WorldWideScience

Sample records for head creep rupture

  1. A preliminary assessment of the effects of heat flux distribution and penetration on the creep rupture of a reactor vessel lower head

    Energy Technology Data Exchange (ETDEWEB)

    Chu, T.Y.; Bentz, J.; Simpson, R. [Sandia National Labs., Albuquerque, NM (United States); Witt, R. [Univ. of Wisconsin, Madison, WI (United States)

    1997-02-01

    The objective of the Lower Head Failure (LHF) Experiment Program is to experimentally investigate and characterize the failure of the reactor vessel lower head due to thermal and pressure loads under severe accident conditions. The experiment is performed using 1/5-scale models of a typical PWR pressure vessel. Experiments are performed for various internal pressure and imposed heat flux distributions with and without instrumentation guide tube penetrations. The experimental program is complemented by a modest modeling program based on the application of vessel creep rupture codes developed in the TMI Vessel Investigation Project. The first three experiments under the LHF program investigated the creep rupture of simulated reactor pressure vessels without penetrations. The heat flux distributions for the three experiments are uniform (LHF-1), center-peaked (LHF-2), and side-peaked (LHF-3), respectively. For all the experiments, appreciable vessel deformation was observed to initiate at vessel wall temperatures above 900K and the vessel typically failed at approximately 1000K. The size of failure was always observed to be smaller than the heated region. For experiments with non-uniform heat flux distributions, failure typically occurs in the region of peak temperature. A brief discussion of the effect of penetration is also presented.

  2. Creep rupture behavior of unidirectional advanced composites

    Science.gov (United States)

    Yeow, Y. T.

    1980-01-01

    A 'material modeling' methodology for predicting the creep rupture behavior of unidirectional advanced composites is proposed. In this approach the parameters (obtained from short-term tests) required to make the predictions are the three principal creep compliance master curves and their corresponding quasi-static strengths tested at room temperature (22 C). Using these parameters in conjunction with a failure criterion, creep rupture envelopes can be generated for any combination of in-plane loading conditions and ambient temperature. The analysis was validated experimentally for one composite system, the T300/934 graphite-epoxy system. This was done by performing short-term creep tests (to generate the principal creep compliance master curves with the time-temperature superposition principle) and relatively long-term creep rupture tensile tests of off-axis specimens at 180 C. Good to reasonable agreement between experimental and analytical results is observed.

  3. Creep-rupture reliability analysis

    Science.gov (United States)

    Peralta-Duran, A.; Wirsching, P. H.

    1985-01-01

    A probabilistic approach to the correlation and extrapolation of creep-rupture data is presented. Time temperature parameters (TTP) are used to correlate the data, and an analytical expression for the master curve is developed. The expression provides a simple model for the statistical distribution of strength and fits neatly into a probabilistic design format. The analysis focuses on the Larson-Miller and on the Manson-Haferd parameters, but it can be applied to any of the TTP's. A method is developed for evaluating material dependent constants for TTP's. It is shown that optimized constants can provide a significant improvement in the correlation of the data, thereby reducing modelling error. Attempts were made to quantify the performance of the proposed method in predicting long term behavior. Uncertainty in predicting long term behavior from short term tests was derived for several sets of data. Examples are presented which illustrate the theory and demonstrate the application of state of the art reliability methods to the design of components under creep.

  4. Deterministic Multiaxial Creep and Creep Rupture Enhancements for CARES/Creep Integrated Design Code

    Science.gov (United States)

    Jadaan, Osama M.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep rupture criterion. However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of sum, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of Ns methodology and the

  5. Creep rupture of fiber bundles

    DEFF Research Database (Denmark)

    Linga, G.; Ballone, P.; Hansen, Alex

    2015-01-01

    The creep deformation and eventual breaking of polymeric samples under a constant tensile load F is investigated by molecular dynamics based on a particle representation of the fiber bundle model. The results of the virtual testing of fibrous samples consisting of 40000 particles arranged on Nc=4...

  6. Creep rupture behavior of welded Grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Shrestha, Triratna [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Basirat, Mehdi [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States); Alsagabi, Sultan; Sittiho, Anumat [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Charit, Indrajit, E-mail: icharit@uidaho.edu [Department of Chemical and Materials Engineering, University of Idaho, Moscow, ID 83844 (United States); Potirniche, Gabriel P. [Department of Mechanical Engineering, University of Idaho, Moscow, ID 83844 (United States)

    2016-07-04

    Creep rupture behavior of fusion welded Grade 91 steel was studied in the temperature range of 600 – 700 °C and at stresses of 50–200 MPa. The creep data were analyzed in terms of the Monkman-Grant relation and Larson-Miller parameter. The creep damage tolerance factor was used to identify the origin of creep damage. The creep damage was identified as the void growth in combination with microstructural degradation. The fracture surface morphology of the ruptured specimens was studied by scanning electron microscopy and deformed microstructure examined by transmission electron microscopy, to further elucidate the rupture mechanisms.

  7. Creep strength and rupture ductility of creep strength enhanced ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Kushima, Hideaki; Sawada, Kota; Kimura, Kazuhiro [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    Creep strength and rupture ductility of Creep Strength Enhanced Ferritic (CSEF) steels were investigated from a viewpoint of stress dependence in comparison with conventional low alloy ferritic creep resistant steels. Inflection of stress vs. time to rupture curve was observed at 50% of 0.2% offset yield stress for both CSEF and conventional ferritic steels. Creep rupture ductility tends to decrease with increase in creep exposure time, however, those of conventional low alloy steels indicate increase in the long-term. Creep rupture ductility of the ASME Grades 92 and 122 steels indicates drastic decrease with decrease in stress at 50% of 0.2% offset yield stress. Stress dependence of creep rupture ductility of the ASME Grades 92 and 122 steels is well described by stress ratio to 0.2% offset yield stress, regardless of temperature. Drop of creep rupture ductility is caused by inhomogeneous recovery at the vicinity of prior austenite grain boundary, and remarkable drop of creep rupture ductility of CSEF steels should be derived from those stabilized microstructure. (orig.)

  8. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    OpenAIRE

    YE Wenming; HU Xuteng; Ma, Xiaojian; SONG Yingdong

    2016-01-01

    A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calcula...

  9. Long-term creep-rupture failure envelope of epoxy

    Science.gov (United States)

    Melo, José Daniel D.; de Medeiros, Antonio M.

    2014-02-01

    An accelerated testing methodology based on the time-temperature superposition principle has been proposed in the literature for the long-term creep strength of polymer matrices and polymer composites. Also, it has been suggested that a standard master curve may be a feasible assumption to describe the creep behavior in both tension and compression modes. In the present research, strength master curves for an aerospace epoxy (8552) were generated for tension and compression, by shifting strength data measured at various temperatures. The shift function is obtained from superposition of creep-compliance curves obtained at different temperatures. A standard master curve was presented to describe the creep-rupture of the polymer under tension and compression. Moreover, long-term creep-rupture failure envelopes of the polymer were presented based on a two-part failure criterion for homogeneous and isotropic materials. Ultimately, the approach presented allows the prediction of creep-rupture failure envelopes for a time-dependent material based on tensile strengths measured at various temperatures, considering that the ratio between tensile and compressive strengths is known.

  10. Deterministic and Probabilistic Creep and Creep Rupture Enhancement to CARES/Creep: Multiaxial Creep Life Prediction of Ceramic Structures Using Continuum Damage Mechanics and the Finite Element Method

    Science.gov (United States)

    Jadaan, Osama M.; Powers, Lynn M.; Gyekenyesi, John P.

    1998-01-01

    High temperature and long duration applications of monolithic ceramics can place their failure mode in the creep rupture regime. A previous model advanced by the authors described a methodology by which the creep rupture life of a loaded component can be predicted. That model was based on the life fraction damage accumulation rule in association with the modified Monkman-Grant creep ripture criterion However, that model did not take into account the deteriorating state of the material due to creep damage (e.g., cavitation) as time elapsed. In addition, the material creep parameters used in that life prediction methodology, were based on uniaxial creep curves displaying primary and secondary creep behavior, with no tertiary regime. The objective of this paper is to present a creep life prediction methodology based on a modified form of the Kachanov-Rabotnov continuum damage mechanics (CDM) theory. In this theory, the uniaxial creep rate is described in terms of stress, temperature, time, and the current state of material damage. This scalar damage state parameter is basically an abstract measure of the current state of material damage due to creep deformation. The damage rate is assumed to vary with stress, temperature, time, and the current state of damage itself. Multiaxial creep and creep rupture formulations of the CDM approach are presented in this paper. Parameter estimation methodologies based on nonlinear regression analysis are also described for both, isothermal constant stress states and anisothermal variable stress conditions This creep life prediction methodology was preliminarily added to the integrated design code CARES/Creep (Ceramics Analysis and Reliability Evaluation of Structures/Creep), which is a postprocessor program to commercially available finite element analysis (FEA) packages. Two examples, showing comparisons between experimental and predicted creep lives of ceramic specimens, are used to demonstrate the viability of this methodology and

  11. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    Directory of Open Access Journals (Sweden)

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  12. Creep and creep rupture of fiber reinforced polymers: Long term variability

    Science.gov (United States)

    Jensen, Eric M.

    Fiber reinforced polymers continue to be used in ever increasing quantities for large weight critical structures which are designed to be in service for decades. Catastrophic failure of these structures can have dire consequences. Therefore, long term creep and creep rupture predictions are of critical importance. To this end, a multiscale creep rupture model based on the kinetic concept of strength is developed to predict failure. A linkage between damage evolution and the apparent modulus degradation is proposed, which allows for the prediction of creep strain. This combined creep strain and creep rupture model is implemented in a progressive failure user subroutine for finite element software. Model calibration experiments were conducted on Panex 35/M9.7 material system. Combining structural quantification, full field strain measurements and finite element simulations, mechanisms behind material variability and scatter have been identified and modeled resulting in improved life predictions. The material data collected and a video of the two-dimensional strain evolution during a transverse load and unload test have been provided as supplemental materials.

  13. Validation of statistical models for creep rupture by parametric analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65, Fisher Ave., Rugby, Warks CV22 5HW (United Kingdom)

    2012-01-15

    Statistical analysis is an efficient method for the optimisation of any candidate mathematical model of creep rupture data, and for the comparative ranking of competing models. However, when a series of candidate models has been examined and the best of the series has been identified, there is no statistical criterion to determine whether a yet more accurate model might be devised. Hence there remains some uncertainty that the best of any series examined is sufficiently accurate to be considered reliable as a basis for extrapolation. This paper proposes that models should be validated primarily by parametric graphical comparison to rupture data and rupture gradient data. It proposes that no mathematical model should be considered reliable for extrapolation unless the visible divergence between model and data is so small as to leave no apparent scope for further reduction. This study is based on the data for a 12% Cr alloy steel used in BS PD6605:1998 to exemplify its recommended statistical analysis procedure. The models considered in this paper include a) a relatively simple model, b) the PD6605 recommended model and c) a more accurate model of somewhat greater complexity. - Highlights: Black-Right-Pointing-Pointer The paper discusses the validation of creep rupture models derived from statistical analysis. Black-Right-Pointing-Pointer It demonstrates that models can be satisfactorily validated by a visual-graphic comparison of models to data. Black-Right-Pointing-Pointer The method proposed utilises test data both as conventional rupture stress and as rupture stress gradient. Black-Right-Pointing-Pointer The approach is shown to be more reliable than a well-established and widely used method (BS PD6605).

  14. Creep and creep-rupture behavior of a continuous strand, swirl mat reinforced polymer composite in automotive environments

    Energy Technology Data Exchange (ETDEWEB)

    Ren, W.; Brinkman, C.R. [Oak Ridge National Lab., TN (United States). Metals and Ceramics Div.

    1998-12-31

    Creep and creep-rupture behavior of an isocyanurate based polyurethane matrix with a continuous strand, swirl mat E-glass reinforcement was investigated for automotive applications. The material under stress was exposed to various automobile service environments. Results show that environment has substantial effects on its creep and creep-rupture properties. Proposed design guide lines and stress reduction factors were developed for various automotive environments. These composites are considered candidate structural materials for light weight and fuel efficient automobiles of the future.

  15. Tensile and Creep-Rupture Evaluation of a New Heat of Haynes Alloy 25

    Energy Technology Data Exchange (ETDEWEB)

    Shingledecker, J.P.; Glanton, D.B.; Martin, R.L.; Sparks, B.L.; Swindeman, R.W.

    2007-02-14

    From 1999 to 2006, a program was undertaken within the Materials Science and Technology Division, formerly the Metals and Ceramics Division, of Oak Ridge National Laboratory to characterize the tensile and creep-rupture properties of a newly produced heat of Haynes alloy 25 (L-605). Tensile properties from room temperature to 1100 C were evaluated for base material and welded joints aged up to 12,000 hours at 675 C. Creep and creep-rupture tests were conducted on base metal and cross-weldments from 650 to 950 C. Pressurized tubular creep tests were conducted to evaluate multiaxial creep-rupture response of the material. Over 800,000 hours of creep test data were generated during the test program with the longest rupture tests extending beyond 38,000 hours, and the longest creep-rate experiments exceeding 40,000 hours.

  16. Creep deformation and rupture behavior of CLAM steel at 823 K and 873 K

    Science.gov (United States)

    Zhong, Boyu; Huang, Bo; Li, Chunjing; Liu, Shaojun; Xu, Gang; Zhao, Yanyun; Huang, Qunying

    2014-12-01

    China Low Activation Martensitic (CLAM) steel is selected as the candidate structural material in Fusion Design Study (FDS) series fusion reactor conceptual designs. The creep property of CLAM steel has been studied in this paper. Creep tests have been carried out at 823 K and 873 K over a stress range of 150-230 MPa. The creep curves showed three creep regimes, primary creep, steady-state creep and tertiary creep. The relationship between minimum creep rate (ε˙min) and the applied stress (σ) could be described by Norton power law, and the stress exponent n was decreased with the increase of the creep temperature. The creep mechanism was analyzed with the fractographes of the rupture specimens which were examined by scanning electron microscopy (SEM). The coarsening of precipitates observed with transmission electron microscope (TEM) indicated the microstructural degradation after creep test.

  17. Experimental Creep Life Assessment for the Advanced Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Shah, Ashwin R.; Korovaichuk, Igor

    2010-01-01

    The United States Department of Energy is planning to develop the Advanced Stirling Radioisotope Generator (ASRG) for the National Aeronautics and Space Administration (NASA) for potential use on future space missions. The ASRG provides substantial efficiency and specific power improvements over radioisotope power systems of heritage designs. The ASRG would use General Purpose Heat Source modules as energy sources and the free-piston Advanced Stirling Convertor (ASC) to convert heat into electrical energy. Lockheed Martin Corporation of Valley Forge, Pennsylvania, is integrating the ASRG systems, and Sunpower, Inc., of Athens, Ohio, is designing and building the ASC. NASA Glenn Research Center of Cleveland, Ohio, manages the Sunpower contract and provides technology development in several areas for the ASC. One area is reliability assessment for the ASC heater head, a critical pressure vessel within which heat is converted into mechanical oscillation of a displacer piston. For high system efficiency, the ASC heater head operates at very high temperature (850 C) and therefore is fabricated from an advanced heat-resistant nickel-based superalloy Microcast MarM-247. Since use of MarM-247 in a thin-walled pressure vessel is atypical, much effort is required to assure that the system will operate reliably for its design life of 17 years. One life-limiting structural response for this application is creep; creep deformation is the accumulation of time-dependent inelastic strain under sustained loading over time. If allowed to progress, the deformation eventually results in creep rupture. Since creep material properties are not available in the open literature, a detailed creep life assessment of the ASC heater head effort is underway. This paper presents an overview of that creep life assessment approach, including the reliability-based creep criteria developed from coupon testing, and the associated heater head deterministic and probabilistic analyses. The approach also

  18. Rupture of Al matrix in U-Mo/Al dispersion fuel by fission induced creep

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gwan Yoon; Sohn, Dong Seong [UNIST, Daejeon (Korea, Republic of); Kim, Yeon Soo [Argonne National Laboratory, Argonnge (United States); Lee, Kyu Hong [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    This phenomenon was found specifically in the dispersion fuel plate with Si addition in the Al matrix to suppress interaction layer (IL) formation between UMo and Al. It is known that the stresses induced by fission induced swelling in U-Mo fuel particles are relieved by creep deformation of the IL, surrounding the fuel particles, that has a much higher creep rate than the Al matrix. Thus, when IL growth is suppressed, the stress is instead exerted on the Al matrix. The observed rupture in the Al matrix is believed to be caused when the stress exceeded the rupture strength of the Al matrix. In this study, the possibility of creep rupture of the Al matrix between the neighboring U-Mo fuel particles was examined using the ABAQUS finite element analysis (FEA) tool. The predicted rupture time for a plate was much shorter than its irradiation life indicating a rupture during the irradiation. The higher stress leads Al matrix to early creep rupture in this plate for which the Al matrix with lower creep strain rate does not effectively relieve the stress caused by the swelling of the U-Mo fuel particles. For the other plate, no rupture was predicted for the given irradiation condition. The effect of creeping of the continuous phase on the state of stress is significant.

  19. Technique for the residual life assessment of high temperature components based on creep-rupture testing on welded miniature specimens

    Energy Technology Data Exchange (ETDEWEB)

    Garzillo, A.; Guardamagna, C.; Moscotti, L.; Ranzani, L. [Ente Nazionale per l`Energia Elettrica, Milan (Italy)

    1995-06-01

    Following the present trend in the development of advanced methodologies for residual life assessment of high temperature components operating in power plants, particularly in non destructive methods, a testing technique has been set up at ENEL-CRAM based on creep-rupture testa in an argon on welded miniature specimens. Five experimental systems for creep-rupture tests in an argon atmosphere have been set up which include high accuracy systems, vacuum chambers and exrwnsometer devices. With the aim of establishing and validating the suitability of the experimental methodology, creep-rupture and interrupted creep testing programmes have been performed on miniature specimens (2 mm diameter and 10 mm gauge lenght). On the basis of experience gathered by various European research laboratories, a miniature specimen construction procedure has been developed using a laser welding technique for joining threaded heads to sample material. Low alloy ferritic steels, such as virgin 2.25CrlMo, 0.5Cr 0.5Mo 0.25V, and IN 738 superalloy miniature specimens have been investigated and the results, compared with those from standard specimens, show a regular trend in deformation vs time. Additional efforts to provide guidelines for material sampling from each plant component will be required in order to reduce uncertainties in residual life prediction.

  20. Structural Benchmark Creep Testing for the Advanced Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.; Shah, Ashwin R.

    2008-01-01

    The National Aeronautics and Space Administration (NASA) has identified the high efficiency Advanced Stirling Radioisotope Generator (ASRG) as a candidate power source for use on long duration Science missions such as lunar applications, Mars rovers, and deep space missions. For the inherent long life times required, a structurally significant design limit for the heater head component of the ASRG Advanced Stirling Convertor (ASC) is creep deformation induced at low stress levels and high temperatures. Demonstrating proof of adequate margins on creep deformation and rupture for the operating conditions and the MarM-247 material of construction is a challenge that the NASA Glenn Research Center is addressing. The combined analytical and experimental program ensures integrity and high reliability of the heater head for its 17-year design life. The life assessment approach starts with an extensive series of uniaxial creep tests on thin MarM-247 specimens that comprise the same chemistry, microstructure, and heat treatment processing as the heater head itself. This effort addresses a scarcity of openly available creep properties for the material as well as for the virtual absence of understanding of the effect on creep properties due to very thin walls, fine grains, low stress levels, and high-temperature fabrication steps. The approach continues with a considerable analytical effort, both deterministically to evaluate the median creep life using nonlinear finite element analysis, and probabilistically to calculate the heater head s reliability to a higher degree. Finally, the approach includes a substantial structural benchmark creep testing activity to calibrate and validate the analytical work. This last element provides high fidelity testing of prototypical heater head test articles; the testing includes the relevant material issues and the essential multiaxial stress state, and applies prototypical and accelerated temperature profiles for timely results in a

  1. Creep-rupture behavior of candidate Stirling engine alloys after long-term aging at 760 deg C in low-pressure hydrogen

    Science.gov (United States)

    Titran, R. H.

    1984-01-01

    Nine candidate Stirling automotive engine alloys were aged at 760 C for 3500 hr in low pressure hydrogen or argon to determine the resulting effects on mechanical behavior. Candidate heater head tube alloys were CG-27, W545, 12RN72, INCONEL-718, and HS-188 while candidate cast cylinder-regenerator housing alloys were SA-F11, CRM-6D, XF-818, and HS-31. Aging per se is detrimental to the creep rupture and tensile strengths of the iron base alloys. The presence of hydrogen does not significantly contribute to strength degradation. Based percent highway driving cycle; CG-27 has adequate 3500 hr - 870 C creep rupture strength and SA-Fll, CRM-6D, and XF-818 have adequate 3500 hr - 775 C creep rupture strength.

  2. Creep rupture behavior of candidate materials for nuclear process heat applications

    Energy Technology Data Exchange (ETDEWEB)

    Schubert, F.; te Heesen, E.; Bruch, U.; Cook, R.; Diehl, H.; Ennis, P.J.; Jakobeit, W.; Penkalla, H.J.; Ullrich, G.

    1984-08-01

    Creep and stress rupture properties are determined for the candidate materials to be used in hightemperature gas-cooled reactor (HTGR) components. The materials and test methods are briefly described based on experimental results of test durations of about20000 h. The medium creep strengths of the alloys Inconel-617, Hastelloy-X, Nimonic-86, Hastelloy-S, Manaurite-36X, IN-519, and Incoloy-800H are compared showing that Inconel-617 has the best creep rupture properties in the temperature range above 800/sup 0/C. The rupture time of welded joints is in the lower range of the scatterband of the parent metal. The properties determined in different simulated HTGR atmospheres are within the scatterband of the properties obtained in air. Extrapolation methods are discussed and a modified minimum commitment method is favored.

  3. Deformation and rupture of stainless steel under cyclic, torsional creep

    OpenAIRE

    Rees, DWA

    2008-01-01

    Copyright 2008 @ Engineering Integrity Society. Recent results from a long-term, strain-limited, cyclic creep test program upon stainless steel tubes are given. The test conditions employed were: constant temperature 500 °C, shear stress Ƭ = ± 300 MPa and shear strain limits ƴ = ± 4%. It is believed that a cyclic creep behaviour for the material has been revealed that has not been reported before in the literature. That is, the creep curves for stainless steel under repeated, shear stress...

  4. Effect of Post-Weld Heat Treatment on Creep Rupture Properties of Grade 91 Steel Heavy Section Welds

    Energy Technology Data Exchange (ETDEWEB)

    Li, Leijun

    2012-11-02

    This project will conduct a systematic metallurgical study on the effect of post-weld heat treatment (PWHT) on the creep rupture properties of P91 heavy section welds. The objective is to develop a technical guide for selecting PWHT parameters, and to predict expected creep-rupture life based on the selection of heat treatment parameters. The project consists of four interdependent tasks: Experimentally and numerically characterize the temperature fields of typical post-weld heat treatment procedures for various weld and joint configurations to be used in Gen IV systems. Characterize the microstructure of various regions, including the weld fusion zone, coarse-grain heat-affected zone, and fine-grain heat affected zone, in the welds that underwent the various welding and PWHT thermal histories. Conduct creep and creep-rupture testing of coupons extracted from actual and physically simulated welds. Establish the relationship among PWHT parameters, thermal histories, microstructure, creep, and creep-rupture properties.

  5. Investigation of creep rupture properties in air and He environments of alloy 617 at 800 °C

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Gon, E-mail: wgkim@kaeri.re.k [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of); Ekaputra, I.M.W.; Park, Jae-Young [Pukyong National University, Busan 608-739 (Korea, Republic of); Kim, Min-Hwan; Kim, Yong-Wan [Korea Atomic Energy Research Institute, 989-111 Daedeok-daero, Yuseong-gu, Daejeon 305-353 (Korea, Republic of)

    2016-09-15

    Creep rupture properties for Alloy 617 were investigated by a series of creep tests under different applied stresses in air and He environments at 800 °C. The creep rupture time in air and He environments exhibited almost similar life in a short rupture time. However, when the creep rupture time reaches above 3000 h, the creep life in the He environment reduced compared with those of the air environment. The creep strain rate in the He environment was a little faster than that in the air environment above 3000 h. The reduction of creep life in the He environment was due to the difference of various microstructure features such as the carbide depleted zone, oxidation structures, surface cracking, voids below the surface, and voids in the matrix in air and He environments. Alloy 617 followed Norton’s power law and the Monkman–Grant relationship well. As the stress decreased, the creep ductility decreased slightly. The thickness of the outer and internal oxide layers presented the trend of a parabolic increase with an increase in creep rupture time in both the air and He environments. The thickness in the He environment was found to be thicker than in the air environment, although pure helium gas of 99.999% was used in the present investigation. The differences in the oxide-layer thickness caused detrimental effects on the creep resistance, even in a low oxygen-containing He agent.

  6. Analysis of Creep Rupture Data of Alloy 617 for VHTR Application

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Kim, Min Whan; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jae Young; Ekaputr, I. M. W. [Pukyong National Univ., Busan (Korea, Republic of)

    2013-10-15

    A new Alloy 617 Code Case is planned to be approved by 2015. In this study, the creep rupture data of Alloy 617, which were produced through a series of creep tests at 850-950 .deg. C at the Korea Atomic Energy Research Institute (KAERI), were analyzed using various creep laws, and the material constants were obtained and discussed.A very high temperature reactor (VHTR) is one of the most promising Gen-IV reactors for the economic production of electricity and hydrogen. Its major components are the reactor internals, reactor pressure vessel (RPV), hot gas ducts (HGD), and intermediate heat exchangers (IHX). Since the VHTR components are designed to be used for a 60 year lifetime at a high temperature, the creep behavior is very important for the design application due to creep damage during the long service life at elevated temperatures. Alloy 617 is a candidate IHX structural material because of its high temperature creep properties. However, the ASME design code for Alloy 617 was not developed for design use. Therefore, material works to complete the ASME Alloy 617 code case development are ongoing according to a next-generation nuclear plant (NGNP) research and development plan. Through this plan, a new Alloy 617 Code Case is planned to be approved by 2015. In this study, the creep rupture data of Alloy 617, which were produced through a series of creep tests at 850-950 .deg. C at the Korea Atomic Energy Research Institute (KAERI), were analyzed using various creep laws, and the material constants were obtained and discussed. Creep rupture data of Alloy 617 tested at 850-950 .deg. C were analyzed using various creep laws, and material constants were obtained. The MMGR reduced the data scattering, and was well fitted for straight line of m ≅ 1.0 as m=0.97. The MMGR showed a better plot than the MGR. In the plot of ZHP and stress, a straight line was for n'=5.87 regardless of the three different temperatures. Thus, it can be inferred that the same creep

  7. Effect of Laves phase on the creep rupture properties of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Maddi, Lakshmiprasad, E-mail: prasadmlp@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010 (India); GMR Institute of Technology, GMR Nagar, Rajam 532127 (India); Deshmukh, G.S.; Ballal, A.R.; Peshwe, D.R.; Paretkar, R.K. [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010 (India); Laha, K.; Mathew, M.D. [Mechanical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2016-06-21

    Stress rupture tests of normalized and tempered P92 (9Cr–0.5Mo–1.8 W) steel were performed in the range of 135–215 MPa at 650 °C. Effect of tempering temperature in the range of 740–780 °C on the creep rupture life was investigated. Resulting rupture times varied from 100 to 3000 h, and creep rate by one order of magnitude. In the high stress regime, lower tempering temperature resulted in the highest rupture time due to initial high dislocation density and fine laths. However, at lower stresses, highest rupture time was observed for highest tempering temperature. Formation of Laves phase (Fe{sub 2}Mo, Fe{sub 2}W) adjacent to M{sub 23}C{sub 6} carbides was responsible for increase in rupture time. Back scattered electron imaging (BSE) in scanning electron microscopy (SEM) was used to identify Laves phases, and study their distribution. Reduction in dislocation density and coarsening of laves phase precipitates result in decrease in stress exponent value ‘n’ at higher test temperatures of 650 °C.

  8. Growth Kinetics of Laves Phase and Its Effect on Creep Rupture Behavior in 9Cr Heat Resistant Steel

    Institute of Scientific and Technical Information of China (English)

    Zhi-xin XIA; Chuan-yang WANG; Chen LEI; Yun-ting LAI; Yan-fen ZHAO; Lu ZHANG

    2016-01-01

    The effects of Laves phase formation and growth on creep rupture behaviors of P92 steel at 883 K were studied.The microstructural evolution was characterized using scanning electron microscopy and transmission elec-tron microscopy.Kinetic modeling was carried out using the software DICTRA.The results indicated Fe2 (W,Mo) Laves phase has formed during creep with 200 MPa applied stress at 883 K for 243 h.The experimental results showed a good agreement with thermodynamic calculations.The plastic deformation of laths is the main reason of creep rupture under the applied stress beyond 160 MPa,whereas,creep voids initiated by coarser Laves phase play an effective role in creep rupture under the applied stress lower than 160 MPa.Laves phase particles with the mean size of 243 nm lead to the change of creep rupture feature.Microstructures at the vicinity of fracture surface,the gage portion and the threaded ends of creep rupture specimens were also observed,indicating that creep tensile stress enhances the coarsening of Laves phase.

  9. Effects of carbon, nitrogen, and phosphorus on creep rupture ductility of high purity Ni-Cr austenitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Takanori; Abo, Hideo; Tanino, Mitsuru; Komatsu, Hazime.

    1989-05-01

    Creep rupture ductility becomes one of the important properties of austenitic stainless steels as structural materials for fast breeder reactors. Using high purity nickel-chromium austenitic steels, the effects of carbon, nitrogen, and phosphorus on creep rupture ductility were investigated. Creep rupture tests were conducted at 600deg C and extensive microstructural works were performed. The results were as follows. Rupture strength increases with carbon or nitrogen content. Although the rupture ductility decreases with carbon, change in ductility with nitrogen is small. The ductility loss with carbon is due to the grain boundary embrittlement by carbides. With nitrogen, there is no precipitation during creep. Addition of phosphorus to ultra low carbon and nitrogen steels increases their rupture strength and ductility. Fine precipitates of (Fe,Cr)/sub 2/P are uniformly dispersed in the grains and coarse (Fe,Cr)/sub 2/P also precipitates on the grain boundary during creep. Grain boundary migration occurs extensively and few wedge type cracks are observed in the P containing steels. It is concluded that, from the viewpoint of increasing creep rupture ductility, nitrogen is much more effective than carbon and phosphorus is also beneficial. (author).

  10. Boron effects on creep rupture strength of W containing advanced ferritic creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Mito, N.; Hasegawa, Y. [Tohoku Univ., Sendai (Japan)

    2010-07-01

    The creep strength in ferritic creep resistant steels is increased by boron addition. However, the strengthening mechanisms have not yet been studied. This study clarifies the strengthening mechanism of 9% chromium steels with 10{proportional_to}100ppm boron and 0.5{proportional_to}2.0mass% tungsten in the laboratory. The strengthening effect of simultaneous addition of boron and tungsten was analyzed by hardenability, room-temperature strength and creep tests at 650 C. Changes in the microstructure as a result of the addition of boron and tungsten were also examined by optical microscope and transmission electron microscope (TEM). In addition, Alpha-ray Track Etching (ATE) method was used to detect the boron distribution and analyze the mechanisms change in the mechanical properties. Boron addition did not affect room-temperature strength, however, simultaneous addition of boron and tungsten increased room-temperature and high-temperature strength. According to ATE analysis, boron exists at the grain boundary. Therefore, synergistic effects of boron and tungsten on the creep strength suggest the tungsten precipitates stabilization by boron at the grain boundary. (orig.)

  11. Response of Triaxial State of Stress to Creep Rupture Life and Ductility of 316 LN Austenitic Stainless Steel

    Science.gov (United States)

    Goyal, Sunil; Laha, K.; Bhaduri, A. K.

    2016-12-01

    In the present investigation, the effect of triaxial state of stress on creep rupture life and ductility of 316 LN stainless steel has been assessed. The creep tests were carried out on both smooth and notched specimens of the steel at 873 K in the stress range of 270-340 MPa. The notched specimens had root radius ranging from 0.83 mm to 5 mm. The detailed finite element analysis has been carried out to assess the triaxial state of stress across the notch incorporating Norton's law as creep deformation governing mechanism. The creep rupture life of the steel increased in presence of triaxial stresses and extent of which was more at lower net applied stresses and higher triaxiality (sharper notch). The reduction in effective stress in presence of notch resulted in higher creep rupture life of the steel under triaxial stresses. The fracture surfaces revealed mixed mode failure consisting of dimple ductile and intergranular creep cavitation for all testing conditions, however, extent of cavitation was higher for relatively higher triaxialities and lower net applied stresses. The creep ductility of the steel was found to decrease drastically under triaxial state of stress. The triaxial rupture life and creep ductility of the steel have been assessed based on different models on incorporating different components of stresses at the skeletal point.

  12. Response of Triaxial State of Stress to Creep Rupture Life and Ductility of 316 LN Austenitic Stainless Steel

    Science.gov (United States)

    Goyal, Sunil; Laha, K.; Bhaduri, A. K.

    2017-02-01

    In the present investigation, the effect of triaxial state of stress on creep rupture life and ductility of 316 LN stainless steel has been assessed. The creep tests were carried out on both smooth and notched specimens of the steel at 873 K in the stress range of 270-340 MPa. The notched specimens had root radius ranging from 0.83 mm to 5 mm. The detailed finite element analysis has been carried out to assess the triaxial state of stress across the notch incorporating Norton's law as creep deformation governing mechanism. The creep rupture life of the steel increased in presence of triaxial stresses and extent of which was more at lower net applied stresses and higher triaxiality (sharper notch). The reduction in effective stress in presence of notch resulted in higher creep rupture life of the steel under triaxial stresses. The fracture surfaces revealed mixed mode failure consisting of dimple ductile and intergranular creep cavitation for all testing conditions, however, extent of cavitation was higher for relatively higher triaxialities and lower net applied stresses. The creep ductility of the steel was found to decrease drastically under triaxial state of stress. The triaxial rupture life and creep ductility of the steel have been assessed based on different models on incorporating different components of stresses at the skeletal point.

  13. Shakedown Tests for Refurbished and Upgraded Frames and Initiation of Alloy 709 Creep Rupture Tests

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Hong [ORNL; Moser, Jeremy L. [ORNL; Hawkins, Charles S. [ORNL; Lara-Curzio, Edgar [ORNL

    2017-09-01

    This report describes the shakedown tests conducted on the upgraded frames, and initiation of creep rupture tests on refurbished frames. SS316H, a reference material for Alloy 709, was used in shakedown tests, and the tests were conducted at 816 degree C under three stress levels to accumulate 1% creep strain. ¼” gage diameter specimen design was used. The creep rupture tests on Alloy 709 were initiated at 600 degree C under 330 MPa to target 1,500 h rupture time. 12 specimens with 3/8” gage diameter were prepared from the materials with 6 heat treatment conditions, 2 from each. The required mechanical load under 330MPa was calculated to be 5,286 lb for the 3/8” gage diameter specimen. Among the ART frames, 7 frames are equipped with 10,000 lb load cell including #5 to 8 and #88 to 90, and can be used. 7 tests were thus started in this stage of project, and remaining 5 will be continued whenever any of the 7 tests is completed.

  14. The extrapolation of creep rupture data by PD6605 - An independent case study

    Energy Technology Data Exchange (ETDEWEB)

    Bolton, J., E-mail: john.bolton@uwclub.net [65 Fisher Avenue, Rugby, Warks CV22 5HW (United Kingdom)

    2011-04-15

    The worked example presented in BSI document PD6605-1:1998, to illustrate the selection, validation and extrapolation of a creep rupture model using statistical analysis, was independently examined. Alternative rupture models were formulated and analysed by the same statistical methods, and were shown to represent the test data more accurately than the original model. Median rupture lives extrapolated from the original and alternative models were found to diverge widely under some conditions of practical interest. The tests prescribed in PD6605 and employed to validate the original model were applied to the better of the alternative models. But the tests were unable to discriminate between the two, demonstrating that these tests fail to ensure reliability in extrapolation. The difficulties of determining when a model is sufficiently reliable for use in extrapolation are discussed and some proposals are made.

  15. ULTRASONOGRAPHIC EVALUATION OF THE RUPTURED MEDIAL HEAD OF GASTROCNEMIUS MUSCLE

    Directory of Open Access Journals (Sweden)

    Damir Lukac

    Full Text Available ABSTRACT Introduction: Tennis leg, a common injury of the medial head of gastrocnemius muscle in the muscle-tendon junction, is usually reported in men during recreational sports. Sudden pain is the main symptom accompanied by the feeling of rupture in the calf. Clinical examination followed by ultrasound is the standard diagnostic procedure. Objective: The main objectives of this study are to compare clinical and ultrasonographic findings in cases of tennis leg, evaluate the location and type of lesion in the medial head of gastrocnemius muscle, and evaluate the edema volume and the presence of deep vein thrombosis (DVT. Second, the healing process was monitored with ultrasound to distinguish the level of recovery and to record the presence of chronic sequelae. Methods: Eighty-one subjects with clinical symptoms of rupture of the medial head of gastrocnemius muscle participated in the study. A linear probe (7-12 MHz was used for ultrasonographic (US and a Doppler was used to verify the presence of DVT. Results: In 78 of 81 subjects examined, we found obvious US changes (96.3% and three of them had no positive findings. In 67 of them, we diagnosed rupture of the medial head of the gastrocnemius muscle. Most of them had partial rupture (73.13% and the remaining had total rupture (26.87%. The edema (30.84% was found in the space between the aponeurosis of the gastrocnemius and soleus muscles. DVT with the clinical signs of tennis leg was observed in 5 of 81 patients (6.17%. Conclusion: Our findings indicate that ultrasound is very important for early diagnosis of muscle-tendon injuries in the leg. In addition, monitoring the healing process and assessing the chosen treatment showed a high efficiency. Ultrasonography is an effective method to identify and differentiate the sequelae of the injured muscles and vascular complications.

  16. A Universal Reduced Rupture Creep Approach for Prediction of Long Term Failure Behavior of Aged Glass Polymers from the Short Term Test of Rupture Creep Compliance by the Unified Master Curved Extrapolation

    Institute of Scientific and Technical Information of China (English)

    Guang-jun Song; Da-ming Wu; Wei-yue Song; Ming-shi Song; Gui-xian Hu

    2012-01-01

    The prediction of long term failure behaviors and lifetime of aged glass polymers from the short term tests of reduced rupture creep compliance (or strain) is one of difficult problems in polymer science and engineering.A new "universal reduced rupture creep approach" with exact theoretical analysis and computations is proposed in this work.Failure by creep for polymeric material is an important problem to be addressed in the engineering.A universal equation on reduced extensional failure creep compliance for PMMA has been derived.It is successful in relating the reduced extensional failure creep compliance with aging time,temperature,levels of stress,the average growth dimensional number and the parameter in K-W-W function.Based on the universal equation,a method for the prediction of failure behavior,failure strain criterion,failure time of PMMA has been developed which is named as a universal "reduced rupture creep approach".The results show that the predicted failure strain and failure time of PMMA at different aging times for different levels of stress are all in agreement with those obtained directly from experiments,and the proposed method is reliable and practical.The dependences of reduced extensional failure creep compliance on the conditions of aging time,failure creep stress,the structure of fluidized-domain constituent chains are discussed.The shifting factor,exponent for time-stress superposition at different levels of stress and the shifting factor,exponent for time-time aging superposition at different aging time are theoretically defined respectively.

  17. Investigation of Creep Rupture Phenomenon in Glass Fibre Reinforced Polymer (GFRP) Stirrups

    Science.gov (United States)

    Johal, Kanwardeep Singh

    Glass Fibre-Reinforced Polymer (GFRP) bars offer a feasible alternative to typical steel reinforcement in concrete structures where there are concerns of corrosion or magnetic interference. In order to design safe structures for a service life of 50 to 100 years, the long-term material properties of GFRP must be understood. Thirty GFRP stirrups of three types were tested under sustained loading to investigate creep rupture and modulus degradation behaviour. The time to failure under varying sustained loads was used to extrapolate the safe design load for typical service lives. It was found that shear critical beams with shear reinforcement designed in accordance with CSA-S806 and ACI-440 provisions may be at risk of premature failure under sustained design loads. Analysis was based on finite element modelling and previously tested beams. Additionally, no moduli degradation was observed in this study. A cumulative weakening model was developed to potentially take into account fatigue loading.

  18. Creep-rupture behavior of 3Cr-3W-V bainitic steels

    Energy Technology Data Exchange (ETDEWEB)

    Klueh, R.L. [Oak Ridge National Laboratory, TN 37831-6138 (United States)]. E-mail: kluehrl@ornl.gov; Evans, N.D. [Oak Ridge National Laboratory, TN 37831-6138 (United States); Maziasz, P.J. [Oak Ridge National Laboratory, TN 37831-6138 (United States); Sikka, V.K. [Oak Ridge National Laboratory, TN 37831-6138 (United States)

    2007-01-15

    A nominally Fe-3.0Cr-3.0W-0.25 V (3Cr-3WV) steel and this composition with 0.07% Ta (3Cr-3WVTa) were developed for elevated-temperature service in the power-generation and petrochemical industries. Creep-rupture strengths of the new steels to 600 deg. C exceeded those of the two advanced commercial 2.25Cr steels T23 (Fe-2.25Cr-1.6W-0.25V-0.05Nb-0.07C) and T24 (Fe-2.25Cr-1.0Mo-0.25V-0.07Ti-0.005B-0.07C). Moreover, the strength of 3Cr-3WVTa approached that of modified 9Cr-1Mo (T91) at 650 deg. C. Elevated-temperature strength in the new steels is obtained from a bainitic microstructure with a high number density of fine needle-like MX precipitates in the matrix. The presence of tantalum promotes a finer MX precipitate in the 3Cr-3WVTa than in the 3Cr-3WV, and it suppresses the coarsening of these fine precipitates during creep.

  19. Creep-rupture behavior of a developmental cast-iron-base alloy for use up to 800 deg C

    Science.gov (United States)

    Titran, Robert H.; Scheuermann, Coulson M.

    1987-01-01

    A promising iron-base cast alloy is being developed as part of the DOE/NASA Stirling Engine Systems Project under contract DEN 3-282 with the United Technologies Research Center. This report presents the results of a study at the Lewis Research Center of the alloy's creep-rupture properties. The alloy was tested under a variety of conditions and was found to exhibit the normal 3-stage creep response. The alloy compared favorably with others being used or under consideration for the automotive Stirling engine cylinder/regenerator housing.

  20. Creep rupture strength and creep behavior of low-activation martensitic OPTIFER alloys. Final report; Das Zeitstandfestigkeits- und Kriechverhalten der niedrigaktivierenden martensitischen OPTIFER-Legierungen. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Schirra, M.; Falkenstein, A.; Heger, S.; Lapena, J. [ITN-CIEMAT, Madrid (Spain). Programa de Materiales

    2001-07-01

    The creep rupture strength and creep experiments performed on low-activation OPTIFER alloys in the temperature range of 450-700 C shall be summarized in the present report. Together with the reference alloy of the type 9.5Cr1W-Mn-V-Ta, W-free variants (+Ge) with a more favorable activation and decay behavior shall be studied. Their smaller strength values are compensated by far better toughness characteristics. Of each development line, several batches of slightly varying chemical composition have been investigated over service lives of up to 40,000 h. Apart from the impact of a reference thermal treatment at a hardening temperature of 1075 C and an annealing temperature of 750 C, the influence of reduced hardening temperatures (up to 950 C) has been determined. A long-term use at increased temperatures (max. 550 C-20,000 h) produces an aging effect with strength being decreased in the annealed state. To determine this aging effect quantitatively, creep rupture experiments have been performed using specimens that were subjected to variable types of T/t annealing (550 -650 C, 330-5000 h). Based on all test results, minimum values for the 1% time-strain limit and creep rupture in the T range of 400-600 C can be given as design curves for 20,000 h. The minimum creep rates obtained from the creep curves recorded as a function of the experimental stress yield the stress exponent n (n=Norton) for the individual test temperatures. Creep behavior as a function of the test temperature yields the values for the effective activation energy of creeping Q{sub K}. The influence of a preceding temperature transient up to 800 C ({<=}Ac{sub 1b}) or 840 C (>Ac{sub 1b}) with subsequent creep rupture tests at 500 C and 550 C, respectively, shall be described. The results obtained for the OPTIFER alloys shall be compared with the results achieved for the Japanese 2% W-containing F82H-mod. alloy. (orig.) [German] Die Zeitstandfestigkeits- und Kriechversuche an den niedrigaktivierenden

  1. Microstructural Evolution and Creep-Rupture Behavior of Fusion Welds Involving Alloys for Advanced Ultrasupercritical Power Generation

    Science.gov (United States)

    Bechetti, Daniel H., Jr.

    Projections for large increases in the global demand for electric power produced by the burning of fossil fuels, in combination with growing environmental concerns surrounding these fuel sources, have sparked initiatives in the United States, Europe, and Asia aimed at developing a new generation of coal fired power plant, termed Advanced Ultrasupercritical (A-USC). These plants are slated to operate at higher steam temperatures and pressures than current generation plants, and in so doing will offer increased process cycle efficiency and reduced greenhouse gas emissions. Several gamma' precipitation strengthened Ni-based superalloys have been identified as candidates for the hottest sections of these plants, but the microstructural instability and poor creep behavior (compared to wrought products) of fusion welds involving these alloys present significant hurdles to their implementation and a gap in knowledge that must be addressed. In this work, creep testing and in-depth microstructural characterization have been used to provide insight into the long-term performance of these alloys. First, an investigation of the weld metal microstructural evolution as it relates to creep strength reductions in A-USC alloys INCONELRTM 740, NIMONICRTM 263 (INCONEL and NIMONIC are registered trademarks of Special Metals Corporation), and HaynesRTM 282RTM (Haynes and 282 are registered trademarks of Haynes International) was performed. gamma'-precipitate free zones were identified in two of these three alloys, and their development was linked to the evolution of phases that precipitate at the expense of gamma'. Alloy 282 was shown to avoid precipitate free zone formation because the precipitates that form during long term aging in this alloy are poor in the gamma'-forming elements. Next, the microstructural evolution of INCONELRTM 740H (a compositional variant of alloy 740) during creep was investigated. Gleeble-based interrupted creep and creep-rupture testing was used to

  2. Creep Rupture of the Simulated HAZ of T92 Steel Compared to that of a T91 Steel

    Directory of Open Access Journals (Sweden)

    Yu-Quan Peng

    2017-02-01

    Full Text Available The increased thermal efficiency of fossil power plants calls for the development of advanced creep-resistant alloy steels like T92. In this study, microstructures found in the heat-affected zone (HAZ of a T92 steel weld were simulated to evaluate their creep-rupture-life at elevated temperatures. An infrared heating system was used to heat the samples to 860 °C (around AC1, 900 °C (slightly below AC3, and 940 °C (moderately above AC3 for one minute, before cooling to room temperature. The simulated specimens were then subjected to a conventional post-weld heat treatment (PWHT at 750 °C for two hours, where both the 900 °C and 940 °C simulated specimens had fine grain sizes. In the as-treated condition, the 900 °C simulated specimen consisted of fine lath martensite, ferrite subgrains, and undissolved carbides, while residual carbides and fresh martensite were found in the 940 °C simulated specimen. The results of short-term creep tests indicated that the creep resistance of the 900 °C and 940 °C simulated specimens was poorer than that of the 860 °C simulated specimens and the base metal. Moreover, simulated T92 steel samples had higher creep strength than the T91 counterpart specimens.

  3. Derivation, parameterization and validation of a creep deformation/rupture material constitutive model for SiC/SiC ceramic-matrix composites (CMCs

    Directory of Open Access Journals (Sweden)

    Mica Grujicic

    2016-05-01

    Full Text Available The present work deals with the development of material constitutive models for creep-deformation and creep-rupture of SiC/SiC ceramic-matrix composites (CMCs under general three-dimensional stress states. The models derived are aimed for use in finite element analyses of the performance, durability and reliability of CMC turbine blades used in gas-turbine engines. Towards that end, one set of available experimental data pertaining to the effect of stress magnitude and temperature on the time-dependent creep deformation and rupture, available in the open literature, is used to derive and parameterize material constitutive models for creep-deformation and creep-rupture. The two models derived are validated by using additional experimental data, also available in the open literature. To enable the use of the newly-developed CMC creep-deformation and creep-rupture models within a structural finite-element framework, the models are implemented in a user-material subroutine which can be readily linked with a finite-element program/solver. In this way, the performance and reliability of CMC components used in high-temperature high-stress applications, such as those encountered in gas-turbine engines can be investigated computationally. Results of a preliminary finite-element analysis concerning the creep-deformation-induced contact between a gas-turbine engine blade and the shroud are presented and briefly discussed in the last portion of the paper. In this analysis, it is assumed that: (a the blade is made of the SiC/SiC CMC; and (b the creep-deformation behavior of the SiC/SiC CMC can be represented by the creep-deformation model developed in the present work.

  4. Understanding the Larson-Miller parameter. [for extrapolating stress rupture and creep properties of steels and superalloys

    Science.gov (United States)

    Furillo, F. T.; Purushothaman, S.; Tien, J. K.

    1977-01-01

    The Larson-Miller (L-M) method of extrapolating stress rupture and creep results is based on the contention that the absolute temperature-compensated time function should have a unique value for a given material. This value should depend only on the applied stress level. The L-M method has been found satisfactory in the case of many steels and superalloys. The derivation of the L-M relation is discussed, taking into account a power law creep relationship considered by Dorn (1965) and Barrett et al. (1964), a correlation expression reported by Garofalo et al. (1961), and relations concerning the constant C. Attention is given to a verification of the validity of the considered derivation with the aid of suitable materials.

  5. Studies on Creep Deformation and Rupture Behavior of 316LN SS Multi-Pass Weld Joints Fabricated with Two Different Electrode Sizes

    Science.gov (United States)

    Vijayanand, V. D.; Kumar, J. Ganesh; Parida, P. K.; Ganesan, V.; Laha, K.

    2017-02-01

    Effect of electrode size on creep deformation and rupture behavior has been assessed by carrying out creep tests at 923 K (650 °C) over the stress range 140 to 225 MPa on 316LN stainless steel weld joints fabricated employing 2.5 and 4 mm diameter electrodes. The multi-pass welding technique not only changes the morphology of delta ferrite from vermicular to globular in the previous weld bead region near to the weld bead interface, but also subjects the region to thermo-mechanical heat treatment to generate appreciable strength gradient. Electron backscatter diffraction analysis revealed significant localized strain gradients in regions adjoining the weld pass interface for the joint fabricated with large electrode size. Larger electrode diameter joint exhibited higher creep rupture strength than the smaller diameter electrode joint. However, both the joints had lower creep rupture strength than the base metal. Failure in the joints was associated with microstructural instability in the fusion zone, and the vermicular delta ferrite zone was more prone to creep cavitation. Larger electrode diameter joint was found to be more resistant to failure caused by creep cavitation than the smaller diameter electrode joint. This has been attributed to the larger strength gradient between the beads and significant separation between the cavity prone vermicular delta ferrite zones which hindered the cavity growth. Close proximity of cavitated zones in smaller electrode joint facilitated their faster coalescence leading to more reduction in creep rupture strength. Failure location in the joints was found to depend on the electrode size and applied stress. The change in failure location has been assessed on performing finite element analysis of stress distribution across the joint on incorporating tensile and creep strengths of different constituents of joints, estimated by ball indentation and impression creep testing techniques.

  6. The effect of electron beam welding on the creep rupture properties of a Nb-Zr-C alloy

    Science.gov (United States)

    Moore, T. J.; Titran, R. H.; Grobstein, T. L.

    1986-01-01

    Creep rupture tests of electron beam welded PWC-11 sheet were conducted at 1350 K. Full penetration, single pass welds were oriented transverse to the testing direction in 1 mm thick sheet. With this orientation, stress was imposed equally on the base metal, weld metal, and heat-affected zone. Tests were conducted in both the postweld annealed and aged conditions. Unwelded specimens with similar heat treatments were tested for comparative purposes. It was found that the weld region is stronger than the base metal for both the annealed and aged conditions and that the PWC-11 material is stronger in the annealed condition than in the aged condition.

  7. Long-term creep rupture strength of weldment of Fe-Ni based alloy as candidate tube and pipe for advanced USC boilers

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Gang; Sato, Takashi [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Research Laboratory; Marumoto, Yoshihide [Babcok-Hitachi K.K., Hiroshima (Japan). Kure Div.

    2010-07-01

    A lot of works have been going to develop 700C USC power plant in Europe and Japan. High strength Ni based alloys such as Alloy 617, Alloy 740 and Alloy 263 were the candidates for boiler tube and pipe in Europe, and Fe-Ni based alloy HR6W (45Ni-24Fe-23Cr-7W-Ti) is also a candidate for tube and pipe in Japan. One of the Key issues to achieve 700 C boilers is the welding process of these alloys. Authors investigated the weldability and the long-term creep rupture strength of HR6W tube. The weldments were investigated metallurgically to find proper welding procedure and creep rupture tests are ongoing exceed 38,000 hours. The long-term creep rupture strengths of the HST weld joints are similar to those of parent metals and integrity of the weldments was confirmed based on with other mechanical testing results. (orig.)

  8. Creep rupture behavior of 9Cr–1.8W–0.5Mo–VNb (ASME grade 92) ferritic steel weld joint

    Energy Technology Data Exchange (ETDEWEB)

    Sakthivel, T., E-mail: tsakthivel@igcar.gov.in; Vasudevan, M.; Laha, K., E-mail: laha@igcar.gov.in; Parameswaran, P.; Chandravathi, K.S.; Panneer Selvi, S.; Maduraimuthu, V.; Mathew, M.D.

    2014-01-03

    Creep rupture behavior of 9Cr–1.8W–0.5Mo–VNb (ASME grade 92) ferritic steel weld joint fabricated by activated TIG (A-TIG) welding process have been investigated at 923 K over a stress range of 80–150 MPa. The weld joint was comprise of fusion zone, heat affected zone (HAZ) and base metal. The HAZ consisted of coarse prior-austenite grain (CGHAZ), fine prior-austenite grain (FGHAZ) and intercritical (ICHAZ) regions in an order away from the fusion zone to base metal. A hardness trough was observed at the outer edge of HAZ of the weld joint. TEM investigation revealed the presence of coarse M{sub 23}C{sub 6} precipitates and recovery of martensite lath structure into subgrain in the ICHAZ of the weld joint, leading to the hardness trough. The weld joint exhibited lower creep rupture lives than the base metal at relatively lower stresses. Creep rupture failure location of the weld joint was found to shift with applied stress. At high stresses fracture occurred in the base metal, whereas failure location shifted to FGHAZ at lower stresses with significant decrease in rupture ductility. SEM investigation of the creep ruptured specimens revealed precipitation of Laves phase across the joint, more extensively in the FGHAZ. On creep exposure, the hardness trough was found to shift from the ICHAZ to FGHAZ. Extensive creep cavitation was observed in the FGHAZ and was accompanied with the Laves phase, leading to the premature type IV failure of the steel weld joint at the FGHAZ.

  9. Material Constitutive Models for Creep and Rupture of SiC/SiC Ceramic-Matrix Composites (CMCs) Under Multiaxial Loading

    Science.gov (United States)

    Grujicic, Mica; Galgalikar, R.; Snipes, J. S.; Ramaswami, S.

    2016-05-01

    Material constitutive models for creep deformation and creep rupture of the SiC/SiC ceramic-matrix composites (CMCs) under general three-dimensional stress states have been developed and parameterized using one set of available experimental data for the effect of stress magnitude and temperature on the time-dependent creep deformation and rupture. To validate the models developed, another set of available experimental data was utilized for each model. The models were subsequently implemented in a user-material subroutine and coupled with a commercial finite element package in order to enable computational analysis of the performance and durability of CMC components used in high-temperature high-stress applications, such as those encountered in gas-turbine engines. In the last portion of the work, the problem of creep-controlled contact of a gas-turbine engine blade with the shroud is investigated computationally. It is assumed that the blade is made of the SiC/SiC CMC, and that the creep behavior of this material can be accounted for using the material constitutive models developed in the present work. The results clearly show that the blade-tip/shroud clearance decreases and ultimately becomes zero (the condition which must be avoided) as a function of time. In addition, the analysis revealed that if the blade is trimmed at its tip to enable additional creep deformation before blade-tip/shroud contact, creep-rupture conditions can develop in the region of the blade adjacent to its attachment to the high-rotational-speed hub.

  10. Microstructural observation of helium implanted and creep ruptured Fe 25%Ni 15%Cr alloys containing various MC and MN formers

    Science.gov (United States)

    Yamamoto, Norikazu; Nagakawa, Johsei; Murase, Yoshiharu; Shiraishi, Haruki

    1998-10-01

    Transmission electron microscopic observations have been carried out on Fe-25%Ni-15%Cr austenitic alloys with various MX (M=V, Ti, Nb, Zr; X=C, N) stabilizers after helium implantation and creep rupture at 923 K. It is shown that suppression of helium embrittlement can be achieved through a higher dispersion density of incoherent precipitates because of their high capability of bubble entrapment. A good agreement between the average distance of grain boundary bubbles exceeding the minimum critical size and the spacing of cavity traces on intergranularly fractured surfaces is obtained. This suggests that the enhancement of grain boundary decohesion by helium is a result of unstable growth of super-critical helium bubbles.

  11. Diagnosis and Follow-up US Evaluation of Ruptures of the Medial Head of the Gastrocnemius

    Energy Technology Data Exchange (ETDEWEB)

    Kwak, Hyo-Sung; Han, Young-Min; Lee, Sang-Yong; Kim, Ki-Nam; Chung, Gyung Ho [Chonbuk National University Medical School, Chonju (Korea, Republic of)

    2006-09-15

    The purpose of this study was to demonstrate the ultrasonographic (US) findings of rupture and the healing process of the medial head of the gastrocnemius ('Tennis Leg'). Twenty-two patients (age range: 30 to 45 years) with clinically suspected ruptures of the medial head of the gastrocnemius were referred to us for US examination. All the patients underwent US of the affected limb and the contralateral asymptomatic limb. Follow-up clinical evaluation and US imaging of all patients were performed at two-week intervals during the month after injury and at one-month intervals during the following six months. Of the 22 patients who had an initial US examination after their injury, partial rupture of the medial head of the gastrocnemius muscle was identified in seven patients (31.8%); the remaining 15 patients were diagnosed with complete rupture. Fluid collection between the medial head of the gastrocnemius and the soleus muscle was identified in 20 patients (90.9%). The thickness of the fluid collection, including the hematoma in the patients with complete rupture (mean: 9.7 mm), was significantly greater than that seen in the patients with partial tear (mean: 6.8 mm) (p < 0.01). The primary union of the medial head of the gastrocnemius with the soleus muscle in all the patients with muscle rupture and fluid collection was recognized via the hypoechoic tissue after four weeks. Ultrasonography is a useful imaging modality for the diagnosis and follow-up examination for the patients suffering with rupture of the medial head of the gastrocnemius.

  12. Improvement in creep-rupture life of 1Cr1Mo(1)/(4)V steel castings and their weld joints by addition of niobium

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Kulvir; Jaipal Reddy, G.; Reddy, K.S. [Corporate R and D, BHEL, Hyderabad (India). Metallurgy Dept.

    2008-07-01

    1Cr1Mo(1)/(4)V steel was cast with varying percentages of 0.04, 0.06 and 0.08% of niobium. The CrMoV cast steels having the above chemical composition, were subjected to a heat treatment by solutionising them to a temperature at 1040 C and subsequent cooling to room temperature, then, subjecting to a tempering at a temperature below the Ac1 point at 740 C. CrMoV electrodes were used for welding. Welding, as per the plant practices was carried out on the castings and weldability studies were conducted. Base metal and weld joint samples were subjected to hardness, impact, tensile, hot tensile and creep/ stress rupture testing. Creep/ stress rupture testing was carried out at 525, 550, 575 and 600 C and stresses varying from 100 - 300 MPa. Microstructural analysis including scanning and transmission electron microscopy was carried out on the as received as well as tested material. Room and high temperature tensile strength of 1Cr1Mo(1)/(4)V steel with Nb addition was higher than plain 1Cr1Mo(1)/(4)V steel. Among Nb added steels, creep-rupture and tensile strength of 0.06 and 0.08%Nb steel was found to be highest. The creep ductility of these casts is slightly lower than plain 1Cr1Mo(1)/(4)V steel but the cast with 0.08% Nb showed highest creep-rupture ductility. On the basis of creep-rupture test results on weld joint samples, the weld joints of steel with 0.08%Nb are found to be stronger than plain 1Cr1Mo(1)/(4)V steel as well as with 0.04 and 0.06%Nb. Creep-rupture ductility and impact strength of weld as well as HAZ region of 0.08% Nb steel were highest. 1Cr1Mo(1)/(4)V cast steel with Nb addition is envisaged to be used for steam turbine casing castings and valve castings. If turbine casings and valve castings are made of Nb containing steels, it is possible to increase the steam temperature and pressure and also the efficiency and reliability of the turbine. Substantial gains in terms of cost and life improvement can be made. (orig.)

  13. Effects of carbon content and chromium segregation on creep rupture properties of low carbon and medium nitrogen type 316 stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, Takanori; Fujita, Nobuhiro; Kimura, Hidetaka [Nippon Steel Corp., Futtsu, Chiba (Japan). Steel Research Labs.; Komatsu, Hajime; Kotoh, Hiroyuki; Kaguchi, Hitoshi

    1997-05-01

    The creep rupture properties of type 316 stainless steels containing 0.005-0.022%C and 0.07%N have been investigated at 550degC and 600degC from the aspect of the grain boundary carbide precipitation which was changed with carbon content and chromium segregation. A small amount of carbide precipitated on grain boundaries during creep, because the solubility limit of the carbide is less than 0.005%. The creep rupture ductility of this steel increased with the reduction of carbon content from 0.010% to 0.005% while it decreased with increasing carbon content from 0.010% to 0.020%. Since the amount of grain boundary carbide decreased with reducing carbon content, the increase in ductility was due to the suppression of grain boundary embrittlement caused by the carbide. The creep rupture ductility of this steel was also improved by reducing chromium segregation. This behavior was attributed to the change in carbide morphology from concentrated type to dispersed one, which reduced the grain boundary embrittlement. (author)

  14. Fan-head shear rupture mechanism as a source of off-fault tensile cracking

    Science.gov (United States)

    Tarasov, Boris

    2016-04-01

    This presentation discusses the role of a recently identified fan-head shear rupture mechanism [1] in the creation of off-fault tensile cracks observed in earthquake laboratory experiments conducted on brittle photoelastic specimens [2,3]. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength) and self-sustaining tensile stress intensification along one side of the interface. The variation of tensile stress within the fan-head zone is like this: it increases with distance from the fracture tip up to a maximum value and then decreases. For the initial formation of the fan-head high local stresses corresponding to the fracture strength should be applied in a small area, however after completions of the fan-head it can propagate dynamically through the material at low shear stresses (even below the frictional strength). The fan-mechanism allows explaining all unique features associated with the off-fault cracking process observed in photoelastic experiments [2,3]. In these experiments spontaneous shear ruptures were nucleated in a bonded, precut, inclined and pre-stressed interface by producing a local pressure pulse in a small area. Isochromatic fringe patterns around a shear rupture propagating along bonded interface indicate the following features of the off-fault tensile crack development: tensile cracks nucleate and grow periodically along one side of the interface at a roughly constant angle (about 80 degrees) relative to the shear rupture interface; the tensile crack nucleation takes place some distance behind the rupture tip; with distance from the point of nucleation tensile cracks grow up to a certain length within the rupture head zone

  15. Investigation on Long-term Creep Rupture Properties and Microstructure Stability of Fe-Ni based Alloy Ni-23Cr-7W at 700°C

    DEFF Research Database (Denmark)

    Tokairin, Tsuyoshi; Dahl, Kristian Vinter; Danielsen, Hilmar Kjartansson

    2013-01-01

    Long-term creep rupture properties and microstructural stability of Fe–Ni based alloy Ni–23Cr–7W (HR6W, ASME Code Case 2684) were experimentally investigated. Crept specimens at 700 °C for durations up to 37,667 h were chosen, the microstructure evolution during creep was characterized. Besides...... the MC and M23C6 carbides found in the as-received sample, the formation of α-W phase, α-Cr phase and Laves phase in crept samples were confirmed with scanning/transmission electron microscopes. Statistical quantitative image analysis was used to evaluate the precipitation behavior and growth kinetics...

