WorldWideScience

Sample records for head volume coil

  1. Regulatory coiled-coil domains promote head-to-head assemblies of AAA+ chaperones essential for tunable activity control.

    Science.gov (United States)

    Carroni, Marta; Franke, Kamila B; Maurer, Michael; Jäger, Jasmin; Hantke, Ingo; Gloge, Felix; Linder, Daniela; Gremer, Sebastian; Turgay, Kürşad; Bukau, Bernd; Mogk, Axel

    2017-11-22

    Ring-forming AAA+ chaperones exert ATP-fueled substrate unfolding by threading through a central pore. This activity is potentially harmful requiring mechanisms for tight repression and substrate-specific activation. The AAA+ chaperone ClpC with the peptidase ClpP forms a bacterial protease essential to virulence and stress resistance. The adaptor MecA activates ClpC by targeting substrates and stimulating ClpC ATPase activity. We show how ClpC is repressed in its ground state by determining ClpC cryo-EM structures with and without MecA. ClpC forms large two-helical assemblies that associate via head-to-head contacts between coiled-coil middle domains (MDs). MecA converts this resting state to an active planar ring structure by binding to MD interaction sites. Loss of ClpC repression in MD mutants causes constitutive activation and severe cellular toxicity. These findings unravel an unexpected regulatory concept executed by coiled-coil MDs to tightly control AAA+ chaperone activity.

  2. Clinical usefulness of a newly-developed head and neck surface coil for MR imaging

    International Nuclear Information System (INIS)

    Shimada, Morio; Kogure, Takashi; Hayashi, Sanshin

    1995-01-01

    To obtain correct diagnosis at early stages of cervical lymph node swelling, especially cases with suspected epipharyngeal carcinoma, and cerebral arterial sclerotic diseases, high-quality MR images visualizing the entire head and neck structures and vessels are of crucial importance. When obtaining images of head and neck regions using a head coil, signal intensity (SI) and signal to noise ratio (SNR) of regions below the hypopharynx are weakened. Moreover, when obtaining images of head and neck regions using an anterior neck coil, SI and SNR of upper regions of epipharynx are also weakened. In an attempt to solve these problems, we developed a new head and neck surface coil for MR imaging. With this new coil we were able to obtain better images (153 cases) from regions below the hypopharynx to the upper regions of the epipharynx in the same time as images obtained using the head coil and anterior neck coil. 2D TOF MR angiographic images (11 cases) obtained by the head and neck surface coil are superior to 2D TOF angiographic images obtained by the anterior neck coil. MR images obtained with this improved method are valuable in the evaluation and management of head and neck region disease. (author)

  3. Quadruple Cone Coil with improved focality than Figure-8 coil in Transcranial Magnetic Stimulation

    Science.gov (United States)

    Rastogi, Priyam; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    Transcranial Magnetic Stimulation (TMS) is a non-invasive therapy which uses a time varying magnetic field to induce an electric field in the brain and to cause neuron depolarization. Magnetic coils play an important role in the TMS therapy since their coil geometry determines the focality and penetration's depth of the induced electric field in the brain. Quadruple Cone Coil (QCC) is a novel coil with an improved focality when compared to commercial Figure-8 coil. The results of this newly designed QCC coil are compared with the Figure-8 coil at two different positions of the head - vertex and dorsolateral prefrontal cortex, over the 50 anatomically realistic MRI derived head models. Parameters such as volume of stimulation, maximum electric, area of stimulation and location of maximum electric field are determined with the help of computer modelling of both coils. There is a decrease in volume of brain stimulated by 11.6 % and a modest improvement of 8 % in the location of maximum electric field due to QCC in comparison to the Figure-8 coil. The Carver Charitable Trust and The Galloway Foundation.

  4. 96-Channel receive-only head coil for 3 Tesla: design optimization and evaluation.

    Science.gov (United States)

    Wiggins, Graham C; Polimeni, Jonathan R; Potthast, Andreas; Schmitt, Melanie; Alagappan, Vijay; Wald, Lawrence L

    2009-09-01

    The benefits and challenges of highly parallel array coils for head imaging were investigated through the development of a 3T receive-only phased-array head coil with 96 receive elements constructed on a close-fitting helmet-shaped former. We evaluated several designs for the coil elements and matching circuitry, with particular attention to sources of signal-to-noise ratio (SNR) loss, including various sources of coil loading and coupling between the array elements. The SNR and noise amplification (g-factor) in accelerated imaging were quantitatively evaluated in phantom and human imaging and compared to a 32-channel array built on an identical helmet-shaped former and to a larger commercial 12-channel head coil. The 96-channel coil provided substantial SNR gains in the distal cortex compared to the 12- and 32-channel coils. The central SNR for the 96-channel coil was similar to the 32-channel coil for optimum SNR combination and 20% lower for root-sum-of-squares combination. There was a significant reduction in the maximum g-factor for 96 channels compared to 32; for example, the 96-channel maximum g-factor was 65% of the 32-channel value for acceleration rate 4. The performance of the array is demonstrated in highly accelerated brain images.

  5. SAR and thermal response effects of a two-arm Archimedean spiral coil in a magnetic induction sensor on a human head.

    Science.gov (United States)

    Zhang, Ziyi; Liu, Peiguo; Zhou, Dongming; Zhang, Liang; Ding, Liang

    2015-01-01

    This study investigates the radiation safety of a newly designed magnetic induction sensor. This novel magnetic induction sensor uses a two-arm Archimedean spiral coil (TAASC) as the exciter. A human head model with a real anatomical structure was used to calculate the specific absorption rate (SAR) and temperature change. Computer Simulation Technology (CST) was used to determine the values of the peak 10-g SAR under different operating parameters (current, frequency, horizontal distance between the excitation coil and the receiver coil, vertical distance between the top of the head model and the XOY plane, position of excitation coil, and volume of hemorrhage). Then, the highest response for the SAR and temperature rise was determined. The results showed that this new magnetic induction sensor is safe in the initial state; for safety reasons, the TAASC current should not exceed 4 A. The scalp tissue absorbed most of the electromagnetic energy. The TAASC's SAR/thermal performance was close to that of the circular coil.

  6. Short echo time proton spectroscopy of the brain in healthy volunteers using an insert gradient head coil

    DEFF Research Database (Denmark)

    Gideon, P; Danielsen, E R; Schneider, M

    1995-01-01

    An insert gradient head coil with built-in X, Y, and Z gradients was used for localized proton spectroscopy in the brain of healthy volunteers, using short echo time stimulated echo acquisition mode (STEAM) sequences. Volume of interest size was 3.4 ml, repetition time was 6.0 s, and echo times...... were 10 and 20 ms, respectively. Good quality proton spectra with practically no eddy current artefacts were acquired allowing observation of strongly coupled compounds, and compounds with short T2 relaxation times. The gradient head coil thus permits further studies of compounds such as glutamine....../glutamate and myo-inositols. These compounds were more prominent within grey matter than within white matter. Rough estimations of metabolite concentrations using water as an internal standard were in good agreement with previous reports....

  7. On the accurate analysis of vibroacoustics in head insert gradient coils.

    Science.gov (United States)

    Winkler, Simone A; Alejski, Andrew; Wade, Trevor; McKenzie, Charles A; Rutt, Brian K

    2017-10-01

    To accurately analyze vibroacoustics in MR head gradient coils. A detailed theoretical model for gradient coil vibroacoustics, including the first description and modeling of Lorentz damping, is introduced and implemented in a multiphysics software package. Numerical finite-element method simulations were used to establish a highly accurate vibroacoustic model in head gradient coils in detail, including the newly introduced Lorentz damping effect. Vibroacoustic coupling was examined through an additional modal analysis. Thorough experimental studies were used to validate simulations. Average experimental sound pressure levels (SPLs) and accelerations over the 0-3000 Hz frequency range were 97.6 dB, 98.7 dB, and 95.4 dB, as well as 20.6 g, 8.7 g, and 15.6 g for the X-, Y-, and Z-gradients, respectively. A reasonable agreement between simulations and measurements was achieved. Vibroacoustic coupling showed a coupled resonance at 2300 Hz for the Z-gradient that is responsible for a sharp peak and the highest SPL value in the acoustic spectrum. We have developed and used more realistic multiphysics simulation methods to gain novel insights into the underlying concepts for vibroacoustics in head gradient coils, which will permit improved analyses of existing gradient coils and novel SPL reduction strategies for future gradient coil designs. Magn Reson Med 78:1635-1645, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  8. Resonant Mode Reduction in Radiofrequency Volume Coils for Ultrahigh Field Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Xiaoliang Zhang

    2011-07-01

    Full Text Available In a multimodal volume coil, only one mode can generate homogeneous Radiofrequency (RF field for Magnetic Resonance Imaging. The existence of other modes may increase the volume coil design difficulties and potentially decreases coil performance. In this study, we introduce common-mode resonator technique to high and ultrahigh field volume coil designs to reduce the resonant mode while maintain the homogeneity of the RF field. To investigate the design method, the common-mode resonator was realized by using a microstrip line which was split along the central to become a pair of parallel transmission lines within which common-mode currents exist. Eight common-mode resonators were placed equidistantly along the circumference of a low loss dielectric cylinder to form a volume coil. Theoretical analysis and comparison between the 16-strut common-mode volume coil and a conventional 16-strut volume coil in terms of RF field homogeneity and efficiency was performed using Finite-Difference Time-Domain (FDTD method at 298.2 MHz. MR imaging experiments were performed by using a prototype of the common-mode volume coil on a whole body 7 Tesla scanner. FDTD simulation results showed the reduced number of resonant modes of the common-mode volume coil over the conventional volume coil, while the RF field homogeneity of the two type volume coils was kept at the same level. MR imaging of a water phantom and a kiwi fruit showing the feasibility of the proposed method for simplifying the volume coil design is also presented.

  9. 32-channel 3 Tesla receive-only phased-array head coil with soccer-ball element geometry.

    Science.gov (United States)

    Wiggins, G C; Triantafyllou, C; Potthast, A; Reykowski, A; Nittka, M; Wald, L L

    2006-07-01

    A 32-channel 3T receive-only phased-array head coil was developed for human brain imaging. The helmet-shaped array was designed to closely fit the head with individual overlapping circular elements arranged in patterns of hexagonal and pentagonal symmetry similar to that of a soccer ball. The signal-to-noise ratio (SNR) and noise amplification (g-factor) in accelerated imaging applications were quantitatively evaluated in phantom and human images and compared with commercially available head coils. The 32-channel coil showed SNR gains of up to 3.5-fold in the cortex and 1.4-fold in the corpus callosum compared to a (larger) commercial eight-channel head coil. The experimentally measured g-factor performance of the helmet array showed significant improvement compared to the eight-channel array (peak g-factor 59% and 26% of the eight-channel values for four- and fivefold acceleration). The performance of the arrays is demonstrated in high-resolution and highly accelerated brain images. Copyright (c) 2006 Wiley-Liss, Inc.

  10. Improved transcranial magnetic stimulation coil design with realistic head modeling

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2013-03-01

    We are investigating Transcranial magnetic stimulation (TMS) as a noninvasive technique based on electromagnetic induction which causes stimulation of the neurons in the brain. TMS can be used as a pain-free alternative to conventional electroconvulsive therapy (ECT) which is still widely implemented for treatment of major depression. Development of improved TMS coils capable of stimulating subcortical regions could also allow TMS to replace invasive deep brain stimulation (DBS) which requires surgical implantation of electrodes in the brain. Our new designs allow new applications of the technique to be established for a variety of diagnostic and therapeutic applications of psychiatric disorders and neurological diseases. Calculation of the fields generated inside the head is vital for the use of this method for treatment. In prior work we have implemented a realistic head model, incorporating inhomogeneous tissue structures and electrical conductivities, allowing the site of neuronal activation to be accurately calculated. We will show how we utilize this model in the development of novel TMS coil designs to improve the depth of penetration and localization of stimulation produced by stimulator coils.

  11. Echo Planar Diffusion-Weighted Imaging: Possibilities and Considerations with 12- and 32-Channel Head Coils

    Directory of Open Access Journals (Sweden)

    John N Morelli

    2012-01-01

    Full Text Available Interest in clinical brain magnetic resonance imaging using 32-channel head coils for signal reception continues to increase. The present investigation assesses possibilities for improving diffusion-weighted image quality using a 32-channel in comparison to a conventional 12-channel coil. The utility of single-shot (ss and an approach to readout-segmented (rs echo planar imaging (EPI are examined using both head coils. Substantial image quality improvements are found with rs-EPI. Imaging with a 32-channel head coil allows for implementation of greater parallel imaging acceleration factors or acquisition of scans at a higher resolution. Specifically, higher resolution imaging with rs-EPI can be achieved by increasing the number of readout segments without increasing echo-spacing or echo time to the degree necessary with ss-EPI - a factor resulting in increased susceptibility artifact and reduced signal-to-noise with the latter.

  12. Coil optimisation for transcranial magnetic stimulation in realistic head geometry.

    Science.gov (United States)

    Koponen, Lari M; Nieminen, Jaakko O; Mutanen, Tuomas P; Stenroos, Matti; Ilmoniemi, Risto J

    Transcranial magnetic stimulation (TMS) allows focal, non-invasive stimulation of the cortex. A TMS pulse is inherently weakly coupled to the cortex; thus, magnetic stimulation requires both high current and high voltage to reach sufficient intensity. These requirements limit, for example, the maximum repetition rate and the maximum number of consecutive pulses with the same coil due to the rise of its temperature. To develop methods to optimise, design, and manufacture energy-efficient TMS coils in realistic head geometry with an arbitrary overall coil shape. We derive a semi-analytical integration scheme for computing the magnetic field energy of an arbitrary surface current distribution, compute the electric field induced by this distribution with a boundary element method, and optimise a TMS coil for focal stimulation. Additionally, we introduce a method for manufacturing such a coil by using Litz wire and a coil former machined from polyvinyl chloride. We designed, manufactured, and validated an optimised TMS coil and applied it to brain stimulation. Our simulations indicate that this coil requires less than half the power of a commercial figure-of-eight coil, with a 41% reduction due to the optimised winding geometry and a partial contribution due to our thinner coil former and reduced conductor height. With the optimised coil, the resting motor threshold of abductor pollicis brevis was reached with the capacitor voltage below 600 V and peak current below 3000 A. The described method allows designing practical TMS coils that have considerably higher efficiency than conventional figure-of-eight coils. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Bronchoscopic Lung Volume Reduction Coil Treatment of Patients With Severe Heterogeneous Emphysema

    NARCIS (Netherlands)

    Slebos, Dirk-Jan; Klooster, Karin; Ernst, Armin; Herth, Felix J. F.; Kerstjens, Huib A. M.

    Background: The lung volume reduction coil (LVR-coil), a new experimental device to achieve lung volume reduction by bronchoscopy in patients with severe emphysema, works in a manner unaffected by collateral airflow. We investigated the safety and efficacy of LVR-coil treatment in patients with

  14. 3D 1H MRSI of brain tumors at 3.0 Tesla using an eight-channel phased-array head coil.

    Science.gov (United States)

    Osorio, Joseph A; Ozturk-Isik, Esin; Xu, Duan; Cha, Soonmee; Chang, Susan; Berger, Mitchel S; Vigneron, Daniel B; Nelson, Sarah J

    2007-07-01

    To implement proton magnetic resonance spectroscopic imaging (1H MRSI) at 3 Tesla (3T) using an eight-channel phased-array head coil in a population of brain-tumor patients. A total of 49 MRI/MRSI examinations were performed on seven volunteers and 34 patients on a 3T GE Signa EXCITE scanner using body coil excitation and reception with an eight-channel phased-array head coil. 1H MRSI was acquired using point-resolved spectroscopy (PRESS) volume selection and three-dimensional (3D) phase encoding using a 144-msec echo time (TE). The mean choline to N-acetyl aspartate ratio (Cho/NAA) was similar within regions of normal-appearing white matter (NAWM) in volunteers (0.5 +/- 0.04) and patients (0.6 +/- 0.1, P = 0.15). This ratio was significantly higher in regions of T2-hyperintensity lesion (T2L) relative to NAWM for patients (1.4 +/- 0.7, P = 0.001). The differences between metabolite intensities in lesions and NAWM were similar, but there was an increase in SNR of 1.95 when an eight-channel head coil was used at 3T vs. previous results at 1.5T. The realized increase in SNR means that clinically relevant data can be obtained in five to 10 minutes at 3T and used to predict the spatial extent of tumor in a manner similar to that previously used to acquire 1.5T data in 17 minutes. Copyright 2007 Wiley-Liss, Inc.

  15. Linear versus circular polarization of head coils - comparison on phantom and in the clinic

    International Nuclear Information System (INIS)

    Schratter, M.; Kramer, J.; Prayer, L.; Wimberger, D.; Imhof, H.; Schmid, W.

    1990-01-01

    Two different head coils - one with linear polarization and the other with circular polarization - were compared under the same measurement conditions. Comparison was done on a phantom with waterfilled and gadolinium-filled pin-holes, as well as on anatomical MR images of 23 volunteers. In three volunteers the whole brain was examined while, in the remaining 20 volunteers the sella region or cerebellopontine angleregion was examined. Criteria for comparison were signal-to-noise ratio, background noise, and detail resolution (phantom), as well as subjective criteria - image sharpness, anatomical, contrast, and recognition of anatomical details -, evaluated on anatomical MR images by four radiologists independently of each other. The results show a significant improvement of signal-to-noise ratio, lower background noise and therefore marked improvement of images harpness, and moderate improvement in the recognition of anatomical details using the circular polarized head coil; as for as detail resolution and anatomical contrast were concerned, however, no significant difference was seen between the two coils. Major advantages of the circular, polarized head coil in clinical application are shorter measurement times (reduced number of acquisitions), as well as thinner slices without loss of signal-to-noise ratio. (orig.) [de

  16. Transcranial Magnetic Stimulation-coil design with improved focality

    Science.gov (United States)

    Rastogi, P.; Lee, E. G.; Hadimani, R. L.; Jiles, D. C.

    2017-05-01

    Transcranial Magnetic Stimulation (TMS) is a technique for neuromodulation that can be used as a non-invasive therapy for various neurological disorders. In TMS, a time varying magnetic field generated from an electromagnetic coil placed on the scalp is used to induce an electric field inside the brain. TMS coil geometry plays an important role in determining the focality and depth of penetration of the induced electric field responsible for stimulation. Clinicians and basic scientists are interested in stimulating a localized area of the brain, while minimizing the stimulation of surrounding neural networks. In this paper, a novel coil has been proposed, namely Quadruple Butterfly Coil (QBC) with an improved focality over the commercial Figure-8 coil. Finite element simulations were conducted with both the QBC and the conventional Figure-8 coil. The two coil's stimulation profiles were assessed with 50 anatomically realistic MRI derived head models. The coils were positioned on the vertex and the scalp over the dorsolateral prefrontal cortex to stimulate the brain. Computer modeling of the coils has been done to determine the parameters of interest-volume of stimulation, maximum electric field, location of maximum electric field and area of stimulation across all 50 head models for both coils.

  17. Structured Light-Based Motion Tracking in the Limited View of an MR Head Coil

    DEFF Research Database (Denmark)

    Erikshøj, M.; Olesen, Oline Vinter; Conradsen, Knut

    2013-01-01

    A markerless motion tracking (MT) system developed for use in PET brain imaging has been tested in the limited field of view (FOV) of the MR head coil from the Siemens Biograph mMR. The system is a 3D surface scanner that uses structured light (SL) to create point cloud reconstructions of the fac......A markerless motion tracking (MT) system developed for use in PET brain imaging has been tested in the limited field of view (FOV) of the MR head coil from the Siemens Biograph mMR. The system is a 3D surface scanner that uses structured light (SL) to create point cloud reconstructions...

  18. The lung volume reduction coil for the treatment of emphysema : a new therapy in development

    NARCIS (Netherlands)

    Klooster, Karin; ten Hacken, Nick H. T.; Slebos, Dirk-Jan

    Lung volume reduction (LVR) coil treatment is a novel therapy for patients with severe emphysema. In this bilateral bronchoscopic treatment, approximately 10 LVR coils per lobe are delivered under fluoroscopic guidance in two sequential procedures. The LVR coil reduces lung volume by compressing the

  19. 3 Tesla MRI of patients with a vagus nerve stimulator: initial experience using a T/R head coil under controlled conditions.

    Science.gov (United States)

    Gorny, Krzysztof R; Bernstein, Matt A; Watson, Robert E

    2010-02-01

    To assess safety of clinical MRI of the head in patients with implanted model 100, 102, and 103 vagus nerve stimulation (VNS) Therapy Systems (Cyberonics, Inc., Houston, TX) in 3.0 Tesla MRI (GE Healthcare, Milwaukee, WI). The distributions of the radiofrequency B(1) (+)-field produced by the clinically used transmit/receive (T/R) head coil (Advanced Imaging Research Incorporated, Cleveland, OH) and body coil were measured in a head and shoulders phantom. These measurements were supplemented by temperature measurements on the lead tips and the implantable pulse generator (IPG) of the VNS devices in a head and torso phantom with the same two coils. Clinical 3T MRI head scans were then acquired under highly controlled conditions in a series of 17 patients implanted with VNS. Phantom studies showed only weak B(1) (+) fields at the location of the VNS IPG and leads for MRI scans using the T/R head coil. The MRI-related heating on a VNS scanned in vitro at 3T was also found to be minimal (0.4-0.8 degrees C at the leads, negligible at the IPG). The patient MRI examinations were completed successfully without any adverse incidents. No patient reported any heating, discomfort, or any other unusual sensation. Safe clinical MRI head scanning of patients with implanted VNS is shown to be feasible on a GE Signa Excite 3T MRI system using one specific T/R head coil. These results apply to this particular MRI system configuration. Extrapolation or generalization of these results to more general or less controlled imaging situations without supporting data of safety is highly discouraged.

  20. Voice Coil Percussive Mechanism Concept for Hammer Drill

    Science.gov (United States)

    Okon, Avi

    2009-01-01

    A hammer drill design of a voice coil linear actuator, spring, linear bearings, and a hammer head was proposed. The voice coil actuator moves the hammer head to produce impact to the end of the drill bit. The spring is used to store energy on the retraction and to capture the rebound energy after each impact for use in the next impact. The maximum actuator stroke is 20 mm with the hammer mass being 200 grams. This unit can create impact energy of 0.4 J with 0.8 J being the maximum. This mechanism is less complex than previous devices meant for the same task, so it has less mass and less volume. Its impact rate and energy are easily tunable without changing major hardware components. The drill can be driven by two half-bridges. Heat is removed from the voice coil via CO2 conduction.

  1. Quasi-static electric field in a cylindrical volume conductor induced by external coils.

    Science.gov (United States)

    Esselle, K P; Stuchly, M A

    1994-02-01

    An expansion technique based on modified Bessel functions is used to obtain an analytical solution for the electric field induced in a homogeneous cylindrical volume conductor by an external coil. The current in the coil is assumed to be changing slowly so that quasi-static conditions can be justified. Valid for any coil type, this solution is ideal for fast computation of the induced electric field at a large number of points. Efficient implementation of this method in a computer code is described and numerical results are presented for a perpendicular circular coil and a tangential double-square coil.

  2. Contrast-enhanced MR venography of the head using magnetization prepared rapid gradient echo imaging. Comparison between head and body radiofrequency transmitter coil systems

    International Nuclear Information System (INIS)

    Matsunobu, Satosi; Amanuma, Makoto; Tsukuda, Shunji

    2004-01-01

    The purpose of this study was to evaluate the image quality and vascular selectivity of MR venography of the head using an magnetization prepared rapid gradient echo (MP-RAGE) technique when obtained with a body radiofrequency transmitter coil system. A total of 24 patients were imaged with a head or body radiofrequency (RF) transmission system. Subtraction MR angiography (MRA) was processed with 0.1 mmol Gd-DTPA administration, and signal-to-noise ratios of the vascular system were measured. Venous demonstration and selectivity were also assessed. MP-RAGE MR venography with a body transmission system showed almost the same signal intensity for the venous and arterial systems, resulting in nonspecific vascular demonstration, while the head transmission system showed semi-selective venograms owing to inflow-induced high signal on precontrast images. However, MRA with a body transmission system provided a 1.5- to 2.5-fold higher signal-to-noise ratios based on higher gradient performance and excellent demonstration of the head veins, especially those below the skull base. Although selective venography was difficult, MRA with a body transmission coil provided excellent vascular images of the brain. (author)

  3. Susceptibility Imaging in Glial Tumor Grading; Using 3 Tesla Magnetic Resonance (MR) System and 32 Channel Head Coil.

    Science.gov (United States)

    Aydin, Omer; Buyukkaya, Ramazan; Hakyemez, Bahattin

    2017-01-01

    Susceptibility weighted imaging (SWI) is a velocity compensated, high-resolution three-dimensional (3D) spoiled gradient-echo sequence that uses magnitude and filtered-phase data. SWI seems to be a valuable tool for non-invasive evaluation of central nervous system gliomas. Relative cerebral blood volume (rCBV) ratio is one of the best noninvasive methods for glioma grading. Degree of intratumoral susceptibility signal (ITSS) on SWI correlates with rCBV ratio and histopathological grade. This study investigated the effectiveness of ITSS grading and rCBV ratio in preoperative assessment. Thirty-one patients (17 males and 14 females) with histopathogical diagnosis of glial tumor undergoing routine cranial MRI, SWI, and perfusion MRI examinations between October 2011 and July 2013 were retrospectively enrolled. All examinations were performed using 3T apparatus with 32-channel head coil. We used ITSS number for SWI grading. Correlations between SWI grade, rCBV ratio, and pathological grading were evaluated. ROC analysis was performed to determine the optimal rCBV ratio to distinguish between high-grade and low-grade glial tumors. There was a strong positive correlation between both pathological and SWI grading. We determined the optimal rCBV ratio to discriminate between high-grade and low-grade tumors to be 2.21. In conclusion, perfusion MRI and SWI using 3T MR and 32-channel head coil may provide useful information for preoperative glial tumor grading. SWI can be used as an accessory to perfusion MR technique in preoperative tumor grading.

  4. Lung volume reduction coil treatment for patients with severe emphysema : a European multicentre trial

    NARCIS (Netherlands)

    Deslee, Gaetan; Klooster, Karin; Hetzel, Martin; Stanzel, Franz; Kessler, Romain; Marquette, Charles-Hugo; Witt, Christian; Blaas, Stefan; Gesierich, Wolfgang; Herth, Felix J. F.; Hetzel, Juergen; van Rikxoort, Eva M.; Slebos, Dirk-Jan

    2014-01-01

    Background The lung volume reduction (LVR) coil is a minimally invasive bronchoscopic nitinol device designed to reduce hyperinflation and improve elastic recoil in severe emphysema. We investigated the feasibility, safety and efficacy of LVR coil treatment in a prospective multicentre cohort trial

  5. Resting-state networks in healthy adult subjects: a comparison between a 32-element and an 8-element phased array head coil at 3.0 Tesla.

    Science.gov (United States)

    Paolini, Marco; Keeser, Daniel; Ingrisch, Michael; Werner, Natalie; Kindermann, Nicole; Reiser, Maximilian; Blautzik, Janusch

    2015-05-01

    Little research exists on the influence of a magnetic resonance imaging (MRI) head coil's channel count on measured resting-state functional connectivity. To compare a 32-element (32ch) and an 8-element (8ch) phased array head coil with respect to their potential to detect functional connectivity within resting-state networks. Twenty-six healthy adults (mean age, 21.7 years; SD, 2.1 years) underwent resting-state functional MRI at 3.0 Tesla with both coils using equal standard imaging parameters and a counterbalanced design. Independent component analysis (ICA) at different model orders and a dual regression approach were performed. Voxel-wise non-parametric statistical between-group contrasts were determined using permutation-based non-parametric inference. Phantom measurements demonstrated a generally higher image signal-to-noise ratio using the 32ch head coil. However, the results showed no significant differences between corresponding resting-state networks derived from both coils (p coil does not offer any significant advantages in detecting ICA-based functional connectivity within RSNs. © The Foundation Acta Radiologica 2015 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  6. A novel analytical description of periodic volume coil geometries in MRI

    Science.gov (United States)

    Koh, D.; Felder, J.; Shah, N. J.

    2018-03-01

    MRI volume coils can be represented by equivalent lumped element circuits and for a variety of these circuit configurations analytical design equations have been presented. The unification of several volume coil topologies results in a two-dimensional gridded equivalent lumped element circuit which compromises the birdcage resonator, its multiple endring derivative but also novel structures like the capacitive coupled ring resonator. The theory section analyzes a general two-dimensional circuit by noting that its current distribution can be decomposed into a longitudinal and an azimuthal dependency. This can be exploited to compare the current distribution with a transfer function of filter circuits along one direction. The resonances of the transfer function coincide with the resonance of the volume resonator and the simple analytical solution can be used as a design equation. The proposed framework is verified experimentally against a novel capacitive coupled ring structure which was derived from the general circuit formulation and is proven to exhibit a dominant homogeneous mode. In conclusion, a unified analytical framework is presented that allows determining the resonance frequency of any volume resonator that can be represented by a two dimensional meshed equivalent circuit.

  7. Design of a dynamic transcranial magnetic stimulation coil system.

    Science.gov (United States)

    Ge, Sheng; Jiang, Ruoli; Wang, Ruimin; Chen, Ji

    2014-08-01

    To study the brain activity at the whole-head range, transcranial magnetic stimulation (TMS) researchers need to investigate brain activity over the whole head at multiple locations. In the past, this has been accomplished with multiple single TMS coils that achieve quasi whole-head array stimulation. However, these designs have low resolution and are difficult to position and control over the skull. In this study, we propose a new dynamic whole-head TMS mesh coil system. This system was constructed using several sagittal and coronal directional wires. Using both simulation and real experimental data, we show that by varying the current direction and strength of each wire, this new coil system can form both circular coils or figure-eight coils that have the same features as traditional TMS coils. Further, our new system is superior to current coil systems because stimulation parameters such as size, type, location, and timing of stimulation can be dynamically controlled within a single experiment.

  8. Triple Halo Coil: Development and Comparison with Other TMS Coils

    Science.gov (United States)

    Rastogi, Priyam; Hadimani, Ravi; Jiles, David

    Transcranial Magnetic Stimulation (TMS) is a non-invasive stimulation technique that can be used for the treatment of various neurological disorders such as Parkinson's Disease, PTSD, TBI and anxiety by regulating synaptic activity. TMS is FDA approved for the treatment of major depressive disorder. There is a critical need to develop deep TMS coils that can stimulate deeper regions of the brain without excessively stimulating the cortex in order to provide an alternative to surgical methods. We have developed a novel multi-coil configuration called ``Triple Halo Coil'' (THC) that can stimulate deep brain regions. Investigation of induced electric and magnetic field in these regions have been achieved by computer modelling. Comparison of the results due to THC configuration have been conducted with other TMS coils such as ``Halo Coil'', circular coil and ``Figure of Eight'' coil. There was an improvement of more than 15 times in the strength of magnetic field, induced by THC configuration at 10 cm below the vertex of the head when compared with the ``Figure of Eight'' coil alone. Carver Charitable Trust.

  9. The significant impact of framing coils on long-term outcomes in endovascular coiling for intracranial aneurysms: how to select an appropriate framing coil.

    Science.gov (United States)

    Ishida, Wataru; Sato, Masayuki; Amano, Tatsuo; Matsumaru, Yuji

    2016-09-01

    OBJECTIVE The importance of a framing coil (FC)-the first coil inserted into an aneurysm during endovascular coiling, also called a lead coil or a first coil-is recognized, but its impact on long-term outcomes, including recanalization and retreatment, is not well established. The purposes of this study were to test the hypothesis that the FC is a significant factor for aneurysmal recurrence and to provide some insights on appropriate FC selection. METHODS The authors retrospectively reviewed endovascular coiling for 280 unruptured intracranial aneurysms and gathered data on age, sex, aneurysm location, aneurysm morphology, maximal size, neck width, adjunctive techniques, recanalization, retreatment, follow-up periods, total volume packing density (VPD), volume packing density of the FC, and framing coil percentage (FCP; the percentage of FC volume in total coil volume) to clarify the associated factors for aneurysmal recurrence. RESULTS Of 236 aneurysms included in this study, 33 (14.0%) had recanalization, and 18 (7.6%) needed retreatment during a mean follow-up period of 37.7 ± 16.1 months. In multivariate analysis, aneurysm size (odds ratio [OR] = 1.29, p < 0.001), FCP < 32% (OR 3.54, p = 0.009), and VPD < 25% (OR 2.96, p = 0.015) were significantly associated with recanalization, while aneurysm size (OR 1.25, p < 0.001) and FCP < 32% (OR 6.91, p = 0.017) were significant predictors of retreatment. VPD as a continuous value or VPD with any cutoff value could not predict retreatment with statistical significance in multivariate analysis. CONCLUSIONS FCP, which is equal to the FC volume as a percentage of the total coil volume and is unaffected by the morphology of the aneurysm or the measurement error in aneurysm length, width, or height, is a novel predictor of recanalization and retreatment and is more significantly predictive of retreatment than VPD. To select FCs large enough to meet the condition of FCP ≥ 32% is a potential relevant factor for better

  10. Whole Prostate Volume and Shape Changes with the Use of an Inflatable and Flexible Endorectal Coil

    International Nuclear Information System (INIS)

    Osman, M.; Shebel, H.; Sankineni, S.; Bernardo, M.L.; Daar, D.; Choyke, P.L.; Turkbey, B.; Agarwal, H.K.; Osman, M.; Shebel, H.; Bernardo, M.L.; Wood, P.J.; Pinto, P.A.; Agarwal, H.K.

    2014-01-01

    To determine to what extent an inflatable endorectal coil (ERC) affects whole prostate (WP) volume and shape during prostate MRI. Materials and Methods. 79 consecutive patients underwent T2W MRI at 3T first with a 6-channel surface coil and then with the combination of a 16-channel surface coil and ERC in the same imaging session. WP volume was assessed by manually contouring the prostate in each T2W axial slice. PSA density was also calculated. The maximum anterior-posterior (AP), left-right (LR), and cranio caudal (CC) prostate dimensions were measured. Changes in WP prostate volume, PSA density, and prostate dimensions were then evaluated. Results. In 79 patients, use of an ERC yielded no significant change in whole prostate volume (0.6 ± 5.7 %, Ρ=0.270) and PSA density (-0.2 ±5.6%,Ρ=0.768 ). However, use of an ERC significantly decreased the AP dimension of the prostate by -8.6 ±7.8%(Ρ<0.001), increased LR dimension by 4.5 ± 5.8 %(Ρ<0.001), and increased the CC dimension by 8.8 ±6.9 %( Ρ<0.001). Conclusion. Use of an ERC in prostate MRI results in the shape deformation of the prostate gland with no significant change in the volume of the prostate measured on T2W MRI. Therefore, WP volumes calculated on ERC MRI can be reliably used in clinical work flow.

  11. An 8/15-channel Tx/Rx head neck RF coil combination with region-specific B1 + shimming for whole-brain MRI focused on the cerebellum at 7T.

    Science.gov (United States)

    Pfaffenrot, Viktor; Brunheim, Sascha; Rietsch, Stefan H G; Koopmans, Peter J; Ernst, Thomas M; Kraff, Oliver; Orzada, Stephan; Quick, Harald H

    2018-02-09

    To design and evaluate an 8/15-channel transmit/receive (Tx/Rx) head-neck RF coil combination with region-specific B1+ shimming for whole-brain MRI with focus on improved functional MRI of the cerebellum at 7 T. An 8-channel transceiver RF head coil was combined with a 7-channel receive-only array. The noise parameters and acceleration capabilities of this 8Tx/15Rx coil setup were compared with a commercially available 1Tx/32Rx RF head coil. Region-specific 8-channel B1+ shimming was applied when using the 8Tx/15Rx RF coil. To evaluate the capability for functional MRI of the cerebellum, temporal SNR and statistical nonparametric maps for finger-tapping experiments with 14 healthy subjects were derived by applying a variable slice thickness gradient-echo echo-planar functional MRI sequence. The 8Tx/15Rx setup had a lower maximum noise correlation between channels, but higher average correlations compared with the 1Tx/32Rx coil. Both RF coils exhibited identical g-factors in the cerebellum with R = 3 acceleration. The enlarged FOV of the 8Tx/15Rx coil in combination with region-specific B1+ shimming increased homogeneity of the transmission field and temporal SNR in caudal cerebellar regions. Temporal SNR losses in cranial parts were reduced, resulting in more highly significant voxels in the caudally activated areas and identical patterns in the cranial cerebellar parts during a finger-tapping task. Compared with the 1Tx/32Rx RF coil, the presented 8Tx/15Rx RF coil combination successfully improves functional MRI of the human cerebellum at 7 T while maintaining whole-brain coverage. A clear temporal SNR gain in caudal cerebellar regions is shown. © 2018 International Society for Magnetic Resonance in Medicine.

  12. Is the Ellipsoid Formula the New Standard for 3-Tesla MRI Prostate Volume Calculation without Endorectal Coil?

    Science.gov (United States)

    Haas, Matthias; Günzel, Karsten; Miller, Kurt; Hamm, Bernd; Cash, Hannes; Asbach, Patrick

    2017-01-01

    Prostate volume in multiparametric MRI (mpMRI) is of clinical importance. For 3-Tesla mpMRI without endorectal coil, there is no distinctive standard for volume calculation. We tested the accuracy of the ellipsoid formula with planimetric volume measurements as reference and investigated the correlation of gland volume and cancer detection rate on MRI/ultrasound (MRI/US) fusion-guided biopsy. One hundred forty-three patients with findings on 3-Tesla mpMRI suspicious of cancer and subsequent MRI/US fusion-guided targeted biopsy and additional systematic biopsy were analyzed. T2-weighted images were used for measuring the prostate diameters and for planimetric volume measurement by a segmentation software. Planimetric and calculated prostate volumes were compared with clinical data. The median prostate volume was 48.1 ml (interquartile range (IQR) 36.9-62.1 ml). Volume calculated by the ellipsoid formula showed a strong concordance with planimetric volume, with a tendency to underestimate prostate volume (median volume 43.1 ml (IQR 31.2-58.8 ml); r = 0.903, p Tesla mpMRI without endorectal coil. It allows a fast, valid volume calculation in prostate MRI datasets. © 2016 S. Karger AG, Basel.

  13. Single coil bistable, bidirectional micromechanical actuator

    Science.gov (United States)

    Tabat, Ned; Guckel, Henry

    1998-09-15

    Micromechanical actuators capable of bidirectional and bistable operation can be formed on substrates using lithographic processing techniques. Bistable operation of the microactuator is obtained using a single coil and a magnetic core with a gap. A plunger having two magnetic heads is supported for back and forth linear movement with respect to the gap in the magnetic core, and is spring biased to a neutral position in which the two heads are on each side of the gap in the core. The single electrical coil is coupled to the core and is provided with electrical current to attract one of the heads toward the core by reluctance action to drive the plunger to a limit of travel in one direction. The current is then cut off and the plunger returns by spring action toward the gap, whereafter the current is reapplied to the coil to attract the other head of the plunger by reluctance action to drive the plunger to its other limit of travel. This process can be repeated at a time when switching of the actuator is required.

  14. Comparison of a 28 Channel-Receive Array Coil and Quadrature Volume Coil for Morphologic Imaging and T2 Mapping of Knee Cartilage at 7 Tesla

    Science.gov (United States)

    Chang, Gregory; Wiggins, Graham C.; Xia, Ding; Lattanzi, Riccardo; Madelin, Guillaume; Raya, Jose G.; Finnerty, Matthew; Fujita, Hiroyuki; Recht, Michael P.; Regatte, Ravinder R.

    2011-01-01

    Purpose To compare a new birdcage-transmit, 28 channel-receive array (28 Ch) coil and a quadrature volume coil for 7 Tesla morphologic MRI and T2 mapping of knee cartilage. Methods The right knees of ten healthy subjects were imaged on a 7 Tesla whole body MR scanner using both coils. 3-dimensional fast low-angle shot (3D-FLASH) and multi-echo spin-echo (MESE) sequences were implemented. Cartilage signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), thickness, and T2 values were assessed. Results SNR/CNR was 17–400% greater for the 28 Ch compared to the quadrature coil (p≤0.005). Bland-Altman plots show mean differences between measurements of tibial/femoral cartilage thickness and T2 values obtained with each coil to be small (−0.002±0.009 cm/0.003±0.011 cm) and large (−6.8±6.7 ms/−8.2±9.7 ms), respectively. For the 28 Ch coil, when parallel imaging with acceleration factors (AF) 2, 3, and 4 was performed, SNR retained was: 62–69%, 51–55%, and 39–45%. Conclusion A 28 Ch knee coil provides increased SNR/CNR for 7T cartilage morphologic imaging and T2 mapping. Coils should be switched with caution during clinical studies because T2 values may differ. The greater SNR of the 28 Ch coil could be used to perform parallel imaging with AF2 and obtain similar SNR as the quadrature coil. PMID:22095723

  15. Ocular MR imaging. Evaluation of different coil setups in a phantom study

    International Nuclear Information System (INIS)

    Erb-Eigner, Katharina; Warmuth, Carsten; Taupitz, Matthias; Bertelmann, Eckart; Hamm, Bernd; Asbach, Patrick

    2013-01-01

    Small loop surface coils are generally recommended for ocular magnetic resonance (MR) imaging, but the optimal coil setup has not been systematically investigated. In this phantom study, we investigated which coil setup of those coils available for our MR imaging system provides the highest signal-to-noise ratio (SNR) in ocular MR imaging at 1.5 tesla. Using a phantom to simulate the eyeball and the orbital fat, we employed loop surface coils of 4- and 6-cm diameter and a multi-channel head coil to obtain images using a T 1 -weighted spin-echo sequence and then measured the SNR for each coil and coil combination. Use of the 6-cm loop coil alone yielded the highest mean SNR (27.5). Even in superficial regions (mesial and temporal), the SNR was higher using the 6-cm loop coil (33.6 and 45.5) than the 4-cm loop coil (28.0 and 33.8). Additional use of the head coil reduced the mean SNR to 10.4. This quantitative analysis suggests that use of a 6-cm loop surface coil offers the best results in ocular MR imaging. Combinations of loop coils or additional use of a head coil cannot be recommended because higher noise degrades image quality. (author)

  16. Optimization of Coil Element Configurations for a Matrix Gradient Coil.

    Science.gov (United States)

    Kroboth, Stefan; Layton, Kelvin J; Jia, Feng; Littin, Sebastian; Yu, Huijun; Hennig, Jurgen; Zaitsev, Maxim

    2018-01-01

    Recently, matrix gradient coils (also termed multi-coils or multi-coil arrays) were introduced for imaging and B 0 shimming with 24, 48, and even 84 coil elements. However, in imaging applications, providing one amplifier per coil element is not always feasible due to high cost and technical complexity. In this simulation study, we show that an 84-channel matrix gradient coil (head insert for brain imaging) is able to create a wide variety of field shapes even if the number of amplifiers is reduced. An optimization algorithm was implemented that obtains groups of coil elements, such that a desired target field can be created by driving each group with an amplifier. This limits the number of amplifiers to the number of coil element groups. Simulated annealing is used due to the NP-hard combinatorial nature of the given problem. A spherical harmonic basis set up to the full third order within a sphere of 20-cm diameter in the center of the coil was investigated as target fields. We show that the median normalized least squares error for all target fields is below approximately 5% for 12 or more amplifiers. At the same time, the dissipated power stays within reasonable limits. With a relatively small set of amplifiers, switches can be used to sequentially generate spherical harmonics up to third order. The costs associated with a matrix gradient coil can be lowered, which increases the practical utility of matrix gradient coils.

  17. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    Science.gov (United States)

    Scheef, Lukas; Nordmeyer-Massner, Jurek A; Smith-Collins, Adam Pr; Müller, Nicole; Stegmann-Woessner, Gaby; Jankowski, Jacob; Gieseke, Jürgen; Born, Mark; Seitz, Hermann; Bartmann, Peter; Schild, Hans H; Pruessmann, Klaas P; Heep, Axel; Boecker, Henning

    2017-01-01

    Functional magnetic resonance imaging (fMRI) in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD) responses in sensorimotor cortex (SMC). Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level. Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL). Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR) was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p lateralization of SMC activation, as found in children and adults, is already present in the newborn period.

  18. Deep brain transcranial magnetic stimulation using variable "Halo coil" system

    Science.gov (United States)

    Meng, Y.; Hadimani, R. L.; Crowther, L. J.; Xu, Z.; Qu, J.; Jiles, D. C.

    2015-05-01

    Transcranial Magnetic Stimulation has the potential to treat various neurological disorders non-invasively and safely. The "Halo coil" configuration can stimulate deeper regions of the brain with lower surface to deep-brain field ratio compared to other coil configurations. The existing "Halo coil" configuration is fixed and is limited in varying the site of stimulation in the brain. We have developed a new system based on the current "Halo coil" design along with a graphical user interface system that enables the larger coil to rotate along the transverse plane. The new system can also enable vertical movement of larger coil. Thus, this adjustable "Halo coil" configuration can stimulate different regions of the brain by adjusting the position and orientation of the larger coil on the head. We have calculated magnetic and electric fields inside a MRI-derived heterogeneous head model for various positions and orientations of the coil. We have also investigated the mechanical and thermal stability of the adjustable "Halo coil" configuration for various positions and orientations of the coil to ensure safe operation of the system.

  19. Functional Laterality of Task-Evoked Activation in Sensorimotor Cortex of Preterm Infants: An Optimized 3 T fMRI Study Employing a Customized Neonatal Head Coil.

    Directory of Open Access Journals (Sweden)

    Lukas Scheef

    Full Text Available Functional magnetic resonance imaging (fMRI in neonates has been introduced as a non-invasive method for studying sensorimotor processing in the developing brain. However, previous neonatal studies have delivered conflicting results regarding localization, lateralization, and directionality of blood oxygenation level dependent (BOLD responses in sensorimotor cortex (SMC. Amongst the confounding factors in interpreting neonatal fMRI studies include the use of standard adult MR-coils providing insufficient signal to noise, and liberal statistical thresholds, compromising clinical interpretation at the single subject level.Here, we employed a custom-designed neonatal MR-coil adapted and optimized to the head size of a newborn in order to improve robustness, reliability and validity of neonatal sensorimotor fMRI. Thirteen preterm infants with a median gestational age of 26 weeks were scanned at term-corrected age using a prototype 8-channel neonatal head coil at 3T (Achieva, Philips, Best, NL. Sensorimotor stimulation was elicited by passive extension/flexion of the elbow at 1 Hz in a block design. Analysis of temporal signal to noise ratio (tSNR was performed on the whole brain and the SMC, and was compared to data acquired with an 'adult' 8 channel head coil published previously. Task-evoked activation was determined by single-subject SPM8 analyses, thresholded at p < 0.05, whole-brain FWE-corrected.Using a custom-designed neonatal MR-coil, we found significant positive BOLD responses in contralateral SMC after unilateral passive sensorimotor stimulation in all neonates (analyses restricted to artifact-free data sets = 8/13. Improved imaging characteristics of the neonatal MR-coil were evidenced by additional phantom and in vivo tSNR measurements: phantom studies revealed a 240% global increase in tSNR; in vivo studies revealed a 73% global and a 55% local (SMC increase in tSNR, as compared to the 'adult' MR-coil.Our findings strengthen the

  20. Frequency-difference MIT imaging of cerebral haemorrhage with a hemispherical coil array: numerical modelling.

    Science.gov (United States)

    Zolgharni, M; Griffiths, H; Ledger, P D

    2010-08-01

    The feasibility of detecting a cerebral haemorrhage with a hemispherical MIT coil array consisting of 56 exciter/sensor coils of 10 mm radius and operating at 1 and 10 MHz was investigated. A finite difference method combined with an anatomically realistic head model comprising 12 tissue types was used to simulate the strokes. Frequency-difference images were reconstructed from the modelled data with different levels of the added phase noise and two types of a priori boundary errors: a displacement of the head and a size scaling error. The results revealed that a noise level of 3 m degrees (standard deviation) was adequate for obtaining good visualization of a peripheral stroke (volume approximately 49 ml). The simulations further showed that the displacement error had to be within 3-4 mm and the scaling error within 3-4% so as not to cause unacceptably large artefacts on the images.

  1. HydroSoft coil versus HydroCoil for endovascular aneurysm occlusion study: A single center experience

    International Nuclear Information System (INIS)

    Guo Xinbin; Fan Yimu; Zhang Jianning

    2011-01-01

    Background and purpose: The HydroCoil Embolic System (HES) was developed to reduce recurrences of aneurysms relative to platinum coils. But the HydroCoil Embolic System was characterized with many limitations. The manufacturer had recognized the challenge and recently a new design of hydrogel-coated coil-HydroSoft has become available in the market as the new generation HydroCoil. We reported our initial experience using HydroSoft coil versus HydroCoil in our center. Methods: 75 aneurysms embolized primarily using HydroSoft Coils from July 2008 to May 2009 were compared with 66 volume- and shape-matched aneurysms treated with HydroCoils from March 2006 to August 2008. Outcome measures included length and number of coils used, contrast volume, and length of hospital stay. During embolization, a stable framework was first established with bare coils, and hydrogel-coated coils were used subsequently to increase the packing density. Follow-up angiographic results 6 months after treatment were evaluated among some of the patients. Results: Successful coil embolization was achieved in all patients. There were no differences in average total coil length used per aneurysm. There were no differences in length of hospital stay and packing density. HydroSoft coils were more suitable using as the finishing or final coil. HydroSoft coil decreased the procedure-related retreated rates, and aneurysm packing was finished with soft, flexible HydroSoft coil and decreased the neck remnant rates. Follow-up angiography in HydroSoft-treated patients at 6 months revealed aneurysm stability without significant residual neck. Conclusions: HydroSoft coil allowed us to deploy coated coils with good packing density. A slight expansion of these coils at the neck can be expected to reduce neck remnant and potentially inhibit recurrence.

  2. A Specialized Multi-Transmit Head Coil for High Resolution fMRI of the Human Visual Cortex at 7T.

    Science.gov (United States)

    Sengupta, Shubharthi; Roebroeck, Alard; Kemper, Valentin G; Poser, Benedikt A; Zimmermann, Jan; Goebel, Rainer; Adriany, Gregor

    2016-01-01

    To design, construct and validate radiofrequency (RF) transmit and receive phased array coils for high-resolution visual cortex imaging at 7 Tesla. A 4 channel transmit and 16 channel receive array was constructed on a conformal polycarbonate former. Transmit field efficiency and homogeneity were simulated and validated, along with the Specific Absorption Rate, using [Formula: see text] mapping techniques and electromagnetic simulations. Receiver signal-to-noise ratio (SNR), temporal SNR (tSNR) across EPI time series, g-factors for accelerated imaging and noise correlations were evaluated and compared with a commercial 32 channel whole head coil. The performance of the coil was further evaluated with human subjects through functional MRI (fMRI) studies at standard and submillimeter resolutions of upto 0.8mm isotropic. The transmit and receive sections were characterized using bench tests and showed good interelement decoupling, preamplifier decoupling and sample loading. SNR for the 16 channel coil was ∼ 1.5 times that of the commercial coil in the human occipital lobe, and showed better g-factor values for accelerated imaging. fMRI tests conducted showed better response to Blood Oxygen Level Dependent (BOLD) activation, at resolutions of 1.2mm and 0.8mm isotropic. The 4 channel phased array transmit coil provides homogeneous excitation across the visual cortex, which, in combination with the dual row 16 channel receive array, makes for a valuable research tool for high resolution anatomical and functional imaging of the visual cortex at 7T.

  3. Rigid 3D-3D registration of TOF MRA integrating vessel segmentation for quantification of recurrence volumes after coiling cerebral aneurysm

    International Nuclear Information System (INIS)

    Saering, Dennis; Forkert, Nils Daniel; Fiehler, Jens; Ries, Thorsten

    2012-01-01

    A fast and reproducible quantification of the recurrence volume of coiled aneurysms is required to enable a more timely evaluation of new coils. This paper presents two registration schemes for the semi-automatic quantification of aneurysm recurrence volumes based on baseline and follow-up 3D MRA TOF datasets. The quantification of shape changes requires a previous definition of corresponding structures in both datasets. For this, two different rigid registration methods have been developed and evaluated. Besides a state-of-the-art rigid registration method, a second approach integrating vessel segmentations is presented. After registration, the aneurysm recurrence volume can be calculated based on the difference image. The computed volumes were compared to manually extracted volumes. An evaluation based on 20 TOF MRA datasets (baseline and follow-up) of ten patients showed that both registration schemes are generally capable of providing sufficient registration results. Regarding the quantification of aneurysm recurrence volumes, the results suggest that the second segmentation-based registration method yields better results, while a reduction of the computation and interaction time is achieved at the same time. The proposed registration scheme incorporating vessel segmentation enables an improved quantification of recurrence volumes of coiled aneurysms with reduced computation and interaction time. (orig.)

  4. Study on the performance improvement of the high temperature superconducting coil with several separated coils at the edges

    International Nuclear Information System (INIS)

    Ishiguri, S.; Oka, T.; Fukui, S.; Ogawa, J.; Sato, T.

    2008-01-01

    In designing high temperature superconducting (HTS) coils, it is important to secure large magnetic fields and stored energy using shorter tape length. Thus, it is necessary to improve the transport current performance of the coils. The critical current and n-value of an HTS tape depend on magnetic fields and flux angles under constant temperature. Considering these dependencies, we established a model to analyze coil critical current. This model clarifies that relatively large electric fields are generated at the coil edges. This adversely affects the transport current performance. In this study, the coil edge is separated into several coils, keeping the total tape length constant. This increases the coil critical current, stored energy, central magnetic field, and also the coil volume, which contains vacancies created by the separation. To estimate coil performance, we calculated the stored energy density, whose denominator is the increased coil volume. This stored energy density reaches its maximum value when the number of the separated coils is eight. At this optimum separation, the central magnetic field increases by 13%, and the stored energy improves by 43%, compared to a rectangular coil wound with the same tape length

  5. Theoretical study for volume changes associated with the helix-coil transition of peptides.

    Science.gov (United States)

    Imai, T; Harano, Y; Kovalenko, A; Hirata, F

    2001-12-01

    We calculate the partial molar volumes and their changes associated with the coil(extended)-to-helix transition of two types of peptide, glycine-oligomer and glutamic acid-oligomer, in aqueous solutions by using the Kirkwood-Buff solution theory coupled with the three-dimensional reference interaction site model (3D-RISM) theory. The volume changes associated with the transition are small and positive. The volume is analyzed by decomposing it into five contributions following the procedure proposed by Chalikian and Breslauer: the ideal volume, the van der Waals volume, the void volume, the thermal volume, and the interaction volume. The ideal volumes and the van der Waals volumes do not change appreciably upon the transition. In the both cases of glycine-peptide and glutamic acid-peptide, the changes in the void volumes are positive, while those in the thermal volumes are negative, and tend to balance those in the void volumes. The change in the interaction volume of glycine-peptide does not significantly contribute, while that of glutamic acid-peptide makes a negative contribution. Copyright 2001 John Wiley & Sons, Inc. Biopolymers 59: 512-519, 2001

  6. Thermal and hydraulic analyses of TFTR cooling water system and magnetic field coils

    International Nuclear Information System (INIS)

    Lee, A.Y.

    1975-10-01

    The TFTR toroidal field coils, ohmic heating, hybrid and equilibrium field coils are cooled by water from the machine area cooling water system. The system has the following major equipment and capacities: flow rate of 3600 gpm; ballast tank volume of 5500 gal; pumps of 70.4 m head; chiller refrigeration rating of 3300 tons and connecting pipe of 45.7 cm I.D. The performance of the closed loop system was analyzed and found to be adequate for the thermal loads. The field coils were analyzed with detailed thermal and hydraulic models, including a simulation of the complete water cooling loop. Under the nominal operating mode of one second of toroidal field flat top time and 300 seconds of pulse cycle time, the maximum temperature for the TF coils is 53 0 C; for the OH coils 46 0 C and for the EF coils 39 0 C, which are well below the coil design limit of 120 0 C. The maximum TF coil coolant temperature is 33 0 C which is below the coolant design limit of 100 0 C. The overall pressure loss of the system is below 6.89 x 10 5 Pa (100 psi). With the given chiller refrigeration capacity, the TF coils can be operated to yield up to 4 seconds of flat top time. The TF coils can be operated on a steady state basis at up to 20% of the pulsed duty design current rating of 7.32 kA/coil

  7. Impact of endobronchial coiling on segmental bronchial lumen in treated and untreated lung lobes: Correlation with changes in lung volume, clinical and pulmonary function tests.

    Science.gov (United States)

    Kloth, C; Thaiss, W M; Hetzel, J; Ditt, H; Grosse, U; Nikolaou, K; Horger, M

    2016-07-01

    To assess the impact of endobronchial coiling on the segment bronchus cross-sectional area and volumes in patients with lung emphysema using quantitative chest-CT measurements. Thirty patients (female = 15; median age = 65.36 years) received chest-CT before and after endobronchial coiling for lung volume reduction (LVR) between January 2010 and December 2014. Thin-slice (0.6 mm) non-enhanced image data sets were acquired both at end-inspiration and end-expiration using helical technique and 120 kV/100-150 mAs. Clinical response was defined as an increase in the walking distance (Six-minute walk test; 6MWT) after LVR-therapy. Additionally, pulmonary function test (PFT) measurements were used for clinical correlation. In the treated segmental bronchia, the cross-sectional lumen area showed significant reduction (p  0.05). In the ipsilateral lobes, the lumina showed no significant changes. In the contralateral lung, we found tendency towards increased cross-sectional area in inspiration (p = 0.06). Volumes of the treated segments correlated with the treated segmental bronchial lumina in expiration (r = 0.80, p volume of the treated lobe in responders only. Endobronchial coiling causes significant decrease in the cross-sectional area of treated segment bronchi in inspiration and a slight increase in expiration accompanied by a volume reduction. • Endobronchial coiling has indirect impact on cross-sectional area of treated segment bronchi • Volume changes of treated lobes correlate with changes in bronchial cross-sectional area • Coil-induced effects reflect their stabilizing and stiffening impact on lung parenchyma • Endobronchial coiling reduces bronchial collapsing compensating the loss of elasticity.

  8. Characteristics of parallel reverse coil inductors with different current ratio in coils used for melting in a suspension state

    International Nuclear Information System (INIS)

    Fogel', A.A.; Sidorova, T.A.; Smirnov, V.V.; Mezdrogina, M.M.

    1975-01-01

    The paper studies the effect of the ratio of the currents in the coils of an inductor with a parallel-switched ''reverse coil'', where the ratio of the current in the upper coil to that in the lower coil is 0.72. A region of stable dependence of liquid niobium characterized by upper and lower limits has been found. The maximum permissible volume of liquid niobium increases as the ratio of current in the upper coil to current in the lower coil decreases. The temperature dependences of niobium on the voltage in the inductor have been derived. Experiments have shown that the greater the capillary constant of niobium, the larger the region of stable dependence of liquid niobium, the larger the range of possible temperature regulation and the larger the maximum permissible volume. (N.K.)

  9. Numerical dosimetry of transcranial magnetic stimulation coils

    Science.gov (United States)

    Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) is a non-invasive neuromodulation technique capable of stimulating neurons by means of electromagnetic induction. TMS can be used to map brain function and shows promise for the diagnosis and treatment of neurological and psychiatric disorders. Calculation of fields induced in the brain are necessary to accurately identify stimulated neural tissue during TMS. This allows the development of novel TMS coil designs capable of stimulating deeper brain regions and increasing the localization of stimulation that can be achieved. We have performed numerical calculations of magnetic and electric field with high-resolution anatomically realistic human head models to find these stimulated brain regions for a variety of proposed TMS coil designs. The realistic head models contain heterogeneous tissue structures and electrical conductivities, yielding superior results to those obtained from the simplified homogeneous head models that are commonly employed. The attenuation of electric field as a function of depth in the brain and the localization of stimulating field have been methodically investigated. In addition to providing a quantitative comparison of different TMS coil designs the variation of induced field between subjects has been investigated. We also show the differences in induced fields between adult, adolescent and child head models to preemptively identify potential safety issues in the application of pediatric TMS.

  10. Assessment of the characteristics of MRI coils in terms of RF non-homogeneity using routine spin echo sequences

    International Nuclear Information System (INIS)

    Oghabian, M. A.; Mehdipour, Sh.; RiahicAlam, N.; Rafie, B.; Ghanaati, H.

    2005-01-01

    One of the major causes of image non-uniformity in MRI is due to the existence of non-homogeneity in RF receive and transmit. This can be the most effective source of error in quantitative studies in MRI imaging. Part of this non-homogeneity demonstrates the characteristics of RF coil and part of it is due to the interaction of RF field with the material being imaged. In this study, RF field non-homogeneity of surface and volume coils is measured using an oil phantom. The method employed in this work is based on a routine Spin Echo based sequence as proposed by this group previously. Materials and Methods: For the determination of RF non-uniformity, a method based on Spin Echo sequence (8θ-180) was used as reported previously by the same author. In this method, several images were obtained from one slice using different flip angles while keeping all other imaging parameters constant. Then, signal intensity at a ROI from all of these images were measured and fitted to the MRI defined mathematical model. Since this mathematical model describes the relation between signal intensity and flip angle in a (8θ-180) Spin Echo sequence, it is possible to obtain the variation in receive and transmit sensitivity in terms of the variation of signal intensity from the actual expected values. Since surface coils are functioning as only receiver (RF transmission is done by Body coil), first the results of receive coil homogeneity is measured, then characteristic of transmit coil (for the body coil) is evaluated Results: The coefficient of variation (C.V.) found for T(r) value obtained from images using head coils was in the order of 0.6%. Since the head coil is functioning as both transmitter and receiver, any non-uniformity in either transmit or receive stage can lead to non-homogeneity in RF field. A part from the surface coils, the amount of non-homogeneity due to receive coil was less than that of the transmit coil. In the case of the surface coils the variation in receive

  11. Feasibility of a brain-dedicated PET-MRI system using four-layer DOI detectors integrated with an RF head coil

    International Nuclear Information System (INIS)

    Nishikido, F.; Obata, T.; Shimizu, K.; Suga, M.; Inadama, N.; Tachibana, A.; Yoshida, E.; Ito, H.; Yamaya, T.

    2014-01-01

    We are developing a PET-MRI system which consists of PET detectors integrated with the head coil of the MRI in order to realize high spatial resolution and high sensitivity in simultaneous measurements. In the PET-MRI system, the PET detectors which consist of a scintillator block, photo-detectors and front-end circuits with four-layer depth-of-interaction (DOI) encoding capability are placed close to the measured object. Therefore, the proposed system can achieve high sensitivity without degradation of spatial resolution at the edge of the field-of-view due to parallax error thanks to the four-layer DOI capability. In this paper, we fabricated a prototype system which consists of a prototype four-layer DOI-PET detector, a dummy PET detector and a prototype birdcage type head coil. Then we used the prototype system to evaluate the performance of the four-layer DOI-PET detector and the reciprocal influence between the PET detectors and MRI images. The prototype DOI-PET detector consists of six monolithic multi-pixel photon counter (MPPC) arrays (S11064-050P), a readout circuit board, two scintillator blocks and a copper shielding box. Each scintillator block consists of four layers of Lu 1.8 Gd 0.2 SiO 5 :Ce (LGSO) scintillators and reflectors are inserted between the scintillation crystals. The dummy detector has all these components except the two scintillator blocks. The head coil is dedicated to a 3.0 T MRI (MAGNETOM Verio, Siemens) and the two detectors are mounted in gaps between head coil elements. Energy resolution and crystal identification performance of the prototype four-layer DOI-PET detector were evaluated with and without MRI measurements by the gradient echo and spin echo methods. We identified crystal elements in all four layers from a 2D flood histogram and energy resolution of 15–18% was obtained for single crystal elements in simultaneous measurements. The difference between the average energy resolutions and photo-peak positions with and

  12. Redesigning existing transcranial magnetic stimulation coils to reduce energy: application to low field magnetic stimulation

    Science.gov (United States)

    Wang, Boshuo; Shen, Michael R.; Deng, Zhi-De; Smith, J. Evan; Tharayil, Joseph J.; Gurrey, Clement J.; Gomez, Luis J.; Peterchev, Angel V.

    2018-06-01

    Objective. To present a systematic framework and exemplar for the development of a compact and energy-efficient coil that replicates the electric field (E-field) distribution induced by an existing transcranial magnetic stimulation coil. Approach. The E-field generated by a conventional low field magnetic stimulation (LFMS) coil was measured for a spherical head model and simulated in both spherical and realistic head models. Then, using a spherical head model and spatial harmonic decomposition, a spherical-shaped cap coil was synthesized such that its windings conformed to a spherical surface and replicated the E-field on the cortical surface while requiring less energy. A prototype coil was built and electrically characterized. The effect of constraining the windings to the upper half of the head was also explored via an alternative coil design. Main results. The LFMS E-field distribution resembled that of a large double-cone coil, with a peak field strength around 350 mV m‑1 in the cortex. The E-field distributions of the cap coil designs were validated against the original coil, with mean errors of 1%–3%. The cap coil required as little as 2% of the original coil energy and was significantly smaller in size. Significance. The redesigned LFMS coil is substantially smaller and more energy-efficient than the original, improving cost, power consumption, and portability. These improvements could facilitate deployment of LFMS in the clinic and potentially at home. This coil redesign approach can also be applied to other magnetic stimulation paradigms. Finally, the anatomically-accurate E-field simulation of LFMS can be used to interpret clinical LFMS data.

  13. Comparison of shape memory polymer foam versus bare metal coil treatments in an in vivo porcine sidewall aneurysm model.

    Science.gov (United States)

    Horn, John; Hwang, Wonjun; Jessen, Staci L; Keller, Brandis K; Miller, Matthew W; Tuzun, Egemen; Hartman, Jonathan; Clubb, Fred J; Maitland, Duncan J

    2017-10-01

    The endovascular delivery of platinum alloy bare metal coils has been widely adapted to treat intracranial aneurysms. Despite the widespread clinical use of this technique, numerous suboptimal outcomes are possible. These may include chronic inflammation, low volume filling, coil compaction, and recanalization, all of which can lead to aneurysm recurrence, need for retreatment, and/or potential rupture. This study evaluates a treatment alternative in which polyurethane shape memory polymer (SMP) foam is used as an embolic aneurysm filler. The performance of this treatment method was compared to that of bare metal coils in a head-to-head in vivo study utilizing a porcine vein pouch aneurysm model. After 90 and 180 days post-treatment, gross and histological observations were used to assess aneurysm healing. At 90 days, the foam-treated aneurysms were at an advanced stage of healing compared to the coil-treated aneurysms and showed no signs of chronic inflammation. At 180 days, the foam-treated aneurysms exhibited an 89-93% reduction in cross-sectional area; whereas coiled aneurysms displayed an 18-34% area reduction. The superior healing in the foam-treated aneurysms at earlier stages suggests that SMP foam may be a viable alternative to current treatment methods. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 1892-1905, 2017. © 2016 Wiley Periodicals, Inc.

  14. Treatment of emphysema using bronchoscopic lung volume reduction coil technology : an update on efficacy and safety

    NARCIS (Netherlands)

    Hartman, Jorine E.; Klooster, Karin; ten Hacken, Nick H. T.; Slebos, Dirk-Jan

    2015-01-01

    In the last decade several promising bronchoscopic lung volume reduction (BLVR) treatments were developed and investigated. One of these treatments is BLVR treatment with coils. The advantage of this specific treatment is that it works independently of collateral flow, and also shows promise for

  15. TFTR toroidal field coil design

    International Nuclear Information System (INIS)

    Smith, G.E.; Punchard, W.F.B.

    1977-01-01

    The design of the Tokamak Fusion Test Reactor (TFTR) Toroidal Field (TF) magnetic coils is described. The TF coil is a 44-turn, spiral-wound, two-pancake, water-cooled configuration which, at a coil current of 73.3 kiloamperes, produces a 5.2-Tesla field at a major radius of 2.48 meters. The magnetic coils are installed in titanium cases, which transmit the loads generated in the coils to the adjacent supporting structure. The TFTR utilizes 20 of these coils, positioned radially at 18 0 intervals, to provide the required toroidal field. Because it is very highly loaded and subject to tight volume constraints within the machine, the coil presents unique design problems. The TF coil requirements are summarized, the coil configuration is described, and the problems highlighted which have been encountered thus far in the coil design effort, together with the development tests which have been undertaken to verify the design

  16. Structural mapping of the coiled-coil domain of a bacterial condensin and comparative analyses across all domains of life suggest conserved features of SMC proteins.

    Science.gov (United States)

    Waldman, Vincent M; Stanage, Tyler H; Mims, Alexandra; Norden, Ian S; Oakley, Martha G

    2015-06-01

    The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N- and C- terminal regions pack against one another to form a globular ATPase domain. This "head" domain is connected to a central, globular, "hinge" or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50-nm coiled-coil domain of MukB, the divergent SMC protein found in γ-proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled-coil domain. We find that, in contrast to the relatively complicated coiled-coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled-coil interruptions. Near the middle of the domain is a break in coiled-coil structure in which there are three more residues on the C-terminal strand than on the N-terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled-coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled-coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans. © 2015 Wiley Periodicals, Inc.

  17. Measurement of heating coil temperature for e-cigarettes with a "top-coil" clearomizer.

    Science.gov (United States)

    Chen, Wenhao; Wang, Ping; Ito, Kazuhide; Fowles, Jeff; Shusterman, Dennis; Jaques, Peter A; Kumagai, Kazukiyo

    2018-01-01

    To determine the effect of applied power settings, coil wetness conditions, and e-liquid compositions on the coil heating temperature for e-cigarettes with a "top-coil" clearomizer, and to make associations of coil conditions with emission of toxic carbonyl compounds by combining results herein with the literature. The coil temperature of a second generation e-cigarette was measured at various applied power levels, coil conditions, and e-liquid compositions, including (1) measurements by thermocouple at three e-liquid fill levels (dry, wet-through-wick, and full-wet), three coil resistances (low, standard, and high), and four voltage settings (3-6 V) for multiple coils using propylene glycol (PG) as a test liquid; (2) measurements by thermocouple at additional degrees of coil wetness for a high resistance coil using PG; and (3) measurements by both thermocouple and infrared (IR) camera for high resistance coils using PG alone and a 1:1 (wt/wt) mixture of PG and glycerol (PG/GL). For single point thermocouple measurements with PG, coil temperatures ranged from 322 ‒ 1008°C, 145 ‒ 334°C, and 110 ‒ 185°C under dry, wet-through-wick, and full-wet conditions, respectively, for the total of 13 replaceable coil heads. For conditions measured with both a thermocouple and an IR camera, all thermocouple measurements were between the minimum and maximum across-coil IR camera measurements and equal to 74% ‒ 115% of the across-coil mean, depending on test conditions. The IR camera showed details of the non-uniform temperature distribution across heating coils. The large temperature variations under wet-through-wick conditions may explain the large variations in formaldehyde formation rate reported in the literature for such "top-coil" clearomizers. This study established a simple and straight-forward protocol to systematically measure e-cigarette coil heating temperature under dry, wet-through-wick, and full-wet conditions. In addition to applied power, the

  18. Evaluation of a 32-channel versus a 12-channel head coil for high-resolution post-contrast MRI in giant cell arteritis (GCA) at 3 T

    Energy Technology Data Exchange (ETDEWEB)

    Franke, Philipp, E-mail: philipp.franke@uniklinik-freiburg.de [Institut für Diagnostische Radiologie, Gartenstr. 28, 79098 Freiburg (Germany); Markl, Michael, E-mail: mmarkl@northwestern.edu [Departments of Radiology and Biomedical Engineering, Northwestern University Chicago, 737 North Michigan Avenue, Suite 1600, Chicago, IL 60611 (United States); Heinzelmann, Sonja, E-mail: sonja.heinzelmann@uniklinik-freiburg.de [Department of Ophthalmology, University Hospital Freiburg, Killianstr. 5, 79106 Freiburg (Germany); Vaith, Peter, E-mail: peter.vaith@uniklinik-freiburg.de [Department of Rheumatology and Immunology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Bürk, Jonas, E-mail: jonas.buerk@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Langer, Mathias, E-mail: mathias.langer@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Geiger, J., E-mail: julia.geiger@uniklinik-freiburg.de [Department of Diagnostic Radiology, University Hospital Freiburg, Hugstetter Str. 55, 79106 Freiburg (Germany); Department of Radiology, University Children‘s Hospital Zurich, Steinwiesstr. 75, 8032 Zurich (Switzerland)

    2014-10-15

    The aim of this study was to evaluate the diagnostic value of a 32-channel head coil for the characterization of mural inflammation patterns in the superficial cranial arteries in patients with giant cell arteritis (GCA) compared to a standard 12-channel coil at 3 T MRI. 55 patients with suspected GCA underwent high resolution T1-weighted post-contrast MRI at 3 T to detect inflammation related vessel wall enhancement using both coils. To account for different time delays between contrast agent injection and sequence acquisition, the patients were divided into two cohorts: 27 patients were examined with the 32-channel coil first and 28 patients with the 12-channel coil first. Images were evaluated by two blinded readers with regard to image quality, artifact level and arteries’ inflammation according to a standardized ranking scale; furthermore signal-to-noise ratio (SNR) measurements were performed at three locations. Identification of arteries’ inflammation was achieved with both coils with excellent inter-observer agreement (κ = 0.89 for 12-channel and κ = 0.96 for 32-channel coil). Regarding image grading, the inter-observer variability was moderate for the 12-channel (κ = 0.5) and substantial for the 32-channel coil (κ = 0.63). Significantly higher SNR and improved image quality (p < 0.01) were obtained with the 32-channel coil in either coil order. Image quality for depiction of the superficial cranial arteries was superior for the 32-channel coil. For standardized GCA diagnosis, the 12-channel coil was sufficient.

