WorldWideScience

Sample records for he-cd laser beam

  1. Temperature-Induced Wavelength Shift of Electron-Beam-Pumped Lasers from CdSe, CdS, and ZnO

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher

    1971-01-01

    Experimental results on the temperature dependence of the laser frequency and threshold pump power are presented in the range from liquid helium to room temperature for electron-beam-pumped CdSe, CdS, and ZnO lasers. A linear shift of the laser frequency at high temperatures and a relatively slow...

  2. Study of He-Ne Laser Beam Propagation Through Air and Pure, Salt (Still and Turbulence Water

    Directory of Open Access Journals (Sweden)

    Safa AL. Barmany

    2018-01-01

    Full Text Available  This papers ,study  properties of the laser beam in the  different condition,  By using optical system consist of the (He- Ne laser ((λ =632.8nm , p=1.04mw, the parameter beam laser(spot, shape, intensity were study and also study the attenuation and turbulence for the laser mentioned above and with following environmental condition.(1 in the air (2 in the pure ,slate (seawaterwater with concentration 10-5Ml (still, turbulence  at different distance. Measurement were obtained by using a CCD camera and silicon detector type(Silicon PIN in fast response (.0.4-0.7A/W, absorption coefficient value of all cases  was calculated.

  3. Influence of CdS nanoparticles grain morphology on laser-induced absorption

    Science.gov (United States)

    Ebothé, Jean; Michel, Jean; Kityk, I. V.; Lakshminarayana, G.; Yanchuk, O. M.; Marchuk, O. V.

    2018-06-01

    Using external illumination of a 7 nanosecond (ns) doubled frequency Nd: YAG laser emitting at λ = 532 nm with frequency repetition 10 Hz it was established a possibility of significant changes of the absorption at the probing wavelength 1150 nm of continuous wave (cw) He-Ne laser for the CdS nanoparticles embedded into the PVA polymer matrix. The effect is observed only during the two beam laser coherent treatment and this effect is a consequence of interference of two coherent beams. It is shown a principal role of the grain morphology in the efficiency of the process, which is more important than the nanoparticle sizes. The photoinduced absorption is manifested in the space distribution of the probing laser beam. The principal role of the grain interfaces between the nanoparticle interfaces and the surrounding polymer matrix is shown. The effect is almost independent of the nanoparticle sizes. It may be used for laser operation by nanocomposites.

  4. Age-dependent effects of He-Ne laser irradiation on the membrane fluidity of human erythrocytes

    Science.gov (United States)

    Kovacs, Eugenia; Savopol, Tudor; Pologea-Moraru, Roxana; Makropoulou, Mersini I.; Serafetinides, Alexander A.

    1997-12-01

    The low power He-Ne laser radiation has been extensively used in past decades as medical device to relieve pain, accelerate wound healing as well as aiming beam in invisible laser beam in invisible laser beam applications. It is not known however if there are any secondary, undesirable effects of He-Ne laser radiation on the irradiated tissue. In this paper we investigate the changes induced in membrane fluidity of human erythrocyte during/upon the interaction with the He-Ne laser beam having the parameters currently used for target aiming in laser surgery.

  5. Effect of He-Ne laser beam on the ommatidia in Schistocerca Gregaria

    International Nuclear Information System (INIS)

    Abd El-Meguid, A.

    1996-01-01

    Exposing compound eye of Schistocerca Gregaria to He-Ne laser beam affected the micro-environment of the eye. The results indicated that the ionic content (Na, K and Ca) decreased and showed measurable percentage changes about 21.3, 45.9 and 14.9% (very high significant, VHS) in the right (R); and about 32.1, 71.4 and 9.4% (VHS) in the left (L) left (L) eyes. Respectively. As compared with control (Unexposed) eyes. Also protein content showed increase in concentrations about 70.2% (VHS) and 60.0% (Hs) in both right (R) and left (L) eyes. Respectively. While albumin content showed significant (S) decrease in concentrations about 34.6 and 26.3% in both right (R) and left (L) eyes. Respectively, as compared with the control ones. Histological sections as well as scanning electron micrographs showed that exposure of eyes to laser beam affected the structure of the eyes. 4 figs., 2 tabs

  6. E-beam-pumped semiconductor lasers

    Science.gov (United States)

    Rice, Robert R.; Shanley, James F.; Ruggieri, Neil F.

    1995-04-01

    The collapse of the Soviet Union opened many areas of laser technology to the West. E-beam- pumped semiconductor lasers (EBSL) were pursued for 25 years in several Soviet Institutes. Thin single crystal screens of II-VI alloys (ZnxCd1-xSe, CdSxSe1-x) were incorporated in laser CRTs to produce scanned visible laser beams at average powers greater than 10 W. Resolutions of 2500 lines were demonstrated. MDA-W is conducting a program for ARPA/ESTO to assess EBSL technology for high brightness, high resolution RGB laser projection application. Transfer of II-VI crystal growth and screen processing technology is underway, and initial results will be reported. Various techniques (cathodoluminescence, one- and two-photon laser pumping, etc.) have been used to assess material quality and screen processing damage. High voltage (75 kV) video electronics were procured in the U.S. to operate test EBSL tubes. Laser performance was documented as a function of screen temperature, beam voltage and current. The beam divergence, spectrum, efficiency and other characteristics of the laser output are being measured. An evaluation of the effect of laser operating conditions upon the degradation rate is being carried out by a design-of-experiments method. An initial assessment of the projected image quality will be performed.

  7. Laser beam-forming by deformable mirror for laser isotope separation

    International Nuclear Information System (INIS)

    Nemoto, Koshichi; Fujii, Takashi; Goto, Naohiko

    1995-01-01

    A rectangular laser beam of uniform intensity is very suitable for laser isotope separation. In this paper, we propose a beam-forming system which consists two deformable mirrors. One of the mirrors changes the beam intensity and the other compensates for phase distortion. We developed a deformable mirror for beam-forming. Its deformed surface is similar to the ideal mirror surface for beam-forming. We reshaped a Gaussian-like He-Ne laser beam into a beam with a more uniform intensity profile by a simple deformable mirror. (author)

  8. Investigation of an He-Ne laser generating a beam with a ring-shaped intensity distribution

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I; Troitskii, IU V; Iakushkin, S V

    1987-02-01

    The paper examines an He-Ne laser regime with the simultaneous generation of TEM(01) and TEM(10) modes, forming a beam with a ring-shaped intensity distribution with total suppression of the TEM(00) mode. The ratio of the intensity at the ring crest to the intensity at the axis reached a value of 200 and was limited by scattering in the optical components of the resonator. A regime of mutual frequency locking of the TEM(01) and TEM(10) modes was achieved with total spatial coherence of the ring-shaped beam. 14 references.

  9. 3He functions in tokamak-pumped laser systems

    International Nuclear Information System (INIS)

    Jassby, D.L.

    1986-10-01

    3 He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the 3 He(n,p)T reaction, and thereby excite gaseous lasants mixed with the 3 He while simultaneously breeding tritium. The total 3 He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak

  10. /sup 3/He functions in tokamak-pumped laser systems

    Energy Technology Data Exchange (ETDEWEB)

    Jassby, D.L.

    1986-10-01

    /sup 3/He placed in an annular cell around a tokamak fusion generator can convert moderated fusion neutrons to energetic ions by the /sup 3/He(n,p)T reaction, and thereby excite gaseous lasants mixed with the /sup 3/He while simultaneously breeding tritium. The total /sup 3/He inventory is about 4 kg for large tokamak devices. Special configurations of toroidal-field magnets, neutron moderators and beryllium reflectors are required to permit nearly uniform neutron current into the laser cell with minimal attenuation. The annular laser radiation can be combined into a single output beam at the top of the tokamak.

  11. Effects of the Lexington LaserComb on hair regrowth in the C3H/HeJ mouse model of alopecia areata.

    Science.gov (United States)

    Wikramanayake, Tongyu Cao; Rodriguez, Rosa; Choudhary, Sonal; Mauro, Lucia M; Nouri, Keyvan; Schachner, Lawrence A; Jimenez, Joaquin J

    2012-03-01

    Alopecia areata (AA) is a common autoimmune disease that presents with non-scarring alopecia. It is characterized by intra- or peri-follicular lymphocytic infiltrates composed of CD4+ and CD8+ T-cells on histology. To this day, few treatments are effective for AA. Here we present findings of using a low-level laser comb to alleviate the symptoms of AA in a C3H/HeJ mouse model for AA. Fourteen C3H/HeJ mice with induced AA were used in this study. Two were killed to confirm AA through histology. The remaining 12 mice were randomized into two groups; group I received HairMax LaserComb (wavelength: 655 nm, beam diameter lasers) for 20 s daily, three times per week for a total of 6 weeks; group II was treated similarly, except that the laser was turned off (sham-treated). After 6 weeks of LaserComb treatment, hair regrowth was observed in all the mice in group I (laser-treated) but none in group II (sham-treated). On histology, increased number of anagen hair follicles was observed in laser-treated mice. On the other hand, sham-treated mice demonstrated hair follicles in the telogen phase with no hair shaft. LaserComb seems to be an effective and convenient device for the treatment of AA in the C3H/HeJ mouse model. Human studies are required to determine the efficacy and safety of this device for AA therapy.

  12. Study of the photodissociation of a CdSe nanocrystal beam by means of photoluminescence and Raman scattering

    CERN Document Server

    Orii, T; Onari, S; Kaito, S I; Arai, T

    1997-01-01

    We developed an apparatus that enables us to perform optical measurements of nanocrystals suspended in vacuum. CdSe nanocrystals were produced by a gas evaporation method, and nanocrystal beams were then formed using an inert-gas flow with differential pumping. We measured photoluminescence spectra of the nanocrystal beams with excitations of various photon energies and powers. For a low excitation power, edge emission of the CdSe nanocrystal beam was observed. With increase of the laser power, Raman lines of Se dimers emitted due to the photodissociation of CdSe nanocrystals were observed. It was found that the thresholds of the excitation laser fluence for the photodissociation of CdSe nanocrystals were much smaller than the thresholds of laser fluence for the laser-induced emission of Se atoms from bulk CdSe. The electronic process is dominant in the photodissociation of CdSe nanocrystals whose surfaces are completely free. We suggest that the effective supply of carriers confined in nanocrystals to the su...

  13. Spin-polarized 3He nuclear targets and metastable 4He atoms by optical pumping with a tunable, Nd:YAP laser

    International Nuclear Information System (INIS)

    Bohler, C.L.; Schearer, L.D.; Leduc, M.; Nacher, P.J.; Zachorowski, L.; Milner, R.G.; McKeown, R.D.; Woodward, C.E.

    1988-01-01

    Several Nd:YAP lasers were constructed which could be broadly tuned in the 1083-nm region which includes the helium 2 3 S-2 3 P transition, using a Lyot filter and thin, uncoated etalons within the laser cavity. 1 W of power could be extracted at 1083 nm through a 1% transmitting output coupler. This laser beam was used to optically pump metastable 4 He and 3 He 2 3 S helium atoms in a weak discharge cell, spin polarizing the metastable ensemble. In a 3 He cell the polarization is transferred to the nuclear spin system. A 3 He target cell at 0.3 Torr was polarized to 52% in a few minutes. We describe the application of this system to the design of polarized targets for experiments in nuclear physics

  14. Laser ablation in CdZnTe crystal due to thermal self-focusing: Secondary phase hydrodynamic expansion

    Energy Technology Data Exchange (ETDEWEB)

    Medvid’, A., E-mail: mychko@latnet.lv [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Mychko, A.; Dauksta, E. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia); Kosyak, V. [Sumy State University, 2, Rymskogo-Korsakova St., 40007 Sumy (Ukraine); Grase, L. [Riga Technical University, 3 Paula Valdena Str., LV-1048 Riga (Latvia)

    2016-06-30

    Highlights: • We found two laser induced threshold intensity for CdZnTe crystal. • The laser beam self-focusing lead to increase of intensity of laser radiation at exit surface. • Laser ablation is a result of Te inclusion hydrodynamic expansion. - Abstract: The present paper deals with the laser ablation in CdZnTe crystal irradiated by pulsed infrared laser. Two values of threshold intensities of the laser ablation were determined, namely of about 8.5 and 6.2 MW/cm{sup 2} for the incident and the rear surfaces, correspondingly. Lower intensity of the laser ablation for the rear surface is explained by thermal self-focusing of the laser beam in the CdZnTe crystal due to heating of Te inclusions with a following hydrodynamic expansion.

  15. The second-order interference of two independent single-mode He-Ne lasers

    Science.gov (United States)

    Liu, Jianbin; Le, Mingnan; Bai, Bin; Wang, Wentao; Chen, Hui; Zhou, Yu; Li, Fu-li; Xu, Zhuo

    2015-09-01

    The second-order spatial and temporal interference patterns with two independent single-mode continuous-wave He-Ne lasers are observed when these two lasers are incident to two adjacent input ports of a 1:1 non-polarizing beam splitter, respectively. Two-photon interference based on the superposition principle in Feynman's path integral theory is employed to interpret the experimental results. The conditions to observe the second-order interference pattern with two independent single-mode continuous-wave lasers are discussed. It is concluded that frequency stability is important to observe the second-order interference pattern with two independent light beams.

  16. Effects of He-Ne laser beam on mechanical, heat, chemical and superficial wounds

    International Nuclear Information System (INIS)

    Kakai, S.F.K.; Albarwari, S.E.; Alsenawi, T.A.

    1988-02-01

    This study summarizes the effects of low-doses of He-Ne laser radiation (λ = 6328 A), on healing of four types of wounds, including mechanical, heat, chemical and superficial wounds. The results revealed that variations between complete wound-closure in irradiated samples and that of control groups were statistically significant. Moreover, the results suggest that the stimulative action of laser is an accumulative phenomenon, that affects factors involved in the course of wound healing. The results also indicate that the skin epithelium is a highly responsive tissue towards this sort of radiation, which suggests that the stimulative action of He-Ne laser could be assayed easily by using such tissues as a test target. (author). 11 refs, 2 tabs

  17. High-Resolution Spectroscopy of He{_2}^+ Using Rydberg-Series Extrapolation and Zeeman-Decelerated Supersonic Beams of Metastable He_2

    Science.gov (United States)

    Jansen, Paul; Semeria, Luca; Merkt, Frederic

    2016-06-01

    Having only three electrons, He{_2}^+ represents a system for which highly accurate ab initio calculations are possible. The latest calculations of rovibrational energies in He{_2}^+ do not include relativistic or QED corrections but claim an accuracy of 120 MHz We have performed high-resolution Rydberg spectroscopy of metastable He_2 molecules and employed multichannel-quantum-defect-theory extrapolation techniques to determine the rotational energy-level structure in the He{_2}^+ ion. To this end, we have produced samples of metastable helium molecules in supersonic beams with velocities tunable down to 100 m/s by combining a cryogenic supersonic-beam source with a multistage Zeeman decelerator. The metastable He_2 molecules are excited to np Rydberg states using the frequency-doubled output of a pulse-amplified ring dye laser. Although the bandwidth of the laser system is too large to observe the reduction of the Doppler width resulting from deceleration, the deceleration greatly simplifies the spectral assignments because of its spin-rotational state selectivity. Our approach enabled us to determine the rotational structure of He_2 with an unprecedented accuracy of 18 MHz, to quantify the size of the relativistic and QED corrections by comparison with the results of Tung et al. and to precisely measure the rotational structure of the metastable state for comparison with the results of Focsa et al. Here, we present an extension of these measurements in which we have measured higher rotational intervals of He{_2}^+. In addition, we have replaced the pulsed UV laser by a cw UV laser and improved the resolution of the spectra by a factor of more than five. W.-C. Tung, M. Pavanello and L. Adamowicz, J. Chem. Phys. 136, 104309 (2012). P. Jansen, L. Semeria, L. Esteban Hofer, S. Scheidegger, J.A. Agner, H. Schmutz, and F. Merkt, Phys. Rev. Lett. 115, 133202 (2015). D. Sprecher, J. Liu, T. Krähenmann, M. Schäfer, and F. Merkt, J. Chem. Phys. 140, 064304 (2014). M

  18. Observation of a laser-assisted ionization of the He(21S,23S)+He(11S) collision system involving a bound-free transition

    International Nuclear Information System (INIS)

    Pradel, P.; Monchicourt, P.; Dubreuil, D.; Heuze, J.; Laucagne, J.J.; Spiess, G.

    1985-01-01

    We report the first observation of an assisted He + yield arising from single collisions between a He(2 1 S,2 3 S) atom beam on a He(1 1 S) target in the presence of an intense laser field. A time-of-flight analysis shows that the pulsed laser-assisted ion signal is reproducible, energy dependent, and appears in addition to the continuous ion flux coming from a known field-free diabatic channel. From the estimated value of the diabatic ionization cross section sigma/sub d/, the order of magnitude of the assisted-ionization cross section sigma/sub a/ is given

  19. Uses of laser optical pumping to produce polarized ion beams

    International Nuclear Information System (INIS)

    Anderson, L.W.

    1983-01-01

    Laser optical pumping can be used to produce polarized alkali atom beams or polarized alkali vapor targets. Polarized alkali atom beams can be converted into polarized alkali ion beams, and polarized alkali vapor targets can be used to produce polarized H - or 3 He - ion beams. In this paper the authors discuss how the polarized alkali atom beams and polarized alkali vapor targets are used to produce polarized ion beams with emphasis on the production of polarized negative ion beams

  20. Scanning Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1988-01-01

    A confocal color laser microscope which utilizes a three color laser light source (Red: He-Ne, Green: Ar, Blue: Ar) has been developed and is finding useful applications in the semiconductor field. The color laser microscope, when compared to a conventional microscope, offers superior color separation, higher resolution, and sharper contrast. Recently some new functions including a Focus Scan Memory, a Surface Profile Measurement System, a Critical Dimension Measurement system (CD) and an Optical Beam Induced Current Function (OBIC) have been developed for the color laser microscope. This paper will discuss these new features.

  1. Temperature-sensitive junction transformations for mid-wavelength HgCdTe photovoltaic infrared detector arrays by laser beam induced current microscope

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Weicheng [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China); National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Hu, Weida, E-mail: wdhu@mail.sitp.ac.cn; Lin, Tie; Yin, Fei; Zhang, Bo; Chen, Xiaoshuang; Lu, Wei [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083 (China); Cheng, Xiang' ai, E-mail: xiang-ai-cheng@126.com; Wang, Rui [College of Photoelectric Science and Engineering, National University of Defense Technology, Changsha, Hunan 410073 (China)

    2014-11-10

    In this paper, we report on the disappearance of the photosensitive area extension effect and the unusual temperature dependence of junction transformation for mid-wavelength, n-on-p HgCdTe photovoltaic infrared detector arrays. The n-type region is formed by B{sup +} ion implantation on Hg-vacancy-doped p-type HgCdTe. Junction transformations under different temperatures are visually captured by a laser beam induced current microscope. A physical model of temperature dependence on junction transformation is proposed and demonstrated by using numerical simulations. It is shown that Hg-interstitial diffusion and temperature activated defects jointly lead to the p-n junction transformation dependence on temperature, and the weaker mixed conduction compared with long-wavelength HgCdTe photodiode contributes to the disappearance of the photosensitive area extension effect in mid-wavelength HgCdTe infrared detector arrays.

  2. The detection of He in tungsten following ion implantation by laser-induced breakdown spectroscopy

    Science.gov (United States)

    Shaw, G.; Bannister, M.; Biewer, T. M.; Martin, M. Z.; Meyer, F.; Wirth, B. D.

    2018-01-01

    Laser-induced breakdown spectroscopy (LIBS) results are presented that provide depth-resolved identification of He implanted in polycrystalline tungsten (PC-W) targets by a 200 keV He+ ion beam, with a surface temperature of approximately 900 °C and a peak fluence of 1023 m-2. He retention, and the influence of He on deuterium and tritium recycling, permeation, and retention in PC-W plasma facing components are important questions for the divertor and plasma facing components in a fusion reactor, yet are difficult to quantify. The purpose of this work is to demonstrate the ability of LIBS to identify helium in tungsten; to investigate the sensitivity of laser parameters including, laser energy and gate delay, that directly influence the sensitivity and depth resolution of LIBS; and to perform a proof-of-principle experiment using LIBS to measure relative He intensities as a function of depth. The results presented demonstrate the potential not only to identify helium but also to develop a methodology to quantify gaseous impurity concentration in PC-W as a function of depth.

  3. Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma

    Directory of Open Access Journals (Sweden)

    Hery Suyanto

    2016-08-01

    Full Text Available A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns and picosecond (ps lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE mechanism. The time-dependent intensity enhancements induced by the fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS using He ambient gas.

  4. Signal enhancement of neutral He emission lines by fast electron bombardment of laser-induced He plasma

    Energy Technology Data Exchange (ETDEWEB)

    Suyanto, Hery [Department of Physics, Faculty of Mathematics and Natural Sciences, Udayana University, Kampus Bukit Jimbaran, Denpasar 80361, Bali (Indonesia); Pardede, Marincan [Department of Electrical Engineering, University of Pelita Harapan, 1100 M.H. Thamrin Boulevard, Lippo Village, Tangerang 15811 (Indonesia); Hedwig, Rinda [Department of Computer Engineering, Bina Nusantara University, 9 K.H. Syahdan, Jakarta 14810 (Indonesia); Marpaung, Alion Mangasi [Department of Physics, Faculty of Mathematics and Natural Sciences, Jakarta State University, Rawamangun, Jakarta 12440 (Indonesia); Ramli, Muliadi [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Lie, Tjung Jie; Kurniawan, Koo Hendrik, E-mail: kurnia18@cbn.net.id [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Abdulmadjid, Syahrun Nur [Department of Physics, Faculty of Mathematics and Natural Sciences, Syiah Kuala University, Darussalam, Banda Aceh 23111, NAD (Indonesia); Tjia, May On [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Physics of Magnetism and Photonics Group, Faculty of Mathematics and Natural Sciences, Bandung Institute of Technology, 10 Ganesha,Bandung 40132 (Indonesia); Kagawa, Kiichiro [Research Center of Maju Makmur Mandiri Foundation, 40 Srengseng Raya, Kembangan, Jakarta Barat 11630 (Indonesia); Fukui Science Education Academy, Takagi Chuo 2 chome, Fukui 910-0804 (Japan)

    2016-08-15

    A time-resolved spectroscopic study is performed on the enhancement signals of He gas plasma emission using nanosecond (ns) and picosecond (ps) lasers in an orthogonal configuration. The ns laser is used for the He gas plasma generation and the ps laser is employed for the ejection of fast electrons from a metal target, which serves to excite subsequently the He atoms in the plasma. The study is focused on the most dominant He I 587.6 nm and He I 667.8 nm emission lines suggested to be responsible for the He-assisted excitation (HAE) mechanism. The time-dependent intensity enhancements induced by the fast electrons generated with a series of delayed ps laser ablations are deduced from the intensity time profiles of both He emission lines. The results clearly lead to the conclusion that the metastable excited triplet He atoms are actually the species overwhelmingly produced during the recombination process in the ns laser-induced He gas plasma. These metastable He atoms are believed to serve as the major energy source for the delayed excitation of analyte atoms in ns laser-induced breakdown spectroscopy (LIBS) using He ambient gas.

  5. Sb2S3:C/CdS p-n junction by laser irradiation

    International Nuclear Information System (INIS)

    Arato, A.; Cardenas, E.; Shaji, S.; O'Brien, J.J.; Liu, J.; Castillo, G. Alan; Das Roy, T.K.; Krishnan, B.

    2009-01-01

    In this paper, we report laser irradiated carbon doping of Sb 2 S 3 thin films and formation of a p-n junction photovoltaic structure using these films. A very thin carbon layer was evaporated on to chemical bath deposited Sb 2 S 3 thin films of approximately 0.5 μm in thickness. Sb 2 S 3 thin films were prepared from a solution containing SbCl 3 and Na 2 S 2 O 3 at 27 deg. C for 5 h and the films obtained were highly resistive. These C/Sb 2 S 3 thin films were irradiated by an expanded laser beam of diameter approximately 0.5 cm (5 W power, 532 nm Verdi laser), for 2 min at ambient atmosphere. Morphology and composition of these films were analyzed. These films showed p-type conductivity due to carbon diffusion (Sb 2 S 3 :C) by the thermal energy generated by the absorption of laser radiation. In addition, these thin films were incorporated in a photovoltaic structure Ag/Sb 2 S 3 :C/CdS/ITO/Glass. For this, CdS thin film of 50 nm in thickness was deposited on a commercially available ITO coated glass substrate from a chemical bath containing CdCl 2 , sodium citrate, NH 4 OH and thiourea at 70 deg. C . On the CdS film, Sb 2 S 3 /C layers were deposited. This multilayer structure was subjected to the laser irradiation, C/Sb 2 S 3 side facing the beam. The p-n junction formed by p-Sb 2 S 3 :C and n-type CdS showed V oc = 500 mV and J sc = 0.5 mA/cm 2 under illumination by a tungsten halogen lamp. This work opens up a new method to produce solar cell structures by laser assisted material processing

  6. Semiconductor laser with longitudinal electron-beam pumping and based on a quantum-well ZnCdSe/ZnSe structure grown on a ZnSe substrate by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kozlovskii, Vladimir I; Korostelin, Yurii V; Skasyrsky, Yan K; Shapkin, P V; Trubenko, P A; Dianov, Evgenii M

    1998-01-01

    The method of molecular beam epitaxy on a ZnSe substrate was used to grow a ZnCdSe/ZnSe structure with 115 quantum wells. This structure was made up into a cavity which included part of the substrate. Lasing was excited by longitudinal pumping with a scanning electron beam of E e = 40 - 70 keV energy. At T = 80 K for E e = 65 keV the threshold current density was 60 A cm -2 and the output power was 0.15 W at the 465 nm wavelength. At T= 300 K the lasing (λ= 474 nm) occurred in the ZnSe substrate. (lasers)

  7. Laser Beam Focus Analyser

    DEFF Research Database (Denmark)

    Nielsen, Peter Carøe; Hansen, Hans Nørgaard; Olsen, Flemming Ove

    2007-01-01

    the obtainable features in direct laser machining as well as heat affected zones in welding processes. This paper describes the development of a measuring unit capable of analysing beam shape and diameter of lasers to be used in manufacturing processes. The analyser is based on the principle of a rotating......The quantitative and qualitative description of laser beam characteristics is important for process implementation and optimisation. In particular, a need for quantitative characterisation of beam diameter was identified when using fibre lasers for micro manufacturing. Here the beam diameter limits...... mechanical wire being swept through the laser beam at varying Z-heights. The reflected signal is analysed and the resulting beam profile determined. The development comprised the design of a flexible fixture capable of providing both rotation and Z-axis movement, control software including data capture...

  8. Modematic: a fast laser beam analyzing system for high power CO2-laser beams

    Science.gov (United States)

    Olsen, Flemming O.; Ulrich, Dan

    2003-03-01

    The performance of an industrial laser is very much depending upon the characteristics of the laser beam. The ISO standards 11146 and 11154 describing test methods for laser beam parameters have been approved. To implement these methods in industry is difficult and especially for the infrared laser sources, such as the CO2-laser, the availabl analyzing systems are slow, difficult to apply and having limited reliability due to the nature of the detection methods. In an EUREKA-project the goal was defined to develop a laser beam analyzing system dedicated to high power CO2-lasers, which could fulfill the demands for an entire analyzing system, automating the time consuming pre-alignment and beam conditioning work required before a beam mode analyses, automating the analyzing sequences and data analysis required to determine the laser beam caustics and last but not least to deliver reliable close to real time data to the operator. The results of this project work will be described in this paper. The research project has led to the development of the Modematic laser beam analyzer, which is ready for the market.

  9. Laser beam diagnostics for kilowatt power pulsed YAG laser

    International Nuclear Information System (INIS)

    Liu, Yi; Leong, Keng H.

    1992-01-01

    There is a growing need for high power YAG laser beam diagnostics with the recent introduction of such lasers in laser material processing. In this paper, we will describe the use of a commercially available laser beam analyzer (Prometec) to profile the laser beam from a 1600 W pulsed Nd:YAG laser that has a 1 mm fiber optic beam delivery system. The selection of laser pulse frequency and pulse width for the measurement is discussed. Laser beam propagation parameters by various optical components such as fibers and lenses can be determined from measurements using this device. The importance of such measurements will be discussed

  10. A three-dimensional laser vibration measurement technology realized on five laser beam and its calibration

    Science.gov (United States)

    Li, Lu-Ke; Zhang, Shen-Feng

    2018-03-01

    Put forward a kind of three-dimensional vibration information technology of vibrating object by the mean of five laser beam of He-Ne laser, and with the help of three-way sensor, measure the three-dimensional laser vibration developed by above mentioned technology. The technology based on the Doppler principle of interference and signal demodulation technology, get the vibration information of the object, through the algorithm processing, extract the three-dimensional vibration information of space objects, and can achieve the function of angle calibration of five beam in the space, which avoid the effects of the mechanical installation error, greatly improve the accuracy of measurement. With the help of a & B K4527 contact three axis sensor, measure and calibrate three-dimensional laser vibrometer, which ensure the accuracy of the measurement data. Summarize the advantages and disadvantages of contact and non-contact sensor, and analysis the future development trends of the sensor industry.

  11. Simple and efficient method of spin-polarizing a metastable helium beam by diode laser optical pumping

    International Nuclear Information System (INIS)

    Granitza, B.; Salvietti, M.; Torello, E.; Mattera, L.; Sasso, A.

    1995-01-01

    Diode laser optical pumping to produce a highly spin-polarized metastable He beam to be used in a spin-polarized metastable atom deexcitation spectroscopy experiment on magnetized surfaces is described. Efficient pumping of the beam is performed by means of an SDL-6702 distributed Bragg reflector diode laser which yields 50 mW of output power in a single longitudinal mode at 1083 nm, the resonance wavelength for the 2 3 S→2 3 P 0,1,2 (D 0 , D 1 , and D 2 ) transitions of He*. The light is circularly polarized by a quarter-wave plate, allowing easy change of the sense of atomic polarization. The laser frequency can be locked to the atomic transition for several hours by phase-sensitive detection of the saturated absorption signal in a He discharge cell. Any of the three transitions of the triplet system can be pumped with the laser but the maximum level of atomic polarization of 98.5% is found pumping the D 2 line. copyright 1995 American Institute of Physics

  12. Hartmann-Shack wave front measurements for real time determination of laser beam propagation parameters

    International Nuclear Information System (INIS)

    Schaefer, B.; Luebbecke, M.; Mann, K.

    2006-01-01

    The suitability of the Hartmann-Shack technique for the determination of the propagation parameters of a laser beam is faced against the well known caustic approach according to the ISO 11146 standard. A He-Ne laser (543 nm) was chosen as test beam, both in its fundamental mode as well as after intentional distortion, introducing a moderate amount of spherical aberration. Results are given for the most important beam parameters M 2 , divergence, and beam widths, indicating an agreement of better than 10% and for adapted beam diameter <5%. Furthermore, the theoretical background, pros and cons, as well as some features of the software implementation for the Hartmann-Shack sensor are briefly reviewed

  13. Precision beam splitters for CO2 lasers

    International Nuclear Information System (INIS)

    Franzen, D.L.

    1975-01-01

    Beam splitters for 10-μm lasers are discussed and then applied to the precision measurement of high average powers. In particular, beam splitter stability has been investigated in various materials over the 20--600-W power range with power densities up to 1 kW/cm 2 . The absolute beam splitter ratios are given along with the achieved measurement precisions. The semiconductors investigated were GaAs, CdTe, and ZnSe in addition to one alkali-halide KC1. Standard deviations for the beam splitter ratios of 1% over the power range were typical. Absolute ratios agree with the predictions from Fresnel's equations to 1% or better. The best measurement was made on ZnSe when a standard deviation of 0.4% was obtained for the measurement of a ratio that agreed with a calculation from Fresnel's equations to better than 0.5%

  14. Development of laser beam welding for the lip seal configuration

    International Nuclear Information System (INIS)

    Yadav, Ashish; Joshi, Jaydeep; Singh, Dhananjay Kumar; Natu, Harshad; Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun

    2015-01-01

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  15. Development of laser beam welding for the lip seal configuration

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Ashish, E-mail: ashish.yadav@iter-india.org [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Joshi, Jaydeep; Singh, Dhananjay Kumar [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India); Natu, Harshad [Magod Laser Machining Pvt. Ltd., KIADB Ind. Area, Jigani, Anekal Taluk, Bengaluru 560105 (India); Rotti, Chandramouli; Bandyopadhyay, Mainak; Chakraborty, Arun [ITER-India, Institute for Plasma Research, Sector 25, Gandhinagar 382016, Gujarat (India)

    2015-10-15

    Highlights: • Laser welding parameter optimization for required weld penetration. • Parametric study of actual scenarios like air gap, plate & beam misalignment. • Destructive and non-destructive examination of the welds and He-leak testing. - Abstract: A vacuum seal using the lip sealing technique is emerging as the most likely choice for fusion devices, to comply with the requirement of maintainability. The welding technology considered for lip sealing is laser welding, due to the attributes of small spot diameter, low concentrated heat input, high precision and penetration. To establish the process, an experiment has been conducted on a sample size of 150 mm × 50 mm having thickness of 2 mm, material AISI304L to assess the dependence of beam parameters like, laser power, speed and focusing distance on penetration and quality of weld joint. Further, the assessment of the effect of welding set-up variables like air-gap between plates, plate misalignment, and laser beam misalignment on the weld quality is also required. This paper presents the results of this experimental study and also the plan for developing a large (∼10 m) size laser welded seal, that simulates, appropriately, the configuration required in large dimension fusion devices.

  16. Structural properties of layers of HgCdTe, grown by the laser epitaxy method on silicon substrates

    International Nuclear Information System (INIS)

    Plyatsko, S.V.; Vergush, M.M.; Litvin, P.M.; Kozirjev, Yu.M.; Shevlyakov, S.A.

    2001-01-01

    Thin films (0.1-1.5 μm) of HgCdTe on substrates Si (100) and Si (111) from monocrystal and pressed sources Hg 1-x Cd x Te (x=0.22) sprayed by laser IR radiation were grown and are investigated. The concentration of macro defects (drops) on the surface of films is determined by the relation of the diameter of a laser beam and depth of the crater, formed by laser irradiation. The size of crystal grains almost does not depend on the temperature of a substrate and power densities of a laser radiation and increases with the thickness of a layer

  17. Compression of Ultrafast Laser Beams

    Science.gov (United States)

    2016-03-01

    Copyright 2003, AIP Publishing LLC. DOI: http://dx.doi.org/10.1063/1.1611998.) When designing the pulse shaper, the laser beam must completely fill the...for the design of future versions of this device. The easiest way to align the pulse shaper is to use the laser beam that will be shaped, without...Afterward, an ultrafast thin beam splitter is placed into the system after the diameter of the laser beam is reduced; this is done to monitor the beam

  18. An estimation of the spatial coherency radius of a multimode laser beam by the spectral contrast

    Energy Technology Data Exchange (ETDEWEB)

    Sukhanov, I I

    1983-01-01

    The angular dependency of the spectral contrast behind a diffuser illuminated by an He/Ne laser beam at .63 micrometers on the number of transverse modes is investigated. It is demonstrated that over a wide range of scattering angles, the contrast is determined primarily by the number of transverse modes, i.e. by the radius of the spatial field correlation, and is only slightly dependent on the dimensions and shape of the beam as well as the intensity distribution in the beam. These results may be useful in developing a rapid indication method of the radius of the spatial correlation of laser beams.

  19. Direct acceleration of ions to low and medium energies by a crossed-laser-beam configuration

    Directory of Open Access Journals (Sweden)

    Yousef I. Salamin

    2011-07-01

    Full Text Available Calculations show that 10 keV helium and carbon ions, injected midway between two identical 1 TW-power crossed laser beams of radial polarization, can be accelerated in vacuum to energies of utility in ion lithography. As examples, identical laser beams, crossed at 10° and focused to waist radii of 7.42  μm, accelerate He^{2+} and C^{6+} ions to average kinetic energies near 75 and 165 keV over distances averaging less than 7 and 6 mm, respectively. The spread in kinetic energy in both cases is less than 1% and the particle average angular deflection is less than 7 mrad. More energy-demanding industrial applications require higher-power laser beams for their direct ion laser acceleration.

  20. Sb{sub 2}S{sub 3}:C/CdS p-n junction by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Arato, A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia-Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Cardenas, E. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Shaji, S. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia-Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); O' Brien, J.J.; Liu, J. [Center for Nanoscience, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri-63121 (United States); Department of Chemistry and Biochemistry, University of Missouri-St. Louis, One University Boulevard, St. Louis, Missouri-63121 (United States); Castillo, G. Alan; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, San Nicolas de los Garza, Nuevo Leon (Mexico); Centro de Innovacion, Investigacion y Desarrollo en Ingenieria y Tecnologia-Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)], E-mail: bkrishnan@fime.uanl.mx

    2009-02-02

    In this paper, we report laser irradiated carbon doping of Sb{sub 2}S{sub 3} thin films and formation of a p-n junction photovoltaic structure using these films. A very thin carbon layer was evaporated on to chemical bath deposited Sb{sub 2}S{sub 3} thin films of approximately 0.5 {mu}m in thickness. Sb{sub 2}S{sub 3} thin films were prepared from a solution containing SbCl{sub 3} and Na{sub 2}S{sub 2}O{sub 3} at 27 deg. C for 5 h and the films obtained were highly resistive. These C/Sb{sub 2}S{sub 3} thin films were irradiated by an expanded laser beam of diameter approximately 0.5 cm (5 W power, 532 nm Verdi laser), for 2 min at ambient atmosphere. Morphology and composition of these films were analyzed. These films showed p-type conductivity due to carbon diffusion (Sb{sub 2} S{sub 3}:C) by the thermal energy generated by the absorption of laser radiation. In addition, these thin films were incorporated in a photovoltaic structure Ag/Sb{sub 2}S{sub 3}:C/CdS/ITO/Glass. For this, CdS thin film of 50 nm in thickness was deposited on a commercially available ITO coated glass substrate from a chemical bath containing CdCl{sub 2}, sodium citrate, NH{sub 4}OH and thiourea at 70 deg. C . On the CdS film, Sb{sub 2}S{sub 3}/C layers were deposited. This multilayer structure was subjected to the laser irradiation, C/Sb{sub 2}S{sub 3} side facing the beam. The p-n junction formed by p-Sb{sub 2}S{sub 3}:C and n-type CdS showed V{sub oc} = 500 mV and J{sub sc} = 0.5 mA/cm{sup 2} under illumination by a tungsten halogen lamp. This work opens up a new method to produce solar cell structures by laser assisted material processing.

  1. Development of a 3He nuclear spin flip system on an in-situ SEOP 3He spin filter and demonstration for a neutron reflectometer and magnetic imaging technique

    International Nuclear Information System (INIS)

    Hayashida, H; Kira, H; Miyata, N; Akutsu, K; Mizusawa, M; Parker, J D; Matsumoto, Y; Oku, T; Sakai, K; Hiroi, K; Shinohara, T; Takeda, M; Yamazaki, D; Oikawa, K; Harada, M; Ino, T; Imagawa, T; Ohkawara, M; Ohoyama, K; Kakurai, K

    2016-01-01

    We have been developing a 3 He neutron spin filter (NSF) using the spin exchange optical pumping (SEOP) technique. The 3 He NSF provides a high-energy polarized neutron beam with large beam size. Moreover the 3 He NSF can work as a π-flipper for a polarized neutron beam by flipping the 3 He nuclear spin using a nuclear magnetic resonance (NMR) technique. For NMR with the in-situ SEOP technique, the polarization of the laser must be reversed simultaneously because a non-reversed laser reduces the polarization of the spin-flipped 3 He. To change the polarity of the laser, a half-wavelength plate was installed. The rotation angle of the half-wavelength plate was optimized, and a polarization of 97% was obtained for the circularly polarized laser. The 3 He polarization reached 70% and was stable over one week. A demonstration of the 3 He nuclear spin flip system was performed at the polarized neutron reflectometer SHARAKU (BL17) and NOBORU (BL10) at J-PARC. Off-specular measurement from a magnetic Fe/Cr thin film and magnetic imaging of a magnetic steel sheet were performed at BL17 and BL10, respectively. (paper)

  2. M2 qualify laser beam propagation

    International Nuclear Information System (INIS)

    Abdelhalim, Bencheikh; Mohamed, Bouafia

    2010-01-01

    One of the most important properties of a laser resonator is the highly collimated or spatially coherent nature of the laser output beam. Laser beam diameter and quality factor M 2 are significant parameters in a wide range of laser applications. This is because the spatial beam quality determines how closely the beam can be focused or how well the beam propagates over long distances without significant dispersion. In the present paper we have used three different methods to qualify the spatial structure of a laser beam propagating in free space, the results are obtained and discussed, and we have found that the Wigner distribution function is a powerful tool which allows a global characterization of any kind of beam

  3. Toxicity of cadmium sulfide (CdS) nanoparticles against Escherichia coli and HeLa cells

    International Nuclear Information System (INIS)

    Hossain, Sk Tofajjen; Mukherjee, Samir Kumar

    2013-01-01

    Highlights: • Toxic effect of CdS NPs on the growth and cell division in E. coli was studied. • CdS NPs affected cell surface topology and cell division. • Downregulation of both FtsZ and FtsQ was observed due to NPs exposure. • CdS NPs affected HeLa cell morphology with fragmented nuclei. • All such effects might be due to elevated oxidative stress. -- Abstract: The present study endeavours to assess the toxic effect of synthesized CdS nanoparticles (NPs) on Escherichia coli and HeLa cells. The CdS NPs were characterized by DLS, XRD, TEM and AFM studies and the average size of NPs was revealed as ∼3 nm. On CdS NPs exposure bacterial cells changed morphological features to filamentous form and damage of the cell surface was found by AFM study. The expression of two conserved cell division components namely ftsZ and ftsQ in E. coli was decreased both at transcriptional and translational levels upon CdS NPs exposure. CdS NPs inhibited proper cell septum formation without affecting the nucleoid segregation. Viability of HeLa cells declined with increasing concentration of CdS NPs and the IC 50 value was found to be 4 μg/mL. NPs treated HeLa cells showed changed morphology with condensed and fragmented nuclei. Increased level of reactive oxygen species (ROS) was found both in E. coli and HeLa cells on CdS NPs exposure. The inverse correlation between declined cell viabilities and elevated ROS level suggested that oxidative stress seems to be the key event by which NPs induce toxicity both in E. coli and HeLa cells

  4. Changes in the ionic and protein contents of adult Schistocerca Gregaria compound eyes due to He-Ne laser exposure

    International Nuclear Information System (INIS)

    El-Gindi, A.M.; Osiris, W.G.; El-kes, N.; Abd El-Meguid, A.

    1996-01-01

    The induced change in the concentration of the ionic content such as Na, K, and Ca in the compound eyes of Schistocerca Gregaria was carried out before and after exposure for different periodic times to He-Ne ;laser beam. Total protein and albumin contents in the compound eyes were also determined. The Data indicated that the ionic contents (Na, K and Ca) showed acceptable and significant changes in both the right (R) and left (L) eyes after exposure to different periodic times up to 60 minutes in comparison with the control ones. Moreover, very high significant increase in the total protein content (about 70.2%) as well as significant decrease in the albumin content (about 39.1%) in the right (R) eyes after exposure to He-Ne laser beam for 30 minutes in comparison with the control (unexposed) eyes, were detected. 2 tabs

  5. Coherent laser beam combining

    CERN Document Server

    Brignon, Arnaud

    2013-01-01

    Recently, the improvement of diode pumping in solid state lasers and the development of double clad fiber lasers have allowed to maintain excellent laser beam quality with single mode fibers. However, the fiber output power if often limited below a power damage threshold. Coherent laser beam combining (CLBC) brings a solution to these limitations by identifying the most efficient architectures and allowing for excellent spectral and spatial quality. This knowledge will become critical for the design of the next generation high-power lasers and is of major interest to many industrial, environme

  6. Electron-beam-excited gas laser research

    International Nuclear Information System (INIS)

    Johnson, A.W.; Gerardo, J.B.; Patterson, E.L.; Gerber, R.A.; Rice, J.K.; Bingham, F.W.

    1975-01-01

    Net energy gain in laser fusion places requirements on the laser that are not realized by any existing laser. Utilization of relativistic electron beams (REB's), a relatively new source for the excitation of gas laser media, may lead to new lasers that could satisfy these requirements. Already REB's have been utilized to excite gas laser media and produce gas lasers that have not been produced as successfully any other way. Electron-beam-excitation has produced electronic-transition dimer lasers that have not yet been produced by any other excitation scheme (for example, Xe 2 / sup *(1)/, Kr:O(2 1 S)/sup 2/, KrF/sup *(3)/). In addition, REB's have initiated chemical reactions to produce HF laser radiation with unique and promising results. Relativistic-electron-beam gas-laser research is continuing to lead to new lasers with unique properties. Results of work carried out at Sandia Laboratories in this pioneering effort of electron-beam-excited-gas lasers are reviewed. (U.S.)

  7. Laser mass spectrometry with circularly polarized light: circular dichroism of cold molecules in a supersonic gas beam.

    Science.gov (United States)

    Titze, Katharina; Zollitsch, Tilo; Heiz, Ulrich; Boesl, Ulrich

    2014-09-15

    An experiment on chiral molecules that combines circular dichroism (CD) spectroscopy, mass-selective detection by laser mass spectrometry (MS), and cooling of molecules by using a supersonic beam is presented. The combination of the former two techniques (CD-laser-MS) is a new method to investigate chiral molecules and is now used by several research groups. Cooling in a supersonic beam supplies a substantial increase in spectroscopic resolution, a feature that has not yet been used in CD spectroscopy. In the experiments reported herein, a large variation in the electronic CD of carbonyl 3-methylcyclopentanone was observed depending on the excited vibrational modes in the n → π* transition. This finding should be of interest for the detection of chiral molecules and for the theoretical understanding of the CD of vibronic bands. It is expected that this effect will show up in other chiral carbonyls because the n → π* transition is typical for the carbonyl group. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Beam-energy and laser beam-profile monitor at the BNL LINAC

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Briscoe, B.; Degen, C.; DeSanto, L.; Meng, W.; Minty, M.; Nayak, S.; Raparia, D.; Russo, T.

    2010-05-02

    We are developing a non-interceptive beam profile and energy monitor for H{sup -} beams in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. Electrons that are removed from the beam ions either by laser photodetachment or stripping by background gas are deflected into a Faraday cup. The beam profile is measured by stepping a narrow laser beam across the ion beam and measuring the electron charge vs. transverse laser position. There is a grid in front of the collector that can be biased up to 125kV. The beam energy spectrum is determined by measuring the electron charge vs. grid voltage. Beam electrons have the same velocity as the beam and so have an energy of 1/1836 of the beam protons. A 200MeV H{sup -} beam yields 109keV electrons. Energy measurements can be made with either laser-stripped or gas-stripped electrons.

  9. Laser Diode Beam Basics, Manipulations and Characterizations

    CERN Document Server

    Sun, Haiyin

    2012-01-01

    Many optical design technical books are available for many years which mainly deal with image optics design based on geometric optics and using sequential raytracing technique. Some books slightly touched laser beam manipulation optics design. On the other hand many books on laser diodes have been published that extensively deal with laser diode physics with little touching on laser diode beam manipulations and characterizations. There are some internet resources dealing with laser diode beams. However, these internet resources have not covered enough materials with enough details on laser diode beam manipulations and characterizations. A technical book concentrated on laser diode beam manipulations and characterizations can fit in to the open and provide useful information to laser diode users. Laser Diode Beam Basics, Manipulations and  Characterizations is concentrated on the very practical side of the subject, it only discusses the basic physics and mathematics that are necessary for the readers in order...

  10. A practical guide to handling laser diode beams

    CERN Document Server

    Sun, Haiyin

    2015-01-01

    This book offers the reader a practical guide to the control and characterization of laser diode beamsLaser diodes are the most widely used lasers, accounting for 50% of the global laser market.  Correct handling of laser diode beams is the key to the successful use of laser diodes, and this requires an in-depth understanding of their unique properties. Following a short introduction to the working principles of laser diodes, the book describes the basics of laser diode beams and beam propagation, including Zemax modeling of a Gaussian beam propagating through a lens.  The core of the book is concerned with laser diode beam manipulations: collimating and focusing, circularization and astigmatism correction, coupling into a single mode optical fiber, diffractive optics and beam shaping, and manipulation of multi transverse mode beams.  The final chapter of the book covers beam characterization methods, describing the measurement of spatial and spectral properties, including wavelength and linewidth meas...

  11. Experimental and theoretical electron-beam-sustained CO2 laser output at approx. 200 and approx. 3000K

    International Nuclear Information System (INIS)

    Douglas-Hamilton, D.H.; Feinberg, R.M.; Lowder, R.S.

    1975-01-01

    A six-temperature kinetic model of the He : He 2 Co 2 : N 2 : CO laser system is developed, in which five temperatures describe the vibrational excitation of the three CO 2 modes, N 2 , and CO, while the sixth refers to the kinetic temperature. Theoretical predictions of gain and laser output are compared with experiments performed on an electron-beam sustained laser used at atmospheric pressure. Gain and laser measurements have been made with initial gas temperature near 200 and 300 degreeK. A stable discharge can be produced in this type of laser in gas mixtures containing no He, and successful electric laser operation has been demonstrated using H 2 as CO 2 ν 2 deactivant. Various gas mixtures have been investigated experimentally and theoretically; specific output J>100 J/liter atm was obtained both in He : N 2 : CO 2 : H 2 3 : 2 : 1 : 0 and 0 : 3 : 1 : 0.08, with efficiencies near 30%. While the gain measured appears to peak later and decay later than predicted, in all laser output measurements there is good agreement between theoretical prediction and experiment

  12. A digital intensity stabilization system for HeNe laser

    Science.gov (United States)

    Wei, Zhimeng; Lu, Guangfeng; Yang, Kaiyong; Long, Xingwu; Huang, Yun

    2012-02-01

    A digital intensity stabilization system for HeNe laser is developed. Based on a switching power IC to design laser power supply and a general purpose microcontroller to realize digital PID control, the system constructs a closed loop to stabilize the laser intensity by regulating its discharge current. The laser tube is made of glass ceramics and its integrated structure is steady enough to eliminate intensity fluctuations at high frequency and attenuates all intensity fluctuations, and this makes it easy to tune the control loop. The control loop between discharge current and photodiode voltage eliminates the long-term drifts. The intensity stability of the HeNe laser with this system is 0.014% over 12 h.

  13. He leaks in the CERN LHC beam vacuum chambers operating at cryogenic temperatures

    CERN Document Server

    Baglin, V

    2007-01-01

    The 27 km long large hadron collider (LHC), currently under construction at CERN, will collide protons beam at 14 TeV in the centre of mass. In the 8 arcs, the superconducting dipoles and quadrupoles of the FODO cells operate with superfluid He at 1.9 K. In the 8 long straight sections, the cold bores of the superconducting magnets are held at 1.9 or 4.5 K. Thus, in the LHC, 75% of the beam tube vacuum chamber is cooled with He. In many areas of the machine, He leaks could appear in the beam tube. At cryogenic temperature, the gas condenses onto the cold bores or beam screens, and interacts with the circulating beam. He leaks creates a He front propagating along the vacuum chambers, which might cause magnet quench. We discuss the consequences of He leaks, the possible means of detections, the strategies to localise them and the methods to measure their size.

  14. Laser-driven acceleration with Bessel beam

    International Nuclear Information System (INIS)

    Imasaki, Kazuo; Li, Dazhi

    2005-01-01

    A new approach of laser-driven acceleration with Bessel beam is described. Bessel beam, in contrast to the Gaussian beam, shows diffraction-free'' characteristics in its propagation, which implies potential in laser-driven acceleration. But a normal laser, even if the Bessel beam, laser can not accelerate charged particle efficiently because the difference of velocity between the particle and photon makes cyclic acceleration and deceleration phase. We proposed a Bessel beam truncated by a set of annular slits those makes several special regions in its travelling path, where the laser field becomes very weak and the accelerated particles are possible to receive no deceleration as they undergo decelerating phase. Thus, multistage acceleration is realizable with high gradient. In a numerical computation, we have shown the potential of multistage acceleration based on a three-stage model. (author)

  15. Laser beam cutting method. Laser ko ni yoru kaitai koho

    Energy Technology Data Exchange (ETDEWEB)

    Kutsumizu, A. (Obayashi Corp., Osaka (Japan))

    1991-07-01

    In this special issue paper concerning the demolition of concrete structures, was introduced a demolition of concrete structures using laser, of which practical application is expected due to the remarkable progress of generating power and efficiency of laser radiator. The characteristics of laser beam which can give a temperature of one million centigrade at the irradiated spot, the laser radiator consisting of laser medium, laser resonator and pumping apparatus, and the laser kinds for working, such as CO{sub 2} laser, YAG laser and CO laser, were described. The basic constitution of laser cutting equipment consisting of large generating power radiator, beam transmitter, beam condenser, and nozzle for working was also illustrated. Furthermore, strong and weak points in the laser cutting for concrete and reinforcement were enumerated. Applications of laser to cutting of reinforced and unreinforced concrete constructions were shown, and the concept and safety measure for application of laser to practical demolition was discussed. 5 refs., 8 figs.

  16. Low-temperature H2-4He and H2-3He targets for operation on an electron beam

    International Nuclear Information System (INIS)

    Gol'dshtejn, V.A.; Lubyanyj, V.V.

    1981-01-01

    Structures and basic characteristics of H 2 - 4 He and H 2 - 3 He low temperature targets are given. Technique of 3 He target filling is described. Initial target cooling up to liquid 4 He temperature and its filling up take near approximately 1 h, at that 4 He flow rate equals 15 l. Repeated filling up of 4 He takes 20 min, and target filling up with 3 He - 10-15 min. Good thermal insulation of a cryostat and targets permits the 4 He target to be operated with an electron beam of a mean current of up to 0.5 μA without filling up 4 He for 70 h. At that flow rate of liquid 4 He amounts to 0.2 l/h, and liquid hydrogen - 0.04 l/h. It is concluded that H 2 - 4 He and H 2 - 3 He targets are reliable and simple in operation and permit to work with accelerated particle beams of intensity corresponding to power release >= 0.5 W without corrections for density change [ru

  17. He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose-dependent manner

    International Nuclear Information System (INIS)

    Breugel, H.H.F.I. van; Bar, P.R.

    1993-01-01

    Schwann cell proliferation is considered an essential part of Wallerian degeneration after nerve damage. Laminin, an important component of the extracellular matrix and produced by Schwann cells, provides a preferred substrate for outgrowing axons. To study whether low energy (He-Ne) laser irradiation may exert a positive effect on nerve regeneration through an effect on Schwann cells, its effect was evaluated in vitro. Schwann cells were isolated from sciatic nerves of 4-5-day old Wistar rats and cultures on 96-multiwell plates. The cells were irradiated by a He-Ne laser beam. At three consecutive days, starting either at day 5 or day 8, cells were irradiated each day for 0.5, 1, 2, 5 or 10 min. Both cell number and laminin production were determined for each irradiation condition within one experiment. Schwann cells that were irradiated from day 8 on were hardly affected by laser irradiation. However, the proliferation of cells that were irradiated starting on day 5 was significantly increased after 1, 2 and 5 min of daily irradiation, compared to non-irradiated control cultures. The lamin production per cell of these Schwann cells was not significantly altered. From these results we conclude that He-Ne laser irradiation can modulate proliferation of rat Schwann cells in vitro in a dose-dependent manner. (Author)

  18. Plasma measurement by feedback-stabilized dual-beam laser interferometer

    International Nuclear Information System (INIS)

    Yasuda, Akio; Kawahata, Kazuo; Kanai, Yasubumi.

    1982-03-01

    The plasma density in a dynamic magneto arcjet is measured by a stabilized dual-beam laser interferometer proposed by the authors. The fringe shift for a 0.63 μm beam of He-Ne laser is used to stabilize the interferometer against the effect of mechanical vibration by means of a feedback controlled speaker coil, while the other beam of 3.39 μm, for which the effect of mechanical vibrations is excluded, is used to measure plasma density. Stability of --1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hertz. Stability for higher frequencies, which determines the accuracy of the present measurement, is limited to --1/30 of one fringe for 0.63 μm, which corresponds to --1/200 of one fringe and a line electron density of --1.5 x 10 14 cm - 2 for 3.39 μm, by acoustic noise picked up by the speaker coil. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. Since the effect of the neutral gas background is practically reduced to zero, the present interferometer is to be applied advantageously to the diagnostics of the plasma produced in high pressure gases. (author)

  19. A transportable methane stabilized He-Ne laser

    Science.gov (United States)

    Akimoto, Yoshiaki

    1987-06-01

    The performance of a transportable methane stabilized He-Ne laser system, developed for a wavelength-optical frequency standard according to the 1983 Comite Consultatif pour la Definition du Metier, is discussed. An offset-locked laser system using a phase comparison technique is described which is used to evaluate the stabilized laser system. A frequency stability of 2.5 x 10 to the -12th tau exp -1/2, and a resettability of 1 x 10 to the -11th, are estimated for the stabilized laser system.

  20. Initial alignment method for free space optics laser beam

    Science.gov (United States)

    Shimada, Yuta; Tashiro, Yuki; Izumi, Kiyotaka; Yoshida, Koichi; Tsujimura, Takeshi

    2016-08-01

    The authors have newly proposed and constructed an active free space optics transmission system. It is equipped with a motor driven laser emitting mechanism and positioning photodiodes, and it transmits a collimated thin laser beam and accurately steers the laser beam direction. It is necessary to introduce the laser beam within sensible range of the receiver in advance of laser beam tracking control. This paper studies an estimation method of laser reaching point for initial laser beam alignment. Distributed photodiodes detect laser luminescence at respective position, and the optical axis of laser beam is analytically presumed based on the Gaussian beam optics. Computer simulation evaluates the accuracy of the proposed estimation methods, and results disclose that the methods help us to guide the laser beam to a distant receiver.