  16. Creep-Rupture Behavior of Ni-Based Alloy Tube Bends for A-USC Boilers

    Science.gov (United States)

    Shingledecker, John

    Advanced ultrasupercritical (A-USC) boiler designs will require the use of nickel-based alloys for superheaters and reheaters and thus tube bending will be required. The American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code Section II PG-19 limits the amount of cold-strain for boiler tube bends for austenitic materials. In this summary and analysis of research conducted to date, a number of candidate nickel-based A-USC alloys were evaluated. These alloys include alloy 230, alloy 617, and Inconel 740/740H. Uniaxial creep and novel structural tests and corresponding post-test analysis, which included physical measurements, simplified analytical analysis, and detailed microscopy, showed that different damage mechanisms may operate based on test conditions, alloy, and cold-strain levels. Overall, creep strength and ductility were reduced in all the alloys, but the degree of degradation varied substantially. The results support the current cold-strain limits now incorporated in ASME for these alloys for long-term A-USC boiler service.

  17. Creep in structures

    Energy Technology Data Exchange (ETDEWEB)

    Zyczkowski, M. (Krakow Univ. of Technology (Poland). Inst. of Mechanics and Machine Design) (ed.)

    1991-01-01

    This volume contains 81 papers divided into three almost equal parts: Constitutive equations, combined loadings; damage, creep crack growth, creep rupture; structures, analytical and numerical methods, optimal design. (orig.).

  18. The effect of MC and MN stabilizer additions on the creep rupture properties of helium implanted Fe-25% Ni-15% Cr austenitic alloy

    Science.gov (United States)

    Yamamoto, Norikazu; Nagakawa, Johsei; Shiraishi, Haruki

    1995-10-01

    Helium embrittlement resistance of Fe-25% Ni-15% Cr austenitic alloys with various MX (M = V, Ti, Nb, Zr; X = C, N) stabilizers was compared through post helium implantation creep testing at 923 K. While significant deterioration by helium in terms of creep rupture time and elongation occurred for all materials investigated, the suppression of the deterioration, especially in rupture time, was discerned for the materials in which semi-coherent MC (M = Ti, Ti + Nb, V + Ti) particles were distributed at high density. The material which contains the incoherent M 23C 6 as predominant precipitates seems to be less degraded by helium than those containing the MXs (M = Zr, V; X = C, N), if compared at the same number density of precipitates. Therefore, it is suggested that the high density dispersion of incoherent M 23C 6 as well as semi-coherent Ti containing MC particles would be beneficial in reducing the detrimental helium influences on mechanical properties.

  19. A Comparison of Creep Rupture Strength of Ferritic/Austenitic Dissimilar Weld Joints of Different Grades of Cr-Mo Ferritic Steels

    Science.gov (United States)

    Laha, K.; Chandravathi, K. S.; Parameswaran, P.; Goyal, Sunil; Mathew, M. D.

    2012-04-01

    Evaluations of creep rupture properties of dissimilar weld joints of 2.25Cr-1Mo, 9Cr-1Mo, and 9Cr-1MoVNb steels with Alloy 800 at 823 K were carried out. The joints were fabricated by a fusion welding process employing an INCONEL 182 weld electrode. All the joints displayed lower creep rupture strength than their respective ferritic steel base metals, and the strength reduction was greater in the 2.25Cr-1Mo steel joint and less in the 9Cr-1Mo steel joint. Failure location in the joints was found to shift from the ferritic steel base metal to the intercritical region of the heat-affected zone (HAZ) of the ferritic steel (type IV cracking) with the decrease in stress. At still lower stresses, the failure in the joints occurred at the ferritic/austenitic weld interface. The stress-life variation of the joints showed two-slope behavior and the slope change coincided with the occurrence of ferritic/austenitic weld interface cracking. Preferential creep cavitation in the soft intercritical HAZ induced type IV failure, whereas creep cavitation at the interfacial particles induced ferritic/austenitic weld interface cracking. Micromechanisms of the type IV failure and the ferritic/austenitic interface cracking in the dissimilar weld joint of the ferritic steels and relative cracking susceptibility of the joints are discussed based on microstructural investigation, mechanical testing, and finite element analysis (FEA) of the stress state across the joint.

  20. Effects of composition and heat treatment at 1150{degrees}C on creep-rupture properties of Fe{sub 3}Al-based alloys

    Energy Technology Data Exchange (ETDEWEB)

    McKamey, C.G.; Maziasz, P.J.; Marrero-Santos, Y. [Oak Ridge National Lab., TN (United States)

    1995-08-01

    The effects of composition and heat treatment at 1150{degrees}C on the creep-rupture properties of Fe3Al-based alloys were studied. Tests of alloy FA-180 (Fe-28Al-5Cr-0.5Nb-0.8Mo-0.025Zr-0.05C-0.005B, at.%) with this heat treatment were performed in air using various test temperatures and stresses in order to obtain creep activation energies and constants. An activation energy for creep of approximately 150 kcal/mole was determined, a value which is approximately twice that obtained earlier for the binary alloy heat treated at 750{degrees}C. Tests were also conducted on alloys containing various combinations of Cr, Mo, Nb, Zr, C, and B in order to better understand the effect of composition on the improved creep resistance with heat treating at 1150{degrees}C. The results suggest an interaction of Mo with Zr and Nb to produce increased creep life.

  1. Long-Term Creep of a Thin-Walled Inconel 718 Stirling Power-Convertor Heater Head Assessed

    Science.gov (United States)

    Bowman, Randy R.

    2002-01-01

    The Department of Energy and NASA have identified Stirling power convertors as candidate power supply systems for long-duration, deep-space science missions. A key element for qualifying the flight hardware is a long-term durability assessment for critical hot section components of the power convertor. One such critical component is the power convertor heater head. The heater head is a high-temperature pressure vessel that transfers heat to the working gas medium of the convertor, which is typically helium. An efficient heater head design is the result of balancing the divergent requirements of thin walls for increased heat transfer versus thick walls to lower the wall stresses and thus improve creep resistance and durability. In the current design, the heater head is fabricated from the Ni-base superalloy Inconel 718 (IN 718, Inco Alloys International, Inc., Huntington, WV). Although IN 718 is a mature alloy system (patented in 1962), there is little long-term (>50,000-hr) creep data available for thin-specimen geometries. Since thin-section properties tend to be inferior to thicker samples, it is necessary to generate creep data using specimens with the same geometry as the actual flight hardware. Therefore, one facet of the overall durability assessment program involves generating relatively short-term creep data using thin specimens at the design temperature of 649 C (1200 F).

  2. Creep-rupture-strength and creep-behaviour of stainless steel X6CrNi 1811(DIN 1.4948); Comportamiento a la fluencia lenta del acero X6CrNi 1811 (1.4948)

    Energy Technology Data Exchange (ETDEWEB)

    Solano, R. R.; Schirra, M.; Rivas, M. de la; Seith, B.

    1977-07-01

    The steel X6CrNi 1811 (DIN 1.4948) that will be used as a structure material for the German Fast Breeder Reactor SNR 300 was creep-tested in a temperature range of 550-650 degree centigree under base material condition as well as welded material condition. Tests are foreseen up to 30.000 hours with a continuous measuring of the elongation. The present report describes the test results up to about 4-000 hours. Taking into account the results of other programs carried out with the same material between 550- and 600 degree centigree at similar rupture time, were defined the stresses for the long term tests. The main point of this program (Extrapolation Program) lies in the knowledge of the creep-rupture-strength and creep behaviour of the structure materials up to 3.10{sup 4}h at high temperature in order to extrapolate up to 10{sup 5} h. for reactor operating temperatures. (Author) 14 refs.

  3. Complete rupture of the long head of the biceps tendon and the distal biceps tendon

    Directory of Open Access Journals (Sweden)

    Pieter J. Oberholzer

    2014-12-01

    Full Text Available The most common injury to the biceps muscle is rupture of the long head of the biceps tendon. A tear can occur proximally, distally or at the musculotendinous junction. Two cases are discussed, in both of which the patients felt a sudden sharp pain in the upper arm, at the shoulder and elbow respectively, and presented with a biceps muscle bump (Popeye deformity.

  4. Creep/Stress Rupture Behavior and Failure Mechanisms of Full CVI and Full PIP SiC/SiC Composites at Elevated Temperatures in Air

    Science.gov (United States)

    Bhatt, R. T.; Kiser, J. D.

    2017-01-01

    SiC/SiC composites fabricated by melt infiltration are being considered as potential candidate materials for next generation turbine components. However these materials are limited to 2400 F application because of the presence of residual silicon in the SiC matrix. Currently there is an increasing interest in developing and using silicon free SiC/SiC composites for structural aerospace applications above 2400 F. Full PIP or full CVI or CVI + PIP hybrid SiC/SiC composites can be fabricated without excess silicon, but the upper temperature stress capabilities of these materials are not fully known. In this study, the on-axis creep and rupture properties of the state-of-the-art full CVI and full PIP SiC/SiC composites with Sylramic-iBN fibers were measured at temperatures to 2700 F in air and their failure modes examined. In this presentation creep rupture properties, failure mechanisms and upper temperature capabilities of these two systems will be discussed and compared with the literature data.

  5. Lateral antebrachial cutaneous neuropathy following the long head of the biceps rupture.

    Science.gov (United States)

    Brogan, David M; Bishop, Allen T; Spinner, Robert J; Shin, Alexander Y

    2012-04-01

    Lateral antebrachial cutaneous neuropathies present as purely sensory lesions, manifesting as elbow pain or dysesthetic pain over the lateral forearm. Classically, entrapment of the lateral antebrachial cutaneous nerve has been documented at the lateral edge of the biceps tendon as it exits the deep fascia in the antecubital fossa. We report a case of lateral antebrachial cutaneous nerve traction neuritis, rather than entrapment, resulting from a rupture of the long head of the biceps. The biceps displaced the nerve laterally, resulting in sensory loss and severe allodynia. The patient's symptoms were relieved with proximal biceps tenodesis.

  6. Structural Benchmark Creep Testing for Microcast MarM-247 Advanced Stirling Convertor E2 Heater Head Test Article SN18

    Science.gov (United States)

    Krause, David L.; Brewer, Ethan J.; Pawlik, Ralph

    2013-01-01

    This report provides test methodology details and qualitative results for the first structural benchmark creep test of an Advanced Stirling Convertor (ASC) heater head of ASC-E2 design heritage. The test article was recovered from a flight-like Microcast MarM-247 heater head specimen previously used in helium permeability testing. The test article was utilized for benchmark creep test rig preparation, wall thickness and diametral laser scan hardware metrological developments, and induction heater custom coil experiments. In addition, a benchmark creep test was performed, terminated after one week when through-thickness cracks propagated at thermocouple weld locations. Following this, it was used to develop a unique temperature measurement methodology using contact thermocouples, thereby enabling future benchmark testing to be performed without the use of conventional welded thermocouples, proven problematic for the alloy. This report includes an overview of heater head structural benchmark creep testing, the origin of this particular test article, test configuration developments accomplished using the test article, creep predictions for its benchmark creep test, qualitative structural benchmark creep test results, and a short summary.

  7. Rupture

    CERN Multimedia

    Association du personnel

    2006-01-01

    Our Director-General is indifferent to the tradition of concertation foreseen in our statutes and is "culturally" unable to associate the Staff Association with problem-solving in staff matters. He drags his heels as long as possible before entering into negotiations, presents "often misleading" solutions at the last minute which he only accepts to change once a power struggle has been established. Faced with this rupture and despite its commitment to concertation between gentlemen. The results of the poll in which the staff is invited to participate this week. We therefore need your support to state our claims to the Governing Bodies. The Staff Association proposes a new medium of communication and thus hopes to show that it is ready for future negotiations. The pages devoted to the Staff Association are presented in a more informative, reactive and factual manner and in line with the evolution of the social situation at CERN. We want to establish strong and continuous ties between the members of CERN and ou...

  8. Creep and time to rupture of a 16/16 Cr Ni Steel; Comportamiento a la fluencia lenta de la aleacion X 8 Cr Ni Mo Nb 1616 con distintos tratamientos termicos

    Energy Technology Data Exchange (ETDEWEB)

    Solano, R.; Garcia, R.; Bohm, H.; Schirra, M.

    1972-07-01

    The influence of different thermal-mechanical treatments on the creep and time to rupture of a 16/16 Cr.Ni steel is studied. The solution treated material after annealing at 700-800 degree centigree did not affect time to rupture. At the contrary a 12% cold-working and annealing at 800 degree centigree improve the time to rupture. This treatment is preserved up to 700 degree centigree 10{sup 4} hours. The ductility is not strongly affected. A metallographic study of the fracture was carried out. (Author) 23 refs.

  9. Proximal coracobrachialis tendon rupture, subscapularis tendon rupture, and medial dislocation of the long head of the biceps tendon in an adult after traumatic anterior shoulder dislocation

    Directory of Open Access Journals (Sweden)

    Bryan M Saltzman

    2015-01-01

    Full Text Available Rupture of the coracobrachialis is a rare entity, in isolation or in combination with other muscular or tendinous structures. When described, it is often a result of direct trauma to the anatomic area resulting in rupture of the muscle belly. The authors present a case of a 57-year-old female who suffered a proximal coracobrachialis tendon rupture from its origin at the coracoid process, with concomitant subscapularis tear and medial dislocation of the long head of biceps tendon after first time traumatic anterior shoulder dislocation. Two weeks after injury, magnetic resonance imaging suggested the diagnosis, which was confirmed during combined arthroscopic and open technique. Soft-tissue tenodesis of coracobrachialis to the intact short head of the biceps, tenodesis of the long head of biceps to the intertubercular groove, and double-row anatomic repair of the subscapularis were performed. The patient did well postoperatively, and ultimately at 6 months follow-up, she was without pain, and obtained 160΀ of active forward elevation, 45΀ of external rotation, internal rotation to T8, 5/5 subscapularis and biceps strength. Scoring scales had improved from the following preoperative to final follow-up: American Shoulder and Elbow Surgeons, 53.33-98.33; constant, 10-100; visual analogue scale-pain, 4-0. DASH score was 5.

  10. Seismicity distribution in conjunction with spatiotemporal variations of coseismic slip and postseismic creep along the combined 1999 Izmit-Düzce rupture

    Science.gov (United States)

    Bohnhoff, Marco; Ickrath, Michèle; Dresen, Georg

    2016-08-01

    The North Anatolian Fault Zone (NAFZ) in NW Turkey as one of the most active and best studied strike-slip faults provides a unique opportunity to study earthquake related relaxation processes through analyzing co- and postseismic deformation. We study the spatial and temporal distributions of seismicity related to the two consecutive 1999 M > 7 Izmit and Düzce earthquakes. A high-resolution aftershock catalogue including ~ 10,000 hypocenters extending along the combined rupture zone and extending from prior to the Izmit event to after the Düzce event is studied. Spatial and temporal distributions of events allow to identify distinct seismically active and inactive fault patches. Their location is related to the co- and postseismic deformation within and below the seismogenic layer, respectively. Four seismically inactive patches extending 30-50 km along the rupture zone and down to 10 km depth are identified with a systematic spatial shift between them introduced by the Düzce mainshock. The cumulative distribution of sub-areas hosting coseismic slip, aftershock clusters and postseismic creep shows that the entire upper (seismogenic) and lower (ductile) portions of the crust along the combined Izmit and Düzce rupture zone are activated between rupture initiation and a two-year postseismic period. This observation was only achieved due to the subsequent occurrence of two adjacent M > 7 strike-slip earthquakes in combination with a distinct local seismic and geodetic monitoring. Our findings suggest that a coseismically introduced lateral and vertical slip deficit is systematically compensated postseismically in both the brittle and ductile portions of the crust.

  11. Standard guide for use of thermocouples in creep and stress-rupture testing to 1800°F (1000°C) in air

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2000-01-01

    1.1 This guide covers the use of ANSI thermocouple Types K, N, R, and S for creep and stress-rupture testing at temperatures up to 1800°F (1000°C) in air at one atmosphere of pressure. It does not cover the use of sheathed thermocouples. 1.2 The values stated in inch-pound units are to be regarded as the standard. The values given in parentheses are for information only. 1.3This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  12. Contribution of recovery mechanisms of microstructure during long-term creep of Gr.91 steels

    Science.gov (United States)

    Ghassemi-Armaki, H.; Chen, R. P.; Maruyama, K.; Igarashi, M.

    2013-02-01

    Creep rupture life and microstructural degradation have been studied in two heats of Gr.91 steels. The coarsening of subgrains and precipitates, mainly M23C6 and MX, has been evaluated during static aging and creep. Hardness of head (static aging) and gauge (creep) portions of crept samples were measured to know their relation with microstructural degradation during long-term exposure. The correlation between subgrain size and spacing of precipitates and hardness has been equated. As an example, there is a close correlation between hardness value and inverse subgrains size in Gr.91 steels, regardless of aging or creep conditions. The appearance of three recovery mechanisms was found during long-term creep, namely: strain-induced recovery, pure static recovery and strain-assisted static recovery. By equated correlations between subgrain size, precipitates and hardness, the contribution of three recovery mechanisms to subgrain coarsening and hardness drop were calculated for two creep conditions at 700 °C in long-term creep region, where breakdown of creep strength has happen. The calculated data accord well with experimental data obtained from aged and crept samples. The contribution of static recovery to the subgrain coarsening and consequent hardness drop during long-term creep increases with increasing creep time. The significant contribution of both static recovery mechanisms can result in the breakdown of creep strength in long-term creep region.

  13. 涡轮盘持久及低周疲劳寿命可靠性评估%Reliability prediction on creep rupture and LCF life for a turbine disk

    Institute of Scientific and Technical Information of China (English)

    牟园伟; 陆山

    2015-01-01

    为评估涡轮盘持久及低周疲劳寿命可靠性,考虑涡轮盘材料及载荷的分散性,采用响应面法与蒙特卡洛法相结合的方法,建立涡轮盘持久寿命可靠性分析模型。对给定中间以上状态工作时间400 h的涡轮盘进行持久寿命可靠度计算,并考察应力松弛效应对涡轮盘持久寿命的影响。在持久寿命可靠性分析的基础上,根据Miner线性累积损伤理论,对考虑蠕变损伤的涡轮盘低周疲劳寿命进行可靠性评估。结果表明,该涡轮盘满足400 h持久寿命、寿命安全系数1.5,及1500周低周疲劳寿命、寿命安全系数2.0的使用要求。%To predict the creep rupture and LCF life reliability of a turbine disk, considering the scatter of turbine disk material parameters and load parameters, using the response surface fitting and Monte-Carlo simulation technology, a creep rupture reliability life analysis model was constructed. The creep rupture probabilistic life of a turbine disk working 400 h was calculated. The influence of stress relaxation on the creep rupture probabilistic life was also analyzed. Based on the evaluated creep rupture reliability life and Miner linear cumulative damage theory, the creep/LCF probabilistic life was finally assessed. It turned out that the turbine disk met the design requirements of creep rupture life 400 h, safety factor 1.5 and LCF life 1 500 cycles, safety factor 2.0.

  14. 一种预测TP347H钢长时持久强度的方法%An Approach for Long-term Creep-rupture Strength Prediction of Steel TH347H

    Institute of Scientific and Technical Information of China (English)

    党莹樱; 彭志方; 彭芳芳

    2012-01-01

    基于多区LMP法,利用TP347H钢的高温(700℃、750℃)短时(≤5×10^3h)试验数据预测其长时持久强度(600~750℃,5×10^3~2×10^5h).结果表明:在应力-时间图中根据口/dT。的特定比值对应力分区,用低应力-长时区LMP参数中的C值计算长时持久强度,其预测值与真实值吻合良好;与传统的单区LMP法相比,多区LMP法的应用不仅显著降低了持久强度的过估倾向而且大大缩短了试验时间,为这类钢的长时持久强度评估提供了准确而有效的方法.%On the basis of a multi-region Larson-Miller parameter method newly proposed, long term creep rupture strengths (600-750 ℃, 5 ×10^3 -2×10^5 h) were successfully predicted for steel TP347H by using the data from tests lasting up to only 5 × 10^3 h at 700 ℃ and 750 ℃. Results show that in the plot of stress vs. rupture life, a set of creep rupture data can be divided into several data sets according to the specific value of σ/σrs, SO that the value C is unique in each individual data set; by using the C value in LMP corresponding to the lower-stress longer-time region, long-term creep rupture strengths have been assessed for the steel, of which the predicted results agree well with that of actual measurements. Compared with conventional single region LMP method, the proposed approach may not only avoid overestimation of creep rupture strength, but also shorten the time needed for creep rupture tests. This may serve as a reference for prediction of long-term creep-rupture life of similar steels.

  15. Creep behavior of microbiotic crust

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The creep behavior of microbiotic crust at room temperature was revealed by the creep bending tests of cantilever beam under constant-load conditions.The variation in the deflection with time can be depicted well by a standard creep curve.Creep rupture is a fundamental failure mechanism of microbiotic crust due to creep.A simple theory was then applied to describe this new me-chanical behavior.The existence of creep phenomenon brings into question the validity of widely used methods for measuring the strength of microbiotic crust.

  16. Ruptured Infantile Myofibroma of the Head Presenting in a Neonate: Case Report and Review of the Literature.

    Science.gov (United States)

    Koch, Paul F; Fierst, Tamara; Heuer, Austin J; Santi, Mariarita; Heuer, Gregory G

    2017-02-01

    Infantile myofibroma/myofibromatosis (IM/M) is a myofibroblastic proliferative disorder often seen in infants and children. IM/M can result in congenital tumors of the head and neck and may occasionally present to the neurosurgeon. We report a case of a solitary ruptured myofibroma of the head in a newborn patient. The lesion was initially suggestive of encephalocele. We describe the presentation and management of this patient, including relevant imaging, histopathologic evaluation, and surgical technique. We subsequently review the literature of IM/M of the head and neck, highlighting the 3 forms of the condition, each requiring a distinct management strategy. Although this tumor rarely presents to the neurosurgeon, it may do so in the process of ruling out other more dangerous conditions. It is therefore important to consider this diagnosis in masses that occur in the head and neck of newborns. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. null Seismic Creep, null Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden rupture associated with an earthquake. It is a usually slow deformation...

  18. Cyclic softening as a parameter for prediction of remnant creep rupture life of a Indian reduced activation ferritic–martensitic (IN-RAFM) steel subjected to fatigue exposures

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Aritra, E-mail: aritra@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Vijayanand, V.D.; Shankar, Vani; Parameswaran, P.; Sandhya, R.; Laha, K.; Mathew, M.D.; Jayakumar, T. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102, Tamil Nadu (India); Rajendrakumar, E. [Institute for Plasma Research, Bhat, Gandhinagar, Gujarat (India)

    2014-12-15

    Sequential fatigue-creep tests were conducted on Indian reduced activation ferritic–martensitic steel at 823 K leading to sharp decrease in residual creep life with increase in prior fatigue exposures. Extensive recovery of martensitic-lath structure taking place during fatigue deformation, manifested as cyclic softening in the cyclic stress response, shortens the residual creep life. Based on the experimental results, cyclic softening occurring during fatigue stage can be correlated with residual creep life, evolving in an empirical model which predicts residual creep life as a function of cyclic softening. Predicted creep lives for specimens pre-cycled at various strain amplitudes are explained on the basis of mechanism of cyclic softening.

  19. Diaphragmatic rupture causing repeated vomiting in a combined abdominal and head injury patient: a case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Symeonidis Dimitrios

    2012-07-01

    Full Text Available Abstract Background Diaphragmatic rupture after blunt abdominal injury is a rare trauma condition. Delayed diagnosis is not uncommon especially in the emergency room setting. Associated injuries often shift diagnosis and treatment priorities towards other more life-threatening conditions. Case presentation We present a challenging case of a young male with combined abdominal and head trauma. Repeated episodes of vomiting dominated on clinical presentation that in the presence of a deep scalp laceration and facial bruising shifted differential diagnosis towards a traumatic brain injury. However, a computed tomography scan of the brain ruled out any intracranial pathology. Finally, a more meticulous investigation with additional imaging studies confirmed the presence of diaphragmatic rupture that justified the clinical symptoms. Conclusions The combination of diaphragmatic rupture with head injury creates a challenging trauma scenario. Increased level of suspicion is essential in order to diagnose timely diaphragmatic rupture in multiple trauma patients.

  20. Elbow joint laxity after experimental radial head excision and lateral collateral ligament rupture

    DEFF Research Database (Denmark)

    Jensen, Steen Lund; Olsen, Bo Sanderhoff; Tyrdal, Stein;

    2005-01-01

    The objectives of this experimental study were to investigate the effect of radial head excision and lateral collateral ligament (LCL) division on elbow joint laxity and to determine the efficacy of radial head prosthetic replacement and LCL repair. Valgus, varus, internal rotation, and external...... rotation of the ulna were measured during passive flexion-extension and application of a 0.75-Nm torque in 6 intact cadaveric elbows and after (1) either excision of the radial head or division of the LCL, (2) removal of both constraints, (3) isolated radial head prosthetic replacement, (4) isolated LCL...... normalized varus laxity but resulted in a 2.9 degrees increase in external rotatory laxity. The combined procedures restored laxity completely. The radial head is a constraint to varus and external rotation in the elbow joint, functioning by maintaining tension in the LCL. Still, removal of both constraints...

  1. Materials for a Stirling engine heater head

    Science.gov (United States)

    Noble, J. E.; Lehmann, G. A.; Emigh, S. G.

    1990-01-01

    Work done on the 25-kW advanced Stirling conversion system (ASCS) terrestrial solar program in establishing criteria and selecting materials for the engine heater head and heater tubes is described. Various mechanisms contributing to incompatibility between materials are identified and discussed. Large thermal gradients, coupled with requirements for long life (60,000 h at temperature) and a large number of heatup and cooldown cycles (20,000) drive the design from a structural standpoint. The pressurized cylinder is checked for creep rupture, localized yielding, reverse plasticity, creep and fatigue damage, and creep ratcheting, in addition to the basic requirements for bust and proof pressure. In general, creep rupture and creep and fatigue interaction are the dominant factors in the design. A wide range of materials for the heater head and tubes was evaluated. Factors involved in the assessment were strength and effect on engine efficiency, reliability, and cost. A preliminary selection of Inconel 713LC for the heater head is based on acceptable structural properties but driven mainly by low cost. The criteria for failure, the structural analysis, and the material characteristics with basis for selection are discussed.

  2. Creep-Rupture Properties and Corrosion Behaviour of 21/4 Cr-1 Mo Steel and Hastelloy X-Alloys in Simulated HTGR Environment

    DEFF Research Database (Denmark)

    Lystrup, Aage; Rittenhouse, P. L.; DiStefano, J. R.

    Hastelloy X and 2/sup 1///sub 4/ Cr-1 Mo steel are being considered as structural alloys for components of a High-Temperature Gas-Cooled Reactor (HTGR) system. Among other mechanical properties, the creep behavior of these materials in HTGR primary coolant helium must be established to form part ...

  3. Z phase stability in AISI 316LN + Nb austenitic steels during creep at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Vodarek, Vlastimil [Technical Univ. Ostrava (Czech Republic)

    2010-07-01

    The creep resistance of austenitic CrNi(Mo) steels strongly depends on microstructural stability during creep exposure. Nitrogen additions to CrNi(Mo) austenitic steels can significantly improve the creep strength. One of the most successful methods of improving the long-term creep resistance of austenitic steels is based on increasing the extent of precipitation strengthening during creep exposure. The role of precipitates in the achievements of good creep properties has been extensively studied for a long time. Although many minor phases are now well documented there are still contractions and missing thermodynamic data about some minor phases. This contribution deals with results of microstructural studies on the minor phase evolution in wrought AISI 316LN niobium stabilised steels during long-term creep exposure at 650 C. Microstructural investigations were carried out on specimens taken from both heads and gauge lengths of ruptured test-pieces by means of optical metallography, transmission and scanning electron microscopy. The attention has been paid to evaluation of thermodynamic and dimensional stability of Z phase and other nitrogen bearing minor phases. Only two nitrogen-bearing minor phases formed in the casts investigated: Z phase and M{sub 6}X. The dimensional stability of Z phase particles was very high. (orig.)

  4. Z phase stability in AISI 316LN + Nb austenitic steels during creep at 650 C

    Energy Technology Data Exchange (ETDEWEB)

    Vodarek, Vlastimil [Technical Univ. Ostrava (Czech Republic)

    2010-07-01

    The creep resistance of austenitic CrNi(Mo) steels strongly depends on microstructural stability during creep exposure. Nitrogen additions to CrNi(Mo) austenitic steels can significantly improve the creep strength. One of the most successful methods of improving the long-term creep resistance of austenitic steels is based on increasing the extent of precipitation strengthening during creep exposure. The role of precipitates in the achievements of good creep properties has been extensively studied for a long time. Although many minor phases are now well documented there are still contractions and missing thermodynamic data about some minor phases. This contribution deals with results of microstructural studies on the minor phase evolution in wrought AISI 316LN niobium stabilised steels during long-term creep exposure at 650 C. Microstructural investigations were carried out on specimens taken from both heads and gauge lengths of ruptured test-pieces by means of optical metallography, transmission and scanning electron microscopy. The attention has been paid to evaluation of thermodynamic and dimensional stability of Z phase and other nitrogen bearing minor phases. Only two nitrogen-bearing minor phases formed in the casts investigated: Z phase and M{sub 6}X. The dimensional stability of Z phase particles was very high. (orig.)

  5. Creep Behaviour of Modified Mar-247 Superalloy

    Directory of Open Access Journals (Sweden)

    Cieśla M.

    2016-06-01

    Full Text Available The paper presents the results of analysis of creep behaviour in short term creep tests of cast MAR-247 nickel-based superalloy samples made using various modification techniques and heat treatment. The accelerated creep tests were performed under temperature of 982 °C and the axial stresses of σ = 150 MPa (variant I and 200 MPa (variant II. The creep behaviour was analysed based on: creep durability (creep rupture life, steady-state creep rate and morphological parameters of macro- and microstructure. It was observed that the grain size determines the creep durability in case of test conditions used in variant I, durability of coarse-grained samples was significantly higher.

  6. Creep-rupture-test on the stainless steel X6crni1811 (Din 1.494.8) in the frame of the Extrapolation-Program. (Part III); Ensayos de fluencia lenta en el acero inoxidable X6 Cr Ni 1811 (1.4948) en el marco del Programa Extrapolacion

    Energy Technology Data Exchange (ETDEWEB)

    Solano, R.; Schirra, M.; Rivas, M. de la; Barroso, S.; Seith, B.

    1982-07-01

    The austenitic stainless steel X6crni1811 (Din 1.4948) used as a structure material for the German Fast Breeder Reactor SNR 300 was creep tested in a temperature range of 550-650 degree centigree material condition as well as welded material condition. The main point of this program (Extrapolation-Program) lies in the knowledge of the creep-rupture-strength and creep-behaviour up to 3 x 10{sup 4} hours higher temperatures in order to extrapolated up to {>=}10{sup 5} hours for operating temperatures. In order to study the stress dependency of the minimum creep rate additional tests were carried out of 550 degree centigree - 750 degree centigree. The present report describes the state in the running program with test-times of 23.000 hours and results from tests up to 55.000 hours belonging to other parallel programs are taken into account. Besides the creep-rupture behaviour it is also made a study of ductility between 550 and 750 degree centigree. Extensive metallographic examinations have been made to study the fracture behaviour and changes in structure. (Author)

  7. Large earthquakes and creeping faults

    Science.gov (United States)

    Harris, Ruth A.

    2017-01-01

    Faults are ubiquitous throughout the Earth's crust. The majority are silent for decades to centuries, until they suddenly rupture and produce earthquakes. With a focus on shallow continental active-tectonic regions, this paper reviews a subset of faults that have a different behavior. These unusual faults slowly creep for long periods of time and produce many small earthquakes. The presence of fault creep and the related microseismicity helps illuminate faults that might not otherwise be located in fine detail, but there is also the question of how creeping faults contribute to seismic hazard. It appears that well-recorded creeping fault earthquakes of up to magnitude 6.6 that have occurred in shallow continental regions produce similar fault-surface rupture areas and similar peak ground shaking as their locked fault counterparts of the same earthquake magnitude. The behavior of much larger earthquakes on shallow creeping continental faults is less well known, because there is a dearth of comprehensive observations. Computational simulations provide an opportunity to fill the gaps in our understanding, particularly of the dynamic processes that occur during large earthquake rupture and arrest.

  8. Small punch creep test in a 316 austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Saucedo-Munoz, M. L.; Komazaki, S. I.; Hashida, T.; Lopez-Hirata, V. M.

    2015-03-30

    The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 degree centigrade. The small punch test was carried out using a creep tester with a specimen size of 10x10x0.3 mm at 650, 675 and 700 degree centigrade using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens. (Author)

  9. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  10. Prediction of labour and delivery by ascertaining the fetal head position with transabdominal ultrasound in pregnancies with prelabour rupture of membranes after 37 weeks.

    Science.gov (United States)

    Eggebø, T M; Heien, C; Okland, I; Gjessing, L K; Smedvig, E; Romundstad, P; Salvesen, K A

    2008-04-01

    To evaluate the proportion of fetal head rotation from occiput posterior (OP) to occiput anterior (OA) during labour after term prelabour rupture of membranes (PROM), and to study if OP before labour are associated with a higher risk of operative deliveries and a longer duration of labour. A transabdominal ultrasound examination was performed in 152 women with PROM after 37 weeks with a single live fetus in cephalic position. The course of labour was compared in women with the fetal head in occiput posterior position or other positions before the start of labour. Before the start of labour, 40 (26%) fetuses were in occiput posterior position (OP), but 34 (85%) of them rotated to occiput anterior (OA) during labour. Ten (6.6%) fetuses were delivered in OP, and six of them were in OP before the start of labour. There were no statistically significant associations between the head position before the start of labour and the duration from PROM to delivery, induction of labour, use of epidural analgesia, augmentation with oxytocin, operative deliveries, perineal tears, Apgar scores, pH or base excess in the umbilical artery. Transabdominal ultrasound examination can determine the fetal head position before the start of labour, but the position of the head did not predict the course of labour, probably because the fetal head may rotate during labour even after PROM.

  11. Advances in the assessment of creep data

    Energy Technology Data Exchange (ETDEWEB)

    Holdsworth, S.R.

    2010-07-01

    Many of the classical models representing the creep and rupture behaviour of metals were developed prior to and during the 1950s and 1960s, and their subsequent exploitation, in particular for the assessment of large creep property datasets, was initially limited by the capability of the analytical tools available at the time. The formation of ECCC (the European Creep Collaborative Committee) in 1991, with a main objective of providing reliable peer reviewed long-time creep property values for European Design and Product Standards, led to the development of rigorous assessment procedures such as PD6605 and DESA incorporating post assessment tests to verify: physical realism, effectiveness of model-fit within the range of the source experimental data, and extrapolation credibility. The first ECCC assessment recommendations published in 1996 undoubtedly provided a catalyst for others to exploit the availability of low cost, powerful desktop computers to develop rigorous methodologies for the physically realistic analysis of uniaxial and multi-axial data for the reliable and accurate characterisation of creep strain, and rupture strength and ductility properties. More recent improvements in data assessment methodologies have been driven by the need to effectively model the creep deformation and rupture characteristics of the complex new generation alloys and fabrications being designed to cater for the continually evolving requirements of modern advanced power plant. These advances in the assessment of creep data are reviewed. (orig.)

  12. Seismic Creep

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Seismic creep is the constant or periodic movement on a fault as contrasted with the sudden erupture associated with an earthquake. It is a usually slow deformation...

  13. Creeping eruption

    Science.gov (United States)

    ... are infected. Symptoms Symptoms of creeping eruption include: Blisters Itching , may be more severe at night Raised, ... enter the body through bare feet, so wearing shoes in areas where hookworm infestations are known to ...

  14. Creep curve modelling of a conventionally cast nickel base superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Lupinc, V.; Maldini, M. [CNR - IENI, Milan (Italy); Poggio, E.; Vacchieri, E. [Ansaldo Energia S.p.A., Genoa (Italy)

    2010-07-01

    Constant load creep tests on Rene 80, a nickel base superalloy for gas turbine blade application, were run in the temperature interval 800-950 C with applied stresses producing rupture times up to 1000 h. Creep curves are generally dominated by a long accelerating/tertiary creep that follows a relatively small decelerating/primary creep. No steady state stage has been observed. Analysis of the creep curves has shown that a single damage parameter can describe the long accelerating/tertiary state in the explored temperature range. The damage appears to be dependent on the accumulated creep strain and, as a first approximation, independent on the applied stress and temperature. The whole creep curve, primary and tertiary stages, has been modelled by a simple set of coupled differential equations obtained using the formalism of the Continuum Damage Mechanics. The proposed set of equations has an analytical solution, strain vs. time, for creep curves at constant temperature and stress. (orig.)

  15. Effect of loading rate on creep of phosphorous doped copper

    Energy Technology Data Exchange (ETDEWEB)

    Andersson-Oestling, Henrik C.M.; Sandstroem, Rolf (Swerea KIMAB (Sweden))

    2011-12-15

    Creep testing of copper intended for nuclear waste disposal has been performed on continuous creep tests machines at a temperature of 75 deg C. The loading time has been varied from 1 hour to 6 months. The rupture strain including both loading and creep strains does not differ from traditional dead weight lever creep test rigs. The loading strain increases with increasing loading time, at the expense of the creep strain. The time dependence of the creep strain has been modelled taking athermal plastic deformation and creep into account. During loading the contribution to the strain from the athermal plastic deformation dominates until the stress is close to the constant load level. When the constant load has been reached there is no more athermal strain and all of the strain comes from creep

  16. Creep behavior of alloy 617 in high temperature air and helium environments-effect of oxidation damage

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Chang Heui; Kim, Sung Hwan [Dept. of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Sah, Injin; Kim, Dae Jong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    The creep behavior of a nickel-base superalloy, Alloy 617, which is considered as a candidate material for the very high temperature gas cooled reactor, was studied. Creep rupture tests were carried out at 800°C, 900°C and 1000°C in static and flowing helium environments as well as in air. Creep rupture life in static helium was longer than that in air, while it was shorter in flowing helium environments. Microstructure observation of the creep tested specimens showed that the shorter creep rupture life in flowing helium was associated with the thicker oxide layer, greater decarburization depth, and deeper internal oxidation happened during the creep tests. The degree of such oxidation damage was quantified for the creep tested specimens and correlated with the creep rupture life in different environments.

  17. High-pressure creep tests

    Science.gov (United States)

    Bhattacharyya, S.; Lamoureux, J.; Hales, C.

    1986-01-01

    The automotive Stirling engine, presently being developed by the U.S. Department of Energy and NASA, uses high-pressure hydrogen as a working fluid; its long-term effects on the properties of alloys are relatively unknown. Hence, creep-rupture testing of wrought and cast high-temperature alloys in high-pressure hydrogen is an essential part of the research supporting the development of the Stirling cycle engine. Attention is given to the design, development, and operation of a 20 MPa hydrogen high-temperature multispecimen creep-rupture possessing high sensitivity. This pressure vessel allows for the simultaneous yet independent testing of six specimens. The results from one alloy, XF-818, are presented to illustrate how reported results are derived from the raw test data.

  18. Modeling of fan formation in a shear rupture head on the basis of singular solutions of plane elasticity

    Science.gov (United States)

    Tarasov, B. G.; Sadovskii, V. M.

    2016-10-01

    Mathematical model of the equilibrium fan-structure formation between two elastic half-planes is constructed, simulating a shear rupture at stress conditions of seismogenic depths. The stress-strain state far from the fan-structure is analyzed with the help of solution of the problem on the Volterra edge dislocation resulted in estimation of the fan length. The model of formation of two differently directed fans due to the localized action of tangential stress, which pushes two edge dislocations with the antiparallel Burgers vectors, is proposed and analysed.

  19. Relap5/Mod2.5 analyses of SG primary collector head rupture in WWER-440 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Szczurek, J. [Inst. of Atomic Energy, Swierk (Poland)

    1995-12-31

    The paper presents the results of the analyses of steam generator (SG) manifold cover rupture performed with RELAP5/MOD2.5 (version provided by RMA, Albuquerque, for PC PPS). The calculations presented are based on RELAP5 input deck for WWER-440/213 Bobunice NPP, developed within the framework of IAEA TC Project RER/9/004. The presented analyses are directed toward determining the maximum amount of reactor coolant discharged into the secondary coolant system and the maximum amount of contaminated coolant release to the atmosphere. In all cases considered in the analysis, maximum ECCS injection capacity is assumed. The paper includes only the cases without any operator actions within the time period covered by the analyses. In particular, the primary loop isolation valves are not used for isolating the broken steam generator. Two scenarios are analysed: with and without the SG safety valve stuck open. 3 refs.

  20. Creep/Stress Rupture Behavior of 3D Woven SiC/SiC Composites with Sylramic-iBN, Super Sylramic-iBN and Hi-Nicalon-S Fibers at 2700F in Air

    Science.gov (United States)

    Bhatt, R. T.

    2017-01-01

    To determine the influence of fiber types on creep durability, 3D SiC/SiC CMCs were fabricated with Sylramic-iBN, super Sylramic-iBN and Hi-Nicalon-S fibers and the composite specimens were then tested under isothermal tensile creep at 14820C at 69, 103 and 138 MPa for up to 300hrs in air. The failed specimens were examined by scanning electron microscopy (SEM) and computed tomography (CT) for fracture mode analysis. The creep data of these composites are compared with those of other SiC/SiC composites in the literature. The results of this study will be presented.

  1. timber joists subjected to creep-rupture

    African Journals Online (AJOL)

    user

    Several models were developed for the estimation of the reduction of load carrying capacity of timber with ... variation and statistical distribution models) of .... Dead to live load ration, α ... that timber joists with width b equal to 50mm, and depth.

  2. Creep and Creep-Fatigue of Alloy 617 Weldments

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Jill K. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Carroll, Laura J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wright, Richard N. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    Alloy 617 is the primary candidate material for the heat exchanger of a very high temperature gas cooled reactor intended to operate up to 950°C. While this alloy is currently qualified in the ASME Boiler and Pressure Vessel Code for non-nuclear construction, it is not currently allowed for use in nuclear designs. A draft Code Case to qualify Alloy 617 for nuclear pressure boundary applications was submitted in 1992, but was withdrawn prior to approval. Prior to withdrawal of the draft, comments were received indicating that there was insufficient knowledge of the creep and creep-fatigue behavior of Alloy 617 welds. In this report the results of recent experiments and analysis of the creep-rupture behavior of Alloy 617 welds prepared using the gas tungsten arc process with Alloy 617 filler wire. Low cycle fatigue and creep-fatigue properties of weldments are also discussed. The experiments cover a range of temperatures from 750 to 1000°C to support development of a new Code Case to qualify the material for elevated temperature nuclear design. Properties of the welded material are compared to results of extensive characterization of solution annealed plate base metal.

  3. Stress rupture properties of GH4169 superalloy

    Directory of Open Access Journals (Sweden)

    Xudong Lu

    2014-04-01

    Full Text Available GH4169 alloy is a nickel-based superalloy extensively used in the aircraft engine industry because of its excellent mechanical properties and good fabrication ability. The mechanical properties of the GH4169 at high temperature, rupture stress under severe condition deserves a close attention. In this paper, the creep rupture of the GH4169 alloy under constant load and different temperatures from 550 °C to 700 °C conditions is systematically evaluated and major impact factors in the stress rupture behavior are analyzed. Furthermore, an improving method for the alloy stress rupture is proposed.

  4. Assessment of Tungsten Content on Tertiary Creep Deformation Behavior of Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Vanaja, J.; Laha, Kinkar

    2015-10-01

    Tertiary creep deformation behavior of reduced activation ferritic-martensitic (RAFM) steels having different tungsten contents has been assessed. Creep tests were carried out at 823 K (550 °C) over a stress range of 180 to 260 MPa on three heats of the RAFM steel (9Cr-W-0.06Ta-0.22V) with tungsten content of 1, 1.4, and 2.0 wt pct. With creep exposure, the steels exhibited minimum in creep rate followed by progressive increase in creep rate until fracture. The minimum creep rate decreased, rupture life increased, and the onset of tertiary stage of creep deformation delayed with the increase in tungsten content. The tertiary creep behavior has been assessed based on the relationship, , considering minimum creep rate () instead of steady-state creep rate. The increase in tungsten content was found to decrease the rate of acceleration of tertiary parameter ` p.' The relationships between (1) tertiary parameter `p' with minimum creep rate and time spent in tertiary creep deformation and (2) the final creep rate with minimum creep rate revealed that the same first-order reaction rate theory prevailed in the minimum creep rate as well as throughout the tertiary creep deformation behavior of the steel. A master tertiary creep curve of the steels has been developed. Scanning electron microscopic investigation revealed enhanced coarsening resistance of carbides in the steel on creep exposure with increase in tungsten content. The decrease in tertiary parameter ` p' with tungsten content with the consequent decrease in minimum creep rate and increase in rupture life has been attributed to the enhanced microstructural stability of the steel.

  5. Assessment of long-term creep strength of grade 91 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Kazuhiro; Sawada, Kota; Kushima, Hideaki [National Inst. for Materials Science, Tsukuba, Ibaraki (Japan)

    2010-07-01

    In 2004 and 2005 long-term creep rupture strength of ASME Grade 91 type steels of plate, pipe, forging and tube materials was evaluated in Japan by means of region splitting analysis method in consideration of 50% of 0.2% offset yield stress. According to the evaluated 100,000h creep rupture strength of 94MPa for plate, pipe and forging steels and 92MPa for tube steel at 600 C, allowable tensile stress of the steels regulated in the Interpretation for the Technical Standard for Thermal Power Plant was slightly reduced. New creep rupture data of the steels obtained in the long-term indicate further reduction of long-term creep rupture strength. Not only creep rupture strength, but also creep deformation property of the ASME Grade 91 steel was investigated and need of reevaluation of long-term creep strength of Grade 91 steel was indicated. A refinement of region splitting analysis method for creep rupture like prediction was discussed. (orig.)

  6. Creep properties of aged duplex stainless steels containing [sigma] phase

    Energy Technology Data Exchange (ETDEWEB)

    Shek, C.H.; Wong, K.W.; Lai, J.K.L. (City Univ. of Hong Kong, Kowloon (Hong Kong). Dept. of Physics and Materials Science); Li, D.J. (Department of Materials Engineering, Dalian University of Technology, Dalian 116 024 (China))

    1999-06-30

    The creep properties of a cast of duplex stainless steel were characterized at temperatures 550-800 C under different loading conditions. For fully aged specimens containing [sigma], the stress exponent for creep was close to 3 and the activation energy was 281[+-]9 kJ mol[sup -1]. The results suggested that the creep mechanism in the samples in this investigation was controlled by dislocation movement. Extensive [sigma]/[gamma][sub 2] interfaces introduced during ageing improved the creep resistance of the material and related to a reduction of the creep rate in Stage II creep and an increase in the creep rupture strength of the material. Microstructural studies revealed the dependence of the creep properties on the morphology of the microstructure. Among the aged specimens containing [sigma], the creep strength and ductility were higher for specimens having larger [gamma] grain thickness measured on the longitudinal plane. This characteristic was related to the crack propagation and interconnection of voids within [gamma] matrix during tertiary creep. With appropriate solution treatment, the creep strength of [sigma]-containing steels can be improved to a value exceeding that of type 316 steels. (orig.) 14 refs.

  7. Creep and creep damage in copper under uniaxial/multiaxial loading

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, Pertti; Holmstroem, Stefan; Salonen, Jorma [VTT Industrial Systems, Espoo (Finland)

    2003-08-01

    Multiaxial tensile loading is known to enhance accumulation of creep cavitation and cracking damage in polycrystalline metals under given equivalent loading stress and temperature. To study whether this could potentially lead to significant creep damage under long-term repository conditions, multiaxial creep testing and damage evaluation has been initiated. Multiaxial creep testing of OFP copper has been performed using sharp notches in compact tension (CT) specimens. The loading conditions (reference stress and temperature) have been selected to produce an estimated time to either failure or at least to measurable creep damage within the maximum intended testing time or about 5000 hours. For appropriate material and finite element (FE) modelling to set correct loading in multiaxial testing and to obtain a reasonable stress state conversion, parallel uniaxial creep testing has also been performed on the same material. In addition, to support the uniaxial testing and materials modelling, an overall creep rupture life assessment was performed for OFP copper, based on ECCC guidelines and PD6605 including uniaxial creep testing data from the literature. To observe potential creep damage, the multiaxial tests have been also interrupted for metallography about every 2000 h of testing, and inspected by scanning electron microscopy (SEM) for indications of damage. For comparison, metallographic inspection including transmission electron microscopy (TEM) was performed for the same material in as-new state. The initial as-new state as well as later tested states of the material appear to involve grain boundary phases, which are sometimes apparent in SEM but can also require TEM to be resolved. Until now, the multiaxial creep test at lowest reference stress (46 MPa/150 deg C) has been interrupted at 3000, 5000 and 7000 h of testing for inspection in SEM. In these inspections, only occasional scattered evidence of some possible cavitation damage has been found so far. On the

  8. The role of creep in high temperature low cycle fatigue.

    Science.gov (United States)

    Manson, S. S.; Halford, G. R.; Spera, D. A.

    1971-01-01

    The significance of the role that creep can play in governing high-temperature, low-cycle fatigue resistance is investigated by conducting strain cycling tests on two high-temperature stainless steel alloys and making concurrent measurements of stress, temperature, and strain at various frequencies. The results are then analyzed in terms of damage imposed by creep and fatigue components. It is shown that creep can play an important and sometimes dominant role in low cycle fatigue at high temperatures. The results of the study include the findings that: (1) the simple life-fraction theory described is adequate for calculating creep damage when the cyclic creep rupture curve is used as a basis for analysis; (2) a method of universal slopes originally developed for room temperature use is sufficiently accurate at high temperature to be used to calculate pure fatigue damage; and (3) a linear creep-fatigue damage rule can explain the transitions observed from one failure mode to another.

  9. Microstructure Evolution of a 1OCr Heat-Resistant Steel during High Temperature Creep

    Institute of Scientific and Technical Information of China (English)

    Ping Hu; Wei Yan; Wei Sha; Wei Wang; Yiyin Shan; Ke Yang

    2011-01-01

    The microstructure evolution of a 10Cr ferritic/martensitic heat-resistant steel during creep at 600℃ was investigated in this work. Creep tests demonstrated that the 10Cr steel had higher creep strength than conventional ASME-P92 steel at 600℃. The microstructure after creep was studied by transmission electron microscopy, scanning electron microscopy and electron probe microanalysis. It was revealed that the martensitic laths were coarsened with time and eventually developed into subgrains after 8354 h. Laves phase was observed to grow and cluster along the prior austenite grain boundaries during creep and caused the fluctuation of solution and precipitation strengthening effects, which was responsible for the two slope changes on the creep rupture strength vs rupture time curve. It was also revealed that the microstructure evolution could be accelerated by stress, which resulted in the lower hardness in the deformed part of the creep specimen,compared with the aging part.

  10. Creep of plain weave polymer matrix composites

    Science.gov (United States)

    Gupta, Abhishek

    Polymer matrix composites are increasingly used in various industrial sectors to reduce structural weight and improve performance. Woven (also known as textile) composites are one class of polymer matrix composites with increasing market share mostly due to their lightweight, their flexibility to form into desired shape, their mechanical properties and toughness. Due to the viscoelasticity of the polymer matrix, time-dependent degradation in modulus (creep) and strength (creep rupture) are two of the major mechanical properties required by engineers to design a structure reliably when using these materials. Unfortunately, creep and creep rupture of woven composites have received little attention by the research community and thus, there is a dire need to generate additional knowledge and prediction models, given the increasing market share of woven composites in load bearing structural applications. Currently, available creep models are limited in scope and have not been validated for any loading orientation and time period beyond the experimental time window. In this thesis, an analytical creep model, namely the Modified Equivalent Laminate Model (MELM), was developed to predict tensile creep of plain weave composites for any orientation of the load with respect to the orientation of the fill and warp fibers, using creep of unidirectional composites. The ability of the model to predict creep for any orientation of the load is a "first" in this area. The model was validated using an extensive experimental involving the tensile creep of plain weave composites under varying loading orientation and service conditions. Plain weave epoxy (F263)/ carbon fiber (T300) composite, currently used in aerospace applications, was procured as fabrics from Hexcel Corporation. Creep tests were conducted under two loading conditions: on-axis loading (0°) and off-axis loading (45°). Constant load creep, in the temperature range of 80-240°C and stress range of 1-70% UTS of the

  11. Modelling of degradation processes in creep resistant steels through accelerated creep tests after long-term isothermal ageing

    Energy Technology Data Exchange (ETDEWEB)

    Sklenicka, V.; Kucharova, K.; Svoboda, M.; Kroupa, A.; Kloc, L. [Academy of Sciences of the Czech Republic, Brno (Czech Republic). Inst. of Physics of Materials; Cmakal, J. [UJP PRAHA a.s., Praha-Zbraslav (Czech Republic)

    2010-07-01

    Creep behaviour and degradation of creep properties of creep resistant materials are phenomena of major practical relevance, often limiting the lives of components and structures designed to operate for long periods under stress at elevated and/or high temperatures. Since life expectancy is, in reality, based on the ability of the material to retain its high-temperature creep strength for the projected designed life, methods of creep properties assessment based on microstructural evolution in the material during creep rather than simple parametric extrapolation of short-term creep tests are necessary. In this paper we will try to further clarify the creep-strength degradation of selected advanced creep resistant steels. In order to accelerate some microstructural changes and thus to simulate degradation processes in long-term service, isothermal ageing at 650 C for 10 000 h was applied to P91 and P23 steels in their as-received states. The accelerated tensile creep tests were performed at temperature 600 C in argon atmosphere on all steels both in the as-received state and after long-term isothermal ageing, in an effort to obtain a more complete description of the role of microstructural stability in high temperature creep of these steels. Creep tests were followed by microstructural investigations by means of both transmission and scanning electron microscopy and by the thermodynamic calculations. The applicability of the accelerated creep tests was verified by the theoretical modelling of the phase equilibria at different temperatures. It is suggested that under restructed oxidation due to argon atmosphere microstructural instability is the main detrimental process in the long-term degradation of the creep rupture strength of these steels. (orig.)

  12. Creep fatigue assessment for EUROFER components

    Energy Technology Data Exchange (ETDEWEB)

    Özkan, Furkan, E-mail: oezkan.furkan@partner.kit.edu; Aktaa, Jarir

    2015-11-15

    Highlights: • Design rules for creep fatigue assessment are developed to EUROFER components. • Creep fatigue assessment tool is developed in FORTRAN code with coupling MAPDL. • Durability of the HCPB-TBM design is discussed under typical fusion reactor loads. - Abstract: Creep-fatigue of test blanket module (TBM) components built from EUROFER is evaluated based on the elastic analysis approach in ASME Boiler Pressure Vessel Code (BPVC). The required allowable number of cycles design fatigue curve and stress-to-rupture curve to estimate the creep-fatigue damage are used from the literature. Local stress, strain and temperature inputs for the analysis of creep-fatigue damage are delivered by the finite element code ANSYS utilizing the Mechanical ANSYS Parametric Design Language (MAPDL). A developed external FORTRAN code used as a post processor is coupled with MAPDL. Influences of different pulse durations (hold-times) and irradiation on creep-fatigue damage for the preliminary design of the Helium Cooled Pebble Bed Test Blanket Module (HCPB-TBM) are discussed for the First Wall component of the TBM box.

  13. Proposition of Improved Methodology in Creep Life Extrapolation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    To design SFRs for a 60-year operation, it is desirable to have the experimental creep-rupture data for Gr. 91 steel close to 20 y, or at least rupture lives significantly higher than 10{sup 5} h. This requirement arises from the fact that, for the creep design, a factor of 3 times for extrapolation is considered to be appropriate. However, obtaining experimental data close to 20 y would be expensive and also take considerable time. Therefore, reliable creep life extrapolation techniques become necessary for a safe design life of 60 y. In addition, it is appropriate to obtain experimental longterm creep-rupture data in the range 10{sup 5} ∼ 2x10{sup 5} h to improve the reliability of extrapolation. In the present investigation, a new function of a hyperbolic sine ('sinh') form for a master curve in time-temperature parameter (TTP) methods, was proposed to accurately extrapolate the long-term creep rupture stress of Gr. 91 steel. Constant values used for each parametric equation were optimized on the basis of the creep rupture data. Average stress values predicted for up to 60 y were evaluated and compared with those of French Nuclear Design Code, RCC-MRx. The results showed that the master curve of the 'sinh' function was a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. It was clarified clarified that the 'sinh' function was reasonable in creep life extrapolation compared with polynomial forms, which have been used conventionally until now.

  14. Creep of Uncoated and Cu-Cr Coated NARloy-Z

    Science.gov (United States)

    Walter, R. J.; Chiang, K. T.

    1998-01-01

    Stress rupture creep tests were performed on uncoated and Cu-30vol%Cr coated NARloy-Z copper alloy specimens exposed to air at 482 C to 704 C. The results showed that creep failure in air of unprotected NARloy-Z was precipitated by brittle intergranular surface cracking produced by strain assisted grain boundary oxidation (SAGBO) which in turn caused early onset of tertiary creep. For the protected specimens, the Cu-Cr coating remained adherent throughout the tests and was effective in slowing down the rate of oxygen absorption, particularly at the higher temperatures, by formation of a continuous chromium oxide scale. As the result of reducing oxygen ingress, the coating prevented SAGBO initiated early creep failure, extended creep deformation and increased the creep rupture life of NARloy-Z over the entire 482 C to 704 C test temperature range.

  15. Probabilistic models for creep-fatigue in a steel alloy

    Science.gov (United States)

    Ibisoglu, Fatmagul

    In high temperature components subjected to long term cyclic operation, simultaneous creep and fatigue damage occur. A new methodology for creep-fatigue life assessment has been adopted without the need to separate creep and fatigue damage or expended life. Probabilistic models, described by hold times in tension and total strain range at temperature, have been derived based on the creep rupture behavior of a steel alloy. These models have been validated with the observed creep-fatigue life of the material with a scatter band close to a factor of 2. Uncertainties of the creep-fatigue model parameters have been estimated with WinBUGS which is an open source Bayesian analysis software tool that uses Markov Chain Monte Carlo method to fit statistical models. Secondly, creep deformation in stress relaxation data has been analyzed. Well performing creep equations have been validated with the observed data. The creep model with the highest goodness of fit among the validated models has been used to estimate probability of exceedance at 0.6% strain level for the steel alloy.

  16. Permanências e rupturas: sentidos de gênero em mulheres chefes de família Permanencies and ruptures: gender meanings in female family heads

    Directory of Open Access Journals (Sweden)

    Raquel Jaqueline Freiberger Testoni

    2006-04-01

    Full Text Available Este artigo resultou de um estudo realizado com três mulheres chefes de família, moradoras de um bairro popular em uma cidade catarinense. Ao investigar de que forma constroem-se os sentidos de gênero na trajetória de vida destas mulheres, procurou-se refletir como estes sentidos posicionam os sujeitos na trama das relações sociais e de gênero. Considerando a construção histórica, social e cultural do gênero, pode-se questionar a naturalização da ligação entre sexo e gênero - tão freqüente na psicologia - e a conseqüente regulação na constituição das subjetividades femininas e masculinas dela proveniente. Os resultados apontam a existência de permanências, como a forte presença da moral sexual e do grande valor atribuído por elas à maternidade. Revelam, no entanto, alternativas de exercer pequenas rupturas neste padrão ao criarem, a partir da apropriação de outros saberes e outras significações pelas próprias experiências, um novo patamar de expectativas e possibilidades em suas vidas.This article is the result of a study accomplished with three female heads of family living in a popular neighborhood in a town of the Brazilian state of Santa Catarina. When investigating how gender meanings are constructed in the life trajectory of those women, we sought to reflect how those meanings locate the subjects in the plot of social and gender relations. Considering the historical, social and cultural construction of gender, the naturalization of the linking between sex and gender - so frequent in psychology - and the resulting regulation in the constitution of female and male subjectivities deriving from it can be questioned. The results point to the existence of permanencies such as the strong presence of sexual moral and the high value attributed by them to motherhood. They reveal, however, alternatives for carrying out small ruptures in that pattern when creating, from the appropriation of other knowledges and other

  17. Simultaneous consolidation and creep

    DEFF Research Database (Denmark)

    Krogsbøll, Anette

    1997-01-01

    Materials that exhibit creep under constant effective stress typically also show rate dependent behavior. The creep deformations and the rate sensitive behavior is very important when engineering and geological problems with large time scales are considered. When stress induced compaction...

  18. Recent Methodologies for Creep Deformation Analysis and Its Life Prediction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Gon; Park, Jae-Young; Iung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    To design the high-temperature creeping materials, various creep data are needed for codification, as follows: i) stress vs. creep rupture time for base metals and weldments (average and minimum), ii) stress vs. time to 1% total strain (average), iii) stress vs. time to onset of tertiary creep (minimum), and iv) constitutive eqns. for conducting time- and temperature- dependent stress-strain (average), and v) isochronous stress-strain curves (average). Also, elevated temperature components such as those used in modern power generation plant are designed using allowable stress under creep conditions. The allowable stress is usually estimated on the basis of up to 10{sup 5} h creep rupture strength at the operating temperature. The master curve of the “sinh” function was found to have a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. The proposed multi-C method in the LM parameter revealed better life prediction than a single-C method. These improved methodologies can be utilized to accurately predict the long-term creep life or strength of Gen-IV nuclear materials which are designed for life span of 60 years.

  19. Simultaneous consolidation and creep

    DEFF Research Database (Denmark)

    Krogsbøll, Anette

    1997-01-01

    Materials that exhibit creep under constant effective stress typically also show rate dependent behavior. The creep deformations and the rate sensitive behavior is very important when engineering and geological problems with large time scales are considered. When stress induced compaction...... (consolidation) is retarded by slow drainage of excess pore pressure it is expected that consolidation and creep occur simultaneously. A constitutive model adressing the problems of rate sensitive behavior and simultaneous consolidation and creep is presented....

  20. Low temperature creep plasticity

    Directory of Open Access Journals (Sweden)

    Michael E. Kassner

    2014-07-01

    Full Text Available The creep behavior of crystalline materials at low temperatures (T < 0.3Tm is discussed. In particular, the phenomenological relationships that describe primary creep are reviewed and analyzed. A discussion of the activation energy for creep at T < 0.3Tm is discussed in terms of the context of higher temperature activation energy. The basic mechanism(s of low temperature creep plasticity are discussed, as well.

  1. Influence of Prior Fatigue Cycling on Creep Behavior of Reduced Activation Ferritic-Martensitic Steel

    Science.gov (United States)

    Sarkar, Aritra; Vijayanand, V. D.; Parameswaran, P.; Shankar, Vani; Sandhya, R.; Laha, K.; Mathew, M. D.; Jayakumar, T.; Rajendra Kumar, E.