  19. Dental MRI using a dedicated RF-coil at 3 Tesla.

    Science.gov (United States)

    Prager, Marcel; Heiland, Sabine; Gareis, Daniel; Hilgenfeld, Tim; Bendszus, Martin; Gaudino, Chiara

    2015-12-01

    To assess the benefit of a dedicated surface coil to visualize dental structures in comparison to standard head/neck coil. Measurements were performed using the standard head/neck coil and a dedicated array coil for dental MRI at 3 T. As MRI methods, we used a T1-weighted spin-echo sequence with and without spectral fat saturation, a T2-weighted turbo-spin-echo sequence and a 3-dimensional T2-weighted SPACE sequence. Measurements were performed in a phantom to examine sensitivity profiles. Then the signal gain in dental structures was examined in volunteers and in a patient. As expected for a surface coil, the signal gain of the dental coil was highest at the surface of the phantom and decreased with increasing distance to the coil; it was >120% even at a depth of 30 mm, measured from the centre of the coil. The signal gain within the pulp of the volunteers ranged between 236 and 413%. The dedicated array coil offers a significantly higher signal within the region of interest for dental MR imaging thus allowing for better depiction of pathologies within the periodontium and for delineation and tracking of the branches of the maxillary and mandibular nerves. Copyright © 2015 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  20. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs.

    Science.gov (United States)

    Deng, Zhi-De; Lisanby, Sarah H; Peterchev, Angel V

    2013-01-01

    Various transcranial magnetic stimulation (TMS) coil designs are available or have been proposed. However, key coil characteristics such as electric field focality and attenuation in depth have not been adequately compared. Knowledge of the coil focality and depth characteristics can help TMS researchers and clinicians with coil selection and interpretation of TMS studies. To quantify the electric field focality and depth of penetration of various TMS coils. The electric field distributions induced by 50 TMS coils were simulated in a spherical human head model using the finite element method. For each coil design, we quantified the electric field penetration by the half-value depth, d(1/2), and focality by the tangential spread, S(1/2), defined as the half-value volume (V(1/2)) divided by the half-value depth, S(1/2) = V(1/2)/d(1/2). The 50 TMS coils exhibit a wide range of electric field focality and depth, but all followed a depth-focality tradeoff: coils with larger half-value depth cannot be as focal as more superficial coils. The ranges of achievable d(1/2) are similar between coils producing circular and figure-8 electric field patterns, ranging 1.0-3.5 cm and 0.9-3.4 cm, respectively. However, figure-8 field coils are more focal, having S(1/2) as low as 5 cm(2) compared to 34 cm(2) for circular field coils. For any coil design, the ability to directly stimulate deeper brain structures is obtained at the expense of inducing wider electrical field spread. Novel coil designs should be benchmarked against comparison coils with consistent metrics such as d(1/2) and S(1/2). Copyright © 2013 Elsevier Inc. All rights reserved.

  1. Extrap with iron-cored coils

    International Nuclear Information System (INIS)

    Lehnert, B.

    1985-05-01

    In Extrap configurations there is a high average beta value with respect to the plasma confinement volume. The externally imposed magnetic field which is required for stabilization therefore comes out to have a rather moderate strength, even under expected reactor conditions. As a consequence, this field can be generated not only by conventional external conductor arrangements, but also by iron-cored coils being operated below the saturation limit. A proposal for such iron-cored coil systems is presented in this paper. As compared to conventional conductors, this has the advantage of localizing the magnetic energy of the externally imposed magnetic field mainly to the discharge vessel and the plasma volume, thereby increasing the engineering beta value substantially. Also the problems of the coil stresses and of irradiation of the coils appear to become simplified, as well as replacement of the coil system. A main limitation of this proposal is due to combination of iron core saturation with the required stabilization effect from an ion Larmor radius of sufficient relative magnitude. This limitaion requires further investigation, especially in the full-scale reactor case. Also the modifications of the field geometry by iron core shaping needs further analysis. (Author)

  2. Sensitivity of an eight-element phased array coil in 3 Tesla MR imaging: a basic analysis.

    Science.gov (United States)

    Hiratsuka, Yoshiyasu; Miki, Hitoshi; Kikuchi, Keiichi; Kiriyama, Ikuko; Mochizuki, Teruhito; Takahashi, Shizue; Sadamoto, Kazuhiko

    2007-01-01

    To evaluate the performance advantages of an 8-element phased array head coil (8 ch coil) over a conventional quadrature-type birdcage head coil (QD coil) with regard to the signal-to-noise ratio (SNR) and image uniformity in 3 Tesla magnetic resonance (MR) imaging. We scanned a phantom filled with silicon oil using an 8 ch coil and a QD coil in a 3T MR imaging system and compared the SNR and image uniformity obtained from T(1)-weighted spin echo (SE) images and T(2)-weighted fast SE images between the 2 coils. We also visually evaluated images from 4 healthy volunteers. The SNR with the 8 ch coil was approximately twice that with the QD coil in the region of interest (ROI), which was set as 75% of the area in the center of the phantom images. With regard to the spatial variation of sensitivity, the SNR with the 8 ch coil was lower at the center of the images than at the periphery, whereas the SNR with the QD coil exhibited an inverse pattern. At the center of the images with the 8 ch coil, the SNR was somewhat lower, and that distribution was relatively flat compared to that in the periphery. Image uniformity varied less with the 8 ch coil than with the QD coil on both imaging sequences. The 8 ch phased array coil was useful for obtaining high quality 3T images because of its higher SNR and improved image uniformity than those obtained with conventional quadrature-type birdcage head coil.

  3. Localizing on-scalp MEG sensors using an array of magnetic dipole coils.

    Science.gov (United States)

    Pfeiffer, Christoph; Andersen, Lau M; Lundqvist, Daniel; Hämäläinen, Matti; Schneiderman, Justin F; Oostenveld, Robert

    2018-01-01

    Accurate estimation of the neural activity underlying magnetoencephalography (MEG) signals requires co-registration i.e., determination of the position and orientation of the sensors with respect to the head. In modern MEG systems, an array of hundreds of low-Tc SQUID sensors is used to localize a set of small, magnetic dipole-like (head-position indicator, HPI) coils that are attached to the subject's head. With accurate prior knowledge of the positions and orientations of the sensors with respect to one another, the HPI coils can be localized with high precision, and thereby the positions of the sensors in relation to the head. With advances in magnetic field sensing technologies, e.g., high-Tc SQUIDs and optically pumped magnetometers (OPM), that require less extreme operating temperatures than low-Tc SQUID sensors, on-scalp MEG is on the horizon. To utilize the full potential of on-scalp MEG, flexible sensor arrays are preferable. Conventional co-registration is impractical for such systems as the relative positions and orientations of the sensors to each other are subject-specific and hence not known a priori. Herein, we present a method for co-registration of on-scalp MEG sensors. We propose to invert the conventional co-registration approach and localize the sensors relative to an array of HPI coils on the subject's head. We show that given accurate prior knowledge of the positions of the HPI coils with respect to one another, the sensors can be localized with high precision. We simulated our method with realistic parameters and layouts for sensor and coil arrays. Results indicate co-registration is possible with sub-millimeter accuracy, but the performance strongly depends upon a number of factors. Accurate calibration of the coils and precise determination of the positions and orientations of the coils with respect to one another are crucial. Finally, we propose methods to tackle practical challenges to further improve the method.

  4. Lung Volume Reduction Coil Treatment in Chronic Obstructive Pulmonary Disease Patients with Homogeneous Emphysema : A Prospective Feasibility Trial

    NARCIS (Netherlands)

    Klooster, Karin; ten Hacken, Nick H. T.; Franz, Ina; Kerstjens, Huib A. M.; van Rikxoort, Eva M.; Slebos, Dirk-Jan

    2014-01-01

    Background: In patients with heterogeneous emphysema, surgical and bronchoscopic lung volume reduction (LVR) treatments are available. However, for patients with homogeneous emphysema these treatments are hardly investigated and seem less effective. Bronchoscopic LVR coil treatment has been shown to

  5. The bar coil for NMR tomograph

    International Nuclear Information System (INIS)

    Bogorodzki, P.; Piatkowski, A.; Wasielewski, J.

    1995-01-01

    The bar coil (bi-planar) for the NMR tomograph, designed for medical diagnostics, has been described. The tests of coil shown that it generates good homogenous magnetic field in a big volume what results in improving of the signal-to-noise ratio

  6. Impact of magnetic field strength and receiver coil in ocular MRI: a phantom and patient study.

    Science.gov (United States)

    Erb-Eigner, K; Warmuth, C; Taupitz, M; Willerding, G; Bertelmann, E; Asbach, P

    2013-09-01

    Generally, high-resolution MRI of the eye is performed with small loop surface coils. The purpose of this phantom and patient study was to investigate the influence of magnetic field strength and receiver coils on image quality in ocular MRI. The eyeball and the complex geometry of the facial bone were simulated by a skull phantom with swine eyes. MR images were acquired with two small loop surface coils with diameters of 4 cm and 7 cm and with a multi-channel head coil at 1.5 and 3 Tesla, respectively. Furthermore, MRI of the eye was performed prospectively in 20 patients at 1.5 Tesla (7 cm loop surface coil) and 3 Tesla (head coil). These images were analysed qualitatively and quantitatively and statistical significance was tested using the Wilcoxon-signed-rank test (a p-value of less than 0.05 was considered to indicate statistical significance). The analysis of the phantom images yielded the highest mean signal-to-noise ratio (SNR) at 3 Tesla with the use of the 4 cm loop surface coil. In the phantom experiment as well as in the patient studies the SNR was higher at 1.5 Tesla by applying the 7 cm surface coil than at 3 Tesla by applying the head coil. Concerning the delineation of anatomic structures no statistically significant differences were found. Our results show that the influence of small loop surface coils on image quality (expressed in SNR) in ocular MRI is higher than the influence of the magnetic field strength. The similar visibility of detailed anatomy leads to the conclusion that the image quality of ocular MRI at 3 Tesla remains acceptable by applying the head coil as a receiver coil. © Georg Thieme Verlag KG Stuttgart · New York.

  7. A novel coil array for combined TMS/fMRI experiments at 3 T.

    Science.gov (United States)

    Navarro de Lara, Lucia I; Windischberger, Christian; Kuehne, Andre; Woletz, Michael; Sieg, Jürgen; Bestmann, Sven; Weiskopf, Nikolaus; Strasser, Bernhard; Moser, Ewald; Laistler, Elmar

    2015-11-01

    To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. The state-of-the-art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7-channel receive-only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state-of-the-art setup. MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g-factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. The novel coil array is safe, strongly improves signal-to-noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  8. Focused surface coil for MR imaging of the pituitary

    International Nuclear Information System (INIS)

    Harms, S.E.; Sherry, C.S.; Youshimura, L.; Lokken, R.; Hyde, J.S.

    1987-01-01

    A specially designed surface coil for pituitary MR imaging results in improved image quality over that achieved with conventional pituitary Mr imaging. The coil consists of connected planar pair coils with a variable intercoil distance to accommodate differences in head size. The sensitive field is focused deep to the surface between the two planar pairs. This arrangement optimizes the signal-to-noise ratio and allows better gradient magnification of the pituitary region. Fifteen subjects with a variety of pituitary disorders were imaged

  9. Aneurysm coil embolization: cost per volumetric filling analysis and strategy for cost reduction.

    Science.gov (United States)

    Wang, Charlie; Ching, Esteban Cheng; Hui, Ferdinand K

    2016-05-01

    One of the primary device expenditures associated with the endovascular treatment of aneurysms is that of detachable coils. Analyzing the cost efficiency of detachable coils is difficult, given the differences in design, implantable volume, and the presence of additives. However, applying a volume per cost metric may provide an index analogous to unit price found in grocery stores. The price information for 509 different coils belonging to 31 different coil lines, available as of September 2013, was obtained through the inventory management system at the study site, and normalized to the price of the least expensive coil. Values were used to calculate the logarithmic ratio of volume over cost. Operator choice among coil sizes can vary the material costs by five-fold in a hypothetical aneurysm. The difference in coil costs as a function of cost per volume of coil can vary tremendously. Using the present pricing algorithms, using the longest available length at a particular helical dimension and system yields improved efficiency. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Evaluation of feasibility of 1.5 Tesla prostate MRI using body coil RF transmit in a patient with an implanted vagus nerve stimulator.

    Science.gov (United States)

    Favazza, Christopher P; Edmonson, Heidi A; Ma, Chi; Shu, Yunhong; Felmlee, Joel P; Watson, Robert E; Gorny, Krzysztof R

    2017-11-01

    To assess risks of RF-heating of a vagus nerve stimulator (VNS) during 1.5 T prostate MRI using body coil transmit and to compare these risks with those associated with MRI head exams using a transmit/receive head coil. Spatial distributions of radio-frequency (RF) B1 fields generated by transmit/receive (T/R) body and head coils were empirically assessed along the long axis of a 1.5 T MRI scanner bore. Measurements were obtained along the center axis of the scanner and laterally offset by 15 cm (body coil) and 7 cm (head coil). RF-field measurements were supplemented with direct measurements of RF-heating of 15 cm long copper wires affixed to and submerged in the "neck" region of the gelled saline-filled (sodium chloride and polyacrylic acid) "head-and-torso" phantom. Temperature elevations at the lead tips were measured using fiber-optic thermometers with the phantom positioned at systematically increased distances from the scanner isocenter. B1 field measurements demonstrated greater than 10 dB reduction in RF power at distances beyond 28 cm and 24 cm from isocenter for body and head coil, respectively. Moreover, RF power from body coil transmit at distances greater than 32 cm from isocenter was found to be lower than from the RF power from head coil transmit measured at locations adjacent to the coil array at its opening. Correspondingly, maximum temperature elevations at the tips of the copper wires decreased with increasing distance from isocenter - from 7.4°C at 0 cm to no appreciable heating at locations beyond 40 cm. For the particular scanner model evaluated in this study, positioning an implanted VNS farther than 32 cm from isocenter (configuration achievable for prostate exams) can reduce risks of RF-heating resulting from the body coil transmit to those associated with using a T/R head coil. © 2017 American Association of Physicists in Medicine.

  11. HydroCoil as an adjuvant to bare platinum coil treatment of 100 cerebral aneurysms

    International Nuclear Information System (INIS)

    Fanning, Noel F.; Berentei, Zsolt; Brennan, Paul R.; Thornton, John

    2007-01-01

    Introduction The overall safety of the HydroCoil, an expansile hybrid hydrogel-platinum coil, is unknown. We report a prospective observational study of our first 100 cerebral aneurysms treated with HydroCoils, focusing on safety and initial efficacy.Methods Indications, procedural complications, clinical and angiographic outcomes were recorded. Packing density, number of coils deployed and angiographic results were compared with those in a matched control group of 100 aneurysms treated solely with bare platinum coils. HydroCoil complication rates were compared to bare platinum coil rates at our institution and in published series. Results Adjuvant HydroCoil treatment led to increased mean percentage aneurysm filling compared to controls (50 ± 21% versus 27 ± 13%, P < 0.001). Immediate posttreatment angiographic results showed significantly (P < 0.001) more complete occlusions and fewer incomplete (<95%) occlusions compared to controls. Intermediate follow-up angiograms (median 7.5 months) in 63 aneurysms showed a trend towards fewer incomplete occlusions with HydroCoil treatment. There were significantly fewer major recurrences with HydroCoil treatment compared to the control treatment (9.5% versus 22.6%, P 0.046). In the adjuvant HydroCoil group, major recurrent aneurysms had significantly less percentage volume packing with HydroCoils than non-recurrent aneurysms (50.3 ± 5.0% versus 65.3 ± 18.0%, P = 0.04). There was a 12% procedural complication rate, 6% procedural morbidity and 1% mortality rate, similar to institutional and reported bare platinum coil complication rates.Conclusion HydroCoils can be safely deployed with a similar complication rate to bare platinum coils. They result in improved aneurysm filling. Intermediate follow-up angiography showed significantly fewer major recurrences. Long-term follow-up is required to confirm initial improved stability. (orig.)

  12. Asymptomatic Delayed Coil Migration from an Intracranial Aneurysm: A Case Report

    Directory of Open Access Journals (Sweden)

    Anirban Deep Banerjee

    2011-01-01

    Full Text Available Objective. To describe asymptomatic delayed migration of a coil loop in a patient following successful coil embolization of an anterior communicating artery saccular aneurysm. Methods. A 24-year-old man with a ruptured anterior communicating artery saccular aneurysm underwent coil embolization with one helical ultrasoft coil. Results. A followup CT scan head and a cerebral angiogram one month following the procedure revealed distal migration of an intra-aneurysmal coil loop into the left pericallosal artery. The patient, however, remained asymptomatic. Conclusion. Delayed migration of coil following embolization of an intracranial aneurysm is an extremely rare occurrence. An asymptomatic presentation, as in our patient, is even more unique. The stent-like configuration of the migrated spiral coil loop probably prevented complete occlusion of the blood vessel.

  13. Assessment of a PML Boundary Condition for Simulating an MRI Radio Frequency Coil

    Directory of Open Access Journals (Sweden)

    Yunsuo Duan

    2008-01-01

    Full Text Available Computational methods such as the finite difference time domain (FDTD play an important role in simulating radiofrequency (RF coils used in magnetic resonance imaging (MRI. The choice of absorbing boundary conditions affects the final outcome of such studies. We have used FDTD to assess the Berenger's perfectly matched layer (PML as an absorbing boundary condition for computation of the resonance patterns and electromagnetic fields of RF coils. We first experimentally constructed a high-pass birdcage head coil, measured its resonance pattern, and used it to acquire proton (1H phantom MRI images. We then computed the resonance pattern and B1 field of the coil using FDTD with a PML as an absorbing boundary condition. We assessed the accuracy and efficiency of PML by adjusting the parameters of the PML and comparing the calculated results with measured ones. The optimal PML parameters that produce accurate (comparable to the experimental findings FDTD calculations are then provided for the birdcage head coil operating at 127.72 MHz, the Larmor frequency of 1H at 3 Tesla (T.

  14. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Directory of Open Access Journals (Sweden)

    Oliver Weinberger

    Full Text Available The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation.Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated.Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit.Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  15. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    Introduction The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Methods Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Results Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Conclusion Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants. PMID:27598923

  16. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    Science.gov (United States)

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each transmission regime flip angle distributions and blood-myocardium contrast are examined in a volunteer study of 12 subjects. The feasibility of the local transceiver RF coil array for cardiac chamber quantification at 3 Tesla is demonstrated. Our simulations and experiments demonstrate that cardiac MR at 3 Tesla using four-channel surface RF coil transmission is competitive versus current clinical CMR practice of large volume body RF coil transmission. The efficiency advantage of the 4TX/4RX setup facilitates shorter repetition times governed by local SAR limits versus body RF coil transmission at whole-body SAR limit. No statistically significant difference was found for cardiac chamber quantification derived with body RF coil versus four-channel surface RF coil transmission. Our simulation also show that the body RF coil exceeds local SAR limits by a factor of ~2 when driven at maximum applicable input power to reach the whole-body SAR limit. Pursuing local surface RF coil arrays for transmission in cardiac MR is a conceptually appealing alternative to body RF coil transmission, especially for patients with implants.

  17. Coil Tolerance Impact on Plasma Surface Quality for NCSX

    International Nuclear Information System (INIS)

    Brooks, Art; Reiersen, Wayne

    2003-01-01

    The successful operation of the National Compact Stellarator Experiment (NCSX) machine will require producing plasma configurations with good flux surfaces, with a minimum volume of the plasma lost to magnetic islands or stochastic regions. The project goal is to achieve good flux surfaces over 90% of the plasma volume. NCSX is a three period device designed to be operated with iota ranging from ∼0.4 on axis to ∼0.7 at the edge. The field errors of most concern are those that are resonant with 3/5 and 3/6 modes (for symmetry preserving field errors) and the 1/2 and 2/3 modes (for symmetry breaking field errors). In addition to losses inherent in the physics configuration itself, there will be losses from field errors arising from coil construction and assembly errors. Some of these losses can be recovered through the use of trim coils or correction coils. The impact of coil tolerances on plasma surface quality is evaluated herein for the NCSX design. The methods used in this evaluation are discussed. The ability of the NCSX trim coils to correct for field errors is also examined. The results are used to set coils tolerances for the various coil systems

  18. NMR measurement of dynamic nuclear polarization: a technique to test the quality of its volume average obtained with different NMR coil configurations

    International Nuclear Information System (INIS)

    Zhao, W.H.; Cox, S.F.J.

    1980-07-01

    In the NMR measurement of dynamic nuclear polarization, a volume average is obtained where the contribution from different parts of the sample is weighted according to the local intensity of the RF field component perpendicular to the large static field. A method of mapping this quantity is described. A small metallic object whose geometry is chosen to perturb the appropriate RF component is scanned through the region to be occupied by the sample. The response of the phase angle of the impedance of a tuned circuit comprising the NMR coil gives a direct measurement of the local weighting factor. The correlation between theory and experiment was obtained by using a circular coil. The measuring method, checked in this way, was then used to investigate the field profiles of practical coils which are required to be rectangular for a proposed experimental neutron polarizing filter. This method can be used to evaluate other practical RF coils. (author)

  19. Differential Search Coils Based Magnetometers: Conditioning, Magnetic Sensitivity, Spatial Resolution

    Directory of Open Access Journals (Sweden)

    Timofeeva Maria

    2012-03-01

    Full Text Available A theoretical and experimental comparison of optimized search coils based magnetometers, operating either in the Flux mode or in the classical Lenz-Faraday mode, is presented. The improvements provided by the Flux mode in terms of bandwidth and measuring range of the sensor are detailed. Theory, SPICE model and measurements are in good agreement. The spatial resolution of the sensor is studied which is an important parameter for applications in non destructive evaluation. A general expression of the magnetic sensitivity of search coils sensors is derived. Solutions are proposed to design magnetometers with reduced weight and volume without degrading the magnetic sensitivity. An original differential search coil based magnetometer, made of coupled coils, operating in flux mode and connected to a differential transimpedance amplifier is proposed. It is shown that this structure is better in terms of volume occupancy than magnetometers using two separated coils without any degradation in magnetic sensitivity. Experimental results are in good agreement with calculations.

  20. Progress on large superconducting toroidal field coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Luton, J.N.; Thompson, P.B.; Beard, D.S.

    1979-01-01

    Large superconducting toroidal field coils of competing designs are being produced by six major industrial teams. In the US, teams headed by General Dynamics Convair, General Electric, and Westinghouse are under contract to design and fabricate one coil each to specifications established by the Large Coil Program. A facility for testing 6 coils in a toroidal array at fields to 8 to 12 tesla is under construction at Oak Ridge. Through an international agreement, EURATOM, Japan, and Switzerland will produce one coil each for testing with the US coils. Each test coil will have a 2.5 x 3.5 m D-shape winding bore and is designed to operate at a current of 10 to 18 kA at a peak field of 8T while subjected to pulsed fields of 0.14 T applied in 1.0 s. There are significant differences among the six coil designs: five use NbTi, one Nb 3 Sn; three are cooled by pool boiling helium, three by forced flow; five have welded or bolted stainless steel coil cases, one has aluminum plate structure. All are designed to be cryostable at 8T, with structural margin for extended operation. The three US coil teams are almost or completely finished with detailed design and are now procuring materials and setting up manufacturing equipment. The non-US teams are at various stages of verification testing and design. The GDC and GE coils are scheduled for delivery in the spring of 1981 and the others will be completed a year later. The 11-m diameter vessel at the test facility has been completed and major components of the test stand are being procured. Engineering and procurement to upgrade the helium liquifier-refrigerator system are under way

  1. Nuclear magnetic resonance probe head design for precision strain control

    International Nuclear Information System (INIS)

    Kissikov, T.; Sarkar, R.; Bush, B. T.; Lawson, M.; Canfield, P. C.; Curro, N. J.

    2017-01-01

    Here, we present the design and construction of an NMR probe to investigate single crystals under strain at cryogenic temperatures. The probe head incorporates a piezoelectric-based apparatus from Razorbill Instruments that enables both compressive and tensile strain tuning up to strain values on the order of 0.3% with a precision of 0.001%. 75 As NMR in BaFe 2 As 2 reveals large changes to the electric field gradient and indicates that the strain is homogeneous to within 16% over the volume of the NMR coil.

  2. Comparison of the association of sac growth and coil compaction with recurrence in coil embolized cerebral aneurysms.

    Directory of Open Access Journals (Sweden)

    Anna L Hoppe

    Full Text Available In recurrent cerebral aneurysms treated by coil embolization, coil compaction is regarded as the presumptive mechanism. We test the hypothesis that aneurysm growth is the primary recurrence mechanism. We also test the hypothesis that the coil mass will translate a measurable extent when recurrence occurs.An objective, quantitative image analysis protocol was developed to determine the volumes of aneurysms and coil masses during initial and follow-up visits from 3D rotational angiograms. The population consisted of 15 recurrence and 12 non-recurrence control aneurysms initially completely coiled at a single center. An investigator sensitivity study was performed to assess the objectivity of the methods. Paired Wilcoxon tests (p<0.05, one-tailed were performed to assess for aneurysm and coil growth. The translation of the coil mass center at follow-up was computed. A Mann Whitney U-Test (p<0.05, one-tailed was used to compare translation of coil mass centers between recurrence and control subjects.Image analysis protocol was found to be insensitive to the investigator. Aneurysm growth was evident in the recurrence cohort (p=0.003 but not the control (p=0.136. There was no evidence of coil compaction in either the recurrence or control cohorts (recurrence: p=0.339; control: p=0.429. The translation of the coil mass centers was found to be significantly larger in the recurrence cohort than the control cohort (p=0.047.Aneurysm sac growth, not coil compaction, was the primary mechanism of recurrence following successful coil embolization. The coil mass likely translates to a measurable extent when recurrence occurs and has the potential to serve as a non-angiographic recurrence marker.

  3. Effects of Gradient Coil Noise and Gradient Coil Replacement on the Reproducibility of Resting State Networks.

    Science.gov (United States)

    Bagarinao, Epifanio; Tsuzuki, Erina; Yoshida, Yukina; Ozawa, Yohei; Kuzuya, Maki; Otani, Takashi; Koyama, Shuji; Isoda, Haruo; Watanabe, Hirohisa; Maesawa, Satoshi; Naganawa, Shinji; Sobue, Gen

    2018-01-01

    The stability of the MRI scanner throughout a given study is critical in minimizing hardware-induced variability in the acquired imaging data set. However, MRI scanners do malfunction at times, which could generate image artifacts and would require the replacement of a major component such as its gradient coil. In this article, we examined the effect of low intensity, randomly occurring hardware-related noise due to a faulty gradient coil on brain morphometric measures derived from T1-weighted images and resting state networks (RSNs) constructed from resting state functional MRI. We also introduced a method to detect and minimize the effect of the noise associated with a faulty gradient coil. Finally, we assessed the reproducibility of these morphometric measures and RSNs before and after gradient coil replacement. Our results showed that gradient coil noise, even at relatively low intensities, could introduce a large number of voxels exhibiting spurious significant connectivity changes in several RSNs. However, censoring the affected volumes during the analysis could minimize, if not completely eliminate, these spurious connectivity changes and could lead to reproducible RSNs even after gradient coil replacement.

  4. Measurement of creatine kinase reaction rate in human brain using magnetization transfer image-selected in vivo spectroscopy (MT-ISIS) and a volume ³¹P/¹H radiofrequency coil in a clinical 3-T MRI system.

    Science.gov (United States)

    Jeong, Eun-Kee; Sung, Young-Hoon; Kim, Seong-Eun; Zuo, Chun; Shi, Xianfeng; Mellon, Eric A; Renshaw, Perry F

    2011-08-01

    High-energy phosphate metabolism, which allows the synthesis and regeneration of adenosine triphosphate (ATP), is a vital process for neuronal survival and activity. In particular, creatine kinase (CK) serves as an energy reservoir for the rapid buffering of ATP levels. Altered CK enzyme activity, reflecting compromised high-energy phosphate metabolism or mitochondrial dysfunction in the brain, can be assessed using magnetization transfer (MT) MRS. MT (31)P MRS has been used to measure the forward CK reaction rate in animal and human brain, employing a surface radiofrequency coil. However, long acquisition times and excessive radiofrequency irradiation prevent these methods from being used routinely for clinical evaluations. In this article, a new MT (31)P MRS method is presented, which can be practically used to measure the CK forward reaction rate constant in a clinical MRI system employing a volume head (31)P coil for spatial localization, without contamination from the scalp muscle, and an acquisition time of 30 min. Other advantages associated with the method include radiofrequency homogeneity within the regions of interest of the brain using a volume coil with image-selected in vivo spectroscopy localization, and reduction of the specific absorption rate using nonadiabatic radiofrequency pulses for MT saturation. The mean value of k(f) was measured as 0.320 ± 0.075 s(-1) from 10 healthy volunteers with an age range of 18-40 years. These values are consistent with those obtained using earlier methods, and the technique may be used routinely to evaluate energetic processes in the brain on a clinical MRI system. Copyright © 2010 John Wiley & Sons, Ltd.

  5. Gradient coil system for nuclear magnetic resonance apparatus

    International Nuclear Information System (INIS)

    Frese, G.; Siebold, H.

    1984-01-01

    A gradient coil system for an image-generating, nuclear magnetic resonance tomographic apparatus, particularly a zeugmatographic apparatus. The gradient coil system is arranged on a support body of rotational symmetry, illustratively a hollow cylindrical support body, having an axis which extends along the z-direction of an x, y, z coordinate system which has an origin in the center of imaging region. The gradient coil system contains two pairs of toroidal individual coils which are arranged symmetrically with respect to an x-y plane which extends through the center of the imaging region and which are arranged perpendicular to the z-axis. The direction of current flow in the individual coils of a coil pair is opposite to the direction of flow in the individual coils of the other coil pair. Moreover, further sets of coils are provided for generating field gradient Gx in the x-direction, and Gy in the y-direction. The hollow cylindrical shape of the support body on which the individual coils are arranged permit an imaging region having a substantially spherical volume with a substantially constant field gradient Gz to be achieved. Each of the coils has a predetermined linkage factor which corresponds to the product of the current flowing through the number of coil turns of the coil. Those coils which are arranged further from the plane of symmetry have a substantially larger linkage factor than the coils which are nearer to the plane of symmetry

  6. Magnetic resonance imaging for radiotherapy planning of brain cancer patients using immobilization and surface coils

    Science.gov (United States)

    Hanvey, S.; Glegg, M.; Foster, J.

    2009-09-01

    This study investigated the compatibility of a head and neck immobilization device with magnetic resonance imaging (MRI). The immobilization device is used to position a patient in the same way as when receiving a computed tomography (CT) scan for radiotherapy planning and radiation treatment. The advantage of using immobilization in MR is improved accuracy in CT/MR image registration enabling greater confidence in the delineation of structures. The main practical difficulty in using an immobilization device in MRI is that physical constraints make their use incompatible with head imaging coils. Within this paper we describe a method for MR imaging of the brain which allows the use of head and neck immobilization devices. By a series of image quality tests we obtained the same or better image quality as a multi-channel head coil.

  7. Local Multi-Channel RF Surface Coil versus Body RF Coil Transmission for Cardiac Magnetic Resonance at 3 Tesla: Which Configuration Is Winning the Game?

    OpenAIRE

    Weinberger, Oliver; Winter, Lukas; Dieringer, Matthias A.; Els, Antje; Oezerdem, Celal; Rieger, Jan; Kuehne, Andre; Cassara, Antonino M.; Pfeiffer, Harald; Wetterling, Friedrich; Niendorf, Thoralf

    2016-01-01

    INTRODUCTION: The purpose of this study was to demonstrate the feasibility and efficiency of cardiac MR at 3 Tesla using local four-channel RF coil transmission and benchmark it against large volume body RF coil excitation. METHODS: Electromagnetic field simulations are conducted to detail RF power deposition, transmission field uniformity and efficiency for local and body RF coil transmission. For both excitation regimes transmission field maps are acquired in a human torso phantom. For each...

  8. Comparison of radiofrequency body coils for MRI at 3 Tesla: a simulation study using parallel transmission on various anatomical targets

    Science.gov (United States)

    Wu, Xiaoping; Zhang, Xiaotong; Tian, Jinfeng; Schmitter, Sebastian; Hanna, Brian; Strupp, John; Pfeuffer, Josef; Hamm, Michael; Wang, Dingxin; Nistler, Juergen; He, Bin; Vaughan, J. Thomas; Ugurbil, Kamil; Van de Moortele, Pierre-Francois

    2015-01-01

    The performance of multichannel transmit coil layouts and parallel transmission (pTx) radiofrequency (RF) pulse design was evaluated with respect to transmit B1 (B1+) homogeneity and Specific Absorption Rate (SAR) at 3 Tesla for a whole body coil. Five specific coils were modeled and compared: a 32-rung birdcage body coil (driven either in a fixed quadrature mode or a two-channel transmit mode), two single-ring stripline arrays (with either 8 or 16 elements), and two multi-ring stripline arrays (with 2 or 3 identical rings, stacked in the z-axis and each comprising eight azimuthally distributed elements). Three anatomical targets were considered, each defined by a 3D volume representative of a meaningful region of interest (ROI) in routine clinical applications. For a given anatomical target, global or local SAR controlled pTx pulses were designed to homogenize RF excitation within the ROI. At the B1+ homogeneity achieved by the quadrature driven birdcage design, pTx pulses with multichannel transmit coils achieved up to ~8 fold reduction in local and global SAR. When used for imaging head and cervical spine or imaging thoracic spine, the double-ring array outperformed all coils including the single-ring arrays. While the advantage of the double-ring array became much less pronounced for pelvic imaging with a substantially larger ROI, the pTx approach still provided significant gains over the quadrature birdcage coil. For all design scenarios, using the 3-ring array did not necessarily improve the RF performance. Our results suggest that pTx pulses with multichannel transmit coils can reduce local and global SAR substantially for body coils while attaining improved B1+ homogeneity, particularly for a “z-stacked” double-ring design with coil elements arranged on two transaxial rings. PMID:26332290

  9. Effect of γ-Al2O3/water nanofluid on the thermal performance of shell and coil heat exchanger with different coil torsions

    Science.gov (United States)

    Elshazly, K. M.; Sakr, R. Y.; Ali, R. K.; Salem, M. R.

    2017-06-01

    This work investigated experimentally the thermal performance of shell and coil heat exchanger with different coil torsions (λ) for γ-Al2O3/water nanofluid flow. Five helically coiled tube (HCT) with 0.0442 ≤ λ ≤ 0.1348 were tested within turbulent flow regime. The average size of γ-Al2O3 particles is 40 nm and volume concentration (φ) is varied from 0 to 2%. Results showed that reducing coil torsion enhances the heat transfer rate and increases HCT-friction factor (fc). Also, it is noticed that HCT average Nusselt number (Nut) and fc of nanofluids increase with increasing γ-Al2O3 volume concentration. The thermal performance index, TPI = (ht,nf/ht,bf)/(ΔPc,nf/ΔPc,bf). increases with increasing nanoparticles concentration, coil torsion, HCT-side inlet temperature and nanofluid flow rate. Over the studied range of HCT-Reynolds number, the average value of TPI is of 1.34 and 2.24 at φ = 0.5% and φ = 2%, respectively. The average value of TPI is of 1.64 at λ = 0.0442 while its average value at λ = 0.1348 is of 2.01. One of the main contributions is to provide heat equipments designers with Nut and fc correlations for practical configurations shell and coil heat exchangers with a wide range of nanofluid concentration.

  10. Computational fluid dynamics (CFD) using porous media modeling predicts recurrence after coiling of cerebral aneurysms.

    Science.gov (United States)

    Umeda, Yasuyuki; Ishida, Fujimaro; Tsuji, Masanori; Furukawa, Kazuhiro; Shiba, Masato; Yasuda, Ryuta; Toma, Naoki; Sakaida, Hiroshi; Suzuki, Hidenori

    2017-01-01

    This study aimed to predict recurrence after coil embolization of unruptured cerebral aneurysms with computational fluid dynamics (CFD) using porous media modeling (porous media CFD). A total of 37 unruptured cerebral aneurysms treated with coiling were analyzed using follow-up angiograms, simulated CFD prior to coiling (control CFD), and porous media CFD. Coiled aneurysms were classified into stable or recurrence groups according to follow-up angiogram findings. Morphological parameters, coil packing density, and hemodynamic variables were evaluated for their correlations with aneurysmal recurrence. We also calculated residual flow volumes (RFVs), a novel hemodynamic parameter used to quantify the residual aneurysm volume after simulated coiling, which has a mean fluid domain > 1.0 cm/s. Follow-up angiograms showed 24 aneurysms in the stable group and 13 in the recurrence group. Mann-Whitney U test demonstrated that maximum size, dome volume, neck width, neck area, and coil packing density were significantly different between the two groups (P CFD and larger RFVs in the porous media CFD. Multivariate logistic regression analyses demonstrated that RFV was the only independently significant factor (odds ratio, 1.06; 95% confidence interval, 1.01-1.11; P = 0.016). The study findings suggest that RFV collected under porous media modeling predicts the recurrence of coiled aneurysms.

  11. Optimum coil shape for a given volume of conductor to obtain maximum central field in an air core solenoid

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, P. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This paper is an expansion of engineering notes prepared in 1961 to address the question of how to wind circular coils so as to obtain the maximum axial field with the minimum volume of conductor. At the time this was a germain question because of the advent of superconducting wires which were in very limited supply, and the rapid push for generation of very high fields, with little concern for uniformity.

  12. Molecular basis of coiled-coil oligomerization-state specificity.

    Science.gov (United States)

    Ciani, Barbara; Bjelic, Saša; Honnappa, Srinivas; Jawhari, Hatim; Jaussi, Rolf; Payapilly, Aishwarya; Jowitt, Thomas; Steinmetz, Michel O; Kammerer, Richard A

    2010-11-16

    Coiled coils are extensively and successfully used nowadays to rationally design multistranded structures for applications, including basic research, biotechnology, nanotechnology, materials science, and medicine. The wide range of applications as well as the important functions these structures play in almost all biological processes highlight the need for a detailed understanding of the factors that control coiled-coil folding and oligomerization. Here, we address the important and unresolved question why the presence of particular oligomerization-state determinants within a coiled coil does frequently not correlate with its topology. We found an unexpected, general link between coiled-coil oligomerization-state specificity and trigger sequences, elements that are indispensable for coiled-coil formation. By using the archetype coiled-coil domain of the yeast transcriptional activator GCN4 as a model system, we show that well-established trimer-specific oligomerization-state determinants switch the peptide's topology from a dimer to a trimer only when inserted into the trigger sequence. We successfully confirmed our results in two other, unrelated coiled-coil dimers, ATF1 and cortexillin-1. We furthermore show that multiple topology determinants can coexist in the same trigger sequence, revealing a delicate balance of the resulting oligomerization state by position-dependent forces. Our experimental results should significantly improve the prediction of the oligomerization state of coiled coils. They therefore should have major implications for the rational design of coiled coils and consequently many applications using these popular oligomerization domains.

  13. Endosphenoidal coil for intraoperative magnetic resonance imaging of the pituitary gland during transsphenoidal surgery.

    Science.gov (United States)

    Chittiboina, Prashant; Talagala, S Lalith; Merkle, Hellmut; Sarlls, Joelle E; Montgomery, Blake K; Piazza, Martin G; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R; Oldfield, Edward H; Koretsky, Alan P; Butman, John A

    2016-12-01

    OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing's disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra-high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm 3 and 0.15 × 0.15 × 0.30 mm 3 , respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p anterior pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult

  14. Endosphenoidal coil for intraoperative magnetic resonance imaging of the pituitary gland during transsphenoidal surgery

    Science.gov (United States)

    Chittiboina, Prashant; Talagala, S. Lalith; Merkle, Hellmut; Sarlls, Joelle E.; Montgomery, Blake K.; Piazza, Martin G.; Scott, Gretchen; Ray-Chaudhury, Abhik; Lonser, Russell R.; Oldfield, Edward H.; Koretsky, Alan P.; Butman, John A.

    2016-01-01

    OBJECTIVE Pituitary MR imaging fails to detect over 50% of microadenomas in Cushing’s disease and nearly 80% of cases of dural microinvasion. Surface coils can generate exceptionally high-resolution images of the immediately adjacent tissues. To improve imaging of the pituitary gland, a receive-only surface coil that can be placed within the sphenoid sinus (the endosphenoidal coil [ESC]) during transsphenoidal surgery (TSS) was developed and assessed. METHODS Five cadaver heads were used for preclinical testing of the ESC. The ESC (a double-turn, 12-mm-diameter surface coil made from 1-mm-diameter copper wire) was developed to obtain images in a 1.5-T MR scanner. The ESC was placed (via a standard sublabial TSS approach) on the anterior sella face. Clinical MR scans were obtained using the 8-channel head coil and ESC as the receiver coils. Using the ESC, ultra–high-resolution, 3D, balanced fast field echo (BFFE) and T1-weighted imaging were performed at resolutions of 0.25 × 0.25 × 0.50 mm3 and 0.15 × 0.15 × 0.30 mm3, respectively. RESULTS Region-of-interest analysis indicated a 10-fold increase in the signal-to-noise ratio (SNR) of the pituitary when using the ESC compared with the 8-channel head coil. ESC-related improvements (p pituitary gland surface. High-resolution BFFE MR imaging obtained using ESC revealed a number of anatomical features critical to pituitary surgery that were not visible on 8-channel MR imaging, including the pituitary capsule, the intercavernous sinus, and microcalcifications in the pars intermedia. These ESC imaging findings were confirmed by the pathological correlation with whole-mount pituitary sections. CONCLUSIONS ESC can significantly improve SNR in the sellar region intraoperatively using current 1.5-T MR imaging platforms. Improvement in SNR can provide images of the sella and surrounding structures with unprecedented resolution. Clinical use of this ESC may allow for MR imaging detection of previously occult pituitary

  15. Calculation of an axisymmetric current coil field with the bounding contour integration method

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, Alexander P.; Klevets, Nickolay I. E-mail: pmsolution@mail.ru

    2004-06-01

    Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded.

  16. Calculation of an axisymmetric current coil field with the bounding contour integration method

    International Nuclear Information System (INIS)

    Telegin, Alexander P.; Klevets, Nickolay I.

    2004-01-01

    Method for the economic and stable (in the sense of calculation errors) analysis of an induction of a magnetic field created with axisymmetric coils in arbitrary points of space, including points located inside a coil or on its border, is obtained. The basic idea of the method is to replace a current coil with continuous distribution of current density by magnetization distributed in the volume of the coil and creating the equivalent magnetic field. This allows to use field surface sources at calculation of the fields. Consequently, the range of integration is reduced resulting in reduction of calculation volume by an order in most cases. Besides, the calculation of improper integrals in internal points and on the border is completely excluded

  17. Poster - Thur Eve - 13: Quantifying specific absorption rate of shielded RF coils through electromagnetic simulations for 7-T MRI.

    Science.gov (United States)

    Belliveau, J-G; Gilbert, K M; Abou-Khousa, M; Menon, R S

    2012-07-01

    Ultra-high field MRI has many advantages such as increasing spatial resolution and exploiting contrast never before seen in-vivo. This contrast has been shown to be beneficial for many applications such as monitoring early and late effect to radiation therapy and transient changes during disease to name a few. However, at higher field strengths the RF wave, needed to for transmitting and receiving signal, approaches that of the head. This leads to constructive and deconstructive interference and a non -uniform flip angle over the volume being imaged. A transmit or transceive RF surface coil arrays is currently a method of choice to overcome this problem; however, mutual inductance between elements poses a significant challenge for the designer. A method to decouple elements in such an array is by using circumferential shielding; however, the potential benefits and/or disadvantages have not been investigated. This abstract primarily focuses on understanding power deposition - measured through Specific Absorption Rate - in the sample using circumferentially shielded RF coils. Various geometries of circumferentially shielded coils are explored to determine the behaviour of shield width and its effect on required transmit power and power deposition to the sample. Our results indicate that there is an optimization on shield width depending on the imaging depth. Additionally, the circumferential shield focuses the field more than unshielded coils, meaning that slight SAR may even be lower for circumferential shielded RF coils in array. © 2012 American Association of Physicists in Medicine.

  18. A periodic table of coiled-coil protein structures.

    Science.gov (United States)

    Moutevelis, Efrosini; Woolfson, Derek N

    2009-01-23

    Coiled coils are protein structure domains with two or more alpha-helices packed together via interlacing of side chains known as knob-into-hole packing. We analysed and classified a large set of coiled-coil structures using a combination of automated and manual methods. This led to a systematic classification that we termed a "periodic table of coiled coils," which we have made available at http://coiledcoils.chm.bris.ac.uk/ccplus/search/periodic_table. In this table, coiled-coil assemblies are arranged in columns with increasing numbers of alpha-helices and in rows of increased complexity. The table provides a framework for understanding possibilities in and limits on coiled-coil structures and a basis for future prediction, engineering and design studies.

  19. Numerical characterization of a flexible circular coil for magnetic resonance imaging

    Science.gov (United States)

    Bautista, T.; Hernandez, R.; Solis-Najera, S. E.; Rodriguez, A. O.

    2012-10-01

    Numerical simulations of the magnetic field generated by a flexible surface coil were conducted to study its behavior for applications of animal models at 7 Tesla. This coil design is able to fully cover a volume of interest. The Finite Difference Method in Time Domain (FDTD) was used because of its ability to accurately model complex problems in electromagnetism. This particular coil design is best suited for regions of interests with a spherical shape, since B1 uniformity is not significantly attenuated as in the case of a circular-loop coil. It still remains to investigate the feasibility to actually construct a coil prototype.

  20. Transcranial magnetic stimulation: Improved coil design for deep brain investigation

    Science.gov (United States)

    Crowther, L. J.; Marketos, P.; Williams, P. I.; Melikhov, Y.; Jiles, D. C.; Starzewski, J. H.

    2011-04-01

    This paper reports on a design for a coil for transcranial magnetic stimulation. The design shows potential for improving the penetration depth of the magnetic field, allowing stimulation of subcortical structures within the brain. The magnetic and induced electric fields in the human head have been calculated with finite element electromagnetic modeling software and compared with empirical measurements. Results show that the coil design used gives improved penetration depth, but also indicates the likelihood of stimulation of additional tissue resulting from the spatial distribution of the magnetic field.

  1. Tumor response parameters for head and neck cancer derived from tumor-volume variation during radiation therapy

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V.

    2013-01-01

    Purpose: The main goal of this paper is to reconstruct a distribution of cell survival fractions from tumor-volume variation for a heterogeneous group of head and neck cancer patients and compare this distribution to the data from predictive assays. Methods: To characterize the tumor-volume variation during radiation therapy treatment, the authors use a two-level tumor-volume model of cell population that separates the entire tumor cell population into two subpopulations of viable cells and lethally damaged cells. This parameterized radiobiological model is integrated with a least squares objective function and a simulated annealing optimization algorithm to describe time-dependent tumor-volume variation rates in individual patients. Several constraints have been used in the optimization problem because tumor-volume variation during radiotherapy is described by a sum of exponentials; therefore, the problem of accurately fitting a model to measured data is ill-posed. The model was applied to measured tumor-volume variation curves from a clinical study on tumor-volume variation during radiotherapy for 14 head and neck cancer patients in which an integrated CT/linear particle accelerator (LINAC) system was used for tumor-volume measurements. Results: The two-level cell population tumor-volume modeling is capable of describing tumor-volume variation throughout the entire treatment for 11 of the 14 patients. For three patients, the tumor-volume variation was described only during the initial part of treatment, a fact that may be related to the neglected hypoxia in the two-level approximation. The predicted probability density distribution for the survival fractions agrees with the data obtained using in vitro studies with predictive assays. The mean value 0.35 of survival fraction obtained in this study is larger than the value 0.32 from in vitro studies, which could be expected because of greater repair in vivo. The mean half-life obtained in this study for the head

  2. Large coil task and results of testing US coils

    International Nuclear Information System (INIS)

    Haubenreich, P.N.

    1986-01-01

    The United States, EURATOM, Japan, and Switzerland have collaborated since 1978 in development of superconducting toroidal field coils for fusion reactor applications. The United States provided a test facility nd three coils; the other participants, one coil each. All coils have the same interface dimensions and performance requirements (stable at 8 T), but internal design was decided by each team. Two US coil teams chose bath-cooled NbTi, 10-kA conductors. One developed a Nb 3 Sn conductor, cooled by internal flow, rated at 18 kA. All US coils have diagnostic instrumentation and imbedded heaters that enable stability tests and simulated nuclear heating experiments. In single-coil tests, each coil operated at full current in self-field (6.4 T). In six-coil tests that began in July 1986, one US coil and the Japanese coil hve been successfully operated at full current at 8 T. The other coils have operated as background coils while awaiting their turn as test coil. Coil tests have been informative and results gratifying. The facility has capably supported coil testing and its operation has provided information that will be useful in designing future fusion systems. Coil capabilities beyond nominal design points will be determined

  3. Design of a quadrature surface coil for hyperpolarized 13C MRS cardiac metabolism studies in pigs

    DEFF Research Database (Denmark)

    Giovannetti, G.; Frijia, F.; Hartwig, V.

    2013-01-01

    , the performance of the quadrature coil was compared with the single TX/RX circular and TX/RX butterfly coil, in order to verify the advantage of the proposed configuration over the single coils throughout the volume of interest for cardiac imaging in pig. Finally, the quadrature surface coil was tested...

  4. Evaluation of PET/MRI for Tumor Volume Delineation for Head and Neck Cancer.

    Science.gov (United States)

    Wang, Kyle; Mullins, Brandon T; Falchook, Aaron D; Lian, Jun; He, Kelei; Shen, Dinggang; Dance, Michael; Lin, Weili; Sills, Tiffany M; Das, Shiva K; Huang, Benjamin Y; Chera, Bhishamjit S

    2017-01-01

    Computed tomography (CT), combined positron emitted tomography and CT (PET/CT), and magnetic resonance imaging (MRI) are commonly used in head and neck radiation planning. Hybrid PET/MRI has garnered attention for potential added value in cancer staging and treatment planning. Herein, we compare PET/MRI vs. planning CT for head and neck cancer gross tumor volume (GTV) delineation. We prospectively enrolled patients with head and neck cancer treated with definitive chemoradiation to 60-70 Gy using IMRT. We performed pretreatment contrast-enhanced planning CT and gadolinium-enhanced PET/MRI. Primary and nodal volumes were delineated on planning CT (GTV-CT) prospectively before treatment and PET/MRI (GTV-PET/MRI) retrospectively after treatment. GTV-PET/MRI was compared to GTV-CT using separate rigid registrations for each tumor volume. The Dice similarity coefficient (DSC) metric evaluating spatial overlap and modified Hausdorff distance (mHD) evaluating mean orthogonal distance difference were calculated. Minimum dose to 95% of GTVs (D95) was compared. Eleven patients were evaluable (10 oropharynx, 1 larynx). Nine patients had evaluable primary tumor GTVs and seven patients had evaluable nodal GTVs. Mean primary GTV-CT and GTV-PET/MRI size were 13.2 and 14.3 cc, with mean intersection 8.7 cc, DSC 0.63, and mHD 1.6 mm. D95 was 65.3 Gy for primary GTV-CT vs. 65.2 Gy for primary GTV-PET/MRI. Mean nodal GTV-CT and GTV-PET/MRI size were 19.0 and 23.0 cc, with mean intersection 14.4 cc, DSC 0.69, and mHD 2.3 mm. D95 was 62.3 Gy for both nodal GTV-CT and GTV-PET/MRI. In this series of patients with head and neck (primarily oropharynx) cancer, PET/MRI and CT-GTVs had similar volumes (though there were individual cases with larger differences) with overall small discrepancies in spatial overlap, small mean orthogonal distance differences, and similar radiation doses.

  5. Follow-up of intracranial aneurysms treated with detachable coils: comparison of 3D inflow MRA at 3T and 1.5T and contrast-enhanced MRA at 3T with DSA

    International Nuclear Information System (INIS)

    Ramgren, Birgitta; Siemund, Roger; Cronqvist, Mats; Undren, Per; Holtaas, Stig; Nilsson, Ola G.; Larsson, Elna-Marie

    2008-01-01

    The purpose of this prospective study was to compare 3T and 1.5T magnetic resonance angiography (MRA) with digital subtraction angiography (DSA) for the follow-up of endovascular treated intracranial aneurysms to assess the grade of occlusion. Thirty-seven patients with 41 aneurysms who had undergone endovascular treatment with detachable coils were included. MRA was performed on the same day using an eight-channel sensitivity encoding head-coil with 3D axial inflow technique. At 3T, a contrast-enhanced transverse 3D fast gradient echo acquisition was also performed. Most patients underwent DSA the following day. MRA scans and DSA were classified first independently by two neuroradiologists and an interventional neuroradiologist. Secondly, a consensus was done. Source images, maximum intensity projection, multiplanar reconstruction and volume rendering reconstructions were used for MRA evaluations. A modification of the Raymond classification, previously used for DSA evaluation of recanalization, was used. Statistical comparison of the consensus showed that 3T MRA with 3D axial inflow technique had better agreement with DSA (κ = 0.43) than 1.5T MRA(κ = 0.21) and contrast-enhanced MRA (CE-MRA) at 3T (κ = 0.17). The susceptibility artefacts from the coil mesh were significally smaller at 3T (p = 0.002-0.007) than at 1.5T. 3T MRA, using a sensitivity encoding head-coil, showed better agreement with DSA than 1.5T and CE-MRA at 3T for evaluation of aneurysms treated with endovascular coiling. (orig.)

  6. Techniques For Microfabricating Coils For Microelectromechanical Systems Applications

    International Nuclear Information System (INIS)

    Woods, R. C.; Powell, A. L.

    2008-01-01

    The advanced technology necessary for building future space exploration vehicles includes microfabricated coils for making possible self-inductances integrated with other passive and active electronic components. Integrated inductances make possible significant improvements in reliability over the traditional arrangement of using external discrete inductances, as well as allowing significant size (volume) reductions (also important in space vehicles). Two possible fabrication techniques (one using proprietary branded 'Foturan' glass, the other using silicon wafer substrates) for microscopic coils are proposed, using electroplating into channels. The techniques have been evaluated for fabricating the planar electrical coils needed for typical microelectromechanical systems applications. There remain problems associated with processing using 'Foturan' glass, but coil fabrication on silicon wafers was successful. Fabrication methods such as these are expected to play an important part in the development of systems and subsystems for forthcoming space exploration missions

  7. In vivo field-cycling relaxometry using an insert coil for magnetic field offset.

    Science.gov (United States)

    Pine, Kerrin J; Goldie, Fred; Lurie, David J

    2014-11-01

    The T(1) of tissue has a strong dependence on the measurement magnetic field strength. T(1) -dispersion could be a useful contrast parameter, but is unavailable to clinical MR systems which operate at fixed magnetic field strength. The purpose of this work was to implement a removable insert magnet coil for field-cycling T(1) -dispersion measurements on a vertical-field MRI scanner, by offsetting the static field over a volume of interest. An insert magnet coil was constructed for use with a whole-body sized 59 milli-Tesla (mT) vertical-field, permanent-magnet based imager. The coil has diameter 38 cm and thickness 6.1 cm and a homogeneous region (± 5%) of 5 cm DSV, offset by 5 cm from the coil surface. Surface radiofrequency (RF) coils were also constructed. The insert coil was used in conjunction with a surface RF coil and a volume-localized inversion-recovery pulse sequence to plot T(1) -dispersion in a human volunteer's forearm over a range of field strengths from 1 mT to 70 mT. T(1) -dispersion measurements were demonstrated on a fixed-field MRI scanner, using an insert coil. This demonstrates the feasibility of relaxation dispersion measurements on an otherwise conventional MR imager, facilitating the exploitation of T(1) -dispersion contrast for enhanced diagnosis. Copyright © 2013 Wiley Periodicals, Inc.

  8. Association between tumour volume and recurrence of squamous cell carcinoma of the head and neck

    International Nuclear Information System (INIS)

    Kazmi, F.N.; Adil, A.; Ghaffar, S.; Ahmed, F.

    2012-01-01

    Objective: To evaluate the prognostic significance of computerized tomography derived tumour volume for squamous cell cancers of the head and neck, treated primarily by surgery. Methods: The retrospective review study comprised 72 patients with head and neck malignancies who were treated primarily by surgery at Aga Khan University Hospital, Karachi, with/without adjuvant. It was done from May 2007 to November 2008. Each patient was followed up for a minimum of one year to check for recurrence. For statistical analysis SPSS 17 was used. Frequencies, cross-tabulations with chi square tests to find associations, binary logistic regression analysis, Cox regression analysis and receiver operating characteristic curve tests were run on the data. Results: Overall, the median tumour volume for patients with recurrent disease was 52 cm/sup 3/ compared to 22 cm/sup 3/ for those who did not have a recurrence. It was found that large tumour volume was associated with a significantly higher chance of recurrence (p = 0.009). Laryngeal cancers with volumes greater than 46 cm/sup 3/ and oral cancers with volumes greater than 23.1 cm/sup 3/ were associated with poor prognosis. Conclusions: The primary tumour volume can represent an important prognostic factor for treatment outcome. Patients with larger primary tumour volumes should be treated more aggressively. (author)

  9. Study on the optimum design of a high temperature superconducting coil

    International Nuclear Information System (INIS)

    Ishiguri, Shinichi; Yamaguchi, Mitsugi; Fukui, Satoshi; Ogawa, Jun; Sato, Takao

    2005-01-01

    It is in particular of importance for HTS coils to secure a larger central magnetic field, a large stored energy, etc. with shorter length of HTS tapes. The critical current of an HTS tape depends on both the flux density and the flux angle with respect to tapes. In view of this, the performance improvement of HTS coils is taken into account with an analytical model. As a coil shape, the minimum volume coil derived from the Fabry Factor constant curve is taken up, which is often employed at low temperature coils. The electric field distribution within a coil cross-section is calculated to examine effects on a current carrying capability. It is clear that high electric field portions appear at the coil edge region due primarily to inclined magnetic fluxes against HTS tapes. Considering this, a grade winding method of a coil is proposed, where the winding density of conductors is reduced at coil edge portions. With this coil winding structure, the critical current of an HTS coil is improved since the magnetic field is reduced at edge portions. The stored energy per HTS tape length and the central magnetic field of the coil can be remarkably increased by this kind of grade winding method

  10. Materials and methods for higher performance screen-printed flexible MRI receive coils.

    Science.gov (United States)

    Corea, Joseph R; Lechene, P Balthazar; Lustig, Michael; Arias, Ana C

    2017-08-01

    To develop methods for characterizing materials used in screen-printed MRI coils and improve signal-to-noise ratio (SNR) with new lower-loss materials. An experimental apparatus was created to characterize dielectric properties of plastic substrates used in receive coils. Coils were fabricated by screen printing conductive ink onto several plastic substrates. Unloaded and sample loaded quality factor (Q Unloaded /Q Loaded ) measurements and scans on a 3T scanner were used to characterize coil performance. An experimental method was developed to describe the relationship between a coil's Q Unloaded and the SNR it provides in images of a phantom. In addition, 3T scans of a phantom and the head of a volunteer were obtained with a proof-of-concept printed eight-channel array, and the results were compared with a commercial 12-channel array. Printed coils with optimized substrates exhibited up to 97% of the image SNR when compared with a traditional coil on a loading phantom. Q Unloaded and the SNR of coils were successfully correlated. The printed array resulted in images comparable to the quality given by the commercial array. Using the proposed methods and materials, the SNR of printed coils approached that of commercial coils while using a new fabrication technique that provided more flexibility and close contact with the patient's body. Magn Reson Med 78:775-783, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  11. Blood flow and blood volume in the femoral heads of healthy adults according to age. Measurement with positron emission tomography (PET)

    International Nuclear Information System (INIS)

    Kubo, Toshikazu; Kimori, Kokuto; Nakamura, Fuminori; Inoue, Shigehiro; Fujioka, Mikihiro; Ueshima, Keiichiro; Hirasawa, Yasusuke; Ushijima, Yo; Nishimura, Tsunehiko

    2001-01-01

    To deepen understanding of hemodynamics in the femoral head, i.e., the essential factor in clarifying pathogenesis of hip disorders, this study examined blood flow and blood volume in the femoral heads of healthy adults, and their changes with age, by using positron emission tomography (PET). In 16 healthy adult males (age: 20-78 years old, mean age: 42 years), blood flow was measured by means of the H 2 15 O dynamic study method, and blood volume was measured by means of the 15 O-labeled carbon monoxide bolus inhalation method. Blood flow was 1.68-6.47 ml/min/100 g (mean ±SD: 3.52±1.2), and blood volume was 1.67-6.03 ml/100 g (mean ±SD: 3.00±1.27). Blood flow significantly decreased (p<0.01) with age, and blood volume significantly increased (P<0.05). PET was useful in the measurement of blood flow and blood volume in the femoral heads. With age, physiological hemodynamic changes also increased in femoral heads. (author)

  12. Examination of measurement and its method of compensation of the sensitivity distribution using phased array coil for body scan

    CERN Document Server

    Kimura, T; Iizuka, A; Taniguchi, Y; Ishikuro, A; Hongo, T; Inoue, H; Ogura, A

    2003-01-01

    The influence on the quality of images by measurement of a sensitivity distribution and the use of a sensitivity compensation filter was considered using an opposite-type phased array coil and volume-type phased array coil. With the opposite-type phased array coil, the relation between coil interval and filter was investigated for the image intensity correction (IIC) filter, surface coil intensity correction (SCIC) filter (GE), and the Normalize filter (SIEMENS). The SCIC filter and Normalize filter showed distance dependability over the coil interval of signal-to-noise ratio (SNR) and uniformity was observed, and the existence of an optimal coil interval was suggested. Moreover, with the IIC filter, distance dependability over a coil interval was small, and the decrease in contrast with use was remarkable. On the other hand, with the volume-type phased array coil, the overlap of an array element was investigated to determine the influence it had on sensitivity distribution. Although the value stabilized in t...

  13. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  14. The ultimate intrinsic signal-to-noise ratio of loop- and dipole-like current patterns in a realistic human head model.

    Science.gov (United States)

    Pfrommer, Andreas; Henning, Anke

    2018-03-13

    The ultimate intrinsic signal-to-noise ratio (UISNR) represents an upper bound for the achievable SNR of any receive coil. To reach this threshold a complete basis set of equivalent surface currents is required. This study systematically investigated to what extent either loop- or dipole-like current patterns are able to reach the UISNR threshold in a realistic human head model between 1.5 T and 11.7 T. Based on this analysis, we derived guidelines for coil designers to choose the best array element at a given field strength. Moreover, we present ideal current patterns yielding the UISNR in a realistic body model. We distributed generic current patterns on a cylindrical and helmet-shaped surface around a realistic human head model. We excited electromagnetic fields in the human head by using eigenfunctions of the spherical and cylindrical Helmholtz operator. The electromagnetic field problem was solved by a fast volume integral equation solver. At 7 T and above, adding curl-free current patterns to divergence-free current patterns substantially increased the SNR in the human head (locally >20%). This was true for the helmet-shaped and the cylindrical surface. On the cylindrical surface, dipole-like current patterns had high SNR performance in central regions at ultra-high field strength. The UISNR increased superlinearly with B0 in most parts of the cerebrum but only sublinearly in the periphery of the human head. The combination of loop and dipole elements could enhance the SNR performance in the human head at ultra-high field strength. © 2018 International Society for Magnetic Resonance in Medicine.

  15. The precise adjustment of coil location for transcranial magnetic stimulation during dynamic motion.

    Science.gov (United States)

    Kitamura, Taku; Yaeshima, Katsutoshi; Yamamoto, Shin-Ichiro; Kawashima, Noritaka

    2013-01-01

    Transcranial magnetic stimulation (TMS) to the cerebral cortex is a major in vitro technique that is used in the field of neurophysiology. The magnitude of the motor-evoked potentials (MEP) that are elicited by TMS to the primary motor cortex reflect the excitability of the corticospinal pathway. MEPs are very sensitive to the scalp location of the stimulus coil, especially when corticospinal excitability is recorded during walking or other dynamic motions. In this study, we created a coil navigational system that consisted of three-dimensional motion analysis cameras, rigid bodies on the head and coil, and programming software. In order to evaluate the feasibility of the use of our system, pseudo TMS was applied during treadmill walking with or without the navigational system. As a result, we found that the variances due to coil location and/or distance from the target site were reduced with our system. This technique enabled us to realize high precision and accuracy in coil placement, even during dynamic motion.

  16. Two-Slotted Surface Coil Array for Magnetic Resonance Imaging at 4 Tesla

    International Nuclear Information System (INIS)

    Solis, S. E.; Hernandez, J. A.; Rodriguez, A. O.; Tomasi, D.

    2008-01-01

    Arrays of antennas have been widely accepted for magnetic resonance imaging applications due to their high signal-to-noise ratio (SNR) over large volumes of interest. A new surface coil based on the magnetron tube and called slotted surface coil, has been recently introduced by our group. This coil design experimentally demonstrated a significant improvement over the circular-shaped coil when used in the receive-only mode. The slotted coils formed a two-sheet structure with a 90 deg. separation and each coil had 6 circular slots. Numerical simulations were performed using the finite element method for this coil design to study the behaviour of the array magnetic field. Then, we developed a two-coil array for brain magnetic resonance imaging to be operated at the resonant frequency of 170 MHz in the transceiver mode. Phantom images were acquired with our coil array and standard pulse sequences on a research-dedicated 4 Tesla scanner. Numerical simulations demonstrated that electromagnetic interaction between the coil elements is negligible, and that the magnetic field showed a good uniformity. In vitro images showed the feasibility of this coil array for standard pulses for high field magnetic resonance imaging

  17. Investigation of shape, position, and permeability of shielding material in quadruple butterfly coil for focused transcranial magnetic stimulation

    Science.gov (United States)

    Rastogi, Priyam; Zhang, Bowen; Tang, Yalun; Lee, Erik G.; Hadimani, Ravi L.; Jiles, David C.

    2018-05-01

    Transcranial magnetic stimulation has been gaining popularity in the therapy for several neurological disorders. A time-varying magnetic field is used to generate electric field in the brain. As the development of TMS methods takes place, emphasis on the coil design increases in order to improve focal stimulation. Ideally reduction of stimulation of neighboring regions of the target area is desired. This study, focused on the improvement of the focality of the Quadruple Butterfly Coil (QBC) with supplemental use of different passive shields. Parameters such as shape, position and permeability of the shields have been explored to improve the focus of stimulation. Results have been obtained with the help of computer modelling of a MRI derived heterogeneous head model over the vertex position and the dorsolateral prefrontal cortex position using a finite element tool. Variables such as maximum electric field induced on the grey matter and scalp, volume and area of stimulation above half of the maximum value of electric field on the grey matter, and ratio of the maximum electric field in the brain versus the scalp have been investigated.

  18. MRI with microscopy coil of the proximal interphalangeal joints: preliminary study

    International Nuclear Information System (INIS)

    Liu Min; Sun Haixing; Liu Dimin; Hu Meiyu; Pan Shunping; Wang Ping; Huang Xiaoling; Men Quanfei; Chen Yingming

    2009-01-01

    Objective: To investigate the use of a microscopy coil in MR examination of proximal interphalangeal joints (PIJ) to collect evidence on micro-anatomical pathological changes for further MR diagnosis. Methods: Four PIJ in cadaver and 12 PIJ from 7 normal volunteers were scanned with a microscopy surface coil (23 mm in diameter) at 1.5 T MRI. Sagittal T 1 -weighted images were also obtained with a conventional surface coil using the same parameters for the volunteers. Based on the observation of sagittal, traverse, coronal PIJ imaging features of cadaver, the optimized sequences were chosen for the volunteer's application. Image quality of the PIJ structures from volunteers was analyzed by two radiologists on a 5-point scale (0, nonvisualization; 1, poor; 2, average; 3, good; 4, excellent) and compared with Wilcoxon signed tank test between the microscopy and C3 surface coil in sagittal direction. Results: With microscopy coil all sequences can visualize the main structures of PI J, and all the PIJ images were classified as good or excellent except for one as average, while all the 12 PIJ with C3 coil were classified as poor or invisible. PIJ structures (proximal phalanx head, middle phalanx base, cartilage, volar plate) from volunteers show higher scores of quality with microscopy coils than those with C3 coil, and the difference was significant (Z =-3.274, -3.274, -3.213, and -3.742 respectively, all P<0.01). Conclusion: High-resolution MRI of the normal PIJ with microscopy coil was superior to those with a conventional surface coil, and it can be a promising method to diagnose interphalangeal joints lesions. (authors)

  19. [Volume changes to the neck lymph node metastases in head-neck tumors. The evaluation of radiotherapeutic treatment success].

    Science.gov (United States)

    Liszka, G; Thalacker, U; Somogyi, A; Németh, G

    1997-08-01

    This work is engaged with the volume change of neck lymph node metastasis of malignant tumors in the head-neck region during radiotherapy. In 54 patients with head and neck tumors, the volume of neck lymph nodes before and after radiation was measured. The volumetry was done with CT planimetry. The total dose was 66 Gy (2 Gy/d) telecobalt from 2 lateral opponated fields. The time of volume change could be defined with measuring of the half-time and the doubling-time by the help of Schwartz formula. After 10 Gy the volume diminution was about 20% and half-time 24 to 26 days. Afterwards the time of volume diminution picked up speed and finally achieved 60 to 72%. Meanwhile the half-time decreased to the half value. The result was independent of the site of primary tumor, the patient's sex and age. In our opinion the effectivity of radiotherapy can best be judged with defining of the volume change of lymph nodes of the neck.

  20. Design of superconducting toroidal magnet coils and testing facility in the USA

    International Nuclear Information System (INIS)

    Luton, J.N.; Haubenreich, P.N.; Thompson, P.B.

    1977-01-01

    In the U.S. Large Coil Program, three industrial teams are presently designing test coils to general specifications prepared by the Oak Ridge National Laboratory with guidance from USERDA. Each test coil is approximately half the bore size of reactor coils, being oval or D-shaped, with a bore of 2.5 x 3.5 m. The dimensions and operating requirements of the coils are identical for all test coils. The coils are designed to produce a peak field of at least 8 tesla at the winding of a selected coil operated at its design current. This condition is met when the selected coil is operated in a compact toroidal array of 6 coils, with the other five coils being operated at 0.8 of their design current. The six coils are of three different designs. Both pool boiling and forced flow designs are included. The coils are housed in a single large vacuum chamber for economy and testing convenience. Auxiliary coils provide a pulse field over the test coil winding volume. This auxiliary system is designed to produce a pulse field which rises to a peak of 0.14 T in 1 sec. With the exception of material damage due to neutron irradiation, all reactor requirements and environments will be either duplicated, approximated, or simulated. The test facility is being designed to accept coils producing up to 12 tesla in later phases of the program

  1. Room Volume Estimation Based on Ambiguity of Short-Term Interaural Phase Differences Using Humanoid Robot Head

    Directory of Open Access Journals (Sweden)

    Ryuichi Shimoyama

    2016-07-01

    Full Text Available Humans can recognize approximate room size using only binaural audition. However, sound reverberation is not negligible in most environments. The reverberation causes temporal fluctuations in the short-term interaural phase differences (IPDs of sound pressure. This study proposes a novel method for a binaural humanoid robot head to estimate room volume. The method is based on the statistical properties of the short-term IPDs of sound pressure. The humanoid robot turns its head toward a sound source, recognizes the sound source, and then estimates the ego-centric distance by its stereovision. By interpolating the relations between room volume, average standard deviation, and ego-centric distance experimentally obtained for various rooms in a prepared database, the room volume was estimated by the binaural audition of the robot from the average standard deviation of the short-term IPDs at the estimated distance.