  1. Histological study on the effect of He-Ne laser on the compound eyes of the locust Schistocerca Gregaria Forsk (Orthoptera-Acridiidae)

    International Nuclear Information System (INIS)

    Abd El-Meguid, A.; El-Gundi, A.M.; Osiris, W.G.; El-Kes, N.

    1996-01-01

    In the present study, the effect of the He-Ne laser beam at different exposure periods (10,30 and 60 minutes) on the histological structure of the compound eyes of Schistocerca Gregaria Forsk is investigated. This study shows that various remarkable changes occurred in the histological structure of the right exposed eye (R) as in the left eye (L) (unexposed eye of the same insect), which may be due to a change in the micro-environment of the compound eyes, affected by the laser beam, furthermore, damage in the photoreceptors of the compound eyes of the insect was observed. 23 figs

  2. Self-focusing of laser beams in magnetized relativistic electron beams

    International Nuclear Information System (INIS)

    Whang, M.H.; Ho, A.Y.; Kuo, S.P.

    1989-01-01

    Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed

  3. Beam uniformity of flat top lasers

    Science.gov (United States)

    Chang, Chao; Cramer, Larry; Danielson, Don; Norby, James

    2015-03-01

    Many beams that output from standard commercial lasers are multi-mode, with each mode having a different shape and width. They show an overall non-homogeneous energy distribution across the spot size. There may be satellite structures, halos and other deviations from beam uniformity. However, many scientific, industrial and medical applications require flat top spatial energy distribution, high uniformity in the plateau region, and complete absence of hot spots. Reliable standard methods for the evaluation of beam quality are of great importance. Standard methods are required for correct characterization of the laser for its intended application and for tight quality control in laser manufacturing. The International Organization for Standardization (ISO) has published standard procedures and definitions for this purpose. These procedures have not been widely adopted by commercial laser manufacturers. This is due to the fact that they are unreliable because an unrepresentative single-pixel value can seriously distort the result. We hereby propose a metric of beam uniformity, a way of beam profile visualization, procedures to automatically detect hot spots and beam structures, and application examples in our high energy laser production.

  4. Laser-driven ultrafast antiproton beam

    Science.gov (United States)

    Li, Shun; Pei, Zhikun; Shen, Baifei; Xu, Jiancai; Zhang, Lingang; Zhang, Xiaomei; Xu, Tongjun; Yu, Yong; Bu, Zhigang

    2018-02-01

    Antiproton beam generation is investigated based on the ultra-intense femtosecond laser pulse by using two-dimensional particle-in-cell and Geant4 simulations. A high-flux proton beam with an energy of tens of GeV is generated in sequential radiation pressure and bubble regime and then shoots into a high-Z target for producing antiprotons. Both yield and energy of the antiproton beam increase almost linearly with the laser intensity. The generated antiproton beam has a short pulse duration of about 5 ps and its flux reaches 2 × 10 20 s - 1 at the laser intensity of 2.14 × 10 23 W / cm 2 . Compared to conventional methods, this new method based on the ultra-intense laser pulse is able to provide a compact, tunable, and ultrafast antiproton source, which is potentially useful for quark-gluon plasma study, all-optical antihydrogen generation, and so on.

  5. A high-intensity He-jet production source for radioactive beams

    International Nuclear Information System (INIS)

    Vieira, D.J.; Kimberly, H.J.; Grisham, D.L.; Talbert, W.L.; Wouters, J.M.; Rosenauer, D.; Bai, Y.

    1993-01-01

    The use of a thin-target, He-jet transport system operating with high primary beam intensities is explored as a high-intensity production source for radioactive beams. This method is expected to work well for short-lived, non-volatile species. As such the thin-target, He-jet approach represents a natural complement to the thick-target ISOL method in which such species are not, in general, rapidly released. Highlighted here is a thin-target, He-jet system that is being prepared for a 500 + μA, 800-MeV proton demonstration experiment at LAMPF this summer

  6. Spectroscopy of the 6He,7He exotic nuclei with the Must2 telescopes and the Spiral beam of 8He

    International Nuclear Information System (INIS)

    Mougeot, X.

    2008-09-01

    The nuclear models have to be constrained using experimental data collected on weakly bound nuclei in order to improve their predictive power. The one and two neutron transfer reactions 8 He(p,d) 7 He and 8 He(p,t) 6 He were measured in inverse kinematics at GANIL. The 8 He beam, impinging on a proton target, was produced at 15.4 MeV/n by the SPIRAL facility. The experimental setup consisted of four MUST2 telescopes for the detection of the light charged particles, of one MUST2 telescope to identify the heavy projectile, and of two beam tracking detectors CATS to reconstruct the incident position and angle of the beam on the target. A complete analysis of the data taken with MUST2 was done for the first time. The performances of the detector were characterized, methods were developed for the calibrations and the selection of the events. The excitation energy spectra for 6,7 He and the angular distributions of the cross-sections were extracted. The resonant states of 6 He were observed at the following excitation energies: at 1.8 MeV (known), at 2.65(25) MeV with a width Γ = 1.6(4) MeV, and at 5.3(3) MeV, Γ = 2(1) MeV. One resonant state was observed for 7 He at 1.3(2) MeV, with a width Γ = 0.7(5) MeV. Our data do not exclude the controversial state at 0.9 MeV, Γ = 1 MeV. These results were obtained with the very good position and energy resolutions of MUST2. They are consistent with the calculations of the nuclear theories which include the treatment of the coupling to the continuum and the effects of the three-body interactions. (author)

  7. Laser-driven ion acceleration with hollow laser beams

    International Nuclear Information System (INIS)

    Brabetz, C.; Kester, O.; Busold, S.; Bagnoud, V.; Cowan, T.; Deppert, O.; Jahn, D.; Roth, M.; Schumacher, D.

    2015-01-01

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10 18  W cm −2 to 10 20  W cm −2 . We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot

  8. Laser-driven ion acceleration with hollow laser beams

    Energy Technology Data Exchange (ETDEWEB)

    Brabetz, C., E-mail: c.brabetz@gsi.de; Kester, O. [Goethe-Universität Frankfurt am Main, 60323 Frankfurt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Busold, S.; Bagnoud, V. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Helmholtz-Institut Jena, 07743 Jena (Germany); Cowan, T. [Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden (Germany); Technische Universität Dresden, 01069 Dresden (Germany); Deppert, O.; Jahn, D.; Roth, M. [Technische Universität Darmstadt, 64277 Darmstadt (Germany); Schumacher, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, 64291 Darmstadt (Germany)

    2015-01-15

    The laser-driven acceleration of protons from thin foils irradiated by hollow high-intensity laser beams in the regime of target normal sheath acceleration (TNSA) is reported for the first time. The use of hollow beams aims at reducing the initial emission solid angle of the TNSA source, due to a flattening of the electron sheath at the target rear side. The experiments were conducted at the PHELIX laser facility at the GSI Helmholtzzentrum für Schwerionenforschung GmbH with laser intensities in the range from 10{sup 18} W cm{sup −2} to 10{sup 20} W cm{sup −2}. We observed an average reduction of the half opening angle by (3.07±0.42)° or (13.2±2.0)% when the targets have a thickness between 12 μm and 14 μm. In addition, the highest proton energies were achieved with the hollow laser beam in comparison to the typical Gaussian focal spot.

  9. Method and apparatus for laser-controlled proton beam radiology

    Science.gov (United States)

    Johnstone, Carol J.

    1998-01-01

    A proton beam radiology system provides cancer treatment and proton radiography. The system includes an accelerator for producing an H.sup.- beam and a laser source for generating a laser beam. A photodetachment module is located proximate the periphery of the accelerator. The photodetachment module combines the H.sup.- beam and laser beam to produce a neutral beam therefrom within a subsection of the H.sup.- beam. The photodetachment module emits the neutral beam along a trajectory defined by the laser beam. The photodetachment module includes a stripping foil which forms a proton beam from the neutral beam. The proton beam is delivered to a conveyance segment which transports the proton beam to a patient treatment station. The photodetachment module further includes a laser scanner which moves the laser beam along a path transverse to the cross-section of the H.sup.- beam in order to form the neutral beam in subsections of the H.sup.- beam. As the scanning laser moves across the H.sup.- beam, it similarly varies the trajectory of the proton beam emitted from the photodetachment module and in turn varies the target location of the proton beam upon the patient. Intensity modulation of the proton beam can also be achieved by controlling the output of the laser.

  10. Controlling Second Harmonic Efficiency of Laser Beam Interactions

    Science.gov (United States)

    Barnes, Norman P. (Inventor); Walsh, Brian M. (Inventor); Reichle, Donald J. (Inventor)

    2011-01-01

    A method is provided for controlling second harmonic efficiency of laser beam interactions. A laser system generates two laser beams (e.g., a laser beam with two polarizations) for incidence on a nonlinear crystal having a preferred direction of propagation. Prior to incidence on the crystal, the beams are optically processed based on the crystal's beam separation characteristics to thereby control a position in the crystal along the preferred direction of propagation at which the beams interact.

  11. Raman beam combining for laser brightness enhancement

    Science.gov (United States)

    Dawson, Jay W.; Allen, Graham S.; Pax, Paul H.; Heebner, John E.; Sridharan, Arun K.; Rubenchik, Alexander M.; Barty, Chrisopher B. J.

    2015-10-27

    An optical source capable of enhanced scaling of pulse energy and brightness utilizes an ensemble of single-aperture fiber lasers as pump sources, with each such fiber laser operating at acceptable pulse energy levels. Beam combining involves stimulated Raman scattering using a Stokes' shifted seed beam, the latter of which is optimized in terms of its temporal and spectral properties. Beams from fiber lasers can thus be combined to attain pulses with peak energies in excess of the fiber laser self-focusing limit of 4 MW while retaining the advantages of a fiber laser system of high average power with good beam quality.

  12. Collisional absorption of two laser beams in plasma

    International Nuclear Information System (INIS)

    Mohan, M.; Acharya, R.

    1977-04-01

    The collisional absorption of two laser beams is considered by solving the kinetic equation for the plasma electron. Results show that the simultaneous effect of two laser beams on the heating rate is greater as compared with the individual contribution of each laser beam when the two laser beams have a difference of frequencies equal to the plasma frequency

  13. Handling And Safety Aspects Of Fiber Optic Laser Beam Delivery Systems

    Science.gov (United States)

    Schonborn, K.-H.; Wodrich, W.

    1988-06-01

    Using lasers for therapeutic applications is getting more and more accepted. In ophthalmology Ar-lasers for intraocular applications are quite common. The Nd:YAG-laser is used as a high power tool in connection with silica fibers for different extracorporal and intracorporal applications. The CO2-laser is the cutting laser, one problem being the beam transmission: The state of the art in fibers is not sufficient up to now. Because of the high power used safety against laser radiation hazard is of great importance. The safety in laser use is primarily dependent on the surgeons cautiousness, e.g. using laser protection goggels, observing that the spot of the aiming beam is present etc. On the other hand the laser and fiber system has to be inherently safe by appropriate technical means as far as possible. An additional aspect adding to safety is the handling: With easier system handling less attention of the surgeon is necessary for driving the apparatus. Thus he can concentrate on the patient and on the procedure. In considering the fiber system one important point in handling and safety is the coupling of the fiber to the laser head. The development philosophy in this coupling may be divided into two groups: - one is trying to use standard connectors which were initially developed for data transmission; - the other is using special connectors. One example of the first group is the guiding of the laser beam from the Ar-laser to the slit-lamp in ophtalmology. Here the well-known F-SMA connectors together with a special fiber with adapted numerical aperture are used. The advantage of such a system is the low price of the connector. For high power lasers such as the clinical Nd:YAG lasers with 40 to 150 W those connectors are not suitable. Up to now every laser manufacturer developed his own connector system in this field.

  14. Laser systems configured to output a spectrally-consolidated laser beam and related methods

    Science.gov (United States)

    Koplow, Jeffrey P [San Ramon, CA

    2012-01-10

    A laser apparatus includes a plurality of pumps each of which is configured to emit a corresponding pump laser beam having a unique peak wavelength. The laser apparatus includes a spectral beam combiner configured to combine the corresponding pump laser beams into a substantially spatially-coherent pump laser beam having a pump spectrum that includes the unique peak wavelengths, and first and second selectively reflective elements spaced from each other to define a lasing cavity including a lasing medium therein. The lasing medium generates a plurality of gain spectra responsive to absorbing the pump laser beam. Each gain spectrum corresponds to a respective one of the unique peak wavelengths of the substantially spatially-coherent pump laser beam and partially overlaps with all other ones of the gain spectra. The reflective elements are configured to promote emission of a laser beam from the lasing medium with a peak wavelength common to each gain spectrum.

  15. Molecular beam epitaxy of alternating-strain ZnSe-based multilayer heterostructures for blue-green lasers

    International Nuclear Information System (INIS)

    Ivanov, S.V.; Toropov, A.A.; Sorokin, S.V.; Shubina, T.V.; Il'inskaya, N.D.; Lebedev, A.V.; Sedova, I.V.; Kop'ev, P.S.; Alferov, Zh.I.; Lugauer, H.-J.; Reuscher, G.; Keim, M.; Fischer, F.; Waag, A.; Landwehr, G.

    1998-01-01

    High-quality ZnSe-based heterostructures are grown by uninterrupted molecular beam epitaxy using the concept of strain compensation and alternating-strain multilayers. To verify the advantages of this technique, optically pumped ZnSSe/ZnCdSe laser structures containing short-period superlattices or multiple quantum wells have been grown and studied. A room-temperature injection laser diode with a BeZnSe/ZnSe superlattice waveguide is described

  16. Pion production in 3He-nucleus interactions at 910 MeV

    International Nuclear Information System (INIS)

    Aslanides, E.; Baumann, P.; Bergdolt, G.; Engelstein, P.; Fassnacht, P.; Hibou, F.; Bressani, T.; Puddu, G.A.

    1983-01-01

    The ( 3 He, πsup(+-)X) reaction has been studied at 910 MeV using the 3 He ++ beam of the CERN SC, Complete π - spectra on CH 2 , CD 2 , 9 Be, 12 C, 27 Al, Cd and Pb, and π + spectra on CH 2 , CD 2 and 12 C targets have been measured at 0 0 , up or close to the kinematic limit xsub(F)=1. The results are compared to various theoretical calculations. (orig.)

  17. The Targeted Antitumor Effects of C- PC/CMC-CD59sp Nanoparticles on HeLa Cells in Vitro and in Vivo.

    Science.gov (United States)

    Wang, Yujuan; Jiang, Liangqian; Yin, Qifeng; Liu, Huihui; Liu, Guoxiang; Zhu, Guoteng; Li, Bing

    2017-01-01

    The novel C-PC/CMC-CD59sp-NPs were made by carbocymethyl chitosan (CMC) loading C-phycocyanin (C-PC) with the lead of CD59 specific ligand peptide (CD59sp) for targeting, and the characteristics and targeted anti-tumor mechanism were explored in order to realize the targeted therapy of C-PC on the growth of HeLa cells both in vitro and vivo . The targeting nanoparticles were synthesized by ionic-gelation method, and the optimal condition was selected out by orthogonal analysis. The properties of nanoparticles were observed by laser particle analyzer and dynamic light scattering (DLS) and Fourier Transform Infrared Spectrometer (FTIR). The effects of nanoparticles on the proliferation of HeLa cells in vitro were assessed by MTT assay. The mice model with tumor was constructed by subcutaneous injection of HeLa cells into the left axilla of NU/NU mice. The weight of tumor and the spleen were tested. The expression quantities of cleaved caspase-3, Bcl-2 were determined by western blot and immunofluorescent staining. Results showed the morphology of the finally prepared nanoparticles was well distributed with a diameter distribution of 200±11.3 nm and zeta potential of -19.5±4.12mV. Under the guidance of CD59sp, the targeting nanoparticles could targetedly and efficiently arrive at the surface of HeLa cells, and had obvious inhibitory effect on HeLa cells proliferation both in vitro and vivo. Moreover, the nanoparticles could induce cell apoptosis by up-regulation of cleaved caspase-3 proteins expression, but down-regulation of Bcl-2 and cyclinD1 proteins. Our study provided a new idea for the research and development of marine drugs, and supplied a theoretical support for the target therapy of anticancer drug.

  18. Measurement of the electron density of a plasma by interferometry with a He - Ne laser ({lambda} = 3.39 {mu}); Mesure de la densite electronique d'un plasma par interferometrie avec un laser He - Ne ({lambda} = 3.39 {mu})

    Energy Technology Data Exchange (ETDEWEB)

    Belland, P [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    The characteristics of the He-Ne gas laser used in a simple interferometric technique have been studied. After passing through the plasma, the beam is reflected back into the laser cavity, and the intensity of the laser itself, modulated by this optical feedback, is used to observe the fringes. Furthermore, owing to the coupling of the two laser transitions 0.63{mu} (red) and 3.39{mu} (infra red), interferences in the infra red can be detected by a simple photomultiplier monitoring the red line. This method has been applied to two plasma machines (E.P.P.E. and SABLIER) for spatial and temporal measurements of the mean electron density. (author) [French] Nous avons etudie les caracteristiques d'un laser a gaz He-Ne utilise dans une technique simple d'interferometrie. La lumiere qui traverse le plasma est reinjectee dans le laser, et l'intensite propre de celui-ci, modulee par cette reinjection, sert a observer les franges. De plus, a cause du couplage des deux transitions laser: 0.63{mu} (rouge) et 3.39{mu} (infrarouge), les interferences dans l'infrarouge peuvent etre detectees par un simple photomultiplicateur sensible au rouge. Nous avons applique cette methode a deux machines a plasma (E.P.P.E. et SABLIER) pour la mesure de la densite electronique moyenne en fonction du temps et de l'espace. (auteur)

  19. Formation of surface nanolayers in chalcogenide crystals using coherent laser beams

    Science.gov (United States)

    Ozga, K.; Fedorchuk, A. O.; El-Naggar, A. M.; Albassam, A. A.; Kityk, V.

    2018-03-01

    We have shown a possibility to form laser modified surface nanolayers with thickness up to 60 nm in some ternary chalcogenide crystals (Ag3AsS3, Ag3SbS3, Tl3SbS3) The laser treatment was performed by two coherent laser beams split in a space. As the inducing lasers we have applied continuous wave (cw) Hesbnd Cd laser at wavelength 441 nm and doubled frequency cw Nd: YAG laser at 532 nm. The spectral energies of these lasers were higher with respect to the energy gaps of the studied crystals. The optical anisotropy was appeared and defected by monitoring of birefringence at probing wavelength of cw Hesbnd Ne laser at λ = 3390 nm. The changes of the laser stimulated near the surface layer morphology was monitored by TEM and AFM methods as well as by the reflected optical second harmonic generation at fundamental wavelength of microsecond CO2 laser generating at wavelength 10600 nm. This technique may open a new approach for the formation of the near the surface nanolayers in chalcogenides using external cw laser illumination.

  20. Excimer laser beam delivery systems for medical applications

    Science.gov (United States)

    Kubo, Uichi; Hashishin, Yuichi; Okada, Kazuyuki; Tanaka, Hiroyuki

    1993-05-01

    We have been doing the basic experiments of UV laser beams and biotissue interaction with both KrF and XeCl lasers. However, the conventional optical fiber can not be available for power UV beams. So we have been investigating about UV power beam delivery systems. These experiments carry on with the same elements doped quartz fibers and the hollow tube. The doped elements are OH ion, chlorine and fluorine. In our latest work, we have tried ArF excimer laser and biotissue interactions, and the beam delivery experiments. From our experimental results, we found that the ArF laser beam has high incision ability for hard biotissue. For example, in the case of the cow's bone incision, the incision depth by ArF laser was ca.15 times of KrF laser. Therefore, ArF laser would be expected to harden biotissue therapy as non-thermal method. However, its beam delivery is difficult to work in this time. We will develop ArF laser beam delivery systems.

  1. Laser control of atomic beam motion and applications

    International Nuclear Information System (INIS)

    Balykin, V.I.; Letokhov, V.S.

    1987-01-01

    The authors present the results of an experimental investigation of the control of atomic beam motion by the light pressure of laser radiation. Collimation, focusing and reflection of the atomic beam are considered. Collimation of the atomic beam is achieved by the interaction of laser radiation with atoms, when the light pressure force depends only on the atom's velocity. A similar regime of atomic beam interaction with radiation was performed with transversal irradiation of a beam by the axis-symmetrical field. The axis-symmetrical field was formed by laser radiation reflected from the conical mirror surface of a reflecting axicon. The axis of the atomic beam coincided with that of the axicon. The collimation regime was reached under negative detuning of the laser radiation frequency from the atomic transition frequency by a value equal to several homogeneous widths. With positive detuning by the same value the regime of beam decollimation was observed. The density of atoms on the beam axis was changed by 10 3 times, when the collimation regime was replaced by that of decollimation. Focusing of the atomic beam was achieved by light pressure dependent on the atomic coordinate. Focusing was performed within the field configuration formed by divergent laser Gaussian beams propagating in the direction +- X, +- Y of a Cartesian coordinate system. Waists of the laser beams were an equal distance from the atomic beam axis. With an atomic beam propagating along the z axis, expressions for local distance and a formula for the laser lens were obtained. Focusing of the atomic beam was experimentally accomplished, and the image of the atomic beam was received. In this work they also investigated reflection of the atomic beam by laser radiation. The possibility of creating the optics of a neutral atomic beam is shown

  2. Quantitative description of the saturated absorption signal in iodine stabilized He-Ne lasers

    International Nuclear Information System (INIS)

    Brillet, A.; Cerez, P.

    1977-01-01

    He-Ne lasers stabilized by saturated absorption 127 I 2 have been studied in many laboratories and are now widely used as optical frequency standards. But, although their frequency stability and reproducibility have been extensively measured and reported, the size and the width of the saturated absorption signals used for the stabilization are not yet well understood. Particularly, the extrapolation of the linewidth to zero pressure results in an apparent discrepancy with the lifetime of the upper level of the transition. By measuring or evaluating all the important parameters which affect the operation of these lasers we are now able to describe with a good accuracy the properties of the saturated absorption signal and their variations with the iodine pressure, using Greenstein's theory of a laser with an internal absorption cell. At low iodine pressures (typically below 100 m Torr), we observe a divergence between experimental and theoretical results, which is interpreted as an effect of the laser beam geometry, when the saturation parameter becomes much larger than 1. (orig.) [de

  3. Laser diagnostics for picosecond e-beams

    International Nuclear Information System (INIS)

    Pogorelsky, I.; Ben-Zvi, I.

    1992-01-01

    We propose a novel approach to picosecond e-bunch/laser pulse synchronization and spatial alignment based upon refraction and reflection of a laser beam on a plasma column created by relativistic electrons traveling through a gas or solid optical material. The technique may be used in laser accelerators and for general subpicosecond e-beam diagnostics

  4. Relaxation of the 5s22D3/2 state of the Cd II ion during collision with He atoms in a He-Cd medium excited by fission fragments

    International Nuclear Information System (INIS)

    Barysheva, N.M.; Bochkov, A.V.; Bochkova, N.V.; Grebenkin, K.F.; Kryzhanovskii, V.A.; Magda, E.P.; Neznakhina, A.E.

    1992-01-01

    Based on measurements of the luminescence intensities of the 5s 2 2 D 5/2 →5p 2 P 3/2 (λ=0.4416 μm) and 5s 2 2 D 3/2 →5p 2 P 1/2 (λ=0.325 μm) lines in a dense He-Cd medium excited by fission fragments, the reaction constant is determined for Cd + (5s 2 2 D 3/2 )+He→Cd + (5s 2 2 D 5/2 )+He. The assumption that the 5s 2 2 D 3/2 state of the Cd II ion is strongly deexcited by collisions with atoms of the buffer gas was not confirmed. The question of quasicontinuous lasing at the 5s 2 2 D 3/2 → 5p 2 P 1/2 (λ=0.325 μm) transition requires further study. 6 refs., 1 fig

  5. Enhanced laser beam coupling to a plasma

    International Nuclear Information System (INIS)

    Steiger, A.D.; Woods, C.H.

    1976-01-01

    Density perturbations are induced in a heated plasma by means of a pair of oppositely directed, polarized laser beams of the same frequency. The wavelength of the density perturbations is equal to one half the wavelength of the laser beams. A third laser beam is linearly polarized and directed at the perturbed plasma along a line that is perpendicular to the direction of the two opposed beams. The electric field of the third beam is oriented to lie in the plane containing the three beams. The frequency of the third beam is chosen to cause it to interact resonantly with the plasma density perturbations, thereby efficiently coupling the energy of the third beam to the plasma. 10 claims, 2 figures

  6. First demonstration of laser engagement of 1-Hz-injected flying pellets and neutron generation

    Science.gov (United States)

    Komeda, Osamu; Nishimura, Yasuhiko; Mori, Yoshitaka; Hanayama, Ryohei; Ishii, Katsuhiro; Nakayama, Suisei; Kitagawa, Yoneyoshi; Sekine, Takashi; Sato, Nakahiro; Kurita, Takashi; Kawashima, Toshiyuki; Kan, Hirofumi; Nakamura, Naoki; Kondo, Takuya; Fujine, Manabu; Azuma, Hirozumi; Motohiro, Tomoyoshi; Hioki, Tatsumi; Kakeno, Mitsutaka; Sunahara, Atsushi; Sentoku, Yasuhiko; Miura, Eisuke

    2013-01-01

    Pellet injection and repetitive laser illumination are key technologies for realizing inertial fusion energy. Numerous studies have been conducted on target suppliers, injectors, and tracking systems for flying pellet engagement. Here we for the first time demonstrate the pellet injection, counter laser beams' engagement and neutron generation. Deuterated polystyrene (CD) bead pellets, after free-falling for a distance of 18 cm at 1 Hz, are successfully engaged by two counter laser beams from a diode-pumped, ultra-intense laser HAMA. The laser energy, pulse duration, wavelength, and the intensity are 0.63 J per beam, 104 fs, and 811 nm, 4.7 × 1018 W/cm2, respectively. The irradiated pellets produce D(d,n)3He-reacted neutrons with a maximum yield of 9.5 × 104/4π sr/shot. Moreover, the laser is found out to bore a straight channel with 10 μm-diameter through the 1-mm-diameter beads. The results indicate potentially useful technologies and findings for the next step in realizing inertial fusion energy. PMID:24008696

  7. Laser-driven proton beams applied to radiobiological experiments

    International Nuclear Information System (INIS)

    Yogo, Akifumi

    2012-01-01

    The proton accelerators based on the high intensity laser system generate shorter and higher pulse beams compared to the conventional particle accelerators used for the cancer therapy. To demonstrate the radiobiological effects of the new proton beams, the program to develop a biological irradiation instrument for the DNA double-strand break was started in the fiscal year 2008. A prototype instrument was made by making use of the J-KAREN (JAEA Kansai Advanced Relativistic Engineering) laser beam. Polyimide thin film targets were used to irradiate A-549 cells. The DNA double-strand break was tested by the fluorescence spectrometry. In the second year the quantitative yield of the DNA double-strand break and its proton dose dependence were measured. The results indicated that they were comparative to the cases of the conventional particle accelerators. In the fiscal year of 2010 the design of the magnetic field for the energy selection has been changed. The new irradiation instrument, the main part of which is only about 40 cm in length as illustrated in the figure, has been constructed and tested. The experiment has been carried out using the human cancer cells (HSG) and the relative biological effectiveness (RBE) has been quantitatively evaluated by the colony assay for varied distribution of the proton beam energy. The survival fractions plotted against the dose were in good agreement with the case of 3 He beam. RBE was found not to be changed up to 1x10 7 Gy/s. Stability of the energy peak, half width and the proton density has been confirmed for this very compact instrument. (S. Funahashi)

  8. The Two-Beam Free Electron Laser Oscillator

    CERN Document Server

    Thompson, Neil R

    2004-01-01

    A one-dimensional model of a free-electron laser operating simultaneously with two electron beams of different energies [1] is extended to an oscillator configuration. The electron beam energies are chosen so that an harmonic of the lower energy beam is at the fundamental radiation wavelength of the higher energy beam. Potential benefits over a single-beam free-electron laser oscillator are discussed.

  9. Measurements of laser-imprinting sensitivity to relative beam mistiming in planar plastic foils driven by multiple overlapping laser beams

    International Nuclear Information System (INIS)

    Smalyuk, V.A.; Goncharov, V.N.; Boehly, T.R.; Delettrez, J.A.; Li, D.Y.; Marozas, J.A.; Maximov, A.V.; Meyerhofer, D.D.; Regan, S.P.; Sangster, T.C.

    2005-01-01

    In a direct-drive, inertial confinement fusion implosion, a spherical target is irradiated by a large number of overlapped laser beams. Imprinting of laser modulations depends on the relative arrival time of laser beams and their angles of incidence. This dependence was measured in planar plastic targets using six overlapping beams on the OMEGA laser system [T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, and C. P. Verdon, Opt. Commun. 133, 495 (1997)]. One of the beams (the imprint beam) had a special phase plate that produced two-dimensional modulations on the target, easily distinguishable from the features imprinted by the other five drive beams. The timing of the imprint beam was varied with respect to the drive beams to study imprinting sensitivity to beam mistiming. Shifting the imprint beam to arrive before the other beams significantly increased the imprint efficiency. The results are in very good agreement with the model predictions

  10. Laser-driven acceleration with Bessel and Gaussian beams

    International Nuclear Information System (INIS)

    Hafizi, B.; Esarey, E.; Sprangle, P.

    1997-01-01

    The possibility of enhancing the energy gain in laser-driven accelerators by using Bessel laser beams is examined. Scaling laws are derived for the propagation length, acceleration gradient, and energy gain in various accelerators for both Gaussian and Bessel beam drivers. For equal beam powers, the energy gain can be increased by a factor of N 1/2 by utilizing a Bessel beam with N lobes, provided that the acceleration gradient is linearly proportional to the laser field. This is the case in the inverse free electron laser and the inverse Cherenkov accelerators. If the acceleration gradient is proportional to the square of the laser field (e.g., the laser wakefield, plasma beat wave, and vacuum beat wave accelerators), the energy gain is comparable with either beam profile. copyright 1997 American Institute of Physics

  11. Laser beam shaping design based on micromirror array

    Science.gov (United States)

    Fang, Han; Su, Bida; Liu, Jiaguo; Fan, Xiaoli; Jing, Wang

    2017-10-01

    In the practical application of the laser, it is necessary to use the laser beam shaping technology to shape the output beam of laser device to the uniform light intensity distribution. The shaping divergent optical system of compound eye integrator way is composed of beam expanding mirror group and lens array. Its working principle is to expand the output laser to a certain size of caliber, and then divide the beam with lens array into multiple sub beam, where the lens unit of lens array can control the divergence angle of sub beam through the design of focal length, with mutual superposition of the sub beam in far field, to make up for the nonuniformity of beam, so that the radiant exitance on the radiated surface may become uniform. In this paper, we use a reflective microlens array to realize the laser beam shaping. By through of the practical optical path model established, the ray tracing is carried out and the simulation results for single-mode Gaussian beam with noise circumstance is provided. The analysis results show that the laser beam shaping under different inputs can be effectively realized by use of microlens array. All the energy is within the signal window, with a high energy efficiency of more than 90%; The measured surface has a better uniformity, and the uniformity is better than 99.5% at 150m.

  12. Effects of He-Ne laser irradiation on red blood cells in vitro

    Science.gov (United States)

    Ghadage, Vijay H.; Kulkarni, Gauri R.

    2011-03-01

    Laser radiation has many applications in biomedical field, such as wound healing, tissue repairing, heating and ablation processes. Intravenous low power laser radiation is used clinically for skin and vascular disorders. Laser radiation improves microcirculation and modulates the rheological properties of blood. FTIR (Fourier Transform Infra Red Spectra) is used to see the structural changes in erythrocyte membrane. In the present work He Ne laser (λ= 632nm, power=2mW) is used to irradiate human Red blood cells. Red blood cells are separated from human whole blood using centrifugation method (time=10 min., temperature=15°C and RPM=3000) and then exposed to HeNe laser radiation. Laser exposure time is varied from 10 min. to 40min for Red blood cells. Absorption spectrum, FTIR and fluorescence spectra of RBC are compared before and after HeNe laser irradiation. The absorption spectrum of RBC after exposure to HeNe laser shows a significant decrease in absorbance. The FTIR spectrum of non irradiated RBC clearly show the peaks due to O-H (free group), C=O (amide I group), N=O (nitro group), C-O (anhydride group) and C-H (aromatic group). Laser radiation changes in transmittance in FTIR spectra related to C=O group and percentage of transmittance increases for O-H, C=C, N=O, C-O and C-H group.

  13. Analysis of the collagen birefringence and the relative attenuation coefficient of health and burned skin irradiated with linearly polarized He-Ne laser; Analise da birrefringencia do colageno e do coeficiente de atenuacao de amostras de pele sadia e queimada irradiadas pelo laser de He-Ne linearmente polarizado

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Daniela de Fatima Teixeira da

    2002-07-01

    Low-intensity laser therapy is characterized by its ability to induce athermic effects and nondestructive photobiological processes. Although it has been in use for more than 40 years, this phototherapy is still not an established therapeutic modality. The objectives of this study were: to quantify the collagen fibers organization by polarized light microscopy in normal and burned skin samples at day 17 post-injury considering preferential axis as the animal's spinal column and aligning the linear laser polarization in two directions of polarization, parallel or perpendicular to this axis; to determine the relative attenuation coefficient for the intensity light by the technique of imaging the light distribution in normal and burned skin during wound healing process taking only parallel direction of polarization. To reach the objectives, burns about 6 mm in diameter were created with liquid N{sub 2} on the back of the rats and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1 J/cm{sup 2}, to investigate the effects of low-intensity linearly polarized He-Ne laser beam on skin wounds healing. Control lesions were not irradiated. The results have demonstrated that: the skin samples irradiated with linearly parallel polarized He-Ne laser beam showed collagen fibers more organized; burned skin samples presents a higher attenuation coefficient than normal skin samples. These results are important to optimize low intensity laser therapy dosimetry on acceleration wound healing. (author)

  14. Diffractive beam shaping for enhanced laser polymer welding

    Science.gov (United States)

    Rauschenberger, J.; Vogler, D.; Raab, C.; Gubler, U.

    2015-03-01

    Laser welding of polymers increasingly finds application in a large number of industries such as medical technology, automotive, consumer electronics, textiles or packaging. More and more, it replaces other welding technologies for polymers, e. g. hot-plate, vibration or ultrasonic welding. At the same rate, demands on the quality of the weld, the flexibility of the production system and on processing speed have increased. Traditionally, diode lasers were employed for plastic welding with flat-top beam profiles. With the advent of fiber lasers with excellent beam quality, the possibility to modify and optimize the beam profile by beam-shaping elements has opened. Diffractive optical elements (DOE) can play a crucial role in optimizing the laser intensity profile towards the optimal M-shape beam for enhanced weld seam quality. We present results on significantly improved weld seam width constancy and enlarged process windows compared to Gaussian or flat-top beam profiles. Configurations in which the laser beam diameter and shape can be adapted and optimized without changing or aligning the laser, fiber-optic cable or optical head are shown.

  15. An intense polarized beam by a laser ionization injection

    International Nuclear Information System (INIS)

    Ohmori, Chihiro; Hiramatsu, Shigenori; Nakamura, Takeshi.

    1990-12-01

    Accumulation of protons and polarized protons by photo-ionization injection are described. This method consists of (1)producing the neutral hydrogen beam by Lorentz stripping, (2)excitation of the neutral hydrogen beam with a laser, and (3)ionization of the hydrogen beam in the 2P excited state with another laser. When the laser for the excitation is circularly polarized, we can get a polarized proton beam. An ionization efficiency of 98% and a polarization of 80% can be expected by an intense laser beam from a FEL(Free Electron Laser). (author)

  16. Feedback-stabilized dual-beam laser interferometer for plasma measurements

    International Nuclear Information System (INIS)

    Yasuda, A.; Kanai, Y.; Kusunoki, J.; Kawahata, K.; Takeda, S.

    1980-01-01

    A stabilized laser interferometer is proposed with two beams as the light source. The fringe shift for a 0.63 μm beam of a He--Ne laser is used to stabilize the interferometer against the effect of mechanical vibrations via a feedback controlled speaker coil, while another beam of 3.39 μm, for which consequently the effect of the mechanical vibrations is excluded, is used to measure the plasma density. A stability of approx.1/500 of one fringe for 0.63 μm is obtained during a long period for frequencies lower than a few Hz. The stability for higher frequencies is limited to approx.1/30 of one fringe for 0.63 μm, which correspondes to approx.1/200 of one fringe for 3.39 μm, by the acoustic noise picked up by the speaker coil. Furthermore, the total accuracy is limited by the detector noise to approx.1/60 of one fringe for 3.39 μm, which corresponds to a line electron density of approx.5 x 10 14 cm -2 . The detector noise may be reduced by cooling the detector. The advantage of this technique over the single-laser technique is that the frequency response of the interferometer extends down to zero frequency. The interferometer is tested with the measurement of a plasma in a dynamic magnetic arcjet. Since the effect of the neutral gas background is reduced in the present interferometer, the application has an advantage for the diagnostics of plasmas produced in high pressure gases

  17. Optics with an Atom Laser Beam

    International Nuclear Information System (INIS)

    Bloch, Immanuel; Koehl, Michael; Greiner, Markus; Haensch, Theodor W.; Esslinger, Tilman

    2001-01-01

    We report on the atom optical manipulation of an atom laser beam. Reflection, focusing, and its storage in a resonator are demonstrated. Precise and versatile mechanical control over an atom laser beam propagating in an inhomogeneous magnetic field is achieved by optically inducing spin flips between atomic ground states with different magnetic moment. The magnetic force acting on the atoms can thereby be effectively switched on and off. The surface of the atom optical element is determined by the resonance condition for the spin flip in the inhomogeneous magnetic field. More than 98% of the incident atom laser beam is reflected specularly

  18. Doughnut laser beam as an incoherent superposition of two petal beams

    CSIR Research Space (South Africa)

    Litvin, IA

    2014-02-01

    Full Text Available Laguerre–Gaussian beams with a nonzero azimuthal index are known to carry orbital angular momentum (OAM), and are routinely created external to laser cavities. The few reports of obtaining such beams from laser cavities suffer from inconclusive...

  19. Simulation based analysis of laser beam brazing

    Science.gov (United States)

    Dobler, Michael; Wiethop, Philipp; Schmid, Daniel; Schmidt, Michael

    2016-03-01

    Laser beam brazing is a well-established joining technology in car body manufacturing with main applications in the joining of divided tailgates and the joining of roof and side panels. A key advantage of laser brazed joints is the seam's visual quality which satisfies highest requirements. However, the laser beam brazing process is very complex and process dynamics are only partially understood. In order to gain deeper knowledge of the laser beam brazing process, to determine optimal process parameters and to test process variants, a transient three-dimensional simulation model of laser beam brazing is developed. This model takes into account energy input, heat transfer as well as fluid and wetting dynamics that lead to the formation of the brazing seam. A validation of the simulation model is performed by metallographic analysis and thermocouple measurements for different parameter sets of the brazing process. These results show that the multi-physical simulation model not only can be used to gain insight into the laser brazing process but also offers the possibility of process optimization in industrial applications. The model's capabilities in determining optimal process parameters are exemplarily shown for the laser power. Small deviations in the energy input can affect the brazing results significantly. Therefore, the simulation model is used to analyze the effect of the lateral laser beam position on the energy input and the resulting brazing seam.

  20. Symmetric compression of 'laser greenhouse' targets by a few laser beams

    International Nuclear Information System (INIS)

    Gus'kov, Sergei Yu; Demchenko, N N; Rozanov, Vladislav B; Stepanov, R V; Zmitrenko, N V; Caruso, A; Strangio, C

    2003-01-01

    The possibility of efficient and symmetric compression of a target with a low-density structured absorber by a few laser beams is considered. An equation of state is proposed for a porous medium, which takes into account the special features of the absorption of high-power nanosecond laser pulses. The open version of this target is shown to allow the use of ordinary Gaussian beams, requiring no special profiling of the absorber surface. The conditions are defined under which such targets can be compressed efficiently by only two laser beams (or beam clusters). Simulations show that for a 2.1-MJ laser pulse, a seven-fold gain for the target under study is achieved. (special issue devoted to the 80th anniversary of academician n g basov's birth)

  1. Determination of the spin polarization of a 4He+ ion beam

    International Nuclear Information System (INIS)

    Suzuki, T.; Yamauchi, Y.

    2008-01-01

    It was demonstrated that the spin polarization of a 4 He + ion beam (P He + ) can be determined from the spin dependence of the electron emission in the deexcitation process of spin-polarized He metastable atoms (He*, 2 3 S 1 ) and spin-polarized He + ions on Fe (100) surfaces. On Fe (100) surfaces, both He* and He + deexcite via Auger neutralization, and therefore, the spin asymmetry obtained from spin-polarized He + ion neutralization spectroscopy should be equal to that from spin-polarized metastable He* deexcitation spectroscopy. The spin polarization of He* was obtained from Stern-Gerlach measurements. P He + was finally determined to be 0.19±0.02

  2. Effects of laser fluence on silicon modification by four-beam laser interference

    International Nuclear Information System (INIS)

    Zhao, Le; Li, Dayou; Wang, Zuobin; Yue, Yong; Zhang, Jinjin; Yu, Miao; Li, Siwei

    2015-01-01

    This paper discusses the effects of laser fluence on silicon modification by four-beam laser interference. In this work, four-beam laser interference was used to pattern single crystal silicon wafers for the fabrication of surface structures, and the number of laser pulses was applied to the process in air. By controlling the parameters of laser irradiation, different shapes of silicon structures were fabricated. The results were obtained with the single laser fluence of 354 mJ/cm 2 , 495 mJ/cm 2 , and 637 mJ/cm 2 , the pulse repetition rate of 10 Hz, the laser exposure pulses of 30, 100, and 300, the laser wavelength of 1064 nm, and the pulse duration of 7–9 ns. The effects of the heat transfer and the radiation of laser interference plasma on silicon wafer surfaces were investigated. The equations of heat flow and radiation effects of laser plasma of interfering patterns in a four-beam laser interference distribution were proposed to describe their impacts on silicon wafer surfaces. The experimental results have shown that the laser fluence has to be properly selected for the fabrication of well-defined surface structures in a four-beam laser interference process. Laser interference patterns can directly fabricate different shape structures for their corresponding applications

  3. Influence of laser beam profile on electromagnetically induced absorption

    International Nuclear Information System (INIS)

    Cuk, S. M.; Radonjic, M.; Krmpot, A. J.; Nikolic, S. N.; Grujic, Z. D.; Jelenkovic, B. M.

    2010-01-01

    We compared, experimentally and theoretically, Hanle electromagnetically induced absorption (EIA) obtained using Gaussian and Π-shaped laser beams 3 mm in diameter. The study was done by measuring the transmission of a laser locked to the F g =2→F e =3 transition at the D 2 line of 87 Rb in a vacuum cell. EIA linewidths obtained for the two laser profiles were significantly different in the range of laser intensities 1-4 mW/cm 2 . EIA with the Π-shaped laser beam has a broad intensity maximum and linewidths larger than those obtained with the Gaussian beam profile. We also studied Hanle EIA by measuring the transmission of selected segments of the entire laser beam by placing a small movable aperture in front of the detector. Waveforms so obtained in Hanle EIA resonances were strongly influenced both by the radial distance of the transmitted segment from the beam center and by the radial profile of the laser beam. We show that outer regions of Gaussian beam, and central regions of the Π-shaped beam generate the narrowest lines. The different behaviors of EIA owing to different beam profiles revealed by both theory and experiment indicate the importance of the radial profile of the laser beam for proper modeling of coherent effects in alkali metal vapors.

  4. Color Laser Microscope

    Science.gov (United States)

    Awamura, D.; Ode, T.; Yonezawa, M.

    1987-04-01

    A color laser microscope utilizing a new color laser imaging system has been developed for the visual inspection of semiconductors. The light source, produced by three lasers (Red; He-Ne, Green; Ar, Blue; He-Cd), is deflected horizontally by an AOD (Acoustic Optical Deflector) and vertically by a vibration mirror. The laser beam is focused in a small spot which is scanned over the sample at high speed. The light reflected back from the sample is reformed to contain linear information by returning to the original vibration mirror. The linear light is guided to the CCD image sensor where it is converted into a video signal. Individual CCD image sensors are used for each of the three R, G, or B color image signals. The confocal optical system with its laser light source yields a color TV monitor image with no flaring and a much sharper resolution than that of the conventional optical microscope. The AOD makes possible a high speed laser scan and a NTSC or PAL TV video signal is produced in real time without any video memory. Since the light source is composed of R, G, and B laser beams, color separation superior to that of white light illumination is achieved. Because of the photometric linearity of the image detector, the R, G, and B outputs of the system are most suitably used for hue analysis. The CCD linear image sensors in the optical system produce no geometrical distortion, and good color registration is available principally. The output signal can be used for high accuracy line width measuring. The many features of the color laser microscope make it ideally suited for the visual inspection of semiconductor processing. A number of these systems have already been installed in such a capacity. The Color Laser Microscope can also be a very useful tool for the fields of material engineering and biotechnology.

  5. Reaching for highest ion beam intensities through laser ion acceleration and beam compression

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dennis; Brabetz, Christian; Blazevic, Abel; Bagnoud, Vincent; Weih, Simon [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Jahn, Diana; Ding, Johannes; Roth, Markus [TU Darmstadt (Germany); Kroll, Florian; Schramm, Ulrich; Cowan, Tom [Helmholtzzentrum Dresden Rossendorf (Germany); Collaboration: LIGHT-Collaboration

    2016-07-01

    Laser ion acceleration provides access to ion sources with unique properties. To use these capabilities the LIGHT collaboration (Laser Ion Generation Handling and Transport) was founded. The aim of this collaboration is the beam transport and manipulation of laser accelerated ions with conventional accelerator structures. Therefor a dedicated beam line has been build up at GSI Helmholtzzentrum fuer Schwerionenforschung. With this beam line the manipulation of the transversal and also the longitudinal beam parameters has been achieved. It has been shown that laser generated ion beams can be transported over more than 6 meters and pulses shorter than 300 ps can be generated at this distance. This Talk will give an overview over the recent developments and plans of the LIGHT collaboration.

  6. Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    Science.gov (United States)

    Scisciò, M.; Lancia, L.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Papaphilippou, Y.; Antici, P.

    2016-03-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupoles and solenoids) as an easy implementable solution when the laser-plasma accelerated beam requires optimization. In this paper, we report on a parametric study related to the transport of electron beams accelerated by laser-plasma interaction, using conventional accelerator elements and tools. We focus on both, high energy electron beams in the GeV range, as produced on petawatt (PW) class laser systems, and on lower energy electron beams in the hundreds of MeV range, as nowadays routinely obtained on commercially available multi-hundred TW laser systems. For both scenarios, our study allows understanding what are the crucial parameters that enable laser-plasma accelerators to compete with conventional ones and allow for a beam transport. We show that suitable working points require a tradeoff-combination between low beam divergence and narrow energy spread.

  7. Multichannel analysis of He*(21S)+Ne elastic and inelastic scattering in crossed atomic beams

    International Nuclear Information System (INIS)

    Martin, D.W.; Fukuyama, T.; Siska, P.E.

    1990-01-01

    State-to-state elastic and inelastic angular distribution and time-of-flight measurements are reported for the scattering of He*(2 1 S) by Ne in crossed supersonic atom beams at four collision energies in the range 0.6--2.8 kcal/mol. The inelastic collision products He+Ne*(nl), where nl=3d', 4p, 4p', 5s, 5s', and 4d, are scattered predominantly forward with respect to the direction of incidence, except for endothermic states near threshold. The data are analyzed with a numerically exact multichannel curve-crossing model that yields good agreement with experimental cross section branching fractions and total quenching and state-to-state rate constants as well as the angular measurements. The model suggests the importance of intermediate ''chaperone'' states, in which the excited electron is temporarily trapped in a d or f Rydberg Ne orbital, in channeling flux into the 4s' and 5s' upper laser states of Ne by energy transfer from He*(2s 1,3 S)

  8. Multi-focus beam shaping of high power multimode lasers

    Science.gov (United States)

    Laskin, Alexander; Volpp, Joerg; Laskin, Vadim; Ostrun, Aleksei

    2017-08-01

    Beam shaping of powerful multimode fiber lasers, fiber-coupled solid-state and diode lasers is of great importance for improvements of industrial laser applications. Welding, cladding with millimetre scale working spots benefit from "inverseGauss" intensity profiles; performance of thick metal sheet cutting, deep penetration welding can be enhanced when distributing the laser energy along the optical axis as more efficient usage of laser energy, higher edge quality and reduction of the heat affected zone can be achieved. Building of beam shaping optics for multimode lasers encounters physical limitations due to the low beam spatial coherence of multimode fiber-coupled lasers resulting in big Beam Parameter Products (BPP) or M² values. The laser radiation emerging from a multimode fiber presents a mixture of wavefronts. The fiber end can be considered as a light source which optical properties are intermediate between a Lambertian source and a single mode laser beam. Imaging of the fiber end, using a collimator and a focusing objective, is a robust and widely used beam delivery approach. Beam shaping solutions are suggested in form of optics combining fiber end imaging and geometrical separation of focused spots either perpendicular to or along the optical axis. Thus, energy of high power lasers is distributed among multiple foci. In order to provide reliable operation with multi-kW lasers and avoid damages the optics are designed as refractive elements with smooth optical surfaces. The paper presents descriptions of multi-focus optics as well as examples of intensity profile measurements of beam caustics and application results.

  9. Analysis of the collagen birefringence and the relative attenuation coefficient of health and burned skin irradiated with linearly polarized He-Ne laser

    International Nuclear Information System (INIS)

    Silva, Daniela de Fatima Teixeira da

    2002-01-01

    Low-intensity laser therapy is characterized by its ability to induce athermic effects and nondestructive photobiological processes. Although it has been in use for more than 40 years, this phototherapy is still not an established therapeutic modality. The objectives of this study were: to quantify the collagen fibers organization by polarized light microscopy in normal and burned skin samples at day 17 post-injury considering preferential axis as the animal's spinal column and aligning the linear laser polarization in two directions of polarization, parallel or perpendicular to this axis; to determine the relative attenuation coefficient for the intensity light by the technique of imaging the light distribution in normal and burned skin during wound healing process taking only parallel direction of polarization. To reach the objectives, burns about 6 mm in diameter were created with liquid N 2 on the back of the rats and the lesions were irradiated on days 3, 7, 10 and 14 post-wounding, D= 1 J/cm 2 , to investigate the effects of low-intensity linearly polarized He-Ne laser beam on skin wounds healing. Control lesions were not irradiated. The results have demonstrated that: the skin samples irradiated with linearly parallel polarized He-Ne laser beam showed collagen fibers more organized; burned skin samples presents a higher attenuation coefficient than normal skin samples. These results are important to optimize low intensity laser therapy dosimetry on acceleration wound healing. (author)

  10. System for combining laser beams of diverse frequencies

    International Nuclear Information System (INIS)

    1980-01-01

    A system is described for combining laser beams of different frequencies into a number of beams each comprising laser radiation having components of each of the different frequencies. The system can be used in laser isotope separation facilities. (U.K.)

  11. Laser Compton polarimetry of proton beams

    International Nuclear Information System (INIS)

    Stillman, A.

    1995-01-01

    A need exists for non-destructive polarization measurements of the polarized proton beams in the AGS and, in the future, in RHIC. One way to make such measurements is to scatter photons from the polarized beams. Until now, such measurements were impossible because of the extremely low Compton scattering cross section from protons. Modern lasers now can provide enough photons per laser pulse not only to scatter from proton beams but also, at least in RHIC, to analyze their polarization

  12. Staging laser plasma accelerators for increased beam energy

    International Nuclear Information System (INIS)

    Panasenko, Dmitriy; Shu, Anthony; Schroeder, Carl; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Cormier-Michel, Estelle; Plateau, Guillaume; Lin, Chen; Toth, Csaba; Geddes, Cameron; Esarey, Eric; Leemans, Wim

    2008-01-01

    Staging laser plasma accelerators is an efficient way of mitigating laser pump depletion in laser driven accelerators and necessary for reaching high energies with compact laser systems. The concept of staging includes coupling of additional laser energy and transporting the electron beam from one accelerating module to another. Due to laser damage threshold constraints, in-coupling laser energy with conventional optics requires distances between the accelerating modules of the order of 10m, resulting in decreased average accelerating gradient and complicated e-beam transport. In this paper we use basic scaling laws to show that the total length of future laser plasma accelerators will be determined by staging technology. We also propose using a liquid jet plasma mirror for in-coupling the laser beam and show that it has the potential to reduce distance between stages to the cm-scale.

  13. Laser Ablation of Biological Tissue Using Pulsed CO2 Laser

    International Nuclear Information System (INIS)

    Hashishin, Yuichi; Sano, Shu; Nakayama, Takeyoshi

    2010-01-01

    Laser scalpels are currently used as a form of laser treatment. However, their ablation mechanism has not been clarified because laser excision of biological tissue occurs over a short time scale. Biological tissue ablation generates sound (laser-induced sound). This study seeks to clarify the ablation mechanism. The state of the gelatin ablation was determined using a high-speed video camera and the power reduction of a He-Ne laser beam. The aim of this study was to clarify the laser ablation mechanism by observing laser excision using the high-speed video camera and monitoring the power reduction of the He-Ne laser beam. We simulated laser excision of a biological tissue by irradiating gelatin (10 wt%) with radiation from a pulsed CO 2 laser (wavelength: 10.6 μm; pulse width: 80 ns). In addition, a microphone was used to measure the laser-induced sound. The first pulse caused ablation particles to be emitted in all directions; these particles were subsequently damped so that they formed a mushroom cloud. Furthermore, water was initially evaporated by laser irradiation and then tissue was ejected.

  14. Laser-plasma interaction with an adaptive optics wavefront-corrected laser beam

    International Nuclear Information System (INIS)

    Lewis, K.

    2008-12-01

    The propagation of an intense laser beam trough a preformed plasma is of particular interest in order to achieve laser inertial confinement fusion. Experiments carried out with a near-diffraction limited laser beam, producing a single hot spot interacting with the plasma, delivered new results, presented in this Ph.D. dissertation. In particular the first experimental observation of the filament instability confirms the numerous theoretical and numerical studies on the subject. Beam spreading and filament-ion thresholds are studied thanks to near-field and far-field images, with respect to laser intensity, time and space, and plasma transverse velocity. Same diagnostics have been applied to the stimulated Brillouin scattered light, enabling the first observation of the transverse Brillouin activity in the plasma. (author)

  15. Electron-beam initiated HF lasers

    International Nuclear Information System (INIS)

    Gerber, R.A.; Patterson, E.L.

    1975-01-01

    Electron beams were used to ignite hydrogen/fluorine mixtures, producing laser energies up to 4.2 kJ, and giving hope that this approach may soon produce energy levels suitable for laser-fusion studies. (auth)

  16. Production of radioactive ion beams and resonance ionization spectroscopy with the laser ion source at on-line isotope separator ISOLDE

    International Nuclear Information System (INIS)

    Fedosseev, V.N.; )

    2005-01-01

    Full text: The resonance ionisation laser ion source (RILIS) of the ISOLDE on-line isotope separation facility at CERN is based on the method of laser step-wise resonance ionisation of atoms in a hot metal cavity. Using the system of dye lasers pumped by copper vapour lasers the ion beams of many different metallic elements have been produced at ISOLDE with an ionization efficiency of up to 27%. The high selectivity of the resonance ionization is an important asset for the study of short-lived nuclides produced in targets bombarded by the proton beam of the CERN Booster accelerator. Radioactive ion beams of Be, Mg, Al, Mn, Ni, Cu, Zn, Ga, Ag, Cd, In, Sn, Sb, Tb, Yb, Tl, Pb and Bi have been generated with the RILIS. Setting the RILIS laser in the narrow line-width mode provides conditions for a high-resolution study of hyperfine structure and isotopic shifts of atomic lines for short-lived isotopes. The isomer selective ionization of Cu, Ag and Pb isotopes has been achieved by appropriate tuning of laser wavelengths

  17. Laser beam trapping and propagation in cylindrical plasma columns

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.

    1976-01-01

    An analysis of the scheme to heat magnetically confined plasma columns to kilovolt temperatures with a laser beam requires consideration of two propagation problems. The first question to be answered is whether stable beam trapping is possible. Since the laser beam creates its own density profile by heating the plasma, the propagation of the beam becomes a nonlinear phenomenon, but not necessarily a stable one. In addition, the electron density at a given time depends on the preceding history of both the medium and the laser pulse. A self-consistent time dependent treatment of the beam propagation and the medium hydrodynamics is consequently required to predict the behavior of the laser beam. Such calculations have been carried out and indicate that propagation of a laser beam in an initially uniform plasma can form a stable filament which alternately focuses and defocuses. An additional question that is discussed is whether diffractive losses associated with long propagation paths are significant

  18. High-precision laser microcutting and laser microdrilling using diffractive beam-splitting and high-precision flexible beam alignment

    Science.gov (United States)

    Zibner, F.; Fornaroli, C.; Holtkamp, J.; Shachaf, Lior; Kaplan, Natan; Gillner, A.