    2014-06-01

    Creep tests were carried out at 823 K (550 °C) and 210 MPa on Reduced Activation Ferritic-Martensitic (RAFM) steel which was subjected to different extents of prior fatigue exposure at 823 K at a strain amplitude of ±0.6 pct to assess the effect of prior fatigue exposure on creep behavior. Extensive cyclic softening that characterized the fatigue damage was found to be immensely deleterious for creep strength of the tempered martensitic steel. Creep rupture life was reduced to 60 pct of that of the virgin steel when the steel was exposed to as low as 1 pct of fatigue life. However, creep life saturated after fatigue exposure of 40 pct. Increase in minimum creep rate and decrease in creep rupture ductility with a saturating trend were observed with prior fatigue exposures. To substantiate these findings, detailed transmission electron microscopy studies were carried out on the steel. With fatigue exposures, extensive recovery of martensitic-lath structure was distinctly observed which supported the cyclic softening behavior that was introduced due to prior fatigue. Consequently, prior fatigue exposures were considered responsible for decrease in creep ductility and associated reduction in the creep rupture strength.

  2. Influence of precipitate morphology on intermediate temperature creep properties of a nickel-base superalloy single crystal

    Science.gov (United States)

    Nathal, M. V.; Mackay, R. A.; Miner, R. V.

    1989-01-01

    The relative creep behavior of cuboidal (as-heat treated) and rafted (precrept at 1000 C) gamma-prime microstructures in the single-crystal Ni-based superalloy NASAIR 100 at 760 C was investigated using SEM and TEM examinations of materials at various stages of creep. It was found that, at high applied stresses, the crystals with cuboidal gamma-prime structure had both lower minimum creep rates and longer rupture lives than the crystals with lamellar gamma-prime. At lower stress levels, the initially cuboidal gamma-prime microstructure maintained a lower creep rate, but exhibited a similar rupture life compared to the prerafted crystals.

  3. Creep in ceramics

    CERN Document Server

    Pelleg, Joshua

    2017-01-01

    This textbook is one of its kind, since there are no other books on Creep in Ceramics. The book consist of two parts: A and B. In part A general knowledge of creep in ceramics is considered, while part B specifies creep in technologically important ceramics. Part B covers creep in oxide ceramics, carnides and nitrides. While covering all relevant information regarding raw materials and characterization of creep in ceramics, the book also summarizes most recent innovations and developments in this field as a result of extensive literature search.

  4. Creep life simulations of EB welded copper overpack

    Energy Technology Data Exchange (ETDEWEB)

    Holmstroem, S.; Laukkanen, A.; Andersson, T. [VTT Technical Research Centre of Finland, Espoo (Finland)

    2013-12-15

    The long term life predictions of copper overpack (sealed by EB welding in Finland) have previously been based on stress estimations that vary over a wide range, typically between 40-100 MPa. These values are usually not based on structural calculation including the EB-weld that increases the complexity of the stress state in the copper overpack. This report will attempt to pinpoint and simulate the stresses and strains developing in the copper overpack during its first decennia of repository service by advanced FEA simulations including the impact of the EB-weld. The main challenge of this work is the extrapolation of the creep strain response of OFP copper to the service relevant loads and temperatures. The uniaxial creep model is translated to a multiaxial constitutive equation form with adequate computational efficiency. The copper overpack strain and stress evolution has been simulated at up to 100 000 years at a conservative constant temperature of 80 deg C with 14 MPa of external pressure. The results indicate rapid creep relaxation in the initial stages after the load has been applied followed by limited creep strain accumulation thereafter. Local elastic-plastic and creep deformation is predicted at the EB weld root with a total strain of below 12 %. The predicted stresses after external loading and short term relaxation are moderate and the impact of weld residual stresses and the lower creep rupture properties of the EB seem not to be detrimental to the predicted long term creep response. The simulation results imply that the most crucial impact on the creep strain accumulation of the copper overpack is related to the OFP copper primary creep properties. The present study predicts sufficiently low creep strains for a 100 000 years canister life with the conservative assumption at a constant temperature of 80 deg C. However a sensitivity study on the impact of primary creep is strongly recommended due to contradicting analysis results from earlier FEA

  5. A Research Status on High-Temperature Creep of Alloy 617 for Use in VHTR System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo-Gon; Park, Jae-Young; Kim, Eung-Seon; Kim, Yong-Wan; Kim, Min-Hwan [KAERI, Daejeon (Korea, Republic of); Kim, Seon-Jin [Pukyong National Univ., Busan (Korea, Republic of)

    2016-05-15

    In this study, a research status on creep works of Alloy 617 conducting at KAERI was introduced and summarized. Various experimental creep data and creep constants obtained in the air/helium environments and base/weld metals were presented and discussed using various creep equations and parameters. The draft Code Case is a modification from ASME Section III Subsection NH that was put forth by a special task force of the ASME subgroup that deals with elevated temperature design. The primary intended application of the draft Code Case is a VHTR. Presently, various creep data for Alloy 617 are being accumulated through Generation-IV forum (GIF) Material Handbook Database of a next-generation nuclear plant research and development. As per this, a new Alloy 617 Code Case is planned to be approved by 2017. However, to do so, various creep data and creep constants in air/helium environments, and base/weld metals etc. should be obtained to help draft the new Code Case, and creep behavior should be investigated through systematic analysis of a wide range of creep temperature and stress conditions. Using various creep equations and parameters, the creep constants were determined for design use of Alloy 617. The stress of the He environment was more reduced than that of the air one. As the stress increases, the creep rate of WM was significantly lower than that of BM. The reason for this was that the rupture elongation of WM was largely reduced compared with that of BM.

  6. Unexpected damage and/or failures caused by creep below the limit temperature for creep design; Ovaentade krypskador och/eller haverier orsakade av krypmekanismer under graenstemperaturen

    Energy Technology Data Exchange (ETDEWEB)

    Storesund, Jan; Eklund, Anders; Taflin, Anders; Thunvik, Thomas

    2006-07-15

    Recently, several cases of cracking caused by creep have occurred in components operating at temperatures below the specified limit temperature for creep. Components operating below this limit temperature have not been designed with due regard to creep cracking and have accordingly not been subjected to inspection for creep damage. This work has surveyed the extent of these cases of creep damage by reviewing earlier failures and performed metallographic studies of damaged components and made parametric calculations of creep crack growth below the limit temperature. The following critical parameters have been determined for power plants: Creep damage below the transition temperature does not usually occur until operating times above 200.000 hours. Time to rupture differs from ordinary creep crack growth because these cracks have substantially longer incubation time of 20-30 years, with relative low creep deformation, and after that a rapid creep crack growth with only some few years to the creep rupture. Operation at 470-480 deg C, i.e. up to some 10 deg C below the transition temperature for a material like EN 13CrMo4-5, can be expected to result in severe creep damages comparable with ordinary creep failures at stressed locations. Operation at a temperature of 450-460 deg C can give rise to creep damage, however, this damage shows a more sparse occurrence. Creep damaged welds occurring below the limit temperature show cracks at the melting junction of the weld bead in opposite to ordinary creep damages. System stresses can also cause a more rapid crack growth. An international survey also shows that the variation of creep strength values between individual steel batches are just as wide as for ordinary creep. Based on this work, the following complementary recommendations can be issued: Elastic stress analysis (based on expansion calculations) can also be recommended for the identification of areas with intensified stresses. One should also perform a complete

  7. V-Notched Bar Creep Life Prediction: GH3536 Ni-Based Superalloy Under Multiaxial Stress State

    Science.gov (United States)

    Zhang, D. X.; Wang, J. P.; Wen, Z. X.; Liu, D. S.; Yue, Z. F.

    2016-07-01

    In this study, creep experiments on smooth and circumferential V-type notched round bars were conducted in GH3536 Ni-based superalloy at 750 °C to identify notch strengthening effect in notched specimens. FE analysis was carried out, coupled with continuum damage mechanics (CDM), to analyze stress distribution and damage evolution under multiaxial stress state. The creep deformation of smooth specimens and the rupture life of both smooth and notched specimens showed good agreement between experimental results and FE analysis predictions; the creep rupture life for the notched specimen was successfully predicted via the "skeletal point" concept. Both creep damage analysis and the observed fracture morphology suggest that creep rupture started first at the root in the V-type notched specimens, and shifted to the region close to the notch root when the notch was relatively shallow compared to U-type notched specimens.

  8. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals

    Science.gov (United States)

    Mackay, R. A.; Maier, R. D.

    1982-01-01

    Constant load creep rupture tests were performed on MAR-M247 single crystals at 724 MPa and 774 C where the effect of anisotropy is prominent. The initial orientations of the specimens as well as the final orientations of selected crystals after stress rupture testing were determined by the Laue back-reflection X-ray technique. The stress rupture lives of the MAR-M247 single crystals were found to be largely determined by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited the shortest stress rupture lives, whereas crystals requiring little or no rotations exhibited the lowest minimum creep rates, and consequently, the longest stress rupture lives.

  9. On the fracture of high temperature alloys by creep cavitation under uniaxial or biaxial stress states

    Science.gov (United States)

    Sanders, John W.; Dadfarnia, Mohsen; Stubbins, James F.; Sofronis, Petros

    2017-01-01

    It is well known that creep rupture in high temperature alloys is caused by grain boundary cavitation: the nucleation, growth, and coalescence of voids along grain boundaries. However, it has been observed recently that the multiaxial rupture behavior of a promising class of high temperature alloys (Tung et al., 2014) cannot be captured by a well-known empirical creep rupture model due to Hayhurst. In an effort to gain a better understanding of rupture in these materials, we depart from empirical models and simulate the underlying rupture mechanisms directly, employing two related models of void growth from the literature: one due to Sham and Needleman (1983), and an extension of Sham and Needleman's model due to Van der Giessen et al. (1995). Our results suggest that the experimental observations might be explained in terms of the interplay between bulk creep and gain boundary diffusion processes. Furthermore, we find that Sham and Needleman's original void growth model, combined with our rupture model, is well suited to capture the experimental data considered here. Such a mechanism-based understanding of the influence of multiaxial stress states on the creep rupture behavior of high temperature alloys promises to be of value and to provide a basis for the qualification of these alloys for extended service in a variety of elevated temperature applications.

  10. Biaxial thermal creep of Inconel 617 and Haynes 230 at 850 and 950 °C

    Science.gov (United States)

    Tung, Hsiao-Ming; Mo, Kun; Stubbins, James F.

    2014-04-01

    The biaxial thermal creep behavior of Inconel 617 and Haynes 230 at 850 and 950 °C was investigated. Biaxial stresses were generated using the pressurized tube technique. The detailed creep deformation and fracture mechanism have been studied. Creep curves for both alloys showed that tertiary creep accounts for a greater portion of the materials' life, while secondary creep only accounts for a small portion. Fractographic examinations of the two alloys indicated that nucleation, growth, and coalescence of creep voids are the dominant micro-mechanisms for creep fracture. At 850 °C, alloy 230 has better creep resistance than alloy 617. When subjected to the biaxial stress state, the creep rupture life of the two alloys was considerably reduced when compared to the results obtained by uniaxial tensile creep tests. The Monkman-Grant relation proves to be a promising method for estimating the long-term creep life for alloy 617, whereas alloy 230 does not follow the relation. This might be associated with the significant changes in the microstructure of alloy 230 at high temperatures.

  11. The Unified Creep-Fatigue Equation for Stainless Steel 316

    Directory of Open Access Journals (Sweden)

    Dan Liu

    2016-09-01

    Full Text Available Background—The creep-fatigue properties of stainless steel 316 are of interest because of the wide use of this material in demanding service environments, such as the nuclear industry. Need—A number of models exist to describe creep-fatigue behaviours, but they are limited by the need to obtain specialized coefficients from a large number of experiments, which are time-consuming and expensive. Also, they do not generalise to other situations of temperature and frequency. There is a need for improved formulations for creep-fatigue, with coefficients that determinable directly from the existing and simple creep-fatigue tests and creep rupture tests. Outcomes—A unified creep-fatigue equation is proposed, based on an extension of the Coffin-Manson equation, to introduce dependencies on temperature and frequency. The equation may be formulated for strain as ε p = C 0 c ( T , t , ε p N − β 0 , or as a power-law ε p = C 0 c ( T , t N − β 0 b ( T , t . These were then validated against existing experimental data. The equations provide an excellent fit to data (r2 = 0.97 or better. Originality—This work develops a novel formulation for creep-fatigue that accommodates temperature and frequency. The coefficients can be obtained with minimum experimental effort, being based on standard rather than specialized tests.

  12. A Model for Creep and Creep Damage in the γ-Titanium Aluminide Ti-45Al-2Mn-2Nb

    Directory of Open Access Journals (Sweden)

    William Harrison

    2014-03-01

    Full Text Available Gamma titanium aluminides (γ-TiAl display significantly improved high temperature mechanical properties over conventional titanium alloys. Due to their low densities, these alloys are increasingly becoming strong candidates to replace nickel-base superalloys in future gas turbine aeroengine components. To determine the safe operating life of such components, a good understanding of their creep properties is essential. Of particular importance to gas turbine component design is the ability to accurately predict the rate of accumulation of creep strain to ensure that excessive deformation does not occur during the component’s service life and to quantify the effects of creep on fatigue life. The theta (θ projection technique is an illustrative example of a creep curve method which has, in this paper, been utilised to accurately represent the creep behaviour of the γ-TiAl alloy Ti -45Al-2Mn-2Nb. Furthermore, a continuum damage approach based on the θ-projection method has also been used to represent tertiary creep damage and accurately predict creep rupture.

  13. Influence of Hold Time and Stress Ratio on Cyclic Creep Properties Under Controlled Tension Loading Cycles of Grade 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Park, Jae Young; Jang, Jin Sung [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ekaputra, I Made Wicaksana; Kim, Seon Jin [Pukyong National University, Busan (Korea, Republic of)

    2017-04-15

    Influences of hold time and stress ratio on cyclic creep properties of Grade 91 steel were systemically investigated using a wide range of cyclic creep tests, which were performed with hold times (HTs) of 1 minute, 3 minutes, 5 minutes, 10 minutes, 20 minutes, and 30 minutes and stress ratios (R) of 0.5, 0.8, 0.85, 0.90, and 0.95 under tension loading cycles at 600°C. Under the influence of HT, the rupture time increased to HT = 5 minutes at R = 0.90 and R = 0.95, but there was no influence at R = 0.50, 0.80, and 0.85. The creep rate was constant regardless of an increase in the HT, except for the case of HT = 5 minutes at R = 0.90 and R = 0.95. Under the influence of stress ratio, the rupture time increased with an increase in the stress ratio, but the creep rate decreased. The cyclic creep led to a reduction in the rupture time and an acceleration in the creep rate compared with the case of monotonic creep. Cyclic creep was found to depend dominantly on the stress ratio rather than on the HT. Fracture surfaces displayed transgranular fractures resulting from microvoid coalescence, and the amount of microvoids increased with an increase in the stress ratio. Enhanced coarsening of the precipitates in the cyclic creep test specimens was found under all conditions.

  14. Creep in amorphous metals

    Directory of Open Access Journals (Sweden)

    Michael E. Kassner

    2015-01-01

    Full Text Available This paper reviews the work on creep behavior of amorphous metals. There have been, over the past several years, a few reviews of the mechanical behavior of amorphous metals. Of these, the review of the creep properties of amorphous metals by Schuh et al. though oldest of the three, is particularly noteworthy and the reader is referred to this article published in 2007. The current review of creep of amorphous metals particularly focuses on those works since that review and places the work prior to 2007 in a different context where new developments warrant.

  15. Microstructural change around grain boundary in polycrystalline IN100 during creep deformation

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Satoshi; Kubushiro, Keiji; Morishima, Keiko [Research Laboratory IHI Co. Ltd., Yokohama (Japan); Miura, Nobuhiro; Kondo, Yoshihiro [National Defense Academy, Yokosuka (Japan)

    2010-07-01

    The microstructural change of polycrystalline IN100 has been characterized. Tensile creep tests were conducted in the temperature range 950 to 1000 C at 74MPa and some tests were interrupted at 6, 16, 20, 30, 60 and 80% in creep life. Raft structure formed on (001) at the early stage of creep life in interior grains and grain boundaries were covered by {gamma}' phase. Creep fracture occurred at grain boundaries. In order to quantify the creep damage, average grain orientation spreads (GOS) of ruptured and interruptured specimens were measured. Average GOS of interrupted creep specimen after 6% of creep life consumption was about 0.6 degree and this value was almost constant until 80%, which did not show a correlation between average GOS and creep life consumption rate. Then we focused to the grain boundaries. The thickness of grain boundary {gamma}' phase increased as creep life consumption increased and the range of thickness was about 5-10{mu}m. The orientation of gamma prime phase at the grain boundary was same as that of interior of the grain and both of them were joined. Rotation angle of grain boundary {gamma}' was measured and there was a good correlation with creep life consumption. (orig.)

  16. Creep, fatigue and creep-fatigue interactions in modified 9% Chromium - 1% Molybdenum (P91) steels

    Science.gov (United States)

    Kalyanasundaram, Valliappa

    Grade P91 steel, from the class of advanced high-chrome ferritic steels, is one of the preferred materials for many elevated temperature structural components. Creep-fatigue (C-F) interactions, along with oxidation, can accelerate the kinetics of damage accumulation and consequently reduce such components' life. Hence, reliable C-F test data is required for meticulous consideration of C-F interactions and oxidation, which in turn is vital for sound design practices. It is also imperative to develop analytical constitutive models that can simulate and predict material response under various long-term in-service conditions using experimental data from short-term laboratory experiments. Consequently, the major objectives of the proposed research are to characterize the creep, fatigue and C-F behavior of grade P91 steels at 625 C and develop robust constitutive models for simulating/predicting their microstructural response under different loading conditions. This work will utilize experimental data from 16 laboratories worldwide that conducted tests (creep, fatigue and C-F) on grade P91 steel at 625°C in a round-robin (RR) program. Along with 7 creep deformation and rupture tests, 32 pure fatigue and 46 C-F tests from the RR are considered in this work. A phenomenological constitutive model formulated in this work needs just five fitting parameters to simulate/predict the monotonic, pure fatigue and C-F behavior of grade P91 at 625 C. A modified version of an existing constitutive model is also presented for particularly simulating its isothermal creep deformation and rupture behavior. Experimental results indicate that specimen C-F lives, as measured by the 2% load drop criterion, seem to decrease with increasing strain ranges and increasing hold times at 625°C. Metallographic assessment of the tested specimens shows that the damage mode in both pure fatigue and 600 seconds hold time cyclic tests is predominantly transgranular fatigue with some presence of

  17. DETERMINATION OF CREEP PARAMETERS FROM INDENTATION CREEP EXPERIMENTS

    Institute of Scientific and Technical Information of China (English)

    岳珠峰; 万建松; 吕震宙

    2003-01-01

    The possibilities of determining creep parameters for a simple Norton law material are explored from indentation creep testing. Using creep finite element analysis the creep indentation test technique is analyzed in terms of indentation rates at constant loads. Emphasis is placed on the relationships between the steady creep behavior of indentation systems and the creep property of the indented materials. The role of indenter geometry, size effects and macroscopic constraints is explicitly considered on indentation creep experiments. The influence of macroscopic constraints from the material systems becomes important when the size of the indenter is of the same order of magnitude as the size of the testing material. Two methods have been presented to assess the creep property of the indented material from the indentation experimental results on the single-phase-material and two-phase-material systems. The results contribute to a better mechanical understanding and extending the application of indentation creep testing.

  18. Biaxial Creep Specimen Fabrication

    Energy Technology Data Exchange (ETDEWEB)

    JL Bump; RF Luther

    2006-02-09

    This report documents the results of the weld development and abbreviated weld qualification efforts performed by Pacific Northwest National Laboratory (PNNL) for refractory metal and superalloy biaxial creep specimens. Biaxial creep specimens were to be assembled, electron beam welded, laser-seal welded, and pressurized at PNNL for both in-pile (JOYO reactor, O-arai, Japan) and out-of-pile creep testing. The objective of this test campaign was to evaluate the creep behavior of primary cladding and structural alloys under consideration for the Prometheus space reactor. PNNL successfully developed electron beam weld parameters for six of these materials prior to the termination of the Naval Reactors program effort to deliver a space reactor for Project Prometheus. These materials were FS-85, ASTAR-811C, T-111, Alloy 617, Haynes 230, and Nirnonic PE16. Early termination of the NR space program precluded the development of laser welding parameters for post-pressurization seal weldments.

  19. Irradiation Creep in Graphite

    Energy Technology Data Exchange (ETDEWEB)

    Ubic, Rick; Butt, Darryl; Windes, William

    2014-03-13

    An understanding of the underlying mechanisms of irradiation creep in graphite material is required to correctly interpret experimental data, explain micromechanical modeling results, and predict whole-core behavior. This project will focus on experimental microscopic data to demonstrate the mechanism of irradiation creep. High-resolution transmission electron microscopy should be able to image both the dislocations in graphite and the irradiation-induced interstitial clusters that pin those dislocations. The team will first prepare and characterize nanoscale samples of virgin nuclear graphite in a transmission electron microscope. Additional samples will be irradiated to varying degrees at the Advanced Test Reactor (ATR) facility and similarly characterized. Researchers will record microstructures and crystal defects and suggest a mechanism for irradiation creep based on the results. In addition, the purchase of a tensile holder for a transmission electron microscope will allow, for the first time, in situ observation of creep behavior on the microstructure and crystallographic defects.

  20. A Critical Analysis of the Conventionally Employed Creep Lifing Methods

    Directory of Open Access Journals (Sweden)

    Zakaria Abdallah

    2014-04-01

    Full Text Available The deformation of structural alloys presents problems for power plants and aerospace applications due to the demand for elevated temperatures for higher efficiencies and reductions in greenhouse gas emissions. The materials used in such applications experience harsh environments which may lead to deformation and failure of critical components. To avoid such catastrophic failures and also increase efficiency, future designs must utilise novel/improved alloy systems with enhanced temperature capability. In recognising this issue, a detailed understanding of creep is essential for the success of these designs by ensuring components do not experience excessive deformation which may ultimately lead to failure. To achieve this, a variety of parametric methods have been developed to quantify creep and creep fracture in high temperature applications. This study reviews a number of well-known traditionally employed creep lifing methods with some more recent approaches also included. The first section of this paper focuses on predicting the long-term creep rupture properties which is an area of interest for the power generation sector. The second section looks at pre-defined strains and the re-production of full creep curves based on available data which is pertinent to the aerospace industry where components are replaced before failure.

  1. ANSYS Creep-Fatigue Assessment tool for EUROFER97 components

    Directory of Open Access Journals (Sweden)

    M. Mahler

    2016-12-01

    Full Text Available The damage caused by creep-fatigue is an important factor for materials at high temperatures. For in-vessel components of fusion reactors the material EUROFER97 is a candidate for structural application where it is subjected to irradiation and cyclic thermo-mechanical loads. To be able to evaluate fusion reactor components reliably, creep-fatigue damage has to be taken into account. In the frame of Engineering Data and Design Integration (EDDI in EUROfusion Technology Work Programme rapid and easy design evaluation is very important to predict the critical regions under typical fusion reactor loading conditions. The presented Creep-Fatigue Assessment (CFA tool is based on the creep-fatigue rules in ASME Boiler Pressure Vessel Code (BPVC Section 3 Division 1 Subsection NH which was adapted to the material EUROFER97 and developed for ANSYS. The CFA tool uses the local stress, maximum elastic strain range and temperature from the elastic analysis of the component performed with ANSYS. For the assessment design fatigue and stress to rupture curves of EUROFER97 as well as isochronous stress vs. strain curves determined by a constitutive model considering irradiation influence are used to deal with creep-fatigue damage. As a result allowable number of cycles based on creep-fatigue damage interaction under given hold times and irradiation rates is obtained. This tool can be coupled with ANSYS MAPDL and ANSYS Workbench utilizing MAPDL script files.

  2. Diffusional creep and creep degradation in the dispersion-strengthened alloy TD-NiCr

    Science.gov (United States)

    Whittenberger, J. D.

    1972-01-01

    Dispersoid-free regions were observed in TD-NiCr (Ni-20Cr-2ThO2) after slow strain rate testing in air from 1145 to 1590 K. Formation of the dispersoid-free regions appears to be the result of diffusional creep. The net effect of this creep is the degradation of TD-NiCr to a duplex microstructure. Degradation is further enhanced by the formation of voids and integranular oxidation in the thoria-free regions. These regions apparently provided sites for void formation and oxide growth since the strength and oxidation resistance of Ni-20Cr is much less than Ni-20Cr-2ThO2. This localized oxidation does not appear to reduce the static load bearing capacity of TD-NiCr since long stress rupture lives were observed even with heavily oxidized microstructures. But this oxidation does significantly reduce the ductility and impact resistance of the material. Dispersoid-free bands and voids were also observed for two other dispersion strengthened alloys, TD-NiCrAl and IN-853. Thus, it appears that diffusional creep is charactertistic of dispersion-strengthened alloys and can play a major role in the creep degradation of these materials.

  3. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  4. Creep Resistant Zinc Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Frank E. Goodwin

    2002-12-31

    This report covers the development of Hot Chamber Die Castable Zinc Alloys with High Creep Strengths. This project commenced in 2000, with the primary objective of developing a hot chamber zinc die-casting alloy, capable of satisfactory service at 140 C. The core objectives of the development program were to: (1) fill in missing alloy data areas and develop a more complete empirical model of the influence of alloy composition on creep strength and other selected properties, and (2) based on the results from this model, examine promising alloy composition areas, for further development and for meeting the property combination targets, with the view to designing an optimized alloy composition. The target properties identified by ILZRO for an improved creep resistant zinc die-casting alloy were identified as follows: (1) temperature capability of 1470 C; (2) creep stress of 31 MPa (4500 psi); (3) exposure time of 1000 hours; and (4) maximum creep elongation under these conditions of 1%. The project was broadly divided into three tasks: (1) Task 1--General and Modeling, covering Experimental design of a first batch of alloys, alloy preparation and characterization. (2) Task 2--Refinement and Optimization, covering Experimental design of a second batch of alloys. (3) Task 3--Creep Testing and Technology transfer, covering the finalization of testing and the transfer of technology to the Zinc industry should have at least one improved alloy result from this work.

  5. 单胎头位未足月胎膜早破120例的临床分析%Clinical analysis of 120 cases of preterm premature rupture of membranes in single fetal head position

    Institute of Scientific and Technical Information of China (English)

    钟丽; 李发红; 宋振霞; 范冬梅

    2015-01-01

    目的:探讨未足月胎膜早破(PPROM)的临床处理及其对母婴结局的影响。方法:收治单胎头位PPROM孕妇120例,分析不同孕周产妇的宫内感染率、分娩方式和新生儿结局。结果:Ⅰ组宫内感染率84.75%,明显高于Ⅱ组的54.10%(P<0.01);Ⅰ组新生儿窒息、感染、死亡的比例均明显高于Ⅱ组(P<0.01)。结论:孕周28~33+6周胎膜早破孕妇要积极保胎治疗,尽量延长孕周,促进胎儿肺成熟,预防性应用抗生素,降低母儿感染率,减少极不成熟早产儿的出生。孕周>34周且未满37周的胎膜早破孕妇应尽早终止妊娠,降低母体及新生儿的感染发生率。%Objective:To explore the clinical treatment and its effect on maternal and infant outcomes of preterm premature rupture of membranes(PPROM).Methods:120 cases of PPROM pregnant women in single fetal head position were selected.The intrauterine infection rates,delivery modes and neonatal outcomes of different gestational age women were analyzed.Results:The intrauterine infection rate(84.75% ) in Ⅰ group was significant higher than 54.10% of Ⅱ group(P<0.01).The proportions of neonatal asphyxia,infection,death were all significant higher than that of Ⅱ group(P<0.01).Conclusion:The pregnant women with premature rupture of membranes of gestational age at 28~33 + 6 weeks should be given actively medicine theraphy.It can try to extend the gestational age,promote the fetal lung maturity,give prophylactic antibiotics,reduce the infection rate of mother and infant,and reduce the birth of very immature infants.The pregnant women with premature rupture of membranes of gestational age more than 34 weeks and less than 37 weeks should be given terminate pregnancy as early as possible,it reduces the incidence rate of maternal and neonatal infection.

  6. Gamma Prime Morphology and Creep Properties of Nickel Based Superalloys With Platinum Group Metal Additions (Preprint)

    Science.gov (United States)

    2008-04-01

    creep resistance. Polycrystalline superalloy MAR - M247 can sustain a creep rate of 10-8 s-1 at 982°C at a stress of 172 MPa [44], while the alloys...Nathal, R.D. Maier, and L.J. Ebert, “The Influence of Cobalt on the Tensile and Stress Rupture Properties of the Nickel-Base Superalloy MAR - M247 ,” Metallurgical Transactions A, 13 (A) (1982), 1767-1774.           10

  7. Long-term creep testing and microstructure evaluation of P91 steel weld joints

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, D.; Kasl, J.; Kanta, V. [SKODA VYZKUM s.r.o., Plzen (Czech Republic)

    2007-06-15

    Trial weld joints were made from wrought and cast modified 9Cr-lMo-V steel using GTAW and SMAW methods. Creep testing was carried out at temperature range from 525 deg C to 625 deg C and stresses from 50 to 240 MPa. Time to rupture of welds made from tube segments and cast plates reached almost 30 000 hours and 20 000 hours respectively. Creep strength was evaluated according the Larson-Miller parametric equation and microstructure was investigated using both light and electron microscopy. Creep rupture strength of both weld joints tested at temperatures below 600 deg C falls into the {+-}20% scatter band of the creep rupture strength of the parent material. At 600 deg C and 625 deg C the creep strength dropped by 27% and 30% for the plate weld and the tube weld respectively. All ruptures occurred in fine grain and intercritically reheated heat affected zones either in the parent material or in the weld metal. Observation of thin foils prepared from selected regions of the weld joints revealed differences in precipitation processes and the structure recovery causing decrease of dislocation density in some regions. Fine ferritic grains with low density of fine carbonitride precipitate occurred in critical localities. Soft grains were deformed and cavities at grain boundaries initiated the crack propagation. (orig.)

  8. Creep strength and microstructure of F82H steels near tempering temperature

    Science.gov (United States)

    Shinozuka, K.; Esaka, H.; Sakasegawa, H.; Tanigawa, H.

    2015-09-01

    Creep rupture tests near the tempering temperature were performed, and the creep behavior at high temperatures and the structures of fracture specimens were investigated. Three kinds of F82H test specimens were used: IEA-heat, mod.3, and BA07. The time-to-rupture of the BA07 specimens was the longest under all the test conditions. This was because the minimum creep rates of BA07 were smallest, and a large quantity of fine precipitates of MX from the ESR treatment were considered to be effective in providing creep resistance. Although mod.3 specimens showed a high creep resistance under high stress, the time-to-rupture of mod.3 and IEA-heat were almost the same at low stress. This was because the fine tempered martensitic structure was weakened by being subjected to a high temperature for a long period. Therefore, it is considered that a large quantity of fine MX precipitates are effective for creep resistance near the tempering temperature.

  9. Creep strength and microstructure of F82H steels near tempering temperature

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, K., E-mail: kshinozu@nda.ac.jp [National Defense Academy, Yokosuka, Kanagawa 239-8686 (Japan); Esaka, H. [National Defense Academy, Yokosuka, Kanagawa 239-8686 (Japan); Sakasegawa, H.; Tanigawa, H. [Japan Atomic Energy Agency, Rokkasho, Aomori 039-3212 (Japan)

    2015-09-15

    Creep rupture tests near the tempering temperature were performed, and the creep behavior at high temperatures and the structures of fracture specimens were investigated. Three kinds of F82H test specimens were used: IEA-heat, mod.3, and BA07. The time-to-rupture of the BA07 specimens was the longest under all the test conditions. This was because the minimum creep rates of BA07 were smallest, and a large quantity of fine precipitates of MX from the ESR treatment were considered to be effective in providing creep resistance. Although mod.3 specimens showed a high creep resistance under high stress, the time-to-rupture of mod.3 and IEA-heat were almost the same at low stress. This was because the fine tempered martensitic structure was weakened by being subjected to a high temperature for a long period. Therefore, it is considered that a large quantity of fine MX precipitates are effective for creep resistance near the tempering temperature.

  10. EFFECT OF CARBON MIGRATION ON CREEP PROPERTIES OF Cr5Mo DISSIMILAR WELDED JOINTS WITH Ni-BASED AND AUSTENITIC WELD METAL

    Institute of Scientific and Technical Information of China (English)

    J.M. Gong; Y. Jiang; S.T. Tu

    2004-01-01

    In this paper, the effect of carbon migration on creep properties of Cr5Mo dissimilar welded joints with Ni-based (Inconel 182) and Cr23Ni13 (A302) austenitic weld metal was investigated. Carbon migration near the weld metal/ferritic steel interface of Cr5Mo dissimilar welded joints was analyzed by aging method. Local creep deformations of the dissimilar welded joints were measured by a long-term local creep deformation measuring technique. The creep rupture testing was performed for Cr5Mo dissimilar welded joints with Inconel 182 and A302 weld metal. The research results show that the maximum creep strain rate occurs in the decarburized zone located on heat affect zone (HAZ) of Cr5Mo ferritic steel. The creep rupture life of Cr5Mo dissimilar welded joints with A302 weld metal decreases due to carbon migration and is about 50% of that welded with Inconel 182 weld metal.

  11. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    Science.gov (United States)

    Monfared, Vahid

    2016-06-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  12. Circular Functions Based Comprehensive Analysis of Plastic Creep Deformations in the Fiber Reinforced Composites

    Science.gov (United States)

    Monfared, Vahid

    2016-12-01

    Analytically based model is presented for behavioral analysis of the plastic deformations in the reinforced materials using the circular (trigonometric) functions. The analytical method is proposed to predict creep behavior of the fibrous composites based on basic and constitutive equations under a tensile axial stress. New insight of the work is to predict some important behaviors of the creeping matrix. In the present model, the prediction of the behaviors is simpler than the available methods. Principal creep strain rate behaviors are very noteworthy for designing the fibrous composites in the creeping composites. Analysis of the mentioned parameter behavior in the reinforced materials is necessary to analyze failure, fracture, and fatigue studies in the creep of the short fiber composites. Shuttles, spaceships, turbine blades and discs, and nozzle guide vanes are commonly subjected to the creep effects. Also, predicting the creep behavior is significant to design the optoelectronic and photonic advanced composites with optical fibers. As a result, the uniform behavior with constant gradient is seen in the principal creep strain rate behavior, and also creep rupture may happen at the fiber end. Finally, good agreements are found through comparing the obtained analytical and FEM results.

  13. Creep of fibrous composite materials

    DEFF Research Database (Denmark)

    Lilholt, Hans

    1985-01-01

    Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions to the cr......Models are presented for the creep behaviour of fibrous composite materials with aligned fibres. The models comprise both cases where the fibres remain rigid in a creeping matrix and cases where the fibres are creeping in a creeping matrix. The treatment allows for several contributions...... such as Ni + W-fibres, high temperature materials such as Ni + Ni3Al + Cr3C2-fibres, and medium temperature materials such as Al + SiC-fibres. For the first two systems reasonable consistency is found for the models and the experiments, while for the third system too many unquantified parameters exist...

  14. Experimental study and modelling of high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steel weldments; Etude experimentale et modelisation, du comportement, de l'endommagement et de la rupture en fluage a haute temperature de joint soudes en acier 9Cr1Mo-NbV

    Energy Technology Data Exchange (ETDEWEB)

    Gaffard, V

    2004-12-15

    Chromium martensitic stainless steels are under development since the 70's with the prospect of using them as structural components in thermal and nuclear power plants. The modified 9Cr1Mo-NbV steel is already used, especially in England and Japan, as a material for structural components in thermal power plants where welding is a commonly used joining technique. New generations of chromium martensitic stainless steels with improved mechanical properties for high pressure and temperature use are currently under development. However, observations of several in-service premature failures of welded components in 9Cr1Mo-NbV steel, outline a strong need for understanding the high temperature creep flow and damage behaviour of 9Cr1Mo-NbV steels and weldments. The present study aimed at experimentally determining and then modelling the high temperature creep flow and damage behaviour of both 9Cr1Mo-NbV steels and weldments (typically in the temperature range from 450 C to 650 C). The base metal was first studied as the reference material. It was especially evidenced that tempered chromium martensitic steels exhibit a change in both creep flow and damage behaviour for long term creep exposure. As a consequence, the classically performed extrapolation of 1,000 hours creep data to 100,000 hours creep lifetime predictions might be very hazardous. Based on experimental observations, a new model, integrating and coupling multiple creep flow and damage mechanisms, was developed in the framework of the mechanics of porous media. It was then successfully used to represent creep flow and damage behaviour of the base metal from high to low stress levels even for complex multiaxial loading conditions. Although the high temperature creep properties of the base metal are quite good, the occurrence of premature failure in weldments in high temperature creep conditions largely focused the attention of the scientific community. The lower creep strength of the weld component was also

  15. Cr concentration dependence of overestimation of long term creep life in strength enhanced high Cr ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Maruyama, K., E-mail: maruyama@material.tohoku.ac.j [Graduate School of Environmental Studies, Tohoku University, 6-6-02 Aobayama, Sendai 980-8579 (Japan); Ghassemi Armaki, H.; Chen, R.P.; Yoshimi, K. [Graduate School of Environmental Studies, Tohoku University, 6-6-02 Aobayama, Sendai 980-8579 (Japan); Yoshizawa, M.; Igarashi, M. [Corporate Research and Development Laboratories, Sumitomo Metal Industry, Ltd., 1-8 Fuso-Cho, Amagasaki 660-0891 (Japan)

    2010-06-15

    Creep rupture data and microstructural degradation during aging of high Cr ferritic boiler steels with enhanced creep strength have been studied with special attention to prediction of long term creep rupture life. Tempered lath martensite structure in the high Cr ferritic steels remains unchanged during short term aging, whereas static recovery of the lath martensite structure proceeds when diffusion distance during aging becomes sufficiently long as is the case in long term creep. The static recovery brings about premature failure in long term creep and decreases in apparent activation energy for creep life. The decrease in activation energy is responsible for overestimation of rupture life reported in strength enhanced high Cr ferritic steels. The boundary from a short term region with high activation energy Q{sub H} to a long term region with low activation energy Q{sub L} moves towards longer time with decreasing Cr concentration. The difference in activation energy (Q{sub H} - Q{sub L}) primarily determines the extent of overestimation of rupture life predicted from short term data. In general, the extent of overestimation is less serious at 9%Cr as compared to 12%Cr.

  16. Time evolution of damage in thermally induced creep rupture

    KAUST Repository

    Yoshioka, N.

    2012-01-01

    We investigate the time evolution of a bundle of fibers subject to a constant external load. Breaking events are initiated by thermally induced stress fluctuations followed by load redistribution which subsequently leads to an avalanche of breakings. We compare analytic results obtained in the mean-field limit to the computer simulations of localized load redistribution to reveal the effect of the range of interaction on the time evolution. Focusing on the waiting times between consecutive bursts we show that the time evolution has two distinct forms: at high load values the breaking process continuously accelerates towards macroscopic failure, however, for low loads and high enough temperatures the acceleration is preceded by a slow-down. Analyzing the structural entropy and the location of consecutive bursts we show that in the presence of stress concentration the early acceleration is the consequence of damage localization. The distribution of waiting times has a power law form with an exponent switching between 1 and 2 as the load and temperature are varied.

  17. Temporal and spacial evolution of bursts in creep rupture.

    Science.gov (United States)

    Danku, Zsuzsa; Kun, Ferenc

    2013-08-23

    We investigate the temporal and spacial evolution of single bursts and their statistics emerging in heterogeneous materials under a constant external load. Based on a fiber bundle model we demonstrate that when the load redistribution is localized along a propagating crack front, the average temporal shape of pulses has a right-handed asymmetry; however, for long range interaction a symmetric shape with parabolic functional form is obtained. The pulse shape and spatial evolution of bursts proved to be correlated, which can be exploited in materials' testing. The probability distribution of the size and duration of bursts have power law behavior with a crossover to higher exponents as the load is lowered. The crossover emerges due to the competition of the slow and fast modes of local breaking being dominant at low and high loads, respectively.

  18. Creep of timber joints

    NARCIS (Netherlands)

    Van de Kuilen, J.W.G.

    2008-01-01

    A creep analysis has been performed on nailed, toothed-plates and split-ring joints in a varying uncontrolled climate. The load levels varied between 30% and 50% of the average ultimate short term strength of these joints, tested in accordance with ISO 6891. The climate in which the tests were

  19. Creep Feeding Beef Calves

    OpenAIRE

    2005-01-01

    Creep feeding is the managerial practice of supplying supplemental feed (usually concentrates) to the nursing calf. Milk from a lactating beef cow furnishes only about 50 percent of the nutrients that a 3-4 month-old calf needs for maximum growth.

  20. Effect of precipitates on long-term creep deformation properties of P92 and P122 type advanced ferritic steels for USC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, M., E-mail: yoshizaw-mtr@sumitomometals.co.jp [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan); Igarashi, M.; Moriguchi, K. [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fuso-cho, Amagasaki, Hyogo 660-0891 (Japan); Iseda, A. [Tubular Products Technology Department, Sumitomo Metal Industries, Ltd., 1-8-11 Harumi, Chuo-ku, Tokyo 104-6111 (Japan); Armaki, Hassan Ghassemi; Maruyama, K. [Graduate School of Environmental Studies, Tohoku University, 6-6-02 Aobayama, Sendai 980-8579 (Japan)

    2009-06-15

    Long-term creep rupture strengths and the microstructural stability of ASME P92 and P122 pipes have been studied using creep testing at the temperatures from 550 to 700 deg. C and detailed scanning transmission electron microscopy. Creep rupture strength of P92 is found to be more stable than that of P122 at temperatures over 600 deg. C, which is mainly due to the difference in their Cr content. P122 type model steel with reduced Cr content, 9%Cr, has been prepared to explore the effect of Cr on the stability of MX and formation of Z-phase during creep deformation. MX in 9%Cr steel is found to be stable even after prolonged exposure at 650 deg. C, while Cr and Fe concentration to MX without marked coarsening has been observed in 10.5%Cr steel after aging for 10,000 h at 650 deg. C. This seems to lead to the transition of MX carbonitride into the Z-phase after aging for 23,000 h, which requires ordering in a M{sub 2}N lattice to achieve a tetragonal Z-phase to be stable. Creep deformation behavior in the transient creep region of the steels is almost same up to about 7000 h, while in the acceleration creep region the creep rate of 10.5%Cr steel becomes much faster than that of 9%Cr steel, resulting in shorter rupture life. It is obvious that the creep rupture strength degradation starts prior to the formation of Z-phase in 10.5%Cr steel. It is thus concluded that Z-phase is not a necessary factor for degradation of creep rupture strength but the instability of the fine precipitates such as Cr{sub 2}(C, N) caused by the compositions change like Cr supply to MX carbonitride is more essential.

  1. Creep behaviour and creep mechanisms of normal and healing ligaments

    Science.gov (United States)

    Thornton, Gail Marilyn

    Patients with knee ligament injuries often undergo ligament reconstructions to restore joint stability and, potentially, abate osteoarthritis. Careful literature review suggests that in 10% to 40% of these patients the graft tissue "stretches out". Some graft elongation is likely due to creep (increased elongation of tissue under repeated or sustained load). Quantifying creep behaviour and identifying creep mechanisms in both normal and healing ligaments is important for finding clinically relevant means to prevent creep. Ligament creep was accurately predicted using a novel yet simple structural model that incorporated both collagen fibre recruitment and fibre creep. Using the inverse stress relaxation function to model fibre creep in conjunction with fibre recruitment produced a superior prediction of ligament creep than that obtained from the inverse stress relaxation function alone. This implied mechanistic role of fibre recruitment during creep was supported using a new approach to quantify crimp patterns at stresses in the toe region (increasing stiffness) and linear region (constant stiffness) of the stress-strain curve. Ligament creep was relatively insensitive to increases in stress in the toe region; however, creep strain increased significantly when tested at the linear region stress. Concomitantly, fibre recruitment was evident at the toe region stresses; however, recruitment was limited at the linear region stress. Elevating the water content of normal ligament using phosphate buffered saline increased the creep response. Therefore, both water content and fibre recruitment are important mechanistic factors involved in creep of normal ligaments. Ligament scars had inferior creep behaviour compared to normal ligaments even after 14 weeks. In addition to inferior collagen properties affecting fibre recruitment and increased water content, increased glycosaminoglycan content and flaws in scar tissue were implicated as potential mechanisms of scar creep

  2. Simulation of creep test on 316FR stainless steel in sodium environment at 550degC

    Energy Technology Data Exchange (ETDEWEB)

    Satmoko, A. [National Atomic Energy Agency, BATAN (Indonesia); Asayama, Tai

    1999-04-01

    In sodium environment, material 316FR stainless steel risks to suffer from carburization. In this study, an analysis using a Fortran program is conducted to evaluate the carbon influence on the creep behavior of 316FR based on experimental results from uni-axial creep test that had been performed at temperature 550degC in sodium environment simulating Fast Breeder Reactor condition. As performed in experiments, two parts are distinguished. At first, elastic-plastic behavior is used to simulate the fact that just before the beginning of creep test, specimen suffers from load or stress much higher than initial yield stress. In second part, creep condition occurs in which the applied load is kept constant. The plastic component should be included, since stresses increase due to section area reduction. For this reason, elastic-plastic-creep behavior is considered. Through time carbon penetration occurs and its concentration is evaluated empirically. This carburization phenomena are assumed to affect in increasing yield stress, decreasing creep strain rate, and increasing creep rupture strength of material. The model is capable of simulating creep test in sodium environment. Material near from surface risks to be carburized. Its material properties change leading to non-uniform distribution of stresses. Those layers of material suffer from stress concentration, and are subject to damage. By introducing a damage criteria, crack initialization can thus be predicted. And even, crack growth can be evaluated. For high stress levels, tensile strength criterion is more important than creep damage criterion. But in low stress levels, the latter gives more influence in fracture. Under high stress, time to rupture of a specimen in sodium environment is shorter than in air. But for stresses lower than 26 kgf/mm{sup 2}, the time to rupture of creep in sodium environment is the same or little longer than in air. Quantitatively, the carburization effect at 550degC is not important

  3. Small punch creep test in a 316 austenitic stainless steel

    Directory of Open Access Journals (Sweden)

    Saucedo-Muñoz, Maribel L.

    2015-03-01

    Full Text Available The small punch creep test was applied to evaluate the creep behavior of a 316 type austenitic stainless steel at temperatures of 650, 675 and 700 °C. The small punch test was carried out using a creep tester with a specimen size of 10×10×0.3 mm at 650, 675 and 700 °C using loads from 199 to 512 N. The small punch creep curves show the three stages found in the creep curves of the conventional uniaxial test. The conventional creep relationships which involve parameters such as creep rate, stress, time to rupture and temperature were followed with the corresponding parameters of small punch creep test and they permitted to explain the creep behavior in this steel. The mechanism and activation energy of the deformation process were the grain boundary sliding and diffusion, respectively, during creep which caused the intergranular fracture in the tested specimens.El ensayo de termofluencia por indentación se utilizó para evaluar el comportamiento a la termofluencia en un acero inoxidable austenítico 316. Este ensayo se realizó en una máquina de indentación con muestras de 10×10×0,3 mm a temperaturas de 650, 675 y 700 °C con cargas de 199 a 512 N. Las curvas de termofluencia del ensayo mostraron las tres etapas características observadas en el ensayo convencional de tensión. Asimismo, las principales relaciones de termofluencia entre parámetros como velocidad de termofluencia, esfuerzo, tiempo de ruptura y temperatura se observaron en los parámetros correspondientes al ensayo de indentación, lo que permitió caracterizar el comportamiento de termofluencia en este acero. El mecanismo y la energía de activación del proceso de deformación en la termofluencia corresponden al deslizamiento de los límites de grano y la difusión a través de los mismos, respectivamente, lo cual causó la fractura intergranular en las muestras ensayadas.

  4. Creep properties of phosphorus alloyed oxygen free copper under multiaxial stress state

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2009-10-15

    Phosphorus alloyed oxygen free copper (Cu-OFP) canisters are planned to be used for spent nuclear fuel in Sweden. The copper canisters will be subjected to creep under multiaxial stress states in the repository. Creep tests have therefore been carried out at 75 deg C using double notch specimens with notch acuities of 0.5, 2, 5, and 18.8, respectively. The creep lifetime for notched specimens is considerably longer than that for the smooth one at a given net section stress, indicating that the investigated Cu-OFP is notch insensitive (notch strengthening). The notch strengthening factor in time is, for instance, greater than 70 at 180 MPa for the bluntest notch (notch acuity = 0.5). The creep lifetime is notch acuity dependent. The sharper the notch, the longer the creep lifetime is. The creep deformation is to a significant extent concentrated to the region around the notches. Different deformation on the two notches is observed. Both axial and radial strains on the failed notch are several times larger than those on the unbroken one. Linear relation between the axial and the radial strains on the notches is found. Transgranular failure is predominant, independent of stress, rupture time, and notch acuity. Adjacent to fracture, elongated grains along the stress direction, separate pores and cavities are often visible. On the unbroken notch, fewer separate cavities and cracks are only seen intergranularly for the sharper notches (notch acuity > 2). To interpret the tests for the notched creep specimens, finite element computations have been performed. A fundamental model for primary and secondary creep without fitting parameters has been used as constitutive equation. The FEM-modelling could represent the creep strain versus time curves for the notched specimens in a satisfactory way. In these curves the strain on loading is included. From the FEM-computations a stationary creep stress could be assessed, which is close to the reference stress. For a given

  5. Reactor vessel lower head integrity

    Energy Technology Data Exchange (ETDEWEB)

    Rubin, A.M.

    1997-02-01

    On March 28, 1979, the Three Mile Island Unit 2 (TMI-2) nuclear power plant underwent a prolonged small break loss-of-coolant accident that resulted in severe damage to the reactor core. Post-accident examinations of the TMI-2 reactor core and lower plenum found that approximately 19,000 kg (19 metric tons) of molten material had relocated onto the lower head of the reactor vessel. Results of the OECD TMI-2 Vessel Investigation Project concluded that a localized hot spot of approximately 1 meter diameter had existed on the lower head. The maximum temperature on the inner surface of the reactor pressure vessel (RPV) in this region reached 1100{degrees}C and remained at that temperature for approximately 30 minutes before cooling occurred. Even under the combined loads of high temperature and high primary system pressure, the TMI-2 RPV did not fail. (i.e. The pressure varied from about 8.5 to 15 MPa during the four-hour period following the relocation of melt to the lower plenum.) Analyses of RPV failure under these conditions, using state-of-the-art computer codes, predicted that the RPV should have failed via local or global creep rupture. However, the vessel did not fail; and it has been hypothesized that rapid cooling of the debris and the vessel wall by water that was present in the lower plenum played an important role in maintaining RPV integrity during the accident. Although the exact mechanism(s) of how such cooling occurs is not known, it has been speculated that cooling in a small gap between the RPV wall and the crust, and/or in cracks within the debris itself, could result in sufficient cooling to maintain RPV integrity. Experimental data are needed to provide the basis to better understand these phenomena and improve models of RPV failure in severe accident codes.

  6. Long-term creep deformation characteristics of advanced ferritic steels for USC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizawa, M. [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fuso-cho, Amagasaki, Hyogo, 660-0891 (Japan); Igarashi, M. [Corporate Research and Development Laboratories, Sumitomo Metal Industries, Ltd., 1-8 Fuso-cho, Amagasaki, Hyogo, 660-0891 (Japan)

    2007-01-15

    Creep rupture and deformation behavior of T122-type steels with different matrix phases such as {alpha}' (martensite) and {alpha}{sup '}+{delta} (martensite and delta-ferrite) at different stress levels has been studied using creep testing and a detailed FE-STEM microscopy. Long-term creep rupture strength of the dual phase steel is found to be lower than that expected from the short-term creep testing. Fine grain microstructure enhances the creep deformation of the dual phase steel at lower stress region, but is not the major factor on the degradation. Decrease in fine MX and unequal distribution of MX in the ferrite matrix are found to be the major causes of the strength degradation in the dual phase steel with the higher Cr content. It is thus concluded that the heterogeneous creep deformation is much more pronounced at lower stress level in the dual phase steel, which is due to inhomogeneous microstructure consisting of {alpha}{sup '}+{delta} phase matrix and the relevant heterogeneous distribution of fine precipitates such as MX and M{sub 23}C{sub 6} in the {delta}-ferrite matrix and near the interface between {delta}/{gamma}.

  7. Long-term creep deformation characteristics of advanced ferritic steels for USC power plants

    Energy Technology Data Exchange (ETDEWEB)

    M. Yoshizawa; M. Igarashi [Sumitomo Metal Industries, Ltd., Hyogo (Japan). Corporate Research and Development Laboratories

    2007-01-15

    Creep rupture and deformation behavior of T122-type steels with different matrix phases such as {alpha}{prime} (martensite) and {alpha}{prime}+{delta} (martensite and delta-ferrite) at different stress levels has been studied using creep testing and a detailed FE-STEM microscopy. Long-term creep rupture strength of the dual phase steel is found to be lower than that expected from the short-term creep testing. Fine grain microstructure enhances the creep deformation of the dual phase steel at lower stress region, but is not the major factor on the degradation. Decrease in fine MX and unequal distribution of MX in the ferrite matrix are found to be the major causes of the strength degradation in the dual phase steel with the higher Cr content. It is thus concluded that the heterogeneous creep deformation is much more pronounced at lower stress level in the dual phase steel, which is due to inhomogeneous microstructure consisting of {alpha}{prime}+{delta} phase matrix and the relevant heterogeneous distribution of fine precipitates such as MX and M{sub 23}C{sub 6} in the {delta}ferrite matrix and near the interface between {delta}/{gamma}.

  8. Creep behavior of reduced activation martensitic steel F82H injected with a large amount of helium

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, N. E-mail: yamamoto.norikazu@nims.go.jp; Murase, Y.; Nagakawa, J.; Shiba, K

    2002-12-01

    Creep response against DEMO reactor level helium was examined on F82H steel, a candidate structural material for advanced fusion systems. Helium was injected into the material at 823 K to a concentration of about 1000 appm utilizing {alpha}-particle irradiation with a cyclotron. Post-injection creep rupture tests were conducted at the same temperature. It has been demonstrated that helium brought about no significant effect on a variety of creep properties (lifetime, rupture elongation and minimum creep rate). In parallel with this, it did not cause any influence on fracture appearance. Both helium implanted and unimplanted samples were failed in a completely transcrystalline and ductile fashion. No symptom of helium induced grain boundary separation was thereby observed even after high concentration helium introduction. These facts hint a fairly good resistance of this material toward high temperature helium embrittlement even for long-time service in fusion reactors.

  9. Achilles Tendon Rupture

    Science.gov (United States)

    Achilles tendon rupture Overview By Mayo Clinic Staff Achilles (uh-KILL-eez) tendon rupture is an injury that affects the back ... but it can happen to anyone. The Achilles tendon is a strong fibrous cord that connects the ...

  10. Reassembling Surveillance Creep

    DEFF Research Database (Denmark)

    Bøge, Ask Risom; Lauritsen, Peter

    2017-01-01

    We live in societies in which surveillance technologies are constantly introduced, are transformed, and spread to new practices for new purposes. How and why does this happen? In other words, why does surveillance “creep”? This question has received little attention either in theoretical...... development or in empirical analyses. Accordingly, this article contributes to this special issue on the usefulness of Actor-Network Theory (ANT) by suggesting that ANT can advance our understanding of ‘surveillance creep’. Based on ANT’s model of translation and a historical study of the Danish DNA database......, we argue that surveillance creep involves reassembling the relations in surveillance networks between heterogeneous actors such as the watchers, the watched, laws, and technologies. Second, surveillance creeps only when these heterogeneous actors are adequately interested and aligned. However...

  11. Creep failure of a spray drier

    CSIR Research Space (South Africa)

    Carter, P

    1998-06-01

    Full Text Available , and creep. The calculations pointed to creep, and no positive metallurgic or physical evidence was discovered to support any of the hypotheses. However, the compression stresses implied that creep deformation could have occurred without inducing discernible...

  12. EUROFER 97. Tensile, charpy, creep and structural tests

    Energy Technology Data Exchange (ETDEWEB)

    Rieth, M.; Schirra, M.; Falkenstein, A.; Graf, P.; Heger, S.; Kempe, H.; Lindau, R.; Zimmermann, H.

    2003-10-01

    EUROFER 97 - the European reference material for the first wall of a DEMO fusion reactor - was produced as 3.5 t batch of rods and plates. Following the history of the development activities from conventional martensitic 12% Cr steel, MANET and OPTIFER up to the low or reduced activation (RAFM) EUROFER steel, results obtained from experiments on specimens from rods (diameter 100 mm) and plates (14 mm) are presented for a basic characterization. Physical and mechanical properties are compared with those of OPTIFER-1W and the F82H-mod 2% W steel. The transition behaviour was determined by plotting a continuous TTT (time temperature transition) diagram. In addition, extension coefficients were determined from room temperature up to 1000 C. Hardening tests at temperatures from 850 C to 1120 C illustrated the range of maximum hardness as well as grain size development. Tempering tests and additional annealing experiments from 300 C to 875 C allowed characterizing tempering behaviour and stability. Charpy properties were examined for various heat treatments and specimen types between 60 C and -100 C. Further, ductility criteria like FATT, DBTT and 68 J were determined. Particular attention was paid to the influence of grain size and O{sub 2} content. Tensile strength was measured for several heat treatments between room temperature and 700 C. Long-term ageing was investigated by means of stabilization annealing experiments. These were carried out with various temperature/time combinations including tensile tests. In EUROFER tensile strength was hardly affected by the different heat treatments while the ductility criteria showed only a moderate increase in temperature. Therefore, it can be concluded that EUROFER is not susceptible to ageing. Creep and creep rupture properties were investigated in the temperature range of 450 C to 650 C. So far, creep times of up to 15000 h have been covered by the experiments. The status of the test program allows for an extrapolation of

  13. Prediction of material creep behaviour for strain based life assessment applications

    Energy Technology Data Exchange (ETDEWEB)

    Rantala, J.H.; Hurst, R.C. [EC JRC IAM, Petten (Netherlands); Bregani, F. [ENEL, Milan (Italy)

    1998-12-31

    In this work the idea of using constant load uniaxial creep test results instead of constant stress results for developing a CDM creep model for the P92 material is demonstrated. Due to limited availability of creep test results this work is based on incomplete test data and a general stress rupture line. In spite of these limitations a material creep model was developed for use in a FE analysis. Using P91 material as an example, a method is proposed to account for differences in strain evolution as a function of stress which normally manifests itself as lower strain values at low stresses in a normalised time-strain plot. This allows the CDM model to be used both in FE analysis and in strain-based life assessment engineering calculations. (orig.) 3 refs.

  14. Analysis of creep behaviour of TiAl-8Ta intermetallic alloy

    Energy Technology Data Exchange (ETDEWEB)

    Angella, G; Maldini, M; Lupine, V, E-mail: angella@ieni.cnr.i [CNR - Istituto IENI - Milano - Via R. Cozzi 53, 20125 Milano (Italy)

    2010-07-01

    The creep behaviour of a high Ta containing {gamma}-TiAl alloy was investigated in the temperature range of 700-850{sup 0}C with applied stresses in order to have rupture times up to 3000 h. Decelerating primary and accelerating tertiary regimes dominated the experimental curves, whilst the secondary regime with constant minimum creep rates was absent. Reporting the experimental data in plot log {epsilon}-dot vs. {epsilon} the tertiary data lie on lines with similar slopes at all temperature and load conditions, indicating that a damage mechanism, depending only on the accumulated creep strain causes the accelerating tertiary regime. Creep tests with step like changes in load and/or temperature changes were run and microstructure investigations were performed through X ray diffraction, scanning and transmission electron microscopy to have an insight on the nature of the damage mechanisms that control the accelerating tertiary regime.

  15. Creep properties and microstructure evaluation of weld joint of the pipe made of P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Kasl, Josef; Jandova, Dagmar; Chvostova, Eva [SKODA VYZKUM s.r.o., Plzen (Czech Republic); Folkova, Eva [SKODA POWER a.s., Plzen (Czech Republic)

    2010-07-01

    One-side weld joint of W type was prepared from P92 type steel using GTAW and SMAW method. Creep test to the rupture of smooth cross-weld samples has been carried out at temperatures ranging from 575 to 650 C and at stresses from 70 to 240 MPa. Fractographic analysis, hardness measurement and detailed study of submicrostructure have been performed using light, scanning and transmission electron microscopy. Changes of microstructure were correlated with the creep strength. Increase in size of secondary phases and cavities formation were evident after creep tests at temperatures above 575 C. Voids were concentrated in the fine prior austenite grain heat affected zones, where fracture occurred. In addition, a sporadic occurrence of individual cavities was found out in the base material and the weld metal after tests at 625 and 650 C. During creep exposures at temperatures above 600 C Laves phase precipitated. (orig.)

  16. Change of nonlinear acoustics in ASME grade 122 steel welded joint during creep

    Science.gov (United States)

    Ohtani, Toshihiro; Honma, Takumi; Ishii, Yutaka; Tabuchi, Masaaki; Hongo, Hiromichi; Hirao, Masahiko

    2016-02-01

    In this paper, we described the changes of two nonlinear acoustic characterizations; resonant frequency shift and three-wave interaction, with electromagnetic acoustic resonance (EMAR) throughout the creep life in the welded joints of ASME Grade 122, one of high Cr ferritic heat resisting steels. EMAR was a combination of the resonant acoustic technique with a non-contact electromagnetic acoustic transducer (EMAT). These nonlinear acoustic parameters decreased from the start to 50% of creep life. After slightly increased, they rapidly increased from 80% of creep life to rupture. We interpreted these phenomena in terms of dislocation recovery, recrystallization, and restructuring related to the initiation and growth of creep void, with support from the SEM and TEM observation.

  17. The Reasons of Steam Pipeline Elbow Rupture

    Directory of Open Access Journals (Sweden)

    Mesjasz A.

    2016-09-01

    Full Text Available In the paper the reasons for steam pipeline’s elbow material rupture, made of steel 13CrMo4-5 (15HM that is being used in the energetics. Based on the mechanical properties in the ambient temperature (Rm, Rp0,2 and elongation A5 and in the increased temperature (Rp0,2t it was found, that the pipeline elbow’s material sampled from the ruptured area has lower Rp0,2 i Rp0,2t by around 2% than it is a requirement for 13CrMo4-5 steel in it’s base state. The damage appeared as a result of complex stress state, that substantially exceeded the admissible tensions, what was the consequence of considerable structure degradation level. As a result of the microstructure tests on HITACHI S4200 microscope, the considerable development of the creeping process associates were found. Also the advances progress of the microstructure degradation was observed, which is substantial decomposition of bainite and multiple, with varied secretion size, and in most cases forming the micro cracks chains. With the use of lateral micro sections the creeping voids were observed, that creates at some places the shrinkage porosities clusters and micro pores.

  18. Creep and fracture of a model yoghurt

    Science.gov (United States)

    Manneville, Sebastien; Leocmach, Mathieu; Perge, Christophe; Divoux, Thibaut

    2014-11-01

    Biomaterials such as protein or polysaccharide gels are known to behave qualitatively as soft solids and to rupture under an external load. Combining optical and ultrasonic imaging to shear rheology we show that the failure scenario of a model yoghurt, namely a casein gel, is reminiscent of brittle solids: after a primary creep regime characterized by a macroscopically homogeneous deformation and a power-law behavior which exponent is fully accounted for by linear viscoelasticity, fractures nucleate and grow logarithmically perpendicularly to shear, up to the sudden rupture of the gel. A single equation accounting for those two successive processes nicely captures the full rheological response. The failure time follows a decreasing power-law with the applied shear stress, similar to the Basquin law of fatigue for solids. These results are in excellent agreement with recent fiber-bundle models that include damage accumulation on elastic fibers and exemplify protein gels as model, brittle-like soft solids. Work funded by the European Research Council under Grant Agreement No. 258803.