  2. Portal Vein Embolization before Right Hepatectomy: Improved Results Using n-Butyl-Cyanoacrylate Compared to Microparticles Plus Coils

    Energy Technology Data Exchange (ETDEWEB)

    Guiu, Boris, E-mail: boris.guiu@chu-dijon.fr; Bize, Pierre; Gunthern, Daniel [Centre Hospitalo-Univeristaire Vaudois, Digestive and Oncologic Imaging and Interventional Radiology Unit, Department of Radiology and Interventional Radiology (Switzerland); Demartines, Nicolas; Halkic, Nermin [Centre Hospitalo-Univeristaire Vaudois, Department of Visceral Surgery (Switzerland); Denys, Alban [Centre Hospitalo-Univeristaire Vaudois, Digestive and Oncologic Imaging and Interventional Radiology Unit, Department of Radiology and Interventional Radiology (Switzerland)

    2013-10-15

    Background: There is currently no consensus in the literature on which embolic agent induces the greatest degree of liver hypertrophy after portal vein embolization (PVE). Only experimental results in a pig model have demonstrated an advantage of n-butyl-cyanoacrylate (NBCA) over 3 other embolic materials (hydrophilic gel, small and large polyvinyl alcohol particles) for PVE. Therefore, the aim of this human study was to retrospectively compare the results of PVE using NBCA with those using spherical microparticles plus coils. Methods: A total of 34 patients underwent PVE using either NBCA (n = 20), or spherical microparticles plus coils (n = 14). PVE was decided according to preoperative volumetry on the basis of contrast-enhanced CT. Groups were compared for age, sex, volume of the left lobe before PVE and future remnant liver ratio (FRL) (volume of the left lobe/total liver volume - tumor volume). The primary end point was the increase in left lobe volume 1 month after PVE. Secondary end points were procedure complications and biological tolerance. Results: Both groups were similar in terms of age, sex ratio, left lobe volume, and FRL before PVE. NBCA induced a greater increase in volume after PVE than did microparticles plus coils (respectively, +74 {+-} 69 % and +23 {+-} 14 %, p < 0.05). The amount of contrast medium used for the procedure was significantly larger when microparticles and coils rather than NBCA were used (respectively, 264 {+-} 43 ml and 162 {+-} 34 ml, p < 0.01). The rate of PVE complications as well as the biological tolerance was similar in both groups. Conclusion: NBCA seems more effective than spherical microparticles plus coils to induce left-lobe hypertrophy.

  3. Modular coils: a promising toroidal-reactor-coil system

    International Nuclear Information System (INIS)

    Chu, T.K.; Furth, H.P.; Johnson, J.L.; Ludescher, C.; Weimer, K.E.

    1981-04-01

    The concept of modular coils originated from a need to find reactor-relevant stellarator windings, but its usefulness can be extended to provide an externally applied, additional rotational transform in tokamaks. Considerations of (1) basic principles of modular coils, (2) types of coils, (3) types of configurations (general, helically symmetric, helically asymmetric, with magnetic well, with magnetic hill), (4) types of rotational transform profile, and (5) structure and origin of ripples are given. These results show that modular coils can offer a wide range of vacuum magnetic field configurations, some of which cannot be obtained with the classical stellarator or torsatron coil configuration

  4. The energizing of a NMR superconducting coil by a superconducting rectifier

    International Nuclear Information System (INIS)

    Sikkenga, J.; ten Kate, H.H.J.; van der Klundert, L.J.M.; Knoben, J.; Kraaij, G.J.; Spuorenberg, C.J.G.

    1985-01-01

    NMR magnets require a good homogeneity within a certain volume and an excellent field stability. The homogeneity can be met using a superconducting shim coil system. The field stability requires a constant current, although in many cases the current decay time constant is too low, due to imperfections in the superconducting wire and joints. This can be overcome using a rectifier. The rectifier can also be used to load the coil. The combination and interaction of the superconducting NMR coil (2.0 Tesla and 0.35 m cold bore) and the rectifier (20 W / 1 kA) is tested. The safety of the system is discussed. The shim coil system can compensate the strayfield of the rectifier. The field decay compensation will be discussed

  5. CCHMM_PROF: a HMM-based coiled-coil predictor with evolutionary information

    DEFF Research Database (Denmark)

    Bartoli, Lisa; Fariselli, Piero; Krogh, Anders

    2009-01-01

    tools are available for predicting coiled-coil domains in protein sequences, including those based on position-specific score matrices and machine learning methods. RESULTS: In this article, we introduce a hidden Markov model (CCHMM_PROF) that exploits the information contained in multiple sequence...... alignments (profiles) to predict coiled-coil regions. The new method discriminates coiled-coil sequences with an accuracy of 97% and achieves a true positive rate of 79% with only 1% of false positives. Furthermore, when predicting the location of coiled-coil segments in protein sequences, the method reaches...

  6. Improving the spatial accuracy in functional magnetic resonance imaging (fMRI) based on the blood oxygenation level dependent (BOLD) effect: benefits from parallel imaging and a 32-channel head array coil at 1.5 Tesla.

    Science.gov (United States)

    Fellner, C; Doenitz, C; Finkenzeller, T; Jung, E M; Rennert, J; Schlaier, J

    2009-01-01

    Geometric distortions and low spatial resolution are current limitations in functional magnetic resonance imaging (fMRI). The aim of this study was to evaluate if application of parallel imaging or significant reduction of voxel size in combination with a new 32-channel head array coil can reduce those drawbacks at 1.5 T for a simple hand motor task. Therefore, maximum t-values (tmax) in different regions of activation, time-dependent signal-to-noise ratios (SNR(t)) as well as distortions within the precentral gyrus were evaluated. Comparing fMRI with and without parallel imaging in 17 healthy subjects revealed significantly reduced geometric distortions in anterior-posterior direction. Using parallel imaging, tmax only showed a mild reduction (7-11%) although SNR(t) was significantly diminished (25%). In 7 healthy subjects high-resolution (2 x 2 x 2 mm3) fMRI was compared with standard fMRI (3 x 3 x 3 mm3) in a 32-channel coil and with high-resolution fMRI in a 12-channel coil. The new coil yielded a clear improvement for tmax (21-32%) and SNR(t) (51%) in comparison with the 12-channel coil. Geometric distortions were smaller due to the smaller voxel size. Therefore, the reduction in tmax (8-16%) and SNR(t) (52%) in the high-resolution experiment seems to be tolerable with this coil. In conclusion, parallel imaging is an alternative to reduce geometric distortions in fMRI at 1.5 T. Using a 32-channel coil, reduction of the voxel size might be the preferable way to improve spatial accuracy.

  7. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation.

    Directory of Open Access Journals (Sweden)

    Mai Lu

    Full Text Available Stimulation of deeper brain structures by transcranial magnetic stimulation (TMS plays a role in the study of reward and motivation mechanisms, which may be beneficial in the treatment of several neurological and psychiatric disorders. However, electric field distributions induced in the brain by deep transcranial magnetic stimulation (dTMS are still unknown. In this paper, the double cone coil, H-coil and Halo-circular assembly (HCA coil which have been proposed for dTMS have been numerically designed. The distributions of magnetic flux density, induced electric field in an anatomically based realistic head model by applying the dTMS coils were numerically calculated by the impedance method. Results were compared with that of standard figure-of-eight (Fo8 coil. Simulation results show that double cone, H- and HCA coils have significantly deep field penetration compared to the conventional Fo8 coil, at the expense of induced higher and wider spread electrical fields in superficial cortical regions. Double cone and HCA coils have better ability to stimulate deep brain subregions compared to that of the H-coil. In the mean time, both double cone and HCA coils increase risk for optical nerve excitation. Our results suggest although the dTMS coils offer new tool with potential for both research and clinical applications for psychiatric and neurological disorders associated with dysfunctions of deep brain regions, the selection of the most suitable coil settings for a specific clinical application should be based on a balanced evaluation between stimulation depth and focality.

  8. Sensitive quench detection of the HTS coil using a co-winding coil

    International Nuclear Information System (INIS)

    Takagi, Tomohiro; Ariyama, Takahiro; Takao, Tomoaki; Tsukamoto, Osami

    2017-01-01

    The authors have studied the co-winding coil method (CW method) using the co-wound coil electrically insulated from the HTS coil. In this method, the quench is detected by the voltage difference between the coil of the HTS tape (HTS coil) and the coil of the normal conductor (CW coil). The voltage induced in the CW coil caused by the change of the magnetic field is almost the same as that in the HTS coil because the coils are magnetically coupled close to each other. Therefore, it is expected that the induced voltage will be canceled with high accuracy and that the resistive voltage in the HTS coil will be detected with greater sensitivity compared to the bridge balance method, which is used commonly. In this study, quench detection applying the CW method is demonstrated using an experimental double-pancake coil. A tape with the copper layer deposited on the polymer substrate was used as the insulated conductor wire to form the CW coil. An additional pancake coil was used to expose the experimental double-pancake coil to the external magnetic field asymmetrically. It was shown that the CW method can detect the resistive voltage with greater sensitivity even when the HTS coil was exposed to the changing asymmetric external magnetic field. (author)

  9. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    Science.gov (United States)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  10. Tumor-Volume Simulation During Radiotherapy for Head-and-Neck Cancer Using a Four-Level Cell Population Model

    International Nuclear Information System (INIS)

    Chvetsov, Alexei V.; Dong Lei; Palta, Jantinder R.; Amdur, Robert J.

    2009-01-01

    Purpose: To develop a fast computational radiobiologic model for quantitative analysis of tumor volume during fractionated radiotherapy. The tumor-volume model can be useful for optimizing image-guidance protocols and four-dimensional treatment simulations in proton therapy that is highly sensitive to physiologic changes. Methods: The analysis is performed using two approximations: (1) tumor volume is a linear function of total cell number and (2) tumor-cell population is separated into four subpopulations: oxygenated viable cells, oxygenated lethally damaged cells, hypoxic viable cells, and hypoxic lethally damaged cells. An exponential decay model is used for disintegration and removal of oxygenated lethally damaged cells from the tumor. Results: We tested our model on daily volumetric imaging data available for 14 head-and-neck cancer patients treated with an integrated computed tomography/linear accelerator system. A simulation based on the averaged values of radiobiologic parameters was able to describe eight cases during the entire treatment and four cases partially (50% of treatment time) with a maximum 20% error. The largest discrepancies between the model and clinical data were obtained for small tumors, which may be explained by larger errors in the manual tumor volume delineation procedure. Conclusions: Our results indicate that the change in gross tumor volume for head-and-neck cancer can be adequately described by a relatively simple radiobiologic model. In future research, we propose to study the variation of model parameters by fitting to clinical data for a cohort of patients with head-and-neck cancer and other tumors. The potential impact of other processes, like concurrent chemotherapy, on tumor volume should be evaluated.

  11. Enhanced MR angiography of the lower extremities with synergy spine coil

    International Nuclear Information System (INIS)

    Takashima, Hiroyuki; Watanabe, Naoki

    2002-01-01

    A synergy spine coil is a phased-array coil designed for spine imaging. The coil's sensitive area is narrow in both the x-axis and y-axis directions but very wide in the z-axis direction. It is therefore suitable for using in long parts of the body, such as the spine. We used the coil for enhanced MR angiography in the lower extremities, which requires a very long field of view on the z-axis direction. Using on the NEMA (National Electrical Manufacturers Association) standard test for special-purpose coils, the sensitive volume of the synergy spine coil was first measured by using a phantom. It was found that the sensitive lengths along x-axis and y-axis were 300 mm and 120 mm, respectively, while that along z-axis could set at any length required for the examination by modifying the element number. The above area was confirmed to be sufficient for obtaining enhanced MR angiograms of the lower extremities. The results of this study showed the use of the synergy spine coil in enhanced MR angiography of the lower extremities is superior to the use of a conventional whole body coil for obtaining good MR angiograms with a good single-to-noise ratio (SNR). (author)

  12. The application of micro-coil NMR probe technology to metabolomics of urine and serum

    International Nuclear Information System (INIS)

    Grimes, John H.; O’Connell, Thomas M.

    2011-01-01

    Increasing the sensitivity and throughput of NMR-based metabolomics is critical for the continued growth of this field. In this paper the application of micro-coil NMR probe technology was evaluated for this purpose. The most commonly used biofluids in metabolomics are urine and serum. In this study we examine different sample limited conditions and compare the detection sensitivity of the micro-coil with a standard 5 mm NMR probe. Sample concentration is evaluated as a means to leverage the greatly improved mass sensitivity of the micro-coil probes. With very small sample volumes, the sensitivity of the micro-coil probe does indeed provide a significant advantage over the standard probe. Concentrating the samples does improve the signal detection, but the benefits do not follow the expected linear increase and are both matrix and metabolite specific. Absolute quantitation will be affected by concentration, but an analysis of relative concentrations is still possible. The choice of the micro-coil probe over a standard tube based probe will depend upon a number of factors including number of samples and initial volume but this study demonstrates the feasibility of high-throughput metabolomics with the micro-probe platform.

  13. Development and implementation of an 84-channel matrix gradient coil.

    Science.gov (United States)

    Littin, Sebastian; Jia, Feng; Layton, Kelvin J; Kroboth, Stefan; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2018-02-01

    Design, implement, integrate, and characterize a customized coil system that allows for generating spatial encoding magnetic fields (SEMs) in a highly-flexible fashion. A gradient coil with a high number of individual elements was designed. Dimensions of the coil were chosen to mimic a whole-body gradient system, scaled down to a head insert. Mechanical shape and wire layout of each element were optimized to increase the local gradient strength while minimizing eddy current effects and simultaneously considering manufacturing constraints. Resulting wire layout and mechanical design is presented. A prototype matrix gradient coil with 12 × 7 = 84 elements consisting of two element types was realized and characterized. Measured eddy currents are gradient strengths between 24 mT∕m and 78 mT∕m could be realized locally with maximum currents of 150 A. Initial proof-of-concept imaging experiments using linear and nonlinear encoding fields are demonstrated. A shielded matrix gradient coil setup capable of generating encoding fields in a highly-flexible manner was designed and implemented. The presented setup is expected to serve as a basis for validating novel imaging techniques that rely on nonlinear spatial encoding fields. Magn Reson Med 79:1181-1191, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  14. A 16-channel receive, forced current excitation dual-transmit coil for breast imaging at 7T.

    Directory of Open Access Journals (Sweden)

    Samantha By

    Full Text Available To enable high spatial and temporal breast imaging resolution via combined use of high field MRI, array coils, and forced current excitation (FCE multi channel transmit.A unilateral 16-channel receive array insert was designed for use in a transmit volume coil optimized for quadrature operation with dual-transmit RF shimming at 7 T. Signal-to-noise ratio (SNR maps, g-factor maps, and high spatial and temporal resolution in vivo images were acquired to demonstrate the utility of the coil architecture.The dual-transmit FCE coil provided homogeneous excitation and the array provided an increase in average SNR of 3.3 times (max 10.8, min 1.5 compared to the volume coil in transmit/receive mode. High resolution accelerated in vivo breast imaging demonstrated the ability to achieve isotropic spatial resolution of 0.5 mm within clinically relevant 90 s scan times, as well as the ability to perform 1.0 mm isotropic resolution imaging, 7 s per dynamics, with the use of bidirectional SENSE acceleration of up to R = 9.The FCE design of the transmit coil easily accommodates the addition of a sixteen channel array coil. The improved spatial and temporal resolution provided by the high-field array coil with FCE dual-channel transmit will ultimately be beneficial in lesion detection and characterization.

  15. Intensity correction method customized for multi-animal abdominal MR imaging with 3 T clinical scanner and multi-array coil

    International Nuclear Information System (INIS)

    Mitsuda, Minoru; Yamaguchi, Masayuki; Nakagami, Ryutaro; Furuta, Toshihiro; Fujii, Hirofumi; Sekine, Norio; Niitsu, Mamoru; Moriyama, Noriyuki

    2013-01-01

    Simultaneous magnetic resonance (MR) imaging of multiple small animals in a single session increases throughput of preclinical imaging experiments. Such imaging using a 3-tesla clinical scanner with multi-array coil requires correction of intensity variation caused by the inhomogeneous sensitivity profile of the coil. We explored a method for correcting intensity that we customized for multi-animal MR imaging, especially abdominal imaging. Our institutional committee for animal experimentation approved the protocol. We acquired high resolution T 1 -, T 2 -, and T 2 * -weighted images and low resolution proton density-weighted images (PDWIs) of 4 rat abdomens simultaneously using a 3T clinical scanner and custom-made multi-array coil. For comparison, we also acquired T 1 -, T 2 -, and T 2 * -weighted volume coil images in the same rats in 4 separate sessions. We used software created in-house to correct intensity variation. We applied thresholding to the PDWIs to produce binary images that displayed only a signal-producing area, calculated multi-array coil sensitivity maps by dividing low-pass filtered PDWIs by low-pass filtered binary images pixel by pixel, and divided uncorrected T 1 -, T 2 -, or T 2 * -weighted images by those maps to obtain intensity-corrected images. We compared tissue contrast among the liver, spinal canal, and muscle between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method performed well for all pulse sequences studied and corrected variation in original multi-array coil images without deteriorating the throughput of animal experiments. Tissue contrasts were comparable between intensity-corrected multi-array coil images and volume coil images. Our intensity correction method customized for multi-animal abdominal MR imaging using a 3T clinical scanner and dedicated multi-array coil could facilitate image interpretation. (author)

  16. A 4-channel 3 Tesla phased array receive coil for awake rhesus monkey fMRI and diffusion MRI experiments.

    Science.gov (United States)

    Khachaturian, Mark Haig

    2010-01-01

    Awake monkey fMRI and diffusion MRI combined with conventional neuroscience techniques has the potential to study the structural and functional neural network. The majority of monkey fMRI and diffusion MRI experiments are performed with single coils which suffer from severe EPI distortions which limit resolution. By constructing phased array coils for monkey MRI studies, gains in SNR and anatomical accuracy (i.e., reduction of EPI distortions) can be achieved using parallel imaging. The major challenges associated with constructing phased array coils for monkeys are the variation in head size and space constraints. Here, we apply phased array technology to a 4-channel phased array coil capable of improving the resolution and image quality of full brain awake monkey fMRI and diffusion MRI experiments. The phased array coil is that can adapt to different rhesus monkey head sizes (ages 4-8) and fits in the limited space provided by monkey stereotactic equipment and provides SNR gains in primary visual cortex and anatomical accuracy in conjunction with parallel imaging and improves resolution in fMRI experiments by a factor of 2 (1.25 mm to 1.0 mm isotropic) and diffusion MRI experiments by a factor of 4 (1.5 mm to 0.9 mm isotropic).

  17. Toxicological effects of prolonged and intense use of mosquito coil emission in rats and its implications on malaria control

    Directory of Open Access Journals (Sweden)

    Emmanuel Taiwo Idowu

    2013-09-01

    Full Text Available Efectos toxicológicos del uso prolongado e intenso de emisiones de espirales contra mosquitos en ratas y sus implicaciones sobre el control de la malaria. Mosquito coil is a vector control option used to prevent malaria in low income counties, while some studies have addressed this issue, additional reseach is required to increase knowledge on the adverse health effects caused by the prolonged use of coils. In this study we investigated the toxicological effects of fumes from two locally manufactured mosquito coil insecticides (with pyrethroids: transfluthrin and d-allethrin as active ingredients on male albino rats. For this, we recorded the haematological and biochemical indices, and made histopathology and mutagenicity evaluations in rats exposed to mosquito fumes during 2, 4, 8, 12 and 16 week periods. Haematological determination was performed using automated hematology analyzer to determine White Blood Cell (WBC, Packed Cell Volume (PCV, Red Blood Cell (RBC and Platelet (PLT counts, while biochemical evaluations were determined using available commercial kits. Gross histopathological changes were studied for the kidney, liver and lungs in sacrificed rats. The rat sperm head abnormalities assessment was used to evaluate mutagenicity. Mosquito coil fumes produced significant increase (P0.05. Mutagenicity assessment revealed sperm abnormality was statistically significant (P<0.05 compared with the control at 8, 12 and 16 weeks post exposure to transfluthrin. Histological studies revealed severe lung damage evidenced by interstitial accumulations, pulmonary oedema and emphysema in exposed rats. Intracellular accumulations and severe sinusoidal congestion of liver cells were observed from 12 weeks exposure, indicating liver damage. Our studies indicate that mosquito coil fumes do initiate gradual damage to the host. These pathological effects must be taken into consideration by the malaria control program, particularly when regulating their

  18. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shumin; Duyn, Jeff H [Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, 10/B1D728, Bethesda, MD 20892 (United States)

    2006-06-21

    We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.

  19. Tokamak Physics EXperiment (TPX): Toroidal field magnet design, development and manufacture. SDRL 32, Coil assembly documentation. Volume 5

    International Nuclear Information System (INIS)

    Weber, C.M.

    1995-01-01

    This document is intended to address the contract requirement for providing coil assembly documentation, as required in the applicable Statement of Work: 'Provide preliminary procedures and preliminary design and supporting analysis of the equipment, fixtures, and hardware required to integrate and align the impregnated coil assemblies with the coil cases and intercoil structure. Each of the three major processes associated with the coil case and intercoil structure (ICS), TF Case Fabrication, Coil Preparation for Case Assembly are examined in detail. The specific requirements, processes, equipment, and technical concerns for each of these assembly processes is presented

  20. Routine phasing of coiled-coil protein crystal structures with AMPLE

    Directory of Open Access Journals (Sweden)

    Jens M. H. Thomas

    2015-03-01

    Full Text Available Coiled-coil protein folds are among the most abundant in nature. These folds consist of long wound α-helices and are architecturally simple, but paradoxically their crystallographic structures are notoriously difficult to solve with molecular-replacement techniques. The program AMPLE can solve crystal structures by molecular replacement using ab initio search models in the absence of an existent homologous protein structure. AMPLE has been benchmarked on a large and diverse test set of coiled-coil crystal structures and has been found to solve 80% of all cases. Successes included structures with chain lengths of up to 253 residues and resolutions down to 2.9 Å, considerably extending the limits on size and resolution that are typically tractable by ab initio methodologies. The structures of two macromolecular complexes, one including DNA, were also successfully solved using their coiled-coil components. It is demonstrated that both the ab initio modelling and the use of ensemble search models contribute to the success of AMPLE by comparison with phasing attempts using single structures or ideal polyalanine helices. These successes suggest that molecular replacement with AMPLE should be the method of choice for the crystallographic elucidation of a coiled-coil structure. Furthermore, AMPLE may be able to exploit the presence of a coiled coil in a complex to provide a convenient route for phasing.

  1. Biomaterials Made from Coiled-Coil Peptides.

    Science.gov (United States)

    Conticello, Vincent; Hughes, Spencer; Modlin, Charles

    The development of biomaterials designed for specific applications is an important objective in personalized medicine. While the breadth and prominence of biomaterials have increased exponentially over the past decades, critical challenges remain to be addressed, particularly in the development of biomaterials that exhibit highly specific functions. These functional properties are often encoded within the molecular structure of the component molecules. Proteins, as a consequence of their structural specificity, represent useful substrates for the construction of functional biomaterials through rational design. This chapter provides an in-depth survey of biomaterials constructed from coiled-coils, one of the best-understood protein structural motifs. We discuss the utility of this structurally diverse and functionally tunable class of proteins for the creation of novel biomaterials. This discussion illustrates the progress that has been made in the development of coiled-coil biomaterials by showcasing studies that bridge the gap between the academic science and potential technological impact.

  2. Compressing DNA sequence databases with coil

    Directory of Open Access Journals (Sweden)

    Hendy Michael D

    2008-05-01

    Full Text Available Abstract Background Publicly available DNA sequence databases such as GenBank are large, and are growing at an exponential rate. The sheer volume of data being dealt with presents serious storage and data communications problems. Currently, sequence data is usually kept in large "flat files," which are then compressed using standard Lempel-Ziv (gzip compression – an approach which rarely achieves good compression ratios. While much research has been done on compressing individual DNA sequences, surprisingly little has focused on the compression of entire databases of such sequences. In this study we introduce the sequence database compression software coil. Results We have designed and implemented a portable software package, coil, for compressing and decompressing DNA sequence databases based on the idea of edit-tree coding. coil is geared towards achieving high compression ratios at the expense of execution time and memory usage during compression – the compression time represents a "one-off investment" whose cost is quickly amortised if the resulting compressed file is transmitted many times. Decompression requires little memory and is extremely fast. We demonstrate a 5% improvement in compression ratio over state-of-the-art general-purpose compression tools for a large GenBank database file containing Expressed Sequence Tag (EST data. Finally, coil can efficiently encode incremental additions to a sequence database. Conclusion coil presents a compelling alternative to conventional compression of flat files for the storage and distribution of DNA sequence databases having a narrow distribution of sequence lengths, such as EST data. Increasing compression levels for databases having a wide distribution of sequence lengths is a direction for future work.

  3. Design optimization of superconducting magnetic energy storage coil

    Energy Technology Data Exchange (ETDEWEB)

    Bhunia, Uttam, E-mail: ubhunia@vecc.gov.in; Saha, Subimal; Chakrabarti, Alok

    2014-05-15

    Highlights: • We modeled the optimization formulation that minimizes overall refrigeration load into the SMES cryostat. • Higher the operating current reduces the dynamic load but increases static heat load into the cryostat. • Higher allowable hoop stress reduces both coil volume and refrigeration load. • The formulation can be in general be utilized for any arbitrary specification of SMES coil and conductor type. - Abstract: An optimization formulation has been developed for a superconducting magnetic energy storage (SMES) solenoid-type coil with niobium titanium (Nb–Ti) based Rutherford-type cable that minimizes the cryogenic refrigeration load into the cryostat. Minimization of refrigeration load reduces the operating cost and opens up the possibility to adopt helium re-condensing system using cryo-cooler especially for small-scale SMES system. Dynamic refrigeration load during charging or discharging operational mode of the coil dominates over steady state load. The paper outlines design optimization with practical design constraints like actual critical characteristics of the superconducting cable, maximum allowable hoop stress on winding, etc., with the objective to minimize refrigeration load into the SMES cryostat. Effect of design parameters on refrigeration load is also investigated.

  4. Optimizing T2-weighted magnetic resonance sequences for surface coil microimaging of the eye with regard to lid, eyeball and head moving artifacts.

    Science.gov (United States)

    Obata, Takayuki; Uemura, Koji; Nonaka, Hiroi; Tamura, Mitsuru; Tanada, Shuji; Ikehira, Hiroo

    2006-01-01

    To acquire high-resolution magnetic resonance (MR) images, we developed a new blinking artifact reduced pulse (BARP) sequence with a surface coil specialized for microscopic imaging (47 mm in diameter). To reduce eye movement, we ascertained that the subjects' eyes were kept open and fixated to the target in the 1.5-T MR gantry. To reduce motion artifacts from blinking, we inserted rest periods for blinking (1.5 s within every 5 s) during MR scanning (T2-weighted fast spin echo; repetition time, 5 s; echo time, 100 ms; echo train, 11; matrix, 256 x 128; field of view, 5 cm; 1-mm thickness x 30 slices). Three scans (100 s x 3) were performed for each normal subject, and they were added together after automatic adjustment for location to reduce quality loss caused by head motion. T2-weighted MR images were acquired with a high resolution and a high signal-to-noise ratio. Motion artifacts were reduced with BARP, as compared with those with random blinking. Intraocular structures such as the iris and ciliary muscles were clearly visualized. Because the whole eye can be covered with a 1-mm thickness by this method, three-dimensional maps can easily be generated from the obtained images. The application of BARP with a surface coil of the human eye might become a useful and widely adopted procedure for MR microimaging.

  5. Development of a new error field correction coil (C-coil) for DIII-D

    International Nuclear Information System (INIS)

    Robinson, J.I.; Scoville, J.T.

    1995-12-01

    The C-coil recently installed on the DIII-D tokamak was developed to reduce the error fields created by imperfections in the location and geometry of the existing coils used to confine, heat, and shape the plasma. First results from C-coil experiments include stable operation in a 1.6 MA plasma with a density less than 1.0 x 10 13 cm -3 , nearly a factor of three lower density than that achievable without the C-coil. The C-coil has also been used in magnetic braking of the plasma rotation and high energy particle confinement experiments. The C-coil system consists of six individual saddle coils, each 60 degree wide toroidally, spanning the midplane of the vessel with a vertical height of 1.6 m. The coils are located at a major radius of 3.2 m, just outside of the toroidal field coils. The actual shape and geometry of each coil section varied somewhat from the nominal dimensions due to the large number of obstructions to the desired coil path around the already crowded tokamak. Each coil section consists of four turns of 750 MCM insulated copper cable banded with stainless steel straps within the web of a 3 in. x 3 in. stainless steel angle frame. The C-coil structure was designed to resist peak transient radial forces (up to 1,800 Nm) exerted on the coil by the toroidal and ploidal fields. The coil frames were supported from existing poloidal field coil case brackets, coil studs, and various other structures on the tokamak

  6. An induction heating device using planar coil with high amplitude alternating magnetic fields for magnetic hyperthermia.

    Science.gov (United States)

    Wu, Zuhe; Zhuo, Zihang; Cai, Dongyang; Wu, Jian'an; Wang, Jie; Tang, Jintian

    2015-01-01

    Induction heating devices using the induction coil and magnetic nanoparticles (MNPs) are the way that the magnetic hyperthermia is heading. To facilitate the induction heating of in vivo magnetic nanoparticles in hyperthermia experiments on large animals. An induction heating device using a planar coil was designed with a magnetic field frequency of 328 kHz. The coil's magnetic field distribution and the device's induction heating performance on different concentrations of magnetic nanoparticles were measured. The alternating magnetic field produced in the axis position 165 mm away from the coil center is 40 Gs in amplitude; magnetic nanoparticles with a concentration higher than 80 mg. mL-1 can be heated up rapidly. Our results demonstrate that the device can be applied not only to in vitro and in small animal experiments of magnetic hyperthermia using MNPs, but also in large animal experiments.

  7. HEDO-2, Magnetic Field Calculation and Plot of Air Core Coils

    International Nuclear Information System (INIS)

    Preis, H.; Martin, P.

    1979-01-01

    1 - Nature of physical problem solved: HEDO-2 allows calculation of the magnetic field, magnetic volume forces, and the self and mutual inductance coefficients of arbitrary air-core coil systems. In addition, the program is suitable for the calculation and graphic representation of field and contour lines (lines B = const). 2 - Method of solution: Approximation of the spatially distributed currents by line currents, in which the number of closed line currents per coil can be freely chosen in accordance with the calculating accuracy required. All types of calculations possible with HEDO-2 are based on the field representation of line currents. 3 - Restrictions on the complexity of the problem: (a) The coils must have rectangular winding cross sections. (b) The contour of each coil must be symmetric to at least one coordinate axis. (c) The function describing the contour and the derivative of the function must be continuous. (d) Maximum number of coils n=200; (e) Maximum number of test points p=2000; (f) Test points ought not to be located on a line conductor

  8. Conformational switching in the coiled-coil domains of a proteasomal ATPase regulates substrate processing.

    Science.gov (United States)

    Snoberger, Aaron; Brettrager, Evan J; Smith, David M

    2018-06-18

    Protein degradation in all domains of life requires ATPases that unfold and inject proteins into compartmentalized proteolytic chambers. Proteasomal ATPases in eukaryotes and archaea contain poorly understood N-terminally conserved coiled-coil domains. In this study, we engineer disulfide crosslinks in the coiled-coils of the archaeal proteasomal ATPase (PAN) and report that its three identical coiled-coil domains can adopt three different conformations: (1) in-register and zipped, (2) in-register and partially unzipped, and (3) out-of-register. This conformational heterogeneity conflicts with PAN's symmetrical OB-coiled-coil crystal structure but resembles the conformational heterogeneity of the 26S proteasomal ATPases' coiled-coils. Furthermore, we find that one coiled-coil can be conformationally constrained even while unfolding substrates, and conformational changes in two of the coiled-coils regulate PAN switching between resting and active states. This switching functionally mimics similar states proposed for the 26S proteasome from cryo-EM. These findings thus build a mechanistic framework to understand regulation of proteasome activity.

  9. Design of the coolant system for the Large Coil Test Facility pulse coils

    International Nuclear Information System (INIS)

    Bridgman, C.; Ryan, T.L.

    1983-01-01

    The pulse coils will be a part of the Large Coil Test Facility in Oak Ridge, Tennessee, which is designed to test six large tokamak-type superconducting coils. The pulse coil set consists of two resistive coaxial solenoid coils, mounted so that their magnetic axis is perpendicular to the toroidal field lines of the test coil. The pulse coils provide transient vertical fields at test coil locations to simulate the pulsed vertical fields present in tokamak devices. The pulse coils are designed to be pulsed for 30 s every 150 s, which results in a Joule heating of 116 kW per coil. In order to provide this capability, the pulse coil coolant system is required to deliver 6.3 L/s (100 gpm) of subcooled liquid nitrogen at 10-atm absolute pressure. The coolant system can also cool down each pulse coil from room temperature to liquid nitrogen temperature. This paper provides details of the pumping and heat exchange equipment designed for the coolant system and of the associated instrumentation and controls

  10. Active Head Motion Compensation of TMS Robotic System Using Neuro-Fuzzy Estimation

    Directory of Open Access Journals (Sweden)

    Wan Zakaria W.N.

    2016-01-01

    Full Text Available Transcranial Magnetic Stimulation (TMS allows neuroscientist to study human brain behaviour and also become an important technique for changing the activity of brain neurons and the functions they sub serve. However, conventional manual procedure and robotized TMS are currently unable to precisely position the TMS coil because of unconstrained subject’s head movement and excessive contact force between the coil and subject’s head. This paper addressed this challenge by proposing an adaptive neuro-fuzzy force control to enable low contact force with a moving target surface. A learning and adaption mechanism is included in the control scheme to improve position disturbance estimation. The results show the ability of the proposed force control scheme to compensate subject’s head motions while maintaining desired contact force, thus allowing for more accurate and repeatable TMS procedures.

  11. Superconducting magnetic coil

    Science.gov (United States)

    Aized, Dawood; Schwall, Robert E.

    1996-06-11

    A superconducting magnetic coil includes a plurality of sections positioned axially along the longitudinal axis of the coil, each section being formed of an anisotropic high temperature superconductor material wound about a longitudinal axis of the coil and having an associated critical current value that is dependent on the orientation of the magnetic field of the coil. The cross section of the superconductor, or the type of superconductor material, at sections along the axial and radial axes of the coil are changed to provide an increased critical current at those regions where the magnetic field is oriented more perpendicularly to the conductor plane, to thereby increase the critical current at these regions and to maintain an overall higher critical current of the coil.

  12. Magnetic resonance dacryocystography: comparison between conventional surface coils and microscopic coils

    International Nuclear Information System (INIS)

    Abreu Junior, Luiz de; Wolosker, Angela Maria Borri; Borri, Maria Lucia; Galvao Filho, Mario de Melo; Hartmann, Luiz Guilherme de Carvalho; D'Ippolito, Giuseppe; Castro, Claudio Campi de

    2008-01-01

    Objective: Magnetic resonance imaging has been utilized in the evaluation of the lacrimal apparatus with some advantages over conventional dacryocystography. The present study was aimed at acquiring high resolution images utilizing microscopic coils for evaluating typical structures of the lacrimal apparatus as compared with the findings observed with conventional surface coils. Materials and methods: Five asymptomatic volunteers with no history of epiphora were submitted to high-field magnetic resonance imaging with microscopic and conventional surface coils, and STIR sequence after instillation of saline solution. The definition of normal anatomic structures of lacrimal apparatuses was compared utilizing conventional and microscopic surface coils. Based on a consensual scoring system, the mean values for each structure were calculated by two observers. Results: In 90% of cases, higher scores were attributed to images acquired with the microscopic coil. On average, a 1.17 point increase was observed in the scoring of anatomic structures imaged with the microscopic coil. Additionally, a subjective improvement was observed in the signal-to-noise ratio with the microscopic coil. Conclusion: Magnetic resonance dacryocystography with microscopic coils is the appropriate method for evaluating the lacrimal apparatus, providing images with better quality as compared with those acquired with conventional surface coils. (author)

  13. Compact stellarator coils

    International Nuclear Information System (INIS)

    Pomphrey, N.; Berry, L.A.; Boozer, A.H.

    2001-01-01

    Experimental devices to study the physics of high-beta (β>∼4%), low aspect ratio (A<∼4.5) stellarator plasmas require coils that will produce plasmas satisfying a set of physics goals, provide experimental flexibility, and be practical to construct. In the course of designing a flexible coil set for the National Compact Stellarator Experiment, we have made several innovations that may be useful in future stellarator design efforts. These include: the use of Singular Value Decomposition methods for obtaining families of smooth current potentials on distant coil winding surfaces from which low current density solutions may be identified; the use of a Control Matrix Method for identifying which few of the many detailed elements of the stellarator boundary must be targeted if a coil set is to provide fields to control the essential physics of the plasma; the use of Genetic Algorithms for choosing an optimal set of discrete coils from a continuum of potential contours; the evaluation of alternate coil topologies for balancing the tradeoff between physics objective and engineering constraints; the development of a new coil optimization code for designing modular coils, and the identification of a 'natural' basis for describing current sheet distributions. (author)

  14. Coiled transmission line pulse generators

    Science.gov (United States)

    McDonald, Kenneth Fox

    2010-11-09

    Methods and apparatus are provided for fabricating and constructing solid dielectric "Coiled Transmission Line" pulse generators in radial or axial coiled geometries. The pour and cure fabrication process enables a wide variety of geometries and form factors. The volume between the conductors is filled with liquid blends of monomers, polymers, oligomers, and/or cross-linkers and dielectric powders; and then cured to form high field strength and high dielectric constant solid dielectric transmission lines that intrinsically produce ideal rectangular high voltage pulses when charged and switched into matched impedance loads. Voltage levels may be increased by Marx and/or Blumlein principles incorporating spark gap or, preferentially, solid state switches (such as optically triggered thyristors) which produce reliable, high repetition rate operation. Moreover, these Marxed pulse generators can be DC charged and do not require additional pulse forming circuitry, pulse forming lines, transformers, or an a high voltage spark gap output switch. The apparatus accommodates a wide range of voltages, impedances, pulse durations, pulse repetition rates, and duty cycles. The resulting mobile or flight platform friendly cylindrical geometric configuration is much more compact, light-weight, and robust than conventional linear geometries, or pulse generators constructed from conventional components. Installing additional circuitry may accommodate optional pulse shape improvements. The Coiled Transmission Lines can also be connected in parallel to decrease the impedance, or in series to increase the pulse length.

  15. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif

    DEFF Research Database (Denmark)

    Céspedes, Nora; Habel, Catherine; Lopez-Perez, Mary

    2014-01-01

    Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Pla...

  16. Multiple-animal MR imaging using a 3T clinical scanner and multi-channel coil for volumetric analysis in a mouse tumor model

    International Nuclear Information System (INIS)

    Mitsuda, Minoru; Yamaguchi, Masayuki; Furuta, Toshihiro; Fujii, Hirofumi; Nabetani, Akira; Hirayama, Akira; Nozaki, Atsushi; Niitsu, Mamoru

    2011-01-01

    Multiple small-animal magnetic resonance (MR) imaging to measure tumor volume may increase the throughput of preclinical cancer research assessing tumor response to novel therapies. We used a clinical scanner and multi-channel coil to evaluate the usefulness of this imaging to assess experimental tumor volume in mice. We performed a phantom study to assess 2-dimensional (2D) geometric distortion using 9-cm spherical and 32-cell (8 x 4 one-cm 2 grids) phantoms using a 3-tesla clinical MR scanner and dedicated multi-channel coil composed of 16 5-cm circular coils. Employing the multi-channel coil, we simultaneously scanned 6 or 8 mice bearing sarcoma 180 tumors. We estimated tumor volume from the sum of the product of tumor area and slice thickness on 2D spin-echo images (repetition time/echo time, 3500/16 ms; in-plane resolution, 0.195 x 0.195 x 1 mm 3 ). After MR acquisition, we excised and weighed tumors, calculated reference tumor volumes from actual tumor weight assuming a density of 1.05 g/cm 3 , and assessed the correlation between the estimated and reference volumes using Pearson's test. Two-dimensional geometric distortion was acceptable below 5% in the 9-cm spherical phantom and in every cell in the 32-cell phantom. We scanned up to 8 mice simultaneously using the multi-channel coil and found 11 tumors larger than 0.1 g in 12 mice. Tumor volumes were 1.04±0.73 estimated by MR imaging and 1.04±0.80 cm 3 by reference volume (average±standard deviation) and highly correlated (correlation coefficient, 0.995; P<0.01, Pearson's test). Use of multiple small-animal MR imaging employing a clinical scanner and multi-channel coil enabled accurate assessment of experimental tumor volume in a large number of mice and may facilitate high throughput monitoring of tumor response to therapy in preclinical research. (author)

  17. NCSX Trim Coil Design

    International Nuclear Information System (INIS)

    Kalish, M.; Brooks, A.; Rushinski, J.; Upcavage, R.

    2009-01-01

    The National Compact Stellarator Experiment (NCSX) was being constructed at the Princeton Plasma Physics Laboratory in partnership with Oak Ridge National Laboratory before work was stopped in 2008. The objective of this experiment was to develop the stellarator concept and evaluate it's potential as a model for future fusion power plants. Stellarator design requires very precisely positioned Modular Coils of complex shape to form 3D plasmas. In the design of NCSX, Trim Coils were required to compensate for both the positioning of the coils during assembly and the fabrication tolerances of the Modular Coils. Use of the Trim Coils allowed for larger tolerances increasing ease of assembly and decreasing overall cost. A set of Trim coils was developed to suppress the toroidal flux in island regions due to misalignment, magnetic materials, and eddy currents. The requirement imposed upon the design forced the toroidal flux in island regions below 10% of the total toroidal flux in the plasma. An analysis was first performed to evaluate candidate Trim Coil configurations iterating both the size, number, and position of the coils. The design was optimized considering both performance and cost while staying within the tight restraints presented by the space limited geometry. The final design of the Trim Coils incorporated a 48 Coil top bottom symmetric set. Fabrication costs were minimized by having only two coil types and using a planar conventional design with off the shelf commercial conductor. The Trim Coil design incorporated supports made from simple structural shapes assembled together in a way which allowed for adjustment as well as accommodation for the tolerance build up on the mating surfaces. This paper will summarize the analysis that led to the optimization of the Trim Coils set, the trim coil mechanical design, thermal and stress analysis, and the design of the supporting Trim Coil structure

  18. Dosimetric Comparison of Split Field and Fixed Jaw Techniques for Large IMRT Target Volumes in the Head and Neck

    International Nuclear Information System (INIS)

    Srivastava, Shiv P.; Das, Indra J.; Kumar, Arvind; Johnstone, Peter A.S.

    2011-01-01

    Some treatment planning systems (TPSs), when used for large-field (>14 cm) intensity-modulated radiation therapy (IMRT), create split fields that produce excessive multiple-leaf collimator segments, match-line dose inhomogeneity, and higher treatment times than nonsplit fields. A new method using a fixed-jaw technique (FJT) forces the jaw to stay at a fixed position during optimization and is proposed to reduce problems associated with split fields. Dosimetric comparisons between split-field technique (SFT) and FJT used for IMRT treatment is presented. Five patients with head and neck malignancies and regional target volumes were studied and compared with both techniques. Treatment planning was performed on an Eclipse TPS using beam data generated for Varian 2100C linear accelerator. A standard beam arrangement consisting of nine coplanar fields, equally spaced, was used in both techniques. Institutional dose-volume constraints used in head and neck cancer were kept the same for both techniques. The dosimetric coverage for the target volumes between SFT and FJT for head and neck IMRT plan is identical within ±1% up to 90% dose. Similarly, the organs at risk (OARs) have dose-volume coverage nearly identical for all patients. When the total monitor unit (MU) and segments were analyzed, SFT produces statistically significant higher segments (17.3 ± 6.3%) and higher MU (13.7 ± 4.4%) than the FJT. There is no match line in FJT and hence dose uniformity in the target volume is superior to the SFT. Dosimetrically, SFT and FJT are similar for dose-volume coverage; however, the FJT method provides better logistics, lower MU, shorter treatment time, and better dose uniformity. The number of segments and MU also has been correlated with the whole body radiation dose with long-term complications. Thus, FJT should be the preferred option over SFT for large target volumes.

  19. A primitive study on unsupervised anomaly detection with an autoencoder in emergency head CT volumes

    Science.gov (United States)

    Sato, Daisuke; Hanaoka, Shouhei; Nomura, Yukihiro; Takenaga, Tomomi; Miki, Soichiro; Yoshikawa, Takeharu; Hayashi, Naoto; Abe, Osamu

    2018-02-01

    Purpose: The target disorders of emergency head CT are wide-ranging. Therefore, people working in an emergency department desire a computer-aided detection system for general disorders. In this study, we proposed an unsupervised anomaly detection method in emergency head CT using an autoencoder and evaluated the anomaly detection performance of our method in emergency head CT. Methods: We used a 3D convolutional autoencoder (3D-CAE), which contains 11 layers in the convolution block and 6 layers in the deconvolution block. In the training phase, we trained the 3D-CAE using 10,000 3D patches extracted from 50 normal cases. In the test phase, we calculated abnormalities of each voxel in 38 emergency head CT volumes (22 abnormal cases and 16 normal cases) for evaluation and evaluated the likelihood of lesion existence. Results: Our method achieved a sensitivity of 68% and a specificity of 88%, with an area under the curve of the receiver operating characteristic curve of 0.87. It shows that this method has a moderate accuracy to distinguish normal CT cases to abnormal ones. Conclusion: Our method has potentialities for anomaly detection in emergency head CT.

  20. Composite coils for toroidal field coils and method of using same

    International Nuclear Information System (INIS)

    Perkins, R. G.; Trujillo, S. M.

    1985-01-01

    A composite toroidal field (TF) generating means consisting of segmented magnetic coil windings is disclosed. Each coil winding of the TF generating means consists of a copper or copper alloy conductor segment and an aluminum or aluminum alloy conductor segment. The conductor segments are joined at a high strength, low electrical resistance joint and the joint may either be a mechanical or metallurgical one. The use of the aluminum or aluminum alloy conductor segments improves the neutron economy of the reactor with which the TF coil is associated and reduces TF coil nuclear heating and heating gradients, and activation in the TF coils

  1. Outcomes with single-coil versus dual-coil implantable cardioverter defibrillators: a meta-analysis.

    Science.gov (United States)

    Sunderland, Nicholas; Kaura, Amit; Murgatroyd, Francis; Dhillon, Para; Scott, Paul A

    2018-03-01

    Dual-coil implantable cardioverter defibrillator (ICD) leads have traditionally been used over single-coil leads due to concerns regarding high defibrillation thresholds (DFT) and consequent poor shock efficacy. However, accumulating evidence suggests that this position may be unfounded and that dual-coil leads may also be associated with higher complication rates during lead extraction. This meta-analysis collates data comparing dual- and single-coil ICD leads. Electronic databases were systematically searched for randomized controlled trials (RCT) and non-randomized studies comparing single-coil and dual-coil leads. The mean differences in DFT and summary estimates of the odds-ratio (OR) for first-shock efficacy and the hazard-ratio (HR) for all-cause mortality were calculated using random effects models. Eighteen studies including a total of 138,124 patients were identified. Dual-coil leads were associated with a lower DFT compared to single coil leads (mean difference -0.83J; 95% confidence interval [CI] -1.39--0.27; P = 0.004). There was no difference in the first-shock success rate with dual-coil compared to single-coil leads (OR 0.74; 95%CI 0.45-1.21; P=0.22). There was a significantly lower risk of all-cause mortality associated with single-coil leads (HR 0.91; 95%CI 0.86-0.95; P dual-coil leads. The mortality benefit with single-coil leads most likely represents patient selection bias. Given the increased risk and complexity of extracting dual-coil leads, centres should strongly consider single-coil ICD leads as the lead of choice for routine new left-sided ICD implants. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2017. For permissions, please email: journals.permissions@oup.com.

  2. Measurement of heating coil temperature for e-cigarettes with a “top-coil” clearomizer

    Science.gov (United States)

    Wang, Ping; Ito, Kazuhide; Fowles, Jeff; Shusterman, Dennis; Jaques, Peter A.; Kumagai, Kazukiyo

    2018-01-01

    Objectives To determine the effect of applied power settings, coil wetness conditions, and e-liquid compositions on the coil heating temperature for e-cigarettes with a “top-coil” clearomizer, and to make associations of coil conditions with emission of toxic carbonyl compounds by combining results herein with the literature. Methods The coil temperature of a second generation e-cigarette was measured at various applied power levels, coil conditions, and e-liquid compositions, including (1) measurements by thermocouple at three e-liquid fill levels (dry, wet-through-wick, and full-wet), three coil resistances (low, standard, and high), and four voltage settings (3–6 V) for multiple coils using propylene glycol (PG) as a test liquid; (2) measurements by thermocouple at additional degrees of coil wetness for a high resistance coil using PG; and (3) measurements by both thermocouple and infrared (IR) camera for high resistance coils using PG alone and a 1:1 (wt/wt) mixture of PG and glycerol (PG/GL). Results For single point thermocouple measurements with PG, coil temperatures ranged from 322 ‒ 1008°C, 145 ‒ 334°C, and 110 ‒ 185°C under dry, wet-through-wick, and full-wet conditions, respectively, for the total of 13 replaceable coil heads. For conditions measured with both a thermocouple and an IR camera, all thermocouple measurements were between the minimum and maximum across-coil IR camera measurements and equal to 74% ‒ 115% of the across-coil mean, depending on test conditions. The IR camera showed details of the non-uniform temperature distribution across heating coils. The large temperature variations under wet-through-wick conditions may explain the large variations in formaldehyde formation rate reported in the literature for such “top-coil” clearomizers. Conclusions This study established a simple and straight-forward protocol to systematically measure e-cigarette coil heating temperature under dry, wet-through-wick, and full

  3. Comparison of the effectiveness of preoperative portal vein embolization in patients with chronic liver disease: Gelfoam versus gelfoam coil

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Sung Wook; Chang, Il Soo; Do, Young Soo; Park, Hong Suk; Park, Kwang Bo; Cho, Sung Ki; Choo, In Wook [Dept. of Radiology, and Cardiac and Vascular Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Choo, Sung Wook [Dept. of Radiology, Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2015-05-15

    To compare the effectiveness of portal vein embolization (PVE) performed using gelfoam or a gelfoam-coil combination before major hepatic resection in patients with chronic liver disease. PVE using gelfoam or a gelfoam-coil combination was performed in 37 patients. From April 2003 to September 2007, PVE was performed using gelfoam (n = 17) and a gelfoam-coil combination (n = 20) to induce hypertrophy. Computed tomography volumetry was performed 2-4 weeks after PVE to assess the changes in liver volume. The mean percentage increase in future liver remnant volume was 23.7 +/- 23.7% in the gelfoam group and 36.7 +/- 18.5% in the gelfoam-coil group (p = 0.02). Recanalization was found in 15 gelfoam group patients and 8 gelfoam-coil group patients (p = 0.003). The mean tumor size increased from 4.5 +/- 2.9 cm before PVE to 5.0 +/- 3.5 cm after PVE in the gelfoam group and from 4.3 +/- 2.2 cm before PVE to 4.7 +/- 2.5 cm after PVE in the gelfoam-coil group (p = 0.80). The gelfoam-coil combination was more effective than gelfoam alone for induction of compensatory hypertrophy by PVE in patients with chronic liver disease.

  4. Pathology-based validation of FDG PET segmentation tools for volume assessment of lymph node metastases from head and neck cancer

    Energy Technology Data Exchange (ETDEWEB)

    Schinagl, Dominic A.X. [Radboud University Nijmegen Medical Centre, Department of Radiation Oncology, Nijmegen (Netherlands); Radboud University Nijmegen Medical Centre, Department of Radiation Oncology (874), P.O. Box 9101, Nijmegen (Netherlands); Span, Paul N.; Kaanders, Johannes H.A.M. [Radboud University Nijmegen Medical Centre, Department of Radiation Oncology, Nijmegen (Netherlands); Hoogen, Frank J.A. van den [Radboud University Nijmegen Medical Centre, Department of Otorhinolaryngology, Head and Neck Surgery, Nijmegen (Netherlands); Merkx, Matthias A.W. [Radboud University Nijmegen Medical Centre, Department of Oral and Maxillofacial Surgery, Nijmegen (Netherlands); Slootweg, Piet J. [Radboud University Nijmegen Medical Centre, Department of Pathology, Nijmegen (Netherlands); Oyen, Wim J.G. [Radboud University Nijmegen Medical Centre, Department of Nuclear Medicine, Nijmegen (Netherlands)

    2013-12-15

    FDG PET is increasingly incorporated into radiation treatment planning of head and neck cancer. However, there are only limited data on the accuracy of radiotherapy target volume delineation by FDG PET. The purpose of this study was to validate FDG PET segmentation tools for volume assessment of lymph node metastases from head and neck cancer against the pathological method as the standard. Twelve patients with head and neck cancer and 28 metastatic lymph nodes eligible for therapeutic neck dissection underwent preoperative FDG PET/CT. The metastatic lymph nodes were delineated on CT (Node{sub CT}) and ten PET segmentation tools were used to assess FDG PET-based nodal volumes: interpreting FDG PET visually (PET{sub VIS}), applying an isocontour at a standardized uptake value (SUV) of 2.5 (PET{sub SUV}), two segmentation tools with a fixed threshold of 40 % and 50 %, and two adaptive threshold based methods. The latter four tools were applied with the primary tumour as reference and also with the lymph node itself as reference. Nodal volumes were compared with the true volume as determined by pathological examination. Both Node{sub CT} and PET{sub VIS} showed good correlations with the pathological volume. PET segmentation tools using the metastatic node as reference all performed well but not better than PET{sub VIS}. The tools using the primary tumour as reference correlated poorly with pathology. PET{sub SUV} was unsatisfactory in 35 % of the patients due to merging of the contours of adjacent nodes. FDG PET accurately estimates metastatic lymph node volume, but beyond the detection of lymph node metastases (staging), it has no added value over CT alone for the delineation of routine radiotherapy target volumes. If FDG PET is used in radiotherapy planning, treatment adaptation or response assessment, we recommend an automated segmentation method for purposes of reproducibility and interinstitutional comparison. (orig.)

  5. Water cooling coil

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S; Ito, Y; Kazawa, Y

    1975-02-05

    Object: To provide a water cooling coil in a toroidal nuclear fusion device, in which coil is formed into a small-size in section so as not to increase dimensions, weight or the like of machineries including the coil. Structure: A conductor arranged as an outermost layer of a multiple-wind water cooling coil comprises a hollow conductor, which is directly cooled by fluid, and as a consequence, a solid conductor disposed interiorly thereof is cooled indirectly.

  6. A high-performance OH coil for the Los Alamos CPRF

    International Nuclear Information System (INIS)

    Weggel, C.F.; Bogart, S.L.; Dalessandro, J.A.

    1988-01-01

    A high-performance Ohmic Heating (OH) magnet has been designed for the Confinement Physics Research Facility at the Los Alamos National Laboratory. The magnet has an outside radius at its throat of 1.00 meters. At maximum current, the maximum current density is 40 amperes per square millimetre, at which point it generates 38.32 webers, single swing (or 76.6 webers, double swing), and generates a central field of 17.37 teslas. The maximum von Miess stress is 408.6 MPa (59.26 ksi). The magnet stores 637 megajoules, with a time constant of 8.30 seconds. The magnet consists of two zones: a central hour-glass-shaped coil, and an outer coil gallery of trimming coils. The central stack is built of bandsawed spirals, the construction technique which was pioneered at MIT for the OH coils for Alcater A and C. the coil uses 42 spirals, each of which is sawed from a 5-cm-thick plate of either MZC, Elbrodur, SSC-155, or OFE copper, depending on the maximum ambient stress. The inner radius of every plate is 0.60 m, and the outside radius is tangent to a toroid whose major radius is 2.00 m and whose minor radius is 1.00 m. The pitch of each spiral is adjusted to minimize the field error. The outer trimming coils are built of high-conductivity aluminum (Alloy 1350). For ease of fabrication, all but the outermost pair of trimming coils lie in a single ''coil-gallery'' plane and carry the same current density, so that all can be wound from a single continuous strip. The trimming coils are positioned within this gallery to yield a field error of less than 7 gauss throughout a toroidal volume centered at R/sub T/ = 2.00 meters, and whose minor radius is r/sub p/ = 0.80 meters. The current density in the trimming coils is so low that vertical diagnostic access can be provided by boring 15-cm holes through the windings themselves

  7. Can an "Aesthetic" Intervention (Braided Hair Coil) Cause Hair Loss After an Aesthetic Operation?

    Science.gov (United States)

    Dionyssopoulos, Alexander; Papaconstantinou, Antony; Stoltidou, Alexandra; Spyropoulou, Georgia-Alexandra

    2014-07-01

    Postoperative pressure alopecia (PPA), defined as hair loss caused by prolonged pressure on the patient's scalp during surgery, is an uncommon condition after aesthetic surgery. Originally, it was described for patients who underwent lengthy cardiovascular and gynecologic operations. The authors present a rare case, in which hair loss occurred after secondary breast augmentation (replacement of breast implants). The PPA appeared in the occipitoparietal region of the patient's scalp approximately 2 weeks after surgery. The operation was completed in less than 3 hours, without any fluctuations in the patient's blood pressure or any unusual blood loss. There were no other precipitating factors such as anemia or coagulopathies. The probable cause of this unexpected result was the patient's braided hair coil, which had not been noted before the operation. The patient habitually, and on the day of her operation, combed her hair into a braided coil, which placed extra pressure on the occipitoparietal region. The hair loss was temporary, and hair regrowth was complete within 2 months. This incident may have been avoided if the braided hair coil had been noted by nursing or other medical staff preoperatively. Repositioning the head every 30 minutes and providing adequate head padding during surgery are advised to protect the patient and prevent such incidents. 5. © 2014 The American Society for Aesthetic Plastic Surgery, Inc.

  8. Coiled-coil forming peptides for the induction of silver nanoparticles

    International Nuclear Information System (INIS)

    Božič Abram, Sabina; Aupič, Jana; Dražić, Goran; Gradišar, Helena; Jerala, Roman

    2016-01-01

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  9. Coiled-coil forming peptides for the induction of silver nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Božič Abram, Sabina [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Graduate School of Biomedicine, University of Ljubljana, Ljubljana 1000 (Slovenia); Aupič, Jana [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Doctoral Programme in Chemical Sciences, Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana 1000 (Slovenia); Dražić, Goran [Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); Gradišar, Helena [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia); Jerala, Roman, E-mail: roman.jerala@ki.si [Department of Synthetic Biology and Immunology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana (Slovenia); EN-FIST, Centre of Excellence, Trg Osvobodilne fronte 13, Ljubljana 1000 (Slovenia)

    2016-04-08

    Biopolymers with defined sequence patterns offer an attractive alternative for the formation of silver nanoparticle (AgNP). A set of coiled-coil dimer forming peptides was tested for their AgNP formation ability. Seventeen of those peptides mediated the formation of AgNPs in aqueous solution at neutral pH, while the formation of a coiled-coil dimer inhibited the nanoparticle generation. A QSAR regression model on the relationship between sequence and function suggests that in this peptide type the patterns KXQQ and KXEE are favorable, whereas Ala residues appear to have an inhibitory effect. UV–VIS spectra of the obtained nanoparticles gave a peak at around 420 nm, typical for AgNPs in the size range around 40 nm, which was confirmed by dynamic light scattering and transmission electron microscopy. Peptide-induced AgNPs exhibited good antibacterial activity, even after a 15 min contact time, while they had low toxicity to human cells at the same concentrations. These results show that our designed peptides generate AgNPs with antibacterial activity at mild conditions and might be used for antibacterial coatings. - Highlights: • 17 of the 30 tested coiled-coil forming peptides induce AgNP formation. • Coiled-coil dimer formation suppresses AgNP generation of individual peptides. • Size of the peptide-induced silver nanoparticles is around 40 nm. • QSAR analysis points to the importance of KXQQ and KXEE motifs for AgNP generation. • Peptide-induced silver nanoparticles exhibit antibacterial activity.

  10. Automated de novo phasing and model building of coiled-coil proteins.

    Science.gov (United States)

    Rämisch, Sebastian; Lizatović, Robert; André, Ingemar

    2015-03-01

    Models generated by de novo structure prediction can be very useful starting points for molecular replacement for systems where suitable structural homologues cannot be readily identified. Protein-protein complexes and de novo-designed proteins are examples of systems that can be challenging to phase. In this study, the potential of de novo models of protein complexes for use as starting points for molecular replacement is investigated. The approach is demonstrated using homomeric coiled-coil proteins, which are excellent model systems for oligomeric systems. Despite the stereotypical fold of coiled coils, initial phase estimation can be difficult and many structures have to be solved with experimental phasing. A method was developed for automatic structure determination of homomeric coiled coils from X-ray diffraction data. In a benchmark set of 24 coiled coils, ranging from dimers to pentamers with resolutions down to 2.5 Å, 22 systems were automatically solved, 11 of which had previously been solved by experimental phasing. The generated models contained 71-103% of the residues present in the deposited structures, had the correct sequence and had free R values that deviated on average by 0.01 from those of the respective reference structures. The electron-density maps were of sufficient quality that only minor manual editing was necessary to produce final structures. The method, named CCsolve, combines methods for de novo structure prediction, initial phase estimation and automated model building into one pipeline. CCsolve is robust against errors in the initial models and can readily be modified to make use of alternative crystallographic software. The results demonstrate the feasibility of de novo phasing of protein-protein complexes, an approach that could also be employed for other small systems beyond coiled coils.

  11. Determination and delineation of nodal target volumes for head-and-neck cancer based on patterns of failure in patients receiving definitive and postoperative IMRT

    International Nuclear Information System (INIS)

    Chao, K.S. Clifford; Wippold, Franz J.; Ozyigit, Gokhan; Tran, Binh N.; Dempsey, James F.

    2002-01-01

    Purpose: We present the guidelines for target volume determination and delineation of head-and-neck lymph nodes based on the analysis of the patterns of nodal failure in patients treated with intensity-modulated radiotherapy (IMRT). Methods and Materials: Data pertaining to the natural course of nodal metastasis for each head-and-neck cancer subsite were reviewed. A system was established to provide guidance for nodal target volume determination and delineation. Following these guidelines, 126 patients (52 definitive, 74 postoperative) were treated between February 1997 and December 2000 with IMRT for head-and-neck cancer. The median follow-up was 26 months (range 12-55), and the patterns of nodal failure were analyzed. Results: These guidelines define the nodal target volume based on the location of the primary tumor and the probability of microscopic metastasis to the ipsilateral and contralateral (Level I-V) nodal regions. Following these guidelines, persistent or recurrent nodal disease was found in 6 (12%) of 52 patients receiving definitive IMRT, and 7 (9%) of 74 patients receiving postoperative IMRT had failure in the nodal region. Conclusion: On the basis of our clinical experience in implementing inverse-planning IMRT for head-and-neck cancer, we present guidelines using a simplified, but clinically relevant, method for nodal target volume determination and delineation. The intention was to provide a foundation that enables different institutions to exchange clinical experiences in head-and-neck IMRT. These guidelines will be subject to future refinement when the clinical experience in head-and-neck IMRT advances

  12. Conception of Brownian coil

    OpenAIRE

    Zhang, Jiayuan

    2018-01-01

    This article proposes a conception of Brownian coil. Brownian coil is a tiny coil with the same size of pollen. Once immersed into designed magnetic field and liquid, the coil will be moved and deformed macroscopically, due to the microscopic thermodynamic molecular collisions. Such deformation and movement will change the magnetic flux through the coil, by which an ElectroMotive Force (EMF) is produced. In this work, Brownian heat exchanger and Brownian generator are further designed to tran...

  13. Historical review: another 50th anniversary--new periodicities in coiled coils.

    Science.gov (United States)

    Gruber, Markus; Lupas, Andrei N

    2003-12-01

    In 1953, Francis Crick and Linus Pauling both proposed models of supercoiled alpha helices ('coiled coils') for the structure of keratin. These were the first attempts at modelling the tertiary structure of a protein. Crick emphasized the packing mode of the side-chains ('knobs-into-holes'), which required a periodicity of seven residues over two helical turns (7/2) and a supercoil in the opposite sense of the constituent helices. By contrast, Pauling envisaged a broader set of periodicities (4/1, 7/2, 18/5, 15/4, 11/3) and supercoils of both senses. Crick's model became canonical and the 'heptad repeat' essentially synonymous with coiled coils, but 50 years later new crystal structures and protein sequences show that the less common periodicities envisaged by Pauling also occur in coiled coils, adding a variant packing mode ('knobs-to-knobs') to the standard model. Pauling's laboratory notebooks suggest that he searched unsuccessfully for this packing mode in 1953.

  14. Coiled-Coil Proteins Facilitated the Functional Expansion of the Centrosome

    Science.gov (United States)

    Kuhn, Michael; Hyman, Anthony A.; Beyer, Andreas

    2014-01-01

    Repurposing existing proteins for new cellular functions is recognized as a main mechanism of evolutionary innovation, but its role in organelle evolution is unclear. Here, we explore the mechanisms that led to the evolution of the centrosome, an ancestral eukaryotic organelle that expanded its functional repertoire through the course of evolution. We developed a refined sequence alignment technique that is more sensitive to coiled coil proteins, which are abundant in the centrosome. For proteins with high coiled-coil content, our algorithm identified 17% more reciprocal best hits than BLAST. Analyzing 108 eukaryotic genomes, we traced the evolutionary history of centrosome proteins. In order to assess how these proteins formed the centrosome and adopted new functions, we computationally emulated evolution by iteratively removing the most recently evolved proteins from the centrosomal protein interaction network. Coiled-coil proteins that first appeared in the animal–fungi ancestor act as scaffolds and recruit ancestral eukaryotic proteins such as kinases and phosphatases to the centrosome. This process created a signaling hub that is crucial for multicellular development. Our results demonstrate how ancient proteins can be co-opted to different cellular localizations, thereby becoming involved in novel functions. PMID:24901223

  15. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art

    DEFF Research Database (Denmark)

    Nielsen, Jesper Duemose; Madsen, Kristoffer Hougaard; Puonti, Oula

    2018-01-01

    Anatomically realistic volume conductor models of the human head are important for accurate forward modeling of the electric field during transcranial brain stimulation (TBS), electro- (EEG) and magnetoencephalography (MEG). In particular, the skull compartment exerts a strong influence on the fi......Anatomically realistic volume conductor models of the human head are important for accurate forward modeling of the electric field during transcranial brain stimulation (TBS), electro- (EEG) and magnetoencephalography (MEG). In particular, the skull compartment exerts a strong influence...... local defects. In contrast to FSL BET2, the SPM12-based segmentation with extended spatial tissue priors and the BrainSuite-based segmentation provide coarse reconstructions of the vertebrae, enabling the construction of volume conductor models that include the neck. We exemplarily demonstrate...

  16. CCBuilder 2.0: Powerful and accessible coiled-coil modeling.

    Science.gov (United States)

    Wood, Christopher W; Woolfson, Derek N

    2018-01-01

    The increased availability of user-friendly and accessible computational tools for biomolecular modeling would expand the reach and application of biomolecular engineering and design. For protein modeling, one key challenge is to reduce the complexities of 3D protein folds to sets of parametric equations that nonetheless capture the salient features of these structures accurately. At present, this is possible for a subset of proteins, namely, repeat proteins. The α-helical coiled coil provides one such example, which represents ≈ 3-5% of all known protein-encoding regions of DNA. Coiled coils are bundles of α helices that can be described by a small set of structural parameters. Here we describe how this parametric description can be implemented in an easy-to-use web application, called CCBuilder 2.0, for modeling and optimizing both α-helical coiled coils and polyproline-based collagen triple helices. This has many applications from providing models to aid molecular replacement for X-ray crystallography, in silico model building and engineering of natural and designed protein assemblies, and through to the creation of completely de novo "dark matter" protein structures. CCBuilder 2.0 is available as a web-based application, the code for which is open-source and can be downloaded freely. http://coiledcoils.chm.bris.ac.uk/ccbuilder2. We have created CCBuilder 2.0, an easy to use web-based application that can model structures for a whole class of proteins, the α-helical coiled coil, which is estimated to account for 3-5% of all proteins in nature. CCBuilder 2.0 will be of use to a large number of protein scientists engaged in fundamental studies, such as protein structure determination, through to more-applied research including designing and engineering novel proteins that have potential applications in biotechnology. © 2017 The Authors Protein Science published by Wiley Periodicals, Inc. on behalf of The Protein Society.

  17. Integrated PET/MR breast cancer imaging: Attenuation correction and implementation of a 16-channel RF coil

    Energy Technology Data Exchange (ETDEWEB)

    Oehmigen, Mark, E-mail: mark.oehmigen@uni-due.de; Lindemann, Maike E. [High Field and Hybrid MR Imaging, University Hospital Essen, Essen 45147 (Germany); Lanz, Titus [Rapid Biomedical GmbH, Rimpar 97222 (Germany); Kinner, Sonja [Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen 45147 (Germany); Quick, Harald H. [High Field and Hybrid MR Imaging, University Hospital Essen, Essen 45147, Germany and Erwin L. Hahn Institute for MR Imaging, University Duisburg-Essen, Essen 45141 (Germany)

    2016-08-15

    Purpose: This study aims to develop, implement, and evaluate a 16-channel radiofrequency (RF) coil for integrated positron emission tomography/magnetic resonance (PET/MR) imaging of breast cancer. The RF coil is designed for optimized MR imaging performance and PET transparency and attenuation correction (AC) is applied for accurate PET quantification. Methods: A 16-channel breast array RF coil was designed for integrated PET/MR hybrid imaging of breast cancer lesions. The RF coil features a lightweight rigid design and is positioned with a spacer at a defined position on the patient table of an integrated PET/MR system. Attenuation correction is performed by generating and applying a dedicated 3D CT-based template attenuation map. Reposition accuracy of the RF coil on the system patient table while using the positioning frame was tested in repeated measurements using MR-visible markers. The MR, PET, and PET/MR imaging performances were systematically evaluated using modular breast phantoms. Attenuation correction of the RF coil was evaluated with difference measurements of the active breast phantoms filled with radiotracer in the PET detector with and without the RF coil in place, serving as a standard of reference measurement. The overall PET/MR imaging performance and PET quantification accuracy of the new 16-channel RF coil and its AC were then evaluated in first clinical examinations on ten patients with local breast cancer. Results: The RF breast array coil provides excellent signal-to-noise ratio and signal homogeneity across the volume of the breast phantoms in MR imaging and visualizes small structures in the phantoms down to 0.4 mm in plane. Difference measurements with PET revealed a global loss and thus attenuation of counts by 13% (mean value across the whole phantom volume) when the RF coil is placed in the PET detector. Local attenuation ranging from 0% in the middle of the phantoms up to 24% was detected in the peripheral regions of the phantoms at

  18. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    Science.gov (United States)

    Anderson, Danielle; Siegbahn, E. Albert; Fallone, B. Gino; Serduc, Raphael; Warkentin, Brad

    2012-05-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm2 microbeam array in each phantom, as well as a 16 × 16 mm2 array in the 8 cm cat head, and a 32 × 32 mm2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2-49 (mouse) and 2-46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2-87% and 33-96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this study

  19. Evaluation of dose-volume metrics for microbeam radiation therapy dose distributions in head phantoms of various sizes using Monte Carlo simulations

    International Nuclear Information System (INIS)

    Anderson, Danielle; Fallone, B Gino; Warkentin, Brad; Siegbahn, E Albert; Serduc, Raphael

    2012-01-01

    This work evaluates four dose-volume metrics applied to microbeam radiation therapy (MRT) using simulated dosimetric data as input. We seek to improve upon the most frequently used MRT metric, the peak-to-valley dose ratio (PVDR), by analyzing MRT dose distributions from a more volumetric perspective. Monte Carlo simulations were used to calculate dose distributions in three cubic head phantoms: a 2 cm mouse head, an 8 cm cat head and a 16 cm dog head. The dose distribution was calculated for a 4 × 4 mm 2 microbeam array in each phantom, as well as a 16 × 16 mm 2 array in the 8 cm cat head, and a 32 × 32 mm 2 array in the 16 cm dog head. Microbeam widths of 25, 50 and 75 µm and center-to-center spacings of 100, 200 and 400 µm were considered. The metrics calculated for each simulation were the conventional PVDR, the peak-to-mean valley dose ratio (PMVDR), the mean dose and the percentage volume below a threshold dose. The PVDR ranged between 3 and 230 for the 2 cm mouse phantom, and between 2 and 186 for the 16 cm dog phantom depending on geometry. The corresponding ranges for the PMVDR were much smaller, being 2–49 (mouse) and 2–46 (dog), and showed a slightly weaker dependence on phantom size and array size. The ratio of the PMVDR to the PVDR varied from 0.21 to 0.79 for the different collimation configurations, indicating a difference between the geometric dependence on outcome that would be predicted by these two metrics. For unidirectional irradiation, the mean lesion dose was 102%, 79% and 42% of the mean skin dose for the 2 cm mouse, 8 cm cat and 16 cm dog head phantoms, respectively. However, the mean lesion dose recovered to 83% of the mean skin dose in the 16 cm dog phantom in intersecting cross-firing regions. The percentage volume below a 10% dose threshold was highly dependent on geometry, with ranges for the different collimation configurations of 2–87% and 33–96% for the 2 cm mouse and 16 cm dog heads, respectively. The results of this

  20. Determining optimal clinical target volume margins in head-and-neck cancer based on microscopic extracapsular extension of metastatic neck nodes

    International Nuclear Information System (INIS)

    Apisarnthanarax, Smith; Elliott, Danielle D.; El-Naggar, Adel K.; Asper, Joshua A. P.A.; Blanco, Angel; Ang, K. Kian; Garden, Adam S.; Morrison, William H.; Rosenthal, David; Weber, Randal S.; Chao, K.S. Clifford

    2006-01-01

    Purpose: To determine the optimal clinical target volume margins around the gross nodal tumor volume in head-and-neck cancer by assessing microscopic tumor extension beyond cervical lymph node capsules. Methods and Materials: Histologic sections of 96 dissected cervical lymph nodes with extracapsular extension (ECE) from 48 patients with head-and-neck squamous cell carcinoma were examined. The maximum linear distance from the external capsule border to the farthest extent of the tumor or tumoral reaction was measured. The trends of ECE as a function of the distance from the capsule and lymph node size were analyzed. Results: The median diameter of all lymph nodes was 11.0 mm (range: 3.0-30.0 mm). The mean and median ECE extent was 2.2 mm and 1.6 mm, respectively (range: 0.4-9.0 mm). The ECE was <5 mm from the capsule in 96% of the nodes. As the distance from the capsule increased, the probability of tumor extension declined. No significant difference between the extent of ECE and lymph node size was observed. Conclusion: For N1 nodes that are at high risk for ECE but not grossly infiltrating musculature, 1 cm clinical target volume margins around the nodal gross tumor volume are recommended to cover microscopic nodal extension in head-and-neck cancer

  1. NET model coil test possibilities

    International Nuclear Information System (INIS)

    Erb, J.; Gruenhagen, A.; Herz, W.; Jentzsch, K.; Komarek, P.; Lotz, E.; Malang, S.; Maurer, W.; Noether, G.; Ulbricht, A.; Vogt, A.; Zahn, G.; Horvath, I.; Kwasnitza, K.; Marinucci, C.; Pasztor, G.; Sborchia, C.; Weymuth, P.; Peters, A.; Roeterdink, A.