    2017-08-01

    High-precision laser micro machining gains more importance in industrial applications every month. Optical systems like the helical optics offer highest quality together with controllable and adjustable drilling geometry, thus as taper angle, aspect ratio and heat effected zone. The helical optics is based on a rotating Dove-prism which is mounted in a hollow shaft engine together with other optical elements like wedge prisms and plane plates. Although the achieved quality can be interpreted as extremely high the low process efficiency is a main reason that this manufacturing technology has only limited demand within the industrial market. The objective of the research studies presented in this paper is to dramatically increase process efficiency as well as process flexibility. During the last years, the average power of commercial ultra-short pulsed laser sources has increased significantly. The efficient utilization of the high average laser power in the field of material processing requires an effective distribution of the laser power onto the work piece. One approach to increase the efficiency is the application of beam splitting devices to enable parallel processing. Multi beam processing is used to parallelize the fabrication of periodic structures as most application only require a partial amount of the emitted ultra-short pulsed laser power. In order to achieve highest flexibility while using multi beam processing the single beams are diverted and re-guided in a way that enables the opportunity to process with each partial beam on locally apart probes or semimanufactures.

  19. Attenuation of laser power of a focused Gaussian beam during interaction between a laser and powder in coaxial laser cladding

    International Nuclear Information System (INIS)

    Liu Jichang; Li Lijun; Zhang Yuanzhong; Xie Xiaozhu

    2005-01-01

    The power of a focused laser beam with a Gaussian intensity profile attenuated by powder in coaxial laser cladding is investigated experimentally and theoretically, and its resolution model is developed. With some assumptions, it is concluded that the attenuation of laser power is an exponential function and is determined by the powder feed rate, particle moving speed, spraying angles and waist positions and diameters of the laser beam and powder flow, grain diameter and run of the laser beam through the powder flow. The attenuation of laser power increases with powder feed rate or run of laser beam through the powder flow. In the experiment presented, 300 W laser power from a focused Gaussian beam is attenuated by a coaxial powder flow. The experimental results agree well with the values calculated with the developed model

  20. Beamed neutron emission driven by laser accelerated light ions

    Science.gov (United States)

    Kar, S.; Green, A.; Ahmed, H.; Alejo, A.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; Mirfayzi, S. R.; McKenna, P.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.

    2016-05-01

    Highly anisotropic, beam-like neutron emission with peak flux of the order of 109 n/sr was obtained from light nuclei reactions in a pitcher-catcher scenario, by employing MeV ions driven by a sub-petawatt laser. The spatial profile of the neutron beam, fully captured for the first time by employing a CR39 nuclear track detector, shows a FWHM divergence angle of ˜ 70^\\circ , with a peak flux nearly an order of magnitude higher than the isotropic component elsewhere. The observed beamed flux of neutrons is highly favourable for a wide range of applications, and indeed for further transport and moderation to thermal energies. A systematic study employing various combinations of pitcher-catcher materials indicates the dominant reactions being d(p, n+p)1H and d(d,n)3He. Albeit insufficient cross-section data are available for modelling, the observed anisotropy in the neutrons’ spatial and spectral profiles is most likely related to the directionality and high energy of the projectile ions.

  1. Beam shaping to provide round and square-shaped beams in optical systems of high-power lasers

    Science.gov (United States)

    Laskin, Alexander; Laskin, Vadim

    2016-05-01

    Optical systems of modern high-power lasers require control of irradiance distribution: round or square-shaped flat-top or super-Gaussian irradiance profiles are optimum for amplification in MOPA lasers and for thermal load management while pumping of crystals of solid-state ultra-short pulse lasers to control heat and minimize its impact on the laser power and beam quality while maximizing overall laser efficiency, variable profiles are also important in irradiating of photocathode of Free Electron lasers (FEL). It is suggested to solve the task of irradiance re-distribution using field mapping refractive beam shapers like piShaper. The operational principle of these devices presumes transformation of laser beam intensity from Gaussian to flat-top one with high flatness of output wavefront, saving of beam consistency, providing collimated output beam of low divergence, high transmittance, extended depth of field, negligible residual wave aberration, and achromatic design provides capability to work with ultra-short pulse lasers having broad spectrum. Using the same piShaper device it is possible to realize beams with flat-top, inverse Gauss or super Gauss irradiance distribution by simple variation of input beam diameter, and the beam shape can be round or square with soft edges. This paper will describe some design basics of refractive beam shapers of the field mapping type and optical layouts of their applying in optical systems of high-power lasers. Examples of real implementations and experimental results will be presented as well.

  2. Laser beam-plasma plume interaction during laser welding

    Science.gov (United States)

    Hoffman, Jacek; Moscicki, Tomasz; Szymanski, Zygmunt

    2003-10-01

    Laser welding process is unstable because the keyhole wall performs oscillations which results in the oscillations of plasma plume over the keyhole mouth. The characteristic frequencies are equal to 0.5-4 kHz. Since plasma plume absorbs and refracts laser radiation, plasma oscillations modulate the laser beam before it reaches the workpiece. In this work temporary electron densities and temperatures are determined in the peaks of plasma bursts during welding with a continuous wave CO2 laser. It has been found that during strong bursts the plasma plume over the keyhole consists of metal vapour only, being not diluted by the shielding gas. As expected the values of electron density are about two times higher in peaks than their time-averaged values. Since the plasma absorption coefficient scales as ~N2e/T3/2 (for CO2 laser radiation) the results show that the power of the laser beam reaching the metal surface is modulated by the plasma plume oscillations. The attenuation factor equals 4-6% of the laser power but it is expected that it is doubled by the refraction effect. The results, together with the analysis of the colour pictures from streak camera, allow also interpretation of the dynamics of the plasma plume.

  3. Multiple quasi-monoenergetic electron beams from laser-wakefield acceleration with spatially structured laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.; Li, M. H.; Li, Y. F.; Wang, J. G.; Tao, M. Z.; Han, Y. J.; Zhao, J. R.; Huang, K.; Yan, W. C.; Ma, J. L.; Li, Y. T. [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Chen, L. M., E-mail: lmchen@iphy.ac.cn [Beijing National Laboratory of Condensed Matter Physics, Institute of Physics, CAS, Beijing 100080 (China); Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Li, D. Z. [Institute of High Energy Physics, CAS, Beijing 100049 (China); Chen, Z. Y. [Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang, Sichuan 621999 (China); Sheng, Z. M. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Zhang, J. [Department of Physics and Astronomy and IFSA Collaborative Innovation Center, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-08-15

    By adjusting the focus geometry of a spatially structured laser pulse, single, double, and treble quasi-monoenergetic electron beams were generated, respectively, in laser-wakefield acceleration. Single electron beam was produced as focusing the laser pulse to a single spot. While focusing the laser pulse to two spots that are approximately equal in energy and size and intense enough to form their own filaments, two electron beams were produced. Moreover, with a proper distance between those two focal spots, three electron beams emerged with a certain probability owing to the superposition of the diffractions of those two spots. The energy spectra of the multiple electron beams are quasi-monoenergetic, which are different from that of the large energy spread beams produced due to the longitudinal multiple-injection in the single bubble.

  4. The Nike electron-beam-pumped KrF laser amplifiers

    International Nuclear Information System (INIS)

    Sethian, J.D.; Pawley, C.J.; Obenschain, S.P.

    1997-01-01

    Nike is a recently completed multikilojoule krypton-fluoride (KrF) laser that has been built to study the physics of direct-drive inertial confinement fusion. The two final amplifiers of the Nike laser are both electron-beam-pumped systems. This paper describes these two amplifiers, with an emphasis on the pulsed power. The smaller of the two has a 20 x 20 cm aperture, and produces an output laser beam energy in excess of 100 J. This 20 cm Amplifier uses a single 12 kJ Marx generator to inject two 300 kV, 75 kA, 140 ns flat-top electron beams into opposite sides of the laser cell. The larger amplifier in Nike has a 60 x 60 cm aperture, and amplifies the laser beam up to 5 kJ. This 60 cm amplifier has two independent electron beam systems. Each system has a 170 kJ Marx generator that produces a 670 kV, 540 kA, 240 ns flat-top electron beam. Both amplifiers are complete, fully integrated into the laser, meet the Nike system requirements, and are used routinely for laser-target experiments

  5. Multi-image acquisition-based distance sensor using agile laser spot beam.

    Science.gov (United States)

    Riza, Nabeel A; Amin, M Junaid

    2014-09-01

    We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.

  6. A laser beam quality definition based on induced temperature rise.

    Science.gov (United States)

    Miller, Harold C

    2012-12-17

    Laser beam quality metrics like M(2) can be used to describe the spot sizes and propagation behavior of a wide variety of non-ideal laser beams. However, for beams that have been diffracted by limiting apertures in the near-field, or those with unusual near-field profiles, the conventional metrics can lead to an inconsistent or incomplete description of far-field performance. This paper motivates an alternative laser beam quality definition that can be used with any beam. The approach uses a consideration of the intrinsic ability of a laser beam profile to heat a material. Comparisons are made with conventional beam quality metrics. An analysis on an asymmetric Gaussian beam is used to establish a connection with the invariant beam propagation ratio.

  7. Energy Spread Reduction of Electron Beams Produced via Laser Wake

    Energy Technology Data Exchange (ETDEWEB)

    Pollock, Bradley Bolt [Univ. of California, San Diego, CA (United States)

    2012-01-01

    Laser wakefield acceleration of electrons holds great promise for producing ultra-compact stages of GeV scale, high quality electron beams for applications such as x-ray free electron lasers and high energy colliders. Ultra-high intensity laser pulses can be self-guided by relativistic plasma waves over tens of vacuum diffraction lengths, to give >1 GeV energy in cm-scale low density plasma using ionization-induced injection to inject charge into the wake at low densities. This thesis describes a series of experiments which investigates the physics of LWFA in the self-guided blowout regime. Beginning with high density gas jet experiments the scaling of the LWFA-produced electron beam energy with plasma electron density is found to be in excellent agreement with both phenomenological theory and with 3-D PIC simulations. It is also determined that self-trapping of background electrons into the wake exhibits a threshold as a function of the electron density, and at the densities required to produce electron beams with energies exceeding 1 GeV a different mechanism is required to trap charge into low density wakes. By introducing small concentrations of high-Z gas to the nominal He background the ionization-induced injection mechanism is enabled. Electron trapping is observed at densities as low as 1.3 x 1018 cm-3 in a gas cell target, and 1.45 GeV electrons are demonstrated for the first time from LWFA. This is currently the highest electron energy ever produced from LWFA. The ionization-induced trapping mechanism is also shown to generate quasi-continuous electron beam energies, which is undesirable for accelerator applications. By limiting the region over which ionization-induced trapping occurs, the energy spread of the electron beams can be controlled. The development of a novel two-stage gas cell target provides the capability to tailor the gas composition in the longitudinal direction, and confine the trapping process to occur only in a

  8. Radiative cooling of relativistic electron beams

    International Nuclear Information System (INIS)

    Huang, Z.

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored

  9. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  10. He-Ne laser protection barrier by means of poly (Tetrafluoroethylene-Perfluoro vinyl Ether) grafted by acrylic acid complexed with Cu(II)

    International Nuclear Information System (INIS)

    El-Ahdal, M.A.; Fayek, S.A.; El-Sawy, N.M.

    2006-01-01

    Appropriate eye and skin protection is a prerequisite for the safe operation of He-Ne laser in industrial and laboratory environments. In the present paper, measurement of the optical parameters of poly (tetrafluoroethylene-perfluorovinyl ether) grafted by acrylic acid and complexed with Cu(II) are reported. He-Ne laser beam radiation on wavelength of 632.8 nm and power 12.5mW was used. Transmittance and reflectance spectra and refractive index dispersion are presented. The study showed that the material has a protective level 4. Environmental conditions like thermal and fading processes were tested. This suggested that the material preserves its protective features as a protective eye and skin barriers of protective level 4. This was applied for occupational working time up to 8 h, temperature up to 50 degree C and for a time equal 74 days after laser irradiation. Radiation protection from laser sources has attracted a great deal of attention for long time because of their importance for human body. Intensive progress in lasers, optical communications, and data storage has challenged scientists to achieve perfection in optical components. These challenges have resulted in an active development of a wide variety of unconventional optical elements (Hariharan, 1996 and Efimov et al., 2002). Alexandrite solid state lasers with a wavelength of about 755 nm are frequently used in the field of medicine (Schirmarcher and Sutter, 2001). For removing tattoos, the Q-switched versions with impulse widths of several ten nanoseconds are an ideal instrument to keep the thermal stress of the patient's skin at low level. He-Ne laser is one of the most commonly used visible light lasers

  11. Laser streaming: Turning a laser beam into a flow of liquid.

    Science.gov (United States)

    Wang, Yanan; Zhang, Qiuhui; Zhu, Zhuan; Lin, Feng; Deng, Jiangdong; Ku, Geng; Dong, Suchuan; Song, Shuo; Alam, Md Kamrul; Liu, Dong; Wang, Zhiming; Bao, Jiming

    2017-09-01

    Transforming a laser beam into a mass flow has been a challenge both scientifically and technologically. We report the discovery of a new optofluidic principle and demonstrate the generation of a steady-state water flow by a pulsed laser beam through a glass window. To generate a flow or stream in the same path as the refracted laser beam in pure water from an arbitrary spot on the window, we first fill a glass cuvette with an aqueous solution of Au nanoparticles. A flow will emerge from the focused laser spot on the window after the laser is turned on for a few to tens of minutes; the flow remains after the colloidal solution is completely replaced by pure water. Microscopically, this transformation is made possible by an underlying plasmonic nanoparticle-decorated cavity, which is self-fabricated on the glass by nanoparticle-assisted laser etching and exhibits size and shape uniquely tailored to the incident beam profile. Hydrophone signals indicate that the flow is driven via acoustic streaming by a long-lasting ultrasound wave that is resonantly generated by the laser and the cavity through the photoacoustic effect. The principle of this light-driven flow via ultrasound, that is, photoacoustic streaming by coupling photoacoustics to acoustic streaming, is general and can be applied to any liquid, opening up new research and applications in optofluidics as well as traditional photoacoustics and acoustic streaming.

  12. High energy gain electron beam acceleration by 100TW laser

    International Nuclear Information System (INIS)

    Kotaki, Hideyuki; Kando, Masaki; Kondo, Shuji; Hosokai, Tomonao; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2001-01-01

    A laser wakefield acceleration experiment using a 100TW laser is planed at JAERI-Kansai. High quality and short pulse electron beams are necessary to accelerate the electron beam by the laser. Electron beam - laser synchronization is also necessary. A microtron with a photocathode rf-gun was prepared as a high quality electron injector. The quantum efficiency (QE) of the photocathode of 2x10 -5 was obtained. A charge of 100pC from the microtron was measured. The emittance and pulse width of the electron beam was 6π mm-mrad and 10ps, respectively. In order to produce a short pulse electron beam, and to synchronize between the electron beam and the laser pulse, an inverse free electron laser (IFEL) is planned. One of problems of LWFA is the short acceleration length. In order to overcome the problem, a Z-pinch plasma waveguide will be prepared as a laser wakefield acceleration tube for 1 GeV acceleration. (author)

  13. Laser beam propagation in atmospheric turbulence

    Science.gov (United States)

    Murty, S. S. R.

    1979-01-01

    The optical effects of atmospheric turbulence on the propagation of low power laser beams are reviewed in this paper. The optical effects are produced by the temperature fluctuations which result in fluctuations of the refractive index of air. The commonly-used models of index-of-refraction fluctuations are presented. Laser beams experience fluctuations of beam size, beam position, and intensity distribution within the beam due to refractive turbulence. Some of the observed effects are qualitatively explained by treating the turbulent atmosphere as a collection of moving gaseous lenses of various sizes. Analytical results and experimental verifications of the variance, covariance and probability distribution of intensity fluctuations in weak turbulence are presented. For stronger turbulence, a saturation of the optical scintillations is observed. The saturation of scintillations involves a progressive break-up of the beam into multiple patches; the beam loses some of its lateral coherence. Heterodyne systems operating in a turbulent atmosphere experience a loss of heterodyne signal due to the destruction of coherence.

  14. Free-electron laser beam

    International Nuclear Information System (INIS)

    Minehara, Eisuke

    2003-01-01

    The principle and history of free-electron laser (FEL), first evidenced in 1977, the relationship between FEL wavelength and output power, the high-power FEL driven by the superconducting linac, the X-ray FEL by the linac, and the medical use are described. FEL is the vacuum oscillator tube and essentially composed from the high-energy linac, undulator and light-resonator. It utilizes free electrons in the vacuum to generate the beam with wavelength ranging from microwave to gamma ray. The first high-power FEL developed in Japanese Atomic Energy Research Institute (JAERI) is based on the development of superconducting linac for oscillating the highest power beam. In the medical field, applications to excise brain tumors (in US) and to reconstruct experimentally blood vessels in the pig heart (in Gunma University) by lasing and laser coagulator are in progress with examinations to remove intra-vascular cholesterol mass by irradiation of 5.7μm FEL beam. Cancer cells are considered diagnosed by FEL beam of far-infrared-THz range. The FEL beam CT is expected to have a wide variety of application without the radiation exposure and its resolution is equal or superior to that of usual imaging techniques. (N.I.)

  15. Laser Incident Lessons Learned and Action List

    Energy Technology Data Exchange (ETDEWEB)

    Yarotski, Dmitry Anatolievitch [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-02-29

    On Thursday November 19, 2015, LANL postdoc received an eye injury from a reflected, nonvisible laser beam (Class 4, pulsed, wavelength 800 nanometer). The setup is configured to split the laser output into two work areas in which qualified operators conduct research experiments. During this incident, the laser output beam was being projected to both experimental work areas, although only one experimental area was actively being used. The second laser beam directed to the second work area was blocked by an inappropriate device (Plexiglas, reflective, non-normal incidence) that reflected substantial portion of the beam toward the first setup. In preparation for the measurements, worker stepped on the stepstool and decided to remove the laser goggles to better see the micrometer readings which were difficult to see due to insufficient lighting. Immediately, he noticed a flash of light in his eye. The operator quickly replaced the laser eye-wear and then, using an infrared viewer, located a stray laser beam being reflected from the plexiglas beam block. The operator did not think he had sustained any injury and continued working. Later that day, however, he noticed a blurry spot in the vision of his left eye. He notified his supervisor on Friday morning, November 20, 2015, and was taken by CINT management to Sandia National Laboratories (SNL) medical facility for evaluation. SNL Medical did not find any abnormalities, but referred the operator to a local ophthalmologist for further evaluation. Further evaluations by the ophthalmologist on November 21 and November 23 identified a small spot of inflammation near the fovea on the retina in his left eye. The ophthalmologist stated that this spot would most likely heal on its own and that the blurry spot on the operator's vision would go away. A follow-up visit was scheduled. The employee was released back to work without restrictions.

  16. Propagation of highly aberrated laser beams in nonquadratic plasma waveguides

    International Nuclear Information System (INIS)

    Feit, M.D.; Fleck, J.A. Jr.; Morris, J.R.

    1977-01-01

    The propagation of a laser beam in a plasma column several meters long with a realistic electron density distribution is examined. The electron density distribution is based on laser-beam heating at z=0, but is otherwise uncoupled to the laser beam. The aberrated nature of the resulting lenslike medium leads to essentially aperiodic beam properties, which contrast with the completely periodic properties of Gaussian beams propagating in quadratic lenslike media. The beam is nonetheless stably trapped. These aberrated-beam properties also help to stabilize the beam against axial variations in refractive index

  17. Design of Extended Depth-of-Focus Laser Beams Using Orthogonal Beam Expansions

    Directory of Open Access Journals (Sweden)

    Leonard Bergstein

    2005-06-01

    Full Text Available Laser beams with extended depth of focus have many practical applications, such as scanning printed bar codes. Previous work has concentrated on synthesizing such beams by approximating the nondiffracting Bessel beam solution to the wave equation. In this paper, we introduce an alternate novel synthesis method that is based on maintaining a minimum MTF value (contrast over the largest possible distance. To achieve this, the coefficients of an orthogonal beam expansion are sequentially optimized to this criterion. One of the main advantages of this method is that it can be easily generalized to noncircularly symmetrical beams by the appropriate choice of the beam expansion basis functions. This approach is found to be very useful for applications that involve scanning of the laser beam.

  18. Self-focusing of laser beam crossing a laser plasma

    International Nuclear Information System (INIS)

    Bakos, J.S.; Foeldes, I.B.; Ignacz, P.N.; Soerlei, Zs.

    1983-03-01

    A crossed-beam experiment was performed to clarify the mechanism of self-focusing in a laser produced spark. The plasma was created by one beam and self-focusing was observed in the weak probe beam which crossed the plasma. Experimental results show that the cause of self-focusing is the nonuniform heating mechanism. (author)

  19. Vacuum laser acceleration using a radially polarized CO sub 2 laser beam

    CERN Document Server

    Liu, Y; He, P

    1999-01-01

    Utilizing the high-power, radially polarized CO sub 2 laser and high-quality electron beam at the Brookhaven Accelerator Test Facility, a vacuum laser acceleration scheme is proposed. In this scheme, optics configuration is simple, a small focused beam spot size can be easily maintained, and optical damage becomes less important. At least 0.5 GeV/m acceleration gradient is achievable by 1 TW laser power.

  20. Optodynamics: dynamic aspects of laser beam-surface interaction

    International Nuclear Information System (INIS)

    Možina, J; Diaci, J

    2012-01-01

    This paper presents a synthesis of the results of our original research in the area of laser-material interaction and pulsed laser material processing with a special emphasis on the dynamic aspects of laser beam-surface interaction, which include the links between the laser material removal and the resulting material motion. In view of laser material processing, a laser beam is not only considered as a tool but also as a generator of information about the material transformation. The information is retained and conveyed by different kinds of optically induced mechanical waves. Several generation/detection schemes have been developed to extract this information, especially in the field of non-destructive material evaluation. Blast and acoustic waves, which propagate in the air surrounding the work-piece, have been studied using microphone detection as well as various setups of the laser beam deflection probe. Stress waves propagating through the work-piece have been studied using piezoelectric transducers and laser interferometers.

  1. Laser beam alignment and profilometry using diagnostic fluorescent safety mirrors

    Science.gov (United States)

    Lizotte, Todd E.

    2011-03-01

    There are a wide range of laser beam delivery systems in use for various purposes; including industrial and medical applications. Virtually all such beam delivery systems for practical purposes employ optical systems comprised of mirrors and lenses to shape, focus and guide the laser beam down to the material being processed. The goal of the laser beam delivery is to set the optimum parameters and to "fold" the beam path to reduce the mechanical length of the optical system, thereby allowing a physically compact system. In many cases, even a compact system can incorporate upwards of six mirrors and a comparable number of lenses all needing alignment so they are collinear. One of the major requirements for use of such systems in industry is a method of safe alignment. The alignment process requires that the aligner determine where the beam strikes each element. The aligner should also preferably be able to determine the shape or pattern of the laser beam at that point and its relative power. These alignments are further compounded in that the laser beams generated are not visible to the unaided human eye. Such beams are also often of relatively high power levels, and are thereby a significant hazard to the eyes of the aligner. Obvious an invisible beam makes it nearly impossible to align laser system without some form of optical assistance. The predominant method of visually aligning the laser beam delivery is the use of thermal paper, paper cards or fluorescing card material. The use of paper products which have limited power handling capability or coated plastics can produce significant debris and contaminants within the beam line that ultimately damage the optics. The use of the cards can also create significant laser light scatter jeopardizing the safety of the person aligning the system. This paper covers a new safety mirror design for use with at various UV and Near IR wavelengths (193 nm to 1064 nm) within laser beam delivery systems and how its use can

  2. Questioning the observation of laser-assisted ionization in fast collisions of He(2 /sup 1,3/S) with He

    International Nuclear Information System (INIS)

    Gillen, K.T.

    1989-01-01

    In four recent papers Pradel et al. [Phys. Rev. Lett. 54, 2600 (1985); Phys. Rev. A 35, 1062 (1987)] and Monchicourt et al. [Phys. Rev. A 33, 3515 (1986); Chem. Phys. Lett. 152, 336 (1988)] give arguments claiming the observation of laser-assisted ionization of the short-lived collision complex formed during collisions of He/sup */(2 /sup 1,3/S) with He. However, estimates of the relative sizes of the assisted and unassisted ion signals observed make it very unlikely that laser-assisted ionization has been observed in those experiments. Collisional excitation to higher He/sup */ states, followed by (single-photon) ionization of the excited states, seems a more likely explanation at all energies considered

  3. Multiquantum well beam-steering device for laser satellite communication

    Science.gov (United States)

    Lahat, Roee; Levy, Itamar; Shlomi, Arnon

    2002-01-01

    With the increasing interest in laser satellite communications, new methods are sought to solve the existing problems of accurate and rapid laser beam deflection. Current solutions in the form of galvanometers or piezo fast steering mirrors with one or two degrees of freedom are bulky, power-consuming and slow. The Multi-Quantum Well (MQW) is a semiconductor device with unique potential to steer laser beams without any moving parts. We have conducted a preliminary evaluation of the potential application of the MQW as a laser beam-steering device for laser satellite communication, examining the performance of critical parameters for this type of communications.

  4. Production of highly polarized 3He using spectrally narrowed diode laser array bars

    International Nuclear Information System (INIS)

    Chann, B.; Babcock, E.; Anderson, L.W.; Walker, T.G.; Chen, W.C.; Smith, T.B.; Thompson, A.K.; Gentile, T.R.

    2003-01-01

    We have produced 70%-75% 3 He polarization by spin-exchange optical pumping in cells ≅100 cm 3 in volume. The polarization achieved is consistent with known spin-exchange and spin-relaxation rates, but only when the recently discovered temperature dependence of 3 He relaxation is included. Absolute 3 He polarization measurements were performed using two different methods in two different laboratories. The results were obtained with either a spectrally narrowed laser or one type of broadband laser. Based on tests of several larger cells at pressures near 1 bar, we find that the power required to reach the same polarization is typically three times lower for the spectrally narrowed laser. This last result indicates that spectrally narrowed lasers will be important for obtaining the highest polarization in large volume neutron spin filters. Polarization in excess of 55% as obtained in cells up to 640 cm 3 in volume and 70% polarization is anticipated with available increases in spectrally narrowed laser power

  5. Model for Atmospheric Propagation of Spatially Combined Laser Beams

    Science.gov (United States)

    2016-09-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA THESIS MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS by Kum Leong Lee September...MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS 5. FUNDING NUMBERS 6. AUTHOR(S) Kum Leong Lee 7. PERFORMING ORGANIZATION NAME(S) AND...BLANK ii Approved for public release. Distribution is unlimited. MODEL FOR ATMOSPHERIC PROPAGATION OF SPATIALLY COMBINED LASER BEAMS Kum Leong Lee

  6. The Beam Characteristics of High Power Diode Laser Stack

    Science.gov (United States)

    Gu, Yuanyuan; Fu, Yueming; Lu, Hui; Cui, Yan

    2018-03-01

    Direct diode lasers have some of the most attractive features of any laser. They are very efficient, compact, wavelength versatile, low cost, and highly reliable. However, the full utilization of direct diode lasers has yet to be realized. However, the poor quality of diode laser beam itself, directly affect its application ranges, in order to better use of diode laser stack, need a proper correction of optical system, which requires accurate understanding of the diode laser beam characteristics. Diode laser could make it possible to establish the practical application because of rectangular beam patterns which are suitable to make fine bead with less power. Therefore diode laser cladding will open a new field of repairing for the damaged machinery parts which must contribute to recycling of the used machines and saving of cost.

  7. High-power direct diode laser output by spectral beam combining

    Science.gov (United States)

    Tan, Hao; Meng, Huicheng; Ruan, Xu; Du, Weichuan; Wang, Zhao

    2018-03-01

    We demonstrate a spectral beam combining scheme based on multiple mini-bar stacks, which have more diode laser combining elements, to increase the combined diode laser power and realize equal beam quality in both the fast and slow axes. A spectral beam combining diode laser output of 1130 W is achieved with an operating current of 75 A. When a 9.6 X de-magnifying telescope is introduced between the output mirror and the diffraction grating, to restrain cross-talk among diode laser emitters, a 710 W spectral beam combining diode laser output is achieved at the operating current of 70 A, and the beam quality on the fast and slow axes of the combined beam is about 7.5 mm mrad and 7.3 mm mrad respectively. The power reduction is caused by the existence of a couple resonator between the rear facet of the diode laser and the fast axis collimation lens, and it should be eliminated by using diode laser chips with higher front facet transmission efficiency and a fast axis collimation lens with lower residual reflectivity.

  8. The KAERI laser facility with temporal laser beam shaping for application's user

    International Nuclear Information System (INIS)

    Hong, Sung Ki; Kim, Min Suk; Kim, Young Won; Ko, Kwanghoon; Lim, Changhwan; Seo, Young Seok

    2008-01-01

    The Korea Atomic Energy Research Institute(KAERI)has been developed a high energy Nd:Glass laser facility(KLF)for fast ignition research and high energy physics applications at early 2008. Now, we are researching the temporal laser beam shaping for application's user. The temporal laser beam shaping has been applied to a number of industrial applications. The KLF beam shaping system with fiber based consists of two electro optic modulator with DC bias using a Mach Zehnder interferometer, an arbitrary electronic waveform generator, a continuous wavelength fiber laser source, a fiber based pulse amplification system and DC bias source to generate temporally shaped pulses with a high extinction ratio and high resolution. RF signal waveform user defined by an arbitrary electronic waveform generator is only connected to one electro optic modulator. DC bias source with auto feed back or manual controller is connected both two electro optic modulators. Emitting laser light from a continuous wavelength fiber laser source is modulated to meet a user defined laser pulse with a high extinction ratio by two electro optic modulators. Experimental results are shown in Fig.1. Figure 1(a)shows two programmed waveforms with the signal width 10ns in an arbitrary electronic waveform generator. Figure 1(b)shows output laser pulses with sub mJ energy from amplification results of the KLF beam shaping system which can control the pulse width ranges from 400ps to sub us

  9. Influence of laser beam profiles on received power fluctuation

    Science.gov (United States)

    Dordova, Lucie; Diblik, Jan

    2011-09-01

    Gaussian beam is very often used for the transmission of information in optical wireless links. The usage of this optical beam has its advantages and, of course, disadvantages. This work focuses on possibilities of using laser beams with different distribution of optical intensity - Top Hat beam. Creation of the optical beam with selected optical intensity profile will be briefly described. Optical beams will propagate through the "clear" and stationary atmosphere in the experimental part of this work. These results will be compared with the data obtained after a laser beam is passed through the turbulent and attenuated atmosphere. We will use an ultrasound fog generator for laser beam attenuation testing. To create the turbulence, infra radiators will be applied. Particular results obtained from different atmospheric conditions will be compared and using different types of optical beams will be assessed.

  10. Frequency stabilization of a 1083 nm fiber laser to {sup 4}He transition lines with optical heterodyne saturation spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Gong, W.; Peng, X., E-mail: xiangpeng@pku.edu.cn; Li, W.; Guo, H., E-mail: hongguo@pku.edu.cn [State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Center for Quantum Information Technology, and Center for Computational Science and Engineering (CCSE), Peking University, Beijing 100871 (China)

    2014-07-15

    Two kinds of optical heterodyne saturation spectroscopies, namely, frequency modulation spectroscopy (FMS) and modulation transfer spectroscopy (MTS), are demonstrated for locking a fiber laser to the transition lines of metastable {sup 4}He atoms around 1083 nm. The servo-loop error signals of FMS and MTS for stabilizing laser frequency are optimized by studying the dependence of the peak-to-peak amplitude and slope on the optical power of pump and probe beams. A comparison of the stabilization performances of FMS/MTS and polarization spectroscopy (PS) is presented, which shows that MTS exhibits relatively superior performance with the least laser frequency fluctuation due to its flat-background dispersive signal, originated from the four-wave mixing process. The Allan deviation of the stabilized laser frequency is 5.4 × 10{sup −12}@100 s with MTS for data acquired in 1000 s, which is sufficiently applicable for fields like laser cooling, optical pumping, and optical magnetometry.

  11. Laser image recording on detonation nanodiamond films

    International Nuclear Information System (INIS)

    Mikheev, G M; Mikheev, K G; Mogileva, T N; Puzyr, A P; Bondar, V S

    2014-01-01

    A focused He – Ne laser beam is shown to cause local blackening of semitransparent detonation nanodiamond (DND) films at incident power densities above 600 W cm -2 . Data obtained with a Raman spectrometer and low-power 632.8-nm laser source indicate that the blackening is accompanied by a decrease in broadband background luminescence and emergence of sharp Raman peaks corresponding to the structures of nanodiamond and sp 2 carbon. The feasibility of image recording on DND films by a focused He – Ne laser beam is demonstrated. (letters)

  12. Laser image recording on detonation nanodiamond films

    Energy Technology Data Exchange (ETDEWEB)

    Mikheev, G M; Mikheev, K G; Mogileva, T N [Institute of Mechanics, Ural Branch of the Russian Academy of Sciences, Izhevsk (Russian Federation); Puzyr, A P; Bondar, V S [Institute of Biophysics, Siberian Branch of the Russian Academy of Sciences (Russian Federation)

    2014-01-31

    A focused He – Ne laser beam is shown to cause local blackening of semitransparent detonation nanodiamond (DND) films at incident power densities above 600 W cm{sup -2}. Data obtained with a Raman spectrometer and low-power 632.8-nm laser source indicate that the blackening is accompanied by a decrease in broadband background luminescence and emergence of sharp Raman peaks corresponding to the structures of nanodiamond and sp{sup 2} carbon. The feasibility of image recording on DND films by a focused He – Ne laser beam is demonstrated. (letters)

  13. Research on applications of rectangular beam in micro laser propulsion

    International Nuclear Information System (INIS)

    Jiao, L.; Cai, J.; Ma, H.H.; Li, G.X.; Li, L.; Shen, Z.W.; Tang, Z.P.

    2014-01-01

    Highlights: • Diode laser bar of 808 nm is introduced into the micro laser propulsion field. • Double base propellant (DBP) coating with BOPP substrate was obtained. • The combination of laser power and energy decides the propulsion performance. • The new rectangular beam prefers to produce higher impulse. - Abstract: Micro laser propulsion is a new technology with brilliant future. In order to reduce the thruster mass and volume further, laser bar is introduced into the micro laser propulsion field. A new kind of 220 × 20 μm rectangular beam of 808 nm was obtained by oval lens compressing the light of diode at fast axes and slow axes. The effect of laser power, energy and coating thickness of double base propellant on propulsion performance was studied. Propulsion performance of double base propellant under static and dynamic mode shows some different characters. Compared to round beam, the new beam prefers to produce higher impulse. Ablation efficiency of DBP shows better performance in short laser duration. The combination of power density and energy density decides the laser propulsion performance. The new rectangular beam is appropriate for millisecond micro-laser propulsion

  14. Beam transport optics for high-power laser systems

    International Nuclear Information System (INIS)

    Taylor, J.R.

    1995-01-01

    Beam transport optics receive output energy from the laser cavity and deliver it to the work site. Depending on the application, this may require a few simple elements or large complex systems. Collection of the laser energy depends on the spatial and temporal energy distribution as well as the wavelength and polarization of the laser cavity and output coupler. Transport optics can perform a variety of functions, including beam formatting, frequency doubling, and distribution to one or more work sites while maintaining or even improving the beam quality. The beam may be delivered to work sites as focused spots or images, projected to distant targets, or propagated through various media for sensing or photochemical processing. Design may involve optical modeling of the system, including diffraction effects and thermal management. A Gaussian beam profile is often used for convenience in modeling. When deviations from this ideal profile need to be considered, it is necessary to characterize the laser beam in detail. Design of the transport system requires understanding of the interaction of the laser energy with optical materials and components. Practical considerations include mounting the optics without stress and with the stability suitable for the intended application. Requirements for beam direction, stability, size, shape, and quality dictate the design approach for each specific situation. Attention also must be given to reliability, environmental, and commercial requirements. Damage to optics in high-power laser systems is a common concern. Environmental problems such as atmospheric turbulence, contamination by dust or vapor from the work site or other sources, or absorption of water vapor can directly degrade beam quality. Other potentially significant optical performance effects may result from instability and aging of the optics, temperature, humidity, pressure, transmitted vibration, and contamination from the work site or other sources

  15. Beam propagation considerations in the Aurora laser system

    International Nuclear Information System (INIS)

    Rosoche, L.A.; Mc Leod, J.; Hanlon, J.A.

    1987-01-01

    Aurora is a high-power KrF laser system now being constructed for inertial confinement fusion (ICF) studies. It will use optical angular multiplexing and serial amplification by electron-beam-driven KrF amplifiers to deliver a stacked, multikilojoule 5-ns-duration laser pulse to ICF targets. The requirements of angular multiplexing KrF lasers at the multikilojoule level dictate path lengths on the order of 1 km. The inherent complicated path crossings produced by angular multiplexing and pulse stacking do not allow isolation of individual beam lines, so the optical quality of the long beam paths must be controlled. Propagation of the 248-nm light beams over long paths in air is affected by scattering, absorption thermal gradients and turbulence, beam alignment, and control and optical component figure errors

  16. Method of laser beam coding for control systems

    Science.gov (United States)

    Pałys, Tomasz; Arciuch, Artur; Walczak, Andrzej; Murawski, Krzysztof

    2017-08-01

    The article presents the method of encoding a laser beam for control systems. The experiments were performed using a red laser emitting source with a wavelength of λ = 650 nm and a power of P ≍ 3 mW. The aim of the study was to develop methods of modulation and demodulation of the laser beam. Results of research, in which we determined the effect of selected camera parameters, such as image resolution, number of frames per second on the result of demodulation of optical signal, is also shown in the paper. The experiments showed that the adopted coding method provides sufficient information encoded in a single laser beam (36 codes with the effectiveness of decoding at 99.9%).

  17. Laser Beam delivering and shaping device for transfer of organic film

    International Nuclear Information System (INIS)

    Lee, Kangin; Kwon, Jin Hyuk; Yi, Jonghoon

    2008-01-01

    The laser based organic material transfer methods are developed by several groups for OLED (organic light emitting diode)fabrication. Well developed laser based methods are LITI (Laser Induced Thermal Imaging)and LIPS (Laser Induced Pattern wise Sublimation). These methods are proved to be suitable for large OLED panel fabrication. At an early stage of development, TEM"00"mode Nd:YAG laser was used for pattering organic material. The focused focused Nd:YAG laser beam generated heat in the film and the heat caused expansion of organic material coated layer. The organic film on the layer is transferred to the display panel due to pressure exerted on the display panel by the layer. Recently developed system prefers to employ a diode laser with wavelength of 800nm. Diode laser is cheaper and smaller photon source compared with the Nd:YAG laser. In this work, we use Nd doped fiber laser (wavelength=1070nm, power=10W)because the laser has stable output and well defined Gaussian beam profile compared with diode laser. We also employed fiber coupled diode laser (808nm)because it also has well defined beam distribution. In laser methods, spatially shaped beam is required for clean and sharp transfer. There are several methods for the beam shaping such as aspheric lens, diffractive optical elements, and micro lens array etc. We found that Gaussian beam can be shaped to a square hat like beam just by using simple commercial spherical lens set

  18. Laser beam diagnostics for metalworking applications

    International Nuclear Information System (INIS)

    Ramos, T.J.; Lingenfelter, A.C.

    1984-01-01

    The Materials Fabrication Division of Lawrence Livermore National Laboratory (LLNL) has three pulsed Nd-YAG lasers dedicated to metalworking. The units are used in a job shop primarily for welding. They also have a number of applications requiring cutting and drilling capability. Each of these metalworking operations requires somewhat different laser beam characteristics. As most investigators have found, the mode of the laser beam and the mode stability are the key variables which must be controlled if optimum results are to be achieved. The authors use several techniques to observe and measure these variables, i.e. Charge Couple Device (CCD) Camera, Thermal Image Plate and thermal-sensitive paper

  19. High-quality laser-accelerated ion beams for medical applications

    Energy Technology Data Exchange (ETDEWEB)

    Harman, Zoltan; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Salamin, Yousef I. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); American University of Sharjah (United Arab Emirates)

    2009-07-01

    Cancer radiation therapy requires accelerated ion beams of high energy sharpness and a narrow spatial profile. As shown recently, linearly and radially polarized, tightly focused and thus extremely strong laser beams should permit the direct acceleration of light atomic nuclei up to energies that may offer the potentiality for medical applications. Radially polarized beams have better emittance than their linearly polarized counterparts. We put forward the direct laser acceleration of ions, once the refocusing of ion beams by external fields is solved or radially polarized laser pulses of sufficient power can be generated.

  20. Monitoring the beam flux in molecular beam epitaxy using laser multiphoton ionization

    International Nuclear Information System (INIS)

    Chien, R.; Sogard, M.R.

    1990-01-01

    In this paper, we will describe a method using laser nonresonant multiphoton ionization to measure beam flux in molecular beam epitaxy (MBE) systems. The results were obtained in a test chamber where a focused excimer laser beam was used to photoionize a small fraction of the atomic and molecular beams. The constituents of the beams were identified by a time-of-flight mass spectrometer. Ion signal strength was found to be directly correlated to the temperature of the atomic beam oven. Good stability and sensitivity on gallium, aluminum, and silicon atomic beams was demonstrated. Arsenic was also detected. We demonstrated very sensitive detection of contaminant atomic and molecular constituents of our system. We have also detected the presence of short-term fluctuations in the gallium flux from an effusion source. These fluctuations, previously suspected, can be in excess of ±10%

  1. Bunching and phase focusing of laser generated proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Schumacher, Dennis; Hofmann, Ingo; Blazevic, Abel; Deppert, Oliver [GSI Helmholtzzentrum fuer Schwerionenforschung (Germany); Busold, Simon; Roth, Markus; Boine-Frankenheim, Oliver [TU Darmstadt (Germany); Brabetz, Christian [Universitaet Frankfurt, Frankfurt am Main (Germany); Zielbauer, Bernhard [HI Jena (Germany); Collaboration: LIGHT-Collaboration

    2013-07-01

    Laser accelerated proton beams can reach very high intensities and very low emittances. Therefore they are suitable as ion sources for many applications. One is the coupling into common ion accelerator structures to replace pre accelerators that are used so far. The LIGHT (Laser Ion Generation, Handling and Transport) collaboration has been founded to develop ion optics and targets and optimize laser parameter to make this coupling most efficient. In a first step a short pulse beam line for the PHELIX-laser at GSI to the experiment site Z6 has been build in order to laser accelerate protons here. In a second step a pulsed solenoid has been established to collimate the divergent ion beam. In a third step this collimated beam will be coupled into a bunching unit, which consists of a spiral resonator with three gaps which leads to an overall acceleration voltage of 1 MV. With this cavity it is not only possible to avoid the broadening of the pulse, but also to phase focus it. This talk presents also the progress towards the operation of the spiral resonator as buncher for a laser accelerated ion beam e.g. simulations, tests and performance data and shows the next steps of the beam shaping efforts.

  2. Synchronous characterization of semiconductor microcavity laser beam.

    Science.gov (United States)

    Wang, T; Lippi, G L

    2015-06-01

    We report on a high-resolution double-channel imaging method used to synchronously map the intensity- and optical-frequency-distribution of a laser beam in the plane orthogonal to the propagation direction. The synchronous measurement allows us to show that the laser frequency is an inhomogeneous distribution below threshold, but that it becomes homogeneous across the fundamental Gaussian mode above threshold. The beam's tails deviations from the Gaussian shape, however, are accompanied by sizeable fluctuations in the laser wavelength, possibly deriving from manufacturing details and from the influence of spontaneous emission in the very low intensity wings. In addition to the synchronous spatial characterization, a temporal analysis at any given point in the beam cross section is carried out. Using this method, the beam homogeneity and spatial shape, energy density, energy center, and the defects-related spectrum can also be extracted from these high-resolution pictures.

  3. Design of a Fast Neutral He Beam System for Feasibility Study of Charge-Exchange Alpha-Particle Diagnostics in a Thermonuclear Fusion Reactor

    CERN Document Server

    Shinto, Katsuhiro; Kitajima, Sumio; Kiyama, Satoru; Nishiura, Masaki; Sasao, Mamiko; Sugawara, Hiroshi; Takenaga, Mahoko; Takeuchi, Shu; Wada, Motoi

    2005-01-01

    For alpha-particle diagnostics in a thermonuclear fusion reactor, neutralization using a fast (~2 MeV) neutral He beam produced by the spontaneous electron detachment of a He- is considered most promising. However, the beam transport of produced fast neutral He has not been studied, because of difficulty for producing high-brightness He- beam. Double-charge-exchange He- sources and simple beam transport systems were developed and their results were reported in the PAC99* and other papers.** To accelerate an intense He- beam and verify the production of the fast neutral He beam, a new test stand has been designed. It consists of a multi-cusp He+

  4. Contactless friction and the {sup 3}He-{sup 4}He dimer. Studies with the atomic-beam spin-echo spectrometer; Kontaktlose Reibung und das {sup 3}He-{sup 4}He-Dimer. Untersuchungen mit dem Atomstrahlspinechospektrometer

    Energy Technology Data Exchange (ETDEWEB)

    Janke, Matthias

    2016-04-20

    In this thesis the time of flight resolved atomic beam spin echo method (SEToF) is applied to a {sup 3}He-beam for the first time and studied systematically. This method is shown to be superior to the usual atomic beam spin echo technique. With SEToF it is possible to almost completely remove unpolarized background and to reach a beam polarisation close to 100%. The SEToF technique is shown to be crucial for the first experimental proof of the existence of the {sup 3}He-{sup 4}He dimer. This dimer is the weakest bound van-der-Waals-molecule known to date. Furthermore, a drag force between an atom and a dielectric surface is detected originating from the fluctuating dipole moment of the atom. Not only the measured friction coefficients match their theoretical predictions perfectly, but our data also shows the correct temperature dependence. A great many technological renewals and improvements were installed in the apparatus during this thesis work. They have become necessary or sensible due to the relocation of the physics institute. A few of them are documented and motivated in this thesis.

  5. Multimode laser beam analyzer instrument using electrically programmable optics.

    Science.gov (United States)

    Marraccini, Philip J; Riza, Nabeel A

    2011-12-01

    Presented is a novel design of a multimode laser beam analyzer using a digital micromirror device (DMD) and an electronically controlled variable focus lens (ECVFL) that serve as the digital and analog agile optics, respectively. The proposed analyzer is a broadband laser characterization instrument that uses the agile optics to smartly direct light to the required point photodetectors to enable beam measurements of minimum beam waist size, minimum waist location, divergence, and the beam propagation parameter M(2). Experimental results successfully demonstrate these measurements for a 500 mW multimode test laser beam with a wavelength of 532 nm. The minimum beam waist, divergence, and M(2) experimental results for the test laser are found to be 257.61 μm, 2.103 mrad, 1.600 and 326.67 μm, 2.682 mrad, 2.587 for the vertical and horizontal directions, respectively. These measurements are compared to a traditional scan method and the results of the beam waist are found to be within error tolerance of the demonstrated instrument.

  6. Precision atomic beam density characterization by diode laser absorption spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Oxley, Paul; Wihbey, Joseph [Physics Department, The College of the Holy Cross, Worcester, Massachusetts 01610 (United States)

    2016-09-15

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10{sup −5} are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10{sup 4} atoms cm{sup −3}. The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  7. Precision atomic beam density characterization by diode laser absorption spectroscopy

    International Nuclear Information System (INIS)

    Oxley, Paul; Wihbey, Joseph

    2016-01-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 −5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm −3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  8. Precision atomic beam density characterization by diode laser absorption spectroscopy.

    Science.gov (United States)

    Oxley, Paul; Wihbey, Joseph

    2016-09-01

    We provide experimental and theoretical details of a simple technique to determine absolute line-of-sight integrated atomic beam densities based on resonant laser absorption. In our experiments, a thermal lithium beam is chopped on and off while the frequency of a laser crossing the beam at right angles is scanned slowly across the resonance transition. A lock-in amplifier detects the laser absorption signal at the chop frequency from which the atomic density is determined. The accuracy of our experimental method is confirmed using the related technique of wavelength modulation spectroscopy. For beams which absorb of order 1% of the incident laser light, our measurements allow the beam density to be determined to an accuracy better than 5% and with a precision of 3% on a time scale of order 1 s. Fractional absorptions of order 10 -5 are detectable on a one-minute time scale when we employ a double laser beam technique which limits laser intensity noise. For a lithium beam with a thickness of 9 mm, we have measured atomic densities as low as 5 × 10 4 atoms cm -3 . The simplicity of our technique and the details we provide should allow our method to be easily implemented in most atomic or molecular beam apparatuses.

  9. Multistage plasma initiation process by pulsed CO2 laser irradiation of a Ti sample in an ambient gas (He, Ar, or N2)

    Science.gov (United States)

    Hermann, J.; Boulmer-Leborgne, C.; Mihailescu, I. N.; Dubreuil, B.

    1993-02-01

    New experimental results are reported on plasma initiation in front of a titanium sample irradiated by ir (λ=10.6 μm) laser pulses in an ambient gas (He, Ar, and N2) at pressures ranging from several Torr up to the atmosphere. The plasma is studied by space- and time-resolved emission spectroscopy, while sample vaporization is probed by laser-induced fluorescence spectroscopy. Threshold laser intensities leading to the formation of a plasma in the vapor and in the ambient gases are determined. Experimental results support the model of a vaporization mechanism for the plasma initiation (vaporization-initiated plasma breakdown). The plasma initiation is described by simple numerical criteria based on a two-stage process. Theoretical predictions are found to be in a reasonable agreement with the experiment. This study provides also a clear explanation of the influence of the ambient gas on the laser beam-metal surface energy transfer. Laser irradiation always causes an important vaporization when performed in He, while in the case of Ar or N2, the interaction is reduced in heating and vaporization of some surface defects and impurities.

  10. Electron beam pumped KrF lasers for fusion energy

    International Nuclear Information System (INIS)

    Sethian, J.D.; Friedman, M.; Giuliani, J.L. Jr.; Lehmberg, R.H.; Obenschain, S.P.; Kepple, P.; Wolford, M.; Hegeler, F.; Swanekamp, S.B.; Weidenheimer, D.; Welch, D.; Rose, D.V.; Searles, S.

    2003-01-01

    In this paper, we describe the development of electron beam pumped KrF lasers for inertial fusion energy. KrF lasers are an attractive driver for fusion, on account of their demonstrated very high beam quality, which is essential for reducing imprint in direct drive targets; their short wavelength (248 nm), which mitigates the growth of plasma instabilities; and their modular architecture, which reduces development costs. In this paper we present a basic overview of KrF laser technology as well as current research and development in three key areas: electron beam stability and transport; KrF kinetics and laser propagation; and pulsed power. The work will be cast in context of the two KrF lasers at the Naval Research Laboratory, The Nike Laser (5 kJ, single shot), and The Electra Laser (400-700 J repetitively pulsed)

  11. Laser-induced fluorescence spectra of Ba+*-He exciplexes produced in cold He gas

    International Nuclear Information System (INIS)

    Fukuyama, Yoshimitsu; Matsuo, Yukari; Moriwaki, Yoshiki

    2004-01-01

    We report the observation of laser-induced fluorescence spectra of Ba +* -He exciplexes. The experiment is carried out in an environment of cold gaseous helium at a temperature range of 3-30 K. We have observed the emission spectra of exciplexes by means of excitation of the 6p 2 P 32 2 S 12 transition of Ba + ions. It is found that these spectra are redshifted from the D2 emission line in the free space and are composed of several peaks. The experimental results are reproduced well by theoretical calculation of the emission spectra for vibrational levels of Ba +* -He. We also investigate the vibrational dynamics of the 6p 2 Π 32 state of Ba + *-He, and we have determined the collision-induced vibrational relaxation cross sections of the 6p 2 Π 32 state to be 9.7±1.1 A 2 at 15 K

  12. Design and Status of the ELIMED Beam Line for Laser-Driven Ion Beams

    Directory of Open Access Journals (Sweden)

    G. A. Pablo Cirrone

    2015-08-01

    Full Text Available Charged particle acceleration using ultra-intense and ultra-short laser pulses has gathered a strong interest in the scientific community and it is now one of the most attractive topics in the relativistic laser-plasma interaction research. Indeed, it could represent the future of particle acceleration and open new scenarios in multidisciplinary fields, in particular, medical applications. One of the biggest challenges consists of using, in a future perspective, high intensity laser-target interaction to generate high-energy ions for therapeutic purposes, eventually replacing the old paradigm of acceleration, characterized by huge and complex machines. The peculiarities of laser-driven beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles, due to the wide energy spread, the angular divergence and the extremely intense pulses. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical applications beamline, developed by INFN-LNS (Catania, Italy and installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams in multidisciplinary applications. ELIMED will represent the first user’s open transport beam line where a controlled laser-driven ion beam will be used for multidisciplinary and medical studies. In this paper, an overview of the beamline, with a detailed description of the main transport elements, will be presented. Moreover, a description of the detectors dedicated to diagnostics and dosimetry will be reported, with some preliminary results obtained both with accelerator-driven and laser-driven beams.

  13. Discharge-current characteristics in UV-preionized Kr/He, F2/He gas-mixtures and KrF excimer laser gas. Shigaisen yobi denri Kr/He, F2/He kongo kitai hoden oyobi KrF laser reiki hoden no denryu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Nakagawa, N.; Kawakami, H.; Yukimura, K. (Doshisha University, Kyoto (Japan))

    1992-08-15

    In order to study effects of Kr and F2 on discharge characteristics of KrF excimer laser gas, gap phenomena in Kr/He and F2/He gas-mixtures were observed and discharge current (I[sub d]) was measured. In the range where Kr concentration was over 10% in Kr/He gas, in which production of filamentation as well as glow discharge started, discontinuous change in I[sub d] in the second or third half cycle was observed. According to the results of experiments and model analyses, it was considered that the discontinuity of the current showed the transition point to filamentation. When F2 concentration was in the range between 0.1 and 0.3% in F2/He mixture gas, filamentation and arc with glow were observed. Sine-waveform I[sub d] ended in the first half cycle, and began to flow again after cessation or had almost constant current due to arc and others. When F2 was over 0.4%, only are discharge was observed. It was thus found that F2 has a large effect on discharge characteristics of KrF laser gas. 18 refs., 9 figs.

  14. Laser induced focusing for over-dense plasma beams

    International Nuclear Information System (INIS)

    Schmidt, Peter; Boine-Frankenheim, Oliver; Mulser, Peter

    2015-01-01

    The capability of ion acceleration with high power, pulsed lasers has become an active field of research in the past years. In this context, the radiation pressure acceleration (RPA) mechanism has been the topic of numerous theoretical and experimental publications. Within that mechanism, a high power, pulsed laser beam hits a thin film target. In contrast to the target normal sheath acceleration, the entire film target is accelerated as a bulk by the radiation pressure of the laser. Simulations predict heavy ion beams with kinetic energy up to GeV, as well as solid body densities. However, there are several effects which limit the efficiency of the RPA: On the one hand, the Rayleigh-Taylor-instability limits the predicted density. On the other hand, conventional accelerator elements, such as magnetic focusing devices are too bulky to be installed right after the target. Therefore, we present a new beam transport method, suitable for RPA-like/over-dense plasma beams: laser induced focusing

  15. Pulse forming networks for fast pumping of high power electron-beam-controlled CO2 lasers

    International Nuclear Information System (INIS)

    Riepe, K.B.

    1975-01-01

    The transverse electric discharge is a widely used technique for pumping CO 2 lasers at high pressures for the generation, simply and efficiently, of very high power laser pulses. The development of the electron-beam-controlled discharge has allowed the application of the transverse discharge to large aperture, very high energy systems. LASL is now in the process of assembly and checkout of a CO 2 laser which is designed to generate a one nanosecond pulse containing 10 kilojoules, for use in laser fusion experiments. The front end of this laser consists of a set of preamplifiers and a mode locked oscillator with electro-optic single pulse switchout. The final amplifier stage consists of four parallel modules, each one consisting of a two-sided electron gun, and two 35 x 35 x 200 cm gas pumping regions operating at a pressure of 1800 torr with a 3/ 1 / 4 /1 (He/N 2 /CO 2 ) laser mix. (auth)

  16. Laser-driven particle and photon beams and some applications

    International Nuclear Information System (INIS)

    Ledingham, K W D; Galster, W

    2010-01-01

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10 12 V m -1 with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  17. Laser-driven particle and photon beams and some applications

    Energy Technology Data Exchange (ETDEWEB)

    Ledingham, K W D; Galster, W, E-mail: K.Ledingham@phys.strath.ac.u [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2010-04-15

    Outstanding progress has been made in high-power laser technology in the last 10 years with laser powers reaching petawatt (PW) values. At present, there are 15 PW lasers built or being built around the world and plans are afoot for new, even higher power, lasers reaching values of exawatt (EW) or even zetawatt (ZW) powers. Petawatt lasers generate electric fields of 10{sup 12} V m{sup -1} with a large fraction of the total pulse energy being converted to relativistic electrons with energies reaching in excess of 1 GeV. In turn these electrons result in the generation of beams of protons, heavy ions, neutrons and high-energy photons. These laser-driven particle beams have encouraged many to think of carrying out experiments normally associated with conventional nuclear accelerators and reactors. To this end a number of introductory articles have been written under a trial name 'Laser Nuclear Physics' (Ledingham and Norreys 1999 Contemp. Phys. 40 367, Ledingham et al 2002 Europhys. News. 33 120, Ledingham et al 2003 Science 300 1107, Takabe et al 2001 J. Plasma Fusion Res. 77 1094). However, even greater strides have been made in the last 3 or 4 years in laser technology and it is timely to reassess the potential of laser-driven particle and photon beams. It must be acknowledged right from the outset that to date laser-driven particle beams have yet to compete favourably with conventional nuclear accelerator-generated beams in any way and so this is not a paper comparing laser and conventional accelerators. However, occasionally throughout the paper as a reality check, it will be mentioned what conventional nuclear accelerators can do.

