION CONTROL FOR HYDRAULIC ACTIVE DAMPING SUSPENSION
Wang Qingfeng; Zhao Ju; Yang Botao
2000-01-01
A statistic linearization analysis method of bad nolinear hydraulic active damping suspensiop is provided.Also the optimum control strategy of semi-active suspension and graded control strategy based on it are puted forward.Experimental researches are carried out on a 2 DOF (degree of freedom ) hydraulic active damping suspension test system.The results showed that an excellent control effectiveness could be obtained by using statistic linearization optimum control which unfortunely requests continuously regulationg the damp in an accurate way and costs much in engeering application.On the contrary,the results also showed that graded control is more practicable which has a control effectiveness close to the optimum control and costs less.
DAMPING COMPUTATION OF LIQUID SLOSHING IN CONTAINERS ABOARD SPACECRAFT
宝音贺西; 李俊峰; 高云峰; 王照林
2003-01-01
Under the non-rotating assumption, a method for the calculation of damping of fuel sloshing with small amplitude in containers aboard spacecraft is proposed in the present paper. And we have presented an eigen-value equation for sloshing damping and frequency computation. This equation may be solved by Ritz or Galerkin methods for a container of simple geometry or by finite element method for a container of arbitrary geometric shape even with rigid baffles. The simulated results show that the equivalent damping coefficients is directly proportional to fuel's viscosity, whereas it almost exhibits no influence on sloshing frequencies. The drawback of the proposed method lies in expensive computation cost. Thus far, it hasn't yet be applied to a container with elastic baffles.
Synthesis of Polyacrylate/Polysiloxane Copolymer and Its Damping Performance
夏宇正; 石淑先; 焦书科; 李素青
2003-01-01
The copolymer of polyacrylate/polysiloxane for vibration damping materials was synthesized through emulsion polymerization. The effects of the amount of methyl methacrylate (MMA),polysiloxane containing vinyl, initiator and emulsifier on the conversion, stability of polyacrylate/polysiloxane emulsion were discussed when the emulsion was prepared by pre-emulsifying half continuous method. The graft copolymer has good vibration damping performance. The widest glass transition region of the copolymer spans 100℃, and the highest value of tanδ reached 2.0. The glass transition of the samples was examined by dynamic mechanical analysis (DMA). The vibration damping performance of the graft copolymer was affected by the amount of poly-vinyl dimethylsiloxane (PVMS).
Landau damping dynamic aperture and octupole in LHC
Gareyte, Jacques; Ruggiero, F
1997-01-01
Maximization of the dynamic aperture and Landau damping of the collective instabilities are partly conflicting requirements. On the one hand, the non-linearities of the lattice must be minimized at large oscillation amplitude to guarantee the stability of the single particle motion. On the other hand, a spread of the betatron frequencies is necessary to guarantee the stability of the collective motion of bunches of particles; this requires the introduction of non-linearities effective at small amplitudes. We show in this note that the `natural' spread of betatron tunes due to the field imperfections is inadequate or Landau damping. An octupole scheme is required to provide collective stability at high energy. At low energy it may be used to find the optimum between the correction of the octupolar field imperfections and Landau damping. The solution of the stability problem taking into account the two degrees of freedom of the transverse motion allows a significant saving in octupole strength: 144 octupoles wi...
Spatial damping of propagating sausage waves in coronal cylinders
Guo, Ming-Zhe; Li, Bo; Xia, Li-Dong; Yu, Hui
2015-01-01
Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued longitudinal wavenumber $k$ at given real angular frequencies $\\omega$. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of $\\omega_{\\rm c}$, the critical angular frequency separating trapped from leaky waves. In contrast to the standing case, propagating sausage waves are allowed for $\\omega$ much lower than $\\omega_{\\rm c}$. However, while able to direct their energy upwards, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping ...
Endurance of Damping Properties of Foam-Filled Tubes
Matteo Strano
2015-07-01
Full Text Available The favorable energy-absorption properties of metal foams have been frequently proposed for damping or anti-crash applications. The aim of this paper is to investigate the endurance of these properties for composite structures, made by a metal or a hybrid metal-polymeric foam used as the core filling of a tubular metal case. The results of experimental tests are shown, run with two types of structures: 1 square steel tubes filled with aluminum or with hybrid aluminum-polymer foams; 2 round titanium tubes filled with aluminum foams. The paper shows that the damping properties of a foam-filled tube change (improve with the number of cycles, while all other dynamic properties are nearly constant. This result is very important for several potential applications where damping is crucial, e.g., for machine tools.
Vibration of fusion reactor components with magnetic damping
D’Amico, Gabriele; Portone, Alfredo [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain); Rubinacci, Guglielmo [Department of Electrical Eng. and Information Technologies, Università di Napoli Federico II, Via Claudio, 21, 80125 Napoli (Italy); Testoni, Pietro, E-mail: pietro.testoni@f4e.europa.eu [Fusion for Energy – Torres Diagonal Litoral B3 – c/Josep Plá n.2, Barcelona (Spain)
2016-11-01
The aim of this paper is to assess the importance of the magnetic damping in the dynamic response of the main plasma facing components of fusion machines, under the strong Lorentz forces due to Vertical Displacement Events. The additional eddy currents due to the vibration of the conducting structures give rise to volume loads acting as damping forces, a kind of viscous damping, being these additional loads proportional to the vibration speed. This effect could play an important role when assessing, for instance, the inertial loads associated to VV movements in case of VDEs. In this paper, we present the results of a novel numerical formulation, in which the field equations are solved by adopting a very effective fully 3D integral formulation, not limited to the analysis of thin shell structures, as already successfully done in several approaches previously published.
Calculation of Gilbert damping in ferromagnetic ﬁlms
Edwards D. M.
2013-01-01
Full Text Available The Gilbert damping constant in the phenomenological Landau-Lifshitz-Gilbert equation which describes the dynamics of magnetization, is calculated for Fe, Co and Ni bulk ferromagnets, Co ﬁlms and Co/Pd bilayers within a nine-band tight-binding model with spin-orbit coupling included. The calculational effciency is remarkably improved by introducing ﬁnite temperature into the electronic occupation factors and subsequent summation over the Matsubara frequencies. The calculated dependence of Gilbert damping constant on scattering rate for bulk Fe, Co and Ni is in good agreement with the results of previous ab initio calculations. Calculations are reported for ferromagnetic Co metallic ﬁlms and Co/Pd bilayers. The dependence of the Gilbert damping constant on Co ﬁlm thickness, for various scattering rates, is studied and compared with recent experiments.
Simulations of moving effect of coastal vegetation on tsunami damping
Tsai, Ching-Piao; Chen, Ying-Chi; Octaviani Sihombing, Tri; Lin, Chang
2017-05-01
A coupled wave-vegetation simulation is presented for the moving effect of the coastal vegetation on tsunami wave height damping. The problem is idealized by solitary wave propagation on a group of emergent cylinders. The numerical model is based on general Reynolds-averaged Navier-Stokes equations with renormalization group turbulent closure model by using volume of fluid technique. The general moving object (GMO) model developed in computational fluid dynamics (CFD) code Flow-3D is applied to simulate the coupled motion of vegetation with wave dynamically. The damping of wave height and the turbulent kinetic energy along moving and stationary cylinders are discussed. The simulated results show that the damping of wave height and the turbulent kinetic energy by the moving cylinders are clearly less than by the stationary cylinders. The result implies that the wave decay by the coastal vegetation may be overestimated if the vegetation was represented as stationary state.
Research overview on vibration damping of mistuned bladed disk assemblies
Liang ZHANG
2016-04-01
Full Text Available Bladed disk assemblies are very important parts in auto engine and gas turbine, and is widely used in practical engineering. The mistuning existing commonly in the bladed disk assemblies can destroy the vibration characteristics of the bladed disk assemblies, which is one of the reasons for the high cycle fatigue failure of bladed disk assemblies, so it is necessary to research how to reduce the vibration of the bladed disk assemblies. On the basis of the review of relevant research at home and abroad, the mistuning vibration mechanism of the bladed disk assemblies is introduced, and the main technical methods of the vibration damping of bladed disk assemblies are reviewed, such as artificially active mistuning, collision damping, friction damping and optimization of the blade position. Some future research directions are presented.
Damping of Resonantly Forced Density Waves in Dense Planetary Rings
Lehmann, Marius; Schmidt, Jürgen; Salo, Heikki
2016-10-01
We address the stability of resonantly forced density waves in dense planetary rings.Already by Goldreich and Tremaine (1978) it has been argued that density waves might be unstable, depending on the relationship between the ring's viscosity and the surface mass density. In the recent paper (Schmidt et al. 2016) we have pointed out that when - within a fluid description of the ring dynamics - the criterion for viscous overstability is satisfied, forced spiral density waves become unstable as well. In this case, linear theory fails to describe the damping.We apply the multiple scale formalism to derive a weakly nonlinear damping relation from a hydrodynamical model.This relation describes the resonant excitation and nonlinear viscous damping of spiral density waves in a vertically integrated fluid disk with density dependent transport coefficients. The model consistently predicts linear instability of density waves in a ring region where the conditions for viscous overstability are met. In this case, sufficiently far away from the Lindblad resonance, the surface mass density perturbation is predicted to saturate to a constant value due to nonlinear viscous damping. In general the model wave damping lengths depend on a set of input parameters, such as the distance to the threshold for viscous overstability and the ground state surface mass density.Our new model compares reasonably well with the streamline model for nonlinear density waves of Borderies et al. 1986.Deviations become substantial in the highly nonlinear regime, corresponding to strong satellite forcing.Nevertheless, we generally observe good or at least qualitative agreement between the wave amplitude profiles of both models. The streamline approach is superior at matching the total wave profile of waves observed in Saturn's rings, while our new damping relation is a comparably handy tool to gain insight in the evolution of the wave amplitude with distance from resonance, and the different regimes of
The Nonlinear Landau Damping Rate of a Driven Plasma Wave
Benisti, D; Strozzi, D J; Gremillet, L; Morice, O
2009-08-04
In this Letter, we discuss the concept of the nonlinear Landau damping rate, {nu}, of a driven electron plasma wave, and provide a very simple, practical, analytic formula for {nu} which agrees very well with results inferred from Vlasov simulations of stimulated Raman scattering. {nu} actually is more complicated an operator than a plain damping rate, and it may only be seen as such because it assumes almost constant values before abruptly dropping to 0. The decrease of {nu} to 0 is moreover shown to occur later when the wave amplitude varies in the direction transverse to its propagation.
Role of fluctuations in the quantal description of damped motion
Hernandez, E.S.
1980-01-01
The construction of a frictional time-dependent Schroedinger equation is reviewed for harmonic motion in a restricted framework, i.e., demanding the conservation of the Gaussian shape of wave packets. The evolution of the quanta fluctuations is discussed in a time-independent model, and it is shown that such a situation does not correspond to damped harmonic oscillations. The role of fluctuations in providing dissipative behavior is discussed and the time evolution of arbitrary wave functions subject to damped motion as described by Schroedinger-Kostin equation is analyzed in detail.
Reduce the noise of punch press with the equivalent damping
无
2006-01-01
To reduce the noise of the punch press during the punching process, the polyurethane elastomer is used as the damping material. The experiments of reducing noise were made by means of adding the polyurethane elastomer at different positions on the 100 kN and 1 000 kN punch presses. The better effect of reducing noise was obtained. After researching and analyzing a large number of test data, the "equivalent damping hypothesis" is put forward. The hypothesis makes the experiment of reducing noise simpler and also more economical. It is estimated that there is a vast application in the research area of vibration control and noise reduction.
Magnetization damping in noncollinear spin valves with antiferromagnetic interlayer couplings
Chiba, Takahiro; Bauer, Gerrit E. W.; Takahashi, Saburo
2015-08-01
We study the magnetic damping in the simplest of synthetic antiferromagnets, i.e., antiferromagnetically exchange-coupled spin valves, in the presence of applied magnetic fields that enforce noncolliear magnetic configurations. We formulate the dynamic exchange of spin currents in a noncollinear texture based on the spin-diffusion theory with quantum mechanical boundary conditions at the ferrromagnet/normal-metal interfaces and derive the Landau-Lifshitz-Gilbert equations coupled by the interlayer static and dynamic exchange interactions. We predict noncollinearity-induced additional damping that is modulated by an applied magnetic field. We compare theoretical results with published experiments.
Some Passive Damping Sources on Flooring Systems besides the TMD
Pedersen, Lars
2010-01-01
Impulsive loads and walking loads can generate problematic structural vibrations in flooring-systems. Measures that may be taken to mitigate the problem would often be to consider the implementation of a tuned mass damper or even more advanced vibration control technologies; this in order to add...... damping to the structure. Basically also passive humans on a floor act as a damping source, but it also turns out from doing system identification tests with a floor strip that a quite simple set-up installed on the floor (cheap and readily at hand) might do a good job in terms of reducing vertical floor...
Exact linearization of the radiation-damped spin system
Rourke; Augustine
2000-02-21
Nonlinear evolution of the Landau-Lifshitz type can be exactly linearized. Special cases include the radiation-damped spin system and the superradiant system in the semiclassical regime, in the presence of time-varying driving fields. For these, the resultant linear system is simply that of a spin 1 / 2 particle, with the radiation damping rate, or superradiant characteristic time, manifested as an imaginary addition to the spin's resonance frequency. Consequently, methods from inverse scattering theory can be used to design driving fields. The behavior of these systems under stochastic excitation can be determined exactly.
Natural frequencies and damping estimation based on continuous wavelet transform
DAI Yu; SUN He-yi; LI Hui-peng; TANG Wen-yan
2008-01-01
The continuous wavelet transform (CWT) based method was improved for estimating the natural fre-quencies and damping ratios of a structural system in this paper. The appropriate scale of CWT was selected by means of the least squares method to identify the systems with closely spaced modes. The important issues relat-ed to estimation accuracy such as mode separation and end effect, were also investigated. These issues were as-sociated with the parameter selection of wavelet function based on the fitting error of least squares. The efficien-cy of the method was confirmed by applying it to a simulated 3dof damped system with two close modes.
Some Passive Damping Sources on Flooring Systems besides the TMD
Pedersen, Lars
2010-01-01
Impulsive loads and walking loads can generate problematic structural vibrations in flooring-systems. Measures that may be taken to mitigate the problem would often be to consider the implementation of a tuned mass damper or even more advanced vibration control technologies; this in order to add damping to the structure. Basically also passive humans on a floor act as a damping source, but it also turns out from doing system identification tests with a floor strip that a quite simple set-up i...
Experimental Program for the Determination of Hull Structural Damping Coefficients.
1981-09-01
approaches are appar- ent. One concept is to have each individual excitation device self contained, and to control the phasing and amplitude of the motions...n ma. cllt r ibu-t si,,nificantly to hull damping hut avai.1lt iu, lo 1 , , ht if tt I - scle and from model tests, toil to adequo tI e ly :anf Wtf... controlled excitations. It is generally understood that the total damping consists of at least three basic components, i.e. hydrodynamic, cargo and structural
Parametric resonance induced chaos in magnetic damped driven pendulum
Khomeriki, Giorgi, E-mail: giokhomeriki123@gmail.com
2016-07-15
A damped driven pendulum with a magnetic driving force, appearing from a solenoid, where ac current flows is considered. The solenoid acts on the magnet, which is located at a free end of the pendulum. In this system the existence and interrelation of chaos and parametric resonance is theoretically examined. Derived analytical results are supported by numerical simulations and conducted experiments. - Highlights: • A damped magnetic pendulum is considered driven by off resonant magnetic field. • Our system is chaotic only when the conditions for parametric resonance are fulfilled. • Conducted experiments give a good agreement with theory and numerical simulations. • Calculated Lyapunov exponents are compared with parametric instability growth rates.