    1987-11-01

    A single full size coil for NET/INTOR represents an investment of the order of 40 MUC (Million Unit Costs). Before such an amount of money or even more for the 16 TF coils is invested as much risks as possible must be eliminated by a comprehensive development programme. In the course of such a programme a coil technology verification test should finally prove the feasibility of NET/INTOR TF coils. This study report is almost exclusively dealing with such a verification test by model coil testing. These coils will be built out of two Nb 3 Sn-conductors based on two concepts already under development and investigation. Two possible coil arrangements are discussed: A cluster facility, where two model coils out of the two Nb 3 TF-conductors are used, and the already tested LCT-coils producing a background field. A solenoid arrangement, where in addition to the two TF model coils another model coil out of a PF-conductor for the central PF-coils of NET/INTOR is used instead of LCT background coils. Technical advantages and disadvantages are worked out in order to compare and judge both facilities. Costs estimates and the time schedules broaden the base for a decision about the realisation of such a facility. (orig.) [de

  2. Relative volume measured with magnetic resonance imaging is an articular collapse predictor in hematological pediatric patients with femoral head osteonecrosis.

    Science.gov (United States)

    Ippolito, Davide; Masetto, Alessandro; Talei Franzesi, Cammillo; Bonaffini, Pietro A; Casiraghi, Alessandra; Sironi, Sandro

    2016-08-28

    To assess the potential value of femoral head (FH) volume measurements to predict joint collapse, as compared to articular surface involvement, in post-treatment osteonecrosis (ON) in pediatric patients affected by lymphoproliferative diseases. Considering 114 young patients with lymphoproliferative diseases undergone a lower-limbs magnetic resonance imaging (MRI) examination between November 2006 and August 2012 for a suspected post-treatment ON, we finally considered a total of 13 cases (7 males, mean age 15.2 ± 4.8 years), which developed a FH ON lesions (n = 23). The MRI protocol included coronal short tau inversion recovery and T1-weighted sequences, from the hips to the ankles. During the follow-up (elapsed time: 9.2 ± 2 mo), 13/23 FH articular surface (FHS) developed articular deformity. The first MRI studies with diagnosis of ON were retrospectively analyzed, measuring FH volume (FHV), FHS, ON volume (ONV) and the articular surface involved by ON (ONS). The relative involvement of FHS, in terms of volume [relative volume (RV): ONV/FHV] and articular surface [relative surface (RS): ONS/FHS], was then calculated. By using receiver operating characteristic curve analysis (threshold of 23% of volume involvement), RV predicted articular deformity in 13/13 FHS [sensitivity 100%, specificity 90%, accuracy 95%, positive predictive value (PPV) 93%, negative predictive value (NPV) 100%]. Considering a threshold of 50% of articular involvement, RS predicted articular deformity in 10/13 femoral heads (sensitivity 77%, specificity 100%, accuracy 87%, PPV 100%, NPV 77%). RV might be a more reliable parameter than RS in predicting FH deformity and could represent a potential complementary diagnostic tool in the follow-up of femoral heads ON lesions.

  3. Characterization of the first RF coil dedicated to 1.5 T MR guided radiotherapy

    Science.gov (United States)

    Hoogcarspel, Stan J.; Zijlema, Stefan E.; Tijssen, Rob H. N.; Kerkmeijer, Linda G. W.; Jürgenliemk-Schulz, Ina M.; Lagendijk, Jan J. W.; Raaymakers, Bas W.

    2018-01-01

    The purpose of this study is to investigate the attenuation characteristics of a novel radiofrequency (RF) coil, which is the first coil that is solely dedicated to MR guided radiotherapy with a 1.5 T MR-linac. Additionally, we investigated the impact of the treatment beam on the MRI performance of this RF coil. First, the attenuation characteristics of the RF coil were characterized. Second, we investigated the impact of the treatment beam on the MRI performance of the RF coil. We additionally demonstrated the ability of the anterior coil to attenuate returning electrons and thereby reducing the dose to the skin at the distal side of the treatment beam. Intensity modulated radiation therapy simulation of a clinically viable treatment plan for spinal bone metastasis shows a decrease of the dose to the planned tumor volume of 1.8% as a result of the MR coil around the patient. Ionization chamber and film measurements show that the anterior and posterior coil attenuate the beam homogeneously by 0.4% and 2.2%, respectively. The impact of the radiation resulted in a slight drop of the time-course signal-to-noise ratio and was dependent on imaging parameters. However, we could not observe any image artifacts resulting from this irradiation in any situation. In conclusion, the investigated MR-coil can be utilized for treatments with the 1.5 T-linac system. However, there is still room for improvement when considering both the dosimetric and imaging performance of the coil.

  4. PET attenuation correction for rigid MR Tx/Rx coils from 176Lu background activity

    Science.gov (United States)

    Lerche, Christoph W.; Kaltsas, Theodoris; Caldeira, Liliana; Scheins, Jürgen; Rota Kops, Elena; Tellmann, Lutz; Pietrzyk, Uwe; Herzog, Hans; Shah, N. Jon

    2018-02-01

    One challenge for PET-MR hybrid imaging is the correction for attenuation of the 511 keV annihilation radiation by the required RF transmit and/or RF receive coils. Although there are strategies for building PET transparent Tx/Rx coils, such optimised coils still cause significant attenuation of the annihilation radiation leading to artefacts and biases in the reconstructed activity concentrations. We present a straightforward method to measure the attenuation of Tx/Rx coils in simultaneous MR-PET imaging based on the natural 176Lu background contained in the scintillator of the PET detector without the requirement of an external CT scanner or PET scanner with transmission source. The method was evaluated on a prototype 3T MR-BrainPET produced by Siemens Healthcare GmbH, both with phantom studies and with true emission images from patient/volunteer examinations. Furthermore, the count rate stability of the PET scanner and the x-ray properties of the Tx/Rx head coil were investigated. Even without energy extrapolation from the two dominant γ energies of 176Lu to 511 keV, the presented method for attenuation correction, based on the measurement of 176Lu background attenuation, shows slightly better performance than the coil attenuation correction currently used. The coil attenuation correction currently used is based on an external transmission scan with rotating 68Ge sources acquired on a Siemens ECAT HR  +  PET scanner. However, the main advantage of the presented approach is its straightforwardness and ready availability without the need for additional accessories.

  5. Dual coil ignition system

    Energy Technology Data Exchange (ETDEWEB)

    Huberts, Garlan J.; Qu, Qiuping; Czekala, Michael Damian

    2017-03-28

    A dual coil ignition system is provided. The dual coil ignition system includes a first inductive ignition coil including a first primary winding and a first secondary winding, and a second inductive ignition coil including a second primary winding and a second secondary winding, the second secondary winding connected in series to the first secondary winding. The dual coil ignition system further includes a diode network including a first diode and a second diode connected between the first secondary winding and the second secondary winding.

  6. Trends in tungsten coil atomic spectrometry

    Science.gov (United States)

    Donati, George L.

    Renewed interest in electrothermal atomic spectrometric methods based on tungsten coil atomizers is a consequence of a world wide increasing demand for fast, inexpensive, sensitive, and portable analytical methods for trace analysis. In this work, tungsten coil atomic absorption spectrometry (WCAAS) and tungsten coil atomic emission spectrometry (WCAES) are used to determine several different metals and even a non-metal at low levels in different samples. Improvements in instrumentation and new strategies to reduce matrix effects and background signals are presented. Investigation of the main factors affecting both WCAAS and WCAES analytical signals points to the importance of a reducing, high temperature gas phase in the processes leading to atomic cloud generation. Some more refractory elements such as V and Ti were determined for the first time by double tungsten coil atomic emission spectrometry (DWCAES). The higher temperatures provided by two atomizers in DWCAES also allowed the detection of Ag, Cu and Sn emission signals for the first time. Simultaneous determination of several elements by WCAES in relatively complex sample matrices was possible after a simple acid extraction. The results show the potential of this method as an alternative to more traditional, expensive methods for fast, more effective analyses and applications in the field. The development of a new metallic atomization cell is also presented. Lower limits of detection in both WCAAS and WCAES determinations were obtained due to factors such as better control of background signal, smaller, more isothermal system, with atomic cloud concentration at the optical path for a longer period of time. Tungsten coil-based methods are especially well suited to applications requiring low sample volume, low cost, sensitivity and portability. Both WCAAS and WCAES have great commercial potential in fields as diverse as archeology and industrial quality control. They are simple, inexpensive, effective

  7. Coil Migration through a Neuroform 3 Stent during Endovascular Coiling. A Case Report.

    LENUS (Irish Health Repository)

    O'Hare, A

    2009-07-29

    Summary: A 43-year-old woman attended for stent assisted coiling. A Neuroform 30 x 4.5 mm stent had been successfully placed over the left periophthalmic aneurysm. During the coiling the first coil migrated through the crowns in the stent, lodging at the MCA bifurcation. We believe that the coil herniated through the overlying stent due to the carotid siphon curvature and the open cell design. Furthermore the distal markers of the stent impeded coil extraction with a MERCI device.

  8. NCSX Toroidal Field Coil Design

    International Nuclear Information System (INIS)

    Kalish M; Rushinski J; Myatt L; Brooks A; Dahlgren F; Chrzanowski J; Reiersen W; Freudenberg K.

    2005-01-01

    The National Compact Stellarator Experiment (NCSX) is an experimental device whose design and construction is underway at the Department of Energy's Princeton Plasma Physics Laboratory (PPPL). The primary coil systems for the NCSX device consist of the twisted plasma-shaping Modular Coils, the Poloidal Field Coils, and the Toroidal Field (TF) Coils. The TF Coils are D-shaped coils wound from hollow copper conductor, and vacuum impregnated with a glass-epoxy resin system. There are 18 identical, equally spaced TF coils providing 1/R field at the plasma. They operate within a cryostat, and are cooled by LN2, nominally, to 80K. Wedge shaped castings are assembled to the inboard face of these coils, so that inward radial loads are reacted via the nesting of each of the coils against their adjacent partners. This paper outlines the TF Coil design methodology, reviews the analysis results, and summarizes how the design and analysis support the design requirements

  9. Four signature motifs define the first class of structurally related large coiled-coil proteins in plants.

    Directory of Open Access Journals (Sweden)

    Meier Iris

    2002-04-01

    Full Text Available Abstract Background Animal and yeast proteins containing long coiled-coil domains are involved in attaching other proteins to the large, solid-state components of the cell. One subgroup of long coiled-coil proteins are the nuclear lamins, which are involved in attaching chromatin to the nuclear envelope and have recently been implicated in inherited human diseases. In contrast to other eukaryotes, long coiled-coil proteins have been barely investigated in plants. Results We have searched the completed Arabidopsis genome and have identified a family of structurally related long coiled-coil proteins. Filament-like plant proteins (FPP were identified by sequence similarity to a tomato cDNA that encodes a coiled-coil protein which interacts with the nuclear envelope-associated protein, MAF1. The FPP family is defined by four novel unique sequence motifs and by two clusters of long coiled-coil domains separated by a non-coiled-coil linker. All family members are expressed in a variety of Arabidopsis tissues. A homolog sharing the structural features was identified in the monocot rice, indicating conservation among angiosperms. Conclusion Except for myosins, this is the first characterization of a family of long coiled-coil proteins in plants. The tomato homolog of the FPP family binds in a yeast two-hybrid assay to a nuclear envelope-associated protein. This might suggest that FPP family members function in nuclear envelope biology. Because the full Arabidopsis genome does not appear to contain genes for lamins, it is of interest to investigate other long coiled-coil proteins, which might functionally replace lamins in the plant kingdom.

  10. On modular stellarator reactor coils

    International Nuclear Information System (INIS)

    Rau, F.; Harmeyer, E.; Kisslinger, J.; Wobig, H.

    1985-01-01

    Modular twisted coils are discussed which produce magnetic fields of the Advanced Stellarator WENDELSTEIN VII-AS type. Reducing the number coils/FP offers advantage for maintenance of coils, but increases the magnetic ripple and B m /B o . Computation of force densities within the coils of ASR and ASB yield local maximum values of about 80 and 180 MN/m 3 , respectively. A system of mutual coil support is being developed. Twisted coils in helical arrangement provide a reactor-sized HELIAC system. In order to reduce the magnetic ripple, a large number of 14 coils/FP in special arrangement is used

  11. Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T

    Science.gov (United States)

    Ha, YongHyun; Choi, Chang-Hoon; Worthoff, Wieland A.; Shymanskaya, Aliaksandra; Schöneck, Michael; Willuweit, Antje; Felder, Jörg; Shah, N. Jon

    2018-01-01

    A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1H (400 MHz) and inner low-pass coil for 23Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1H and -27 dB for 23Na. Signal-to-noise ratios (SNRs) were calculated and 23Na flip angle maps were acquired. 23Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo1H and 23Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR.

  12. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions

    International Nuclear Information System (INIS)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in 1 H- 15 N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by 1 H- 15 N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies

  13. Fine-tuning of protein domain boundary by minimizing potential coiled coil regions.

    Science.gov (United States)

    Iwaya, Naoko; Goda, Natsuko; Unzai, Satoru; Fujiwara, Kenichiro; Tanaka, Toshiki; Tomii, Kentaro; Tochio, Hidehito; Shirakawa, Masahiro; Hiroaki, Hidekazu

    2007-01-01

    Structural determination of individual protein domains isolated from multidomain proteins is a common approach in the post-genomic era. Novel and thus uncharacterized domains liberated from intact proteins often self-associate due to incorrectly defined domain boundaries. Self-association results in missing signals, poor signal dispersion and a low signal-to-noise ratio in (1)H-(15)N HSQC spectra. We have found that a putative, non-canonical coiled coil region close to a domain boundary can cause transient hydrophobic self-association and monomer-dimer equilibrium in solution. Here we propose a rational method to predict putative coiled coil regions adjacent to the globular core domain using the program COILS. Except for the amino acid sequence, no preexisting knowledge concerning the domain is required. A small number of mutant proteins with a minimized coiled coil region have been rationally designed and tested. The engineered domains exhibit decreased self-association as assessed by (1)H-(15)N HSQC spectra with improved peak dispersion and sharper cross peaks. Two successful examples of isolating novel N-terminal domains from AAA-ATPases are demonstrated. Our method is useful for the experimental determination of domain boundaries suited for structural genomics studies.

  14. Three-dimensional US assessment of hepatic volume, head circumference, and abdominal circumference in healthy and growth-restricted fetuses

    NARCIS (Netherlands)

    S.M. Boito; J.A.M. Laudij (Jacqueline); P.C. Struijk (Pieter); Th. Stijnen (Theo); J.W. Wladimiroff (Juriy)

    2002-01-01

    textabstractPURPOSE: To establish reproducibility and normal values for fetal hepatic volume and its significance in identification of fetal growth restriction relative to head and upper abdominal circumferences according to a cross-sectional study design. MATERIALS AND METHODS:

  15. Electron holography of magnetic field generated by a magnetic recording head.

    Science.gov (United States)

    Goto, Takayuki; Jeong, Jong Seok; Xia, Weixing; Akase, Zentaro; Shindo, Daisuke; Hirata, Kei

    2013-06-01

    The magnetic field generated by a magnetic recording head is evaluated using electron holography. A magnetic recording head, which is connected to an electric current source, is set on the specimen holder of a transmission electron microscope. Reconstructed phase images of the region around the magnetic pole show the change in the magnetic field distribution corresponding to the electric current applied to the coil of the head. A simulation of the magnetic field, which is conducted using the finite element method, reveals good agreement with the experimental observations.

  16. A TMS coil positioning/holding system for MR image-guided TMS interleaved with fMRI.

    Science.gov (United States)

    Bohning, Daryl E; Denslow, S; Bohning, P A; Walker, J A; George, M S

    2003-11-01

    Transcranial magnetic stimulation (TMS) can be interleaved with fMRI to visualize regional brain activity in response to direct, non-invasive, cortical stimulation, making it a promising tool for studying brain function. A major practical difficulty is accurately positioning the TMS coil within the MRI scanner for stimulating a particular area of brain cortex. The objective of this work was to design and build a self-contained hardware/software system for MR-guided TMS coil positioning in interleaved TMS/fMRI studies. A compact, manually operated, articulated TMS coil positioner/holder with 6 calibrated degrees of freedom was developed for use inside a cylindrical RF head coil, along with a software package for transforming between MR image coordinates, MR scanner space coordinates, and positioner/holder settings. Phantom calibration studies gave an accuracy for positioning within setups of dx=+/-1.9 mm, dy=+/-1.4 mm, dz=+/-0.8 mm and a precision for multiple setups of dx=+/-0.8 mm, dy=+/-0.1 mm, dz=+/-0.1 mm. This self-contained, integrated MR-guided TMS system for interleaved TMS/fMRI studies provides fast, accurate location of motor cortex stimulation sites traditionally located functionally, and a means of consistent, anatomy-based TMS coil positioning for stimulation of brain areas without overt response.

  17. Pulmonary Perfusion Changes as Assessed by Contrast-Enhanced Dual-Energy Computed Tomography after Endoscopic Lung Volume Reduction by Coils.

    Science.gov (United States)

    Lador, Frédéric; Hachulla, Anne-Lise; Hohn, Olivia; Plojoux, Jérôme; Ronot, Maxime; Montet, Xavier; Soccal, Paola M

    2016-01-01

    Endoscopic lung volume reduction by coils (LVRC) is a recent treatment approach for severe emphysema. Furthermore, dual-energy computed tomography (DECT) now offers a combined assessment of lung morphology and pulmonary perfusion. The aim of our study was to assess the impact of LVRC on pulmonary perfusion with DECT. Seventeen patients (64.8 ± 6.7 years) underwent LVRC. DECT was performed prior to and after LVRC. For each patient, lung volumes and emphysema quantification were automatically calculated. Then, 6 regions of interest (ROIs) on the iodine perfusion map were drawn in the anterior, mid, and posterior right and left lungs at 4 defined levels. The ROI values were averaged to obtain lung perfusion as assessed by the lung's iodine concentration (CLung, μg·cm-3). The CLung values were normalized using the left atrial iodine concentration (CLA) to take into account differences between successive DECT scans. The 6-min walk distance (6MWD) improved significantly after the procedure (p = 0.0002). No lung volume changes were observed between successive DECT scans for any of the patients (p = 0.32), attesting the same suspended inspiration. After LVRC, the emphysema index was significantly reduced in the treated lung (p = 0.0014). Lung perfusion increased significantly adjacent to the treated areas (CLung/CLA from 3.4 ± 1.7 to 5.6 ± 2.2, p < 0.001) and in the ipsilateral untreated areas (from 4.1 ± 1.4 to 6.6 ± 1.7, p < 0.001), corresponding to a mean 65 and 61% increase in perfusion, respectively. No significant difference was observed in the contralateral upper and lower areas (from 4.4 ± 1.9 to 4.8 ± 2.1, p = 0.273, and from 4.9 ± 2.0 to 5.2 ± 1.7, p = 0.412, respectively). A significant correlation between increased 6MWD and increased perfusion was found (p = 0.0027, R2 = 0.3850). Quantitative analysis based on DECT acquisition revealed that LVRC results in a significant increase in perfusion in the coil-free areas adjacent to the treated ones, as

  18. Immunogenicity of coiled-coil based drug-free macromolecular therapeutics

    Czech Academy of Sciences Publication Activity Database

    Kverka, Miloslav; Hartley, J.M.; Chu, T.W.; Yang, J.; Heidchen, R.; Kopeček, J.

    2014-01-01

    Roč. 35, č. 2 (2014), s. 5886-5896 ISSN 1616-0177 R&D Projects: GA MŠk(CZ) EE2.3.30.0003 Grant - others:NIH(US) GM095606 Institutional support: RVO:61388971 Keywords : coiled-coil * enantiomers * HPMA copolymer Subject RIV: EC - Immunology

  19. The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field.

    Science.gov (United States)

    Herrmann, Tim; Mallow, Johannes; Plaumann, Markus; Luchtmann, Michael; Stadler, Jörg; Mylius, Judith; Brosch, Michael; Bernarding, Johannes

    2015-01-01

    Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey's head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI. The TW Primate System (TWPS) uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR) was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil. The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired. The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system.

  20. The Travelling-Wave Primate System: A New Solution for Magnetic Resonance Imaging of Macaque Monkeys at 7 Tesla Ultra-High Field.

    Directory of Open Access Journals (Sweden)

    Tim Herrmann

    Full Text Available Neuroimaging of macaques at ultra-high field (UHF is usually conducted by combining a volume coil for transmit (Tx and a phased array coil for receive (Rx tightly enclosing the monkey's head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI systems, which are now more widely available. Goal of the study was developing and validating the TW concept for in vivo primate MRI.The TW Primate System (TWPS uses the radio frequency shield of the gradient system of a human whole-body 7 T MRI system as a waveguide to propagate a circularly polarized B1 field represented by the TE11 mode. This mode is excited by a specifically designed 2-port patch antenna. For receive, a customized neuroimaging monkey head receive-only coil was designed. Field simulation was used for development and evaluation. Signal-to-noise ratio (SNR was compared with data acquired with a conventional monkey volume head coil consisting of a homogeneous transmit coil and a 12-element receive coil.The TWPS offered good image homogeneity in the volume-of-interest Turbo spin echo images exhibited a high contrast, allowing a clear depiction of the cerebral anatomy. As a prerequisite for functional MRI, whole brain ultrafast echo planar images were successfully acquired.The TWPS presents a promising new approach to fMRI of macaques for research groups with access to a horizontal UHF MRI system.

  1. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies.

    Science.gov (United States)

    Wood, Christopher W; Bruning, Marc; Ibarra, Amaurys Á; Bartlett, Gail J; Thomson, Andrew R; Sessions, Richard B; Brady, R Leo; Woolfson, Derek N

    2014-11-01

    The ability to accurately model protein structures at the atomistic level underpins efforts to understand protein folding, to engineer natural proteins predictably and to design proteins de novo. Homology-based methods are well established and produce impressive results. However, these are limited to structures presented by and resolved for natural proteins. Addressing this problem more widely and deriving truly ab initio models requires mathematical descriptions for protein folds; the means to decorate these with natural, engineered or de novo sequences; and methods to score the resulting models. We present CCBuilder, a web-based application that tackles the problem for a defined but large class of protein structure, the α-helical coiled coils. CCBuilder generates coiled-coil backbones, builds side chains onto these frameworks and provides a range of metrics to measure the quality of the models. Its straightforward graphical user interface provides broad functionality that allows users to build and assess models, in which helix geometry, coiled-coil architecture and topology and protein sequence can be varied rapidly. We demonstrate the utility of CCBuilder by assembling models for 653 coiled-coil structures from the PDB, which cover >96% of the known coiled-coil types, and by generating models for rarer and de novo coiled-coil structures. CCBuilder is freely available, without registration, at http://coiledcoils.chm.bris.ac.uk/app/cc_builder/. © The Author 2014. Published by Oxford University Press.

  2. Local SAR in High Pass Birdcage and TEM Body Coils for Multiple Human Body Models in Clinical Landmark Positions at 3T

    Science.gov (United States)

    Yeo, Desmond TB; Wang, Zhangwei; Loew, Wolfgang; Vogel, Mika W; Hancu, Ileana

    2011-01-01

    Purpose To use EM simulations to study the effects of body type, landmark position, and RF body coil type on peak local SAR in 3T MRI. Materials and Methods Numerically computed peak local SAR for four human body models (HBMs) in three landmark positions (head, heart, pelvic) were compared for a high-pass birdcage and a transverse electromagnetic 3T body coil. Local SAR values were normalized to the IEC whole-body average SAR limit of 2.0 W/kg for normal scan mode. Results Local SAR distributions were highly variable. Consistent with previous reports, the peak local SAR values generally occurred in the neck-shoulder area, near rungs, or between tissues of greatly differing electrical properties. The HBM type significantly influenced the peak local SAR, with stockier HBMs, extending extremities towards rungs, displaying the highest SAR. There was also a trend for higher peak SAR in the head-centric and heart-centric positions. The impact of the coil-types studied was not statistically significant. Conclusion The large variability in peak local SAR indicates the need to include more than one HBM or landmark position when evaluating safety of body coils. It is recommended that a HBM with arms near the rungs be included, to create physically realizable high-SAR scenarios. PMID:21509880

  3. Application of dual volume reconstruction technique in embolization of intracranial aneurysms

    Directory of Open Access Journals (Sweden)

    Xiang-hai ZHANG

    2014-03-01

    Full Text Available Objective To explore the value of dual volume reconstruction technique in Guglielmi detachable coil (GDC embolization of intracranial aneurysms. Methods Three-dimensional imaging data of 20 patients received GDC embolization of intracranial aneurysms from Jun. 2012 to Apr. 2013 were analyzed for dual volume reconstruction. The value of application of dual volume reconstruction was evaluated by the detection rate of coils bolus, degree of aneurysm occlusion, the length of aneurysm sac and aneurysm neck before and after embolization, and the characteristics and clinical value of the reconstructed images. Results  A total of 20 coil boluses were detected by dual volume reconstruction images, and the detection rate was 100%. Among all of 20 patients, no visualization of contrast medium in the aneurysm was found in 13 patients, while contrast agent was found in the aneurysm sac in 3 patients and in the aneurysm neck in 4 patients. The length of aneurysm neck and sac was somewhat changed before and after embolization with no statistically significant difference (P>0.05. The dual volume reconstruction could reveal coil bolus, vessels, cranium and fusion images, and the aneurysms could be shown by different imaging modes according to the clinical requirement. Conclusion Dual volume reconstruction technique can display the location of coil bolus, degree of occlusion and aneurysm size, and evaluate the embolization effect by multifarious imaging modes, providing a great deal of information for the evaluation of GDC embolization of intracranial aneurysm. DOI: 10.11855/j.issn.0577-7402.2014.02.13

  4. Using a whole-body 31P birdcage transmit coil and 16-element receive array for human cardiac metabolic imaging at 7T.

    Directory of Open Access Journals (Sweden)

    Ladislav Valkovič

    Full Text Available Cardiac phosphorus magnetic resonance spectroscopy (31P-MRS provides unique insight into the mechanisms of heart failure. Yet, clinical applications have been hindered by the restricted sensitivity of the surface radiofrequency-coils normally used. These permit the analysis of spectra only from the interventricular septum, or large volumes of myocardium, which may not be meaningful in focal disease. Löring et al. recently presented a prototype whole-body (52 cm diameter transmit/receive birdcage coil for 31P at 7T. We now present a new, easily-removable, whole-body 31P transmit radiofrequency-coil built into a patient-bed extension combined with a 16-element receive array for cardiac 31P-MRS.A fully-removable (55 cm diameter birdcage transmit coil was combined with a 16-element receive array on a Magnetom 7T scanner (Siemens, Germany. Electro-magnetic field simulations and phantom tests of the setup were performed. In vivo maps of B1+, metabolite signals, and saturation-band efficiency were acquired across the torsos of eight volunteers.The combined (volume-transmit, local receive array setup increased signal-to-noise ratio 2.6-fold 10 cm below the array (depth of the interventricular septum compared to using the birdcage coil in transceiver mode. The simulated coefficient of variation for B1+ of the whole-body coil across the heart was 46.7% (surface coil 129.0%; and the in vivo measured value was 38.4%. Metabolite images of 2,3-diphosphoglycerate clearly resolved the ventricular blood pools, and muscle tissue was visible in phosphocreatine (PCr maps. Amplitude-modulated saturation bands achieved 71±4% suppression of phosphocreatine PCr in chest-wall muscles. Subjects reported they were comfortable.This easy-to-assemble, volume-transmit, local receive array coil combination significantly improves the homogeneity and field-of-view for metabolic imaging of the human heart at 7T.

  5. Attenuation correction for flexible magnetic resonance coils in combined magnetic resonance/positron emission tomography imaging.

    Science.gov (United States)

    Eldib, Mootaz; Bini, Jason; Calcagno, Claudia; Robson, Philip M; Mani, Venkatesh; Fayad, Zahi A

    2014-02-01

    Attenuation correction for magnetic resonance (MR) coils is a new challenge that came about with the development of combined MR and positron emission tomography (PET) imaging. This task is difficult because such coils are not directly visible on either PET or MR acquisitions with current combined scanners and are therefore not easily localized in the field of view. This issue becomes more evident when trying to localize flexible MR coils (eg, cardiac or body matrix coil) that change position and shape from patient to patient and from one imaging session to another. In this study, we proposed a novel method to localize and correct for the attenuation and scatter of a flexible MR cardiac coil, using MR fiducial markers placed on the surface of the coil to allow for accurate registration of a template computed tomography (CT)-based attenuation map. To quantify the attenuation properties of the cardiac coil, a uniform cylindrical water phantom injected with 18F-fluorodeoxyglucose (18F-FDG) was imaged on a sequential MR/PET system with and without the flexible cardiac coil. After establishing the need to correct for the attenuation of the coil, we tested the feasibility of several methods to register a precomputed attenuation map to correct for the attenuation. To accomplish this, MR and CT visible markers were placed on the surface of the cardiac flexible coil. Using only the markers as a driver for registration, the CT image was registered to the reference image through a combination of rigid and deformable registration. The accuracy of several methods was compared for the deformable registration, including B-spline, thin-plate spline, elastic body spline, and volume spline. Finally, we validated our novel approach both in phantom and patient studies. The findings from the phantom experiments indicated that the presence of the coil resulted in a 10% reduction in measured 18F-FDG activity when compared with the phantom-only scan. Local underestimation reached 22% in

  6. Large superconducting coil fabrication development

    International Nuclear Information System (INIS)

    Brown, R.L.; Allred, E.L.; Anderson, W.C.; Burn, P.B.; Deaderick, R.I.; Henderson, G.M.; Marguerat, E.F.

    1975-01-01

    Toroidal fields for some fusion devices will be produced by an array of large superconducting coils. Their size, space limitation, and field requirements dictate that they be high performance coils. Once installed, accessibility for maintenance and repairs is severely restricted; therefore, good reliability is an obvious necessity. Sufficient coil fabrication will be undertaken to develop and test methods that are reliable, fast, and economical. Industrial participation will be encouraged from the outset to insure smooth transition from development phases to production phases. Initially, practice equipment for three meter bore circular coils will be developed. Oval shape coil forms will be included in the practice facility later. Equipment that is more automated will be developed with the expectation of winding faster and obtaining good coil quality. Alternate types of coil construction, methods of winding and insulating, will be investigated. Handling and assembly problems will be studied. All technology developed must be feasible for scaling up when much larger coils are needed. Experimental power reactors may need coils having six meter or larger bores

  7. Multicoil2: predicting coiled coils and their oligomerization states from sequence in the twilight zone.

    Directory of Open Access Journals (Sweden)

    Jason Trigg

    Full Text Available The alpha-helical coiled coil can adopt a variety of topologies, among the most common of which are parallel and antiparallel dimers and trimers. We present Multicoil2, an algorithm that predicts both the location and oligomerization state (two versus three helices of coiled coils in protein sequences. Multicoil2 combines the pairwise correlations of the previous Multicoil method with the flexibility of Hidden Markov Models (HMMs in a Markov Random Field (MRF. The resulting algorithm integrates sequence features, including pairwise interactions, through multinomial logistic regression to devise an optimized scoring function for distinguishing dimer, trimer and non-coiled-coil oligomerization states; this scoring function is used to produce Markov Random Field potentials that incorporate pairwise correlations localized in sequence. Multicoil2 significantly improves both coiled-coil detection and dimer versus trimer state prediction over the original Multicoil algorithm retrained on a newly-constructed database of coiled-coil sequences. The new database, comprised of 2,105 sequences containing 124,088 residues, includes reliable structural annotations based on experimental data in the literature. Notably, the enhanced performance of Multicoil2 is evident when tested in stringent leave-family-out cross-validation on the new database, reflecting expected performance on challenging new prediction targets that have minimal sequence similarity to known coiled-coil families. The Multicoil2 program and training database are available for download from http://multicoil2.csail.mit.edu.

  8. Effects of coil closure of patent ductus arteriosus on left anterior descending coronary artery blood flow using transthoracic Doppler echocardiography.

    Science.gov (United States)

    Harada, Kenji; Toyono, Manotomo; Tamura, Masamichi

    2004-06-01

    Transthoracic Doppler echocardiography provides noninvasive measurements of coronary blood flow in the left anterior descending coronary artery (LAD). This method has the potential to show the effects of acute changes in loading conditions on blood flow. Coil closure of patent ductus arteriosus (PDA) is a model of acute changes in blood pressure and left ventricular (LV) preload that influences coronary blood flow. We applied this technique to assess the coronary blood flow changes for patients with PDA before and immediately after PDA coil closure. We examined 9 patients (1.8 +/- 1.1 years) with simple PDA and 8 age-matched healthy children. LV dimensions and LV mass were measured. Maximum peak flow velocity and flow volume in the LAD were measured. Pulmonary to systemic flow ratios (Qp/Qs) were obtained by cardiac catheterization. After PDA coil closure, LV end-diastolic dimension decreased, and systolic and diastolic blood pressures increased significantly. The maximum peak flow velocity, LAD flow volume, and the ratio of LAD flow volume to LV mass increased significantly. The changes in maximum peak flow velocity and the ratio of LAD flow volume to LV mass (F/M) correlated positively with the changes in diastolic pressure and Qp/Qs. In 5 patients who had Qp/Qs > 1.5, the mean F/M was significantly lower compared with control subjects, but they increased to normal values after coil closure of PDA. PDA coil closure increases diastolic pressure and decreases Qp/Qs, resulting in improvement of myocardial perfusion. These findings provide new insights into the relationship between cardiac function and coronary circulation in pediatric patients with heart diseases associated with PDA.

  9. A 25 kA, 2T, 78 kJ, 52 litre superconducting test coil. Strength calculations and construction

    NARCIS (Netherlands)

    ten Kate, Herman H.J.; Holtslag, A.H.M.; Knoben, J.; Steffens, H.A.; van de Klundert, L.J.M.

    1983-01-01

    Within the scope of our research program for a 25 kA superconducting rectifier, we have built a 25 kA s.c. coil being a single layer solenoid with a bore of 0.45 meter and a volume of 52 litre. The starting point for the design was to avoid any metallic structural material. This unique coil consists

  10. Coil measurement data acquisition and curing press control system for SSC dipole magnet coils

    International Nuclear Information System (INIS)

    Dickey, C.E.

    1989-03-01

    A coil matching program, similar in theory to the methods used to match Tevatron coils, is being developed at Fermilab. Modulus of elasticity and absolute coil size will be determined at 18-inch intervals along the coils while in the coil curing press immediately following the curing process. A data acquisition system is under construction to automatically acquire and manage the large quantities of data that result. Data files will be transferred to Fermilab's VAX Cluster for long-term storage and actual coil matching. The data acquisition system will also provide the control algorithm for the curing press hydraulic system. A description of the SSC Curing Press Data Acquisition and Controls System will be reported. 20 figs

  11. Dryout occurrence in a helically coiled steam generator for nuclear power application

    Directory of Open Access Journals (Sweden)

    Santini L.

    2014-03-01

    Full Text Available Dryout phenomena have been experimentally investigated in a helically coiled steam generator tube. The experiences carried out in the present work are part of a wide experimental program devoted to the study of a GEN III+ innovative nuclear power plant [1].The experimental facility consists in an electrically heated AISI 316L stainless steel coiled tube. The tube is 32 meters long, 12.53 mm of inner diameter, with a coil diameter of 1m and a pitch of 0.79 m, resulting in a total height of the steam generator of 8 meters. The thermo-hydraulics conditions for dryout investigations covered a spectrum of mass fluxes between 199 and 810 kg/m2s, the pressures ranges from 10.7 to 60.7 bar, heat fluxes between 43.6 to 209.3 kW/m2.Very high first qualities dryout, between 0.72 and 0.92, were found in the range of explored conditions, comparison of our results with literature available correlations shows the difficulty in predicting high qualities dryout in helical coils., immediately following the heading. The text should be set to 1.15 line spacing. The abstract should be centred across the page, indented 15 mm from the left and right page margins and justified. It should not normally exceed 200 words.

  12. Design and use of a folded four-ring double-tuned birdcage coil for rat brain sodium imaging at 9.4 T.

    Science.gov (United States)

    Ha, YongHyun; Choi, Chang-Hoon; Worthoff, Wieland A; Shymanskaya, Aliaksandra; Schöneck, Michael; Willuweit, Antje; Felder, Jörg; Shah, N Jon

    2018-01-01

    A folded four-ring quadrature birdcage coil was designed and constructed with a double-tune configuration of an outer high-pass coil for 1 H (400 MHz) and inner low-pass coil for 23 Na (105.72 MHz at 9.4 T). The coil was evaluated on the bench and in the scanner, comparing its performance with that of single-tuned coils and a large four-ring coil. All coils were tuned and matched and the isolation between two quadrature ports was found to be better than -13.7 dB for 1 H and -27 dB for 23 Na. Signal-to-noise ratios (SNRs) were calculated and 23 Na flip angle maps were acquired. 23 Na SNR of the folded four-ring reached ∼93% of that obtained with the single-tuned coil. A set of in vivo 1 H and 23 Na axial images to cover the whole rat brain were obtained. The performance of the folded four-ring coil and its benefit for 23 Na imaging experiments have been demonstrated. This proposed four-ring coil could avoid length restrictions, e.g. the shoulders, by folding the outer rings vertically. This facilitates the construction of double-tuned four-ring birdcage coils just to fit the head, leading to higher filling factors and better SNR. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Open coil traction system.

    Science.gov (United States)

    Vibhute, Pavankumar Janardan

    2012-01-01

    Sliding mechanics have become a popular method for space closure, with the development of preadjusted edgewise appliances. Furthermore, various space closing auxiliaries have been developed and extensively evaluated for their clinical efficiency. Their effectiveness is enhanced with optimum force magnitude and low load deflection rate/force decay. With the advent of nickel-titanium (Ni-Ti) springs in orthodontics, load deflection rates have been markedly reduced. To use Ni-Ti springs, clinicians have to depend upon prefabricated closed coil springs. The open coil traction system, or open coil retraction spring, is developed utilizing Ni-Ti open coil springs for orthodontic space closure. This article describes the fabrication and clinical application of the open coil traction system, which has a number of advantages. It sustains a low load deflection rate with optimum force magnitude, and its design is adjustable for a desired length and force level. It is fail-safe for both activation and deactivation (ie, it cannot be overactivated, and the decompression limit of the open coil is controlled by the operator). The open coil traction system can be offset from the mucosa to help reduce soft tissue impingement.

  14. Plasmodium vivax antigen discovery based on alpha-helical coiled coil protein motif.

    Directory of Open Access Journals (Sweden)

    Nora Céspedes

    Full Text Available Protein α-helical coiled coil structures that elicit antibody responses, which block critical functions of medically important microorganisms, represent a means for vaccine development. By using bioinformatics algorithms, a total of 50 antigens with α-helical coiled coil motifs orthologous to Plasmodium falciparum were identified in the P. vivax genome. The peptides identified in silico were chemically synthesized; circular dichroism studies indicated partial or high α-helical content. Antigenicity was evaluated using human sera samples from malaria-endemic areas of Colombia and Papua New Guinea. Eight of these fragments were selected and used to assess immunogenicity in BALB/c mice. ELISA assays indicated strong reactivity of serum samples from individuals residing in malaria-endemic regions and sera of immunized mice, with the α-helical coiled coil structures. In addition, ex vivo production of IFN-γ by murine mononuclear cells confirmed the immunogenicity of these structures and the presence of T-cell epitopes in the peptide sequences. Moreover, sera of mice immunized with four of the eight antigens recognized native proteins on blood-stage P. vivax parasites, and antigenic cross-reactivity with three of the peptides was observed when reacted with both the P. falciparum orthologous fragments and whole parasites. Results here point to the α-helical coiled coil peptides as possible P. vivax malaria vaccine candidates as were observed for P. falciparum. Fragments selected here warrant further study in humans and non-human primate models to assess their protective efficacy as single components or assembled as hybrid linear epitopes.

  15. TPX: Contractor preliminary design review. Volume 1, Presentation and design description. Final report

    International Nuclear Information System (INIS)

    Hartman, D.; Naumovich; Walstrom, P.; Clarkson, I.; Schultheiss, J.; Burger, A.

    1995-01-01

    This first volume of the five volume set begins with a CPDR overview and then details the PF magnet system, manufacturing R ampersand D, Westinghouse R ampersand D, the central solenoid, the PF 5 ring coil, the PF 6/7 ring coil, quality assurance, and the system design description

  16. Split coil made of (RE)BCO pancake coils for IC(B) anisotropy measurements of superconductors

    International Nuclear Information System (INIS)

    Frolek, L; Pardo, E; Gömöry, F; Šouc, J; Pitel, J

    2014-01-01

    Measurement of the I c (B) anisotropy is standard characterization of superconducting tapes, wires or cables. This contribution presents a split coil consisting on two superconducting pancake coils in order to generate the magnetic field necessary for this kind of measurement. Both coils were made using (RE)BCO – based second generation (2G) coated conductor tape with cross section 0.1 mm × 12 mm. The individual turns of the tape were insulated by a fiberglass tape without impregnation. These coils have identical inner and outer diameter and number of turns. Their inner and outer diameters are 50 mm and 80 mm, respectively, and they have 62 turns. The length of conductor in each coil is approximately 13 m. The distance between both pancake coils is 22 mm. Individual coils and the complete split coil were characterized in liquid nitrogen bath. Their parameters, like the critical currents, E(I) characteristics and magnetic field of complete split coil, were measured and interpreted. The split coil can be used up to magnetic fields of 210 mT. The length between the potential taps on the sample can be up to 20 mm, while the magnetic field decrease is lower than 1% on this length.

  17. Unraveling double stranded alpha-helical coiled coils: an x-ray diffraction study on hard alpha-keratin fibers.

    Science.gov (United States)

    Kreplak, L; Doucet, J; Briki, F

    2001-04-15

    Transformations of proteins secondary and tertiary structures are generally studied in globular proteins in solution. In fibrous proteins, such as hard alpha-keratin, that contain long and well-defined double stranded alpha-helical coiled coil domains, such study can be directly done on the native fibrous tissue. In order to assess the structural behavior of the coiled coil domains under an axial mechanical stress, wide angle x-ray scattering and small angle x-ray scattering experiments have been carried out on stretched horse hair fibers at relative humidity around 30%. Our observations of the three major axial spacings as a function of the applied macroscopic strain have shown two rates. Up to 4% macroscopic strain the coiled coils were slightly distorted but retained their overall conformation. Above 4% the proportion of coiled coil domains progressively decreased. The main and new result of our study is the observation of the transition from alpha-helical coiled coils to disordered chains instead of the alpha-helical coiled coil to beta-sheet transition that occurs in wet fibers.

  18. The coiled coil motif in polymer drug delivery systems

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert

    2013-01-01

    Roč. 31, č. 1 (2013), s. 90-96 ISSN 0734-9750 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505 Keywords : coiled coil * hydrophilic polymer * recombinant protein Subject RIV: CD - Macromolecular Chemistry Impact factor: 8.905, year: 2013

  19. The Impact of Positron Emission Tomography/Computed Tomography in Edge Delineation of Gross Tumor Volume for Head and Neck Cancers

    International Nuclear Information System (INIS)

    Ashamalla, Hani; Guirgius, Adel; Bieniek, Ewa; Rafla, Sameer; Evola, Alex; Goswami, Ganesh; Oldroyd, Randall; Mokhtar, Bahaa; Parikh, Kapila

    2007-01-01

    Purpose: To study anatomic biologic contouring (ABC), using a previously described distinct halo, to unify volume contouring methods in treatment planning for head and neck cancers. Methods and Materials: Twenty-five patients with head and neck cancer at various sites were planned for radiation therapy using positron emission tomography/computed tomography (PET/CT). The ABC halo was used in all PET/CT scans to contour the gross tumor volume (GTV) edge. The CT-based GTV (GTV-CT) and PET/CT-based GTV (GTV-ABC) were contoured by two independent radiation oncologists. Results: The ABC halo was observed in all patients studied. The halo had a standard unit value of 2.19 ± 0.28. The mean halo thickness was 2.02 ± 0.21 mm. Significant volume modification (≥25%) was seen in 17 of 25 patients (68%) after implementation of GTV-ABC. Concordance among observers was increased with the use of the halo as a guide for GTV determination: 6 patients (24%) had a ≤10% volume discrepancy with CT alone, compared with 22 (88%) with PET/CT (p 3 in CT-based planning to 7.2 cm 3 in PET/CT-based planning (p < 0.001). Conclusions: Using the 'anatomic biologic halo' to contour GTV in PET/CT improves consistency among observers. The distinctive appearance of the described halo and its presence in all of the studied tumors make it attractive for GTV contouring in head and neck tumors. Additional studies are needed to confirm the correlation of the halo with presence of malignant cells

  20. Heteronuclear Micro-Helmholtz Coil Facilitates µm-Range Spatial and Sub-Hz Spectral Resolution NMR of nL-Volume Samples on Customisable Microfluidic Chips.

    Directory of Open Access Journals (Sweden)

    Nils Spengler

    Full Text Available We present a completely revised generation of a modular micro-NMR detector, featuring an active sample volume of ∼ 100 nL, and an improvement of 87% in probe efficiency. The detector is capable of rapidly screening different samples using exchangeable, application-specific, MEMS-fabricated, microfluidic sample containers. In contrast to our previous design, the sample holder chips can be simply sealed with adhesive tape, with excellent adhesion due to the smooth surfaces surrounding the fluidic ports, and so withstand pressures of ∼2.5 bar, while simultaneously enabling high spectral resolution up to 0.62 Hz for H2O, due to its optimised geometry. We have additionally reworked the coil design and fabrication processes, replacing liquid photoresists by dry film stock, whose final thickness does not depend on accurate volume dispensing or precise levelling during curing. We further introduced mechanical alignment structures to avoid time-intensive optical alignment of the chip stacks during assembly, while we exchanged the laser-cut, PMMA spacers by diced glass spacers, which are not susceptible to melting during cutting. Doing so led to an overall simplification of the entire fabrication chain, while simultaneously increasing the yield, due to an improved uniformity of thickness of the individual layers, and in addition, due to more accurate vertical positioning of the wirebonded coils, now delimited by a post base plateau. We demonstrate the capability of the design by acquiring a 1H spectrum of ∼ 11 nmol sucrose dissolved in D2O, where we achieved a linewidth of 1.25 Hz for the TSP reference peak. Chemical shift imaging experiments were further recorded from voxel volumes of only ∼ 1.5 nL, which corresponded to amounts of just 1.5 nmol per voxel for a 1 M concentration. To extend the micro-detector to other nuclei of interest, we have implemented a trap circuit, enabling heteronuclear spectroscopy, demonstrated by two 1H/13C 2D HSQC

  1. A new type of coil structure called pan-shaped coil of wireless charging system based on magnetic resonance

    Science.gov (United States)

    Yue, Z. K.; Liu, Z. Z.; Hou, Y. J.; Zeng, H.; Liang, L. H.; Cui, S.

    2017-11-01

    The problem that misalignment between the transmitting coil and the receiving coil significantly impairs the transmission power and efficiency of the system has been attached more and more attention. In order to improve the uniformity of the magnetic field between the two coils to solve this problem, a new type of coil called pan-shaped coil is proposed. Three-dimension simulation models of the planar-core coil and the pan-shaped coil are established using Ansoft Maxwell software. The coupling coefficient between the transmitting coil and the receiving coil is obtained by simulating the magnetic field with the receiving coil misalignment or not. And the maximum percentage difference strength along the radial direction which is defined as the magnetic field uniformity factor is calculated. According to the simulation results of the two kinds of coil structures, it is found that the new type of coil structure can obviously improve the uniformity of the magnetic field, coupling coefficient and power transmission properties between the transmitting coil and the receiving coil.

  2. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Woolley, R.D.

    1987-01-01

    A new coil protection calculator (CPC) is presented in this paper. It is now being developed for TFTR's magnetic field coils will replace the existing coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPC will permit operation up to the actual coil limits by accurately and continuously computing coil parameters in real-time. The improvement will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates

  3. MRI compatibility study of an integrated PET/RF-coil prototype system at 3 T

    Science.gov (United States)

    Akram, Md Shahadat Hossain; Obata, Takayuki; Suga, Mikio; Nishikido, Fumihiko; Yoshida, Eiji; Saito, Kazuyuki; Yamaya, Taiga

    2017-10-01

    We have been working on the development of a PET insert for existing magnetic resonance imaging (MRI) systems for simultaneous PET/MR imaging, which integrates radiofrequency (RF)-shielded PET detector modules with an RF head coil. In order to avoid interferences between the PET detector circuits and the different MRI-generated electromagnetic fields, PET detector circuits were installed inside eight Cu-shielded fiber-reinforced plastic boxes, and these eight shielded PET modules were integrated in between the eight elements of a 270-mm-diameter and 280-mm-axial-length cylindrical birdcage RF coil, which was designed to be used with a 3-T clinical MRI system. The diameter of the PET scintillators with a 12-mm axial field-of-view became 255 mm, which was very close to the imaging region. In this study, we have investigated the effects of this PET/RF-coil integrated system on the performance of MRI, which include the evaluation of static field (Bo) inhomogeneity, RF field (B1) distribution, local specific absorption rate (SAR) distribution, average SAR, and signal-to-noise ratio (SNR). For the central 170-mm-diameter and 80-mm-axial-length of a homogenous cylindrical phantom (with the total diameter of 200 mm and axial-length of 100 mm), an increase of about a maximum of 3 μT in the Bo inhomogeneity was found, both in the central and 40-mm off-centered transverse planes, and a 5 percentage point increase of B1 field inhomogeneity was observed in the central transverse plane (from 84% without PET to 79% with PET), while B1 homogeneity along the coronal plane was almost unchanged (77%) following the integration of PET with the RF head coil. The average SAR and maximum local SAR were increased by 1.21 and 1.62 times, respectively. However, the SNR study for both spin-echo and gradient-echo sequences showed a reduction of about 70% and 60%, respectively, because of the shielded PET modules. The overall results prove the feasibility of this integrated PET/RF-coil system

  4. Performance evaluation of matrix gradient coils.

    Science.gov (United States)

    Jia, Feng; Schultz, Gerrit; Testud, Frederik; Welz, Anna Masako; Weber, Hans; Littin, Sebastian; Yu, Huijun; Hennig, Jürgen; Zaitsev, Maxim

    2016-02-01

    In this paper, we present a new performance measure of a matrix coil (also known as multi-coil) from the perspective of efficient, local, non-linear encoding without explicitly considering target encoding fields. An optimization problem based on a joint optimization for the non-linear encoding fields is formulated. Based on the derived objective function, a figure of merit of a matrix coil is defined, which is a generalization of a previously known resistive figure of merit for traditional gradient coils. A cylindrical matrix coil design with a high number of elements is used to illustrate the proposed performance measure. The results are analyzed to reveal novel features of matrix coil designs, which allowed us to optimize coil parameters, such as number of coil elements. A comparison to a scaled, existing multi-coil is also provided to demonstrate the use of the proposed performance parameter. The assessment of a matrix gradient coil profits from using a single performance parameter that takes the local encoding performance of the coil into account in relation to the dissipated power.

  5. Magnetic Force Microscopy Observation of Perpendicular Recording Head Remanence

    Science.gov (United States)

    Dilekrojanavuti, P.; Saengkaew, K.; Cheowanish, I.; Damrongsak, B.

    2017-09-01

    In this work, magnetic force microscopy (MFM) was utilized to observe the magnetic write head remanence, which is the remaining out-of-plane magnetic field on magnetic write heads after a write current is turned off. This remnant field can write unwanted tracks or erase written tracks on a magnetic media. The write head remanence can also occur from device and slider fabrication, either by applying current to the write coil during the inspection or biasing the external magnetic field to magnetic recording heads. This remanence can attract magnetic nanoparticles, which is suspended in cleaning water or surrounding air, and cause device contamination. MFM images were used to examine locations of the remnant field on the surface of magnetic recording heads. Experimental results revealed that the remanence occurred mostly on the shield and is dependent on the initial direction of magnetic moments. In addition, we demonstrated a potential use of MFM imaging to investigate effects of different etching gases on the head remanence.

  6. System of coils for increasing the volume of homogeneous field between the parallel pole faces of an electromagnet

    International Nuclear Information System (INIS)

    Nelson, D.H.

    1975-01-01

    The design and evaluation of a system of coils for improving magnetic field homogeneity are discussed. Using only three coil-pairs the duration of NMR spin-echo signals from a sample of H 2 O (0.7 cm. diameter x 0.9 cm. long) was increased by an order of magnitude. (U.S.)

  7. Quench detector for large pulsed coils and quench analysis for the LASL/Westinghouse 20 MJ coil

    International Nuclear Information System (INIS)

    Hennessy, M.J.; Heintz, A.W.; Eckels, P.W.

    1981-01-01

    A detection scheme has been devised for use in the test of the 20 Mj Induction Heating Coil. This scheme allows the sensing of plus or minus voltages less than 320 mv resistive in magnitude in coils which will have inductive voltage components as high as /plus or minus/2.5 kv. The network which achieves this sensitivity is stable to less than 12.8 ppm. This method adopted involves the bucking out of the inductive voltage with two secondary co-wound flux sensing coils tapped at locations adjacent to voltage taps in the main superconducting coil. The detection scheme is recommended if large ripple or control voltages exist subsequent to the coil pulse. The most severe event which might quench the coil and/or damage the winding is exposure of the coil to gaseous cooling through lack of proper liquid level control. The detection scheme will protect the coil against this and other abnormal conditions that could damage the coil

  8. Supporting device for Toroidal coils

    International Nuclear Information System (INIS)

    Araki, Takao.

    1985-01-01

    Purpose: To reduce the response of a toroidal coil supporting device upon earthquakes and improve the earthquake proofness in a tokamak type thermonuclear device. Constitution: Structural materials having large longitudinal modulus and enduring great stresses, for example, stainless steels are used as the toroidal coil supporting legs and heat insulating structural materials are embedded in a nuclear reactor base mats below the supporting legs. Furthermore, heat insulating concretes are spiked around the heat insulating structural materials to prevent the intrusion of heat to the toroidal coils. The toroidal coils are kept at cryogenic state and superconductive state for the conductors. In this way, the period of proper vibrations of the toroidal coils and the toroidal coil supporting structures can be shortened thereby decreasing the seismic response. Furthermore, since the strength of the supporting legs is increased, the earthquake proofness of the coils can be improved. (Kamimura, M.)

  9. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    Science.gov (United States)

    Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M

    2007-11-15

    Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.

  10. Comparison of Five Segmentation Tools for 18F-Fluoro-Deoxy-Glucose-Positron Emission Tomography-Based Target Volume Definition in Head and Neck Cancer

    International Nuclear Information System (INIS)

    Schinagl, Dominic A.X.; Vogel, Wouter V.; Hoffmann, Aswin L.; Dalen, Jorn A. van; Oyen, Wim J.; Kaanders, Johannes H.A.M.

    2007-01-01

    Purpose: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with 18 F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Methods and Materials: Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. Results: The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). Conclusions: The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition

  11. Fifty years of coiled-coils and alpha-helical bundles: a close relationship between sequence and structure.

    Science.gov (United States)

    Parry, David A D; Fraser, R D Bruce; Squire, John M

    2008-09-01

    alpha-Helical coiled coils are remarkable for the diversity of related conformations that they adopt in both fibrous and globular proteins, and for the range of functions that they exhibit. The coiled coils are based on a heptad (7-residue), hendecad (11-residue) or a related quasi-repeat of apolar residues in the sequences of the alpha-helical regions involved. Most of these, however, display one or more sequence discontinuities known as stutters or stammers. The resulting coiled coils vary in length, in the number of chains participating, in the relative polarity of the contributing alpha-helical regions (parallel or antiparallel), and in the pitch length and handedness of the supercoil (left- or right-handed). Functionally, the concept that a coiled coil can act only as a static rod is no longer valid, and the range of roles that these structures have now been shown to exhibit has expanded rapidly in recent years. An important development has been the recognition that the delightful simplicity that exists between sequence and structure, and between structure and function, allows coiled coils with specialized features to be designed de novo.

  12. Heat transfer enhancement of Al_2O_3-EG nanofluid in a car radiator with wire coil inserts

    International Nuclear Information System (INIS)

    Goudarzi, K.; Jamali, H.

    2017-01-01

    Highlights: • The purpose of this paper is heat transfer enhancement in a car radiator. • The simultaneous impacts of nanofluid EG/Al_2O_3 with wire coil inserts are studied. • Results show that the thermal performance enhancement up to 14%. • With increasing speed of cooling fan, Nusselt number at Reynolds numbers increased. - Abstract: In this experimental study, Aluminums Oxide (Al_2O_3) in Ethylene Glycol (EG) as nanofluid was used for heat transfer enhancement in car radiator together with wire coil inserts. Two wire coils inserts with different geometry and nanofluids with volume concentrations of 0.08%, 0.5% and 1% were investigated. The results indicated that the use of coils inserts enhanced heat transfer rates up to 9%. In addition, the simultaneous use of the coils inserts with the nanofluid with concentration of 0.08%, 0.5% and 1% resulted the thermal performance enhancement up to 5% as compared to the use of coils inserts alone.

  13. Can FDG-PET assist in radiotherapy target volume definition of metastatic lymph nodes in head-and-neck cancer?

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Hoffmann, A.L.; Vogel, W.V.; Dalen, J.A. van; Verstappen, S.M.M.; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2009-01-01

    BACKGROUND AND PURPOSE: The role of FDG-PET in radiotherapy target volume definition of the neck was evaluated by comparing eight methods of FDG-PET segmentation to the current CT-based practice of lymph node assessment in head-and-neck cancer patients. MATERIALS AND METHODS: Seventy-eight

  14. Power balance and loss mechanism analysis in RF transmit coil arrays.

    Science.gov (United States)

    Kuehne, Andre; Goluch, Sigrun; Waxmann, Patrick; Seifert, Frank; Ittermann, Bernd; Moser, Ewald; Laistler, Elmar

    2015-10-01

    To establish a framework for transmit array power balance calculations based on power correlation matrices to accurately quantify the loss contributions from different mechanisms such as coupling, lumped components, and radiation. Starting from Poynting's theorem, power correlation matrices are derived for all terms in the power balance, which is formulated as a matrix equation. Finite-difference time-domain simulations of two 7 T eight-channel head array coils at 297.2 MHz are used to verify the theoretical considerations and demonstrate their application. Care is taken to accurately incorporate all loss mechanisms. The power balance for static B1 phase shims as well as two-dimensional spatially selective transmit SENSE pulses is shown. The simulated power balance shows an excellent agreement with theory, with a maximum power imbalance of less than 0.11%. Power loss contributions from the different loss mechanisms vary significantly between the investigated setups, and depending on the excitation mode imposed on the coil. The presented approach enables a straightforward loss evaluation for an arbitrary excitation of transmit coil arrays. Worst-case power imbalance and losses are calculated in a straightforward manner. This allows for deeper insight into transmit array loss mechanisms, incorporation of radiated power components in specific absorption rate calculations and verification of electromagnetic simulations. © 2014 Wiley Periodicals, Inc.

  15. Comprehensive Survey on Improved Focality and Penetration Depth of Transcranial Magnetic Stimulation Employing Multi-Coil Arrays

    Directory of Open Access Journals (Sweden)

    Xile Wei

    2017-11-01

    Full Text Available Multi-coil arrays applied in transcranial magnetic stimulation (TMS are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF. Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulating focality, we need to fully understand the variation properties of induced EFs and the quantitative control method of the spatial arrangement of activating coils, both of which unfortunately are still unclear. In this paper, a comprehensive analysis of EF properties was performed based on multi-coil arrays. Four types of planar multi-coil arrays were used to study the relationship between the spatial distribution of EFs and the structure of stimuli coils. By changing coil-driven strategies in a basic 16-coil array, we find that an EF induced by compactly distributed coils decays faster than that induced by dispersedly distributed coils, but the former has an advantage over the latter in terms of the activated brain volume. Simulation results also indicate that the attenuation rate of an EF induced by the 36-coil dense array is 3 times and 1.5 times greater than those induced by the 9-coil array and the 16-coil array, respectively. The EF evoked by the 36-coil dispense array has the slowest decay rate. This result demonstrates that larger multi-coil arrays, compared to smaller ones, activate deeper brain tissues at the expense of decreased focality. A further study on activating a specific field of a prescribed shape and size was conducted based on EF variation. Accurate target location was achieved with a 64-coil array 18 mm in diameter. A comparison between the figure-8 coil, the planar array, and the cap-formed array was made and demonstrates an improvement of multi-coil configurations in the penetration depth and the focality. These findings suggest

  16. Comprehensive Survey on Improved Focality and Penetration Depth of Transcranial Magnetic Stimulation Employing Multi-Coil Arrays.

    Science.gov (United States)

    Wei, Xile; Li, Yao; Lu, Meili; Wang, Jiang; Yi, Guosheng

    2017-11-14

    Multi-coil arrays applied in transcranial magnetic stimulation (TMS) are proposed to accurately stimulate brain tissues and modulate neural activities by an induced electric field (EF). Composed of numerous independently driven coils, a multi-coil array has alternative energizing strategies to evoke EFs targeting at different cerebral regions. To improve the locating resolution and the stimulating focality, we need to fully understand the variation properties of induced EFs and the quantitative control method of the spatial arrangement of activating coils, both of which unfortunately are still unclear. In this paper, a comprehensive analysis of EF properties was performed based on multi-coil arrays. Four types of planar multi-coil arrays were used to study the relationship between the spatial distribution of EFs and the structure of stimuli coils. By changing coil-driven strategies in a basic 16-coil array, we find that an EF induced by compactly distributed coils decays faster than that induced by dispersedly distributed coils, but the former has an advantage over the latter in terms of the activated brain volume. Simulation results also indicate that the attenuation rate of an EF induced by the 36-coil dense array is 3 times and 1.5 times greater than those induced by the 9-coil array and the 16-coil array, respectively. The EF evoked by the 36-coil dispense array has the slowest decay rate. This result demonstrates that larger multi-coil arrays, compared to smaller ones, activate deeper brain tissues at the expense of decreased focality. A further study on activating a specific field of a prescribed shape and size was conducted based on EF variation. Accurate target location was achieved with a 64-coil array 18 mm in diameter. A comparison between the figure-8 coil, the planar array, and the cap-formed array was made and demonstrates an improvement of multi-coil configurations in the penetration depth and the focality. These findings suggest that there is a

  17. Performance of long J-shaped coils in large and giant intracranial aneurysms: an in vitro study

    International Nuclear Information System (INIS)

    Tokunaga, K.; Tanaka, N.; Sugiu, K.; Levrier, O.; Martin, J.B.; Ruefenacht, D.A.

    2002-01-01

    We evaluated the performance of long straight coils (Detach-18 trademark J-shaped coils) in large and giant in-vitro aneurysms. The coils consisted of a distal semicircular part 7 or 15 mm in diameter and a proximal 70 cm straight part having three types of stiffness: soft, standard, and stiff. We first investigated the ease of passage through a microcatheter in a realistic cerebral vessel model. Second, we made silicone models simulating lateral-type aneurysms of various spherical dome diameters (12, 15, 20 and 30 mm) and neck sizes (3-10 mm; dome-to-neck ratio approximately 3:1) and connected them to a pulsating circulatory pump. We evaluated the anchoring and folding patterns of the coils, stability of the microcatheter and coils in the aneurysm, and smoothness of delivery and retrieval of coils. Third, we compared the conformability of a coil in a large, irregular aneurysm with that of a spiral coil. The long J-shaped coils were easily advanced and retrieved through a microcatheter in a tortuous vessel model. In 12 mm spherical aneurysms, each coil made a complex framework, and knot formation or damage to the coil during withdrawal was often observed. In 15 mm aneurysms, the coils were all easily delivered and retrieved; standard-stiffness coils adapted best to this size. In 20 mm aneurysms, frameworks were less complex but still good with a standard or stiff coil, but those with soft coil were unstable and changed significantly within 3 min of detachment due to gravity and pulsatile flow. In 30 mm aneurysms, soft coils filled only the lower part during introduction, whereas a stiff coil still made a favourable framework. Conformability of a long J-shaped coil was superior to that of a spiral coil in a large, irregular aneurysm. Long J-shaped coils conform well to various configurations of large and giant aneurysms and can shorten procedures since a larger implant volume can be delivered with a single coil. Their principle of action may promote more favourable

  18. Optimization of field homogeneity of Helmholtz-like coils for measuring the balance of planar gradiometers

    International Nuclear Information System (INIS)

    Nordahn, M.A.; Holst, T.; Shen, Y.Q.

    1999-01-01

    Measuring the balance of planar SQUID gradiometers using a relatively small Helmholtz-like coil system requires a careful design of the coils in order to have a high degree of field uniformity along the radial direction. The level to which planar gradiometers can be balanced will be affected by any misalignment of the gradiometer relative to the ideal central position. Therefore, the maximum degree of balancing possible is calculated numerically for the Helmholtz geometry under various perturbations, including misalignment of the gradiometer along the cylindrical and the radial axis, and angular tilting relative to the normal plane. Furthermore, if the ratio between the coil separation and coil radius is chosen to be less than unity, calculations show that the expected radial uniformity of the field can be improved considerably compared to the traditional Helmholtz geometry. The optimized coil geometry is compared to the Helmholtz geometry and is found to yield up to an order of magnitude improvement of the worst case error signal within a volume spanned by the uncertainty in the alignment. (author)

  19. Analysis of SAR distribution in human head of antenna used in wireless power transform based on magnetic resonance.

    Science.gov (United States)

    Gong, Feixiang; Wei, Zhiqiang; Cong, Yanping; Chi, Haokun; Yin, Bo; Sun, Mingui

    2017-07-20

    In this paper, a novel wireless power transfer antenna system was designed for human head implantable devices. The antenna system used the structure of three plates and four coils and operated at low frequencies to transfer power via near field. In order to verify the electromagnetic radiation safety on the human head, the electromagnetic intensity and specific absorption rate (SAR) were studied by finite-difference-time-domain (FDTD) method. A three-layer model of human head including skin, bone and brain tissues was constructed. The transmitting and receiving antenna were set outside and inside the model. The local and average SAR were simulated at the resonance frequency of 18.67 MHz in two situations, in one scenario both transmitting and receiving coil worked, while in the other scenario only the transmitting coil worked. The results showed that the maximum of 10 g SAR average value of human thoracic were 0.142 W/kg and 0.148 W/kg, respectively, both were lower than the international safety standards for human body of the ICNIRP and FCC, which verified the safety of the human body in wireless power transmission based on magnetic coupling resonance.

  20. Echocardiographic predictors of coil vs device closure in patients undergoing percutaneous patent ductus arteriosus closure.

    Science.gov (United States)

    Roushdy, Alaa; Abd El Razek, Yasmeen; Mamdouh Tawfik, Ahmed

    2018-01-01

    To determine anatomic and hemodynamic echocardiographic predictors for patent ductus arteriosus (PDA) device vs coil closure. Seventy-six patients who were referred for elective transcatheter PDA closure were enrolled in the study. All patients underwent full echocardiogram including measurement of the PDA pulmonary end diameter, color flow width and extent, peak and end-diastolic Doppler gradients across the duct, diastolic flow reversal, left atrial dimensions and volume, left ventricular sphericity index, and volumes. The study group was subdivided into 2 subgroups based on the mode of PDA closure whether by coil (n = 42) or device (n = 34). Using univariate analysis there was a highly significant difference between the 2 groups as regard the pulmonary end diameter measured in both the suprasternal and parasternal short-axis views as well as the color flow width and color flow extent (P closure group had statistically significant higher end-systolic and end-diastolic volumes indexed, left atrial volume, and diastolic flow reversal. Receiver operating characteristic curve analysis showed a pulmonary end diameter cutoff point from the suprasternal view > 2.5 mm and from parasternal short-axis view > 2.61 mm to have the highest balanced sensitivity and specificity to predict the likelihood for device closure (AUC 0.971 and 0.979 respectively). The pulmonary end diameter measured from the suprasternal view was the most independent predictor of device closure. The selection between PDA coil or device closure can be done on the basis of multiple anatomic and hemodynamic echocardiographic variables. © 2017 Wiley Periodicals, Inc.

  1. Versatile fill coils: initial experience as framing coils for oblong aneurysms. A technical case report.

    Science.gov (United States)

    Osanai, Toshiya; Bain, Mark; Hui, Ferdinand K

    2014-01-01

    Coil embolization of oblong aneurysms is difficult because the majority of commercially available coils are manufactured with a helical or spherical tertiary structure. While adopting framing strategies for oblong aneurysms (aspect ratio ≥ 2: 1), traditional coils may be undersized in the long axis but oversized in the short axis, resulting in increased aneurysmal wall stress, risk of re-rupture, and difficulty creating a basket that respects the aneurysmal neck. We review three cases in which versatile filling coils (VFCs) were used as the initial coils for embolization of oblong aneurysms and report coil distribution characteristics and clinical outcomes. Packing density after VFC implantation was assessed using the software AngioSuite-Neuro edition and AngioCalc. a 58-year-old woman experienced a subarachnoid hemorrhage from a ruptured anterior communicating artery aneurysm (7.5 mm × 3.5 mm). A 3-6 mm × 15 cm VFC was selected as the first coil because the flexibility of its wave-loop structure facilitates framing of an irregularly shaped aneurysm. The loop portions of the structures tend to be pressed to the extremes of the aneurysmal sac by the wave component. The VFC was introduced smoothly into the aneurysmal sac without catheter kickback. We were then able to insert detachable filling coils without any adjunctive technique and achieved complete occlusion. Complete occlusion without severe complications was achieved in all three cases in our study. Average packing density after the first coil was 15.63%. VFC coils may have a specific role in framing oblong aneurysms given their complex loop-wave design, allowing spacing of the coils at the dome and neck while keeping sac stress to a minimum.