  18. Preparation of a monoenergetic sodium beam by laser cooling and deflection

    International Nuclear Information System (INIS)

    Nellessen, J.; Sengstock, K.; Muller, J.H.; Ertmer, W.; Wallis, H.

    1989-01-01

    This paper reports on a sodium atomic beam with a density of approx. 10 5 at cm 3 within a velocity interval of less than 3 m/s with a mean velocity of typically 50-160 m/s which has been produced by laser deflection of a laser cooled atomic beam. Laser cooling with the frequency chirp method decelerates and cools a considerable part of an atomic beam into a narrow velocity group with a temperature of approx 30 mK as a part of the resulting atomic beam. This velocity group has been selectively deflected up to 30 degrees - 40 degrees using a light field with k vectors always perpendicular to the atomic trajectory. If the light field is prepared by use of a cylindrical lens, the angle of deflection is nearly independent from the actual orbit radius. For a laser frequency detuning of about one natural linewidth to the red, the strong frequency dependence of the light pressure force leads to a beam collimation via detuning-locking of the atomic trajectory. To avoid optical pumping we used a frequency modulated laser beam with a sideband spacing matched to the hyperfine splitting of the ground state. As the cooling was performed by the frequency chirp method, one can use a part of the cooling laser beam as deflecting laser beam. Typical velocity distributions in the deflected and undeflected atomic beam, measured 22 cm downstream the deflection zone. It shows the perfect transfer of the cooled velocity group from the laser cooled beam into the deflected beam; curve c) shows as comparison the result for the deflection of the initial thermal atomic beam

  19. Numerical analysis of the effects of non-conventional laser beam geometries during laser melting of metallic materials

    International Nuclear Information System (INIS)

    Safdar, Shakeel; Li, Lin; Sheikh, M A

    2007-01-01

    Laser melting is an important industrial activity encountered in a variety of laser manufacturing processes, e.g. selective laser melting, welding, brazing, soldering, glazing, surface alloying, cladding etc. The majority of these processes are carried out by using either circular or rectangular beams. At present, the melt pool characteristics such as melt pool geometry, thermal gradients and cooling rate are controlled by the variation of laser power, spot size or scanning speed. However, the variations in these parameters are often limited by other processing conditions. Although different laser beam modes and intensity distributions have been studied to improve the process, no other laser beam geometries have been investigated. The effect of laser beam geometry on the laser melting process has received very little attention. This paper presents an investigation of the effects of different beam geometries including circular, rectangular and diamond shapes on laser melting of metallic materials. The finite volume method has been used to simulate the transient effects of a moving beam for laser melting of mild steel (EN-43A) taking into account Marangoni and buoyancy convection. The temperature distribution, melt pool geometry, fluid flow velocities and heating/cooling rates have been calculated. Some of the results have been compared with the experimental data

  20. Laser beam characterization with digital holograms

    CSIR Research Space (South Africa)

    Forbes, A

    2013-04-01

    Full Text Available We show how laser beam characterization may be done in real-time with digital holograms. We illustrate the power of the techniques by applying them to a variety of laser sources, from fibers to solid-state....

  1. CdS thin films prepared by laser assisted chemical bath deposition

    International Nuclear Information System (INIS)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A.; Krishnan, B.; Avellaneda, D.; Castillo, G.A.; Das Roy, T.K.; Shaji, S.

    2015-01-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties

  2. CdS thin films prepared by laser assisted chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, L.V.; Mendivil, M.I.; Garcia Guillen, G.; Aguilar Martinez, J.A. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Krishnan, B. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico); Avellaneda, D.; Castillo, G.A.; Das Roy, T.K. [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); Shaji, S., E-mail: sshajis@yahoo.com [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon, Av. Pedro de Alba s/n, Ciudad Universitaria, San Nicolas de los Garza, Nuevo Leon 66450 (Mexico); CIIDIT – Universidad Autonoma de Nuevo Leon, Apodaca, Nuevo Leon (Mexico)

    2015-05-01

    Highlights: • CdS thin films by conventional CBD and laser assisted CBD. • Characterized these films using XRD, XPS, AFM, optical and electrical measurements. • Accelerated growth was observed in the laser assisted CBD process. • Improved dark conductivity and good photocurrent response for the LACBD CdS. - Abstract: In this work, we report the preparation and characterization of CdS thin films by laser assisted chemical bath deposition (LACBD). CdS thin films were prepared from a chemical bath containing cadmium chloride, triethanolamine, ammonium hydroxide and thiourea under various deposition conditions. The thin films were deposited by in situ irradiation of the bath using a continuous laser of wavelength 532 nm, varying the power density. The thin films obtained during deposition of 10, 20 and 30 min were analyzed. The changes in morphology, structure, composition, optical and electrical properties of the CdS thin films due to in situ irradiation of the bath were analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and UV–vis spectroscopy. The thin films obtained by LACBD were nanocrystalline, photoconductive and presented interesting morphologies. The results showed that LACBD is an effective synthesis technique to obtain nanocrystalline CdS thin films having good optoelectronic properties.

  3. Propagation of Gaussian laser beam in cold plasma of Drude model

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Zhou Zhongxiang; Li Lei; Du Yanwei

    2011-01-01

    The propagation characters of Gaussian laser beam in plasmas of Drude model have been investigated by complex eikonal function assumption. The dielectric constant of Drude model is representative and applicable in describing the cold unmagnetized plasmas. The dynamics of ponderomotive nonlinearity, spatial diffraction, and collision attenuation is considered. The derived coupling equations determine the variations of laser beam and irradiation attenuation. The modified laser beam-width parameter F, the dimensionless axis irradiation intensity I, and the spatial electron density distribution n/n 0 have been studied in connection with collision frequency, initial laser intensity and beam-width, and electron temperature of plasma. The variations of laser beam and plasma density due to different selections of parameters are reasonably explained, and results indicate the feasible modification of the propagating characters of laser beam in plasmas, which possesses significance to fast ignition, extended propagation, and other applications.

  4. Apparatus and method for increasing the bandwidth of a laser beam

    Science.gov (United States)

    Wilcox, Russell B.

    1992-01-01

    A method and apparatus using sinusoidal cross-phase modulation, provides a laser pulse having a very broad bandwidth while substantially retaining the input laser's temporal shape. The modulator may be used in a master oscillator system for a laser having a master oscillator-power amplifier (MOPA) configration. The modulator utilizes a first laser providing an output wavelength .lambda. and a second laser providing an output wavelength shifted by a small amount to .lambda.+.DELTA..lambda.. Each beam has a single, linear polarization. Each beam is coupled into a length of polarization-preserving optical fiber. The first laser beam is coupled into the optical fiber with the beam's polarization aligned with the fiber's main axis, and the second beam is coupled into the fiber with its polarization rotated from the main axis by a predetermined angle. Within the fiber, the main axis' polarization defines an interference beam and the orthogonal axis' polarization defines a signal beam. In the interference beam, the first laser beam and the parallel polarized vector component of the other beam interfere to create areas of high and low intensity, which modulates the signal beam by cross phase modulation. Upon exit from the optical fiber, the beams are coupled out and the modulated signal beam is separated out by a polarization selector. The signal beam can be applied to coherence reducing systems to provide an output that is temporally and spatially incoherent. The U.S. Government has rights in this invention pursuant to Contract No. W7405-ENG-48 between the U.S. Department of Energy and the University of California for the operation of Lawrence Livermore National Laboratory.

  5. Excitation of Accelerating Plasma Waves by Counter-propagating Laser Beams

    International Nuclear Information System (INIS)

    Gennady Shvets; Nathaniel J. Fisch; Alexander Pukhov

    2001-01-01

    Generation of accelerating plasma waves using two counter-propagating laser beams is considered. Colliding-beam accelerator requires two laser pulses: the long pump and the short timing beam. We emphasize the similarities and differences between the conventional laser wakefield accelerator and the colliding-beam accelerator (CBA). The highly nonlinear nature of the wake excitation is explained using both nonlinear optics and plasma physics concepts. Two regimes of CBA are considered: (i) the short-pulse regime, where the timing beam is shorter than the plasma period, and (ii) the parametric excitation regime, where the timing beam is longer than the plasma period. Possible future experiments are also outlined

  6. PENGUKURAN SIFAT POLARISASI BERBAGAI MINYAK NABATI MENGGUNAKAN LAMPU IR DAN LASER HE-NE

    Directory of Open Access Journals (Sweden)

    U Kaltsum

    2017-03-01

    Full Text Available Penelitian ini bertujuan untuk menguji sifat polarisasi berbagai minyak nabati (minyak sawit, minyak kedelai, minyak zaitun, VCO, minyak curah, dan jelantah dengan variasi keadaan baru dan kadaluwarsa, menggunakan lampu IR dan laser He-Ne. Pengujian dilakukan dengan menempatkan minyak nabati diantara polarisator dan analisator. Hasil penelitian pada kedua sumber cahaya menunjukkan pola yang hampir sama. Minyak zaitun dan VCO memiliki perubahan sudut polarisasi alami kecil, sedangkan minyak sawit, kedelai, jelantah, dan curah memiliki perubahan sudut polarisasi alami besar. Besarnya perubahan sudut polarisasi minyak kadaluwarsa lebih besar dibanding minyak baru. Perubahan sudut polarisasi sebanding dengan jumlah radikal bebas (ALB, peroksida dan molekul asimetri (asam lemak jenuh, molekul rantai panjang. Meskipun pola yang dihasilkan oleh kedua sumber cahaya sama, namun lampu IR memberikan nilai perubahan sudut polarisasi yang lebih tinggi dari laser He-Ne. Hal ini dimungkinkan karena daya lampu IR lebih besar dari He-Ne, sehingga energi yang dihasilkan lampu IR lebih tinggi dan perubahan sudut polarisasinya lebih besar. This research based on previous research that using IR lamp (250 watt and He-Ne laser (1 mW on a mixture of palm oil and animal oil. Both of light source were used again to measure polarization properties of various vegetable oils (palm oil, soybean oil, olive oil, VCO, rainfall oil and used cooking oil with a variety of new and expired. The tools used were a set polarization, IR lamp, He-Ne laser, and power supply. The experiment was done by placing vegetable oil between the polarizer and analyzers. The result showed both of light sources had similar pattern; polarization changes of olive oil and the VCO were small, while polarization changes of palm oil, soybean oil, used cooking oil, and rainfall were high. Polarization change of expired oil was higher than new oil. The value of polarization change was proportional to free

  7. Laser-accelerated proton beams as a new particle source

    Energy Technology Data Exchange (ETDEWEB)

    Nuernberg, Frank

    2010-11-15

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10{sup 12} W/cm{sup 2}) prior to the main pulse ({proportional_to}ns), an optimum pre-plasma density scale length of 60 {mu}m is generated leading to an enhancement of the maximum proton energy ({proportional_to}25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 {mu}m foil irradiated with an intensity of 10{sup 19} W/cm{sup 2} onto a 60 {mu}m spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and

  8. Laser-accelerated proton beams as a new particle source

    International Nuclear Information System (INIS)

    Nuernberg, Frank

    2010-01-01

    The framework of this thesis is the investigation of the generation of proton beams using high-intensity laser pulses. In this work, an experimental method to fully reconstruct laser-accelerated proton beam parameters, called radiochromic film imaging spectroscopy (RIS), was developed. Since the proton beam expansion is a plasma expansion with accompanying electrons, a low-energy electron spectrometer was developed, built and tested to study the electron distribution matching to the proton beam energy distribution. Two experiments were carried out at the VULCAN Petawatt laser with the aim of showing dynamic control and enhancement of proton acceleration using multiple or defocused laser pulses. Irradiating the target with a long pulse, low-intensity laser (10 12 W/cm 2 ) prior to the main pulse (∝ns), an optimum pre-plasma density scale length of 60 μm is generated leading to an enhancement of the maximum proton energy (∝25%), the proton flux (factor of 3) and the beam uniformity. Proton beams were generated more efficiently than previously by driving thinner target foils at a lower intensity over a large area. The optimum condition was a 2 μm foil irradiated with an intensity of 10 19 W/cm 2 onto a 60 μm spot. Laser to proton beam efficiencies of 7.8% have been achieved (2.2% before) - one of the highest conversion efficiencies ever achieved. In the frame of this work, two separate experiments at the TRIDENT laser system have shown that these laser-accelerated proton beams, with their high number of particles in a short pulse duration, are well-suited for creating isochorically heated matter in extreme conditions. Besides the manipulation of the proton beam parameters directly during the generation, the primary aim of this thesis was the capture, control and transport of laser-accelerated proton beams by a solenoidal magnetic field lense for further purpose. In a joint project proposal, the laser and plasma physics group of the Technische Universitat

  9. Quantum beats study of the 4He+ beam-carbon foil interaction

    International Nuclear Information System (INIS)

    Denis, A.; Desesquelles, J.

    1979-01-01

    Excitation cross-sections are deduced from the analysis of quantum beats in an electric field for an 4 He + (n=4) ion beam scattering through a thin carbon foil. The population distribution obtained at 1 MeV for 4S, 4P, 4D and 4F levels is in good agreement with a second-order Born approximation calculation of the electronic capture He ++ +C→He + (n=4) + C + . The alignment is found to be negative for P, D and F levels. The coherences Δl=+-1 have been measured, for amplitudes and phases [fr

  10. Spectral beam combining of diode lasers with high efficiency

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin

    2012-01-01

    Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation.......Based on spectral beam combining we obtain 16 W of output power, combining two 1063 nm DBR-tapered diode lasers. The spectral separation within the combined beam can be used for subsequent sum-frequency generation....

  11. He-Ne laser effects on blood microcirculation. An in vivo study through laser doppler flowmetry

    International Nuclear Information System (INIS)

    Nunez, Silvia Cristina

    2002-01-01

    Blood microcirculation performs an important function in tissue repair process, as well as in pain control, allowing for greater oxygenation of the tissues and the accelerated expulsion of metabolic products, that may be contributing to pain. Low Intensity Laser Therapy (LILT) is widely used to promote healing, and there is an assumption that it is mechanism of action may be due to an enhancement of blood supply. The purpose of this study was to evaluate, using laser Doppler flowmetry (LDF), the stated effects caused by radiation emitted by a He-Ne laser (λ=632.8 nm) on blood microcirculation during tissue repair. To this end, 15 male mice were selected and received a liquid nitrogen provoked lesion, above the dorsal region, and blood flow was measured periodically, during 21 days. Due to radiation emission by the LDF equipment, a control group was established to evaluate possible effects caused by this radiation on microcirculation. To evaluate the He-Ne laser effects, a 1.15 J/cm 2 dose was utilized, with an intensity of 6 mW/cm 2 . The results obtained demonstrate flow alterations, provoked by the lesion, and subsequent inflammatory response. There was no statistical difference between the studied groups. As per the analysis of the results there is no immediate effect due the radiation emitted by a He Ne laser on microcirculation, although a percentage increase was observed in day 7 on medium blood flow rate in irradiated specimens. New studies are necessary to validate the use of this wavelength, in order to promote beneficial alterations in blood supply in radiated areas. (author)

  12. Automatic laser beam position control on the Isolde-Rilis experiment

    CERN Document Server

    Grancharova, D; Fedosseev, V; Suberlucq, Guy; CERN. Geneva. AB Department

    2003-01-01

    The On-Line Isotope Mass Separator ISOLDE at CERN is a facility for production of radioactive ion beams by the interaction of proton beams with a thick target. One of the most widely used types of ion source at ISOLDE is a chemically selective laser ion source based on the method of laser ionization of atoms in a hot cavity - RILIS (Resonance Ionization Laser Ion Source). The optical set-up of RILIS includes three copper vapour lasers, a set of dye lasers and frequency multiplication crystals giving up to three different beams of tuneable wavelengths. This paper will focus on the transport of the laser beams to the targets at distances of 18 m and 23 m, the development of the acquisition of their position and finally the automatic control of optics for an accurate alignment.

  13. Generation of monoenergetic ion beams with a laser accelerator

    International Nuclear Information System (INIS)

    Pfotenhauer, Sebastian M.

    2009-01-01

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  14. Generation of monoenergetic ion beams with a laser accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Pfotenhauer, Sebastian M.

    2009-01-29

    A method for the generation of monoenergetic proton and ion beams from a laser-based particle accelerator is presented. This method utilizes the unique space-charge effects occurring during relativistic laser-plasma interactions on solid targets in combination with a dot-like particle source. Due to this unique interaction geometry, MeV proton beams with an intrinsically narrow energy spectrum were obtained, for the first time, from a micrometer-scale laser accelerator. Over the past three years, the acceleration scheme has been consistently improved to enhance both the maximum particle energy and the reliability of the setup. The achieved degree of reliability allowed to derive the first scaling laws specifically for monoenergetic proton beams. Furthermore, the acceleration scheme was expanded on other target materials, enabling the generation of monoenergetic carbon beams. The experimental work was strongly supported by the parallel development of a complex theoretical model, which fully accounts for the observations and is in excellent agreement with numerical simulations. The presented results have an extraordinarily broad scope way beyond the current thesis: The availability of monoenergetic ion beams from a compact laser-plasma beam source - in conjunction with the unique properties of laser-produced particle beams - addresses a number of outstanding applications in fundamental research, material science and medical physics, and will help to shape a new generation of accelerators. (orig.)

  15. Generation of shape-invariant flat-top laser beams

    CSIR Research Space (South Africa)

    Ait-Ameur, K

    2015-02-01

    Full Text Available A great number of laser applications need in place of the usual Gaussian beam a flat-top intensity profile in the focal plane of a focusing lens. In general the transformation of the laser beam from the Gaussian to the flat-top shape is made by a...

  16. Numerical study of neutron beam divergence in a beam-fusion scenario employing laser driven ions

    Science.gov (United States)

    Alejo, A.; Green, A.; Ahmed, H.; Robinson, A. P. L.; Cerchez, M.; Clarke, R.; Doria, D.; Dorkings, S.; Fernandez, J.; McKenna, P.; Mirfayzi, S. R.; Naughton, K.; Neely, D.; Norreys, P.; Peth, C.; Powell, H.; Ruiz, J. A.; Swain, J.; Willi, O.; Borghesi, M.; Kar, S.

    2016-09-01

    The most established route to create a laser-based neutron source is by employing laser accelerated, low atomic-number ions in fusion reactions. In addition to the high reaction cross-sections at moderate energies of the projectile ions, the anisotropy in neutron emission is another important feature of beam-fusion reactions. Using a simple numerical model based on neutron generation in a pitcher-catcher scenario, anisotropy in neutron emission was studied for the deuterium-deuterium fusion reaction. Simulation results are consistent with the narrow-divergence (∼ 70 ° full width at half maximum) neutron beam recently served in an experiment employing multi-MeV deuteron beams of narrow divergence (up to 30° FWHM, depending on the ion energy) accelerated by a sub-petawatt laser pulse from thin deuterated plastic foils via the Target Normal Sheath Acceleration mechanism. By varying the input ion beam parameters, simulations show that a further improvement in the neutron beam directionality (i.e. reduction in the beam divergence) can be obtained by increasing the projectile ion beam temperature and cut-off energy, as expected from interactions employing higher power lasers at upcoming facilities.

  17. Propagation Characteristics of High-Power Vortex Laguerre-Gaussian Laser Beams in Plasma

    Directory of Open Access Journals (Sweden)

    Zhili Lin

    2018-04-01

    Full Text Available The propagation characteristics of high-power laser beams in plasma is an important research topic and has many potential applications in fields such as laser machining, laser-driven accelerators and laser-driven inertial confined fusion. The dynamic evolution of high-power Laguerre-Gaussian (LG beams in plasma is numerically investigated by using the finite-difference time-domain (FDTD method based on the nonlinear Drude model, with both plasma frequency and collision frequency modulated by the light intensity of laser beam. The numerical algorithms and implementation techniques of FDTD method are presented for numerically simulating the nonlinear permittivity model of plasma and generating the LG beams with predefined parameters. The simulation results show that the plasma has different field modulation effects on the two exemplified LG beams with different cross-sectional patterns. The self-focusing and stochastic absorption phenomena of high-power laser beam in plasma are also demonstrated. This research also provides a new means for the field modulation of laser beams by plasma.

  18. He-Ne laser treatment improves the photosynthetic efficiency of wheat exposed to enhanced UV-B radiation

    International Nuclear Information System (INIS)

    Chen, Huize; Han, Rong

    2014-01-01

    The level of ultraviolet-B (UV-B) radiation on the Earth’s surface has increased due to depletion of the ozone layer. Here, we explored the effects of continuous wave He-Ne laser irradiation (632 nm, 5 mW mm –2 , 2 min d –1 ) on the physiological indexes of wheat seedlings exposed to enhanced UV-B radiation (10 KJ m –2 d –1 ) at the early growth stages. Wheat seedlings were irradiated with enhanced UV-B, He-Ne laser treatment or a combination of the two. Enhanced UV-B radiation had deleterious effects on wheat photosynthesis parameters including photosystem II (chlorophyll content, Hill reaction, chlorophyll fluorescence parameters, electron transport rate (ETR), and yield), the thylakoid (optical absorption ability, cyclic photophosphorylation, Mg 2+ -ATPase, and Ca 2+ -ATPase) and some enzymes in the dark reaction (phosphoenolpyruvate carboxylase (PEPC), carbonic anhydrase (CA), malic dehydrogenase (MDH), and chlorophyllase). These parameters were improved in UV-B-exposed wheat treated with He-Ne laser irradiation; the parameters were near control levels and the enzyme activities increased, suggesting that He-Ne laser treatment partially alleviates the injury caused by enhanced UV-B irradiation. Furthermore, the use of He-Ne laser alone had a favourable effect on seedling photosynthesis compared with the control. Therefore, He-Ne laser irradiation can enhance the adaptation capacity of crops. (paper)

  19. A laser-wire beam-energy and beam-profile monitor at the BNL linac

    Energy Technology Data Exchange (ETDEWEB)

    Connolly, R.; Degen, C.; DeSanto, L.; Meng, W.; Michnoff, R.; Minty, M.; Nayak, S.

    2011-03-28

    In 2009 a beam-energy monitor was installed in the high energy beam transport (HEBT) line at the Brookhaven National Lab linac. This device measures the energies of electrons stripped from the 40mA H{sup -} beam by background gas. Electrons are stripped by the 2.0x10{sup -7}torr residual gas at a rate of {approx}1.5x10{sup -8}/cm. Since beam electrons have the same velocities as beam protons, the beam proton energy is deduced by multiplying the electron energy by m{sub p}/m{sub e}=1836. A 183.6MeV H{sup -} beam produces 100keV electrons. In 2010 we installed an optics plates containing a laser and scanning optics to add beam-profile measurement capability via photodetachment. Our 100mJ/pulse, Q-switched laser neutralizes 70% of the beam during its 10ns pulse. This paper describes the upgrades to the detector and gives profile and energy measurements.

  20. Principle tests of reactor pumped laser of 3He-Ar-Xe system

    International Nuclear Information System (INIS)

    Chen Hande; Jin Xingxing; Yang Chengde

    1994-01-01

    A nuclear reactor-pumped laser was demonstrated firstly by using the 3 He(P,n) 3 H reaction to excite a 3 He-Ar-Xe laser. Lasing was observed on the 1.73 μm (5d (3/2) 1 -6p(5/2) 1 transition) in Xe I. The CAEP Pulsed Reactor (CFBR-II) was used as a source of fast neutrons moderated by a 50 mm thick polyethylene sleeve around the laser cell. A laser cell was constructed from K 9 glass tubing 600 mm long and Φ34 mm with each end cut at Brewster's angle (quartz). The laser cell was baked out to 10 -3 Pa prior to filling with research-grade mixture ( 3 He/Ar/Xe = 34.7: 34.7: 0.267 kPa). A dielectric-coated 2 m radius-curvature back mirror (99.7% reflectivity at 1.73 μm) and a flat output coupler (Φ30 mm) were used to form the optical cavity. The cavity optics were placed outside the cell as shown in Fig.3. A schematic of the experimental configuration is shown. Typical laser signals obtained with the Ge detector (-80 degree C) are also shown. Laser output lags the fast neutron pulse by the neutron thermalization time (∼278 μs). The observed light output was shown to be caused by stimulated emission, because the signal disappeared when the reflecting (flat) mirror was covered. This precludes the possibility that the phenomenon was the result of γ-radiation interaction with the detector or the air in the light path. The measured laser energy was 80 times the maximum possible fluorescence energy. The observed wavelength was measured to be 1.73 μm by using glass filters. Laser output duration was approximately 735 μs

  1. Structure of the 8He exotic nucleus by the direct reactions 8He(p, p')8He, 8He(p,d)7He and 8He(p,t)6He

    International Nuclear Information System (INIS)

    Skaza, Flore

    2004-01-01

    The elastic and inelastic scattering of an 8 He beam on a proton target have been measured at GANIL. The first 8 He beam produced by the SPIRAL facility at an energy of 15.6 A.MeV impinged on a proton target. The experimental setup was composed by the eight telescopes MUST array dedicated to the measure of the light charged particles, by a scintillator plastic wall for the detection of heavy projectile, and by two beam tracking detectors CATS for the measure event by event of the incident position and angle of the beam on the target. This setup allowed also to measure the one and two neutron transfer reactions 8 He(p,d) 7 He and 8 He(p,t) 6 He. The excitation energy spectrum for 6,7,8 He and the angular distributions associated to each reaction have been measured. The observed excited states are in agreement with the data of the literature. We indicate the presence of a first excited state for 7 He at 0.9 MeV and we give for the first time the position of a second excited state in 8 He at 5.4 MeV; the presence of such state was just suggested in a previous experiment. CCBA calculations allowed to extract a spectroscopic factor of 4.4 ± 1.4 for the pick-up of one neutron from 8 He to 7 He. This value is in agreement with a closed p3/2 sub-shell for 8 He. To analyse the angular distributions for elastic and inelastic scattering, it was necessary to take into account in the formalism used to describe the reactions, via coupled channels reactions calculations, the couplings to the one neutron transfer reaction. (author) [fr

  2. Excimer laser beam profile recording based on electrochemical etched polycarbonate

    International Nuclear Information System (INIS)

    Parvin, P.; Jaleh, B.; Zangeneh, H.R.; Zamanipour, Z.; Davoud-Abadi, Gh.R.

    2008-01-01

    There is no polymeric detector used to register the beam profile of UV lasers. Here, a method is proposed for the measurement of intensive UV beam pattern of the excimer lasers based on the photoablated polycarbonate detector after coherent UV exposure and the subsequent electrochemical etching. UV laser induced defects in the form of self-microstructuring on polycarbonate are developed to replicate the spatial intensity distribution as a beam profiler

  3. Excimer laser beam profile recording based on electrochemical etched polycarbonate

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, P. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Hafez Ave, Tehran (Iran, Islamic Republic of); Laser Research Center, AEOI, P.O. Box 1165-8486, Tehran (Iran, Islamic Republic of)], E-mail: parvin@aut.ac.ir; Jaleh, B. [Physics Department, Bu-Ali Sina University, Postal Code 65174, Hamedan (Iran, Islamic Republic of); Zangeneh, H.R. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Hafez Ave, Tehran (Iran, Islamic Republic of); Zamanipour, Z. [Laser Research Center, AEOI, P.O. Box 1165-8486, Tehran (Iran, Islamic Republic of); Davoud-Abadi, Gh.R. [Physics Department, Amirkabir University of Technology, P.O. Box 15875-4413, Hafez Ave, Tehran (Iran, Islamic Republic of)

    2008-08-15

    There is no polymeric detector used to register the beam profile of UV lasers. Here, a method is proposed for the measurement of intensive UV beam pattern of the excimer lasers based on the photoablated polycarbonate detector after coherent UV exposure and the subsequent electrochemical etching. UV laser induced defects in the form of self-microstructuring on polycarbonate are developed to replicate the spatial intensity distribution as a beam profiler.

  4. Beam manipulation for compact laser wakefield accelerator based free-electron lasers

    International Nuclear Information System (INIS)

    Loulergue, A; Labat, M; Benabderrahmane, C; Couprie, M E; Evain, C; Malka, V

    2015-01-01

    Free-electron lasers (FELs) are a unique source of light, particularly in the x-ray domain. After the success of FELs based on conventional acceleration using radio-frequency cavities, an important challenge is the development of FELs based on electron bunching accelerated by a laser wakefield accelerator (LWFA). However, the present LWFA electron bunch properties do not permit use directly for a significant FEL amplification. It is known that longitudinal decompression of electron beams delivered by state-of-the-art LWFA eases the FEL process. We propose here a second order transverse beam manipulation turning the large inherent transverse chromatic emittances of LWFA beams into direct FEL gain advantage. Numerical simulations are presented showing that this beam manipulation can further enhance by orders of magnitude the peak power of the radiation. (paper)

  5. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus

    2016-04-09

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  6. In-situ CdS/CdTe Heterojuntions Deposited by Pulsed Laser Deposition

    KAUST Repository

    Avila-Avendano, Jesus; Mejia, Israel; Alshareef, Husam N.; Guo, Zaibing; Young, Chadwin; Quevedo-Lopez, Manuel

    2016-01-01

    In this paper pulsed laser deposition (PLD) methods are used to study p-n CdTe/CdS heterojunctions fabricated in-situ. In-situ film deposition allows higher quality p-n interfaces by minimizing spurious contamination from the atmosphere. Morphologic and structural analyses were carried for CdTe films deposited on various substrates and different deposition conditions. The electrical characteristics and performance of the resulting p-n heterojunctions were studied as function of substrate and post-deposition anneal temperature. In-situ growth results on diodes with a rectification factor of ~ 105, an ideality factor < 2, and a reverse saturation current ~ 10-8 A. The carrier concentration in the CdTe film was in the range of ~ 1015 cm-3, as measured by C-V methods. The possible impact of sulfur diffusion from the CdS into the CdTe film is also investigated using High Resolution Rutherford Back-Scattering.

  7. Principles of alignment of multi-beam lasers for thermonuclear purposes

    International Nuclear Information System (INIS)

    Basov, N.G.; Belyan, B.F.; Zhilkin, G.P.

    1978-01-01

    The problems of methods and equipment for power pulse laser adjustment, as well as the problem of adjustment automatization are considered. The adjustment of a power 12-channel ''Dolphin'' laser installation on the neodymium glass is taken as a concrete object. The adjustment objects are optical track of laser installation, guidance and laser radiation focusing system on the target, the system of target delivery to the focal volume, control system of element optical quality of laser installation and laser beams, as well as target radiation conditions in vacuum chamber. List of requirements of adjustment beams, possible sources of adjustment beams, equipment complex and laser installation adjustment methods are considered. The principles and scheme solutions of automatic adjustment of optical elements are discussed and the description of working samples of automatic joints is given. The problem of working laser beams imitation by adjusting and the possibilities of automatization of laser radiation space-angle characteristics control are considered. The control scheme of adjustment processes with computer as well as the switching on of adjustment automatic subsystem in the general automatization scheme of the ''Dolphin'' installation are discussed

  8. Automated translating beam profiler for in situ laser beam spot-size and focal position measurements

    Science.gov (United States)

    Keaveney, James

    2018-03-01

    We present a simple and convenient, high-resolution solution for automated laser-beam profiling with axial translation. The device is based on a Raspberry Pi computer, Pi Noir CMOS camera, stepper motor, and commercial translation stage. We also provide software to run the device. The CMOS sensor is sensitive over a large wavelength range between 300 and 1100 nm and can be translated over 25 mm along the beam axis. The sensor head can be reversed without changing its axial position, allowing for a quantitative estimate of beam overlap with counter-propagating laser beams. Although not limited to this application, the intended use for this device is the automated measurement of the focal position and spot-size of a Gaussian laser beam. We present example data of one such measurement to illustrate device performance.

  9. Laser-Compton Scattering as a Potential Electron Beam Monitor

    International Nuclear Information System (INIS)

    Chouffani, K.; Wells, D.; Harmon, F.; Lancaster, G.; Jones, J.

    2002-01-01

    LCS experiments were carried out at the Idaho Accelerator Center (IAC); sharp monochromatic x-ray lines were observed. These are produced using the so-called inverse Compton effect, whereby optical laser photons are collided with a relativistic electron beam. The back-scattered photons are then kinematically boosted to keV x-ray energies. We have first demonstrated these beams using a 20 MeV electron beam collided with a 100 MW, 7 ns Nd; YAG laser. We observed narrow LCS x-ray spectral peaks resulting from the interaction of the electron beam with the Nd; YAG laser second harmonic (532 nm). The LCS x-ray energy lines and energy deviations were measured as a function of the electron beam energy and energy-spread respectively. The results showed good agreement with the predicted valves. LCS could provide an excellent probe of electron beam energy, energy spread, transverse and longitudinal distribution and direction

  10. Laser spectroscopy of relativistic beams of H- and H

    International Nuclear Information System (INIS)

    Smith, W.W.; Tang, C.Y.; Harris, P.G.; Mohagheghi, A.H.; Bryant, H.C.; Reeder, R.A.; Toutounchi, H.; Sharifian, H.

    1989-01-01

    Laser spectroscopy on near-light velocity H- ions and H atoms has been carried out at the Los Alamos Meson Physics Facility using a variety of fixed frequency lasers intersecting accelerated beams at variable angles. Beam energies up to 800 MeV (v/c) = 0.84 make possible an unusually wide tuning range at modestly high resolution. A dedicated beam line, the High Resolution Atomic Beam (HIRAB), also makes possible Stark effect and field ionization studies in the multi-megavolt/cm range. Preliminary results on multiphoton detachment of fast H-ions using a pulsed CO 2 laser focussed to ∼10 11 W/cm 2 over a factor 10 photon energy range (CM frame) are presented in this paper

  11. Full-Duplex Digital Communication on a Single Laser Beam

    Science.gov (United States)

    Hazzard, D. A.; MacCannell, J. A.; Lee, G.; Selves, E. R.; Moore, D.; Payne, J. A.; Garrett, C. D.; Dahlstrom, N.; Shay, T. M.

    2006-01-01

    A proposed free-space optical communication system would operate in a full-duplex mode, using a single constant-power laser beam for transmission and reception of binary signals at both ends of the free-space optical path. The system was conceived for two-way data communication between a ground station and a spacecraft in a low orbit around the Earth. It has been estimated that in this application, a data rate of 10 kb/s could be achieved at a ground-station-to-spacecraft distance of 320 km, using a laser power of only 100 mW. The basic system concept is also applicable to terrestrial free-space optical communications. The system (see figure) would include a diode laser at one end of the link (originally, the ground station) and a liquid-crystal- based retroreflecting modulator at the other end of the link (originally, the spacecraft). At the laser end, the beam to be transmitted would be made to pass through a quarter-wave plate, which would convert its linear polarization to right circular polarization. For transmission of data from the laser end to the retroreflector end, the laser beam would be modulated with subcarrier phase-shift keying (SC-PSK). The transmitted beam would then pass through an aperture- sharing element (ASE) - basically, a mirror with a hole in it, used to separate the paths of the transmitted and received light beams. The transmitted beam would continue outward through a telescope (which, in the original application, would be equipped with a spacecraft-tracking system) that would launch the transmitted beam along the free-space optical path to the retroreflector end.

  12. Frequency stabilization of a He-Ne gas laser by controlling refractive index of laser plasma

    International Nuclear Information System (INIS)

    Xie Yi; Wu Yizun

    1991-01-01

    A new way to stabilize the frequency of a Zeeman He-Ne gas laser is described. The laser frequency is stabilized by controlling the refractive index of the laser plasma. It does not need a gas laser tube with a piezoelectric ceramic (PZT) made by special technology. As the phase-locking technology is used in the laser servo system, the self-beat frequency is a constant and the frequency stability is better than 2.2 x 10 -11 (averaging time = 10 sec.). The long term frequency fluctuation never exceeded 2 x 10 -8 during two months. The frequency of the locked point can be adjusted continuously in the range of over 200 MHz

  13. Applicability evaluation of eddy current testing for underwater laser beam welding

    International Nuclear Information System (INIS)

    Kobayashi, Noriyasu; Kasuya, Takashi; Ueno, Souichi; Ochiai, Makoto; Yuguchi, Yasuhiro

    2010-01-01

    We clarified a defect detecting capability of eddy current testing (ECT) as a surface inspection technique for underwater laser beam welding. An underwater laser beam welding procedure includes groove caving as a preparation, laser beam welding in groove and welding surface grinding as a post treatment. Therefore groove and grinded welding surface inspections are required underwater. We curried out defect detection tests using three kinds of specimens simulated a groove, reactor vessel nozzle dissimilar metal welding materials and a laser beam welding material with a cross coil ECT probe. From experimental results, we confirmed that it is possible to detect 0.3 mm or more depth electro-discharge machining slits on machining surfaces in all specimens and an ECT has possibility as a surface inspection technique for underwater laser beam welding. (author)

  14. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence.

    Science.gov (United States)

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-10

    The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens-Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

  15. ELIMED, future hadrontherapy applications of laser-accelerated beams

    International Nuclear Information System (INIS)

    Cirrone, Giuseppe A.P.; Carpinelli, Massimo; Cuttone, Giacomo; Gammino, Santo; Bijan Jia, S.; Korn, Georg; Maggiore, Mario; Manti, Lorenzo; Margarone, Daniele; Prokupek, Jan; Renis, Marcella; Romano, Francesco; Schillaci, Francesco; Tomasello, Barbara; Torrisi, Lorenzo; Tramontana, Antonella; Velyhan, Andriy

    2013-01-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications. -- Highlights: •We simulated the energy selection system, in order to optimize the device. •We simulated the experimental setup for the run at the TARANIS laser system. •We studied the efficiency of the devise for a proton beam with an uniform energy spectrum

  16. ELIMED, future hadrontherapy applications of laser-accelerated beams

    Energy Technology Data Exchange (ETDEWEB)

    Cirrone, Giuseppe A.P. [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Carpinelli, Massimo [INFN Sezione di Caglari, c/o Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cuttone, Giacomo; Gammino, Santo [INFN-LNS, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Mashhad (Iran, Islamic Republic of); Korn, Georg [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Maggiore, Mario [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); INFN-LNL, Legnaro (Italy); Manti, Lorenzo [University Federico II of Naples, Dip.to di Scienze Fisiche, Naples (Italy); Margarone, Daniele; Prokupek, Jan [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Renis, Marcella [University of Catania, Catania (Italy); Romano, Francesco [INFN-LNS, Catania (Italy); Centro Studi e Ricerche “E. Fermi”, Roma (Italy); Schillaci, Francesco, E-mail: francesco.schillaci@eli-beams.eu [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic); Tomasello, Barbara [University of Catania, Catania (Italy); Torrisi, Lorenzo [INFN-LNS, Catania (Italy); Dip. to di Fisica, University of Messina, Messina (Italy); Tramontana, Antonella [INFN-LNS, Catania (Italy); Velyhan, Andriy [Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic)

    2013-12-01

    Laser-ion acceleration has recently gained a great interest as an alternative to conventional and more expensive acceleration techniques. These ion beams have desirable qualities such as small source size, high luminosity and small emittance to be used in different fields as Nuclear Physics, Medical Physics, etc. This is very promising specially for the future perspective of a new concept of hadrontherapy based on laser-based devices could be developed, replacing traditional accelerating machines. Before delivering laser-driven beams for treatments they have to be handled, cleaned from unwanted particles and characterized in order to have the clinical requirements. In fact ion energy spectra have exponential trend, almost 100% energy spread and a wide angular divergence which is the biggest issue in the beam transport and, hence, in a wider use of this technology. In order to demonstrate the clinical applicability of laser-driven beams new collaboration between ELI-Beamlines project researchers from Prague (Cz) and a INFN-LNS group from Catania (I) has been already launched and scientists from different countries have already express their will in joining the project. This cooperation has been named ELIMED (MEDical application at ELIBeamlines) and will take place inside the ELI-Beamlines infrastructure located in Prague. This work describes the schedule of the ELIMED project and the design of the energy selector which will be realized at INFN-LNS. The device is an important part of the whole transport beam line which will be realised in order to make the ion beams suitable for medical applications. -- Highlights: •We simulated the energy selection system, in order to optimize the device. •We simulated the experimental setup for the run at the TARANIS laser system. •We studied the efficiency of the devise for a proton beam with an uniform energy spectrum.

  17. Laser optical pumping of sodium and lithium atom beams

    International Nuclear Information System (INIS)

    Cusma, J.T.

    1983-01-01

    The method of optical pumping with a continuous wave dye laser has been used to produce beams of polarized 23 Na atoms and polarized 6 Li atoms. Optical pumping of a 23 Na atom beam using either a multimode dye laser or a single frequency dye laser with a double passed acousto-optic modulator results in electron spin polarizations of 0.70-0.90 and nuclear spin polarizations of 0.75-0.90. Optical pumping of a 6 Li atom beam using a single frequency dye laser either with an acousto-optic modulator or with Doppler shift pumping results in electron spin polarizations of 0.77-0.95 and nuclear spin polarizations greater than 0.90. The polarization of the atom beam is measured using either the laser induced fluorescence in an intermediate magnetic field or a 6-pole magnet to determine the occupation probabilities of the ground hyperfine sublevels following optical pumping. The results of the laser optical pumping experiments agree with the results of a rate equation analysis of the optical pumping process which predicts that nearly all atoms are transferred into a single sublevel for our values of laser intensity and interaction time. The use of laser optical pumping in a polarized ion source for nuclear scattering experiments is discussed. The laser optical pumping method provides a means of constructing an intense source of polarized Li and Na ions

  18. The laser beam welding test of ODS fuel claddings

    International Nuclear Information System (INIS)

    Uwaba, Tomoyuki; Ukai, Shigeharu

    2004-06-01

    As a alternative method of pressurized resistance welding being currently developed, integrity evaluations for a laser beam welding joint between a ODS cladding tube and a FMS end plug were conducted for the purpose of studying the applicability of the laser beam welding technique to the welding with the lower end plug. The laser beam welding causes blowholes in the welding zone, whose effect on the high cycle fatigue strength of the joint is essential because of the flow-induced vibration during irradiation. The rotary bending tests using specimens with laser beam welding between ODS cladding tubes and FMS end plugs were carried out to evaluate the fatigue strength of the welding joint containing blowholes. The fatigue limit of stress amplitude about 200 MPa from 10 6 -10 7 cycles suggested that the laser beam welding joint had enough strength against the flow-induced vibration. Sizing of blowholes in the welding zone by using a micro X ray CT technique estimated the rate of defect areas due to blowholes at 1-2%. It is likely that the fatigue strength remained nearly unaffected by blowholes because of the no correlation between the breach of the rotary bending test specimen and the rate of defect area. Based on results of tensile test, internal burst test, Charpy impact test and fatigue test of welded zone, including study of allowable criteria of blowholes in the inspection, it is concluded that the laser beam welding can be probably applied to the welding between the ODS cladding tube and the FMS lower end plug. (author)

  19. Turbulence-induced persistence in laser beam wandering.

    Science.gov (United States)

    Zunino, Luciano; Gulich, Damián; Funes, Gustavo; Pérez, Darío G

    2015-07-01

    We have experimentally confirmed the presence of long-memory correlations in the wandering of a thin Gaussian laser beam over a screen after propagating through a turbulent medium. A laboratory-controlled experiment was conducted in which coordinate fluctuations of the laser beam were recorded at a sufficiently high sampling rate for a wide range of turbulent conditions. Horizontal and vertical displacements of the laser beam centroid were subsequently analyzed by implementing detrended fluctuation analysis. This is a very well-known and widely used methodology to unveil memory effects from time series. Results obtained from this experimental analysis allow us to confirm that both coordinates behave as highly persistent signals for strong turbulent intensities. This finding is relevant for a better comprehension and modeling of the turbulence effects in free-space optical communication systems and other applications related to propagation of optical signals in the atmosphere.

  20. Characteristics of a laser beam produced by using thermal lensing effect compensation in a fiber-coupled laser-diode-pumped Nd:YAG ceramic laser

    International Nuclear Information System (INIS)

    Kim, Duck-Lae; Kim, Byung-Tai

    2010-01-01

    The characteristics of a laser beam produced by using thermal lensing effect compensation in a fiber-coupled laser-diode Nd:YAG ceramic laser were investigated. The thermal lensing effect was compensated for by using a compensator, which was 25 mm away from the laser rod, with a focal length of 30 mm and an effective clear aperture of 22 mm. Using a compensator, the divergence and the beam propagation factor M 2 of the output beam were 5.5 mrad and 2.4, respectively, under a pump power of 12W. The high-frequency components in the compensated laser beam were removed.

  1. Atmospheric Error Correction of the Laser Beam Ranging

    Directory of Open Access Journals (Sweden)

    J. Saydi

    2014-01-01

    Full Text Available Atmospheric models based on surface measurements of pressure, temperature, and relative humidity have been used to increase the laser ranging accuracy by ray tracing. Atmospheric refraction can cause significant errors in laser ranging systems. Through the present research, the atmospheric effects on the laser beam were investigated by using the principles of laser ranging. Atmospheric correction was calculated for 0.532, 1.3, and 10.6 micron wavelengths through the weather conditions of Tehran, Isfahan, and Bushehr in Iran since March 2012 to March 2013. Through the present research the atmospheric correction was computed for meteorological data in base of monthly mean. Of course, the meteorological data were received from meteorological stations in Tehran, Isfahan, and Bushehr. Atmospheric correction was calculated for 11, 100, and 200 kilometers laser beam propagations under 30°, 60°, and 90° rising angles for each propagation. The results of the study showed that in the same months and beam emission angles, the atmospheric correction was most accurate for 10.6 micron wavelength. The laser ranging error was decreased by increasing the laser emission angle. The atmospheric correction with two Marini-Murray and Mendes-Pavlis models for 0.532 nm was compared.

  2. Intra-cavity decomposition of a dual-directional laser beam

    CSIR Research Space (South Africa)

    Naidoo, Darryl

    2011-01-01

    Full Text Available A method of decomposing a dual-directional laser beam into a forward propagating field and a backward propagating field for an apertured plano-concave cavity is presented. An intra-cavity aperture is a simple method of laser beam shaping as higher...

  3. High quality electron beams from a laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, S M; Issac, R C; Welsh, G H; Brunetti, E; Shanks, R P; Anania, M P; Cipiccia, S; Manahan, G G; Aniculaesei, C; Ersfeld, B; Islam, M R; Burgess, R T L; Vieux, G; Jaroszynski, D A [SUPA, Department of Physics, University of Strathclyde, Glasgow (United Kingdom); Gillespie, W A [SUPA, Division of Electronic Engineering and Physics, University of Dundee, Dundee (United Kingdom); MacLeod, A M [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee (United Kingdom); Van der Geer, S B; De Loos, M J, E-mail: m.wiggins@phys.strath.ac.u [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands)

    2010-12-15

    High quality electron beams have been produced in a laser-plasma accelerator driven by femtosecond laser pulses with a peak power of 26 TW. Electrons are produced with an energy up to 150 MeV from the 2 mm gas jet accelerator and the measured rms relative energy spread is less than 1%. Shot-to-shot stability in the central energy is 3%. Pepper-pot measurements have shown that the normalized transverse emittance is {approx}1{pi} mm mrad while the beam charge is in the range 2-10 pC. The generation of high quality electron beams is understood from simulations accounting for beam loading of the wakefield accelerating structure. Experiments and self-consistent simulations indicate that the beam peak current is several kiloamperes. Efficient transportation of the beam through an undulator is simulated and progress is being made towards the realization of a compact, high peak brilliance free-electron laser operating in the vacuum ultraviolet and soft x-ray wavelength ranges.

  4. Nonsequential multiphoton double ionization of He in intense laser - a QED approach

    International Nuclear Information System (INIS)

    Bhattacharyya, S.; Mazumder, Mina; Chakrabarti, J.; Faisal, F.H.M.

    2010-01-01

    The non-sequential muItiphoton double ionization (NSDI) of He in intense laser field is not yet completely understood, more so for spin resolved currents. We are tempted to use QED and Feynman diagram to obtain spin polarized currents. Hartree-Fock (HF) ground-state correlated wave function of He atom is considered in circularly polarized laser. In QED approach one of the electrons is directly ionized by photon absorption while the second electron is shaken off due to the change in the internal potential of the atom. In He-atom the two ionized electrons can only be in the singlet spin state. Spin-symmetric and spin-flip transitions are eventually possible for the direct and the shake-off electrons. In an ensemble of (HF type) He-atoms the ionized Volkov electrons may acquire 4 pairs of momenta indicating e-e correlation in the final state. Coulomb correction is taken care off through the Sommerfeld factor

  5. Characterisation of electron beams from laser-driven particle accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Brunetti, E.; Manahan, G. G.; Shanks, R. P.; Islam, M. R.; Ersfeld, B.; Anania, M. P.; Cipiccia, S.; Issac, R. C.; Vieux, G.; Welsh, G. H.; Wiggins, S. M.; Jaroszynski, D. A. [Physics Department, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2012-12-21

    The development, understanding and application of laser-driven particle accelerators require accurate measurements of the beam properties, in particular emittance, energy spread and bunch length. Here we report measurements and simulations showing that laser wakefield accelerators can produce beams of quality comparable to conventional linear accelerators.

  6. From laser cooling of non-relativistic to relativistic ion beams

    International Nuclear Information System (INIS)

    Schramm, U.; Bussmann, M.; Habs, D.

    2004-01-01

    Laser cooling of stored 24 Mg + ion beams recently led to the long anticipated experimental realization of Coulomb-ordered 'crystalline' ion beams in the low-energy RF-quadrupole storage ring PAul Laser CooLing Acceleration System (Munich). Moreover, systematic studies revealed severe constraints on the cooling scheme and the storage ring lattice for the attainment and maintenance of the crystalline state of the beam, which will be summarized. With the envisaged advent of high-energy heavy ion storage rings like SIS 300 at GSI (Darmstadt), which offer favourable lattice conditions for space-charge-dominated beams, we here discuss the general scaling of laser cooling of highly relativistic beams of highly charged ions and present a novel idea for direct three-dimensional beam cooling by forcing the ions onto a helical path

  7. UV-Induced Anisotropy In CdBr2-CdBr2: Cu Nanostructures

    Directory of Open Access Journals (Sweden)

    El-Naggar A. M.

    2015-09-01

    Full Text Available We have found an occurrence of anisotropy in the nanostructure CdBr2-CdBr2: Cu nanocrystalline films. The film thickness was varied from 4 nm up to 80 nm. The films were prepared by successive deposition of the novel layers onto the basic nanocrystals. The detection of anisotropy was performed by occurrence of anisotropy in the polarized light at 633 nm He-Ne laser wavelength. The occurrence of anisotropy was substantially dependent on the film thickness and the photoinduced power density. Possible mechanisms of the observed phenomena are discussed.

  8. Real-time determination of laser beam quality by modal decomposition.

    Science.gov (United States)

    Schmidt, Oliver A; Schulze, Christian; Flamm, Daniel; Brüning, Robert; Kaiser, Thomas; Schröter, Siegmund; Duparré, Michael

    2011-03-28

    We present a real-time method to determine the beam propagation ratio M2 of laser beams. The all-optical measurement of modal amplitudes yields M2 parameters conform to the ISO standard method. The experimental technique is simple and fast, which allows to investigate laser beams under conditions inaccessible to other methods.

  9. submitter Parametric study of transport beam lines for electron beams accelerated by laser-plasma interaction

    CERN Document Server

    Scisciò, M; Migliorati, M; Mostacci, A; Palumbo, L; Papaphilippou, Y; Antici, P

    2016-01-01

    In the last decade, laser-plasma acceleration of high-energy electrons has attracted strong attention in different fields. Electrons with maximum energies in the GeV range can be laser-accelerated within a few cm using multi-hundreds terawatt (TW) lasers, yielding to very high beam currents at the source (electron bunches with up to tens-hundreds of pC in a few fs). While initially the challenge was to increase the maximum achievable electron energy, today strong effort is put in the control and usability of these laser-generated beams that still lack of some features in order to be used for applications where currently conventional, radio-frequency (RF) based, electron beam lines represent the most common and efficient solution. Several improvements have been suggested for this purpose, some of them acting directly on the plasma source, some using beam shaping tools located downstream. Concerning the latter, several studies have suggested the use of conventional accelerator magnetic devices (such as quadrupo...

  10. Suitability test of a high beam quality Nd:YVO4 industrial laser for the ISOLDE RILIS installation.

    CERN Document Server

    Marsh, B; Fink, D; Goodacre, T; Rothe, S; Seliverstov, M; Imai, N; Sjodin, M; Rossel, R

    2013-01-01

    A multi-stage test of a Blaze 532-40-HE diode pumped Nd:YVO4 laser, supplied as a loan by Lumera Laser GmbH, has been performed at the ISOLDE RILIS installation. The feasibility of the integration of this laser within the existing laser setup was confirmed and its suitability for non-resonant ionization, dye laser pumping and Ti:Sa laser pumping has been assessed. The high beam quality (M2=1.1) and low jitter (<3 ns) are important parameters for effective power delivery to the ISOLDE ion source to provide the radiation for the non-resonant final step of a RILIS ionization scheme. To fulfil the reliability demands of an industrial laser, features such as multi-parameter logging, remote performance monitoring and optimization are included. The tests demonstrate the suitability of the laser for the three applications at RILIS, particularly for non-resonant ionization and dye laser pumping. The integration of this laser in the ISOLDE RILIS setup would be a significant upgrade to the laboratory that would resul...

  11. On a laser beam fiducial line application for metrological purposes

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, J.; Lyablin, M.; Rusakovich, N.; Sisakyan, A.; Topilin, N.; Khubua, J.; Lasseur, C.

    2008-01-01

    The possibility of a collimated one-mode laser beam used as a fiducial line is considered. The technology of an 'extended' laser beam formation and application for a much extended fiducial line is proposed

  12. Generation and transport of laser accelerated ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, Peter; Boine-Frankenheim, Oliver [Technische Univ. Darmstadt (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Kornilov, Vladimir; Spaedtke, Peter [GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Collaboration: LIGHT-Collaboration

    2013-07-01

    Currently the LIGHT- Project (Laser Ion Generation, Handling and Transport) is performed at the GSI Helmholtzzentrum fuer Schwerionenforschung GmbH Darmstadt. Within this project, intense proton beams are generated by laser acceleration, using the TNSA mechanism. After the laser acceleration the protons are transported through the beam pipe by a pulsed power solenoid. To study the transport a VORPAL 3D simulation is compared with CST simulation. A criterion as a function of beam parameters was worked out, to rate the importance of space charge. Furthermore, an exemplary comparison of the solenoid with a magnetic quadrupole-triplet was carried out. In the further course of the LIGHT-Project, it is planned to generate ion beams with higher kinetic energies, using ultra-thin targets. The acceleration processes that can appear are: RPA (Radiation Pressure Acceleration) and BOA (Break-Out Afterburner). Therefore the transport of an ion distribution will be studied, as it emerges from a RPA acceleration.

  13. Statistical spatial properties of speckle patterns generated by multiple laser beams

    International Nuclear Information System (INIS)

    Le Cain, A.; Sajer, J. M.; Riazuelo, G.

    2011-01-01

    This paper investigates hot spot characteristics generated by the superposition of multiple laser beams. First, properties of speckle statistics are studied in the context of only one laser beam by computing the autocorrelation function. The case of multiple laser beams is then considered. In certain conditions, it is shown that speckles have an ellipsoidal shape. Analytical expressions of hot spot radii generated by multiple laser beams are derived and compared to numerical estimates made from the autocorrelation function. They are also compared to numerical simulations performed within the paraxial approximation. Excellent agreement is found for the speckle width as well as for the speckle length. Application to the speckle patterns generated in the Laser MegaJoule configuration in the zone where all the beams overlap is presented. Influence of polarization on the size of the speckles as well as on their abundance is studied.

  14. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    International Nuclear Information System (INIS)

    Bussmann, Michael

    2008-01-01

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C 3+ ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged 24 Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  15. Distribution uniformity of laser-accelerated proton beams

    Science.gov (United States)

    Zhu, Jun-Gao; Zhu, Kun; Tao, Li; Xu, Xiao-Han; Lin, Chen; Ma, Wen-Jun; Lu, Hai-Yang; Zhao, Yan-Ying; Lu, Yuan-Rong; Chen, Jia-Er; Yan, Xue-Qing

    2017-09-01

    Compared with conventional accelerators, laser plasma accelerators can generate high energy ions at a greatly reduced scale, due to their TV/m acceleration gradient. A compact laser plasma accelerator (CLAPA) has been built at the Institute of Heavy Ion Physics at Peking University. It will be used for applied research like biological irradiation, astrophysics simulations, etc. A beamline system with multiple quadrupoles and an analyzing magnet for laser-accelerated ions is proposed here. Since laser-accelerated ion beams have broad energy spectra and large angular divergence, the parameters (beam waist position in the Y direction, beam line layout, drift distance, magnet angles etc.) of the beamline system are carefully designed and optimised to obtain a radially symmetric proton distribution at the irradiation platform. Requirements of energy selection and differences in focusing or defocusing in application systems greatly influence the evolution of proton distributions. With optimal parameters, radially symmetric proton distributions can be achieved and protons with different energy spread within ±5% have similar transverse areas at the experiment target. Supported by National Natural Science Foundation of China (11575011, 61631001) and National Grand Instrument Project (2012YQ030142)

  16. HeNe-laser light scattering by human dental enamel

    NARCIS (Netherlands)

    Zijp, [No Value; tenBosch, JJ; Groenhuis, RAJ

    1995-01-01

    Knowledge of the optical properties of tooth enamel and an understanding of the origin of these properties are necessary for the development of new optical methods for caries diagnosis and the measurement of tooth color. We measured the scattering intensity functions for HeNe-laser light of 80- to

  17. Transverse Laser Beam Shaping in High Brightness Electron Gun at ATF

    CERN Document Server

    Roychowdhury, S

    2005-01-01

    The brightness of electron beams from a photo injector is influenced by the transverse and longitudinal distribution of the laser beam illuminating the cathode. Previous studies at Brookhaven Accelerator Test Facility have shown that formation of an ideal e-beam with lowest transverse emittance requires uniform circular distribution of the emitted electrons. The use of the uniformly distributed power of the laser beam may not lead to that of the emitted electrons because of the non-uniform quantum efficiency. A proper shaping of the laser beam can compensate for this non-uniformity. In this paper we describe the use of digital light processing (DLP) technique based on digital mirror device (DMD) for spatial modulation of the laser beam, for measurements of the quantum efficiency map, and for creating the desirable e-beam density profiles. A DMD is aμelectronic mechanical system (MEMS) comprising of millions of highly reflectiveμmirrors controlled by underlying electronics. We present exper...