  19. Creep Behaviour of Fe-Mn Binary Alloys

    Institute of Scientific and Technical Information of China (English)

    O. Sahin; N. Ucar

    2006-01-01

    @@ Tensile creep behaviour of fine-grained Fe-Mn binary alloys containing 0.42-1.21 wt. % Mn has been investigated in the temperature range from room temperature to 475K under 10-50 Mpa. Tensile tests are carried out with a constant cross-head speed under uniaxial load at a strain rate 10-4s-1. Stress exponent and activation energy are determined to clarify deformation mechanism. The obtained variation of steady state creep rate with respect to the applied stress for Fe-Mn binary alloys exhibits two distinct regimes at about 20 Mpa, indicating a possible change in creep mechanism. The average stress exponent is approximately 2.2, which is a characteristic of grain boundary sliding in the alloys. The activation energy for plastic flow varies from 135 to 92kJ/mol, depending on the Mn content.

  20. Effects of Microstructural Parameters on Creep of Nickel-Base Superalloy Single Crystals

    Science.gov (United States)

    MacKay, Rebecca A.; Gabb, Timothy P.; Nathal, Michael V.

    2013-01-01

    Microstructure-sensitive creep models have been developed for Ni-base superalloy single crystals. Creep rupture testing was conducted on fourteen single crystal alloys at two applied stress levels at each of two temperatures, 982 and 1093 C. The variation in creep lives among the different alloys could be explained with regression models containing relatively few microstructural parameters. At 982 C, gamma-gamma prime lattice mismatch, gamma prime volume fraction, and initial gamma prime size were statistically significant in explaining the creep rupture lives. At 1093 C, only lattice mismatch and gamma prime volume fraction were significant. These models could explain from 84 to 94 percent of the variation in creep lives, depending on test condition. Longer creep lives were associated with alloys having more negative lattice mismatch, lower gamma prime volume fractions, and finer gamma prime sizes. The gamma-gamma prime lattice mismatch exhibited the strongest influence of all the microstructural parameters at both temperatures. Although a majority of the alloys in this study were stable with respect to topologically close packed (TCP) phases, it appeared that up to approximately 2 vol% TCP phase did not affect the 1093 C creep lives under applied stresses that produced lives of approximately 200 to 300 h. In contrast, TCP phase contents of approximately 2 vol% were detrimental at lower applied stresses where creep lives were longer. A regression model was also developed for the as-heat treated initial gamma prime size; this model showed that gamma prime solvus temperature, gamma-gamma prime lattice mismatch, and bulk Re content were all statistically significant.

  1. Long-term creep strength degradation in T122/P122 steels for USC power plants

    Energy Technology Data Exchange (ETDEWEB)

    Igarashi, M.; Yoshizawa, M. [Corporate Research and Development Laboratories, Hyogo (Japan); Iseda, A. [Tubular Products Technology Department, Tokyo (Japan); Matsuo, H.; Kan, T. [Quality Control and Technical Service Department, Hyogo (Japan)

    2006-07-01

    Creep rupture and deformation behavior of KA-SUS410J3 type steels (equivalent to ASME P122/T122) with different Cr content and the resultant matrix phases such as {alpha}' (martensite) and {alpha}'+ {delta} (martensite and deltaferrite) has been studied using creep testing and a detailed TEM observation. New allowable tensile stress values of the steels with two different Cr content levels set using the region splitting method in Japan are tabulated. Long-term creep rupture strength, in particular, of the {alpha}'+ {delta} dual phase steel is found to be lower than that expected from the short-term creep testing. Fine grain microstructure is found to enhance the creep deformation at lower stress region and decrease in fine MX and unequal distribution of MX in the ferrite matrix are to be the major causes of the strength degradation in the {alpha}'+ {delta} dual phase steel with the higher Cr content. It is concluded that the heterogeneous creep deformation is much more pronounced at lower stress level in the dual phase steel, which is due to inhomogeneous microstructure consisting of {alpha}'+{delta} phase matrix and the relevant heterogeneous distribution of fine precipitates such as MX and M{sub 23}C{sub 6} in the {delta} ferrite matrix and near the interface between the soft {delta} ferrite and the hard martensite ({alpha}') phases. Homogeneous microstructure is a key for achieving the long-term creep strength in the advanced ferritic steels at elevated temperatures over 600 C. KA-SUS410J2TB steel (designated as HCM12) is found to exhibit a similar creep strength degradation, which is mainly due to a similar microstructure of KA-SUS410J3 type steel with the higher Cr content. (orig.)

  2. NUMERICAL STUDY OF THE NOTCH EFFECT ON THE CREEP BEHAVIOR AND LIFE OF NICKEL-BASE SINGLE CRYSTAL SUPERALLOYS

    Institute of Scientific and Technical Information of China (English)

    Q.M. Yu; Z.F. Yue

    2004-01-01

    Numerical calculations of creep damage development and life behavior of circular notched specimens of nickel-base single crystal had been performed. The creep stress distributions depend on the specimen geometry. For a small notch radius, von Mises stress has an especial distribution. The damage distribution is greatly influenced by the notch depth, notch radius as well as notch type. The creep crack initiation place is different for each notched specimen. The characteristics of notch strengthening and notch weakening depend on the notch radius and notch type. For the same notch type,the creep rupture lives decrease with the decreasing of notch radius. A creep life model has been presented for the multiaxial stress states based on the crystallographic slip system theory.

  3. Microstructure, creep properties, and rejuvenation of service-exposed alloy 713C turbine blades

    Science.gov (United States)

    Maccagno, T. M.; Koul, A. K.; Immarigeon, J.-P.; Cutler, L.; Allem, R.; L'Espérance, G.

    1990-12-01

    A study was carried out on the microstructure and creep properties of aero engine first-stage turbine blades made from Alloy 713C nickel-base superalloy. Results are reported for new blades, blades in two service-exposed conditions, and service-exposed blades subjected to one of three rejuvenation treatments: a recoating heat treatment, a hot isostatic pressing (HIP) + recoating heat treatment, and a HIP + controlled cooling + recoating heat treatment. The blade microstructure undergoes significant change during service, and this leads to a loss in creep properties exhibited by specimens machined from the blade airfoils. Good correlations were observed between the rupture time and the amount of blade airfoil untwist and between the minimum creep rate and the amount of untwist. The recoating heat treatment and the HIP + controlled cooling + recoating treatment were moderately successful in restoring the microstructure and creep properties of the service-exposed blades. In comparison, the HIP + recoating treatment was very successful in rejuvenating creep properties but only for blades having a chemical composition with a lower propensity to form σ phase. For the blades with an unfavorable composition, σ phase was found to form preferentially near the grain boundaries during creep testing, and this had a detrimental effect on the creep properties. Nonetheless, the degree of rejuvenation for these blades was always at least as good as that obtained through the recoating heat treatment alone.

  4. Creep-fatigue interactions in an austenitic stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Majumdar, S; Maiya, P S

    1978-01-01

    A phenomenological model of the interaction between creep and fatigue in Type 304 stainless steel at elevated temperatures is presented. The model is based on a crack-growth equation and an equation governing cavity growth, expressed in terms of current plastic strain and plastic strain rate. Failure is assumed to occur when a proposed interaction equation is satisfied. Various parameters of the equations can be obtained by correlation with continuously cycling fatigue and monotonic creep-rupture test data, without the use of any hold-time fatigue tests. Effects of various wave shapes such as tensile, compressive, and symmetrical hold on the low-cycle fatigue life can be computed by integrating the damage-rate equations along the appropriate loading path. Microstructural evidence in support of the proposed model is also discussed.

  5. Steam oxidation scale growth and thermal insulation effect on creep life of creep strength enhanced ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Masuyama, Fujimitsu; Tokunaga, Tatsuya [Kyushu Inst. of Technology (Japan). Graduate School of Engineering; Takao, Mikito [Kyushu Inst. of Technology (Japan). Graduate School of Engineering; JFE Steel Corporation (Japan); Arakawa, Katsutoshi [Kyushu Inst. of Technology (Japan). Graduate School of Engineering; Kobe Steel Ltd. (Japan)

    2010-07-01

    Creep strength enhanced ferritic steels, such as T91 and T23 are extensively used worldwide for superheater and reheater tubes, not only in advanced power plants but also in plants with conventional steam conditions. However when these steel tubes are used at higher metal temperature, steam oxidation problems are recently experienced resulting in turbine side erosion, and overheating of tubes leading to creep rupture due to scale blockage in tube bends or scale insulation effect due to thick scale, and separation and exfoliation of the scale. In the present study, steam oxidation growth tests of T91, T92, T23 and T22 were conducted to develop steam oxidation growth rate and scale behavior. Then using the steam oxidation growth data measured the metal temperature changes with scale growth were calculated considering the insulation effect of steam oxidation scale. Consequently the creep lives affected by steam oxidation scale growth were predicted as a function of time and temperature increase for creep strength enhanced ferritic steels. (orig.)

  6. Orientation dependence of the stress rupture properties of Nickel-base superalloy single crystals

    Science.gov (United States)

    Mackay, R. A.

    1981-01-01

    The influence of orientation of the stress rupture behavior of Mar-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because steady-state creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently a short stress rupture life. A unified analysis was attained for the stress rupture behavior of the Mar-M247 single crystals tested in this study at 774 C and that of the Mar-M200 single crystals tested in a prior study at 760 C. In this analysis, the standard 001-011-111 stereographic triangle was divided into several regions of crystallographic orientation which were rank ordered according to stress rupture life for this temperature regime. This plot indicates that those crystals having orientations within about 25 deg of the 001 exhibited significantly longer lives when their orientations were closer to the 001-011 boundary of the stereographic triangle than to the 001-111 boundary.

  7. Orientation dependence of the stress rupture properties of Nickel-base superalloy single crystals

    Science.gov (United States)

    Mackay, R. A.

    1981-05-01

    The influence of orientation of the stress rupture behavior of Mar-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because steady-state creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently a short stress rupture life. A unified analysis was attained for the stress rupture behavior of the Mar-M247 single crystals tested in this study at 774 C and that of the Mar-M200 single crystals tested in a prior study at 760 C. In this analysis, the standard 001-011-111 stereographic triangle was divided into several regions of crystallographic orientation which were rank ordered according to stress rupture life for this temperature regime. This plot indicates that those crystals having orientations within about 25 deg of the 001 exhibited significantly longer lives when their orientations were closer to the 001-011 boundary of the stereographic triangle than to the 001-111 boundary.

  8. Creep buckling analysis of shells

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C.M.; Nickell, R.E.

    1977-01-01

    The current study was conducted in an effort to determine the degree of conservatism or lack of conservatism in current ASME design rules concerning time-dependent (creep) buckling. In the course of this investigation, certain observations were made concerning the numerical solution of creep buckling problems. It was demonstrated that a nonlinear finite element code could be used to solve the time-dependent buckling problem. A direct method of solution was presented which proved to be computationally efficient and provided answers which agreed very well with available analytical solutions. It was observed that the calculated buckling times could vary widely for small errors in computed displacements. The presence of high creep strain rates contributed to the prediction of early buckling times when calculated during the primary creep stage. The predicted time estimates were found to increase with time until the secondary stage was reached and the estimates approached the critical times predicted without primary creep. It can be concluded, therefore, that for most nuclear piping components, whose primary creep stage is small compared to the secondary stage, the effect of primary creep is negligible and can be omitted from the calculations. In an evaluation of the past and current ASME design rules for time-dependent, load controlled buckling, it was concluded that current use of design load safety factors is not equivalent to a safety factor of ten on service life for low creep exponents.

  9. Preconsolidation Pressure and Creep Settlements

    DEFF Research Database (Denmark)

    Thorsen, Grete

    1995-01-01

    of oedometer tests with undisturbed samples have been analysed by means of different methods to determine the pre-consolidation pressure. An attempt is made to estimate the creep rates on the basis of AMS 14C-datings of the sediments and a model for creep determination proposed by Moust Jacobsen....

  10. Creep strength breakdown and microstructure evolution in a 3%Co modified P92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Fedoseeva, A., E-mail: fedoseeva@bsu.edu.ru; Dudova, N.; Kaibyshev, R.

    2016-01-27

    Microstructure and hardness in the grip and gage sections of ruptured 3%Co modified P92 steel specimens were examined after creep tests under applied stresses ranging from 200 to 100 MPa at T=650 °C. Under long-term aging, the depletion of W from solid solution leads to precipitation of the Laves phase. In addition, coarsening of MX carbonitrides occurs after 34 h of aging. The final dimensions of these particles are independent of further aging time. A breakdown of applied stress vs time to rupture dependence takes place at a stress of 140 MPa or a rupture time of 1828 h at which the W content in the ferritic matrix almost attains a thermodynamical equilibrium level. Under long-term creep conditions, the strain-induced coarsening of M{sub 23}C{sub 6} carbides and the Laves phase takes place. No strain-induced coarsening of MX carbonitrides was found. However, V-rich MX carbonitrides transform to Z-phase in the gage section. Zener drag force restraining migration of grain/subgrain boundaries decreases, and with long-term creep, the transformation of the tempered martensite lath structure (TMLS) to subgrain structure occurs, whereas short-term creep conditions and long-term aging result in the retained lath structure.

  11. Changes of structure and crystallographic texture of cladding tubes from austenitic steel under thermal creep testing

    Science.gov (United States)

    Perlovich, Yu; Isaenkova, M.; Fesenko, V.; Dobrokhotov, P.; Tselishchev, A.

    2016-04-01

    The process of changes in structure and crystallographic texture of cladding tubes from austenitic steel ChS68 under thermal creep testing were studied. Testing of tubes was conducted at the temperature 700 oC in the air by their stretching in axial direction under the stress 160 MPa until rupture. By data of phase and texture analysis a number of processes, accompanying plastic deformation of tubes during thermal creep tests at elevated temperature, were identified. The main texture components of original tube, as well as texture components of different parts of the tested tube are {110} and {112}. In the rupture zone the component of the texture of tension with axis along the tube axis becomes stronger. This effect is connected with activation of dislocation slip in the deformed area of tested tube near the new-formed neck. At the same time the character of texture changes in the zone of tube rupture indicates to development of the dynamic recrystallization, conditioned by the total influence of all factors, which control the passage in the tube of thermal creep. In addition, it was revealed the activation of martensitic transformations in the zone of maximal deformation of tube as a result of its creep tests.

  12. Rationalization of Creep Data of Creep-Resistant Steels on the Basis of the New Power Law Creep Equation

    Science.gov (United States)

    Wang, Q.; Yang, M.; Song, X. L.; Jia, J.; Xiang, Z. D.

    2016-07-01

    The conventional power law creep equation (Norton equation) relating the minimum creep rate to creep stress and temperature cannot be used to predict the long-term creep strengths of creep-resistant steels if its parameters are determined only from short-term measurements. This is because the stress exponent and activation energy of creep determined on the basis of this equation depend on creep temperature and stress and these dependences cannot be predicted using this equation. In this work, it is shown that these problems associated with the conventional power law creep equation can be resolved if the new power law equation is used to rationalize the creep data. The new power law creep equation takes a form similar to the conventional power law creep equation but has a radically different capability not only in rationalizing creep data but also in predicting the long-term creep strengths from short-term test data. These capabilities of the new power law creep equation are demonstrated using the tensile strength and creep test data measured for both pipe and tube grades of the creep-resistant steel 9Cr-1.8W-0.5Mo-V-Nb-B (P92 and T92).

  13. Ruptured abdominal aortic aneurysm.

    Science.gov (United States)

    Sachs, T; Schermerhorn, M

    2010-06-01

    Ruptured abdominal aortic aneurysm (AAA) continues to be one of the most lethal vascular pathologies we encounter. Its management demands prompt and efficient evaluation and repair. Open repair has traditionally been the mainstay of treatment. However, the introduction of endovascular techniques has altered the treatment algorithm for ruptured AAA in most major medical centers. We present recent literature and techniques for ruptured AAA and its surgical management.

  14. Creep behaviour and microstructural evolution in P23/P91 dissimilar welds

    Energy Technology Data Exchange (ETDEWEB)

    Vodarek, V. [Technical Univ. of Ostrava (Czech Republic); Kubon, Z.; Strilkova, L. [MATERIALS AND METALLURGICAL RESEARCH Ltd., Ostrava (Czech Republic); Hainsworth, S.V. [Leicester Univ. (United Kingdom). Dept. of Engineering

    2010-07-01

    The structural integrity of welded components operated at elevated temperatures is of key importance in power plant applications. Long-term creep exposure of dissimilar welds is accompanied by redistribution of interstitial elements which strongly affects microstructural evolution in the vicinity of the fusion zone between low and high alloy materials. This paper summarises results of studies on creep rupture properties and minor phase evolution in the P23/P71 heterogeneous welds duing creep exposure at 500, 550 and 600 C for durations exceeding 60 000 hours. The composition of filler material in Weld A corresponded to that of P91 steel, whilst for Weld B the low alloy filler material of P23 type composition was used. Results of creep rupture tests on the cross weld specimens are close to, or slightly below, the lower limit of the {+-}20% scatter band around the standardized curve for creep strength of the P23 steel. Experimental data on microstructural evolution have been compared with results of thermodynamic and kinetic simulations. The predicted minor phase evolution close to the P23/P91 interface was confirmed by microstructural investigations. Some differences between calculations and experimental studies were found for the P23 steel. It was demonstrated that undissolved fine MX particles in the partly decarburized zone of the P23 (WM23) steel significantly delayed recrystallization of the bainitic matrix. (orig.)

  15. Negative creep in nickel base superalloys

    DEFF Research Database (Denmark)

    Dahl, Kristian Vinter; Hald, John

    2004-01-01

    Negative creep describes the time dependent contraction of a material as opposed to the elongation seen for a material experiencing normal creep behavior. Negative creep occurs because of solid state transformations that results in lattice contractions. For most applications negative creep will h...

  16. Creep and Fracture of a Protein Gel under Stress

    Science.gov (United States)

    Leocmach, Mathieu; Perge, Christophe; Divoux, Thibaut; Manneville, Sébastien

    2014-07-01

    Biomaterials such as protein or polysaccharide gels are known to behave qualitatively as soft solids and to rupture under an external load. Combining optical and ultrasonic imaging to shear rheology we show that the failure scenario of a protein gel is reminiscent of brittle solids: after a primary creep regime characterized by a power-law behavior whose exponent is fully accounted for by linear viscoelasticity, fractures nucleate and grow logarithmically perpendicularly to shear, up to the sudden rupture of the gel. A single equation accounting for those two successive processes nicely captures the full rheological response. The failure time follows a decreasing power law with the applied shear stress, similar to the Basquin law of fatigue for solids. These results are in excellent agreement with recent fiber-bundle models that include damage accumulation on elastic fibers and exemplify protein gels as model, brittlelike soft solids.

  17. Ruptured venous aneurysm of cervicomedullary junction

    Directory of Open Access Journals (Sweden)

    Ashish Aggarwal

    2014-01-01

    Full Text Available Background: Ruptured venous aneurysm is often seen with arterio-venous malformation (AVM or developmental venous anomaly (DVA. However, isolated venous aneurysm is unusual. Case Description: We present a case of ruptured venous aneurysm that presented with subarachnoid hemorrhage (SAH and intraventricular hemorrhage (IVH. Digital substraction angiography (DSA revealed a saccular contrast filling pouch in the left lateral aspect of cervicomedullary junction (CMJ. Endovascular intervention was not a viable option. During surgery, a saccular pliable structure approx. 1.5 Χ 1 cm was found in the subarachnoid space that was clipped and excised. There were no arterial feeders, no evidence of surrounding AVM, and no dilated perimedullary vein. Conclusion: This is perhaps the first reported case of ruptured venous aneurysm (without associated AVM of CMJ, which was successfully managed surgically. The possible etiologies remain an unnoticed head trauma or a congenital vessel wall abnormality. Surgically clipping and excision remains the treatment of choice for such lesion.

  18. Creep in electronic ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Routbort, J. L.; Goretta, K. C.; Arellano-Lopez, A. R.

    2000-04-27

    High-temperature creep measurements combined with microstructural investigations can be used to elucidate deformation mechanisms that can be related to the diffusion kinetics and defect chemistry of the minority species. This paper will review the theoretical basis for this correlation and illustrate it with examples from some important electronic ceramics having a perovskite structure. Recent results on BaTiO{sub 3}, (La{sub 1{minus}x}Sr){sub 1{minus}y}MnO{sub 3+{delta}}, YBa{sub 2}Cu{sub 3}O{sub x}, Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub x}, (Bi,Pb){sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub x} and Sr(Fe,Co){sub 1.5}O{sub x} will be presented.

  19. Study of Inverse Creep In Textile Yarns

    Directory of Open Access Journals (Sweden)

    P.G. Patil

    2009-12-01

    Full Text Available Creep has been known and studied for textilematerials for decades. In comparison, a newlyobserved phenomenon of inverse creep seems not tohave received much attention. A new instrument hasbeen fabricated to measure creep and inverse creep intextile materials particularly yarns. Creep and Inversecreep measurements of nylon multifilament yarn,polyester multifilament yarn, cotton and wool yarn atdifferent levels of stress have been studied using thenew instrument and results are reported in the presentpaper.

  20. Creep modelling of particle strengthened steels

    OpenAIRE

    Magnusson, Hans

    2010-01-01

    Materials used in thermal power plants have to resist creep deformation for time periods up to 30 years. Material evaluation is typically based on creep testing with a maximum duration of a few years. This information is used as input when empirically deriving models for creep. These kinds of models are of limited use when considering service conditions or compositions different from those in the experiments. In order to provide a more general model for creep, the mechanisms that give creep s...

  1. Creep Behavior and Degradation of Subgrain Structures Pinned by Nanoscale Precipitates in Strength-Enhanced 5 to 12 Pct Cr Ferritic Steels

    Science.gov (United States)

    Ghassemi Armaki, Hassan; Chen, Ruiping; Maruyama, Kouichi; Igarashi, Masaaki

    2011-10-01

    Creep behavior and degradation of subgrain structures and precipitates of Gr. 122 type xCr-2W-0.4Mo-1Cu-VNb ( x = 5, 7, 9, 10.5, and 12 pct) steels were evaluated during short-term and long-term static aging and creep with regard to the Cr content of steel. Creep rupture life increased from 5 to 12 pct Cr in the short-term creep region, whereas in the long-term creep region, it increased up to 9 pct Cr and then decreased with the addition of Cr from 9 to 12 pct. Behavior of creep rupture life was attributed to the size of elongated subgrains. In the short-term creep region, subgrain size decreased from 5 to 12 pct Cr, corresponding to the longer creep strength. However, in the long-term creep region after 104 hours, subgrain size increased up to 9 pct Cr and then decreased from 9 to 12 pct, corresponding to the behavior of creep rupture life. M23C6 and MX precipitates had the highest number fraction among all of the precipitates present in the studied steels. Cr concentration dependence of spacing of M23C6 and MX precipitates exhibited a V-like shape during short-term as well as long-term aging at 923 K (650 °C), and the minimum spacing of precipitates belonged to 9 pct Cr steel, corresponding to the lowest recovery speed of subgrain structures. In the short-term creep region, subgrain coarsening during creep was controlled by strain and proceeded slower with the addition of Cr, whereas in long-term creep region, subgrain coarsening was controlled by the stability of precipitates rather than due to the creep plastic deformation and took place faster from 9 to 12 pct and 9 to 5 pct Cr. However, M23C6 precipitates played a more important role than MX precipitates in the control of subgrain coarsening, and there was a closer correlation between spacing of M23C6 precipitates and subgrain size during static aging and long-term creep region.

  2. Plasticity and creep of metals

    CERN Document Server

    Rusinko, Andrew

    2011-01-01

    Here is a systematic presentation of the postulates, theorems and principles of mathematical theories of plasticity and creep in metals, and their applications. Special attention is paid to analysis of the advantages and shortcomings of the classical theories.

  3. Effect of MX type particles on creep strength of ferritic steel

    Science.gov (United States)

    Tamura, M.; Sakasegawa, H.; Kohyama, A.; Esaka, H.; Shinozuka, K.

    2003-09-01

    Creep rupture strength at 650 °C and microstructures of the plain ferritic steels with fine particles of the NaCl type (MX) were studied. Precipitation hardening by the fine MX type particles is more effective than solid solution hardening by tungsten. Excess precipitation of MX type particles relatively weakens the grain boundaries as compared with the matrix and, as a consequence, lowers the rupture strength. The equivalent obstacle spacing for mobile dislocations is calculated from the rupture data and is comparable to the interparticle distance observed by transmission electron microscopy. By controlling the interparticle distance of MX type particles with some adjustments of the chemical composition to meet the engineering requirements, it is feasible to develop a new alloy with high rupture strength at 650 °C which is superior to the conventional ferritic steels.

  4. Subtask 12D5: Thermal creep properties of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Loomis, B.A.; Smith, D.L. [Argonne National Lab., IL (United States)

    1995-03-01

    The objective of this work is to provide baseline data on the thermal creep properties of candidate vanadium base alloys. Vanadium-base alloys are promising candidate materials for application in fusion reactor structural components because of several important advantages. V-4Cr-4Ti has been identified as one of the most promising candidate alloys and was selected for comprehensive tests and examination. In the present investigation, thermal creep rates and stress-rupture life of V-4Cr-4Ti and V-10Cr-5Ti alloys were determined at 600{degrees}C. The impurity composition and microstructural characteristics of creep-tested specimens were analyzed and correlated with the measured creep properties. The results of these tests show that V-4Cr-4Ti, which contains impurity compositions typical of a commercially fabricated vanadium-based alloy, exhibits creep strength substantially superior to that of V-20Ti, HT-9, or Type 316 stainless steel. The V-10Cr-5Ti alloy exhibits creep strength somewhat higher than that of V-4Cr-4Ti. 9 refs., 7 figs., 2 tabs.

  5. Different types of cracking of P91 steel weld joints after long-term creep tests

    Energy Technology Data Exchange (ETDEWEB)

    Jandova, D.; Kasl, J.; Chvostova, E. (SKODA VYZKUM s.r.o., Plzen (Czech Republic))

    2010-05-15

    This paper deals with creep testing and microstructural investigation of trial weld joints prepared of wrought and cast 9Cr-1Mo-V steels using GTAW & SMAW method. Creep testing was carried out at temperature range from 525 degC to 625 degC, the longest time to rupture of 45 811 hrs was achieved. The creep strengths of weld joints for 100 000 hrs were calculated. Different types of cracking were observed in dependency on conditions of creep test and the type of weld joint. Type 1 and Type 2 fractures occurred at high applied stress at relatively low temperatures in the tube weld joint and also in two speciments of the cast plate weld joint after creep test at the lowest temperature and the highest temperature. All other fractures were of the Type 4. Causes of different fracture location in tested weld joints were elucidated on the base of substructure evolution in individual zones - the weld metal, the heat affected zone and the base material. Two processes occur simultaneously, which result in the creep damage: (i) softening of solid solution as a result of Laves phase precipitation and (ii) formation and coalescence of cavities in the soft fine grained parts of heat affected zone. (orig.)

  6. Experimental Study on Creep Characterization and Lifetime Estimation of RPV Material at 723-1023 K

    Science.gov (United States)

    Xie, Lin-Jun; Ning, Dong; Yang, Yi-zhong

    2017-02-01

    During the plant operation, nuclear reactor pressure vessel (RPV) is the most critical pressure boundary component for integrity and safety in a light-water reactor. In this paper, the creep behavior and properties for RPV metallic material are studied by conducting constant-temperature and constant-load creep tests at 723, 823, 923 and 1023 K. The θ projection constitutive model was established based on a creep method to describe the high-temperature creep behavior of RPV material. The material parameter θ would be obtained based on experimental data by depending on numerical optimization techniques. The relationship between and among θ, T and σ was evaluated, and the coefficients a i , b i , c i and d i were obtained. Based on the short-term tests at a high temperature, the values for long-term creep data could be predicted in accordance with parameter θ. Moreover, rupture life, the minimum creep rate and the time reaching to an arbitrary strain can be calculated and may be used to evaluate the damage behavior and properties, so as to be used as a reference for design and safety assessment.

  7. Critical review of creep FRAPCON-3 model under dry storage conditions

    Energy Technology Data Exchange (ETDEWEB)

    Feria, F.; Herranz, L.E. [Unit of Nuclear Safety Research, CIEMAT, Avda. Complutense 22, Madrid, Madrid 28040 (Spain)

    2009-06-15

    There is a general agreement that cladding creep rupture is the most likely and limiting failure mechanism of spent fuel in dry storage compared to other potential mechanisms, like stress corrosion cracking and/or delayed hydride cracking. Nevertheless, occurrence of creep rupture is very improbable since both decay heat and hoop stress tend to decrease throughout dry storage. In spite of this, the current trend to higher burn up levels needs further attention that ensures safe storage of spent fuel irradiated over 45 GWd/MTU. An extensive work has been carried out during the last four decades in the area of in-reactor creep modelling. Unfortunately, the in-reactor conditions are so different from those prevailing under dry storage, that all the experience gained cannot be extrapolated in a straightforward manner. On the other side, as creep tests simulating conditions throughout a 20-40 year dry storage are impractical, post-irradiation cladding creep behaviour has been modelled by means of time-temperature dependent laws developed on the basis of currently available zirconium alloys data. Additionally, some tests have been exploring the effect of irradiation, hydrogen distribution and material composition on the materials creep behaviour. Adaptation of fuel performance codes initially developed for normal and off-normal reactor operation is not an easy task either. Creep modelling is usually dependent of host codes because a good part of its validation and update has been carried out in an integral way, and as a consequence its independent performance assessment is not an easy task. This work examines the current capability of FRAPCON-3 to model creep behaviour under dry storage conditions. To do so, a review of its major fundamentals has been done and its range of applicability discussed. Once its main approximations and drawbacks have been identified, an attempt to overcome some of them has been intended by implementing an alternative expression for creep under

  8. Contemporary overview of soil creep phenomenon

    Directory of Open Access Journals (Sweden)

    Kaczmarek Łukasz

    2017-06-01

    Full Text Available Soil creep deformation refers to phenomena which take place in many areas and research in this field of science is rich and constantly developing. The article presents an analysis of the literature on soil creep phenomena. In light of the complexity of the issues involved and the wide variety of perspectives taken, this attempt at systematization seeks to provide a reliable review of current theories and practical approaches concerning creep deformation. The paper deals with subjects such as definition of creep, creep genesis, basic description of soil creep dynamics deformation, estimation of creep capabilities, various fields of creep occurrence, and an introduction to creep modeling. Furthermore, based on this analysis, a new direction for research is proposed.

  9. Significance of primary irradiation creep in graphite

    Energy Technology Data Exchange (ETDEWEB)

    Erasmus, Christiaan, E-mail: christiaan.erasmus@gmail.com [Pebble Bed Modular Reactor (Proprietary) Limited, PO Box 9396, Centurion 0046 (South Africa); Kok, Schalk [Advanced Mathematical Modelling, CSIR Modelling and Digital Science, Pretoria 0001 (South Africa); Hindley, Michael P. [Pebble Bed Modular Reactor (Proprietary) Limited, PO Box 9396, Centurion 0046 (South Africa)

    2013-05-15

    Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux fields and constant stress fields, but it does not allow for the effect of movement of stress locations around a graphite component during life, nor does it allow primary creep to be applied rate-dependently to graphite components subject to lower fast neutron flux. This paper shows that a differential form of primary irradiation creep in graphite combined with the secondary creep formulation proposed by Kennedy et al. performs well when predicting creep behaviour in experimental samples. The significance of primary irradiation creep in particular in regions with lower flux is investigated. It is shown that in low flux regions with a realistic operating lifetime primary irradiation creep is significant and is larger than secondary irradiation creep.

  10. Contemporary overview of soil creep phenomenon

    Science.gov (United States)

    Kaczmarek, Łukasz; Dobak, Paweł

    2017-06-01

    Soil creep deformation refers to phenomena which take place in many areas and research in this field of science is rich and constantly developing. The article presents an analysis of the literature on soil creep phenomena. In light of the complexity of the issues involved and the wide variety of perspectives taken, this attempt at systematization seeks to provide a reliable review of current theories and practical approaches concerning creep deformation. The paper deals with subjects such as definition of creep, creep genesis, basic description of soil creep dynamics deformation, estimation of creep capabilities, various fields of creep occurrence, and an introduction to creep modeling. Furthermore, based on this analysis, a new direction for research is proposed.

  11. Structural Benchmark Testing for Stirling Convertor Heater Heads

    Science.gov (United States)

    Krause, David L.; Kalluri, Sreeramesh; Bowman, Randy R.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) has identified high efficiency Stirling technology for potential use on long duration Space Science missions such as Mars rovers, deep space missions, and lunar applications. For the long life times required, a structurally significant design limit for the Stirling convertor heater head is creep deformation induced even under relatively low stress levels at high material temperatures. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and much creep data is available for the proposed Inconel-718 (IN-718) and MarM-247 nickel-based superalloy materials of construction. However, very little experimental creep information is available that directly applies to the atypical thin walls, the specific microstructures, and the low stress levels. In addition, the geometry and loading conditions apply multiaxial stress states on the heater head components, far from the conditions of uniaxial testing. For these reasons, experimental benchmark testing is underway to aid in accurately assessing the durability of Stirling heater heads. The investigation supplements uniaxial creep testing with pneumatic testing of heater head test articles at elevated temperatures and with stress levels ranging from one to seven times design stresses. This paper presents experimental methods, results, post-test microstructural analyses, and conclusions for both accelerated and non-accelerated tests. The Stirling projects use the results to calibrate deterministic and probabilistic analytical creep models of the heater heads to predict their life times.

  12. Mechanical Behavior of Low Porosity Carbonate Rock: From Brittle Creep to Ductile Creep.

    Science.gov (United States)

    Nicolas, A.; Fortin, J.; Gueguen, Y.

    2014-12-01

    Mechanical compaction and associated porosity reduction play an important role in the diagenesis of porous rocks. They may also affect reservoir rocks during hydrocarbon production, as the pore pressure field is modified. This inelastic compaction can lead to subsidence, cause casing failure, trigger earthquake, or change the fluid transport properties. In addition, inelastic deformation can be time - dependent. In particular, brittle creep phenomena have been deeply investigated since the 90s, especially in sandstones. However knowledge of carbonates behavior is still insufficient. In this study, we focus on the mechanical behavior of a 14.7% porosity white Tavel (France) carbonate rock (>98% calcite). The samples were deformed in a triaxial cell at effective confining pressures ranging from 0 MPa to 85 MPa at room temperature and 70°C. Experiments were carried under dry and water saturated conditions in order to explore the role played by the pore fluids. Two types of experiments have been carried out: (1) a first series in order to investigate the rupture envelopes, and (2) a second series with creep experiments. During the experiments, elastic wave velocities (P and S) were measured to infer crack density evolution. Permeability was also measured during creep experiments. Our results show two different mechanical behaviors: (1) brittle behavior is observed at low confining pressures, whereas (2) ductile behavior is observed at higher confining pressures. During creep experiments, these two behaviors have a different signature in term of elastic wave velocities and permeability changes, due to two different mechanisms: development of micro-cracks at low confining pressures and competition between cracks and microplasticity at high confining pressure. The attached figure is a summary of 20 triaxial experiments performed on Tavel limestone under different conditions. Stress states C',C* and C*' and brittle strength are shown in the P-Q space: (a) 20°C and dry

  13. Onset of aseismic creep on major strike-slip faults

    KAUST Repository

    Çakir, Ziyadin

    2012-10-02

    Time series analysis of spaceborne synthetic aperture radar (SAR) data, GPS measurements, and fi eld observations reveal that the central section of the Izmit (Turkey) fault that slipped with a supershear rupture velocity in the A.D. 1999, Mw7.4, Izmit earthquake began creeping aseismically following the earthquake. Rapid initial postseismic afterslip decayed logarithmically with time and appears to have reached a steady rate comparable to the preearthquake full fault-crossing rate, suggesting that it may continue for decades and possibly until late in the earthquake cycle. If confi rmed by future monitoring, these observations identify postseismic afterslip as a mechanism for initiating creep behavior along strike-slip faults. Long-term afterslip and/or creep has signifi cant implications for earthquake cycle models, recurrence intervals of large earthquakes, and accordingly, seismic hazard estimation along mature strike-slip faults, in particular for Istanbul which is believed to lie adjacent to a seismic gap along the North Anatolian fault in the Sea of Marmara. © 2012 Geological Society of America.

  14. [Exceptional iatrogenic ureteral rupture].

    Science.gov (United States)

    Martínez-Vieira, Almudena; Valera-Sánchez, Zoraida; Sousa-Vaquero, José María; Palacios-González, Carmen; García-Poley, Antonio; Bernal-Bellido, Carmen; Alamo-Martínez, José María; Millán-López, Ana; Blanco-Domínguez, Manuel; Galindo-Galindo, Antonio

    2005-08-01

    Rupture of the ureter is an infrequent event that can have serious consequences. The most frequent cause is surgical iatrogenic ureter disease. Other possible causes are urological procedures and urographic studies. In our patient, which, to our knowledge, is the first to be reported in the literature, the ureteral rupture was produced by a traumatic urinary catheterism, because the balloon was filled inside the ureter. The normal presentation is nephritic colic, although acute abdomen is also a possibility. The possibility of ureteral rupture in abdominopelvic surgery or in urological techniques should be evaluated when patients present these clinical symptoms. Treatment is surgical, although in some cases conservative measures can be used.

  15. Influence of microstructure modification on the circumferential creep of Zr–Nb–Sn–Fe cladding tubes

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Gu Beom; Kim, In Won; Hong, Sun Ig, E-mail: sihong@cnu.ac.kr

    2016-01-15

    Out-of-reactor, non-irradiated thermal creep performances and lives of annealed and stress-relieved Zr-1.02Nb-0.69Sn-0.12Fe cladding tubes were studied and compared. The creep rates of annealed Zr-1.02Nb-0.69Sn-0.12Fe cladding tubes were appreciably slower than those of stress-relieved annealed counterpart. The stress exponent increased slightly from 5.1 to 6.1 in the stress-relieved cladding to 5.3–6.3 in the annealed cladding. The creep activation energy of the annealed Zr-1.02Nb-0.69Sn-0.12Fe alloy (300–330 kJ/mol) was larger compared to that of the stress-relieved alloy (210–260 kJ/mol). The creep activation energy of annealed alloy is close to that of self-diffusion in α-Zr (336 kJ/mol). The smaller activation energy in the stress-relieved alloy is attributed to the increasing contribution of faster diffusion path such as grain boundaries and dislocations. The presence of dislocation arrays with higher dislocation density and smaller grain size in the stress-relived alloy was confirmed by TEM analysis. The creep rupture time increased dramatically in the annealed Zr–1Nb- 0.7Sn-0.1Fe alloy compared to that of stress-relieved alloy, supporting the decrease of creep rate by annealing. The creep life of Zr-1.02Nb-0.69Sn-0.12Fe claddings can be extended through microstructure modification by annealing at intermediate temperatures in which dislocation creep dominates. - Highlights: • Effect of microstructure modification on creep in Zr–Nb–Sn–Fe tubes was studied. • Creep activation energy in annealed tubes was larger than in stress-relieved tubes. • Lower dislocation density in lager grains was observed after creep in annealed tubes. • Larson–Miller parameter of annealed tube was larger than that of stress-relieved one. • Creep life of tubes was extended through microstructure modification by annealing.

  16. (Irradiation creep of graphite)

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.R.

    1990-12-21

    The traveler attended the Conference, International Symposium on Carbon, to present an invited paper, Irradiation Creep of Graphite,'' and chair one of the technical sessions. There were many papers of particular interest to ORNL and HTGR technology presented by the Japanese since they do not have a particular technology embargo and are quite open in describing their work and results. In particular, a paper describing the failure of Minor's law to predict the fatigue life of graphite was presented. Although the conference had an international flavor, it was dominated by the Japanese. This was primarily a result of geography; however, the work presented by the Japanese illustrated an internal program that is very comprehensive. This conference, a result of this program, was better than all other carbon conferences attended by the traveler. This conference emphasizes the need for US participation in international conferences in order to stay abreast of the rapidly expanding HTGR and graphite technology throughout the world. The United States is no longer a leader in some emerging technologies. The traveler was surprised by the Japanese position in their HTGR development. Their reactor is licensed and the major problem in their graphite program is how to eliminate it with the least perturbation now that most of the work has been done.

  17. Examination of observed and predicted measures of creep cavitation damage accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Brear, J.M.; Church, J.M. [ERA Technology Ltd., Leatherhead (United Kingdom); Eggeler, G. [University of Bochum-Ruhr (Germany)

    1998-12-31

    Brittle intergranular cavitation represents a primary degradation mechanism for high temperature plant operating within the creep range. Fundamental to formulating estimates of remanent life, or consumed life fraction for such components are: the observation and quantification of the level of actual creep cavitation, typically using an A-parameter type approach, and the correlation of observed creep damage accumulation with some phenomenological model which characterizes the rate of damage evolution and, thereby, rupture lifetime. The work described here treats inhomogeneous damage accumulation - in otherwise uniform material and loading situations. Extensions to the A-parameter are considered as a practical measure of damage localization and an extension of the Kachanov-Rabotnov continuum damage mechanics model is proposed to allow theoretical treatment. (orig.) 4 refs.

  18. Creep crack growth in a reactor pressure vessel steel at 360 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Rui Wu; Seitisleam, F.; Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    Plain creep (PC) and creep crack growth (CCG) tests at 360 deg C and post metallography were carried out on a low alloy reactor pressure vessel steel (ASTM A508 class 2) with different microstructures. Lives for the CCG tests were shorter than those for the PC tests and this is more pronounced for simulated heat affected zone microstructure than for the parent metal at longer lives. For the CCG tests, after initiation, the cracks grew constantly and intergranularly before they accelerated to approach rupture. The creep crack growth rate is well described by C*. The relations between reference stress, failure time and steady crack growth rate are presented for the CCG tests. It is demonstrated that the failure stress due to CCG is considerably lower than the yield stress at 360 deg C. Consequently, the CCG will control the static strength of a reactor vessel. (orig.) 17 refs.

  19. Microstructure Evolution in 9Cr Martensitic Steel During Long-Term Creep at 650℃

    Institute of Scientific and Technical Information of China (English)

    HU Zheng-fei; WANG Qi-jiang; ZHANG Bin

    2012-01-01

    Standardarized creep and rupture strength tests were conducted for commercial T91 martensitic heat-resistant steel at 650℃and corresponding microstructure was characterized by BSED, TEM and EDS. The martensitic microstructure degenerated seriously during creep exposure, including martensitic substructure recovering, carbides coarsening, dissolving and precipitating. EDS analysis shows that the M23C6 carbides in different morphologies have dissimilar compositions. The rod/sheet like M23 C6 particles within the matrix contain more additions, which might precipitate in situ while fine MX particles were re-solving. The high content of silicon in these rod/sheet like M2aC6 carbides is probably related to self diffusion coefficient increasing for the exposed condition at 650 ~C close to Curie temperature To. For those reasons, martensite substructure becomes unstable, and microstructure evolution is accelerated and leads to creep strength deteriorating severely.

  20. High temperature creep properties of directionally solidified CM-247LC Ni-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Chiou, Mau-Sheng [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Jian, Sheng-Rui, E-mail: srjian@gmail.com [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Yeh, An-Chou [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 300, Taiwan (China); Kuo, Chen-Ming [Department of Mechanical and Automation Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Juang, Jenh-Yih [Department of Electrophysics, National Chiao Tung University, Hsinchu 300, Taiwan (China)

    2016-02-08

    This study explores the effects of cooling rate after solution heat treatment on the high temperature/low stress (982 °C/200 MPa) creep properties of CM-247LC Nickel base superalloy. Cooling rate was controlled by blowing argon gas, air cooling, and furnace cooling, which, in turn, gave rise to corresponding cooling rates (from 1260 °C to 800 °C) of 18.7, 7.4, and 0.19 °C/s, respectively. The results indicated that higher cooling rate from the solution heat treatment temperature led to finer γ′ precipitates and much improved tertiary creep as well as rupture life time in high-temperature creep test. The microstructural analyses using both scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed that finer γ′ precipitates and narrower γ channel width could result in denser rafting structure which might have hindered the climb of dislocations across the precipitates rafts.

  1. Creep behavior of plasma sprayed NiCr and NiCrAl coating-based systems

    Institute of Scientific and Technical Information of China (English)

    Xiancheng ZHANG; Changjun LIU; Fuzhen XUAN; Zhengdong WANG; Shan-Tung TU

    2011-01-01

    The creep behavior of the plasma sprayed NiCr and NiCrAl coating/Nickel alloy 690substrate systems at 1033 K was investigated. Results showed that there was almost no difference in the creep lives between the NiCr and NiCrAl coated specimens at a given stress level, since the contents of Cr used in the NiCr and NiCrAl powders are almost same. The relationship between the minimum creep rate and the applied stress followed the well-known Norton's power law, εmin=Aσn, with the values of A=2.66× 10-16 Mpa-n.h-1 and n=6.48. The relation between the applied stress and time to rupture of the coated specimens can be estimated by using Larson-Miller equation. The θ projection method can be used to accurately characterize the creep behavior of the coated specimens.

  2. Effect of titanium on the creep deformation behaviour of 14Cr-15Ni-Ti stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Latha, S. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mathew, M.D., E-mail: mathew@igcar.gov.in [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Parameswaran, P.; Nandagopal, M. [Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu 603 102 (India); Mannan, S.L. [National Engineering College, Kovilpatti, Tamil Nadu 628 503 (India)

    2011-02-28

    14Cr-15Ni-Ti modified stainless steel alloyed with additions of phosphorus and silicon is a potential candidate material for the future cores of Prototype Fast Breeder Reactor. In order to optimise the titanium content in this steel, creep tests have been conducted on the heats with different titanium contents of 0.18, 0.23, 0.25 and 0.36 wt.% at 973 K at various stress levels. The stress exponents indicated that the rate controlling deformation mechanism was dislocation creep. A peak in the variation of rupture life with titanium content was observed around 0.23 wt.% titanium and the peak was more pronounced at lower stresses. The variation in creep strength with titanium content was correlated with transmission electron microscopic investigations. The peak in creep strength exhibited by the material with 0.23 wt.% titanium is attributed to the higher volume fraction of fine secondary titanium carbide (TiC) precipitates.

  3. Ruptured episiotomia resutured primarily.

    Science.gov (United States)

    Monberg, J; Hammen, S

    1987-01-01

    In a randomized study, 35 patients with ruptured episiotomy were treated in two ways. One group, treated with Clindamycin and primary resuture, did better than the other group, not resutured but spontaneously healed.

  4. Achilles tendon rupture - aftercare

    Science.gov (United States)

    Heel cord tear; Calcaneal tendon rupture ... MRI scan to see what type of Achilles tendon tear you have. An MRI is a type ... partial tear means at least some of the tendon is still OK. A full tear means your ...

  5. Spontaneous uterine rupture

    African Journals Online (AJOL)

    After ultrasound scan, uterine rupture was diagnosed and an ... delivery. The birth weights ranged between 2900 and 3200g. The last 2 .... abdominal pains and signs of shock, at which made up of altered blood and we think that the.

  6. Distal Biceps Tendon Rupture

    Science.gov (United States)

    2010-06-01

    distal tendon . Although these findings overlap with those seen in tendinopathy , the presence of bone marrow edema at the radial tuberosity and fluid in...the bicipitoradial bursa suggests a partial tear rather than tendinopathy .3 When the distal biceps tendon tear is complete, MR imaging shows...Distal Biceps Tendon Rupture Military Medicine Radiology Corner, 2006 Radiology Corner Distal Biceps Tendon Rupture Contributors: CPT Michael

  7. Inferences drawn from two decades of alinement array measurements of creep on faults in the San Francisco Bay Region

    Science.gov (United States)

    Galehouse, J.S.; Lienkaemper, J.J.

    2003-01-01

    We summarize over 20 years of monitoring surface creep on faults of the San Andreas system in the San Francisco Bay region using alinement arrays. The San Andreas fault is fully locked at five sites northwest from San Juan Bautista, the southern end of the 1906 earthquake rupture, that is, no creep (San Gregorio, Rodgers Creek, and West Napa faults show no creep. The measured creep rate on the Calaveras-Paicines fault from Hollister southward is either 6 or ??? 10 mm/yr, depending on whether the arrays cross all of the creeping traces. Northward of Hollister, the central Calaveras creep rate reaches 14 ?? 2 mm/yr but drops to ??? 2 mm/yr near Calaveras Reservoir, where slip transfers to the southern Hayward fault at a maximum creep rate of 9 mm/yr at its south end. However, the Hayward fault averages only 4.6 mm/yr over most of its length. The Northern Calaveras fault, now creeping at 3-4 mm/yr, steps right to the Concord fault, which has a similar rate, 2.5-3.5 mm/yr, which is slightly slower than the 4.4 mm/yr rate on its northward continuation, the Green Valley fault. The Maacama fault creeps at 4.4 mm/yr near Ukiah and 6.5 mm/yr in Willits. The central and southern segments of the Calaveras fault are predominantly creeping, whereas the Hayward, Northern Calaveras, and Maacama faults are partly locked and, along with the Rodgers Creek and San Andreas, have high potential for major earthquakes.

  8. Effect of nitrogen on creep properties of type 316L stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, D.W.; Lee, Y.K.; Kuk, I.H.; Ryu, W.S. [Korea Atomic Energy Research Institute, Taejon (Korea)

    1999-03-01

    The effect of nitrogen on the creep properties of type 316L stainless steels with three different nitrogen contents from 0.04 to 0.15% was investigated. The plate was solution treated for 1 hr at 1100 deg C and then water quenched. Specimens were obtained from the plate parallel to the rolling direction. The geometry of specimen was 4mm diameter and 30mm gauge length. Creep tests were carried out using constant-load single-lever machines in the initial stress range from 120 to 380MPa at 550, 600 and 650 deg C and in air. The temperature deviation along the gauge length of the specimen was strictly controlled less than {+-}2 deg C. The time to rupture increased and the minimum creep strain rate decreased with the addition of nitrogen. On the other hand, the rupture elongation and fracture mode was not strongly influenced by the nitrogen content. The effect of nitrogen content on the creep properties were found to be more pronounced at higher temperatures. The intergranular fracture mode was found in all specimens and increased with decreasing applied stress. (author). 7 refs., 41 figs.

  9. The influence of orientation on the stress rupture properties of nickel-base superalloy single crystals

    Science.gov (United States)

    Mackay, Rebecca A.; Maier, Ralph D.

    1982-10-01

    The influence of orientation on the stress rapture properties of MAR-M247 single crystals was studied. Stress rupture tests were performed at 724 MPa and 774 °C where the effect of anisotropy is prominent. The mechanical behavior of the single crystals was rationalized on the basis of the Schmid factors for the operative slip systems and the lattice rotations which the crystals underwent during deformation. The stress rupture lives at 774 °C were found to be greatly influenced by the lattice rotations required to produce intersecting slip, because second-stage creep does not begin until after the onset of intersecting slip. Crystals which required large rotations to become oriented for intersecting slip exhibited a large primary creep strain, a large effective stress level at the onset of steady-state creep, and consequently, a short stress rupture life. Those crystals having orientations within about 25° of the [001] exhibited significantly longer lives when their orientations were closer to the [001]-[011] boundary of the stereographic triangle than to the [001]-[1l 1] boundary, because they required smaller rotations to produce intersecting slip and the onset of second-stage creep. Thus, the direction off the [001], as well as the number of degrees off the [001], has a major influence on the stress rapture lives of single crystals in this temperature regime.

  10. Creep behavior of a novel Co-Al-W-base single crystal alloy containing Ta and Ti at 982 ∘C

    Directory of Open Access Journals (Sweden)

    Xue Fei

    2014-01-01

    Full Text Available The tensile creep behavior of a Co-Al-W-base single crystal alloy containing Ta and Ti was investigated at 982 ∘C and 248 MPa. The lattice misfit of experimental alloy was measured to be positive by synchrotron X-ray diffraction at high temperature, and long term heat treatment at 1000 ∘C for 1000 h revealed a γ′ volume fraction of 75% without secondary phases. The creep test indicated that the creep properties of experimental alloy exceeded commercial 1st generation Ni-base single crystal superalloy CMSX-3 with respect to the rupture life. The initial cuboidal γ′ precipitates directionally coarsened parallel to the applied stress axis during the creep process. The stacking faults in {111} planes within γ′ rafts were the primary creep deformation mode by TEM investigation.

  11. Fan-structure waves in shear ruptures

    Science.gov (United States)

    Tarasov, Boris

    2016-04-01

    This presentation introduces a recently identified shear rupture mechanism providing a paradoxical feature of hard rocks - the possibility of shear rupture propagation through the highly confined intact rock mass at shear stress levels significantly less than frictional strength. According to the fan-mechanism the shear rupture propagation is associated with consecutive creation of small slabs in the fracture tip which, due to rotation caused by shear displacement of the fracture interfaces, form a fan-structure representing the fracture head. The fan-head combines such unique features as: extremely low shear resistance (below the frictional strength), self-sustaining stress intensification in the rupture tip (providing easy formation of new slabs), and self-unbalancing conditions in the fan-head (making the failure process inevitably spontaneous and violent). An important feature of the fan-mechanism is the fact that for the initial formation of the fan-structure an enhanced local shear stress is required, however, after completion of the fan-structure it can propagate as a dynamic wave through intact rock mass at shear stresses below the frictional strength. Paradoxically low shear strength of pristine rocks provided by the fan-mechanism determines the correspondingly low transient strength of the lithosphere, which favours generation of new earthquake faults in the intact rock mass adjoining pre-existing faults in preference to frictional stick-slip instability along these faults. The new approach reveals an alternative role of pre-existing faults in earthquake activity: they represent local stress concentrates in pristine rock adjoining the fault where special conditions for the fan-mechanism nucleation are created, while further dynamic propagation of the new fault (earthquake) occurs at low field stresses even below the frictional strength.

  12. Clinical characteristics of ruptured distal middle cerebral artery aneurysms: Review of the literature.

    Science.gov (United States)

    Tsutsumi, Keiji; Horiuchi, Tetsuyoshi; Nagm, Alhusain; Toba, Yasuyuki; Hongo, Kazuhiro

    2017-01-10

    Middle cerebral artery (MCA) aneurysms usually arise at the primary MCA bifurcation or trifurcation. Distal MCA aneurysms are rarely considered as sources of aneurysmal subarachnoid hemorrhage (SAH). It has been reported that ruptured distal MCA aneurysms are associated with head trauma, neoplastic emboli, arterial dissection, or bacterial infection. We experienced five cases of ruptured distal MCA aneurysms and evaluated their clinical characteristics. Retrospective analysis of aneurysmal SAH at Kobayashi Neurosurgical Neurological Hospital was performed from January, 2004 to December, 2014. Clinical characteristics of ruptured distal MCA aneurysms were analyzed using our database. Among 191 aneurysmal SAH patients, there were five ruptured distal MCA aneurysms. All patients did not have any specific medical problems such as infectious disease, head trauma, or cardiac disorders. The incidence of ruptured distal MCA aneurysm was higher than expected and was equivalent to 9.4% of the total ruptured MCA aneurysms. Strong male predominance (80%) and M2-3 junction aneurysm preponderance (80%) were observed. In addition, there were only two patients (40%) with intracerebral hematoma in our study. We reported five cases of ruptured distal MCA aneurysms. Although ruptured distal MCA aneurysms are thought to be rare as sources of aneurysmal SAH, the incidence of ruptured distal MCA aneurysm was 9.4% of all ruptured MCA aneurysms in our study. Ruptured distal MCA aneurysms should be considered as sources of aneurysmal SAH without intracerebral hematoma.

  13. Numerical simulation of soil creep with a visco-hypoplastic constitutive model

    Science.gov (United States)

    Wang, Shun; Wu, Wei

    2016-04-01

    Slow-moving landslides make up a great part of geohazards in the Three Gorges reservoir (TGR) in China. Most of them move at speed of several centimeters per year (or even less) and show evidence of creep behaviour. It has been suggested that motion of creep landslides is mainly governed by the viscous properties of sheared materials forming the rupture zone, as these zones are where most of the slope deformation localizes. Understanding of creep behaviour of slipping material calls for laboratory tests as well as advanced constitutive models. For this purpose, a high order visco-hypoplastic constitutive model has been introduced. Unlike some of the visco-hypoplasric models, which consider the total strain rate as a combination of reversible strain rate and viscous strain rate respectively, such as dot{bm{e}}=dot{bm{e}}^e+dot{bm{e}}vis (where dot{bm{e}}, dot{bm{e}}e and dot{bm{e}}vis are the total strain rate ,reversible strain rate and viscous strain rate respectively), the proposed visco-hypolastic constitutive model decompose the Cauchy stress into a statical part and a dynamical part, bm{s}=hat{bm{s}}+\\check{bm{s}} (where bm{s},hat{bm{s}} and \\check{bm{s}} are total stress ,statical stress and dynamical stress respectively), whereas the strain rate has been considered as a whole. Within in this framework, stress change induced by strain acceleration can be taken into account. Moreover, compared with some special creep models, which may only valid for one or two stages of the three-state creep, i.e. primary creep, secondary creep and tertiary creep, this novel scheme is able to describe creep test with the whole three stages. This model has been also implemented into FEM code to evaluate some boundary-value problems. An explicit adaptive Rung-Kutta-Fehlberg algorithm is applied for stress-point integration. For verification of this model, numerical triaxial tests compared with laboratory tests have been conducted. Then a homogenous slope has been taken as an

  14. The primary creep behavior of single crystal, nickel base superalloys PWA 1480 and PWA 1484

    Science.gov (United States)

    Wilson, Brandon Charles

    Primary creep occurring at intermediate temperatures (650°C to 850°C) and loads greater than 500 MPa has been shown to result in severe creep strain, often exceeding 5-10%, during the first few hours of creep testing. This investigation examines how the addition of rhenium and changes in aging heat treatment affect the primary creep behavior of PWA 1480 and PWA 1484. To aid in the understanding of rhenium's role in primary creep, 3wt% Re was added to PWA 1480 to create a second generation version of PWA 1480. The age heat treatments used for creep testing were either 704°C/24 hr. or 871°C/32hr. All three alloys exhibited the presence of secondary gamma' confirmed by scanning electron microscopy and local electrode atom probe techniques. These aging heat treatments resulted in the reduction of the primary creep strain produced in PWA 1484 from 24% to 16% at 704°C/862 MPa and produced a slight dependence of the tensile properties of PWA 1480 on aging heat treatment temperature. For all test temperatures, the high temperature age resulted in a significant decrease in primary creep behavior of PWA 1484 and a longer lifetime for all but the lowest test temperature. The primary creep behavior of PWA 1480 and PWA 1480+Re did not display any significant dependence on age heat treatment. The creep rupture life of PWA 1480 is greater than PWA 1484 at 704°C, but significantly shorter at 760°C and 815°C. PWA 1480+Re, however, displayed the longest lifetime of all three alloys at both 704°C and 815°C (PWA 1480+Re was not tested at 760°C). Qualitative TEM analysis revealed that PWA 1484 deformed by large dislocation "ribbons" spanning large regions of material. PWA 1480, however, deformed primarily due to matrix dislocations and the creation of interfacial dislocation networks between the gamma and gamma' phases. PWA 1480+ contained stacking faults as well, though they acted on multiple slip systems generating work hardening and forcing the onset of secondary creep. X

  15. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifing Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, Leigh

    2007-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle's Kevlar-49 fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed non-conservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic-plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23% lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  16. Composite Overwrap Pressure Vessels: Mechanics and Stress Rupture Lifting Philosophy

    Science.gov (United States)

    Thesken, John C.; Murthy, Pappu L. N.; Phoenix, S. L.

    2009-01-01

    The NASA Engineering and Safety Center (NESC) has been conducting an independent technical assessment to address safety concerns related to the known stress rupture failure mode of filament wound pressure vessels in use on Shuttle and the International Space Station. The Shuttle s Kevlar-49 (DuPont) fiber overwrapped tanks are of particular concern due to their long usage and the poorly understood stress rupture process in Kevlar-49 filaments. Existing long term data show that the rupture process is a function of stress, temperature and time. However due to the presence of load sharing liners and the complex manufacturing procedures, the state of actual fiber stress in flight hardware and test articles is not clearly known. Indeed nonconservative life predictions have been made where stress rupture data and lifing procedures have ignored the contribution of the liner in favor of applied pressure as the controlling load parameter. With the aid of analytical and finite element results, this paper examines the fundamental mechanical response of composite overwrapped pressure vessels including the influence of elastic plastic liners and degraded/creeping overwrap properties. Graphical methods are presented describing the non-linear relationship of applied pressure to Kevlar-49 fiber stress/strain during manufacturing, operations and burst loadings. These are applied to experimental measurements made on a variety of vessel systems to demonstrate the correct calibration of fiber stress as a function of pressure. Applying this analysis to the actual qualification burst data for Shuttle flight hardware revealed that the nominal fiber stress at burst was in some cases 23 percent lower than what had previously been used to predict stress rupture life. These results motivate a detailed discussion of the appropriate stress rupture lifing philosophy for COPVs including the correct transference of stress rupture life data between dissimilar vessels and test articles.

  17. Thermal Creep Force: Analysis And Application

    Science.gov (United States)

    2016-06-01

    Calhoun: The NPS Institutional Archive Theses and Dissertations Thesis and Dissertation Collection 2016-06 Thermal creep force: analysis and...CALIFORNIA DISSERTATION Approved for public release; distribution is unlimited THERMAL CREEP FORCE: ANALYSIS AND APPLICATION by David...blank) 2. REPORT DATE June 2016 3. REPORT TYPE AND DATES COVERED Doctoral Dissertation 4. TITLE AND SUBTITLE THERMAL CREEP FORCE: ANALYSIS

  18. Isolated unilateral rupture of the alar ligament.

    Science.gov (United States)

    Wong, Sui-To; Ernest, Kimberly; Fan, Grace; Zovickian, John; Pang, Dachling

    2014-05-01

    Only 6 cases of isolated unilateral rupture of the alar ligament have been previously reported. The authors report a new case and review the literature, morbid anatomy, and pathogenesis of this rare injury. The patient in their case, a 9-year-old girl, fell head first from a height of 5 feet off the ground. She presented with neck pain, a leftward head tilt, and severe limitation of right rotation, extension, and right lateral flexion of the neck. Plain radiographs and CT revealed no fracture but a shift of the dens toward the right lateral mass of C-1. Magnetic resonance imaging of the cervical spine showed signal hyperintensity within the left dens-atlas space on both T1- and T2-weighted sequences and interruption of the expected dark signal representing the left alar ligament, suggestive of its rupture. After 12 weeks of immobilization in a Guilford brace, MRI showed lessened dens deviation, and the patient attained full and painless neck motion. Including the patient in this case, the 7 patients with this injury were between 5 and 21 years old, sustained the injury in traffic accidents or falls, presented with marked neck pain, and were treated with external immobilization. All patients had good clinical outcome. The mechanism of injury is hyperflexion with rotation. Isolated unilateral alar ligament rupture is a diagnosis made by excluding associated fracture, dislocation, or disruption of other major ligamentous structures in the craniovertebral junction. CT and MRI are essential in establishing the diagnosis. External immobilization is adequate treatment.