Investigation of Landau-damping effects on shock formation
Andersen, H.K.; D'Angelo, N.; Michelsen, Poul
1967-01-01
Landau damping in plasmas of equal ion and electron temperatures (alkali plasmas) may prevent the formation of a shock. Shocks are produced when the ratio Te/Ti is increased to about 8 or so by cooling the ions through i-n collisions.......Landau damping in plasmas of equal ion and electron temperatures (alkali plasmas) may prevent the formation of a shock. Shocks are produced when the ratio Te/Ti is increased to about 8 or so by cooling the ions through i-n collisions....
Linear Inviscid Damping for Couette Flow in Stratified Fluid
Yang, Jincheng
2016-01-01
We study the inviscid damping of Coutte flow with an exponentially stratified density. The optimal decay rates of the velocity field and density are obtained for general perturbations with minimal regularity. For Boussinesq approximation model, the decay rates we get are consistent with the previous results in the literature. We also study the decay rates for the full equations of stratified fluids, which were not studied before. For both models, the decay rates depend on the Richardson number in a very similar way. Besides, we also study the inviscid damping of perturbations due to the exponential stratification when there is no shear.
Active Constrained Layer Damping of Thin Cylindrical Shells
RAY, M. C.; OH, J.; BAZ, A.
2001-03-01
The effectiveness of the active constrained layer damping (ACLD) treatments in enhancing the damping characteristics of thin cylindrical shells is presented. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. Experiments are performed to verify the numerical predictions. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
Active Damping of Vibrations in High-Precision Motion Systems
Babakhani, B.
2012-01-01
Technology advancements feed the need for ever faster and more accurate industrial machines. Vibration is a significant source of inaccuracy of such machines. A light-weight design in favor of the speed, and avoiding the use of energy-dissipating materials from the structure to omit any source of inaccuracy, contribute to a low structural damping. The goal of this research is to investigate the addition of damping to the rotational vibration mode of a linearly actuated motion system to •achie...
Embedding viscoelastic damping materials in low-cost VARTM composite structures
Robinson, M. J.; Kosmatka, J. B.
2005-05-01
It has been well established that using viscoelastic damping materials in structural applications can greatly reduce the dynamic response and thus improve structural fatigue life. Previously these materials have been used to solve vibration problems in metallic structures, where the damping material is attached to the structure and then a stiff outer layer is attached to promote shear deformation in the damping material. More recently, these materials have been used successfully in expensive aerospace composite structures, where the damping material is embedded between plies of prepreg graphite/epoxy prior to being cured in a high-temperature, high-pressure autoclave. The current research involves embedding these damping layers into low-cost composite structures fabricated using the Vacuum Assisted Resin Transfer Molding (VARTM) process. The damping layers are perforated with a series of small holes to allow the resin to flow through the damping layer and completely wet-out the structure. Experimental fabrication, vibration testing, and stiffness testing investigate the effect of hole diameter versus hole spacing. Results show that the damping and stiffness can be very sensitive to perforation spacing and size. It is shown that for closely spaced perforations (95% damping area) that damping increases by only a factor of 2.2 over the undamped plate. However, for greater perforation spacing (99.7% damping area) the damping is increased by a factor of 14.3. Experimental results as well as practical design considerations for fabricating damped composite structures using the VARTM process are presented.
Simultaneously high stiffness and damping in nanoengineered microtruss composites.
Meaud, Julien; Sain, Trisha; Yeom, Bongjun; Park, Sei Jin; Shoultz, Anna Brieland; Hulbert, Gregory; Ma, Zheng-Dong; Kotov, Nicholas A; Hart, A John; Arruda, Ellen M; Waas, Anthony M
2014-04-22
Materials combining high stiffness and mechanical energy dissipation are needed in automotive, aviation, construction, and other technologies where structural elements are exposed to dynamic loads. In this paper we demonstrate that a judicious combination of carbon nanotube engineered trusses held in a dissipative polymer can lead to a composite material that simultaneously exhibits both high stiffness and damping. Indeed, the combination of stiffness and damping that is reported is quite high in any single monolithic material. Carbon nanotube (CNT) microstructures grown in a novel 3D truss topology form the backbone of these nanocomposites. The CNT trusses are coated by ceramics and by a nanostructured polymer film assembled using the layer-by-layer technique. The crevices of the trusses are then filled with soft polyurethane. Each constituent of the composite is accurately modeled, and these models are used to guide the manufacturing process, in particular the choice of the backbone topology and the optimization of the mechanical properties of the constituent materials. The resulting composite exhibits much higher stiffness (80 times) and similar damping (specific damping capacity of 0.8) compared to the polymer. Our work is a step forward in implementing the concept of materials by design across multiple length scales.
A practical multiscale approach for optimization of structural damping
Andreassen, Erik; Jensen, Jakob Søndergaard
2016-01-01
A simple and practical multiscale approach suitable for topology optimization of structural damping in a component ready for additive manufacturing is presented.The approach consists of two steps: First, the homogenized loss factor of a two-phase material is maximized. This is done in order...
Vibration damping using a spiral acoustic black hole.
Lee, Jae Yeon; Jeon, Wonju
2017-03-01
This study starts with a simple question: can the vibration of plates or beams be efficiently reduced using a lightweight structure that occupies a small space? As an efficient technique to damp vibration, the concept of an acoustic black hole (ABH) is adopted with a simple modification of the geometry. The original shape of an ABH is a straight wedge-type profile with power-law thickness, with the reduction of vibration in beams or plates increasing as the length of the ABH increases. However, in real-world applications, there exists an upper bound of the length of an ABH due to space limitations. Therefore, in this study, the authors propose a curvilinear shaped ABH using the simple mathematical geometry of an Archimedean spiral, which allows a uniform gap distance between adjacent baselines of the spiral. In numerical simulations, the damping performance increases as the arc length of the Archimedean spiral increases, regardless of the curvature of the spiral in the mid- and high-frequency ranges. Adding damping material to an ABH can also strongly enhance the damping performance while not significantly increasing the weight. In addition, the radiated sound power of a spiral ABH is similar to that of a standard ABH.
Model independent control of lightly damped noise/vibration systems.
Yuan, Jing
2008-07-01
Feedforward control is a popular strategy of active noise/vibration control. In well-damped noise/vibration systems, path transfer functions from actuators to sensors can be modeled by finite impulse response (FIR) filters with negligible errors. It is possible to implement noninvasive model independent feedforward control by a recently proposed method called orthogonal adaptation. In lightly damped noise/vibration systems, however, path transfer functions have infinite impulse responses (IIRs) that cause difficulties in design and implementation of broadband feedforward controllers. A major source of difficulties is model error if IIR path transfer functions are approximated by FIR filters. In general, active control performance deteriorates as model error increases. In this study, a new method is proposed to design and implement model independent feedforward controllers for broadband in lightly damped noise/vibration systems. It is shown analytically that the proposed method is able to drive the convergence of a noninvasive model independent feedforward controller to improve broadband control in lightly damped noise/vibration systems. The controller is optimized in the minimum H2 norm sense. Experiment results are presented to verify the analytical results.
On the effect of damping on dispersion curves in plates
Manconia, Elisabetta; Sorokin, Sergey
2013-01-01
This paper presents a study on quantitative prediction and understanding of time-harmonic wave characteristics in damped plates. Material dissipation is modelled by using complex-valued velocities of free dilatation and shear waves in an unbounded volume. As a numerical example, solution of the c...
Damping of double wall panels including a viscothermal air layer
Basten, T.G.H.; Stainhaouer, G.; Bakamidis, S.; Charalabopoulou, F.
2001-01-01
This paper deals with the dynamic behaviour of double wall panels, with emphasis on damping and sound radiation. It will be shown that a narrow air layer separating the two plates of a panel significantly alters the mentioned quantities by its viscothermal properties. Numerical and experimental resu
Cancer immunogenicity, danger signals, and DAMPs: what, when, and how?
Garg, Abhishek D; Dudek, Aleksandra M; Agostinis, Patrizia
2013-01-01
Cancer immunosurvelliance usually leads to formation of cancer cells that have been "immunoedited" to resist anti-tumor immunity. One of the consequences of immunoediting that is, reduced immunogenicity, is an important roadblock in revival of stable and long-lasting anti-tumor immune responses. Research done during the last decade has shown that emission by the dying cancer cells of immunomodulatory factors or damage-associated molecular patterns (DAMPs), which can act as danger signals, is a critical event in accentuating the immunogenicity of cancer cells, in response to a subset of anticancer treatments. Recent evidence has defined that an apoptotic cell death subroutine and its underlying biochemistry, which has been termed as "immunogenic cell death (ICD)" or "immunogenic apoptosis," is required for the efficient emission of DAMPs and inciting anti-tumor immunity. Here, we review the basic concepts of ICD, like cancer immunogenicity, danger signals, and DAMPs. Moreover, we discuss the emerging molecular links between endoplasmic reticulum (ER) stress, induction of a viral response-like gene expression, danger signals, and anti-tumor immunity. We envisage that along with ER stress-based trafficking of DAMPs (which is a "short-range communicator" of danger), the accompanying induction of a viral response-like gene expression and the secretion of anti-tumorigenic cytokines may become a crucial signature of ICD induction by anticancer therapy.
Quantitative Analysis and Design of a Rudder Roll Damping Controller
Hearns, G.; Blanke, M.
1998-01-01
A rudder roll damping controller is designed using Quantitative feedback theory to be robust for changes in the ships metacentric height. The analytical constraint due to the non-minimum phase behaviour of the rudder to roll is analysed using the Poisson Integral Formula and it is shown how...
Symmetries and conservation laws of a damped Boussinesq equation
Gandarias, María Luz; Rosa, María
2016-08-01
In this work, we consider a damped equation with a time-independent source term. We derive the classical Lie symmetries admitted by the equation as well as the reduced ordinary differential equations. We also present some exact solutions. Conservation laws for this equation are constructed by using the multiplier method.
Sensitivity Analysis for the CLIC Damping Ring Inductive Adder
Holma, Janne
2012-01-01
The CLIC study is exploring the scheme for an electron-positron collider with high luminosity and a nominal centre-of-mass energy of 3 TeV. The CLIC pre-damping rings and damping rings will produce, through synchrotron radiation, ultra-low emittance beam with high bunch charge, necessary for the luminosity performance of the collider. To limit the beam emittance blow-up due to oscillations, the pulse generators for the damping ring kickers must provide extremely flat, high-voltage pulses. The specifications for the extraction kickers of the CLIC damping rings are particularly demanding: the flattop of the output pulse must be 160 ns duration, 12.5 kV and 250 A, with a combined ripple and droop of not more than ±0.02 %. An inductive adder allows the use of different modulation techniques and is therefore a very promising approach to meeting the specifications. PSpice has been utilised to carry out a sensitivity analysis of the predicted output pulse to the value of both individual and groups of circuit compon...
A Look at Damped Harmonic Oscillators through the Phase Plane
Daneshbod, Yousef; Latulippe, Joe
2011-01-01
Damped harmonic oscillations appear naturally in many applications involving mechanical and electrical systems as well as in biological systems. Most students are introduced to harmonic motion in an elementary ordinary differential equation (ODE) course. Solutions to ODEs that describe simple harmonic motion are usually found by investigating the…
The energy density of a Landau damped plasma wave
Best, R. W. B.
1999-01-01
In this paper some theories about the energy of a Landau damped plasma wave are discussed and new initial conditions are proposed. Analysis of a wave packet, rather than an infinite wave, gives a clear picture of the energy transport from field to particles. Initial conditions are found which excite
Damping MEMS Devices in Harsh Environments Using Active Thin Films
2008-06-17
natural motion of domain walls and twin boundaries to absorb the energy. Therefore, the focus of this research is to develop new microscale damping...film is placed in tension the twin boundaries move and when the tension is released the residual stresses in the film produce a restoring force to move
Danish Teachers' Conception of Challenging Behaviour and DAMP/ADHD
Holst, Jesper
2008-01-01
This study examines how teachers of young children in Denmark perceived challenging behaviours in children who have characteristics consistent with Deficit in Attention, Motor Control and Perception (DAMP) or Attention Deficit/Hyperactivity Disorder (ADHD). This study was conducted in schools and kindergartens in three demographically different…
Active damping of the 1D rocking mode
Babakhani, B.; de Vries, Theodorus J.A.
Active damping of a rotational vibration mode in the linear guidance of a precision machine in a one dimensional (1D) setting is considered in this paper. This so-called rocking mode presents itself in machines having linear actuation. The limitation this vibration mode imposes on the machine
Physical damping in IDA-PBC controlled underactuated mechanical systems
Gomez-Estern, F.; Schaft, van der A.J.
2004-01-01
Energy shaping and passivity-based control designs have proven to be effective in solving control problems for tinderactttated mechanical systems. In recent works, interconnection and damping assignment passivity-based control (IDA-PEC) has been successfully applied to open-loop conservative models,
Damping insert materials for settling chambers of supersonic wind tunnels
Wu, Jie; Radespiel, Rolf
2017-03-01
This study describes the application of a novel damping insert material for reducing the flow fluctuations in a tandem nozzle supersonic wind tunnel. This new damping material is composed of multi-layer stainless steel wired meshes. The influences of the multi-layer mesh, such as the quantity of the mesh layer and the installed location in the settling chamber, to the freestream quality have been investigated. A Pitot probe instrumented with a Kulite pressure sensor and a hot-wire probe are employed to monitor the flow fluctuation in the test section of the wind tunnel. Thereafter, a combined modal analysis is applied for the disturbance qualification. Additionally, the transient Mach number in the test section is measured. The disturbance qualification indicates that the multi-layer mesh performs well in providing reduction of vorticity reduction and acoustic fluctuations. Comparable flow quality of the freestream was also obtained using a combination of flexible damping materials. However, the life-span of the new damping materials is much longer. The time transient of the Mach number measured in the test section indicates that the mean flow is rather constant over run time. Furthermore, the time-averaged pressure along the settling chamber is recorded and it shows the distribution of pressure drop by settling chamber inserts.
Quantum corrections to nonlinear ion acoustic wave with Landau damping
Mukherjee, Abhik; Janaki, M. S. [Saha Institute of Nuclear Physics, Calcutta (India); Bose, Anirban [Serampore College, West Bengal (India)
2014-07-15
Quantum corrections to nonlinear ion acoustic wave with Landau damping have been computed using Wigner equation approach. The dynamical equation governing the time development of nonlinear ion acoustic wave with semiclassical quantum corrections is shown to have the form of higher KdV equation which has higher order nonlinear terms coming from quantum corrections, with the usual classical and quantum corrected Landau damping integral terms. The conservation of total number of ions is shown from the evolution equation. The decay rate of KdV solitary wave amplitude due to the presence of Landau damping terms has been calculated assuming the Landau damping parameter α{sub 1}=√(m{sub e}/m{sub i}) to be of the same order of the quantum parameter Q=ℏ{sup 2}/(24m{sup 2}c{sub s}{sup 2}L{sup 2}). The amplitude is shown to decay very slowly with time as determined by the quantum factor Q.
Active Damping of Oscillations in Off-Road Vehicles
Andersen, T. O.; Hansen, M. R.; Conrad, Finn
2003-01-01
This paper relates to analyse and control of the oscillations occuring in many off-road vehicles, which are designed without any suspension. Without suspension, the tire is the only elastic element acting between the vichle and the ground, but the suspension and damping properties of the tires...