  2. Commercial applications for COIL

    Science.gov (United States)

    Solomon, Wayne C.; Carroll, David L.; King, D. M.; Fockler, L. A.; Stromberg, D. S.; Sexauer, M.; Milmoe, A.; Sentman, Lee H.

    2000-01-01

    The chemical oxygen-iodine laser (COIL) is a high power, fiber deliverable tool, which can be used for a number of different industrial applications. COIL is of particular interest because of its short fiber deliverable wavelength, high scaleable continuous wave power, and excellent material interaction properties. In past research the University of Illinois at Urbana-Champaign identified and decommissioning and decontamination (DD) of nuclear facilities as a primary focus for COIL technology. DD will be a major challenge in the coming decades. The use of a robotically driven fiber delivered cutting/ablation tool in contaminated areas promises to lower risks to workers for the DD mission. Further, the high cutting speed of COIL will significantly reduce the time required to cut contaminated equipment, reducing costs. The high power of COIL will permit the dismantling of thick stacks of piping and equipment as well as reactor vessels. COIL is very promising for the removal of material from contaminated surfaces, perhaps to depths thicker than an inch. Laser cutting and ablation minimizes dust and fumes, which reduces the required number of high efficiency particulate accumulator filters, thus reducing costly waste disposal. Other potential industrial applications for COIL are shipbuilding, automotive manufacturing, heavy machinery manufacturing, tasks requiring underwater cutting or welding, and there appear to be very promising applications for high powers lasers in the oil industry.

  3. The IEA Large Coil Task

    International Nuclear Information System (INIS)

    Beard, D.S.; Klose, W.; Shimamoto, S.; Vecsey, G.

    1988-01-01

    A multinational program of cooperative research, development, demonstrations, and exchanges of information on superconducting magnets for fusion was initiated in 1977 under an IEA agreement. The first major step in the development of TF magnets was called the Large Coil Task. Participants in LCT were the U.S. DOE, EURATOM, JAERI, and the Departement Federal de l'Interieur of Switzerland. The goals of LCT were to obtain experimental data, to demonstrate reliable operation of large superconducting coils, and to prove design principles and fabrication techniques being considered for the toroidal magnets of thermonuclear reactors. These goals were to be accomplished through coordinated but largely independent design, development, and construction of six test coils, followed by collaborative testing in a compact toroidal test array at fields of 8 T and higher. Under the terms of the IEA Agreement, the United States built and operated the test facility at Oak Ridge and provided three test coils. The other participants provided one coil each. Information on design and manufacturing and all test data were shared by all. The LCT team of each participant included a government laboratory and industrial partners or contractors. The last coil was completed in 1985, and the test assembly was completed in October of that year. Over the next 23 months, the six-coil array was cooled down and extensive testing was performed. Results were gratifying, as tests achieved design-point performance and well beyond. (Each coil reached a peak field of 9 T.) Experiments elucidated coil behavior, delineated limits of operability, and demonstrated coil safety. (orig./KP)

  4. The heterotrimeric laminin coiled-coil domain exerts anti-adhesive effects and induces a pro-invasive phenotype.

    Directory of Open Access Journals (Sweden)

    Patricia Santos-Valle

    Full Text Available Laminins are large heterotrimeric cross-shaped extracellular matrix glycoproteins with terminal globular domains and a coiled-coil region through which the three chains are assembled and covalently linked. Laminins are key components of basement membranes, and they serve as attachment sites for cell adhesion, migration and proliferation. In this work, we produced a recombinant fragment comprising the entire laminin coiled-coil of the α1-, β1-, and γ1-chains that assemble into a stable heterotrimeric coiled-coil structure independently of the rest of the molecule. This domain was biologically active and not only failed to serve as a substrate for cell attachment, spreading and focal adhesion formation but also inhibited cell adhesion to laminin when added to cells in a soluble form at the time of seeding. Furthermore, gene array expression profiling in cells cultured in the presence of the laminin coiled-coil domain revealed up-regulation of genes involved in cell motility and invasion. These findings were confirmed by real-time quantitative PCR and zymography assays. In conclusion, this study shows for the first time that the laminin coiled-coil domain displays anti-adhesive functions and has potential implications for cell migration during matrix remodeling.

  5. Equilibrium field coil concepts for INTOR

    International Nuclear Information System (INIS)

    Strickler, D.J.; Peng, Y.K.M.; Brown, T.G.

    1981-08-01

    Methods are presented for reducing ampere-turn requirements in the EF coil system. It is shown that coil currents in an EF coil system external to the toroidal field coils can be substantially reduced by relaxing the triangularity of a D-shaped plasma. Further reductions are realized through a hybrid EF coil system using both internal and external coils. Equilibrium field coils for a poloidally asymmetric, single-null INTOR configuration are presented. It is shown that the shape of field lines in the plasma scrapeoff region and divertor channel improves as triangularity is reduced, but it does so at the possible expense of achievable stable beta values

  6. TU-F-CAMPUS-I-04: Head-Only Asymmetric Gradient System Evaluation: ACR Image Quality and Acoustic Noise

    Energy Technology Data Exchange (ETDEWEB)

    Weavers, P; Shu, Y; Tao, S; Bernstein, M [Mayo Clinic, Rochester, Minnesota (United States); Lee, S; Piel, J; Foo, T [GE Global Research, Niskayuna, NY (United States); Mathieu, J-B [GE Healthcare, Florence, SC (Italy)

    2015-06-15

    Purpose: A high-performance head-only magnetic resonance imaging gradient system with an acquisition volume of 26 cm employing an asymmetric design for the transverse coils has been developed. It is able to reach a magnitude of 85 mT/m at a slew rate of 700 T/m/s, but operated at 80 mT/m and 500 T/m/s for this test. A challenge resulting from this asymmetric design is that the gradient nonlinearly exhibits both odd- and even-ordered terms, and as the full imaging field of view is often used, the nonlinearity is pronounced. The purpose of this work is to show the system can produce clinically useful images after an on-site gradient nonlinearity calibration and correction, and show that acoustic noise levels fall within non-significant risk (NSR) limits for standard clinical pulse sequences. Methods: The head-only gradient system was inserted into a standard 3T wide-bore scanner without acoustic damping. The ACR phantom was scanned in an 8-channel receive-only head coil and the standard American College of Radiology (ACR) MRI quality control (QC) test was performed. Acoustic noise levels were measured for several standard pulse sequences. Results: Images acquired with the head-only gradient system passed all ACR MR image quality tests; Both even and odd-order gradient distortion correction terms were required for the asymmetric gradients to pass. Acoustic noise measurements were within FDA NSR guidelines of 99 dBA (with assumed 20 dBA hearing protection) A-weighted and 140 dB for peak for all but one sequence. Note the gradient system was installed without any shroud or acoustic batting. We expect final system integration to greatly reduce noise experienced by the patient. Conclusion: A high-performance head-only asymmetric gradient system operating at 80 mT/m and 500 T/m/s conforms to FDA acoustic noise limits in all but one case, and passes all the ACR MR image quality control tests. This work was supported in part by the NIH grant 5R01EB010065.

  7. TU-F-CAMPUS-I-04: Head-Only Asymmetric Gradient System Evaluation: ACR Image Quality and Acoustic Noise

    International Nuclear Information System (INIS)

    Weavers, P; Shu, Y; Tao, S; Bernstein, M; Lee, S; Piel, J; Foo, T; Mathieu, J-B

    2015-01-01

    Purpose: A high-performance head-only magnetic resonance imaging gradient system with an acquisition volume of 26 cm employing an asymmetric design for the transverse coils has been developed. It is able to reach a magnitude of 85 mT/m at a slew rate of 700 T/m/s, but operated at 80 mT/m and 500 T/m/s for this test. A challenge resulting from this asymmetric design is that the gradient nonlinearly exhibits both odd- and even-ordered terms, and as the full imaging field of view is often used, the nonlinearity is pronounced. The purpose of this work is to show the system can produce clinically useful images after an on-site gradient nonlinearity calibration and correction, and show that acoustic noise levels fall within non-significant risk (NSR) limits for standard clinical pulse sequences. Methods: The head-only gradient system was inserted into a standard 3T wide-bore scanner without acoustic damping. The ACR phantom was scanned in an 8-channel receive-only head coil and the standard American College of Radiology (ACR) MRI quality control (QC) test was performed. Acoustic noise levels were measured for several standard pulse sequences. Results: Images acquired with the head-only gradient system passed all ACR MR image quality tests; Both even and odd-order gradient distortion correction terms were required for the asymmetric gradients to pass. Acoustic noise measurements were within FDA NSR guidelines of 99 dBA (with assumed 20 dBA hearing protection) A-weighted and 140 dB for peak for all but one sequence. Note the gradient system was installed without any shroud or acoustic batting. We expect final system integration to greatly reduce noise experienced by the patient. Conclusion: A high-performance head-only asymmetric gradient system operating at 80 mT/m and 500 T/m/s conforms to FDA acoustic noise limits in all but one case, and passes all the ACR MR image quality control tests. This work was supported in part by the NIH grant 5R01EB010065

  8. Exploring the conserved water site and hydration of a coiled-coil trimerisation motif: a MD simulation study.

    Science.gov (United States)

    Dolenc, Jozica; Baron, Riccardo; Missimer, John H; Steinmetz, Michel O; van Gunsteren, Wilfred F

    2008-07-21

    The solvent structure and dynamics around ccbeta-p, a 17-residue peptide that forms a parallel three-stranded alpha-helical coiled coil in solution, was analysed through 10 ns explicit solvent molecular dynamics (MD) simulations at 278 and 330 K. Comparison with two corresponding simulations of the monomeric form of ccbeta-p was used to investigate the changes of hydration upon coiled-coil formation. Pronounced peaks in the solvent density distribution between residues Arg8 and Glu13 of neighbouring helices show the presence of water bridges between the helices of the ccbeta-p trimer; this is in agreement with the water sites observed in X-ray crystallography experiments. Interestingly, this water site is structurally conserved in many three-stranded coiled coils and, together with the Arg and Glu residues, forms part of a motif that determines three-stranded coiled-coil formation. Our findings show that little direct correlation exists between the solvent density distribution and the temporal ordering of water around the trimeric coiled coil. The MD-calculated effective residence times of up to 40 ps show rapid exchange of surface water molecules with the bulk phase, and indicate that the solvent distribution around biomolecules requires interpretation in terms of continuous density distributions rather than in terms of discrete molecules of water. Together, our study contributes to understanding the principles of three-stranded coiled-coil formation.

  9. Bow-shaped toroidal field coils

    International Nuclear Information System (INIS)

    Bonanos, P.

    1981-05-01

    Design features of Bow-Shaped Toroidal Field Coils are described and compared with circular and D shaped coils. The results indicate that bow coils can produce higher field strengths, store more energy and be made demountable. The design offers the potential for the production of ultrahigh toroidal fields. Included are representative coil shapes and their engineering properties, a suggested structural design and an analysis of a specific case

  10. PDX toroidal field coils stress analysis

    International Nuclear Information System (INIS)

    Nikodem, Z.D.; Smith, R.A.

    1975-01-01

    A method used in the stress analysis of the PDX toroidal field coil is developed. A multilayer coil design of arbitrary dimensions in the shape of either a circle or an oval is considered. The analytical model of the coil and the supporting coil case with connections to the main support structure is analyzed using the finite element technique. The three dimensional magnetic fields and the non-uniform body forces which are a loading condition on a coil due to toroidal and poloidal fields are calculated. The method of analysis permits rapid and economic evaluations of design changes in coil geometry as well as in coil support structures. Some results pertinent to the design evolution and their comparison are discussed. The results of the detailed stress analysis of the final coil design due to toroidal field, poloidal field and temperature loads are presented

  11. A study on evaluating validity of SNR calculation using a conventional two region method in MR images applied a multichannel coil and parallel imaging technique

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Kwan Woo; Son, Soon Yong [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Min, Jung Whan [Dept. of Radiological Technology, Shingu University, Sungnam (Korea, Republic of); Kwon, Kyung Tae [Dept. of Radiological Technology, Dongnam Health University, Suwon (Korea, Republic of); Yoo, Beong Gyu; Lee, Jong Seok [Dept. of Radiotechnology, Wonkwang Health Science University, Iksan (Korea, Republic of)

    2015-12-15

    The purpose of this study was to investigate the problems of a signal to noise ratio measurement using a two region measurement method that is conventionally used when using a multi-channel coil and a parallel imaging technique. As a research method, after calculating the standard SNR using a single channel head coil of which coil satisfies three preconditions when using a two region measurement method, we made comparisons and evaluations after calculating an SNR by using a two region measurement method of which method is problematic because it is used without considering the methods recommended by reputable organizations and the preconditions at the time of using a multi-channel coil and a parallel imaging technique. We found that a two region measurement method using a multi-channel coil and a parallel imaging technique shows the highest relative standard deviation, and thus shows a low degree of precision. In addition, we found out that the difference of SNR according to ROI location was very high, and thus a spatial noise distribution was not uniform. Also, 95% confidence interval through Blend-Altman plot is the widest, and thus the conformity degree with a two region measurement method using the standard single channel head coil is low. By directly comparing an AAPM method, which serves as a standard of a performance evaluation test of a magnetic resonance imaging device under the same image acquisition conditions, an NEMA method which can accurately determine the noise level in a signal region and the methods recommended by manufacturers of a magnetic resonance imaging device, there is a significance in that we quantitatively verified the inaccurate problems of a signal to noise ratio using a two region measurement method when using a multi-channel coil and a parallel imaging technique of which method does not satisfy the preconditions that researchers could overlook.

  12. Effects of coil orientation on the electric field induced by TMS over the hand motor area

    International Nuclear Information System (INIS)

    Laakso, Ilkka; Hirata, Akimasa; Ugawa, Yoshikazu

    2014-01-01

    Responses elicited by transcranial magnetic stimulation (TMS) over the hand motor area depend on the position and orientation of the stimulating coil. In this work, we computationally investigate the induced electric field for multiple coil orientations and locations in order to determine which parts of the brain are affected and how the sensitivity of motor cortical activation depends on the direction of the electric field. The finite element method is used for calculating the electric field induced by TMS in two individual anatomical models of the head and brain. The orientation of the coil affects both the strength and depth of penetration of the electric field, and the field strongly depends on the direction of the sulcus, where the target neurons are located. The coil position that gives the strongest electric field in the target cortical region may deviate from the closest scalp location by a distance on the order of 1 cm. Together with previous experimental data, the results support the hypothesis that the cortex is most sensitive to fields oriented perpendicular to the cortical layers, while it is relatively insensitive to fields parallel to them. This has important implications for targeting of TMS. To determine the most effective coil position and orientation, it is essential to consider both biological (the direction of the targeted axons) and physical factors (the strength and direction of the electric field). (paper)

  13. High frequency write head measurement with the phase detection magnetic force microscope

    International Nuclear Information System (INIS)

    Abe, M.; Tanaka, Y.

    2001-01-01

    We demonstrated the measurement of the high frequency (HF) magnetic field of a write head with the phase detection magnetic force microscope. An amplitude-modulated current was applied to the head coil to detect the force gradient induced by the HF magnetic field. Spatial resolution of this method was higher than that of the deflection detection method previously proposed. By the phase detection method, dynamic HF magnetic fields at the poles of the write heads were clearly imaged. HF magnetic field leakage was observed along the P2 pole shape on the air-bearing surface. The frequency dependence of the write head dynamics up to 350 MHz was also investigated. [copyright] 2001 American Institute of Physics

  14. Liquid rope coiling

    NARCIS (Netherlands)

    Ribe, N.M.; Habibi, M.; Bonn, D.

    2012-01-01

    A thin stream or rope of viscous fluid falling from a sufficient height onto a surface forms a steadily rotating helical coil. Tabletop laboratory experiments in combination with a numerical model for slender liquid ropes reveal that finite-amplitude coiling can occur in four distinct regimes

  15. Target volume delineation for head and neck cancer intensity-modulated radiotherapy; Delineation des volumes cibles des cancers des voies aerodigestives superieures en radiotherapie conformationnelle avec modulation d'intensite

    Energy Technology Data Exchange (ETDEWEB)

    Lapeyre, M.; Toledano, I.; Bourry, N. [Departement de radiotherapie, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Bailly, C. [Unite de radiodiagnostic, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France); Cachin, F. [Unite de medecine nucleaire, centre Jean-Perrin, 58, rue Montalembert, BP 5026, 63011 Clermont-Ferrand cedex 1 (France)

    2011-10-15

    This article describes the determination and the delineation of the target volumes for head-and-neck cancers treated with intensity-modulated radiotherapy (IMRT). The delineation of the clinical target volumes (CTV) on the computerized tomography scanner (CT scan) requires a rigorous methodology due to the complexity of head-and-neck anatomy. The clinical examination with a sketch of pretreatment tumour extension, the surgical and pathological reports and the adequate images (CT scan, magnetic resonance imaging and fluorodeoxyglucose positron emission tomography) are necessary for the delineation. The target volumes depend on the overall strategy: sequential IMRT or simultaneous integrated boost-IMRT (SIB-IMRT). The concept of selectivity of the potential subclinical disease near the primary tumor and the selection of neck nodal targets are described according to the recommendations and the literature. The planing target volume (PTV), mainly reflecting setup errors (random and systematic), results from a uniform 4-5 mm expansion around the CTV. We propose the successive delineation of: (1) the gross volume tumour (GTV); (2) the 'high risk' CTV1 around the GTV or including the postoperative tumour bed in case of positive margins or nodal extra-capsular spread (65-70 Gy in 30-35 fractions); (3) the CTV2 'intermediate risk' around the CTV1 for SIB-IMRT (59-63 Gy in 30-35 fractions); (4) the 'low-risk' CTV3 (54-56 Gy in 30-35 fractions); (5) the PTVs. (authors)

  16. Implications of improved diagnostic imaging of small nodal metastases in head and neck cancer: Radiotherapy target volume transformation and dose de-escalation.

    Science.gov (United States)

    van den Bosch, Sven; Vogel, Wouter V; Raaijmakers, Cornelis P; Dijkema, Tim; Terhaard, Chris H J; Al-Mamgani, Abrahim; Kaanders, Johannes H A M

    2018-05-03

    Diagnostic imaging continues to evolve, and now has unprecedented accuracy for detecting small nodal metastasis. This influences the tumor load in elective target volumes and subsequently has consequences for the radiotherapy dose required to control disease in these volumes. Small metastases that used to remain subclinical and were included in elective volumes, will nowadays be detected and included in high-dose volumes. Consequentially, high-dose volumes will more often contain low-volume disease. These target volume transformations lead to changes in the tumor burden in elective and "gross" tumor volumes with implications for the radiotherapy dose prescribed to these volumes. For head and neck tumors, nodal staging has evolved from mere palpation to combinations of high-resolution imaging modalities. A traditional nodal gross tumor volume in the neck typically had a minimum diameter of 10-15 mm, while nowadays much smaller tumor deposits are detected in lymph nodes. However, the current dose levels for elective nodal irradiation were empirically determined in the 1950s, and have not changed since. In this report the radiobiological consequences of target volume transformation caused by modern imaging of the neck are evaluated, and theoretically derived reductions of dose in radiotherapy for head and neck cancer are proposed. The concept of target volume transformation and subsequent strategies for dose adaptation applies to many other tumor types as well. Awareness of this concept may result in new strategies for target definition and selection of dose levels with the aim to provide optimal tumor control with less toxicity. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. Dose-volume modeling of salivary function in patients with head-and-neck cancer receiving radiotherapy

    International Nuclear Information System (INIS)

    Blanco, Angel I.; Chao, K.S. Clifford; El Naqa, Issam; Franklin, Gregg E.; Zakarian, Konstantin; Vicic, Milos; Deasy, Joseph O.

    2005-01-01

    Purpose: We investigated the factors that affect salivary function after head-and-neck radiotherapy (RT), including parotid gland dose-volume effects, potential compensation by less-irradiated gland tissue, and functional recovery over time. Methods and Materials: Sixty-five patients with head-and-neck tumors were enrolled in a prospective salivary function study. RT was delivered using intensity-modulated RT (n = 45), forward-planning three-dimensional conformal RT (n = 14), or three-dimensional conformal RT with an intensity-modulated RT boost (n = 6). Whole salivary flow was measured before therapy and at 6 months (n = 61) and 12 months (n = 31) after RT. A wide variety of dose-volume models to predict post-RT salivary function were tested. Xerostomia was defined according to the subjective, objective, management, analytic (SOMA) criteria as occurring when posttreatment salivary function was s ] = 0.46, p s = 0.73), stimulated saliva flow at 12 months (R s = 0.54), and quality-of-life score at 6 months (R s = 0.35) after RT. Conclusion: Stimulated parotid salivary gland dose-volume models strongly correlated with both stimulated salivary function and quality-of-life scores at 6 months after RT. The mean stimulated saliva flow rates improved from 6 to 12 months after RT. Salivary function, in each gland, appeared to be lost exponentially at a rate of approximately 5%/1 Gy of mean dose. Additional research is necessary to distinguish among the models for use in treatment planning. The incidence of xerostomia was significantly decreased when the mean dose of at least one parotid gland was kept to <25.8 Gy with conventional fractionation. However, even lower mean doses imply increased late salivary function

  18. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation

    International Nuclear Information System (INIS)

    Daisne, Jean-François; Blumhofer, Andreas

    2013-01-01

    Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for “manual to automatic” and “manual to corrected” volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert

  19. Atlas-based automatic segmentation of head and neck organs at risk and nodal target volumes: a clinical validation.

    Science.gov (United States)

    Daisne, Jean-François; Blumhofer, Andreas

    2013-06-26

    Intensity modulated radiotherapy for head and neck cancer necessitates accurate definition of organs at risk (OAR) and clinical target volumes (CTV). This crucial step is time consuming and prone to inter- and intra-observer variations. Automatic segmentation by atlas deformable registration may help to reduce time and variations. We aim to test a new commercial atlas algorithm for automatic segmentation of OAR and CTV in both ideal and clinical conditions. The updated Brainlab automatic head and neck atlas segmentation was tested on 20 patients: 10 cN0-stages (ideal population) and 10 unselected N-stages (clinical population). Following manual delineation of OAR and CTV, automatic segmentation of the same set of structures was performed and afterwards manually corrected. Dice Similarity Coefficient (DSC), Average Surface Distance (ASD) and Maximal Surface Distance (MSD) were calculated for "manual to automatic" and "manual to corrected" volumes comparisons. In both groups, automatic segmentation saved about 40% of the corresponding manual segmentation time. This effect was more pronounced for OAR than for CTV. The edition of the automatically obtained contours significantly improved DSC, ASD and MSD. Large distortions of normal anatomy or lack of iodine contrast were the limiting factors. The updated Brainlab atlas-based automatic segmentation tool for head and neck Cancer patients is timesaving but still necessitates review and corrections by an expert.

  20. Cooling and dehumidifying coils

    International Nuclear Information System (INIS)

    Murthy, M.V.K.

    1988-01-01

    The operating features of cooling and dehumidifying coils and their constructional details are discussed. The heat transfer relations as applicable to the boiling refrigerant and a single phase fluid are presented. Methods of accounting for the effect of moisture condensation on the air side heat transfer coefficient and the fin effectiveness are explained. The logic flow necessary to analyze direct expansion coils and chilled water coils is discussed

  1. A coil test facility for the cryogenic tests of the JT-60SA TF coils

    International Nuclear Information System (INIS)

    Chantant, M.; Genini, L.; Bayetti, P.; Millet, F.; Wanner, M.; Massaut, V.; Corte, A. Della; Ardelier-Desage, F.; Catherine-Dumont, V.; Dael, A.; Decool, P.; Donati, A.; Duchateau, J.L.; Garibaldi, P.; Girard, S.; Hatchressian, J.C.; Fejoz, P.; Jamotton, P.; Jourdheuil, L.; Juster, F.P.

    2011-01-01

    In the framework of the Broader Approach Activities, the EU will deliver to Japan the 18 superconducting coils, which constitute the JT-60SA Toroidal field magnet. These 18 coils, manufactured by France and Italy, will be cold tested before shipping to Japan. For this purpose, the European Joint Undertaking for ITER, the Development of Fusion Energy ('Fusion for Energy', F4E) and the European Voluntary Contributors are collaborating to design and set-up a coil test facility (CTF) and to perform the acceptance test of the 18 JT-60SA Toroidal Field (TF) coils. The test facility is designed to test one coil at a time at nominal current and cryogenic temperature. The test of the first coil of each manufacturer includes a quench triggered by increasing the temperature. The project is presently in the detailed design phase.

  2. Design and testing of a coil-unit barrel for helical coil electromagnetic launcher

    Science.gov (United States)

    Yang, Dong; Liu, Zhenxiang; Shu, Ting; Yang, Lijia; Ouyang, Jianming

    2018-01-01

    A coil-unit barrel for a helical coil electromagnetic launcher is described. It provides better features of high structural strength and flexible adjustability. It is convenient to replace the damaged coil units and easy to adjust the number of turns in the stator coils due to the modular design. In our experiments, the highest velocity measured for a 4.5-kg projectile is 47.3 m/s and the mechanical reinforcement of the launcher could bear 35 kA peak current. The relationship between the energy conversion efficiency and the inductance gradient of the launcher is also studied. In the region of low inductance gradient, the efficiency is positively correlated with the inductance gradient. However, in the region of high inductance gradient, the inter-turn arc erosion becomes a major problem of limiting the efficiency and velocity of the launcher. This modular barrel allows further studies in the inter-turn arc and the variable inductance gradient helical coil launcher.

  3. Impact of Clipping versus Coiling on Postoperative Hemodynamics and Pulmonary Edema after Subarachnoid Hemorrhage

    Directory of Open Access Journals (Sweden)

    Nobutaka Horie

    2014-01-01

    Full Text Available Volume management is critical for assessment of cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH. This multicenter prospective cohort study compared the impact of surgical clipping versus endovascular coiling on postoperative hemodynamics and pulmonary edema in patients with SAH. Hemodynamic parameters were measured for 14 days using a transpulmonary thermodilution system. The study included 202 patients, including 160 who underwent clipping and 42 who underwent coiling. There were no differences in global ejection fraction (GEF, cardiac index, systemic vascular resistance index, or global end-diastolic volume index between the clipping and coiling groups in the early period. However, extravascular lung water index (EVLWI and pulmonary vascular permeability index (PVPI were significantly higher in the clipping group in the vasospasm period. Postoperative C-reactive protein (CRP level was higher in the clipping group and was significantly correlated with postoperative brain natriuretic peptide level. Multivariate analysis found that PVPI and GEF were independently associated with high EVLWI in the early period, suggesting cardiogenic edema, and that CRP and PVPI, but not GEF, were independently associated with high EVLWI in the vasospasm period, suggesting noncardiogenic edema. In conclusion, clipping affects postoperative CRP level and may thereby increase noncardiogenic pulmonary edema in the vasospasm period. His trial is registered with University Hospital Medical Information Network UMIN000003794.

  4. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    International Nuclear Information System (INIS)

    Ahmed, Merina; Schmidt, Maria; Sohaib, Aslam; Kong, Christine; Burke, Kevin; Richardson, Cheryl; Usher, Marianne; Brennan, Sinead; Riddell, Angela; Davies, Mark; Newbold, Kate; Harrington, Kevin J.; Nutting, Christopher M.

    2010-01-01

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm 3 , p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm 3 , p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and improved

  5. The value of magnetic resonance imaging in target volume delineation of base of tongue tumours - A study using flexible surface coils

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Merina [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Schmidt, Maria [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Sohaib, Aslam [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Kong, Christine; Burke, Kevin [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Richardson, Cheryl; Usher, Marianne [Cancer Research UK Clinical Magnetic Resonance Group, Royal Marsden NHS Foundation Trust, Surrey (United Kingdom); Brennan, Sinead [Department of Radiotherapy, St. James' s Hospital, Dublin (Ireland); Riddell, Angela [Department of Radiology, Royal Marsden NHS Foundation Trust, London (United Kingdom); Davies, Mark; Newbold, Kate [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Harrington, Kevin J; Nutting, Christopher M [Department of Radiotherapy, Royal Marsden NHS Foundation Trust, London (United Kingdom); Institute of Cancer Research, London (United Kingdom)

    2010-02-15

    Introduction: Magnetic resonance imaging (MRI) provides superior diagnostic accuracy over computed tomography (CT) in oropharyngeal tumours. Precise delineation of the gross tumour volume (GTV) is mandatory in radiotherapy planning when a GTV boost is required. CT volume definition in this regard is poor. We studied the feasibility of using flexible surface (flex-L) coils to obtain MR images for MR-CT fusion to assess the benefit of MRI over CT alone in planning base of tongue tumours. Methods: Eight patients underwent CT and MRI radiotherapy planning scans with an immobilisation device. Distortion-corrected T1-weighted post-contrast MR scans were fused to contrast-enhanced planning CT scans. GTV, clinical target and planning target volumes (CTV, PTV) and organs at risk (OAR) were delineated on CT, then on MRI with blinding to the CT images. The volumetric and spatial differences between MRI and CT volumes for GTV, CTV, PTV and OAR were compared. MR image distortions due to field inhomogeneity and non-linear gradients were corrected and the need for such correction was evaluated. Results: The mean primary GTV was larger on MRI (22.2 vs. 9.5 cm{sup 3}, p = 0.05) than CT. The mean primary and nodal GTV (i.e. BOT and macroscopic nodes) was significantly larger on MRI (27.2 vs. 14.4 cm{sup 3}, p = 0.05). The volume overlap index (VOI) between MRI and CT for the primary was 0.34 suggesting that MRI depicts parts of the primary tumour not detected by CT. There was no significant difference in volume delineation between MR and CT for CTV, PTV, nodal CTV and nodal PTV. MRI volumes for brainstem and spinal cord were significantly smaller due to improved organ definition (p = 0.002). Susceptibility and gradient-related distortions were not found to be clinically significant. Conclusion: MRI improves the definition of tongue base tumours and neurological structures. The use of MRI is recommended for GTV dose-escalation techniques to provide precise depiction of GTV and

  6. High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma. Part 2: new vs. old imaging concept

    Energy Technology Data Exchange (ETDEWEB)

    Sirin, Selma; Schlamann, Marc; Schweiger, Bernd; Goericke, Sophia L. [University Hospital Essen, Department of Diagnostic and Interventional Radiology and Neuroradiology, Essen (Germany); Metz, Klaus A. [University Hospital Essen, Department of Pathology and Neuropathology, Essen (Germany); Bornfeld, Norbert; Holdt, Markus [University Hospital Essen, Department of Ophthalmology, Essen (Germany); Temming, Petra; Schuendeln, Michael M. [University Hospital Essen, Department of Pediatric Hematology and Oncology, Essen (Germany)

    2015-08-15

    High-resolution magnetic resonance imaging (MRI) is recommended for the evaluation of metastatic risk factors in children with retinoblastoma according to recent guidelines. The aim of this study was to compare diagnostic accuracy of a new imaging concept with two orbit surface coils to that of an old imaging concept with one orbit surface coil. One hundred forty-three patients (148 eyes, 64 girls, 79 boys) underwent high-resolution MRI on 1.5 T scanners using orbit surface coils. The old imaging concept (one orbit surface coil focusing on the (most) effected eye additionally to the standard head coil) was used in 100 patients/103 eye; the new imaging concept (two orbit surface coils (each focusing on one eye) additionally to the standard head coil) in 43 patients/45 eyes. Image analysis was performed by two neuroradiologists in consensus. Histopathology served as gold standard. Detection rate for choroidal invasion was higher for the new compared to that for the old imaging concept (sensitivity/specificity 87.5/94.6 % vs. 57.1/96.1 % for choroidal invasion and 100/97.5 % vs. 58.3/97.7 % for massive choroidal invasion, respectively). Sensitivity and specificity for the detection of postlaminar optic nerve infiltration, peribulbar fat, and scleral invasion were comparable in both imaging concepts; however positive predictive value was higher in the new imaging concept (new vs. old imaging concept: 60 vs. 31.6 % for postlaminar and deep postlaminar optic nerve infiltration, respectively, and 100 vs. 66.7 % for scleral invasion). The new imaging concept shows a trend towards improving the accuracy of detecting metastatic risk factors in children with retinoblastoma and is therefore recommended for pretherapeutic imaging and follow-up. (orig.)

  7. High-resolution MRI using orbit surface coils for the evaluation of metastatic risk factors in 143 children with retinoblastoma. Part 2: new vs. old imaging concept

    International Nuclear Information System (INIS)

    Sirin, Selma; Schlamann, Marc; Schweiger, Bernd; Goericke, Sophia L.; Metz, Klaus A.; Bornfeld, Norbert; Holdt, Markus; Temming, Petra; Schuendeln, Michael M.

    2015-01-01

    High-resolution magnetic resonance imaging (MRI) is recommended for the evaluation of metastatic risk factors in children with retinoblastoma according to recent guidelines. The aim of this study was to compare diagnostic accuracy of a new imaging concept with two orbit surface coils to that of an old imaging concept with one orbit surface coil. One hundred forty-three patients (148 eyes, 64 girls, 79 boys) underwent high-resolution MRI on 1.5 T scanners using orbit surface coils. The old imaging concept (one orbit surface coil focusing on the (most) effected eye additionally to the standard head coil) was used in 100 patients/103 eye; the new imaging concept (two orbit surface coils (each focusing on one eye) additionally to the standard head coil) in 43 patients/45 eyes. Image analysis was performed by two neuroradiologists in consensus. Histopathology served as gold standard. Detection rate for choroidal invasion was higher for the new compared to that for the old imaging concept (sensitivity/specificity 87.5/94.6 % vs. 57.1/96.1 % for choroidal invasion and 100/97.5 % vs. 58.3/97.7 % for massive choroidal invasion, respectively). Sensitivity and specificity for the detection of postlaminar optic nerve infiltration, peribulbar fat, and scleral invasion were comparable in both imaging concepts; however positive predictive value was higher in the new imaging concept (new vs. old imaging concept: 60 vs. 31.6 % for postlaminar and deep postlaminar optic nerve infiltration, respectively, and 100 vs. 66.7 % for scleral invasion). The new imaging concept shows a trend towards improving the accuracy of detecting metastatic risk factors in children with retinoblastoma and is therefore recommended for pretherapeutic imaging and follow-up. (orig.)

  8. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    International Nuclear Information System (INIS)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  9. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiufang [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Nie, Xinyi [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Liang, Yilang [School of Physics and Technology, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Lu, Falong [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Yan, Zhongming, E-mail: wangxiufanghappy@163.com [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China); Wang, Yu [School of Electrical Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031 (China)

    2017-01-15

    Highlights: • We investigated a kind of system architecture with three coils which the repeater is copper coil or HTS coil. • We simulated the different repeater system and obtained the magnetic field distribution at different distance. • We used helical coil instead of pancake coil which does not use capacitors. • HTS intermediate coil has significant effect on improving the transmission efficiency and lengthening transmission distance than copper intermediate coil. - Abstract: Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  10. Weekly Volume and Dosimetric Changes During Chemoradiotherapy With Intensity-Modulated Radiation Therapy for Head and Neck Cancer: A Prospective Observational Study

    Energy Technology Data Exchange (ETDEWEB)

    Bhide, Shreerang A [Institute of Cancer Research, 237 Fulham Road, London SW6 6JB (United Kingdom); Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Davies, Mark; Burke, Kevin; McNair, Helen A; Hansen, Vibeke [Department of Radiation Oncology, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); Barbachano, Y [Department of Statistics, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); El-Hariry, I A [Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Newbold, Kate [Department of Radiation Oncology, Royal Marsden NHS Foundation Trust Hospital, London and Sutton (United Kingdom); Harrington, Kevin J [Institute of Cancer Research, 237 Fulham Road, London SW6 6JB (United Kingdom); Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom); Nutting, Christopher M., E-mail: chris.nutting@rmh.nhs.u [Head and Neck Unit, Royal Marsden NHS Foundation Trust Hospital, London SW3 6JJ (United Kingdom)

    2010-04-15

    Purpose: The aim of this study was to investigate prospectively the weekly volume changes in the target volumes and organs at risk and the resulting dosimetric changes during induction chemotherapy followed by chemoradiotherapy with intensity-modulated radiation therapy (C-IMRT) for head-and-neck cancer patients. Methods and Materials: Patients receiving C-IMRT for head-and-neck cancer had repeat CT scans at weeks 2, 3, 4, and 5 during radiotherapy. The volume changes of clinical target volume 1 (CTV1) and CTV2 and the resulting dosimetric changes to planning target volume 1 (PTV1) and PTV2 and the organs at risk were measured. Results: The most significant volume differences were seen at week 2 for CTV1 and CTV2. The reductions in the volumes of CTV1 and CTV2 at week 2 were 3.2% and 10%, respectively (p = 0.003 and p < 0.001). The volume changes resulted in a significant reduction in the minimum dose to PTV1 and PTV2 (2 Gy, p = 0.002, and 3.9 Gy, p = 0.03, respectively) and an increased dose range across PTV1 and PTV2 (2.5 Gy, p < 0.001, and 5.1 Gy, p = 0.008, respectively). There was a 15% reduction in the parotid volumes by week 2 (p < 0.001) and 31% by week 4 (p < 0.001). There was a statistically significant increase in the mean dose to the ipsilateral parotid only at week 4 (2.7 Gy, p = 0.006). The parotid glands shifted medially by an average of 2.3 mm (p < 0.001) by week 4. Conclusion: The most significant volumetric changes and dosimetric alterations in the tumor volumes and organs at risk during a course of C-IMRT occur by week 2 of radiotherapy. Further adaptive radiotherapy with replanning, if appropriate, is recommended.

  11. Extended Monopole antenna Array with individual Shield (EMAS) coil: An improved monopole antenna design for brain imaging at 7 tesla MRI.

    Science.gov (United States)

    Woo, Myung-Kyun; Hong, Suk-Min; Lee, Jongho; Kang, Chang-Ki; Park, Sung-Yeon; Son, Young-Don; Kim, Young-Bo; Cho, Zang-Hee

    2016-06-01

    To propose a new Extended Monopole antenna Array with individual Shields (EMAS) coil that improves the B1 field coverage and uniformity along the z-direction. To increase the spatial coverage of Monopole antenna Array (MA) coil, each monopole antenna was shielded and extended in length. Performance of this new coil, which is referred to as EMAS coil, was compared with the original MA coil and an Extended Monopole antenna Array coil with no shield (EMA). For comparison, flip angle, signal-to-noise ratio (SNR), and receive sensitivity maps were measured at multiple regions of interest (ROIs) in the brain. The EMAS coil demonstrated substantially larger flip angle and receive sensitivity than the MA and EMA coils in the inferior aspect of the brain. In the brainstem ROI, for example, the flip angle in the EMAS coil was increased by 45.5% (or 60.0%) and the receive sensitivity was increased by 26.9% (or 14.9%), resulting in an SNR gain of 84.8% (or 76.3%) when compared with the MA coil (or EMA). The EMAS coil provided 25.7% (or 24.4%) more uniform B1+ field distribution compared with the MA (or EMA) coil in sagittal. The EMAS coil successfully extended the imaging volume in lower part of the brain. Magn Reson Med 75:2566-2572, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  12. ANL experimental program for pulsed superconducting coils

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Praeg, W.F.; Krieger, C.I.

    1978-01-01

    Argonne National Laboratory (ANL) had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and started in aggressive development program in FY 1977. The main objectives for FY 1977 are to develop cryostable basic cable configurations with reasonably low ac losses, to develop 12 kA cryostable cable, using it to design and build a 1.5 MJ pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat for the 1.5 MJ pulsed coil. The principal objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil ranging from 2 T/s up to 12 T/s. Another objective in the pulsed coil program is to determine the feasibility of parallel coil operation in order to avoid excessive voltage and current requirements and to minimize the number of turns for the equilibrium field (EF) coils, should the EF coils be connected in parallel with the OH coils. A two-coil section model using the 11 kA cable will be built and tested

  13. ANL experimental program for pulsed superconducting coils

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.; Praeg, W.F.; Krieger, C.I.

    1977-01-01

    Argonne National Laboratory (ANL) had recognized the clear advantage of a superconducting ohmic-heating (OH) coil and started an aggressive development program in FY 1977. The main objectives for FY 1977 are to develop cryostable basic cable configurations with reasonably low ac losses, to develop 12 kA cryostable cable, using it to design and build a 1.5 MJ pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat for the 1.5 MJ pulsed coil. The principal objective in building the 1.5 MJ ac coil is to demonstrate ac cryostability of a large coil ranging from 2 T/s up to 12 T/s. Another objective in the pusled coil program is to determine the feasibility of parallel coil operation in order to avoid excessive voltage and current requirements and to minimize the number of turns for the equilibrium field (EF) coils, should the EF coils be connected in parallel with the OH coils. A two-coil section model using the 11 kA cable will be built and tested

  14. Comparison of surface coil and knee coil for evaluation of the patellar cartilage by MR imaging

    International Nuclear Information System (INIS)

    Steen, M. van den; Maeseneer, M. de; Hoste, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M.

    2003-01-01

    Purpose: The aim of this work was to compare the knee coil and the surface coil for the visualisation of the patellar cartilage. Materials and methods: In 28 patients (17 women, 11 men) with an average age of 40 years (range 14-76) with knee pain MR was performed. Transverse images were obtained using a fast spin echo proton density weighted sequence on a Philips Gyroscan Intera 1.5 T clinical system. Transverse images were obtained at the level of the patellar cartilage using both the surface and the knee coil. All images were evaluated by consensus of two radiologists. They evaluated a number of quality criteria on a 4-point scale. Criteria for artefacts were also graded on a 4-point scale. Results: For the visualisation of fluid there was no significant difference between the knee coil and the surface coil (P=0.021). For all other criteria regarding image quality and presence of imaging artefacts there was a significant difference between both coils (P<0.001) with the surface coil obtaining the better result. Conclusion: The use of the surface coil in the visualisation of the patellar cartilage can be recommended at knee MR

  15. Structure of bacteriophage T4 fibritin: a segmented coiled coil and the role of the C-terminal domain.

    Science.gov (United States)

    Tao, Y; Strelkov, S V; Mesyanzhinov, V V; Rossmann, M G

    1997-06-15

    Oligomeric coiled-coil motifs are found in numerous protein structures; among them is fibritin, a structural protein of bacteriophage T4, which belongs to a class of chaperones that catalyze a specific phage-assembly process. Fibritin promotes the assembly of the long tail fibers and their subsequent attachment to the tail baseplate; it is also a sensing device that controls the retraction of the long tail fibers in adverse environments and, thus, prevents infection. The structure of fibritin had been predicted from sequence and biochemical analyses to be mainly a triple-helical coiled coil. The determination of its structure at atomic resolution was expected to give insights into the assembly process and biological function of fibritin, and the properties of modified coiled-coil structures in general. The three-dimensional structure of fibritin E, a deletion mutant of wild-type fibritin, was determined to 2.2 A resolution by X-ray crystallography. Three identical subunits of 119 amino acid residues form a trimeric parallel coiled-coil domain and a small globular C-terminal domain about a crystallographic threefold axis. The coiled-coil domain is divided into three segments that are separated by insertion loops. The C-terminal domain, which consists of 30 residues from each subunit, contains a beta-propeller-like structure with a hydrophobic interior. The residues within the C-terminal domain make extensive hydrophobic and some polar intersubunit interactions. This is consistent with the C-terminal domain being important for the correct assembly of fibritin, as shown earlier by mutational studies. Tight interactions between the C-terminal residues of adjacent subunits counteract the latent instability that is suggested by the structural properties of the coiled-coil segments. Trimerization is likely to begin with the formation of the C-terminal domain which subsequently initiates the assembly of the coiled coil. The interplay between the stabilizing effect of the C

  16. Influence of the Gilbert damping constant on the flux rise time of write head fields

    International Nuclear Information System (INIS)

    Ertl, Othmar; Schrefl, Thomas; Suess, Dieter; Schabes, Manfred E.

    2005-01-01

    Magnetic recording at fast data rates requires write heads with rapid rise times of the magnetic flux during the write process. We present three-dimensional (3D) micromagnetic finite element calculations of an entire ring head including 3D coil geometry during the writing of magnetic bits in granular media. The simulations demonstrate how input current profiles translate into magnetization processes in the head and which in turn generate the write head field. The flux rise time significantly depends on the Gilbert damping constant of the head material. Low damping causes incoherent magnetization processes, leading to long rise times and low head fields. High damping leads to coherent reversal of the magnetization in the head. As a consequence, the gap region can be quickly saturated which causes high head fields with short rise times

  17. High-resolution MR imaging of triangular fibrocartilage complex (TFCC): comparison of microscopy coils and a conventional small surface coil

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Hiroshi [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Department of Radiology, Brigham and Women' s Hospital, 75 Francis Street, 02115, Boston, MA (United States); Ueno, Teruko; Itai, Yuji [Department of Radiology, University of Tsukuba, Tsukuba (Japan); Tanaka, Toshikazu [Department of Orthopedic Surgery, Tsukuba Kinen Hospital, Tsukuba (Japan); Shindo, Masashi [Tsukuba University Hospital, Tsukuba (Japan)

    2003-10-01

    To compare MR images of the triangular fibrocartilage complex (TFCC) using microscopy coils with those using a conventional surface coil qualitatively and quantitatively. Proton density-weighted images and T2*-weighted images of the TFCC from ten normal volunteers were obtained with a conventional surface coil (C4 coil; 80 mm in diameter), a 47-mm microscopy surface coil and a 23-mm microscopy surface coil at 1.5 T. Qualitative image analysis of MR images with three coils was performed by two radiologists who assigned one of five numerical scores (0, nonvisualization; 1, poor; 2, average; 3, good; 4, excellent) for five TFCC components, which were disc proper, triangular ligament, meniscus homologue, ulnotriquetral and ulnolunate ligament. Quantitative analysis included the signal-to-noise ratio (S/N) of the disc proper of TFCC, the lunate cartilage, the lunate bone and the contrast-noise-ratio (C/N) between articular cartilage and disc proper or bone marrow were measured. All structures show higher scores qualitatively on MR with microscopy coils than those with a C4 coil, and the difference was significant with the exception of the ulnolunate ligament. MR with microscopy coils showed significantly higher S/N values than those with a conventional surface coil (P<0.05 to P<0.001). T2*-weighted images using microscopy coils showed significantly higher cartilage-disc proper C/N and cartilage-bone marrow C/N (P<0.01 to P<0.001). On proton density-weighted images, the C/N between cartilage and disc proper with two microscopy coils was significantly higher (P<0.01) than that with a conventional coil. High-resolution MR images of the normal wrist using microscopy coils were superior to those using a conventional surface coil qualitatively and quantitatively. High-resolution MR imaging with a microscopy coil would be a promising method to diagnose TFCC lesions. (orig.)

  18. Increased cerebellar gray matter volume in head chefs.

    Directory of Open Access Journals (Sweden)

    Antonio Cerasa

    Full Text Available Chefs exert expert motor and cognitive performances on a daily basis. Neuroimaging has clearly shown that that long-term skill learning (i.e., athletes, musicians, chess player or sommeliers induces plastic changes in the brain thus enabling tasks to be performed faster and more accurately. How a chef's expertise is embodied in a specific neural network has never been investigated.Eleven Italian head chefs with long-term brigade management expertise and 11 demographically-/ psychologically- matched non-experts underwent morphological evaluations.Voxel-based analysis performed with SUIT, as well as, automated volumetric measurement assessed with Freesurfer, revealed increased gray matter volume in the cerebellum in chefs compared to non-experts. The most significant changes were detected in the anterior vermis and the posterior cerebellar lobule. The magnitude of the brigade staff and the higher performance in the Tower of London test correlated with these specific gray matter increases, respectively.We found that chefs are characterized by an anatomical variability involving the cerebellum. This confirms the role of this region in the development of similar expert brains characterized by learning dexterous skills, such as pianists, rock climbers and basketball players. However, the nature of the cellular events underlying the detected morphological differences remains an open question.

  19. Appearance and impact of post-operative intracranial clips and coils on whole-brain CT angiography and perfusion

    International Nuclear Information System (INIS)

    Roach, Cayce J.; Russell, Cheryl L.; Hanson, Eric H.; Bluett, Brent; Orrison, William W.

    2012-01-01

    Background: To evaluate the effect of vascular clips and endovascular coils placed for intracranial aneurysms and arteriovenous malformations on whole-brain computed tomography (CT) angiography and perfusion. Methods: A 320-detector row dynamic volume CT system imaged 11 patients following surgical placement of vascular clips or endovascular coils. The extent of clip and coil subtraction by automated software was evaluated using CT digital subtraction angiography and CT perfusion. Impact on CT perfusion values by retained intracranial devices was compared to age- and gender-matched controls. Results: Clip and coil subtraction on CT angiography was graded as good in 8 and moderate in 3 cases. A residual neck and additional aneurysm were noted in 1 of 11 patients. Post-procedural axial slice level CT perfusion values decreased in reliability with increasing proximity to the metallic devices secondary to beam hardening. However, the intracranial devices did not affect axial slice level CTP values of cerebral blood volume, cerebral blood flow and mean transit time outside of the level of the device. Time to peak values was globally decreased outside of the immediate vascular intervention region. Conclusions: Advances in CT technology have provided clinically useful subtraction of intracranial clips and coils. While CT perfusion values were altered in device subtraction areas and within beam hardening artifact areas; they can provide valuable postoperative information on whole-brain hemodynamics. In selected cases, the combination of CT angiography and whole-brain CT perfusion can offer an alternative to conventional angiography that is a more invasive option.

  20. Coil–globule transition of a polymer involved in excluded-volume interactions with macromolecules

    International Nuclear Information System (INIS)

    Odagiri, Kenta; Seki, Kazuhiko

    2015-01-01

    Polymers adopt extended coil and compact globule states according to the balance between entropy and interaction energies. The transition of a polymer between an extended coil state and compact globule state can be induced by changing thermodynamic force such as temperature to alter the energy/entropy balance. Previously, this transition was theoretically studied by taking into account the excluded-volume interaction between monomers of a polymer chain using the partition function. For binary mixtures of a long polymer and short polymers, the coil-globule transition can be induced by changing the concentration of the shorter polymers. Here, we investigate the transition caused by short polymers by generalizing the partition function of the long polymer to include the excluded-volume effect of short polymers. The coil-globule transition is studied as a function of the concentration of mixed polymers by systematically varying Flory’s χ-parameters. We show that the transition is caused by the interplay between the excluded-volume interaction and the dispersion state of short polymers in the solvent. We also reveal that the same results can be obtained by combining the mixing entropy and elastic energy if the volume of a long polymer is properly defined

  1. Endovascular rescue method for undesirably stretched coil.

    Science.gov (United States)

    Cho, Jae Hoon

    2014-10-01

    Undesirable detachment or stretching of coils within the parent artery during aneurysm embolization can be related with thrombus formation, which can be caused occlusion of parent artery or embolic event(s). To escape from this situation, several rescue methods have been reported. A case with undesirably stretched coil in which another rescue method was used, is presented. When the stretched coil is still located in the coil delivery microcatheter, the stretched coil can be removed safely using a snare and a handmade monorail microcatheter. After a snare is lodged in the handmade monorail microcatheter, the snare is introduced over the coil delivery micorcatheter and located in the distal part of the stretched coil. After then, the handmade monorail microcatheter captures the stretched coil and the snare as one unit. This technique using a handmade monorail microcatheter and a snare can be a good rescue modality for the undesirably stretched coil, still remained within the coil delivery microcatheter.

  2. [Target volume margins for lung cancer: internal target volume/clinical target volume].

    Science.gov (United States)

    Jouin, A; Pourel, N

    2013-10-01

    The aim of this study was to carry out a review of margins that should be used for the delineation of target volumes in lung cancer, with a focus on margins from gross tumour volume (GTV) to clinical target volume (CTV) and internal target volume (ITV) delineation. Our review was based on a PubMed literature search with, as a cornerstone, the 2010 European Organisation for Research and Treatment of Cancer (EORTC) recommandations by De Ruysscher et al. The keywords used for the search were: radiotherapy, lung cancer, clinical target volume, internal target volume. The relevant information was categorized under the following headings: gross tumour volume definition (GTV), CTV-GTV margin (first tumoural CTV then nodal CTV definition), in field versus elective nodal irradiation, metabolic imaging role through the input of the PET scanner for tumour target volume and limitations of PET-CT imaging for nodal target volume definition, postoperative radiotherapy target volume definition, delineation of target volumes after induction chemotherapy; then the internal target volume is specified as well as tumoural mobility for lung cancer and respiratory gating techniques. Finally, a chapter is dedicated to planning target volume definition and another to small cell lung cancer. For each heading, the most relevant and recent clinical trials and publications are mentioned. Copyright © 2013. Published by Elsevier SAS.

  3. Design of a Nested Eight-Channel Sodium and Four-Channel Proton Coil for 7 Tesla Knee Imaging

    Science.gov (United States)

    Brown, Ryan; Madelin, Guillaume; Lattanzi, Riccardo; Chang, Gregory; Regatte, Ravinder R.; Sodickson, Daniel K.; Wiggins, Graham C.

    2012-01-01

    The critical design aim for a dual-tuned sodium/proton coil is to maximize sodium sensitivity and transmit field (B1+) homogeneity while simultaneously providing adequate proton sensitivity and homogeneity. While most dual-frequency coils utilize lossy high-impedance trap circuits or PIN diodes to allow dual-resonance, we explored a nested-coil design for sodium/proton knee imaging at 7T. A stand-alone eight-channel sodium receive array was implemented without standard dual-resonance circuitry to provide improved sodium signal-to-noise ratio (SNR) over a volume coil. A detunable sodium birdcage was added for homogeneous sodium excitation and a four-channel proton transmit-receive array was added to provide anatomical reference imaging and B0 shimming capability. Both modules were implemented with minimal disturbance to the eight-channel sodium array by managing their respective resonances and geometrical arrangement. In vivo sodium SNR was 1.2 to 1.7 times greater in the developed eight-channel array than in a mono-nuclear sodium birdcage coil, while the developed four-channel proton array provided SNR similar to that of a commercial mono-nuclear proton birdcage coil. PMID:22887123

  4. Operator coil monitoring Acceptance Test Procedure

    International Nuclear Information System (INIS)

    Erhart, M.F.

    1995-01-01

    The readiness of the Data Acquisition and Control System (DACS) to provide monitoring and control of the Programmable Logic Controller (PLC) abort coils from the Master and RSS stations will be systematically tested during performance of this procedure. It should be noted that these are not physical abort coils but software coils controlled by the software's ladder logic. The readiness of the DACS to properly interface with the ENRAF wire level gauge installed in the SY-101 storage tank will also be tested. During this test, a verification of all abort coil indications will be conducted at the DACS Development Facility in the 306E Building by injecting an input signal for each DACS sensor that has an associated abort coil until the abort coil actuates, and then ensuring that the status of the abort coil indicated at the Master and RSS stations is correct. Each abort coil will also be tested to ensure that the ''ENABLE'' and ''DISABLE'' controls from the Master and RSS stations function correctly, and only with the use of proper passwords

  5. Evidence-based pathology: umbilical cord coiling.

    Science.gov (United States)

    Khong, T Y

    2010-12-01

    The generation of a pathology test result must be based on criteria that are proven to be acceptably reproducible and clinically relevant to be evidence-based. This review de-constructs the umbilical cord coiling index to illustrate how it can stray from being evidence-based. Publications related to umbilical cord coiling were retrieved and analysed with regard to how the umbilical coiling index was calculated, abnormal coiling was defined and reference ranges were constructed. Errors and other influences that can occur with the measurement of the length of the umbilical cord or of the number of coils can compromise the generation of the coiling index. Definitions of abnormal coiling are not consistent in the literature. Reference ranges defining hypocoiling or hypercoiling have not taken those potential errors or the possible effect of gestational age into account. Even the way numerical test results in anatomical pathology are generated, as illustrated by the umbilical coiling index, warrants a critical analysis into its evidence base to ensure that they are reproducible or free from errors.

  6. The JET divertor coil

    International Nuclear Information System (INIS)

    Last, J.R.; Froger, C.; Sborchia, C.

    1989-01-01

    The divertor coil is mounted inside the Jet vacuum vessel and is able to carry 1 MA turns. It is of conventional construction - water cooled copper, epoxy glass insulation -and is contained in a thin stainless steel case. The coil has to be assembled, insulated and encased inside the Jet vacuum vessel. A description of the coil is given, together with technical information (including mechanical effects on the vacuum vessel), an outline of the manufacture process and a time schedule. (author)

  7. Superconducting cyclotron magnet coil short

    International Nuclear Information System (INIS)

    Mallory, M.L.; Blosser, H.G.; Clark, D.J.; Launer, H.; Lawton, D.; Miller, P.; Resmini, F.

    1982-01-01

    In February 1981, a short circuit appeared in the superconducting coil of the K500 cyclotron. The short is resistive in character and therefore has no effect on steady state operation of the magnet. The resistance of the short varies, sometimes being below threshold of detection as a heat load on the cooling system and sometimes being significant. The resistance under certain conditions shows approximately cyclic phenomena with time constants in the range of seconds and other approximately cyclic phenomena which correlate with gross operating parameters of the magnet (shifting current from one coil to another at high field and lowering and raising the liquid helium level). A number of diagnostic studies of the short have been made, using 1) an array of flux sensing loops to sense the magnetic effect of the short, 2) voltage comparisons between upper and lower sections of the coil, 3) comparisons of forces in the nine member coil support system and 4) the effect of the short on the thermal charactersitics of the coil. Insulation failure or a metal chip shorting out turns have been explored in some detail but a convincing determination of the exact cause of the short may never be available, (even the extreme step of unwinding the coil having a significant probability that an imperfection with the observed characteristics would pass unnoticed). Analysis of the characteristics of the short indicated that the most serious consequence would be failure of the coils mechanical support system in the event that the magnet was quickly discharged, as in a dump or quench. To deal with this hazard, the support system has been modified by installing solid supports which prevent the coil from moving by an amount sufficient to damage the support system. We have also reexamined the data and calculations used in the original coil design and have made some additional measurements of the properties of the materials (yield strength, friction coefficient, Young's modulus) used in the

  8. Pulse coil concepts for the LCP Facility

    International Nuclear Information System (INIS)

    Nelson, B.E.; Burn, P.B.

    1977-01-01

    The pulse coils described in this paper are resistive copper magnets driven by time-varying currents. They are included in the Large Coil Test Facility (LCTF) portion of the Large Coil Program (LCP) to simulate the pulsed field environment of the toroidal coils in a tokamak reactor. Since TNS (a 150 sec, 5MA, igniting tokamak) and the Oak Ridge EPR (Experimental Power Reactor) are representative of the first tokamaks to require the technology developed in LCP, the reference designs for these machines, especially TNS, are used to derive the magnetic criteria for the pulse coils. This criteria includes the magnitude, distribution, and rate of change of pulsed fields in the toroidal coil windings. Three pulse coil concepts are evaluated on the basis of magnetic criteria and factors such as versatility of design, ease of fabrication and cost of operation. The three concepts include (1) a pair of poloidal coils outside the LCTF torus, (2) a single poloidal coil threaded through the torus, and (3) a pair of vertical axis coil windings inside the bore of one or more of the toroidal test coils

  9. LHC bending magnet coil

    CERN Multimedia

    A short test version of coil of wire used for the LHC dipole magnets. The high magnetic fields needed for guiding particles around the Large Hadron Collider (LHC) ring are created by passing 12’500 amps of current through coils of superconducting wiring. At very low temperatures, superconductors have no electrical resistance and therefore no power loss. The LHC is the largest superconducting installation ever built. The magnetic field must also be extremely uniform. This means the current flowing in the coils has to be very precisely controlled. Indeed, nowhere before has such precision been achieved at such high currents. Magnet coils are made of copper-clad niobium–titanium cables — each wire in the cable consists of 9’000 niobium–titanium filaments ten times finer than a hair.

  10. Borehole induction coil transmitter

    Science.gov (United States)

    Holladay, Gale; Wilt, Michael J.

    2002-01-01

    A borehole induction coil transmitter which is a part of a cross-borehole electromagnetic field system that is used for underground imaging applications. The transmitter consists of four major parts: 1) a wound ferrite or mu-metal core, 2) an array of tuning capacitors, 3) a current driver circuit board, and 4) a flux monitor. The core is wound with several hundred turns of wire and connected in series with the capacitor array, to produce a tuned coil. This tuned coil uses internal circuitry to generate sinusoidal signals that are transmitted through the earth to a receiver coil in another borehole. The transmitter can operate at frequencies from 1-200 kHz and supplies sufficient power to permit the field system to operate in boreholes separated by up to 400 meters.

  11. Axis of eye rotation changes with head-pitch orientation during head impulses about earth-vertical.

    Science.gov (United States)

    Migliaccio, Americo A; Schubert, Michael C; Clendaniel, Richard A; Carey, John P; Della Santina, Charles C; Minor, Lloyd B; Zee, David S

    2006-06-01

    The goal of this study was to assess how the axis of head rotation, Listing's law, and eye position influence the axis of eye rotation during brief, rapid head rotations. We specifically asked how the axis of eye rotation during the initial angular vestibuloocular reflex (VOR) changed when the pitch orientation of the head relative to Earth-vertical was varied, but the initial position of the eye in the orbit and the orientation of Listing's plane with respect to the head were fixed. We measured three-dimensional eye and head rotation axes in eight normal humans using the search coil technique during head-and-trunk (whole-body) and head-on-trunk (head-only) "impulses" about an Earth-vertical axis. The head was initially oriented at one of five pitch angles (30 degrees nose down, 15 degrees nose down, 0 degrees, 15 degrees nose up, 30 degrees nose up). The fixation target was always aligned with the nasooccipital axis. Whole-body impulses were passive, unpredictable, manual, rotations with peak-amplitude of approximately 20 degrees , peak-velocity of approximately 80 degrees /s, and peak-acceleration of approximately 1000 degrees /s2. Head-only impulses were also passive, unpredictable, manual, rotations with peak-amplitude of approximately 20 degrees , peak-velocity of approximately 150 degrees /s, and peak-acceleration of approximately 3000 degrees /s2. During whole-body impulses, the axis of eye rotation tilted in the same direction, and by an amount proportional (0.51 +/- 0.09), to the starting pitch head orientation (P rotation could be predicted from vectorial summation of the gains (eye velocity/head velocity) obtained for rotations about the pure yaw and roll head axes. Thus, even when the orientation of Listing's plane and eye position in the orbit are fixed, the axis of eye rotation during the VOR reflects a compromise between the requirements of Listing's law and a perfectly compensatory VOR.

  12. A history of detachable coils: 1987-2012.

    Science.gov (United States)

    Hui, Ferdinand K; Fiorella, David; Masaryk, Thomas J; Rasmussen, Peter A; Dion, Jacques E

    2014-03-01

    The development of detachable coils is one of the most pivotal developments in neurointervention, providing a tool that could be used to treat a wide variety of hemorrhagic stroke. From the original Guglielmi detachable coil, a number of different coil designs and delivery designs have evolved. This article reviews the history of commercially available detachable coils. A timeline of detachable coils was constructed and coil design philosophies were reviewed. A complete list of commercially available coils is presented in a timeline format. Detachable coil technology continues to evolve. Advances in construction and design have yielded products which may benefit patients in terms of safety, radiation dose reduction and cost of treatment. Continued evolution is expected, irrespective of competing disruptive technologies.

  13. Large Coil Program magnetic system design study

    International Nuclear Information System (INIS)

    Moses, S.D.; Johnson, N.E.

    1977-01-01

    The primary objective of the Large Coil Program (LCP) is to demonstrate the reliable operation of large superconducting coils to provide a basis for the design principles, materials, and fabrication techniques proposed for the toroidal magnets for the THE NEXT STEP (TNS) and other future tokamak devices. This paper documents a design study of the Large Coil Test Facility (LCTF) in which the structural response of the Toroidal Field (TF) Coils and the supporting structure was evaluated under simulated reactor conditions. The LCP test facility structural system consists of six TF Coils, twelve coil-to-coil torsional restraining beams (torque rings), a central bucking post with base, and a Pulse Coil system. The NASTRAN Finite Element Structural Analysis computer Code was utilized to determine the distribution of deflections, forces, and stresses for each of the TF Coils, torque rings, and the central bucking post. Eleven load conditions were selected to represent probable test operations. Pulse Coils suspended in the bore of the test coil were energized to simulate the pulsed field environment characteristic of the TNS reactor system. The TORMAC Computer Code was utilized to develop the magnetic forces in the TF Coils for each of the eleven loading conditions examined, with or without the Pulse Coils energized. The TORMAC computer program output forces were used directly as input load conditions for the NASTRAN analyses. Results are presented which demonstrate the reliability of the LCTF under simulated reactor operating conditions

  14. Superconducting poloidal coils for STARFIRE commercial reactor

    International Nuclear Information System (INIS)

    Wang, S.T.; Evans, K. Jr.; Turner, L.R.; Huang, Y.C.; Prater, R.; Alcorn, J.

    1979-01-01

    STARFIRE is considered to be the tenth commercial tokamak power plant. A preliminary design study on its superconducting poloidal coil system is presented. Key features of the design studies are: the elimination of the ohmic heating coil; the trade-off studies of the equilibrium field coil locations; and the development of a conceptual design for the superconducting equilibrium field coils. Described are the 100 kA cryostable conductor design, the coil structure, and evaluation of the coil forces

  15. Advances in otolaryngology-Head and neck surgery. Volume 1

    International Nuclear Information System (INIS)

    Myers, E.N.; Bluestone, C.D.

    1987-01-01

    This book consists of 14 sections. The section titles are: The impact of AIDS on otolaryngology--head and neck surgery; The management of sleep apneas and snoring; Antimicrobial agents for infections in the ear, nose, and throat--head and neck; Nasal allergy: Medical and surgical treatment; Uses of computerized tomography and magnetic resonance imaging in temporal bone imaging; Surgical management of otitis media with effusion; middle ear reconstruction: Current status; Cochlear implants: an overview; Diagnosis and management of acute facial paralysis; The use of the laser in head and neck surgery; The management and prevention of subglottic stenosis in infants and children; Management of the mass in the thyroid; Suction-assisted lipectomy of the head and neck area; and Ambulatory surgery

  16. Advances in otolaryngology-Head and neck surgery. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    Myers, E.N. (Univ. of Pittsburgh School of Medicine, Pittsburgh, PA (US)); Bluestone, C.D. (Univ. of Pittsburgh, Pittsburgh, PA (US))

    1987-01-01

    This book consists of 14 sections. The section titles are: The impact of AIDS on otolaryngology--head and neck surgery; The management of sleep apneas and snoring; Antimicrobial agents for infections in the ear, nose, and throat--head and neck; Nasal allergy: Medical and surgical treatment; Uses of computerized tomography and magnetic resonance imaging in temporal bone imaging; Surgical management of otitis media with effusion; middle ear reconstruction: Current status; Cochlear implants: an overview; Diagnosis and management of acute facial paralysis; The use of the laser in head and neck surgery; The management and prevention of subglottic stenosis in infants and children; Management of the mass in the thyroid; Suction-assisted lipectomy of the head and neck area; and Ambulatory surgery.

  17. Strong contributions from vertical triads to helix-partner preferences in parallel coiled coils.

    Science.gov (United States)

    Steinkruger, Jay D; Bartlett, Gail J; Woolfson, Derek N; Gellman, Samuel H

    2012-09-26

    Pairing preferences in heterodimeric coiled coils are determined by complementarities among side chains that pack against one another at the helix-helix interface. However, relationships between dimer stability and interfacial residue identity are not fully understood. In the context of the "knobs-into-holes" (KIH) packing pattern, one can identify two classes of interactions between side chains from different helices: "lateral", in which a line connecting the adjacent side chains is perpendicular to the helix axes, and "vertical", in which the connecting line is parallel to the helix axes. We have previously analyzed vertical interactions in antiparallel coiled coils and found that one type of triad constellation (a'-a-a') exerts a strong effect on pairing preferences, while the other type of triad (d'-d-d') has relatively little impact on pairing tendencies. Here, we ask whether vertical interactions (d'-a-d') influence pairing in parallel coiled-coil dimers. Our results indicate that vertical interactions can exert a substantial impact on pairing specificity, and that the influence of the d'-a-d' triad depends on the lateral a' contact within the local KIH motif. Structure-informed bioinformatic analyses of protein sequences reveal trends consistent with the thermodynamic data derived from our experimental model system in suggesting that heterotriads involving Leu and Ile are preferred over homotriads involving Leu and Ile.

  18. Invited review the coiled coil silk of bees, ants, and hornets.

    Science.gov (United States)

    Sutherland, Tara D; Weisman, Sarah; Walker, Andrew A; Mudie, Stephen T

    2012-06-01

    In this article, we review current knowledge about the silk produced by the larvae of bees, ants, and hornets [Apoidea and Vespoidea: Hymenoptera]. Different species use the silk either alone or in composites for a variety of purposes including mechanical reinforcement, thermal regulation, or humidification. The characteristic molecular structure of this silk is α-helical proteins assembled into tetrameric coiled coils. Gene sequences from seven species are available, and each species possesses a copy of each of four related silk genes that encode proteins predicted to form coiled coils. The proteins are ordered at multiple length scales within the labial gland of the final larval instar before spinning. The insects control the morphology of the silk during spinning to produce either fibers or sheets. The silk proteins are small and non repetitive and have been produced artificially at high levels by fermentation in E. coli. The artificial silk proteins can be fabricated into materials with structural and mechanical properties similar to those of native silks. Copyright © 2011 Wiley Periodicals, Inc.

  19. Self-Assembly of Rod-Coil Block Copolymers

    National Research Council Canada - National Science Library

    Jenekhe, S

    1999-01-01

    ... the self-assembly of new rod-coil diblock, rod- coil-rod triblock, and coil-rod-coil triblock copolymers from solution and the resulting discrete and periodic mesostmctares with sizes in the 100...

  20. GBNV encoded movement protein (NSm) remodels ER network via C-terminal coiled coil domain

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Pratibha; Savithri, H.S., E-mail: bchss@biochem.iisc.ernet.in

    2015-08-15

    Plant viruses exploit the host machinery for targeting the viral genome–movement protein complex to plasmodesmata (PD). The mechanism by which the non-structural protein m (NSm) of Groundnut bud necrosis virus (GBNV) is targeted to PD was investigated using Agrobacterium mediated transient expression of NSm and its fusion proteins in Nicotiana benthamiana. GFP:NSm formed punctuate structures that colocalized with mCherry:plasmodesmata localized protein 1a (PDLP 1a) confirming that GBNV NSm localizes to PD. Unlike in other movement proteins, the C-terminal coiled coil domain of GBNV NSm was shown to be involved in the localization of NSm to PD, as deletion of this domain resulted in the cytoplasmic localization of NSm. Treatment with Brefeldin A demonstrated the role of ER in targeting GFP NSm to PD. Furthermore, mCherry:NSm co-localized with ER–GFP (endoplasmic reticulum targeting peptide (HDEL peptide fused with GFP). Co-expression of NSm with ER–GFP showed that the ER-network was transformed into vesicles indicating that NSm interacts with ER and remodels it. Mutations in the conserved hydrophobic region of NSm (residues 130–138) did not abolish the formation of vesicles. Additionally, the conserved prolines at positions 140 and 142 were found to be essential for targeting the vesicles to the cell membrane. Further, systematic deletion of amino acid residues from N- and C-terminus demonstrated that N-terminal 203 amino acids are dispensable for the vesicle formation. On the other hand, the C-terminal coiled coil domain when expressed alone could also form vesicles. These results suggest that GBNV NSm remodels the ER network by forming vesicles via its interaction through the C-terminal coiled coil domain. Interestingly, NSm interacts with NP in vitro and coexpression of these two proteins in planta resulted in the relocalization of NP to PD and this relocalization was abolished when the N-terminal unfolded region of NSm was deleted. Thus, the NSm

  1. A Flexible Nested Sodium and Proton Coil Array with Wideband Matching for Knee Cartilage MRI at 3 Tesla

    Science.gov (United States)

    Brown, Ryan; Lakshmanan, Karthik; Madelin, Guillaume; Alon, Leeor; Chang, Gregory; Sodickson, Daniel K.; Regatte, Ravinder R.; Wiggins, Graham C.