  19. Life Assessment for Cr-Mo Steel Dissimilar Joints by Various Filler Metals Using Accelerated Creep Testing

    Science.gov (United States)

    Petchsang, S.; Phung-on, I.; Poopat, B.

    2016-12-01

    Accelerated creep rupture tests were performed on T22/T91 dissimilar metal joints to determine the fracture location and rupture time of different weldments. Four configurations of deposited filler metal were tested using gas tungsten arc welding to estimate the service life for Cr-Mo steel dissimilar joints at elevated temperatures in power plants. Results indicated that failure in all configurations occurred in the tempered original microstructure and tempered austenite transformation products (martensite or bainite structure) as type IV cracking at the intercritical area of the heat-affected zone (ICHAZ) for both T22 and T91 sides rather than as a consequence of the different filler metals. Creep damage occurred with the formation of precipitations and microvoids. The correlation between applied stress and the Larson-Miller parameter (PLM) was determined to predict the service life of each material configuration. Calculated time-to-failure based on the PLM and test results for both temperature and applied stress parameters gave a reasonable fit. The dissimilar joints exhibited lower creep rupture compared to the base material indicating creep degradation of the weldment.

  20. Fault creep and strain partitioning in Trinidad-Tobago: Geodetic measurements, models, and origin of creep

    Science.gov (United States)

    Geirsson, Halldór; Weber, John; La Femina, Peter; Latchman, Joan L.; Robertson, Richard; Higgins, Machel; Miller, Keith; Churches, Chris; Shaw, Kenton

    2017-04-01

    We studied active faults in Trinidad and Tobago in the Caribbean-South American (CA-SA) transform plate boundary zone using episodic GPS (eGPS) data from 19 sites and continuous GPS (cGPS) data from 8 sites, then modeling these data using a series of simple screw dislocation models. Our best-fit model for interseismic fault slip requires: 12-15 mm/yr of right-lateral movement and very shallow locking (0.2 ± 0.2 km; essentially creep) across the Central Range Fault (CRF); 3.4 +0.3/-0.2 mm/yr across the Soldado Fault in south Trinidad, and 3.5 +0.3/-0.2 mm/yr of dextral shear on fault(s) between Trinidad and Tobago. The upper-crustal faults in Trinidad show very little seismicity (1954-current from local network) and do not appear to have generated significant historic earthquakes. However, paleoseismic studies indicate that the CRF ruptured between 2710 and 500 yr. B.P. and thus it was recently capable of storing elastic strain. Together, these data suggest spatial and/or temporal fault segmentation on the CRF. The CRF marks a physical boundary between rocks associated with thermogenically generated petroleum and overpressured fluids in south and central Trinidad, from rocks containing only biogenic gas to the north, and a long string of active mud volcanoes align with the trace of the Soldado Fault along Trinidad's south coast. Fluid (oil and gas) overpressure may thus cause the CRF fault creep that we observe and the lack of seismicity, as an alternative or addition to weak mineral phases on the fault.

  1. On High-Temperature Materials: A Case on Creep and Oxidation of a Fully Austenitic Heat-Resistant Superalloy Stainless Steel Sheet

    Directory of Open Access Journals (Sweden)

    A. Kanni Raj

    2013-01-01

    Full Text Available The creep behavior of AISI 310S stainless steel taken from SAIL’s Salem stainless steel plant has been investigated by constant load tensile creep test at the temperatures of 973, 1023, and 1073 K and loads of 66.6, 74.8, 86.6, and 94.8 MPa. It exhibits steady-state creep behavior in most test conditions. The double logarithm plot of rupture life and applied stress yielded straight lines at all the three test temperatures indicating that power-law creep due to dislocation climb is the operating mechanism of creep deformation. Linear relationship was obtained for plots of logarithm of rupture life against inverse temperature obeying Arrhenius type of temperature dependence with activation energy of 340 kJ/mol. The stress-rupture data yielded a master curve of Larson-Miller parameter. The plot of Monkman-Grant relationship is typical indicating that rupture is controlled by growth of grain boundary cavities. The metallographic examination of crept samples revealed formation of grain boundary voids and cracks leading to intergranular creep fracture. Deformation twins and carbide precipitates were also observed. Oxidation tests were also carried out isothermally at 973 K, 1023 K, and 1073 K in dry air. The plots of mass gain versus square root time were linear at all the three test temperatures obeying parabolic kinetics of oxidation. It was found that scales are well adherent to the substrate. The plot of parabolic rate constant and inverse temperature was linear giving an activation energy value of 210 kJ/mol. The metallographic examination of an oxidized sample reveals duplex types of scales. Finally, rupture properties are compared with that of AISI 600 iron-based superalloy and oxidation weight gain analysis with surface nanocrystalline AISI 310S stainless steel to analyze quantitatively its behavior.

  2. Thermal creep properties of Ti-stabilized DIN 1.4970 (15-15Ti) austenitic stainless steel pressurized cladding tubes

    Science.gov (United States)

    Cautaerts, Niels; Delville, Rémi; Dietz, Wolfgang; Verwerft, Marc

    2017-09-01

    This paper presents a large database of thermal creep data from pressurized unirradiated DIN 1.4970 Ti-stabilized austenitic stainless steel (i.e. EN 1515CrNiMoTiB or ;15-15Ti;) cladding tubes from more than 1000 bi-axial creep tests conducted during the fast reactor R&D program of the DeBeNe (Deutschland-Belgium-Netherlands) consortium between the 1960's to the late 1980's. The data comprises creep rate and time-to-rupture between 600 and 750 °C and a large range of stresses. The data spans tests on material from around 70 different heats and 30 different melts. Around one fourth of the data was obtained from cold worked material, the rest was obtained on cold worked + aged (800 °C, 2 h) material. The data are graphically presented in log-log graphs. The creep rate data is fit with a sinh correlation, the time to rupture data is fit with a modified exponential function through the Larson-Miller parameter. Local equivalent parameters to Norton's law are calculated and compared to literature values for these types of steels and related to possible creep mechanisms. Some time to rupture data above 950 °C is compared to literature dynamic recrystallization data. Time to rupture data between 600 and 750 °C is also compared to literature data from 316 steel. Time to rupture was correlated directly to creep rate with the Monkman-Grant relationship at different temperatures.

  3. Enhancement in creep resistance of Ti–6Al–4V alloy due to boron addition

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Gaurav [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Satyanarayana, D.V.V. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Pederson, Robert [Research and Technology Centre, GKN Aerospace Engine Systems, S-46181 Trollhättan (Sweden); Division of Materials Science, Luleä University of Technology, S-97187 Luleä (Sweden); Datta, Ranjan [International Centre for Materials Science, JNCASR, Jakkur PO, Bangalore 560064 (India); Ramamurty, Upadrasta, E-mail: ramu@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore 560012 (India); Centre of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-03-01

    The addition of B, up to about 0.1 wt%, to Ti–6Al–4V (Ti64) reduces its as-cast grain and colony sizes by an order of magnitude. In this paper, the creep resistance of this alloy modified with 0.06 and 0.11 wt% B additions was investigated in the temperature range of 475–550 °C and compared with that of the base alloy. Conventional dead-weight creep tests as well as stress relaxation tests were employed for this purpose. Experimental results show that the B addition enhances both elevated temperature strength and creep properties of Ti64, especially at the lower end of the temperatures investigated. The steady state creep rate in the alloy with 0.11 wt% B was found to be an order of magnitude lower than that in the base alloy, and both the strain at failure as well as the time for rupture increases with the B content. These marked improvements in the creep resistance due to B addition to Ti64 were attributed primarily to the increased number of inter-phase interfaces – a direct consequence of the microstructural refinement that occurs with the B addition – that provide resistance to dislocation motion.

  4. Effect of HIP Combined with RHT Process on Creep Damage of DZ125 Superalloy

    Directory of Open Access Journals (Sweden)

    WANG Tian-you

    2017-02-01

    Full Text Available Four different processes of hot isostatic pressing (HIP combined with rejuvenation heat treatments (RHT were adopted to reveal the microstructural evolution of creep damaged DZ125 specimens, finally the mechanical properties were evaluated.The results show that both γ' precipitate degeneration and creep cavities for the creep damaged DZ125 superalloy are found after the pre-endurance damage test.However, the carbided compositions from MC type to M23C6 type or M6C type has not been observed for DZ125.In addition, it is found that the HIP temperature play a dominant role in the cavity healing process for the damaged specimens. The concentrically oriented γ' rafting structure and the incipient melting are observed at 1200℃ and 1250℃ respectively.Meanwhile, it is found that the appropriate HIP schedule adopted can effectively avoid the internal recrystallization for the directionally solidified nickel-based superalloy DZ125. The appropriate HIP schedule combined with RHT process can successfully restore the microstructure induced by creep damage and recover the degraded micro-hardness to the original one, in addition improve the creep rupture life.

  5. Creep Resistance of VM12 Steel

    Directory of Open Access Journals (Sweden)

    Zieliński A.

    2016-09-01

    Full Text Available This article presents selected material characteristics of VM12 steel used for elements of boilers with super- and ultra-critical steam parameters. In particular, abridged and long-term creep tests with and without elongation measurement during testing and investigations of microstructural changes due to long-term impact of temperature and stress were carried out. The practical aspect of the use of creep test results in forecasting the durability of materials operating under creep conditions was presented. The characteristics of steels with regard to creep tests developed in this paper are used in assessment of changes in functional properties of the material of elements operating under creep conditions.

  6. Vegetative tillering in creeping bentgrass

    NARCIS (Netherlands)

    Cattani, D.J.

    2000-01-01

    Growth and development of creeping bentgrass ( Agrostis stolonifera L.) under non-competitive and competitive conditions were studied.Growth chamber experiments under non-competitive conditions with high and low tiller producing bentgrass populations produced plants with differing tiller appearance

  7. Vegetative tillering in creeping bentgrass

    NARCIS (Netherlands)

    Cattani, D.J.

    2000-01-01

    Growth and development of creeping bentgrass ( Agrostis stolonifera L.) under non-competitive and competitive conditions were studied.

    Growth chamber experiments under non-competitive conditions with high and low tiller producing bentgrass populations

  8. Creep at very low rates

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2002-02-01

    Full Text Available The creep rate in a land-based power station must be less than 10(-11) s(-1). At these low rates of deformation the transport of matter occurs by the migration of vacancies rather than by the glide of dislocations. A quantitative understanding...

  9. Impression creep technique-An overview

    Energy Technology Data Exchange (ETDEWEB)

    Sastry, D.H. [Department of Metallurgy, Indian Institute of Science, Bangalore (India)]. E-mail: dhsastry@hotmail.com

    2005-11-15

    Impression creep technique is a modified indentation creep test wherein the conical or ball indenter is replaced by a cylindrical, flat bottomed punch. The usefulness of this technique, pioneered by Prof. Li, is illustrated by application to a variety of problems in this laboratory. High temperature creep behavior of a number of metals and alloys, particularly estimation of the thermal activation parameters aiding the identification of the rate controlling mechanisms of creep, has been investigated. The technique has also been exploited to assess the 'single crystal' creep behavior vis a vis that of a polycrystalline sample. Utilizing the impression creep test, the creep behavior of individual zones in steel weldments has been examined. The simplicity and the utility of the impression creep test have been further demonstrated by its application to the study of superplastic behavior in alloys. This paper presents a cross section of the results obtained in the above investigations. It is concluded that the impression creep test technique is capable of yielding much of the information that can be obtained from tensile creep testing. Furthermore, it can provide data which are either impossible or extremely difficult to obtain with conventional creep testing.

  10. Effect of tempering temperature on the stress rupture properties of Grade 92 steel

    Energy Technology Data Exchange (ETDEWEB)

    Maddi, Lakshmiprasad, E-mail: prasadmlp@gmail.com [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010 (India); Ballal, A.R.; Peshwe, D.R.; Paretkar, R.K. [Department of Metallurgical and Materials Engineering, Visvesvaraya National Institute of Technology, Nagpur 440 010 (India); Laha, K.; Mathew, M.D. [Mechanical Metallurgy Division, Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102 (India)

    2015-07-15

    P92 steel is used in normalized and tempered condition for optimal creep properties. Effect of varying tempering temperatures in the range of 740–780 °C on the stress rupture properties has been investigated in this study. High dislocation density and fine laths resulted in high rate of microstructural evolution in 740 °C tempering case, hence the steep slope of rupture curve was observed as compared to higher tempering temperatures. Quantification of lath width and precipitate size under Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) revealed increase in lath width and precipitate coarsening with tempering temperature and exposure time. Increase in lath width was more pronounced in 740 °C tempering case. The results were supported by the damage parameter (λ) and hardness measurements. Variation in fractographic features was associated more with rupture time, for a particular tempering temperature. Coarser precipitates were responsible for cavity initiation, inducing some brittle fracture at higher rupture times.

  11. Rupture, waves and earthquakes

    Science.gov (United States)

    UENISHI, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but “extraordinary” phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable. PMID:28077808

  12. Rupture, waves and earthquakes.

    Science.gov (United States)

    Uenishi, Koji

    2017-01-01

    Normally, an earthquake is considered as a phenomenon of wave energy radiation by rupture (fracture) of solid Earth. However, the physics of dynamic process around seismic sources, which may play a crucial role in the occurrence of earthquakes and generation of strong waves, has not been fully understood yet. Instead, much of former investigation in seismology evaluated earthquake characteristics in terms of kinematics that does not directly treat such dynamic aspects and usually excludes the influence of high-frequency wave components over 1 Hz. There are countless valuable research outcomes obtained through this kinematics-based approach, but "extraordinary" phenomena that are difficult to be explained by this conventional description have been found, for instance, on the occasion of the 1995 Hyogo-ken Nanbu, Japan, earthquake, and more detailed study on rupture and wave dynamics, namely, possible mechanical characteristics of (1) rupture development around seismic sources, (2) earthquake-induced structural failures and (3) wave interaction that connects rupture (1) and failures (2), would be indispensable.

  13. Complete Achilles tendon ruptures.

    Science.gov (United States)

    Landvater, S J; Renström, P A

    1992-10-01

    Achilles tendon ruptures can be treated nonsurgically in the nonathletic or low-end recreational athletic patient, particularly those more than 50 years of age, provided the treating physician does not delay in the diagnosis and treatment (preferably less than 48 hrs and possibly less than 1 week). The patient should be advised of the higher incidence of re-rupture of the tendon when treated nonsurgically. Surgical treatment is recommended for patients who are young and athletic. This is particularly true because the major criticism of surgical treatment has been the complication rate, which has decreased to a low level and to a mild degree, usually not significantly affecting the repair over time. Surgical treatment in these individuals seems to be superior not only in regard to re-rupture but also in assuring the correct apposition of the tendon ends and in placing the necessary tension on the tendon to secure appropriate orientation of the collagen fibers. This in turn allows them to regain full strength, power, endurance, and an early return to sports. Surgery is also recommended for late diagnosed ruptures where there is significant lengthening of the tendon. Surgical technique should involve a medial incision to avoid the sural nerve, absorbable suture, and augmentation with fascia or tendon where there is a gap or late rupture. Postoperatively, the immobilization should be 7 to 10 days in a splint. A walking boot with early motion in plantar flexion or a short leg cast with the tendon under slight tension should thereafter be used for 4 to 5 weeks. An early and well-supervised rehabilitation program should be initiated to restore the patient to the preinjury activity level.

  14. Rupture of the plantar fascia.

    Science.gov (United States)

    Pai, V S

    1996-01-01

    Rupture of the plantar fascia in athletes engaged in sports that require running and jumping has been reported. However, spontaneous degenerative rupture of the plantar fascia is not well documented in the literature. This paper reports a patient with degenerative rupture of the plantar fascia.

  15. Reduced-activation steels: Future development for improved creep strength

    Science.gov (United States)

    Klueh, R. L.

    2008-08-01

    Reduced-activation steels for fusion applications were developed in the 1980s to replace the elevated-temperature commercial steels first considered. The new steels were patterned after the commercial steels, with the objective that the new steels have yield stress and ultimate tensile strength and impact toughness in a Charpy test comparable to or better than the steels they replaced. That objective was achieved in reduced-activation steels developed in Japan, Europe, and the United States. Although tensile and impact toughness of the reduced-activation steels exceed those of the commercial steels they were patterned after, their creep-rupture properties are inferior to some commercial steels they replaced. They are even more inferior to commercial steels developed since the 1980s. In this paper, compositional differences between reduced-activation steels and new commercial steels are examined, and compositions are proposed for development of new-and-improved reduced-activation steels.

  16. Creep-Fatigue Failure Diagnosis

    Directory of Open Access Journals (Sweden)

    Stuart Holdsworth

    2015-11-01

    Full Text Available Failure diagnosis invariably involves consideration of both associated material condition and the results of a mechanical analysis of prior operating history. This Review focuses on these aspects with particular reference to creep-fatigue failure diagnosis. Creep-fatigue cracking can be due to a spectrum of loading conditions ranging from pure cyclic to mainly steady loading with infrequent off-load transients. These require a range of mechanical analysis approaches, a number of which are reviewed. The microstructural information revealing material condition can vary with alloy class. In practice, the detail of the consequent cracking mechanism(s can be camouflaged by oxidation at high temperatures, although the presence of oxide on fracture surfaces can be used to date events leading to failure. Routine laboratory specimen post-test examination is strongly recommended to characterise the detail of deformation and damage accumulation under known and well-controlled loading conditions to improve the effectiveness and efficiency of failure diagnosis.

  17. Creep of Structural Nuclear Composites

    Energy Technology Data Exchange (ETDEWEB)

    Will Windes; R.W. Lloyd

    2005-09-01

    A research program has been established to investigate fiber reinforced ceramic composites to be used as control rod components within a Very High Temperature Reactor (VHTR) design. Two candidate systems have been identified, carbon fiber reinforced carbon (Cf/C) and silicon carbide fiber reinforced silicon carbide (SiCf/SiC) composites. One of the primary degradation mechanisms anticipated for these core components is high temperature thermal and irradiation enhanced creep. As a consequence, high temperature test equipment, testing methodologies, and test samples for very high temperature (up to 1600º C) tensile strength and long duration creep studies have been established. Actual testing of both tubular and flat, "dog-bone"-shaped tensile composite specimens will begin next year. Since there is no precedence for using ceramic composites within a nuclear reactor, ASTM standard test procedures are currently being established from these high temperature mechanical tests.

  18. Creep of A508/533 Pressure Vessel Steel

    Energy Technology Data Exchange (ETDEWEB)

    Richard Wright

    2014-08-01

    allowed by Code Case N-499-2 (now incorporated as an appendix to Section III Division 5 of the Code). This Code Case was developed with a rather sparse data set and focused primarily on rolled plate material (A533 specification). Confirmatory tests of creep behavior of both A508 and A533 are described here that are designed to extend the database in order to build higher confidence in ensuring the structural integrity of the VHTR RPV during off-normal conditions. A number of creep-rupture tests were carried out at temperatures above the 371°C (700°F) Code limit; longer term tests designed to evaluate minimum creep behavior are ongoing. A limited amount of rupture testing was also carried out on welded material. All of the rupture data from the current experiments is compared to historical values from the testing carried out to develop Code Case N-499-2. It is shown that the A508/533 basemetal tested here fits well with the rupture behavior reported from the historical testing. The presence of weldments significantly reduces the time to rupture. The primary purpose of this report is to summarize and record the experimental results in a single document.

  19. Creep Strength of Discontinuous Fibre Composites

    DEFF Research Database (Denmark)

    Pedersen, Ole Bøcker

    1974-01-01

    relation between stress and strain rate. Expressions for the interface stress, the creep velocity profile adjacent to the fibres and the creep strength of the composite are derived. Previous results for the creep strength, sc = aVfs0 ( \\frac[( Î )\\dot] [( Î )\\dot] 0 )1/nr1 + 1/n c=Vf001n1+1n in which[( Î...... )\\dot] is the composite creep rate,V f is the fibre volume fraction,sgr 0,epsi 0 andn are the constants in the matrix creep law. The creep strength coefficient agr is found to be very weakly dependent onV f and practically independent ofn whenn is greater than about 6....

  20. Flexural creep behaviour of jute polypropylene composites

    Science.gov (United States)

    Chandekar, Harichandra; Chaudhari, Vikas

    2016-09-01

    Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.

  1. Creep of parylene-C film

    KAUST Repository

    Lin, Jeffrey Chun-Hui

    2011-06-01

    The glass transition temperature of as-deposited parylene-C is first measured to be 50°C with a ramping-temperature-dependent modulus experiment. The creep behavior of parylene-C film in the primary and secondary creep region is then investigated below and above this glass transition temperature using a dynamic mechanical analysis (DMA) machine Q800 from TA instruments at 8 different temperatures: 10, 25, 40, 60, 80, 100, 120 and 150°C. The Burger\\'s model, which is the combined Maxwell model and Kelvin-Voigt model, fits well with our primary and secondary creep data. Accordingly, the results show that there\\'s little or no creep below the glass transition temperature. Above the glass transition temperature, the primary creep and creep rate increases with the temperature, with a retardation time constant around 6 minutes. © 2011 IEEE.

  2. Room temperature creep in metals and alloys

    Energy Technology Data Exchange (ETDEWEB)

    Deibler, Lisa Anne [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States). Materials Characterization and Performance

    2014-09-01

    Time dependent deformation in the form of creep and stress relaxation is not often considered a factor when designing structural alloy parts for use at room temperature. However, creep and stress relaxation do occur at room temperature (0.09-0.21 Tm for alloys in this report) in structural alloys. This report will summarize the available literature on room temperature creep, present creep data collected on various structural alloys, and finally compare the acquired data to equations used in the literature to model creep behavior. Based on evidence from the literature and fitting of various equations, the mechanism which causes room temperature creep is found to include dislocation generation as well as exhaustion.

  3. Recent advances in creep-resistant steels for power plant applications

    Indian Academy of Sciences (India)

    P J Ennis; A Czyrska-Filemonowicz

    2003-06-01

    The higher steam temperatures and pressures required to achieve increase in thermal efficiency of fossil fuel-fired power-generation plants necessitate the use of steels with improved creep rupture strength. The 9% chromium steels developed during the last three decades are of great interest in such applications. In this report, the development of steels P91, P92 and E911 is described. It is shown that the martensitic transformation in these three steels produces high dislocation density that confers significant transient hardening. However, the dislocation density decreases during exposure at service temperatures due to recovery effects and for long-term creep strength the sub-grain structure produced under different conditions is most important. The changes in the microstructure mean that great care is needed in the extrapolation of experimental data to obtain design values. Only data from tests with rupture times above 3,000 h provide reasonable extrapolated values. It is further shown that for the 9% chromium steels, oxidation resistance in steam is not sufficiently high for their use as thin-walled components at temperatures of 600°C and above. The potential for the development of steels of higher chromium contents (above 11%) to give an improvement in steam oxidation resistance whilst maintaining creep resistance to the 9% chromium steels is discussed.

  4. A Creep Model for High Density Snow

    Science.gov (United States)

    2017-04-01

    Director of ERDC-CRREL was Dr. Lance Hansen, and the Director was Dr. Robert E. Davis. COL Bryan S. Green was Commander of ERDC, and Dr. David W...Station, Green - land, and that will be founded on a compacted snow surface. The defor- mation of snow under a constant load (creep deformation, or...developed in this study are enough similar to the generalized creep model used in the ABAQUS finite element software that the ABAQUS creep model was used

  5. Analogy betwen dislocation creep and relativistic cosmology

    OpenAIRE

    J.A. Montemayor-Aldrete; J.D. Muñoz-Andrade; Mendoza-Allende, A.; Montemayor-Varela, A.

    2005-01-01

    A formal, physical analogy between plastic deformation, mainly dislocation creep, and Relativistic Cosmology is presented. The physical analogy between eight expressions for dislocation creep and Relativistic Cosmology have been obtained. By comparing the mathematical expressions and by using a physical analysis, two new equations have been obtained for dislocation creep. Also, four new expressions have been obtained for Relativistic Cosmology. From these four new equations, one may determine...

  6. Engineering tools for robust creep modelling

    OpenAIRE

    Holmström, Stefan

    2010-01-01

    High temperature creep is often dealt with simplified models to assess and predict the future behavior of materials and components. Also, for most applications the creep properties of interest require costly long-term testing that limits the available data to support design and life assessment. Such test data sets are even smaller for welded joints that are often the weakest links of structures. It is of considerable interest to be able to reliably predict and extrapolate long term creep beha...

  7. Creep Resistance of VM12 Steel

    OpenAIRE

    Zieliński A.; Golański G.; Dobrzański J.; Sroka M.

    2016-01-01

    This article presents selected material characteristics of VM12 steel used for elements of boilers with super- and ultra-critical steam parameters. In particular, abridged and long-term creep tests with and without elongation measurement during testing and investigations of microstructural changes due to long-term impact of temperature and stress were carried out. The practical aspect of the use of creep test results in forecasting the durability of materials operating under creep conditions ...

  8. Rupture of Renal Transplant

    Directory of Open Access Journals (Sweden)

    Shona Baker

    2015-01-01

    Full Text Available Background. Rupture of renal allograft is a rare and serious complication of transplantation that is usually attributed to acute rejection, acute tubular necrosis, or renal vein thrombosis. Case Presentation. LD, a 26-year-old male with established renal failure, underwent deceased donor transplantation using kidney from a 50-year-old donor with acute kidney injury (Cr 430 mmol/L. LD had a stormy posttransplant recovery and required exploration immediately for significant bleeding. On day three after transplant, he developed pain/graft swelling and another significant haemorrhage with cardiovascular compromise which did not respond to aggressive resuscitation. At reexploration, the renal allograft was found to have a longitudinal rupture and was removed. Histology showed features of type IIa Banff 97 acute vascular rejection, moderate arteriosclerosis, and acute tubular necrosis. Conclusion. Possible ways of avoiding allograft rupture include use of well-matched, good quality kidneys; reducing or managing risk factors that would predispose to delayed graft function; ensuring a technically satisfactory transplant procedure with short cold and warm ischemia times; and avoiding large donor-recipient age gradients.

  9. ARTHROSCOPIC CORRECTION OF THE INJURIES OF THE COMPLEX «TENDON OF THE BICEPS LONG HEAD - THE ARTICULAR LIP» IN TREATMENT OF PATIENTS WITH FULL-LAYER RUPTURES OF THE ROTATOR CUFF

    Directory of Open Access Journals (Sweden)

    S. Y. Dokolin

    2013-01-01

    Full Text Available Damage of the long head of the biceps at the place of attachment to the articular tubercle supraglenoidal lip of shoulder, to the entrance and throughout intertubercle furrows are common causes of pain and dysfunction of the shoulder joint. At the same clinical manifestations of the morphology of such lesions may be different. The current literature discusses various options of surgical correction of the biceps injury. Variety of methods of surgical treatment and the lack of consensus in support of their application in different patients in different types of injuries were the basis for the present study. A prospective analysis of the functional results of surgical treatment of the 34 - year’s patients with associated rotator cuff (SSP+ISP+SSC+ and the tendon of the biceps muscle in age from 34 to 75 years. Options for surgical correction of the damaged part of the biceps were: biceps tenotomy, biceps tenotomy with intraarticular tenodez of the shoulder to the head before entering intertubercle furrow, biceps tenotomy and extraarticular subpectorialtenodez to the proximal humerus is intertubercle interferrent screw groove, as well as its attachment to the tendon suture large pectoral muscle. Choice of surgical approach depended on the patient's age, level of daily physical activity, morphology and localization of lesions. The best results were obtained when the extra-articular subpectorialtenodez of long head of the biceps to the proximal humerus interferrent screw and suture fixation to the pectoralis major muscle, the average follow-up was 16,6 ± 4,7 months.

  10. Creep and residual mechanical properties of cast superalloys and oxide dispersion strengthened alloys

    Science.gov (United States)

    Whittenberger, J. D.

    1981-01-01

    Tensile, stress-rupture, creep, and residual tensile properties after creep testing were determined for two typical cast superalloys and four advanced oxide dispersion strengthened (ODS) alloys. The superalloys examined included the nickel-base alloy B-1900 and the cobalt-base alloy MAR-M509. The nickel-base ODS MA-757 (Ni-16CR-4Al-0.6Y2O3 and the iron-base ODS alloy MA-956 (Fe-20Cr-5Al-0.8Y2O3) were extensively studied, while limited testing was conducted on the ODS nickel-base alloys STCA (Ni-16Cr-4.5Al-2Y2O3) with a without Ta and YD-NiCrAl (Ni-16Cr-5Al-2Y2O3). Elevated temperature testing was conducted from 114 to 1477 K except for STCA and YD-NiCrAl alloys, which were only tested at 1366 K. The residual tensile properties of B-1900 and MAR-M509 are not reduced by prior creep testing (strains at least up to 1 percent), while the room temperature tensile properties of ODS nickel-base alloys can be reduced by small amounts of prior creep strain (less than 0.5 percent). The iron-base ODS alloy MA-956 does not appear to be susceptible to creep degradation at least up to strains of about 0.25 percent. However, MA-956 exhibits unusual creep behavior which apparently involves crack nucleation and growth.

  11. Evaluation of creep properties of sliding zone soil in a slow moving landslide

    Science.gov (United States)

    Wang, Shun; Xia, Dong Sheng; Wang, Jing e.; Wu, Wei; Xiang, Wei

    2015-04-01

    Slow-moving landslides make up a great part of geohazards in the Three Gorges reservoir (TGR) in China. Most of them move at speed of several centimeters per year (or even less) and show evidence of episodic accelerations, which corresponds to seasonal rainfall and 30 m of reservoir water level fluctuation (145 m to 175 m on elevation). Various methods are applied to study the structure and kinematic features of these landslides, in particular, a 908m-long in-situ tunnel beneath the Huangtupo landslide, which is volumetrically the largest and most complex landslide in TGR region, was constructed in 2012 and became the world-first 3d, multi-filed landslide monitoring system. In-situ monitoring devices on the landslide and extensometers within the landslide were installed. The structure and kinematic characteristics were analyzed according to the geological logging of the tunnel excavation and monitor data. The central part of the landslide is creeping at a slow, relatively stable rate of about 20mm/year, the deep displacement, however, presented different stages of movements. To clarify the mechanism of this kind of movement, several intact samples were collected from the rupture zone for creep test, and a residual state ring shear creep test with various shear force was conducted. The results of tests at different shear forces show that the displacement rate is positively dependent on the shear force, and a threshold value for creep was obtained. The displacement rate was dramatically increased at the threshold value which is a little larger than the residual shear strength. In addition, the displacement rate at the threshold value is decreased with increasing the consolidation duration after the shearing ceased. The long-term displacement presents acceleration stage and deceleration stage, which showed a similar tendency to the extensometer results. This means this creep test can partially simulate the creep movement of the landslide and help for the prediction of

  12. Creep Behavior of Passive Bovine Extraocular Muscle

    OpenAIRE

    Lawrence Yoo; Hansang Kim; Andrew Shin; Vijay Gupta; Demer, Joseph L.

    2011-01-01

    This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed...

  13. Creep characterization of solder bumps using nanoindentation

    Science.gov (United States)

    Du, Yingjie; Liu, Xiao Hu; Fu, Boshen; Shaw, Thomas M.; Lu, Minhua; Wassick, Thomas A.; Bonilla, Griselda; Lu, Hongbing

    2017-08-01

    Current nanoindentation techniques for the measurement of creep properties are applicable to viscoplastic materials with negligible elastic deformations. A new technique for characterization of creep behavior is needed for situations where the elastic deformation plays a significant role. In this paper, the effect of elastic deformation on the determination of creep parameters using nanoindentation with a self-similar nanoindenter tip is evaluated using finite element analysis (FEA). It is found that the creep exponent measured from nanoindentation without taking into account of the contribution of elastic deformation tends to be higher than the actual value. An effective correction method is developed to consider the elastic deformation in the calculation of creep parameters. FEA shows that this method provides accurate creep exponent. The creep parameters, namely the creep exponent and activation energy, were measured for three types of reflowed solder bumps using the nanoindentation method. The measured parameters were verified using FEA. The results show that the new correction approach allows extraction of creep parameters with precision from nanoindentation data.

  14. Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment

    Science.gov (United States)

    Liu, W. B.; Zhang, C.; Xia, Z. X.; Yang, Z. G.

    2014-12-01

    In the present study, we report an enhanced high-temperature creep resistance in reduced activation ferrite/martensite (RAFM) steels, by introducing nitrogen (0.035 wt%, M3 steel) and employing a novel intermediate heat treatment I-Q-T (intermediate treatment, quenching and tempering). In comparison with all the control groups, the uniaxial tests of the I-Q-T treated M3 steel showed significant increase in rupture time and decrease in elongation. The microstructures of the samples were further characterized to elucidate the origin of the enhanced creep resistance. It is found that, by introducing nitrogen, the primary TaC particles were refined; by employing the I-Q-T heat treatment, the dispersed fine secondary MX precipitates, as well as the lath subgrains containing high-density dislocations, were increased: all are responsible for the improved creep resistance.

  15. Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment

    Energy Technology Data Exchange (ETDEWEB)

    Liu, W.B. [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Zhang, C., E-mail: chizhang@tsinghua.edu.cn [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Xia, Z.X. [Shagang School of Iron and Steel, Soochow University, Suzhou 215021 (China); Yang, Z.G. [Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China)

    2014-12-15

    In the present study, we report an enhanced high-temperature creep resistance in reduced activation ferrite/martensite (RAFM) steels, by introducing nitrogen (0.035 wt%, M3 steel) and employing a novel intermediate heat treatment I–Q–T (intermediate treatment, quenching and tempering). In comparison with all the control groups, the uniaxial tests of the I–Q–T treated M3 steel showed significant increase in rupture time and decrease in elongation. The microstructures of the samples were further characterized to elucidate the origin of the enhanced creep resistance. It is found that, by introducing nitrogen, the primary TaC particles were refined; by employing the I–Q–T heat treatment, the dispersed fine secondary MX precipitates, as well as the lath subgrains containing high-density dislocations, were increased: all are responsible for the improved creep resistance.

  16. CREEP AND CREEP-FATIGUE OF ALLOY 617 WELDMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Jill; Carroll, Laura; Wright, Richard

    2014-08-01

    The Very High Temperature Reactor (VHTR) Intermediate Heat Exchanger (IHX) may be joined to piping or other components by welding. Creep-fatigue deformation is expected to be a predominant failure mechanism of the IHX1 and thus weldments used in its fabrication will experience varying cyclic stresses interrupted by periods of elevated temperature deformation. These periods of elevated temperature deformation are greatly influenced by a materials’ creep behavior. The nickel-base solid solution strengthened alloy, Alloy 617, is the primary material candidate for a VHTR-type IHX, and it is expected that Alloy 617 filler metal will be used for welds. Alloy 617 is not yet been integrated into Section III of the Boiler and Pressure Vessel Code, however, nuclear component design with Alloy 617 requires ASME (American Society of Mechanical Engineers) Code qualification. The Code will dictate design for welded construction through significant performance reductions. Despite the similar compositions of the weldment and base material, significantly different microstructures and mechanical properties are inevitable. Experience of nickel alloy welds in structural applications suggests that most high temperature failures occur at the weldments or in the heat-affected zone. Reliably guarding against this type of failure is particularly challenging at high temperatures due to the variations in the inelastic response of the constituent parts of the weldment (i.e., weld metal, heat-affected zone, and base metal) [ref]. This work focuses on the creep-fatigue behavior of nickel-based weldments, a need noted during the development of the draft Alloy 617 ASME Code Case. An understanding of Alloy 617 weldments when subjected to this important deformation mode will enable determination of the appropriate design parameters associated with their use. Specifically, the three main areas emphasized are the performance reduction due to a weld discontinuity in terms of the reduced number of

  17. Creep Behavior and Microstructure Evolution of P92 Steel During Creep Test at 873 K

    Science.gov (United States)

    Zhang, Zuogui; Shi, Kexian; Wang, Yanfeng; Lin, Fusheng

    In this paper, the creep behavior of P92 steel has been analyzed by creep strain and creep rate variations after the creep tests were stopped at the steady-state creep stage. The microstructure evolution of the P92 steel at the steady-state stage during creep test at 873 K under different load stresses of 125-160 MPa were studied by using a scanning electron microscopy (SEM) and a transmission electron microscopy (TEM). The grain boundary characteristics in the P92 steels during creep test were investigated by an electron backscattered diffraction (EBSD) technique. Experimental results showed that with increasing load stresses from 125 MPa to 160 MPa, creep rates of the P92 steels increased in Norton's power law relation and creep times to the steady-state creep stage decreased. With decreasing load stresses and increasing creep times, martensite lath microstructure occurred recovery and the dislocation densities in ferritic matrix decreased. M23C6 particles located in prior austenite grain, sub-grain and lath boundaries showed slight coarsening. Some Laves phase particles precipitated in the grain boundaries for the P92 specimens after creep test under a load stress of 125 MPa. Comparing to as-tempered P92 steel, the volume fractions of LAGBs are lower and the volume fraction of HAGBs are higher with decreasing load stresses and increasing creep times. It is considered that understanding on creep behavior and microstructual evolution of the P92 steels during creep test will effectively support life design and assessment of the high temperature metal parts in fossil-fired power plant.

  18. DETERMINATION OF CREEP PROPERTIES OF THERMAL BARRIER COATING(TBC) SYSTEMS FROM THE INDENTATION CREEP TESTING WITH ROUND FLAT INDENTERS

    Institute of Scientific and Technical Information of China (English)

    B. Zhao; B.X. Xu; J. Liu; Z.F. Yue

    2004-01-01

    Indentation creep behavior with cylindrical flat indenters on the thermal barrier coating (TBC) was studied by finite element method (FEM). On the constant applied indentation creep stress, there is a steady creep rate for each case studied for different creep properties of the TBC system. The steady creep depth rate depends on the applied indentation creep stress and size of the indenters as well as the creep properties of the bond coat of the TBC and the substrate. The possibilities to determine the creep properties of a thermal barrier system from indention creep testing were discussed. As an example, with two different size indenters, the creep properties of bond coat of the TBC system can be derived by an inverse FEM method. This study not only provides a numerical method to obtain the creep properties of the TBC system, but also extends the application of indentation creep method with cylindrical flat indenters.

  19. Creep Strength of Dissimilar Welded Joints Using High B-9Cr Steel for Advanced USC Boiler

    Science.gov (United States)

    Tabuchi, Masaaki; Hongo, Hiromichi; Abe, Fujio

    2014-10-01

    The commercialization of a 973 K (700 °C) class pulverized coal power system, advanced ultra-supercritical (A-USC) pressure power generation, is the target of an ongoing research project initiated in Japan in 2008. In the A-USC boiler, Ni or Ni-Fe base alloys are used for high-temperature parts at 923 K to 973 K (650 °C to 700 °C), and advanced high-Cr ferritic steels are planned to be used at temperatures lower than 923 K (650 °C). In the dissimilar welds between Ni base alloys and high-Cr ferritic steels, Type IV failure in the heat-affected zone (HAZ) is a concern. Thus, the high B-9Cr steel developed at the National Institute for Materials Science, which has improved creep strength in weldments, is a candidate material for the Japanese A-USC boiler. In the present study, creep tests were conducted on the dissimilar welded joints between Ni base alloys and high B-9Cr steels. Microstructures and creep damage in the dissimilar welded joints were investigated. In the HAZ of the high B-9Cr steels, fine-grained microstructures were not formed and the grain size of the base metal was retained. Consequently, the creep rupture life of the dissimilar welded joints using high B-9Cr steel was 5 to 10 times longer than that of the conventional 9Cr steel welded joints at 923 K (650 °C).

  20. Creep Behavior of Lead-Free Sn-Ag-Cu + Ni-Ge Solder Alloys

    Science.gov (United States)

    Hidaka, N.; Watanabe, H.; Yoshiba, M.

    2009-05-01

    We developed a new lead-free solder alloy, an Sn-Ag-Cu base to which a small amount of Ni and Ge is added, to improve the mechanical properties of solder alloys. We examined creep deformation in bulk and through-hole (TH) form for two lead-free solder alloys, Sn-3.5Ag-0.5Cu-Ni-Ge and Sn-3.0Ag-0.5Cu, at elevated temperatures, finding that the creep rupture life of the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy was over three times better than that of the Sn-3.0Ag-0.5Cu solder at 398 K. Adding Ni to the solder appears to make microstructural development finer and more uniform. The Ni added to the solder readily combined with Cu to form stable intermetallic compounds of (Cu, Ni)6Sn5 capable of improving the creep behavior of solder alloys. Moreover, microstructural characterization based on transmission electron microscopy analyses observing creep behavior in detail showed that such particles in the Sn-3.5Ag-0.5Cu-Ni-Ge solder alloy prevent dislocation and movement.

  1. Influence of delta ferrite on mechanical and creep properties of steel P92

    Energy Technology Data Exchange (ETDEWEB)

    Mohyla, Petr [VSB - Technical Univ. of Ostrava (Czech Republic). Faculty of Mechanical Engineering; Kubon, Zdenek [Material and Metallurgical Research Ltd., Ostrava (Czech Republic)

    2010-07-01

    This article presents some new results obtained during research of chromium modified steel P92. This steel is considered the best modified 9-12% Cr steel for the construction of modern power plants with ultra-super-critical steam parameters. High creep rupture strength of steel P92 is characterized by its chemical composition and by microstructure as well. Optimal microstructure of steel P92 is ideally composed of homogeneous martensite and fine dispersion of secondary particles. During the research program one P92 heat with an occurrence of about 20% delta ferrite was produced. The article describes the microstructure of the heat in various modes of heat treatment, as well as the results of mechanical properties tests at room temperature and also creep test results. The results are confronted with properties of other heats that have no delta ferrite. The relevance is on the significant difference while comparing of creep test results. The comparison of results brings conclusions, defining influence of delta ferrite on mechanical and creep properties of P92 steel. (orig.)

  2. Creep behaviour of a casting titanium carbide reinforced AlSi12CuNiMg piston alloy at elevated temperatures; Hochtemperaturkriechverhalten der schmelzmetallurgisch hergestellten dispersionsverstaerkten Kolbenlegierung AlSi12CuNiMg

    Energy Technology Data Exchange (ETDEWEB)

    Michel, S.; Scholz, A. [Zentrum fuer Konstruktionswerkstoffe, TU Darmstadt (Germany); Tonn, B. [Institut fuer Metallurgie, TU Clausthal (Germany); Zak, H.

    2012-03-15

    This paper deals with the creep behaviour of the titanium carbide reinforced AlSi12CuNiMg piston alloy at 350 C and its comparison to the conventional AlSi12Cu4Ni2MgTiZr piston alloy. With only 0,02 vol-% TiC reinforcement the creep strength and creep rupture strength of the AlSi12CuNiMg piston alloy are significantly improved and reach the level of the expensive AlSi12Cu4Ni2MgTiZr alloy. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. Accelerated Life Structural Benchmark Testing for a Stirling Convertor Heater Head

    Science.gov (United States)

    Krause, David L.; Kantzos, Pete T.

    2006-01-01

    For proposed long-duration NASA Space Science missions, the Department of Energy, Lockheed Martin, Infinia Corporation, and NASA Glenn Research Center are developing a high-efficiency, 110 W Stirling Radioisotope Generator (SRG110). A structurally significant limit state for the SRG110 heater head component is creep deformation induced at high material temperature and low stress level. Conventional investigations of creep behavior adequately rely on experimental results from uniaxial creep specimens, and a wealth of creep data is available for the Inconel 718 material of construction. However, the specified atypical thin heater head material is fine-grained with a heat treatment that limits precipitate growth, and little creep property data for this microstructure is available in the literature. In addition, the geometry and loading conditions apply a multiaxial stress state on the component, far from the conditions of uniaxial testing. For these reasons, an extensive experimental investigation is ongoing to aid in accurately assessing the durability of the SRG110 heater head. This investigation supplements uniaxial creep testing with pneumatic testing of heater head-like pressure vessels at design temperature with stress levels ranging from approximately the design stress to several times that. This paper presents experimental results, post-test microstructural analyses, and conclusions for four higher-stress, accelerated life tests. Analysts are using these results to calibrate deterministic and probabilistic analytical creep models of the SRG110 heater head.

  4. Influence of weld structure on cross-weld creep behavior in P23 steel

    Energy Technology Data Exchange (ETDEWEB)

    Allen, D.J.; Degnan, C.C. [E.ON Engineering (United Kingdom); Brett, S.J. [RWE npower (United Kingdom); Buchanan, L.W. [Doosan Babcock (United Kingdom)

    2010-07-01

    A thick section pipe weld in low alloy steel P23 has been characterised by cross-weld creep rupture testing at a range of stresses, together with all-weld-metal and parent material testing, under the auspices of the UK High Temperature Power Plant Forum. The results generally show that the weld metal can be weak when tested in the transverse (cross-weld) orientation, and can fail with limited overall ductility by cracking in the zone of refined weld metal beneath the fusion boundary of the superposed weld bead. However, one specimen showed a much superior performance, which could be understood in terms of its locally more creep resistant weld macrostructure. The implications for P23 performance and weld manufacture are discussed. (orig.)

  5. Effects of creep feeding and monensin on reproductive performance and lactation of beef heifers.

    Science.gov (United States)

    Hixon, D L; Fahey, G C; Kesler, D J; Neumann, A L

    1982-09-01

    A 23 factorial arrangement of treatments was utilized to determine the effect of breed, creep feeding and monensin on subsequent reproductive performance and lactation of 32 primiparous heifers. One-half of each breed (Angus and Hereford) group had access to creep feed (2.67 Mcal metabolizable energy/kg) while nursing their dams. Approximately 40 d before breeding through 120 d of lactation, all heifers were fed a suboptimal energy diet and 50% of each breed and creep group received 200 mg monensin/head daily. Estrus was synchronized with a progestogen. Volatile fatty acids (VFA) were determined periodically throughout the monensin-feeding portion of the experiment. Twenty-four hour milk production, percentage butterfat and percentage solids-not-fat were determined at 60 and 120 d postpartum. Weaning weights (adjusted to 205 d and for age of dam) of the original heifers were heavier (P less than .05) for those that were creep fed compared with those not creep fed (219 vs 202 kg). Monensin-supplemented females gained significantly more weight from the initiation of treatment to immediately postcalving and gave birth to heavier calves (P less than .05) even though they received comparable amounts of dietary energy as those that did not receive monensin. The energy stressed, monensin-supplemented first-calf heifers exhibited a shorter postpartum interval (P less than .05) to first estrus than did those that did not receive monensin (55.7 vs 69.1 d, respectively). First-calf heifers that had been creep fed while nursing their dams had a lower (P less than .05) daily milk yield at 120 d post-partum than those that did not have access to creep feed. No detrimental effects were observed due to long-term monensin supplementation.

  6. Making Ice Creep in the Classroom

    Science.gov (United States)

    Prior, David; Vaughan, Matthew; Banjan, Mathilde; Hamish Bowman, M.; Craw, Lisa; Tooley, Lauren; Wongpan, Pat

    2017-04-01

    Understanding the creep of ice has direct application to the role of ice sheet flow in sea level and climate change and to modelling of icy planets and satellites of the outer solar system. Additionally ice creep can be used as an analogue for the high temperature creep of rocks, most particularly quartzites. We adapted technologies developed for ice creep experiments in the research lab, to build some inexpensive ( EU200) rigs to conduct ice creep experiments in an undergraduate (200 and 300 level) class in rock deformation. The objective was to give the students an experience of laboratory rock deformation experiments so that they would understand better what controls the creep rate of ice and rocks. Students worked in eight groups of 5/6 students. Each group had one deformation rig and temperature control system. Each group conducted two experiments over a 2 week period. The results of all 16 experiments were then shared so that all students could analyse the mechanical data and generate a "flow law" for ice. Additionally thin sections were made of each deformed sample so that some microstructural analysis could be incorporated in the data analysis. Students were able to derive a flow law that showed the relationship of creep rate to both stress and temperature. The flow law matches with those from published research. The class did provide a realistic introduction to laboratory rock deformation experiments and helped students' understanding of what controls the creep of rocks.

  7. Significance of primary irradiation creep in graphite

    CSIR Research Space (South Africa)

    Erasmus, C

    2013-05-01

    Full Text Available Traditionally primary irradiation creep is introduced into graphite analysis by applying the appropriate amount of creep strain to the model at the initial time-step. This is valid for graphite components that are subjected to high fast neutron flux...

  8. Creep behavior of passive bovine extraocular muscle.

    Science.gov (United States)

    Yoo, Lawrence; Kim, Hansang; Shin, Andrew; Gupta, Vijay; Demer, Joseph L

    2011-01-01

    This paper characterized bovine extraocular muscles (EOMs) using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV) relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at 1.37 ± 0.03 (standard deviation, SD). The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics.

  9. Creep Behavior of Passive Bovine Extraocular Muscle

    Directory of Open Access Journals (Sweden)

    Lawrence Yoo

    2011-01-01

    Full Text Available This paper characterized bovine extraocular muscles (EOMs using creep, which represents long-term stretching induced by a constant force. After preliminary optimization of testing conditions, 20 fresh EOM samples were subjected to four different loading rates of 1.67, 3.33, 8.33, and 16.67%/s, after which creep was observed for 1,500 s. A published quasilinear viscoelastic (QLV relaxation function was transformed to a creep function that was compared with data. Repeatable creep was observed for each loading rate and was similar among all six anatomical EOMs. The mean creep coefficient after 1,500 seconds for a wide range of initial loading rates was at 1.37±0.03 (standard deviation, SD. The creep function derived from the relaxation-based QLV model agreed with observed creep to within 2.7% following 16.67%/s ramp loading. Measured creep agrees closely with a derived QLV model of EOM relaxation, validating a previous QLV model for characterization of EOM biomechanics.

  10. Irradiation creep of vanadium-base alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Billone, M.C.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States); Matsui, H. [Tohoku Univ. (Japan)

    1998-03-01

    A study of irradiation creep in vanadium-base alloys is underway with experiments in the Advanced Test Reactor (ATR) and the High Flux Isotope Reactor (HFIR) in the United States. Test specimens are thin-wall sealed tubes with internal pressure loading. The results from the initial ATR irradiation at low temperature (200--300 C) to a neutron damage level of 4.7 dpa show creep rates ranging from {approx}0 to 1.2 {times} 10{sup {minus}5}/dpa/MPa for a 500-kg heat of V-4Cr-4Ti alloy. These rates were generally lower than reported from a previous experiment in BR-10. Because both the attained neutron damage levels and the creep strains were low in the present study, however, these creep rates should be regarded as only preliminary. Substantially more testing is required before a data base on irradiation creep of vanadium alloys can be developed and used with confidence.

  11. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2017-01-31

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, copper, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  12. Creep resistant high temperature martensitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Hawk, Jeffrey A.; Jablonski, Paul D.; Cowen, Christopher J.

    2015-11-13

    The disclosure provides a creep resistant alloy having an overall composition comprised of iron, chromium, molybdenum, carbon, manganese, silicon, nickel, vanadium, niobium, nitrogen, tungsten, cobalt, tantalum, boron, and potentially additional elements. In an embodiment, the creep resistant alloy has a molybdenum equivalent Mo(eq) from 1.475 to 1.700 wt. % and a quantity (C+N) from 0.145 to 0.205. The overall composition ameliorates sources of microstructural instability such as coarsening of M.sub.23C.sub.6 carbides and MX precipitates, and mitigates or eliminates Laves and Z-phase formation. A creep resistant martensitic steel may be fabricated by preparing a melt comprised of the overall composition followed by at least austenizing and tempering. The creep resistant alloy exhibits improved high-temperature creep strength in the temperature environment of around 650.degree. C.

  13. Creep behavior of Zr-Nb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Suh, Yong Chan; Kim, Young Suk; Cheong, Yong Mu; Kwon, Sang Chul; Kim, Sung Soo; Choo, Ki Nam [Korea Atomic Energy Research Institute, Taejeon (Korea)

    2000-01-01

    The creep characteristics of Zirconium alloy is affected by several parameters. Out-reactor creep increases both with an increasing amount of Nb, Sn and S contained in alpha-Zr and decreases with the increasing volume of alpha-Zr. Especially, the creep of Zr-2.5Nb alloy depends on the solubility of Nb in alpha-Zr, which is associated with the decomposition of beta-Zr. Since Zr of the hcp structure is strongly anisotropic, it shows the characteristics of texture and results in the anisotropy of creep. Due to the circumferential texture of Zr-2.5%Nb alloy (CANDU Pressure tube), the longitudinal slip is easier than the circumferential one, resulting in the high creep rate. The irradiation creep also increases with increasing neutron fluence. The neutron irradiation increases the strength of the zirconium alloys but decreases their creep strength. In contrast to the out-reactor creep, the irradiation creep is little sensitive to temperature, resulting in the lower activation energy. The most important factor to affect the in-reactor and out-reactor creep of niobium containing alloys seems to be the solution hardening by Nb or Sn which is soluble in alpha-zirconium and the texture as well. Irradiation growth is the mechanism which is caused only by the irradiation. It becomes saturated at lower fluence than the critical fluence but beyond it, shows the break-away growth. The onset of accelerated irradiation growth corresponds with the c-dislocation loop formation, though its mechanism needs better understanding. Generally, the irradiation growth of Zr-Nb alloys increases with an increase in fluence, cold working, dislocation, density and temperature, and with a decrease in the grain size. 141 refs., 59 figs., 10 tabs. (Author)

  14. A numerical approach to predict the long-term creep behaviour and precipitate back-stress evolution of 9-12% chromium steels

    Energy Technology Data Exchange (ETDEWEB)

    Holzer, I.; Cerjak, H. [Graz Univ. of Technology (Austria). Inst. for Materials Science and Welding; Kozeschnik, E. [Vienna Univ. of Technology (Austria). Inst. of Materials Science and Technology; Vienna Univ. of Technology (Austria). Christian Doppler Lab. ' Early Stages of Precipitation'

    2010-07-01

    The mechanical properties of modern 9-12% Cr steels are significantly influenced by the presence and stability of different precipitate populations. These secondary phases grow, coarsen and, sometimes, dissolve again during heat treatment and service, which leads to a remarkable change in the obstacle effect of these precipitates on dislocation movement. In the present work, the experimentally observed creep rupture strength of a modified 9-12% Cr steel developed in the European COST Group is compared to the calculated maximum obstacle effect (Orowan threshold stress) caused by the precipitates present in the investigated alloy for different heat treatment conditions. It is shown that the differences in creep rupture strength caused by different heat treatments disappear after long time service. This observation is discussed on the basis of the calculated evolution of the precipitate microstructure. The concept of boosting long-term creep rupture strength by maximizing the initial creep strength with optimum quality heat treatment parameters for precipitation strengthening is critically assessed. (orig.)

  15. "Ruptured" malignant phyllodes tumor of the breast: a case report

    Directory of Open Access Journals (Sweden)

    Ditsatham C

    2016-02-01

    Full Text Available Chagkrit Ditsatham, Areewan Somwangprasert, Kirati Watcharachan, Phanchaporn WongmaneerungDivision of Head, Neck and Breast, Department of Surgery, Chiang Mai University, Chiang Mai, ThailandAbstract: Phyllodes tumor or cystosarcoma phyllodes is a rare disease and is usually seen in middle-aged patients. Ruptured phyllodes tumor is a very rare condition. Our study reports patient presentation, diagnosis method, and treatment of an unusual case. A 58-year-old premenopausal female was diagnosed with a phyllodes tumor and presented with a rapidly growing mass for 2 months that ruptured 1 month later. She underwent simple mastectomy at the left side of her breast and received adjuvant radiotherapy. No recurrence was found 4 months after operation.Keywords: ruptured, malignant, phyllodes tumor, breast 

  16. Short-term creep properties of Ti-6Al-4V alloy subjected to surface plasma carburizing process

    Directory of Open Access Journals (Sweden)

    Verônica Mara Cortez Alves de Oliveira

    2015-10-01

    Full Text Available The aim of this study was to investigate the short-time creep behavior of Ti-6Al-4V by plasma carburizing, which was performed at 725 °C for 6 h in a 50% Ar – 45% H2 – 5% CH4 gas mixture. Nano and microhardness testing, optical microscopy, TEM, X-ray diffraction and optical profilometry were used to characterize the samples. Furthermore, short-term creep tests were performed under a constant tensile load in air at 600 °C using a dead-weight-creep-rupture machine. The carburizing treatment resulted in a compound layer measuring approximately 1.7 μm in thickness with a hardness of 815 HV and a composition of TiC0.66. The creep properties of the “Widmanstätten + carburized” specimens were improved relative to those of untreated specimens. TEM and fracture analysis indicated creep deformation process attributed mainly to α phase deformation and fracture by intergranular decohesion.

  17. Microstructural changes in steel 10Kh9V2MFBR during creep for 40000 hours at 600°C

    Science.gov (United States)

    Fedoseeva, A. E.; Kozlov, P. A.; Dudko, V. A.; Skorobogatykh, V. N.; Shchenkova, I. A.; Kaibyshev, R. O.

    2015-10-01

    In this work, we have investigated microstructural changes in steel 10Kh9V2MFBR (analog of P02 steel) after long-term creep tests at a temperature of 600°C under an initial stress of 137 MPa. Time to rupture was found to be more than 40000 h. It has been established that, in the zone of grips and in the neck region of the sample, the size of the particles of the M 23C6 carbides increases from 85 nm to 152 nm and 182 nm, respectively. In addition, large particles of the Laves phase with an average size of 295 nm are separated. The particles of these phases are located along high-angle boundaries. During prolonged aging and creep, the transformation of the M(C,N) particles enriched in V into the Z phase occurs. The average size of particles of the Z phase after prolonged ageing was 48 nm; after creep, it reached 97 nm. The size of M(C,N) particles enriched by Nb increases from 26 nm after tempering to 55 nm after prolonged aging and creep. It has been established that, in spite of an increase in the transverse size of the laths of tempered martensite from 0.4 to 0.9 µm in the neck of the sample, the misorientation of the lath boundaries does not increase. No recrystallization processes were found to develop in the steel during creep.

  18. Effects of Hf and B on high temperature low stress creep behavior of a second generation Ni-based single crystal superalloy DD11

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Y.S. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Zhang, J.; Luo, Y.S. [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China); Li, J. [State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); NCS Testing Technology Co., Ltd., Beijing 100081 (China); Tang, D.Z., E-mail: Dingzhongtang621@163.com [Science and Technology on Advanced High Temperature Structural Materials Laboratory, Beijing Institute of Aeronautical Materials, Beijing 100095 (China)

    2016-08-30

    The as-cast and heat-treated microstructures and high temperature creep properties have been investigated in four experimental Ni-based single crystal superalloys containing various levels of Hf addition (0–0.4 wt%) and B addition (0–0.02 wt%). The experimental results indicated that the creep rupture life showed an improvement with individual addition of Hf, but it was decreased with individual addition of B. The elemental partitioning ratio and interfacial dislocation spacing of γ/γ′ were obviously changed with individual Hf or B additions. Meanwhile, the formation of secondary phases, such as the blocky MC carbide, script-like shape M{sub 3}B{sub 2} phases, was observed in the creep samples, which was also closely related to the high temperature creep behaviors. The high volume fraction of residual (γ+γ′) eutectics was mainly attributed to the significant decrease of creep rupture life for the present experimental alloy containing both Hf and B additions. This study is helpful to better understand Hf and B's role of strengthening mechanism and to optimize Hf and B additions in single crystal superalloys.

  19. Deformation by grain boundary sliding and slip creep versus diffusional creep

    Energy Technology Data Exchange (ETDEWEB)

    Ruano, O A; Sherby, O D; Wadsworth, J

    1998-11-04

    A review is presented of the debates between the present authors and other investigators regarding the possible role of diffusional creep in the plastic flow of polycrystalline metals at low stresses. These debates are recorded in eleven papers over the past seventeen years. ln these papers it has been shown that the creep rates of materials in the so-called "diffusional creep region" are almost always higher than those predicted by the diffusional creep theory. Additionally, the predictions of grain size effects and stress exponents from diffusional creep theory are often not found in the experimental data. Finally, denuded zones have been universally considered to be direct evidence for diffusional creep; but, those reported in the literature are shown to be found only under conditions where a high stress exponent is observed. Also, the locations of the denuded zones do not match those predicted. Alternative mechanisms are described in which diffusion-controlled dislocation creep and/or grain boundary sliding are the dominant deformation processes in low-stress creep. It is proposed that denuded zones are formed by stress-directed grain boundary migration with the precipitates dissolving in the moving grain boundaries. The above observations have led us to the conclusion that grain boundary sliding and slip creep are in fact the principal mechanisms for observations of plastic flow in the so-called "diffusional creep regions".

  20. On the prediction of long term creep strength of creep resistant steels

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Mi; Wang, Qiao; Song, Xin-Li; Jia, Juan; Xiang, Zhi-Dong [Wuhan University of Science and Technology (China). The State Key Laboratory of Refractories and Metallurgy

    2016-02-15

    When the conventional power law creep equation is applied to rationalise the creep data of creep resistant steels, its parameters depend strongly on stress and temperature and hence cannot be used to predict long term creep properties. Here, it is shown that this problem can be resolved if it is modified to satisfy two boundary conditions, i.e. when σ (stress) = 0, ε{sub min} (minimum creep rate) = 0, and when σ = σ{sub TS} (tensile stress at creep temperature T), ε{sub min} = ∞. This can be achieved by substituting the reference stress σ{sub 0} in the conventional equation by the term (σ{sub TS} - σ). The new power law creep equation describing the stress and temperature dependence of minimum creep rate can then be applied to predict long term creep strength from data of short term measurements. This is demonstrated using the creep and tensile strength data measured for 11Cr-2W-0.4Mo-1Cu-Nb-V steel (tube).

  1. A case of testicular rupture

    OpenAIRE

    野俣, 浩一郎; 林, 幹男

    1987-01-01

    A case of testicular rupture is reported. A 26-year-old man was referred to our hospital because of testicular trauma. Ultrasound of the testis was performed preoperatively. Ultrasonography revealed a disruption of the tunica albuginea and dense clusters of echoes in the tunica vaginalis. In the case of acute testicular trauma, this echo pattern suggests testicular rupture.

  2. Design of heat treatments for 9-12%Cr steels to optimise creep resistance for power plant applications

    Energy Technology Data Exchange (ETDEWEB)

    Morris, P.F.; Sachadel, U.A.; Clarke, P.D. [Tata Steel Europe, Rotherham (United Kingdom). Swinden Technology Centre; CRD and T, IJmuiden (Netherlands)

    2010-07-01

    Optimisation of the creep rupture properties of Steel 92 (9%Cr, 0.5%Mo, 2%W) by modification of heat treatment and C:N ratio has been studied. It was shown that a higher austenization temperature and double tempering at lower temperature can significantly extend creep life of the standard composition. The increase in austenization temperature from 1060 C and double tempering at 660 C/3h instead of single tempering at 780 C/2h resulted in the increase of stress rupture life from 1,734 to 6,179h at 650 C/110MPa. Even greater improvement in creep life was achieved by the combination of the modified heat treatment and decreased C:N ratio. In this case the creep life was extended to 10,255 h at 650 C/110MPa. A further increase in austenitization temperature to 1200 C for the decreased C:N ratio variant extended the rupture life to 17,118h. Initial results indicate that this modified heat treatment schedule does not result in notch brittle behaviour and most of the improvement in creep strength remains after a simulated post weld heat treatment at 740 C. The stress rupture programme is continuing and at 600 C test durations are approaching 60,000h. To explain the effect on rupture life thermodynamic calculations, microscopic investigations and a literature study were performed. Electron metallography investigations revealed that the lower tempering temperature resulted in a finer distribution of nano-size particles. Calculations show that increasing the austenitization temperature gave more dissolved B, N, C, Nb and V. The lower C:N ratio resulted in a higher atomic fraction of N in nano-size particles on subsequent tempering. Dissolved B should stabilize M{sub 23}M{sub 6} and dissolved N, C, Nv, and V should allow precipitation of a higher volume fraction of nano-size carbo-nitrides during tempering. Literature data suggest that lower tempering temperatures could also change their type from MX to M{sub 2}X. (orig.)