Damping Augmentation of Nanocomposites Using Carbon Nanofiber Paper
Gangbing Song
2006-06-01
Full Text Available Vacuum-assisted resin transfer molding (VARTM process was used to fabricate the nanocomposites through integrating carbon nanofiber paper into traditional glass fiber reinforced composites. The carbon nanofiber paper had a porous structure with highly entangled carbon nanofibers and short glass fibers. In this study, the carbon nanofiber paper was employed as an interlayer and surface layer of composite laminates to enhance the damping properties. Experiments conducted using the nanocomposite beam indicated up to 200Ã¢Â€Â“700% increase of the damping ratios at higher frequencies. The scanning electron microscopy (SEM characterization of the carbon nanofiber paper and the nanocomposites was also conducted to investigate the impregnation of carbon nanofiber paper by the resin during the VARTM process and the mechanics of damping augmentation. The study showed a complete penetration of the resin through the carbon nanofiber paper. The connectivities between carbon nanofibers and short glass fibers within the carbon nanofiber paper were responsible for the significant energy dissipation in the nanocomposites during the damping tests.
Variable stiffness and damping suspension system for train
Sun, Shuaishuai; Deng, Huaxia; Li, Weihua
2014-03-01
As the vibration of high speed train becomes fierce when the train runs at high speed, it is crucial to develop a novel suspension system to negotiate train's vibration. This paper presents a novel suspension based on Magnetorheological fluid (MRF) damper and MRF based smart air spring. The MRF damper is used to generate variable damping while the smart air spring is used to generate field-dependent stiffness. In this paper, the two kind smart devices, MRF dampers and smart air spring, are developed firstly. Then the dynamic performances of these two devices are tested by MTS. Based on the testing results, the two devices are equipped to a high speed train which is built in ADAMS. The skyhook control algorithm is employed to control the novel suspension. In order to compare the vibration suppression capability of the novel suspension with other kind suspensions, three other different suspension systems are also considered and simulated in this paper. The other three kind suspensions are variable damping with fixed stiffness suspension, variable stiffness with fixed damping suspension and passive suspension. The simulation results indicate that the variable damping and stiffness suspension suppresses the vibration of high speed train better than the other three suspension systems.
Development of a variable stiffness and damping tunable vibration isolator
Cronje, JM
2005-03-01
Full Text Available In this paper we report on the development of a variable stiffness and damping Liquid Inertia Vibration Eliminator (LIVE) vibration isolator. The result is the ability to shift the isolation frequency of the isolator and also to change...
New electrical tomographic method to determine dampness in historical buildings
Rymarczyk Tomasz
2016-06-01
Full Text Available This paper presents a new, nondestructive method of testing brick wall dampness in wall structures. The setup was used to determine the moisture in a specially built laboratory model. Topological methods and the gradient technique are used to optimize the approach. A forward model of a wall was constructed to solve the inverse problem resulting in moisture buildup inside the wall.
The nature of proximate damped Lyman α systems
Ellison, S.L.; Prochaska, J.X.; Hennawi, J.; Lopez, S.; Usher, C.; Wolfe, A.M.; Russell, D.M.; Benn, C.R.
2010-01-01
We present high-resolution echelle spectra of seven proximate damped Lyman α (PDLA) systems. The relative velocity separation of each PDLA from the background quasar is ΔV < 3000 km s−1. Combining our sample with a further nine PDLAs from the literature we compare the chemical properties of the prox
Rudder-Roll Damping Controller Design using Mu Synthesis
Yang, C.; Blanke, M.
1998-01-01
The effectiveness of rudder roll damping control is very sensitive to uncertainty in ship dynamic parameters. In this paper, an H-infinity controller is designed using mu synthesis and an uncertainty model for roll and yaw that was identified earlier from experiments at sea. The properties...
Damped Mechanical Oscillator: Experiment and Detailed Energy Analysis
Corridoni, Tommaso; D'Anna, Michele; Fuchs, Hans
2014-01-01
The damped oscillator is discussed in every high school textbook or introductory physics course, and a large number of papers are devoted to it in physics didactics journals. Papers typically focus on kinematic and dynamic aspects and less often on energy. Among the latter, some are devoted to the peculiar decreasing behavior of energy…
Measurement of Resonance driving terms in the ATF Damping Ring
Tomás, R; Kuroda, S; Naito, T; Okugi, T; Urakawa, J; Zimmermann, F
2008-01-01
The measurement of resonance driving terms in the Damping Ring of the Accelerator Test Facility in KEK could help finding possible machine imperfections and even to optimize single particle stability through the minimization of non-linearities. The first experimental attempts of this enterprise are reported in this note.
Spatial damping of propagating sausage waves in coronal cylinders
Guo, Ming-Zhe; Chen, Shao-Xia; Li, Bo; Xia, Li-Dong; Yu, Hui
2015-09-01
Context. Sausage modes are important in coronal seismology. Spatially damped propagating sausage waves were recently observed in the solar atmosphere. Aims: We examine how wave leakage influences the spatial damping of sausage waves propagating along coronal structures modeled by a cylindrical density enhancement embedded in a uniform magnetic field. Methods: Working in the framework of cold magnetohydrodynamics, we solve the dispersion relation (DR) governing sausage waves for complex-valued, longitudinal wavenumber k at given real angular frequencies ω. For validation purposes, we also provide analytical approximations to the DR in the low-frequency limit and in the vicinity of ωc, the critical angular frequency separating trapped from leaky waves. Results: In contrast to the standing case, propagating sausage waves are allowed for ω much lower than ωc. However, while able to direct their energy upward, these low-frequency waves are subject to substantial spatial attenuation. The spatial damping length shows little dependence on the density contrast between the cylinder and its surroundings, and depends only weakly on frequency. This spatial damping length is of the order of the cylinder radius for ω ≲ 1.5vAi/a, where a and vAi are the cylinder radius and the Alfvén speed in the cylinder, respectively. Conclusions: If a coronal cylinder is perturbed by symmetric boundary drivers (e.g., granular motions) with a broadband spectrum, wave leakage efficiently filters out the low-frequency components.
Landau damping effects on solar wind fast streams
Dangelo, N.; Joyce, G.; Pesses, M. E.
1979-01-01
Recent measurements by the Pioneer 10 and Helios 1 spacecraft show that the leading edge of a corotating structure spreads as it moves from 0.3 AU to the orbit of the earth and steepens again farther out. By including Landau damping effects in the dynamical behavior of the streams, the above qualitative features can be accounted for.
Vibration control of cylindrical shells using active constrained layer damping
Ray, Manas C.; Chen, Tung-Huei; Baz, Amr M.
1997-05-01
The fundamentals of controlling the structural vibration of cylindrical shells treated with active constrained layer damping (ACLD) treatments are presented. The effectiveness of the ACLD treatments in enhancing the damping characteristics of thin cylindrical shells is demonstrated theoretically and experimentally. A finite element model (FEM) is developed to describe the dynamic interaction between the shells and the ACLD treatments. The FEM is used to predict the natural frequencies and the modal loss factors of shells which are partially treated with patches of the ACLD treatments. The predictions of the FEM are validated experimentally using stainless steel cylinders which are 20.32 cm in diameter, 30.4 cm in length and 0.05 cm in thickness. The cylinders are treated with ACLD patches of different configurations in order to target single or multi-modes of lobar vibrations. The ACLD patches used are made of DYAD 606 visco-elastic layer which is sandwiched between two layers of PVDF piezo-electric films. Vibration attenuations of 85% are obtained with maximum control voltage of 40 volts. Such attenuations are attributed to the effectiveness of the ACLD treatment in increasing the modal damping ratios by about a factor of four over those of conventional passive constrained layer damping (PCLD) treatments. The obtained results suggest the potential of the ACLD treatments in controlling the vibration of cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles.
Active damping of the 1D rocking mode
Babakhani, Bayan; Vries, de Theo
2010-01-01
Active damping of a rotational vibration mode in the linear guidance of a precision machine in a one dimensional (1D) setting is considered in this paper. This so-called rocking mode presents itself in machines having linear actuation. The limitation this vibration mode imposes on the machine precis
Uniform Stability of Damped Nonlinear Vibrations of an Elastic String
Ganesh C Gorain; Sujit K Bose
2003-11-01
Here we are concerned about uniform stability of damped nonlinear transverse vibrations of an elastic string fixed at its two ends. The vibrations governed by nonlinear integro-differential equation of Kirchoff type, is shown to possess energy uniformly bounded by exponentially decaying function of time. The result is achieved by considering an energy-like Lyapunov functional for the system.
Damping of Linear Nonadiabatic MHD Waves in a Flowing Prominence Medium
Nagendra Kumar
2014-01-01
Full Text Available We study the effect of shear flow on the time damping of linear nonadiabatic magnetoacoustic waves in a solar prominence. We consider a homogeneous, isothermal, and unbounded medium permeated by a uniform magnetic field. The adiabaticity is removed by including the optically thin radiative losses, thermal conduction, and heating term in energy equation. We present a local theory of MHD waves to obtain a dispersion relation. The dispersion relation is solved numerically to study the time damping of these waves. It is found that flow influences the damping time and damping per period of both the slow and fast waves significantly. Damping time and damping per period of slow waves are very much higher than the damping time and damping per period of fast waves.
2011-05-18
... Occupational Respiratory Disease from Dampness in Office Buildings, Schools, and other Nonindustrial Buildings... HUMAN SERVICES Centers for Disease Control and Prevention Draft Alert Entitled ``Preventing Occupational Respiratory Disease From Dampness in Office Buildings, Schools, and Other Nonindustrial Buildings''...
Graphite/epoxy Composite Laminates with Co-cured Interlaminar Damping Layers
Pereira, J. Michael
1993-01-01
Damped composite laminates were fabricated by co-curing viscoelastic damping film with graphite/epoxy prepreg plies. The dynamic response of the damped plates was measured using an impulse response technique and compared with the response of similar undamped laminates. Modal damping was computed from the frequency response data. Micrographs of the damped laminates showed that the damping layers retained their integrity during the fabrication process. The layers significantly increased the damping in the composite laminates. The use of the constrained viscoelastic film as an integral part of composite structures appears to be a feasible approach to passive vibration control. Composite plates manufactured with co-cured damping layers may have commercial applications in cases where light weight, strength, and vibration and noise reduction are important considerations.
Nonlinear damping in mechanical resonators made from carbon nanotubes and graphene
Eichler, A.; Moser, J.; Chaste, J.; Zdrojek, M.; Wilson-Rae, I.; Bachtold, A.
2011-06-01
The theory of damping is discussed in Newton's Principia and has been tested in objects as diverse as the Foucault pendulum, the mirrors in gravitational-wave detectors and submicrometre mechanical resonators. In general, the damping observed in these systems can be described by a linear damping force. Advances in nanofabrication mean that it is now possible to explore damping in systems with one or more atomic-scale dimensions. Here we study the damping of mechanical resonators based on carbon nanotubes and graphene sheets. The damping is found to strongly depend on the amplitude of motion, and can be described by a nonlinear rather than a linear damping force. We exploit the nonlinear nature of damping in these systems to improve the figures of merit for both nanotube and graphene resonators. For instance, we achieve a quality factor of 100,000 for a graphene resonator.
Effects of Ce on damping capacity of AZ91D magnesium alloy
黄正华; 郭学锋; 张忠明
2004-01-01
The microstructures and damping capacity of AZ91D cast alloys containing various Ce contents were investigated. Damping capacity (Q-1) of the alloys was measured by cantilever beam technique, and the relationship between damping capacity and strain amplitude was investigated. The results show that Al4 Ce phase is formed in AZ91D alloy after adding a certain quantity of Ce contents, then as-cast microstructures of the alloys are refined.Meanwhile the damping capacity of the alloys is also improved. When the mass fraction of Ce is 0.7 %, the most obvious refinement effect and the maximum damping capacity can be obtained. When the damping capacity (Q-1) is 2. 728 × 10-3 , 61% increment can be obtained compared with unmodified AZ91D alloy. The damping capacity of the alloys is relative to strain amplitude, and the damping behavior can be explained by the theory of Granato and Lucke.
Torsional and axial damping properties of the AZ31B-F magnesium alloy
Anes, V.; Lage, Y. E.; Vieira, M.; Maia, N. M. M.; Freitas, M.; Reis, L.
2016-10-01
Damping properties for the AZ31B-F magnesium alloy were evaluated for pure axial and pure shear loading conditions at room temperature. Hysteretic damping results were measured through stress-strain controlled tests. Moreover, the magnesium alloy viscous damping was measured with frequency response functions and free vibration decay, both results were obtained by experiments. The axial and shear damping ratio (ASDR) has been identified and described, specifically for free vibration conditions.
THE REGULAR SOLUTIONS OF THE ISENTROPIC EULER EQUATIONS WITH DEGENERATE LINEAR DAMPING
ZHU XUSHENG; WANG WEIKE
2005-01-01
The regular solutions of the isentropic Euler equations with degenerate linear damping for a perfect gas are studied in this paper. And a critical degenerate linear damping coefficient is found, such that if the degenerate linear damping coefficient is larger than it and the gas lies in a compact domain initially, then the regular solution will blow up in finite time; if the degenerate linear damping coefficient is less than it, then undersome hypotheses on the initial data, the regular solution exists globally.
Experimental damping assessment of a full scale offshore mono bucket foundation
Gres, Szymon; Fejerskov, Morten; Ibsen, Lars Bo;
2016-01-01
This paper quantifies the system damping of a offshore meteorological mast supported by a Mono Bucket foundation based on a long-term experimental campaign. The structure is located at Dogger Bank west, North Sea, and equipped with a measurement system monitoring acceleration, strain, inclination...... shows that the total damping ratio of the lowest eigenmode is normally distributed with mean value of 1.11% of critical damping. Linear correlation between the damping ratio and the significant wave height is observed....
Shunted Piezoelectric Vibration Damping Analysis Including Centrifugal Loading Effects
Min, James B.; Duffy, Kirsten P.; Provenza, Andrew J.
2011-01-01
Excessive vibration of turbomachinery blades causes high cycle fatigue problems which require damping treatments to mitigate vibration levels. One method is the use of piezoelectric materials as passive or active dampers. Based on the technical challenges and requirements learned from previous turbomachinery rotor blades research, an effort has been made to investigate the effectiveness of a shunted piezoelectric for the turbomachinery rotor blades vibration control, specifically for a condition with centrifugal rotation. While ample research has been performed on the use of a piezoelectric material with electric circuits to attempt to control the structural vibration damping, very little study has been done regarding rotational effects. The present study attempts to fill this void. Specifically, the objectives of this study are: (a) to create and analyze finite element models for harmonic forced response vibration analysis coupled with shunted piezoelectric circuits for engine blade operational conditions, (b) to validate the experimental test approaches with numerical results and vice versa, and (c) to establish a numerical modeling capability for vibration control using shunted piezoelectric circuits under rotation. Study has focused on a resonant damping control using shunted piezoelectric patches on plate specimens. Tests and analyses were performed for both non-spinning and spinning conditions. The finite element (FE) shunted piezoelectric circuit damping simulations were performed using the ANSYS Multiphysics code for the resistive and inductive circuit piezoelectric simulations of both conditions. The FE results showed a good correlation with experimental test results. Tests and analyses of shunted piezoelectric damping control, demonstrating with plate specimens, show a great potential to reduce blade vibrations under centrifugal loading.