  18. Electron beam cooling by laser

    CERN Document Server

    Urakawa, J; Terunuma, N; Taniguchi, T; Yamazaki, Y; Hirano, K; Nomura, M; Sakai, I; Takano, M; Sasao, N; Honda, Y; Noda, A; Bulyak, E; Gladkikh, P; Mystykov, A; Zelinsky, A; Zimmermann, Frank

    2004-01-01

    In 1997, Z.Huang and R.Ruth proposed a compact laser-electron storage ring (LESR) for electron beam cooling or x-ray generation. Because the laser-wire monitor in the ATF storage ring has worked well and demonstrated the achievement of the world's smallest transverse emittance for a circulating electron beam, we have started the design of a small storage ring with about 10 m circumference and the development of basic technologies for the LESR. In this paper, we describe the design and experimental results of pulse stacking in a 42-cm long optical cavity. Since our primary purpose is demonstrating the proof-of-principle of the LESR, we will then discuss the future experimental plan at the KEK-ATF for the generation of high average-brilliance gamma-rays.

  19. An online, energy-resolving beam profile detector for laser-driven proton beams

    Energy Technology Data Exchange (ETDEWEB)

    Metzkes, J.; Rehwald, M.; Obst, L.; Schramm, U. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Technische Universität Dresden, 01062 Dresden (Germany); Zeil, K.; Kraft, S. D.; Sobiella, M.; Schlenvoigt, H.-P. [Helmholtz-Zentrum Dresden–Rossendorf (HZDR), Bautzner Landstr. 400, 01328 Dresden (Germany); Karsch, L. [OncoRay-National Center for Radiation Research in Oncology, Technische Universität Dresden, 01307 Dresden (Germany)

    2016-08-15

    In this paper, a scintillator-based online beam profile detector for the characterization of laser-driven proton beams is presented. Using a pixelated matrix with varying absorber thicknesses, the proton beam is spatially resolved in two dimensions and simultaneously energy-resolved. A thin plastic scintillator placed behind the absorber and read out by a CCD camera is used as the active detector material. The spatial detector resolution reaches down to ∼4 mm and the detector can resolve proton beam profiles for up to 9 proton threshold energies. With these detector design parameters, the spatial characteristics of the proton distribution and its cut-off energy can be analyzed online and on-shot under vacuum conditions. The paper discusses the detector design, its characterization and calibration at a conventional proton source, as well as the first detector application at a laser-driven proton source.

  20. Double-sided electron-beam generator for KrF laser excitation

    International Nuclear Information System (INIS)

    Schlitt, L.; Swingle, J.

    1980-05-01

    Several laser systems excited by electron beam have been identified as candidates for pump sources for laser fusion applications. The electron beam generators required must be compact, reliable and capable of synchronization with other system components. A KrF laser producing a minimum output of 25 J was needed for the RAPIER (Raman Amplifier Pumped by Intensified Excimer Radiation) system. A double-sided electron beam system was designed and constructed specifically for this purpose and has produced > 35 J of KrF output. Each of the two electron beam machines in the system operates with an rms jitter of 0.4 ns and together occupy approx. 3.5 m 2 of floor space. The successful operation of this laser has engendered requests for a description of the engineering details of this system. This document contains a brief description of the design issues and a full set of engineering drawings for this KrF laser amplifier

  1. Metal impurity injection into DIVA plasmas with a Q-switched laser beam

    International Nuclear Information System (INIS)

    Yamauchi, Toshihiko; Nagami, Masayuki; Sengoku, Seio; Kumagai, Katsuaki

    1978-08-01

    Metal impurity injection into DIVA plasmas with a Q-switched ruby laser beam is described. Metal materials used are aluminium and gold. The Q-switched laser beam is incident onto a thin metal film thickness about 0.2 μm coated on pyrex glass plate surface. The metal film is vaporized by the laser beam and injected into DIVA plasma. The laser-beam injection method has advantages of sharp profile of vaporized metal, easy control of vaporized metal quantity and injection rate control of metal vapor. (author)

  2. Longitudinal dynamics of laser-cooled fast ion beams

    DEFF Research Database (Denmark)

    Weidemüller, M.; Eike, B.; Eisenbarth, U.

    1999-01-01

    We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal-transverse co......We present recent results of our experiments on laser cooling of fast stored ion beams at the Heidelberg Test Storage Ring. The longitudinal motion of the ions is directly cooled by the light pressure force, whereas efficient transverse cooling is obtained indirectly by longitudinal....... When applying laser cooling in square-well buckets over long time intervals, hard Coulomb collisions suddenly disappear and the longitudinal temperature drops by about a factor of three. The observed longitudinal behaviour of the beam shows strong resemblance with the transition to an Coulomb...

  3. Large area electron beam pumped krypton fluoride laser amplifier

    International Nuclear Information System (INIS)

    Sethian, J.D.; Obenschain, S.P.; Gerber, K.A.; Pawley, C.J.; Serlin, V.; Sullivan, C.A.; Webster, W.; Deniz, A.V.; Lehecka, T.; McGeoch, M.W.; Altes, R.A.; Corcoran, P.A.; Smith, I.D.; Barr, O.C.

    1997-01-01

    Nike is a recently completed multi-kilojoule krypton fluoride (KrF) laser that has been built to study the physics of direct drive inertial confinement fusion. This paper describes in detail both the pulsed power and optical performance of the largest amplifier in the Nike laser, the 60 cm amplifier. This is a double pass, double sided, electron beam-pumped system that amplifies the laser beam from an input of 50 J to an output of up to 5 kJ. It has an optical aperture of 60 cm x 60 cm and a gain length of 200 cm. The two electron beams are 60 cm high x 200 cm wide, have a voltage of 640 kV, a current of 540 kA, and a flat top power pulse duration of 250 ns. A 2 kG magnetic field is used to guide the beams and prevent self-pinching. Each electron beam is produced by its own Marx/pulse forming line system. The amplifier has been fully integrated into the Nike system and is used on a daily basis for laser-target experiments. copyright 1997 American Institute of Physics

  4. Lasers and particle beam for fusion and strategic defense

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    This special issue of the Journal of Fusion Energy consists of the edited transscripts of a symposium on the applications of laser and particle beams to fusion and strategic defense. Its eleven papers discuss these topics: the Strategic Defense Initiative; accelerators for heavy ion fusion; rf accelerators for fusion and strategic defense; Pulsed power, ICF, and the Strategic Defense Initiative; chemical lasers; the feasibility of KrF lasers for fusion; the damage resistance of coated optic; liquid crystal devices for laser systems; fusion neutral-particle beam research and its contribution to the Star Wars program; and induction linacs and free electron laser amplifiers for ICF devices and directed-energy weapons

  5. Propagation of an intense laser beam in a tapered plasma channel

    International Nuclear Information System (INIS)

    Jha, Pallavi; Singh, Ram Gopal; Upadhyaya, Ajay K.; Mishra, Rohit K.

    2008-01-01

    Propagation characteristics and modulation instability of an intense laser beam propagating in an axially tapered plasma channel, having a parabolic radial density profile, are studied. Using the source-dependent expansion technique, the evolution equation for the laser spot is set up and conditions for propagation of the laser beam with a constant spot size (matched beam) are obtained. Further, the dispersion relation and growth rate of modulation instability of the laser pulse as it propagates through linearly and quadratically tapered plasma channels, have been obtained

  6. GeV electron beams from centimeter-scale channel guided laser wakefield

    International Nuclear Information System (INIS)

    Gonsalves, A.; Nakamura, K.; Panasenko, D.; Toth, Cs.; Esarey, E.; Schroeder; Hooker, S.M.; Leemans, W.P.; Hooker, S.M.

    2007-01-01

    Results are presented on the generation of quasi-monoenergetic electron beams with energy up to 1 GeV using a 40TW laser and a 3.3 cm-long hydrogen-filled capillary discharge waveguide. Electron beams were not observed without a plasma channel, indicating that self-focusing alone could not be relied upon for effective guiding of the laser pulse. Results are presented of the electron beam spectra, and the dependence of the reliability of producing electron beams as a function of laser and plasma parameters

  7. Property Investigation of Laser Cladded, Laser Melted and Electron Beam Melted Ti-Al6-V4

    Science.gov (United States)

    2006-05-01

    UNCLASSIFIED/UNLIMITED UNCLASSIFIED/UNLIMITED Figure 3: Examples of electron beam melted net shape parts; powder bed [3]. 1.4 Laser Cladding ...description, www.arcam.com. [4] K.-H. Hermann, S. Orban, S. Nowotny, Laser Cladding of Titanium Alloy Ti6242 to Restore Damaged Blades, Proceedings...Property Investigation of Laser Cladded , Laser Melted and Electron Beam Melted Ti-Al6-V4 Johannes Vlcek EADS Deutschland GmbH Corporate Research

  8. A laser-based beam profile monitor for the SLC/SLD interaction region

    International Nuclear Information System (INIS)

    Alley, R.; Arnett, D.; Bong, E.; Colocho, W.; Frisch, J.; Horton-Smith, S.; Inman, W.; Jobe, K.; Kotseroglou, T.; McCormick, D.; Nelson, J.; Scheeff, M.; Wagner, S.; Ross, M.C.

    1996-01-01

    Beam size estimates made using beam-beam deflections are used for optimization of the Stanford linear collider (SLC) electron-positron beam sizes. Typical beam sizes and intensities expected for 1996 operations are 2.1 x 0.6 μm (x, y) at 4.0.10 10 particles per pulse. Conventional profile monitors, such as scanning wires, fail at charge densities well below this. The laser-based profile monitor uses a finely-focused 350-nm wavelength tripled YLF laser pulse that traverses the particle beam path about 29 cm away from the e + /e - IP. Compton scattered photons and degraded e + /e - are detected as the beam is steered across the laser pulse. The laser pulse has a transverse size of 380 nm and a Rayleigh range of about 5 μm. (orig.)

  9. Laser beams hazards. Experimental determination of a laser ocular lesion threshold

    International Nuclear Information System (INIS)

    Courant, D.; Court, L.; Gueneau, G.; Bagot, J.D.; Abadie, B.; Brouillet, B.; Laborde, G.; Duchene, A.

    1984-10-01

    The risks due to the use of laser have called for the definition of exposure limits. The determination of these values requires the knowledge of the physical parameters of exposure and both the anatomical and the physiological properties of the skin and the eye. The parameters of the mechanisms involved in the biological effects of laser beams, the concept of damage criteria and the experimental results found in the literature are first discussed. The main parameter of the beam determining the injury: wavelength, time and the size of the image are then analysed. Some examples of experimental determinations of laser ocular lesion thresholds, carried out on the retinae of the rabbit and the monkey, emphasize, the difficulties met in the determination of the exposure limits. These experiments involve the effect of laser beam in the visible spectrum. Several techniques are compared: a direct ophthalmoscopic observation, a method with fluorescein angiography, a histologic study with light microscopy and an electrophysiological study. The results show that the determination of exposure limits is chiefly a function of the experimental techniques used, the delay of the observation after exposure and the probability of risk selected. The experimental results demonstrate the importance of these parameters and bring into light the uncertainties of the present guidelines [fr

  10. Preliminary design of experiment high power density laser beam interaction with plasmas and development of a cold cathode electron beam laser amplifier

    International Nuclear Information System (INIS)

    Mosavi, R.K.; Kohanzadeh, Y.; Taherzadeh, M.; Vaziri, A.

    1976-01-01

    This experiment is designed to produce plasma by carbon dioxide pulsed laser, to measure plasma parameters and to study the interaction of the produced plasma with intense laser beams. The objectives of this experiment are the following: 1. To set up a TEA CO 2 laser oscillator and a cold cathode electron beam laser amplifier together as a system, to produce high energy optical pulses of short duration. 2. To achieve laser intensities of 10 11 watt/cm 2 or more at solid targets of polyethylene (C 2 H 4 )n, lithium hydride (LiH), and lithium deuteride in order to produce high temperature plasmas. 3. To design and develop diagnostic methods for studies of laser-induced plasmas. 4. To develop a high power CO 2 laser amplifier for the purpose of upgrading the optical energy delivered to the targets

  11. Conceptual development of the Laser Beam Manifold (LBM)

    Science.gov (United States)

    Campbell, W.; Owen, R. B.

    1979-01-01

    The laser beam manifold, a device for transforming a single, narrow, collimated beam of light into several beams of desired intensity ratios is described. The device consists of a single optical substrate with a metallic coating on both optical surfaces. By changing the entry point, the number of outgoing beams can be varied.

  12. Advanced chemical oxygen iodine lasers for novel beam generation

    Science.gov (United States)

    Wu, Kenan; Zhao, Tianliang; Huai, Ying; Jin, Yuqi

    2018-03-01

    Chemical oxygen iodine laser, or COIL, is an impressive type of chemical laser that emits high power beam with good atmospheric transmissivity. Chemical oxygen iodine lasers with continuous-wave plane wave output are well-developed and are widely adopted in directed energy systems in the past several decades. Approaches of generating novel output beam based on chemical oxygen iodine lasers are explored in the current study. Since sophisticated physical processes including supersonic flowing of gaseous active media, chemical reacting of various species, optical power amplification, as well as thermal deformation and vibration of mirrors take place in the operation of COIL, a multi-disciplinary model is developed for tracing the interacting mechanisms and evaluating the performance of the proposed laser architectures. Pulsed output mode with repetition rate as high as hundreds of kHz, pulsed output mode with low repetition rate and high pulse energy, as well as novel beam with vector or vortex feature can be obtained. The results suggest potential approaches for expanding the applicability of chemical oxygen iodine lasers.

  13. Laser cooled ion beams and strongly coupled plasmas for precision experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bussmann, Michael

    2008-03-17

    This cumulative thesis summarizes experimental and theoretical results on cooling of ion beams using single-frequency, single-mode tabletop laser systems. It consists of two parts. One deals with experiments on laser-cooling of ion beams at relativistic energies, the other with simulations of stopping and sympathetic cooling of ions for precision in-trap experiments. In the first part, experimental results are presented on laser-cooling of relativistic C{sup 3+} ion beams at a beam energy of 122 MeV/u, performed at the Experimental Storage Ring (ESR) at GSI. The main results presented in this thesis include the first attainment of longitudinally space-charge dominated relativistic ion beams using pure laser-cooling. The second part lists theoretical results on stopping and sympathetic cooling of ions in a laser-cooled one-component plasma of singly charged {sup 24}Mg ions, which are confined in a three-dimensional harmonic trap potential. (orig.)

  14. Dual-beam operation of the Astra Gemini laser facility

    International Nuclear Information System (INIS)

    Bryan Parry; Nicola Booth; Oleg Chekhlov; John Collier; Edwin Divall; Klaus Ertel; Peta Foster; Steve Hawkes; Chris Hooker; Victoria Marshall

    2010-01-01

    Complete text of publication follows. Gemini is a Petawatt class Ti:Sapphire laser system at the Rutherford Appleton Laboratory, UK. It was designed as a dual beam laser, with two independently configurable 800 nm beams delivering 15 J to target in 30 fs pulse duration, giving 0.5 PW peak power per beam. It is capable of reaching intensities over 10 22 W/cm 2 . Gemini can achieve a maximum repetition rate of one shot every 20 seconds, allowing it to deliver hundreds of shots per day; a feature which makes it unique among PW lasers. Already this has proved valuable in experiments involving electron acceleration in gas jets. The first Gemini beamline became operational in 2008. Commissioning of the second beam was deferred to allow earlier access to the facility by experimental scientists, and to develop operational experience. In this mode, Gemini has already produced significant results from a number of advanced plasma physics experiments. The second beam of Gemini is now coming online, with the first dual beam experiment starting in June 2010. The flexibility offered by two short pulse, ultra high intensity beams is another aspect that makes this laser system unique. The dual beams enable versatile configurations and illumination geometries, facilitating a wider range of experiments than is possible with only a single beam. Operationally however, it introduces additional factors which must be monitored and controlled in order to achieve experimental success. The beams must be timed with respect to each other with accuracy less than the pulse duration. The beam foci must also be overlapped spatially, and the stability of both these factors maintained over extended periods. We report on the second beam commissioning process, including the latest results on the characteristics, stability and spatio-temporal overlap of the two beams. We present details of amplifier performance, along with measurements of beam quality, focal spot, pulse duration and contrast, to give a

  15. Molecular beam epitaxy of iodine-doped CdTe and (CdMg)Te

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, F.; Waag, A.; Litz, Th.; Scholl, S.; Schmitt, M.; Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstofforschung, Stuttgart (Germany))

    1994-08-01

    The n-type doping of CdTe and (CdMg)Te by the use of the solid dopant source material ZnI[sub 2] is reported. Doping levels as high as 7x10[sup 18] cm[sup -3] have been obtained in CdTe with carrier mobilities around 500 cm[sup 2]/V[center dot]s at room temperature. For a dopant incorporation higher than 1x10[sup 19] cm[sup -3] the free carrier concentration decreases, indicating the onset of a compensation mechanism, which is observed in the case of chlorine and bromine doping, too. Preliminary experiments show that with increasing Mg concentration the free carrier concentration decreases. Nevertheless, CdMgTe with a magnesium concentration x=0.37 (band gap 2.2 eV at room temperature) can be doped up to 2x10[sup 17] cm[sup -3]. The existence of deep donor levels in this CdTe based ternary is not supposed to be the only reason for the reduction of the free carrier concentration. For high Mg support during molecular beam epitaxial (MBE) growth of wide gap (CdMg)Te layers, the ZnI[sub 2] incorporation is reduced, leading to low doping levels, too

  16. Beam diagnostics for Laser-induced proton generation at KAERI

    International Nuclear Information System (INIS)

    Kim, Dong Heun; Park, Seong Hee; Jeong, Young Uk; Lee, Ki Tae; Chan, Young Ho; Lee, Byung Cheol; Yoo, Byeong Duk

    2005-01-01

    With an advent of femto-second lasers, a laseraccelerated ion generation has been world-widely studied for medical and nuclear applications. It is known that protons with the energy from several tens MeV to a few hundreds MeV require for a cancer therapy and nuclear reaction. Even though, up to present, the maximum energy of laser-accelerated proton is about 60 MeV, it is expected that the energy of protons generated can be obtained at least up to 150 MeV. According to theoretical and experimental works, it turns out the energy distribution and the flux of ions strongly depends on the intensity of a fs laser at a target. However, physics on laser-plasma interaction is still not clear. The precise measurements of parameters of a fs laser and ions are important to figure out the physics and develop the theoretical interpretation. Typically, beam diagnostic system includes measurements and/or monitoring of the temporal and spatial profiles of lasers at the target as well as the energy spectrum and density profile of protons, which are critical for the analysis of mechanism and the characterization of protons generated. We fabricated and installed the target chamber for laser-accelerated proton generation and are now integrating beam diagnostic system. For laser diagnostics, beam monitoring and alignment system has been installed. For a charged particle, CR-39 detectors, Thomson parabola spectrometer, and Si charged particle detectors are installed for density profile and energy spectrum. In this paper, we discuss the laser beam monitoring and alignment system. We also estimates expected spectrum of protons from Thomson parabola spectrometer, depending on the parameters of protons

  17. Dynamics and transport of laser-accelerated particle beams

    International Nuclear Information System (INIS)

    Becker, Stefan

    2010-01-01

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  18. Dynamics and transport of laser-accelerated particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Stefan

    2010-04-19

    The subject of this thesis is the investigation and optimization of beam transport elements in the context of the steadily growing field of laser-driven particle acceleration. The first topic is the examination of the free vacuum expansion of an electron beam at high current density. It could be shown that particle tracking codes which are commonly used for the calculation of space charge effects will generate substantial artifacts in the regime considered here. The artifacts occurring hitherto predominantly involve insufficient prerequisites for the Lorentz transformation, the application of inadequate initial conditions and non negligible retardation artifacts. A part of this thesis is dedicated to the development of a calculation approach which uses a more adequate ansatz calculating space charge effects for laser-accelerated electron beams. It can also be used to validate further approaches for the calculation of space charge effects. The next elements considered are miniature magnetic quadrupole devices for the focusing of charged particle beams. General problems involved with their miniaturization concern distorting higher order field components. If these distorting components cannot be controlled, the field of applications is very limited. In this thesis a new method for the characterization and compensation of the distorting components was developed, which might become a standard method when assembling these permanent magnet multipole devices. The newly developed characterization method has been validated at the Mainz Microtron (MAMI) electron accelerator. Now that we can ensure optimum performance, the first application of permanent magnet quadrupole devices in conjunction with laser-accelerated ion beams is presented. The experiment was carried out at the Z-Petawatt laser system at Sandia National Laboratories. A promising application for laser-accelerated electron beams is the FEL in a university-scale size. The first discussion of all relevant aspects

  19. Optical propagation of the HE11 mode and Gaussian beams in hollow circular waveguides

    International Nuclear Information System (INIS)

    Crenn, J.P.

    1993-05-01

    The propagation of the HE 11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered: hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE 11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed

  20. Automatic tracking of the intersection of a laser and electron beam

    International Nuclear Information System (INIS)

    Turko, B.T.; Fuzesy, R.Z.; Pripstein, D.A.; Kowitt, M.; Chamberlain, O.; Shapiro, G.; Hughes, E.

    1990-05-01

    For the Compton Polarimeter experiment at the Stanford Linear Accelerator the crossing point of a laser beam and an electron beam must be kept accurate and stable. An electronic system is described for the automatic tracking and correcting of the beam crossing. A remote CCD camera, relatively insensitive to electromagnetic disturbance, records small displacements of the pulsed laser beam. Video signals are analyzed at a remote station, the amount of drift from a selected reference point determined and the appropriate correction commands sent to the motorized mirror deflecting the laser beam. A description of the system, its performance and the test results are presented. 2 refs., 4 figs

  1. Beam conditioner for free electron lasers and synchrotrons

    International Nuclear Information System (INIS)

    Liu, H.; Neil, G.R.

    1998-01-01

    A focused optical has been used to introduce an optical pulse, or electromagnetic wave, collinear with the electron beam in a free electron laser or synchrotron thereby adding an axial field component that accelerates the electrons on the radial outside of the distribution of electrons in the electron beam. This invention consists of using the axial electrical component of a TEM 10 mode Gaussian beam in vacuum to condition the electron beam and speed up the outer electrons in the beam. The conditioning beam should possess about the same diameter as the electron beam. The beam waist of the conditioning wave must be located around the entrance of the undulator longitudinally to have a net energy exchange between the electrons in the outer part of the distribution and the conditioning wave owing to the natural divergence of a Gaussian beam. By accelerating the outer electrons, the outer and core electrons are caused to stay in phase. This increases the fraction of the electron beam energy that is converted to light thereby improving the efficiency of conversion of energy to light and therefore boosting the power output of the free electron laser and synchrotron. 4 figs

  2. Stabilization of He2(A(sup 3)Sigma(sub u)(+)) molecules in liquid helium by optical pumping for vacuum UV laser

    Science.gov (United States)

    Zmuidzinas, J. S. (Inventor)

    1978-01-01

    A technique is disclosed for achieving large populations of metastable spin-aligned He2(a 3 Sigma u +) molecules in superfluid helium to obtain lasing in the vacuum ultraviolet wavelength regime around 0.0800 micron m by electronically exciting liquid (superfluid) helium with a comparatively low-current electron beam and spin aligning the metastable molecules by means of optical pumping with a modestly-powered (100mW) circularly-polarized continuous wave laser operating at, for example, 0.9096 or 0.4650 micron m. Once a high concentration of spin-aligned He2 (a 3 Sigma u +) is achieved with lifetimes of a few milliseconds, a strong microwave signal destroys the spin alignment and induces a quick collisional transition of He2 (a 3 Sigma u +) molecules to the a 1 Sigma u + state and thereby a lasing transition to the X 1 Sigma g + state.

  3. Using harmonic oscillators to determine the spot size of Hermite-Gaussian laser beams

    Science.gov (United States)

    Steely, Sidney L.

    1993-01-01

    The similarity of the functional forms of quantum mechanical harmonic oscillators and the modes of Hermite-Gaussian laser beams is illustrated. This functional similarity provides a direct correlation to investigate the spot size of large-order mode Hermite-Gaussian laser beams. The classical limits of a corresponding two-dimensional harmonic oscillator provide a definition of the spot size of Hermite-Gaussian laser beams. The classical limits of the harmonic oscillator provide integration limits for the photon probability densities of the laser beam modes to determine the fraction of photons detected therein. Mathematica is used to integrate the probability densities for large-order beam modes and to illustrate the functional similarities. The probabilities of detecting photons within the classical limits of Hermite-Gaussian laser beams asymptotically approach unity in the limit of large-order modes, in agreement with the Correspondence Principle. The classical limits for large-order modes include all of the nodes for Hermite Gaussian laser beams; Sturm's theorem provides a direct proof.

  4. On the mutual interaction between laser beams in plasmas

    International Nuclear Information System (INIS)

    Ren, C.; Duda, B.J.; Evans, R.G.; Fonseca, R.A.; Hemker, R.G.; Mori, W.B.

    2002-01-01

    The nonlinear interaction between light beams in a plasma is studied. In particular, nonlinearities due to relativistic mass corrections and density modulations from a plasma wave wake are considered; but the results can be generalized for other nonlinearities. A simple physical picture using the nonlinear phase velocity of the light wave in a plasma is developed to show that when two laser beams are coherent, the force can be repulsive or attractive, depending on their relative phase. When the two laser beams are polarized in mutually perpendicular directions, the force is always attractive. Using a variational method, a simple analytical expression for this attractive force is derived for Gaussian beams. The centers of the lasers move analogously to point masses under this attractive force with the laser power playing the role of the mass. Under an attractive force, solutions exist where the two lasers can spiral around each other. It is also shown that the plasma wave wake can cause the two spiraling lasers to become intertwined forming a braided pattern. The braiding is common to any nonlinearity which is not instantaneous. The analytical results concerning attraction, repulsion, and braiding have been confirmed using three dimensional particle-in-cell simulations. The simulations also show that angular momentum can radiate away leading to the coalescence of the remaining energy

  5. In-beam studies of {sup 98}Cd and {sup 102}Sn

    Energy Technology Data Exchange (ETDEWEB)

    Lipoglavsek, M. [Uppsala Univ. (Sweden)]|[J. Stefan Institute, Ljubljana (Slovenia); Gorska, M.; Schubart, R. [GSI, Darmstadt (Germany)] [and others

    1996-12-31

    For the first time excited states of the neutron deficient nuclei {sup 98}Cd and {sup 102}Sn were identified using in-beam spectroscopy following fusion evaporation reactions. Half lives of long lived isomeric states in both nuclei were also measured. Due to very low cross sections for producing {sup 98}Cd and {sup 102}Sn with stable beams and targets, a special detector setup utilizing NORDBALL ancillary detectors and a recoil catcher device was used. High {gamma}-ray detection efficiency was achieved with two EUROBALL Ge cluster detectors.

  6. Self-reconstruction of diffraction-free and accelerating laser beams in scattering media

    International Nuclear Information System (INIS)

    Ersoy, T.; Yalizay, B.; Akturk, S.

    2012-01-01

    We experimentally investigate propagation of laser beams with different intensity profiles in highly scattering media. We generate transverse laser amplitude profiles with Gaussian, Bessel and Airy function envelopes. We then propagate these beams through optical phantoms formed with variable density intralipid solutions. At the sample exit, we compare change in maximum intensities, as well as beam profile reconstruction. We show that self-reconstruction properties of Bessel and Airy beams bring about slower decrease in maximum intensity with increasing scatterer density. On the other hand, the beam profiles deteriorate faster, as compared to reference Gaussian beams. Slower decrease in the intensity can be attributed to the wavevector spectra providing a continuous flow of energy to the beam center, while beam deterioration is linked to total beam volume in the scattering medium. These results show that beam shaping methods can significantly enhance delivery of intense light deeper into turbid media, but this enhancement is compromised by stronger speckling of beam profiles. -- Highlights: ► We experimentally investigate propagation of shaped laser beams in turbid media. ► Peak intensity of Bessel and Airy beams decrease slower with increasing scatterer. ► Shaped beam profiles deteriorate faster, as compared to reference Gaussian beams. ► Shaped beam profiles can enhance applications of lasers inscattering media.

  7. Laser Beam Caustic Measurement with Focal Spot Analyser

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove; Gong, Hui; Bagger, Claus

    2005-01-01

    In industrial applications of high power CO2-lasers the caustic characteristics of the laser beam have great effects on the performance of the lasers. A welldefined high intense focused spot is essential for reliable production results. This paper presents a focal spot analyser that is developed...

  8. Efficiency of laser beam utilization in gas laser cutting of materials

    Science.gov (United States)

    Galushkin, M. G.; Grishaev, R. V.

    2018-02-01

    Relying on the condition of dynamic matching of the process parameters in gas laser cutting, the dependence of the beam utilization factor on the cutting speed and the beam power has been determined. An energy balance equation has been derived for a wide range of cutting speed values.

  9. Study of fast electron generation using multi beam of LFEX-class laser

    International Nuclear Information System (INIS)

    Hata, M; Nagatomo, H; Sakagami, H; Johzaki, T; Sentoku, Y

    2016-01-01

    Fast Ignition Realization Experiment project phase-I (FIREX-I) is being performed at Institute of Laser Engineering, Osaka University. In this project, the four-beam bundled high-energy Petawatt laser (LFEX) is being operated. LFEX laser provides great multi-beam irradiation flexibility, with the possibility of arrange the pulses in temporal sequence, spatially separate them in distinct spots of focus them in a single spot. In this paper, we study the two- beam interference effects on high-intensity picosecond laser-plasma interaction (LPI) by twodimensional relativistic Particle-In-Cell simulations. The interference causes surface perturbation, which enhances laser absorption and underdense plasma generation, increasing the accelerated electron number and their slope temperature. The laser-to-electron energy conversion efficiency for two-beam interference case is suitable for Fast Ignition (FI) compared to the single beam case, but the increment of fast electron divergence leads to lower energy coupling. To optimize the target design for FI, these interference effects should be taken into consideration. (paper)

  10. On the exploration of effect of critical beam power on the propagation of Gaussian laser beam in collisionless magnetized plasma

    Science.gov (United States)

    Urunkar, T. U.; Valkunde, A. T.; Vhanmore, B. D.; Gavade, K. M.; Patil, S. D.; Takale, M. V.

    2018-05-01

    It is quite known that critical power of the laser plays vital role in the propagation of Gaussian laser beam in collisionless plasma. The nonlinearity in dielectric constant considered herein is due to the ponderomotive force. In the present analysis, the interval of critical beam power has been explored to sustain the competition between diffraction and self-focusing of Gaussian laser beam during propagation in collisionless magnetized plasma. Differential equation for beam-width parameter has been established by using WKB and paraxial approximations under parabolic equation approach. The effect of critical power on the propagation of Gaussian laser beam has been presented graphically and discussed.

  11. Observation of laser multiple filamentation process and multiple electron beams acceleration in a laser wakefield accelerator

    International Nuclear Information System (INIS)

    Li, Wentao; Liu, Jiansheng; Wang, Wentao; Chen, Qiang; Zhang, Hui; Tian, Ye; Zhang, Zhijun; Qi, Rong; Wang, Cheng; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2013-01-01

    The multiple filaments formation process in the laser wakefield accelerator (LWFA) was observed by imaging the transmitted laser beam after propagating in the plasma of different density. During propagation, the laser first self-focused into a single filament. After that, it began to defocus with energy spreading in the transverse direction. Two filaments then formed from it and began to propagate independently, moving away from each other. We have also demonstrated that the laser multiple filamentation would lead to the multiple electron beams acceleration in the LWFA via ionization-induced injection scheme. Besides, its influences on the accelerated electron beams were also analyzed both in the single-stage LWFA and cascaded LWFA

  12. Rippled beam free electron laser amplifier

    Science.gov (United States)

    Carlsten, Bruce E.

    1999-01-01

    A free electron laser amplifier provides a scalloping annular electron beam that interacts with the axial electric field of a TM.sub.0n mode. A waveguide defines an axial centerline and, a solenoid arranged about the waveguide produces an axial constant magnetic field within the waveguide. An electron beam source outputs a annular electron beam that interacts with the axial magnetic field to have an equilibrium radius and a ripple radius component having a variable radius with a ripple period along the axial centerline. An rf source outputs an axial electric field that propagates within the waveguide coaxial with the electron beam and has a radial mode that interacts at the electron beam at the equilibrium radius component of the electron beam.

  13. Fluid simulation for two laser beams co-propagating in underdense plasma

    International Nuclear Information System (INIS)

    Mahdy, A.I.

    2004-09-01

    2D simulations code was constructed in order simulate the interactions of two co-propagating laser beams with underdense plasma. Simulations results at different laser intensities and separation-distances between the beams centroids were presented. In the results the effects of the laser intensities on the self-focusing and merging of the propagating beams were shown. In addition, the influence of increasing the separation-distance on the beams stability and trajectories were studied. A comparison with previous simulations at similar conditions was carried out in order to evaluate the numerical technique used to solve the basic equations. (author)

  14. Ion-source dependence of the distributions of internuclear separations in 2-MeV HeH+ beams

    International Nuclear Information System (INIS)

    Kanter, E.P.; Gemmell, D.S.; Plesser, I.; Vager, Z.

    1981-01-01

    Experiments involving the use of MeV molecular-ion beams have yielded new information on atomic collisions in solids. A central part of the analyses of such experiments is a knowledge of the distribution of internuclear separations contained in the incident beam. In an attempt to determine how these distributions depend on ion-source gas conditions, we have studied foil-induced dissociations of H 2+ , H 3+ , HeH + , and OH 2+ ions. Although changes of ion-source gas compositions and pressure were found to have no measurable influence on the vibrational state populations of the beams reaching our target, for HeH + we found that beams produced in our rf source were vibrationally hotter than beams produced in a duoplasmatron. This was also seen in studies of neutral fragments and transmitted molecules

  15. Effects of SiO2 encapsulation and laser processing on single CdTe/ZnTe quantum dots grown on Si (001) substrates

    International Nuclear Information System (INIS)

    Lee, Hong Seok; Rastelli, Armando; Schmidt, Oliver G.; Kim, Tae Whan; Lee, In Won

    2011-01-01

    Micro-photoluminescence (μ-PL) measurements are carried out to investigate the effects of SiO 2 encapsulation and laser processing of single CdTe/ZnTe quantum dots (QDs) grown on Si (001) substrates by using molecular beam epitaxy and atomic layer epitaxy. After laser processing, the μ-PL peak shift for the 200-nm SiO 2 capped single QD is larger than that of the as-grown sample. The large μ-PL peak shift in the 200-nm SiO 2 capped sample is related to the compressive stress induced by the ZnTe cap layer during laser processing. These results indicate that SiO 2 encapsulation and laser processing represent effective methods for achieving local wavelength tuning in single QDs.

  16. Design of the prototype of a beam transport line for handling and selection of low energy laser-driven beams

    Energy Technology Data Exchange (ETDEWEB)

    Schillaci, F., E-mail: francesco.schillaci@eli-beams.eu [INFN-LNS, Catania (Italy); Maggiore, M. [INFN-LNL, Legnaro (Italy); Cirrone, G.A.P.; Cuttone, G.; Pisciotta, P.; Costa, M.; Rifuggiato, D.; Romano, F. [INFN-LNS, Catania (Italy); Scuderi, V. [INFN-LNS, Catania (Italy); Institute of Physics of the ASCR, ELI-Beamlines Project, Prague (Czech Republic)

    2016-11-21

    A first prototype of transport beam-line for laser-driven ion beams to be used for the handling of particles accelerated by high-power laser interacting with solid targets has been realized at INFN. The goal is the production of a controlled and stable beam in terms of energy and angular spread. The beam-line consists of two elements: an Energy Selection System (ESS), already realized and characterized with both conventional and laser-accelerated beams, and a Permanent Magnet Quadrupole system (PMQ) designed, in collaboration with SIGMAPHI (Fr), to improve the ESS performances. In this work a description of the ESS system and some results of its characterization with conventional beams are reported, in order to provide a complete explanation of the acceptance calculation. Then, the matching with the PMQ system is presented and, finally, the results of preliminary simulations with a realistic laser-driven energy spectrum are discussed demonstrating the possibility to provide a good quality beam downstream the systems.

  17. Laser ionization installation for measurement of atomic beam parameters

    CERN Document Server

    Tukhlibaev, O; Khalilov, E E; Alimov, U Z

    2002-01-01

    The design of the laser ionization installation for determination of the atomic beam intensity, density and spatial structure is described. The method of the atoms laser resonance staged photoionization is applied in the installation. The above installation consists of two lasers on the dyestuffs, the atomizer, the ionization system and the ion signals registration system. The results of studies on the spatial structure of the In atoms beam are presented. The proposed method provides for the spatial resolution at the level of 10-100 mu m

  18. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Energy Technology Data Exchange (ETDEWEB)

    Teng, J.; Gu, Y.Q., E-mail: tengjian@mail.ustc.edu.cn; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-11-21

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  19. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    Science.gov (United States)

    Teng, J.; Gu, Y. Q.; Zhu, B.; Hong, W.; Zhao, Z. Q.; Zhou, W. M.; Cao, L. F.

    2013-11-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator.

  20. Beam collimation and energy spectrum compression of laser-accelerated proton beams using solenoid field and RF cavity

    International Nuclear Information System (INIS)

    Teng, J.; Gu, Y.Q.; Zhu, B.; Hong, W.; Zhao, Z.Q.; Zhou, W.M.; Cao, L.F.

    2013-01-01

    This paper presents a new method of laser produced proton beam collimation and spectrum compression using a combination of a solenoid field and a RF cavity. The solenoid collects laser-driven protons efficiently within an angle that is smaller than 12 degrees because it is mounted few millimeters from the target, and collimates protons with energies around 2.3 MeV. The collimated proton beam then passes through a RF cavity to allow compression of the spectrum. Particle-in-cell (PIC) simulations demonstrate the proton beam transport in the solenoid and RF electric fields. Excellent energy compression and collection efficiency of protons are presented. This method for proton beam optimization is suitable for high repetition-rate laser acceleration proton beams, which could be used as an injector for a conventional proton accelerator

  1. Laser-driven electron beam and radiation sources for basic, medical and industrial sciences

    Science.gov (United States)

    NAKAJIMA, Kazuhisa

    2015-01-01

    To date active research on laser-driven plasma-based accelerators have achieved great progress on production of high-energy, high-quality electron and photon beams in a compact scale. Such laser plasma accelerators have been envisaged bringing a wide range of applications in basic, medical and industrial sciences. Here inheriting the groundbreaker’s review article on “Laser Acceleration and its future” [Toshiki Tajima, (2010)],1) we would like to review recent progress of producing such electron beams due to relativistic laser-plasma interactions followed by laser wakefield acceleration and lead to the scaling formulas that are useful to design laser plasma accelerators with controllability of beam energy and charge. Lastly specific examples of such laser-driven electron/photon beam sources are illustrated. PMID:26062737

  2. Laser ablation of hard tissue: correlation between the laser beam parameters and the post-ablative tissue characteristics

    Science.gov (United States)

    Serafetinides, Alexandros A.; Makropoulou, Mersini I.; Khabbaz, Maruan

    2003-11-01

    Hard dental tissue laser applications, such as preventive treatment, laser diagnosis of caries, laser etching of enamel, laser decay removal and cavity preparation, and more recently use of the laser light to enlarge the root canal during the endodontic therapy, have been investigated for in vitro and in vivo applications. Post-ablative surface characteristics, e.g. degree of charring, cracks and other surface deformation, can be evaluated using scanning electron microscopy. The experimental data are discussed in relevance with the laser beam characteristics, e.g. pulse duration, beam profile, and the beam delivery systems employed. Techniques based on the laser illumination of the dental tissues and the subsequent evaluation of the scattered fluorescent light will be a valuable tool in early diagnosis of tooth diseases, as carious dentin or enamel. The laser induced autofluorescence signal of healthy dentin is much stronger than that of the carious dentin. However, a better understanding of the transmission patterns of laser light in teeth, for both diagnosis and therapy is needed, before the laser procedures can be used in a clinical environment.

  3. Single lens laser beam shaper

    Science.gov (United States)

    Liu, Chuyu [Newport News, VA; Zhang, Shukui [Yorktown, VA

    2011-10-04

    A single lens bullet-shaped laser beam shaper capable of redistributing an arbitrary beam profile into any desired output profile comprising a unitary lens comprising: a convex front input surface defining a focal point and a flat output portion at the focal point; and b) a cylindrical core portion having a flat input surface coincident with the flat output portion of the first input portion at the focal point and a convex rear output surface remote from the convex front input surface.

  4. Coherent beam combining architectures for high power tapered laser arrays

    Science.gov (United States)

    Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.

    2017-02-01

    Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.

  5. Direct diode lasers with comparable beam quality to fiber, CO2, and solid state lasers

    Science.gov (United States)

    Huang, Robin K.; Chann, Bien; Burgess, James; Kaiman, Michael; Overman, Robert; Glenn, John D.; Tayebati, Parviz

    2012-03-01

    TeraDiode has produced kW-class ultra-high brightness fiber-coupled direct diode lasers. A fiber-coupled direct diode laser with a power level of 2,040 W from a 50 μm core diameter, 0.15 numerical aperture (NA) output fiber at a single center wavelength was demonstrated. This was achieved with a novel beam combining and shaping technique using COTS diode lasers. The fiber-coupled output corresponds to a Beam Parameter Product (BPP) of 3.75 mm-mrad and is the lowest BPP kW-class direct diode laser yet reported. This laser is suitable for industrial materials processing applications, including sheet metal cutting and welding. This 2-kW fiber-coupled direct diode laser has comparable brightness to that of industrial fiber lasers and CO2 lasers, and is over 10x brighter than state-of-the-art direct diode lasers.

  6. Optical breakdown of helium in Bessel laser radiation beams

    International Nuclear Information System (INIS)

    Andreev, N E; Pleshanov, I V; Margolin, L Ya; Pyatnitskii, Lev N

    1998-01-01

    Numerical simulation is used to investigate the dynamics of formation of a helium plasma in Bessel beams, shaped by an axicon and a phase converter from a laser radiation pulse with Gaussian temporal and radial intensity profiles. The beam intensities at the breakdown threshold are determined as a function of the pulse duration for various radial field distributions in a beam characterised by Bessel functions of order m (m = 0 - 5). It is shown that in the investigated range of parameters the threshold intensity is independent of m. The temporal and spatial evolution of the resultant plasma, and the dependence of the plasma characteristics on the pulse parameters are considered. Conditions are found for the formation of tubular plasma channels in beams of orders m≥1. The adopted model of the optical breakdown of helium is shown to be satisfactory because of a good agreement between the results of calculations of the moment of breakdown in a zeroth-order Bessel beam and experimental results. (interaction of laser radiation with matter. laser plasma)

  7. Development of an energy selector system for laser-driven proton beam applications

    Energy Technology Data Exchange (ETDEWEB)

    Scuderi, V., E-mail: scuderiv@lns.infn.it [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Bijan Jia, S. [Ferdowsi University of Mashhad, Azadi Square, Mashhad (Iran, Islamic Republic of); Carpinelli, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cirrone, G.A.P. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Korn, G. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Licciardello, T. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Maggiore, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Legnaro, Viale dell' Universit 2, Legnaro (Pd) (Italy); Margarone, D. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Pisciotta, P.; Romano, F. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F. [Department of Experimental Program at ELI-Beamlines, Institute of Physics of the ASCR, ELI-Beamlines project, Na Slovance 2, Prague (Czech Republic); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Stancampiano, C. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); and others

    2014-03-11

    Nowadays, laser-driven proton beams generated by the interaction of high power lasers with solid targets represent a fascinating attraction in the field of the new acceleration techniques. These beams can be potentially accelerated up to hundreds of MeV and, therefore, they can represent a promising opportunity for medical applications. Laser-accelerated proton beams typically show high flux (up to 10{sup 11} particles per bunch), very short temporal profile (ps), broad energy spectra and poor reproducibility. In order to overcome these limitations, these beams have be controlled and transported by means of a proper beam handling system. Furthermore, suitable dosimetric diagnostic systems must be developed and tested. In the framework of the ELIMED project, we started to design a dedicated beam transport line and we have developed a first prototype of a beam line key-element: an Energy Selector System (ESS). It is based on permanent dipoles, capable to control and select in energy laser-accelerated proton beams. Monte Carlo simulations and some preliminary experimental tests have been already performed to characterize the device. A calibration of the ESS system with a conventional proton beam will be performed in September at the LNS in Catania. Moreover, an experimental campaign with laser-driven proton beam at the Centre for Plasma Physics, Queens University in Belfast is already scheduled and will be completed within 2014.

  8. Designing an Epithermal Neutron Beam for Boron Neutron Capture Therapy for the Fusion Reactions 2H(d,n)3He and 3H(d,n)4He1

    International Nuclear Information System (INIS)

    Verbeke, J.M.; Costes, S.V.; Bleuel, D.; Vujic, J.; Leung, K.N.

    1998-01-01

    A beam shaping assembly has been designed to moderate high energy neutrons from the fusion reactions 2 H(d,N) 3 He and 3 H(d,n) 4 He for use fin boron neutron capture therapy. The low neutron yield of the 2 H(d,n) 3 He reaction led to unacceptably long treatment times. However, a 160 mA deuteron beam of energy 400 keV led to a treatment time of 120 minutes with the reaction 3 H(d,n) 4 He. Equivalent doses of 9.6 Gy-Eq and 21.9 Gy-Eq to the skin and to a 8 cm deep tumor respectively have been computed

  9. UV laser deposition of metal films by photogenerated free radicals

    Science.gov (United States)

    Montgomery, R. K.; Mantei, T. D.

    1986-01-01

    A novel photochemical method for liquid-phase deposition of metal films is described. In the liquid phase deposition scheme, a metal containing compound and a metal-metal bonded carbonyl complex are dissolved together in a polar solvent and the mixture is irradiated using a UV laser. The optical arrangement consists of a HeCd laser which provides 7 mW of power at a wavelength of 325 nm in the TEM(OO) mode. The beam is attenuated and may be expanded to a diameter of 5-20 mm. Experiments with photochemical deposition of silver films onto glass and quartz substrates are described in detail. Mass spectrometric analysis of deposited silver films indicated a deposition rate of about 1 A/s at incident power levels of 0.01 W/sq cm. UV laser-induced copper and palladium films have also been obtained. A black and white photograph showing the silver Van Der Pauw pattern of a solution-deposited film is provided.

  10. Neutron beam effects on spin-exchange-polarized 3He.

    Science.gov (United States)

    Sharma, M; Babcock, E; Andersen, K H; Barrón-Palos, L; Becker, M; Boag, S; Chen, W C; Chupp, T E; Danagoulian, A; Gentile, T R; Klein, A; Penttila, S; Petoukhov, A; Soldner, T; Tardiff, E R; Walker, T G; Wilburn, W S

    2008-08-22

    We have observed depolarization effects when high intensity cold neutron beams are incident on alkali-metal spin-exchange-polarized 3He cells used as neutron spin filters. This was first observed as a reduction of the maximum attainable 3He polarization and was attributed to a decrease of alkali-metal polarization, which led us to directly measure alkali-metal polarization and spin relaxation over a range of neutron fluxes at Los Alamos Neutron Science Center and Institute Laue-Langevin. The data reveal a new alkali-metal spin-relaxation mechanism that approximately scales as sqrt[phi_{n}], where phi_{n} is the neutron capture-flux density incident on the cell. This is consistent with an effect proportional to the concentration of electron-ion pairs but is much larger than expected from earlier work.

  11. Transport of laser accelerated proton beams and isochoric heating of matter

    International Nuclear Information System (INIS)

    Roth, M; Alber, I; Guenther, M; Harres, K; Bagnoud, V; Brown, C; Gregori, G; Clarke, R; Heathcote, R; Li, B; Daido, H; Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C; Glenzer, S; Kritcher, A; Kugland, N; LePape, S; Makita, M

    2010-01-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  12. Transport of laser accelerated proton beams and isochoric heating of matter

    Energy Technology Data Exchange (ETDEWEB)

    Roth, M; Alber, I; Guenther, M; Harres, K [Inst. fuer Kernphysik, Technische Universitaet Darmstadt, 64289 Darmstadt (Germany); Bagnoud, V [GSI Helmholtzzentrum f. Schwerionenforschung GmbH, 64291 Darmstadt (Germany); Brown, C; Gregori, G [Clarendon Laboratory, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Clarke, R; Heathcote, R; Li, B [STFC, Rutherford Appleton Laboratory, Chilton, Didcot, OX14 OQX (United Kingdom); Daido, H [Photo Medical Research Center, JAEA, Kizugawa-City, Kyoto 619-0215 (Japan); Fernandez, J; Flippo, K; Gaillard, S; Gauthier, C [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Glenzer, S; Kritcher, A; Kugland, N; LePape, S [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Makita, M, E-mail: markus.roth@physik.tu-darmstadt.d [School of Mathematics and Physics, Queen' s University of Belfast, Belfast BT7 1NN (United Kingdom)

    2010-08-01

    The acceleration of intense proton and ion beams by ultra-intense lasers has matured to a point where applications in basic research and technology are being developed. Crucial for harvesting the unmatched beam parameters driven by the relativistic electron sheath is the precise control of the beam. We report on recent experiments using the PHELIX laser at GSI, the VULCAN laser at RAL and the TRIDENT laser at LANL to control and use laser accelerated proton beams for applications in high energy density research. We demonstrate efficient collimation of the proton beam using high field pulsed solenoid magnets, a prerequisite to capture and transport the beam for applications. Furthermore we report on two campaigns to use intense, short proton bunches to isochorically heat solid targets up to the warm dense matter state. The temporal profile of the proton beam allows for rapid heating of the target, much faster than the hydrodynamic response time thereby creating a strongly coupled plasma at solid density. The target parameters are then probed by X-ray Thomson scattering (XRTS) to reveal the density and temperature of the heated volume. This combination of two powerful techniques developed during the past few years allows for the generation and investigation of macroscopic samples of matter in states present in giant planets or the interior of the earth.

  13. Defect characterization of CdTe thin films using a slow positron beam

    International Nuclear Information System (INIS)

    Neretina, S.; Grebennikov, D.; Mascher, P.; Hughes, R.A.; Weber, M.; Lynn, K.G.; Simpson, P.J.; Preston, J.S.

    2007-01-01

    Cadmium Telluride (CdTe) is the most well established II-VI compound largely due to its use as a photonic material. Existing applications, as well as those under consideration, are demanding increasingly stringent control of the material properties. The deposition of high quality thin films is of the utmost importance to such applications. In this regard, we present a report detailing the role of lattice mismatch in determining the film quality. Thin films were deposited on a wide variety of substrate materials using the pulsed laser deposition technique. Common to all substrates was the strong tendency towards the preferential alignment of CdTe's (111) planes parallel to the substrate's surface. X-ray diffraction analysis, however, revealed that the crystalline quality varied dramatically depending upon the substrate used with the best results yielding a single crystal film. This tendency also manifested itself in the surface morphology with higher structural perfection yielding smoother surfaces. Slow positron beam techniques revealed a strong correlation between the defect concentration and the degree of structural perfection. Simulations of the data using the POSTRAP 5 program were used to calculate the defect concentration in relative (atom -1 ) and absolute units and to determine the diffusion lengths of the positrons in the film. All of these characterization techniques point towards lattice mismatch as being the dominant mechanism in determining the quality of CdTe films. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Beam delivery system with a non-digitized diffractive beam splitter for laser-drilling of silicon

    Science.gov (United States)

    Amako, J.; Fujii, E.

    2016-02-01

    We report a beam-delivery system consisting of a non-digitized diffractive beam splitter and a Fourier transform lens. The system is applied to the deep-drilling of silicon using a nanosecond pulse laser in the manufacture of inkjet printer heads. In this process, a circularly polarized pulse beam is divided into an array of uniform beams, which are then delivered precisely to the process points. To meet these requirements, the splitter was designed to be polarization-independent with an efficiency>95%. The optical elements were assembled so as to allow the fine tuning of the effective overall focal length by adjusting the wavefront curvature of the beam. Using the system, a beam alignment accuracy ofbeam array and the throughput was substantially improved (10,000 points on a silicon wafer drilled in ~1 min). This beam-delivery scheme works for a variety of laser applications that require parallel processing.

  15. Measurement system with high accuracy for laser beam quality.

    Science.gov (United States)

    Ke, Yi; Zeng, Ciling; Xie, Peiyuan; Jiang, Qingshan; Liang, Ke; Yang, Zhenyu; Zhao, Ming

    2015-05-20

    Presently, most of the laser beam quality measurement system collimates the optical path manually with low efficiency and low repeatability. To solve these problems, this paper proposed a new collimated method to improve the reliability and accuracy of the measurement results. The system accuracy controlled the position of the mirror to change laser beam propagation direction, which can realize the beam perpendicularly incident to the photosurface of camera. The experiment results show that the proposed system has good repeatability and the measuring deviation of M2 factor is less than 0.6%.

  16. A 223-nm KrCl excimer laser on a He-Kr-HCl mixture

    International Nuclear Information System (INIS)

    Razhev, A M; Zhupikov, A A; Kargapol'tsev, E S

    2004-01-01

    The results of experimental studies of the parameters of a 223-nm electric-discharge KrCl excimer laser on a He-Kr-HCl mixture depending on the excitation conditions and the composition of the active gaseous medium are presented. To achieve the maximum values of the output energy and the efficiency of the KrCl laser on mixtures with buffer gaseous helium, an excitation system was used that included a circuit with an LC inverter with a high-voltage switch based on an RU-65 spark gap. An output energy of 320 mJ with an efficiency of 0.5% relative to the energy stored in the capacitors is obtained in a KrCl laser with an active medium based on the buffer He gas at a charging voltage of 30 kV. Radiation pulses with a duration of 22±1 ns and a pulse power of 15 MW are obtained. (lasers)

  17. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam

    International Nuclear Information System (INIS)

    Kline, J. L.; Montgomery, D. S.; Flippo, K. A.; Johnson, R. P.; Rose, H. A.; Shimada, T.; Williams, E. A.

    2008-01-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 deg. angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (∼2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  18. Using a short-pulse diffraction-limited laser beam to probe filamentation of a random phase plate smoothed beam.

    Science.gov (United States)

    Kline, J L; Montgomery, D S; Flippo, K A; Johnson, R P; Rose, H A; Shimada, T; Williams, E A

    2008-10-01

    A short pulse (few picoseconds) laser probe provides high temporal resolution measurements to elucidate details of fast dynamic phenomena not observable with typical longer laser pulse probes and gated diagnostics. Such a short pulse laser probe (SPLP) has been used to measure filamentation of a random phase plate (RPP) smoothed laser beam in a gas-jet plasma. The plasma index of refraction due to driven density and temperature fluctuations by the RPP beam perturbs the phase front of a SPLP propagating at a 90 degree angle with respect to the RPP interaction beam. The density and temperature fluctuations are quasistatic on the time scale of the SPLP (approximately 2 ps). The transmitted near-field intensity distribution from the SPLP provides a measure of the phase front perturbation. At low plasma densities, the transmitted intensity pattern is asymmetric with striations across the entire probe beam in the direction of the RPP smoothed beam. As the plasma density increases, the striations break up into smaller sizes along the direction of the RPP beam propagation. The breakup of the intensity pattern is consistent with self-focusing of the RPP smoothed interaction beam. Simulations of the experiment using the wave propagation code, PF3D, are in qualitative agreement demonstrating that the asymmetric striations can be attributed to the RPP driven density fluctuations. Quantification of the beam breakup measured by the transmitted SPLP could lead to a new method for measuring self-focusing of lasers in underdense plasmas.

  19. Vertical laser beam propagation through the troposphere

    Science.gov (United States)

    Minott, P. O.; Bufton, J. L.; Schaefer, W. H.; Grolemund, D. A.

    1974-01-01

    The characteristics of the earth's atmosphere and its effects upon laser beams was investigated in a series of balloon borne, optical propagation experiments. These experiments were designed to simulate the space to ground laser link. An experiment to determine the amplitude fluctuation, commonly called scintillation, caused by the atmosphere was described.

  20. He-Ne Laser Irradiation Encourages reparative Processes After cartilage loss in New Zealand rabbits

    International Nuclear Information System (INIS)

    Ali, I.K.