    2015-01-01

    Purpose We describe a 6×2 channel sodium/proton array for knee MRI at 3 Tesla. Multi-element coil arrays are desirable because of well-known signal-to-noise ratio advantages over volume and single-element coils. However, low coil-tissue coupling that is characteristic of coils operating at low frequency can make the potential gains from a phased array difficult to realize. Methods The issue of low coil-tissue coupling in the developed six channel sodium receive array was addressed by implementing 1) a mechanically flexible former to minimize coil-to-tissue distance and reduce the overall diameter of the array and 2) a wideband matching scheme that counteracts preamplifier noise degradation caused by coil coupling and a high quality factor. The sodium array was complemented with a nested proton array to enable standard MRI. Results The wideband matching scheme and tight-fitting mechanical design contributed to greater than 30% central SNR gain on the sodium module over a mono-nuclear sodium birdcage coil, while the performance of the proton module was sufficient for clinical imaging. Conclusion We expect the strategies presented in this work to be generally relevant in high density receive arrays, particularly in x-nuclei or small animal applications, or in those where the array is distant from the targeted tissue. PMID:26502310

  2. Large coil program support structure conceptual design

    International Nuclear Information System (INIS)

    Litherland, P.S.

    1977-01-01

    The purpose of the Large Coil Program (LCP) is to perform tests on both pool boiling and force cooled superconducting toroidal field coils. The tests will attempt to approximate conditions anticipated in an ignition tokamak. The test requirements resulted in a coil support design which accommodates up to six (6) test coils and is mounted to a structure capable of resisting coil interactions. The steps leading to the present LCP coil support structure design, details on selected structural components, and the basic assembly sequence are discussed

  3. Coil protection calculator for TFTR

    International Nuclear Information System (INIS)

    Marsala, R.J.; Lawson, J.E.; Persing, R.G.; Senko, T.R.; Woolley, R.D.

    1989-01-01

    A new coil protection system (CPS) is being developed to replace the existing TFTR magnetic coil fault detector. The existing fault detector sacrifices TFTR operating capability for simplicity. The new CPS, when installed in October of 1988, will permit operation up to the actual coil stress limits parameters in real-time. The computation will be done in a microprocessor based Coil Protection Calculator (CPC) currently under construction at PPL. THe new CPC will allow TFTR to operate with higher plasma currents and will permit the optimization of pulse repetition rates. The CPC will provide real-time estimates of critical coil and bus temperatures and stresses based on real-time redundant measurements of coil currents, coil cooling water inlet temperature, and plasma current. The critical parameter calculations are compared to prespecified limits. If these limits are reached or exceeded, protection action will be initiated to a hard wired control system (HCS), which will shut down the power supplies. The CPC consists of a redundant VME based microprocessor system which will sample all input data and compute all stress quantities every ten milliseconds. Thermal calculations will be approximated every 10ms with an exact solution occurring every second. The CPC features continuous cross-checking of redundant input signal, automatic detection of internal failure modes, monitoring and recording of calculated results, and a quick, functional verification of performance via an internal test system. (author)

  4. High-resolution small field-of-view magnetic resonance image acquisition system using a small planar coil and a pneumatic manipulator in an open MRI scanner.

    Science.gov (United States)

    Miki, Kohei; Masamune, Ken

    2015-10-01

    Low-field open magnetic resonance imaging (MRI) is frequently used for performing image-guided neurosurgical procedures. Intraoperative magnetic resonance (MR) images are useful for tracking brain shifts and verifying residual tumors. However, it is difficult to precisely determine the boundary of the brain tumors and normal brain tissues because the MR image resolution is low, especially when using a low-field open MRI scanner. To overcome this problem, a high-resolution MR image acquisition system was developed and tested. An MR-compatible manipulator with pneumatic actuators containing an MR signal receiver with a small radiofrequency (RF) coil was developed. The manipulator had five degrees of freedom for position and orientation control of the RF coil. An 8-mm planar RF coil with resistance and inductance of 2.04 [Formula: see text] and 1.00 [Formula: see text] was attached to the MR signal receiver at the distal end of the probe. MR images of phantom test devices were acquired using the MR signal receiver and normal head coil for signal-to-noise ratio (SNR) testing. The SNR of MR images acquired using the MR signal receiver was 8.0 times greater than that of MR images acquired using the normal head coil. The RF coil was moved by the manipulator, and local MR images of a phantom with a 2-mm grid were acquired using the MR signal receiver. A wide field-of-view MR image was generated from a montage of local MR images. A small field-of-view RF system with a pneumatic manipulator was integrated in a low-field MRI scanner to allow acquisition of both wide field-of-view and high-resolution MR images. This system is promising for image-guided neurosurgery as it may allow brain tumors to be observed more clearly and removed precisely.

  5. Test facility for PLT TF coils

    International Nuclear Information System (INIS)

    Hearney, J.; File, J.; Dreskin, S.

    1975-01-01

    Past experience with the model C stellerator and other toroidal field devices indicates that mechanical and electrical tests of a toroidal field coil prior to maximum field operation of the device is prudent and desirable. This paper describes a test program for the PLT-TF coils. The test stand consists of one test coil, two background coils and a steel supporting structure. The three coil configuration produces a 67.5 kG field at the inner conductor (38 kG at the bore center) and simulates a 1/R field distribution in the bore of the test coil. The resolution of the field force system and resultant stresses within the test structure are discussed. A test procedure is described which maximizes the information obtained from a 100,000 pulse program

  6. Large coil test facility conceptual design report

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.; Mann, T.L.

    1978-02-01

    In the development of a superconducting toroidal field (TF) magnet for The Next Step (TNS) tokamak reactor, several different TF coils, about half TNS size, will be built and tested to permit selection of a design and fabrication procedure for full-scale TNS coils. A conceptual design has been completed for a facility to test D-shaped TF coils, 2.5 x 3.5-m bore, operating at 4-6 K, cooled either by boiling helium or by forced-flow supercritical helium. Up to six coils can be accommodated in a toroidal array housed in a single vacuum tank. The principal components and systems in the facility are an 11-m vacuum tank, a test stand providing structural support and service connections for the coils, a liquid nitrogen system, a system providing helium both as saturated liquid and at supercritical pressure, coils to produce a pulsed vertical field at any selected test coil position, coil power supplies, process instrumentation and control, coil diagnostics, and a data acquisition and handling system. The test stand structure is composed of a central bucking post, a base structure, and two horizontal torque rings. The coils are bolted to the bucking post, which transmits all gravity loads to the base structure. The torque ring structure, consisting of beams between adjacent coils, acts with the bucking structure to react all the magnetic loads that occur when the coils are energized. Liquid helium is used to cool the test stand structure to 5 K to minimize heat conduction to the coils. Liquid nitrogen is used to precool gaseous helium during system cooldown and to provide thermal radiation shielding

  7. Coil supporting device for a nuclear fusion device

    International Nuclear Information System (INIS)

    Kuno, Kazuo.

    1976-01-01

    Object: To reduce a thermal stress of a coil such as a magnetic limiter to minimize stress acting on a protective tube of the coil. Structure: A coil within a protective tube has its outer periphery surrounded and supported by a heat-resisting material such as ceramic at more than two positions suitably spaced lengthwise of a coil conductor, and heat insulating members are interposed between both sides of the coil and the protective tube so that it may be retained with respect to the width of the coil. Further, a heat-resisting resilient member is inserted in a clearance between an outer circumference and an inner circumference of the coil to allow a radial displacement of the coil. As a result, elongation of the coil due to thermal expansion may be escaped at the aforesaid two supports to reduce thermal stress of the coil and protective tube to support the coil within the protective tube in positively heat-resisting and insulating manner. (Kamimura, M.)

  8. Numerical study on turbulent heat transfer and pressure drop of nanofluid in coiled tube-in-tube heat exchangers

    International Nuclear Information System (INIS)

    Aly, Wael I.A.

    2014-01-01

    Highlights: • The performance of helically coiled tube heat exchanger using nanofluid is modeled. • The 3D turbulent flow and conjugate heat transfer of CTITHE are solved using FVM. • The effects of nanoparticle concentration and curvature ratio are investigated. • The Gnielinski correlation for Nu for turbulent flow in helical tubes can be used for water-based Al 2 O 3 nanofluid. - Abstract: A computational fluid dynamics (CFD) study has been carried out to study the heat transfer and pressure drop characteristics of water-based Al 2 O 3 nanofluid flowing inside coiled tube-in-tube heat exchangers. The 3D realizable k–ε turbulent model with enhanced wall treatment was used. Temperature dependent thermophysical properties of nanofluid and water were used and heat exchangers were analyzed considering conjugate heat transfer from hot fluid in the inner-coiled tube to cold fluid in the annulus region. The overall performance of the tested heat exchangers was assessed based on the thermo-hydrodynamic performance index. Design parameters were in the range of; nanoparticles volume concentrations 0.5%, 1.0% and 2.0%, coil diameters 0.18, 0.24 and 0.30 m, inner tube and annulus sides flow rates from 2 to 5 LPM and 10 to 25 LPM, respectively. Nanofluid flows inside inner tube side or annular side. The results obtained showed a different behavior depending on the parameter selected for the comparison with the base fluid. Moreover, when compared at the same Re or Dn, the heat transfer coefficient increases by increasing the coil diameter and nanoparticles volume concentration. Also, the friction factor increases with the increase in curvature ratio and pressure drop penalty is negligible with increasing the nanoparticles volume concentration. Conventional correlations for predicting average heat transfer and friction factor in turbulent flow regime such as Gnielinski correlation and Mishra and Gupta correlation, respectively, for helical tubes are also valid for

  9. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  10. Superconducting coil protection

    International Nuclear Information System (INIS)

    Woods, E.L.

    1975-01-01

    The protection system is based on a two-phase construction program. Phase I is the development of a reliable hardwired relay control system with a digital loop utilizing firmware and a microprocessor controller. Phase II is an expansion of the digital loop to include many heretofore unmonitored coil variables. These new monitored variables will be utilized to establish early quench detection and to formulate confirmation techniques of the quench detection mechanism. Established quench detection methods are discussed and a new approach to quench detection is presented. The new circuit is insensitive to external pulsed magnetic fields and the associated induced voltages. Reliability aspects of the coil protection system are discussed with respect to shutdowns of superconducting coil systems. Redundance and digital system methods are presented as related topics

  11. Sensitive magnetic biodetection using magnetic multi-core nanoparticles and RCA coils

    Energy Technology Data Exchange (ETDEWEB)

    Ahrentorp, Fredrik; Blomgren, Jakob; Jonasson, Christian; Sarwe, Anna [Acreo Swedish ICT AB, Arvid Hedvalls Backe 4, Göteborg (Sweden); Sepehri, Sobhan; Eriksson, Emil; Kalaboukhov, Alexei; Jesorka, Aldo; Winkler, Dag [Department of Microtechnology and Nanoscience – MC2, Chalmers University of Technology, Göteborg (Sweden); Schneiderman, Justin F. [Institute of Neuroscience and Physiology, University of Gothenburg and MedTech West, Göteborg (Sweden); Nilsson, Mats [Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm (Sweden); Albert, Jan [Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm (Sweden); Department of Clinical Microbiology, Karolinska University Hospital, Stockholm (Sweden); Zardán Gómez de la Torre, Teresa; Strømme, Maria [Uppsala University, Uppsala (Sweden); Johansson, Christer, E-mail: christer.johansson@acreo.se [Acreo Swedish ICT AB, Arvid Hedvalls Backe 4, Göteborg (Sweden)

    2017-04-01

    We use functionalized iron oxide magnetic multi-core particles of 100 nm in size (hydrodynamic particle diameter) and AC susceptometry (ACS) methods to measure the binding reactions between the magnetic nanoparticles (MNPs) and bio-analyte products produced from DNA segments using the rolling circle amplification (RCA) method. We use sensitive induction detection techniques in order to measure the ACS response. The DNA is amplified via RCA to generate RCA coils with a specific size that is dependent on the amplification time. After about 75 min of amplification we obtain an average RCA coil diameter of about 1 µm. We determine a theoretical limit of detection (LOD) in the range of 11 attomole (corresponding to an analyte concentration of 55 fM for a sample volume of 200 µL) from the ACS dynamic response after the MNPs have bound to the RCA coils and the measured ACS readout noise. We also discuss further possible improvements of the LOD. - Highlights: • Biosensing using Brownian relaxation of functionalized magnetic nanoparticles. • Rolling circle amplification and magnetic nanoparticles enables biosensing. • Theoretical limit of detection estimated from the signal noise gives about 55 fM.

  12. Sub-20 nm Stable Micelles Based on a Mixture of Coiled-Coils: A Platform for Controlled Ligand Presentation.

    Science.gov (United States)

    Ang, JooChuan; Ma, Dan; Jung, Benson T; Keten, Sinan; Xu, Ting

    2017-11-13

    Ligand-functionalized, multivalent nanoparticles have been extensively studied for biomedical applications from imaging agents to drug delivery vehicles. However, the ligand cluster size is usually heterogeneous and the local valency is ill-defined. Here, we present a mixed micelle platform hierarchically self-assembled from a mixture of two amphiphilic 3-helix and 4-helix peptide-polyethylene glycol (PEG)-lipid hybrid conjugates. We demonstrate that the local multivalent ligand cluster size on the micelle surface can be controlled based on the coiled-coil oligomeric state. The oligomeric states of mixed peptide bundles were found to be in their individual native states. Similarly, mixed micelles indicate the orthogonal self-association of coiled-coil amphiphiles. Using differential scanning calorimetry, fluorescence recovery spectroscopy, and coarse-grained molecular dynamics simulation, we studied the distribution of coiled-coil bundles within the mixed micelles and observed migration of coiled-coils into nanodomains within the sub-20 nm mixed micelle. This report provides important insights into the assembly and formation of nanophase-separated micelles with precise control over the local multivalent state of ligands on the micelle surface.

  13. Discussion of discrete D shape toroidal coil

    International Nuclear Information System (INIS)

    Kaiho, Katsuyuki; Ohara, Takeshi; Agatsuma, Ko; Onishi, Toshitada

    1988-01-01

    A novel design for a toroidal coil, called the D shape coil, was reported by J. File. The coil conductors are in pure tension and then subject to no bending moment. This leads to a smaller number of emf supports in a simpler configuration than that with the conventional toroidal coil of circular cross-section. The contours of the D shape are given as solutions of a differential equation. This equation includes the function of the magnetic field distribution in the conductor region which is inversely proportional to the winding radius. It is therefore important to use the exact magnetic field distribution. However the magnetic field distribution becomes complicated when the D shape toroidal coil is comprised of discrete coils and also depends on the D shape configuration. A theory and a computer program for designing the practical pure-tension toroidal coil are developed. Using this computer code, D shape conductors are calculated for various numbers of discrete coils and the results are compared. Electromagnetic forces in the coils are also calculated. It is shown that the hoop stress in the conductors depends only on the total ampere-turns of the coil when the contours of the D shape are similar. (author)

  14. Segmentation of organs at risk in CT volumes of head, thorax, abdomen, and pelvis

    Science.gov (United States)

    Han, Miaofei; Ma, Jinfeng; Li, Yan; Li, Meiling; Song, Yanli; Li, Qiang

    2015-03-01

    Accurate segmentation of organs at risk (OARs) is a key step in treatment planning system (TPS) of image guided radiation therapy. We are developing three classes of methods to segment 17 organs at risk throughout the whole body, including brain, brain stem, eyes, mandible, temporomandibular joints, parotid glands, spinal cord, lungs, trachea, heart, livers, kidneys, spleen, prostate, rectum, femoral heads, and skin. The three classes of segmentation methods include (1) threshold-based methods for organs of large contrast with adjacent structures such as lungs, trachea, and skin; (2) context-driven Generalized Hough Transform-based methods combined with graph cut algorithm for robust localization and segmentation of liver, kidneys and spleen; and (3) atlas and registration-based methods for segmentation of heart and all organs in CT volumes of head and pelvis. The segmentation accuracy for the seventeen organs was subjectively evaluated by two medical experts in three levels of score: 0, poor (unusable in clinical practice); 1, acceptable (minor revision needed); and 2, good (nearly no revision needed). A database was collected from Ruijin Hospital, Huashan Hospital, and Xuhui Central Hospital in Shanghai, China, including 127 head scans, 203 thoracic scans, 154 abdominal scans, and 73 pelvic scans. The percentages of "good" segmentation results were 97.6%, 92.9%, 81.1%, 87.4%, 85.0%, 78.7%, 94.1%, 91.1%, 81.3%, 86.7%, 82.5%, 86.4%, 79.9%, 72.6%, 68.5%, 93.2%, 96.9% for brain, brain stem, eyes, mandible, temporomandibular joints, parotid glands, spinal cord, lungs, trachea, heart, livers, kidneys, spleen, prostate, rectum, femoral heads, and skin, respectively. Various organs at risk can be reliably segmented from CT scans by use of the three classes of segmentation methods.

  15. Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry

    International Nuclear Information System (INIS)

    Terawaki, Shin-ichi; Yoshikane, Asuka; Higuchi, Yoshiki; Wakamatsu, Kaori

    2015-01-01

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicD CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site

  16. Structural basis for cargo binding and autoinhibition of Bicaudal-D1 by a parallel coiled-coil with homotypic registry

    Energy Technology Data Exchange (ETDEWEB)

    Terawaki, Shin-ichi, E-mail: terawaki@gunma-u.ac.jp [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Yoshikane, Asuka [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Higuchi, Yoshiki [Department of Life Science, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); Department of Picobiology, Graduate School of Life Science, University of Hyogo, 3-2-1 Koto, Kamigori-cho, Ako-gun, Hyogo 678-1297 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Wakamatsu, Kaori [Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515 (Japan); SPring-8 Center, RIKEN, 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan)

    2015-05-01

    Bicaudal-D1 (BICD1) is an α-helical coiled-coil protein mediating the attachment of specific cargo to cytoplasmic dynein. It plays an essential role in minus end-directed intracellular transport along microtubules. The third C-terminal coiled-coil region of BICD1 (BICD1 CC3) has an important role in cargo sorting, including intracellular vesicles associating with the small GTPase Rab6 and the nuclear pore complex Ran binding protein 2 (RanBP2), and inhibiting the association with cytoplasmic dynein by binding to the first N-terminal coiled-coil region (CC1). The crystal structure of BICD1 CC3 revealed a parallel homodimeric coiled-coil with asymmetry and complementary knobs-into-holes interactions, differing from Drosophila BicD CC3. Furthermore, our binding study indicated that BICD1 CC3 possesses a binding surface for two distinct cargos, Rab6 and RanBP2, and that the CC1-binding site overlaps with the Rab6-binding site. These findings suggest a molecular basis for cargo recognition and autoinhibition of BICD proteins during dynein-dependent intracellular retrograde transport. - Highlights: • BICD1 CC3 is a parallel homodimeric coiled-coil with axial asymmetry. • The coiled-coil packing of BICD1 CC3 is adapted to the equivalent heptad position. • BICD1 CC3 has distinct binding sites for two classes of cargo, Rab6 and RanBP2. • The CC1-binding site of BICD1 CC3 overlaps with the Rab6-binding site.

  17. An analysis of 3D solvation structure in biomolecules: application to coiled coil serine and bacteriorhodopsin.

    Science.gov (United States)

    Hirano, Kenji; Yokogawa, Daisuke; Sato, Hirofumi; Sakaki, Shigeyoshi

    2010-06-17

    Three-dimensional (3D) solvation structure around coiled coil serine (Coil-Ser) and inner 3D hydration structure in bacteriorhodopsin (bR) were studied using a recently developed method named multicenter molecular Ornstein-Zernike equation (MC-MOZ) theory. In addition, a procedure for analyzing the 3D solvent distribution was proposed. The method enables us to calculate the coordination number of solvent water as well as the strength of hydrogen bonding between the water molecule and the protein. The results for Coil-Ser and bR showed very good agreement with the experimental observations.

  18. Coil supporting device for thermonuclear device

    International Nuclear Information System (INIS)

    Okubo, Minoru; Ando, Toshiro; Ota, Mitsuru; Ishimura, Masabumi.

    1979-01-01

    Purpose: To lower the bending stress exerted on coils thereby preventing the coils from deformation by branching the outer circumferential support frames of coil support frames disposed at an equal pitch circumferentially to the coils into plurality, and integrally forming them to the inner circumferential support frames. Constitution: Each of the support frames for supporting poloidal coils winding around a vacuum vessel is bisected at the radial midway so that the outer circumferential branches are disposed at an equal pitch and they are formed integrally with the inner circumferential support frames. The inner circumferential support frames are fixed by support posts on a bed and the outer circumferential support frames are mounted to the outer edge of wedge-like support posts. Accordingly, if the coils expand outwardly upon increase in the temperature, the stress exerted on the support frame can be decreased. (Yoshino, Y.)

  19. Impact of coil price knowledge by the operator on the cost of aneurysm coiling. A single center study.

    Science.gov (United States)

    Finitsis, Stephanos; Fahed, Robert; Gaulin, Ian; Roy, Daniel; Weill, Alain

    2017-09-15

    Endovascular treatment of aneurysms with coils is among the most frequent treatments in interventional neuroradiology, and represents an important expense. Each manufacturer has created several types of coils, with prices varying among brands and coil types. The objective of this study was to assess the impact of cost awareness of the exact price of each coil by the operating physician on the total cost of aneurysm coiling. This was a comparative study conducted over 1 year in a single tertiary care center. The reference cohort and the experimental cohort consisted of all aneurysm embolization procedures performed during the first 6 months and the last 6 months, respectively. During the second period, physicians were given an information sheet with the prices of all available coils and were requested to look at the sheet during each procedure with the instruction to try to reduce the total cost of the coils used. Expenses related to the coiling procedures during each period were compared. 77 aneurysms (39 ruptured) in the reference cohort and 73 aneurysms (36 ruptured) in the experimental cohort were treated, respectively. There was no statistically significant difference regarding aneurysm location and mean size. The overall cost of the coiling procedures, the mean number of coils used per procedure, and the median cost of each procedure did not differ significantly between the two cohorts. Awareness of the precise price of coils by operators without any additional measure did not have a scientifically proven impact on the cost of aneurysm embolization. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  20. Magnetic field coil in nuclear fusion device

    International Nuclear Information System (INIS)

    Yamaguchi, Mitsugi; Takano, Hirohisa.

    1975-01-01

    Object: To provide an electrical-insulatively stabilized magnetic field coil in nuclear fusion device, restraining an increase in voltage when plasma current is rapidly changed. Structure: A magnetic field coil comprises coils arranged coaxial with respective vacuum vessels, said coils being wound in positive and reverse polarities so as to form a vertical magnetic field within the plasma. The coils of the positive polarity are arranged along the vacuum vessel inside of an axis vertical in section of the annular plasma and are arranged symmetrically up and down of a horizontal axis. On the other hand, the coils of the reverse polarity are arranged along the vacuum vessel outside of a vertical axis and arranged symmetrically up and down of the horizontal axis. These positive and reverse polarity coils are alternately connected in series, and lead portions of the coils are connected to a power source by means of connecting wires. In this case, lead positions of the coils are arranged in one direction, and the connecting wires are disposed in closely contact relation to offset magnetic fields formed by the connecting wires each other. (Kawakami, Y.)

  1. Coil supporting device in nuclear fusion apparatus

    International Nuclear Information System (INIS)

    Hoshi, Ryo; Imura, Yasuya.

    1974-01-01

    Object: To secure intermediate fittings with a coil fixed thereon by an insulating tape to a fixed body by means of fittings, thereby supporting the coil in a narrow space. Structure: A coil is secured to intermediate fittings by means of an insulating tape, after which the intermediate fittings is mounted on a fixed body through fittings to support the coil in a narrow clearance portion between a plasma sealed vessel and a main coil. (Kamimura, M.)

  2. Analysis and experimental study of wireless power transfer with HTS coil and copper coil as the intermediate resonators system

    Science.gov (United States)

    Wang, Xiufang; Nie, Xinyi; Liang, Yilang; Lu, Falong; Yan, Zhongming; Wang, Yu

    2017-01-01

    Intermediate resonator (repeater) between transmitter and receiver can significantly increase the distance of wireless power transfer (WPT) and the efficiency of wireless power transfer. The wireless power transfer via strongly coupled magnetic resonances with an high temperature superconducting (HTS) coil and copper coil as intermediate resonators was presented in this paper. The electromagnetic experiment system under different conditions with different repeating coils were simulated by finite element software. The spatial distribution patterns of magnetic induction intensity at different distances were plotted. In this paper, we examined transfer characteristics with HTS repeating coil and copper repeating coil at 77 K and 300 K, respectively. Simulation and experimental results show that HTS and copper repeating coil can effectively enhance the space magnetic induction intensity, which has significant effect on improving the transmission efficiency and lengthening transmission distance. We found that the efficiency and the distance of wireless power transfer system with an HTS coil as repeater is much higher by using of copper coil as repeater.

  3. The SMES model coil. Fabrication

    International Nuclear Information System (INIS)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji

    1998-01-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  4. The SMES model coil. Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    Hanai, Satoshi; Nakamoto, Kazunari; Takahashi, Nobuji [Toshiba Corp., Yokohama, Kanagawa (Japan)] [and others

    1998-07-01

    A SMES model coil was fabricated as R and D item in the development of component technologies for a 480 MJ/20 MW SMES pilot plant. The coil consists of four double-pancake windings. The coil is the same diameter but half the number of pancakes that will be needed for a SMES pilot plant. The NbTi cable-in-conduit conductor and superconducting joints between the double pancakes are cooled by a forced flow of supercritical helium. Prior to fabrication, various characteristics of the cable-in-conduit were measured by full-sized short samples from actual conductors and by scaled short samples from scaled conductors. The critical current of the scaled short samples was in agreement with that calculated from one strand of the conductor. The impedance between arbitrary dual-oxide coated strands in the full-size conductor was measured to be smaller than that obtained from two Cr-plated strands, which showed a good degree of stability in another coil. It was estimated that oxide-coated conductors would have high stability. Through fabrication of a model coil, it was demonstrated that a large forced-flow coil for a small-scale 100 kWh SMES device could be manufactured. (author)

  5. Remote maintenance of tandem mirror hybrid coils

    International Nuclear Information System (INIS)

    Dietz, L.P.

    1983-01-01

    Hybrid Coils (superconducting coils with normal conducting inserts) are being employed with increasing frequency on Tandem Mirror Devices to obtain high field strengths. The normal conducting copper inserts are short lived in comparison to their encircling superconductors. It becomes desirable, therefore, to devise design features and maintenance procedures to replace the inner normal conducting coils without simultaneously replacing the longer lived (and significantly more costly) superconducting coils. The high neutron wall loadings require that the task be accomplished by remote control. The approach is to permanently mount the coil assemblies on track mounted carriages which serve, during machine operation merely as structural supports, but during maintenance procedures as moveable transport devices. The carriages incorporate all necessary provisions to facilitate remote maintenance operations and to adjust and align the coil assemblies with respect to adjacent machine components. The vacuum vessel is severed on both sides of the hybrid coil by means of a remote cutting machine. The entire coil is transported horizontally, normal to the machine axis to a nearby repair station. Prepositioned carriage mounted repair equipment at the repair station withdraws the damaged normal coil as a single entity and inserts a preassembled spare unit. The repaired hybrid coil is reassembled to the reactor. A cost and risk effective procedure has been evolved to maintain one of the more critical components of a Tandem Mirror Machine

  6. BI-ground microstrip array coil vs. conventional microstrip array coil for mouse imaging at 7 tesla

    Science.gov (United States)

    Hernández, Ricardo; Terrones, M. A. López; Jakob, P. M.

    2012-10-01

    At high field strengths, the need for more efficient high frequency coils has grown. Since the radiation losses and the interaction between coil and sample increase proportionally to field strength, the quality factor (Q) and the sensitivity of the coil decrease as consequence of these negative effects. Since Zhang et al proposed in 2001 a new surface coil based on the microstrip transmission line for high frequency, different Tx-Rx phased arrays based on this concept have been already introduced in animal and whole body systems at high field strengths, each of them with different modifications in order to get better field homogeneity, SNR or isolation between coil elements in the array. All these arrays for animals systems have been built for rat imaging. One of these modifications is called BI-Ground Microstrip Array Coil (BIGMAC). The implementation of a smaller two-channel BIGMAC design for mouse imaging is studied and its performance compared to a two-channel conventional Microstrip array at 7 Tesla, the higher isolation by using BIGMAC elements in comparison with conventional Microstrip elements is shown in this work.

  7. Coil supporting device in a nuclear fusion device

    International Nuclear Information System (INIS)

    Takano, Hirohisa; Sasaki, Katsutoki.

    1976-01-01

    Object: To slide a vacuum vessel in the nuclear fusion device and a coil within the vacuum vessel and to mount the coil within the vacuum vessel in a manner that it may not be moved by an electromagnetic force, thereby preventing stress from being produced in the coil. Structure: A coil supporting plate mounted at upper and lower parts prevents damage to an insulation of the coil, said coil being held in a U-shaped groove, and can be moved integral with the coil by the action of a roller bearing with a plurality of needle-like rollers arranged in parallel. The coil supporting plate has a plurality of projections disposed on the lower surface thereof, and flat springs are placed in the projections one over another so that the spring action exerted in the lower plate causes the coil to be resiliently bias in a direction of an electromagnetic force applied thereto and to support the coil. (Yoshino, Y.)

  8. Status of the Swiss LCT-coil

    International Nuclear Information System (INIS)

    Zichy, J; Benz, H.; Horvath, I.; Jakob, B.; Marinucci, C.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1983-01-01

    The Swiss coil is a forced flow coil cooled by supercritical helium. A brief review of the design considerations, some of its specific features, and the progress in fabrication are described. A discussion of both the instrumentation and the cryogenic characteristics of the coil is presented

  9. Advanced examination techniques applied to the qualification of critical welds for the ITER correction coils

    CERN Document Server

    Sgobba, Stefano; Libeyre, Paul; Marcinek, Dawid Jaroslaw; Piguiet, Aline; Cécillon, Alexandre

    2015-01-01

    The ITER correction coils (CCs) consist of three sets of six coils located in between the toroidal (TF) and poloidal field (PF) magnets. The CCs rely on a Cable-in-Conduit Conductor (CICC), whose supercritical cooling at 4.5 K is provided by helium inlets and outlets. The assembly of the nozzles to the stainless steel conductor conduit includes fillet welds requiring full penetration through the thickness of the nozzle. Static and cyclic stresses have to be sustained by the inlet welds during operation. The entire volume of helium inlet and outlet welds, that are submitted to the most stringent quality levels of imperfections according to standards in force, is virtually uninspectable with sufficient resolution by conventional or computed radiography or by Ultrasonic Testing. On the other hand, X-ray computed tomography (CT) was successfully applied to inspect the full weld volume of several dozens of helium inlet qualification samples. The extensive use of CT techniques allowed a significant progress in the ...

  10. Hybrid equilibrium field coils for the ORNL TNS

    International Nuclear Information System (INIS)

    Peng, Y.K.M.; Strickler, D.J; Dory, R.A.

    1977-01-01

    In this study, we make a comparative study of the power supplies required by interior and exterior [to the toroidal field (TF) coils] equilibrium field coils that are separately appropriate for high-β, D-shaped plasmas in TNS. It is shown that the interior coils need power supplies that are an order of magnitude below those required by the exterior coils (while the latter case is much less difficult to build than the former). A hybrid EF coil concept is proposed that combines the interior and the exterior coils to retain their advantages in avoiding large interior coils while lowering the power supplied to the exterior coils by an order of magnitude

  11. Effect of Inductive Coil Shape on Sensing Performance of Linear Displacement Sensor Using Thin Inductive Coil and Pattern Guide

    Directory of Open Access Journals (Sweden)

    Hiroyuki Wakiwaka

    2011-11-01

    Full Text Available This paper discusses the effect of inductive coil shape on the sensing performance of a linear displacement sensor. The linear displacement sensor consists of a thin type inductive coil with a thin pattern guide, thus being suitable for tiny space applications. The position can be detected by measuring the inductance of the inductive coil. At each position due to the change in inductive coil area facing the pattern guide the value of inductance is different. Therefore, the objective of this research is to study various inductive coil pattern shapes and to propose the pattern that can achieve good sensing performance. Various shapes of meander, triangular type meander, square and circle shape with different turn number of inductive coils are examined in this study. The inductance is measured with the sensor sensitivity and linearity as a performance evaluation parameter of the sensor. In conclusion, each inductive coil shape has its own advantages and disadvantages. For instance, the circle shape inductive coil produces high sensitivity with a low linearity response. Meanwhile, the square shape inductive coil has a medium sensitivity with higher linearity.

  12. Fabrication of the KSTAR toroidal field coil structure

    International Nuclear Information System (INIS)

    Choi, C.H.; Sa, J.W.; Park, H.K.; Hong, K.H.; Shin, H.; Kim, H.T.; Bak, J.S.; Lee, G.S.; Kwak, J.H.; Moon, H.G.; Yoon, H.H.; Lee, J.W.; Lee, S.K.; Song, J.Y.; Nam, K.M.; Byun, S.E.; Kim, H.C.; Ha, E.T.; Ahn, H.J.; Kim, D.S.; Lee, J.S.; Park, K.H.; Hong, C.D.

    2005-01-01

    The KSTAR toroidal field (TF) coil structure is under fabrication upon completion of engineering design and prototype construction. The prototype TF coil structure has been fabricated within allowable tolerances. Encasing of the prototype TF coil (TF00) in the prototype structure has been carried out through major processes involving a coil encasing, an enclosing weld, a vacuum pressure impregnation, and an outer surface machining. During the enclosing weld of the TF00 coil structure, we have measured temperatures and stresses on the coil surface. Assembly test had been performed with the TF00 coil structure. We have chosen Type 316LN as material of the TF coil structure. We used the narrow-gap TIG welding method. Doosan Heavy Industries and Construction Company (DHI) will complete the fabrication of the TF coil structure in Feb. 2006. (author)

  13. Golgi coiled-coil proteins contain multiple binding sites for Rab family G proteins

    NARCIS (Netherlands)

    Sinka, Rita; Gillingham, Alison K.; Kondylis, Vangelis; Munro, Sean

    2008-01-01

    Vesicles and other carriers destined for the Golgi apparatus must be guided to the correct cisternae. Golgins, long coiled-coil proteins that localize to particular Golgi subdomains via their C termini, are candidate regulators of vesicle sorting. In this study, we report that the GRIP domain

  14. Characterization and evaluation of a flexible MRI receive coil array for radiation therapy MR treatment planning using highly decoupled RF circuits

    Science.gov (United States)

    McGee, Kiaran P.; Stormont, Robert S.; Lindsay, Scott A.; Taracila, Victor; Savitskij, Dennis; Robb, Fraser; Witte, Robert J.; Kaufmann, Timothy J.; Huston, John, III; Riederer, Stephen J.; Borisch, Eric A.; Rossman, Phillip J.

    2018-04-01

    The growth in the use of magnetic resonance imaging (MRI) data for radiation therapy (RT) treatment planning has been facilitated by scanner hardware and software advances that have enabled RT patients to be imaged in treatment position while providing morphologic and functional assessment of tumor volumes and surrounding normal tissues. Despite these advances, manufacturers have been slow to develop radiofrequency (RF) coils that closely follow the contour of a RT patient undergoing MR imaging. Instead, relatively large form surface coil arrays have been adapted from diagnostic imaging. These arrays can be challenging to place on, and in general do not conform to the patient’s body habitus, resulting in sub optimal image quality. The purpose of this study is to report on the characterization of a new flexible and highly decoupled RF coil for use in MR imaging of RT patients. Coil performance was evaluated by performing signal-to-noise ratio (SNR) and noise correlation measurements using two coil (SNR) and four coil (noise correlation) element combinations as a function of coil overlap distance and comparing these values to those obtained using conventional coil elements. In vivo testing was performed in both normal volunteers and patients using a four and 16 element RF coil. Phantom experiments demonstrate the highly decoupled nature of the new coil elements when compared to conventional RF coils, while in vivo testing demonstrate that these coils can be integrated into extremely flexible and form fitting substrates that follow the exact contour of the patient. The new coil design addresses limitations imposed by traditional surface coil arrays and have the potential to significantly impact MR imaging for both diagnostic and RT applications.

  15. Impact of coil design on the contrast-to-noise ratio, precision, and consistency of quantitative cartilage morphometry at 3 Tesla: a pilot study for the osteoarthritis initiative.

    Science.gov (United States)

    Eckstein, Felix; Kunz, Manuela; Hudelmaier, Martin; Jackson, Rebecca; Yu, Joseph; Eaton, Charles B; Schneider, Erika

    2007-02-01

    Phased-array (PA) coils generally provide higher signal-to-noise ratios (SNRs) than quadrature knee coils. In this pilot study for the Osteoarthritis Initiative (OAI) we compared these two types of coils in terms of contrast-to-noise ratio (CNR), precision, and consistency of quantitative femorotibial cartilage measurements. Test-retest measurements were acquired using coronal fast low-angle shot with water excitation (FLASHwe) and coronal multiplanar reconstruction (MPR) of sagittal double-echo steady state with water excitation (DESSwe) at 3T. The precision errors for cartilage volume and thickness were coil and coil with FLASHwe, and coil and sequence. The PA coil measurements did not always fully agree with the quadrature coil measurements, and some differences were significant. The higher CNR of the PA coil did not translate directly into improved precision of cartilage measurement; however, summing up cartilage plates within the medial and lateral compartment reduced precision errors. Copyright (c) 2007 Wiley-Liss, Inc.

  16. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1985-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  17. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  18. Coil spring venting arrangement

    International Nuclear Information System (INIS)

    McCugh, R.M.

    1975-01-01

    A simple venting device for trapped gas pockets in hydraulic systems is inserted through a small access passages, operated remotely, and removed completely. The device comprises a small diameter, closely wound coil spring which is pushed through a guide temporarily inserted in the access passage. The guide has a central passageway which directs the coil spring radially upward into the pocket, so that, with the guide properly positioned for depth and properly oriented, the coil spring can be pushed up into the top of the pocket to vent it. By positioning a seal around the free end of the guide, the spring and guide are removed and the passage is sealed

  19. Power loss problems in EXTRAP coil systems

    International Nuclear Information System (INIS)

    Lehnert, B.

    1977-02-01

    The Ohmic power loss in the coils of external ring traps is minimized with respect to the thermonuclear power production. In the case of the DT-reaction this leads to dimensions and power densities being relevant to full-scale reactors. Not only superconducting or refrigerated coil windings can thus be used, but also hot-coil systems which are operated at several hundred degrees centrigrade and form part of a steam cycle and power extraction system. For hot coils the problems of void formation and tritium regeneration have to be further examined. The high beta value leads to moderately large coil stresses. Finally, replacement and repair become simplified by the present coil geometry. (Auth.)

  20. Performance of the Conduction-Cooled LDX Levitation Coil

    Science.gov (United States)

    Michael, P. C.; Schultz, J. H.; Smith, B. A.; Titus, P. H.; Radovinsky, A.; Zhukovsky, A.; Hwang, K. P.; Naumovich, G. J.; Camille, R. J.

    2004-06-01

    The Levitated Dipole Experiment (LDX) was developed to study plasma confinement in a dipole magnetic field. Plasma is confined in the magnetic field of a 680-kg Nb3Sn Floating Coil (F-coil) that is electromagnetically supported at the center of a 5-m diameter by 3-m tall vacuum chamber. The Levitation Coil (L-coil) is a 2800-turn, double pancake winding that supports the weight of the F-coil and controls its vertical position within the vacuum chamber. The use of high-temperature superconductor (HTS) Bi-2223 for the L-coil minimizes the electrical and cooling power needed for levitation. The L-coil winding pack and support plate are suspended within the L-coil cryostat and cooled by conduction to a single-stage cryocooler rated for 25-W heat load at approximately 20 K. The coil current leads consist of conduction-cooled copper running from room temperature to 80 K and a pair of commercially-available, 150-A HTS leads. An automatically filled liquid-nitrogen reservoir provides cooling for the coil's radiation shield and for the leads' 80-K heat stations. This paper discusses the L-coil system design and its observed cryogenic performance.

  1. Active internal corrector coils

    International Nuclear Information System (INIS)

    Thompson, P.A.; Cottingham, J.; Dahl, P.

    1986-01-01

    Trim or corrector coils to correct main magnet field errors and provide higher multipole fields for beam optics purposes are a standard feature of superconducting magnet accelerator systems. This paper describes some of the design and construction features of powered internal trim coils and a sampling of the test results obtained

  2. Numerical study of the influence of geometrical characteristics of a vertical helical coil on a bubbly flow

    Science.gov (United States)

    Saffari, H.; Moosavi, R.

    2014-11-01

    In this article, turbulent single-phase and two-phase (air-water) bubbly fluid flows in a vertical helical coil are analyzed by using computational fluid dynamics (CFD). The effects of the pipe diameter, coil diameter, coil pitch, Reynolds number, and void fraction on the pressure loss, friction coefficient, and flow characteristics are investigated. The Eulerian-Eulerian model is used in this work to simulate the two-phase fluid flow. Three-dimensional governing equations of continuity, momentum, and energy are solved by using the finite volume method. The k- ɛ turbulence model is used to calculate turbulence fluctuations. The SIMPLE algorithm is employed to solve the velocity and pressure fields. Due to the effect of a secondary force in helical pipes, the friction coefficient is found to be higher in helical pipes than in straight pipes. The friction coefficient increases with an increase in the curvature, pipe diameter, and coil pitch and decreases with an increase in the coil diameter and void fraction. The close correlation between the numerical results obtained in this study and the numerical and empirical results of other researchers confirm the accuracy of the applied method. For void fractions up to 0.1, the numerical results indicate that the friction coefficient increases with increasing the pipe diameter and keeping the coil pitch and diameter constant and decreases with increasing the coil diameter. Finally, with an increase in the Reynolds number, the friction coefficient decreases, while the void fraction increases.

  3. Coil Optimization for HTS Machines

    DEFF Research Database (Denmark)

    Mijatovic, Nenad; Jensen, Bogi Bech; Abrahamsen, Asger Bech

    An optimization approach of HTS coils in HTS synchronous machines (SM) is presented. The optimization is aimed at high power SM suitable for direct driven wind turbines applications. The optimization process was applied to a general radial flux machine with a peak air gap flux density of ~3T...... is suitable for which coil segment is presented. Thus, the performed study gives valuable input for the coil design of HTS machines ensuring optimal usage of HTS tapes....

  4. Electromagnetic-coil (EM-coil) measurement technique to verify presence of metal/absence of oxide attribute

    International Nuclear Information System (INIS)

    Fuller, J.L.; Hockey, R.L.

    2001-01-01

    This paper summarizes how an Electromagnetic-coil (EM-coil) measurement technique can be used to discriminate between plutonium metal and plutonium oxide inside sealed storage containers. As evidence, measurements on a variety of metals and their oxides are presented. This non-radiation measurement method provides assurance of the 'presence of metal/absence of oxide' attribute in less than a minute. During initial development, researchers at Pacific Northwest Laboratory have demonstrated the ability of this method to discriminate between aluminum and aluminum oxide placed inside an AT-400R storage container (total stainless steel wall thickness of over 2.5 cm). Similar results are expected, since Pu metal is electrically conductive and a Pu oxide behaves as an electrical insulator. At this writing, work is underway to perform the same demonstration using plutonium and plutonium oxide. Similar success has been demonstrated when using ALR-8 storage containers (basically carbon steel drums). Within these container types two scenarios have been explored. 1.) The same configuration made from different metals for demonstrating material property effects. A clear distinction was seen between the slight alloy changes among various forms of aluminum and brass in the same configuration. 2.) The same metal configured differently to demonstrate how mass distribution affects the EM signature. Hundreds of bb's (each about 2 mm in diameter) were placed in different containers to show how a slight change in distribution will affect the EM signature. With a five percent change in bb container diameter, the resulting EM signature changes are clear. This measurement method offers an extremely wide dynamic range resulting from its sensitivity to the wide range in electrical conductivity and magnetic permeability found in most metals and alloys. In fact, electrical conductivity spans the widest spectrum of all the known physical properties. Most insulators such as the oxides cover the

  5. Conceptual Design of Alborz Tokamak Poloidal Coils System

    Science.gov (United States)

    Mardani, M.; Amrollahi, R.

    2013-04-01

    The Alborz tokamak is a D-shape cross section tokamak that is under construction in Amirkabir University of Technology. One of the most important parts of tokamak design is the design of the poloidal field system. This part includes the numbers, individual position, currents and number of coil turns of the magnetic field coils. Circular cross section tokamaks have Vertical Field system but since the elongation and triangularity of plasma cross section shaping are important in improving the plasma performance and stability, the poloidal field coils are designed to have a shaped plasma configuration. In this paper the design of vertical field system and the magnetohydrodynamic equilibrium of axisymmetric plasma, as given by the Grad-Shafranov equation will be discussed. The poloidal field coils system consists of 12 circular coils located symmetrically about the equator plane, six inner PF coils and six outer PF coils. Six outer poloidal field coils (PF) are located outside of the toroidal field coils (TF), and six inner poloidal field coils are wound on the inner legs and are located outside of a vacuum vessel.

  6. Polymer cancerostatics with a coiled coil motif targeted against murine leukemia

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert; Janoušková, Olga; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Tomalová, Barbora; Kovář, Marek

    2017-01-01

    Roč. 6, 4 (Suppl) (2017), s. 36 ISSN 2325-9604. [International Conference and Exhibition on Nanomedicine and Drug Delivery. 29.05.2017-31.05.2017, Osaka] R&D Projects: GA ČR(CZ) GA16-17207S Institutional support: RVO:61389013 ; RVO:68378050 ; RVO:61388971 Keywords : coiled coil * polymer cancerostatics * active targeting Subject RIV: CD - Macromolecular Chemistry; EC - Immunology (MBU-M) https://www.scitechnol.com/conference-abstracts/scientific-tracks-abstracts/nanodelivery-2017-proceedings.html

  7. Solutions for Safe Hot Coil Evacuation and Coil Handling in Case of Thick and High Strength Steel

    Directory of Open Access Journals (Sweden)

    Sieberer Stefan

    2016-01-01

    Full Text Available Currently hot rolling plants are entering the market segment for thick gauges and high strength steel grades where the elastic bending property of the strip leads to internal forces in the coil during coiling operation. The strip tends to open. Primetals is investigating several possibilities to facilitate safe coil evacuation and coil handling under spring-back conditions. The contribution includes finite element models of such mechanical solutions. Results of parameter variation and stability limits of case studies are presented in the paper.

  8. An inflatable surface coil for rectal imaging

    International Nuclear Information System (INIS)

    Martin, J.F.; Hajek, P.C.; Baker, L.L.; Gylys-Morin, V.; Mattrey, R.F.

    1986-01-01

    Surface coils have become ubiquitous in MR imaging of the body because of substantial gains in signal-to-noise ratio. Unfortunately, there are some anatomic regions, such as the prostate, for which surface coils have insufficient depth sensitivity. The authors have developed an inflatable, distributed capacitance, passively decoupled surface coil which is collapsed for insertion and reinflated for imaging. Images of the prostate are dramatically improved due to proximity of the coil. Lesions in cadaver specimens were observed which were not seen with body coil imaging. Clinical trials are expected to begin in September

  9. Development of Ground Coils with Low Eddy Current Loss by Applying the Compression Molding Method after the Coil Winding

    Science.gov (United States)

    Suzuki, Masao; Aiba, Masayuki; Takahashi, Noriyuki; Ota, Satoru; Okada, Shigenori

    In a magnetically levitated transportation (MAGLEV) system, a huge number of ground coils will be required because they must be laid for the whole line. Therefore, stable performance and reduced cost are essential requirements for the ground coil development. On the other hand, because the magnetic field changes when the superconducting magnet passes by, an eddy current will be generated in the conductor of the ground coil and will result in energy loss. The loss not only increases the magnetic resistance for the train running but also brings an increase in the ground coil temperature. Therefore, the reduction of the eddy current loss is extremely important. This study examined ground coils in which both the eddy current loss and temperature increase were small. Furthermore, quantitative comparison for the eddy current loss of various magnet wire samples was performed by bench test. On the basis of the comparison, a round twisted wire having low eddy current loss was selected as an effective ground coil material. In addition, the ground coils were manufactured on trial. A favorable outlook to improve the size accuracy of the winding coil and uneven thickness of molded resin was obtained without reducing the insulation strength between the coil layers by applying a compression molding after winding.

  10. Impact of intra-arterial administration of boron compounds on dose-volume histograms in boron neutron capture therapy for recurrent head-and-neck tumors

    International Nuclear Information System (INIS)

    Suzuki, Minoru; Sakurai, Yoshinori; Nagata, Kenji; Kinashi, Yuko; Masunaga, Shinichiro; Ono, Koji; Maruhashi, Akira; Kato, Ituro; Fuwa, Nobukazu; Hiratsuka, Junichi; Imahori, Yoshio

    2006-01-01

    Purpose: To analyze the dose-volume histogram (DVH) of head-and-neck tumors treated with boron neutron capture therapy (BNCT) and to determine the advantage of the intra-arterial (IA) route over the intravenous (IV) route as a drug delivery system for BNCT. Methods and Materials: Fifteen BNCTs for 12 patients with recurrent head-and-neck tumors were included in the present study. Eight irradiations were done after IV administration of boronophenylalanine and seven after IA administration. The maximal, mean, and minimal doses given to the gross tumor volume were assessed using a BNCT planning system. Results: The results are reported as median values with the interquartile range. In the IA group, the maximal, mean, and minimal dose given to the gross tumor volume was 68.7 Gy-Eq (range, 38.8-79.9), 45.0 Gy-Eq (range, 25.1-51.0), and 13.8 Gy-Eq (range, 4.8-25.3), respectively. In the IV group, the maximal, mean, and minimal dose given to the gross tumor volume was 24.2 Gy-Eq (range, 21.5-29.9), 16.4 Gy-Eq (range, 14.5-20.2), and 7.8 Gy-Eq (range, 6.8-9.5), respectively. Within 1-3 months after BNCT, the responses were assessed. Of the 6 patients in the IV group, 2 had a partial response, 3 no change, and 1 had progressive disease. Of 4 patients in the IA group, 1 achieved a complete response and 3 a partial response. Conclusion: Intra-arterial administration of boronophenylalanine is a promising drug delivery system for head-and-neck BNCT

  11. Argonne National Laboratory superconducting pulsed coil program

    International Nuclear Information System (INIS)

    Wang, S.T.; Kim, S.H.

    1979-01-01

    The main objectives are to develop high current (approx. 100 kA) cryostable cable configurations with reasonably low ac losses, to build a demonstration pulsed coil, and to develop a rather inexpensive large fiberglass reinforced helium cryostat. A 1.5-MJ cryostable pulsed superconducting coil has been developed and constructed at ANL. The coil has a peak field of 4.5 T at an operating current of 11.0 kA. A large inexpensive plastic cryostat has been developed for testing the pulsed coil. The coil has been pulsed with a maximum dB/dt of 11 T/s. The coil was pulsed more than 4000 cycles. Detailed results of the ac loss measurements and the current sharing of the cryostability will be described

  12. Critical current studies of a HTS rectangular coil

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z. [Department of Engineering, University of Cambridge (United Kingdom); Chudy, M., E-mail: Michal.chudy@stuba.sk [Graduate School of Technology Management, University of Pretoria (South Africa); Institute of Power and Applied Electrical Engineering, Slovak University of Technology in Bratislava (Slovakia); Ruiz, H.S. [Department of Engineering, University of Leicester, Leicester LE1 7RH (United Kingdom); Zhang, X.; Coombs, T. [Department of Engineering, University of Cambridge (United Kingdom)

    2017-05-15

    Highlights: • Unique square pancake coil was manufactured. • Measurements in relatively high magnetic field were performed. • Different sections of the coil were characterized. • Parts of the coil which are limiting critical current were identified. - Abstract: Nowadays, superconducting high field magnets are used in numerous applications due to their superior properties. High temperature superconductors (HTS) are usually used for production of circular pancake or racetrack coils. However different geometries of HTS coils might be required for some specific applications. In this study, the HTS coil wound on a rectangular frame was fully characterized in homogeneous DC background field. The study contains measurements of critical current angular dependencies. The critical current of the entire coil and two selected strands under different magnitudes and orientations of external magnetic fields are measured. The critical regions of the coil in different angular regimes are determined. This study brings better understanding of the in- field performance of HTS coils wound on frames with right-angles.

  13. Dynamic Response and Residual Helmet Liner Crush Using Cadaver Heads and Standard Headforms.

    Science.gov (United States)

    Bonin, S J; Luck, J F; Bass, C R; Gardiner, J C; Onar-Thomas, A; Asfour, S S; Siegmund, G P

    2017-03-01

    Biomechanical headforms are used for helmet certification testing and reconstructing helmeted head impacts; however, their biofidelity and direct applicability to human head and helmet responses remain unclear. Dynamic responses of cadaver heads and three headforms and residual foam liner deformations were compared during motorcycle helmet impacts. Instrumented, helmeted heads/headforms were dropped onto the forehead region against an instrumented flat anvil at 75, 150, and 195 J. Helmets were CT scanned to quantify maximum liner crush depth and crush volume. General linear models were used to quantify the effect of head type and impact energy on linear acceleration, head injury criterion (HIC), force, maximum liner crush depth, and liner crush volume and regression models were used to quantify the relationship between acceleration and both maximum crush depth and crush volume. The cadaver heads generated larger peak accelerations than all three headforms, larger HICs than the International Organization for Standardization (ISO), larger forces than the Hybrid III and ISO, larger maximum crush depth than the ISO, and larger crush volumes than the DOT. These significant differences between the cadaver heads and headforms need to be accounted for when attempting to estimate an impact exposure using a helmet's residual crush depth or volume.

  14. Cervical computed tomography in patients with obstructive sleep apnea: influence of head elevation on the assessment of upper airway volume

    International Nuclear Information System (INIS)

    Souza, Fabio Jose Fabricio de Barros; Evangelista, Anne Rosso; Silva, Juliana Veiga; Madeira, Kristian

    2016-01-01

    Objective: Obstructive sleep apnea syndrome (OSAS) has a high prevalence and carries significant cardiovascular risks. It is important to study new therapeutic approaches to this disease. Positional therapy might be beneficial in reducing the apnea-hypopnea index (AHI). Imaging methods have been employed in order to facilitate the evaluation of the airways of OSAS patients and can be used in order to determine the effectiveness of certain treatments. This study was aimed at determining the influence that upper airway volume, as measured by cervical CT, has in patients diagnosed with OSAS. Methods: This was a quantitative, observational, cross-sectional study. We evaluated 10 patients who had been diagnosed with OSAS by polysomnography and on the basis of the clinical evaluation. All of the patients underwent conventional cervical CT in the supine position. Scans were obtained with the head of the patient in two positions (neutral and at a 44° upward inclination), and the upper airway volume was compared between the two. Results: The mean age, BMI, and neck circumference were 48.9 ± 14.4 years, 30.5 ± 3.5 kg/m 2 , and 40.3 ± 3.4 cm, respectively. The mean AHI was 13.7 ± 10.6 events/h (range, 6.0-41.6 events/h). The OSAS was classified as mild, moderate, and severe in 70%, 20%, and 10% of the patients, respectively. The mean upper airway volume was 7.9 cm 3 greater when the head was at a 44° upward inclination than when it was in the neutral position, and that difference (17.5 ± 11.0%) was statistically significant (p = 0.002). Conclusions: Elevating the head appears to result in a significant increase in the caliber of the upper airways in OSAS patients. (author)

  15. Cervical computed tomography in patients with obstructive sleep apnea: influence of head elevation on the assessment of upper airway volume

    Energy Technology Data Exchange (ETDEWEB)

    Souza, Fabio Jose Fabricio de Barros; Evangelista, Anne Rosso; Silva, Juliana Veiga; Madeira, Kristian, E-mail: fsouzapneumo@hotmail.com [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Curso de Medicina; Perico, Gregory Vinicius [Unidade Radiologica Criciuma, SC (Brazil)

    2016-01-15

    Objective: Obstructive sleep apnea syndrome (OSAS) has a high prevalence and carries significant cardiovascular risks. It is important to study new therapeutic approaches to this disease. Positional therapy might be beneficial in reducing the apnea-hypopnea index (AHI). Imaging methods have been employed in order to facilitate the evaluation of the airways of OSAS patients and can be used in order to determine the effectiveness of certain treatments. This study was aimed at determining the influence that upper airway volume, as measured by cervical CT, has in patients diagnosed with OSAS. Methods: This was a quantitative, observational, cross-sectional study. We evaluated 10 patients who had been diagnosed with OSAS by polysomnography and on the basis of the clinical evaluation. All of the patients underwent conventional cervical CT in the supine position. Scans were obtained with the head of the patient in two positions (neutral and at a 44° upward inclination), and the upper airway volume was compared between the two. Results: The mean age, BMI, and neck circumference were 48.9 ± 14.4 years, 30.5 ± 3.5 kg/m{sup 2} , and 40.3 ± 3.4 cm, respectively. The mean AHI was 13.7 ± 10.6 events/h (range, 6.0-41.6 events/h). The OSAS was classified as mild, moderate, and severe in 70%, 20%, and 10% of the patients, respectively. The mean upper airway volume was 7.9 cm{sup 3} greater when the head was at a 44° upward inclination than when it was in the neutral position, and that difference (17.5 ± 11.0%) was statistically significant (p = 0.002). Conclusions: Elevating the head appears to result in a significant increase in the caliber of the upper airways in OSAS patients. (author)

  16. Embroidered Coils for Magnetic Resonance Sensors

    Directory of Open Access Journals (Sweden)

    Michael I. Newton

    2013-04-01

    Full Text Available Magnetic resonance imaging is a widely used technique for medical and materials imaging. Even though the objects being imaged are often irregularly shaped, suitable coils permitting the measurement of the radio-frequency signal in these systems are usually made of solid copper. One problem often encountered is how to ensure the coils are both in close proximity and conformal to the object being imaged. Whilst embroidered conductive threads have previously been used as antennae in mobile telecommunications applications, they have not previously been reported for use within magnetic resonance. In this paper we show that an embroidered single loop coil can be used in a commercial unilateral nuclear magnetic resonance system as an alternative to a solid copper. Data is presented showing the determination of both longitudinal (T1 and effective transverse (T2eff relaxation times for a flat fabric coil and the same coil conformed to an 8 cm diameter cylinder. We thereby demonstrate the principles required for the wider use of fabric based conformal coils within nuclear magnetic resonance and magnetic resonance imaging.

  17. Localized 31PNMR spectroscopy with ISIS and surface coils

    International Nuclear Information System (INIS)

    Heindel, W.; Schreier, G.; Steinbrich, W.; Glathe, S.; Huttmann, P.

    1990-01-01

    A new method for image-guided localized phosphorus NMR spectroscopy of superficial tissues has been investigated using a 1.5 Tesla whole-body-MR-system. We used a surface coil combined with adiabatic excitation pulses and a modified ISIS sequence. This approach is related to imaging sequences and thus permits a flexible and accurate determination of the volume of interest from 'conventional' proton images. The scope and advantages of the method are demonstrated by phantom studies. Clinical applications to the liver, renal transplants, and the mediastinum are described. (orig.) [de

  18. Open-Coil Retraction Spring

    Directory of Open Access Journals (Sweden)

    Pavankumar Janardan Vibhute

    2011-01-01

    Full Text Available Sliding mechanic has become a popular method for space closure with developments in preadjusted edgewise appliance. Furthermore, various space closing auxiliaries have been developed and evaluated extensively for their clinical efficiency. Their effectiveness enhanced with optimum force magnitude and low-load deflection rate (LDR/force decay. With the advent of NiTi springs in orthodontics, LDRs have been markedly reduced. For use of NiTi, clinician has to depend upon prefabricated closed coil springs. “Open Coil Retraction Spring (OCRS” is developed utilizing NiTi open-coil spring for orthodontic space closure. This paper describes fabrication and clinical application of OCRS which have number of advantages. It sustains low LDR with optimum force magnitude. Its design is adjustable for desired length and force level. It is fail-safe for both activation and deactivation (i.e., it cannot be over activated, and decompression limit of open coil is also controlled by the operator, resp.. A possibility to offset the OCRS away from mucosa helps to reduce its soft-tissue impingement.

  19. Newly developed surface coil for endoluminal MRI, depiction of pig gastric wall layers and vascular architecture in ex vivo study.

    Science.gov (United States)

    Morita, Yoshinori; Kutsumi, Hiromu; Yoshinaka, Hayato; Matsuoka, Yuichiro; Kuroda, Kagayaki; Gotanda, Masakazu; Sekino, Naomi; Kumamoto, Etsuko; Yoshida, Masaru; Inokuchi, Hideto; Azuma, Takeshi

    2009-01-01

    The purpose of this study was to visualize the gastric wall layers and to depict the vascular architecture in vitro by using resected porcine stomachs studied with high-spatial resolution magnetic resonance (MR) imaging. Normal dissected porcine stomach samples (n = 4) were examined with a 3 Tesla MR system using a newly developed surface coil. MR images were obtained by the surface coil as receiver and a head coil as transmitter. High-spatial-resolution spin-echo MR images were obtained with a field of view of 8 x 8 cm, a matrix of 256 x 128 and slice thicknesses of 3 and 5 mm. T1 and T2-weighted MR images clearly depicted the normal porcine gastric walls as consisting of four distinct layers. In addition, vascular architectures in proper muscle layers were also visualized, which were confirmed by histological examinations to correspond to blood vessels. High-spatial-resolution MR imaging using a surface coil placed closely to the gastric wall enabled the differentiation of porcine gastric wall layers and the depiction of the blood vessels in proper muscle layer in this experimental study.

  20. Newly developed surface coil for endoluminal MRI, depiction of pig gastric wall layers and vascular architecture in ex vivo study

    International Nuclear Information System (INIS)

    Morita, Yoshinori; Kutsumi, Hiromu; Yoshinaka, Hayato

    2009-01-01

    The purpose of this study was to visualize the gastric wall layers and to depict the vascular architecture in vitro by using resected porcine stomachs studied with high-spatial resolution magnetic resonance (MR) imaging. Normal dissected porcine stomach samples (n=4) were examined with a 3 Tesla MR system using a newly developed surface coil. MR images were obtained by the surface coil as receiver and a head coil as transmitter. High-spatial-resolution spin-echo MR images were obtained with a field of view of 8 x 8 cm, a matrix of 256 x 128 and slice thicknesses of 3 and 5 mm. T1 and T2-weighted MR images clearly depicted the normal porcine gastric walls as consisting of four distinct layers. In addition, vascular architectures in proper muscle layers were also visualized, which were confirmed by histological examinations to correspond to blood vessels. High-spatial-resolution MR imaging using a surface coil placed closely to the gastric wall enabled the differentiation of porcine gastric wall layers and the depiction of the blood vessels in proper muscle layer in this experimental study. (author)

  1. Startup of large coil test facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils. (author)

  2. Optimization of the ECT background coil

    International Nuclear Information System (INIS)

    Ballou, J.K.; Luton, J.N.

    1975-01-01

    This study was begun to optimize the Eccentric Coil Test (ECT) background coil. In the course of this work a general optimization code was obtained, tested, and applied to the ECT problem. So far this code has proven to be very satisfactory. The results obtained with this code and earlier codes have illustrated the parametric behavior of such a coil system and that the optimum for this type system is broad. This study also shows that a background coil with a winding current density of less than 3000 A/cm 2 is not feasible for the ECT models presented in this paper

  3. Inductance and resistance measurement method for vessel detection and coil powering in all-surface inductive heating systems composed of outer squircle coils

    Science.gov (United States)

    Kilic, Veli Tayfun; Unal, Emre; Demir, Hilmi Volkan

    2017-05-01

    In this work, we investigate a method proposed for vessel detection and coil powering in an all-surface inductive heating system composed of outer squircle coils. Besides conventional circular coils, coils with different shapes such as outer squircle coils are used for and enable efficient all-surface inductive heating. Validity of the method, which relies on measuring inductance and resistance values of a loaded coil at different frequencies, is experimentally demonstrated for a coil with shape different from conventional circular coil. Simple setup was constructed with a small coil to model an all-surface inductive heating system. Inductance and resistance maps were generated by measuring coil's inductance and resistance values at different frequencies loaded by a plate made of different materials and located at various positions. Results show that in an induction hob for various coil geometries it is possible to detect a vessel's presence, to identify its material type and to specify its position on the hob surface by considering inductance and resistance of the coil measured on at least two different frequencies. The studied method is important in terms of enabling safe, efficient and user flexible heating in an all-surface inductive heating system by automatically detecting the vessel's presence and powering on only the coils that are loaded by the vessel with predetermined current levels.

  4. Stress relaxation in SSC 50mm dipole coils

    International Nuclear Information System (INIS)

    Rogers, D.; Markley, F.

    1992-04-01

    We are measuring the stress relaxation of SSC 50mm outer coils with the goal of predicting how much of the coil prestress will be lost while the coils are warehoused between manufacture and cooldown. We manufacture 3 inch (76.2mm) long segments of coil with the same materials and techniques that have been used for prototype coils. We are running four simultaneous tests in an attempt to separate the contributions of the different coil materials. Test one is a completely insulated coil section where the insulation is the all polyamide system being tested at Brookhaven; test two is a wire stack insulated only with the normal Kapton overwrap; test three is a stack of bare cable; and test four is a completely insulated normal coil section. All, except for the bare cable, include the ground insulation. The insulated coil sections are carefully dried before loading and testing in order to eliminate stress changes due to varying moisture content. The temperature dependence of the stress relaxation is being studied separately. Three companion papers presented at this conference will be: (1) ''Temperature dependence of the viscoelastic properties of SSC coil insulation'' (2) ''Measurement of the elastic modulus of Kapton perpendicular to the plane of the film at room and cryogenic temperatures'' (3) ''Theoretical methods for creep and stress relaxation studies of SSC coil.''

  5. Eccentric figure-eight coils for transcranial magnetic stimulation.

    Science.gov (United States)

    Sekino, Masaki; Ohsaki, Hiroyuki; Takiyama, Yoshihiro; Yamamoto, Keita; Matsuzaki, Taiga; Yasumuro, Yoshihiro; Nishikawa, Atsushi; Maruo, Tomoyuki; Hosomi, Koichi; Saitoh, Youichi

    2015-01-01

    Previously we proposed an eccentric figure-eight coil that can cause threshold stimulation in the brain at lower driving currents. In this study, we performed numerical simulations and magnetic stimulations to healthy subjects for evaluating the advantages of the eccentric coil. The simulations were performed using a simplified spherical brain model and a realistic human brain model. We found that the eccentric coil required a driving current intensity of approximately 18% less than that required by the concentric coil to cause comparable eddy current densities within the brain. The eddy current localization of the eccentric coil was slightly higher than that of the concentric coil. A prototype eccentric coil was designed and fabricated. Instead of winding a wire around a bobbin, we cut eccentric-spiral slits on the insulator cases, and a wire was woven through the slits. The coils were used to deliver magnetic stimulation to healthy subjects; among our results, we found that the current slew rate corresponding to motor threshold values for the concentric and eccentric coils were 86 and 78 A/µs, respectively. The results indicate that the eccentric coil consistently requires a lower driving current to reach the motor threshold than the concentric coil. Future development of compact magnetic stimulators will enable the treatment of some intractable neurological diseases at home. © 2014 Wiley Periodicals, Inc.

  6. Dense, shape-optimized posterior 32-channel coil for submillimeter functional imaging of visual cortex at 3T.

    Science.gov (United States)

    Farivar, Reza; Grigorov, Filip; van der Kouwe, Andre J; Wald, Lawrence L; Keil, Boris

    2016-07-01

    Functional neuroimaging of small cortical patches such as columns is essential for testing computational models of vision, but imaging from cortical columns at conventional 3T fields is exceedingly difficult. By targeting the visual cortex exclusively, we tested whether combined optimization of shape, coil placement, and electronics would yield the necessary gains in signal-to-noise ratio (SNR) for submillimeter visual cortex functional MRI (fMRI). We optimized the shape of the housing to a population-averaged atlas. The shape was comfortable without cushions and resulted in the maximally proximal placement of the coil elements. By using small wire loops with the least number of solder joints, we were able to maximize the Q factor of the individual elements. Finally, by planning the placement of the coils using the brain atlas, we were able to target the arrangement of the coil elements to the extent of the visual cortex. The combined optimizations led to as much as two-fold SNR gain compared with a whole-head 32-channel coil. This gain was reflected in temporal SNR as well and enabled fMRI mapping at 0.75 mm resolutions using a conventional GRAPPA-accelerated gradient echo echo planar imaging. Integrated optimization of shape, electronics, and element placement can lead to large gains in SNR and empower submillimeter fMRI at 3T. Magn Reson Med 76:321-328, 2016. © 2015 Wiley Periodicals, Inc. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  7. Testing electrical insulation of LCT coils and instrumentation

    International Nuclear Information System (INIS)

    Luton, J.N.; Ulbricht, A.R.; Ellis, J.F.; Shen, S.S.; Wilson, C.T.; Okuno, K.; Siewerdt, L.O.; Zahn, G.R.; Zichy, J.A.

    1986-09-01

    Three of the superconducting test coils in the Large Coil Task (LCT) use conductors cooled internally by forced flow of helium. In the other three coils, the conductors are cooled externally by a bath of helium. The coils and facility are designed for rapid discharges (dumps) at voltages up to 2.5 kV, depending on coil design. Many coil sensors are connected electrically to the conductors. These sensor leads and signal conditioning equipment also experience high voltage. High-potential tests of ground insulation were performed on all components of the International Fusion Superconducting Magnet Test Facility (IFSMTF). Coil insulation was also tested by ring-down tests that produced voltage distributions within the coils like those occurring during rapid discharge. Methods were developed to localize problem areas and to eliminate them. The effect on breakdown voltage near the Paschen minimum of magnetic fields up to 2 T was investigated

  8. Split Coil Forms for Rotary Transformers

    Science.gov (United States)

    Mclyman, C. W. T.

    1982-01-01

    Split cores for rotor and stator windings of rotary transformer mounted around their respective coils (which are in bobbins) and cemented together. This arrangement simplifies winding of stator coil to go in a slot in inner diameter of stator coil. One practical application of rotary transformers fabricated according to this technique is for centrifuges, in which conventional sliprings are of uncertain reliability.

  9. Design and Fabrication of the KSTAR Poloidal Field Coil Structure

    International Nuclear Information System (INIS)

    Park, H. K.; Choi, C. H.; Sa, J. W.

    2005-01-01

    The KSTAR magnet system consists of 16 toroidal field(TF) coils. 4 pairs of central solenoid(CS) coils, and 3 pairs of outer poloidal field(PF) coils. The TF coils are encased in a structure to enhance mechanical stability. The CS coil structure is supported on top of the TF coil structure and supplies a vertical compression of 15 MN to prevent lateral movement due to a repulsive force between the CS coils. The PF coil system is vertically symmetry to the machine mid-plane and consists of 6 coils and 80 support structures(i.e, 16 for PF5, 32 for PF6 and 32 fort PF7). All PF coil structures should absorb the thermal contraction difference between TF coil structure and PF coils due to cool down and endure the vertical and radial magnetic forces due to current charging. In order to satisfy these structural requirements. the PF5 coil structure is designed base on hinges and both of PF6 and PF7 coil structures based on flexible plates. The PF coil structures are assembled on the TF coil structure with an individual basement that is welded on the TF coil structure

  10. Novel transcranial magnetic stimulation coil for mice

    Science.gov (United States)

    March, Stephen; Stark, Spencer; Crowther, Lawrence; Hadimani, Ravi; Jiles, David

    2014-03-01

    Transcranial magnetic stimulation (TMS) shows potential for non-invasive treatment of various neurological disorders. Significant work has been performed on the design of coils used for TMS on human subjects but few reports have been made on the design of coils for use on the brains of animals such as mice. This work is needed as TMS studies utilizing mice can allow rapid preclinical development of TMS for human disorders but the coil designs developed for use on humans are inadequate for optimal stimulation of the much smaller mouse brain. A novel TMS coil has been developed with the goal of inducing strong and focused electric fields for the stimulation of small animals such as mice. Calculations of induced electric fields were performed utilizing an MRI derived inhomogeneous model of an adult male mouse. Mechanical and thermal analysis of this new TMS helmet-coil design have also been performed at anticipated TMS operating conditions to ensure mechanical stability of the new coil and establish expected linear attraction and rotational force values. Calculated temperature increases for typical stimulation periods indicate the helmet-coil system is capable of operating within established medical standards. A prototype of the coil has been fabricated and characterization results are presented.

  11. Characteristics of bowl-shaped coils for transcranial magnetic stimulation

    Science.gov (United States)

    Yamamoto, Keita; Suyama, Momoko; Takiyama, Yoshihiro; Kim, Dongmin; Saitoh, Youichi; Sekino, Masaki

    2015-05-01

    Transcranial magnetic stimulation (TMS) has recently been used as a method for the treatment of neurological and psychiatric diseases. Daily TMS sessions can provide continuous therapeutic effectiveness, and the installation of TMS systems at patients' homes has been proposed. A figure-eight coil, which is normally used for TMS therapy, induces a highly localized electric field; however, it is challenging to achieve accurate coil positioning above the targeted brain area using this coil. In this paper, a bowl-shaped coil for stimulating a localized but wider area of the brain is proposed. The coil's electromagnetic characteristics were analyzed using finite element methods, and the analysis showed that the bowl-shaped coil induced electric fields in a wider area of the brain model than a figure-eight coil. The expanded distribution of the electric field led to greater robustness of the coil to the coil-positioning error. To improve the efficiency of the coil, the relationship between individual coil design parameters and the resulting coil characteristics was numerically analyzed. It was concluded that lengthening the outer spherical radius and narrowing the width of the coil were effective methods for obtaining a more effective and more uniform distribution of the electric field.