Damping Behavior of Alumina Epoxy Nano-Composites
Katiyar, Priyanka; Kumar, Anand
2016-10-01
Polymer nano composites, consisting of a polymer matrix with nanoparticle filler, have been predicted to be one of the most beneficial applications of nanotechnology. Addition of nano particulates to a polymer matrix enhances its performance by capitalizing on the nature and properties of the nano-scale fillers. The damping behavior of composites with nano structured phases is significantly different from that of micro structured materials. Viscoelastic homopolymer exhibit a high material damping response over a relatively narrow range of temperature and frequencies. In many practical situations, a polymeric structure is required to possess better strength and stiffness properties together with a reasonable damping behavior. Viscoelastic polymers show higher loss factor beyond the glassy region which comes with a significant drop in the specific modulus. Addition of nano alumina particles to epoxy leads to improved strength and stiffness properties with an increase in glass transition temperature while retaining its damping capability. Experimental investigations are carried out on composite beam specimen fabricated with different compositions of alumina nano particles in epoxy to evaluate loss factor, tan δ. Impact damping method is used for time response analysis. A single point Laser is used to record the transverse displacement of a point on the composite beam specimen. The experimental results are compared with theoretical estimation of loss factor using Voigt estimation. The effect of inter phase is included in theoretical estimation of loss factor. The result reveals that the study of interface properties is very important in deriving the overall loss factor of the composite since interface occupies a significant volume fraction in the composite.
Damping Effects of Drogue Parachutes on Orion Crew Module Dynamics
Aubuchon, Vanessa V.; Owens, D. Bruce
2016-01-01
Because simulations of the Orion Crew Module (CM) dynamics with drogue parachutes deployed were under-predicting the amount of damping seen in free-flight tests, an attach-point damping model was applied to the Orion system. A key hypothesis in this model is that the drogue parachutes' net load vector aligns with the CM drogue attachment point velocity vector. This assumption seems reasonable and has historically produced good results, but has never been experimentally verified. The wake of the CM influences the drogue parachutes, which makes performance predictions of the parachutes difficult. Many of these effects are not currently modeled in the simulations. A forced oscillation test of the CM with parachutes was conducted in the NASA LaRC 20-Ft Vertical Spin Tunnel (VST) to gather additional data to validate and refine the attach-point damping model. A second loads balance was added to the original Orion VST model to measure the drogue parachute loads independently of the CM. The objective of the test was to identify the contribution of the drogues to CM damping and provide additional information to quantify wake effects and the interactions between the CM and parachutes. The drogue parachute force vector was shown to be highly dependent on the CM wake characteristics. Based on these wind tunnel test data, the attach-point damping model was determined to be a sufficient approximation of the parachute dynamics in relationship to the CM dynamics for preliminary entry vehicle system design. More wake effects should be included to better model the system.
Optimization of SMA layers in composite structures to enhance damping
Haghdoust, P.; Cinquemani, S.; Lecis, N.; Bassani, P.
2016-04-01
The performance of lightweight structures can be severely affected by vibration. New design concepts leading to lightweight, slender structural components can increase the vulnerability of the components to failure due to excessive vibration. The intelligent approach to address the problem would be the use of materials which are more capable in dissipating the energy due to their high value of loss factor. Among the different materials available to achieve damping, much attention has been attached to the use of shape memory alloys (SMAs) because of their unique microstructure, leading to good damping capacity. This work describes the design and optimization of a hybrid layered composite structure for the passive suppression of flexural vibrations in slender and light structures. Embedding the SMA layers in composite structure allows to combine different properties: the lightness of the base composite (e.g. fiber glass), the mechanical strength of the insert of metallic material and the relevant damping properties of SMA, in the martensitic phase. In particular, we put our attention on embedding the CuZnAl in the form of thin sheet in a layered composite made by glass fiber reinforced epoxy. By appropriately positioning of the SMA sheets so that they are subjected to the maximum curvature, the damping of the hybrid system can be considerably enhanced. Accordingly analytical method for evaluating the energy dissipation of the thin sheets with different shapes and patterns is developed and is followed by a shape optimization based on genetic algorithm. Eventually different configurations of the hybrid beam structure with different patterns of SMA layer are proposed and compared in the term of damping capacity.
Damping Behavior of Alumina Epoxy Nano-Composites
Katiyar, Priyanka; Kumar, Anand
2016-05-01
Polymer nano composites, consisting of a polymer matrix with nanoparticle filler, have been predicted to be one of the most beneficial applications of nanotechnology. Addition of nano particulates to a polymer matrix enhances its performance by capitalizing on the nature and properties of the nano-scale fillers. The damping behavior of composites with nano structured phases is significantly different from that of micro structured materials. Viscoelastic homopolymer exhibit a high material damping response over a relatively narrow range of temperature and frequencies. In many practical situations, a polymeric structure is required to possess better strength and stiffness properties together with a reasonable damping behavior. Viscoelastic polymers show higher loss factor beyond the glassy region which comes with a significant drop in the specific modulus. Addition of nano alumina particles to epoxy leads to improved strength and stiffness properties with an increase in glass transition temperature while retaining its damping capability. Experimental investigations are carried out on composite beam specimen fabricated with different compositions of alumina nano particles in epoxy to evaluate loss factor, tan δ. Impact damping method is used for time response analysis. A single point Laser is used to record the transverse displacement of a point on the composite beam specimen. The experimental results are compared with theoretical estimation of loss factor using Voigt estimation. The effect of inter phase is included in theoretical estimation of loss factor. The result reveals that the study of interface properties is very important in deriving the overall loss factor of the composite since interface occupies a significant volume fraction in the composite.
Effect of squeeze on electrostatic Trivelpiece-Gould wave damping
Ashourvan, Arash; Dubin, Daniel H. E. [Department of Physics, University of California at San Diego, La Jolla, California 92093 (United States)
2014-05-15
We present a theory for increased damping of Trivelpiece-Gouid plasma modes on a nonneutral plasma column, due to application of a Debye shielded cylindrically symmetric squeeze potential φ{sub 1}. We present two models of the effect this has on the plasma modes: a 1D model with only axial dependence, and a 2D model that also keeps radial dependence in the squeezed equilibrium and the mode. We study the models using both analytical and numerical methods. For our analytical studies, we assume that φ{sub 1}/T≪1, and we treat the Debye shielded squeeze potential as a perturbation in the equilibrium Hamiltonian. Our numerical simulations solve the 1D Vlasov-Poisson system and obtain the frequency and damping rate for a self-consistent plasma mode, making no assumptions as to the size of the squeeze. In both the 1D and 2D models, damping of the mode is caused by Landau resonances at energies E{sub n} for which the particle bounce frequency ω{sub b}(E{sub n}) and the wave frequency ω satisfy ω=nω{sub b}(E{sub n}). Particles experience a non-sinusoidal wave potential along their bounce orbits due to the squeeze potential. As a result, the squeeze induces bounce harmonics with n > 1 in the perturbed distribution. The harmonics allow resonances at energies E{sub n}≤T that cause substantial damping, even when wave phase velocities are much larger than the thermal velocity. In the regime ω/k≫√(T/m) (k is the wave number) and T≫φ{sub 1}, the resonance damping rate has a |φ{sub 1}|{sup 2} dependence. This dependence agrees with the simulations and experimental results.
Satellite Dynamic Damping via Active Force Control Augmentation
Varatharajoo, Renuganth
2012-07-01
An approach that incorporates the Active Force Control (AFC) technique into a conventional Proportional-Derivative (PD) controller is proposed for a satellite active dynamic damping towards a full attitude control. The AFC method has been established to facilitate a robust motion control of dynamical systems in the presence of disturbances, parametric uncertainties and changes that are commonly prevalent in the real-world environment. The usefulness of the method can be extended by introducing intelligent mechanisms to approximate the mass or inertia matrix of the dynamic system to trigger the compensation effect of the controller. AFC is a technique that relies on the appropriate estimation of the inertial or mass parameters of the dynamic system and the measurements of the acceleration and force signals induced by the system if practical implementation is ever considered. In AFC, it is shown that the system subjected to a number of disturbances remains stable and robust via the compensating action of the control strategy. We demonstrate that it is possible to design a spacecraft attitude feedback controller that will ensure the system dynamics set point remains unchanged even in the presence of the disturbances provided that the actual disturbances can be modeled effectively. In order to further facilitate this analysis, a combined energy and attitude control system (CEACS) is proposed as a model satellite attitude control actuator. All the governing equations are established and the proposed satellite attitude control architecture is made amenable to numerical treatments. The results show that the PD-AFC attitude damping performances are superiorly better than that of the solely PD type. It is also shown that the tunings of the AFC system gains are crucial to ensure a better attitude damping performance and this process is mandatory for AFC systems. Finally, the results demonstrate an important satellite dynamic damping enhancement capability using the AFC
Piezoelectric resonators with mechanical damping and resistance in current conduction
Yook-Kong; YONG; Mihir; S; PATEL
2007-01-01
A novel design method for high Q piezoelectric resonators was presented and proposed using the 3-D equations of linear piezoelectricity with quasi-electrostatic approximation which include losses attributed to mechanical damping in solid and resistance in current conduction. There is currently no finite element software for estimating the Q of a resonator without apriori assumptions of the resonator impedance or damping. There is a necessity for better and more realistic modeling of resonators and filters due to miniaturization and the rapid advances in frequency ranges in telecommunication.We presented new three-dimensional finite element models of quartz and barium titanate resonators with mechanical damping and resistance in current conduction. Lee, Liu and Ballato's 3-D equations of linear piezoelectricity with quasi-electro- static approximation which include losses attributed to mechanical damping in solid and resistance in current conduction were formulated in a weak form and implemented in COMSOL. The resulting finite element model could predict the Q and other electrical parameters for any piezoelectric resonator without apriori assumptions of damping or resistance. Forced and free vibration analyses were performed and the results for the Q and other electrical parameters were obtained. Comparisons of the Q and other electrical parameters obtained from the free vibration analysis with their corresponding values from the forced vibration analysis were found to be in excellent agreement. Hence, the frequency spectra obtained from the free vibration analysis could be used for designing high Q resonators. Results for quartz thickness shear AT-cut and SC-cut resonators and thickness stretch poled barium titanate resonators were presented. An unexpected benefit of the model was the prediction of resonator Q with energy losses via the mounting supports.
Effect of fluid damping on vibration response of immersed rotors
Mahmud Rasheed Ismail, Mustafa Asaad Hussein
2016-01-01
Full Text Available As immersed rotors vibrate in a viscous media such as fluid, a considerable amount of damping may be generated due to the interaction phenomena between the rotor components and the fluid media.Such damping is depending on many factors such as; fluid drag,fluid friction,turbulence, vortex and so on. Immersed rotors find their application in many engineering fields such as Marines machines, gear box, turbine and pumps.In the presentwork, a mathematical modelis attempted to investigate the dynamical behaviorimmersed rotor.The model takes into account the effects of the most rotordynamic parameters, namely; fluid drag,damping and stiffness of bearing,unbalance and gyroscopic effects of the attacheddisc, and elastic bending and internal damping of rotor shaft.Four types of fluid are employed as a fluid immersing media which are; Air, Water, SAE 20 andSAE 40oils.The experimental apparatus includes a sample rotor with single disc and plastic fluid container.Two proximate sensors are employed for measuring the unbalance response and orbits shapes under different rotor speeds, and discs size and locations.Modal analysis is employed for solving the governing equation of vibration motion. To check the validity of the mathematical model the theoretical results are compared with the experimental results. It is found that; the theoretical results are in a good agreement with the experimental ones, where the maximum error is not exceeded (6.8 %, and that;the fluid damping can highly reduce the peak amplitude of the unbalance response (up to 60 % however, it has slight effect on the critical speeds which are highly affected by the size and location of the attached disc.
Enhancing the damping of wind turbine rotor blades, the DAMPBLADE project
Chaviaropoulos, P.K.; Politis, E.S.; Lekou, D.J.
2006-01-01
A research programme enabling the development of damped wind turbine blades, having the acronym DAMPBLADE, has been supported by the EC under its 5th Framework Programme. In DAMPBLADE the following unique composite damping mechanisms were exploited aiming to increase the structural damping...
Closed Loop Control of Active Damped Small DC-link Capacitor Based Drive
Maheshwari, Ram Krishan; Munk-Nielsen, Stig
2010-01-01
A new method of active damping for small DC-link capacitor based drive system is implemented in stator flux oriented control for an induction machine. The active damping technique is based on a detailed model of the drive system which leads to a very simple implementation. The active damping can...
Active damping technique for small DC-link capacitor based drive system
Maheshwari, Ram Krishan; Munk-Nielsen, Stig; Henriksen, Bjarne
2010-01-01
A detailed model of Adjustable Speed Drive (ASD) is discussed, which yield a general rule for active damping in a small DC link based drive. A desired value of input LC resonance damping coefficient can be achieved by changing gain parameters. The modified state space matrix due to active damping...
Analysis of the Passive Damping Losses in LCL-Filter-Based Grid Converters
Alzola, Rafael Pena; Liserre, Marco; Blaabjerg, Frede
2013-01-01
Passive damping is the most adopted method to guarantee the stability of LCL-filter-based grid converters. The method is simple and, if the switching and sampling frequencies are sufficiently high, the damping losses are negligible. This letter proposes the tuning of different passive damping...
Damgaard, Mads; Ibsen, Lars Bo; Andersen, Lars Vabbersgaard;
2013-01-01
techniques, the cross-wind modal damping is estimated on a regular basis. Analyses show maximum cross-wind damping at rated wind speed. For higher wind speeds decreasing damping is observed, mainly due to blade pitch activation. In addition, a high structural acceleration level is needed to activate the soil...
Identifying the damping contribution of building components based on measured top vibration
Berg, R.L.J. van den; Steenbergen, R.D.J.M.
2013-01-01
In this paper, a damping model for a high-rise building is introduced. This model is used to investigate the possibilities to identify the relative damping contribution of the internal material damping in building elements, energy loss at element interfaces and energy outflow at the interface with t
Optimal Location of Plate Damped Parts by Use of a Genetic Algorithm
J.-L. Marcelin
1994-01-01
Full Text Available Optimal damping of plates (or beams partially covered by viscoelastic constrained layers is presented. The design variables are the locations and the sizes of the damped parts. The objective function is a linear combination of the first modal damping factors calculated from a specific finite element analysis. The discrete design variable optimization problem is solved using a genetic algorithm.
INFLUENCE OF HEAT TREATMENT ON DAMPING BEHAVIOUR OF THE MAGNESIUM WROUGHT ALLOY AZ61
无
2007-01-01
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.
Mikael, Ali; Bard, Pierre-Yves; Roux, Philippe; Langlais, Mickael; 10.1785/0120120048
2013-01-01
The characterization and monitoring of buildings is an issue that has attracted the interest of many sectors over the last two decades. With the increasing use of permanent, continuous and real-time networks, ambient vibrations can provide a simple tool for the identification of dynamic building parameters. This study is focused on the long-term variation of frequency and damping in several buildings, using the Random Decrement Technique (RDT). RDT provides a fast, robust and accurate long-term analysis and improves the reliability of frequency and damping measurements for structural health monitoring. This reveals particularly useful information in finding out precisely how far changes in modal parameters can be related to changes in physical properties. This paper highlights the reversible changes of the structure's dynamic parameters, correlated with external forces, such as temperature and exposure to the sun. Contrasting behaviors are observed, including correlation and anti-correlation with temperature ...