    2008-01-01

    Many therapeutic methods used to encourage reparative processes of cartilage and accelerate their healing such as drugs, magneto-laser and so on.Twenty four adult New Zealand rabbits used in this study.They were divided in to two groups; control and treaded with He-Ne laser.A square skin flap done on the medial aspect of both auricles followed by pealing a square piece of cartilage from the auricle then the flaps sutured.The site of the operation in the rabbits of the treatedgroup were irradiated with He-Ne laser 5mw power for seven days began after the operation directly.3 rabbits from each group used for collection of specimens for histopathological examination at the 1, 2, 4 & 6 weeks post the operation.Significantly well developed cartilage growth, chondroblasts and chondrocytes invade the area of the operation.High increase in the thickness of connective tissue in the same area contain mainly collagen fibers and lesser amount of elastic fibers.He-Ne laser irradiation raised the mitotic activity of the cartilage cells, activated the reproduction processes in addition to the intra and extra regenerative repair

  1. Hollow core waveguide as mid-infrared laser modal beam filter

    Energy Technology Data Exchange (ETDEWEB)

    Patimisco, P.; Giglio, M.; Spagnolo, V. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Sampaolo, A. [Dipartimento Interateneo di Fisica, Università e Politecnico di Bari, CNR-IFN UOS BARI, Via Amendola 173, 70126 Bari (Italy); Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States); Kriesel, J. M. [Opto-Knowledge Systems, Inc. (OKSI), 19805 Hamilton Ave., Torrance, California 90502-1341 (United States); Tittel, F. K. [Department of Electrical and Computer Engineering, Rice University, 6100 Main Street, Houston, Texas 77005 (United States)

    2015-09-21

    A novel method for mid-IR laser beam mode cleaning employing hollow core waveguide as a modal filter element is reported. The influence of the input laser beam quality on fiber optical losses and output beam profile using a hollow core waveguide with 200 μm-bore size was investigated. Our results demonstrate that even when using a laser with a poor spatial profile, there will exist a minimum fiber length that allows transmission of only the Gaussian-like fundamental waveguide mode from the fiber, filtering out all the higher order modes. This essentially single mode output is preserved also when the waveguide is bent to a radius of curvature of 7.5 cm, which demonstrates that laser mode filtering can be realized even if a curved light path is required.

  2. Summary of the guideline on underwater laser beam repair welding

    International Nuclear Information System (INIS)

    Ichikawa, Hiroya; Yoda, Masaki; Motora, Yuichi

    2013-01-01

    It is known that stress corrosion cracking (SCC) might occur at the weld of a reactor pressure vessel or core internals. Underwater laser beam clad welding for mitigation of SCC has been already established and the guideline 'Underwater laser beam clad welding' was published. Moreover, the guideline 'Seal welding' was also published as a repair method for SCC. In addition to these guidelines, the guideline 'Underwater laser beam repair welding' was newly published in November, 2012 for the repair welding after completely removing a SCC crack occurred in weld or base metal. This paper introduces the summary of this guideline. (author)

  3. High resolution laser spectroscopy as a diagnostic tool in beams

    International Nuclear Information System (INIS)

    Bergmann, K.; Hefter, U.; Hering, P.

    1977-01-01

    The combination of high resolution laser spectroscopy with the technique of molecular beams allows a very detailed beam research since molecules or atoms in specific quantum states can be sampled yielding previously unavailable sources of data. In these experiments a Na/Na 2 beam emerges from a 0.2 mm nozzle and is collimated by a 2 mm wide slit 50 cm downstream. To probe the molecules a single mode Ar + -laser was used which can be tuned within the gain profile of the laser line (8 GHz) to several transitions between specific levels in the ground state and second electronically excited state of the Na 2 molecule. (Auth.)

  4. Soft apertures to shape high-power laser beams

    International Nuclear Information System (INIS)

    Lukishova, S.G.; Pashinin, P.P.; Batygov, S.K.; Terentiev, B.M.

    1989-01-01

    Soft or apodized apertures with smooth decreasing from center to edges transmission profiles are used in laser physics for beam shaping. This paper gives the results of the studies of four types of these units for UV, visible and IR lasers. They are made of glasses or crystals with the use of one of the following technologies: absorption induced by ionizing radiation; photodestruction of color centers or photooxidation of impurities ions; additive coloration; frustrated total internal reflection. The special feature of such apertures is their high optical damage resistance under the irradiation of single-pulse laser radiation. They are approximately 3-50 mm in diameter by the methods of making them give the possibility to create near-Gaussian and flat-top beams with dimensions less than 1 mm and larger than 200 mm. The results of using them in high-power single-pulse lasers are presented. Damage thresholds of these apertures in such types of lasers have been defined

  5. Closely spaced mirror pair for reshaping and homogenizing pump beams in laser amplifiers

    International Nuclear Information System (INIS)

    Bass, I.L.

    1992-12-01

    Channeling a laser beam by multiple reflections between two closely-spaced, parallel or nearly parallel mirrors, serves to reshape and homogenize the beam at the output gap between the mirrors. Application of this device to improve the spatial overlap of a copper laser pump beam with the signal beam in a dye laser amplifier is described. This technique has been applied to the AVLIS program at the Lawrence Livermore National Laboratory

  6. Computer-Assisted Experiments with a Laser Diode

    Science.gov (United States)

    Kraftmakher, Yaakov

    2011-01-01

    A laser diode from an inexpensive laser pen (laser pointer) is used in simple experiments. The radiant output power and efficiency of the laser are measured, and polarization of the light beam is shown. The "h/e" ratio is available from the threshold of spontaneous emission. The lasing threshold is found using several methods. With a…

  7. Experimental investigation of dissociation pathways of cooled HeH+ following valence electron excitation at 32 nm by intense free-electron-laser radiation

    International Nuclear Information System (INIS)

    Pedersen, H. B.; Lammich, L.; Domesle, C.; Jordon-Thaden, B.; Ullrich, J.; Wolf, A.; Heber, O.; Treusch, R.; Guerassimova, N.

    2010-01-01

    The dissociation pathways of HeH + have been investigated below the first ionization continuum by photoabsorption at 32 nm, using fragment momentum imaging in a crossed-beams experiment at the free-electron laser in Hamburg (FLASH). Investigations were done both for ions with several vibrational levels excited in the ion source and for ions vibrationally cooled in an electrostatic ion trap prior to the irradiation. The product channels He + (1s)+H(nl) and He(1snl)+H + were separated and the He(1snl)+H + channel was particularly studied by coincidence detection of the He and H + fragments on two separate fragment detectors. At 32 nm excitation, the branching ratio between the product channels was found to be σ He + +H /σ He+H + =0.96±0.11 for vibrationally hot and 1.70±0.48 for vibrationally cold ions. The spectra of kinetic energy releases for both channels revealed that photodissociation at 32 nm leads to high Rydberg states (n > or approx. 3-4) of the emerging atomic fragments irrespective of the initial vibrational excitation of HeH + . The fragment angular distributions showed that dissociation into the He+H + channel mostly (∼70%) proceeds through 1 Π states, while for the He + +H channel 1 Σ and 1 Π states are of about equal importance.

  8. Generation of 300 MeV Quasi-Monochromatic Electron Beams from Laser Wakefield and Initiation of Photonuclear Reactions

    Science.gov (United States)

    Maksimchuk, A.; Beene, J. R.

    2005-10-01

    In the interaction of 30 fs, 40 TW Ti:sapphire Hercules laser at the University of Michigan, which is focused to the intensity of 10^19 W/cm^2 onto a supersonic He gas jet with electron density close to the resonant density, we observed quasi-monoenergetic electron beams with energy up to 300 MeV and angular divergence of about 10 mrad. The results on characterization of relativistic electron beam in terms of energy spread, its charge, divergence and pointing stability will be presented. 2D PIC simulations performed for the parameters close to the experimental conditions show the evolution of the laser pulse in plasma, electron injection, and the specifics of electron acceleration observed in experiments. Resulted relativistic electron beams have been used to perform gamma-neutron activation of ^12C and ^63Cu and photo-fission of ^238U. We demonstrated that approximately 10^6 reaction per shot has been produced in each case. This work was supported by the NSF through the Physics Frontier Center FOCUS. JRB, DRS, DWS, and CRV acknowledge support by the DOE under contract DE-AC05-00OR22725 with UT-Battelle, LLC.

  9. Characterisation of beams of low power infrared lasers for medical uses

    International Nuclear Information System (INIS)

    Welch, M.; Ramsay, D.

    1996-01-01

    Full text: The initial aim of this work was to investigate the power stability, both temporally and spatially, of the beams of low power infrared diode lasers of the type used by physiotherapists and vascular surgeons. Most of the lasers in this category are small, handheld devices, often with on/off switches which are manually held on while the laser is running. Two of those tested were larger, on stands, and could be set to run for a nominated time. Measurements made by one of us prior to the project had indicated that the power output of at least one of the lasers in use at Westmead Hospital was varying significantly over the treatment time. It is not at present known whether or not uniformity of power output is a significant factor in low power laser therapy, which has been shown to have beneficial effects for conditions ranging from torn muscles and arthritis to birth marks. Dramatic improvement in the healing of skin ulcers and wounds such as amputation scars has also been recorded. Equipment was chosen and a set of techniques developed for analysing the laser beams (some of which operated in continuous wave mode, some in pulsed mode, and some in both) with respect to: power output over time; power distribution within the beam, ie., beam profile; beam divergence; and pulse repetition frequency and pulse shape, if applicable. The fact that some of the lasers were continuous wave, some were pulsed and that some had very high pulse repetition frequencies placed restrictions on the type of power meter which could be used. Eventually a surface absorbing thermal power meter, responsive over a wide range of wavelengths, was chosen for temporal power measurements. Pulse repetition rates and pulse shapes were shown on a CRO; and spatial power distribution, beam shape, power distribution and divergence were recorded via a CCD camera and Spiricon laser beam analyser. 3D printouts from the Spiricon were made showing distribution of beam power. Nine lasers were analysed

  10. Acceleration of laser-injected electron beams in an electron-beam driven plasma wakefield accelerator

    International Nuclear Information System (INIS)

    Knetsch, Alexander

    2018-03-01

    Plasma wakefields deliver accelerating fields that are approximately a 100 times higher than those in conventional radiofrequency or even superconducting radiofrequency cavities. This opens a transformative path towards novel, compact and potentially ubiquitous accelerators. These prospects, and the increasing demand for electron accelerator beamtime for various applications in natural, material and life sciences, motivate the research and development on novel plasma-based accelerator concepts. However, these electron beam sources need to be understood and controlled. The focus of this thesis is on electron beam-driven plasma wakefield acceleration (PWFA) and the controlled injection and acceleration of secondary electron bunches in the accelerating wake fields by means of a short-pulse near-infrared laser. Two laser-triggered injection methods are explored. The first one is the Trojan Horse Injection, which relies on very good alignment and timing control between electron beam and laser pulse and then promises electron bunches with hitherto unprecedented quality as regards emittance and brightness. The physics of electron injection in the Trojan Horse case is explored with a focus on the final longitudinal bunch length. Then a theoretical and numerical study is presented that examines the physics of Trojan Horse injection when performed in an expanding wake generated by a smooth density down-ramp. The benefits are radically decreased drive-electron bunch requirements and a unique bunch-length control that enables longitudinal electron-bunch shaping. The second laser-triggered injection method is the Plasma Torch Injection, which is a versatile, all-optical laser-plasma-based method capable to realize tunable density downramp injection. At the SLAC National Laboratory, the first proof-of-principle was achieved both for Trojan Horse and Plasma Torch injection. Setup details and results are reported in the experimental part of the thesis along with the commissioning

  11. Narrow linewidth operation of a spectral beam combined diode laser bar.

    Science.gov (United States)

    Zhu, Zhanda; Jiang, Menghua; Cheng, Siqi; Hui, Yongling; Lei, Hong; Li, Qiang

    2016-04-20

    Our experiment is expected to provide an approach for realizing ultranarrow linewidth for a spectral beam combined diode laser bar. The beams of a diode laser bar are combined in a fast axis after a beam transformation system. With the help of relay optics and a transform lens with a long focal length of 1.5 m, the whole wavelength of a spectral combined laser bar can be narrowed down to 0.48 nm from more than 10 nm. We have achieved 56.7 W cw from a 19-element single bar with an M2 of 1.4  (in horizontal direction)×11.6  (in vertical direction). These parameters are good evidence that all the beams from the diode laser bar are combined together to increase the brightness.

  12. Scintillation reduction for laser beams propagating through turbulent atmosphere

    International Nuclear Information System (INIS)

    Berman, G P; Gorshkov, V N; Torous, S V

    2011-01-01

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams, including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analysed. These studies were performed for different dimensions of the detector, distances of propagation, and strengths of the atmospheric turbulence. Methods for significantly reducing the SI are described. These methods utilize averaging of the signal at the detector over a set of partially coherent beams (PCBs). It is demonstrated that the most effective approach is using a set of PCBs with definite initial directions of propagation relative to the z-axis. This approach results in a significant compensation of the beam wandering which in many cases is the main contributor to the SI. A novel method is to generate the PCBs by combining two laser beams-Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the effective suppression of the SI does not require high-frequency modulators. This result is important for achieving gigabit data rates in long-distance laser communication through turbulent atmospheres.

  13. Scintillation reduction for laser beams propagating through turbulent atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Berman, G P; Gorshkov, V N [Theoretical Division, T-4 and CNLS MS B213, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Torous, S V, E-mail: gpb@lanl.gov [National Technical University of Ukraine ' KPI' , 37 Peremogy Avenue, Building 7, Kiev-56, 03056 (Ukraine)

    2011-03-14

    We numerically examine the spatial evolution of the structure of coherent and partially coherent laser beams, including the optical vortices, propagating in turbulent atmospheres. The influence of beam fragmentation and wandering relative to the axis of propagation (z-axis) on the value of the scintillation index (SI) of the signal at the detector is analysed. These studies were performed for different dimensions of the detector, distances of propagation, and strengths of the atmospheric turbulence. Methods for significantly reducing the SI are described. These methods utilize averaging of the signal at the detector over a set of partially coherent beams (PCBs). It is demonstrated that the most effective approach is using a set of PCBs with definite initial directions of propagation relative to the z-axis. This approach results in a significant compensation of the beam wandering which in many cases is the main contributor to the SI. A novel method is to generate the PCBs by combining two laser beams-Gaussian and vortex beams, with different frequencies (the difference between these two frequencies being significantly smaller than the frequencies themselves). In this case, the effective suppression of the SI does not require high-frequency modulators. This result is important for achieving gigabit data rates in long-distance laser communication through turbulent atmospheres.

  14. Reduction of Fermi level pinning and recombination at polycrystalline CdTe surfaces by laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Simonds, Brian J. [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Kheraj, Vipul [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Department of Applied Physics, S. V. National Institute of Technology, Surat 395 007 (India); Palekis, Vasilios; Ferekides, Christos [Electrical Engineering, University of South Florida, Tampa, Florida 33620 (United States); Scarpulla, Michael A., E-mail: scarpulla@eng.utah.edu [Electrical and Computer Engineering, University of Utah, Salt Lake City, Utah 84112 (United States); Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112 (United States)

    2015-06-14

    Laser processing of polycrystalline CdTe is a promising approach that could potentially increase module manufacturing throughput while reducing capital expenditure costs. For these benefits to be realized, the basic effects of laser irradiation on CdTe must be ascertained. In this study, we utilize surface photovoltage spectroscopy (SPS) to investigate the changes to the electronic properties of the surface of polycrystalline CdTe solar cell stacks induced by continuous-wave laser annealing. The experimental data explained within a model consisting of two space charge regions, one at the CdTe/air interface and one at the CdTe/CdS junction, are used to interpret our SPS results. The frequency dependence and phase spectra of the SPS signal are also discussed. To support the SPS findings, low-temperature spectrally-resolved photoluminescence and time-resolved photoluminescence were also measured. The data show that a modest laser treatment of 250 W/cm{sup 2} with a dwell time of 20 s is sufficient to reduce the effects of Fermi level pinning at the surface due to surface defects.

  15. Spatial beam shaping using a micro-structured optical fiber and all-fiber laser amplification system for large-scale laser facilities seeding

    International Nuclear Information System (INIS)

    Calvet, Pierre

    2014-01-01

    Spatial beam shaping is an important topic for the lasers applications. For various industrial areas (marking, drilling, laser-matter interaction, high-power laser seeding...) the optical beam has to be flattened. Currently, the state of the art of the beam shaping: 'free-space' solutions or highly multimode fibers, are not fully suitable. The first ones are very sensitive to any perturbations and the maintenance is challenging, the second ones cannot deliver a coherent beam. For this reason, we present in this manuscript a micro-structured optical single-mode fiber delivering a spatially flattened beam. This 'Top-Hat' fiber can shape any beam in a spatially coherent beam what is a progress with respect to the highly multimode fibers used in the state of the art. The optical fibers are easy to use and very robust, what is a strong benefit with respect to the 'free-space' solutions. Thanks to this fiber, we could realize an all-fiber multi-stage laser chain to amplify a 10 ns pulse to 100 μJ. Moreover the temporal, spectral and spatial properties were preserved. We adapted this 'Top-Hat' fiber to this multi-stage laser chain, we proved the capability and the interest of this fiber for the spatial beam shaping of the laser beams in highly performing and robust laser systems. (author) [fr

  16. Studies on the beam system for the calibration of the OPAL jet chamber with laser beams

    International Nuclear Information System (INIS)

    Maringer, G.

    1988-07-01

    UV laser beams are an important tool for the calibration of the OPAL jet chamber. A beam transport system containing about 350 mirrors in total guides the beams from the laser outside the detector into the chamber. Four of the mirrors are moveable under remote control allowing to guide the beams into each of the 24 sectors and to correct the beam path in case of deviations. A program to control these moveable mirrors has been developed. Drift velocity measurements will be performed by means of double beams which are generated by appropriate beamsplitters. Accurate knowledge of the double beam distances is essential to obtain the desired accuracy of better than 0.1% or 10 μm. Using a CCD device with a pixel size of 23x23 μm 2 the beam distance could be measured with errors below the required limit. (orig.)

  17. 2000W high beam quality diode laser for direct materials processing

    Science.gov (United States)

    Qin, Wen-bin; Liu, You-qiang; Cao, Yin-hua; Gao, Jing; Pan, Fei; Wang, Zhi-yong

    2011-11-01

    This article describes high beam quality and kilowatt-class diode laser system for direct materials processing, using optical design software ZEMAX® to simulate the diode laser optical path, including the beam shaping, collimation, coupling, focus, etc.. In the experiment, the diode laser stack of 808nm and the diode laser stack of 915nm were used for the wavelength coupling, which were built vertical stacks up to 16 bars. The threshold current of the stack is 6.4A, the operating current is 85A and the output power is 1280W. Through experiments, after collimating the diode laser beam with micro-lenses, the fast axis BPP of the stack is less than 60mm.mrad, and the slow-axis BPP of the stack is less than 75mm.mrad. After shaping the laser beam and improving the beam quality, the fast axis BPP of the stack is still 60mm.mrad, and the slow-axis BPP of the stack is less than 19mm.mrad. After wavelength coupling and focusing, ultimately the power of 2150W was obtained, focal spot size of 1.5mm * 1.2mm with focal length 300mm. The laser power density is 1.2×105W/cm2, and that can be used for metal remelting, alloying, cladding and welding. The total optical coupling conversion efficiency is 84%, and the total electrical - optical conversion efficiency is 50%.

  18. Evaluating the beam quality of double-cladding fiber lasers in applications.

    Science.gov (United States)

    Yan, Ping; Wang, Xuejiao; Gong, Mali; Xiao, Qirong

    2016-08-10

    We put forward a new βFL factor, which is used exclusively in fiber lasers and is suitable to assess beam quality and choose the LP01 mode as the new suitable ideal beam. We present a new simple measurement method and verify the reasonability of the βFL factor in experiment in a 20/400 μm fiber laser. Furthermore, we use the βFL factor to evaluate the beam quality of a 3-kW-level fiber laser. It can be concluded that βFL is a key factor not only for assessing the performance of the high-power fiber laser that is our main focus, but also for the simple measurement.

  19. Propagation of a laser beam in a time-varying waveguide

    International Nuclear Information System (INIS)

    Chapman, J.M.; Kevorkian, J.

    1978-01-01

    The propagation of an axisymmetric laser beam in a plasma column having a radially parabolic electron density distribution is examined. First, an extended paraxial procedure is developed for the case of an axially uniform waveguide. It is shown that the essential feature of an alternate focusing and defocusing beam is retained, but that the intensity distribution is cumulatively modified at the foci and at the outer portions of the beam as compared to that of the paraxial case. Second, some general features of paraxial beam propagation are examined for the case of axially varying waveguides. Finally, laser plasma coupling is examined for the case when laser heating generates a density distribution that is radially parabolic near the axis and when the energy absorbed over a focal length of a plasma lens is small. It is shown that stable or unstable beam propagation depends upon the relative magnitude of the density fluctuations which exist in the axial variation of the waveguides as a result of laser heating. When the fluctuations are small, the propagation is stable, and a simple algebraic expression is obtained which relates the beam diameter to the axially slow averaged variation in the waveguide. When the fluctuations are large, the propagation stability can be determined only by consistently combining plasma dynamics and beam propagation to interrelate the axial variation of the beam to that of the waveguide. In this case of beam propagation in a time-varying waveguide, it is shown that the global stability of the propagation depends upon the initial fluctuation growth rate compared to the initial time rate of change in the radial curvature of the waveguide

  20. Interaction of a CO2 laser beam with a shock-tube plasma

    International Nuclear Information System (INIS)

    Box, S.J.C.; John, P.K.; Byszewski, W.W.

    1977-01-01

    The results of experimental investigations of the interaction of a CO 2 laser beam with plasma produced in an electromagnetic shock tube are presented. The interaction was investigated in two different configurations: with the laser beam perpendicular to the direction of propagation of the shock wave and with the laser beam parallel to the direction of the shock wave. The laser energy was 0.3 J in a 180-nsec pulse. The plasma density was in the range 10 17 --10 18 cm -3 and temperature was around 2 eV. Spectroscopic methods were used in the measurement of density and temperature. Direct observation of the path of the laser beam through the plasma was made by an image-convertor camera in conjunction with a narrow-band interference filter. The propagation of the laser through the plasma and energy absorption are discussed. The observed maximum increase in electron temperature due to the laser in the first configuration was 0.4 eV and the estimated temperature increase in the second configuration was about 2 eV

  1. Crosstalk of HgCdTe LWIR n-on-p diode arrays

    International Nuclear Information System (INIS)

    Sun Yinghui; Zhang Bo; Yu Meifang; Liao Qingjun; Zhang Yan; Wen Xin; Jiang Peilu; Hu Xiaoning; Dai Ning

    2009-01-01

    Crosstalk of HgCdTe long-wavelength infrared (LWIR) n-on-p diode arrays was measured using scanning laser microscopy. During the measurement, HgCdTe diode arrays with different diode pitches were frontside illuminated by a He-Ne laser at liquid nitrogen temperature and room temperature. The experimental results show that crosstalk between the nearest neighboring diodes decreases exponentially as the diode pitch increases, and the factors that affect the obtained crosstalk are presented and analyzed. Crosstalk out of the nominal diode area (optically sensitive area) is also measured and discussed.

  2. Laser-Bioplasma Interaction: The Blood Type Transmutation Induced by Multiple Ultrashort Wavelength Laser Beams

    Science.gov (United States)

    Stefan, V. Alexander

    2015-11-01

    The interaction of ultrashort wavelength multi laser beams with the flowing blood thin films leads to the transmutation of the blood types A, B, and AB into O type. This is a novel mechanism of importance for the transfusion medicine. Laser radiation is in resonance with the eigen-frequency modes of the antigen proteins and forces the proteins to parametrically oscillate until they get kicked out from the surface. The stripping away of antigens is done by the scanning-multiple-lasers of a high repetition rate in the blue-purple frequency domain. The guiding-lasers are in the red-green frequency domain. The laser force, (parametric interaction with the antigen eigen-oscillation), upon the antigen protein molecule must exceed its weight. The scanning laser beam is partially reflected as long as the antigen(s) is not eliminated. The process of the protein detachment can last a few minutes. Supported by Nikola Tesla Labs., Stefan University.

  3. Methods and Devices for Space Optical Communications Using Laser Beams

    Science.gov (United States)

    Goorjian, Peter M. (Inventor)

    2018-01-01

    Light is used to communicate between objects separated by a large distance. Light beams are received in a telescopic lens assembly positioned in front of a cat's-eye lens. The light can thereby be received at various angles to be output by the cat's-eye lens to a focal plane of the cat's-eye lens, the position of the light beams upon the focal plane corresponding to the angle of the beam received. Lasers and photodetectors are distributed along this focal plane. A processor receives signals from the photodetectors, and selectively signal lasers positioned proximate the photodetectors detecting light, in order to transmit light encoding data through the cat's-eye lens and also through a telescopic lens back in the direction of the received light beams, which direction corresponds to a location upon the focal plane of the transmitting lasers.

  4. Multi-GeV electron-positron beam generation from laser-electron scattering.

    Science.gov (United States)

    Vranic, Marija; Klimo, Ondrej; Korn, Georg; Weber, Stefan

    2018-03-16

    The new generation of laser facilities is expected to deliver short (10 fs-100 fs) laser pulses with 10-100 PW of peak power. This opens an opportunity to study matter at extreme intensities in the laboratory and provides access to new physics. Here we propose to scatter GeV-class electron beams from laser-plasma accelerators with a multi-PW laser at normal incidence. In this configuration, one can both create and accelerate electron-positron pairs. The new particles are generated in the laser focus and gain relativistic momentum in the direction of laser propagation. Short focal length is an advantage, as it allows the particles to be ejected from the focal region with a net energy gain in vacuum. Electron-positron beams obtained in this setup have a low divergence, are quasi-neutral and spatially separated from the initial electron beam. The pairs attain multi-GeV energies which are not limited by the maximum energy of the initial electron beam. We present an analytical model for the expected energy cutoff, supported by 2D and 3D particle-in-cell simulations. The experimental implications, such as the sensitivity to temporal synchronisation and laser duration is assessed to provide guidance for the future experiments.

  5. Compact two-beam push-pull free electron laser

    Science.gov (United States)

    Hutton, Andrew [Yorktown, VA

    2009-03-03

    An ultra-compact free electron laser comprising a pair of opposed superconducting cavities that produce identical electron beams moving in opposite directions such that each set of superconducting cavities accelerates one electron beam and decelerates the other electron beam. Such an arrangement, allows the energy used to accelerate one beam to be recovered and used again to accelerate the second beam, thus, each electron beam is decelerated by a different structure than that which accelerated it so that energy exchange rather than recovery is achieved resulting in a more compact and highly efficient apparatus.

  6. Tuneable Gaussian to flat-top resonator by amplitude beam shaping using a digital laser

    CSIR Research Space (South Africa)

    Ngcobo, S

    2014-02-01

    Full Text Available In this paper we experimentally demonstrate a simple laser cavity that produces spatial tuneable laser modes from a Gaussian beam to a Flat-top beam and a Donut-beam. The laser cavity contains an opaque ring and an adjustable circular aperture...

  7. High energy density physics with intense ion and laser beams. Annual report 2003

    International Nuclear Information System (INIS)

    Weyrich, K.

    2004-07-01

    The following topics are dealt with: Laser plasma physics, plasma spectroscopy, beam interaction experiments, atomic and radiation physics, pulsed power applications, beam transport and accelerator research and development, properties of dense plasma, instabilities in beam-plasma interaction, beam transport in dense plasmas, short-pulse laser-matter interaction. (HSI)

  8. Efficient coherent beam combination of two-dimensional phase-locked laser arrays

    International Nuclear Information System (INIS)

    Li, Bing; Yan, Aimin; Liu, Liren; Dai, Enwen; Sun, Jianfeng; Shen, Baoliang; Lv, Xiaoyu; Wu, Yapeng

    2011-01-01

    An efficient technique in which a two-dimensional (2D) phase-locked laser array can be coherently combined into a high power and high quality beam by using a conjugate Dammann grating (CDG) is presented. A theoretical model is established to provide a physical interpretation of the proposed scheme. Using this technique, we investigate analytically and numerically the coherent combination of 2D laser arrays such as 5 × 5 and 32 × 32 arrangements. Far-field distributions and the near-field pattern of the combined beam are calculated and compared with experimental results. A verification experiment with a simulated 5 × 5 2D laser array using an aperture mask has been performed. Calculations and experimental results show that the proposed technique in this paper is an efficient coherent beam combination method to obtain a high power and high quality beam from laser arrays

  9. Variable-energy positron-beam studies of Ni implanted with He

    International Nuclear Information System (INIS)

    Lynn, K.G.; Chen, D.M.; Nielsen, B.; Pareja, R.; Myers, S.

    1986-01-01

    Variable-energy positron-beam studies have been made on well-annealed polycrystalline Ni samples implanted with 30-, 90-, and 180-keV 4 He ions. The positron-annihilation characteristics were measured with a solid-state Ge detector at a number of different incident-positron energies and after isochronal annealing at various temperatures. The Doppler broadening of the annihilation photons was found to be strongly influenced by the 4 He implantations. The data indicate that trapping of the positrons occurred predominantly at small He bubbles. The variation of the broadening with incident-positron energy was sensitive to the depth distribution of the traps. A diffusion model assuming a square concentration-defect profile was developed and analytically fitted to the parametrized momentum data. These fitted results were compared to Monte Carlo range calculations for 4 He in Ni, and fairly good agreement was found. This investigation demonstrates the capabilities of positron annihilation for nondestructive depth profiling in ion-implanted systems. In addition, it establishes parallels between the trapping behavior of positrons and that reported elsewhere for hydrogen, thereby augmenting the present level of understanding of the technologically important trapping of hydrogen by the bubbles

  10. A compact spin-exchange optical pumping system for 3He polarization based on a solenoid coil, a VBG laser diode, and a cosine theta RF coil

    Science.gov (United States)

    Lee, Sungman; Kim, Jongyul; Moon, Myung Kook; Lee, Kye Hong; Lee, Seung Wook; Ino, Takashi; Skoy, Vadim R.; Lee, Manwoo; Kim, Guinyun

    2013-02-01

    For use as a neutron spin polarizer or analyzer in the neutron beam lines of the HANARO (High-flux Advanced Neutron Application ReactOr) nuclear research reactor, a 3He polarizer was designed based on both a compact solenoid coil and a VBG (volume Bragg grating) diode laser with a narrow spectral linewidth of 25 GHz. The nuclear magnetic resonance (NMR) signal was measured and analyzed using both a built-in cosine radio-frequency (RF) coil and a pick-up coil. Using a neutron transmission measurement, we estimated the polarization ratio of the 3He cell as 18% for an optical pumping time of 8 hours.

  11. Safe Laser Beam Propagation for Interplanetary Links

    Science.gov (United States)

    Wilson, Keith E.

    2011-01-01

    Ground-to-space laser uplinks to Earth–orbiting satellites and deep space probes serve both as a beacon and an uplink command channel for deep space probes and Earth-orbiting satellites. An acquisition and tracking point design to support a high bandwidth downlink from a 20-cm optical terminal on an orbiting Mars spacecraft typically calls for 2.5 kW of 1030-nm uplink optical power in 40 micro-radians divergent beams.2 The NOHD (nominal ocular hazard distance) of the 1030nm uplink is in excess of 2E5 km, approximately half the distance to the moon. Recognizing the possible threat of high power laser uplinks to the flying public and to sensitive Earth-orbiting satellites, JPL developed a three-tiered system at its Optical Communications Telescope Laboratory (OCTL) to ensure safe laser beam propagation through navigational and near-Earth space.

  12. Coherent Forward Stimulated-Brillouin Scattering of a Spatially Incoherent Laser Beam in a Plasma and Its Effect on Beam Spray

    International Nuclear Information System (INIS)

    Grech, M.; Riazuelo, G.; Pesme, D.; Weber, S.; Tikhonchuk, V. T.

    2009-01-01

    A statistical model for forward stimulated-Brillouin scattering is developed for a spatially incoherent, monochromatic, laser beam propagating in a plasma. The threshold above which the laser beam spatial incoherence cannot prevent the coherent growth of forward stimulated-Brillouin scattering is computed. It is found to be well below the threshold for self-focusing. Three-dimensional simulations confirm its existence and reveal the onset of beam spray above it. From these results, we propose a new figure of merit for the control of propagation through a plasma of a spatially incoherent laser beam

  13. Generation of highly collimated high-current ion beams by skin-layer laser-plasma interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Badziak, J.; Jablonski, S.; Glowacz, S.

    2006-01-01

    Generation of fast ion beams by laser-induced skin-layer ponderomotive acceleration has been studied using a two-dimensional (2D) two-fluid relativistic computer code. It is shown that the key parameter determining the spatial structure and angular divergence of the ion beam is the ratio d L /L n , where d L is the laser beam diameter and L n is the plasma density gradient scale length. When d L >>L n , a dense highly collimated megaampere ion (proton) beam of the ion current density approaching TA/cm 2 can be generated by skin-layer ponderomotive acceleration, even with a tabletop subpicosecond laser

  14. Spot size predictions of a focused ion beam based on laser cooling

    NARCIS (Netherlands)

    Haaf, ten G.; Wouters, S.H.W.; Geer, van der S.B.; Mutsaers, P.H.A.; Luiten, O.J.; Vredenbregt, E.J.D.

    2014-01-01

    The Atomic Beam Laser Cooled Ion Source (ABLIS) is a new source for focused ion beam instruments, which are used in the semiconductor industry, to image and modify structures on the nanometer length scale. The ABLIS employs laser cooling and compression of an atomic beam of rubidium to increase its

  15. Time-dependent H-like and He-like Al lines produced by ultra-short pulse laser

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Takako; Kato, Masatoshi [National Inst. for Fusion Science, Nagoya (Japan); Shepherd, R; Young, B; More, R; Osterheld, Al

    1998-03-01

    We have performed numerical modeling of time-resolved x-ray spectra from thin foil targets heated by the LLNL Ultra-short pulse (USP) laser. The targets were aluminum foils of thickness ranging from 250 A to 1250 A, heated with 120 fsec pulses of 400 nm light from the USP laser. The laser energy was approximately 0.2 Joules, focused to a 3 micron spot size for a peak intensity near 2 x 10{sup 19} W/cm{sup 2}. Ly{alpha} and He{alpha} lines were recorded using a 900 fsec x-ray streak camera. We calculate the effective ionization, recombination and emission rate coefficients including density effects for H-like and He-like aluminum ions using a collisional radiative model. We calculate time-dependent ion abundances using these effective ionization and recombination rate coefficients. The time-dependent electron temperature and density used in the calculation are based on an analytical model for the hydrodynamic expansion of the target foils. During the laser pulse the target is ionized. After the laser heating stops, the plasma begins to recombine. Using the calculated time dependent ion abundances and the effective emission rate coefficients, we calculate the time dependent Ly{alpha} and He{alpha} lines. The calculations reproduce the main qualitative features of the experimental spectra. (author)

  16. Laser Spectroscopy of Antiprotonic Helium Atoms

    CERN Multimedia

    2002-01-01

    %PS205 %title\\\\ \\\\Following the discovery of metastable antiprotonic helium atoms ($\\overline{p}He^{+} $) at KEK in 1991, systematic studies of their properties were made at LEAR from 1991 to 1996. In the first two years the lifetime of $\\overline{p}He^{+}$ in liquid and gaseous helium at various temperatures and pressures was measured and the effect of foreign gases on the lifetime of these atoms was investigated. Effects were also discovered which gave the antiproton a 14\\% longer lifetime in $^4$He than in $^3$He, and resulted in important differences in the shape of the annihilation time spectra in the two isotopes.\\\\ \\\\Since 1993 laser spectroscopy of the metastable $\\overline{p}He^{+}$ atoms became the main focus of PS205. Transitions were stimulated between metastable and non-metastable states of the $\\overline{p}He^{+}$ atom by firing a pulsed dye laser beam into the helium target every time an identified metastable atom was present (Figure 1). If the laser frequency matched the transition energy, the...

  17. The suppression of radiation reaction and laser field depletion in laser-electron beam interaction

    Science.gov (United States)

    Ong, J. F.; Moritaka, T.; Takabe, H.

    2018-03-01

    The effects of radiation reaction (RR) have been studied extensively by using the interaction of ultraintense lasers with a counter-propagating relativistic electron. At the laser intensity at the order of 1023 W/cm2, the effects of RR are significant in a few laser periods for a relativistic electron. However, a laser at such intensity is tightly focused and the laser energy is usually assumed to be fixed. Then, the signal of RR and energy conservation cannot be guaranteed. To assess the effects of RR in a tightly focused laser pulse and the evolution of the laser energy, we simulated this interaction with a beam of 109 electrons by means of a Particle-In-Cell method. We observe that the effects of RR are suppressed due to the ponderomotive force and accompanied by a non-negligible amount of laser field energy reduction. This is because the ponderomotive force prevents the electrons from approaching the center of the laser pulse and leads to an interaction at the weaker field region. At the same time, the laser energy is absorbed through ponderomotive acceleration. Thus, the kinetic energy of the electron beam has to be carefully selected such that the effects of RR become obvious.

  18. Direct energy conversion and neutral beam injection for catalyzed D and D-3He tokamak reactors

    International Nuclear Information System (INIS)

    Blum, A.S.; Moir, R.W.

    1977-01-01

    The calculated performance of single stage and Venetian blind direct energy converters for Catalyzed D and D- 3 He Tokamak reactors are discussed. Preliminary results on He pumping are outlined. The efficiency of D and T neutral beam injection is reviewed

  19. Control of proton beam divergence in intense-laser foil-plasma interaction

    International Nuclear Information System (INIS)

    Kawata, S.; Sonobe, R.; Miyazaki, S.; Sakai, K.; Kikuchi, T.

    2006-01-01

    Quality of an ion beam is one of the critical factors in intense-laser ion beam generation. A purpose of this study is the suppression of transverse proton divergence by a controlled electron cloud in laser-foil interactions. In this study, the foil target has a hole at the opposite side of the laser illumination. The electrons accelerated by an intense laser are limited in transverse by a neutral plasma at a protuberant part. Therefore the protons are accelerated and also controlled transversely by the electron cloud structure. In our 2.5-dimensional Particle-in-Cell simulations we demonstrate that the transverse shape of the electron cloud is well controlled and the collimated proton beam is generated successfully in the target with the hole. (authors)

  20. Laser-evaporated pulsed atomic beam and its application

    International Nuclear Information System (INIS)

    Zhang Yanping; Hu Qiquan; Su Haizheng; Lin Fucheng

    1986-01-01

    For the purpose of obtaining an atomic beam, laser-evaporated atomic vapor was studied experimentally. The signals of multiphoton ionization of refractory metal atoms obtained with the pulsed atomic beam were observed, and the problem associated with the detection of these signals was discussed

  1. The study of the structural stability of the spiral laser beams propagation through inhomogeneous phase medium

    Science.gov (United States)

    Zinchik, Alexander A.; Muzychenko, Yana B.

    2015-06-01

    This paper discusses theoretical and experimental results of the investigation of light beams that retain their intensity structure during propagation and focusing. Spiral laser beams are a family of laser beams that preserve the structural stability up to scale and rotation with the propagation. Properties of spiral beams are of practical interest for laser technology, medicine and biotechnology. Researchers use a spiral beams for movement and manipulation of microparticles. Functionality laser manipulators can be significantly enhanced by using spiral beams whose intensity remains invariable. It is well known, that these beams has non-zero orbital angular momentum. Spiral beams have a complicated phase distribution in cross section. In this paper we investigate the structural stability of the laser beams having a spiral phase structure by passing them through an inhomogeneous phase medium. Laser beam is passed through a medium is characterized by a random distribution of phase in the range 0..2π. The modeling was performed using VirtualLab 5.0 (manufacturer LightTrans GmbH). Compared the intensity distribution of the spiral and ordinary laser beam after the passage of the inhomogeneous medium. It is shown that the spiral beams exhibit a significantly better structural stability during the passage phase heterogeneous environments than conventional laser beams. The results obtained in the simulation are tested experimentally. Experimental results show good agreement with the theoretical results.

  2. Measurements of gas velocity in supersonic flow using a laser beam

    International Nuclear Information System (INIS)

    Airoldi, V.J.T.; Santos, R. dos

    1982-01-01

    A study of measurements of supersonic velocities in a wind tunnel using a laser beam was performed. Techniques using lasers are most suitable because they do not disturb the gas flow. This work presents the technique entitled as fringe technique. It works using interference patterns due to two perpendicular laser beams crossing the sample (i.e. the gas flow). Experimental results are compared with other usual techniques. (R.S.)

  3. The System of Nanosecond 280-KeV He+ Pulsed Beam

    International Nuclear Information System (INIS)

    Junphong, P.; Ano, V.; Lekprasert, B.; Suwannakachorn, D.; Thongnopparat, N.; Vilaithong, T.; Chiang Mai U.; Wiedemann, H.; SLAC/SLAC, SSRL

    2006-01-01

    At Fast Neutron Research Facility, the 150 kV-pulses neutron generator is being upgraded to a 280-kV-pulsed-He beam for time-of-flight Rutherford backscattering spectrometry. It involves replacing the existing beam line elements by a multicusp ion source, a 400-kV accelerating tube, 45-double focusing dipole magnet and quadrupole lens. The multicusp ion source is a compact filament-driven of 2.6 cm in diameter and 8 cm in length. The current extracted is 20.4 μ A with 13 kV of extraction voltage and 8.8 kV of Einzel lens voltage. The beam emittance has found to vary between 6-12 mm mrad. The beam transport system has to be redesigned based on the new elements. The important part of a good pulsed beam depends on the pulsing system. The two main parts are the chopper and buncher. An optimized geometry for the 280 keV pulsed helium ion beam will be presented and discussed. The PARMELA code has been used to optimize the space charge effect, resulting in pulse width of less than 2 ns at a target. The calculated distance from a buncher to the target is 4.6 m. Effects of energy spread and phase angle between chopper and buncher have been included in the optimization of the bunch length

  4. Focusing lenses for the 20-beam fusion laser, SHIVA

    International Nuclear Information System (INIS)

    O'Neal, W.C.

    1976-01-01

    The focus lens design for the 20-beam SHIVA laser fusion facility involves considerations of uniform and normal pellet illumination. The resulting requirements dictate tailored beam intensity profiles and vacuum-loaded thin lenses

  5. Structural defects in laser- and electron-beam annealed silicon

    International Nuclear Information System (INIS)

    Narayan, J.

    1979-01-01

    Laser and electron beam pulses provide almost an ideal source of heat by which thin layers of semiconductors can be rapidly melted and solidified with heating and cooling rates exceeding 10 80 C/sec. Microstructural modifications obtained as a function of laser parameters are examined and it is shown that both laser and electron beam pulses can be used to remove displacement damage, dislocations, dislocation loops and precipitates. Annealing of defects underneath the oxide layers in silicon is possible within a narrow energy window. The formation of cellular structure provides a rather clear evidence of melting which leads to segregation and supercooling, and subsequent cell formation

  6. Emission of a propagation invariant flat-top beam from a microchip laser

    Energy Technology Data Exchange (ETDEWEB)

    Naidoo, Darryl [Council for Scientific and Industrial Research, National Laser Centre, P.O. Box 395, Pretoria 0001 (South Africa); Harfouche, A. [Faculté de Physique, Université des Sciences et de la Technologie Houari Boumédiène, B.P. no 32, El Alia, 16111 Algiers (Algeria); Fromager, Michael; Ait-Ameur, Kamel [Centre de Recherche sur les Ions, les Matériaux et la Photonique, Unité Mixte de Recherche de Recherche 6252, Commissariat à l’Energie Atomique, Centre National de la Recherche Scientifique, Université de Caen Basse Normandie, Ecole Nationale Supérieure des Ingénieurs de Caen, Boulevard Maréchal Juin, F14050 Caen (France); Forbes, Andrew, E-mail: andrew.forbes@wits.ac.za [School of Physics, University of the Witwatersrand, Private Bag 3, Johannesburg 2050 (South Africa)

    2016-02-15

    Light beams with a flat-top intensity profile have found many applications in both pure and applied studies, but are not the natural modes of conventional light sources such as lasers. Moreover, such light beams are also not the eigenmodes of the wave equation in a vacuum and so change their intensity profile dramatically during propagation. Here we overcome both these limitations and create a propagation invariant flat-top beam from a microchip laser. By optical feedback into the excited medium we are able to create emission that is an incoherent mix of two spatial modes, a Gaussian and a donut, so that the sum is a flat-top beam that maintains its shape to infinity. Such miniature sources that emit structured light will be attractive for integrated light-based technologies. - Highlights: • First demonstration of the generation of a flat-top beam from a microchip laser. • The flat-top beam is shape-invariant during propagation. • By optical feedback we can select the desired shape from the microchip laser.

  7. Emission of a propagation invariant flat-top beam from a microchip laser

    International Nuclear Information System (INIS)

    Naidoo, Darryl; Harfouche, A.; Fromager, Michael; Ait-Ameur, Kamel; Forbes, Andrew

    2016-01-01

    Light beams with a flat-top intensity profile have found many applications in both pure and applied studies, but are not the natural modes of conventional light sources such as lasers. Moreover, such light beams are also not the eigenmodes of the wave equation in a vacuum and so change their intensity profile dramatically during propagation. Here we overcome both these limitations and create a propagation invariant flat-top beam from a microchip laser. By optical feedback into the excited medium we are able to create emission that is an incoherent mix of two spatial modes, a Gaussian and a donut, so that the sum is a flat-top beam that maintains its shape to infinity. Such miniature sources that emit structured light will be attractive for integrated light-based technologies. - Highlights: • First demonstration of the generation of a flat-top beam from a microchip laser. • The flat-top beam is shape-invariant during propagation. • By optical feedback we can select the desired shape from the microchip laser.

  8. A feasibility study of H{sup -} beam extraction technique using YAG laser

    Energy Technology Data Exchange (ETDEWEB)

    Meigo, Shin-ichiro; Hasegawa, Kazuo; Ikeda, Yujiro; Oigawa, Hiroyuki [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Aoki, Nobutada [Toshiba Power System Co., Ltd. (Japan); Nakagawa, Satoshi [Toshiba Co., Tokyo (Japan)

    2002-12-01

    Under a framework of JAERI-KEK joint project of high intensity proton accelerator, as for research and develop of the accelerator driven nuclear transmutation of the long lived radioactive nuclide, it is planed to built the Transmutation Physics Experiment Facility (TEF-P) and the Transmutation Engineering Experiment Facility (TEF-E). The TEF-P is used for the experiments for subcritical system coupled with a spallation neutron target bombarded with 600-MeV proton beam accelerated by the LINAC. To limit the maximum thermal power less than 500 W at the TEF-P, an incident beam power should be less than 10 W. On the contrary, at the TEF-E, high power beam of 200 kW is requested. Both high and low power beams are demanded for the transmutation facilities. It is difficult to deliver a low power beam to the TEF-P. Conventional beam extraction technique with a thin foil, is not desirable because the scattering of the beam at the foil requires the massive shield. Therefore, we study a new technique to extract a small portion of the beam precisely from the high intensity beam by using a laser beam. By a laser beam, H{sup -} in the beam from LINAC is partially changed to H{sup 0} beam so that a low current H{sup 0} beam can be obtained. As the cross section of the charge exchange reaction for H{sup -} ions has a peak around at a wave length of 1 {mu}m for photons, YAG laser is suitable for this charge exchange because of its 1.06 {mu}m wave length. It is derived that 10 W beam for 600-MeV proton can be extracted by the YAG laser with power of 2 J for each pulse of 25 Hz. By this technique, the pulse width for the extracted beam can be controlled by changing the time width of laser irradiation. When a charge exchanger having the beam collide point existing in straight section, a background beam current of projectile, however, will be increased due to the interaction with the residual gas in the beam duct. Thus, a charge exchanger is devised having the beam collide point in a

  9. Applications of laser produced ion beams to nuclear analysis of materials

    International Nuclear Information System (INIS)

    Mima, K.; Azuma, H.; Fujita, K.; Yamazaki, A.; Okuda, C.; Ukyo, Y.; Kato, Y.; Arrabal, R. Gonzalez; Soldo, F.; Perlado, J. M.; Nishimura, H.; Nakai, S.

    2012-01-01

    Laser produced ion beams have unique characteristics which are ultra-short pulse, very low emittance, and variety of nuclear species. These characteristics could be used for analyzing various materials like low Z ion doped heavy metals or ceramics. Energies of laser produced ion beam extend from 0.1MeV to 100MeV. Therefore, various nuclear processes can be induced in the interactions of ion beams with samples. The ion beam driven nuclear analysis has been developed for many years by using various electrostatic accelerators. To explore the applicability of laser ion beam to the analysis of the Li ion battery, a proton beam with the diameter of ∼ 1.0 μm at Takasaki Ion Acceleration for Advanced Radiation Application (TIARA), JAEA was used. For the analysis, the PIGE (Particle-Induced Gamma Ray Emission) is used. The proton beam scans over Li battery electrode samples to diagnose Li density in the LiNi 0.85 Co 0.15 O 2 anode. As the results, PIGE images for Li area density distributions are obtained with the spatial resolution of better than 1.5μm FWHM. By the Li PIGE images, the depth dependence of de-intercalation levels of Li in the anode is obtained. By the POP experiments at TIARA, it is clarified that laser produced ion beam is appropriate for the Li ion battery analysis. 41.85.Lc, 41.75.Jv, 42.62.cf.

  10. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Science.gov (United States)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Döbeli, Max; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas

    2015-10-01

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially 18O substituted La0.6Sr0.4MnO3 target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  11. Spot size characterization of focused non-Gaussian X-ray laser beams.

    Science.gov (United States)

    Chalupský, J; Krzywinski, J; Juha, L; Hájková, V; Cihelka, J; Burian, T; Vysín, L; Gaudin, J; Gleeson, A; Jurek, M; Khorsand, A R; Klinger, D; Wabnitz, H; Sobierajski, R; Störmer, M; Tiedtke, K; Toleikis, S

    2010-12-20

    We present a new technique for the characterization of non-Gaussian laser beams which cannot be described by an analytical formula. As a generalization of the beam spot area we apply and refine the definition of so called effective area (A(eff)) [1] in order to avoid using the full-width at half maximum (FWHM) parameter which is inappropriate for non-Gaussian beams. Furthermore, we demonstrate a practical utilization of our technique for a femtosecond soft X-ray free-electron laser. The ablative imprints in poly(methyl methacrylate) - PMMA and amorphous carbon (a-C) are used to characterize the spatial beam profile and to determine the effective area. Two procedures of the effective area determination are presented in this work. An F-scan method, newly developed in this paper, appears to be a good candidate for the spatial beam diagnostics applicable to lasers of various kinds.

  12. Laser interferometer array for Big Dee

    International Nuclear Information System (INIS)

    Fairbanks, E.S.

    1984-01-01

    A twelve channel interferometer array is planned for obtaining electron density profiles on Big Dee. Three of the channels are vertical; the remainder are radial or diagonal in an azimuthal plane. Each channel consists of coaxial CO/sub 2/ and HeNe laser beams. The reference beam is formed by splitting off half of the laser power at each wavelength by using acousto-optic modulators which introduce a 40 MHz frequency shift in the reference beam. In the radial channels the probe beam passes through a barium fluoride window to a plane metal mirror on the inside wall of the vacuum vessel. The reflected beam passes back out of the vacuum vessel, through the same window, to a beam splitter where the probe beam and the reference beam are again combined

  13. Fundamental aspects of laser and ion-beam interactions with solid surfaces

    International Nuclear Information System (INIS)

    Wang, Z.L.

    1982-01-01

    In the first part of the thesis laser-beam interactions with solid surfaces are discussed. In the second part ion-beam interactions with solid surfaces are discussed and mainly the mixing of atoms due to ion bombardment. A study of ion-beam mixing of Cu-Au and Cu-W systems is described in order to illustrate the mechanism for ion beam mixing. As Cu-Au are miscible whereas Cu-W systems are not, and both systems have comparable mass numbers, comparison provides a test for current theories on ion-beam mixing. The results of experiments where 300 keV Kr 4+ ion-bombardment at a dose of 5x10 15 cm -2 has been applied to initiate mixing of a single layer structure and sandwich samples for both systems are described. Room temperature irradiations with a dose of 5x10 15 cm -2 show that Cu-Au mix readily, whereas a small mixing effect is observed for Cu-W systems. A comparable amount of mixing for Cu-Au induced by laser or ion beams is found whereas no mixing of Cu-W induced by laser irradiation is observed, which is in agreement with the criteria for formation of metastable solid solutions due to pulsed laser treatment. (Auth.)

  14. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    Energy Technology Data Exchange (ETDEWEB)

    Amin, Munib

    2008-12-15

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  15. Experimental control of the beam properties of laser-accelerated protons and carbon ions

    International Nuclear Information System (INIS)

    Amin, Munib

    2008-12-01

    The laser generation of energetic high quality beams of protons and heavier ions has opened up the door to a plethora of applications. These beams are usually generated by the interaction of a short pulse high power laser with a thin metal foil target. They could already be applied to probe transient phenomena in plasmas and to produce warm dense matter by isochoric heating. Other applications such as the production of radioisotopes and tumour radiotherapy need further research to be put into practice. To meet the requirements of each application, the properties of the laser-accelerated particle beams have to be controlled precisely. In this thesis, experimental means to control the beam properties of laser-accelerated protons and carbon ions are investigated. The production and control of proton and carbon ion beams is studied using advanced ion source designs: Experiments concerning mass-limited (i.e. small and isolated) targets are conducted. These targets have the potential to increase both the number and the energy of laser-accelerated protons. Therefore, the influence of the size of a plane foil target on proton beam properties is measured. Furthermore, carbon ion sources are investigated. Carbon ions are of particular interest in the production of warm dense matter and in cancer radiotherapy. The possibility to focus carbon ion beams is investigated and a simple method for the production of quasi-monoenergetic carbon ion beams is presented. This thesis also provides an insight into the physical processes connected to the production and the control of laser-accelerated ions. For this purpose, laser-accelerated protons are employed to probe plasma phenomena on laser-irradiated targets. Electric fields evolving on the surface of laser-irradiated metal foils and hollow metal foil cylinders are investigated. Since these fields can be used to displace, collimate or focus proton beams, understanding their temporal and spatial evolution is crucial for the design of

  16. ISTC projects devoted to improving laser beam quality

    Science.gov (United States)

    Malakhov, Yu. I.

    2007-05-01

    Short overview is done about the activity of ISTC in a direction concerned with improving powerful laser beam quality by means of nonlinear and linear adaptive optics methods. Completed projects #0591 and #1929 resulted in the development of a stimulated Brillouin scattering (SBS) phase conjugation mirror of superhigh fidelity employing the kinoform optical elements (rasters of small lenses) of new generation designed for pulsed or pulse-periodic lasers with nanosecond scale pulse duration. Project #2631 is devoted to development of an adaptive optical system for phase registration and correction of laser beams with wave front vortices. The principles of operation of conventional adaptive systems are based on the assumption that the phase is a smooth continuous function in space. Therefore the solution of the Project tasks will assume a new step in adaptive optics.

  17. A plasma solenoid driven by an Orbital Angular Momentum laser beam

    OpenAIRE

    Nuter, R.; Korneev, Ph.; Thiele, I.; Tikhonchuk, V.

    2018-01-01

    A tens of Tesla quasi-static axial magnetic field can be produced in the interaction of a short intense laser beam carrying an Orbital Angular Momentum with an underdense plasma. Three-dimensional "Particle In Cell" simulations and analytical model demonstrate that orbital angular momentum is transfered from a tightly focused radially polarized laser beam to electrons without any dissipative effect. A theoretical model describing the balistic interaction of electrons with laser shows that par...

  18. Computer controlling of writing beam in laser microfabrication of diffractive optics

    OpenAIRE

    Korolkov, V.; Shimansky, R.; Cherkashin, V.; Denk, D.

    2003-01-01

    Laser microfabrication of diffractive optics with continuous relief is based on the direct local action of focused laser radiation on the recording material. Control of writing beam parameters (beam power, spot size, waist position) is one of the main tasks in microfabrication using laser writing systems. Method of the control defines the correspondence between the fabricated microrelief of the diffractive optical element and a designed one. Complexity of this task consists in the necessity t...

  19. Laser cooling and ion beam diagnosis of relativistic ions in a storage ring

    International Nuclear Information System (INIS)

    Schroeder, S.

    1990-08-01

    Particle accelerator and storage ring technology has reached an advanced state, so that different heavy ion storage rings are coming into operation by now, capable of storing even fully stripped ions up to U 92+ . The main purpose of these machines are the accumulation of ions and the ability of improving the beam quality, that is the phase space density of the stored beams. This beam cooling is done successfully by the well established stochastic and electron cooling techniques. A new cooling method, the laser cooling, is taken over from atomic beam and ion trap experiments, where it has yielded extremely low temperatures of atomic samples. As a canditate at storage rings 7 Li + ions are stored in the Heidelberg TSR at 13.3 MeV. The ion beam properties of the metastable fraction like momentum spread, storage time and the influence of residual gas scattering are investigated by colinear laser spectroscopy in the experimental section of the TSR. An optical pumping experiment using two dye laser systems yields information about ion kinematics and velocity mixing processes in the ring. Lifetimes in the order of 100 ms for velocity classes marked in this way show that laser cooling can be applied to the stored 7 Li + beam. In an experimental situation of two strong counterpropagating laser beams, both tuned near resonance, a dramatic reduction of the ion beam momentum spread is observed. With a special geometrical control of laser and ion beam the longitudinal beam temperature is reduced from 260 K to at least 3 K with very high collection efficiency. (orig./HSI) [de

  20. High beam quality and high energy short-pulse laser with MOPA

    Science.gov (United States)

    Jin, Quanwei; Pang, Yu; Jiang, JianFeng; Tan, Liang; Cui, Lingling; Wei, Bin; Sun, Yinhong; Tang, Chun

    2018-03-01

    A high energy, high beam quality short-pulse diode-pumped Nd:YAG master oscillator power-amplifier (MOPA) laser with two amplifier stages is demonstrated. The two-rod birefringence compensation was used as beam quality controlling methods, which presents a short-pulse energy of 40 mJ with a beam quality value of M2 = 1.2 at a repetition rate of 400Hz. The MOPA system delivers a short-pulse energy of 712.5 mJ with a pulse width of 12.4 ns.The method of spherical aberration compensation is improved the beam quality, a M2 factor of 2.3 and an optical-to-optical efficiency of 27.7% is obtained at the maximum laser out power.The laser obtained 1.4J out energy with polarization integration.