  12. Stress distributions of coils for toroidal magnetic field

    International Nuclear Information System (INIS)

    Kajita, Tateo; Miyamoto, Kenro.

    1976-01-01

    The stress distributions of a D shaped coil and a circular coil are computed by the finite element method. The dependences of the stress distribution on the geometrical parameters of the stress distribution on the geometrical parameters of the coils and supporting methods are examined. The maximum amount of the stress in the D shaped coil is not much smaller than that of the circular one. However, the stress distribution of the D shaped coil becomes much more uniform. The supporting method has as much effect as the geometrical parameters of the coil on the stress distribution. (auth.)

  13. d-Cysteine Ligands Control Metal Geometries within De Novo Designed Three-Stranded Coiled Coils

    DEFF Research Database (Denmark)

    Ruckthong, Leela; Peacock, Anna F.A.; Pascoe, Cherilyn E.

    2017-01-01

    Although metal ion binding to naturally occurring l-amino acid proteins is well documented, understanding the impact of the opposite chirality (d-)amino acids on the structure and stereochemistry of metals is in its infancy. We examine the effect of a d-configuration cysteine within a designed l......-amino acid three-stranded coiled coil in order to enforce a precise coordination number on a metal center. The d chirality does not alter the native fold, but the side-chain re-orientation modifies the sterics of the metal binding pocket. l-Cys side chains within the coiled-coil structure have previously...... by comparison of the structure of ZnIICl(CSL16DC)3 2- to the published structure of ZnII(H2O)(GRAND-CSL12AL16LC)3 -. Moreover, spectroscopic analysis indicates that the CdII geometry observed by using l-Cys ligands (a mixture of three- and four-coordinate CdII) is altered to a single four-coordinate species...

  14. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin

    Energy Technology Data Exchange (ETDEWEB)

    Hill, Shannon E.; Nguyen, Elaine; Donegan, Rebecca K.; Patterson-Orazem, Athéna C.; Hazel, Anthony; Gumbart, James C.; Lieberman, Raquel L.

    2017-11-01

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma.

  15. Manufacturing development of the Westinghouse Nb3Sn coil for the Large Coil Test Program

    International Nuclear Information System (INIS)

    Young, J.L.; Vota, T.L.; Singh, S.K.

    1983-01-01

    The Westinghouse Nb 3 Sn Magnet for the Oak Ridge National Laboratory Large Coil Program (LCP) is currently well into the manufacturing phase. This paper identifies the manufacturing processes and development tasks for his unique, advanced coil

  16. [Surface coils for magnetic-resonance images].

    Science.gov (United States)

    Rodríguez-González, Alfredo Odón; Amador-Baheza, Ricardo; Rojas-Jasso, Rafael; Barrios-Alvarez, Fernando Alejandro

    2005-01-01

    Since the introduction of magnetic resonance imaging in Mexico, the development of this important medical imaging technology has been almost non-existing in our country. The very first surface coil prototypes for clinical applications in magnetic resonance imaging has been developed at the Center of Research in Medical Imaging and Instrumentation of the Universidad Autónoma Metropolitana Iztapalapa (Metropolitan Autonomous University, Campus Iztapalapa). Two surface coil prototypes were built: a) a circular-shaped coil and b) a square-shaped coil for multiple regions of the body, such as heart, brain, knee, hands, and ankles. These coils were tested on the 1.5T imager of the ABC Hospital-Tacubaya, located in Mexico City. Brain images of healthy volunteers were obtained in different orientations: sagittal, coronal, and axial. Since images showed a good-enough clinical quality for diagnosis, it is fair to say that these coil prototypes can be used in the clinical environment, and with small modifications, they can be made compatible with almost any commercial scanner. This type of development can offer new alternatives for further collaboration between the research centers and the radiology community, in the search of new applications and developments of this imaging technique.

  17. Superconductive magnet having shim coils and quench protection circuits

    International Nuclear Information System (INIS)

    Schwall, R.E.

    1987-01-01

    A superconductive magnet is described comprising: a first persistent current loop comprising a first superconductor and a main coil connected to the first superconductor, the main coil being operative in response to superconduction therein to generate a primary magnetic field; a second persistent current loop comprising a second superconductor and a shim coil connected thereto, the shim coil being operative in response to superconduction therein to generate a corrective field for correcting aberrations in a predetermined gradient in the primary magnetic field, the shim coil having fewer turns than the main coil and being inductively coupled therewith whereby small changes in the current in the main coil cause much greater changes in the current in the shim coil. The magnet is characterized by an improvement which consists of: a first heater connected across the second persistent loop in parallel with the shim coil, the first heater being normally inoperative to carry current while the shim coil and the second superconductor are superconducting, the first heater being operative in response to current therein to heat the shim coil to a resistive state; and protective circuit means comprising a second heater connected to the main coil for carrying current from the main coil upon quenching of the main coil, the second heater being disposed in thermal contact with the second superconductor to heat the second superconductor to a resistive state in response to the current from the main coil to thereby divert current in the second persistent loop through the second heater causing it to heat the shim coil to a resistive state and resistively dissipate energy therein

  18. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    NARCIS (Netherlands)

    Schinagl, D.A.X.; Vogel, W.V.; Hoffmann, A.L.; Dalen, J.A. van; Oyen, W.J.G.; Kaanders, J.H.A.M.

    2007-01-01

    PURPOSE: Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may

  19. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  20. Practical design of a 4 Tesla double-tuned RF surface coil for interleaved 1H and 23Na MRI of rat brain.

    Science.gov (United States)

    Alecci, M; Romanzetti, S; Kaffanke, J; Celik, A; Wegener, H P; Shah, N J

    2006-08-01

    MRI is proving to be a very useful tool for sodium quantification in animal models of stroke, ischemia, and cancer. In this work, we present the practical design of a dual-frequency RF surface coil that provides (1)H and (23)Na images of the rat head at 4 T. The dual-frequency RF surface coil comprised of a large loop tuned to the (1)H frequency and a smaller co-planar loop tuned to the (23)Na frequency. The mutual coupling between the two loops was eliminated by the use of a trap circuit inserted in the smaller coil. This independent-loop design was versatile since it enabled a separate optimisation of the sensitivity and RF field distributions of the two coils. To allow for an easy extension of this simple double-tuned coil design to other frequencies (nuclei) and dimensions, we describe in detail the practical aspects of the workbench design and MRI testing using a phantom that mimics in vivo conditions. A comparison between our independent-loop, double-tuned coil and a single-tuned (23)Na coil of equal size obtained with a phantom matching in vivo conditions, showed a reduction of the (23)Na sensitivity (about 28 %) because of signal losses in the trap inductance. Typical congruent (1)H and (23)Na rat brain images showing good SNR ((23)Na: brain 7, ventricular cerebrospinal fluid 11) and spatial resolution ((23)Na: 1.25 x 1.25 x 5mm(3)) are also reported. The in vivo SNR values obtained with this coil were comparable to, if not better than, other contemporary designs in the literature.

  1. Lung volume reduction for emphysema.

    Science.gov (United States)

    Shah, Pallav L; Herth, Felix J; van Geffen, Wouter H; Deslee, Gaetan; Slebos, Dirk-Jan

    2017-02-01

    Advanced emphysema is a lung disease in which alveolar capillary units are destroyed and supporting tissue is lost. The combined effect of reduced gas exchange and changes in airway dynamics impairs expiratory airflow and leads to progressive air trapping. Pharmacological therapies have limited effects. Surgical resection of the most destroyed sections of the lung can improve pulmonary function and exercise capacity but its benefit is tempered by significant morbidity. This issue stimulated a search for novel approaches to lung volume reduction. Alternative minimally invasive approaches using bronchoscopic techniques including valves, coils, vapour thermal ablation, and sclerosant agents have been at the forefront of these developments. Insertion of endobronchial valves in selected patients could have benefits that are comparable with lung volume reduction surgery. Endobronchial coils might have a role in the treatment of patients with emphysema with severe hyperinflation and less parenchymal destruction. Use of vapour thermal energy or a sclerosant might allow focal treatment but the unpredictability of the inflammatory response limits their current use. In this Review, we aim to summarise clinical trial evidence on lung volume reduction and provide guidance on patient selection for available therapies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Design considerations in coiled-coil fusion constructs for the structural determination of a problematic region of the human cardiac myosin rod

    Energy Technology Data Exchange (ETDEWEB)

    Andreas, Michael P.; Ajay, Gautam; Gellings, Jaclyn A.; Rayment, Ivan (UW)

    2017-12-01

    X-ray structural determination of segments of the myosin rod has proved difficult because of the strong salt-dependent aggregation properties and repeating pattern of charges on the surface of the coiled-coil that lead to the formation of paracrystals. This problem has been resolved in part through the use of globular assembly domains that improve protein folding and prevent aggregation. The primary consideration now in designing coiled-coil fusion constructs for myosin is deciding where to truncate the coiled-coil and which amino acid residues to include from the folding domain. This is especially important for myosin that contains numerous regions of low predicted coiled-coil propensity. Here we describe the strategy adopted to determine the structure of the region that extends from Arg1677 – Leu1797 that included two areas that do not show a strong sequence signature of a conventional left-handed coiled coil or canonical heptad repeat. This demonstrates again that, with careful choice of fusion constructs, overlapping structures exhibit very similar conformations for the myosin rod fragments in the canonical regions. However, conformational variability is seen around Leu1706 which is a hot spot for cardiomyopathy mutations suggesting that this might be important for function.

  3. Quench detection system of the EURATOM coil for the Large Coil Task

    International Nuclear Information System (INIS)

    Noether, G.; Gauss, S.; Maurer, W.; Siewerdt, L.; Ulbricht, A.; Wuechner, F.

    1989-01-01

    A special quench detection system has been developed for the EURATOM Large Coil Task (LCT) coil. The system is based on a bridge circuit which uses a special 'two in hand' winding technique for the pancakes of the EURATOM LCT coil. The electronic circuit was designed in a fail safe way to prevent failure of the quench detector due to failure of one of its components. A method for quick balancing of the quench detection system in a large toroidal magnet system was applied. The quench detection system worked very reliably during the experimental phase of the LCT and was within the quench detection level setting of 50 mV, i.e. the system was not sensitive to poloidal field transients at or below this level. Non-electrical methods for quench detection were also investigated. (author)

  4. A generalized strategy for designing (19)F/(1)H dual-frequency MRI coil for small animal imaging at 4.7 Tesla.

    Science.gov (United States)

    Hu, Lingzhi; Hockett, Frank D; Chen, Junjie; Zhang, Lei; Caruthers, Shelton D; Lanza, Gregory M; Wickline, Samuel A

    2011-07-01

    To propose and test a universal strategy for building (19) F/(1) H dual-frequency RF coil that permits multiple coil geometries. The feasibility to design (19) F/(1) H dual-frequency RF coil based on coupled resonator model was investigated. A series capacitive matching network enables robust impedance matching for both harmonic oscillating modes of the coupled resonator. Two typical designs of (19) F/(1) H volume coils (birdcage and saddle) at 4.7T were implemented and evaluated with electrical bench test and in vivo (19) F/(1) H dual-nuclei imaging. For various combinations of internal resistances of the sample coil and secondary resonator, numerical solutions for the tunable capacitors to optimize impedance matching were obtained using a root-seeking program. Identical and homogeneous B1 field distribution at (19) F and (1) H frequencies were observed in bench test and phantom image. Finally, in vivo mouse imaging confirmed the sensitivity and homogeneity of the (19) F/(1) H dual-frequency coil design. A generalized strategy for designing (19) F/(1) H dual-frequency coils based on the coupled resonator approach was developed and validated. A unique feature of this design is that it preserves the B1 field homogeneity of the RF coil at both resonant frequencies. Thus it minimizes the susceptibility effect on image co-registration. Copyright © 2011 Wiley-Liss, Inc.

  5. Switching transients in a superconducting coil

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1983-01-01

    A study is made of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to performance tests on the MFTF Yin-yang coils. It is found that the breaker opening time is the critical factor in determining the size and shape of the transient. Instantaneous opening of the breaker causes a lightly damped transient with large amplitude voltages to ground. Increasing the opening time causes the transient to become a monopulse of decreasing amplitude. The voltages at the external terminals are determined by the parameters of the external circuit. For fast opening times the frequency depends on the dump resistor inductance, the circuit capacitance, and the amplitude on the coil current. For slower openings the dump resistor inductance and the current determine the amplitude of the voltage to ground at the terminals. Voltages to ground are less in the interior of the coil, where transients related to the parameters of the coil itself are observed

  6. The influence of quantitative tumor volume measurements on local control in advanced head and neck cancer using concomitant boost accelerated superfractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Christopher R; Khandelwal, Shiv R; Schmidt-Ullrich, Rupert K; Ravalese, Joseph; Wazer, David E

    1995-06-15

    Purpose: Current methods to clinically define head and neck tumor bulk are qualitative and imprecise. Although the American Joint Committee on Cancer (AJCC) staging system is important for this purpose, limitations exist. This study will investigate the prognostic value of computed tomography (CT) derived tumor volume measurements in comparison to AJCC stage and other significant variables. Materials and Methods: Seventy-six patients with advanced head and neck squamous cell carcinoma were treated with concomitant boost accelerated superfractionated irradiation. Doses ranged from 68.4-73.8 Gy (median 70.2 Gy). Good quality pretherapy CT scans were available in 51 patients. Total tumor volume (TTV) estimates were derived from these scans using digital integration of primary tumor and metastatic lymphadenopathy. Actuarial and multivariate statistical techniques were applied to analyze local control. Results: Thirty-six-month local control was 63%. TTV ranged from 5-196 cm{sup 3} (median 35 cm{sup 3}) for all cases, 5-142 cm{sup 3} (median 17 cm{sup 3}) for those controlled, and 16-196 cm{sup 3} (median 47 cm{sup 3}) for local failures. There was a significant increase in failures above 35 cm{sup 3}. Univariate analysis found that TTV, T-stage, N-stage, and primary site were each significant prognostic variables. Local control for TTV {<=}35 cm{sup 3} was 92% at 36 months vs. 34% for TTV >35 cm{sup 3} (p = 0.0001). Multivariate analysis, however, found that TTV, primary site, and sex were important as independent variables; T and N stage were not independently significant unless TTV was removed from the model. Conclusions: This study demonstrates the prognostic significance of TTV in advanced carcinoma of the head and neck. This variable appears to be a more predictive than AJCC clinical stage. Quantitative tumor volume measurements may prove to be a useful parameter in future analyses of head and neck cancer.

  7. Resistive demountable toroidal-field coils for tokamak reactors

    International Nuclear Information System (INIS)

    Jassby, D.L.; Jacobsen, R.A.; Kalnavarns, J.; Masson, L.S.; Sekot, J.P.

    1981-07-01

    Readily demountable TF (toroidal-field) coils allow complete access to the internal components of a tokamak reactor for maintenance of replacement. The requirement of readily demountable joints dictates the use of water-cooled resistive coils, which have a host of decisive advantages over superconducting coils. Previous papers have shown that resistive TF coils for tokamak reactors can operate in the steady state with acceptable power dissipation (typically, 175 to 300 MW). This paper summarizes results of parametric studies of size optimization of rectangular TF coils and of a finite-element stress analysis, and examines several candidate methods of implementing demountable joints for rectangular coils constructed of plate segments

  8. Manufacture of EAST VS In-Vessel Coil

    International Nuclear Information System (INIS)

    Long, Feng; Wu, Yu; Du, Shijun; Jin, Huan; Yu, Min; Han, Qiyang; Wan, Jiansheng; Liu, Bin; Qiao, Jingchun; Liu, Xiaochuan; Li, Chang; Cai, Denggang; Tong, Yunhua

    2013-01-01

    Highlights: • ITER like Stainless Steel Mineral Insulation Conductor (SSMIC) used for EAST Tokamak VS In-Vessel Coil manufacture first time. • Research on SSMIC fabrication was introduced in detail. • Two sets totally four single-turn VS coils were manufactured and installed in place symmetrically above and below the mid-plane in the vacuum vessel of EAST. • The manufacture and inspection of the EAST VS coil especially the joint for the SSMIC connection was described in detail. • The insulation resistances of all the VS coils have no significant reduction after endurance test. -- Abstract: In the ongoing latest update round of EAST (Experimental Advanced Superconducting Tokamak), two sets of two single-turn Vertical Stabilization (VS) coils were manufactured and installed symmetrically above and below the mid-plane in the vacuum vessel of EAST. The Stainless Steel Mineral Insulated Conductor (SSMIC) developed for ITER In-Vessel Coils (IVCs) in Institute of Plasma Physics, Chinese Academy of Science (ASIPP) was used for the EAST VS coils manufacture. Each turn poloidal field VS coil includes three internal joints in the vacuum vessel. The middle joint connects two pieces of conductor which together form an R2.3 m arc segment inside the vacuum vessel. The other two joints connect the arc segment with the two feeders near the port along the toroidal direction to bear lower electromagnetic loads during operation. Main processes and tests include material performances checking, conductor fabrication, joint connection and testing, coil forming, insulation performances measurement were described herein

  9. Superconducting coil design for a tokamak experimental power reactor

    International Nuclear Information System (INIS)

    Turner, L.R.; Wang, S.T.; Smelser, P.

    1977-01-01

    Superconducting toroidal field (TF) and polodial-field (PF) coils have been designed for the proposed Argonne National Laboratory experimental power reactor (EPR). Features of the design include: (1) Peak field of 8 T at 4.2 K or 10 T at 3.0 K. (2) Constant-tension shape for the TF coils, corrected for the finite number (16) of coils. (3) Analysis of errors in coil alignment. (4) Comparison of safety aspects of series-connected and parallel-connected coils. (5) A 60 kA sheet conductor of NbTi with copper stabilizer and stainless steel for support. (6) Superconducting PF coils outside the TF coils. (7) The TF coils shielded from pulsed fields by high-purity aluminum

  10. MR angiography of the carotid arteries in 3 D TOF-technique with sagittal ''double-slab'' acquisition using a new head-neck coil

    International Nuclear Information System (INIS)

    Link, J.; Mueller-Huelsbeck, S.; Heller, M.

    1996-01-01

    Purpose: The aim of the study was to assess the value of MR angiography (MRA) in sagittal technique compared to DSA in the evaluation of carotid artery stenosis. Methods: 80 Carotid arteries in 40 symptomatic patients were prospectively studied with DSA and MRA. MRA was carried out by means of 3D time-of-flight technique with a FISP sequence (T E 6 ms/T R 80 ms, flip angle 25 , FOV 240x210 mm, matrix 157x256 mm, in-plane resolution 1.34x0.94 mm, partition thickness 1.32 mm, slab thickness 45 mm, acquisition time 7 min) using a new head-neck coil. Data acquisition was performed in sagittal orientation with the 'double-slab' technique. Imaging quality of the extracranial carotid arteries and correctness of quantification of stenosis was performed. Results: Imaging quality was good at the origin of the carotid arteries in 65%, at the bifurcation region in 98% and near the skull base in 81%. The agreement of DSA and MRA was 96% of the normal arteries (24/25), 90% of the severe stenoses (28/31) and 100% of the occluded arteries (9/9). Conclusion: MRA in sagittal 'double-slab' technique is a noninvasive technique allowing to detect normal arteries and candidates for surgery with high degree of certainity. (orig.) [de

  11. Investigation of tDCS volume conduction effects in a highly realistic head model

    Science.gov (United States)

    Wagner, S.; Rampersad, S. M.; Aydin, Ü.; Vorwerk, J.; Oostendorp, T. F.; Neuling, T.; Herrmann, C. S.; Stegeman, D. F.; Wolters, C. H.

    2014-02-01

    Objective. We investigate volume conduction effects in transcranial direct current stimulation (tDCS) and present a guideline for efficient and yet accurate volume conductor modeling in tDCS using our newly-developed finite element (FE) approach. Approach. We developed a new, accurate and fast isoparametric FE approach for high-resolution geometry-adapted hexahedral meshes and tissue anisotropy. To attain a deeper insight into tDCS, we performed computer simulations, starting with a homogenized three-compartment head model and extending this step by step to a six-compartment anisotropic model. Main results. We are able to demonstrate important tDCS effects. First, we find channeling effects of the skin, the skull spongiosa and the cerebrospinal fluid compartments. Second, current vectors tend to be oriented towards the closest higher conducting region. Third, anisotropic WM conductivity causes current flow in directions more parallel to the WM fiber tracts. Fourth, the highest cortical current magnitudes are not only found close to the stimulation sites. Fifth, the median brain current density decreases with increasing distance from the electrodes. Significance. Our results allow us to formulate a guideline for volume conductor modeling in tDCS. We recommend to accurately model the major tissues between the stimulating electrodes and the target areas, while for efficient yet accurate modeling, an exact representation of other tissues is less important. Because for the low-frequency regime in electrophysiology the quasi-static approach is justified, our results should also be valid for at least low-frequency (e.g., below 100 Hz) transcranial alternating current stimulation.

  12. Correcting coils in end magnets of accelerators

    Directory of Open Access Journals (Sweden)

    L. R. P. Kassab

    1998-05-01

    Full Text Available We present an empirical investigation of the correcting coils behavior used to homogenize the field distribution of the race-track microtron accelerator end magnets. These end magnets belong to the second stage of the 30.0 MeV cw electron accelerator under construction at IFUSP, the race-track microtron booster, in which the beam energy is raised from 1.97 to 5.1 MeV. The correcting coils are attached to the pole faces and are based on the inhomogeneities of the magnetic field measured. The performance of these coils, when operating the end magnets with currents that differ by ±10% from the one used in the mappings that originated the coils copper leads, is presented. For one of the magnets, adjusting conveniently the current of the correcting coils makes it possible to homogenize field distributions of different intensities, once their shapes are practically identical to those that originated the coils. For the other one, the shapes are changed and the coils are less efficient. This is related to intrinsic factors that determine the inhomogeneities. However, we obtained uniformity of 0.001% in both cases.

  13. Quench simulation of SMES consisting of some superconducting coils

    International Nuclear Information System (INIS)

    Noguchi, S.; Oga, Y.; Igarashi, H.

    2011-01-01

    A chain of quenches may be caused by a quench of one element coil when SMES is consists of many element coils. To avoid the chain of quenches, the energy stored in element coil has to be quickly discharged. The cause of the chain of the quenches is the short time constant of the decreasing current of the quenched coil. In recent years, many HTS superconducting magnetic energy storage (HTS-SMES) systems are investigated and designed. They usually consist of some superconducting element coils due to storing excessively high energy. If one of them was quenched, the storage energy of the superconducting element coil quenched has to be immediately dispersed to protect the HTS-SMES system. As the result, the current of the other element coils, which do not reach to quench, increases since the magnetic coupling between the quenched element coil and the others are excessively strong. The increase of the current may cause the quench of the other element coils. If the energy dispersion of the element coil quenched was failed, the other superconducting element coil would be quenched in series. Therefore, it is necessary to investigate the behavior of the HTS-SMES after quenching one or more element coils. To protect a chain of quenches, it is also important to investigate the time constant of the coils. We have developed a simulation code to investigate the behavior of the HTS-SMES. By the quench simulation, it is indicated that a chain of quenches is caused by a quench of one element coil.

  14. Design and modelling of a SMES coil

    Energy Technology Data Exchange (ETDEWEB)

    Yuan Weijia; Campbell, A M; Coombs, T A, E-mail: wy215@cam.ac.u [EPEC Superconductivity group, Engineering Department, 9 JJ Thomson Avenue, Cambridge, CB3 0FA (United Kingdom)

    2010-06-01

    The design of a Superconducting Magnetic Energy Storage (SMES) coil wound by coated conductors has been presented. Based on an existing model for coated conductor pancake coils, this paper analysed the magnetic field and current density distribution of the coil at two different operation temperatures, 77K and 22K. A comparison table of the critical currents and AC losses at these two temperatures has been presented. Several steps to improve the transport current of the coil have been suggested as well.

  15. Coils in a fusion device and its fabrication method

    International Nuclear Information System (INIS)

    Maeda, Hideto; Moritani, Einoshin.

    1975-01-01

    Object: To provide a coil for nuclear fusion equipment, which coil has superior rigidity and strength and is separable into two sections and used for removing impurity ions from high temperature plasma such as heavy hydrogen and tritium. Structure: The coil according to the invention is manufactured by (1) a step of insulating horseshoe-shaped conductors one from another and bundling them into coil halves. (2) a step of assembling a flange on a coil case accommodating each coil half and hermetically welding a lid to each end of the coil half, (3) a step of evacuating the interior of each coil case, (4) a step of pouring a thermosetting resin into each evacuated coil case and hardening the resin, (5) a step of connecting the two coil halves with their ends not covered with resin held in abutting relation to each other, (6) a step of coupling coil case joint pieces to the joined portions and covering the joint pieces with a seal box and hermetically welding the box to the joint pieces, and (7) a step of pouring a thermosetting resin into each evacuated joint portion and hardening the resin. (Kamimura, M.)

  16. MRI surface-coil pair with strong inductive coupling.

    Science.gov (United States)

    Mett, Richard R; Sidabras, Jason W; Hyde, James S

    2016-12-01

    A novel inductively coupled coil pair was used to obtain magnetic resonance phantom images. Rationale for using such a structure is described in R. R. Mett et al. [Rev. Sci. Instrum. 87, 084703 (2016)]. The original rationale was to increase the Q-value of a small diameter surface coil in order to achieve dominant loading by the sample. A significant improvement in the vector reception field (VRF) is also seen. The coil assembly consists of a 3-turn 10 mm tall meta-metallic self-resonant spiral (SRS) of inner diameter 10.4 mm and outer diameter 15.1 mm and a single-loop equalization coil of 25 mm diameter and 2 mm tall. The low-frequency parallel mode was used in which the rf currents on each coil produce magnetic fields that add constructively. The SRS coil assembly was fabricated and data were collected using a tissue-equivalent 30% polyacrylamide phantom. The large inductive coupling of the coils produces phase-coherency of the rf currents and magnetic fields. Finite-element simulations indicate that the VRF of the coil pair is about 4.4 times larger than for a single-loop coil of 15 mm diameter. The mutual coupling between coils influences the current ratio between the coils, which in turn influences the VRF and the signal-to-noise ratio (SNR). Data on a tissue-equivalent phantom at 9.4 T show a total SNR increase of 8.8 over the 15 mm loop averaged over a 25 mm depth and diameter. The experimental results are shown to be consistent with the magnetic resonance theory of the emf induced by spins in a coil, the theory of inductively coupled resonant circuits, and the superposition principle. The methods are general for magnetic resonance and other types of signal detection and can be used over a wide range of operating frequencies.

  17. Coil Migration after Transarterial Coil Embolization of a Splenic Artery Pseudoaneurysm

    Directory of Open Access Journals (Sweden)

    Bezawit D. Tekola

    2013-11-01

    Full Text Available A 48-year-old man with a history of splenic artery pseudoaneurysm requiring transarterial embolization 3 months earlier presented to the emergency department with abdominal pain and fever. Computed tomography showed evidence of embolization coil fragments within the gastrointestinal tract. Upper endoscopy showed a large gastric ulcer with numerous embolization coils extruding into the gastric lumen. The patient underwent partial gastrectomy, distal pancreatectomy and resection of the splenic artery pseudoaneurysm. This case illustrates a rare delayed complication of transarterial embolization of a splenic artery pseudoaneurysm.

  18. First assembly phase for the ATLAS toroid coils

    CERN Document Server

    Patrice Loïez

    2003-01-01

    The ATLAS barrel toroid system consists of eight coils, each of axial length 25.3 m, assembled radially and symmetrically around the beam axis. The coils are of a flat racetrack type with two double-pancake windings made of 20.5 kA aluminium-stabilized niobium-titanium superconductor. In the first phase of assembly, the two 'pancakes' are packed into their vacuum vessel. This is done using bladders filled with resin and glass microbeads under pressure. The resin is heated and, once cooled, holds the pancakes in place. The operation has to be performed on both sides of the coil, which necessitated a special technique to turn the coils over and then transport them to the heating table. Photos 01, 02, 03: Use of the overhead travelling crane to hoist the coil up and then tilt it over, the coil frame's metal feet being used as rotational pivots, supporting half the coil's weight. Once it has been turned over, the coil, now with only half the frame, is transported to the heating table using a special lifting gant...

  19. Second Barrel Toroid Coil Installed in ATLAS Cavern

    CERN Multimedia

    Tappern, G.

    The second barrel toroid coil was lowered into the ATLAS Cavern on Friday, 26 November. The operation takes approximately five hours of precision crane and winch operations. Before lowering, several checks are made to ensure that no loose items have been left on the coil which would fall during the lowering down the shaft. This is a very difficult, but very important check, with the first coil in position, and partly below the shaft. After changing the winch tooling on Wednesday December 1st, the coil was lifted, rotated and placed into the feet. The girders which support the coil and the Z direction stops had all been pre-set before putting the coil in the feet. The angle is controlled by an inclinometer. When the final adjustments of position have been made, which will locate the coils at the plus/minus two mm level, the connection beams (voussoirs and struts) will be put in place; this requires a complex shimming procedure. This will lock together the two coils into the feet and forms the foundation for th...

  20. Study on Pole Arrangement of the CEDM Coils

    International Nuclear Information System (INIS)

    Park, Jin Seok; Lee, Myoung Goo; Kim, Hyun Min; Cho, Yeon Ho; Choi, Taek Sang

    2013-01-01

    The coil stack assembly is important for reliable operation of the CEDM, there have been efforts to improve the design by optimizing the design parameters such as dimensions and winding turns. However, magnetic forces of the CEDM can also change by different pole arrangement even if their design parameters are the same. Since the latch coil and lift coil are installed connected to each other, they produce magnetically coupled field when they are energized at the same time. This coupling field can affect the magnetic force of the CEDM significantly. In this paper, coil pole arrangement effects are studied. Electro-magnetic analysis is performed for the different pole arrangements of the CEDM coils to calculate the magnetic forces. Pole arrangement effects on magnetic forces were studied by static analysis of the CEDM magnetic field. Magnetic forces were calculated and compared for the two different pole arrangements of the coils. The results show that the magnetic poles of the lift coil and latch coil shall be arranged to have the same magnetic pole direction to achieve higher magnetic force

  1. Mechanical design of a high field common coil magnet

    CERN Document Server

    Caspi, S; Dietderich, D R; Gourlay, S A; Gupta, R; McInturff, A; Millos, G; Scanlan, R M

    1999-01-01

    A common coil design for high field 2-in-1 accelerator magnets has been previously presented as a "conductor-friendly" option for high field magnets applicable for a Very Large Hadron Collider. This paper presents the mechanical design for a 14 tesla 2-in-1 dipole based on the common coil design approach. The magnet will use a high current density Nb/sub 3/Sn conductor. The design addresses mechanical issues particular to the common coil geometry: horizontal support against coil edges, vertical preload on coil faces, end loading and support, and coil stresses and strains. The magnet is the second in a series of racetrack coil magnets that will provide experimental verification of the common coil design approach. (9 refs).

  2. Low resolution crystal structure of Arenicola erythrocruorin: influence of coiled coils on the architecture of a megadalton respiratory protein.

    Science.gov (United States)

    Royer, William E; Omartian, Michael N; Knapp, James E

    2007-01-05

    Annelid erythrocruorins are extracellular respiratory complexes assembled from 180 subunits into hexagonal bilayers. Cryo-electron microscopic experiments have identified two different architectural classes. In one, designated type I, the vertices of the two hexagonal layers are partially staggered, with one hexagonal layer rotated by about 16 degrees relative to the other layer, whereas in the other class, termed type II, the vertices are essentially eclipsed. We report here the first crystal structure of a type II erythrocruorin, that from Arenicola marina, at 6.2 A resolution. The structure reveals the presence of long continuous triple-stranded coiled-coil "spokes" projecting towards the molecular center from each one-twelfth unit; interdigitation of these spokes provides the only contacts between the two hexagonal layers of the complex. This arrangement contrasts with that of a type I erythrocruorin from Lumbricus terrestris in which the spokes are broken into two triple-stranded coiled coils with a disjointed connection. The disjointed connection allows formation of a more compact structure in the type I architecture, with the two hexagonal layers closer together and additional extensive contacts between the layers. Comparison of sequences of the coiled-coil regions of various linker subunits shows that the linker subunits from type II erythrocruorins possess continuous heptad repeats, whereas a sequence gap places these repeats out of register in the type I linker subunits, consistent with a disjointed coiled-coil arrangement.

  3. SSC [Superconducting Super Collider] dipole coil production tooling

    International Nuclear Information System (INIS)

    Carson, J.A.; Barczak, E.J.; Bossert, R.C.; Brandt, J.S.; Smith, G.A.

    1989-03-01

    Superconducting Super Collider dipole coils must be produced to high precision to ensure uniform prestress and even conductor distribution within the collared coil assembly. Tooling is being prepared at Fermilab for the production of high precision 1M and 16.6M SSC dipole coils suitable for mass production. The design and construction methods builds on the Tevatron tooling and production experience. Details of the design and construction methods and measured coil uniformity of 1M coils will be presented. 4 refs., 10 figs

  4. Suitability of miniature inductively coupled RF coils as MR-visible markers for clinical purposes.

    Science.gov (United States)

    Garnov, Nikita; Thormer, Gregor; Trampel, Robert; Grunder, Wilfried; Kahn, Thomas; Moche, Michael; Busse, Harald

    2011-11-01

    MR-visible markers have already been used for various purposes such as image registration, motion detection, and device tracking. Inductively coupled RF (ICRF) coils, in particular, provide a high contrast and do not require connecting wires to the scanner, which makes their application highly flexible and safe. This work aims to thoroughly characterize the MR signals of such ICRF markers under various conditions with a special emphasis on fully automatic detection. The small markers consisted of a solenoid coil that was wound around a glass tube containing the MR signal source and tuned to the resonance frequency of a 1.5 T MRI. Marker imaging was performed with a spoiled gradient echo sequence (FLASH) and a balanced steady-state free precession (SSFP) sequence (TrueFISP) in three standard projections. The signal intensities of the markers were recorded for both pulse sequences, three source materials (tap water, distilled water, and contrast agent solution), different flip angles and coil alignments with respect to the B(0) direction as well as for different marker positions in the entire imaging volume (field of view, FOV). Heating of the ICRF coils was measured during 10-min RF expositions to three conventional pulse sequences. Clinical utility of the markers was assessed from their performance in computer-aided detection and in defining double oblique scan planes. For almost the entire FOV (±215 mm) and an estimated 82% of all possible RF coil alignments with respect to B(0), the ICRF markers generated clearly visible MR signals and could be reliably localized over a large range of flip angles, in particular with the TrueFISP sequence (0.3°-4.0°). Generally, TrueFISP provided a higher marker contrast than FLASH. RF exposition caused a moderate heating (≤5 °C) of the ICRF coils only. Small ICRF coils, imaged at low flip angles with a balanced SSFP sequence showed an excellent performance under a variety of experimental conditions and therefore make for a

  5. Optimization of multiple coils immersed in a conducting liquid for half-hemisphere or whole-brain deep transcranial magnetic stimulation: a simulation study.

    Science.gov (United States)

    Sousa, Sónia C P; Almeida, Jorge; Cavaleiro Miranda, Pedro; Salvador, Ricardo; Silvestre, João; Simões, Hugo; Crespo, Paulo

    2014-01-01

    Transcranial magnetic stimulation (TMS) was proposed in 1985. Nevertheless, its wider use in the treatment of several neurologic diseases has been hindered by its inability to stimulate deep-brain regions. This is mainly due to the physical limiting effect arising from the presence of surface discontinuities, particularly between the scalp and air. Here, we present the optimization of a system of large multiple coils for whole-brain and half-hemisphere deep TMS, termed orthogonal configuration. COMSOL(®)-based simulations show that the system is capable of reaching the very center of a spherical brain phantom with 58% induction relative to surface maximum. Such penetration capability surpasses to the best of our knowledge that of existing state of the art TMS systems. This induction capability strongly relies on the immersion of the stimulating coils and part of the head of the patient in a conducting liquid (e.g. simple saline solution). We show the impact of the presence of this surrounding conducting liquid by comparing the performance of our system with and without such liquid. In addition, we also compare the performance of the proposed coil with that of a circular coil, a figure-eight coil, and the H-coil. Finally, in addition to its whole-brain stimulation capability (e.g. potentially useful for prophylaxis of epileptic patients) the system is also able to stimulate mainly one brain hemisphere, which may be useful in stroke rehabilitation, among other applications.

  6. Making the most of the imaging we have: using head MRI to estimate body composition

    International Nuclear Information System (INIS)

    Lack, C.M.; Lesser, G.J.; Umesi, U.N.; Bowns, J.; Chen, M.Y.; Case, D.; Hightower, R.C.; Johnson, A.J.

    2016-01-01

    Aim: To investigate the use of clinical head magnetic resonance imaging (MRI) in determining body composition and to evaluate how well it correlates with established measures based on abdominal computed tomography (CT). Materials and methods: Ninety-nine consecutive patients were identified who had undergone both brain MRI and abdominal CT within a 2-week span. Volumes of fat and muscle in the extracranial head were measured utilising several techniques by both abdominal CT and head MRI. Results: MRI-based total fat volumes in the head correlated with CT-based measurements of fat in the abdomen using both single-section (r=0.64, p<0.01) and multisection (r=0.60, p<0.01) techniques. No significant correlation was found between muscle volumes in the abdomen and head. Conclusion: Based on the present results, head MRI-based measures may provide a useful surrogate for CT measurements of abdominal fat, particularly in patients with neurological cancers, as head MRI (and not abdominal CT) is routinely and repeatedly obtained for the purpose of clinical care for these patients. - Highlights: • We compared body composition using brain MRI with previously proven abdominal CT. • Fat and muscle volumes of the extracranial compartment can be measured by MRI. • Muscle volume in the face does not correlate with abdominal muscle volume. • Fat volume in the face can be used as a surrogate for abdominal fat volume.

  7. Finite element modeling of TFTR poloidal field coils

    International Nuclear Information System (INIS)

    Baumgartner, J.A.; O'Toole, J.A.

    1986-01-01

    The Tokamak Fusion Test Reactor (TFTR) Poloidal Field (PF) coils were originally analyzed to TFTR design conditions. The coils have been reanalyzed by PPPL and Grumman to determine operating limits under as-built conditions. Critical stress levels, based upon data obtained from the reanalysis of each PF coil, are needed for input to the TFTR simulation code algorithms. The primary objective regarding structural integrity has been to ascertain the magnitude and location of critical internal stresses in each PF coil due to various combinations of electromagnetic and thermally induced loads. For each PF coil, a global finite element model (FEM) of a coil sector is being analyzed to obtain the basic coil internal loads and displacements. Subsequent fine mesh local models of the coil lead stem and lead spur regions produce the magnitudes and locations of peak stresses. Each copper turn and its surrounding insulation are modeled using solid finite elements. The corresponding electromagnetic and thermal analyses are similarly modeled. A series of test beams were developed to determine the best combination of MSC/NASTRAN-type finite elements for use in PF coil analysis. The results of this analysis compare favorably with those obtained by the earlier analysis which was limited in scope

  8. Changes in lateral dimensions of irradiated volume and their impact on the accuracy of dose delivery during radiotherapy for head and neck cancer

    International Nuclear Information System (INIS)

    Senkus-Konefka, Elzbieta; Naczk, Edmund; Borowska, Ilona; Badzio, Andrzej; Jassem, Jacek

    2006-01-01

    Background and purpose: To assess changes in lateral dimensions of irradiated volume during head and neck cancer radiotherapy and to determine their impact on the accuracy of dose delivery. Patients and methods: Lateral dimensions of irradiated volumes were measured in five predefined points prior to treatment and then bi-weekly. For each measurement, midline dose was calculated and verified using in vivo dosimetry. Early radiation reactions, patient weight changes and the need to modify radiotherapy accessories were also recorded. The study included 33 head and neck cancer patients irradiated using parallel opposed megavoltage fields. Results: Body mass changes during radiotherapy ranged from -18 to +4 kg (median -5). Lateral dimension changes >5 mm (range -37 to +16) occurred in 32 patients (97%). For axis measurements, the degree of lateral dimension changes were correlated with treatment field size (P=0.022) and degree of mucositis (P=0.017). Axis doses calculated for changed dimensions varied from those prescribed by -2.5 to +6% (median +2%). Differences larger than 5% were present in 4.8% of calculations. In 17 patients (52%), radiotherapy accessories had to be modified during treatment. The need to modify radiotherapy accessories correlated with larger treatment portals (P=0.004), more weight loss during treatment (P=0.01) and higher initial N stage (P=0.04). Conclusions: Changes of irradiated volume lateral dimensions during head and neck cancer radiotherapy may lead to considerable dose delivery inaccuracies. Watchful monitoring, corrections to calculated dose when changes observed are significant and radiotherapy accessories modification during the course of treatment are strongly recommended

  9. The repeatability of left ventricular volume assessment by a new ambulatory radionuclide monitoring system during head-up tilt

    International Nuclear Information System (INIS)

    Takase, Bonpei; Hosaka, Haruhiko; Kitamura, Katsuhiro

    2001-01-01

    The precise measurement of changes in left ventricular volume is important to elucidate the mechanisms of neurally mediated syncope. This study was conducted to determine whether or not a brand-new ambulatory radionuclide monitoring system (C-VEST system) can be clinically used to easily and precisely measure left ventricular volume and function in tilt testing. To assess the repeatability of the C-VEST system, 12 healthy volunteers (mean age 24±4 years old) underwent 20 minute head-up tilt testing and we measured the temporal changes in left ventricular volume and ejection fraction twice a day (first and second studies). To investigate the changes in the C-VEST measurements and the detector position in the first and second studies, tilt testing was performed with an 80-degree passive tilt, which is the same as the standard procedure used in diagnosing neurally mediated syncope. The coefficient of repeatability for both the C-VEST and detector position was well within the clinical range (coefficient of repeatability in left ventricular volume ranged from 1.7 to 2.8; coefficient of repeatability in the detector position ranged from 2.3 to 3.1). Precise evaluation of the left ventricular volume can be achieved by an ambulatory radionuclide monitoring system in tilt testing. (author)

  10. Tesla coil theoretical model and experimental verification

    OpenAIRE

    Voitkans, Janis; Voitkans, Arnis

    2014-01-01

    Abstract – In this paper a theoretical model of a Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wired format, where the line voltage is measured against electrically neutral space. It is shown that equivalent two-wired scheme can be found for a single-wired scheme and already known long line theory can be applied to a Tesla coil. Formulas for calculation of voltage in a Tesla coil by coordinate and calculation of resonance fre...

  11. The Swiss LCT-coil

    International Nuclear Information System (INIS)

    Vecsey, G.; Benz, H.; Horvath, I.

    1985-01-01

    With delivery of the coil to ORNL on February 4, 1984, the second phase of the Swiss Large Coil Program - design and construction - was terminated. Mainlines of the Swiss design concept are summarized and related to theoretical calculations, experimental results of the supporting program, fabricational experience and first successful test results. An attempt is made to draw preliminary conclusions with regard to the design of future toroidal systems such as NET

  12. Structure and Misfolding of the Flexible Tripartite Coiled-Coil Domain of Glaucoma-Associated Myocilin.

    Science.gov (United States)

    Hill, Shannon E; Nguyen, Elaine; Donegan, Rebecca K; Patterson-Orazem, Athéna C; Hazel, Anthony; Gumbart, James C; Lieberman, Raquel L

    2017-11-07

    Glaucoma-associated myocilin is a member of the olfactomedins, a protein family involved in neuronal development and human diseases. Molecular studies of the myocilin N-terminal coiled coil demonstrate a unique tripartite architecture: a Y-shaped parallel dimer-of-dimers with distinct tetramer and dimer regions. The structure of the dimeric C-terminal 7-heptad repeats elucidates an unexpected repeat pattern involving inter-strand stabilization by oppositely charged residues. Molecular dynamics simulations reveal an alternate accessible conformation in which the terminal inter-strand disulfide limits the extent of unfolding and results in a kinked configuration. By inference, full-length myocilin is also branched, with two pairs of C-terminal olfactomedin domains. Selected variants within the N-terminal region alter the apparent quaternary structure of myocilin but do so without compromising stability or causing aggregation. In addition to increasing our structural knowledge of naturally occurring extracellular coiled coils and biomedically important olfactomedins, this work broadens the scope of protein misfolding in the pathogenesis of myocilin-associated glaucoma. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Structure of a designed, right-handed coiled-coil tetramer containing all biological amino acids.

    Science.gov (United States)

    Sales, Mark; Plecs, Joseph J; Holton, James M; Alber, Tom

    2007-10-01

    The previous design of an unprecedented family of two-, three-, and four-helical, right-handed coiled coils utilized nonbiological amino acids to efficiently pack spaces in the oligomer cores. Here we show that a stable, right-handed parallel tetrameric coiled coil, called RH4B, can be designed entirely using biological amino acids. The X-ray crystal structure of RH4B was determined to 1.1 Angstrom resolution using a designed metal binding site to coordinate a single Yb(2+) ion per 33-amino acid polypeptide chain. The resulting experimental phases were particularly accurate, and the experimental electron density map provided an especially clear, unbiased view of the molecule. The RH4B structure closely matched the design, with equivalent core rotamers and an overall root-mean-square deviation for the N-terminal repeat of the tetramer of 0.24 Angstrom. The clarity and resolution of the electron density map, however, revealed alternate rotamers and structural differences between the three sequence repeats in the molecule. These results suggest that the RH4B structure populates an unanticipated variety of structures.

  14. Protection of large-stored-energy superconducting coils

    International Nuclear Information System (INIS)

    Kircher, F.

    1975-11-01

    When the stored energy of superconducting magnets increases, the problem of the protection of the coil when a quench occurs becomes more and more important, especially if the structure of the coil is such that the energy can be dissipated only in a small part of the coil. The aim of this paper is first to describe a program which enables to predict the increase of temperature inside the coil for several kinds of protection and to give results for KEK pulsed dipoles (under construction and planned for TRISTAN). (auth.)

  15. Magnetic field systems employing a superconducting D.C. field coil

    International Nuclear Information System (INIS)

    Bartram, T.C.; Hazell, P.A.

    1977-01-01

    Method and equipment for transferring energy to or from a direct-current superconducting field coil to change the magnetic field generated by the coil in which a second direct-current superconducting coil is used as a storage coil, and energy transfer between the field coil and the storage coil is effected automatically in dependence upon a control program. Preferably, the control program acts upon a variable transformer which is coupled by respective rectifier/inverters to the field and storage coils and also serves for intital supply of energy to the coils

  16. DEVELOPMENT OF COILED TUBING STRESS ANALYSIS

    Directory of Open Access Journals (Sweden)

    Davorin Matanović

    1998-12-01

    Full Text Available The use of coiled tubing is increasing rapidly with drilling of horizontal wells. To satisfy all requirements (larger mechanical stresses, larger fluid capacities the production of larger sizes and better material qualities was developed. Stresses due to axial forces and pressures that coiled tubing is subjected are close to its performance limits. So it is really important to know and understand the behaviour of coiled tubing to avoid its break, burst or collapse in the well.

  17. Small Intracranial Aneurysm Treatment Using Target (®) Ultrasoft (™) Coils.

    Science.gov (United States)

    Jindal, Gaurav; Miller, Timothy; Iyohe, Moronke; Shivashankar, Ravi; Prasad, Vikram; Gandhi, Dheeraj

    2016-06-01

    The introduction of small, soft, complex-shaped microcoils has helped facilitate the endovascular treatment of small intracranial aneurysms (IAs) over the last several years. Here, we evaluate the initial safety and efficacy of treating small IAs using only Target(®) Ultrasoft(™) coils. A retrospective review of a prospectively maintained clinical database at a single, high volume, teaching hospital was performed from September 2011 to May 2015. IAs smaller than or equal to 5.0 mm in maximal dimension treated with only Target(®) Ultrasoft(™) coils were included. A total of 50 patients with 50 intracranial aneurysms were included. Subarachnoid hemorrhage from index aneurysm rupture was the indication for treatment in 23 of 50 (46%) cases, and prior subarachnoid hemorrhage (SAH) from another aneurysm was the indication for treatment in eight of 50 (16%) cases. The complete aneurysm occlusion rate was 70% (35/50), the minimal residual aneurysm rate was 14% (7/50), and residual aneurysm rate was 16% (8/50). One intraoperative aneurysm rupture occurred. Three patients died during hospitalization from clinical sequelae of subarachnoid hemorrhage. Follow-up at a mean of 13.6 months demonstrated complete aneurysm occlusion in 75% (30/40) of cases, near complete occlusion in 15% (6/40) of cases, and residual aneurysm in 10% (4/40) of cases, all four of which were retreated. Our initial results using only Target(®) Ultrasoft(™) coils for the endovascular treatment of small intracranial aneurysms demonstrate initial excellent safety and efficacy profiles.

  18. High spatial resolution quantitative MR images: an experimental study of dedicated surface coils

    International Nuclear Information System (INIS)

    Gensanne, D; Josse, G; Lagarde, J M; Vincensini, D

    2006-01-01

    Measuring spin-spin relaxation times (T 2 ) by quantitative MR imaging represents a potentially efficient tool to evaluate the physicochemical properties of various media. However, noise in MR images is responsible for uncertainties in the determination of T 2 relaxation times, which limits the accuracy of parametric tissue analysis. The required signal-to-noise ratio (SNR) depends on the T 2 relaxation behaviour specific to each tissue. Thus, we have previously shown that keeping the uncertainty in T 2 measurements within a limit of 10% implies that SNR values be greater than 100 and 300 for mono- and biexponential T 2 relaxation behaviours, respectively. Noise reduction can be obtained either by increasing the voxel size (i.e., at the expense of spatial resolution) or by using high sensitivity dedicated surface coils (which allows us to increase SNR without deteriorating spatial resolution in an excessive manner). However, surface coil sensitivity is heterogeneous, i.e., it- and hence SNR-decreases with increasing depth, and the more so as the coil radius is smaller. The use of surface coils is therefore limited to the analysis of superficial structure such as the hypodermic tissue analysed here. The aim of this work was to determine the maximum limits of spatial resolution and depth compatible with reliable in vivo T 2 quantitative MR images using dedicated surface coils available on various clinical MR scanners. The average thickness of adipose tissue is around 15 mm, and the results obtained have shown that obtaining reliable biexponential relaxation analysis requires a minimum achievable voxel size of 13 mm 3 for a conventional volume birdcage coil and only of 1.7 mm 3 for the smallest available surface coil (23 mm in diameter). Further improvement in spatial resolution allowing us to detect low details in MR images without deteriorating parametric T 2 images can be obtained by image filtering. By using the non-linear selective blurring filter described in a

  19. COMPASS magnetic field coils and structure systems

    International Nuclear Information System (INIS)

    Crossland, R.T.; Booth, J.A.; Hayward, R.J.; Keogh, P.; Pratt, A.P.

    1987-01-01

    COMPASS is a new experimental toroidal assembly of compact design and with a wide range of physics objectives. It is required to operate either as a Tokamak or as a Reversed Field Pinch with interchangeable circular and dee-section vacuum vessels. The Toroidal field is produced by 16 rectangular coils of 4 turns with tapered conductors on the inside which nest together to form a vault to resist the centering forces. The coils are designed to produce a maximum field on axis of 2.1T which requires a current of 91 kA per turn. Two central solenoids and five pairs of coils symmetrically positioned above and below the machine equator provide the poloidal field. Both coil systems are supported form a mechanical support structure which surrounds the machine. This is primarily designed to resist out-of-plane forces on the TF coils but also acts as the base support for the PF coils and vacuum vessels. An illustration of the COMPASS Load Assembly is given and shows the D-shaped vacuum vessel, the major components and the various field windings

  20. Force delivery of Ni-Ti coil springs.

    Science.gov (United States)

    Manhartsberger, C; Seidenbusch, W

    1996-01-01

    Sentalloy springs (GAC, Central Islip, N.Y.) of the open and closed type were investigated with a special designed device. The closed coil springs were subjected to a tensile and the open coil springs to a compression test. After a first measurement, the springs were activated for a period of 4 weeks and then reinvestigated with the same procedure. It could be shown distinctly that, with the different coil springs, the force delivery given by the producer could be achieved only within certain limits. To remain in the martensitic plateau, changed activation ranges, and for the Sentalloy coil springs white and red of the open and closed type, also changed force deliveries had to be taken into account. There was a distinct decrease in force delivery between the first and second measurement. After considering the loading curves of all the Sentalloy coil springs and choosing the right activation range respective to the force delivery, it was found that the coil springs deliver a superior clinical behavior and open new treatment possibilities.

  1. DIPA-family coiled-coils bind conserved isoform-specific head domain of p120-catenin family: potential roles in hydrocephalus and heterotopia.

    Science.gov (United States)

    Markham, Nicholas O; Doll, Caleb A; Dohn, Michael R; Miller, Rachel K; Yu, Huapeng; Coffey, Robert J; McCrea, Pierre D; Gamse, Joshua T; Reynolds, Albert B

    2014-09-01

    p120-catenin (p120) modulates adherens junction (AJ) dynamics by controlling the stability of classical cadherins. Among all p120 isoforms, p120-3A and p120-1A are the most prevalent. Both stabilize cadherins, but p120-3A is preferred in epithelia, whereas p120-1A takes precedence in neurons, fibroblasts, and macrophages. During epithelial-to-mesenchymal transition, E- to N-cadherin switching coincides with p120-3A to -1A alternative splicing. These isoforms differ by a 101-amino acid "head domain" comprising the p120-1A N-terminus. Although its exact role is unknown, the head domain likely mediates developmental and cancer-associated events linked to p120-1A expression (e.g., motility, invasion, metastasis). Here we identified delta-interacting protein A (DIPA) as the first head domain-specific binding partner and candidate mediator of isoform 1A activity. DIPA colocalizes with AJs in a p120-1A- but not 3A-dependent manner. Moreover, all DIPA family members (Ccdc85a, Ccdc85b/DIPA, and Ccdc85c) interact reciprocally with p120 family members (p120, δ-catenin, p0071, and ARVCF), suggesting significant functional overlap. During zebrafish neural tube development, both knockdown and overexpression of DIPA phenocopy N-cadherin mutations, an effect bearing functional ties to a reported mouse hydrocephalus phenotype associated with Ccdc85c. These studies identify a novel, highly conserved interaction between two protein families that may participate either individually or collectively in N-cadherin-mediated development. © 2014 Markham et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Random coil chemical shift for intrinsically disordered proteins

    DEFF Research Database (Denmark)

    Kjærgaard, Magnus; Brander, Søren; Poulsen, Flemming Martin

    2011-01-01

    . Temperature has a non-negligible effect on the (13)C random coil chemical shifts, so temperature coefficients are reported for the random coil chemical shifts to allow extrapolation to other temperatures. The pH dependence of the histidine random coil chemical shifts is investigated in a titration series......, which allows the accurate random coil chemical shifts to be obtained at any pH. By correcting the random coil chemical shifts for the effects of temperature and pH, systematic biases of the secondary chemical shifts are minimized, which will improve the reliability of detection of transient secondary...

  3. Instrumentation and test of the Swiss LCT-coil

    International Nuclear Information System (INIS)

    Zichy, J.A.; Horvath, I.; Jakob, B.; Marinucci, C.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1985-01-01

    Just before Christmas 1983 the fabrication of the Swiss LCT-coil was finished. Tests at ambient temperature were performed on the factory site and after delivery in Oak Ridge. To avoid an undesirable delay of the rescheduled Partial-Array Test it was agreed to install the coil without its superconducting bus. In July 1984 the Swiss LCT-coil was successfully cooled down to LHe temperature together with the other two fully installed coils. Besides the cooling system, the instrumentation, measured parameters of the coil and some preliminary results obtained during the ongoing Partial-Array Test are presented

  4. Transcranial Magnetic Stimulation: An Automated Procedure to Obtain Coil-specific Models for Field Calculations

    DEFF Research Database (Denmark)

    Madsen, Kristoffer Hougaard; Ewald, Lars; Siebner, Hartwig R.

    2015-01-01

    Background: Field calculations for transcranial magnetic stimulation (TMS) are increasingly implemented online in neuronavigation systems and in more realistic offline approaches based on finite-element methods. They are often based on simplified and/or non-validated models of the magnetic vector...... potential of the TMS coils. Objective: To develop an approach to reconstruct the magnetic vector potential based on automated measurements. Methods: We implemented a setup that simultaneously measures the three components of the magnetic field with high spatial resolution. This is complemented by a novel...... approach to determine the magnetic vector potential via volume integration of the measured field. Results: The integration approach reproduces the vector potential with very good accuracy. The vector potential distribution of a standard figure-of-eight shaped coil determined with our setup corresponds well...

  5. Linear motor coil assembly and linear motor

    NARCIS (Netherlands)

    2009-01-01

    An ironless linear motor (5) comprising a magnet track (53) and a coil assembly (50) operating in cooperation with said magnet track (53) and having a plurality of concentrated multi-turn coils (31 a-f, 41 a-d, 51 a-k), wherein the end windings (31E) of the coils (31 a-f, 41 a-e) are substantially

  6. Polymer therapeutics with a coiled coil motif targeted against murine BCL1 leukemia

    Czech Academy of Sciences Publication Activity Database

    Pola, Robert; Laga, Richard; Ulbrich, Karel; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Kabešová, Martina; Kovář, Marek; Pechar, Michal

    2013-01-01

    Roč. 14, č. 3 (2013), s. 881-889 ISSN 1525-7797 R&D Projects: GA ČR GAP301/11/0325; GA AV ČR IAAX00500803 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:61389013 ; RVO:61388971 ; RVO:68378050 Keywords : coiled coil * polymer therapeutics * scFv Subject RIV: CD - Macromolecular Chemistry; EC - Immunology (MBU-M); EB - Genetics ; Molecular Biology (UMG-J) Impact factor: 5.788, year: 2013

  7. Radial displacement of clinical target volume in node negative head and neck cancer

    International Nuclear Information System (INIS)

    Jeon, Wan; Wu, Hong Gyun; Song, Sang Hyuk; Kim, Jung In

    2012-01-01

    To evaluate the radial displacement of clinical target volume in the patients with node negative head and neck (H and N) cancer and to quantify the relative positional changes compared to that of normal healthy volunteers. Three node-negative H and N cancer patients and fi ve healthy volunteers were enrolled in this study. For setup accuracy, neck thermoplastic masks and laser alignment were used in each of the acquired computed tomography (CT) images. Both groups had total three sequential CT images in every two weeks. The lymph node (LN) level of the neck was delineated based on the Radiation Therapy Oncology Group (RTOG) consensus guideline by one physician. We use the second cervical vertebra body as a reference point to match each CT image set. Each of the sequential CT images and delineated neck LN levels were fused with the primary image, then maximal radial displacement was measured at 1.5 cm intervals from skull base (SB) to caudal margin of LN level V, and the volume differences at each node level were quantified. The mean radial displacements were 2.26 (±1.03) mm in the control group and 3.05 (±1.97) in the H and N cancer patients. There was a statistically significant difference between the groups in terms of the mean radial displacement (p = 0.03). In addition, the mean radial displacement increased with the distance from SB. As for the mean volume differences, there was no statistical significance between the two groups. This study suggests that a more generous radial margin should be applied to the lower part of the neck LN for better clinical target coverage and dose delivery.

  8. Rice Cellulose SynthaseA8 Plant-Conserved Region Is a Coiled-Coil at the Catalytic Core Entrance

    Energy Technology Data Exchange (ETDEWEB)

    Rushton, Phillip S.; Olek, Anna T.; Makowski, Lee; Badger, John; Steussy, C. Nicklaus; Carpita, Nicholas C.; Stauffacher, Cynthia V. (NEU); (Purdue)

    2016-11-22

    The crystallographic structure of a rice (Oryza sativa) cellulose synthase, OsCesA8, plant-conserved region (P-CR), one of two unique domains in the catalytic domain of plant CesAs, was solved to 2.4 Å resolution. Two antiparallel α-helices form a coiled-coil domain linked by a large extended connector loop containing a conserved trio of aromatic residues. The P-CR structure was fit into a molecular envelope for the P-CR domain derived from small-angle X-ray scattering data. The P-CR structure and molecular envelope, combined with a homology-based chain trace of the CesA8 catalytic core, were modeled into a previously determined CesA8 small-angle X-ray scattering molecular envelope to produce a detailed topological model of the CesA8 catalytic domain. The predicted position for the P-CR domain from the molecular docking models places the P-CR connector loop into a hydrophobic pocket of the catalytic core, with the coiled-coil aligned near the entrance of the substrate UDP-glucose into the active site. In this configuration, the P-CR coiled-coil alone is unlikely to regulate substrate access to the active site, but it could interact with other domains of CesA, accessory proteins, or other CesA catalytic domains to control substrate delivery.

  9. The coiled-coil domain of MURC/cavin-4 is involved in membrane trafficking of caveolin-3 in cardiomyocytes.

    Science.gov (United States)

    Naito, Daisuke; Ogata, Takehiro; Hamaoka, Tetsuro; Nakanishi, Naohiko; Miyagawa, Kotaro; Maruyama, Naoki; Kasahara, Takeru; Taniguchi, Takuya; Nishi, Masahiro; Matoba, Satoaki; Ueyama, Tomomi

    2015-12-15

    Muscle-restricted coiled-coil protein (MURC), also referred to as cavin-4, is a member of the cavin family that works cooperatively with caveolins in caveola formation and function. Cavins are cytoplasmic proteins with coiled-coil domains and form heteromeric complexes, which are recruited to caveolae in cells expressing caveolins. Among caveolins, caveolin-3 (Cav3) is exclusively expressed in muscle cells, similar to MURC/cavin-4. In the heart, Cav3 overexpression contributes to cardiac protection, and its deficiency leads to progressive cardiomyopathy. Mutations in the MURC/cavin-4 gene have been identified in patients with dilated cardiomyopathy. In the present study, we show the role of MURC/cavin-4 as a caveolar component in the heart. In H9c2 cells, MURC/cavin-4 was localized at the plasma membrane, whereas a MURC/cavin-4 mutant lacking the coiled-coil domain (ΔCC) was primarily localized to the cytoplasm. ΔCC bound to Cav3 and impaired membrane localization of Cav3 in cardiomyocytes. Additionally, although ΔCC did not alter Cav3 mRNA expression, ΔCC decreased the Cav3 protein level. MURC/cavin-4 and ΔCC similarly induced cardiomyocyte hypertrophy; however, ΔCC showed higher hypertrophy-related fetal gene expression than MURC/cavin-4. ΔCC induced ERK activation in cardiomyocytes. Transgenic mice expressing ΔCC in the heart (ΔCC-Tg mice) showed impaired cardiac function accompanied by cardiomyocyte hypertrophy and marked interstitial fibrosis. Hearts from ΔCC-Tg mice showed a reduction of the Cav3 protein level and activation of ERK. These results suggest that MURC/cavin-4 requires its coiled-coil domain to target the plasma membrane and to stabilize Cav3 at the plasma membrane of cardiomyocytes and that MURC/cavin-4 functions as a crucial caveolar component to regulate cardiac function. Copyright © 2015 the American Physiological Society.

  10. Manufacturing Development of the NCSX Modular Coil Windings

    International Nuclear Information System (INIS)

    Chrzanowski, JH; Fogarty, PJ; Heitzenroeder, PJ; Meighan, T.; Nelson, B.; Raftopoulos, S.; Williamson, D.

    2005-01-01

    The modular coils on the National Compact Stellarator Experiment (NCSX) present a number of significant engineering challenges due to their complex shapes, requirements for high dimensional accuracy and the high current density required in the modular coils due to space constraints. In order to address these challenges, an R and D program was established to develop the conductor, insulation scheme, manufacturing techniques, and procedures. A prototype winding named Twisted Racetrack Coil (TRC) was of particular importance in dealing with these challenges. The TRC included a complex shaped winding form, conductor, insulation scheme, leads and termination, cooling system and coil clamps typical of the modular coil design. Even though the TRC is smaller in size than a modular coil, its similar complex geometry provided invaluable information in developing the final design, metrology techniques and development of manufacturing procedures. In addition a discussion of the development of the copper rope conductor including ''Keystoning'' concerns; the epoxy impregnation system (VPI) plus the tooling and equipment required to manufacture the modular coils will be presented

  11. Racetrack coil instability resulting from friction-heat generation at fixtures

    International Nuclear Information System (INIS)

    Yazawa, T.; Urata, M.; Chandratilleke, G.R.; Maeda, H.

    1993-01-01

    This paper describes racetrack coil instability resulting from friction-heat generation at fixtures and a preventive measure against it using a thermal barrier. Epoxy impregnated racetrack coils sometimes experience premature quenches due to frictional heat produced by coil slides at fixtures that are essential for the coil straight part to withstand the electromagnetic force. Experimentally, we confirmed for a small-sized racetrack coil that coil slides were actually occurring. The coil movements coupled with acoustic emissions were observed several times when the coil was energized. Each of them was about 10 μm, an equivalent of 20 mJ in frictional heat. This frictional heat was almost comparable with the analytical and experimental coil stability margins when an insulation layer was thin. One of the effective measures against the frictional heat is the thermal barrier, which is a thick insulation layer at the interface between the coil and the fixtures. By thickening the insulation layer from 0.36 to 1.00 mm, the coil stability margin increased from 100 to 200 mJ. (orig.)

  12. Large magnetic coils for fusion technology

    International Nuclear Information System (INIS)

    Komarek, P.; Ulbricht, A.

    1989-01-01

    This paper reviews the current status of research in this field and outlines future tasks and experiments for the Next European Torus (NET). Research and development work accomplished so far permits generation and safe operation of magnetic fields up to 9 T by means of NbTi coils. Fields up to 11 T are feasible if the coils are cooled with superfluid helium at 1.8 K. The potential of the Nb 3 Sn coils promise achievement of magnetic fields between 12 and 13 T. (MM) [de

  13. The impact of hybrid neurosurgeons on the outcomes of endovascular coiling for unruptured cerebral aneurysms

    Science.gov (United States)

    Bekelis, Kimon; Gottlieb, Dan; Labropoulos, Nicos; Su, Yin; Tzoumakaris, Stavropoula; Jabbour, Pasqual; MacKenzie, Todd A.

    2017-01-01

    Background The impact of combined practices on the outcomes of unruptured cerebral aneurysm coiling remains an issue of debate. We investigated the association of combined open and endovascular expertise with the outcomes of unruptured cerebral aneurysm coiling. Methods We performed a cohort study of 100% of Medicare fee-for-service claims data for elderly patients who underwent endovascular coiling for unruptured cerebral aneurysms from 2007 to 2012. In order to control for confounding we used propensity score conditioning, with mixed effects to account for clustering at the HRR level. Results During the study period, there were 11,716 patients, who underwent endovascular coiling for unruptured cerebral aneurysms, and met the inclusion criteria. Of these, 1,186 (10.1%) underwent treatment by hybrid neurosurgeons, and 10,530 (89.9%) by proceduralists who performed only endovascular coiling. Multivariable regression analysis with propensity score adjustment demonstrated lack of association of combined practice with 1-year postoperative mortality (OR, 0.84; 95% CI, 0.58–1.23), discharge to rehabilitation (OR, 1.0; 95% CI, 0.66–1.51), 30-day readmission rate (OR, 1.07; 95% CI, 0.83–1.38) and length of stay (LOS) (adjusted difference, 0.41; 95% CI, −0.26 to 1.09). Higher procedural volume was independently associated with improved outcomes. Conclusions In a cohort of Medicare patients, we did not demonstrate a difference in mortality, discharge to rehabilitation, readmission rate, and LOS between hybrid neurosurgeons, and proceduralists only performing endovascular coiling. Funding Supported by grants from the National Institute on Aging (PO1- AG19783), the National Institutes of Health Common Fund (U01-AG046830), and the National Center for Advancing Translational Sciences (NCATS) of the NIH (Dartmouth Clinical and Translational Science Institute-UL1TR001086). The funders had no role in the design or execution of the study. PMID:26918479

  14. Novel method of aligning ATF-1 coils

    International Nuclear Information System (INIS)

    Rome, J.A.; Harris, J.H.; Neilson, G.H.; Jernigan, T.C.

    1983-08-01

    The coils for the Advanced Toroidal Facility (ATF-1) torsatron may be easily aligned before the machine is placed under vacuum. This is done by creating nulls in the magnetic field by energizing the coils in various configurations. All of the nulls in vertical bar B vector vertical bar occur on the z-axis. When the nulls coincide, the coils are properly aligned

  15. A highly detailed FEM volume conductor model based on the ICBM152 average head template for EEG source imaging and TCS targeting.

    Science.gov (United States)

    Haufe, Stefan; Huang, Yu; Parra, Lucas C

    2015-08-01

    In electroencephalographic (EEG) source imaging as well as in transcranial current stimulation (TCS), it is common to model the head using either three-shell boundary element (BEM) or more accurate finite element (FEM) volume conductor models. Since building FEMs is computationally demanding and labor intensive, they are often extensively reused as templates even for subjects with mismatching anatomies. BEMs can in principle be used to efficiently build individual volume conductor models; however, the limiting factor for such individualization are the high acquisition costs of structural magnetic resonance images. Here, we build a highly detailed (0.5mm(3) resolution, 6 tissue type segmentation, 231 electrodes) FEM based on the ICBM152 template, a nonlinear average of 152 adult human heads, which we call ICBM-NY. We show that, through more realistic electrical modeling, our model is similarly accurate as individual BEMs. Moreover, through using an unbiased population average, our model is also more accurate than FEMs built from mismatching individual anatomies. Our model is made available in Matlab format.

  16. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PORJECT -9225

    International Nuclear Information System (INIS)

    Jolly, R.

    2009-01-01

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed ∼ 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of ∼ 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the 'Status of Chemical

  17. STATUS OF MECHANICAL SLUDGE REMOVAL AND COOLING COILS CLOSURE AT THE SAVANNAH RIVER SITE - F TANK FARM CLOSURE PROJECT - 9225

    Energy Technology Data Exchange (ETDEWEB)

    Jolly, R

    2009-01-06

    The Savannah River Site F-Tank Farm Closure project has successfully performed Mechanical Sludge Removal using the Waste on Wheels (WOW) system within two of its storage tanks. The Waste on Wheels (WOW) system is designed to be relatively mobile with the ability for many components to be redeployed to multiple tanks. It is primarily comprised of Submersible Mixer Pumps (SMPs), Submersible Transfer Pumps (STPs), and a mobile control room with a control panel and variable speed drives. These tanks, designated as Tank 6 and Tank 5 respectively, are Type I waste tanks located in F-Tank Farm (FTF) with a capacity of 2839 cubic meters (750,000 gallons) each. In addition, Type I tanks have 34 vertically oriented cooling coils and two horizontal cooling coil circuits along the tank floor. DOE intends to remove from service and operationally close Tank 5 and Tank 6 and other HLW tanks that do not meet current containment standards. After obtaining regulatory approval, the tanks and cooling coils will be isolated and filled with grout for long term stabilization. Mechanical Sludge Removal of the remaining sludge waste within Tank 6 removed {approx} 75% of the original 25,000 gallons in August 2007. Utilizing lessons learned from Tank 6, Tank 5 Mechanical Sludge Removal completed removal of {approx} 90% of the original 125 cubic meters (33,000 gallons) of sludge material in May 2008. The successful removal of sludge material meets the requirement of approximately 19 to 28 cubic meters (5,000 to 7,500 gallons) remaining prior to the Chemical Cleaning process. The Chemical Cleaning Process will utilize 8 wt% oxalic acid to dissolve the remaining sludge heel. The flow sheet for Chemical Cleaning planned a 20:1 volume ratio of acid to sludge for the first strike with mixing provided by the submersible mixer pumps. The subsequent strikes will utilize a 13:1 volume ratio of acid to sludge with no mixing. The results of the Chemical Cleaning Process are detailed in the &apos

  18. Dual levitated coils for antihydrogen production

    Science.gov (United States)

    Wofford, J. D.; Ordonez, C. A.