Atan Sahin, Ozlem; Kececioglu, Nuray; Serdar, Muhittin; Ozpinar, Aysel
2016-09-01
There are many consequences of mold exposure related to respiratory system health of children This retrospective cohort study aims to find the association between adenoid hypertrophy and mold exposure in children living in damp environments. Children with history of recurrent respiratory tract infections were enrolled in the study between June 2012 and June 2013 and were followed up for adenoid hypertrophy from June 2013 to June 2016. One hundred and forty two children were residents of moldy houses and 242 were living in normal houses. Skin prick test results for 60 common allergens, vitamin D levels, IgE levels, age, presence of comorbidities such as urticaria, atopic dermatitis, allergic conjunctivitis, allergic rhinitis, asthma, frequency of upper respiratory tract infections and lower respiratory tract infections, were evaluated in both groups. A total of 384 children (mean age ± standard deviation = 53.37 ± 36 months; 198 males and 186 females) were included. The children were classified into 2 groups (1)Children living normal houses (n = 242) (2); Children living in damp houses (n = 142) according to mold exposure. Children with adenoid hypertrophy (p hypertrophy. Multiple linear regression analysis was performed to evaluate IgE levels, vitamin D levels, and presence of adenoid as independent variables; age as dependent variable among two groups and was found statistically significant (p hypertrophy (p = 0,01). Housedustmite sensitive children with recurrent lower respiratory tract infection and upper respiratory tract infection were mainly residents of damp houses (p hypertrophy regardless of their atopic nature, however, they may have become more sensitized due to other environmental triggers and genetic factors. In damp environments, sensitization to dermatophagoids, was significantly increased in children with adenoid hypertrophy. During the period of infancy, when children were mostly vitamin D supplemented, they were not sensitized and
Minh-Nghi Ta
2006-01-01
Full Text Available Damping is a mechanism that dissipates vibration energy in dynamic systems and plays a key role in dynamic response prediction, vibration control as well as in structural health monitoring during service. In this paper a time domain and a time-scale domain approaches are used for damping estimation of engineering structures, using ambient response data only. The use of tests under ambient vibration is increasingly popular today because they allow to measure the structural response in service. In this paper we consider two engineering structures excited by ambient forces. The first structure is the 310 m tall TV tower recently constructed in the city of Nanjing in China. The second example concerns the Jinma cable-stayed bridge that connects Guangzhou and Zhaoqing in China. It is a single tower, double row cable-stayed bridge supported by 112 stay cables. Ambient vibration of each cable is carried out using accelerometers. From output data only, the modal parameter are extracted using a subspace method and the wavelet transform method.
Study on damping effect of damping ditch by using LS-DYNA%基于LS-DYNA的减震沟减震效应研究
张袁娟; 王公忠
2015-01-01
为了研究减震沟的减震作用，运用大型动力分析软件LS-DYNA，基于具体工况分别对有减震沟和无减震沟的露天矿台阶爆破进行数值模拟。结果表明，减震沟距离爆源越近，减震效果越好，减震率最高可达77%，为减震沟的减震效应研究和类似工况提供了理论支持。%In order to study the damping effect of damping ditch,the explicit nonlinear dynamic analysis finite element program LS-DYNA is used based on the specific conditions. The two different numerical models with damping ditch and without damping ditch are made respectively to study the damping effect of open-pit blasting. Numerical simulation results show that the nearer the damping ditch from the explosion source is,the better the damping effect will be,and the biggest decreasing amplitude ratio can reach to about 77%,it provides the theoretical support for the research of damping effect of damping ditch and similar conditions.
Novel oscillator model with damping factor for plasmon induced transparency in waveguide systems.
Zhao, Mingzhuo; Li, Hongjian; He, Zhihui; Chen, Zhiquan; Xu, Hui; Zheng, Mingfei
2017-09-06
We introduce a novel two-oscillator model with damping factor to describe the plasmon induced transparency (PIT) in a bright-dark model plasmonic waveguide system. The damping factor γ in the model can be calculated from metal conductor damping factor γ c and dielectric damping factor γ d . We investigate the influence of geometry parameters and damping factor γ on transmission spectra as well as slow-light effects in the plasmonic waveguide system. We can find an obvious PIT phenomenon and realize a considerable slow-light effect in the double-cavities system. This work may provide guidance for optical switching and plasmon-based information processing.
EFFECT OF ANNEALING ON DAMPING CAPACITIES OF AS-CAST ZA27 ALLOY
Z.M. Zhang; J.C. Wang; H.Z. Liu; X.F. Guo
2006-01-01
ZA27 alloy was prepared by casting with permanent mold and then annealed at 250℃for 1-4h.The damping capacity of the alloy was measured using a testing apparatus based on the cantilever beam technique. It was found that the as-cast ZA27 alloy possesses high damping capacity with the value of 1.3 × 10-3 at 320Hz. After annealed at 250℃ for 1h, the damping capacity decreases to 1.1 × 10-3 and then remains constant even when the annealing time is increased to 4h. The microstructure of the as-cast ZA27 alloy consists of large dendrites of Al-rich primary α-phases, eutectoid (α + η) and nonequilibrium eutectic phases (α + η + ε). After annealing at 250℃ for 1h, the ε phase disappears due to dissolution into the matrix, and the spacing between the flakes of eutectoid increases. The further increase in the annealing time has little effect on the spacing. The damping mechanism of the alloy was discussed considering the thermoelastic damping and defect damping. The value of thermoelastic damping accounts only for 7%-8% in the overall damping in cantilever beam damping measurements and the damping capacity of the ZA27 alloy came mainly from defect damping.
Exploring damping characteristics of composite tower of cable-stayed bridges
SHEHATA E ABDEL RAHEEM
2016-03-01
The damping characterization is important in making accurate predictions of the seismic response of the hybrid structures dominated by different damping mechanisms. Different damping characteristics arise from the construction of the tower with different materials: steel for the upper part; reinforced concrete for the lower main part and interaction with supporting soil. The process of modeling damping matrices and experimental verification is challenging because damping cannot be determined via static tests as mass and stiffness can be. The assumption of classical damping is not appropriate if the system to be analyzed consists of two or more parts with significantly different levels of damping. The dynamic response of structures is critically determined by the damping mechanisms, and its value is very important for the design and analysis of vibrating structures. An analytical approach that is capable of evaluating the equivalent modal damping ratio from structural components is desirable for improving seismic design. Two approaches are considered to define and investigate dynamic characteristics of a composite tower of cable-stayed bridges: The first approach makes use of a simplified approximation of two lumped masses to investigate the structure irregularity effects including damping of different material, mass ratio, frequency ratio on dynamic characteristics and modal damping. The second approach employs a detailed numerical step-by-step integration procedure.
Han, Y.H., E-mail: yhhan@kepri.re.kr [KEPCO Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejeon 305-760 (Korea, Republic of); Park, B.J.; Jung, S.Y.; Han, S.C.; Lee, W.R.; Bae, Y.C. [KEPCO Research Institute, 105 Munji-Ro, Yuseong-Gu, Daejeon 305-760 (Korea, Republic of)
2013-02-14
Highlights: ► We made a 35 kWh superconductor flywheel energy storage system. ► The damping coefficient of the superconductor bearing was increased over 3000 N s/m. ► The source of damping was discussed. -- Abstract: A 35 kWh Superconductor Flywheel Energy Storage system (SFES) using hybrid bearing sets, which is composed of a high temperature superconductor (HTS) bearing and an active magnet damper (AMD), has been developed at KEPCO Research Institute (KEPRI). Damping is a source of energy loss but necessary for the stability of the flywheel system. We found that the damping of HTS bearings can be improved by thermal insulating bolts, which play a role of passive type external damper. To investigate the source of the increased damping, damping coefficients were measured with HTS bearings using insulating bolts made of three kinds of polymer materials. The damping coefficient was raised over 3000 N s/m in the case of PEEK bolts. The value was almost a quarter of the AMD. In this study, thermoelastic and Coulomb friction damping mechanisms are discussed. The main damping mechanism was the thermoelastic damping of the bolts themselves. And interfacial gap between the insulating bolt and metal chamber, which increased during the cooling process, was considered to be the cause of the anisotropic damping coefficients. Finally, the effects of the HTS bearings on the first critical speed are shown.
Damped oscillations of linear systems a mathematical introduction
Veselić, Krešimir
2011-01-01
The theory of linear damped oscillations was originally developed more than hundred years ago and is still of vital research interest to engineers, mathematicians and physicists alike. This theory plays a central role in explaining the stability of mechanical structures in civil engineering, but it also has applications in other fields such as electrical network systems and quantum mechanics. This volume gives an introduction to linear finite dimensional damped systems as they are viewed by an applied mathematician. After a short overview of the physical principles leading to the linear system model, a largely self-contained mathematical theory for this model is presented. This includes the geometry of the underlying indefinite metric space, spectral theory of J-symmetric matrices and the associated quadratic eigenvalue problem. Particular attention is paid to the sensitivity issues which influence numerical computations. Finally, several recent research developments are included, e.g. Lyapunov stability and ...
Gas Damping Coefficient Research for MEMS Comb Linear Vibration Gyroscope
Qiufen, G; Feng, S; Fuqiang, L
2008-01-01
Silicon-MEMS gyroscope is an important part of MEMS (Micro Electrical Mechanical System). There are some disturb ignored in traditional gyroscope that must be evaluated newly because of its smaller size (reach the level of micron). In these disturb, the air pressure largely influences the performance of MEMS gyroscope. Different air pressure causes different gas damping coefficient for the MEMS comb linear vibration gyroscope and different gas damping coefficient influences the quality factor of the gyroscope directive. The quality factor influences the dynamic working bandwidth of the MEMS comb linear vibration gyroscope, so it is influences the output characteristic of the MEMS comb linear vibration gyroscope. The paper shows the relationship between the air pressure and the output amplified and phase of the detecting axis through analyzing the air pressure influence on the MEMS comb linear vibration gyroscope. It discusses the influence on the frequency distribute and quality factor of the MEMS comb linear...
Viscous cavity damping of a microlever in a simple fluid.
Siria, A; Drezet, A; Marchi, F; Comin, F; Huant, S; Chevrier, J
2009-06-26
We consider the problem of oscillation damping in air of a thermally actuated microlever as it gradually approaches an infinite wall in parallel geometry. As the gap is decreased from 20 microm down to 400 nm, we observe the increasing damping of the lever Brownian motion in the fluid laminar regime. This manifests itself as a linear decrease in the lever quality factor accompanied by a dramatic softening of its resonance, and eventually leads to the freezing of the CL oscillation. We are able to quantitatively explain this behavior by analytically solving the Navier-Stokes equation with perfect slip boundary conditions. Our findings may have implications for microfluidics and micro- and nanoelectromechanical applications.
Alternative design of the CLIC Damping Ring Lattice
Braun, Hans; Papaphilippou, Yannis; Siniatkin, Sergei; Zolotarev, Konstantin
2010-01-01
An original design of the CLIC damping ring demonstrates the parameters required for the linear collider together with the highly compact lattice (the circumference of the ring is only about 365 m). However, this design can hardly be implemented in a real machine because of such drawbacks as the lack of space between the magnetic elements to accommodate other accelerator components, serious problems with the evacuation of the high radiation power from damping wigglers and strong gradient of quadrupoles and sextupoles, which can hardly be achieved in the frame of the existing magnet technology. From this point of view this design can be considered as an ideal solution and an aim to be approached. In this paper we explore a possibility to design alternative solutions although with a larger size but with the same performance and with the realistic technical parameters.
Calibration of BGO Calorimeter of the DAMPE in Space
Wang, Chi
2016-07-01
The Dark Matter Particle Explore (DAMPE) is a satellite based experiment which launched on December 2015 and aims at indirect searching for dark matter by measuring the spectra of high energy e±, γ from 5GeV up to 10TeV originating from deep space. The 3D imaging BGO calorimeter of DAMPE was designed to precisely measurement the primary energy of the electromagnetic particle and provides a highly efficient rejection of the hadronic background by reconstruct the longitudinal and lateral profiles of showers. To achieve the expected accuracy on the energy measurement, each signal channel has to be calibrated. The energy equalization is performed using the signal that Minimum Ionizing Particles (MIP) leave in each BGO bar, the MIPs measurement method with orbit data and, data quality, time stability using MIPs data will be presented, too.
Precise asymptotic behavior of solutions to damped simple pendulum equations
Tetsutaro Shibata
2009-11-01
Full Text Available We consider the simple pendulum equation $$displaylines{ -u''(t + epsilon f(u'(t = lambdasin u(t, quad t in I:=(-1, 1,cr u(t > 0, quad t in I, quad u(pm 1 = 0, }$$ where $0 < epsilon le 1$, $lambda > 0$, and the friction term is either $f(y = pm|y|$ or $f(y = -y$. Note that when $f(y = -y$ and $epsilon = 1$, we have well known original damped simple pendulum equation. To understand the dependance of solutions, to the damped simple pendulum equation with $lambda gg 1$, upon the term $f(u'(t$, we present asymptotic formulas for the maximum norm of the solutions. Also we present an asymptotic formula for the time at which maximum occurs, for the case $f(u = -u$.
Nonlinear echoes and Landau damping with insufficient regularity
Bedrossian, Jacob
2016-01-01
We prove that the theorem of Mouhot and Villani on Landau damping near equilibrium for the Vlasov-Poisson equations on $\\mathbb T \\times \\mathbb R$ cannot, in general, be extended to Sobolev spaces. This is demonstrated by constructing a sequence of homogeneous background distributions and arbitrarily small perturbations in $H^s$ which deviate arbitrarily far from free transport for long times (in a sense to be made precise). The density experiences a sequence of nonlinear oscillations that damp at a rate which is arbitrarily slow compared to the predictions of the linearized Vlasov equations. The nonlinear instability is due to the repeated re-excitation of a resonance known as a plasma echo. The results hold for a specific, small background distribution, but include both electrostatic and gravitational interactions.
Secondary metabolites from Penicillium corylophilum isolated from damp buildings.
McMullin, David R; Nsiama, Tienabe K; Miller, J David
2014-01-01
Indoor exposure to the spores and mycelial fragments of fungi that grow on damp building materials can result in increased non-atopic asthma and upper respiratory disease. The mechanism appears to involve exposure to low doses of fungal metabolites. Penicillium corylophilum is surprisingly common in damp buildings in USA, Canada and western Europe. We examined isolates of P. corylophilum geographically distributed across Canada in the first comprehensive study of secondary metabolites of this fungus. The sesquiterpene phomenone, the meroterpenoids citreohybridonol and andrastin A, koninginin A, E and G, three new alpha pyrones and four new isochromans were identified from extracts of culture filtrates. This is the first report of koninginins, meroterpenoids and alpha pyrones from P. corylophilum. These secondary metabolite data support the removal of P. corylophilum from Penicillium section Citrina and suggest that further taxonomic studies are required on this species.
DAMPE silicon tracker on-board data compression algorithm
Dong, Yifan; Qiao, Rui; Peng, Wenxi; Fan, Ruirui; Gong, Ke; Wu, Di; Wang, Huanyu
2015-01-01
The Dark Matter Particle Explorer (DAMPE) is an upcoming scientific satellite mission for high energy gamma-ray, electron and cosmic rays detection. The silicon tracker (STK) is a sub detector of the DAMPE payload with an excellent position resolution (readout pitch of 242um), which measures the incident direction of particles, as well as charge. The STK consists 12 layers of Silicon Micro-strip Detector (SMD), equivalent to a total silicon area of 6.5m$^2$. The total readout channels of the STK are 73728, which leads to a huge amount of raw data to be dealt. In this paper, we focus on the on-board data compression algorithm and procedure in the STK, which was initially verified by cosmic-ray measurements.