  1. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    CERN Document Server

    Yang, X; Reboredo Gil, David; Welsh, Gregor H; Li, Y.F; Cipiccia, Silvia; Ersfeld, Bernhard; Grant, D. W; Grant, P. A; Islam, Muhammad; Tooley, M.B; Vieux, Gregory; Wiggins, Sally; Sheng, Zheng-Ming; Jaroszynski, Dino

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lowerenergy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wake...

  2. Technique using axicons for generating flat-top laser-beam profiles

    International Nuclear Information System (INIS)

    Viswanathan, V.K.; Woodfin, G.L.; Stahl, D.; Carpenter, J.P.; Kyrala, G.

    1983-01-01

    In certain fusion experiments using CO 2 lasers, like Helios, it is desired to produce a focal spot several times larger than the nominal focal spot, with a flat beam profile. The typical focal spot in Helios is roughly 70 μm and just defocussing the beam produces beam breakup, with several hot spots with roughly the original diameter, and a gaussian distribution. A number of schemes were tried to achieve a large spot with desired characteristics. These are described in the article. Axicons were found to produce spots with desired characteristics. Axicons are lenses or mirrors having a cone-shaped surface. The various schemes are described, as well as an experiment in Helios which confirmed that axicons produced the spots with desirable characteristics. Helios is an 8-beam CO 2 laser which produces 10 kJ at power in excess of 20 TW. It is currently being used for Laser Fusion studies at the Los Alamos National Laboratory

  3. Laser stripping of the TRIUMF H- beam

    International Nuclear Information System (INIS)

    Lee, R.T.; Fraser, J.S.; Levy, C.D.P.

    1989-03-01

    A ≤ nA external beam of 50 to 200 MeV is required for certain physics and medical experiments at the same time as 200 μA is being accelerated for meson production. A mode-locked laser, synchronized with the cyclotron rf, can produce a 20 nA parasitic H 0 beam for continuous extraction. The best available Nd:YAG or Nd:YLF laser (Av. Pwr. 15 W) mode-locked at a harmonic of the cyclotron rf falls short of the required intensity by a factor of about 50. An optical delay line could trap the mode-locked pulse train to achieve the required intensity. The optical delay line is a near-concentric resonator installed half above and half below the beam plane and in which all trapped pulses cross the midplane in synchronism with the cyclotron beam bunches. An analysis of the delay line is presented in terms of the transfer matrix for one round trip in the periodic focusing system formed by the end mirrors of the resonator. An enhancement factor ≥55 is possible with 80 trapped pulses if the mirror reflectively ≥ 99%

  4. In vivo and in vitro HeNe laser effects on phagocyte functions

    Energy Technology Data Exchange (ETDEWEB)

    Ricevuti, G.; Mazzone, A.; Monaia, C.; Fratino, P.; Degiulio, R.; Dell' Acqua, R.; Leonardi, G.; Jucci, A.; Sacchi, S. (Univ. of Pavia (Italy))

    1989-10-01

    The goal of this work was to evaluate the effect of helium-neon (HeNe) laser irradiation on immunocompetent cells. We used the in vivo skin window method and in vitro granulocyte function tests. The study of cellular migration showed a marked decrease in vitro and in vivo in a dose-independent manner. Superoxide release was not modified by laser irradiation. The granulocyte's aggregation, when using PHA and PMA, presented a reduction that was statistically very significant, not as a subordinate dose. An increase of the release of ATP was demonstrated only at 4 joules and precedes granulocyte aggregation. When using Ca2+ ionophore A23187 as stimulus, laser irradiation at 1, 2 or 4J did not show any modification of granulocyte aggregation. The monoclonal antibody 60.1, which identifies a membrane antigen fundamental for aggregation and chemotaxis, is expressed in normal amounts on granulocyte membranes both before and after irradiation with a HeNe laser. In fact, laser irradiation preferentially attacks the area of the cellular centrosome that determines a modification of cellular morphology. The electron microscope and immunofluorescence study with a monoclonal antibody have pointed out a disorganization of the microtubules. The alteration of some of the granulocyte functions is correlated to the damage in the centrioles. The granulocyte mitochondrial system and surface membrane remain intact, and this explains the normal production and release of free radicals. Further experiments are necessary to evaluate the clinical application of lasers in various diseases with immunophagocytic pathogenesis.

  5. Effect of laser beam filamentation on plasma wave localization and stimulated Raman scattering

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Sharma, R. P.

    2013-01-01

    This paper presents the effect of laser beam filamentation on the localization of electron plasma wave (EPW) and stimulated Raman scattering (SRS) in unmagnitized plasma when both relativistic and ponderomotive nonlinearities are operative. The filamentary dynamics of laser beam is studied and the splitted profile of the laser beam is obtained due to uneven focusing of the off-axial rays. The localization of electron plasma wave takes place due to nonlinear coupling between the laser beam and EPW. Stimulated Raman scattering of this EPW is studied and backreflectivity has been calculated. The localization of EPW also affects the eigenfrequency and damping of plasma wave; consequently, mismatch and modified enhanced Landau damping lead to the disruption of SRS process and a substantial reduction in the backreflectivity. The new enhanced damping of the plasma wave has been calculated and it is found that the SRS process gets suppressed due to the localization of plasma wave in laser beam filamentary structures. For typical laser beam and plasma parameters with wavelength λ (=1064 nm), power flux (=10 16 W/cm 2 ) and plasma density (n/n cr ) = 0.2; the SRS back reflectivity is found to be suppressed by a factor of around 5%. (author)

  6. A polarized {sup 3}He target for the photon beam at MAMI

    Energy Technology Data Exchange (ETDEWEB)

    Krimmer, J., E-mail: j.krimmer@ipnl.in2p3.fr [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Institut de Physique Nucleaire de Lyon, 4 rue Enrico Fermi, 69622 Villeurbanne cedex (France); Aguar Bartolome, P.; Ahrens, J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany); Altieri, S. [INFN Sezione di Pavia, Pavia (Italy); Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia, Pavia (Italy); Arends, H.J. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany); Heil, W.; Karpuk, S.; Otten, E.W. [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Pedroni, P. [INFN Sezione di Pavia, Pavia (Italy); Salhi, Z. [Institut fuer Physik, Johannes Gutenberg-Universitaet, Staudinger Weg 7, 55099 Mainz (Germany); Thomas, A. [Institut fuer Kernphysik, Johannes Gutenberg-Universitaet, Johann-Joachim-Becher-Weg 45, 55099 Mainz (Germany)

    2011-08-21

    A polarized {sup 3}He target has been installed for the first time inside the 4{pi} Crystal Ball detector at the tagged photon beam of the MAinz MIcrotron (MAMI). It has been demonstrated that the system works reliably and that the polarization losses during handling of the polarized gas are under control. Initial polarization values up to 70% and total relaxation times up to 20 h could be obtained during a first test beam time devoted to the measurement of the double polarized photoabsorption cross-section in the {Delta}(1232) baryon resonance region.

  7. Birefringence Optical Feedback with a Folded Cavity in HeNe Laser

    International Nuclear Information System (INIS)

    Wu Yun; Tan Yi-Dong

    2013-01-01

    The birefringence optical feedback with a folded cavity in HeNe laser is investigated. A theory model based on the equivalent cavity of the Fabry—Perot interferometer is presented. The phase difference between the two intensities in birefringence feedback is twice the retardation of the wave plate. The phase difference is invariable when the length of the feedback cavity changes. With the adoption of a cube corner prism (CCP) to form a folded cavity, the fringe frequency is doubled, and the resolution of the displacement sensor based on birefringence optical feedback with a folded cavity is improved. A resistance chain of 5-fold subdivision and 4-fold logic subdivision is used as further subdivision. The resolution of λ/80 is obtained eventually; for 632.8 nm HeNe laser it is 7.91 nm. The displacement sensor based on birefringence optical feedback with a folded cavity is simple and of high resolution, large measurement range, low cost, and is of great application potential in industry

  8. Near-diffraction-limited segmented broad area diode laser based on off-axis spectral beam combining

    DEFF Research Database (Denmark)

    Jensen, O.B.; Thestrup Nielsen, Birgitte; Andersen, Peter E.

    2006-01-01

    -feedback scheme we are able to improve the beam quality of the laser by a factor of 23 from M-2 = 55 for the free-running diode laser to M-2 = 2.4 for the laser with feedback at a drive current of 2.2 A. The improved M-2 value is a factor of 3.4 below M-2 = 8.2 for a single free-running segment. This is the first......The beam quality of a 500-mu m-wide broad area diode laser with five active segments has been improved beyond the beam quality of the individual segments. The principle of this new laser system is based on off-axis feedback in combination with spectral beam combining. By using a double...... time that the beam quality of a segmented broad area diode laser has been improved beyond the beam quality of the individual segments....

  9. Laser-sheet imaging of HE-driven interfaces

    International Nuclear Information System (INIS)

    Benjamin, R.F.; Rightley, P.M.; Kinkead, S.; Martin, R.A.; Critchfield, R.; Sandoval, D.L.; Holmes, R.; Gorman, T.

    1998-01-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at Los Alamos National Laboratory (LANL). The authors made substantial progress in developing the MILSI (Multiple Imaging of Laser-Sheet Illumination) technique for high explosive (HE)-driven fluid interfaces. They observed the instability, but have not yet measured the instability growth rate. They developed suitable sample containers and optical systems for studying the Rightmyer-Meshkov instability of perturbed water/bromoform interfaces and they successfully fielded the new MILSI diagnostic at two firing-site facilities. The problem continues to be of central importance to the inertial confinement fusion (ICF) and weapons physics communities

  10. Tracing the plasma interactions for pulsed reactive crossed-beam laser ablation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Jikun; Stender, Dieter; Pichler, Markus; Pergolesi, Daniele; Schneider, Christof W.; Wokaun, Alexander; Lippert, Thomas, E-mail: thomas.lippert@psi.ch [General Energy Research Department, Paul Scherrer Institute, CH-5232 Villigen PSI (Switzerland); Döbeli, Max [Ion Beam Physics, ETH Zurich, CH-8093 Zurich (Switzerland)

    2015-10-28

    Pulsed reactive crossed-beam laser ablation is an effective technique to govern the chemical activity of plasma species and background molecules during pulsed laser deposition. Instead of using a constant background pressure, a gas pulse with a reactive gas, synchronized with the laser beam, is injected into vacuum or a low background pressure near the ablated area of the target. It intercepts the initially generated plasma plume, thereby enhancing the physicochemical interactions between the gaseous environment and the plasma species. For this study, kinetic energy resolved mass-spectrometry and time-resolved plasma imaging were used to study the physicochemical processes occurring during the reactive crossed beam laser ablation of a partially {sup 18}O substituted La{sub 0.6}Sr{sub 0.4}MnO{sub 3} target using oxygen as gas pulse. The characteristics of the ablated plasma are compared with those observed during pulsed laser deposition in different oxygen background pressures.

  11. Propagation characteristics of a Gaussian laser beam in plasma with modulated collision frequency

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Zhou Zhongxiang; Gao Ruilin; Li Lei; Du Yanwei

    2012-01-01

    The propagation characteristics of a Gaussian laser beam in cold plasma with the electron collision frequency modulated by laser intensity are presented. The nonlinear dynamics of the ponderomotive force, which induce nonlinear self-focusing as opposed to spatial diffraction, are considered. The effective dielectric function of the Drude model and complex eikonal function are adopted in deriving coupled differential equations of the varying laser beam parameters. In the framework of ponderomotive nonlinearity, the frequency of electron collision in plasmas, which is proportional to the spatial electron density, is strongly interrelated with the laser beam propagation characteristics. Hence, the propagation properties of the laser beam and the modulated electron collision frequency distribution in plasma were studied and explained in depth. Employing this self-consistent method, the obtained simulation results approach practical conditions, which is of significance to the study of laser–plasma interactions.

  12. Beam-Riding Analysis of a Parabolic Laser-thermal Thruster

    International Nuclear Information System (INIS)

    Scharring, Stefan; Eckel, Hans-Albert; Roeser, Hans-Peter

    2011-01-01

    Flight experiments with laser-propelled vehicles (lightcrafts) are often performed by wire-guidance or with spin-stabilization. Nevertheless, the specific geometry of the lightcraft's optics and nozzle may provide for inherent beam-riding properties. These features are experimentally investigated in a hovering experiment at a small free flight test range with an electron-beam sustained pulsed CO 2 high energy laser. Laser bursts are adapted with a real-time control to lightcraft mass and impulse coupling for ascent and hovering in a quasi equilibrium of forces. The flight dynamics is analyzed with respect to the impulse coupling field vs. attitude, given by the lightcraft's offset and its inclination angle against the beam propagation axis, which are derived from the 3D-reconstruction of the flight trajectory from highspeed recordings. The limitations of the experimental parameters' reproducibility and its impact on flight stability are explored in terms of Julia sets. Solution statements for dynamic stabilization loops are presented and discussed.

  13. Effects of a laser beam profile on Zeeman electromagnetically induced transparency in the Rb buffer gas cell

    International Nuclear Information System (INIS)

    Nikolić, S N; Radonjić, M; Krmpot, A J; Lučić, N M; Zlatković, B V; Jelenković, B M

    2013-01-01

    Electromagnetically induced transparency (EIT) due to Zeeman coherences in the Rb buffer gas cell is studied for different laser beam profiles, laser beam radii and intensities from 0.1 to 10 mW cm −2 . EIT line shapes can be approximated by the Lorentzian for wide Gaussian laser beam (6.5 mm in diameter) if laser intensity is weak and for a Π laser beam profile of the same diameter. Line shapes of EIT become non-Lorentzian for the Gaussian laser beam if it is narrow (1.3 mm in diameter) or if it has a higher intensity. EIT amplitudes and linewidths, for both laser beam profiles of the same diameter, have very similar behaviour regarding laser intensity and Rb cell temperature. EIT amplitudes are maximal at a certain laser beam intensity and this intensity is higher for narrower laser beams. The EIT linewidth estimated at zero laser intensity is about 50 nT or 0.7 kHz, which refers to 1.5 ms relaxation times of Zeeman coherences in 87 Rb atoms in our buffer gas cell. Blocking of the centre of the wide Gaussian laser beam in front of the photo detector yields Lorentzian profiles with a much better contrast to the linewidth ratio for EIT at higher intensities, above ∼2 mW cm −2 . (paper)

  14. Genomic Physics. Multiple Laser Beam Treatment of Alzheimer's Disease

    Science.gov (United States)

    Stefan, V. Alexander

    2014-03-01

    The synapses affected by Alzheimer's disease can be rejuvenated by the multiple ultrashort wavelength laser beams.[2] The guiding lasers scan the whole area to detect the amyloid plaques based on the laser scattering technique. The scanning lasers pinpoint the areas with plaques and eliminate them. Laser interaction is highly efficient, because of the focusing capabilities and possibility for the identification of the damaging proteins by matching the protein oscillation eigen-frequency with laser frequency.[3] Supported by Nikola Tesla Labs, La Jolla, California, USA.

  15. Study on the Therapeutic Effect of Dispersive He-Ne Laser on Radiation Proctitis%弥散型He-Ne激光治疗放射性直肠炎的临床研究

    Institute of Scientific and Technical Information of China (English)

    吴先哲; 宋奇; 邢国良

    2012-01-01

    目的 探讨弥散型He-Ne激光直肠内照射对放射性直肠炎的临床治疗作用.方法 将功率为30 mW、能量密度为3.62 J/cm2弥散型He-Ne激光导入直肠,使He-Ne激光直接照射直肠病变黏膜,观察患者直肠出血、直肠疼痛、腹泻等,比较治疗前后患者直肠黏膜病理组织学的改变.结果 He-Ne激光可以显著减少放射性直肠炎患者的直肠出血,对直肠疼痛、腹泻等症状的影响不大,能明显减轻黏膜组织的炎症反应,并能促进黏膜的修复.结论 弥散性He-Ne激光直肠腔内照射对放射性直肠炎所致的直肠出血有较好的治疗作用.%Objective To study the therapeutic effect of dispersive He-Ne laser on radiation proctitis. Methods Sent He-Ne laser to the rectum, irradiated the mucoga lesions of the rectum with He-Ne laser, observed the major therapeutic effects of He-Ne laser, including but not limited to rectal bleeding and pain, and diarrhea, and compared the histopathological changes of the rectum mncosa before and after the treatment. Results For radiation proctitis patients, He-Ne laser can significantly reduce significantly rectal bleeding .reduce the and inflammatory reaction of mucosal tissue inflammatory reaction, and as well as can facilitate mucosal tissue repair, but has little effect in relieving other symptoms, such as pain and diarrhea. Conclusions The laser irradiation in the rectal cavity with dispersive He-Ne is effective in treating the bleeding caused by radiation proctitis.

  16. Modeling of inverse Cherenkov laser acceleration with axicon laser-beam focusing

    International Nuclear Information System (INIS)

    Romea, R.D.; Kimura, W.D.

    1990-01-01

    Acceleration of free electrons by the inverse Cherenkov effect using radially polarized laser light focused through an axicon [J. P. Fontana and R. H. Pantell, J. Appl. Phys. 54, 4285 (1983)] has been studied utilizing a Monte Carlo computer simulation and further theoretical analysis. The model includes effects, such as scattering of the electrons by the gas, and diffraction and interference effects of the axicon laser beam, that were not included in the original analysis of Fontana and Pantell. Its accuracy is validated using available experimental data. The model results show that effective acceleration is possible even with the effects of scattering. Sample results are given. The analysis includes examining the issues of axicon focusing, phase errors, energy gain, phase slippage, focusing of the e beam, and emittance growth

  17. An x-ray technique for precision laser beam synchronization

    International Nuclear Information System (INIS)

    Landen, O.L.; Lerche, R.A.; Hay, R.G.; Hammel, B.A.; Kalantar, D.; Cable, M.D.

    1994-01-01

    A new x-ray technique for recording the relative arrival times of multiple laser beams at a common target with better than ± 10 ps accuracy has been implemented at the Nova laser facility. 100 ps, 3ω Nova beam are focused to separate locations on a gold ribbon target viewed from the side. The measurement consists of using well characterized re-entrant x-ray streak cameras for 1-dimensional streaked imaging of the > 3 keV x-rays emanating from these isolated laser plasmas. After making the necessary correction for the differential laser, x-ray and electron transit times involved, timing offsets as low as ± 7 ps are resolved, and on subsequent shots, corrected for, verified and independently checked. This level of synchronization proved critical in meeting the power balance requirements for indirectly-driven pulse-shaped Nova implosions

  18. Study on laser beam welding technology for nuclear power plants

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2012-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  19. Crossed molecular beams

    International Nuclear Information System (INIS)

    Lee, Y.T.

    1976-01-01

    Research activities with crossed molecular beams at Lawrence Berkeley Laboratory during 1976 are described. Topics covered include: scattering of Ar*, Kr*, with Xe; metastable rare gas interactions, He* + H 2 ; an atomic and molecular halogen beam source; a crossed molecular beam study of the Cl + Br 2 → BrCl + Br reaction; O( 3 P) reaction dynamics, development of the high pressure plasma beam source; energy randomization in the Cl + C 2 H 3 Br → Br + C 2 H 3 Cl reaction; high resolution photoionization studies of NO and ICl; photoionization of (H 2 O)/sub n/ and (NH 3 ) 2 ; photoionization mass spectroscopy of NH 3 + and O 3 + ; photo fragmentation of bromine; and construction of chemiluminescence-laser fluorescence crossed molecular beam machine

  20. Multi - pulse tea CO2 laser beam interaction with the TiN thin films

    International Nuclear Information System (INIS)

    Gakovic, B.; Trtica, M.; Nenadovic, T.; Pavlicevic, B.

    1998-01-01

    The interaction of various types of energetic beams including a laser beam with the high-hardness coatings is of great fundamental and technological interest. The Nd:YAG, excimer and CO 2 are frequently used laser beams for this purpose. The interaction of a laser beam with low thickness coatings, deposited on austenitic stainless steel, is insufficiently known in the literature. Titanium nitride (TiN) possess the excellent physico-chemical characteristics. For this reason TiN films/coatings are widely used. The purpose of this article is a consideration of the effect of TEA C0 2 laser radiation on the TiN film deposited on austenitic stainless steel substrate (AISI 316). Investigation of TiN morphological changes, after multipulse laser irradiation, shown dependence on laser fluence, number of laser pulses and the laser pulse shape. Subsequently fast heating and cooling during multi-pulse laser bombardment cause the grain growth of TiN layer. Both laser pulses (pulses with tail and tail-free pulses) produced periodical wave like structure on polished substrate material. Periodicity is observed also on AISI 316 protected with TiN layer, but only with laser pulse with tail. (author)

  1. Definition and measurement of the times-diffraction-limit number of high-power laser beams

    Science.gov (United States)

    Bollanti, Sarah; Di Lazzaro, Paolo; Murra, Daniele

    1998-07-01

    A novel definition of the times-diffraction-limit (TDL) number of a laser beam is given. A comparison is made with the commonly used beam-propagation parameter M2, which is unreliable for hard-edge beams, like those produced by unstable resonators with diffraction output coupling. The new suggested TDL number definition doesn't rely on the real beam comparison to a Gaussian beam, but on the comparison of the far-field performances of the real beam with respect to those of a uniphase beam with the same amplitude profile in the near field. A practical method is also given for the estimation of the TDL number of real beams. Finally, this procedure is applied to the high-peak-power laser beams generated by two excimer laser systems developed in ENEA.

  2. In situ measurement of laser beam quality

    Science.gov (United States)

    Hashemi, Somayeh Sadat; Ghavami Sabouri, Saeed; Khorsandi, Alireza

    2017-09-01

    An innovative optical method is introduced for the beam quality measurement of any arbitrary transverse mode based on the reconstruction of the mode from a few-frame image of the beam cross-section. This is performed by the decomposition of a mode to its basic Hermite-Gaussian modal coefficients. The performance of the proposed method is examined through M 2-factor measurement of the beam of a Nd:YAG laser which was forced to oscillate in a certain mode using a crossed rectangular intracavity aperture. Obtained results have shown that this method can be alternatively replaced for the hologram- and ISO-based techniques recently exploiting for beam quality measurement regardless of the mode type and the position of utilized CCD camera along the beam direction.

  3. Wavefront Tilt And Beam Walk Correction For A Pulsed Laser System

    Science.gov (United States)

    Bartosewcz, Mike; Tyburski, Joe

    1986-05-01

    The Lockheed Beam Alignment Assembly (BAA) is designed to be a space qualifiable, long life, low bandwidth beam stabilization system. The BAA will stabilize a wandering pulsed laser beam with an input beam tilt of ±750 microradians and translation of ±2.5 mm by two orders of magnitude at the bandwidth of interest. A bandwidth of three hertz was selected to remove laser and optical train thermal drifts and launch induced strain effects. The lambda over twenty RMS wavefront will be maintained in the optics at full power under vacuum test, to demonstrate space qualifiability and optical performance.

  4. Unstable propagation of a Gaussian laser beam in a plasma waveguide

    International Nuclear Information System (INIS)

    Feit, M.D.; Maiden, D.E.

    1976-01-01

    Laser heating of long magnetically confined plasma columns to fusion temperatures requires propagation of a trapped laser beam over considerable distances. The present paper employs the parabolic approximation to the wave equation to analyze the propagation of a Gaussian beam through a plasma with a parabolic transverse density profile. Although propagation is stable in the axially uniform case, exhibiting alternate focusing and defocusing of the beam, it is unstable to small axial perturbations of certain wavelengths. In particular, an exponentially growing beam radius results from perturbations at wavelengths near that associated with the alternate focusing and defocusing mentioned above

  5. Comparison of laser-induced surface damage density measurements with small and large beams: toward representativeness

    International Nuclear Information System (INIS)

    Lamaignere, Laurent; Dupuy, Gabriel; Donval, Thierry; Grua, Pierre; Bercegol, Herve

    2011-01-01

    Pulsed laser damage density measurements obtained with diverse facilities are difficult to compare, due to the interplay of numerous parameters, such as beam area and pulse geometry, which, in operational large beam conditions, are very different from laboratory measurements. This discrepancy could have a significant impact; if so, one could not even pretend that laser damage density control is a real measurement process. In this paper, this concern is addressed. Tests with large beams of centimeter size on a high-power laser facility have beam performed according to a parametric study and are compared to small beam laboratory tests. It is shown that laser damage densities obtained with large and small beams are equal, within calculated error bars.

  6. Laser beam machining of polycrystalline diamond for cutting tool manufacturing

    Science.gov (United States)

    Wyszyński, Dominik; Ostrowski, Robert; Zwolak, Marek; Bryk, Witold

    2017-10-01

    The paper concerns application of DPSS Nd: YAG 532nm pulse laser source for machining of polycrystalline WC based diamond inserts (PCD). The goal of the research was to determine optimal laser cutting parameters for cutting tool shaping. Basic criteria to reach the goal was cutting edge quality (minimalization of finishing operations), material removal rate (time and cost efficiency), choice of laser beam characteristics (polarization, power, focused beam diameter). The research was planned and realised and analysed according to design of experiment rules (DOE). The analysis of the cutting edge was prepared with use of Alicona Infinite Focus measurement system.

  7. High efficiency and high-energy intra-cavity beam shaping laser

    International Nuclear Information System (INIS)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-01-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%. (paper)

  8. High efficiency and high-energy intra-cavity beam shaping laser

    Science.gov (United States)

    Yang, Hailong; Meng, Junqing; Chen, Weibiao

    2015-09-01

    We present a technology of intra-cavity laser beam shaping with theory and experiment to obtain a flat-top-like beam with high-pulse energy. A radial birefringent element (RBE) was used in a crossed Porro prism polarization output coupling resonator to modulate the phase delay radially. The reflectively of a polarizer used as an output mirror was variable radially. A flat-top-like beam with 72.5 mJ, 11 ns at 20 Hz was achieved by a side-pumped Nd:YAG zigzag slab laser, and the optical-to-optical conversion efficiency was 17.3%.

  9. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    International Nuclear Information System (INIS)

    Purohit, Gunjan; Rawat, Priyanka; Chauhan, Prashant; Mahmoud, Saleh T.

    2015-01-01

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate

  10. Analytical calculations of intense Gaussian laser beam propagating in plasmas with relativistic collision correction

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang

    2012-01-01

    Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.

  11. Effect of taxanes combined with platinum chemotherapy on serum HE4, AFP, DDX4, CD133, CEA and T lymphocyte subsets in patients with epithelial ovarian cancer

    Directory of Open Access Journals (Sweden)

    Lu Wang

    2016-09-01

    Full Text Available Objective: To study the effect of taxanes combined with platinum chemotherapy on serum human epididymal protein 4 (HE4, 毩-fetoprotein (AFP, DEAD box polypeptide 4 (DDX4, cluster of differentiation 133 (CD133, carcinoembryonic antigen (CEA and T lymphocyte subsets in patients with epithelial ovarian cancer (EOC. Methods: A total of 80 EOC patients in our hospital from October 2014 to January 2016 were enrolled in this study. The subjects were divided into control group (n=40 and experiment group (n=40 randomly. Patients in control group were treated with platinum, the experiment group were treated with taxanes combined with platinum chemotherapy. With 21 days as a course of treatment, the two groups were treated for 4 courses. The clinical curative effect after treatment of the two groups was compared. The serum HE4, AFP, DDX4, CD133, CEA levels and peripheral blood CD3+, CD4+, CD8+ cells of the two groups before and after treatment were compared. Results: There were no significantly differences of the serum HE4, AFP, DDX4, CD133, CEA level and peripheral blood CD3+, CD4+, CD8+ cells of the two groups before treatment (P>0.05. The serum HE4, AFP, DDX4, CD133 and CEA level of the two groups after treatment were significantly lower than before treatment (P<0.05, and that of experiment were significantly lower than control group (P<0.05. The peripheral blood CD3+, CD4+ and CD8+ cells of the two groups after treatment were significantly lower than before treatment (P<0.05, and that of experiment were significantly higher than control group (P<0.05. Conclusions: Taxanes combined with platinum chemotherapy can significantly reduce the serum HE4, AFP, DDX4, CD133 and CEA levels, improve peripheral blood CD3+, CD4+ and CD8+ levels of patients with epithelial ovarian cancer, and it is worthy clinical application.

  12. Self-modulation and anomalous collective scattering of laser produced intense ion beam in plasmas

    Directory of Open Access Journals (Sweden)

    K. Mima

    2018-05-01

    Full Text Available The collective interaction between intense ion beams and plasmas is studied by simulations and experiments, where an intense proton beam produced by a short pulse laser is injected into a pre-ionized gas. It is found that, depending on its current density, collective effects can significantly alter the propagated ion beam and the stopping power. The quantitative agreement that is found between theories and experiments constitutes the first validation of the collective interaction theory. The effects in the interaction between intense ion beams and background gas plasmas are of importance for the design of laser fusion reactors as well as for beam physics. Keywords: Two stream instabilities, Ultra intense short pulse laser, Proton beam, Wake field, Electron plasma wave, Laser plasma interaction, PACS codes: 52.38.Kd, 29.27.Fh, 52.40.Kh, 52.70.Nc

  13. Industrial processes control with He-Ne laser devices for aligning and guiding

    International Nuclear Information System (INIS)

    Ursu, I.; Ivascu, M.; Vasiliu, V.; Ristici, M.; Gradisteanu, I.; Vilcu, G.; Pelle, V.; Botezatu, I.; Vasnea, V.; Orac, N.; Fernea, V.

    1988-03-01

    A brief presentation of the He-Ne laser devices main application fields in the national economy is given. The utilization of the devices we did in: industrial constructions, metalurgy, hydroelectric arrangements, wood industry, ship's construction, and other is presented. (authors)

  14. The laser: a concentrate of light. From the creation of a beam to its applications

    International Nuclear Information System (INIS)

    2005-04-01

    The first lasers were developed in the 1960's. The name LASER is an acronym for 'Light Amplification by the Stimulated Emission of Radiation'. The almost magical properties of laser light soon led to their use in a variety of applications. We use lasers every day in our CD players and in the bar-code readers used in supermarkets. Laser light shows create beautiful patterns of light in the air. Lasers are also precision workers in industry. They are used to cut, weld and drill materials. They are used in medicine to repair or burn away diseased tissue without harming healthy tissue nearby. Straight and narrow laser beams are also used to align roads and tunnels. But why is it that lasers can do all these things while ordinary light from the Sun or from a light bulb cannot? 'Lasers are everywhere - in medicine, in industry, and at the heart of our daily lives'. CEA has worked on all types of lasers for many years. CEA researchers use them in their work in all the traditional ways (alignment, drilling, welding, cutting, etc.), but they also develop new types of lasers for specific applications. They use very high power lasers to study the interaction between high energies and matter. Lasers are essential tools in many applications, but we must never forget the risks that are associated with them. The CEA is studying the effects of lasers on the body. There is still much research to be done in the field of laser technology. We expect more and more applications in the next few years. (authors)

  15. Molecular beam epitaxy growth and characterization of two-six materials for visible semiconductor lasers

    Science.gov (United States)

    Zeng, Linfei

    This thesis proposes the molecular beam epitaxy (MBE) growth and characterization of a new Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se based semiconductor materials system on InP substrates for visible light emitting diodes (LED) and lasers. The growth conditions for lattice-matched Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se layers with the desired bandgap have been established and optimized. A chemical etching technique to measure the defect density of Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se materials has been established. The accuracy of this method for revealing stacking faults and dislocations was verified by plan-view TEM. Using the techniques such as III-V buffer layer, Zn-irradiation, low-temperature growth, ZnCdSe interfacial layer and growth interruption to improve the quality of the interface of III-V and II-VI, the material quality of Znsb{x}Cdsb{y}Mgsb{(1-x-y)}Se has been improved dramatically. Defect density has been reduced from 10sp{10}\\ cmsp{-2} to {˜}5×10sp4\\ cmsp{-2}. The properties of this material system such as the quality and strain state in the epilayer, the dependence of bandgap on temperature, and the band offset have been studied by using double crystal x-ray diffraction, photoluminescence and capacitance voltage measurements. The ZnCdSe/ZnCdMgSe based quantum well (QW) structures have been grown and studied. Optically pumped lasing with emission range from red to blue has been obtained from ZnCdSe/ZnCdMgSe based separate-confinement single QW laser structures. The results demonstrate the potential for these materials as integrated full color display devices. Preliminary studies of the degradation behavior of ZnCdSe/ZnCdMgSe QW were performed. No dark line defects (DLDs) were observed during the degradation. A very strong room temperature differential negative resistance behavior was observed from Al/Znsb{0.61}Cdsb{0.39}Se/nsp+-InP devices, which is useful in millimeter-wave applications. We also found that these devices can be set to either in highly conductive or

  16. RFQ beam cooler and buncher for collinear laser spectroscopy of rare isotopes

    Science.gov (United States)

    Barquest, B. R.; Bollen, G.; Mantica, P. F.; Minamisono, K.; Ringle, R.; Schwarz, S.; Sumithrarachchi, C. S.

    2017-09-01

    A radiofrequency quadrupole (RFQ) ion beam cooler and buncher has been developed to deliver bunched beams with low transverse emittance, energy spread, and time spread to the BECOLA collinear laser spectroscopy system at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University. The beam cooler and buncher contains new features which enhance performance, especially for high count rate beams, as well as simplifying construction, maintenance, and operation. The transverse emittance, energy spread, and time spread of the bunched beam, as well as buncher efficiency are reported, showcasing the capabilities of the BECOLA facility to perform collinear laser spectroscopy measurements with bunched rare isotope beams at NSCL and at the future Facility for Rare Isotope Beams (FRIB).

  17. A new method to induce transitions in muonic atoms using a high-power tunable dye laser coupled to a stopping muon beam

    CERN Document Server

    Bertin, A; Duclos, J; Gastaldi, Ugo; Gorini, G; Neri, G; Picard, J; Pitzurra, O; Placci, A; Polacco, E; Stefanini, G; Torelli, G; Vitale, A; Zavattini, E

    1974-01-01

    An apparatus is described in which a ruby-pumped dye laser is used to induce transitions from the 2S to the 2P levels of the muonic ion ( mu He)/sup +/. The dye laser supplies infra-red radiation pulses in the wavelengths (8040-8180) AA, at typical repetition rates of 1 pulse every 4 s, with an energy release per pulse of 300 mJ for 1.2 J pumping energy. A special synchronization procedure is followed to trigger the laser in close coupling with the incoming muon beam which is stopped in a helium target at pressures between 40 and 50 atm. The other performances of the device are fully discussed with reference both to the laser facility and to the special high-pressure helium target. (23 refs).

  18. Efficacy of Proliferation of HeLa Cells under Three Different Low-Intensity Red Lasers Irradiation

    Directory of Open Access Journals (Sweden)

    H. Q. Yang

    2012-01-01

    Full Text Available This study was intended to compare the efficacy of proliferation of HeLa cells under three different low-intensity laser irradiation (LIL, that is, 633 nm, 658 nm, and 785 nm. The time-dependent responses of proliferation of HeLa cells after the red laser irradiation and the influence of fetal bovine serum (FBS at 1%, 2%, 5%, or 10% on the proliferation of cells were also investigated. The results indicated that the proliferation of HeLa cells in 10% FBS was in proliferation-specific homeostasis (PSH so that it was not modulated with LIL; the proliferation in FBS at 1%, 2%, or 5% was far from PSH so that it may be wavelength dependently modulated with LIL, and the maximum proliferation promotion was conducted with LIL at 633 nm amongst the three different LIL. It was concluded the wavelength-dependent photobiomodulation of LIL on proliferation of HeLa cells may be homeostatic.

  19. Effects of laser beam propagation in a multilevel photoionization system

    International Nuclear Information System (INIS)

    Izawa, Y.; Nomaru, K.; Chen, Y. W.

    1995-01-01

    When the intense laser pulse propagates in the atomic vapor over a long distance, the laser pulse shape, the carrier frequency and the propagating velocity are greatly modified during the propagation by the resonant and/or the near-resonant interactions with atoms. We have been investigating these effects on the laser beam propagation experimentally and analytically. The simulation code named CEALIS-P has been developed, which employs the coupled three- level Bloch-Maxwell equations to study the atomic excitation and laser beam propagation simultaneously. Several features of the resonant and near-resonant effects based on the the self-induced transparency, the self-phase modulation and the nonlinear group velocity dispersion are described and the influences of such effects on the photoionization efficiency are analyzed.

  20. Amplification of picosecond pulse by electron-beam pumped KrF laser amplifiers. Denshi beam reiki KrF laser zofukuki ni yoru piko byo pulse no zofuku

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, I.; Tomie, T.; Owadano, Y.; Yano, M. (Electrotechnical Laboratory, Tsukuba (Japan))

    1991-08-20

    Experiments on the amplification of a picosecond pulse by electron-beam pumped KrF laser amplifiers were carried out for the purpose of its application to the field such as excitation light source for soft X-ray laser which requires large energy besides peak power. The picosecond pulse was amplified by a discharge pumped KrF amplifier and two electron-beam pumped KrF amplifiers(at the middle stage and the final stage). The energy of 4J, which was the largest energy for short pulse excimer laser so far, was obtained by these devices. About 90% of the window area of the final amplifier with 29cm diameter was filled by the input beam, and energy density of the picosecond beam reached 3.9 times saturation energy density. Measured energy of amplified spontaneous emission(ASE) showed good agreement with the theoretically estimated value. Most of ASE was derived from the discharge pumped laser as the first amplifier. As for the focused power density, the power density ratio of the picosecond pulse to ASE was estimated to be as large as 10{sup 5}. 11 refs., 4 figs.

  1. Laser acceleration and nonlinear beam dynamics

    International Nuclear Information System (INIS)

    Pellegrini, C.

    1991-01-01

    This research contract covers the period April 1990, September 1991. The work to be done under the contract was theoretical research in the areas of nonlinear beam dynamics and laser acceleration. In this final report we will discuss the motivation for this work and the results obtained

  2. Laser diode stack beam shaping for efficient and compact long-range laser illuminator design

    Science.gov (United States)

    Lutz, Y.; Poyet, J. M.

    2014-04-01

    Laser diode stacks are interesting laser sources for active imaging illuminators. They allow the accumulation of large amounts of energy in multi-pulse mode, which is best suited for long-range image recording. Even when the laser diode stacks are equipped with fast-axis collimation (FAC) and slow-axis collimation (SAC) micro-lenses, their beam parameter products BPP are not compatible with direct use in highly efficient and compact illuminators. This is particularly true when narrow divergences are required such as for long-range applications. A solution to overcome these difficulties is to enhance the poor slow-axis BPP by virtually restacking the laser diode stack. We present a beam shaping and homogenization method that is low-cost and efficient and has low alignment sensitivity. After conducting simulations, we have realized and characterized the illuminator. A compact long-range laser illuminator has been set up with a divergence of 3.5×2.6 mrad and a global efficiency of 81%. Here, a projection lens with a clear aperture of 62 mm and a focal length of 571 mm was used.

  3. Laser beam uniformity and stability using homogenizer-based fiber optic launch method: square core fiber delivery

    Science.gov (United States)

    Lizotte, Todd E.

    2011-03-01

    Over the years, technological achievements within the laser medical diagnostic, treatment, and therapy markets have led to ever increasing requirements for greater control of critical laser beam parameters. Increased laser power/energy stabilization, temporal and spatial beam shaping and flexible laser beam delivery systems with ergonomic focusing or imaging lens systems are sought by leading medical laser system producers. With medical procedures that utilize laser energy, there is a constant emphasis on reducing adverse effects that come about by the laser itself or its optical system, but even when these variables are well controlled the medical professional will still need to deal with the multivariate nature of the human body. Focusing on the variables that can be controlled, such as accurate placement of the laser beam where it will expose a surface being treated as well as laser beam shape and uniformity is critical to minimizing adverse conditions. This paper covers the use of fiber optic beam delivery as a means of defining the beam shape (intensity/power distribution uniformity) at the target plane as well as the use of fiber delivery as a means to allow more flexible articulation of the laser beam over the surface being treated. The paper will present a new concept of using a square core fiber beam delivery design utilizing a unique micro lens array (MLA) launch method that improves the overall stability of the system, by minimizing the impact of the laser instability. The resulting performance of the prototype is presented to demonstrate its stability in comparison to simple lens launch techniques, with an emphasis on homogenization and articulated fiber delivery.

  4. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    International Nuclear Information System (INIS)

    Kim, Jae-Ihn

    2009-01-01

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at λ ω = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5±3.8 cm/s yielding a full divergence of only 0.48 ± 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, Λ-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two-color spectroscopy experiment

  5. Efficient sub-Doppler transverse laser cooling of an indium atomic beam

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jae-Ihn

    2009-07-23

    Laser cooled atomic gases and atomic beams are widely studied samples in experimental research in atomic and optical physics. For the application of ultra cold gases as model systems for e.g. quantum many particle systems, the atomic species is not very important. Thus this field is dominated by alkaline, earthalkaline elements which are easily accessible with conventional laser sources and have convenient closed cooling transition. On the other hand, laser cooled atoms may also be interesting for technological applications, for instance for the creation of novel materials by atomic nanofabrication (ANF). There it will be important to use technologically relevant materials. As an example, using group III atoms of the periodical table in ANF may open a route to generate fully 3D structured composite materials. The minimal requirement in such an ANF experiment is the collimation of an atomic beam which is accessible by one dimensional laser cooling. In this dissertation, I describe transverse laser cooling of an Indium atomic beam. For efficient laser cooling on a cycling transition, I have built a tunable, continuous-wave coherent ultraviolet source at 326 nm based on frequency tripling. For this purpose, two independent high power Yb-doped fiber amplifiers for the generation of the fundamental radiation at {lambda}{sub {omega}} = 977 nm have been constructed. I have observed sub-Doppler transverse laser cooling of an Indium atomic beam on a cycling transition of In by introducing a polarization gradient in the linear-perpendicular-linear configuration. The transverse velocity spread of a laser-cooled In atomic beam at full width at half maximum was achieved to be 13.5{+-}3.8 cm/s yielding a full divergence of only 0.48 {+-} 0.13 mrad. In addition, nonlinear spectroscopy of a 3-level, {lambda}-type level system driven by a pump and a probe beam has been investigated in order to understand the absorption line shapes used as a frequency reference in a previous two

  6. Development of Raman-shifted probe laser beam for plasma ...

    Indian Academy of Sciences (India)

    laser chain that works on master oscillator-power amplifier configuration. It is .... beam is the same as that of the green beam and hence is matched to the input ... and Ramesh Chandra for the electronics support and wiring the power supply of.

  7. Laser power beaming applications and technology

    Science.gov (United States)

    Burke, Robert J.; Cover, Ralph A.; Curtin, Mark S.; Dinius, R.; Lampel, Michael C.

    1994-05-01

    Beaming laser energy to spacecraft has important economic potential. It promises significant reduction in the cost of access to space, for commercial and government missions. While the potential payoff is attractive, existing technologies perform the same missions and the keys to market penetration for power beaming are a competitive cost and a schedule consistent with customers' plans. Rocketdyne is considering these questions in the context of a commercial enterprise -- thus, evaluation of the requirements must be done based on market assessments and recognition that significant private funding will be involved. It is in the context of top level business considerations that the technology requirements are being assessed and the program being designed. These considerations result in the essential elements of the development program. Since the free electron laser is regarded as the `long pole in the tent,' this paper summarizes Rocketdyne's approach for a timely, cost-effective program to demonstrate an FEL capable of supporting an initial operating capability.

  8. Optical trapping with Bessel beams generated from semiconductor lasers

    International Nuclear Information System (INIS)

    Sokolovskii, G S; Dudelev, V V; Losev, S N; Soboleva, K K; Deryagin, A G; Kuchinskii, V I; Sibbett, W; Rafailov, E U

    2014-01-01

    In this paper, we study generation of Bessel beams from semiconductor lasers with high beam propagation parameter M 2 and their utilization for optical trapping and manipulation of microscopic particles including living cells. The demonstrated optical tweezing with diodegenerated Bessel beams paves the way to replace their vibronic-generated counterparts for a range of applications towards novel lab-on-a-chip configurations

  9. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Hong, Xue-Ren, E-mail: hxr_nwnu@163.com; Sun, Jian-An, E-mail: sunja@nwnu.edu.cn; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-07-12

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.

  10. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    International Nuclear Information System (INIS)

    Wang, Li; Hong, Xue-Ren; Sun, Jian-An; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-01-01

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.

  11. Evaluation of thermal effects on the beam quality of disk laser with unstable resonator

    Science.gov (United States)

    Shayganmanesh, Mahdi; Beirami, Reza

    2017-01-01

    In this paper thermal effects of the disk active medium and associated effects on the beam quality of laser are investigated. Using Collins integral and iterative method, transverse mode of an unstable resonator including a Yb:YAG active medium in disk geometry is calculated. After that the beam quality of the laser is calculated based on the generalized beam characterization method. Thermal lensing of the disk is calculated based on the OPD (Optical Path Difference) concept. Five factors influencing the OPD including temperature gradient, disk thermal expansion, photo-elastic effect, electronic lens and disk deformation are considered in our calculations. The calculations show that the effect of disk deformation factor on the quality of laser beam in the resonator is strong. However the total effect of all the thermal factors on the internal beam quality is fewer. Also it is shown that thermal effects degrade the output power, beam profile and beam quality of the output laser beam severely. As well the magnitude of each of affecting factors is evaluated distinctly.

  12. Characteristics of Far Transported Laser Beam

    Energy Technology Data Exchange (ETDEWEB)

    Park, Dae Yoon; Kim, Ki Sik; Lee, Seung Gol [Inha University, Inchon (Korea, Republic of)

    1997-07-01

    A beam propagating in free space or in a medium generally experiences diffraction, and hence it suffers an energy loss and an wavefront distortion. It Is essential for a stable and precise communication to eliminate or to minimize the diffraction effect accompanying on propagation. The diffraction-free beam is introduced for that purpose. A typical diffraction-free beam is the Bessel beam. The Bessel beam has, however, an infinite energy in the cross-section perpendicular to the direction of propagation and, because of this fact, its realizability is sceptical. To remedy this problem, a new beam is introduced, which has a series from with a Gaussian envelope function and tested for diffraction on propagation by a computer simulation. Compared with the Bessel-Gauss beam, this new beam shows much less diffraction. While, by using a scraper mirror in an Nd:YAG laser with a ring resonator, an annular output beam is obtained. This annular beam is focused by a Fourier Transformation lens to produce a diffraction-free beam. This diffraction-free beam dose not show any noticible diffraction on propagation over the distance of 16 m, which is determined by the scraper mirror and the Fourier transformation lens. This achievement provides a profound basis for the generation of diffraction-free beams over much longer distances. The developed technique will provide a stable and precise communication method in remote controlling system, remote sensing through atmosphere, and information transfer using the optical fiber. 30 refs., 22 figs. (author)

  13. In vitro study for laser gene transfer in BHK-21 fibroblast cell line

    Science.gov (United States)

    Abdel Aziz, M.; Salem, D. S.; Salama, M. S.; Badr, Y.

    2009-02-01

    Modifications to our previously introduced system for laser microbeam cell surgery were carried out in the present work to match animal cells. These modifications included: 1- Using other laser system that used before, Excimer laser with 193 and 308 nm wavelengths. The used laser here, is He-Cd with low power and 441.5 nm wavelength in the visible region. 2- Instead of using pulsed laser, we used here CW He-Cd chopped by electrical chopper, which is synchronized with the mechanical motion of the mobile stage with step 40 microns, according to cell dimensions to avoid puncturing the same cell twice. The advantages of the modified here laser setup for gene transfer is: it is less damaging to the sensitive animal cell which has thin cell membrane. The present work aimed to: 1- Design a modified laser microbeam cell surgery, applicable to animal cells, such as fibroblast cells 2- To examine the efficiency of such system. 3- To assure gene transfer and its expression in the used cells. 4- To evaluate the ultra damages produced from using the laser beam as a modality for gene transfer. On the other wards, to introduce: safe, efficient and less damaging modality for gene transfer in animal cells. To achieve these goals, we applied the introduced here home-made laser setup with its synchronized parameters to introduce pBK-CMV phagemid, containing LacZ and neomycin resistance (neor )genes into BHK-21 fibroblast cell line. The results of the present work showed that: 1- Our modified laser microbeam cell surgery setup proved to be useful and efficient tool for gene transfer into fibroblast cells. 2- The presence and expression of LacZ gene was achieved using histochemical LacZ assay. 3- Selection of G418 antibiotic sensitivity assay confirmed the presence and expression towards stability of neor gene with time. 4- Presence of LacZ and neor genes in the genomic DNA of transfected fibroblast cells was indicated using PCR analysis. 5- Transmission electron microscopy indicated

  14. Measurements on the He-Ne laser lines near 633 nm

    Science.gov (United States)

    Steinhaus, David W.

    1983-09-01

    The red line from an inexpensive He-Ne laser is made up of several closely spaced lines. To separate these lines very high spectral resolution is required. This apparatus requirement can be met by a simple modification of a student Fabry-Perot interferometer. Laboratory measurements can then be made to verify the expected number, spacing, and polarization of these lines during a single afternoon laboratory session.

  15. An analytical reconstruction model of the spread-out Bragg peak using laser-accelerated proton beams.

    Science.gov (United States)

    Tao, Li; Zhu, Kun; Zhu, Jungao; Xu, Xiaohan; Lin, Chen; Ma, Wenjun; Lu, Haiyang; Zhao, Yanying; Lu, Yuanrong; Chen, Jia-Er; Yan, Xueqing

    2017-07-07

    With the development of laser technology, laser-driven proton acceleration provides a new method for proton tumor therapy. However, it has not been applied in practice because of the wide and decreasing energy spectrum of laser-accelerated proton beams. In this paper, we propose an analytical model to reconstruct the spread-out Bragg peak (SOBP) using laser-accelerated proton beams. Firstly, we present a modified weighting formula for protons of different energies. Secondly, a theoretical model for the reconstruction of SOBPs with laser-accelerated proton beams has been built. It can quickly calculate the number of laser shots needed for each energy interval of the laser-accelerated protons. Finally, we show the 2D reconstruction results of SOBPs for laser-accelerated proton beams and the ideal situation. The final results show that our analytical model can give an SOBP reconstruction scheme that can be used for actual tumor therapy.

  16. Random wandering of laser beams with orbital angular momentum during propagation through atmospheric turbulence.

    Science.gov (United States)

    Aksenov, Valerii P; Kolosov, Valeriy V; Pogutsa, Cheslav E

    2014-06-10

    The propagation of laser beams having orbital angular momenta (OAM) in the turbulent atmosphere is studied numerically. The variance of random wandering of these beams is investigated with the use of the Monte Carlo technique. It is found that, among various types of vortex laser beams, such as the Laguerre-Gaussian (LG) beam, modified Bessel-Gaussian beam, and hypergeometric Gaussian beam, having identical initial effective radii and OAM, the LG beam occupying the largest effective volume in space is the most stable one.

  17. Effect of conjugation length on nonlinear optical parameters of anthraquinone dyes investigated using He-Ne laser operating in CW mode

    Science.gov (United States)

    Pramodini, S.; Poornesh, P.

    2014-10-01

    We report the studies on third-order optical nonlinearity and optical limiting of anthraquinone dyes. Z-scan technique was employed to evaluate the nonlinear parameters such as nonlinear absorption coefficient βeff and nonlinear index of refraction n2. Continuous wave He-Ne laser was used as the source of excitation. The estimated values of βeff, n2 and χ(3) are of the order of 10-3 cm/W, 10-5 esu and 10-7 esu respectively. The presence of donor and acceptor groups in the structure results in increase in conjugation length. This resulted in the enhancement of nonlinear optical parameters values of the dye. Multiple diffraction rings were observed when the samples were exposed to laser beam due to thermal lensing. Dyes exhibited good optical limiting behavior under the experimental conditions. The results indicate that the dyes investigated here are materialise as candidates for photonics device applications such as optical power limiters.

  18. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    CERN Document Server

    Walz, D

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor.

  19. First Beam Test of Nanometer Spot Size Monitor Using Laser Interferometry

    International Nuclear Information System (INIS)

    Walz, Dieter R

    2003-01-01

    The nanometer spot size monitor based on the laser interferometry (Laser-Compton Spot Size Monitor) has been tested in FFTB beam line at SLAC. A low emittance beam of 46 GeV electrons, provided by the two-mile linear accelerator, was focused into nanometer spot in the FFTB line, and its transverse dimensions were precisely measured by the spot size monitor

  20. The ELIMED transport and dosimetry beamline for laser-driven ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Romano, F., E-mail: francesco.romano@lns.infn.it [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Schillaci, F.; Cirrone, G.A.P.; Cuttone, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Scuderi, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Allegra, L.; Amato, A.; Amico, A.; Candiano, G.; De Luca, G.; Gallo, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Giordanengo, S.; Guarachi, L. Fanola [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Universita' di Torino, Dipartimento di Fisica, Via P. Giuria 1, Torino (Italy); Korn, G. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); Larosa, G. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Leanza, R. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Universita' di Catania, Dipartimento di Fisica e Astronomia, Via S. Sofia 64, Catania (Italy); Manna, R.; Marchese, V. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali del Sud, Via Santa Sofia 62, Catania (Italy); Marchetto, F. [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Via P. Giuria 1, Torino (Italy); Margarone, D. [ELI-Beamlines Project, Institute of Physics ASCR, v.v.i. (FZU), 182 21 Prague (Czech Republic); and others

    2016-09-01

    A growing interest of the scientific community towards multidisciplinary applications of laser-driven beams has led to the development of several projects aiming to demonstrate the possible use of these beams for therapeutic purposes. Nevertheless, laser-accelerated particles differ from the conventional beams typically used for multiscipilinary and medical applications, due to the wide energy spread, the angular divergence and the extremely intense pulses. The peculiarities of optically accelerated beams led to develop new strategies and advanced techniques for transport, diagnostics and dosimetry of the accelerated particles. In this framework, the realization of the ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) beamline, developed by INFN-LNS (Catania, Italy) and that will be installed in 2017 as a part of the ELIMAIA beamline at the ELI-Beamlines (Extreme Light Infrastructure Beamlines) facility in Prague, has the aim to investigate the feasibility of using laser-driven ion beams for multidisciplinary applications. In this contribution, an overview of the beamline along with a detailed description of the main transport elements as well as the detectors composing the final section of the beamline will be presented.

  1. Comparison study of in vivo dose response to laser-driven versus conventional electron beam.

    Science.gov (United States)

    Oppelt, Melanie; Baumann, Michael; Bergmann, Ralf; Beyreuther, Elke; Brüchner, Kerstin; Hartmann, Josefin; Karsch, Leonhard; Krause, Mechthild; Laschinsky, Lydia; Leßmann, Elisabeth; Nicolai, Maria; Reuter, Maria; Richter, Christian; Sävert, Alexander; Schnell, Michael; Schürer, Michael; Woithe, Julia; Kaluza, Malte; Pawelke, Jörg

    2015-05-01

    The long-term goal to integrate laser-based particle accelerators into radiotherapy clinics not only requires technological development of high-intensity lasers and new techniques for beam detection and dose delivery, but also characterization of the biological consequences of this new particle beam quality, i.e. ultra-short, ultra-intense pulses. In the present work, we describe successful in vivo experiments with laser-driven electron pulses by utilization of a small tumour model on the mouse ear for the human squamous cell carcinoma model FaDu. The already established in vitro irradiation technology at the laser system JETI was further enhanced for 3D tumour irradiation in vivo in terms of beam transport, beam monitoring, dose delivery and dosimetry in order to precisely apply a prescribed dose to each tumour in full-scale radiobiological experiments. Tumour growth delay was determined after irradiation with doses of 3 and 6 Gy by laser-accelerated electrons. Reference irradiation was performed with continuous electron beams at a clinical linear accelerator in order to both validate the dedicated dosimetry employed for laser-accelerated JETI electrons and above all review the biological results. No significant difference in radiation-induced tumour growth delay was revealed for the two investigated electron beams. These data provide evidence that the ultra-high dose rate generated by laser acceleration does not impact the biological effectiveness of the particles.

  2. Pulsed Nd:YAG laser beam drilling: A review

    Science.gov (United States)

    Gautam, Girish Dutt; Pandey, Arun Kumar

    2018-03-01

    Laser beam drilling (LBD) is one of non contact type unconventional machining process that are employed in machining of stiff and high-strength materials, high strength temperature resistance materials such as; metal alloys, ceramics, composites and superalloys. Most of these materials are difficult-to-machine by using conventional machining methods. Also, the complex and precise holes may not be obtained by using the conventional machining processes which may be obtained by using unconventional machining processes. The laser beam drilling in one of the most important unconventional machining process that may be used for the machining of these materials with satisfactorily. In this paper, the attention is focused on the experimental and theoretical investigations on the pulsed Nd:YAG laser drilling of different categories of materials such as ferrous materials, non-ferrous materials, superalloys, composites and Ceramics. Moreover, the review has been emphasized by the use of pulsed Nd:YAG laser drilling of different materials in order to enhance productivity of this process without adverse effects on the drilled holes quality characteristics. Finally, the review is concluded with the possible scope in the area of pulsed Nd:YAG laser drilling. This review work may be very useful to the subsequent researchers in order to give an insight in the area of pulsed Nd:YAG laser drilling of different materials and research gaps available in this area.