  3. The influence of grain boundary structure on diffusional creep

    DEFF Research Database (Denmark)

    Thorsen, Peter Anker; Bilde-Sørensen, Jørgen

    1999-01-01

    A Cu-2wt%Ni-alloy was deformed in tension in the diffusional creep regime (Nabarro-Herring creep). A periodic grid consisting of alumina was deposited on the surface of the creep specimen prior to creep. This makes it possible to separate the deformation caused by grain boundary sliding from...

  4. Creep performance of oxide ceramic fiber materials at elevated temperature in air and in steam

    Science.gov (United States)

    Armani, Clinton J.

    comparisons with experimental results. Additionally, the utility of the Monkman-Grant relationship to predicting creep-rupture life of the fiber tows at elevated temperature in air and in steam was demonstrated. Furthermore, the effects of steam on the compressive creep performance of bulk ceramic materials were also studied. Performance of fine grained, polycrystalline alumina (Al2O3) was investigated at 1100 and 1300°C in air and in steam. To evaluate the effect of silica doping during material processing both undoped and silica doped polycrystalline alumina specimens were tested. Finally, compressive creep performance of yttrium aluminum garnet (YAG, Y3Al5O12) was evaluated at 1300°C in air and in steam. Both undoped and silica doped YAG specimens were included in the study. YAG is being considered as the next-generation oxide fiber material. However, before considerable funding and effort are invested in a fiber development program, it is necessary to evaluate the creep performance of YAG at elevated temperature in steam. Results of this research demonstrated that both the undoped YAG and the silica doped YAG exhibited exceptional creep resistance at 1300°C in steam for grain sizes ˜1 microm. These results supplement the other promising features of YAG that make it a strong candidate material for the next generation ceramic fiber.

  5. Review of ASME-NH Design Materials for Creep-Fatigue

    Energy Technology Data Exchange (ETDEWEB)

    Koo, Gyeong Hoi; Kim, Jong Bum [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    To review and recommend the candidate design materials for the Sodium-Cooled Fast Reactor, the material sensitivity evaluations by the comparison of design data between the ASME-NH materials were performed by using the SIE ASME-NH computer program implementing the material database of the ASME-NH. The design material data provided by the ASME-NH code are the elastic modulus and yield Strength, Time-Independent Allowable Stress Intensity value, time-dependent allowable stress intensity value, expected minimum stress-to rupture value, stress rupture Factors for weldment, isochronous stress-strain curves, and design fatigue curves. Among these, the data related with the creep-fatigue evaluation are investigated in this study

  6. ANALYSIS ON PSEUDO-STEADY INDENTATION CREEP

    Institute of Scientific and Technical Information of China (English)

    Hidenari Takagi; Ming Dao; Masami Fujiwara

    2008-01-01

    Theoretical analysis and finite element (FE) simulation have been carried out for a constant specific load rate (CSLR) indentation creep test.Analytical results indicate that both the representative stress and the indentation strain rate become constant after a transient period. Moreover,the FE simulation reveals that both the contours of equivalent stress and equivalent plastic strain rate underneath the indenter evolve with geometrical self-similarity.This suggests that pseudo-steady indentation creep occurs in the region beneath the indenter.The representative points in the region are defined as the ones with the equivalent stress equal to the representative stress.In addition,it is revealed that the proportionality between indentation strain rate and equivalent plastic strain rate holds at the representative points during the pseudo-steady inden tation creep of a power law material.A control volume (CV) beneath the indenter,which governs the indenter velocity,is identified.The size of the CV at the indented surface is approximately 2.5 times the size of the impression.The stress exponent for creep can be obtained from the pseudo steady indentation creep data.These results demonstrate that the CSLR testing technique can be used to evaluate creep parameters with the same accuracy as conventional uniaxial creep tests.

  7. Splenic rupture following colonoscopy

    Institute of Scientific and Technical Information of China (English)

    Juan Francisco Guerra; Ignacio San Francisco; Fernando Pimentel; Luis Ibanez

    2008-01-01

    Colonoscopy is a safe and routinely performed diagnostic and therapeutic procedure for different colorectal diseases. Although the most common complications are bleeding and perforation, extracolonic or visceral injuries have also been described. Splenic rupture is a rare complication following colonoscopy, with few cases reported. We report a 60-year-old female who presented to surgical consultation 8 h after a diagnostic colonoscopy. Clinical, laboratory and imaging findings were suggestive for a massive hemoperitoneum. At surgery, an almost complete splenic disruption was evident, and an urgent splenectomy was performed. After an uneventful postoperative period, she was discharged home. Splenic injury following colonoscopy is considered infrequent. Direct trauma and excessive traction of the splenocolic ligament can explain the occurrence of this complication. Many times the diagnosis is delayed because the symptoms are due to colonic insufflation, so the most frequent treatment is an urgent splenectomy. A high index of suspicion needs an early diagnosis and adequate therapy.

  8. Blunt traumatic diaphragmatic rupture

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Nogueira

    2011-09-01

    Full Text Available Traumatic injury of the diaphragm ranges from 0.6 to 1.2% and rise up to 5%among patients who were victims of blunt trauma and underwent laparotomy.Clinical suspicion associated with radiological assessment contributes to earlydiagnosis. Isolated diaphragmatic injury has a good prognosis. Generallyworse outcomes are associated with other trauma injuries. Bilateral andright diaphragmatic lesions have worse prognosis. Multi detector computed tomography (MDCT scan of the chest and abdomen provides better diagnosticaccuracy using the possibility of image multiplanar reconstruction. Surgicalrepair via laparotomy and/ or thoracotomy in the acute phase of the injury hasa better outcome and avoids chronic complications of diaphragmatic hernia.The authors present the case of a young male patient, victim of blunt abdominaltrauma due to motor vehicle accident with rupture of the diaphragm, spleenand kidney injuries. The diagnosis was made by computed tomography of thethorax and abdomen and was confirmed during laparotomy.

  9. Spontaneous Rupture of Pyometra

    Directory of Open Access Journals (Sweden)

    Fatemeh Mallah

    2013-01-01

    Full Text Available Spontaneous perforation is a very rare complication of pyometra. The clinical findings of perforated pyometra are similar to perforation of the gastrointestinal tract and other causes of acute abdomen. In most cases, a correct and definite diagnosis can be made only by laparotomy. We report two cases of diffuse peritonitis caused by spontaneous perforated pyometra. The first case is a 78-year-old woman with abdominal pain for which laparotomy was performed because of suspected incarcerated hernia. The second case is a 61-year-old woman with abdominal pain for which laparotomy was performed because of symptoms of peritonitis. At laparotomy of both cases, 1 liter of pus with the source of uterine was found in the abdominal cavity. The ruptured uterine is also detected. More investigations revealed no malignancy as the reason of the pyometra.

  10. Spontaneous Rupture of Pyometra

    Science.gov (United States)

    Mallah, Fatemeh; Eftekhar, Tahere; Naghavi-Behzad, Mohammad

    2013-01-01

    Spontaneous perforation is a very rare complication of pyometra. The clinical findings of perforated pyometra are similar to perforation of the gastrointestinal tract and other causes of acute abdomen. In most cases, a correct and definite diagnosis can be made only by laparotomy. We report two cases of diffuse peritonitis caused by spontaneous perforated pyometra. The first case is a 78-year-old woman with abdominal pain for which laparotomy was performed because of suspected incarcerated hernia. The second case is a 61-year-old woman with abdominal pain for which laparotomy was performed because of symptoms of peritonitis. At laparotomy of both cases, 1 liter of pus with the source of uterine was found in the abdominal cavity. The ruptured uterine is also detected. More investigations revealed no malignancy as the reason of the pyometra. PMID:24024054

  11. Mechanical and microstructural behavior of oxide dispersion strengthened 8Cr-2W and 8Cr-1W steels during creep deformation

    Energy Technology Data Exchange (ETDEWEB)

    Shinozuka, K.; Tamura, M.; Esaka, H. [National Defense Academy, Dept. MS and E, Kanagawa (Japan); Shiba, K.; Nakamura, K. [Japan Atomic Energy Agency, Tokai-mura, Naga-gun, Ibaraki-ken (Japan)

    2007-07-01

    Full text of publication follows: Oxide dispersion strengthened (ODS) steel is a promising candidate for fusion reactor material because of excellent mechanical properties. However, the ODS steel exhibits some defects, such as mechanical anisotropy and little elongation . To reveal details of these defects, we investigated correlations between mechanical and microstructural behavior of ODS ferritic steels during creep deformation at high temperature. The materials used in this study are two kinds of hot rolled ODS steels: Fe-8Cr-2W-0.2V-0.1Ta-0.2Ti-0.4Y{sub 2}O{sub 3} (J1) and Fe-8Cr-1W-0.2Ti-0.4Y{sub 2}O{sub 3} (J2). Creep tests was carried out on specimens sampling along both the rolling direction and the cross direction at 670, 700 and 730 deg. C. Microstructural analyses were made on the normalized and tempered condition by using OM, SEM, TEM and XRD. Creep ruptured and interrupted specimens were also investigated. Both J1 and J2 existed two phases, namely martensite and {delta}-ferrite which was elongated in the rolling direction. Y-Ti complex oxide particles were finely dispersed in martensite and {delta}- ferrite phases. Results of creep tests indicated that the time-to-rupture of specimens of J1 were much longer than J2, and the time-to-rupture of specimens sampling along the rolling direction were longer than cross direction. Accordingly, J1 sampling along hot rolling direction was the strongest, for instance, the time-to-rupture was 11400 h at 700 deg. C and 162 MPa. All specimens indicated that elongation was less than 1.3 % and the rupture occurred at steady state creep region from creep curves. Internal cracks were propagated in martensite phase along elongated {delta}-ferrite phase in the direction of hot rolling. On the other hand, {delta}-ferrite phases seemed to prevent combining cracks. These results suggest that elongated {delta}-ferrite and internal clacks in martensite strongly affect on the anisotropy and little elongation of creep. (authors)

  12. Irradiation creep of dispersion strengthened copper alloy

    Energy Technology Data Exchange (ETDEWEB)

    Pokrovsky, A.S.; Barabash, V.R.; Fabritsiev, S.A. [and others

    1997-04-01

    Dispersion strengthened copper alloys are under consideration as reference materials for the ITER plasma facing components. Irradiation creep is one of the parameters which must be assessed because of its importance for the lifetime prediction of these components. In this study the irradiation creep of a dispersion strengthened copper (DS) alloy has been investigated. The alloy selected for evaluation, MAGT-0.2, which contains 0.2 wt.% Al{sub 2}O{sub 3}, is very similar to the GlidCop{trademark} alloy referred to as Al20. Irradiation creep was investigated using HE pressurized tubes. The tubes were machined from rod stock, then stainless steel caps were brazed onto the end of each tube. The creep specimens were pressurized by use of ultra-pure He and the stainless steel caps subsequently sealed by laser welding. These specimens were irradiated in reactor water in the core position of the SM-2 reactors to a fluence level of 4.5-7.1 x 10{sup 21} n/cm{sup 2} (E>0.1 MeV), which corresponds to {approx}3-5 dpa. The irradiation temperature ranged from 60-90{degrees}C, which yielded calculated hoop stresses from 39-117 MPa. A mechanical micrometer system was used to measure the outer diameter of the specimens before and after irradiation, with an accuracy of {+-}0.001 mm. The irradiation creep was calculated based on the change in the diameter. Comparison of pre- and post-irradiation diameter measurements indicates that irradiation induced creep is indeed observed in this alloy at low temperatures, with a creep rate as high as {approx}2 x 10{sup {minus}9}s{sup {minus}1}. These results are compared with available data for irradiation creep for stainless steels, pure copper, and for thermal creep of copper alloys.

  13. Low-temperature creep of austenitic stainless steels

    Science.gov (United States)

    Reed, R. P.; Walsh, R. P.

    2017-09-01

    Plastic deformation under constant load (creep) in austenitic stainless steels has been measured at temperatures ranging from 4 K to room temperature. Low-temperature creep data taken from past and unreported austenitic stainless steel studies are analyzed and reviewed. Creep at cryogenic temperatures of common austenitic steels, such as AISI 304, 310 316, and nitrogen-strengthened steels, such as 304HN and 3116LN, are included. Analyses suggests that logarithmic creep (creep strain dependent on the log of test time) best describe austenitic stainless steel behavior in the secondary creep stage and that the slope of creep strain versus log time is dependent on the applied stress/yield strength ratio. The role of cold work, strain-induced martensitic transformations, and stacking fault energy on low-temperature creep behavior is discussed. The engineering significance of creep on cryogenic structures is discussed in terms of the total creep strain under constant load over their operational lifetime at allowable stress levels.

  14. Creep of Refractory Fibers and Modeling of Metal and Ceramic Matrix Composite Creep Behavior

    Science.gov (United States)

    Tewari, S.N.

    1995-01-01

    Our concentration during this research was on the following subprograms. (1) Ultra high vacuum creep tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires, temperature range from 1100 K to 1500 K, creep time of 1 to 500 hours. (2) High temperature vacuum tensile tests on 218, ST300 and WHfC tungsten and MoHfC molybdenum alloy wires. (3) Air and vacuum tensile creep tests on polycrystalline and single crystal alumina fibers, such as alumina-mullite Nextel fiber, yttrium aluminum ganet (YAG) and Saphikon, temperature range from 1150 K to 1470 K, creep time of 2 to 200 hours. (4) Microstructural evaluation of crept fibers, TEM study on the crept metal wires, SEM study on the fracture surface of ceramic fibers. (5) Metal Matrix Composite creep models, based on the fiber creep properties and fiber-matrix interface zone formation.

  15. Negative creep during compressive creep of as-cast ZA27 alloy

    Institute of Scientific and Technical Information of China (English)

    魏晓伟; 沈保罗; 易勇

    2003-01-01

    The negative creep during compressive creep deformation of as-cast ZA27 alloy was investigated at the temperature range of 20-160℃ and at compressive stress levels from 50-137.5MPa with special apparatus. Results show that the negative creep in the alloy occurred respectively at 20℃ (50MPa, 87.5MPa and 100MPa), 60℃(50MPa and 87.5MPa) and 100℃(50MPa). According to the phase transformation and theoretical analysis, the negative creep resulted from volume expansion caused by four-phase transformation α+ε→T′+η in the alloy. The theoretical analysis is consistent with the experiment results. And the values of negative creep depended on the difference between the compressive creep deformation and the volume expansion.

  16. Correlation of Creep Behavior of Domal Salts

    Energy Technology Data Exchange (ETDEWEB)

    Munson, D.E.

    1999-02-16

    The experimentally determined creep responses of a number of domal salts have been reported in, the literature. Some of these creep results were obtained using standard (conventional) creep tests. However, more typically, the creep data have come from multistage creep tests, where the number of specimens available for testing was small. An incremental test uses abrupt changes in stress and temperature to produce several time increments (stages) of different creep conditions. Clearly, the ability to analyze these limited data and to correlate them with each other could be of considerable potential value in establishing the mechanical characteristics of salt domes, both generally and specifically. In any analysis, it is necessary to have a framework of rules to provide consistency. The basis for the framework is the Multimechanism-Deformation (M-D) constitutive model. This model utilizes considerable general knowledge of material creep deformation to supplement specific knowledge of the material response of salt. Because the creep of salt is controlled by just a few micromechanical mechanisms, regardless of the origin of the salt, certain of the material parameters are values that can be considered universal to salt. Actual data analysis utilizes the methodology developed for the Waste Isolation Pilot Plant (WIPP) program, and the response of a bedded pure WIPP salt as the baseline for comparison of the domal salts. Creep data from Weeks Island, Bryan Mound, West Hackberry, Bayou Choctaw, and Big Hill salt domes, which are all sites of Strategic Petroleum Reserve (SPR) storage caverns, were analyzed, as were data from the Avery Island, Moss Bluff, and Jennings salt domes. The analysis permits the parameter value sets for the domal salts to be determined in terms of the M-D model with various degrees of completeness. In turn this permits detailed numerical calculations simulating cavern response. Where the set is incomplete because of the sparse database, reasonable

  17. Simple Creep Test For Ceramic Fibers

    Science.gov (United States)

    Dicarlo, James A.; Morscher, Gregory N.

    1994-01-01

    Simple bend-stress-relaxation test yields information on creep-related properties of polycrystalline ceramic fibers. Determination of these properties important part of efforts to develop ceramic composite materials that retain mechanical strength and resistance to creep at high temperatures. Present test measures effects of time, temperature, and applied strain on creep-related relaxation of bend stress in ceramic fiber of almost any diameter in almost any environment, without need for contact sensors. Degree of relaxation of bend stress determined from radii of curvature.

  18. Modeling creep behavior of fiber composites

    Science.gov (United States)

    Chen, J. L.; Sun, C. T.

    1988-01-01

    A micromechanical model for the creep behavior of fiber composites is developed based on a typical cell consisting of a fiber and the surrounding matrix. The fiber is assumed to be linearly elastic and the matrix nonlinearly viscous. The creep strain rate in the matrix is assumed to be a function of stress. The nominal stress-strain relations are derived in the form of differential equations which are solved numerically for off-axis specimens under uniaxial loading. A potential function and the associated effective stress and effective creep strain rates are introduced to simplify the orthotropic relations.

  19. Linear logarithmic model for concrete creep:II. Prediction formulas for description of creep behaviour

    OpenAIRE

    Larson, Mårten; Jonasson, Jan-Erik

    2003-01-01

    A reliable modelling of the young concrete creep behaviour is of great importance for consistent thermal crack risk estimations that shall contribute to assure a desired service lifetime and function of a structure. All-embracing creep tests aimed for thermal stress analyses are often very time consuming and thereby also costly to perform. Therefore thermal stress calculations in everyday engineering practice are often performed with standard sets of creep data involving no or very limited la...

  20. Ruptured urinary bladder attributable to urethral compression by a haematoma after vertebral fracture in a bull

    OpenAIRE

    Braun, U.; Trösch, L; Sydler, T.

    2014-01-01

    BACKGROUND: In male cattle, rupture of the urinary bladder is usually associated with urethral obstruction by uroliths. Less common causes include urethral compression or stricture. This case report describes the findings in a young Limousion breeding bull with rupture of the urinary bladder because of urethral compression by a haematoma after coccygeal fracture. CASE PRESENTATION: The bull had been introduced into a 40-head Red-Holstein herd one week before being injured. One week after intr...

  1. Creep Aging Behavior Characterization of 2219 Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Lingfeng Liu

    2016-06-01

    Full Text Available In order to characterize the creep behaviors of 2219 aluminum alloy at different temperatures and stress levels, a RWS-50 Electronic Creep Testing Machine (Zhuhai SUST Electrical Equipment Company, Zhuhai, China was used for creep experiment at temperatures of 353~458 k and experimental stresses of 130~170 MPa. It was discovered that this alloy displayed classical creep curve characteristics in its creep behaviors within the experimental parameters, and its creep value increased with temperature and stress. Based on the creep equation of hyperbolic sine function, regression analysis was conducted of experimental data to calculate stress exponent, creep activation energy, and other related variables, and a 2219 aluminum alloy creep constitutive equation was established. Results of further analysis of the creep mechanism of the alloy at different temperatures indicated that the creep mechanism of 2219 aluminum alloy differed at different temperatures; and creek characteristics were presented in three stages at different temperatures, i.e., the grain boundary sliding creep mechanism at a low temperature stage (T < 373 K, the dislocation glide creep mechanism at a medium temperature stage (373 K ≤ T < 418 K, and the dislocation climb creep mechanism at a high temperature stage (T ≥ 418 K. By comparative analysis of the fitting results and experiment data, they were found to be in agreement with the experimental data, revealing that the established creep constitutive equation is suitable for different temperatures and stresses.

  2. Mechanics of cutaneous wound rupture.

    Science.gov (United States)

    Swain, Digendranath; Gupta, Anurag

    2016-11-07

    A cutaneous wound may rupture during healing as a result of stretching in the skin and incompatibility at the wound-skin interface, among other factors. By treating both wound and skin as hyperelastic membranes, and using a biomechanical framework of interfacial growth, we study rupturing as a problem of cavitation in nonlinear elastic materials. We obtain analytical solutions for deformation and residual stress field in the skin-wound configuration while emphasizing the coupling between wound rupture and wrinkling in the skin. The solutions are analyzed in detail for variations in stretching environment, healing condition, and membrane stiffness.

  3. Documentation for the viscoplastic and creep program

    DEFF Research Database (Denmark)

    Bellini, Anna

    2004-01-01

    of this workpackage is to simulate creep behavior of aluminum cast samples subjected to high temperature. In this document a two-state variables unified model is applied in order to simulate creep behavior and time-dependent metallurgical changes. The fundamental assumption of the unified theory is that creep...... and viscoplasticity, which are both irreversible strains developed because of dislocations motion in the material structure, can be modelled through the implementation of a similar plastic strain velocity law, generally called flow rule. The document shows how to obtain the material data needed for the simulation...... is run using the material data obtained through the mentioned experimental study. The results obtained for the simulation of tensile tests and of creep tests are compared with experimental curves, showing a good agreement. Moreover, the document describes the results obtained during the first...

  4. Implications of Jeffreys-Lomnitz Transient Creep

    Science.gov (United States)

    Strick, Ellis

    1984-01-01

    In 1958 Jeffreys proposed a power law generalization of the logarithmic transient creep earlier attributed to Lomnitz. Although Jeffreys' power law form was admittedly defective in that it became unbounded at infinite time, he did apply it to the viscoelastic behavior of the earth-moon system. Since then it has been successfully applied by many investigators to mantle rehology and Chandler wobble. Experimental seismic studies indicate that most rock types exhibit the almost constant Q behavior which Lomnitz showed to be associated with his logarithmic creep. In this paper, we study not only the Q behavior related to Jeffreys' power law creep but also other mechanical properties such as a precise spring-dashpot ladder network realization are developed. In addition, a very simple physically realizable modification of this ladder network leads to a boundedness at long times of Jeffreys' creep in a manner which does not affect his successful application at finite times.

  5. Rock bending creep and disturbance effects

    Institute of Scientific and Technical Information of China (English)

    付志亮; 郑颖人; 刘元雪

    2008-01-01

    The bending creep and its disturbance effects of red sandstone rock beam and oil shale rock beam were studied by adopting the self-developed gravitation level style rock creep test machine and bending creep test system,and the constitutive equations were established.It is found that fracture morphology of rock beams under no disturbance load is regular,cracking position of fractures is on part of loading concentration,the crack starts from a neutral plane.However,fracture morphology of rock beams under disturbance load is irregular,cracking position of fractures deviates from a neutral plane.Delayed instability of rock beam occurs for some time under constant disturbance load.When disturbance load is beyond a certain range,suddenly instability of occurs rock beam in a certain time.The results show that there is a guiding significance for creep stability in the geotechnical engineering fields.

  6. Analytic Creep Durability of Rotating Uniform Disks

    Directory of Open Access Journals (Sweden)

    Yuriy Nyashin

    1998-01-01

    Full Text Available Turbine disks of aircraft engines in operation are subjected to alternating thermocyclic deformation under high temperatures. Operation gives rise to sufficiently high stresses and subsequent creep damaging effects.

  7. Inversion of hysteresis and creep operators

    Science.gov (United States)

    Krejčí, Pavel; Al Janaideh, Mohammad; Deasy, Fergal

    2012-05-01

    The explicit inversion formula for rate dependent Prandtl-Ishlinskii operators is extended to cases without the threshold dilation condition. This solves a problem in hysteresis and creep modeling of magnetostrictive behavior.

  8. Multi Resolution In-Situ Testing and Multiscale Simulation for Creep Fatigue Damage Analysis of Alloy 617

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yongming [Arizona State Univ., Tempe, AZ (United States). School for Engineering of Matter, Transport and Energy; Oskay, Caglar [Vanderbilt Univ., Nashville, TN (United States). Dept. of Civil and Environmental Engineering

    2017-04-30

    This report outlines the research activities that were carried out for the integrated experimental and simulation investigation of creep-fatigue damage mechanism and life prediction of Nickel-based alloy, Inconel 617 at high temperatures (950° and 850°). First, a novel experimental design using a hybrid control technique is proposed. The newly developed experimental technique can generate different combinations of creep and fatigue damage by changing the experimental design parameters. Next, detailed imaging analysis and statistical data analysis are performed to quantify the failure mechanisms of the creep fatigue of alloy 617 at high temperatures. It is observed that the creep damage is directly associated with the internal voids at the grain boundaries and the fatigue damage is directly related to the surface cracking. It is also observed that the classical time fraction approach does not has a good correlation with the experimental observed damage features. An effective time fraction parameter is seen to have an excellent correlation with the material microstructural damage. Thus, a new empirical damage interaction diagram is proposed based on the experimental observations. Following this, a macro level viscoplastic model coupled with damage is developed to simulate the stress/strain response under creep fatigue loadings. A damage rate function based on the hysteresis energy and creep energy is proposed to capture the softening behavior of the material and a good correlation with life prediction and material hysteresis behavior is observed. The simulation work is extended to include the microstructural heterogeneity. A crystal plasticity finite element model considering isothermal and large deformation conditions at the microstructural scale has been developed for fatigue, creep-fatigue as well as creep deformation and rupture at high temperature. The model considers collective dislocation glide and climb of the grains and progressive damage accumulation of

  9. Tensile strength and creep behaviour of austenitic stainless steel type 18Cr - 12Ni with niobium additions at 700{sup 0}C

    Energy Technology Data Exchange (ETDEWEB)

    Sordi, V L; Bueno, L O, E-mail: sordi@ufscar.b [Federal University of Sao Carlos, Materials Engineering Department, Sao Carlos (SP), 13565-905 (Brazil)

    2010-07-01

    The effect of niobium additions up to 2.36 wt% on the creep behavior of a series of seven extra low carbon 18Cr-12Ni austenitic stainless steels at 700{sup 0}C has been investigated. Grain size and hardness measurements, hot tensile tests and constant stress creep tests from 90 to 180 MPa were carried out for each alloy, in the solution treated condition at 1050, 1200 and 1300{sup 0}C followed by quench in water. The mechanical behavior at high temperature was related to the amount of NbC precipitation occurring during the tests. Solid solution and intermetallic compound effects were also considered. Creep data analysis was done to determine the parameters of the creep power-law equation {epsilon}-dot = A.{sigma}{sup n} and the Monkman-Grant relation {epsilon}-dot .t{sup m}{sub R} = K. Niobium-carbide precipitation in these steels reduces the secondary stage dependence of strain rate with applied stress, resulting in n-values which indicate the possibility of operation of various creep mechanisms. The creep strength during the secondary stage is primarily controlled by the amount of NbC available for precipitation. However, the rupture times increase progressively with niobium content, as the amount of undissolved carbide particles in grain boundaries and the Laves phase precipitation increase.

  10. Impurity Antimony-Induced Creep Property Deterioration and Its Suppression by Rare Earth Ceriumfor a 9Cr-1Mo Ferritic Heat-Resistant Steel

    Directory of Open Access Journals (Sweden)

    Yewei Xu

    2016-08-01

    Full Text Available The high temperature creep properties of three groups of modified 9Cr-1Mo steel samples, undoped, doped with Sb, and doped with Sb and Ce, are evaluated under the applied stresses from 150 MPa to 210 MPa and at the temperatures from 873–923 K. The creep behavior follows the temperature-compensated power law as well as the Monkman-Grant relation. The creep activation energy for the Sb-doped steel (519 kJ/mol is apparently lower than that for the undoped one (541 kJ/mol, but it is considerably higher for the Sb+Ce-doped steel (621 kJ/mol. Based on the obtained relations, both the creep lifetimes under 50 MPa, 80 MPa, and 100 MPa in the range 853–923 K and the 105 h creep rupture strengths at 853 K, 873 K, and 893 K are predicted. It is demonstrated that the creep properties of the Sb-doped steel are considerably deteriorated but those of the Sb+Ce-doped steel are significantly improved as compared with the undoped steel. Microstructural and microchemical characterizations indicate that the minor addition of Ce can stabilize the microstructure of the steel by segregating to grain boundaries and dislocations, thereby offsetting the deleterious effect of Sb by coarsening the microstructure and weakening the grain boundary.

  11. 煤岩蠕变-渗流耦合规律实验研究%Experimental study on creep-seepage coupling law of coal (rock)

    Institute of Scientific and Technical Information of China (English)

    何峰; 王来贵; 王振伟; 姚再兴

    2011-01-01

    Based on the coal (rock) method of transient penetration, triaxial creep-seepage coupling experiment were carried out in different confining and pore pressure condition. By the creep rupture process of permeability experience, the curve of creep-permeability was fitted out, which revealed consistency between the sample of coal ( rock) permea-bility changes and creep damage. According to Issac Newton' s all differential method, a certain number of points was given on sites of creep-permeability coupled curve and interpolating, the permeability-creep equation was got.%基于煤岩瞬态渗透法,对煤岩试件进行蠕变-渗流耦合试验;对于不同的围压、孔压条件下,通过蠕变破裂过程中的渗透性试验,拟合出相应蠕变-渗透率曲线,揭示渗透率的变化和煤岩试样的蠕变损伤的一致性;据Issac Newton提出的均差法,在蠕变-渗透率耦合曲线上给出一定数量的关键点和试验点上进行插值,获得渗透率-蠕变拟合方程.

  12. Elbow tendinopathy and tendon ruptures: epicondylitis, biceps and triceps ruptures.

    Science.gov (United States)

    Rineer, Craig A; Ruch, David S

    2009-03-01

    Lateral and medial epicondylitis are common causes of elbow pain in the general population, with the lateral variety being more common than the medial by a ratio reportedly ranging from 4:1 to 7:1. Initially thought to be an inflammatory condition, epicondylitis has ultimately been shown to result from tendinous microtearing followed by an incomplete reparative response. Numerous nonoperative and operative treatment options have been employed in the treatment of epicondylitis, without the emergence of a single, consistent, universally accepted treatment protocol. Tendon ruptures about the elbow are much less frequent, but result in more significant disability and loss of function. Distal biceps tendon ruptures typically occur in middle-aged males as a result of an event that causes a sudden, eccentric contraction of the biceps. Triceps tendon ruptures are exceedingly rare but usually have a similar etiology with a forceful eccentric contraction of the triceps that causes avulsion of the tendon from the olecranon. The diagnosis of these injuries is not always readily made. Complete ruptures of the biceps or triceps tendons have traditionally been treated surgically with good results. With regard to biceps ruptures, there continues to be debate about the best surgical approach, as well as the best method of fixation of tendon to bone. This article is not meant to be an exhaustive review of the broad topics of elbow tendinopathy and tendon ruptures, but rather is a review of recently published information on the topics that will assist the clinician in diagnosis and management of these conditions.

  13. Ruptured thought: rupture as a critical attitude to nursing research.

    Science.gov (United States)

    Beedholm, Kirsten; Lomborg, Kirsten; Frederiksen, Kirsten

    2014-04-01

    In this paper, we introduce the notion of ‘rupture’ from the French philosopher Michel Foucault, whose studies of discourse and governmentality have become prominent within nursing research during the last 25 years. We argue that a rupture perspective can be helpful for identifying and maintaining a critical potential within nursing research. The paper begins by introducing rupture as an inheritance from the French epistemological tradition. It then describes how rupture appears in Foucault's works, as both an overall philosophical approach and as an analytic tool in his historical studies. Two examples of analytical applications of rupture are elaborated. In the first example, rupture has inspired us to make an effort to seek alternatives to mainstream conceptions of the phenomenon under study. In the second example, inspired by Foucault's work on discontinuity, we construct a framework for historical epochs in nursing history. The paper concludes by discussing the potential of the notion of rupture as a response to the methodological concerns regarding the use of Foucault-inspired discourse analysis within nursing research. We agree with the critique of Cheek that the critical potential of discourse analysis is at risk of being undermined by research that tends to convert the approach into a fixed method.

  14. Creep of frozen soil by damage mechanics

    Institute of Scientific and Technical Information of China (English)

    苗天德; 魏雪霞; 张长庆

    1995-01-01

    A microstructure damage theory for creep of frozen soil under the frame of damage mechan-ics is presented.Based on the test study and microscope observation,several internal variables are chosen tocharacterize the microstructure changes and the evolution equations of these internal variables are developed.The theory can describe both the "hardening" and "softening" behavior in the creep process.A detailed analysis hasbeen made for the uniaxial compressure and compared with the test data.

  15. Timescales in creep and yielding of attractive gels.

    Science.gov (United States)

    Grenard, Vincent; Divoux, Thibaut; Taberlet, Nicolas; Manneville, Sébastien

    2014-03-14

    The stress-induced yielding scenario of colloidal gels is investigated under rough boundary conditions by means of rheometry coupled with local velocity measurements. Under an applied shear stress σ, the fluidization of gels made of attractive carbon black particles dispersed in a mineral oil is shown to involve a previously unreported shear rate response γ dot above(t) characterized by two well-defined and separated timescales τc and τf. First γ dot above decreases as a weak power law strongly reminiscent of the primary creep observed in numerous crystalline and amorphous solids, coined the "Andrade creep". We show that the bulk deformation remains homogeneous at the micron scale, which demonstrates that whether plastic events take place or whether any shear transformation zone exists, such phenomena occur at a smaller scale. As a key result of this paper, the duration τc of this creep regime decreases as a power law of the viscous stress, defined as the difference between the applied stress and the yield stress σc, i.e. τc ∼ (σ - σc)(-β), with β = 2-3 depending on the gel concentration. The end of this first regime is marked by a jump of the shear rate by several orders of magnitude, while the gel slowly slides as a solid block experiencing strong wall slip at both walls, despite rough boundary conditions. Finally, a second sudden increase of the shear rate is concomitant with the full fluidization of the material which ends up being homogeneously sheared. The corresponding fluidization time τf robustly follows an exponential decay with the applied shear stress, i.e. τf = τ0 exp(-σ/σ0), as already reported for smooth boundary conditions. Varying the gel concentration C in a systematic fashion shows that the parameter σ0 and the yield stress σc exhibit similar power-law dependences with C. Finally, we highlight a few features that are common to attractive colloidal gels and to solid materials by discussing our results in the framework of

  16. Influence of composition on precipitation behavior and stress rupture properties in INCONEL RTM740 series superalloys

    Science.gov (United States)

    Casias, Andrea M.

    Increasing demands for energy efficiency and reduction in CO2 emissions have led to the development of advanced ultra-supercritical (AUSC) boilers. These boilers operate at temperatures of 760 °C and pressures of 35 MPa, providing efficiencies close to 50 pct. However, austenitic stainless steels typically used in boiler applications do not have sufficient creep or oxidation resistance. For this reason, nickel (Ni)-based superalloys, such as IN740, have been identified as potential materials for AUSC boiler tube components. However, IN740 is susceptible to heat-affected-zone liquation cracking in the base metal of heavy section weldments. To improve weldability, IN740H was developed. However, IN740H has lower stress rupture ductility compared to IN740. For this reason, two IN740H modifications have been produced by lowering carbon content and increasing boron content. In this study, IN740, IN740H, and the two modified IN740H alloys (modified 1 and 2) were produced with equiaxed grain sizes of 90 ìm (alloys IN740, IN740H, and IN740H modified 1 alloys) and 112 µm (IN740H modified 2 alloy). An aging study was performed at 800 °C on all alloys for 1, 3, 10, and 30 hours to assess precipitation behavior. Stress rupture tests were performed at 760 °C with the goal of attaining stress levels that would yield rupture at 1000 hours. The percent reduction in area was measured after failure as a measure of creep ductility. Light optical, scanning electron, and transmission electron microscopy were used in conjunction with X-ray diffraction to examine precipitation behavior of annealed, aged, and stress rupture tested samples. The amount and type of precipitation that occurred during aging prior to stress rupture testing or in-situ during stress rupture testing influenced damage development, stress rupture life, and ductility. In terms of stress rupture life, IN740H modified 2 performed the best followed by IN740H modified 1 and IN740, which performed similarly, and IN740

  17. Elevated temperature creep properties of NiAl cryomilled with and without Y2O3

    Science.gov (United States)

    Whittenberger, J. Daniel; Luton, Michael J.

    1995-01-01

    The creep properties of lots of NiAl cryomilled with and without Y2O3 have been determined in compression and tension. Although identical cryomilling procedures were used, differences in composition were found between the lot ground with 0.5 vol% yttria and the lot ground without Y2O3. Compression testing between 1000 and 1300 K yielded similar creep strengths for both materials, while tensile creep rupture testing indicated that the yttria-containing alloy was slightly stronger than the Y2O3-free version. Both compression and tensile testing showed two deformation regimes; whereas the stress state did not affect the high stress exponent (n approximately equals 10) mechanism, the low stress exponent regime n was approximately 6 in tension and approximately 2 in compression. The strengths in tension were somewhat less than those measured in compression, but the estimated activation energies (Q) of approximately 600 kJ/mol for tensile testing were closer to the previously measured values (approximately 700 kJ/mol) for NiAl-AlN and very different from the Q's of 400 and 200 kJ/mol for compression tests in the high and low stress exponent regimes, respectively. A Larson-Miller comparison indicated that cryomilling can produce an alloy with long-term, high-temperature strength at least equal to conventional superalloys.

  18. Effect of Mo content on microstructure and stress-rupture properties of a Ni-base single crystal superalloy

    Directory of Open Access Journals (Sweden)

    Yunfei Liang

    2016-02-01

    Full Text Available The additional 1.5 wt% Mo was added in a Ni-base single crystal (SC alloy with the composition of Ni–6.5Al–8.0Mo–2.4Cr–6.2Ta–4.9Co–1.5Re–(0.01–0.05Y (wt% to study the effect of Mo content on the microstructure and stress-rupture properties. The creep and stress-rupture tests under the conditions of 850 °C/500 MPa and 1100 °C/130 MPa were conducted, and the microstructure of as-cast, heat treated and stress ruptured specimens were analyzed. It was found that the 1.5 wt% Mo addition enhanced the stress-rupture lives at both intermediate (850 °C and high (1100 °C temperatures. The microstructure analysis showed that adding 1.5 wt% Mo in the basic alloy affected the microstructure dramatically, i.e., the Mo-rich phases formed in the specimens of as-cast and stress-ruptured specimens. It is considered that the improvement of the stress-rupture lives is duo to the strengthening effect of Mo to both γ and γ′ phases and the decrease of stacking fault energy, diffusion constant and dislocation spacing. The Mo-rich phases precipitated under condition of 1100 °C/130 MPa did not affect the creep and stress-rupture properties obviously in the present study.

  19. Brittle and compaction creep in porous sandstone

    Science.gov (United States)

    Heap, Michael; Brantut, Nicolas; Baud, Patrick; Meredith, Philip

    2015-04-01

    Strain localisation in the Earth's crust occurs at all scales, from the fracture of grains at the microscale to crustal-scale faulting. Over the last fifty years, laboratory rock deformation studies have exposed the variety of deformation mechanisms and failure modes of rock. Broadly speaking, rock failure can be described as either dilatant (brittle) or compactive. While dilatant failure in porous sandstones is manifest as shear fracturing, their failure in the compactant regime can be characterised by either distributed cataclastic flow or the formation of localised compaction bands. To better understand the time-dependency of strain localisation (shear fracturing and compaction band growth), we performed triaxial deformation experiments on water-saturated Bleurswiller sandstone (porosity = 24%) under a constant stress (creep) in the dilatant and compactive regimes, with particular focus on time-dependent compaction band formation in the compactive regime. Our experiments show that inelastic strain accumulates at a constant stress in the brittle and compactive regimes leading to the development of shear fractures and compaction bands, respectively. While creep in the dilatant regime is characterised by an increase in porosity and, ultimately, an acceleration in axial strain to shear failure (as observed in previous studies), compaction creep is characterised by a reduction in porosity and a gradual deceleration in axial strain. The overall deceleration in axial strain, AE activity, and porosity change during creep compaction is punctuated by excursions interpreted as the formation of compaction bands. The growth rate of compaction bands formed during creep is lower as the applied differential stress, and hence background creep strain rate, is decreased, although the inelastic strain required for a compaction band remains constant over strain rates spanning several orders of magnitude. We find that, despite the large differences in strain rate and growth rate

  20. Spontaneous rupture of unscarred gravid uterus.

    Science.gov (United States)

    Gurudut, Kolala S; Gouda, Hareesh S; Aramani, Sunil C; Patil, Raju H

    2011-01-01

    Rupture of gravid uterus during pregnancy is a rare entity. Overall incidence of rupture of uterus during pregnancy is 0.07%. The maternal and fetal prognoses are bad especially when the rupture occurs in an unscarred uterus. Fortunately, the sole major risk factor of spontaneous rupture of unscarred uterus is preventable, which is "multiparity." In this article, we report the death of a pregnant woman and her unborn child because of spontaneous rupture of unscarred uterus.

  1. Diagnosis of ruptured superior mesenteric artery aneurysm mimicking a pancreatic mass

    Institute of Scientific and Technical Information of China (English)

    Stefano; Palmucci; Letizia; Antonella; Mauro; Pietro; Milone; Francesco; Di; Stefano; Antonino; Scolaro; Antonio; Di; Cataldo; Giovanni; Carlo; Ettorre

    2010-01-01

    Aneurysms and pseudoaneurysms of the superior mesenteric artery are potentially lethal and should be treated as urgently as possible.In a 52-year-old man with occasional epigastric pain,we accidentally discovered a superior mesenteric artery aneurysm that was ruptured with spontaneous tamponade in the uncinate process and in the head of the pancreas.The ruptured aneurysm had a heterogeneous appearance due to its thrombotic and hemorrhagic content,and it simulated a voluminous mass in the head and uncinate p...

  2. Rheumatoid wrist deformity and risk of extensor tendon rupture evaluated by 3DCT imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Hajime; Abe, Asami; Murasawa, Akira; Nakazono, Kiyoshi; Horizono, Hidehiro; Ishii, Katsushi; Seki, Eiko [Niigata Rheumatic Center, Department of Rheumatology, Shibata city, Niigata (Japan)

    2010-05-15

    Extensor tendon rupture on the dorsum of the wrist is commonly seen in patients with rheumatoid arthritis (RA). It causes immediate dysfunction of the hand and surgical reconstruction is usually required. The purpose of this study was to clarify the risk of extensor tendon rupture by quantifying wrist deformity on three-dimensional computed tomography (3DCT) images. Three-dimensional CT images of 108 wrists in 102 patients with RA and 38 wrists in 38 healthy volunteers were analyzed retrospectively. All of the rheumatoid wrists had caused persistent pain for more than 6 months despite ongoing medical treatment. Extensor tendon rupture was noted in 49 wrists in 47 patients, and no rupture was noted in 59 wrists in 56 patients. The dorsal subluxation ratio (DSR) of the ulnar head and the carpal supination angle (CSA) were measured utilizing a new technique. The average DSR and CSA in the rupture group (n = 49), the non-rupture group (n = 59), and the normal wrist group (n = 38) were 37%, 19%, and 26%, and 15 , 11 , and 6 respectively. The cut-off values for extensor tendon rupture in the wrists of patients with RA were 32% (sensitivity; 70%, specificity; 75%) in the DSR, and 14 (71%, 68%) in the CSA. By utilizing 3DCT imaging of the rheumatoid wrist, these parameters can help improve our ability to predict extensor tendon rupture. (orig.)

  3. Demonstration of creep during filtration

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Bugge, Thomas Vistisen; Kirchheiner, Anders Løvenbalk

    The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found that the prod......The classical filtration theory assumes a unique relationship between the local filter cake porosity and the local effective pressure. For a number of compressible materials, it has however been observed that during the consolidation stage this may not be the case. It has been found...... that the production of filtrate also depends on the characteristic time for the filter cake solids to deform. This is formulated in the Terzaghi-Voigt model in which a secondary consolidation is introduced. The secondary consolidation may be visualized by plots of the relative cake deformation (U) v.s. the square...... magnitude as the primary consolidation (defined by the hydraulic retardation), the creep phenomenon may occur during filtration. This will lead to Ruth's plots characterized by a concave with two (more or less) distinct slopes. The slopes are defined by the relationship between the porosity...

  4. The investigation of expanded polystyrene creep behaviour

    Directory of Open Access Journals (Sweden)

    Zhukov Aleksey

    2017-01-01

    Full Text Available The results obtained in long-term testing under constant compressive stress of the cut from the Slabs EPS 50/100 and EPS 150 with the density ranging from 15 to 24 kg/m3, which were manufactured by the same manufacturer by foaming EPS solid granules (beads in closed volume. The creep strain of the above described specimens was used as a criterion for estimating the deformability of the EPS slabs under long-term compressive stress. It was measured using special stands EN 1606, maintaining constant stress during the fixed time interval tn=122 days. Creep strains were determined by the methods described in EN 1606 for constant stress σc=0.35σ10% (compressive stress σ10% was determined in accordance with EN 826:2013. The long-term compressive stress measurement error did not exceed 1 %, while the creep strain measurement error was not larger than 0,005 mm. The tests were conducted at the ambient temperature of (23±2°С and relative humidity of (50±5 %.The long-term constant compressive load σc=0.35σ10%. The method of mathematical and statistical experimental design optimization models taking into account the thickness of specimens is proposed to determine the creep compliance Ic (tn the creep strain εc (tn and predictive point estimate of creep strain εc (T. Graphical interpretation of the abstained models is also presented. It should be noted that the abstained equations may be used in practice for estimating the creep strains at time tn=122 days and predictive estimates of εc (T for the load time of 10 years.

  5. PENGARUH RANGKAK CREEP PADA BANGUNAN TINGGI

    Directory of Open Access Journals (Sweden)

    David Budiono

    2003-01-01

    Full Text Available Inelastic deformation due to creep can cause dramatic change of end moment of beams. In this study the influence of creep to end moments is compared with the ones calculated using direct and sequential load methods. An approximate method using Equivalent Modulus of Elasticity is proposed. Four shear wall frame buildings, 10, 20, 30, and 40 stories with 30 cm shear wall are subjected to 5, 10, 15, and 20 years creep. It is shown that the difference between the 5, 10, 15, and 20 years creep are not significant. Compared to the sequential method, the direct method gives a better result to the creep. It is also shown that except for the 10 story building, the end moments caused by the development of creep deformation can cause cracks, thus the ability of the beams to redistribute the end moment must be assured. Abstract in Bahasa Indonesia : Perubahan bentuk inelastis yang disebabkan oleh rangkak (creep dapat menyebabkan perubahan momen pada tumpuan balok. Penelitian ini mempelajari pengaruh rangkak dan membandingkan hasil perhitungan yang diperoleh terhadap metode pembebanan langsung dan pembebanan sequential. Untuk memperhitungkan pengaruh rangkak, diusulkan suatu metode penyederhanaan di mana digunakan konsep Modulus Elastisitas Ekivalen. Dalam penelitian ini ditinjau 4 buah bangunan, yaitu bangunan 10, 20, 30 dan 40 lantai dengan dinding geser tebal 30 cm., pengaruh rangkak diperhatikan pada saat bangunan berumur 5, 10, 15, dan 20 tahun. Hasil penelitian menunjukkan bahwa tidak ada perbedaan yang berarti antara rangkak 5, 10, 15, dan 20 tahun. Dibandingkan dengan metode sequential, metode pembebanan langsung lebih mendekati hasil yang diberikan perhitungan dengan memasukkan pengaruh rangkak. Juga ditunjukkan bahwa selain pada bangunan 10 lantai, akibat rangkak akan terjadi retak pada beberapa tumpuan, sehingga dalam perencanaan harus dimungkinkan terjadinya redistribusi momen dari tumpuan ke lapangan.

  6. Effect of dendrite arm spacing and the γ’ phase size on stress rupture properties of Ni3Al-base single crystal superalloy IC6SX

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The effect of dendrite arm spacing and the size of γ’ phase on stress rupture properties of as-cast Ni3Al-based single crystal superalloy IC6SX was studied.It has been found that the stress rupture properties were affected by dendrite arm spacing and the size of γ’ phase significantly,i.e.,the stress rupture lives of as-cast specimens under the test condition of 1100°C/120 MPa were significantly increased from about 10 h to 31 h with decreasing dendrite arm spacing and the size of γ’ phase from 3.0 μm and 1.6 μm to 1.3 μm and 0.8 μm,respectively.The creep cracks generated easily in the brittle Y-NiMo phase.Then the cracks gradually mergered and grew up during creep,and finally led to specimens fracture.The orientated coarsening of γ’ phase has been found in the stress ruptured specimens,due to the elements diffusion.However,the γ’ phase did not form the integrated structure during the short periods of 10-31 h as the creep tests lasted.

  7. Creep to inertia dominated stick-slip behavior in sliding friction modulated by tilted non-uniform loading

    Science.gov (United States)

    Tian, Pengyi; Tao, Dashuai; Yin, Wei; Zhang, Xiangjun; Meng, Yonggang; Tian, Yu

    2016-09-01

    Comprehension of stick-slip motion is very important for understanding tribological principles. The transition from creep-dominated to inertia-dominated stick-slip as the increase of sliding velocity has been described by researchers. However, the associated micro-contact behavior during this transition has not been fully disclosed yet. In this study, we investigated the stick-slip behaviors of two polymethyl methacrylate blocks actively modulated from the creep-dominated to inertia-dominated dynamics through a non-uniform loading along the interface by slightly tilting the angle of the two blocks. Increasing the tilt angle increases the critical transition velocity from creep-dominated to inertia-dominated stick-slip behaviors. Results from finite element simulation disclosed that a positive tilt angle led to a higher normal stress and a higher temperature on blocks at the opposite side of the crack initiating edge, which enhanced the creep of asperities during sliding friction. Acoustic emission (AE) during the stick-slip has also been measured, which is closely related to the different rupture modes regulated by the distribution of the ratio of shear to normal stress along the sliding interface. This study provided a more comprehensive understanding of the effect of tilted non-uniform loading on the local stress ratio, the local temperature, and the stick-slip behaviors.

  8. The Pin-Loaded Small One-Bar Specimen in Use to Determine Uniaxial and Multiaxial Creep Data

    Science.gov (United States)

    Ali, Balhassn S. M.

    2016-09-01

    Two novel small specimen creep testing techniques are presented in this paper. The pin-loaded small one-bar specimen (OBS) and the small notched specimen with four loading pins (SNS4) are designed to determine the remaining lifetime for the high-temperature components. The small OBS is suitable for use in obtaining both uniaxial creep strain and creep rupture life data and the SNS4 is designed to obtain the multiaxial behaviour using small material samples. The specimens can be made from small material samples removed from the component surface or from the heat-affected zone. The specimens can be loaded through pin connections for testing. A conversion relationship and conversion factor have been obtained and used to convert the OBS creep data to the corresponding uniaxial data. For validation two materials have been used, P92 and P91 steels at 650°C. The advantages of these testing techniques are highlighted; the recommendations for future research are also given.

  9. Uniaxial and Multiaxial Creep Testing of Copper

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, Pertti; Holmstroem, Stefan; Veivo, Juha; Salonen, Jorma; Nenonen, Pertti; Laukkanen, Anssi [VTT Industrial Systems, Helsinki (Finland)

    2003-12-01

    Multiaxial (compact tension, CT) creep testing has been performed for copper with 79 ppm phosphorus and 60 ppm oxygen. The test load levels were selected according to results from preceding uniaxial creep testing and FE analysis of the CT specimens. Interrupted testing was used for metallographic inspection of the specimens for creep damage. After 7,900 h and 10,300 h of testing at 150 deg C and 46 MPa (reference stress), inspected CT specimens showed cavity indications with a low maximum density (<100/mm{sup 2}) and a typical maximum dimension of less than about 1 {mu}m near the notch tip. From previous experience on creep cavitation damage, the expected minimum life to crack initiation at the notch tip would be at least 40,000 hours, but could be considerably longer because the cavity indications are suspected to originate at least partly from precipitates in specimen preparation. The interrupted testing of CT specimens also showed a 'segregation zone' along some grain boundaries, mainly near the notch tip. This zone appears to contain more P and O than the surrounding matrix, but less than the narrow grain boundary films that are already present in the as-new material. The zone is readily etched and shows a relatively sharp edge towards the matrix without an obvious phase boundary. Using converted multiaxial (CT) testing results, the predicted isothermal uniaxial creep life at 150 deg C/46 MPa is about 1,900 years. The corresponding creep life directly predicted from uniaxial data is 3,100 years, when estimated from a parametric best fit expression according to PD6605. Although the two results are satisfactorily within a factor of two in time, the uncertainties in the extended extrapolations remain large. Further testing is recommended, with at least two creep enhancing factors present. Such testing could include notched creep testing at 120-180 deg C in a corrosive environment, and notched model vessel creep testing at elevated pressure. It is also

  10. Analysis of Superheater Work Under Creep Conditions

    Directory of Open Access Journals (Sweden)

    Piotr Duda

    2015-03-01

    Full Text Available The aim of this article is work modelling of superheater SH3. It is made of the austenitic stainless steel Super 304H. Its design temperature T is 604 C, and the design pressure P acting on the inner surface of the pipes is 284 bar. The high temperature is the reason of the superheater work under creep conditions. In this article calculations of the optimally mounted coil superheater SH3 are presented. The calculations are carried out first on the basis of the applicable European standards and with the help of the Auto Pipe program. Then, calculations are performed using the ANSYS program based on conducted creep tests and proposed creep equation. The coefficients in creep equation are determined based on the research conducted at the Instytut Metalurgii Żelaza in Gliwice. The model approximates the creep strain as the function of time and stress and this function is presented in the form of a three-dimensional surface . The results of calculations by both methods will be compared and conclusions will be presented. The performed analyzes can estimate the superheater coil remnant life and the usage after the selected time of its operation.

  11. Quadriceps and patellar tendon rupture.

    Science.gov (United States)

    Ramseier, L E; Werner, C M L; Heinzelmann, M

    2006-06-01

    Ruptures of the patellar and/or quadriceps tendon are rare injuries that require immediate repair to re-establish knee extensor continuity and to allow early motion. We evaluated 36 consecutive patients with quadriceps or patellar tendon rupture between 1993 and 2000. There were 37 primary ruptures, 3 reruptures, 21 quadriceps and 19 patellar tendon ruptures. Follow up examination (>24 months postoperatively) included the patient's history, assessment of risk factors, clinical examination of both knees, isometric muscle strength measurements and three specific knee scores, Hospital for Special Surgery Score, Knee Society Score and Turba Score, and a short form SF-36. We evaluated 29 patients (26 men) with 33 ruptures (16 patellar tendon, 17 quadriceps tendon). Seven patients were lost to follow up. We found no difference between the range of motion and muscle strength when the injured leg was compared to the non-injured leg. Risk factors did not influence the four scores, patient satisfaction, pain, muscle strength or range of motion. Multiple injured patients had a significant reduction in muscle strength and circumference, however patient satisfaction did not differ to the non-multiple injured patient group.

  12. Influence of creep and cyclic oxidation in thermal barrier coatings

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, Philipp; Baeker, Martin; Roesler, Joachim [Technische Univ. Braunschweig (Germany). Inst. fuer Werkstoffe

    2012-01-15

    The lifetime of thermal barrier coating systems is limited by cracks close to the interfaces, causing delamination. To study the failure mechanisms, a simplified model system is analysed which consists of a bond-coat bulk material, a thermally grown oxide, and an yttria-stabilised zirconia topcoat. The stresses in the model system are calculated using a finite element model which covers the simulation of full thermal cycles, creep in all layers, and the anisotropic oxidation during dwelling. Creep in the oxide and the thermal barrier coating is varied with the use of different creep parameter sets. The influence of creep in the bondcoat is analysed by using two different bond-coat materials: fast creeping Fecralloy and slow creeping oxide dispersion strengthened MA956. It is shown that creep in the bondcoat influences the lifetime of the coatings. Furthermore, a fast creeping thermally grown oxide benefits the lifetime of the coating system. (orig.)

  13. Creep Properties of Walikukun (Schouthenia ovata Timber Beams

    Directory of Open Access Journals (Sweden)

    Ali Awaludin

    2016-09-01

    Full Text Available This study presents an evaluation of creep constants of Walikukun (Schoutheniaovata timber beams when rheological model of four solid elements, which is obtained byassembling Kelvin and Maxwell bodies in parallel configuration, was adopted. Creep behaviorobtained by this method was further discussed and compared with creep behavior developedusing phenomenological model of the previous study. Creep data of previous study was deformationmeasurement of Walikukun beams having cross-section of 15 mm by 20 mm with a clearspan of 550 mm loaded for three weeks period under two different room conditions: with andwithout Air Conditioner. Creep behavior given by both four solid elements model and phenomenological(in this case are power functions had good agreement during the period of creepmeasurement, but they give different prediction of creep factor beyond this period. The powerfunction of phenomenological model could give a reasonable creep prediction, while for the foursolid elements model a necessary modification is required to adjust its long-term creep behavior.

  14. Homogenized Creep Behavior of CFRP Laminates at High Temperature

    Science.gov (United States)

    Fukuta, Y.; Matsuda, T.; Kawai, M.

    In this study, creep behavior of a CFRP laminate subjected to a constant stress is analyzed based on the time-dependent homogenization theory developed by the present authors. The laminate is a unidirectional carbon fiber/epoxy laminate T800H/#3631 manufactured by Toray Industries, Inc. Two kinds of creep analyses are performed. First, 45° off-axis creep deformation of the laminate at high temperature (100°C) is analyzed with three kinds of creep stress levels, respectively. It is shown that the present theory accurately predicts macroscopic creep behavior of the unidirectional CFRP laminate observed in experiments. Then, high temperature creep deformations at a constant creep stress are simulated with seven kinds of off-axis angles, i.e., θ = 0°, 10°, 30°, 45°, 60°, 75°, 90°. It is shown that the laminate has marked in-plane anisotropy with respect to the creep behavior.

  15. Life prediction methodology for thermal-mechanical fatigue and elevated temperature creep design

    Science.gov (United States)

    Annigeri, Ravindra

    Nickel-based superalloys are used for hot section components of gas turbine engines. Life prediction techniques are necessary to assess service damage in superalloy components resulting from thermal-mechanical fatigue (TMF) and elevated temperature creep. A new TMF life model based on continuum damage mechanics has been developed and applied to IN 738 LC substrate material with and without coating. The model also characterizes TMF failure in bulk NiCoCrAlY overlay and NiAl aluminide coatings. The inputs to the TMF life model are mechanical strain range, hold time, peak cycle temperatures and maximum stress measured from the stabilized or mid-life hysteresis loops. A viscoplastic model is used to predict the stress-strain hysteresis loops. A flow rule used in the viscoplastic model characterizes the inelastic strain rate as a function of the applied stress and a set of three internal stress variables known as back stress, drag stress and limit stress. Test results show that the viscoplastic model can reasonably predict time-dependent stress-strain response of the coated material and stress relaxation during hold times. In addition to the TMF life prediction methodology, a model has been developed to characterize the uniaxial and multiaxial creep behavior. An effective stress defined as the applied stress minus the back stress is used to characterize the creep recovery and primary creep behavior. The back stress has terms representing strain hardening, dynamic recovery and thermal recovery. Whenever the back stress is greater than the applied stress, the model predicts a negative creep rate observed during multiple stress and multiple temperature cyclic tests. The model also predicted the rupture time and the remaining life that are important for life assessment. The model has been applied to IN 738 LC, Mar-M247, bulk NiCoCrAlY overlay coating and 316 austenitic stainless steel. The proposed model predicts creep response with a reasonable accuracy for wide range of

  16. A Fault Evolution Model Including the Rupture Dynamic Simulation

    Science.gov (United States)

    Wu, Y.; Chen, X.

    2011-12-01

    tip keeps the rupture continuing easily. Therefore, comparing with the current simulation, we expect a different stress evolution after a large earthquake in a short time scale, which is very essential for the short-term prediction. Once the model is successfully constructed, we intend to apply it to the San Andreas Fault at Parkfield segment. We try to simulate the seismicity evolution and the distribution of coseismic and postseismic slip and interseismic creep in the past decades. We expect to reproduce some specific events and slip distributions.

  17. Creep motion of a model frictional system

    CERN Document Server

    Blanc, Baptiste; Géminard, Jean-Christophe

    2011-01-01

    We report on the dynamics of a model frictional system submitted to minute external perturbations. The system consists of a chain of sliders connected through elastic springs that rest on an incline. By introducing cyclic expansions and contractions of the springs we observe a reptation of the chain. We account for the average reptation velocity theoretically. The velocity of small systems exhibits a series of plateaus as a function of the incline angle. Due to elastic e ects, there exists a critical amplitude below which the reptation is expected to cease. However, rather than a full stop of the creep, we observe in numerical simulations a transition between a continuous-creep and an irregular-creep regime when the critical amplitude is approached. The latter transition is reminiscent of the transition between the continuous and the irregular compaction of granular matter submitted to periodic temperature changes.

  18. Transitional Thermal Creep of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Freiesleben Hansen, Per

    1999-01-01

    Couplings between creep of hardened concrete and temperature/water effects are well-known. Both the level and the gradients in time of temperature or water content influence the creep properties. In early age concrete the internal drying and the heat development due to hydration increase the effect...... of these couplings. The purpose of this work is to set up a mathematical model for creep of concrete which includes the transitional thermal effect. The model govern both early age concrete and hardened concrete. The development of the material properties in the model are assumed to depend on the hydration process...... and the thermal activation of the water in the microstructure. The thermal activation is assumed to be governed by the Arrhenius principle and the activation energy of the viscosity of water is found applicable in the analysis of experimental data. Changes in temperature create an imbalance in the microstructure...

  19. Transitional Thermal Creep of Early Age Concrete

    DEFF Research Database (Denmark)

    Hauggaard, A. B.; Damkilde, L.; Hansen, Per Freiesleben

    1999-01-01

    Couplings between creep of hardened concrete and temperature/water effects are well-known. Both the level and the gradients in time of temperature or water content influence the creep properties. In early age concrete the internal drying and the heat development due to hydration increase the effect...... of these couplings. The purpose of this work is to set up a mathematical model for creep of concrete that includes the transitional thermal effect. The model governs both early age concrete and hardened concrete. The development of the material properties in the model is assumed to depend on the hydration process...... and the thermal activation of water in the microstructure. The thermal activation is assumed to be governed by the Arrhenius principle, and the activation energy of the viscosity of water is found applicable in the analysis of the experimental data. Changes in temperature create an imbalance in the microstructure...

  20. Creep Effects in Pultruded FRP Beams

    Science.gov (United States)

    Boscato, G.; Casalegno, C.; Russo, S.

    2016-03-01

    The paper presents results of two creep tests on pultruded open-section GFRP beams aimed to evaluate the long-term deformations, the residual deflection after unloading, and the influence of creep strains on the flexuraltorsional buckling phenomenon. Two beams were subjected to a constant load for about one year. Then one of the beams was unloaded to evaluate its residual deflection. For the other beam, the load was increased up to failure, and the residual buckling strength was compared with that of a similar beam tested up to failure. The parameters of the Findley power law are evaluated, and the experimental results are compared with those of numerical analyses and with available formulations for prediction of the time-dependent properties of composite beams. Results of the investigation testify, in particular, to a noninsignificant time-dependent increment in deflections of the beams and to a significant reduction in their buckling strength due to creep deformations.

  1. Untreated silicone breast implant rupture

    DEFF Research Database (Denmark)

    Hölmich, Lisbet R; Vejborg, Ilse M; Conrad, Carsten

    2004-01-01

    Implant rupture is a well-known complication of breast implant surgery that can pass unnoticed by both patient and physician. To date, no prospective study has addressed the possible health implications of silicone breast implant rupture. The aim of the present study was to evaluate whether...... untreated ruptures are associated with changes over time in magnetic resonance imaging findings, serologic markers, or self-reported breast symptoms. A baseline magnetic resonance imaging examination was performed in 1999 on 271 women who were randomly chosen from a larger cohort of women having cosmetic...... breast implants for a median period of 12 years (range, 3 to 25 years). A follow-up magnetic resonance imaging examination was carried out in 2001, excluding women who underwent explantation in the period between the two magnetic resonance imaging examinations (n = 44). On the basis of these examinations...