Damped bead on a rotating circular hoop - a bifurcation zoo
Dutta, Shovan
2012-01-01
The evergreen problem of a bead on a rotating hoop shows a multitude of bifurcations when the bead moves with friction. This motion is studied for different values of the damping coefficient and rotational speeds of the hoop. Phase portraits and trajectories corresponding to all different modes of motion of the bead are presented. They illustrate the rich dynamics associated with this simple system. For some range of values of the damping coefficient and rotational speeds of the hoop, linear stability analysis of the equilibrium points is inadequate to classify their nature. A technique involving transformation of coordinates and order of magnitude arguments is presented to examine such cases. This may provide a general framework to investigate other complex systems.
Optical variability of quasars: a damped random walk
Ivezic, Zeljko
2013-01-01
A damped random walk is a stochastic process, defined by an exponential covariance matrix that behaves as a random walk for short time scales and asymptotically achieves a finite variability amplitude at long time scales. Over the last few years, it has been demonstrated, mostly but not exclusively using SDSS data, that a damped random walk model provides a satisfactory statistical description of observed quasar variability in the optical wavelength range, for rest-frame timescales from 5 days to 2000 days. The best-fit characteristic timescale and asymptotic variability amplitude scale with the luminosity, black hole mass, and rest wavelength, and appear independent of redshift. In addition to providing insights into the physics of quasar variability, the best-fit model parameters can be used to efficiently separate quasars from stars in imaging surveys with adequate long-term multi-epoch data, such as expected from LSST.
Effects of radiation damping on Z-spectra.
Williamson, David C; Närväinen, Johanna; Hubbard, Penny L; Kauppinen, Risto A; Morris, Gareth A
2006-12-01
Radiation damping induced by the strong water magnetization in Z-spectroscopy experiments can be sufficient to perturb significantly the resultant Z-spectrum. With a probe tuned to exact electrical resonance the effects are relatively straightforward, narrowing the central feature of the Z-spectrum. Where, as is commonly the case, the probe is tuned sufficiently well to give optimum signal-to-noise ratio and radiofrequency field strength but is not at exact resonance, radiation damping introduces an unexpected asymmetry into the Z-spectrum. This has the potential to complicate the use of Z-spectrum asymmetry to study chemical exchange, for example in the estimation of pH in vivo.
Configuration Studies and Recommendations for the ILC DampingRings
Wolski, Andrzej; Gao, Jie; Guiducci, Susanna
2006-02-04
We describe the results of studies comparing differentoptions for the baseline configuration of the ILC damping rings. Theprincipal configuration decisions apply to the circumference, beamenergy, lattice type, and technology options for key components,including the injection/extraction kickers and the damping wigglers. Toarrive at our recommended configuration, we performed detailed studies ofa range of lattices representing a variety of different configurationoptions; these lattices are described in Chapter 2. The results of thevarious studies are reported in chapters covering issues of beamdynamics, technical subsystems, costs, and commissioning, reliability andupgradeability. Our detailed recommendations for the baselineconfiguration are given in Chapter 7, where we also outline furtherresearch and development that is needed before a machine using ourrecommended configuration can be built and operated successfully. In thesame chapter, we suggest possible alternatives to the baselineconfiguration.
Viscous cavity damping of a microlever in a simple fluid
Siria, A; Marchi, F; Comin, F; Chevrier, J; Huant, S
2009-01-01
We consider the problem of oscillation damping in air of a thermally actuated microlever as it is gradually approached towards an infinite wall in parallel geometry. As the gap is decreased from 20 nm down to 400 nm, we observe the increasing damping of the lever Brownian motion in the fluid laminar regime. This manifests itself as a linear decrease with distance of the lever quality factor accompanied by a dramatic softening of its resonance, and eventually leads to the freezing of the CL oscillation. We are able to quantitatively explain this behavior by analytically solving the Navier-Stokes equation with perfect slip boundary conditions. Our findings may have implications for microfluidics and micro- nano-electromechanical applications.
Forced wave motion with internal and boundary damping.
Louw, Tobias; Whitney, Scott; Subramanian, Anu; Viljoen, Hendrik
2012-01-01
A d'Alembert-based solution of forced wave motion with internal and boundary damping is presented with the specific intention of investigating the transient response. The dynamic boundary condition is a convenient method to model the absorption and reflection effects of an interface without considering coupled PDE's. Problems with boundary condition of the form [Formula: see text] are not self-adjoint which greatly complicates solution by spectral analysis. However, exact solutions are found with d'Alembert's method. Solutions are also derived for a time-harmonically forced problem with internal damping and are used to investigate the effect of ultrasound in a bioreactor, particularly the amount of energy delivered to cultured cells. The concise form of the solution simplifies the analysis of acoustic field problems.
Quantum secure direct communication over the collective amplitude damping channel
无
2009-01-01
An efficient quantum secure direct communication protocol is presented over the amplitude damping channel.The protocol encodes logical bits in two-qubit noiseless states,and so it can function over a quantum channel subjected to collective amplitude damping.The feature of this protocol is that the sender encodes the secret directly on the quantum states,the receiver decodes the secret by performing determinate measurements,and there is no basis mismatch.The transmission’s safety is ensured by the nonorthogonality of the noiseless states traveling forward and backward on the quantum channel.Moreover,we construct the efficient quantum circuits to implement channel encoding and information encoding by means of primitive operations in quantum computation.
Comments on Landau damping due to synchrotron frequency spread
Ng, K.Y.; /Fermilab
2005-01-01
An inductive/space-charge impedance shifts the synchrotron frequency downwards above/below transition, but it is often said that the coherent synchrotron frequency of the bunch is not shifted in the rigid-dipole mode. On the other hand, the incoherent synchrotron frequency due to the sinusoidal rf always spreads in the downward direction. This spread will therefore not be able to cover the coherent synchrotron frequency, implying that there will not be any Landau damping no matter how large the frequency spread is. By studying the dispersion relation, it is shown that the above argument is incorrect, and there will be Landau damping if there is sufficient frequency spread. The main reason is that the coherent frequency of the rigid-dipole mode will no longer remain unshifted in the presence of a synchrotron frequency spread.
Generalized Landau damping due to multi-plasmon resonances
Brodin, Gert; Zamanian, Jens
2016-01-01
We study wave-particle interaction of Langmuir waves in a fully degenerate plasma using the Wigner-Moyal equation. As is well known, in the short wavelength regime the resonant velocity is shifted from the phase velocity due to the finite energy and momentum of individual plasmon quanta. In the present work we focus on the case when the resonant velocity lies outside the background distribution, i.e. when it is larger than the Fermi velocity. Going beyond the linearized theory we show that we can still have nonlinear wave-particle damping associated with multi-plasmon resonances. Sets of evolution equations are derived for the case of two-plasmon resonance and for the case of three-plasmon resonance. The damping rates of the Langmuir waves are deduced for both cases, and the implications of the results are discussed.
Gravitational Landau damping for an isotropic cluster of stars
Habib, Salman; Kandrup, Henry E.; Yip, Ping F.
1986-01-01
The problem of ascertaining the dynamical stability and the existence of Landau damping in static, isotropic 'collisionless' star clusters is addressed. The second-order formalism of Kandrup and Sygnet (1985) is applied to a homogeneous and isotropic plasma, demonstrating formally that the unperturbed configuration will always be stable and that the modes must be purely oscillatory. The form of these modes is explicitly examined, culminating in an analytic expression for the time evolution of the density induced by an initial perturbation. It is shown how these considerations can be adapted trivially to localized, nonradial disturbances of a self-gravitating system of stars. The possible existence of gravitational Landau damping for more generic perturbations is discussed.
Damping of nonlinear standing kink oscillations: a numerical study
Magyar, N
2016-01-01
We aim to study the standing fundamental kink mode of coronal loops in the nonlinear regime, investigating the changes in energy evolution in the cross-section and oscillation amplitude of the loop which are related to nonlinear effects, in particular to the development of the Kelvin-Helmholtz instability (KHI). We run idea, high-resolution three-dimensional (3D) magnetohydrodynamics (MHD) simulations, studying the influence of the initial velocity amplitude and the inhomogeneous layer thickness. We model the coronal loop as a straight, homogeneous magnetic flux tube with an outer inhomogeneous layer, embedded in a straight, homogeneous magnetic field. We find that, for low amplitudes which do not allow for the KHI to develop during the simulated time, the damping time agrees with the theory of resonant absorption. However, for higher amplitudes, the presence of KHI around the oscillating loop can alter the loop's evolution, resulting in a significantly faster damping than predicted by the linear theory in so...
LOCAL STABILITY OF TRAVELLING FRONTS FOR A DAMPED WAVE EQUATION
Cao LUO
2013-01-01
The paper is concerned with the long-time behaviour of the travelling fronts of the damped wave equation αutt +ut =uxx-V'(u) on R.The long-time asymptotics of the solutions of this equation are quite similar to those of the corresponding reaction-diffusion equation ut =uxx-V'(u).Whereas a lot is known about the local stability of travelling fronts in parabolic systems,for the hyperbolic equations it is only briefly discussed when the potential V is of bistable type.However,for the combustion or monostable type of V,the problem is much more complicated.In this paper,a local stability result for travelling fronts of this equation with combustion type of nonlinearity is established.And then,the result is extended to the damped wave equation with a case of monostable pushed front.
Damping properties of silicone rubber/polyacrylate sequential interpenetrating networks
WANG Yan-bing; HUANG Zhi-xiong; ZHANG Lian-meng
2006-01-01
Silicone rubber/polyacrylate sequential interpenetrating polymer networks(IPNs) were prepared by silicone rubber sheet dipped into the solution composed of different acrylate monomers and benzoyl peroxides(BPOs) for different time at room temperature and then acrylate polymerized at 80 ℃ for 2 h. The molecular structure and damping properties of sequential IPNs were studied by means of FT-IR and dynamic mechanical analysis(DMA),respectively. The FT-IR spectrum shows that polyacrylate distributes unevenly along the thickness direction of IPNs,i.e. the concentration of polyacrylate decreases from the midst to the surface of the IPNs. The DMA shows that cold crystallization of silicone in the temperature range from -47 ℃ to -30 ℃ is reduced and loss factor of IPNs is improved after interpenetrating with polyacrylate. This suggestes that IPNs can be used as damping materials.
Quantum secure direct communication over the collective amplitude damping channel
QIN Suduan; WEN QiaoYan; MENG LuoMing; ZHU FuChen
2009-01-01
An efficient quantum secure direct communication protocol is presented over the amplitude damping channel. The protocol encodes logical bits in two-qubit noiseless states, and so it can function over a quantum channel subjected to collective amplitude damping. The feature of this protocol is that the sender encodes the secret directly on the quantum states, the receiver decodes the secret by per-forming determinate measurements, and there is no basis mismatch. The transmission's safely is en-sured by the nonorthogonality of the noiseless states traveling forward and backward on the quantum channel. Moreover, we construct the efficient quantum circuits to implement channel encoding and information enooding by means of primitive operations in quantum computation.
INFLUENCE OF GASEOUS MEDIA ON DAMPING OF PNEUMATIC COUPLINGS
Jozef KRAJŇÁK
2015-12-01
Full Text Available In our department has long been devoted specifically flexible pneumatic shaft couplings. These couplings are filled with a gaseous medium air. Examination, we found that the type of gas, its properties such as gas density, compressibility factor, molecular weight and viscosity alter dynamic properties pneumatic coupling. The main objective of this article is to determine how various gaseous media influences damping coefficient b. The article compares three different gases, air, helium and propane-butane. These gases have different properties and it can change damping coefficient b. The measurements are performed in the laboratories of our department in Košice. We used flexible one-bellow pneumatic coupling 4-1/70-T-C and two-bellows pneumatic coupling 4-2/70-T-C. Pressure gaseous medium was varied in the range of 100 to 600kPa.
Autoregressive trispectrum and its slices analysis of magnetorheological damping device
陈丙三; 黄宜坚
2008-01-01
A combined magnetorheological damper combined with rubber spring and magnetorheological damper is addressed.This type of damping device has inherited the merits of rubber spring and the magnetorheological damper.The test damping device is made up of combined magnetorheological damper,amplitude controller,signal collecting device,computer software for dynamic analysis,etc.When a zeromean and non-Gaussian white noise interfere with the device,a time series autoregressive(AR) model is conducted by using the sampled experimental data.Trispectrum and its slices analysis are emerging as a new powerful technique in signal processing,which is put forward for investigating the dynamic characteristics of the magnetorheological vibrant device.The present of trispectrum and its slices analysis change with the variation of controllable working magnetic field of the damper correspondingly.It is indicated that AR trispectrum and its slices analysis methods are feasible and effective for investigation of magnetorheological vibrant device.
Configuration Studies and Recommendations for the ILC DampingRings
Wolski, Andrzej; Gao, Jie; Guiducci, Susanna
2006-02-04
We describe the results of studies comparing differentoptions for the baseline configuration of the ILC damping rings. Theprincipal configuration decisions apply to the circumference, beamenergy, lattice type, and technology options for key components,including the injection/extraction kickers and the damping wigglers. Toarrive at our recommended configuration, we performed detailed studies ofa range of lattices representing a variety of different configurationoptions; these lattices are described in Chapter 2. The results of thevarious studies are reported in chapters covering issues of beamdynamics, technical subsystems, costs, and commissioning, reliability andupgradeability. Our detailed recommendations for the baselineconfiguration are given in Chapter 7, where we also outline furtherresearch and development that is needed before a machine using ourrecommended configuration can be built and operated successfully. In thesame chapter, we suggest possible alternatives to the baselineconfiguration.
Configuration Studies and Recommendations for the ILC DampingRings
Wolski, Andrzej; Gao, Jie; Guiducci, Susanna
2006-02-04
We describe the results of studies comparing different options for the baseline configuration of the ILC damping rings. The principal configuration decisions apply to the circumference, beam energy, lattice type, and technology options for key components, including the injection/extraction kickers and the damping wigglers. To arrive at our recommended configuration, we performed detailed studies of a range of lattices representing a variety of different configuration options; these lattices are described in Chapter 2. The results of the various studies are reported in chapters covering issues of beam dynamics, technical subsystems, costs, and commissioning, reliability and upgrade ability. Our detailed recommendations for the baseline configuration are given in Chapter 7, where we also outline further research and development that is needed before a machine using our recommended configuration can be built and operated successfully. In the same chapter, we suggest possible alternatives to the baseline configuration.
Fast damping of ultralow frequency waves excited by interplanetary shocks in the magnetosphere
Wang, Chengrui; Rankin, Robert; Zong, Qiugang
2015-04-01
Analysis of Cluster spacecraft data shows that intense ultralow frequency (ULF) waves in the inner magnetosphere can be excited by the impact of interplanetary shocks and solar wind dynamic pressure variations. The observations reveal that such waves can be damped away rapidly in a few tens of minutes. Here we examine mechanisms of ULF wave damping for two interplanetary shocks observed by Cluster on 7 November 2004 and 30 August 2001. The mechanisms considered are ionospheric joule heating, Landau damping, and waveguide energy propagation. It is shown that Landau damping provides the dominant ULF wave damping for the shock events of interest. It is further demonstrated that damping is caused by drift-bounce resonance with ions in the energy range of a few keV. Landau damping is shown to be more effective in the plasmasphere boundary layer due to the higher proportion of Landau resonant ions that exist in that region.
Damping Evaluation for Free Vibration of Spherical Structures in Elastodynamic-Acoustic Interaction
Joumaa, Hady k
2016-01-01
This paper discusses the free vibration of elastic spherical structures in the presence of an externally unbounded acoustic medium. In this vibration, damping associated with the radiation of energy from the confined solid medium to the surrounding acoustic medium is observed. Evaluating the coupled system response (solid displacement and acoustic pressure) and characterizing the acoustic radiation damping in conjunction with the media properties are the main objectives of this research. In this work, acoustic damping is demonstrated for two problems: the thin spherical shell and the solid sphere. The mathematical approach followed in solving these coupled problems is based on the Laplace transform method. The linear under-damped harmonic oscillator is the reference model for damping estimation. The damping evaluation is performed in frequency as well as in time domains; both investigations lead to identical damping factor expressions.