    2013-04-01

    Two coaxial superconducting magnetic coils that carry currents in the same direction and that are simultaneously levitated may serve for antihydrogen plasma confinement. The configuration may be suitable for use by a collaboration at the CERN Antiproton Decelerator facility to test fundamental symmetries between the properties of hydrogen and antihydrogen. Nested Penning traps are currently used to confine recombining antihydrogen plasma. Symmetry studies require the production of sufficiently cold antihydrogen. However, plasma drifts within nested Penning traps can increase the kinetic energy of antiprotons that form antihydrogen atoms. Dual levitated coils may serve to confine relatively large, cold, dense non-drifting recombining antihydrogen plasmas. A minimum-B magnetic field that is produced by the coils could provide for atom trapping. A toroidal plasma is confined between the coils. High density plasmas may be possible, by allowing plasma pressure to balance mechanical pressure to keep the coils apart. Progress is reported on theoretical and experimental efforts. The theoretical effort includes the development of a classical trajectory Monte Carlo simulation of confinement. The experimental effort includes levitation of a NdFeB permanent ring magnet, which produces a magnetic field that is qualitatively similar to the field that would be produced by the two coaxial superconducting magnetic coils. Liquid-nitrogen-cooled Bi-2223 high-temperature-superconducting components, with a critical temperature of 108 K, were used to levitate the ring magnet. An issue concerning keeping the plane of the levitated ring horizontal is discussed.

  19. Surface and volume three-dimensional displays of Tc-99m HMPAO brain SPECT images in stroke patients with three-head gamma camera

    International Nuclear Information System (INIS)

    Shih, W.J.; Slevin, J.T.; Schleenbaker, R.E.; Mills, B.J.; Magoun, S.L.; Ryo, U.Y.

    1991-01-01

    This paper evaluates volume and surface 3D displays in Tc-99m HMPAO brain SPECT imaging in stroke patients. Using a triple-head gamma camera interfaced with a 64-bit supercomputer, 20 patients with stroke were studied. Each patient was imaged 30-60 minutes after an intravenous injection of 20 mCi of Tc-99m HMPAO. SPECT images as well as planar images were routinely obtained; volume and surface 3D display then proceeded, with the process requiring 5-10 minutes. Volume and surface 3D displays show the brain from all angles; thus the location and extension of lesion(s) in the brain are much easier to appreciate. While a cerebral lesion(s) was more clearly delineated by surface 3D imaging, crossed cerebellar diaschisis in seven patients was clearly exhibited with volume 3D but not with surface 3D imaging. Volume and surface 3D displays enhance continuity of structures and understanding of spatial relationships

  20. Surge analysis of the MAGLEV coil for propulsion and guidance; Jiki fujoshiki tetsudo ni okeru suitei annaiyo coil no surge kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Ema, S [Numazu College of Technology, Shizuoka (Japan)

    1995-11-20

    The MAGLEV (magnetically levitated train) is now well along in development testing in Japan. MAGLEV is unlike conventional railways, so various problems lie in the technology of MAGLEV. One of them is surge analysis of the MAGLEV coil for propulsion and guidance (`coil for propulsion` for short). The coil for propulsion is installed on each side of the outdoor guideway. Thus, the power system of MAGLEV is always exposed to lightning and circuit switching. Accordingly, it is very important to do a rational insulation plan to prevent damage when surges enter the coils. In view of this situation I performed experiments using the mini model coils and clarified impulse voltage distribution at the end of each coil and simulated the surge characteristics by giving the inverted L equivalent circuit to the coil for propulsion. As a result, the measured values and calculated values were almost equal in the surge characteristics. Further, the surge characteristics of the Miyazaki test track and the future MAGLEV were examined. 10 refs., 17 figs., 1 tab.

  1. Coil Array Design Inspired on the Kepler's Lenten Pretzel

    International Nuclear Information System (INIS)

    Vazquez, F.; Solis, S. E.; Rodriguez, A. O.

    2008-01-01

    The RF coil arrays are an important part in Magnetic Resonance Imaging, since they are the main device for transmission and reception of the magnetic resonance signal. An RF coil array with a new configuration based on the Kepler's Lenten pretzel for the geocentric path of Mars is proposed in this work. The evenly distributed trajectories may serve as the basic configuration to form a coil array to adequately cover a region of interest for magnetic resonance experiments. The main goal is to investigate the electromagnetic properties of this coil array geometry to obtain an optimal design for its further construction. Hence, the electromagnetic properties of the coil array were numerical simulated using the finite element method and the quasi-static approach. Resulting simulations showed that there is an important concentration of magnetic field lines at the centre of the coil array. This is an advantage over other coil arrays where the magnetic field usually decreased at their geometrical centre. Both the electric and magnetic fields had also a very good uniformity. These characteristics made this coil design a good candidate for applications where the use of multi-coil technology is mandatory

  2. Motion Correction using Coil Arrays (MOCCA) for Free-Breathing Cardiac Cine MRI

    Science.gov (United States)

    Hu, Peng; Hong, Susie; Moghari, Mehdi H.; Goddu, Beth; Goepfert, Lois; Kissinger, Kraig V.; Hauser, Thomas H.; Manning, Warren J; Nezafat, Reza

    2014-01-01

    In this study, we present a motion compensation technique based on coil arrays (MOCCA) and evaluate its application in free-breathing respiratory self-gated cine MRI. MOCCA takes advantages of the fact that motion-induced changes in k-space signal are modulated by individual coil sensitivity profiles. In the proposed implementation of MOCCA self-gating for free-breathing cine MRI, the k-space center line is acquired at the beginning of each k-space segment for each cardiac cycle with 4 repetitions. For each k-space segment, the k-space center line acquired immediately before was used to select one of the 4 acquired repetitions to be included in the final self-gated cine image by calculating the cross-correlation between the k-space center line with a reference line. The proposed method was tested on a cohort of healthy adult subjects for subjective image quality and objective blood-myocardium border sharpness. The method was also tested on a cohort of patients to compare the left and right ventricular volumes and ejection fraction measurements with that of standard breath-hold cine MRI. Our data indicate that the proposed MOCCA method provides significantly improved image quality and sharpness compared to free-breathing cine without respiratory self-gating, and provides similar volume measurements compared with breath-hold cine MRI. PMID:21773986

  3. Three-axis orthogonal transceiver coil for eddy current sounding

    Science.gov (United States)

    Sukhanov, D.; Zavyalova, K.; Goncharik, M.

    2017-08-01

    We propose the new structure of three-axis transceiver magnetic-induction coil for eddy current probing. Due to the orientation of the coils, the direct signal from the transmitting coil to the receiving coil is minimized, which provided a high dynamic range. Sensitivity in all directions is provided by combining coils of different orientations. Numerical simulation and experimental studies of such a system have been carried out and confirmed the applicability of the proposed method and the mathematical model.

  4. Tolerance Evaluation of Poloidal Shear Keys for ITER TF Coil

    International Nuclear Information System (INIS)

    Fu Youkun; Neil, M.; Cees Jong

    2006-01-01

    There are 18 ITER Toroidal Field (TF) Coils. Unlike the other ITER coils, these coils are structurally linked. These links consist of friction between the coil legs in the central vault formed by the inner straight legs of the coils, four outer inter-coil structures (OIS) and one inner inter-coil structure (IIS). The OIS consists essentially of bands around all 18 coils to provide shear support by forming shear panels with the coil case, and the IIS consists of poloidal circular keys placed directly between the coil cases. Global analysis of the 'perfect' coil shape has shown high stresses in the IIS, in the poloidal keyways. Optimization has successfully reduced these stresses to acceptable values as regards the expected fatigue resistance. However it is necessary to confirm that the stresses are still acceptable when realistic values of geometry variations are included (i.e. the effect of coil and case tolerances). Because of the extensive mechanical links between coils the poloidal key stresses can also be affected by tolerances elsewhere in the case. As the first step in assessment of the possible variations in stresses, a substructure technique is being used to develop a local model of the key region. The result of geometry variations between individual coils is a loss in the 18 fold symmetry used to simplify previous analyses. With the new and optimized model it should be possible to relax the 18-fold symmetry, but a full analysis of all 18 coils is still not possible. Systematic ways of representing the tolerance variation in the finite element model have been developed so that parametric studies can be undertaken without a full reconstruction of the model. (author)

  5. Fault Analysis of ITER Coil Power Supply System

    International Nuclear Information System (INIS)

    Song, In Ho; Jun, Tao; Benfatto, Ivone

    2009-01-01

    The ITER magnet coils are all designed using superconductors with high current carrying capability. The Toroidal Field (TF) coils operate in a steadystate mode with a current of 68 kA and discharge the stored energy in case of quench with using 9 interleaved Fast Discharge Units (FDUs). The Central Solenoid (CS) coils and Poloidal Field (PF) coils operate in a pulse mode with currents of up to 45 kA and require fast variation of currents inducing more than 10 kV during normal operation on the coil terminals using Switching Network (SN) systems (CSs, PF1 and 6) and Booster and VS converters (PF2 to 5), which are series connected to Main converters. SN and FDU systems comprise high current DC circuit breakers and resistors for generating high voltage (SN) and to dissipate magnetic energy (FDUs). High transient voltages can arise due to the switching operation of SN and FD and the characteristics of resistors and stray components of DC distribution systems. Also, faults in power supply control such as shorts or grounding faults can produce higher voltages between terminals and between terminal and ground. Therefore, the design of the coil insulation, coil terminal regions, feeders, feed throughs, pipe breaks and instrumentation must take account of these high voltages during normal and abnormal conditions. Voltage insulation level can be defined and it is necessary to test the coils at higher voltages, to be sure of reliable performance during the lifetime of operation. This paper describes the fault analysis of the TF, CS and PF coil power supply systems, taking account of the stray parameter of the power supply and switching systems and inductively coupled superconducting coil models. Resistor grounding systems are included in the simulation model and all fault conditions such as converter hardware and software faults, switching system hardware and software faults, DC short circuits and single grounding faults are simulated. The occurrence of two successive faults

  6. A precise technique for manufacturing correction coil

    International Nuclear Information System (INIS)

    Schieber, L.

    1992-01-01

    An automated method of manufacturing correction coils has been developed which provides a precise embodiment of the coil design. Numerically controlled machines have been developed to accurately position coil windings on the beam tube. Two types of machines have been built. One machine bonds the wire to a substrate which is wrapped around the beam tube after it is completed while the second machine bonds the wire directly to the beam tube. Both machines use the Multiwire reg-sign technique of bonding the wire to the substrate utilizing an ultrasonic stylus. These machines are being used to manufacture coils for both the SSC and RHIC

  7. Primary Tumor Volume Is an Important Predictor of Clinical Outcomes Among Patients With Locally Advanced Squamous Cell Cancer of the Head and Neck Treated With Definitive Chemoradiotherapy

    International Nuclear Information System (INIS)

    Strongin, Anna; Yovino, Susannah; Taylor, Rodney; Wolf, Jeffrey; Cullen, Kevin; Zimrin, Ann; Strome, Scott; Regine, William; Suntharalingam, Mohan

    2012-01-01

    Purpose: The tumor volume has been established as a significant predictor of outcomes among patients with head-and-neck cancer undergoing radiotherapy alone. The present study attempted to add to the existing data on tumor volume as a prognostic factor among patients undergoing chemoradiotherapy. Methods and Materials: A total of 78 patients who had undergone definitive chemoradiotherapy for Stage III-IV squamous cell cancer of the hypopharynx, oropharynx, and larynx were identified. The primary tumor volumes were calculated from the treatment planning computed tomography scans, and these were correlated to the survival and tumor control data obtained from the retrospective analysis. Results: The interval to progression correlated with the primary tumor volume (p = .007). The critical cutoff point for the tumor volume was identified as 35 cm 3 , and patients with a tumor volume 3 had a significantly better prognosis than those with a tumor volume >35 cm 3 at 5 years (43% vs. 71%, p = .010). Longer survival was also correlated with smaller primary tumor volumes (p = .022). Similarly, patients with a primary tumor volume 3 had a better prognosis in terms of both progression-free survival (61% vs. 33%, p = .004) and overall survival (84% vs. 41%, p = 3 larger than tumors without locoregional failure (p = .028) and 27.1-cm 3 larger than tumors that recurred as distant metastases (p = .020). Conclusion: The results of our study have shown that the primary tumor volume is a significant prognostic factor in patients with advanced cancer of the head and neck undergoing definitive chemoradiotherapy and correlated with the treatment outcomes better than the T or N stage.

  8. Measurement of a Conduction Cooled Nb3Sn Racetrack Coil

    Science.gov (United States)

    Kim, HS; Kovacs, C.; Rochester, J.; Sumption, MD; Tomsic, M.; Peng, X.; Doll, D.

    2017-12-01

    Use of superconducting coils for wind turbines and electric aircraft is of interest because of the potential for high power density and weight reduction. Here we test a racetrack coil developed as a proof-of-concept for cryogen-free superconducting motors and generators. The coil was wound with 1209 m of 0.7-mm-diameter insulated tube-type Nb3Sn wire. The coil was epoxy-impregnated, instrumented, covered with numerous layers of aluminized mylar insulation, and inserted vertically into a dewar. The system was cooled to 4.2 K, and a few inches of liquid helium was allowed to collect at the bottom of the dewar but below the coil. The coil was cooled by conduction via copper cooling bars were attached to the coil but also were immersed in the liquid helium at their lower ends. Several current tests were performed on the coil, initially in voltage mode, and one run in current mode. The maximum coil Ic at 4.2 K was 480 A, generating 3.06 T at the surface of the coil. The coil met the design targets with a noticeable margin.

  9. Three-phase receiving coil of wireless power transmission system for gastrointestinal robot

    Science.gov (United States)

    Jia, Z. W.; Jiang, T.; Liu, Y.

    2017-11-01

    Power shortage is the bottleneck for the wide application of gastrointestinal (GI) robot. Owing to the limited volume and free change of orientation of the receiving set in GI trace, the optimal of receiving set is the key point to promote the transmission efficiency of wireless power transmission system. A new type of receiving set, similar to the winding of three-phase asynchronous motor, is presented and compared with the original three-dimensional orthogonal coil. Considering the given volume and the space utilization ratio, the three-phase and the three-orthogonal ones are the parameters which are optimized and compared. Both the transmission efficiency and stability are analyzed and verified by in vitro experiments. Animal experiments show that the new one could provide at least 420 mW power in volume of Φ11 × 13mm with a uniformity of 78.3% for the GI robot.

  10. Eddy current testing probe with dual half-cylindrical coils

    Science.gov (United States)

    Bae, Byung-Hoon; Choi, Jung-Mi; Kim, Soo-Yong

    2000-02-01

    We have developed a new eddy current probe composed of a dual half-cylindrical (2HC) coil as an exciting coil and a sensing coil that is placed in the small gap of the 2HC coil. The 2HC coil induces a linear eddy current on the narrow region within the target medium. The magnitude of eddy current has a maximum peak with the narrow width, underneath the center of the exciting 2HC coil. Because of the linear eddy current, the probe can be used to detect not only the existence of a crack but also its direction in conducting materials. Using specimen with a machined crack, and varying the exciting frequency from 0.5 to 100 kHz, we investigated the relationships between the direction of crack and the output voltage of the sensing coil.

  11. Development of superconducting pulsed poloidal coil in JAERI

    International Nuclear Information System (INIS)

    Shimamoto, S.; Okuno, K.; Ando, T.; Tsuji, H.

    1990-01-01

    In the Japan Atomic Energy Research Institute, (JAERI), development work on pulsed superconductors and coils started in 1979, aiming at the demonstration of the applicability of superconducting technologies to pulsed poloidal coils in a fusion reactor. Initially our effort was concentrated mainly on the development of pool-cooled large-current pulsed conductors. Over the past ten years, superconducting technology has made great progress and the forced-flow cooled coil has assumed great importance in the development work. Now the Demo Poloidal Coil Project is in progress in JAERI, and three large forced-flow cooled coils have so far been fabricated and tested. Many improvements have been achieved in ac-loss performance and mechanical characteristics. (author)

  12. Can radiological changes in lymph node volume during treatment predict success of radiation therapy in patients with locally advanced head and neck squamous cell carcinoma?

    International Nuclear Information System (INIS)

    Mishra, Sanju; Hammond, Alexander; Read, Nancy; Venkatesan, Varagur; Warner, Andrew; Winquist, Eric; Nichols, Anthony

    2013-01-01

    Assessment of nodal response after radiotherapy (RT) for head and neck squamous cell carcinoma is difficult, as both CT and positron emission tomography scanning have limited predictive value for residual disease. We sought to measure changes in nodal volume during RT to determine whether such changes are predictive of nodal disease control. Patients with locally advanced head and neck squamous cell carcinoma treated with 70Gy of radical RT (±chemotherapy or anti-epidermal growth factor receptor (EGFR) antibodies) were eligible. Baseline pre-RT scans and cone-beam CT scans done at the outset of treatment and at weeks 3, 5 and 7 (cone-beam CTs 1, 2, 3 and 4, respectively) were deformably coregistered, and 3D nodal volumes were measured. Thirty-eight eligible patients were identified. The main primary tumour site was oropharyngeal; most patients had stage IVa disease. Twenty-seven patients received concurrent platinum-based chemotherapy, 10 received only an EGFR inhibitor with RT and one received RT alone. Twelve patients had a failure in the neck. After week 1 of treatment, a 4% mean decrease in nodal volume was observed, increasing to 40% at week 7. Platinum-based chemotherapy achieved significantly greater decreases in nodal volume than EGFR inhibitors (44 vs. 25%; P=0.026). Advanced tumour stage predicted neck failure (P=0.002), but nodal volumes did not correlate with neck control. Changes in nodal volume are minimal initially during RT but accelerate during the latter weeks of therapy. This study suggests that chemotherapy achieves a greater decrease in nodal volume than EGFR inhibitors and that nodal changes do not predict disease control in the neck.

  13. Testing of the European LCT coil in the TOSKA facility

    International Nuclear Information System (INIS)

    Herz, W.; Katheder, H.; Krauth, H.

    1985-01-01

    The EURATOM-LCT coil was tested as a single coil in TOSKA. Load cells were mounted in the support structure to monitor forces between coil and vacuum vessel during cooldown and coil charging. Disturbances of components by magnetic fringing fields were carefully considered. To investigate the mechanical behaviour and compare it with FEM-calculations the coil was equipped with strain gauge rosettes and displacement transducers. Van Mises stresses in the coil case are in agreement with calculations. As known from special investigations during coil manufacturing the average radial Young modulus varies along the periphery caused by the different curvatures. This leads to differences with FEM-calculation (larger gaps between winding and coil case) assuming a larger constant Young modulus performed at the beginning of the project

  14. Steering Electromagnetic Fields in MRI: Investigating Radiofrequency Field Interactions with Endogenous and External Dielectric Materials for Improved Coil Performance at High Field

    Science.gov (United States)

    Vaidya, Manushka

    Although 1.5 and 3 Tesla (T) magnetic resonance (MR) systems remain the clinical standard, the number of 7 T MR systems has increased over the past decade because of the promise of higher signal-to-noise ratio (SNR), which can translate to images with higher resolution, improved image quality and faster acquisition times. However, there are a number of technical challenges that have prevented exploiting the full potential of ultra-high field (≥ 7 T) MR imaging (MRI), such as the inhomogeneous distribution of the radiofrequency (RF) electromagnetic field and specific energy absorption rate (SAR), which can compromise image quality and patient safety. To better understand the origin of these issues, we first investigated the dependence of the spatial distribution of the magnetic field associated with a surface RF coil on the operating frequency and electrical properties of the sample. Our results demonstrated that the asymmetries between the transmit (B1+) and receive (B 1-) circularly polarized components of the magnetic field, which are in part responsible for RF inhomogeneity, depend on the electric conductivity of the sample. On the other hand, when sample conductivity is low, a high relative permittivity can result in an inhomogeneous RF field distribution, due to significant constructive and destructive interference patterns between forward and reflected propagating magnetic field within the sample. We then investigated the use of high permittivity materials (HPMs) as a method to alter the field distribution and improve transmit and receive coil performance in MRI. We showed that HPM placed at a distance from an RF loop coil can passively shape the field within the sample. Our results showed improvement in transmit and receive sensitivity overlap, extension of coil field-of-view, and enhancement in transmit/receive efficiency. We demonstrated the utility of this concept by employing HPM to improve performance of an existing commercial head coil for the

  15. Comparison of endorectal coil and nonendorectal coil T2W and diffusion-weighted MRI at 3 Tesla for localizing prostate cancer: correlation with whole-mount histopathology.

    Science.gov (United States)

    Turkbey, Baris; Merino, Maria J; Gallardo, Elma Carvajal; Shah, Vijay; Aras, Omer; Bernardo, Marcelino; Mena, Esther; Daar, Dagane; Rastinehad, Ardeshir R; Linehan, W Marston; Wood, Bradford J; Pinto, Peter A; Choyke, Peter L

    2014-06-01

    To compare utility of T2-weighted (T2W) MRI and diffusion-weighted MRI (DWI-MRI) obtained with and without an endorectal coil at 3 Tesla (T) for localizing prostate cancer. This Institutional Review Board-approved study included 20 patients (median prostate-specific antigen, 8.4 ng/mL). Patients underwent consecutive prostate MRIs at 3T, first with a surface coil alone, then with combination of surface, endorectal coils (dual coil) followed by robotic assisted radical prostatectomy. Lesions were mapped at time of acquisition on dual-coil T2W, DWI-MRI. To avoid bias, 6 months later nonendorectal coil T2W, DWI-MRI were mapped. Both MRI evaluations were performed by two readers blinded to pathology with differences resolved by consensus. A lesion-based correlation with whole-mount histopathology was performed. At histopathology 51 cancer foci were present ranging in size from 2 to 60 mm. The sensitivity of the endorectal dual-coil, nonendorectal coil MRIs were 0.76, 0.45, respectively. PPVs for endorectal dual-coil, nonendorectal coil MRI were 0.80, 0.64, respectively. Mean size of detected lesions with nonendorectal coil MRI were larger than those detected by dual-coil MRI (22 mm versus 17.4 mm). Dual-coil prostate MRI detected more cancer foci than nonendorectal coil MRI. While nonendorectal coil MRI is an attractive alternative, physicians performing prostate MRI should be aware of its limitations. Copyright © 2013 Wiley Periodicals, Inc.

  16. Retrieval of prolapsed coils during endovascular treatment of cerebral aneurysms

    International Nuclear Information System (INIS)

    Dinc, Hasan; Kuzeyli, Kayhan; Kosucu, Polat; Sari, Ahmet; Cekirge, Saruhan

    2006-01-01

    One of the feared complications during detachable coil embolization of cerebral aneurysms is herniation of a coil loop into the parent artery. Although coil protrusion of one or two loops into the parent vessel may not cause adverse events and in some instances can be ignored, the authors believe that coil retrieval is indicated if a free end is seen pulsating along the blood flow stream to prevent migration of the entire coil mass. In one patient, a microballoon was inflated across the neck of the aneurysm during retrieval of a herniated coil to prevent further coil herniation from the aneurysm sac. We present two cases in which prolapsed coils were successfully retrieved either using a microsnare and balloon combination or a microsnare alone. This report focuses on the efficacy of the Amplatz microsnare for such retrievals and the circumstances in which a herniated coil needs to be retrieved. We report two cases in which embolization coils partially migrated into the parent artery during endovascular treatment of cerebral aneurysm and were retrieved using the Amplatz Nitinol microsnare. (orig.)

  17. Slip-spring model of entangled rod-coil block copolymers

    Science.gov (United States)

    Wang, Muzhou; Likhtman, Alexei E.; Olsen, Bradley D.

    2015-03-01

    Understanding the dynamics of rod-coil block copolymers is important for optimal design of functional nanostructured materials for organic electronics and biomaterials. Recently, we proposed a reptation theory of entangled rod-coil block copolymers, predicting the relaxation mechanisms of activated reptation and arm retraction that slow rod-coil dynamics relative to coil and rod homopolymers, respectively. In this work, we introduce a coarse-grained slip-spring model of rod-coil block copolymers to further explore these mechanisms. First, parameters of the coarse-grained model are tuned to match previous molecular dynamics simulation results for coils, rods, and block copolymers. For activated reptation, rod-coil copolymers are shown to disfavor configurations where the rod occupies curved portions of the entanglement tube of randomly varying curvature created by the coil ends. The effect of these barriers on diffusion is quantitatively captured by considering one-dimensional motion along an entanglement tube with a rough free energy potential. Finally, we analyze the crossover between the two mechanisms. The resulting dynamics from both mechanisms acting in combination is faster than from each one individually.

  18. HTS planar gradiometer consisting of SQUID with multi-turn input coil and large pickup coil made of GdBCO coated conductor

    International Nuclear Information System (INIS)

    Tsukamoto, Akira; Adachi, Seiji; Oshikubo, Yasuo; Hato, Tsunehiro; Enpuku, Keiji; Sugisaki, Masaki; Arai, Eiichi; Tanabe, Keiichi

    2013-01-01

    Highlights: ► We fabricated a large HTS gradiometer with 350-mm-long baseline. ► A 6-turn gradiometric planar pickup was made of a HTS coated conductor. ► A 26-turn HTS input coil chip was stacked on a HTS thin film gradiometer chip. ► A mechanical balancing structure was also implemented. ► The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 . -- Abstract: We have investigated the fabrication of a high-temperature superconducting (HTS) gradiometer with long baseline for geophysical applications. The proof-of-concept gradiometer using a 1-turn pickup coil made of a GdBa 2 Cu 3 O y coated conductor (GCC) and 5.5-turn input coil integrated on a SQUID was fabricated in our previous work. In this study, we have optimized the device structure to improve the frequency response, gradient field sensitivity and gradiometer balance. The fabricated flux transformer consists of a 6-turn planar gradiometric pickup coil and a 26-turn input coil made of an HTS thin film. A low-melting-point alloy was used to connect polished Ag surfaces of the CGG pickup coil and Au pads of the input coil. An HTS SQUID was formed on another substrate and stacked on the input coil. A mechanical balancing structure using three pieces of GCC as a superconducting shield was also implemented. The fabricated gradiometer showed a gradient field noise of 0.8 fT/cm Hz 1/2 in the white noise regions, a gradiometer balance of 1/142, and a cutoff frequency of 9 Hz corresponding to a 2 mΩ contact resistance between the pickup coil and the input coil

  19. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    International Nuclear Information System (INIS)

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio; Ichinose, Junji; Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori; Nakajima, Jun; Nagase, Takahide; Ohishi, Nobuya; Takai, Daiya

    2015-01-01

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization

  20. Oncogenic TPM3-ALK activation requires dimerization through the coiled-coil structure of TPM3

    Energy Technology Data Exchange (ETDEWEB)

    Amano, Yosuke; Ishikawa, Rie; Sakatani, Toshio [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Ichinose, Junji [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Sunohara, Mitsuhiro; Watanabe, Kousuke; Kage, Hidenori [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nakajima, Jun [Department of Cardiothoracic Surgery, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Nagase, Takahide; Ohishi, Nobuya [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Takai, Daiya, E-mail: dtakai-ind@umin.ac.jp [Department of Respiratory Medicine, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Department of Clinical Laboratory, The University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan)

    2015-02-13

    Inflammatory myofibroblastic tumor (IMT) is a mesenchymal tumor that can arise from anywhere in the body. Anaplastic lymphoma kinase (ALK) gene rearrangements, most often resulting in the tropomyosin 3 (TPM3)-ALK fusion gene, are the main causes of IMT. However, the mechanism of malignant transformation in IMT has yet to be elucidated. The purpose of this study was to clarify the role of the TPM3 region in the transformation of IMT via TPM3-ALK. Lentivirus vectors containing a TPM3-ALK fusion gene lacking various lengths of TPM3 were constructed and expressed in HEK293T and NIH3T3 cell lines. Focus formation assay revealed loss of contact inhibition in NIH3T3 cells transfected with full-length TPM3-ALK, but not with ALK alone. Blue-native polyacrylamide gel electrophoresis (BN-PAGE) revealed that TPM3-ALK dimerization increased in proportion to the length of TPM3. Western blot showed phosphorylation of ALK, ERK1/2, and STAT3 in HEK293T cells transfected with TPM3-ALK. Thus, the coiled-coil structure of TPM3 contributes to the transforming ability of the TPM3-ALK fusion protein, and longer TPM3 region leads to higher dimer formation. - Highlights: • TPM3-ALK fusion protein dimerizes through the coiled-coil structure of TPM3. • Longer coiled-coil structure of TPM3 leads to higher TPM3-ALK dimer formation. • Presence of TPM3-ALK dimer leads to ALK, STAT3, and ERK1/2 phosphorylation. • Presence of TPM3-ALK leads to loss of contact inhibition. • BN-PAGE is a simple technique for visualizing oncogenic dimerization.

  1. The design of the SULTAN inner coil

    International Nuclear Information System (INIS)

    Franken, W.M.P.; Spoorenberg, C.J.G.

    1981-12-01

    The background field of the first phase of the test facility SULTAN will be generated by two concentric solenoids: a 6 Tesla outer coil with a free bore of 1.3 m and an inner coil for increasing the field to 8 Tesla. The free bore (cold) will be 1.055 m. The final design of the 8 Tesla inner coil is described. The coil will operate at an overall current density of 23 x 10 6 A/m 2 . It will be cooled directly by forced flow supercritical helium. A hollow conductor is applied, composed of a rectangular copper tube and a 16 strands Rutherford cable, soldered on one side of the tube. The copper tube will be cold worked to cope with the high stress level (165 MPa). The design base (field and stress analysis, cooling, stability), the mechanical design and the instrumentation will be specified. The design and construction of the coil is a part of the collaboration between ECN and Holec Transformer Group

  2. Superconducting coil system and methods of assembling the same

    Science.gov (United States)

    Rajput-Ghoshal, Renuka; Rochford, James H.; Ghoshal, Probir K.

    2016-01-19

    A superconducting magnet apparatus is provided. The superconducting magnet apparatus includes a power source configured to generate a current; a first switch coupled in parallel to the power source; a second switch coupled in series to the power source; a coil coupled in parallel to the first switch and the second switch; and a passive quench protection device coupled to the coil and configured to by-pass the current around the coil and to decouple the coil from the power source when the coil experiences a quench.

  3. Salt effects on hydrophobic interaction and charge screening in the folding of a negatively charged peptide to a coiled coil (leucine zipper).

    Science.gov (United States)

    Jelesarov, I; Dürr, E; Thomas, R M; Bosshard, H R

    1998-05-19

    The stability of a coiled coil or leucine zipper is controlled by hydrophobic interactions and electrostatic forces between the constituent helices. We have designed a 30-residue peptide with the repeating seven-residue pattern of a coiled coil, (abcdefg)n, and with Glu in positions e and g of each heptad. The glutamate side chains prevented folding at pH values above 6 because of electrostatic repulsion across the helix dimer interface as well as within the individual helices. Protonation of the carboxylates changed the conformation from a random coil monomer to a coiled coil dimer. Folding at alkaline pH where the peptide had a net charge of -7e was promoted by the addition of salts. The nature of the charge screening cation was less important than that of the anion. The high salt concentrations (>1 M) necessary to induce folding indicated that the salt-induced folding resulted from alterations in the protein-water interaction. Folding was promoted by the kosmotropic anions sulfate and fluoride and to a lesser extent by the weak kosmotrope formate, whereas chloride and the strong chaotrope perchlorate were ineffective. Kosmotropes are excluded from the protein surface, which is preferentially hydrated, and this promotes folding by strengthening hydrophobic interactions at the coiled coil interface. Although charge neutralization also contributed to folding, it was effective only when the screening cation was partnered by a good kosmotropic anion. Folding conformed to a two-state transition from random coil monomer to coiled coil dimer and was enthalpy driven and characterized by a change in the heat capacity of unfolding of 3.9 +/- 1.2 kJ mol-1 K-1. The rate of folding was analyzed by fluorescence stopped-flow measurements. Folding occurred in a biphasic reaction in which the rapid formation of an initial dimer (kf = 2 x 10(7) M-1 s-1) was followed by an equally rapid concentration-independent rearrangement to the folded dimer (k > 100 s-1).

  4. The New York Head-A precise standardized volume conductor model for EEG source localization and tES targeting.

    Science.gov (United States)

    Huang, Yu; Parra, Lucas C; Haufe, Stefan

    2016-10-15

    In source localization of electroencephalograpic (EEG) signals, as well as in targeted transcranial electric current stimulation (tES), a volume conductor model is required to describe the flow of electric currents in the head. Boundary element models (BEM) can be readily computed to represent major tissue compartments, but cannot encode detailed anatomical information within compartments. Finite element models (FEM) can capture more tissue types and intricate anatomical structures, but with the higher precision also comes the need for semi-automated segmentation, and a higher computational cost. In either case, adjusting to the individual human anatomy requires costly magnetic resonance imaging (MRI), and thus head modeling is often based on the anatomy of an 'arbitrary' individual (e.g. Colin27). Additionally, existing reference models for the human head often do not include the cerebro-spinal fluid (CSF), and their field of view excludes portions of the head and neck-two factors that demonstrably affect current-flow patterns. Here we present a highly detailed FEM, which we call ICBM-NY, or "New York Head". It is based on the ICBM152 anatomical template (a non-linear average of the MRI of 152 adult human brains) defined in MNI coordinates, for which we extended the field of view to the neck and performed a detailed segmentation of six tissue types (scalp, skull, CSF, gray matter, white matter, air cavities) at 0.5mm(3) resolution. The model was solved for 231 electrode locations. To evaluate its performance, additional FEMs and BEMs were constructed for four individual subjects. Each of the four individual FEMs (regarded as the 'ground truth') is compared to its BEM counterpart, the ICBM-NY, a BEM of the ICBM anatomy, an 'individualized' BEM of the ICBM anatomy warped to the individual head surface, and FEMs of the other individuals. Performance is measured in terms of EEG source localization and tES targeting errors. Results show that the ICBM-NY outperforms

  5. Postoperative volume balance

    DEFF Research Database (Denmark)

    Frost, H; Mortensen, C.R.; Secher, Niels H.

    2017-01-01

    In healthy humans, stroke volume (SV) and cardiac output (CO) do not increase with expansion of the central blood volume by head-down tilt or administration of fluid. Here, we exposed 85 patients to Trendelenburg's position about one hour after surgery while cardiovascular variables were determin...

  6. BPX toroidal field coil design

    International Nuclear Information System (INIS)

    Heitzenvoeder, D.J.

    1992-01-01

    This paper reports on the toroidal field (TF) coil system of the Burning Plasma Experiment (BPX) which consists of (18) beryllium copper magnets arrayed in a wedged configuration with a major radius of 2.6 meters and a field strength capability on axis of 9.0 Tesla. The toroidal array is constructed from six (3)-coil modules to facilitate remote recovery in the event of a magnet failure after nuclear activation precludes hands-on servicing. The magnets are of a modified Bitter plate design with partial cases of type 316-LN stainless steel welded with Inconel 182 weld wire. The coil turn plates are fabricated from CDA C17510 beryllium copper with optimized mechanical, thermal, and electrical characteristics. joints within the turns and between turns are made by welding with C17200 filler wire. Cryogenic cooling is employed to reduce power dissipation and to enhance performance. The magnets are cooled between experimental pulses by pressurized liquid nitrogen flowing through channels in the edges of the coil turns. This arrangement makes possible one full-power pulse per hour. Electrical insulation consists of polyimide-glass sheets bonded in place with vacuum-pressure impregnated epoxy/glass

  7. Finite element coiled cochlea model

    Science.gov (United States)

    Isailovic, Velibor; Nikolic, Milica; Milosevic, Zarko; Saveljic, Igor; Nikolic, Dalibor; Radovic, Milos; Filipović, Nenad

    2015-12-01

    Cochlea is important part of the hearing system, and thanks to special structure converts external sound waves into neural impulses which go to the brain. Shape of the cochlea is like snail, so geometry of the cochlea model is complex. The simplified cochlea coiled model was developed using finite element method inside SIFEM FP7 project. Software application is created on the way that user can prescribe set of the parameters for spiral cochlea, as well as material properties and boundary conditions to the model. Several mathematical models were tested. The acoustic wave equation for describing fluid in the cochlea chambers - scala vestibuli and scala timpani, and Newtonian dynamics for describing vibrations of the basilar membrane are used. The mechanical behavior of the coiled cochlea was analyzed and the third chamber, scala media, was not modeled because it does not have a significant impact on the mechanical vibrations of the basilar membrane. The obtained results are in good agreement with experimental measurements. Future work is needed for more realistic geometry model. Coiled model of the cochlea was created and results are compared with initial simplified coiled model of the cochlea.

  8. Demonstration poloidal coil test facility

    International Nuclear Information System (INIS)

    Sato, Masahiko; Kawano, Katumi; Tada, Eisuke

    1989-01-01

    A new compact cryogenic cold compressor was developed by Japan Atomic Energy Research Institute (JAERI) in collaboration with Isikawajima-Harima Heavy Industries Co., Ltd. (IHI) in order to produce the supercritical helium below 4.2 K for Demonstration Poloidal Coils (DPC) which are forced-flow cooled type superconducting pulse coils. This compressor is one of key components for DPC test facility. The cold compressor reduces pressure in liquid helium bath, which contains liquid helium of around 3,000 l, down to 0.5 atm efficiently. Consequently, supercritical helium down to 3.5 K is produced and supplied to the DPC coils. A centrifugal compressor with dynamic gas bearing is selected as a compressor mechanism to realize high adiabatic efficiency and large flow rate. In this performance tests, the compressor was operated for 220 h at saturated condition from 0.5 to 1.0 atm without any failure. High adiabatic efficiency (more than 60 %) is achieved with wide flow range (25-65 g/s) and the design value is fully satisfied. The compressor can rotate up to 80,000 rpm at maximum then the coil supply temperature of supercritical helium is 3.5 K. (author)

  9. Superior MR images with electronically tuned and decoupled surface coils

    International Nuclear Information System (INIS)

    Ingwersen, H.; Freisen, L.; Friedrich, A.; Kess, H.; Krause, N.; Meissner, R.; Popp, W.

    1987-01-01

    In order to gain free positioning of surface coils in linearly polarized transmitting coils, it is absolutely necessary to electronically decouple both coils. For circularly polarized transmitting coils, decoupling is necessary in any case. In addition to the decoupling circuit automatic electronic tuning of the surface coils is used to gain the bast ratio of signal to noise. This combination of electronically decoupling and tuning of the surface coils yields intrinsic patient safety concerning local power deposition as well as free positioning and easy handling at the same time. Block diagrams, circuit schemes, and MR images obtained with several different surface coils are shown

  10. Improved SNR of phased-array PERES coils via simulation study

    International Nuclear Information System (INIS)

    RodrIguez, Alfredo O; Medina, LucIa

    2005-01-01

    A computational comparison of signal-to-noise ratio (SNR) was performed between a conventional phased array of two circular-shaped coils and a petal resonator surface array. The quasi-static model and phased-array optimum SNR were combined to derive an SNR formula for each array. Analysis of mutual inductance between coil petals was carried out to compute the optimal coil separation and optimum number of petal coils. Mutual interaction between coil arrays was not included in the model because this does not drastically affect coil performance. Phased arrays of PERES coils show a 114% improvement in SNR over that of the simplest circular configuration. (note)

  11. New technique for wiring SSC superconducting sextupole corrector coils

    International Nuclear Information System (INIS)

    Leon, B.

    1985-01-01

    There exists in the electronics industry, a technology for the manufacture of printed circuit (PC) boards which is directly transferable into the creation of highly controlled coils, such as the SSC sextupole superconducting corrector coils. This technology, which uses a process of laying down insulated wire in highly controlled patterns has heretofore been confined exclusively to the manufacture of high density printed circuit (PC) boards, possibly due to an ignorance of its utility in the field of precision winding of coils. This ability to fix wires in a well defined location can be used to produce precision wound coils in a very cost-effective manner. These coils may be superior in quality to conventionally made coils. Before describing what can be created with this technology, it is necessary to take a look at this coil winding process, the MULTIWIRE process, and the industry which has utilized this technology

  12. High voltage investigations for ITER coils

    International Nuclear Information System (INIS)

    Fink, S.; Fietz, W.H.

    2006-01-01

    The superconducting ITER magnets will be excited with high voltage during operation and fast discharge. Because the coils are complex systems the internal voltage distribution can differ to a large extent from the ideal linear voltage distribution. In case of fast excitations internal voltages between conductor and radial plate of a TF coil can be even higher than the terminal voltage of 3.5 kV to ground which appears during a fast discharge without a fault. Hence the determination of the transient voltage distribution is important for a proper insulation co-ordination and will provide a necessary basis for the verification of the individual insulation design and the choice of test voltages and waveforms. Especially the extent of internal overvoltages in case of failures, e. g. malfunction of discharge units and / or arcing is of special interest. Transient calculations for the ITER TF coil system have been performed for fast discharge and fault scenarios to define test voltages for ITER TF. The conductor and radial plate insulation of the ITER TF Model Coil were exposed at room temperature to test voltages derived from the results from these calculations. Breakdown appeared during the highest AC voltage step. A fault scenario for the TF fast discharge system is presented where one fault triggers a second fault, leading to considerable voltage stress. In addition a FEM model of Poloidal Field Coil 3 for the determination of the parameters of a detailed network model is presented in order to prepare detailed investigations of the transient voltage behaviour of the PF coils. (author)

  13. A drift-pump coil design for a Tandem Mirror Reactor

    International Nuclear Information System (INIS)

    Neef, W.S.; Logan, B.

    1983-01-01

    This paper describes both the theory and mechanical design behind a new concept for trapped ion removal from tandem mirror end plugs. The design has been developed for the Mirror Advanced Reactor Study (MARS). The new drift-pump coils replace charge exchange pump beams. Pump beams consume large amounts of power and seriously reduce reactor performance. Drift-pump coils consume only a few megawatts of power and introduce no added burden to the reactor vacuum pumps. In addition, they are easy to replace. The coils are similar in shape to a paper clip and are located at two positions in each end plug. The coils between the transition coil and the first anchor yinyang serve to remove ions trapped in the magnetic well just outboard of the high field choke coil. The coils located between the anchor coil set and the plug coil set remove sloshing ions and trapped cold ions from the plug region

  14. Design of Electromagnetic Moving-coil type Voice Coil Motor for Scanning mirror of Barcode reader

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Bu Hyun; Lee, Jeong Woo; Shim, Hyun Ho; Park, Sang Goo [Hanbat National Univ., Daejeon (Korea, Republic of); Lee, Seung Yop [Sogang Univ., Seoul (Korea, Republic of)

    2016-01-15

    A voice coil actuator with moving coil type for scanning mirror system of barcode reader has been developed. The actuator has a simple structure including a magnet, a coil and a pin. The performance of the actuator is analyzed by a linearized theoretical model. And the dynamic performance of the proposed actuator is predicted through motor constant and restoring constant obtained by finite element simulations. The theoretical model was verified by the prototype which has 64 Hz resonance frequency and 60 deg reflecting angle. We also discovered that that 3 V input can make the actuator rotate over 61.8 deg reflecting angle at 50 Hz resonance frequency. The proposed actuator can simplify its driving configuration because of its implementation of open-loop control.

  15. Computing the partial volume of pressure vessels

    Energy Technology Data Exchange (ETDEWEB)

    Wiencke, Bent [Nestle USA, Corporate Engineering, 800 N. Brand Blvd, Glendale, CA 91203 (United States)

    2010-06-15

    The computation of the partial and total volume of pressure vessels with various type of head profiles requires detailed knowledge of the head profile geometry. Depending on the type of head profile the derivation of the equations can become very complex and the calculation process cumbersome. Certain head profiles require numerical methods to obtain the partial volume, which for most application is beyond the scope of practicability. This paper suggests a unique method that simplifies the calculation procedure for the various types of head profiles by using one common set of equations without the need for numerical or complex computation methods. For ease of use, all equations presented in this paper are summarized in a single table format for horizontal and vertical vessels. (author)

  16. Dynamic multi-channel TMS with reconfigurable coil.

    Science.gov (United States)

    Jiang, Ruoli; Jansen, Ben H; Sheth, Bhavin R; Chen, Ji

    2013-05-01

    Investigations of the causal involvement of particular brain areas and interconnections in behavior require an external stimulation system with reasonable spatio-temporal resolution. Current transcranial magnetic stimulation (TMS) technology is limited to stimulating a single brain area once in a given trial. Here, we present a feasibility study for a novel TMS system based on multi-channel reconfigurable coils. With this hardware, researchers will be able to stimulate multiple brain sites in any temporal order in a trial. The system employs a wire-mesh coil, constructed using x- and y-directional wires. By varying the current direction and/or strength on each wire, we can configure the proposed mesh-wire coil into a standard loop coil and figure-eight coil of varying size. This provides maximum flexibility to the experimenter in that the location and extent of stimulation on the brain surface can be modified depending on experimental requirement. Moreover, one can dynamically and automatically modify the site(s) of stimulation several times within the span of seconds. By pre-storing various sequences of excitation patterns inside a control unit, one can explore the effect of dynamic TMS on behavior, in associative learning, and as rehabilitative therapy. Here, we present a computer simulation and bench experiments that show the feasibility of the dynamically-reconfigurable coil.

  17. Optimal design for MRI surface coils

    International Nuclear Information System (INIS)

    Rivera, M.; Vaquero, J.J.; Santos, A.; Pozo, F. del; Ruiz-Cabello, J.

    1997-01-01

    To demonstrate the possibility of designing and constructing specific surface coils or antennae for MRI viewing of each particular tissue producing better results than those provided by a general purpose surface coil. The study was performed by the Bioengineering and Telemedicine Group of Madrid Polytechnical University and was carried out at the Pluridisciplinary Institute of the Universidad Complutense in Madrid, using a BMT-47/40 BIOSPEC resonance unit from Bruker. Surface coils were custom-designed and constructed for each region to be studied, and optimized to make the specimen excitation field as homogeneous as possible, in addition to reducing the brightness artifact. First, images were obtained of a round, water phantom measuring 50 mm in diameter, after which images of laboratory rats and rabbits were obtained. The images thus acquired were compared with the results obtained with the coil provided by the manufacturer of the equipment, and were found to be of better quality, allowing the viewing of deeper tissue for the specimen as well as reducing the brightness artifact. The construction of surface coils for viewing specific tissues or anatomical regions improves image quality. The next step in this ongoing project will be the application of these concepts to units designed for use in humans. (Author) 14 refs

  18. Thomson's Jumping Ring over a Long Coil

    Science.gov (United States)

    Jeffery, Rondo N.; Amiri, Farhang

    2018-01-01

    The classic jumping ring apparatus consists of a coil with an iron core that extends out of the coil. A copper or aluminum ring placed over the iron core jumps upward when AC power is applied to the coil. In this paper we will examine a modified design of the jumping ring apparatus, called the "long-coil design." It allows the ring to…

  19. Evaluation of atlas based auto-segmentation for head and neck target volume delineation in adaptive/replan IMRT

    International Nuclear Information System (INIS)

    Speight, R; Lindsay, R; Harding, R; Sykes, J; Karakaya, E; Prestwich, R; Sen, M

    2014-01-01

    IMRT for head and neck patients requires clinicians to delineate clinical target volumes (CTV) on a planning-CT (>2hrs/patient). When patients require a replan-CT, CTVs must be re-delineated. This work assesses the performance of atlas-based autosegmentation (ABAS), which uses deformable image registration between planning and replan-CTs to auto-segment CTVs on the replan-CT, based on the planning contours. Fifteen patients with planning-CT and replan-CTs were selected. One clinician delineated CTVs on the planning-CTs and up to three clinicians delineated CTVs on the replan-CTs. Replan-CT volumes were auto-segmented using ABAS using the manual CTVs from the planning-CT as an atlas. ABAS CTVs were edited manually to make them clinically acceptable. Clinicians were timed to estimate savings using ABAS. CTVs were compared using dice similarity coefficient (DSC) and mean distance to agreement (MDA). Mean inter-observer variability (DSC>0.79 and MDA<2.1mm) was found to be greater than intra-observer variability (DSC>0.91 and MDA<1.5mm). Comparing ABAS to manual CTVs gave DSC=0.86 and MDA=2.07mm. Once edited, ABAS volumes agreed more closely with the manual CTVs (DSC=0.87 and MDA=1.87mm). The mean clinician time required to produce CTVs reduced from 169min to 57min when using ABAS. ABAS segments volumes with accuracy close to inter-observer variability however the volumes require some editing before clinical use. Using ABAS reduces contouring time by a factor of three.

  20. Magnetic field, inductance of circular coil and solenoids

    International Nuclear Information System (INIS)

    Ramirez Hoyos, P.; Barbero Garcia, A.J.; Mafe Matoses, S.

    1995-01-01

    The self-inductance of a current-carrying circular coil and the mutual inductances of the Helmholtz coils and coil-sole-noid systems have been measured and calculated theoretically. The experiments and the required equipment are suited to an undergraduate laboratory. The theoretical calculation involve the use of simple numerical integration methods for evaluating the magnetic field of the circular coil and the inductances. The calculated values agree with the measurements within the experimental error. The material presented can be proposed to the students as a laboratory project. (Author) 7 refs

  1. Test of a model coil of TORE SUPRA

    International Nuclear Information System (INIS)

    Aymar, R.; Claudet, G.; Disdier, F.; Hamelin, J.; Libeyre, P.; Mayaux, C.; Meuris, C.; Parain, J.; Torossian, A.

    1980-10-01

    Inside the qualifying test programme, supporting the 'Tore Supra' Tokamak design, a reduced scale model of coil was fabricated by an industrial firm and fully tested. This model coil is provided with the same features as those retained for the complete magnet and is built according to the same design; in particular the Nb-Ti mixed matrix monolithic conductor is cooled by a pressurized superfluid helium bath, supplied from a model of the envisaged complete cryogenic system. Three main objectives have been assigned to this test: operation of the cryogenic system, stability of the superconductor winding under high mechanical stresses, mainly shear, and simulation of coil quench conditions. For this purpose, the model coil (outside bore 0.8 m) is located inside a 4 T magnet, an hydraulic jack applies a 1 MN force along a coil diameter. Operation of the model coil has been found highly stable, under the conditions of applied field and forces, a coil transition can be induced by an electrical heater only when the superfluid bath temperature is close to Tlambda. The 1.8 K cryogenic system provides a useful calorimetric measure of total losses induced inside the winding; its operation has been quite simple and reliable, permitting a sure extrapolation to a much larger size

  2. The planning target volume margins detected by cone-beam CT in head and neck cancer patients treated by image-guided intensity modulated radiotherapy

    International Nuclear Information System (INIS)

    Liu Jun; Chen Hong; Zhang Guoqiao; Chen Fei; Zhang Li

    2011-01-01

    Objective: To determine the planning target volume margins of head and neck cancers treated by image guided radiotherapy (IGRT). Methods: 464 sets cone beam computed tomography (CBCT) images before setup correction and 126 sets CBCT images after correction were obtained from 51 head and neck cancer patients treated by IGRT in our department. The systematic and random errors were evaluated by either online or offline correction through registering the CBCT images to the planning CT. The data was divided into 3 groups according to the online correction times. Results: The isocenter shift were 0.37 mm ± 2.37 mm, -0.43 mm ± 2.30 mm and 0.47 mm ± 2.65 mm in right-left (RL), anterior-posterior (AP) and superior-inferior (SI) directions respectively before correction, and it reduced to 0.08 mm ± 0.68 mm, -0.03 mm ± 0.74 mm and 0.03 mm ± 0.80 mm when evaluated by 126 sets corrected CBCT images. The planning target volume (PTV) margin from clinical target volume (CTV) before correction were: 6.41 mm, 6.15 mm and 7.10 mm based on two parameter model, and it reduced to 1.78 mm, 1.80 mm and 1.97 mm after correction. The PTV margins were 3.8 mm, 3.8 mm, 4.0 mm; 4.0 mm, 4.0 mm, 5.0 mm and 5.4 mm, 5.2 mm, 6.1 mm in RL, AP and SI respectively when online-correction times were more than 15 times, 11-15 times, 5-10 times. Conclusions: CBCT-based on online correction reduce the PTV margin for head and neck cancers treated by IGRT and ensure more precise dose delivery and less normal tissue complications. (authors)

  3. Mechanical study of 20 MJ superconducting pulse coil

    International Nuclear Information System (INIS)

    Hattori, Yasuhide; Shimamoto, Susumu

    1985-09-01

    This paper describes calculation methods and computer codes of stress distribution in a circular-shaped superconducting pulsed coils. The stress problems of a large sized superconducting coil, for example, are discussed for 20 MJ pool-cooled pulse coil. Young's modulus of a stranded flat cable, low rigidity, is measured and evaluated. (author)

  4. Coiled coil peptides as universal linkers for the attachment of recombinant proteins to polymer therapeutics

    Czech Academy of Sciences Publication Activity Database

    Pechar, Michal; Pola, Robert; Laga, Richard; Ulbrich, Karel; Bednárová, Lucie; Maloň, Petr; Sieglová, Irena; Král, Vlastimil; Fábry, Milan; Vaněk, O.

    2011-01-01

    Roč. 12, č. 10 (2011), s. 3645-3655 ISSN 1525-7797 R&D Projects: GA ČR GA203/08/0543; GA MŠk 1M0505 Institutional research plan: CEZ:AV0Z40500505; CEZ:AV0Z40550506; CEZ:AV0Z50520514 Keywords : coiled coil * polymer the rapeutics * drug targeting Subject RIV: CC - Organic Chemistry Impact factor: 5.479, year: 2011

  5. Coiled tubing drilling with supercritical carbon dioxide

    Science.gov (United States)

    Kolle , Jack J.

    2002-01-01

    A method for increasing the efficiency of drilling operations by using a drilling fluid material that exists as supercritical fluid or a dense gas at temperature and pressure conditions existing at a drill site. The material can be used to reduce mechanical drilling forces, to remove cuttings, or to jet erode a substrate. In one embodiment, carbon dioxide (CO.sub.2) is used as the material for drilling within wells in the earth, where the normal temperature and pressure conditions cause CO.sub.2 to exist as a supercritical fluid. Supercritical carbon dioxide (SC--CO.sub.2) is preferably used with coiled tube (CT) drilling equipment. The very low viscosity SC--CO.sub.2 provides efficient cooling of the drill head, and efficient cuttings removal. Further, the diffusivity of SC--CO.sub.2 within the pores of petroleum formations is significantly higher than that of water, making jet erosion using SC--CO.sub.2 much more effective than water jet erosion. SC--CO.sub.2 jets can be used to assist mechanical drilling, for erosion drilling, or for scale removal. A choke manifold at the well head or mud cap drilling equipment can be used to control the pressure within the borehole, to ensure that the temperature and pressure conditions necessary for CO.sub.2 to exist as either a supercritical fluid or a dense gas occur at the drill site. Spent CO.sub.2 can be vented to the atmosphere, collected for reuse, or directed into the formation to aid in the recovery of petroleum.

  6. Performance verification tests of JT-60SA CS model coil

    Energy Technology Data Exchange (ETDEWEB)

    Obana, Tetsuhiro, E-mail: obana.tetsuhiro@LHD.nifs.ac.jp [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Murakami, Haruyuki [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Takahata, Kazuya; Hamaguchi, Shinji; Chikaraishi, Hirotaka; Mito, Toshiyuki; Imagawa, Shinsaku [National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Kizu, Kaname; Natsume, Kyohei; Yoshida, Kiyoshi [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan)

    2015-11-15

    Highlights: • The performance of the JT-60SA CS model coil was verified. • The CS model coil comprised a quad-pancake wound with a Nb{sub 3}Sn CIC conductor. • The CS model coil met the design requirements. - Abstract: As a final check of the coil manufacturing method of the JT-60 Super Advanced (JT-60SA) central solenoid (CS), we verified the performance of a CS model coil. The model coil comprised a quad-pancake wound with a Nb{sub 3}Sn cable-in-conduit conductor. Measurements of the critical current, joint resistance, pressure drop, and magnetic field were conducted in the verification tests. In the critical-current measurement, the critical current of the model coil coincided with the estimation derived from a strain of −0.62% for the Nb{sub 3}Sn strands. As a result, critical-current degradation caused by the coil manufacturing process was not observed. The results of the performance verification tests indicate that the model coil met the design requirements. Consequently, the manufacturing process of the JT-60SA CS was established.

  7. The IEA large coil task test results in IFSMTF

    International Nuclear Information System (INIS)

    Lubell, M.S.; Clinard, J.A.; Dresner, L.

    1987-01-01

    The Large Coil Task (LCT) is an international collaboration of the United States, EURATOM, Japan, and Switzerland to develop large superconducting magnets for fusion reactors. The testing phase of LCT was completed on September 3, 1987. All six coils exceeded the design goals, both as single coils and in six-coil toroidal tests. In addition, a symmetric torus test was performed in which a maximum field of 9 T was reached in all coils simultaneously. These are by far the largest magnets (either in size, weight, or stored energy) ever to achieve such a field. 6 refs., 6 figs., 3 tabs

  8. Magnetic resonance butterfly coils: Design and application for hyperpolarized 13C studies

    DEFF Research Database (Denmark)

    Giovannetti, Giulio; Frijia, Francesca; Attanasio, Simona

    2013-01-01

    Hyperpolarized 13C magnetic resonance spectroscopy in pig models enables cardiac metabolism assessment and provides a powerful tool for heart physiology studies, although the low molar concentration of derivate metabolites gives rise to technological limitations in terms of data quality. The desi...... throughout the volume of interest for cardiac imaging in pig. Experimental SNR-vs-depth profiles, extracted from the [1-13C]acetate phantom chemical shift image (CSI), permitted to highlight the performance of the proposed coils configuration. © 2013 Elsevier Ltd. All rights reserved....

  9. Radiation resistant ducted superconductive coil

    International Nuclear Information System (INIS)

    Schleich, A.

    1976-01-01

    The radiation-resistant ducted superconductive coil consists of a helically wound electrical conductor constituted by an electrically conductive core of superconductive material provided with a longitudinally extending cooling duct. The core is covered with a layer of inorganic insulating material and the duct is covered by an electrically conductive metallic gas-tight sheath. The metallic sheaths on adjacent turns of the coil are secured together. 2 Claims, 4 Drawing Figures

  10. Tesla Coil Theoretical Model and its Experimental Verification

    Directory of Open Access Journals (Sweden)

    Voitkans Janis

    2014-12-01

    Full Text Available In this paper a theoretical model of Tesla coil operation is proposed. Tesla coil is described as a long line with distributed parameters in a single-wire form, where the line voltage is measured across electrically neutral space. By applying the principle of equivalence of single-wire and two-wire schemes an equivalent two-wire scheme can be found for a single-wire scheme and the already known long line theory can be applied to the Tesla coil. A new method of multiple reflections is developed to characterize a signal in a long line. Formulas for calculation of voltage in Tesla coil by coordinate and calculation of resonance frequencies are proposed. The theoretical calculations are verified experimentally. Resonance frequencies of Tesla coil are measured and voltage standing wave characteristics are obtained for different output capacities in the single-wire mode. Wave resistance and phase coefficient of Tesla coil is obtained. Experimental measurements show good compliance with the proposed theory. The formulas obtained in this paper are also usable for a regular two-wire long line with distributed parameters.

  11. Fabrication of the new poloidal field coils for DIII-D

    International Nuclear Information System (INIS)

    Heiberger, M.; Bott, R.J.; Gallix, R.; Street, R.W.

    1986-01-01

    The six new poloidal field coil assemblies manufactured by GA Technologies (GA) for DIII-D range in diameter from 3.4-5.3 m. Two of them are 55-turn field shaping coils. Each of the other four combines one turn of the ohmic heating coil and a 55-turn field shaping coil into a single unit encased in a stainless steel box beam. These four box beams, which provide support for the coils inside, are part of the overall coil and vacuum vessel support structure. They also serve as molds for vacuum impregnating the coils with epoxy. All coils are made of hollow, water-cooled copper conductor. The larger field shaping coils are designed for 20 kA, 3 sec rectangular current pulses with 40 0 C temperature rise. The ohmic heating coil turns are capable of currents of up to 110 kA. The conductor is wrapped with Kapton and fiberglass tape; Kapton provides 1000 V/turn and 28 kV coil-to-ground insulation. The fiberglass acts as wick and reinforcement for the vacuum impregnated epoxy resin which bonds the coil together. The fabrication process is described in detail and illustrated. Tools and setups used for special operations such as induction brazing, conductor winding, conductor bending, and vacuum impregnation are presented. The quality control procedures followed to guarantee sound brazed joints are explained. The electrical tests performed at several stages of fabrication, especially the 1000 V/turn impulse tests conducted before potting to facilitate fault detection and repair, are described

  12. Application of high-temperature superconducting coil for internal ring devices

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Yuichi [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan)]. E-mail: ogawa@ppl.k.u-tokyo.ac.jp; Morikawa, Junji [High Temperature Plasma Center, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8568 (Japan); Mito, Toshiyuki [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Yanagi, Nagato [National Institute for Fusion Science, Oroshi, Toki, Gifu 509-5292 (Japan); Iwakuma, Masataka [Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581 (Japan)

    2006-11-15

    A high-temperature superconducting (HTS) coil is applied for plasma confinement devices, where plasma is confined with a magnetic field of a floating HTS coil. The internal coil device mini-RT with a BSCCO tape has been constructed, in which the coil major radius and magnetomotive force are 0.15 m and 50 kA, respectively. The coil is cooled to 20 K with a helium gas by using a demountable transfer tube and check valve system. The coil current is directly excited by the external power supply with demountable electrodes. To reduce the heat load, the electrodes were cooled with liquid nitrogen. The levitation experiment of the HTS coil has been carried out. The position of the HTS coil is measured by laser sensors, and is feedback-controlled with the levitation coil current. We have succeeded in levitating the HTS coil during 1 h with accuracy of less than 20 {mu}m. The magnetic field strength near the internal coil is around 0.1 T, and a radio-frequency wave of 2.45 GHz is applied for the plasma production. At the floating condition of the HTS coil, a high-density plasma with more than 10{sup 17} m{sup -3}, which is higher than the cut-off density of a 2.45 GHz microwave, has been produced. A new device RT-1 with a major radius of 0.25 m and a magnetomotive force of 250 kA is under construction, and a persistent current has been demonstrated. The feasibility on YBCO tape is briefly discussed.

  13. Giant High-Flow Type Pulmonary Arteriovenous Malformation: Coil Embolization with Flow Control by Balloon Occlusion and an Anchored Detachable Coil

    International Nuclear Information System (INIS)

    Kanematsu, Masayuki; Kondo, Hiroshi; Goshima, Satoshi; Tsuge, Yusuke; Watanabe, Haruo; Moriyama, Noriyuki

    2012-01-01

    Pulmonary arteriovenous malformations (PAVMs) are often treated by pushable fibered or non-fibered microcoils, using an anchor or scaffold technique or with an Amplatzer plug through a guiding sheath. When performing percutaneous transcatheter microcoil embolization, there is a risk of coil migration, particularly with high-flow type PAVMs. The authors report on a unique treatment in a patient with a giant high-flow PAVM whose nidus had a maximum diameter of 6 cm. A detachable coil, not detached from a delivery wire (an anchored detachable coil), was first placed in the feeding artery under flow control by balloon occlusion, and then multiple microcoils were packed proximally to the anchored detachable coil. After confirming the stability of the microcoils during a gradual deflation of the balloon, we finally released the first detachable coil. The nidus was reduced in size to 15 mm at one year postoperatively.

  14. Dose–Volume Modeling of Brachial Plexus-Associated Neuropathy After Radiation Therapy for Head-and-Neck Cancer: Findings From a Prospective Screening Protocol

    International Nuclear Information System (INIS)

    Chen, Allen M.; Wang, Pin-Chieh; Daly, Megan E.; Cui, Jing; Hall, William H.; Vijayakumar, Srinivasan; Phillips, Theodore L.; Farwell, D. Gregory; Purdy, James A.

    2014-01-01

    Purpose: Data from a prospective screening protocol administered for patients previously irradiated for head-and-neck cancer was analyzed to identify dosimetric predictors of brachial plexus-associated neuropathy. Methods and Materials: Three hundred fifty-two patients who had previously completed radiation therapy for squamous cell carcinoma of the head and neck were prospectively screened from August 2007 to April 2013 using a standardized self-administered instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from radiation therapy was 40 months (range, 6-111 months). A total of 177 patients (50%) underwent neck dissection. Two hundred twenty-one patients (63%) received concurrent chemotherapy. Results: Fifty-one patients (14%) reported brachial plexus-related neuropathic symptoms with the most common being ipsilateral pain (50%), numbness/tingling (40%), and motor weakness and/or muscle atrophy (25%). The 3- and 5-year estimates of freedom from brachial plexus-associated neuropathy were 86% and 81%, respectively. Clinical/pathological N3 disease (P<.001) and maximum radiation dose to the ipsilateral brachial plexus (P=.01) were significantly associated with neuropathic symptoms. Cox regression analysis revealed significant dose–volume effects for brachial plexus-associated neuropathy. The volume of the ipsilateral brachial plexus receiving >70 Gy (V70) predicted for symptoms, with the incidence increasing with V70 >10% (P<.001). A correlation was also observed for the volume receiving >74 Gy (V74) among patients treated without neck dissection, with a cutoff of 4% predictive of symptoms (P=.038). Conclusions: Dose–volume guidelines were developed for radiation planning that may limit brachial plexus-related neuropathies

  15. Dose–Volume Modeling of Brachial Plexus-Associated Neuropathy After Radiation Therapy for Head-and-Neck Cancer: Findings From a Prospective Screening Protocol

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Allen M., E-mail: amchen@mednet.ucla.edu [Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California (United States); Wang, Pin-Chieh [Department of Radiation Oncology, University of California, Los Angeles, David Geffen School of Medicine, Los Angeles, California (United States); Daly, Megan E.; Cui, Jing; Hall, William H. [Department of Radiation Oncology, University of California, Davis, Comprehensive Cancer Center, Sacramento, California (United States); Vijayakumar, Srinivasan [Department of Radiation Oncology, University of Mississippi School of Medicine, Jackson, Mississippi (United States); Phillips, Theodore L. [Department of Radiation Oncology, University of California, Davis, Comprehensive Cancer Center, Sacramento, California (United States); Farwell, D. Gregory [Department of Otolaryngology–Head and Neck Surgery, University of California, Davis, Comprehensive Cancer Center, Sacramento, California (United States); Purdy, James A. [Department of Radiation Oncology, University of California, Davis, Comprehensive Cancer Center, Sacramento, California (United States)

    2014-03-15

    Purpose: Data from a prospective screening protocol administered for patients previously irradiated for head-and-neck cancer was analyzed to identify dosimetric predictors of brachial plexus-associated neuropathy. Methods and Materials: Three hundred fifty-two patients who had previously completed radiation therapy for squamous cell carcinoma of the head and neck were prospectively screened from August 2007 to April 2013 using a standardized self-administered instrument for symptoms of neuropathy thought to be related to brachial plexus injury. All patients were disease-free at the time of screening. The median time from radiation therapy was 40 months (range, 6-111 months). A total of 177 patients (50%) underwent neck dissection. Two hundred twenty-one patients (63%) received concurrent chemotherapy. Results: Fifty-one patients (14%) reported brachial plexus-related neuropathic symptoms with the most common being ipsilateral pain (50%), numbness/tingling (40%), and motor weakness and/or muscle atrophy (25%). The 3- and 5-year estimates of freedom from brachial plexus-associated neuropathy were 86% and 81%, respectively. Clinical/pathological N3 disease (P<.001) and maximum radiation dose to the ipsilateral brachial plexus (P=.01) were significantly associated with neuropathic symptoms. Cox regression analysis revealed significant dose–volume effects for brachial plexus-associated neuropathy. The volume of the ipsilateral brachial plexus receiving >70 Gy (V70) predicted for symptoms, with the incidence increasing with V70 >10% (P<.001). A correlation was also observed for the volume receiving >74 Gy (V74) among patients treated without neck dissection, with a cutoff of 4% predictive of symptoms (P=.038). Conclusions: Dose–volume guidelines were developed for radiation planning that may limit brachial plexus-related neuropathies.

  16. Superconducting coil manufacturing method for low current dc beam line magnets

    International Nuclear Information System (INIS)

    Satti, J.A.

    1977-01-01

    A method of manufacturing superconducting multipole coils for 40 to 50 kG dc beam line magnets with low current is described. Small coils were built and tested successfully to short sample characteristics. The coils did not train after the first cooldown. The coils are porous and well cooled to cope with mechanical instability and energy deposited in the coil from the beam particles. The coils are wound with insulated strand cable. The cable is shaped rectangularly for winding simplicity and good tolerances. After the coil is wound, the insulated strands are electrically connected in series. This reduces the operating current and, most important, improves the coil quench propagation due to heat conduction of one strand adjacent to the other. A well distributed quench allows the magnet energy to distribute more uniformly to the copper in the superconductor wire, giving self-protected coils. A one-meter long, 43 kG, 6-inch bore tube superconducting dipole is now being fabricated. The porous coil design and coil winding methods are discussed

  17. CS model coil experimental log book

    International Nuclear Information System (INIS)

    Nishijima, Gen; Sugimoto, Makoto; Nunoya, Yoshihiko; Wakabayashi, Hiroshi; Tsuji, Hiroshi

    2001-02-01

    Charging test of the ITER CS Model Coil which is the world's largest superconducting pulse coil and the CS Insert Coil had started at April 11, 2000 and had completed at August 18, 2000. In the campaign, total shot numbers were 356 and the size of the data file in the DAS (Data Acquisition System) was over 20 GB. This report is a database that consists of the log list and the log sheets of every shot. One can access the database, make a search, and browse results via Internet (http://1ogwww.naka.jaeri.go.jp). The database will be useful to quick search to choose necessary shots. (author)

  18. Spiral Gradient Coil Design for Use in Cylindrical MRI Systems.

    Science.gov (United States)

    Wang, Yaohui; Xin, Xuegang; Liu, Feng; Crozier, Stuart

    2018-04-01

    In magnetic resonance imaging, the stream function based method is commonly used in the design of gradient coils. However, this method can be prone to errors associated with the discretization of continuous current density and wire connections. In this paper, we propose a novel gradient coil design scheme that works directly in the wire space, avoiding the system errors that may appear in the stream function approaches. Specifically, the gradient coil pattern is described with dedicated spiral functions adjusted to allow the coil to produce the required field gradients in the imaging area, minimal stray field, and other engineering terms. The performance of a designed spiral gradient coil was compared with its stream-function counterpart. The numerical evaluation shows that when compared with the conventional solution, the inductance and resistance was reduced by 20.9 and 10.5%, respectively. The overall coil performance (evaluated by the figure of merit (FoM)) was improved up to 26.5% for the x -gradient coil design; for the z-gradient coil design, the inductance and resistance were reduced by 15.1 and 6.7% respectively, and the FoM was increased by 17.7%. In addition, by directly controlling the wire distributions, the spiral gradient coil design was much sparser than conventional coils.

  19. Magnetic field alignment of coil-coil diblock copolymers and blends via intrinsic chain anisotropy

    Science.gov (United States)

    Rokhlenko, Yekaterina; Majewski, Pawel; Larson, Steven; Yager, Kevin; Gopalan, Padma; Avgeropoulos, Apostolos; Chan, Edwin; Osuji, Chinedum

    Magnetic fields can control alignment of self-assembled soft materials such as block copolymers provided there is a suitably large magnetic susceptibility anisotropy present in the system. Recent results have highlighted the existence of a non-trivial intrinsic anisotropy in coil-coil diblock copolymers, specifically in lamellar-forming PS-b-P4VP, which enables alignment at field strengths of a few tesla in systems lacking mesogenic components. Alignment is predicated on correlation in the orientation of end-end vectors implied by the localization of block junctions at the microdomain interface and is observed on cooling across the order-disorder transition in the presence of the field. For appropriate combinations of field strength and grain size, we can leverage intrinsic chain anisotropy to magnetically direct self-assembly of many non-mesogenic systems, including other coil-coil BCPs like PS-b-PDMS and PS-b-PMMA, blends of BCPs of disparate morphologies and MWs, and blends of BCPs with homopolymers. This is noteworthy as blends of PS-b-P4VP with PEO provide a route to form functional materials such as nanoporous films by dissolution of PEO, or aligned ion conduction materials. We survey these various systems using TEM and in-situ X-ray scattering to study the phase behavior and temperature-, time- and field- dependent dynamics of alignment.

  20. Switching transients in the MFTF yin-yang coils

    International Nuclear Information System (INIS)

    Owen, E.W.; Shimer, D.W.

    1982-01-01

    This report is a study of the transients caused by the fast dump of large superconducting coils. Theoretical analysis, computer simulation, and actual measurements are used. Theoretical analysis can only be applied to the simplest of models. In the computer simulations two models are used, one in which the coil is divided into ten segments and another in which a single coil is employed. The circuit breaker that interrupts the current to the power supply, causing a fast dump, is represented by a time and current dependent conductance. Actual measurements are limited to measurements made incidental to the coils' performance tests