  2. Correlation of Creep-Rupture Data for Complex Alloys at Elevated Temperatures

    Directory of Open Access Journals (Sweden)

    Krivenyuk, V.

    2007-01-01

    Full Text Available The main tendency towards the development of the methods for predicting long-time data on of metallic materials is to derive the correlation relationships, which should be as general as possible. This paper presents the verification of the fact that a sufficiently accurate estimation of the peculiarities of the portions of experimental diagrams and generalization of this information can be of great importance for a considerable progress in the prediction.

  3. Protecting geothermal operations with rupture disks

    Energy Technology Data Exchange (ETDEWEB)

    Porter, D.W.

    1983-02-01

    Potential rupture disk applications in geothermal operations are reviewed. Several wells manifolded together, to form the geothermal feed, cause erratic pressure. Rupture disks are used for relief. Flash tanks are equipped with rupture disks. Brine separators, heat exchanger shells, and turbine casings are protected by rupture disks. An analysis of geothermal steam will determine the rupture disk metal. Reverse Buckling disks are recommended over tension loaded disks for dealing with geothermal pressure cycling. Erratic temperature suggests that metals which retain tensile strength with temperature be used (Inconel is mentioned). In summary, geothermal projects represent an excellent rupture disk market.

  4. Measurement of local creep properties in stainless steel welds

    OpenAIRE

    Sakanashi, Y.; Gungor, S; Bouchard, J.

    2012-01-01

    A high temperature measurement system for creep deformation based on the digital image correlation (DIC) technique is described. The new system is applied to study the behaviour of a multi-pass welded joint in a high temperature tensile test and a load controlled creep test at 545°C. Spatially resolved tensile properties and time dependent creep deformation properties across a thick section type 316 stainless steel multi-pass welded joint are presented and discussed. Significantly lower creep...

  5. Nanoindentation investigation of creep properties of calcium silicate hydrates

    OpenAIRE

    Vandamme, Matthieu; ULM, Franz Josef

    2013-01-01

    The creep properties of calcium silicate hydrates (C-S-H) are assessed by means of nanoindentation creep experiments on a wide range of substoichiometric cement pastes. We observe that, after a few seconds, the measured creep compliance of C-S-H is very well captured by a logarithmic time function. The rate of the logarithmic creep is found to scale in a unique manner with indentation modulus, indentation hardness, and packing density, independent of processing, mix proportions, indenter geom...

  6. Recommendation for Creep and Creep-fatigue assessment for P91 Components

    OpenAIRE

    Pohja, Rami; HOLMSTROM BJORN; LEE Hyeong-Yeon

    2015-01-01

    This report is based on the results and experience gained in assessing both public domain and MATTER data, some previously reported in the MATTER deliverable D4.5: “Creep-fatigue interaction rules for P91” and some assessed here. A number of methods, including interaction diagram based methods and simplified methods, have been compared for predicting the creep-fatigue life of P91 steel. The effect of cyclic softening on creep properties have been considered in the evaluations presented in thi...

  7. Self-Rupturing Hermetic Valve

    Science.gov (United States)

    Tucker, Curtis E., Jr.; Sherrit, Stewart

    2011-01-01

    For commercial, military, and aerospace applications, low-cost, small, reliable, and lightweight gas and liquid hermetically sealed valves with post initiation on/off capability are highly desirable for pressurized systems. Applications include remote fire suppression, single-use system-pressurization systems, spacecraft propellant systems, and in situ instruments. Current pyrotechnic- activated rupture disk hermetic valves were designed for physically larger systems and are heavy and integrate poorly with portable equipment, aircraft, and small spacecraft and instrument systems. Additionally, current pyrotechnically activated systems impart high g-force shock loads to surrounding components and structures, which increase the risk of damage and can require additional mitigation. The disclosed mechanism addresses the need for producing a hermetically sealed micro-isolation valve for low and high pressure for commercial, aerospace, and spacecraft applications. High-precision electrical discharge machining (EDM) parts allow for the machining of mated parts with gaps less than a thousandth of an inch. These high-precision parts are used to support against pressure and extrusion, a thin hermetically welded diaphragm. This diaphragm ruptures from a pressure differential when the support is removed and/or when the plunger is forced against the diaphragm. With the addition of conventional seals to the plunger and a two-way actuator, a derivative of this design would allow nonhermetic use as an on/off or metering valve after the initial rupturing of the hermetic sealing disk. In addition, in a single-use hermetically sealed isolation valve, the valve can be activated without the use of potential leak-inducing valve body penetrations. One implementation of this technology is a high-pressure, high-flow-rate rupture valve that is self-rupturing, which is advantageous for high-pressure applications such as gas isolation valves. Once initiated, this technology is self

  8. Spontaneous rupture of vaginal enterocele

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Galatius, H; Hansen, P K

    1985-01-01

    Spontaneous rupture of an enterocele is a rare complication. Only 24 cases including the present case have been reported in the literature. The patients were elderly and had had at least one vaginal operation. The patients were remarkably unaffected symptomatically on admission.......Spontaneous rupture of an enterocele is a rare complication. Only 24 cases including the present case have been reported in the literature. The patients were elderly and had had at least one vaginal operation. The patients were remarkably unaffected symptomatically on admission....

  9. Spontaneous rupture of vaginal enterocele

    DEFF Research Database (Denmark)

    Svendsen, Jesper Hastrup; Galatius, H; Hansen, P K

    1985-01-01

    Spontaneous rupture of an enterocele is a rare complication. Only 24 cases including the present case have been reported in the literature. The patients were elderly and had had at least one vaginal operation. The patients were remarkably unaffected symptomatically on admission.......Spontaneous rupture of an enterocele is a rare complication. Only 24 cases including the present case have been reported in the literature. The patients were elderly and had had at least one vaginal operation. The patients were remarkably unaffected symptomatically on admission....

  10. Simultaneous bilateral patellar tendon rupture

    Directory of Open Access Journals (Sweden)

    Diogo Lino Moura

    Full Text Available ABSTRACT Bilateral patellar tendon rupture is a rare entity, often associated with systemic diseases and patellar tendinopathy. The authors report a rare case of a 34-year-old man with simultaneous bilateral rupture of the patellar tendon caused by minor trauma. The patient is a retired basketball player with no past complaints of chronic knee pain and a history of steroid use. Surgical management consisted in primary end-to-end tendon repair protected temporarily with cerclage wiring, followed by a short immobilization period and intensive rehabilitation program. Five months after surgery, the patient was able to fully participate in sport activities.

  11. Modelling of creep damage development in ferritic steels

    Energy Technology Data Exchange (ETDEWEB)

    Sandstroem, R. [Swedish Institute for Metals Research, Stockholm (Sweden)

    1998-12-31

    The physical creep damage, which is observed in fossil-fired power plants, is mainly due to the formation of cavities and their interaction. It has previously been demonstrated that both the nucleation and growth of creep cavities can be described by power functions in strain for low alloy and 12 % CrMoV creep resistant steels. It possible to show that the physical creep damage is proportional to the product of the number of cavities and their area. Hence, the physical creep damage can also be expressed in terms of the creep strain. In the presentation this physical creep damage is connected to the empirical creep damage classes (1-5). A creep strain-time function, which is known to be applicable to low alloy and 12 % CrMoV creep resistant steels, is used to describe tertiary creep. With this creep strain - time model the residual lifetime can be predicted from the observed damage. For a given damage class the remaining life is directly proportional to the service time. An expression for the time to the next inspection is proposed. This expression is a function of fraction of the total allowed damage, which is consumed till the next inspection. (orig.) 10 refs.

  12. Micromechanical studies of cyclic creep fracture under stress controlled loading

    DEFF Research Database (Denmark)

    van der Giessen, Erik; Tvergaard, Viggo

    1996-01-01

    This paper deals with a study of intergranular failure by creep cavitation under stress-controlled cyclic loading conditions. Loading is assumed to be slow enough that diffusion and creep mechanisms (including grain boundary sliding) dominate, leading to intergranular creep fracture. This study i...

  13. The Creep Properties of Fine Sandstone under Uniaxial Tensile Stress

    Directory of Open Access Journals (Sweden)

    Jiang Haifei

    2015-09-01

    Full Text Available A graduated uniaxial direct tensile creep test for fine sandstone is conducted by adopting a custom-designed direct tensile test device for rock. The experiment shows that the tensile creep of fine sandstone has similar creep curve patterns to those of compression creep, while the ratios of the creep strain to the total strain obtained in the tensile tests are substantially higher than those obtained for similar compression tests, which indicates that the creep ability of rock in the tensile process is higher than that in the uniaxial compression process. Based on the elastic modulus in the approximately linear portion of the obtained isochronous stress-strain curves of the tensile creep, the time dependence of the elasticity modulus for the Kelvin model is evaluated, and a revised generalized Kelvin model is obtained by substitution into the generalized Kelvin model. A new viscousplastic model is proposed to describe the accelerated creep properties, and this model is combined in series with the revised generalized Kelvin model to form a new nonlinear viscoelastic-plastic creep model that can describe the properties of attenuation creep, steady creep, and accelerated creep. Comparison of the test and theoretical curves demonstrates that they are nearly identical, which verifies the performance of the model.

  14. Micromechanical studies of cyclic creep fracture under stress- controlled loading

    NARCIS (Netherlands)

    Giessen, E. van der; Tvergaard, V.

    1996-01-01

    This paper deals with a study of intergranular failure by creep cavitation under stress-controlled cyclic loading conditions. Loading is assumed to be slow enough that diffusion and creep mechanisms (including grain boundary sliding) dominate, leading to intergranular creep fracture. This study is

  15. New constitutive model for the study of creeping solids

    Institute of Scientific and Technical Information of China (English)

    王世文; 杨兆建; 冯建玲

    2002-01-01

    In this paper, a incremental form of constitutive laws for creeping studies are proposed. The equations are based on the concept of creep hardening surface. Damage effects were introduced to the new constitutive relations to study solids creeping effects with pre-existing damages. The present formula is easy to be adopted into other numerical procedures such as finite element methods.

  16. Nanoindentation creep versus bulk compressive creep of dental resin-composites.

    Science.gov (United States)

    El-Safty, S; Silikas, N; Akhtar, R; Watts, D C

    2012-11-01

    To evaluate nanoindentation as an experimental tool for characterizing the viscoelastic time-dependent creep of resin-composites and to compare the resulting parameters with those obtained by bulk compressive creep. Ten dental resin-composites: five conventional, three bulk-fill and two flowable were investigated using both nanoindentation creep and bulk compressive creep methods. For nano creep, disc specimens (15mm×2mm) were prepared from each material by first injecting the resin-composite paste into metallic molds. Specimens were irradiated from top and bottom surfaces in multiple overlapping points to ensure optimal polymerization using a visible light curing unit with output irradiance of 650mW/cm(2). Specimens then were mounted in 3cm diameter phenolic ring forms and embedded in a self-curing polystyrene resin. Following grinding and polishing, specimens were stored in distilled water at 37°C for 24h. Using an Agilent Technologies XP nanoindenter equipped with a Berkovich diamond tip (100nm radius), the nano creep was measured at a maximum load of 10mN and the creep recovery was determined when each specimen was unloaded to 1mN. For bulk compressive creep, stainless steel split molds (4mm×6mm) were used to prepare cylindrical specimens which were thoroughly irradiated at 650mW/cm(2) from multiple directions and stored in distilled water at 37°C for 24h. Specimens were loaded (20MPa) for 2h and unloaded for 2h. One-way ANOVA, Levene's test for homogeneity of variance and the Bonferroni post hoc test (all at p≤0.05), plus regression plots, were used for statistical analysis. Dependent on the type of resin-composite material and the loading/unloading parameters, nanoindentation creep ranged from 29.58nm to 90.99nm and permanent set ranged from 8.96nm to 30.65nm. Bulk compressive creep ranged from 0.47% to 1.24% and permanent set ranged from 0.09% to 0.38%. There was a significant (p=0.001) strong positive non-linear correlation (r(2)=0.97) between bulk

  17. Rupture of Achilles Tendon : Usefulness of Ultrasonography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hyeon; Ki, Won Woo; Yoon, Kwon Ha; Kim, Song Mun; Shin, Myeong Jin [Ulsan Medical College, Ulsan (Korea, Republic of); Kwon, Soon Tae [Chungnam University College of Medicine, Daejeon (Korea, Republic of)

    1996-06-15

    To differentiate a complete rupture of Achilles tendon from an incomplete one which is important because its treatment is quite different. And it is necessary to know the exact site of the rupture preoperatively. Fifteen cases of fourteen patients which were diagnosed as Achilles tendon rupture by ultrasonography and surgery were reviewed. We compared sonographic rupture site with surgical findings. Ultrasonographic criteria for differentiation of complete and incomplete rupture was defined as follows : the discreteness, which means the proximal intervening hypoechogenicity to the interface echogenicity of distal margin of ruptured tendon : the slant sign, which represents the interface of ruptured distal margin which was seen over the 3/4 of the thickness of the tendon without intervening low echogeneicity : the invagination sign, which means the echogenic invagination from Kager triangle into posterior aspect of Achilles tendon over the half thickness of the tendon. The sites of complete tendon rupture were exactly corresponded to surgical finding in four cases of ten complete ruptures. And the discrepancy between sonographic and surgical findings in the site of complete rupture was 1.2 {+-} 0.4 cm in six cases. Three of ten complete ruptures showed the discreteness sign, all of ten showed the slant sign and two of ten showed the invagination sign. It is helpful to differentiate a complete from incomplete rupture of the Achilles tendon and to localize the site of the complete rupture with the ultrasonographic evaluation

  18. Rupture of endotracheal tube cuff during robot-assisted endoscopic thyroidectomy -A case report-.

    Science.gov (United States)

    Lee, Hyung-Chul; Yun, Mi-Ja; Goo, Eui-Kyoung; Bahk, Jae-Hyon; Park, Hee-Pyoung; Jeon, Young-Tae; Lee, Sang Chul

    2010-12-01

    We encountered a case of a rupture of an endotracheal tube cuff during robot-assisted thyroid surgery in a 35-year-old male patient. Two hours after commencing surgery, the bellows of the ventilator were not filled and a rupture of the endotracheal tube cuff was suspected. Once the robot-manipulator is engaged, the position of the operating table cannot be altered without removing it from the patient. Reintubation with direct laryngoscopy was performed with difficulty in the narrow space between the patient's head and robot-manipulator without moving the robot away from the patient. The rupture of the endotracheal tube cuff was confirmed by observing air bubbles exiting from the balloon in water. The patient was discharged 3 days after surgery without complications. In robot-assisted thyroid surgery, a preoperative arrangement of the robot away from the patient's head to obtain easy access to the patient is essential for safe anesthetic care.

  19. Low Temperature Creep of Hot-Extruded Near-Stoichiometric NiTi Shape Memory Alloy. Part I; Isothermal Creep

    Science.gov (United States)

    Raj, S. V.; Noebe, R. D.

    2013-01-01

    This two-part paper is the first published report on the long term, low temperature creep of hot-extruded near-stoichiometric NiTi. Constant load tensile creep tests were conducted on hot-extruded near-stoichiometric NiTi at 300, 373 and 473 K under initial applied stresses varying between 200 and 350 MPa as long as 15 months. These temperatures corresponded to the martensitic, two-phase and austenitic phase regions, respectively. Normal primary creep lasting several months was observed under all conditions indicating dislocation activity. Although steady-state creep was not observed under these conditions, the estimated creep rates varied between 10(exp -10) and 10(exp -9)/s. The creep behavior of the two phases showed significant differences. The martensitic phase exhibited a large strain on loading followed by a primary creep region accumulating a small amount of strain over a period of several months. The loading strain was attributed to the detwinning of the martensitic phase whereas the subsequent strain accumulation was attributed to dislocation glide-controlled creep. An "incubation period" was observed before the occurrence of detwinning. In contrast, the austenitic phase exhibited a relatively smaller loading strain followed by a primary creep region, where the creep strain continued to increase over several months. It is concluded that the creep of the austenitic phase occurs by a dislocation glide-controlled creep mechanism as well as by the nucleation and growth of deformation twins.

  20. Achilles tendon rupture; assessment of nonoperative treatment

    National Research Council Canada - National Science Library

    Barfod, Kristoffer Weisskirchner

    2014-01-01

    Acute Achilles tendon rupture is a frequent and potentially disabling injury. Over the past decade a change in treatment of acute Achilles tendon rupture away from operative towards non-operative treatment has taken place...

  1. Creep and creep-fatigue behavior of high chromium steel weldment

    Institute of Scientific and Technical Information of China (English)

    Yukio TAKAHASHI; Masaaki TABUCHI

    2011-01-01

    Manuscript received I December 2010; in revised form 9 March 2011Strength of welded joints of high chromium steels is one of the important concerns for fabricators and operators of ultra supercritical thermal power plants. A number of creep as well as creep-fatigue tests with tensile hold have been carried out on the welded joints of two types of high chromium steels widely used in Japan, I.e. Grade 91 and 122 steels. It was found that failure occurred in fine grain heat-affected zone in all the creep-fatigue tests, even at a relatively low temperature and fairly short time where failure occurred in plain base metal region in simple creep testing. Four procedures were used to predict failure lives and their results were compared with the test results. A newly proposed energy-based approach gave the best estimation of failure life, without respect of the material and temperature.

  2. Spontaneous Splenic Rupture in Melanoma

    Directory of Open Access Journals (Sweden)

    Hadi Mirfazaelian

    2014-01-01

    Full Text Available Spontaneous rupture of spleen due to malignant melanoma is a rare situation, with only a few case reports in the literature. This study reports a previously healthy, 30-year-old man who came with chief complaint of acute abdominal pain to emergency room. On physical examination, abdominal tenderness and guarding were detected to be coincident with hypotension. Ultrasonography revealed mild splenomegaly with moderate free fluid in abdominopelvic cavity. Considering acute abdominal pain and hemodynamic instability, he underwent splenectomy with splenic rupture as the source of bleeding. Histologic examination showed diffuse infiltration by tumor. Immunohistochemical study (positive for S100, HMB45, and vimentin and negative for CK, CD10, CK20, CK7, CD30, LCA, EMA, and chromogranin confirmed metastatic malignant melanoma. On further questioning, there was a past history of a nasal dark skin lesion which was removed two years ago with no pathologic examination. Spontaneous (nontraumatic rupture of spleen is an uncommon situation and it happens very rarely due to neoplastic metastasis. Metastasis of malignant melanoma is one of the rare causes of the spontaneous rupture of spleen.

  3. Spontaneous bilateral quadriceps tendon rupture.

    Science.gov (United States)

    Vigneswaran, N; Lee, K; Yegappan, M

    2007-11-01

    Spontaneous bilateral quadriceps tendon ruptures are uncommon. We present a 30-year-old man with end-stage renal failure, who sustained this injury, and subsequently had surgical repair of both tendons on separate occasions. He has since regained full range of movement of both knees.

  4. Renewal theory applied to creep and inelastic behavior of copper

    Energy Technology Data Exchange (ETDEWEB)

    Gibbons, K.A.; Cook, D.E. [Wright-Patterson Air Force Base, Dayton, OH (United States); Bearden, K.L. [Air Force Academy, Colorado Springs, CO (United States)

    1995-12-31

    A series of constant load creep tests on C11000 copper are described. The copper microstructure was closely controlled through appropriate heat treatment. Renewal theory was applied to interpret creep test data while developing the parameters of a general inelasticity model suitable for prediction. Creep experiments were predicted using renewal theory. Time varying load and load control stress-strain experiments were also predicted using renewal inelasticity theory. Results show that renewal theory is an efficient and effective approach to modeling creep of copper, needing a limited number of parameters. The simplicity of applying this theory to creep, variable load conditions, and a stress-strain experiment predictions for copper has been demonstrated.

  5. Creep properties and microstructure of the new wrought austenitic steel

    Energy Technology Data Exchange (ETDEWEB)

    Vlasak, T.; Hakl, J.; Novak, P. [SVUM a.s., Prague (Czech Republic); Vyrostkova, A. [Slovak Academy of Sciences, Kosice (Slovakia). Inst. of Materials Research

    2010-07-01

    The contribution is oriented on the new wrought austenitic steel BGA4 (Cr23Ni15Mn6Cu3W1.5NbVMo) developed by the British Corus Company. Our main aim is to present creep properties studied in SVUM a.s. Prague during COST 536 programme. The dependencies of the creep strength, strength for specific creep strain and minimum creep strain rate were evaluated on the basis of long term creep tests carried out at temperature interval (625; 725) C. Important part of a paper is metallographic analysis. (orig.)

  6. Fiber Breakage Model for Carbon Composite Stress Rupture Phenomenon: Theoretical Development and Applications

    Science.gov (United States)

    Murthy, Pappu L. N.; Phoenix, S. Leigh; Grimes-Ledesma, Lorie

    2010-01-01

    Stress rupture failure of Carbon Composite Overwrapped Pressure Vessels (COPVs) is of serious concern to Science Mission and Constellation programs since there are a number of COPVs on board space vehicles with stored gases under high pressure for long durations of time. It has become customary to establish the reliability of these vessels using the so called classic models. The classical models are based on Weibull statistics fitted to observed stress rupture data. These stochastic models cannot account for any additional damage due to the complex pressure-time histories characteristic of COPVs being supplied for NASA missions. In particular, it is suspected that the effects of proof test could significantly reduce the stress rupture lifetime of COPVs. The focus of this paper is to present an analytical appraisal of a model that incorporates damage due to proof test. The model examined in the current paper is based on physical mechanisms such as micromechanics based load sharing concepts coupled with creep rupture and Weibull statistics. For example, the classic model cannot accommodate for damage due to proof testing which every flight vessel undergoes. The paper compares current model to the classic model with a number of examples. In addition, several applications of the model to current ISS and Constellation program issues are also examined.

  7. Steady-state creep in the mantle

    Directory of Open Access Journals (Sweden)

    G. RANALLI

    1977-06-01

    Full Text Available SUMMARY - The creep equations for steady-state flow of olivine at high
    pressure and temperature are compared in an attempt to elucidate the rheological
    behaviour of the mantle. Results are presented in terms of applied deformation
    maps and curves of effective viscosity v depth.
    In the upper mantle, the transition stress between dislocation and diffusion
    creep is between 10 to 102 bar (as orders of magnitude for grain sizes from
    0.01 to 1 cm. The asthenosphere under continents is deeper, and has higher
    viscosity, than under oceans. Predominance of one creep mechanism above the
    others depends on grain size, strain rate, and volume fraction of melt; the
    rheological response can be different for different geodynamic processes.
    In the lower mantle, on the other hand, dislocation creep is predominant
    at all realistic grain sizes and strain rates. If the effective viscosity has to be only
    slightly higher than in the upper mantle, as some interpretations of glacioisostatic
    rebound suggest, then the activation volume cannot be larger than
    11 cm3 mole^1.

  8. Creep measurements on curing epoxy systems

    DEFF Research Database (Denmark)

    Kammer, Charlotte; Szabo, Peter

    1998-01-01

    The chemical curing of a stoichiometric mixture of the diglycidyl ether of bisphenol A and a 1,3-bis-(aminomethyl)-cyclohexane is studied.Creep experiments are combined with measurements in a Differential Scanning Calorimeter (DSC) to determine the change in bulk viscosity due to network formation....

  9. First principles model of carbonate compaction creep

    Science.gov (United States)

    Keszthelyi, Daniel; Dysthe, Dag Kristian; Jamtveit, Bjørn

    2016-05-01

    Rocks under compressional stress conditions are subject to long-term creep deformation. From first principles we develop a simple micromechanical model of creep in rocks under compressional stress that combines microscopic fracturing and pressure solution. This model was then upscaled by a statistical mechanical approach to predict strain rate at core and reservoir scale. The model uses no fitting parameter and has few input parameters: effective stress, temperature, water saturation porosity, and material parameters. Material parameters are porosity, pore size distribution, Young's modulus, interfacial energy of wet calcite, the dissolution, and precipitation rates of calcite, and the diffusion rate of calcium carbonate, all of which are independently measurable without performing any type of deformation or creep test. Existing long-term creep experiments were used to test the model which successfully predicts the magnitude of the resulting strain rate under very different effective stress, temperature, and water saturation conditions. The model was used to predict the observed compaction of a producing chalk reservoir.

  10. Irreversible thermodynamics of creep in crystalline solids

    Science.gov (United States)

    Mishin, Y.; Warren, J. A.; Sekerka, R. F.; Boettinger, W. J.

    2013-11-01

    We develop an irreversible thermodynamics framework for the description of creep deformation in crystalline solids by mechanisms that involve vacancy diffusion and lattice site generation and annihilation. The material undergoing the creep deformation is treated as a nonhydrostatically stressed multicomponent solid medium with nonconserved lattice sites and inhomogeneities handled by employing gradient thermodynamics. Phase fields describe microstructure evolution, which gives rise to redistribution of vacancy sinks and sources in the material during the creep process. We derive a general expression for the entropy production rate and use it to identify of the relevant fluxes and driving forces and to formulate phenomenological relations among them taking into account symmetry properties of the material. As a simple application, we analyze a one-dimensional model of a bicrystal in which the grain boundary acts as a sink and source of vacancies. The kinetic equations of the model describe a creep deformation process accompanied by grain boundary migration and relative rigid translations of the grains. They also demonstrate the effect of grain boundary migration induced by a vacancy concentration gradient across the boundary.

  11. Creep measurements on curing epoxy systems

    DEFF Research Database (Denmark)

    Kammer, Charlotte; Szabo, Peter

    1998-01-01

    The chemical curing of a stoichiometric mixture of the diglycidyl ether of bisphenol A and a 1,3-bis-(aminomethyl)-cyclohexane is studied.Creep experiments are combined with measurements in a Differential Scanning Calorimeter (DSC) to determine the change in bulk viscosity due to network formation....

  12. Creep of granulated loose-fill insulation

    DEFF Research Database (Denmark)

    Rasmussen, Torben Valdbjørn

    with SP-Building Physics in Sweden and VTT Building Technology in Finland. For the round robin test a cellulosic fibre insulation material was used. The proposed standardised method for creep tests and theories are limited to cases when the granulated loose-fill material is exposed to a constant...

  13. Time constant of logarithmic creep and relaxation

    CSIR Research Space (South Africa)

    Nabarro, FRN

    2001-07-15

    Full Text Available of logarithmic creep have been proposed, the work-hardening of a set of barriers to dislocation motion, all having the same activation energy, or the progressive exhaustion of the weaker barriers in a set which has a distribution of activation energies...

  14. Influence of cold work on the in-pile stress rupture strength of 16 chromium--16 nickel--niobium austenitic stainless steels

    Energy Technology Data Exchange (ETDEWEB)

    Closs, K.D.; Schaefer, L.

    1977-05-01

    The in-pile stress rupture strength of 16Cr--16Ni--Nb stainless steel was investigated. Different pretreatments were used, namely solution annealing plus various cold-working levels up to 20 percent. Thermal stability under irradiation and the high-temperature embrittlement of the different material conditions were studied. The specimens were irradiated in the form of electrically heated pressurized tubes at irradiation temperatures ranging from 615 to 720/sup 0/C. Irradiation time was up to 4800 h, correspondng to a maximum fast neutron fluence (E > 0.1 MeV) of 8.2 x 10/sup 25/ n/m/sup 2/. Neutron irradiation caused a marked reduction in stress rupture strength for the solution-annealed and the cold-worked specimens. For the solution-annealed tubes, this reduction was mainly attributed to high-temperature embrittlement; the decrease in rupture strain was less pronounced for the cold-worked tubes. The reduction in stress rupture strength came mainly from an increase in creep rate. As far as stress rupture strength and creep strength at high irradiation temperatures were concerned, the 15% cold-worked 16Cr--16Ni--Nb steel was superior to the other cold-work levels.

  15. Mechanics of Multifault Earthquake Ruptures

    Science.gov (United States)

    Fletcher, J. M.; Oskin, M. E.; Teran, O.

    2015-12-01

    The 2010 El Mayor-Cucapah earthquake of magnitude Mw 7.2 produced the most complex rupture ever documented on the Pacific-North American plate margin, and the network of high- and low-angle faults activated in the event record systematic changes in kinematics with fault orientation. Individual faults have a broad and continuous spectrum of slip sense ranging from endmember dextral strike slip to normal slip, and even faults with thrust sense of dip slip were commonly observed in the aftershock sequence. Patterns of coseismic slip are consistent with three-dimensional constrictional strain and show that integrated transtensional shearing can be accommodated in a single earthquake. Stress inversions of coseismic surface rupture and aftershock focal mechanisms define two coaxial, but permuted stress states. The maximum (σ1) and intermediate (σ2) principal stresses are close in magnitude, but flip orientations due to topography- and density-controlled gradients in lithostatic load along the length of the rupture. Although most large earthquakes throughout the world activate slip on multiple faults, the mechanical conditions of their genesis remain poorly understood. Our work attempts to answer several key questions. 1) Why do complex fault systems exist? They must do something that simple, optimally-oriented fault systems cannot because the two types of faults are commonly located in close proximity. 2) How are faults with diverse orientations and slip senses prepared throughout the interseismic period to fail spontaneously together in a single earthquake? 3) Can a single stress state produce multi-fault failure? 4) Are variations in pore pressure, friction and cohesion required to produce simultaneous rupture? 5) How is the fabric of surface rupture affected by variations in orientation, kinematics, total geologic slip and fault zone architecture?

  16. Magnetic resonance imaging in acute tendon ruptures

    Energy Technology Data Exchange (ETDEWEB)

    Daffner, R.H.; Lupetin, A.R.; Dash, N.; Riemer, B.L.

    1986-11-01

    The diagnosis of acute tendon ruptures of the extensor mechanism of the knee or the Achilles tendon of the ankle may usually be made by clinical means. Massive soft tissue swelling accompanying these injuries often obscures the findings, however. Magnetic resonance imaging (MRI) can rapidly demonstrate these tendon ruptures. Examples of the use of MRI for quadriceps tendon, and Achilles tendon rupture are presented.

  17. The creep experiment and theoretical model analysis of gascontaining coal

    Institute of Scientific and Technical Information of China (English)

    YIN Guang-zhi; ZHANG Dong-ming; WANG Wei-zhong

    2007-01-01

    A creep experiment of preformed molding coal under different confining pressures were carried out using self-developed 3-triaxial creep loading device for gas-containing coal, which loaded by Shimadzu AGI-250 kN electrical servo-controlled stiffness testing machine. Based on the experimental results, the variation trend of axial deformation under different stress states was studied, and creep failure characteristics of gascontaining coal under different confining pressures were analyzed. The experimental results were identified with seven-component nonlinear viscoelasto-plastic creep model (Hohai model), and the creep material parameters were obtained. The experimental result complies well with the theoretical value of this model. It indicates that creep constitutive relation of gas-containing coal can be expressed by nonlinear viscoelasto-plastic creep model correctly.

  18. An Overview of Irradiation Creep of Stainless Steels

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Seog [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    This paper reviewed systematically a state-of-art of irradiation creep for stainless steels to provide a background information for performing irradiation creep tests and establishing the creep model for advanced domestic steels effectively. An irradiation creep model of SFR core materials is necessary to apply to the fuel cladding and assembly materials of domestic SFR reactor system. The document of in-reactor irradiation creep has been obtained by investing a long time and large-scale cost using limited experimental research reactors. This paper will provide the knowledge to understand the irradiation creep and to obtain the background information of advanced domestic steels, so that it hopes to practically apply for timely producing the documents of irradiation creep of advanced domestic steels necessary for the national SFR program.

  19. Creep Strength and Microstructure of Al20-25+Nb Alloy Sheets and Foils for Advanced Microturbine Recurperators

    Energy Technology Data Exchange (ETDEWEB)

    Maziasz, Philip J [ORNL; Shingledecker, John P [ORNL; Evans, Neal D [ORNL; Yamamoto, Yukinori [ORNL; More, Karren Leslie [ORNL; Trejo, Rosa M [ORNL; Lara-Curzio, Edgar [ORNL

    2007-01-01

    The Oak Ridge National Laboratory (ORNL) and ATI Allegheny Ludlum worked together on a collaborative program for about two years to produce a wide range of commercial sheets and foils of the new AL20-25+Nb{trademark} (AL20-25+Nb) stainless alloy for advanced microturbine recuperator applications. There is a need for cost-effective sheets/foils with more performance and reliability at 650-750 C than 347 stainless steel, particularly for larger 200-250 kW microturbines. Phase 1 of this collaborative program produced the sheets and foils needed for manufacturing brazed plated-fin air cells, while Phase 2 provided foils for primary surface air cells, and did experiments on modified processing designed to change the microstructure of sheets and foils for improved creep-resistance. Phase 1 sheets and foils of AL20-25+Nb have much more creep-resistance than 347 steel at 700-750 C, and those foils are slightly stronger than HR120 and HR230. Results for Phase 2 showed nearly double the creep-rupture life of sheets at 750 C/100 MPa, and similar improvements in foils. Creep data show that Phase 2 foils of AL20-25+Nb alloy have creep resistance approaching that of alloy 625 foils. Testing at about 750 C in flowing turbine exhaust gas for 500 h in the ORNL Recuperator Test Facility shows that foils of AL20-25+Nb alloy have oxidation-resistance similar to HR120 alloy, and much better than 347 steel.

  20. Soil creep and historic landscape changes

    Science.gov (United States)

    Lucke, Bernhard

    2017-04-01

    Many erosion models assume that soil sediments are transported grain-by-grain, and thus calculate loss and deposition according to parameters such as bulk density and average grain size. However, clay-rich soils, such as the widespread Red Mediterranean Soils or Terrae Rossae that are often found near important archaeological sites, can behave differently. This is illustrated by a case study of historic landscape changes in Jordan, where evidence for soil creep as main process of soil movement was found in the context of ancient cemeteries. Due to a dominance of smectites, the Red Mediterranean Soils in this area shrink and form cracks during the dry period. Because of the cracks and underlying limestone karst, they can swallow strong rains without high erosion risk. However, when water-saturated, these soils expand and can start creeping. Buried geoarchaeological features like small water channels on formerly cleared rocks suggest that soils can move a few cm uplslope when wet, and buried graves illustrate that soil creep can create new level surfaces, sealing cavities but not completely filling them. Such processes seem associated with slumping and earth flows as instable rocks might collapse under the weight of a creeping soil. While it is very difficult to measure such processes, landscape archaeology offers at least an indirect approach that could be suited to estimate the scale and impact of soil creep. Analogies with modern rainfalls, including record levels of precipitation during the winter 1991/1992, indicate that similar levels of soil moisture have not been reached during times of modern instrumental rainfall monitoring. This suggests that very strong deluges must have occurred during historical periods, that could potentially cause tremendous damage to modern infrastructure if happening again.

  1. The Impact of Weld Metal Creep Strength on the Overall Creep Strength of 9% Cr Steel Weldments

    OpenAIRE

    Mayr, Peter; Mitsche, Stefan; Cerjak, Horst; Allen, Samuel Miller

    2010-01-01

    In this work, three joints of a X11CrMoWVNb9-1-1 (P911) pipe were welded with three filler metals by conventional arc welding. The filler metals varied in creep strength level, so that one overmatched, one undermatched, and one matched the creep strength of the P911 grade pipe base material. The long-term objective of this work was to study the influence of weld metal creep strength on the overall creep behavior of the welded joints and their failure mechanism. Uniaxial creep tests at 600°C a...

  2. Ultrasonography in traumatic rupture of Schilles tendon

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kil Ho; Byun, Woo Mok; Lee, Dong Chul; Kim, Se Dong; Park, Bok Hwan [Yeungnam University College of Medicine, Gyeongsan (Korea, Republic of)

    1993-12-15

    Ultrasonography was performed prospectively in 16 patients with suspected rupture of Achilles tendon from March to October 1992 to evaluate the diagnostic value of ultrasonography. Ultrasonography examinations were done according to standard techniques, and then dynamic evaluations were performed during passive plantar flexion of the ankle. We reviewed 10 confirmed cases of ruptured tendons, among which 9 cases were confirmed by operation,and one by ultrasonography and MRI. ultrasonic results were compared with the findings at physical examination and surgery. The normal thickness of the Achilles tendons in healthy sides on ultrasonography ranged from 3 to 5mm.The ruptured tendons were 6-10mm thick at 1-2cm superior to the upper margin of Os Calcis. Rupture sites on ultrasonography were exactly predicted in 7 among the 9 operative cases. In on non-operative case, the rupture site on ultrasonography corresponded to that seen on MRI. Tendon bucking on dynamic ultrasonography was positive in all 4 complete ruptures. In 2 of the 6 partial ruptures which were near complete tears, tendon buckling was also observed. In conclusion, ultrasonography is a valuable diagnostic modality in the diagnosis of Achilles tendon rupture, the differentiation between total and partial rupture, and in determining the rupture site. We consider ultrasonography of tendon as an important diagnostic toot that may guide the treatment plan in the traumatic rupture of the Achilles tendon

  3. The diagnosis of breast implant rupture

    DEFF Research Database (Denmark)

    Hölmich, Lisbet R; Vejborg, Ilse; Conrad, Carsten;

    2005-01-01

    STUDY OBJECTIVE: The aim of this study was to evaluate the accuracy of Magnetic Resonance Imaging (MRI) as performed according to a strict study protocol in diagnosing rupture of silicone breast implants. MATERIAL AND METHODS: The study population consisted of 64 women with 118 implants, who had...... participated in either one or two study MRI examinations, aiming at determining the prevalence and incidence of silent implant rupture, respectively, and who subsequently underwent explantation. Implant rupture status was determined by four independent readers and a consensus diagnosis of either rupture...... (intracapsular or extracapsular), possible rupture or intact implant was then obtained. Strict predetermined rupture criteria were applied as described in this report and findings at surgery were abstracted in a standardised manner and results compared. RESULTS: At MRI, 66 implants were diagnosed as ruptured...

  4. Active fault creep variations at Chihshang, Taiwan, revealed by creep meter monitoring, 1998-2001

    Science.gov (United States)

    Lee, Jian-Cheng; Angelier, Jacques; Chu, Hao-Tsu; Hu, Jyr-Ching; Jeng, Fu-Shu; Rau, Ruey-Juin

    2003-11-01

    The daily creep meter data recorded at Chihshang in 1998-2001 are presented. The Chihshang creep meter experiment was set up across the Chihshang thrust fault, the most active segment of the Longitudinal Valley Fault, which is the present-day plate suture between the Eurasian and the Philippine Sea plates in eastern Taiwan. Near-continuous data recording at two sites revealed different surface fault motions yet similar annual shortening rates: 16.2 mm at the Tapo site (comprising two connected creep meters) and 15.0 mm at the Chinyuan site (three creep meters straddling parallel fault branches). Four of the five creep meters showed a seasonal variation, with the fault moving steadily during the rainy season from April to October, and remaining quiescent during the rest of the year. The only exception was recorded by the creep meter located on a mélange-composed hillslope, where local gravitational landsliding played an additional role other than tectonic faulting. Through comparison with daily precipitation data, we inferred that moderate rainfall suffices to trigger or facilitate slippage on the surface fault, during the transition period of the dry/wet season. During the observation period from 1998 to 2001, the subsurface seismicity exhibited clusters of microearthquakes on the Chihshang Fault at depths of 10-25 km. Recurrent earthquakes occurred regardless of whether the season was wet or dry, indicating that the stress relaxation associated with seismicity in the seismogenic zone did not transfer immediately up to the surface. The accumulated strain on the Chihshang Fault at shallow surface levels was released through creep during the wet season. In addition to these short-term seasonal variations, an apparent decrease in the annual slipping rate on the Chihshang Fault during the last few years deserves further investigation in order to mitigate against seismic hazard.

  5. [Quadriceps and patellar tendon ruptures].

    Science.gov (United States)

    Grim, C; Lorbach, O; Engelhardt, M

    2010-12-01

    Ruptures of the quadriceps or patellar tendon are uncommon but extremely relevant injuries. Early diagnosis and surgical treatment with a stable suture construction are mandatory for a good postoperative clinical outcome. The standard methods of repair for quadriceps and patellar tendon injuries include the placement of suture loops through transpatellar tunnels. Reinforcement with either a wire cerclage or a PDS cord is used in patellar tendon repair. The PDS cord can also be applied as augmentation in quadriceps tendon repair. In secondary patellar tendon repair an autologous semitendinosus graft can be used. For chronic quadriceps tendon defects a V-shaped tendon flap with a distal footing is recommended. The different methods of repair should lead to early functional postoperative treatment. The clinical outcome after surgical treatment of patellar and quadriceps tendon ruptures is mainly good.

  6. Bubble rupture in bubble electrospinning

    Directory of Open Access Journals (Sweden)

    Chen Rouxi

    2015-01-01

    Full Text Available As the distinctive properties and different applications of nanofibers, the demand of nanofibers increased sharply in recently years. Bubble electrospinning is one of the most effective and industrialized methods for nanofiber production. To optimize the set-up of bubble electrospinning and improve its mass production, the dynamic properties of un-charged and charged bubbles are studied experimentally, the growth and rupture process of a bubble are also discussed in this paper.

  7. Creep Damage Analysis of a Lattice Truss Panel Structure

    Science.gov (United States)

    Jiang, Wenchun; Li, Shaohua; Luo, Yun; Xu, Shugen

    2017-01-01

    The creep failure for a lattice truss sandwich panel structure has been predicted by finite element method (FEM). The creep damage is calculated by three kinds of stresses: as-brazed residual stress, operating thermal stress and mechanical load. The creep damage at tensile and compressive loads have been calculated and compared. The creep rate calculated by FEM, Gibson-Ashby and Hodge-Dunand models have been compared. The results show that the creep failure is located at the fillet at both tensile and creep loads. The damage rate at the fillet at tensile load is 50 times as much as that at compressive load. The lattice truss panel structure has a better creep resistance to compressive load than tensile load, because the creep and stress triaxiality at the fillet has been decreased at compressive load. The maximum creep strain at the fillet and the equivalent creep strain of the panel structure increase with the increase of applied load. Compared with Gibson-Ashby model and Hodge-Dunand models, the modified Gibson-Ashby model has a good prediction result compared with FEM. However, a more accurate model considering the size effect of the structure still needs to be developed.

  8. Creep testing of nodular iron at ambient and elevated temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Martinsson, Aasa; Andersson-Oestling, Henrik C.M.; Seitisleam, Facredin; Wu, Rui; Sandstroem, Rolf (Swerea KIMAB AB, Stockholm (Sweden))

    2010-12-15

    The creep strain at room temperature, 100 and 125 deg C has been investigated for the ferritic nodular cast iron insert intended for use as the load-bearing part of canisters for long term disposal of spent nuclear fuel. The microstructure consisted of ferrite, graphite nodules of different sizes, compacted graphite and pearlite. Creep tests have been performed for up to 41,000 h. The specimens were cut out from material taken from two genuine inserts, I30 and I55. After creep testing, the specimens from the 100 deg C tests were hardness tested and a metallographic examination was performed. Creep strains at all temperatures appear to be logarithmic, and accumulation of creep strain diminishes with time. The time dependence of the creep strain is consistent to the W-model for primary creep. During the loading plastic strains up to 1% appeared. The maximum recorded creep strain after the loading phase was 0.025%. This makes the creep strains technically insignificant. Acoustic emission recordings during the loading of the room temperature tests showed no sounds or other evidence of microcracking during the loading phase. There is no evidence that the hardness or the graphite microstructure changed during the creep tests

  9. Influence of phosphorus on the creep ductility of copper

    Energy Technology Data Exchange (ETDEWEB)

    Sandström, Rolf, E-mail: rsand@kth.se [Materials Science and Engineering, KTH, Brinellvägen 23, S-100 44 Stockholm (Sweden); Swerea KIMAB, Box 7074, S-164 07 Kista (Sweden); Wu, Rui [Swerea KIMAB, Box 7074, S-164 07 Kista (Sweden)

    2013-10-15

    Around 1990 it was discovered that pure copper could have extra low creep ductility in the temperature interval 180–250 °C. The material was intended for use in canisters for nuclear waste disposal. Although extra low creep ductility was not observed much below 180 °C and the temperature in the canister will never exceed 100 °C, it was feared that the creep ductility could reach low values at lower temperatures after long term exposure. If 50 ppm phosphorus was added to the copper the low creep ductility disappeared. A creep cavitation model is presented that can quantitatively describe the cavitation behaviour in uniaxial and multiaxial creep tests as well as the observed creep ductility for copper with and without phosphorus. A so-called double ledge model has been introduced that demonstrates why the nucleation rate of creep cavities is often proportional to the creep rate. The phosphorus agglomerates at the grain boundaries and limits their local deformation and thereby reduces the formation and growth of cavities. This explains why extra low creep ductility does not occur in phosphorus alloyed copper.

  10. Development of a Nickel-base Cast Superalloy with High Strength and Superior Creep Properties

    Institute of Scientific and Technical Information of China (English)

    Jieshan HOU; Jianting GUO; Lanzhang ZHOU; Zhijun LI

    2005-01-01

    Derived from Russian alloy CHS88U, six experimental Ni-base alloys named as A to F in the Ni-Cr-Co-W-Ti-Al-Hf system are designed, evaluated and processed. One of these alloys, F, shows excellent high temperature tensile strength and ductility with superior creep rupture properties. As predicted by using modeling tools such as PHACOM and NEW PHACOMP, there is hardly the tendency for formation of topologically close-packed phase (TCP) phase in alloy F. Furthermore, through microstructural observation, it is also found that no TCP phase is formed in alloy F after long-time exposure at high temperature. So alloy F has well balance of phase stability and mechanical properties in view of application for gas turbines. It is proved that d-electron approach can be applied for design and development of nickel-base superalloys for gas turbine application.

  11. Molecular dynamics of interface rupture

    Science.gov (United States)

    Koplik, Joel; Banavar, Jayanth R.

    1993-01-01

    Several situations have been studied in which a fluid-vapor or fluid-fluid interface ruptures, using molecular dynamics simulations of 3000 to 20,000 Lennard-Jones molecules in three dimensions. The cases studied are the Rayleigh instability of a liquid thread, the burst of a liquid drop immersed in a second liquid undergoing shear, and the rupture of a liquid sheet in an extensional flow. The late stages of the rupture process involve the gradual withdrawal of molecules from a thinning neck, or the appearance and growth of holes in a sheet. In all cases, it is found that despite the small size of the systems studied, tens of angstroms, the dynamics is in at least qualitative accord with the behavior expected from continuum calculations, and in some cases the agreement is to within tens of percent. Remarkably, this agreement occurs even though the Eulerian velocity and stress fields are essentially unmeasurable - dominated by thermal noise. The limitations and prospects for such molecular simulation techniques are assessed.

  12. Quadriceps tendon rupture - treatment results

    Directory of Open Access Journals (Sweden)

    Popov Iva

    2013-01-01

    Full Text Available Introduction. Quadriceps tendon rupture is a rare but rather serious injury. If this injury is not promptly recognized and early operated, it may lead to disability. This research was aimed at pointing out the results and complications of the quadriceps tendon rupture surgical treatment. Material and Methods. This retrospective multicentric study was conducted in a group of 29 patients (mostly elderly men. Lysholm knee scoring scale was used to evaluate the surgical results. The post-operative results were compared in relation to the type of tendon rupture reconstructions (acute or chronic, various surgical techniques, type of injuries (unilateral or bilateral as well as the presence or absence of comorbid risk factors in the patients. Results. The average value of a Lysholm score was 87.6. Excellent and satisfactory Lysholm score results dominated in our sample of patients. Better post-operative results were recorded in the group of patients without risk factors, in case of a bilateral injury, and in case of an acute injury. The best result was obtained after performing the reconstruction using anchors, and the worst result came after using Codivilla technique. Discussion and Conclusion. Early diagnosis and surgical treatment are an absolute imperative in management of this injury. We have not proven that a certain surgical technique has an advantage over the others. A comorbid risk factor is related to a lower Lysholm score. Despite a few cases of complications, we can conclude that the surgical treatment yields satisfactory results.

  13. Splenic rupture following routine colonoscopy.

    Science.gov (United States)

    Rasul, Tabraze; Leung, Edmund; McArdle, Kirsten; Pathak, Rajiv; Dalmia, Sanjay

    2010-10-01

    Splenic rupture is a life-threatening condition characterized by internal hemorrhage, often difficult to diagnose. Colonoscopy is a gold standard routine diagnostic test to investigate patients with gastrointestinal symptoms as well as to those on the screening program for colorectal cancer. Splenic injury is seldomly discussed during consent for colonoscopy, as opposed to colonic perforation, as its prevalence accounts for less than 0.1%. A 66-year-old Caucasian woman with no history of collagen disorder was electively admitted for routine colonoscopy for surveillance of adenoma. She was admitted following the procedure for re-dosing of warfarin, which was stopped prior to the colonoscopy. The patient was found collapsed on the ward the following day with clinical shock and anemia. Computed tomography demonstrated grade 4 splenic rupture. Immediate blood transfusion and splenectomy was required. Splenic rupture following routine colonoscopy is extremely rare. Awareness of it on this occasion saved the patient's life. Despite it being a rare association, the seriousness warrants inclusion in all information leaflets concerning colonoscopy and during its consent.

  14. Molecular dynamics of interface rupture

    Science.gov (United States)

    Koplik, Joel; Banavar, Jayanth R.

    1993-01-01

    Several situations have been studied in which a fluid-vapor or fluid-fluid interface ruptures, using molecular dynamics simulations of 3000 to 20,000 Lennard-Jones molecules in three dimensions. The cases studied are the Rayleigh instability of a liquid thread, the burst of a liquid drop immersed in a second liquid undergoing shear, and the rupture of a liquid sheet in an extensional flow. The late stages of the rupture process involve the gradual withdrawal of molecules from a thinning neck, or the appearance and growth of holes in a sheet. In all cases, it is found that despite the small size of the systems studied, tens of angstroms, the dynamics is in at least qualitative accord with the behavior expected from continuum calculations, and in some cases the agreement is to within tens of percent. Remarkably, this agreement occurs even though the Eulerian velocity and stress fields are essentially unmeasurable - dominated by thermal noise. The limitations and prospects for such molecular simulation techniques are assessed.

  15. Creep fatigue damage under multiaxial conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lobitz, D.W.; Nickell, R.E.

    1977-01-01

    When structural components are subjected to severe cyclic loading conditions with intermittent periods of sustained loading at elevated temperature, the designer must guard against a failure mode caused by the interaction of time-dependent and time-independent deformation. This phenomena is referred to as creep-fatigue interaction. The most elementary form of interaction theory (called linear damage summation) is now embodied in the ASME Boiler and Pressure Vessel Code. In recent years, a competitor for the linear damage summation theory has emerged, called strainrange partitioning. This procedure is based upon the visualization of the cyclic strain in a uniaxial creep-fatigue test as a hysteresis loop, with the inelastic strains in the loop counter-balanced in one of two ways. The two theories are compared and contrasted in terms of ease of use, possible inconsistencies, and component life prediction. Future work to further test the damage theories is recommended. (TFD)

  16. Cake creep during filtration of flocculated manure

    DEFF Research Database (Denmark)

    Christensen, Morten Lykkegaard; Keiding, Kristian

    the distribution of N and P on the fields. Filtration is a useful method for such a separation. Furthermore, chemicals can be added to flocculate the solids and thereby increase the filterability i.e. the specific filter-cake resistance can be reduced from 1015 m/kg to 1011 m/kg. Both the amount of added chemicals......, and the mixing procedure affect the result, and lab-scale experiments are often used to study how these pre-treatments influence the filtration process. However, the existing mathematical filtration models are based on filtration of inorganic particles and cannot simulate the filtration data obtained when manure...... that the discrepancy between the filtration theory and the observed filtration behaviour is due to a time-dependent collapse of the formed cake (creep). This can also explain the observed behaviour when flocculated manure is filtered. The filtration data can be simulated if cake creep is adopted in the filtration...

  17. Transient effects in friction fractal asperity creep

    CERN Document Server

    Goedecke, Andreas

    2013-01-01

    Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both...

  18. The Creep of Laminated Synthetic Resin Plastics

    Science.gov (United States)

    Perkuhn, H

    1941-01-01

    The long-time loading strength of a number of laminated synthetic resin plastics was ascertained and the effect of molding pressure and resin content determined. The best value was observed with a 30 to 40 percent resin content. The long-time loading strength also increases with increasing molding pressure up to 250 kg/cm(exp 2); a further rise in pressure affords no further substantial improvement. The creep strength is defined as the load which in the hundredth hour of loading produces a rate of elongation of 5 X 10(exp -4) percent per hour. The creep strength values of different materials were determined and tabulated. The effect of humidity during long-term tests is pointed out.

  19. Very slow creep tests on salt samples

    Directory of Open Access Journals (Sweden)

    de Greef V.

    2010-06-01

    Full Text Available Long-term creep tests have been performed on rock-salt and argillite samples under very small uniaxial loadings (σ = 0.02 to 0.1 MPa . To minimize the effects of temperature variations, testing devices were set in a mine where temperature fluctuations are of the order of one-hundredth of a degree Celsius. The mechanical loading was provided by dead weights. The deformations were measured through special displacement sensors with a resolution of ∆ε = 10-8. Strain rates as small as έ = 7 × 10-13s-1 were measured. These tests allow rock-sample creep to be investigated at very small strain rates. The tests also prove that extrapolation of constitutive laws at very small rates is often incorrect.

  20. Failure of bacterial streamers in creeping flows

    Science.gov (United States)

    Biswas, Ishita; Ghosh, Ranajay; Sadrzadeh, Mohtada; Kumar, Aloke

    2016-11-01

    In the recent years, the dynamical response of filamentous bacterial aggregates called bacterial streamer in creeping flows has attracted attention. We report the observation of 'necking-type' instability leading to failure in bacterial (Pseudomonas fluorescens) streamers formed in creeping flows. Quantification of the failure process was made possible through the use of 200 nm red fluorescent polystyrene tracer particles embedded in the bacterial extracellular polymeric substances (EPS). The nonlinear failure behavior shows distinct phases of deformation with mutually different characteristic times, which end with a distinct localized failure of the streamer. We also develop a simplified analytical model to describe the experimental observations of the failure phenomena. The theoretical power law relationship between critical stretch ratio and the fluid velocity scale matches closely experimental observations.

  1. CREEP BEHAVIOR OF TWO KINDS OF HR3C HEAT RESISTANT STEELS BASED ON STRESS RELAXATION TESTS%应力松弛方法研究2种HR3C耐热钢的高温蠕变行为

    Institute of Scientific and Technical Information of China (English)

    曹铁山; 方旭东; 程从前; 赵杰

    2014-01-01

    Rupture life is a main property for a material using at high-temperature condition.Usually,the rupture life is gained from creep rupture test.As creep and stress relaxation are two main behaviors for a material served in high-temperature environment,it is important to work out the interrelationship through which one of the two behaviors can be deduced from the other one.Recently,a number of researchs have taken stress relaxation test to replace creep rupture test on studying the creep behavior,and furthermore predicting the rupture life and the stress relaxation test is proved to be superior to the traditional creep rupture test for its short time,small at damage,abundant of information and so on.In this work,the stress relaxation test was used to analyze the creep behavior of two HR3C heat resistant steels with different grain sizes.Additionally,considering the change of microstructure during serve period,the aged HR3C steel was used to compare with as-received HR3C steel for studying the aging effects on the creep behavior.Furthermore,the creep behavior was correlated to their microstructure characteristics.The result was shown that the creep behaviors of two HR3C heat resistant steels varied significantly in spite of their similarity in chemical composition.The coarse grained HR3C steel had lower creep rate,larger stress exponent,greater activation energy and higher creep resistance than that of fine grained HR3C steel for both as-received one and aged one.The long-term aging process damaged the microstructures of two HR3C steels,increased aged HR3C steel's creep rate,lowered stress exponent and activation energy and reduced creep resistance.And the damaging effects on the coarse grained HR3C steel were larger than that on fine grained HR3C steel,which meant the coarse grained HR3C steel had much more stable creep resistance than that of fine grained HR3C steel.%采用应力松弛方法研究了2种不同晶粒大小HR3C耐热钢的初始态试样和时效态

  2. The effect of dissolved magnesium on creep of calcite II: transition from diffusion creep to dislocation creep

    Science.gov (United States)

    Xu, Lili; Renner, Jörg; Herwegh, Marco; Evans, Brian

    2009-03-01

    We extended a previous study on the influence of Mg solute impurity on diffusion creep in calcite to include deformation under a broader range of stress conditions and over a wider range of Mg contents. Synthetic marbles were produced by hot isostatic pressing (HIP) mixtures of calcite and dolomite powders for different intervals (2-30 h) at 850°C and 300 MPa confining pressure. The HIP treatment resulted in high-magnesian calcite aggregates with Mg content ranging from 0.5 to 17 mol%. Both back-scattered electron images and chemical analysis suggested that the dolomite phase was completely dissolved, and that Mg distribution was homogeneous throughout the samples at the scale of about two micrometers. The grain size after HIP varied from 8 to 31 μm, increased with time at temperature, and decreased with increasing Mg content (>3.0 mol%). Grain size and time were consistent with a normal grain growth equation, with exponents from 2.4 to 4.7, for samples containing 0.5-17.0 mol% Mg, respectively. We deformed samples after HIP at the same confining pressure with differential stresses between 20 and 200 MPa using either constant strain rate or stepping intervals of loading at constant stresses in a Paterson gas-medium deformation apparatus. The deformation tests took place at between 700 and 800°C and at strain rates between 10-6 and 10-3 s-1. After deformation to strains of about 25%, a bimodal distribution of large protoblasts and small recrystallized neoblasts coexisted in some samples loaded at higher stresses. The deformation data indicated a transition in mechanism from diffusion creep to dislocation creep. At stresses below 40 MPa, the strength was directly proportional to grain size and decreased with increasing Mg content due to the reductions in grain size. At about 40 MPa, the sensitivity of log strain rate to log stress, ( n), became greater than 1 and eventually exceeded 3 for stresses above 80 MPa. At a given strain rate and temperature, the stress at

  3. Shark skin effect in creeping films

    CERN Document Server

    Scholle, M

    2006-01-01

    If a body in a stream is provided with small ridges aligned in the local flow direction, a remarkable drag reduction can be reached under turbulent flow conditions. This surprising phenomenon is called the 'shark skin effect'. We demonstrate, that a reduction of resistance can also be reached in creeping flows if the ridges are aligned perpendicular to the flow direction. We especially consider in gravity-driven film flows the effect of the bottom topography on the mean transport velocity.

  4. Zinc alloy enhances strength and creep resistance

    Energy Technology Data Exchange (ETDEWEB)

    Machler, M. [Fisher Gauge Ltd., Peterborough, Ontario (Canada). Fishercast Div.

    1996-10-01

    A family of high-performance ternary zinc-copper-aluminum alloys has been developed that provides higher strength, hardness, and creep resistance than the traditional zinc-aluminum alloys Zamak 3, Zamak 5, and ZA-8. Designated ACuZinc, mechanical properties comparable to those of more expensive materials make it suitable for high-load applications and those at elevated temperatures. This article describes the alloy`s composition, properties, and historical development.

  5. The 1868 Hayward fault, California, earthquake: Implications for earthquake scaling relations on partially creeping faults

    Science.gov (United States)

    Hough, Susan E.; Martin, Stacey

    2015-01-01

    The 21 October 1868 Hayward, California, earthquake is among the best-characterized historical earthquakes in California. In contrast to many other moderate-to-large historical events, the causative fault is clearly established. Published magnitude estimates have been fairly consistent, ranging from 6.8 to 7.2, with 95% confidence limits including values as low as 6.5. The magnitude is of particular importance for assessment of seismic hazard associated with the Hayward fault and, more generally, to develop appropriate magnitude–rupture length scaling relations for partially creeping faults. The recent reevaluation of archival accounts by Boatwright and Bundock (2008), together with the growing volume of well-calibrated intensity data from the U.S. Geological Survey “Did You Feel It?” (DYFI) system, provide an opportunity to revisit and refine the magnitude estimate. In this study, we estimate the magnitude using two different methods that use DYFI data as calibration. Both approaches yield preferred magnitude estimates of 6.3–6.6, assuming an average stress drop. A consideration of data limitations associated with settlement patterns increases the range to 6.3–6.7, with a preferred estimate of 6.5. Although magnitude estimates for historical earthquakes are inevitably uncertain, we conclude that, at a minimum, a lower-magnitude estimate represents a credible alternative interpretation of available data. We further discuss implications of our results for probabilistic seismic-hazard assessment from partially creeping faults.

  6. Effect of Notches on Creep-Fatigue Behavior of a P/M Nickel-Based Superalloy

    Science.gov (United States)

    Telesman, Jack; Gabb, Timothy P.; Ghosn, Louis J.; Gayda, John, Jr.

    2015-01-01

    A study was performed to determine and model the effect of high temperature dwells on notched low cycle fatigue (NLCF) and notch stress rupture behavior of a fine grain LSHR powder metallurgy (PM) nickel-based superalloy. It was shown that a 90 second dwell applied at the minimum stress (min dwell) was considerably more detrimental to the NLCF lives than similar dwell applied at the maximum stress (max dwell). The short min dwell NLCF lives were shown to be caused by growth of small oxide blisters which caused preferential cracking when coupled with high concentrated notch root stresses. The cyclic max dwell notch tests failed mostly by a creep accumulation, not by fatigue, with the crack origin shifting internally to a substantial distance away from the notch root. The classical von Mises plastic flow model was unable to match the experimental results while the hydrostatic stress profile generated using the Drucker-Prager plasticity flow model was consistent with the experimental findings. The max dwell NLCF and notch stress rupture tests exhibited substantial creep notch strengthening. The triaxial Bridgman effective stress parameter was able to account for the notch strengthening by collapsing the notched and uniform gage geometry test data into a singular grouping.

  7. Creep Deformation by Dislocation Movement in Waspaloy

    Directory of Open Access Journals (Sweden)

    Mark Whittaker

    2017-01-01

    Full Text Available Creep tests of the polycrystalline nickel alloy Waspaloy have been conducted at Swansea University, for varying stress conditions at 700 °C. Investigation through use of Transmission Electron Microscopy at Cambridge University has examined the dislocation networks formed under these conditions, with particular attention paid to comparing tests performed above and below the yield stress. This paper highlights how the dislocation structures vary throughout creep and proposes a dislocation mechanism theory for creep in Waspaloy. Activation energies are calculated through approaches developed in the use of the recently formulated Wilshire Equations, and are found to differ above and below the yield stress. Low activation energies are found to be related to dislocation interaction with γ′ precipitates below the yield stress. However, significantly increased dislocation densities at stresses above yield cause an increase in the activation energy values as forest hardening becomes the primary mechanism controlling dislocation movement. It is proposed that the activation energy change is related to the stress increment provided by work hardening, as can be observed from Ti, Ni and steel results.

  8. Steady-State Creep of Asphalt Concrete

    Directory of Open Access Journals (Sweden)

    Alibai Iskakbayev

    2017-02-01

    Full Text Available This paper reports the experimental investigation of the steady-state creep process for fine-grained asphalt concrete at a temperature of 20 ± 2 °С and under stress from 0.055 to 0.311 MPa under direct tension and was found to occur at a constant rate. The experimental results also determined the start, the end point, and the duration of the steady-state creep process. The dependence of these factors, in addition to the steady-state creep rate and viscosity of the asphalt concrete on stress is satisfactorily described by a power function. Furthermore, it showed that stress has a great impact on the specific characteristics of asphalt concrete: stress variation by one order causes their variation by 3–4.5 orders. The described relations are formulated for the steady-state of asphalt concrete in a complex stressed condition. The dependence is determined between stress intensity and strain rate intensity.