The Study of Cutting Conditions Effects on the Damping Process Using the Experimental Taguchi Method
Haikel Mejri
2016-01-01
Full Text Available This article focuses on determining the effects of cutting conditions and their interactions on the cutting process damping in the case of curvilinear milling. The tests were performed using a numerical model simulation that allows the prediction of cutting forces and damping. The effects and interactions are determined using the Taguchi experimental method. Analysis of variance (ANOVA was performed to know the level of importance of the machining parameters on the cutting damping process. The results revealed that the Depth of cut Ap “C” and cutting speed Vc “B” have the most significant influence on the Cxx and Cxy process damping. The variations of tool diameter D “A” and clearance angle α have remarkable effects on the process damping Cxx. The “BC” interaction has the greatest effect on the process damping Cxx while the “AC” interaction has the greatest effect on the process damping Cxy.
Damping of MHD turbulence in partially ionized plasma: implications for cosmic ray propagation
Xu, Siyao; Lazarian, A
2015-01-01
We study the damping from neutral-ion collisions of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in partially ionized medium. We start from the linear analysis of MHD waves applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and cutoff boundary of linear MHD waves is investigated. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and solar chromosphere. As a significant astrophysical utility, we introduce damping effects to propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
The mixed level damping of the single-axial rotation of INS
Wang, Chao; Zhu, Hai; Li, Gang; Gao, Dayuan
2011-12-01
In order to improve the accuracy of the Single-axial Rotation of INS (SRINS), the idea of the level damping of the platform INS is introduced to the system, and the principle of the damping is offered. On the basic of analyzing on both of inner level damping and outer level damping, the mixed level damping is put forward. The results show that by introducing the damping network to the system, both of the Schuler oscillation and the Foucault oscillation are eliminated, and the precision of the SRINS is greatly enhanced; At the same time, by used of the mixed level damping, which can not only reduce the effect of the vehicle power-driven to the precision of the system, but also avoid the limit of the accurate reference velocity.
Longitudinal Vibration of CNTs Viscously Damped in Span
Mustafa Arda
2017-07-01
Full Text Available In this study, longitudinal vibration of a carbon nanotube with an attached damper has been investigated using the nonlocal stress gradient elasticity theory. Equations of motions have been solved analytically and frequencies of clamped-clamped and clamped-free nanotubes have been obtained explicitly in terms of damping coefficient, nonlocal parameter, the attachment point of damper and nanotube length. The nonlocal effects have important effects on the dynamics of a CNT with an attached damper.
Theoretical Research of Magnetorheological Shock Absorber Damping Force
Andrius Klevinskis
2014-02-01
Full Text Available In the article an overview of magnetorheological shock absorbertypes is presented, theoretical calculations of heat dispersion,magnetic field strength produced by shock absorber as well asmaximum power of electromagnet are provided. The article alsoprovides device damping force in line with a change of devicetemperature. In the end of the research the results of experimentare presented in the graph format as well as the conclusions.
Gas Damping Coefficient Research for MEMS Comb Linear Vibration Gyroscope
Qiufen, G.; Yuansheng, G.; Feng, S.; Fuqiang, L.
2007-01-01
Submitted on behalf of EDA Publishing Association (http://irevues.inist.fr/EDA-Publishing); International audience; Silicon-MEMS gyroscope is an important part of MEMS ( Micro Electrical Mechanical System). There are some disturb ignored in traditional gyroscope that must be evaluated newly because of its smaller size (reach the level of micron). In these disturb, the air pressure largely influences the performance of MEMS gyroscope. Different air pressure causes different gas damping coeffic...
Quadratic and Cubic Nonlinear Oscillators with Damping and Their Applications
Li, Jibin; Feng, Zhaosheng
We apply the qualitative theory of dynamical systems to study exact solutions and the dynamics of quadratic and cubic nonlinear oscillators with damping. Under certain parametric conditions, we also consider the van der Waals normal form, Chaffee-Infante equation, compound Burgers-KdV equation and Burgers-KdV equation for explicit representations of kink-profile wave solutions and unbounded traveling wave solutions.
Entanglement-enhanced classical communication through generalized amplitude damping channel
Hou Li-Zhen; Fang Mao-Fa
2007-01-01
The problem of sending a single classical bit through a generalized amplitude damping channel is considered.When two transmissions through the channel are available as a resource, we find that two entangled transmissions can enhance the capability of receiver's judging information correctly under certain conditions compared with two productstate transmissions. In addition, we find a special case in which the two entangled transmissions can always make a classical bit more effectively disable the noise influence.
Finite element model calibration using frequency responses with damping equalization
Abrahamsson, T. J. S.; Kammer, D. C.
2015-10-01
Model calibration is a cornerstone of the finite element verification and validation procedure, in which the credibility of the model is substantiated by positive comparison with test data. The calibration problem, in which the minimum deviation between finite element model data and experimental data is searched for, is normally characterized as being a large scale optimization problem with many model parameters to solve for and with deviation metrics that are nonlinear in these parameters. The calibrated parameters need to be found by iterative procedures, starting from initial estimates. Sometimes these procedures get trapped in local deviation function minima and do not converge to the globally optimal calibration solution that is searched for. The reason for such traps is often the multi-modality of the problem which causes eigenmode crossover problems in the iterative variation of parameter settings. This work presents a calibration formulation which gives a smooth deviation metric with a large radius of convergence to the global minimum. A damping equalization method is suggested to avoid the mode correlation and mode pairing problems that need to be solved in many other model updating procedures. By this method, the modal damping of a test data model and the finite element model is set to be the same fraction of critical modal damping. Mode pairing for mapping of experimentally found damping to the finite element model is thus not needed. The method is combined with model reduction for efficiency and employs the Levenberg-Marquardt minimizer with randomized starts to achieve the calibration solution. The performance of the calibration procedure, including a study of parameter bias and variance under noisy data conditions, is demonstrated by two numerical examples.
Coaxial HOM coupler for the 500 MHz RF damped cavity
Koseki, T; Takahashi, T; Kamiya, Yu; Satoh, K; Ogata, H
2001-01-01
We have developed a new higher-order modes (HOMs) coupler of coaxial waveguide type for the 500 MHz damped cavity. An SiC ceramics is adopted as microwave absorber. Two prototype models of the HOM coupler have been fabricated and tested. The detailed design of the coupler is described in this paper. The results of RF characteristics measurement and high power conditioning are also presented.
Conservation laws of inviscid Burgers equation with nonlinear damping
Abdulwahhab, Muhammad Alim
2014-06-01
In this paper, the new conservation theorem presented in Ibragimov (2007) [14] is used to find conservation laws of the inviscid Burgers equation with nonlinear damping ut+g(u)ux+λh(u)=0. We show that this equation is both quasi self-adjoint and self-adjoint, and use these concepts to simplify conserved quantities for various choices of g(u) and h(u).
Collisionless damping of electron waves in non-Maxwellian plasma
Soshnikov, V. N.
2007-01-01
In this paper we have criticized the so-called Landau damping theory. We have analyzed solutions of the standard dispersion equations for longitudinal (electric) and transversal (electromagnetic and electron) waves in half-infinite slab of the uniform collisionless plasmas with non-Maxwellian and Maxwellian-like electron energy distribution functions. One considered the most typical cases of both the delta-function type distribution function (the plasma stream with monochromatic electrons) an...
Driven damped harmonic oscillator resonance with an Arduino
Goncalves, A. M. B.; Cena, C. R.; Bozano, D. F.
2017-07-01
In this paper we propose a simple experimental apparatus that can be used to show quantitative and qualitative results of resonance in a driven damped harmonic oscillator. The driven oscillation is made by a servo motor, and the oscillation amplitude is measured by an ultrasonic position sensor. Both are controlled by an Arduino board. The frequency of free oscillation measured was campatible with the resonance frequency that was measured.
Oscillation criteria for nonlinear fractional differential equation with damping term
Bayram Mustafa
2016-01-01
Full Text Available In this paper, we study the oscillation of solutions to a non-linear fractional differential equation with damping term. The fractional derivative is defined in the sense of the modified Riemann-Liouville derivative. By using a variable transformation, a generalized Riccati transformation, inequalities, and integration average techniquewe establish new oscillation criteria for the fractional differential equation. Several illustrative examples are also given.
Damped Topological Magnons in the Kagome-Lattice Ferromagnets
Chernyshev, A. L.; Maksimov, P. A.
2016-10-01
We demonstrate that interactions can substantially undermine the free-particle description of magnons in ferromagnets on geometrically frustrated lattices. The anharmonic coupling, facilitated by the Dzyaloshinskii-Moriya interaction, and a highly degenerate two-magnon continuum yield a strong, nonperturbative damping of the high-energy magnon modes. We provide a detailed account of the effect for the S =1 /2 ferromagnet on the kagome lattice and propose further experiments.
Estimation on nonlinear damping in second order distributed parameter systems
Banks, H. T.; Reich, Simeon; Rosen, I. G.
1989-01-01
An approximation and convergence theory for the identification of nonlinear damping in abstract wave equations is developed. It is assumed that the unknown dissipation mechanism to be identified can be described by a maximal monotone operator acting on the generalized velocity. The stiffness is assumed to be linear and symmetric. Functional analytic techniques are used to establish that solutions to a sequence of finite dimensional (Galerkin) approximating identification problems in some sense approximate a solution to the original infinite dimensional inverse problem.
Methods for elimination of dampness in Building walls
Campian, Cristina; Pop, Maria
2016-06-01
Dampness elimination in building walls is a very sensitive problem, with high costs. Many methods are used, as: chemical method, electro osmotic method or physical method. The RECON method is a representative and a sustainable method in Romania. Italy has the most radical method from all methods. The technology consists in cutting the brick walls, insertion of a special plastic sheeting and injection of a pre-mixed anti-shrinking mortar.
Gravitational radiation resistance, radiation damping and field fluctuations
Schaefer, G.
1981-03-01
Application is made of two different generalized fluctuation-dissipation theorems and their derivations to the calculation of the gravitational quadrupole radiation resistance using the radiation-reaction force given by Misner, Thorne and Wheeler and the usual tidal force on one hand and the tidal force and the free gravitational radiation field on the other hand. The quantum-mechanical version (including thermal generalizations) of the well known classical quadrupole radiation damping formula is obtained as a function of the radiation resistance.
Screening effects on plasmon damping in an electron liquid
Bachlechner, Martina E.; Böhm, Helga M.; Schinner, Andreas
1993-03-01
Plasmon damping in the three-dimensional homogeneous electron gas is investigated within the formalism of second-order perturbation theory, concentrating on the effects of static and dynamic screening. We have found several different theoretical approaches leading to comparable results, especially in the metallic-density regime. Using a spin-dependent interaction, however, significantly improves the results of our theory towards a better agreement with the experiments.
Piezoelectric Generation and Damping of Extensional Waves in Bars
Jansson, Anders
2007-01-01
This thesis focuses on the electromechanical processes of generation and damping of transient waves in bars with attached piezoelectric members. In particular, the influence of amplifier and electrical circuitry on the mechanical waves is of interest. A straight bar element containing piezoelectric members is viewed as a linear system with one electrical and two mechanical ports where it interacts with external electrical and mechanical devices through voltage, current, forces and velocities....
Power system damping - Structural aspects of controlling active power
Samuelsson, O.
1997-04-01
Environmental and economical aspects make it difficult to build new power lines and to reinforce existing ones. The continued growth in demand for electric power must therefore to a great extent be met by increased loading of available lines. A consequence is that power system damping is reduced, leading to a risk of poorly damped power oscillations between the generators. This thesis proposes the use of controlled active loads to increase damping of such electro-mechanical oscillations. The focus is on structural aspects of controller interaction and of sensor and actuator placement. On-off control based on machine frequency in a single machine infinite bus system is analysed using energy function analysis and phase plane plots. An on-off controller with estimated machine frequency as input has been implemented. At a field test it damped oscillations of a 0.9 MW hydro power generator by controlling a 20kW load. The linear analysis uses two power system models with three and twenty-three machines respectively. Each damper has active power as output and local bus frequency or machine frequency as input. The power system simulator EUROSTAG is used both for generation of the linearized models and for time simulations. Measures of active power mode controllability and phase angle mode observability are obtained from the eigenvectors of the differential-algebraic models. The geographical variation in the network of these quantities is illustrated using the resemblance to bending modes of flexible mechanical structures. Eigenvalue sensitivities are used to determine suitable damper locations. A spring-mass equivalent to an inter-area mode provides analytical expressions, that together with the concept of impedance matching explain the structural behaviour of the power systems. For large gains this is investigated using root locus plots. 64 refs, 99 figs, 20 tabs
New Damped-Jerk trajectory for vibration reduction
BEAREE, Richard
2014-01-01
This paper derives a jerk-shaped profile to address the vibration reduction of underdamped flexible dynamics of motion system. The jerk-limited profile is a widespread smooth command pattern used by modern motion systems. The ability of the jerk-limited profile to cancel the residual vibration of an undamped flexible mode is clearly explained using an equivalent continuous filter representation and the input shaping formalism. This motivates the design of a new jerk-shaped profile, named Damp...
Mathematical Model of the Heald with Damping Element
Bílek Martin
2015-03-01
Full Text Available This study focuses on the analysis of the existing design solution of shedding mechanism. It is characterised by a heald attachment into the heald shaft with a necessary design allowance. The preparation of a mathematical model for the new concept of the heald attaching to the heald shaft frame is explained in this study. A damping element for dissipating the energy created during the heald impact on the carrying wire of the heald shaft is currently used for the high-speed weaving loom. This system makes use of a damping element, fitted in the profile of the rod at an optimum distance from heald eye. This element provides for reduction of the heald velocity before its drop upon the supporting wire because the opposite section of the heald is pressed into the rubber element. The calculated results of the new concept of the heald attaching to the heald shaft frame are compared with the existing solution without application of the damping element.
Unimodal optimal passive electromechanical damping of elastic structures
Ben Mekki, O.; Bourquin, F.; Maceri, F.; Merliot, E.
2013-08-01
In this paper, a new electromechanical damper is presented and used, made of a pendulum oscillating around an alternator axis and connected by a gear to the vibrating structure. In this way, the mechanical energy of the oscillating mass can be transformed into electrical energy to be dissipated when the alternator is branched on a resistor. This damping device is intrinsically non-linear, and the problem of the optimal parameters and of the best placement of this damper on the structure is studied. The optimality criterion chosen here is the maximum exponential time decay rate (ETDR) of the structural response. This criterion leads to new design formulas. The case of a bridge under construction is considered and the analytical results are compared with experimental ones, obtained on a mock-up made of a vertical tower connected to a free-end horizontal beam, to simulate the behavior of a cable-stayed bridge during the erection phase. Up to three electromechanical dampers are placed in order to study the multi-modal damping. The satisfactory agreement between the theoretical model and the experiments suggests that a multi-modal passive damping of electromagnetic type could be effective on lightweight flexible structures, when dampers are suitably placed.
Magnetoelastic vibration damping properties of TbDy alloys
Dooley, Jennifer A.; Good, Nathan R.; White, Christopher V.; Leland, Robert S.
2003-03-01
Damping of axial and bending mode vibrations in giant magnetoelastic polycrystalline TbDy alloys was studied at cryogenic temperatures. All specimens of TbDy were arc-melted in the proper composition ratio and dropped into a chilled copper mold. Additional treatments consisted of cold plane-rolling to induce crystallographic texture and then heat-treating to relieve internal stress. Mechanical hysteretic losses were measured at various strains, frequencies, and loading configurations down to 77 K. Both as-cast and textured polycrystalline TbDy samples were tested along with an aluminum specimen for comparison. Loss factors at multiple natural vibration frequencies of the samples were measured for axial modes. Larger damping rates were measured for axial mode vibrations than for bending mode vibrations, possibly reflecting the larger specimen volume contributing to magnetoelastic damping. At LN2 temperatures TbDy materials demonstrated η > 0.05 at 0.01 Hz and η > 0.1 at higher frequencies from 0.6-1.5 kHz.
Thermal Degradation and Damping Characteristic of UV Irradiated Biopolymer
Anika Zafiah M. Rus
2015-01-01
Full Text Available Biopolymer made from renewable material is one of the most important groups of polymer because of its versatility in application. In this study, biopolymers based on waste vegetable oil were synthesized and cross-link with commercial polymethane polyphenyl isocyanate (known as BF. The BF was compressed by using hot compression moulding technique at 90°C based on the evaporation of volatile matter, known as compress biopolymer (CB. Treatment with titanium dioxide (TiO2 was found to affect the physical property of compressed biopolymer composite (CBC. The characterization of thermal degradation, activation energy, morphology structure, density, vibration, and damping of CB were determined after UV irradiation exposure. This is to evaluate the photo- and thermal stability of the treated CB or CBC. The vibration and damping characteristic of CBC samples is significantly increased with the increasing of UV irradiation time, lowest thickness, and percentages of TiO2 loading at the frequency range of 15–25 Hz due to the potential of the sample to dissipate energy during the oscillation harmonic system. The damping property of CBC was improved markedly upon prolonged exposure to UV irradiation.
Damping capacity and compressive characteristic in some aluminum foams
程和法; 黄笑梅; 魏建宁; 韩福生
2003-01-01
The compressive behavior, energy absorption and damping capacity of Al-28% Zn alloy foam, Al-10% Mg alloy foam and commercial pure aluminum foam with open cell were investigated. The Al-28 % Zn alloy foam exhibits the typical deformation behavior of brittle foam in static compression, and a much higher energy absorption capacity than the Al-10%Mg alloy foam and pure aluminum foam to the densification strain. Over a large plastic strain range, the energy absorption efficiency of the Al-28 % Zn alloy foam keeps nearly constant and above 80%. The experiments on the internal friction of the three foams are also conducted on a multifunction internal friction apparatus (MFIFA). The Al-28%Zn alloy foam exhibits a high damping capacity which is three to four times larger than those of the pure aluminum foam and Al-28%Mg alloy foam around room temperature. The mechanism for the high damping capacity of the foamed Al-28%Zn alloy may be associated with the viscous sliding at the interface between the soft phase α and the brittle rich Zn phase η in its base metal during vibration.
Optics design of Intrabeam Scattering dominated damping rings
Antoniou, Fanouria; Papaphilippou, Ioannis
A e+/e- linear collider, the Compact Linear Collider (CLIC) is under design at CERN, aiming to explore the terascale particle physics regime. The collider has been optimized at 3 TeV center of mass energy and targets a luminosity of 1034 cm-2 s-1. In order to achieve this high luminosity, high intensity bunches with ultra low emittances, in all three planes, are required. The generation of ultra low emittance is achieved in the Damping Rings (DR) complex of the collider. The large input beam emittances, especially the ones coming from the positron source, and the requirement of ultra low emittance production in a fast repetition time of 20 ms, imply that the beam damping is done in two stages. Thus, a main-damping ring (DR) and a predamping ring (PDR) are needed, for each particle species. The high bunch brightness gives rise to several collective effects, with Intra-beam scattering (IBS) being the main limitation to the ultra-low emittance. This thesis elaborates the lattice design and non-linear optimizatio...
Power system damping using fuzzy controlled facts devices
Kazemi, Ahad; Sohrforouzani, Mahmoud Vakili [Department of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran (Iran)
2006-06-15
This paper presents a new approach to the implementation of the effect of FACTS devices on damping local modes and inter-area modes of oscillations based on a simple fuzzy logic proportional plus conventional integral controller in a multi-machine power system. The proposed controller uses a combination of a FLC and a PI controller. In comparison with the existing fuzzy controllers, the proposed fuzzy controller combines the advantages of a FLC and a conventional PI controller. By applying this controller to the FACTS devices such as UPFC, TCSC and SVC the damping of local modes and inter-area modes of oscillations in a multi-machine power system will be handled properly. In addition, the paper considers the conventional PI controller and compares its performance with respect to the proposed fuzzy controller. Also the effects of the auxiliary signals in damping multimodal oscillation have been shown. Finally, several fault and load disturbance simulation results are presented to highlight the effectiveness of the proposed FACTS controller in a multi-machine power system. (author)
Sub-synchronous resonance damping using high penetration PV plant
Khayyatzadeh, M.; Kazemzadeh, R.
2017-02-01
The growing need to the clean and renewable energy has led to the fast development of transmission voltage-level photovoltaic (PV) plants all over the world. These large scale PV plants are going to be connected to power systems and one of the important subjects that should be investigated is the impact of these plants on the power system stability. Can large scale PV plants help to damp sub-synchronous resonance (SSR) and how? In this paper, this capability of a large scale PV plant is investigated. The IEEE Second Benchmark Model aggregated with a PV plant is utilized as the case study. A Wide Area Measurement System (WAMS) based conventional damping controller is designed and added to the main control loop of PV plant in order to damp the SSR and also investigation of the destructive effect of time delay in remote feedback signal. A new optimization algorithm called teaching-learning-based-optimization (TLBO) algorithm has been used for managing the optimization problems. Fast Furrier Transformer (FFT) analysis and also transient simulations of detailed nonlinear system are considered to investigate the performance of the controller. Robustness of the proposed system has been analyzed by facing the system with disturbances leading to significant changes in generator and power system operating point, fault duration time and PV plant generated power. All the simulations are carried out in MATLAB/SIMULINK environment.
Lyman-alpha Damping Wing Constraints on Inhomogeneous Reionization
Mesinger, Andrei
2007-01-01
One well-known way to constrain the hydrogen neutral fraction, x_H, of the high-redshift intergalactic medium (IGM) is through the shape of the red damping wing of the Lya absorption line. We examine this method's effectiveness in light of recent models showing that the IGM neutral fraction is highly inhomogeneous on large scales during reionization. Using both analytic models and "semi-numeric" simulations, we show that the "picket-fence" absorption typical in reionization models introduces both scatter and a systematic bias to the measurement of x_H. In particular, we show that simple fits to the damping wing tend to overestimate the true neutral fraction in a partially ionized universe, with a fractional error of ~ 30% near the middle of reionization. This bias is generic to any inhomogeneous model. However, the bias is reduced and can even underestimate x_H if the observational sample only probes a subset of the entire halo population, such as quasars with large HII regions. We also find that the damping ...
Damping of prominence longitudinal oscillations due to mass accretion
Ruderman, Michael
2016-01-01
We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. In this model we considered a thin curved magnetic tube filled with the plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We consider linear and nonlinear oscillation. The nonlinearity reduces the damping time, however this reduction is small. The damping time is inversely proportional to the accretion rate. We also obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our articl...
Preliminary measurements of aerodynamic damping of a transonic compressor rotor
Crawley, E. F.; Kerrebrock, J. L.; Dugundji, J.
1980-01-01
The aeroelastic behavior of a transonic compressor rotor operated in the MIT Blowdown Compressor Facility has been examined by means of piezoelectric motion sensors at the base of each of the 23 blades. Excitation has been observed due to rotating stall, due to an incipient flutter, and due to the facility startup transient. A method has been found for determining the aerodynamic damping force by modal analysis of the blade motion. Application of this technique to the example of excitation by rotating stall has led to the conclusions that the blade loading decreases in the stall cell, and that the damping force on the blades in the clean flow is in phase with blade velocity but opposite it in sign, leading to a logarithmic decrement of 0.2. This method of force derivation has quite general applicability as it requires only blade motion data such as are routinely acquired with strain gages. It is argued that models are needed for aerodynamic damping which focus on the effects of near neighbors of a given blade, since flutter often results in large response of isolated blades or small groups of blades.
Circulating Mitochondrial DAMPs Cause Inflammatory Responses to Injury
Zhang, Qin; Raoof, Mustafa; Chen, Yu; Sumi, Yuka; Sursal, Tolga; Junger, Wolfgang; Brohi, Karim; Itagaki, Kiyoshi; Hauser, Carl J.
2009-01-01
Injury causes a systemic inflammatory response syndrome (SIRS) clinically much like sepsis 1. Microbial pathogen-associated molecular patterns (PAMPs) activate innate immunocytes through pattern recognition receptors 2. Similarly, cellular injury can release endogenous damage-associated molecular patterns (DAMPs) that activate innate immunity 3. Mitochondria are evolutionary endosymbionts that were derived from bacteria 4 and so might bear bacterial molecular motifs. We show here that injury releases mitochondrial DAMPs (MTD) into the circulation with functionally important immune consequences. MTD include formyl peptides and mitochondrial DNA. These activate human neutrophils (PMN) through formyl peptide receptor-1 and TLR9 respectively. MTD promote PMN Ca2+ flux and phosphorylation of MAP kinases, thus leading to PMN migration and degranulation in vitro and in vivo. Circulating MTD can elicit neutrophil-mediated organ injury. Cellular disruption by trauma releases mitochondrial DAMPs with evolutionarily conserved similarities to bacterial PAMPs into the circulation. These can then signal through identical innate immune pathways to create a sepsis-like state. The release of such mitochondrial ‘enemies within’ by cellular injury is a key link between trauma, inflammation and SIRS. PMID:20203610
Highly damped quasinormal modes of Kerr black holes
Berti, E; Kokkotas, K D; Onozawa, H; Berti, Emanuele; Cardoso, Vitor; Kokkotas, Kostas D.; Onozawa, Hisashi
2003-01-01
Motivated by recent suggestions that highly damped black hole quasinormal modes (QNM's) may provide a link between classical general relativity and quantum gravity, we present an extensive computation of highly damped QNM's of Kerr black holes. We do not limit our attention to gravitational modes, thus filling some gaps in the existing literature. The frequency of gravitational modes with $l=m=2$ tends to $omega_R=2 Omega$, $Omega$ being the angular velocity of the black hole horizon. If Hod's conjecture is valid, this asymptotic behaviour is related to reversible black hole transformations. Other highly damped modes with $m>0$ that we computed do {it not} show a similar behaviour. The real part of modes with $l=2$ and $m0$ is given by $2pi T_H$ ($T_H$ being the black hole temperature). We conjecture that for all values of $l$ and $m>0$ there is an infinity of modes tending to the critical frequency for superradiance ($omega_R=m$) in the extremal limit. Finally, we study in some detail modes branching off the...
Hacquebord, A.; Lubelli, B.A.; Hees, R.P.J. van; Nijland, T.G.
2013-01-01
Rising damp is one of the most recurrent and well-known hazards to existing buildings and monuments. Several types of intervention exist to tackle the problem. Among these, the creation of a damp-proof course against capillary rise by means of injection of chemical products is one of the most diffus
The overview of damping methods for three-phase grid-tied inverter with LLCL-filter
Huang, Min; Blaabjerg, Frede; Loh, Poh Chiang
2014-01-01
damping, passive damping or even without damping if it is designed conservative. In this paper, an overview of damping methods for three-phase voltage-source grid-tied with LLCL-filter is given. This paper also analyzes damping principle of each method including passive damping and active damping......Compared with LCL filter, an LLCL-filter is characterized with smaller size and lower cost for grid-connected inverters. But this high order filter may also have resonant problem which will affect the system stability. Many methods can be used to alleviate the resonant problem including active...
Liu, Yi; Sanchez, Alberto; Zogg, Markus; Ermanni, Paolo
2010-04-01
Dynamic loadings in automotive structures may lead to reduction of driving comfort and even to failure of the components. Damping treatments are applied in order to attenuate the vibrations and improve the long term fatigue behavior of the structures. This experimental study is targeting applications in floor panels that are mounted to the loadcarrying primary structure of the vehicle. The objective is to reach outstanding damping performance considering the stringent weight and cost requirement in the automotive industry. An experimental setup has been developed and validated for the determination of the damping properties of structural specimens also considering interface damping effects. This contribution is structured in three main parts: test rig design, experimental results and discussion. Reliable and easy-to-use devices for the characterization of the damping properties of specimens between 200×40 mm2 and 400×400 mm2 are not available "on the shelf". In this context, we present a flexible experimental set-up which has been realized to (1) support the development of novel damping solutions for multi-functional composite structures; (2) characterize the loss-factor of the different damping concepts, including boundary effects. A variety of novel passive and active damping treatments have been investigated including viscoelastic, coulomb, magnetorheological (MR), particle, magnetic and eddy current damping. The particle, interface as well as active damping systems show promising performance in comparison to the classical viscoelastic treatments.
Analytical modeling of squeeze air film damping of biomimetic MEMS directional microphone
Ishfaque, Asif; Kim, Byungki
2016-08-01
Squeeze air film damping is introduced in microelectromechanical systems due to the motion of the fluid between two closely spaced oscillating micro-structures. The literature is abundant with different analytical models to address the squeeze air film damping effects, however, there is a lack of work in modeling the practical sensors like directional microphones. Here, we derive an analytical model of squeeze air film damping of first two fundamental vibration modes, namely, rocking and bending modes, of a directional microphone inspired from the fly Ormia ochracea's ear anatomy. A modified Reynolds equation that includes compressibility and rarefaction effects is used in the analysis. Pressure distribution under the vibrating diaphragm is derived by using Green's function. From mathematical modeling of the fly's inspired mechanical model, we infer that bringing the damping ratios of both modes in the critical damping range enhance the directional sensitivity cues. The microphone parameters are varied in derived damping formulas to bring the damping ratios in the vicinity of critical damping, and to show the usefulness of the analytical model in tuning the damping ratios of both modes. The accuracy of analytical damping results are also verified by finite element method (FEM) using ANSYS. The FEM results are in full compliance with the analytical results.
Zheng Ling
2011-01-01
Full Text Available Damping treatments have been extensively used as a powerful means to damp out structural resonant vibrations. Usually, damping materials are fully covered on the surface of plates. The drawbacks of this conventional treatment are also obvious due to an added mass and excess material consumption. Therefore, it is not always economical and effective from an optimization design view. In this paper, a topology optimization approach is presented to maximize the modal damping ratio of the plate with constrained layer damping treatment. The governing equation of motion of the plate is derived on the basis of energy approach. A finite element model to describe dynamic performances of the plate is developed and used along with an optimization algorithm in order to determine the optimal topologies of constrained layer damping layout on the plate. The damping of visco-elastic layer is modeled by the complex modulus formula. Considering the vibration and energy dissipation mode of the plate with constrained layer damping treatment, damping material density and volume factor are considered as design variable and constraint respectively. Meantime, the modal damping ratio of the plate is assigned as the objective function in the topology optimization approach. The sensitivity of modal damping ratio to design variable is further derived and Method of Moving Asymptote (MMA is adopted to search the optimized topologies of constrained layer damping layout on the plate. Numerical examples are used to demonstrate the effectiveness of the proposed topology optimization approach. The results show that vibration energy dissipation of the plates can be enhanced by the optimal constrained layer damping layout. This optimal technology can be further extended to vibration attenuation of sandwich cylindrical shells which constitute the major building block of many critical structures such as cabins of aircrafts, hulls of submarines and bodies of rockets and missiles as an