  9. Experimental studies of fiber concrete creep

    Directory of Open Access Journals (Sweden)

    Korneeva Irina

    2017-01-01

    Full Text Available The results of two-stage experimental studies of the strength and deformation characteristics of fibrous concrete reinforced with steel fiber. In the experiments we used steel fiber with bent ends, which practically does not form "hedgehogs", which allows to achieve an even distribution of the fiber by volume. At the first stage, the cube and prismatic strength, deformability at central compression, a number of special characteristics are determined: water absorption, frost resistance, abrasion; the optimal percentage of fiber reinforcement and the maximum size of the coarse aggregate fraction were selected. Fiber reinforcement led to an increase in the strength of concrete at compression by 1,35 times and an increase in the tensile strength at bending by 3,4 times. At the second stage, the creep of fibrous concrete and plain concrete of similar composition at different stress levels was researched. Creep curves are plotted. It is shown that the use of fiber reinforcement leads to a decrease in creep strain by 21 to 30 percent, depending on the stress level.

  10. Magnetic field annealing for improved creep resistance

    Energy Technology Data Exchange (ETDEWEB)

    Brady, Michael P.; Ludtka, Gail M.; Ludtka, Gerard M.; Muralidharan, Govindarajan; Nicholson, Don M.; Rios, Orlando; Yamamoto, Yukinori

    2015-12-22

    The method provides heat-resistant chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloys having improved creep resistance. A precursor is provided containing preselected constituents of a chromia- or alumina-forming Fe-, Fe(Ni), Ni(Fe), or Ni-based alloy, at least one of the constituents for forming a nanoscale precipitate MaXb where M is Cr, Nb, Ti, V, Zr, or Hf, individually and in combination, and X is C, N, O, B, individually and in combination, a=1 to 23 and b=1 to 6. The precursor is annealed at a temperature of 1000-1500.degree. C. for 1-48 h in the presence of a magnetic field of at least 5 Tesla to enhance supersaturation of the M.sub.aX.sub.b constituents in the annealed precursor. This forms nanoscale M.sub.aX.sub.b precipitates for improved creep resistance when the alloy is used at service temperatures of 500-1000.degree. C. Alloys having improved creep resistance are also disclosed.

  11. Creep Damage Characteristics of Soft Rock under Disturbance Loads

    Institute of Scientific and Technical Information of China (English)

    Fu Zhiliang; Guo Hua; Gao Yanfa

    2008-01-01

    This article focuses on the process of rock creep damage and micro-damage evolution properties of gray green mudstone under impacting disturbance load conditions for the first time using the real time computerized tomography (CT) testing technique. The results indicate that axial load comes into limit strength neighborhood, rock micro-crack links into larger crack, creep rate increases in a short time, larger plastic deformation happens; this is called disturbance accelerating creep stage. When rock is within limit strength neighborhood, there occurs creep micro-damage under smaller disturbance load. When disturbance load is larger, rock directly enters into disturbance accelerating creep stage, failure occurs instantaneously. On the basis of experimental research, the CT scanning method was used to describe the creep micro-damage of soft rock, also helpful in the prediction of roadways' service life and evaluation of geotechnicai engineering stability.

  12. Creep Test of Polymer-matrix 3-D Braided Composites

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The long-term creep behavior of polymer-matrix 3-D braided composites was studied by using the tensile creep test method, and the effect of braiding structure, braiding angle and fiber volume fraction were discussed. The creep curve appears as expected, and can be defimed two phases,namely, the primary phase and the secondary phase. For each sample, strain increases with time rapidly, and then the strain rate decreases and appears to approach a constant rate of change (steady-state creep). The experiment results show that the creep resistant properties are improved while the braiding angle decreases or the fiber volume fraction increases, and that the five-directional braiding structure offers better creep resistant properties than the fourdirectional braiding structure.

  13. Degradation of mechanical properties of CrMo creep resistant steel operating under conditions of creep

    Directory of Open Access Journals (Sweden)

    J. Michel

    2012-01-01

    Full Text Available Mechanical properties of a steam tube made of CrMo creep resistant steel are analysed in this contribution after up to 2,6•105 hours service life in creep conditions at temperature 530 °C and calculated stress level in the tube wall 46,5 MPa. During service life there were in the steel gradual micro structure changes, fi rst pearlite spheroidization, precipitation, coaugulation and precipitate coarsening. Nevertheless the strength and deformation properties of the steel (Re, Rm, A5, Z, and the resistance to brittle fracture and the creep strength limit, were near to unchanged after 2,1•105 hours in service. The steam tube is now in service more than 2,6•105 h.

  14. MICROSTRUCTURE AND MECHANICAL PROPERTIES DEGRADATION OF CrMo CREEP RESISTANT STEEL OPERATING UNDER CREEP CONDITIONS

    Directory of Open Access Journals (Sweden)

    Ján Micheľ

    2011-07-01

    Full Text Available In this contribution microstructure degradation of a steam tube is analysed. The tube is made of CrMo creep resistant steel and was in service under creep conditions at temperature 530°C and calculated stress level in the tube wall 46.5 MPa. During service life in the steel gradual micro structure changes were observed, first pearlite spheroidization, precipitation, coagulation and precipitate coarsening. Despite the fact that there were evident changes in the micro structure the strength and deformation properties of the steel (Re, Rm, A5, Z, the resistance to brittle fracture and the creep strength limit, were near to unchanged after 2.1x10 5 hours in service. The steam tube is now in service more than 2.6x10 5 h.

  15. Study of creep cavitation in a stainless steel weldment

    OpenAIRE

    Jazaeri, H.; Bouchard, P. J.; Hutchings, M; Lindner, P.

    2012-01-01

    A study of creep cavities near reheat cracking in AISI Type 316H austenitic stainless steel headers, removed from long-time high temperature operation in nuclear power plants, is reported. It is shown how application of scanning electron microscopy (SEM), cryogenic fractography and small angle neutron scattering (SANS) can be applied, in a complementary way, to observe and quantify creep cavitation damage. Creep cavities in the vicinity of the crack are found to be mainly surrounding inter-gr...

  16. Viscous Creep in Dry Unconsolidated Gulf of Mexico Shale

    Science.gov (United States)

    Chang, C.; Zoback, M. D.

    2002-12-01

    We conducted laboratory experiments to investigate creep characteristics of dry unconsolidated shale recovered from the pathfinder well, Gulf of Mexico (GOM). We subjected jacketed cylindrical specimens (25.4 mm diameter) to hydrostatic pressure that increased from 10 to 50 MPa in steps of 5 MPa. We kept the pressure constant in each step for at least 6 hours and measured axial and lateral strains (provided by LVDTs) and ultrasonic velocities (provided by seismic-wave transducers). The dry shale exhibited pronounced creep strain at all pressure levels, indicating that the dry frame of the shale possesses an intrinsic viscous property. Interestingly, the creep behavior of the shale is different above and below 30 MPa confining pressure. Above 30 MPa, the amount of creep strain in 6 hours is nearly constant with equal pressurization steps, indicating a linear viscous rheology. Below 30 MPa, the amount of creep increases linearly as pressure is raised in constant incremental steps, suggesting that the creep deformation accelerates as pressure increases within this pressure range. Thus, the general creep behavior of the GOM shale is characterized by a bilinear dependence on pressure magnitude. This creep characteristic is quite different from that observed in unconsolidated reservoir sands (Hagin and Zoback, 2002), which exhibited nearly constant amount of creep regardless of the pressure magnitude for equal increasing steps of pressure. The shale exhibits a lack of creep (and nearly negligible strain recovery) when unloaded, suggesting that the creep strain is irrecoverable and can be considered viscoplastic deformation. SEM observations show that the major mechanism of compaction of the dry shale appears to be packing of clay and a progressive collapse of pore (void) spaces. Creep compaction is considerably more significant than compaction that occurs instantaneously, indicating that the process of shale compaction is largely time-dependent.

  17. Stability of MC Carbide Particles Size in Creep Resisting Steels

    Directory of Open Access Journals (Sweden)

    Vodopivec, F.

    2006-01-01

    Full Text Available Theoretical analysis of the dependence microstructure creep rate. Discussion on the effects of carbide particles size and their distribution on the base of accelerated creep tests on a steel X20CrMoV121 tempered at 800 °C. Analysis of the stability of carbide particles size in terms of free energy of formation of the compound. Explanation of the different effect of VC and NbC particles on accelerated creep rate.

  18. Control of Early Age Concrete. Phase 3: Creep in Concrete

    DEFF Research Database (Denmark)

    Hauggaard-Nielsen, Anders Boe; Damkilde, Lars; Hansen, Per Freiesleben

    1997-01-01

    The mechanical properties of the "Road Directorate Concrete" at early ages are studied. Creep in tension at 24 and 72 maturity hours are measured on dogbone shaped specimens. The development of tensile modulus of elasticity and strength are measured with a method developed here. The results...... are compared to compression values and splitting strengths. It is found that the properties of creep in tension are similar to the properties in compression. Further the influence form temperature on creep is found to be significant....

  19. Comparison of creep of the cement pastes included fly ash

    Directory of Open Access Journals (Sweden)

    Padevět Pavel

    2017-01-01

    Full Text Available The paper is devoted to comparison of creep of cement pastes containing fly ash admixture. The size of creep in time depends on the amount of components of the cement paste. Attention is paid to the content of classical fly ash in cement paste and its impact on the size of creep. The moisture of cement pastes is distinguished because it significantly affects the rheological properties of the material.

  20. ANALYSIS METHODS ON STABILITY OF TALL AND BEDDIIG CREEP SLOPE

    Institute of Scientific and Technical Information of China (English)

    RUIYongqin; JIANGZhiming; LIUJinghui

    1995-01-01

    Based on the model of slope engineering geology,the creep and its failure mechanism of tall and bedding slope are deeply analyzed in this paper .The creep laws of weak intercalations are also discussed.The analysis om the stability of creep slope and the age forecasting of sliding slope have been conducted through mumerical simulations using Finite Element Method (FEM)and Dintimct Element Method(DEM).

  1. Head Injuries

    Science.gov (United States)

    ... object that's stuck in the wound. previous continue Concussions Concussions — the temporary loss of normal brain function due ... also a type of internal head injury. Repeated concussions can permanently damage the brain. In many cases, ...

  2. Head Tilt

    Science.gov (United States)

    ... Healthy Living Healthy Living Healthy Living Nutrition Fitness Sports Oral Health Emotional Wellness Growing Healthy Sleep Safety & ... When this happens, the neck muscles go into spasm, causing the head to tilt to one side. ...

  3. Head Injuries

    Science.gov (United States)

    ... ATV) Safety Balance Disorders Knowing Your Child's Medical History First Aid: Falls First Aid: Head Injuries Preventing Children's Sports Injuries Getting Help: Know the Numbers Concussions Stay Safe: Baseball Concussions Concussions: Getting Better Sports and Concussions Dealing ...

  4. Head MRI

    Science.gov (United States)

    ... heart valves Heart defibrillator or pacemaker Inner ear (cochlear) implants Kidney disease or dialysis (you may not ... to: Abnormal blood vessels in the brain ( arteriovenous malformations of the head ) Tumor of the nerve that ...

  5. Creep damage and expected creep life for welded 9-11% Cr steels

    Energy Technology Data Exchange (ETDEWEB)

    Auerkari, P. [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 (Finland)]. E-mail: Pertti.Auerkari@vtt.fi; Holmstroem, S. [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 (Finland); Veivo, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 (Finland); Salonen, J. [VTT Technical Research Centre of Finland, P.O. Box 1000, 02044 (Finland)

    2007-01-15

    The damage mechanisms affecting engineering steels at high-temperatures include creep cavitation and cracking that can form the path for final failure in susceptible locations such as welds. The evolution of observed damage is widely used in condition monitoring, timing of inspections and support of life management. However, the damage evolution is material dependent, and requires confirmation from inspection data. For most low-alloy steels, compilations of inspection data have been applied to establish guidelines for this purpose. Useful experience of the in-service damage is less easily available from newer steels, and infrequently reported from e.g. the 9-11% chromium (Cr) steels that are used in hot steam lines of power plants. However, even then the expected damage evolution can be characterised by using high tensile multi-axiality for damage acceleration. This approach is also useful for ductile steels with relatively slow development of creep cavitation in conventional creep testing. The inspection experience shows very modest creep cavitation in the conventional 11% Cr steel X20CrMoV11-1 even after long-term service. This is of particular interest also because early creep failures have been reported from steam systems made of P91 (X10CrMoVNb9-1). The differences between these steels appear to be largely related to the extent precipitation hardening is utilized in providing creep strength. With more efficient precipitation hardening, P91 and other new high chromium steels are more susceptible than X20 to deviations in e.g. heat treatments.

  6. Microstructure and creep characteristics of dissimilar T91/TP316H martensitic/austenitic welded joint with Ni-based weld metal

    Energy Technology Data Exchange (ETDEWEB)

    Falat, Ladislav, E-mail: lfalat@imr.saske.sk [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia); Svoboda, Milan [Institute of Physics of Materials, Academy of Sciences of Czech Republic, Zizkova 22, 616 62 Brno (Czech Republic); Vyrostkova, Anna; Petryshynets, Ivan; Sopko, Martin [Institute of Materials Research, Slovak Academy of Sciences, Watsonova 47, 040 01 Kosice (Slovakia)

    2012-10-15

    This paper deals with characterization of microstructure and creep behavior of dissimilar weldment between the tempered martensitic steel T91 and the non-stabilized austenitic steel TP316H with Ni-based weld metal (Ni WM). Microstructure analyses were performed using light microscopy, scanning and transmission electron microscopy and energy-dispersive X-ray spectroscopy. The martensitic part of the welded joint exhibited a wide heat-affected zone (HAZ) with typical microstructural gradient from its coarse-grained to the fine-grained/intercritical region. In contrast, the HAZ of austenitic steel was limited to only a narrow region with coarsened polygonal grains. The microstructure of Ni WM was found to be very heterogeneous with respect to the size, morphology and distribution of grain boundaries and MC-type precipitates as a result of strong weld metal dilution effects and fast non-equilibrium solidification. Cross-weld creep tests were carried out in a temperature range from 600 to 650 Degree-Sign C at applied stresses from 60 to 140 MPa. The obtained values of apparent stress exponents and creep activation energies indicate thermally activated dislocation glide to be the governing creep deformation mechanism within the range of used testing conditions. The creep samples ruptured in the T91 intercritical HAZ region by the 'type IV cracking' failure mode and the creep fracture mechanism was identified to be the intergranular dimple tearing by microvoid coalescence at grain boundaries. The TEM observations revealed pronounced microstructural differences between the critical HAZ region and the T91 base material before as well as after the creep exposure. - Highlights: Black-Right-Pointing-Pointer Phase transformations affect the microstructures of T91 and TP316H HAZ regions. Black-Right-Pointing-Pointer High weld metal dilution results in heterogeneous microstructure with MC carbides. Black-Right-Pointing-Pointer Creep behavior of the studied weldment is

  7. Histologic analysis of ruptured quadriceps tendons.

    Science.gov (United States)

    Trobisch, Per David; Bauman, Matthias; Weise, Kuno; Stuby, Fabian; Hak, David J

    2010-01-01

    Quadriceps tendon ruptures are uncommon injuries. Degenerative changes in the tendon are felt to be an important precondition for rupture. We retrospectively reviewed 45 quadriceps tendon ruptures in 42 patients. Quadriceps tendon ruptures occurred most often in the sixth and seventh decade of life. Men were affected six times as often as women. A tissue sample from the rupture-zone was obtained in 22 cases and histologic analysis was performed. Degenerative changes were present in only 14 (64%) of the 22 samples. We observed an increasing ratio of degenerative to nondegenerative tendons with increasing patient age. Our data suggests that quadriceps tendon rupture, especially in younger patients, can occur in the absence of pathologic tendon degeneration.

  8. Creep strength and ductility of 9 to 12% chromium steels

    DEFF Research Database (Denmark)

    Hald, John

    2004-01-01

    Steels", which covers creep data development and analysis for parent materials and welds of all ferritic creep resistant steels ranging from low alloy steels up to 12%Cr steels. The opinions stated in the paper represent the views of the author rather than the whole ECCC WG3A group.......The present paper focuses in on long-term creep properties of parent material of the new 9-12%Cr creep resistant steels, P91, E911 and P92 developed for use in advanced ultrasupercritical power plants. These steels have been at the center of activities in the ECCC Working Group 3A (WG3A) "Ferritic...

  9. A Study of the Creep Effect in Loudspeaker Suspension

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.; Thorborg, Knud; Tinggaard, Carsten

    2008-01-01

    This paper investigates the creep effect, the visco elastic behaviour of loudspeaker suspension parts, which can be observed as an increase in displacement far below the resonance frequency. The creep effect means that the suspension cannot be modelled as a simple spring. The need for an accurate...... creep model is even larger as the validity of loudspeaker models are now sought extended far into the nonlinear domain of the loudspeaker. Different creep models are investigated and implemented both in simple lumped parameter models as well as time domain non-linear models, the simulation results...

  10. Shear creep characteristics and constitutive model of limestone

    Institute of Scientific and Technical Information of China (English)

    Yu Mei; Mao Xianbiao; Hu Xinyu

    2016-01-01

    The characters of limestone in weak interlayer of a high rocky slope in Xuzhou, China, are studied by shear static test and shear creep test. The results show that limestone specimens have attenuation creep properties and constant rate creep properties, almost have no accelerated creep properties. The exponen-tial type empirical formula is selected to fit creep grading curves by polynomial regression analysis method, and the square sums of the fitting results residual are in the order of 10-7. Then grade creep curves at every shear loads are set up. Combining creep rate-time curve, the creep properties of limestone are analyzed. As the physical meaning of component model is clearer, the Poytin–Thomson model is set up. Through the least square method, the optimal parameters of Poytin–Thomson model are obtained, and the sums of squared residuals belong to 10-3 order of magnitude, which can meet the accuracy requirements of engineering calculation. So the Poytin–Thomson model can reflect the shear creep char-acteristics of limestone very well.

  11. Contribution to irradiation creep arising from gas-driven bubbles

    Energy Technology Data Exchange (ETDEWEB)

    Woo, C.H. [Hong Kong Polytechnic Univ., Kowloon (Hong Kong); Garner, F.A. [Pacific Northwest National Lab., Richland, WA (United States)

    1998-03-01

    In a previous paper the relationship was defined between void swelling and irradiation creep arising from the interaction of the SIPA and SIG creep-driven deformation and swelling-driven deformation was highly interactive in nature, and that the two contributions could not be independently calculated and then considered as directly additive. This model could be used to explain the recent experimental observation that the creep-swelling coupling coefficient was not a constant as previously assumed, but declined continuously as the swelling rate increased. Such a model thereby explained the creep-disappearance and creep-damping anomalies observed in conditions where significant void swelling occurred before substantial creep deformation developed. At lower irradiation temperatures and high helium/hydrogen generation rates, such as found in light water cooled reactors and some fusion concepts, gas-filled cavities that have not yet exceeded the critical radius for bubble-void conversion should also exert an influence on irradiation creep. In this paper the original concept is adapted to include such conditions, and its predictions then compared with available data. It is shown that a measurable increase in the creep rate is expected compared to the rate found in low gas-generating environments. The creep rate is directly related to the gas generation rate and thereby to the neutron flux and spectrum.

  12. Creep strength and ductility of 9 to 12% chromium steels

    DEFF Research Database (Denmark)

    Hald, John

    2004-01-01

    The present paper focuses in on long-term creep properties of parent material of the new 9-12%Cr creep resistant steels, P91, E911 and P92 developed for use in advanced ultrasupercritical power plants. These steels have been at the center of activities in the ECCC Working Group 3A (WG3A) "Ferritic...... Steels", which covers creep data development and analysis for parent materials and welds of all ferritic creep resistant steels ranging from low alloy steels up to 12%Cr steels. The opinions stated in the paper represent the views of the author rather than the whole ECCC WG3A group....

  13. Estimation of transient creep C(t)-integrals for SE(B) specimen under elastic-plastic creep

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Je, Jin Ho; Kim, Dong Jun; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2015-09-15

    In this paper, we estimate the time-dependent C(t) integrals under elastic-plastic-creep conditions. Finite-element (FE) transient creep analyses have been performed for single-edge-notched-bend (SEB) specimens. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step load. We consider both the same stress exponent and different stress exponents in the power-law creep and plasticity to elastic-plastic-creep behavior. To estimate the C(t) integrals, we compare the FE analysis results with those obtained using formulas. In this paper, we propose a modified equation to predict the C(t) integrals for the case of creep exponents that are different from the plastic exponent.

  14. Estimation of transient creep crack-tip stress fields for SE(B) specimen under elastic-plastic-creep conditions

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Han Sang; Je, Jin Ho; Kim, Dong Jun; Kim, Yun Jae [Dept. of Mechanical Engineering, Korea University, Seoul (Korea, Republic of)

    2015-10-15

    This paper estimates the time-dependent crack-tip stress fields under elastic-plastic-creep conditions. We perform Finite-Element (FE) transient creep analyses for a Single-Edge-notched-Bend (SEB) specimen. We investigate the effect of the initial plasticity on the transient creep by systematically varying the magnitude of the initial step-load. We consider both the same stress exponent and different stress exponent in the power-law creep and plasticity to determine the elastic-plastic-creep behaviour. To estimation of the crack-tip stress fields, we compare FE analysis results with those obtained numerically formulas. In addition, we propose a new equation to predict the crack-tip stress fields when the creep exponent is different from the plastic exponent.

  15. Recovery of creep properties of the nickel-base superalloy nimonic 105

    CSIR Research Space (South Africa)

    Girdwood, RB

    1996-01-01

    Full Text Available -crept samples and creep recovery quantitatively assessed. Microstructural damage occurring during the creep of Nimonic 105 was studied. Creep strength is lost by the coarsening of the precipitate and grain boundary carbides. The Theta Projection Concept relates...

  16. Role of coupled cataclasis-pressure solution deformation in microearthquake activity along the creeping segment of the SAF: Inferences from studies of the SAFOD core samples

    Science.gov (United States)

    Hadizadeh, J.; Gratier, J.; Renard, F.; Mittempregher, S.; di Toro, G.

    2009-12-01

    Rocks encountered in the SAFOD drill hole represent deformation in the southern-most extent of the creeping segment of the SAF north of the Parkfield. At the site and toward the northwest the SAF is characterized by aseismic creep as well as strain release through repeating microearthquakes Mimaging, X-ray fluorescence mapping, and energy dispersive X-ray spectroscopy. The observed microstructural deformation that is apparently relevant to the seismological data includes clear evidence of cyclic deformation events, cataclastic flow, and pressure solution creep with attendant vein sealing and fracture healing fabrics. Friction testing of drill cuttings and modeling by others suggest that the overall creep behavior in shale-siltstone gouge may be due to low bulk friction coefficient of 0.2-0.4 for the fault rock. Furthermore, the low resistivity zone extending to about 5km beneath the SAFOD-Middle Mountain area is believed to consist of a pod of fluid-filled fractured and porous rocks. Our microstructural data indicate that the foliated shale-siltstone cataclasites are, in a highly heterogeneous way, more porous and permeable than the host rock and therefore provide for structurally controlled enhanced fluid-rock interactions. This is consistent with the observed pressure solution deformation and the microstructural indications of transiently high fluid pressures. We hypothesize that while the friction laws defining stable sliding are prevalent in bulk deformation of the creeping segment, there exist the possibility of steady conditions for repetitive healing, dilation, and rupture of populations of stress-oriented patches due to operation of pressure solution creep along the fault zone. The limitation on the total area of the locked patches at any given time would be controlled primarily by the imposed tectonic and near field rates of slip and fluid flux within the local permeability structure. The available geophysical data for the creeping section of the SAF

  17. Treatment of bronchial ruptures by delayed surgery

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    Objective:To study the causes that resulted in delayed surgery for bronchial ruptures and the results.Methods:The cases with the bronchial ruptures by the delayed surgery last decade were retrospectively reviewed.The causes and unsatisfactory results were analysed.Results:The severe complications usually occurred after the delayed surgery and the results were not as satisfactory as those by early surgery.Conclusion:The bronchial ruptures ought to be operated in the early stage after being wounded.

  18. Achilles tendon rupture; assessment of nonoperative treatment

    DEFF Research Database (Denmark)

    Barfod, Kristoffer Weisskirchner

    2014-01-01

    BACKGROUND: Acute Achilles tendon rupture is a frequent and potentially disabling injury. Over the past decade a change in treatment of acute Achilles tendon rupture away from operative towards non-operative treatment has taken place. However, the optimal non-operative treatment protocol remains...... and Sweden. Immediate weight-bearing was found to be safe and recommendable in non-operative treatment of acute Achilles tendon rupture. The novel ultrasound measurement showed excellent reliability and acceptable validity and agreement....

  19. Achilles tendon rupture; assessment of nonoperative treatment

    DEFF Research Database (Denmark)

    Barfod, Kristoffer Weisskirchner; Troelsen, Anders

    2014-01-01

    BACKGROUND: Acute Achilles tendon rupture is a frequent and potentially disabling injury. Over the past decade a change in treatment ofacute Achilles tendon rupture away from operative towards non-operative treatment has taken place. However, the optimal non-operative treatment protocol remains...... and Sweden. Immediate weight-bearing was found to be safe and recommendable in non-operative treatment of acute Achilles tendon rupture. The novel ultrasound measurement showed excellent reliability and acceptable validity and agreement....

  20. Creep behavior and evolution of microstructure of modified Grade 91 welded joint after short term exposure at 500 deg C; Fluage a 500 deg C d'un joint soude d'un acier 9Cr-1Mo modifie. Evolution de la microstructure et comportement mecanique

    Energy Technology Data Exchange (ETDEWEB)

    Vivier, F.

    2009-03-15

    With the increase in worldwide energy demand, the nuclear industry is a way of producing electricity on a large scale and to answer to this need. For the design of a new generation of fission nuclear reactors and among six chosen fission reactor systems, France develops in particularly the Very High Temperature Reactor (VHTR) concept. This implies the use of materials that are more and more resistant to high temperature for long-term exposure. AREVA focuses on materials already used in fossil-fuel power plant, so that the mechanical behaviour of Grade 91 (Fe{sub 9}Cr{sub 1}MoNbV) has to be investigated. This ferritic-martensitic steel is considered to be a potential candidate for welded components. Such structures are combined with welded joints, which have to be studied. Three industrial partners (AREVA, CEA, EDF) have launched a study with the Centre des Materiaux in order to investigate the creep of welded joint of Grade 91. The aim of this work is to complete the available database about the mechanical behaviour of Grade 91, base metal and welded joint, during creep tests performed at 500 C up to 4500 h exposure. Thermal aging tests, tensile tests, and creep tests were performed at 450 C and 500 C using both base metal and cross-weld samples. Several geometries of cross-weld creep specimens were tested. The microstructure has not remarkably changed after tests concerning both nature and size of precipitates, and the characteristic size of the matrix sub-structure. The creep damage is not developed in the ruptured specimens after creep tests. Only little damage by cavity nucleation and growth was found in the creep specimens. Creep fracture at 500 C takes places by viscoplastic flow, contrary to tests performed at 625 C where the creep-induced damage governs the creep rupture at least for long-term lifetime. From creep curves of base metal and cross-weld specimens, a phenomenological model is proposed. The flow rule is a Norton power law with a stress exponent

  1. Pathological rupture of malarial spleen.

    Directory of Open Access Journals (Sweden)

    Mokashi A

    1992-07-01

    Full Text Available Two cases of spontaneous rupture of malarial spleen are reported here. One of them was a male who was on chloroquine for an acute attack of malaria. While on therapy, he complained of pain in left hypochondrium followed by palpitations. The other patient was a female who was admitted for continuous dull aching pain and fever. In both the patients, exploratory laparotomy revealed an enlarged spleen with tear. Splenectomy was performed. Histopathological examination revealed dilated congested sinusoid with follicular atrophy, and RBCs with malarial parasites. The post-operative course was smooth in both patients.

  2. Ruptured jejunum following Heimlich maneuver.

    Science.gov (United States)

    Razaboni, R M; Brathwaite, C E; Dwyer, W A

    1986-01-01

    The Heimlich maneuver, over time, has proved to be a useful resuscitative procedure in the management of cases with airway occlusion secondary to foreign body. Medical treatments, however, can have side effects, and this maneuver is no exception. A previously unreported complication is presented, that of jejunal rupture. The proper application of the maneuver minimizes the number of side effects; however, since they do occur, it is suggested that all persons subject to this maneuver be subsequently evaluated by a physician as soon after the incident as is practicable.

  3. The rupture in visual language:

    OpenAIRE

    Kula, Ömür; Kula, Omur

    2006-01-01

    The shift of arts from conventional forms of canvas-painting and sculpture to collage, ready-mades, installations and performances as it had occurred in the history of western art follow a linear and natural unfolding in parallel with sociopolitical evolvements. In the case of Turkish visual arts, this kind of a transformation projects to the time period between 1960s to 1990s where the face of arts change not smoothly but rather in the form of a 'rupture' as new tendencies are embraced, prac...

  4. Collect Available Creep-Fatigue Data and Study Existing Creep-Fatigue Evaluation Procedures for Grade 91 and Hastelloy XR

    Energy Technology Data Exchange (ETDEWEB)

    Tai Asayama; Yukio Tachibana

    2007-09-30

    This report describes the results of investigation on Task 5 of DOE/ASME Materials Project based on a contract between ASME Standards Technology, LLC (ASME ST-LLC) and Japan Atomic Energy Agency (JAEA). Task 5 is to collect available creep-fatigue data and study existing creep-fatigue evaluation procedures for Grade 91 steel and Hastelloy XR. Part I of this report is devoted to Grade 91 steel. Existing creep-fatigue data were collected (Appendix A) and analyzed from the viewpoints of establishing a creep-fatigue procedure for VHTR design. A fair amount of creep-fatigue data has been obtained and creep-fatigue phenomena have been clarified to develop design standards mainly for fast breeder reactors. Following this, existing creep-fatigue procedures were studied and it was clarified that the creep-fatigue evaluation procedure of the ASME-NH has a lot of conservatisms and they were analyzed in detail from the viewpoints of the evaluation of creep damage of material. Based on the above studies, suggestions to improve the ASME-NH procedure along with necessary research and development items were presented. Part II of this report is devoted to Hastelloy XR. Existing creep-fatigue data used for development of the high temperature structural design guideline for High Temperature Gas-cooled Reactor (HTGR) were collected. Creep-fatigue evaluation procedure in the design guideline and its application to design of the intermediate heat exchanger (IHX) for High Temperature Engineering Test Reactor (HTTR) was described. Finally, some necessary research and development items in relation to creep-fatigue evaluation for Gen IV and VHTR reactors were presented.

  5. Mechanical model of vulnerable atherosclerotic plaque rupture

    Institute of Scientific and Technical Information of China (English)

    SU; Haijun; ZHANG; Mei; ZHANG; Yun

    2004-01-01

    Rupture of atherosclerotic plaque is the main trigger of acute cardiovascular events, but the mechanism of plaque rupture is still unknown. We have constructed a model describing the motion of the fibrous cap of the plaque using the theory of elastic mechanics and studied the stability of the plaque theoretically. It has shown that plaque rupture is the result of a dynamic interplay between factors intrinsic to the plaque itself and extrinsic factors. We have proposed a new mechanism of plaque rupture, given a new explanation about the nonlinear dynamic progress of atherosclerosis and suggested a method to identify the vulnerable plaques to manage atherosclerosis.

  6. Delayed presentation of traumatic intraperitoneal bladder rupture

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.; Magill, H.L.; Black, T.L.

    1986-03-01

    A child with urine ascites as a delayed manifestation of post-traumatic intraperitoneal bladder rupture is presented. The diagnosis was suggested by abdominal CT scan and confirmed with a cystogram. While uncommon, late presentation of intraperitoneal bladder rupture following trauma may occur from masking of a primary laceration or development of secondary rupture at the site of a hematoma in the bladder wall. Since CT may be a primary diagnostic study performed following abdominal trauma, the radiologist should be aware of CT findings suggesting bladder rupture and of the possibility of delayed presentation of this injury.

  7. Influence of Heat Treatment Condition for the Grain Boundary Serration on Deformation Behavior of Alloy 617 during Creep at 950℃

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Ji Won; Hong, Hyun Uk [Changwon National University, Changwon (Korea, Republic of)

    2015-10-15

    The effect of the heat treatment condition to introduce the grain boundary (GB) serration on the creep properties was investigated at 950℃ in a solid-solution-strengthened Alloy 617. Serrated GBs without carbide at the early stage of slow-cooling were newly observed, and appear to challenge previous models. As the aging temperature for which the specimen was slow-cooled from 1200℃ decreased, the amplitude and the fraction of the serration became higher. The serrated GBs with stable planar M{sub 2}3C{sub 6} carbides caused a fairly long period of a steady-state stage due to their higher resistance to GB cavitation cracking as well as substantial suppression of recrystallization. The very fine and stable intragranular carbides, which precipitated uniformly throughout the serrated specimen aged at 1000 ℃ during the initial stage of creep, were responsible for the further improvement in the creep rupture life (up to 2.8 times longer) by lowering the creep strain rate.

  8. The influence of Mg on creep properties and fracture behaviors of Mar-M247 superalloy under 1255 K/200 MPa

    Science.gov (United States)

    Bor, H. Y.; Ma, C. Y.; Chao, C. G.

    2000-05-01

    The effects of Mg microadditions on the high-temperature/low stress (1255 K/200 MPa) creep properties and fracture behavior of a Mar-M247 superalloy were investigated in this study. The results of quantitative statistical analyses showed that when Mg microadditions up to 50 ppm were made, the MC carbides located at grain boundaries (designated GB MC) were significantly refined and spheroidized and the number of MC carbides decreased. In addition, the M23C6 carbides present on GBs dramatically increased with increasing Mg contents up to 50 ppm, and the creep resistance was enhanced under the test condition of 1255 K/200 MPa. However, the creep performance of a Mar-M247 superalloy containing 80 ppm Mg deteriorated due to the formation of an extremely large amount of MC carbide and a decrease in the number of M23C6 carbides at GBs. The cracks mainly initiated and propagated along GBs in both the Mg-free and Mg-containing Mar-M247 superalloys under 1255 K/200 MPa, and the finial rupture was caused by intergranular fracture. Under the present creep condition, the optimal Mg microaddition to a Mar-M247 superalloy should be 30 to 50 ppm.

  9. Research on the creep damage and interfacial failure of dissimilar metal welded joint between 10Cr9Mo1VNbN and 12Cr1MoV steel

    Institute of Scientific and Technical Information of China (English)

    张建强; 赵海燕; 吴甦; 鹿安理; 王煜; 章应霖

    2004-01-01

    The mechanical properties, creep damage, creep rupture strength and features of interfacial failures of welded joints between martensite (SA213T91) and pearlite steel (12Cr1MoV) have been investigated by means of argon tungsten pulsed arc welding, high temperature accelerated simulation, creep rupture, mechanical property tests and scanning electronic microscope (SEM). The research results indicate that the mechanical properties of overmatched and medium matched joint deteriorate obviously, and they are susceptible to creep damage and failure after accelerated simulation operation 500h, in the condition of preheat 250℃, and post welding heat treatment 750℃×1h. However, the mechanical properties of undermatched joint are the best, the interfacial failure tendency of undermatched welded joint is less than those of medium and overmatched welded joint. Therefore, it is reasonable that low alloy material TR31 is used as the filler metal of weld between SA213T91and 12Cr1MoV steel.

  10. The Parkfield tremors reveal slow and fast ruptures on the same asperity

    Science.gov (United States)

    Veedu, Deepa Mele; Barbot, Sylvain

    2016-04-01

    The deep extension of the San Andreas Fault is believed to be creeping, but the recent observations of tectonic tremors from these depths indicate a complex deformation style. In particular, an isolated tremor source near Parkfield has been producing a sequence of low-frequency earthquakes that indicates an uncommon mechanism of stress accumulation and release. The tremor pattern regularly oscillated between three and six days from mid-2003 until it was disrupted by the 2004 magnitude 6.0 Parkfield earthquake. After that event, the tremor source ruptured only about every three days, but over the next two years it gradually returned to its initial alternating recurrence pattern. The mechanism that drives this recurrence pattern is unknown. Here we use physics-based models to show that the same tremor asperity—the region from which the low-frequency earthquakes radiate—can regularly slip in slow and fast ruptures, naturally resulting in recurrence intervals alternating between three and six days. This unusual slip behaviour occurs when the tremor asperity size is close to the critical nucleation size of earthquakes. We also show that changes in pore pressure following the Parkfield earthquake can explain the sudden change and gradual recovery of the recurrence intervals. Our findings suggest a framework for fault deformation in which the same asperity can release tectonic stress through both slow and fast ruptures.

  11. Creep of trabecular bone from the human proximal tibia

    Energy Technology Data Exchange (ETDEWEB)

    Novitskaya, Ekaterina, E-mail: eevdokim@ucsd.edu [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Zin, Carolyn [Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Chang, Neil; Cory, Esther; Chen, Peter [Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); D’Lima, Darryl [Shiley Center for Orthopaedic Research and Education, Scripps Health, La Jolla, CA 92037 (United States); Sah, Robert L. [Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States); Departments of Bioengineering and Orthopaedic Surgery, UC, San Diego, La Jolla, CA 92093 (United States); McKittrick, Joanna [Mechanical and Aerospace Engineering, UC, San Diego, La Jolla, CA 92093 (United States); Materials Science and Engineering Program, UC, San Diego, La Jolla, CA 92093 (United States)

    2014-07-01

    Creep is the deformation that occurs under a prolonged, sustained load and can lead to permanent damage in bone. Creep in bone is a complex phenomenon and varies with type of loading and local mechanical properties. Human trabecular bone samples from proximal tibia were harvested from a 71-year old female cadaver with osteoporosis. The samples were initially subjected to one cycle load up to 1% strain to determine the creep load. Samples were then loaded in compression under a constant stress for 2 h and immediately unloaded. All tests were conducted with the specimens soaked in phosphate buffered saline with proteinase inhibitors at 37 °C. Steady state creep rate and final creep strain were estimated from mechanical testing and compared with published data. The steady state creep rate correlated well with values obtained from bovine tibial and human vertebral trabecular bone, and was higher for lower density samples. Tissue architecture was analyzed by micro-computed tomography (μCT) both before and after creep testing to assess creep deformation and damage accumulated. Quantitative morphometric analysis indicated that creep induced changes in trabecular separation and the structural model index. A main mode of deformation was bending of trabeculae. - Highlights: • Compressive creep tests of human trabecular bone across the tibia were performed. • The creep rate was found to be inversely proportional to the density of the samples. • μ-computed tomography before and after testing identified regions of deformation. • Bending of the trabeculae was found to be the main deformation mode.

  12. Quadriceps and patellar tendon ruptures.

    Science.gov (United States)

    Lee, Dennis; Stinner, Daniel; Mir, Hassan

    2013-10-01

    The diagnosis of quadriceps and patellar tendon ruptures requires a high index of suspicion and thorough history-taking to assess for medical comorbidities that may predispose patients to tendon degeneration. Radiographic assessment with plain films supplemented by ultrasound and magnetic resonance imaging when the work-up is equivocal further aids diagnosis; however, advanced imaging is often unnecessary in patients with functional extensor mechanism deficits. Acute repair is preferred, and transpatellar bone tunnels serve as the primary form of fixation when the tendon rupture occurs at the patellar insertion, with or without augmentation depending on surgeon preference. Chronic tears and disruptions following total knee arthroplasty are special cases requiring reconstructions with allograft, synthetic mesh, or autograft. Rehabilitation protocols generally allow immediate weight-bearing with the knee locked in extension and crutch support. Limited arc motion is started early with active flexion and passive extension and then advanced progressively, followed by full active range of motion and strengthening. Complications are few but include quadriceps atrophy, knee stiffness, and rerupture. Outcomes are excellent if repair is done acutely, with poorer outcomes associated with delayed repair.

  13. Creep and Creep Crack Growth Behaviors for SMAW Weldments of Gr. 91 Steel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Woo Gon; Yin, Song Nan; Park, Ji Yeon; Hong, Sung Deok; Kim, Yong Wan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Jae Young [Pukyong National University, Busan (Korea, Republic of)

    2010-05-15

    High Cr ferritic resistance steels with tempered martensite microstructures posses enhanced creep strength at the elevated temperatures. Those steels as represented by a modified 9Cr-1Mo steel (ASME Grade 91, hereafter Gr.91) are regarded as main structural materials of sodium-cooled fast reactors (SFR) and reactor pressure vessel materials of very high temperature reactors (VHTR). The SFR and VHTR systems are designed during long-term duration reaching 60 years at elevated temperatures and often subjected to non-uniform stress and temperature distribution during service. These conditions may generate localized creep damage and propagate the cracks and ultimately may cause a fracture. A significant portion of its life is spent in crack propagation. Therefore, a creep crack growth rate (CCGR) due to creep damage should be assessed for both the base metal (BM) and welded metal (WM). Enough CCGR data for them should be provided for assessing their structural integrities. However, their CCGR data for the Gr. 91 steels is still insufficient. In this study, the CCGR for the BM and the WM of the Gr. 91 steel was comparatively investigated. A series of the CCG tests were conducted under different applied loads for the BM and the WM at 600 .deg. C. The CCGR was characterized in terms of the C parameter, and their CCG behavior were compared, respectively

  14. Variations in creep rate along the Hayward Fault, California, interpreted as changes in depth of creep

    Science.gov (United States)

    Simpson, R.W.; Lienkaemper, J.J.; Galehouse, J.S.

    2001-01-01

    Variations ill surface creep rate along the Hayward fault are modeled as changes in locking depth using 3D boundary elements. Model creep is driven by screw dislocations at 12 km depth under the Hayward and other regional faults. Inferred depth to locking varies along strike from 4-12 km. (12 km implies no locking.) Our models require locked patches under the central Hayward fault, consistent with a M6.8 earthquake in 1868, but the geometry and extent of locking under the north and south ends depend critically on assumptions regarding continuity and creep behavior of the fault at its ends. For the northern onshore part of the fault, our models contain 1.4-1.7 times more stored moment than the model of Bu??rgmann et al. [2000]; 45-57% of this stored moment resides in creeping areas. It is important for seismic hazard estimation to know how much of this moment is released coseismically or as aseismic afterslip.

  15. Study of irradiation creep of vanadium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, H.; Strain, R.V.; Smith, D.L. [Argonne National Lab., IL (United States)] [and others

    1997-08-01

    Thin-wall tubing was produced from the 832665 (500 kg) heat of V-4 wt.% Cr-4 wt.% Ti to study its irradiation creep behavior. The specimens, in the form of pressurized capsules, were irradiated in Advanced Test Reactor and High Flux Isotope Reactor experiments (ATR-A1 and HFIR RB-12J, respectively). The ATR-A1 irradiation has been completed and specimens from it will soon be available for postirradiation examination. The RB-12J irradiation is not yet complete.

  16. Revisiting Creeping Competences in the EU

    DEFF Research Database (Denmark)

    Citi, Manuele

    2014-01-01

    case where secondary legislation was employed to extend a formal treaty-based competence (civilian research and technology policy) to an area that, for historical and strategic reasons, has always been a policy monopoly of national governments: research and technology development policy for security...... and defence. Through the analysis of a large pool of documentary data, I elaborate a set of linked hypotheses about the empirical dynamics of creeping competences, and show how the theory of incomplete contracting is best suited to explain this phenomenon....

  17. Jojoba could stop the desert creep

    Energy Technology Data Exchange (ETDEWEB)

    1982-03-25

    The Sahara desert is estimated to be expanding at a rate of 5km a year. The Sudanese government is experimenting with jojoba in six different regions as the bush has the potential to stop this ''desert creep''. The plant, a native to Mexico, is long known for its resistance to drought and for the versatile liquid wax that can be extracted from its seeds. It is estimated that one hectare of mature plants could produce 3000 kg of oil, currently selling at $50 per litre, and so earn valuable foreign currency.

  18. Accelerated Creep Testing of High Strength Aramid Webbing

    Science.gov (United States)

    Jones, Thomas C.; Doggett, William R.; Stnfield, Clarence E.; Valverde, Omar

    2012-01-01

    A series of preliminary accelerated creep tests were performed on four variants of 12K and 24K lbf rated Vectran webbing to help develop an accelerated creep test methodology and analysis capability for high strength aramid webbings. The variants included pristine, aged, folded and stitched samples. This class of webbings is used in the restraint layer of habitable, inflatable space structures, for which the lifetime properties are currently not well characterized. The Stepped Isothermal Method was used to accelerate the creep life of the webbings and a novel stereo photogrammetry system was used to measure the full-field strains. A custom MATLAB code is described, and used to reduce the strain data to produce master creep curves for the test samples. Initial results show good correlation between replicates; however, it is clear that a larger number of samples are needed to build confidence in the consistency of the results. It is noted that local fiber breaks affect the creep response in a similar manner to increasing the load, thus raising the creep rate and reducing the time to creep failure. The stitched webbings produced the highest variance between replicates, due to the combination of higher local stresses and thread-on-fiber damage. Large variability in the strength of the webbings is also shown to have an impact on the range of predicted creep life.

  19. Out-of-pile creep behavior of uranium carbide

    Science.gov (United States)

    Wright, T. R.; Seltzer, M. S.

    1974-01-01

    Compression creep tests were investigated on various UC-based fuel materials having a variation in both density and composition. Specimens were prepared by casting and by hot pressing. Steady-state creep rates were measured under vacuum at 1400 to 1800 C in the stress range 500-4000 psi.

  20. Mullite—corundum Refractories with High Creep Resistance

    Institute of Scientific and Technical Information of China (English)

    LIANGYong-be; LINan; 等

    1996-01-01

    Mullite-corundum bricks and kiln furni-ture with high creep resistance and good thermal shock resistance were fabricated based on low cost raw materials,the approaches of introducing some additives and optimisig,chemical composition and partical size were mployed to produce a high temperature matrix phase with high creep resistance and good thermal shock resistance.

  1. Creep behavior of abaca fibre reinforced composite material

    Energy Technology Data Exchange (ETDEWEB)

    Tobias, B.C.; Lieng, V.T. [Victoria Univ. of Technology, Victoria (Australia)

    1996-12-31

    This study investigates the creep behavior of abaca fibre reinforced composite lamina. The optimum proportions of constituents and loading conditions, temperature and stresses, are investigated in terms of creep properties. Lamina with abaca fibre volume fractions of 60, 70 and 80 percent, embedded in polyester resin were fabricated. Creep tests in tension at three temperature levels 20{degrees}C, 100{degrees}C and 120{degrees}C and three constant stress levels of 0. 1 MPa, 0. 13 Mpa and 0. 198 MPa using a Dynamic Mechanical Analyzer (DMA) were performed. The creep curves show standard regions of an ideal creep curve such as primary and secondary creep stage. The results also show that the minimum creep rate of abaca fibre reinforced composite increases with the increase of temperature and applied stress. Plotting the minimum creep rate against stress, depicts the variations of stress exponents which vary from 1.6194 at 20{degrees}C to 0.4576 at 120{degrees}C.

  2. Creep degradation in oxide-dispersion-strengthened alloys

    Science.gov (United States)

    Whittenberger, J. D.

    1977-01-01

    Oxide dispersion strengthened Ni-base alloys in wrought bar form are studied for creep degradation effects similar to those found in thin gage sheet. The bar products evaluated included ODS-Ni, ODS-NiCr, and three types of advanced ODS-NiCrAl alloys. Tensile test specimens were exposed to creep at various stress levels at 1365 K and then tensile tested at room temperature. Low residual tensile properties, change in fracture mode, the appearance of dispersoid-free bands, grain boundary cavitation, and internal oxidation in the microstructure were interpreted as creep degradation effects. This work showed that many ODS alloys are subject to creep damage. Degradation of tensile properties occurred after very small amounts of creep strain, ductility being the most sensitive property. All the ODS alloys which were creep damaged possessed a large grain size. Creep damage appears to have been due to diffusional creep which produced dispersoid-free bands around boundaries acting as vacancy sources. Low angle and possibly twin boundaries acted as vacancy sources.

  3. A Comparison of the Irradiation Creep Behavior of Several Graphites

    Energy Technology Data Exchange (ETDEWEB)

    Burchell, Timothy D [ORNL; Windes, Will [Idaho National Laboratory (INL)

    2016-01-01

    Graphite creep strain data from the irradiation creep capsule Advanced Graphite Creep-1 (AGC-1) are reported. This capsule was the first (prototype) of a series of five or six capsules planned as part of the AGC experiment, which was designed to fully characterize the effects of neutron irradiation and the radiation creep behavior of current nuclear graphite. The creep strain data and analysis are reported for the six graphite grades incorporated in the capsule. The AGC-1 capsule was irradiated in the Advanced Test Reactor at Idaho National Laboratory (INL) at approximately 700 C and to a peak dose of 7 dpa (displacements per atom). The specimen s final dose, temperature, and stress conditions have been reported by INL and were used during this analysis. The derived creep coefficients (K) were calculated for each grade and were found to compare well to literature data for the creep coefficient, even under the wide range of AGC-1 specimen temperatures. Comparisons were made between AGC-1 data and historical grade data for creep coefficients.

  4. ON INTEGRITY ASSESSMENT OF AXISYMMETRIC COMPONENTS OPERATING WITHIN CREEP REGIME

    Institute of Scientific and Technical Information of China (English)

    ZARRABI K; LAWRENCE Ng

    2006-01-01

    A multiaxial paradigm for predicting creep damage/lives of components is described. Although in principle the paradigm is general, it is verified using axisymmetric experimental data. It is shown that the proposed paradigm is capable of predicting creep lives with an error of less than 2%. It is also shown that the proposed paradigm is more accurate than the reference stress method.

  5. Tracheal rupture post-emergency intubation

    OpenAIRE

    Andrea Billè; Luca Errico; Francesco Ardissone; Luciano Cardinale

    2009-01-01

    Tracheal rupture is an uncommon and potentially lifethreatening complication of endotracheal intubation. We present a case of intrathoracic tracheal rupture in a female patient who required emergent endotracheal intubation for acute respiratory distress related to chronic obstructive pulmonary disease exacerbation. Possible contributing factors to tracheal injury included overinflation of the tube cuff, chronic obstructive pulmonary disease, and chronic steroid use. The patient underwent surg...

  6. Spontaneous rupture of choledochal cyst: case report

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ho Seob; Nam, Kyung Jin; Lee, Jin Hwa; Kim, Chan Sung; Choi, Jong Cheol; Oh, Jong Young [Dong-a University College of Medicine, Pusan (Korea, Republic of)

    2002-11-01

    Spontaneous rupture of a choledochal cyst leading to biliary peritonitis is a rare complication which can be fatal if not promptly diagnosed. The authors report the ultrasound and CT findings of two cases of spontaneous choledochal cystic rupture and the biliary peritonitis which ensued.

  7. Ruptured liver abscess in a neonate

    Directory of Open Access Journals (Sweden)

    Prashant Jain

    2012-01-01

    Full Text Available We report a rare case of 17-day-old neonate, diagnosed to have ruptured liver abscess secondary to Methicillin-resistant Staphylococcal aureus infection. The child presented with septicemia and abdominal distension. On exploration, there was pyoperitoneum with ruptured liver abscess.

  8. Simultaneous and spontaneous bilateral quadriceps tendons rupture.

    Science.gov (United States)

    Celik, Evrim Coşkun; Ozbaydar, Mehmet; Ofluoglu, Demet; Demircay, Emre

    2012-07-01

    Simultaneous and spontaneous bilateral quadriceps tendon rupture is an uncommon injury that is usually seen in association with multiple medical conditions and some medications. We report a case of simultaneous and spontaneous bilateral quadriceps tendon rupture that may be related to the long-term use of a statin.

  9. Migraine before rupture of intracranial aneurysms

    DEFF Research Database (Denmark)

    Lebedeva, Elena R; Gurary, Natalia M; Sakovich, Vladimir P

    2013-01-01

    Rupture of a saccular intracranial aneurysm (SIA) causes thunderclap headache but it remains unclear whether headache in general and migraine in particular are more prevalent in patients with unruptured SIA.......Rupture of a saccular intracranial aneurysm (SIA) causes thunderclap headache but it remains unclear whether headache in general and migraine in particular are more prevalent in patients with unruptured SIA....

  10. New technical procedure involving Achilles tendon rupture treatment through transcutaneous suture.

    Science.gov (United States)

    TarniŢă, DănuŢ Nicolae; TarniŢă, Daniela; Grecu, Dan Cristian; Calafeteanu, Dan Marian; Căpitănescu, Bogdan

    2016-01-01

    The Achilles tendon is the widest tendon of the human body. Achilles tendon belongs to the extrasynovial tendons group and this allows it a faster recovery, thanks to local hematoma from the peritenon, necessary for the scarification. We concluded that in Achilles tendon rupture treatment it is essential to maintain the tendon covering skin integrity, the peritendinous integrity, to maintain the local hematoma formed during and after tendon rupture, reattaching the ruptured tendon heads and maintain them in this position by suturing them and by relaxing the sural triceps muscle. The percutaneous suture requires five pairs of mirror micro-incisions (5 mm) on one side and the other of the tendon. It is necessary for one of the pairs to be placed to the rupture level. With a surgical needle, we arm the proximal and distal heads of the tendon by different threads. By traction and muscular relaxation, we bring in contact the two ruptured heads and then we knot together the arming threads. The inferior member was cast immobilized in relaxing position for the sural triceps muscle for a 45 days period. Using this technique, we have operated 15 cases in our Clinic. In all the cases, we obtained a healing by first intention of the tegument micro-incisions. After the cast immobilization suppression, during 30 days the patients were in a recovery program. At the end of this program, they have recovered completely the dorsal and plantar flexion and the walking. In four months after the surgery, the esthetic of the area is completely restored, this technique being the only surgical technique that realizes this recovery.

  11. Effect of misalignment on mechanical behavior of metals in creep. [computer programs

    Science.gov (United States)

    Wu, H. C.

    1979-01-01

    Application of the endochronic theory of viscoplasticity to creep, creep recovery, and stress relaxation at the small strain and short time range produced the following results: (1) The governing constitutive equations for constant-strain-rate stress-strain behavior, creep, creep recovery, and stress relaxation were derived by imposing appropriate constraints on the general constitutive equation of the endochronic theory. (2) A set of material constants was found which correlate strain-hardening, creep, creep recovery, and stress relaxation. (3) The theory predicts with reasonable accuracy the creep and creep recovery behaviors at short time. (4) The initial strain history prior to the creep stage affects the subsequent creep significantly. (5) A critical stress was established for creep recovery. A computer program, written for the misalignment problem is reported.

  12. [Premature rupture of membranes and chorioamnionitis].

    Science.gov (United States)

    Lopez Garcia, R

    1988-01-01

    Despite advances in perinatal medicine in the past decade, the diagnosis and treatment of premature rupture of membranes remain controversial. Premature rupture occurs in 2.7-7.0% of pregnancies and most cases occur spontaneously without apparent cause. The disparity in reported rates of premature rupture is due to differences in the definition and diagnostic criteria for premature rupture and lack of comparability in the populations studied. Mexico's National Institute of Perinatology has adopted the definition of the American COllege of Gynecology and Obstetrics which views premature rupture as that occurring before regular uterine contractions that produce cervical dilation. 8.8% of its patients have premature rupture according to this definition. 20% of cases occur before the 36th week of pregnancy. Treatment of rupture occurring before 37 weeks must balance the threat of amniotic infection with the dangers of premature birth. Infections appear more common in low income patient populations. Chorioamnionitis is a serious complication of pregnancy and is the main argument against conservative treatment of premature rupture. The rate of maternal infection is directly related to the time elapsing between rupture of the membranes and birth. The rate increases after the 1st 24 hours and is at least 10 times higher after 72 hours. But recent studies suggest that there is no considerable increase in infection if vaginal explorations are avoided and careful techniques are used in treating the patient. Those who advise conservative treatment believe that prenatal outcomes are better because respiratory disease syndrome due to prematurity is avoided. Conservative management requires a white cell count at least every 24 hours and measurement of pulse, maternal temperature, and fetal heart rate ideally every 4 hours. Perinatal mortality rates due to premature rupture of membranes range from 2.5-50%. The principal causes are respiratory disease syndrome, infection, asphyxia

  13. Simultaneous bilateral patellar tendon rupture without

    Directory of Open Access Journals (Sweden)

    LU Hua-ding

    2012-04-01

    Full Text Available 【Abstract】There is a dearth of case reports de-scribing simultaneous bilateral patellar tendon ruptures in the medical literature. These ruptures are often associated with systemic disorders such as lupus erythematosus or chronic steroid use. The author describes a case of a 24-year-old man who sustained traumatic bilateral patellar ten-don ruptures without any history of systemic disease or steroidal medication. We repaired and reattached the rup-tured tendons to the patella and augmented our procedure with allogeneic tendon followed by wire loop reinforcement. One year after operation, the patient regained a satisfactory range of motion of both knees with good quadriceps strength and no extensor lag. The recurrent microtrauma from a history of intense sports activity and a high body mass index may have played an important role in this trauma event. Key words: Patella; Patellar ligament; Rupture; Ten-don injuries; Knee

  14. Should the ruptured renal allograft be removed?

    Science.gov (United States)

    Dryburgh, P; Porter, K A; Krom, R A; Uchida, K; West, J C; Weil, R; Starzl, T E

    1979-07-01

    During a 16-month period when 93 renal transplants were performed, eight kidney graft ruptures were detected within 18 days of transplantation, without evidence of venous obstruction. Six grafts were removed at the time of an exploratory operation for rupture and only one showed signs of probable irreversible rejection when examined by microscopy. Two graft ruptures were repaired and one of these grafts has had good long-term function 22 months later. These observations suggest that if bleeding at the site of grafts has had good long-term function 22 months later. These observations suggest that if bleeding at the site of graft rupture can be securely controlled and if the conditions of the patient and of the graft are favorable except for the rupture, it may be possible to save more than one of eight grafts.

  15. Experimental Research on Creep Characteristics of Nansha Soft Soil

    Directory of Open Access Journals (Sweden)

    Qingzi Luo

    2014-01-01

    Full Text Available A series of tests were performed to investigate the creep characteristics of soil in interactive marine and terrestrial deposit of Pearl River Delta. The secondary consolidation test results show that the influence of consolidation pressure on coefficient of secondary consolidation is conditional, which is decided by the consolidation state. The ratio of coefficient of secondary consolidation and coefficient of compressibility Ca/Cc is almost a constant, and the value is 0.03. In the shear-box test, the direct sheer creep failure of soil is mainly controlled by shear stress rather than the accumulation of shear strain. The triaxial creep features are closely associated with the drainage conditions, and consolidation can weaken the effect of creep. When the soft soil has triaxial creep damage, the strain rate will increase sharply.

  16. Optimum design of inhomogeneous rotating discs under secondary creep

    Energy Technology Data Exchange (ETDEWEB)

    Farshi, Behrooz [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846 (Iran, Islamic Republic of)], E-mail: Farshi@iust.ac.ir; Bidabadi, Jalal [Department of Mechanical Engineering, Iran University of Science and Technology, Tehran 16846 (Iran, Islamic Republic of)

    2008-07-15

    Rotating discs commonly used in the aerospace industry often operate under high mechanical stresses due to centrifugal forces, while subject to high temperature gradients. High stresses and temperatures lead to creep in such rotating disc applications. This problem is particularly important in turbine discs under continuous operation. Since such discs are subject to secondary creep effects during most of their useful lives, it is important that they be optimized for minimum weight for the steady-state creep stresses. In this investigation, by considering the variable physical properties of the rotating disc materials under a high temperature gradient, a procedure for weight minimization for the steady-state creep stresses is proposed. The method aims to design the disc thickness profile so as to have minimum weight while the equivalent secondary creep stresses of the rotating disc under a high temperature gradient at all points simultaneously approach but do not exceed an allowable stress. An example is given to illustrate the method.

  17. Accelerated creep of Ni-YSZ anodes during reduction

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Greco, Fabio; Ni, De Wei

    2014-01-01

    by the thermomechanical history of the stack (e.g. sintering temperature, time at temperature etc.). During operation the stress state will depend on time as stresses are relaxed by creep processes. Creep has mainly been studied at operating conditions, where the Ni-YSZ anode is in the reduced state and YSZ is the main...... load-carrying component. In this work we report on a new creep-reduction phenomenon observed to take place during the reduction process itself, where stresses are relaxed at a rate much faster (~×104) than during operation where the anode is in fully reduced state. Furthermore, samples exposed...... to a very small tensile stress (0.004 MPa) were observed to expand during reduction, which is in contrast with reports in literature [Ref].The “accelerated” creep has a tremendous impact on the stress field in an operating SOFC stack. Creep experiments, where carried out on NiO-YSZ anode support structures...

  18. Uniaxial tension and tensile creep behaviors of EPS

    Institute of Scientific and Technical Information of China (English)

    康颖安; 李显方; 谭加才

    2008-01-01

    The mechanical behavior of EPS(Expanded polystyrene) with three densities at room temperature and under tension loading was studied.The results show that EPS material is characterized by brittle behavior in the tension tests,and tensile properties of EPS increase with the increase of density.Volume fraction has no a significant effect on the modulus of these foams.The tensile creep strain increases with stress for EPS with same density,indicating that the creep behavior is of the stress dependency.And the creep behavior of EPS exhibits density dependency,which the creep strain decreases with densities for a fixed stress value.Moreover the creep behavior under the constant tension load is well in coincidence with the three-parameter solid model.

  19. Creep in refractory materials; Fluencia en materiales refractarios

    Energy Technology Data Exchange (ETDEWEB)

    Tomba Martinez, A. G.; Luz, A. P.; Pandolfelli, V. C.

    2013-10-01

    Refractory materials are widely used in various industrial fields due to their outstanding properties and performance in aggressive environments. However, although creep resistance is one of the most important properties for the selection of these materials, few researches were carried out focused on the fundamentals and technological understanding of their performance at high temperatures. In this context, this work addresses: 1) the creep mechanisms, 2) the mathematical models proposed for the analysis and to forecast the creep deformation at high temperature, 3) technical procedures and experimental testing, and 4) a critical analysis of some basic and practical aspects considering the literature available on this issue. Based on the collected information, mathematical models (such as the Projection concept) were considered as a powerful tool for the prediction of the refractories creep behavior, helping to identify the main creep mechanisms in these materials and to induce the development of optimized compositions able to attend the end-users requirements. (Author)

  20. Indentation creep in zirconia ceramics under variable loads

    Energy Technology Data Exchange (ETDEWEB)

    Ren, X.J. [School of Engineering, Liverpool John Moores Univ., Liverpool (United Kingdom); Hooper, R.M. [School of Engineering and Computer Science, Univ. of Exeter, Exeter (United Kingdom); Henshall, J.L. [Mechanical and Mfg. Engineering Dept., Nottingham Trent Univ., Nottingham (United Kingdom)

    2005-07-01

    Time dependent deformation at room and elevated temperature is a significant property of zirconia ceramics and has a direct influence on their use. An understanding of this time dependent behaviour is therefore important in predicting the service life of a component. In this work, the indentation creep behaviour of two typical zirconia ceramics - ceria stabilised polycrystalline tetragonal (Ce-TZP) and yttria (6%) stabilized polycrystalline cubic zirconia, YCPZ, have been investigated from room temperature to 600 C. Indentation creep tests with various loads yielded identical creep rate, which indicates that indentation size effect has no significant effect on the indentation creep of zirconia ceramics. Tests with variable loads, using a spring loaded apparatus, exhibited comparable indentation creep rates to that under constant loading. (orig.)