  3. Novel beam delivery fibers for delivering flat-top beams with controlled BPP for high power CW and pulsed laser applications

    Science.gov (United States)

    Jollivet, C.; Farley, K.; Conroy, M.; Abramczyk, J.; Belke, S.; Becker, F.; Tankala, K.

    2016-03-01

    Single-mode (SM) kW-class fiber lasers are the tools of choice for material processing applications such as sheet metal cutting and welding. However, application requirements include a flat-top intensity profile and specific beam parameter product (BPP). Here, Nufern introduces a novel specialty fiber technology capable of converting a SM laser beam into a flat-top beam suited for these applications. The performances are demonstrated using a specialty fiber with 100 μm pure silica core, 0.22 NA surrounded by a 120 μm fluorine-doped layer and a 360 μm pure silica cladding, which was designed to match the conventional beam delivery fibers. A SM fiber laser operating at a wavelength of 1.07 μm and terminated with a large-mode area (LMA) fiber with 20 μm core and 0.06 NA was directly coupled in the core of the flat-top specialty fiber using conventional splicing technique. The output beam profile and BPP were characterized first with a low-power source and confirmed using a 2 kW laser and we report a beam transformation from a SM beam into a flat-top intensity profile beam with a 3.8 mm*mrad BPP. This is, to the best of our knowledge, the first successful beam transformation from SM to MM flat-top with controlled BPP in a single fiber integrated in a multi-kW all-fiber system architecture.

  4. Current trends in laser fusion driver and beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors for a fusion driver

    International Nuclear Information System (INIS)

    Kong, Hong Jin

    2008-01-01

    Laser fusion energy (LFE) is well known as one of the promising sources if clean energy for mankind. Laser fusion researches have been actively progressed, since Japan and the Soviet Union as well as USA developed ultrahigh power lasers at the beginning of 1970s. At present in USA, NIF (National Ignition Facility), which is the largest laser fusion facility in the world, is under construction and will be completed in 2008. Japan as a leader of the laser fusion research has developed a high energy and high power laser system, Gekko XII, and is under contemplation of FIREX projects for the fast ignition. China also has SG I, II lasers for performing the fusion research, and SG III is under construction as a next step. France is also constructing LMJ (Laser countries, many other developed countries in Europe, such as Russia, Germany, UK, and so on, have their own high energy laser systems for the fusion research. In Korea, the high power laser development started with SinMyung laser in KAIST in 1994, and KLF (KAERI Laser Facility) of KAERI was recently completed in 2007. For the practical use of laser fusion energy, the laser driver should be operated with a high repetition rate around 10Hz. Yet, current high energy laser systems, Such as NIF, Gekko XII, and etc., can be operated with only several shots per day. Some researchers have developed their own techniques to reduce the thermal loads of the laser material, by using laser diodes as pump sources and ceramic laser materials with high thermal energy scaling up for the real fusion driver. For this reason, H. J. Kong et al. proposed the beam combination laser system using stimulated Brillouin scattering phase conjugate mirrors (SBS PCMs) for a fusion driver. Proposed beam combination has many advantages for energy scaling up; it is composed by simple optical systems with small amount of components, there is no interaction between neighbored sub beams, the SBS PCMs can be used for a high energy beam reflection with

  5. National Ignition Facility, subsystem design requirements beam control and laser diagnostics SSDR 1.7

    International Nuclear Information System (INIS)

    Bliss, E.

    1996-01-01

    This Subsystem Design Requirement document is a development specification that establishes the performance, design, development, and test requirements for the Alignment subsystem (WBS 1.7.1), Beam Diagnostics (WBS 1.7.2), and the Wavefront Control subsystem (WBS 1.7. 3) of the NIF Laser System (WBS 1.3). These three subsystems are collectively referred to as the Beam Control ampersand Laser Diagnostics Subsystem. The NIF is a multi-pass, 192-beam, high-power, neodymium-glass laser that meets requirements set forth in the NIF SDR 002 (Laser System). 3 figs., 3 tabs

  6. MOLECULAR BEAM STUDIES OF IR LASER INDUCED MULTIPHOTON DISSOCIATION AND VIBRATIONAL PREDISSOCIATION

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yuan T.; Shen, Y. Ron

    1980-06-01

    The advancement of crossed molecular beam methods, modern spectroscopy and laser technology allows us to observe chemical reactions on atomic and molecular levels in great detail. After a brief history of crossed molecular beams studies, the author describes and discusses the universal molecular beam apparatus and gives examples of crossed molecular beam studies. The crossed beam technique is compared to other techniques used to provide microscopic information on reaction dynamics. Application of crossed laser and molecular beam studies to the problem of IR multiphoton dissociation of polyatomic molecules is discussed. Study of vibrational predissociation of hydrogen-bonded and van der Waals molecular clusters are discussed. Future cases that the author considers worth pursuing that could benefit from the collisionless environment of molecular beams are enumerated.

  7. [Enhancement effect of double-beam laser processed aqueous solution on ICP emission spectrum].

    Science.gov (United States)

    Chen, Jin-zhong; Xu, Li-jing; Su, Hong-xin; Li, Xu; Wang, Shu-fang

    2015-01-01

    In order to change the physical properties of aqueous solution and improve the radiation intensity of the ICP emission spectrum, the effects of different laser power density and irradiation time on the surface tension and viscosity of aqueous solution were investigated by using near infrared laser at 976 nm and CO2 laser at 10. 6 µm to irradiate aqueous solution orthogonally, then the enhancement of ICP spectral intensity with processed solution was discussed. The results showed that the surface tension and viscosity of aqueous solution reduced by 42. 13% and 14. 03% compared with the untreated, and the atomization efficiency increased by 51.26% at the laser power density 0. 265 7 W . cm-2 of 976 nm and 0. 206 9 W . cm-2 of CO2 laser with 40 min irradiation time. With the optimized aqueous solution introduced into the ICP source, the spectral line intensity of sample elements As, Cd, Cr, Hg and Pb was enhanced by 46.29%, 94. 65%, 30. 76%, 33.07% and 94. 58% compared to the untreated aqueous solution, while the signal-to-background ratio increased by 43. 84%, 85. 35%, 28. 71%, 34. 37% and 90. 91%, respectively. Plasma temperature and electron density also increased by 5. 94% and 1. 18% respectively. It is obvious that the method of double-beam laser orthogonal irradiation on solution can reduce the surface tension and viscosity of aqueous solution significantly, and raise the radiationintensity of ICP source, and will provide a better condition for detecting the trace heavy metal elements in water samples.

  8. Propagation profile of ablation front driven by a nonuniform UV laser beam

    International Nuclear Information System (INIS)

    Matsushima, I.; Tanimoto, M.; Kasai, T.; Yano, M.

    1985-01-01

    Spatial profile of ablation front is observed under the irradiation of spatially modulated 0.27-μm laser beam. Propagation depth of the ablation front is derived by means of various methods which detect x-ray radiation from aluminum substrates overcoated with polyethylene layers of different thicknesses. A higher mass ablation rate is observed for the UV laser than the longer wavelength lasers. However, observation with an x-ray television camera shows that the spatial nonuniformity in the laser beam is projected on the ablation front surface without substantial smoothing

  9. A large capacity time division multiplexed (TDM) laser beam combining technique enabled by nanosecond speed KTN deflector

    Science.gov (United States)

    Yin, Stuart (Shizhuo); Chao, Ju-Hung; Zhu, Wenbin; Chen, Chang-Jiang; Campbell, Adrian; Henry, Michael; Dubinskiy, Mark; Hoffman, Robert C.

    2017-08-01

    In this paper, we present a novel large capacity (a 1000+ channel) time division multiplexing (TDM) laser beam combining technique by harnessing a state-of-the-art nanosecond speed potassium tantalate niobate (KTN) electro-optic (EO) beam deflector as the time division multiplexer. The major advantages of TDM approach are: (1) large multiplexing capability (over 1000 channels), (2) high spatial beam quality (the combined beam has the same spatial profile as the individual beam), (3) high spectral beam quality (the combined beam has the same spectral width as the individual beam, and (4) insensitive to the phase fluctuation of individual laser because of the nature of the incoherent beam combining. The quantitative analyses show that it is possible to achieve over one hundred kW average power, single aperture, single transverse mode solid state and/or fiber laser by pursuing this innovative beam combining method, which represents a major technical advance in the field of high energy lasers. Such kind of 100+ kW average power diffraction limited beam quality lasers can play an important role in a variety of applications such as laser directed energy weapons (DEW) and large-capacity high-speed laser manufacturing, including cutting, welding, and printing.

  10. Allowable propagation of short pulse laser beam in a plasma channel and electromagnetic solitary waves

    International Nuclear Information System (INIS)

    Zhang, Shan; Hong, Xue-Ren; Wang, Hong-Yu; Xie, Bai-Song

    2011-01-01

    Nonparaxial and nonlinear propagation of a short intense laser beam in a parabolic plasma channel is analyzed by means of the variational method and nonlinear dynamics. The beam propagation properties are classified by five kinds of behaviors. In particularly, the electromagnetic solitary wave for finite pulse laser is found beside the other four propagation cases including beam periodically oscillating with defocussing and focusing amplitude, constant spot size, beam catastrophic focusing. It is also found that the laser pulse can be allowed to propagate in the plasma channel only when a certain relation for laser parameters and plasma channel parameters is satisfied. For the solitary wave, it may provide an effective way to obtain ultra-short laser pulse.

  11. Green frequency-doubled laser-beam propagation in high-temperature hohlraum plasmas.

    Science.gov (United States)

    Niemann, C; Berger, R L; Divol, L; Froula, D H; Jones, O; Kirkwood, R K; Meezan, N; Moody, J D; Ross, J; Sorce, C; Suter, L J; Glenzer, S H

    2008-02-01

    We demonstrate propagation and small backscatter losses of a frequency-doubled (2omega) laser beam interacting with inertial confinement fusion hohlraum plasmas. The electron temperature of 3.3 keV, approximately a factor of 2 higher than achieved in previous experiments with open geometry targets, approaches plasma conditions of high-fusion yield hohlraums. In this new temperature regime, we measure 2omega laser-beam transmission approaching 80% with simultaneous backscattering losses of less than 10%. These findings suggest that good laser coupling into fusion hohlraums using 2omega light is possible.

  12. Ion and laser beam induced metastable alloy formation

    International Nuclear Information System (INIS)

    Westendorp, J.F.M.

    1986-01-01

    This thesis deals with ion and laser beam induced thin film mixing. It describes the development of an Ultra High Vacuum apparatus for deposition, ion irradiation and in situ analysis of thin film sandwiches. This chamber has been developed in close collaboration with High Voltage Engineering Europa. Thin films can be deposited by an e-gun evaporator. The atom flux is monitored by a quadrupole mass spectrometer. A comparison is made between ion beam and laser mixing of Cu with Au and Cu with W. The comparison provides a better understanding of the relative importance of purely collisional mixing, the role of thermodynamic effects and the contribution of diffusion due to defect generation and migration. (Auth.)

  13. Reliability analysis of minimum energy on target for laser facilities with more beam lines

    International Nuclear Information System (INIS)

    Chen Guangyu

    2008-01-01

    Shot reliability performance measures of laser facilities with more beam lines pertain to three categories: minimum-energy-on-target, power balance, and shot diagnostics. Accounting for symmetry of NIF beam line design and similarity of subset reliability in a same partition, a fault tree of meeting minimum-energy-on-target for the large laser facility shot of type K and a simplified method are presented, which are used to analyze hypothetic reliability of partition subsets in order to get trends of influences increasing number of beam lines and diverse shot types of large laser facilities on their shot reliability. Finally, it finds that improving component reliability is more crucial for laser facilities with more beam lines in comparison with those with beam lines and functional diversity from design flexibility is greatly helpful for improving shot reliability. (authors)

  14. Nonlinear propagation of a spatially incoherent laser beam: self-induced smoothing and reduction of scattering instabilities

    International Nuclear Information System (INIS)

    Maximov, A.V.; Ourdev, I.G.; Rozmus, W.; Capjack, C.E.; Mounaix, Ph.; Huller, S.; Pesme, D.; Tikhonchuk, V.T.; Divol, L.

    2000-01-01

    It is shown that plasma-induced angular spreading and spectral broadening of a spatially incoherent laser beam correspond to increased spatial and temporal incoherence of the laser light. The spatial incoherence is characterized by an effective beam f-number, decreasing in space along the direction of light propagation. Plasma-induced beam smoothing can influence laser-plasma interaction physics. In particular, decreasing the correlation time of the propagating laser light may dramatically reduce the levels of backward stimulated Brillouin and Raman scattering inside the plasma. Also, the decrease of the laser beam effective f-number reduces the reflectivity of backward stimulated Brillouin scattering. (authors)

  15. Laser fusion: an assessment of pellet injection, tracking and beam pointing

    International Nuclear Information System (INIS)

    Monsler, M.J.

    1978-01-01

    A conceptual design is presented for a target injection and final optical system which can be integrated with a lithium waterfall laser fusion reactor and operate repetitively within the presented tolerances. A high f-number focusing system using coated metal optics at 30 to 60 meters distance is suggested. An intermediate section of the differentially pumped beam tube contains flowing xenon which effectively shields the optics from debris and x rays, allowing the mirrors to operate at least a year without optical degradation. Pellets are injected with a repeating gas gun positioned horizontally just above the laser beam. No pellet trajectory correction is desired or required. Simple tracking of the target using a low power laser illuminator, a position sensing photodetector, and a trajectory prediction scheme are assumed. Two-degree of freedom x-y beam steering is preferred, without focus capability. Both the tracker and the adaptive mirror are placed in the laser building, well away from the fixed final optical mirror which faces the microexplosion

  16. Quality factor of aberrated gaussian laser beams

    CSIR Research Space (South Africa)

    Mafusire, C

    2010-09-01

    Full Text Available 15 20 25 30 35 M 4 © CSIR 2010 www.csir.co.za Conclusion • Laser beam quality depends on - y-Astigmatism - y-Coma - x-Coma - y-Triangular astigmatism - x-Triangular astigmatism - Spherical aberration...

  17. Laser Beam Machining (LBM), State of the Art and New Opportunities

    NARCIS (Netherlands)

    Meijer, J.

    2004-01-01

    An overview is given of the state of the art of laser beam machining in general with special emphasis on applications of short and ultrashort lasers. In laser welding the trend is to apply optical sensors for process control. Laser surface treatment is mostly used to apply corrosion and wear

  18. Underwater laser beam welding of Alloy 690

    International Nuclear Information System (INIS)

    Hino, Takehisa; Tamura, Masataka; Kono, Wataru; Kawano, Shohei; Yoda, Masaki

    2009-01-01

    Stress Corrosion Clacking (SCC) has been reported at Alloy 600 welds between nozzles and safe-end in Pressurized Water Reactor (PWR) plant. Alloy 690, which has higher chromium content than Alloy 600, has been applied for cladding on Alloy 600 welds for repairing damaged SCC area. Toshiba has developed Underwater Laser Beam Welding technique. This method can be conducted without draining, so that the repairing period and the radiation exposure during the repair can be dramatically decreased. In some old PWRs, high-sulfur stainless steel is used as the materials for this section. It has a high susceptibility of weld cracks. Therefore, the optimum welding condition of Alloy 690 on the high-sulfur stainless steel was investigated with our Underwater Laser Beam Welding unit. Good cladding layer, without any crack, porosity or lack of fusion, could be obtained. (author)

  19. Dosimetry of laser-accelerated electron beams used for in vitro cell irradiation experiments

    International Nuclear Information System (INIS)

    Richter, C.; Kaluza, M.; Karsch, L.; Schlenvoigt, H.-P.; Schürer, M.; Sobiella, M.; Woithe, J.; Pawelke, J.

    2011-01-01

    The dosimetric characterization of laser-accelerated electrons applied for the worldwide first systematic radiobiological in vitro cell irradiation will be presented. The laser-accelerated electron beam at the JeTi laser system has been optimized, monitored and controlled in terms of dose homogeneity, stability and absolute dose delivery. A combination of different dosimetric components were used to provide both an online beam as well as dose monitoring and a precise absolute dosimetry. In detail, the electron beam was controlled and monitored by means of an ionization chamber and an in-house produced Faraday cup for a defined delivery of the prescribed dose. Moreover, the precise absolute dose delivered to each cell sample was determined by an radiochromic EBT film positioned in front of the cell sample. Furthermore, the energy spectrum of the laser-accelerated electron beam was determined. As presented in a previous work of the authors, also for laser-accelerated protons a precise dosimetric characterization was performed that enabled initial radiobiological cell irradiation experiments with laser-accelerated protons. Therefore, a precise dosimetric characterization, optimization and control of laser-accelerated and therefore ultra-short pulsed, intense particle beams for both electrons and protons is possible, allowing radiobiological experiments and meeting all necessary requirements like homogeneity, stability and precise dose delivery. In order to fulfill the much higher dosimetric requirements for clinical application, several improvements concerning, i.e., particle energy and spectral shaping as well as patient safety are necessary.

  20. Spatial modification of laser beam under the influence of Λ-type strong pump

    International Nuclear Information System (INIS)

    Lee, Won Kyu; Noh, Young Chul; Jeon, Jin Ho; Lee, Jai Hyung; Chang, Joon Sung

    1999-01-01

    The laser beam propagating through the resonant medium undergo severe deformation because of nonlinear interaction such as self-focusing, self-defocusing, etc. When strong pump beam coexists with the probe beam, propagation characteristics can be changed. We use samarium (Sm) vapor as the nonlinear medium. Probe laser is tuned around 4f 6 6s 27 F 0 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (561.601 nm) and the pump laser is tuned around 4f 6 6s 27 F 1 -> 4f 6 ( 7 F)6s6p( 1 P 0 ) transition line of Sm (572.019 nm). The probe and the pump beams are Λ-type configuration. The transmission of the probe beam is changed as the intensity and the detuning of the pump beam are varied. The degree of self-focusing is also modified. (author)

  1. Determination of Cross-Sectional Area of Focused Picosecond Gaussian Laser Beam

    Science.gov (United States)

    Ledesma, Rodolfo; Fitz-Gerald, James; Palmieri, Frank; Connell, John

    2018-01-01

    Measurement of the waist diameter of a focused Gaussian-beam at the 1/e(sup 2) intensity, also referred to as spot size, is key to determining the fluence in laser processing experiments. Spot size measurements are also helpful to calculate the threshold energy and threshold fluence of a given material. This work reports an application of a conventional method, by analyzing single laser ablated spots for different laser pulse energies, to determine the cross-sectional area of a focused Gaussian-beam, which has a nominal pulse width of approx. 10 ps. Polished tungsten was used as the target material, due to its low surface roughness and low ablation threshold, to measure the beam waist diameter. From the ablative spot measurements, the ablation threshold fluence of the tungsten substrate was also calculated.

  2. Laser beam in a soap film

    Energy Technology Data Exchange (ETDEWEB)

    Stoilov, Yurii Yu [P.N. Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2004-12-31

    A laser beam introduced into a simple soap film unexpectedly breaks out into thin (micron-thick) branching channels which keep unspread (without divergence) sometimes for as long as tens of centimeters as they go along the film. The physical interpretation and possible applications of the phenomenon are discussed in this paper. (methodological notes)

  3. Two-step resonance ionization spectroscopy of Na atomic beam using cw and pulsed lasers

    International Nuclear Information System (INIS)

    Katsuragawa, H.; Minowa, T.; Shimazu, M.

    1988-01-01

    Two-step photoionization of sodium atomic beam has been carried out using a cw and a pulsed dye lasers. Sodium ions have been detected by a time of flight method in order to reduce background noise. With a proper power of the pulsed dye laser the sodium atomic beam has been irradiated by a resonant cw dye laser. The density of the sodium atomic beam is estimated to be 10 3 cm -3 at the ionization area. (author)

  4. Excitation of accelerating plasma waves by counter-propagating laser beams

    International Nuclear Information System (INIS)

    Shvets, Gennady; Fisch, Nathaniel J.; Pukhov, Alexander

    2002-01-01

    The conventional approach to exciting high phase velocity waves in plasmas is to employ a laser pulse moving in the direction of the desired particle acceleration. Photon downshifting then causes momentum transfer to the plasma and wave excitation. Novel approaches to plasma wake excitation, colliding-beam accelerator (CBA), which involve photon exchange between the long and short counter-propagating laser beams, are described. Depending on the frequency detuning Δω between beams and duration τ L of the short pulse, there are two approaches to CBA. First approach assumes (τ L ≅2/ω p ). Photons exchanged between the beams deposit their recoil momentum in the plasma driving the plasma wake. Frequency detuning between the beams determines the direction of the photon exchange, thereby controlling the phase of the plasma wake. This phase control can be used for reversing the slippage of the accelerated particles with respect to the wake. A variation on the same theme, super-beatwave accelerator, is also described. In the second approach, a short pulse with τ L >>ω p -1 detuned by Δω∼2ω p from the counter-propagating beam is employed. While parametric excitation of plasma waves by the electromagnetic beatwave at 2ω p of two co-propagating lasers was first predicted by Rosenbluth and Liu [M. N. Rosenbluth and C. S. Liu, Phys. Rev. Lett. 29, 701 (1972)], it is demonstrated that the two excitation beams can be counter-propagating. The advantages of using this geometry (higher instability growth rate, insensitivity to plasma inhomogeneity) are explained, and supporting numerical simulations presented

  5. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers

    DEFF Research Database (Denmark)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin

    2011-01-01

    output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2- values of the laser with lowest spatial coherence. The principle......Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest...... of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future....

  6. 16 W output power by high-efficient spectral beam combining of DBR-tapered diode lasers.

    Science.gov (United States)

    Müller, André; Vijayakumar, Deepak; Jensen, Ole Bjarlin; Hasler, Karl-Heinz; Sumpf, Bernd; Erbert, Götz; Andersen, Peter E; Petersen, Paul Michael

    2011-01-17

    Up to 16 W output power has been obtained using spectral beam combining of two 1063 nm DBR-tapered diode lasers. Using a reflecting volume Bragg grating, a combining efficiency as high as 93.7% is achieved, resulting in a single beam with high spatial coherence. The result represents the highest output power achieved by spectral beam combining of two single element tapered diode lasers. Since spectral beam combining does not affect beam propagation parameters, M2-values of 1.8 (fast axis) and 3.3 (slow axis) match the M2-values of the laser with lowest spatial coherence. The principle of spectral beam combining used in our experiments can be expanded to combine more than two tapered diode lasers and hence it is expected that the output power may be increased even further in the future.

  7. Solar pumped continuous wave carbon dioxide laser

    Science.gov (United States)

    Yesil, O.; Christiansen, W. H.

    1978-01-01

    In an effort to demonstrate the feasibility of a solar pumped laser concept, gain has been measured in a CO2-He laser medium optically pumped by blackbody radiation. Various gas mixtures of CO2 and He have been pumped by blackbody radiation emitted from an electrically heated oven. Using a CO2 laser as a probe, an optical gain coefficient of 1.8 x 10 to the -3rd/cm has been measured at 10.6 microns for a 9:1 CO2-He mixture at an oven temperature of about 1500 K, a gas temperature of about 400 K and a pressure of about 1 torr. This corresponds to a small signal gain coefficient when allowance is made for saturation effects due to the probe beam, in reasonable agreement with a theoretical value.

  8. Beaconless operation for optimal laser beam propagation through turbulent atmosphere

    Science.gov (United States)

    Khizhnyak, Anatoliy; Markov, Vladimir

    2016-09-01

    Corruption of the wavefront, beam wondering and power density degradation at the receiving end are the effects typically observed at laser beam propagation through turbulent atmosphere. Compensation of these effects can be achieved if the reciprocal conditions for the propagating wave are satisfied along the propagation range. Practical realization of these conditions requires placing a localized beacon at the receiving end of the range and high-performance adaptive optics system (AOS). The key condition for an effective performance of AOS is a high value of the reciprocal component in the outgoing wave, since only this component is getting compensated after propagating turbulence perturbed path. The nonreciprocal components that is present in the wave directed toward the target is caused by three factors (detailed in this paper) that determine the partial restoration of the structure of the beacon beam. Thus solution of a complex problem of focusing the laser beam propagating through turbulent media can be achieved for the share of the outgoing wave that has a reciprocal component. This paper examines the ways and means that can be used in achieving the stated goal of effective laser power delivery on the distant image-resolved object.

  9. Beam displacement as a function of temperature and turbulence length scale at two different laser radiation wavelengths.

    Science.gov (United States)

    Isterling, William M; Dally, Bassam B; Alwahabi, Zeyad T; Dubovinsky, Miro; Wright, Daniel

    2012-01-01

    Narrow laser beams directed from aircraft may at times pass through the exhaust plume of the engines and potentially degrade some of the laser beam characteristics. This paper reports on controlled studies of laser beam deviation arising from propagation through turbulent hot gases, in a well-characterized laboratory burner, with conditions of relevance to aircraft engine exhaust plumes. The impact of the temperature, laser wavelength, and turbulence length scale on the beam deviation has been investigated. It was found that the laser beam displacement increases with the turbulent integral length scale. The effect of temperature on the laser beam angular deviation, σ, using two different laser wavelengths, namely 4.67 μm and 632.8 nm, was recorded. It was found that the beam deviation for both wavelengths may be semiempirically modeled using a single function of the form, σ=a(b+(1/T)(2))(-1), with two parameters only, a and b, where σ is in microradians and T is the temperature in °C. © 2012 Optical Society of America

  10. CO2 laser coating of nanodiamond on aluminum using an annular beam

    International Nuclear Information System (INIS)

    Blum, Rodger; Molian, Pal

    2014-01-01

    Laser coating of nanodiamond (ND) on aluminum alloy A319 substrate was investigated using a diffraction-free ring beam. A 1000 W continuous wave CO 2 laser in the ring beam configuration heated the 25–35 μm thick electrostatically sprayed ND powder layers on aluminum surface, melted a very thin layer (10 μm) of aluminum in a controlled fashion and caused phase transition of ND to form 50–60 μm thick ND/diamond-like carbon (DLC) coating. Significant improvements in friction, wear resistance and surface finish were observed in the ring beam method over the traditional Gaussian beam method suggesting that these thick (50–60 μm) ND/DLC laser coatings can outperform the currently used thin (<4 μm) chemically vapor deposited DLC coatings for aluminum parts in automobiles.

  11. Wavelength beam combining of a 980-nm tapered diode laser bar in an external cavity

    DEFF Research Database (Denmark)

    Vijayakumar, Deepak; Jensen, Ole Bjarlin; Thestrup Nielsen, Birgitte

    2010-01-01

    solution for preserving the beam quality of the bar in the range of that of a single emitter and at the same time, enabling the power scaling. We report spectral beam combining applied to a 12 emitter tapered laser bar at 980 nm. The external cavity has been designed for a wavelength separation of 4.0 nm......High power diode lasers are used in a large number of applications. A limiting factor for more widespread use of broad area lasers is the poor beam quality. Gain guided tapered diode lasers are ideal candidates for industrial applications that demands watt level output power with good beam quality...

  12. ILC beam energy measurement by means of laser Compton backscattering

    Energy Technology Data Exchange (ETDEWEB)

    Muchnoi, N. [Budker Inst. for Nuclear Physics, Novosibirsk (Russian Federation); Schreiber, H.J.; Viti, M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany)

    2008-10-15

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered {gamma}-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10{sup -4} or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  13. ILC beam energy measurement by means of laser Compton backscattering

    International Nuclear Information System (INIS)

    Muchnoi, N.; Schreiber, H.J.; Viti, M.

    2008-10-01

    A novel, non-invasive method of measuring the beam energy at the International Linear Collider is proposed. Laser light collides head-on with beam particles and either the energy of the Compton scattered electrons near the kinematic end-point is measured or the positions of the Compton backscattered γ-rays, the edge electrons and the unscattered beam particles are recorded. A compact layout for the Compton spectrometer is suggested. It consists of a bending magnet and position sensitive detectors operating in a large radiation environment. Several options for high spatial resolution detectors are discussed. Simulation studies support the use of an infrared or green laser and quartz fiber detectors to monitor the backscattered photons and edge electrons. Employing a cavity monitor, the beam particle position downstream of the magnet can be recorded with submicrometer precision. Such a scheme provides a feasible and promising method to access the incident beam energy with precisions of 10 -4 or better on a bunch-to-bunch basis while the electron and positron beams are in collision. (orig.)

  14. Study on laser beam welding technology for nuclear power plants title

    International Nuclear Information System (INIS)

    Chida, Itaru; Shiihara, Katsunori; Fukuda, Takeshi; Kono, Wataru; Obata, Minoru; Morishima, Yasuo

    2011-01-01

    Laser beam welding is one of the jointing processes by irradiating laser beam on the material surface locally and widely used at various industrial fields. Toshiba has developed various laser-based maintenance and repair technologies and already applied them to several existing nuclear power plants. Laser cladding is a technique to weld the corrosion resistant metal onto a substrate surface by feeding filler wire to improve the corrosion resistance. Temper-bead welding is the heat input process to provide the desired microstructure properties of welded low alloy steels without post weld heat treatment, by inducing proper heat cycle during laser welding. Both laser welding technologies would be performed underwater by blowing the shielding gas for creating the local dry area. In this report, some evaluation results of material characteristics by temper-bead welding to target at Reactor Coolant System nozzle of PWR are presented. (author)

  15. Sequential double photodetachment of He- in elliptically polarized laser fields

    Science.gov (United States)

    Génévriez, Matthieu; Dunseath, Kevin M.; Terao-Dunseath, Mariko; Urbain, Xavier

    2018-02-01

    Four-photon double detachment of the helium negative ion is investigated experimentally and theoretically for photon energies where the transient helium atom is in the 1 s 2 s 3S or 1 s 2 p P3o states, which subsequently ionize by absorption of three photons. Ionization is enhanced by intermediate resonances, giving rise to series of peaks in the He+ spectrum, which we study in detail. The He+ yield is measured in the wavelength ranges from 530 to 560 nm and from 685 to 730 nm and for various polarizations of the laser light. Double detachment is treated theoretically as a sequential process, within the framework of R -matrix theory for the first step and effective Hamiltonian theory for the second step. Experimental conditions are accurately modeled, and the measured and simulated yields are in good qualitative and, in some cases, quantitative agreement. Resonances in the double detachment spectra can be attributed to well-defined Rydberg states of the transient atom. The double detachment yield exhibits a strong dependence on the laser polarization which can be related to the magnetic quantum number of the intermediate atomic state. We also investigate the possibility of nonsequential double detachment with a two-color experiment but observe no evidence for it.

  16. Laser scanning camera inspects hazardous area

    International Nuclear Information System (INIS)

    Fryatt, A.; Miprode, C.

    1985-01-01

    Main operational characteristics of a new laser scanning camera are presented. The camera is intended primarily for low level high resolution viewing inside nuclear reactors. It uses a He-Ne laser beam raster; by detecting the reflected light by means of a phomultiplier, the subject under observation can be reconstructed in an electronic video store and reviewed on a conventional monitor screen

  17. Difraction spectrometry by laser beams

    Directory of Open Access Journals (Sweden)

    Frías, M.

    1988-12-01

    Full Text Available The advances in laser technology have permitted the development of numerous applications, in particular diffraction spectrometry by laser beams for the determination of the distribution curve of the particle sizes of different materials; this permits one to obtain the distribution of particle size in both wet and dry materials. In the present paper a brief description of the technique and its principles is offered. The results obtained with different materials-limestone clay, gypsum, Portland cement and siliceous materials are given.

    Los avances en la tecnología laser han permitido el desarrollo de múltiples aplicaciones, en concreto la espectrometría de difracción de rayos laser para la determinación de la curva de distribución del tamaño de partícula de diferentes materiales, y que permite la obtención de la misma tanto en seco como en húmedo. En este trabajo se hace una descripción breve de la técnica y de sus fundamentos. Se presentan resultados con diferentes materiales: caliza, arcilla, yeso, cemento Portland y materiales silíceos.

  18. He, U, and Th Depth Profiling of Apatite and Zircon Using Laser Ablation Noble Gas Mass Spectrometry and SIMS

    Science.gov (United States)

    Monteleone, B. D.; van Soest, M. C.; Hodges, K. V.; Hervig, R.; Boyce, J. W.

    2008-12-01

    Conventional (U-Th)/He thermochronology utilizes single or multiple grain analyses of U- and Th-bearing minerals such as apatite and zircon and does not allow for assessment of spatial variation in concentration of He, U, or Th within individual crystals. As such, age calculation and interpretation require assumptions regarding 4He loss through alpha ejection, diffusive redistribution of 4He, and U and Th distribution as an initial condition for these processes. Although models have been developed to predict 4He diffusion parameters, correct for the effect of alpha ejection on calculated cooling ages, and account for the effect of U and Th zonation within apatite and zircon, measurements of 4He, U, and Th distribution have not been combined within a single crystal. We apply ArF excimer laser ablation, combined with noble gas mass spectrometry, to obtain depth profiles within apatite and zircon crystals in order to assess variations in 4He concentration with depth. Our initial results from pre-cut, pre-heated slabs of Durango apatite, each subjected to different T-t schedules, suggest a general agreement of 4He profiles with those predicted by theoretical diffusion models (Farley, 2000). Depth profiles through unpolished grains give reproducible alpha ejection profiles in Durango apatite that deviate from alpha ejection profiles predicted for ideal, homogenous crystals. SIMS depth profiling utilizes an O2 primary beam capable of sputtering tens of microns and measuring sub-micron resolution variation in [U], [Th], and [Sm]. Preliminary results suggest that sufficient [U] and [Th] zonation is present in Durango apatite to influence the form of the 4He alpha ejection profile. Future work will assess the influence of measured [U] and [Th] zonation on previously measured 4He depth profiles. Farley, K.A., 2000. Helium diffusion from apatite; general behavior as illustrated by Durango fluorapatite. J. Geophys. Res., B Solid Earth Planets 105 (2), 2903-2914.

  19. Effects of Ar and He on Microstructures and Properties of Laser Welded 800MPa TRIP Steel

    Directory of Open Access Journals (Sweden)

    Wang Wen-Quan

    2018-01-01

    Full Text Available Fiber laser welding of cold rolled TRIP steel (transformation Induced Plasticity steel sheet with tensile strength of 820MPa and thickness of 1.4mm was carried out using shielding gases Ar and He, respectively. For the same laser power and welding speed, the effects of different shielding gases on penetration and bead section morphologies were investigated. The microstructures and properties of the TRIP steel joints were also studied. The investigation showed that higher penetration and lower porosity could be obtained under shielding gas He using the same laser power and welding speed. The microstructures of the TRIP joint mainly included martensite and retained austenite. But the joint microhardness and tensile strength were higher under the shielding gas He. The tensile strength of the welded joint perpendicular to the weld line was equal to that of the base metal. But the tensile strength of the joint parallel with the weld line was higher than that of the base metal. The plasticity and formability of the welded joint were impaired due to the formation of martensite in the weld metal.

  20. Monochromatic x-ray radiography of laser-driven spherical targets using high-energy, picoseconds LFEX laser

    Science.gov (United States)

    Sawada, Hiroshi; Fujioka, S.; Lee, S.; Arikawa, Y.; Shigemori, K.; Nagatomo, H.; Nishimura, H.; Sunahara, A.; Theobald, W.; Perez, F.; Patel, P. K.; Beg, F. N.

    2015-11-01

    Formation of a high density fusion fuel is essential in both conventional and advanced Inertial Confinement Fusion (ICF) schemes for the self-sustaining fusion process. In cone-guided Fast Ignition (FI), a metal cone is attached to a spherical target to maintain the path for the injection of an intense short-pulse ignition laser from blow-off plasma created when nanoseconds compression lasers drive the target. We have measured a temporal evolution of a compressed deuterated carbon (CD) sphere using 4.5 keV K-alpha radiography with the Kilo-Joule, picosecond LFEX laser at the Institute of Laser Engineering. A 200 μm CD sphere attached to the tip of a Au cone was directly driven by 9 Gekko XII beams with 300 J/beam in a 1.3 ns Gaussian pulse. The LFEX laser irradiated on a Ti foil to generate 4.51 Ti K-alpha x-ray. By varying the delay between the compression and backlighter lasers, the measured radiograph images show an increase of the areal density of the imploded target. The detail of the quantitative analyses to infer the areal density and comparisons to hydrodynamics simulations will be presented. This work was performed with the support and under the auspices of the NIFS Collaboration Research program (NIFS13KUGK072). H.S. was supported by the UNR's International Activities Grant program.

  1. Fluence scan: an unexplored property of a laser beam

    International Nuclear Information System (INIS)

    Chalupsky, Jaromir; Hajkova, Vera; Burian, Tomas; Juha, Libor; Polcar, Tomas; Gaudin, Jerome; Nagasono, Mitsuru; Yabashi, Makina; Sobierajski, Ryszard; Krzywinski, Jacek

    2013-01-01

    We present an extended theoretical background of so-called fluence scan (f-scan or F-scan) method, which is frequently being used for offline characterization of focused short-wavelength (EUV, soft X-ray, and hard X-ray) laser beams [J. Chalupsky et al., Opt. Express 18, 27836 (2010)]. The method exploits ablative imprints in various solids to visualize iso-fluence beam contours at different fluence and/or clip levels. An f-scan curve (clip level as a function of the corresponding iso-fluence contour area) can be generated for a general non-Gaussian beam. As shown in this paper, fluence scan encompasses important information about energy distribution within the beam profile, which may play an essential role in laser-matter interaction research employing intense non-ideal beams. Here we for the first time discuss fundamental properties of the f-scan function and its inverse counterpart (if-scan). Furthermore, we extensively elucidate how it is related to the effective beam area, energy distribution, and to the so called Liu's dependence [J.M. Liu, Opt. Lett. 7, 196 (1982)]. A new method of the effective area evaluation based on weighted inverse f-scan fit is introduced and applied to real data obtained at the SCSS (SPring-8 Compact SASE Source) facility. (authors)

  2. Laser fusion - an introductory review of the present position

    International Nuclear Information System (INIS)

    Bonnedal, M.

    1973-01-01

    The present state of research into the production of the thermonuclear reaction 2 D + 3 T→n+ 4 He by means of a laser beam is reviewed with special emphasis on the Lawson criterion and the effective absorption of the laser energy by the plasma. (H.E.G.)

  3. Characteristic of laser diode beam propagation through a collimating lens.

    Science.gov (United States)

    Xu, Qiang; Han, Yiping; Cui, Zhiwei

    2010-01-20

    A mathematical model of a laser diode beam propagating through a collimating lens is presented. Wave propagation beyond the paraxial approximation is studied. The phase delay of the laser diode wave in passing through the lens is analyzed in detail. The propagation optical field after the lens is obtained from the diffraction integral by the stationary phase method. The model is employed to predict the light intensity at various beam cross sections, and the computed intensity distributions are in a good agreement with the corresponding measurements.

  4. Numerical analysis of thermal deformation in laser beam heating of a steel plate

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chao; Kim, Yong-Rae; Kim, Jae-Woong [Yeungnam University, Kyongsan (Korea, Republic of)

    2017-05-15

    Line heating is a widely used process for plate forming or thermal straightening. Flame heating and induction heating are the traditional heating processes used by industry for line heating. However, these two heating processes are ineffective when used on small steel plates. Thus, the laser beam heating with various power profiles were carried out in this study. A comparison of numerical simulation results and experimental results found a significant difference in the thermal deformation when apply a different power profile of laser beam heating. The one-sinusoid power profile produced largest thermal deformation in this study. The laser beam heating process was simulated by established a combined heat source model, and simulated results were compared with experimental results to confirm the model’s accuracy. The mechanism of thermal deformation was investigated and the effects of model parameters were studied intensively with the finite element method. Thermal deformation was found to have a significant relationship with the amount of central zone plastic deformation. Scientists and engineers could use this study’s verified model to select appropriate parameters in laser beam heating process. Moreover, by using the developed laser beam model, the analysis of welding residual stress or hardness could also be investigated from a power profile point of view.

  5. Ion beam production and study of radioactive isotopes with the laser ion source at ISOLDE

    Science.gov (United States)

    Fedosseev, Valentin; Chrysalidis, Katerina; Day Goodacre, Thomas; Marsh, Bruce; Rothe, Sebastian; Seiffert, Christoph; Wendt, Klaus

    2017-08-01

    At ISOLDE the majority of radioactive ion beams are produced using the resonance ionization laser ion source (RILIS). This ion source is based on resonant excitation of atomic transitions by wavelength tunable laser radiation. Since its installation at the ISOLDE facility in 1994, the RILIS laser setup has been developed into a versatile remotely operated laser system comprising state-of-the-art solid state and dye lasers capable of generating multiple high quality laser beams at any wavelength in the range of 210-950 nm. A continuous programme of atomic ionization scheme development at CERN and at other laboratories has gradually increased the number of RILIS-ionized elements. At present, isotopes of 40 different elements have been selectively laser-ionized by the ISOLDE RILIS. Studies related to the optimization of the laser-atom interaction environment have yielded new laser ion source types: the laser ion source and trap and the versatile arc discharge and laser ion source. Depending on the specific experimental requirements for beam purity or versatility to switch between different ionization mechanisms, these may offer a favourable alternative to the standard hot metal cavity configuration. In addition to its main purpose of ion beam production, the RILIS is used for laser spectroscopy of radioisotopes. In an ongoing experimental campaign the isotope shifts and hyperfine structure of long isotopic chains have been measured by the extremely sensitive in-source laser spectroscopy method. The studies performed in the lead region were focused on nuclear deformation and shape coexistence effects around the closed proton shell Z = 82. The paper describes the functional principles of the RILIS, the current status of the laser system and demonstrated capabilities for the production of different ion beams including the high-resolution studies of short-lived isotopes and other applications of RILIS lasers for ISOLDE experiments. This article belongs to the Focus on

  6. Exploring of defects in He+ implanted Si(100) by slow positron beam

    International Nuclear Information System (INIS)

    Zhang Tianhao; Weng Huimin; Fan Yangmei; Du Jiangfeng; Zhou Xianyi; Han Rongdian; Zhang Miao; Lin Chenglu

    2001-01-01

    Si(100) crystal implanted by 5 x 10 16 cm -2 , 140 keV He + was probed by slow positron beam, and defect distribution along depth was obtained from the relation between S parameter and positron incidence energy. The near surface region of implanted sample was only slightly damaged. Small vacancies and vacancy clusters less than 1 nm in diameter were the dominant defects, while the deeper region around the He + projected range was heavily damaged and had dense larger helium micro-bubbles and microvoids. Thermal anneal study at different temperatures showed that low temperature annealing could remove most vacancy-type defects effectively. However, annealing at high temperature enlarged the diameters of micro-bubbles and microvoids

  7. Investigations of an excimer laser working with a four-component gaseous mixture He-Kr:Xe-HCl

    Science.gov (United States)

    Iwanejko, Leszek; Pokora, Ludwik J.

    1991-08-01

    The paper presnts working conditions of an XCI excimer laser untypical gas mixture based on KrzXe instead of pure Xe. Such a choice was influenced by the necessity of Findin9 the way to replace imported and expensive Xe by gaseous components accesible in Poland. Determining the range of changes of laser extrnal parameters which enables its proper work with the new gas mixture was the aim of same investigations results of which are presented in this paper. The laser pulse output energy and the pulse duration as a Function of supply voltage and the mixture composition are presented. The range of proper conditions for the laser working with the new mixture He-Kr:Xe--HC1 was determined. The analysis of experimental results showed that using the new mixture ensures value of energy and pulse duration comparable with the ones obtained for the mixture He-''Xe--HCl. Spectral investigations showed the lack of influence of Kr presence in the mixture on the generation spectrum of the laser. L.

  8. Time of Flight based diagnostics for high energy laser driven ion beams

    Science.gov (United States)

    Scuderi, V.; Milluzzo, G.; Alejo, A.; Amico, A. G.; Booth, N.; Cirrone, G. A. P.; Doria, D.; Green, J.; Kar, S.; Larosa, G.; Leanza, R.; Margarone, D.; McKenna, P.; Padda, H.; Petringa, G.; Pipek, J.; Romagnani, L.; Romano, F.; Schillaci, F.; Borghesi, M.; Cuttone, G.; Korn, G.

    2017-03-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  9. Time of Flight based diagnostics for high energy laser driven ion beams

    International Nuclear Information System (INIS)

    Scuderi, V.; Margarone, D.; Schillaci, F.; Milluzzo, G.; Amico, A.G.; Cirrone, G.A.P.; Larosa, G.; Leanza, R.; Petringa, G.; Pipek, J.; Romano, F.; Alejo, A.; Doria, D.; Kar, S.; Borghesi, M.; Booth, N.; Green, J.; McKenna, P.; Padda, H.; Romagnani, L.

    2017-01-01

    Nowadays the innovative high power laser-based ion acceleration technique is one of the most interesting challenges in particle acceleration field, showing attractive characteristics for future multidisciplinary applications, including medical ones. Nevertheless, peculiarities of optically accelerated ion beams make mandatory the development of proper transport, selection and diagnostics devices in order to deliver stable and controlled ion beams for multidisciplinary applications. This is the main purpose of the ELIMAIA (ELI Multidisciplinary Applications of laser-Ion Acceleration) beamline that will be realized and installed within 2018 at the ELI-Beamlines research center in the Czech Republic, where laser driven high energy ions, up to 60 MeV/n, will be available for users. In particular, a crucial role will be played by the on-line diagnostics system, recently developed in collaboration with INFN-LNS (Italy), consisting of TOF detectors, placed along the beamline (at different detection distances) to provide online monitoring of key characteristics of delivered beams, such as energy, fluence and ion species. In this contribution an overview on the ELIMAIA available ion diagnostics will be briefly given along with the preliminary results obtained during a test performed with high energy laser-driven proton beams accelerated at the VULCAN PW-laser available at RAL facility (U.K.).

  10. Laser Beam and Resonator Calculations on Desktop Computers.

    Science.gov (United States)

    Doumont, Jean-Luc

    There is a continuing interest in the design and calculation of laser resonators and optical beam propagation. In particular, recently, interest has increased in developing concepts such as one-sided unstable resonators, supergaussian reflectivity profiles, diode laser modes, beam quality concepts, mode competition, excess noise factors, and nonlinear Kerr lenses. To meet these calculation needs, I developed a general-purpose software package named PARAXIA ^{rm TM}, aimed at providing optical scientists and engineers with a set of powerful design and analysis tools that provide rapid and accurate results and are extremely easy to use. PARAXIA can handle separable paraxial optical systems in cartesian or cylindrical coordinates, including complex-valued and misaligned ray matrices, with full diffraction effects between apertures. It includes the following programs:. ABCD provides complex-valued ray-matrix and gaussian -mode analyses for arbitrary paraxial resonators and optical systems, including astigmatism and misalignment in each element. This program required that I generalize the theory of gaussian beam propagation to the case of an off-axis gaussian beam propagating through a misaligned, complex -valued ray matrix. FRESNEL uses FFT and FHT methods to propagate an arbitrary wavefront through an arbitrary paraxial optical system using Huygens' integral in rectangular or radial coordinates. The wavefront can be multiplied by an arbitrary mirror profile and/or saturable gain sheet on each successive propagation through the system. I used FRESNEL to design a one-sided negative-branch unstable resonator for a free -electron laser, and to show how a variable internal aperture influences the mode competition and beam quality in a stable cavity. VSOURCE implements the virtual source analysis to calculate eigenvalues and eigenmodes for unstable resonators with both circular and rectangular hard-edged mirrors (including misaligned rectangular systems). I used VSOURCE to

  11. Dynamics of laser-driven proton beam focusing and transport into solid density matter

    Science.gov (United States)

    Kim, J.; McGuffey, C.; Beg, F.; Wei, M.; Mariscal, D.; Chen, S.; Fuchs, J.

    2016-10-01

    Isochoric heating and local energy deposition capabilities make intense proton beams appealing for studying high energy density physics and the Fast Ignition of inertial confinement fusion. To study proton beam focusing that results in high beam density, experiments have been conducted using different target geometries irradiated by a kilojoule, 10 ps pulse of the OMEGA EP laser. The beam focus was measured by imaging beam-induced Cu K-alpha emission on a Cu foil that was positioned at a fixed distance. Compared to a free target, structured targets having shapes of wedge and cone show a brighter and narrower K-alpha radiation emission spot on a Cu foil indicating higher beam focusability. Experimentally observed images with proton radiography demonstrate the existence of transverse fields on the structures. Full-scale simulations including the contribution of a long pulse duration of the laser confirm that such fields can be caused by hot electrons moving through the structures. The simulated fields are strong enough to reflect the diverging main proton beam and pinch a transverse probe beam. Detailed simulation results including the beam focusing and transport of the focused intense proton beam in Cu foil will be presented. This work was supported by the National Laser User Facility Program through Award DE-NA0002034.

  12. Fine and hyperfine structure spectra of the ultra-violet 23S → 53P transition in 4He and 3He with a frequency doubled CW ring laser, detected via associative ionization

    International Nuclear Information System (INIS)

    Runge, S.; Pesnelle, A.; Perdrix, M.; Sevin, D.; Wolffer, N.; Watel, G.

    1982-01-01

    High resolution laser spectroscopy coupled to a sensitive method of detection via mass analysis of He + 2 ions produced in He(5 3 P) + He(1 1 S) collisions, is used to obtain the fine and hyperfine spectra of the ultra-violet He 2 3 S → 5 3 P transition. A cw tunable UV radiation around 294.5 nm is generated by intracavity frequency doubling a Rhodamine 6G single mode ring dye laser using an ADA crystal. Both spectra enable fine and hyperfine structures to be determined within a few MHz. The magnetic dipole coupling constant A of the 5 3 P term of 3 He is found to be -4326 +- 9 MHz (-0.1443 +- 0.0003 cm -1 ). (orig.)

  13. Laser beam accelerator

    International Nuclear Information System (INIS)

    Tajima, T.; Dawson, J.M.

    1981-01-01

    Parallel intense photon (laser, microwave, etc.) beams /omega/sub //0, k/sub 0/ and /omega/sub //1, k/sub 1/ shone on a plasma with frequency separation equal to the plasma frequency /omega/sub //p is capable of accelerating plasma electrons to high energies in large flux. The photon beat excites through the forward Raman scattering large amplitude plasmons whose phase velocity is equal to (/omega/ /sub 0/-/omega/sub //1)/(k/sub 0/-k/sub 1/), close to c in an underdense plasma. The multiple forward Raman instability produces smaller and smaller frequency and group velocity of photons; thus the photons slow down in the plasma by emitting accelerated electrons (inverse Cherenkov process). 6 refs

  14. Markers Of Apoptosis In HEP-2 Cells In Vitro Damaged By PHOTOFRIN And He:Ne Laser

    International Nuclear Information System (INIS)

    KORRAA, S.; ELMAGHRABY, T.K.; HELMY, H.M.

    2009-01-01

    Photodynamic therapy (PDT), which is a treatment for cancer and certain non-cancerous conditions, requires exposure of cells or tissue to a photosensitizing drug followed by irradiation with visible light of the appropriate wavelength. Although PDT can produce apoptosis or necrosis or a combination of the two mechanisms, PDT is a highly efficient if it induces apoptosis. The aim of the present study is to investigate the effect of combination between photofrin and He:Ne laser on killing Hep-2 cells in vitro, 2 and 24 hours post-laser irradiation. Also, to determine the markers of apoptosis in terms of levels of Bcl-2 protein and Bax mRNA relative expression in PDT treated cells six hours post laser irradiation. Cells viability was measured by trypan blue exclusion test (by light microscope). The results showed that photofrin in combination with He:Ne laser was efficient in decreasing the number of viable cells. It caused 81.47± 2.0 % cell death 2 hours post laser irradiation then reached 52.37± 2.24 % 24 hours post laser irradiation. PDT induced an increase in Bax mRNA relative expression and a decrease in Bcl-2 protein as measured 6 hours post laser irradiation.

  15. Dual-beam laser welding of AZ31B magnesium alloy in zero-gap lap joint configuration

    Science.gov (United States)

    Harooni, Masoud; Carlson, Blair; Kovacevic, Radovan

    2014-03-01

    Porosity within laser welds of magnesium alloys is one of the main roadblocks to achieving high quality joints. One of the causes of pore formation is the presence of pre-existing coatings on the surface of magnesium alloy such as oxide or chromate layers. In this study, single-beam and dual-beam laser heat sources are investigated in relation to mitigation of pores resulting from the presence of the as-received oxide layer on the surface of AZ31B-H24 magnesium alloy during the laser welding process. A fiber laser with a power of up to 4 kW is used to weld samples in a zero-gap lap joint configuration. The effect of dual-beam laser welding with different beam energy ratios is studied on the quality of the weld bead. The purpose of this paper is to identify the beam ratio that best mitigates pore formation in the weld bead. The laser molten pool and the keyhole condition, as well as laser-induced plasma plume are monitored in real-time by use of a high speed charge-coupled device (CCD) camera assisted with a green laser as an illumination source. Tensile and microhardness tests were used to measure the mechanical properties of the laser welded samples. Results showed that a dual-beam laser configuration can effectively mitigate pore formation in the weld bead by a preheating-welding mechanism.

  16. Beam collimation and transport of laser-accelerated protons by a solenoid field

    Energy Technology Data Exchange (ETDEWEB)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Schlossgartenstrasse 9, 64289 Darmstadt (Germany); Tauschwitz, A; Bagnoud, V [GSI - Hemholtzzentrum fur Schwerionenforschung GmbH, Plasmaphysik and PHELIX, Planckstrasse 1, 64291 Darmstadt (Germany); Daido, H; Tampo, M [Photo Medical Research Center, JAEA, 8-1 Umemidai, Kizugawa-city, Kyoto, 619-0215 (Japan); Schollmeier, M, E-mail: k.harres@gsi.d [Sandia National Laboratories, Albuquerque NM 87185 (United States)

    2010-08-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10{sup 12} particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  17. Beam collimation and transport of laser-accelerated protons by a solenoid field

    International Nuclear Information System (INIS)

    Harres, K; Alber, I; Guenther, M; Nuernberg, F; Otten, A; Schuetrumpf, J; Roth, M; Tauschwitz, A; Bagnoud, V; Daido, H; Tampo, M; Schollmeier, M

    2010-01-01

    A pulsed high field solenoid was used in a laser-proton acceleration experiment to collimate and transport the proton beam that was generated at the irradiation of a flat foil by a high intensity laser pulse. 10 12 particles at an energy of 2.3 MeV could be caught and transported over a distance of more than 240 mm. Strong space charge effects occur, induced by the high field of the solenoid that forces all co-moving electrons down the the solenoid's axis, building up a strong negative space charge that interacts with the proton beam. This leads to an aggregation of the proton beam around the solenoid's axis and therefore to a stronger focusing effect. The collimation and transport of laser-accelerated protons is the first step to provide these unique beams for further applications like post-acceleration by conventional accelerator structures.

  18. Correlated Keldysh-Faisal-Reiss theory of above-threshold double ionization of He in intense laser fields

    International Nuclear Information System (INIS)

    Becker, A.; Faisal, F.H.M.

    1994-01-01

    We have developed a correlated Keldysh-Faisal-Reiss theory of laser-induced double ionization of a two-electron atom. The basic N-photon T matrix and the expression for N-photon triple-differential rates or cross sections (TDCS's) are derived. The theory is applied to investigate the TDCS's for very-high-order multiphoton double ionization of He with lasers of wavelength λ=248 nm and λ=617 nm. Comparison with the uncorrelated results reveals a dramatic influence of the final-state e-e correlation on the above-threshold TDCS's to be measured in coincidence experiments in intense laser fields. The limiting case of the TDCS's for weak-field double ionization of He by a synchrotron photon is also investigated; the results confirm the earlier theoretical findings and recent experimental results in that case

  19. The use of laser beams for plasma diagnostics

    International Nuclear Information System (INIS)

    Gex, J.P.; Jolas, A.; Launspach, J.; Schirmann, D.

    1975-01-01

    The optical properties of lasers allow them to be a promising source for plasma diagnosis. The Q-switched lasers provide the opportunity to make observations in a very short time interval down to a few picoseconds. The laser space and time coherence properties allow interferometric measurements of plasma electron densities. Thus in the experiments of laser-matter interactions, the radiation obtained by frequency conversion of the Nd: glass laser emission is used for density measurements (up to 10 20 cm -3 ) in small scale plasmas (approximately equal to 1mm). Owing to the monochromaticity and high intensity of the Q-switched laser radiation, density fluctuations and microscopic instabilities of the plasma can be studied by Thompson scattering measurements. Finally, some statistically isotropic media become birefringent under the action of the strong electrical field of the laser beam radiation. This effect can be used for laser pulse duration measurements in a range not exceeding a few picoseconds [fr

  20. High quality electron beams from a plasma channel guided laser wakefield accelerator

    International Nuclear Information System (INIS)

    Geddes, C.G.R.; Toth, Cs.; Tilborg, J. van; Esarey, E.; Schroeder, C.B.; Bruhwiler, D.; Nieter, C.; Cary, J.; Leemans, W.P.

    2004-01-01

    Laser driven accelerators, in which particles are accelerated by the electric field of a plasma wave driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV/m. These fields are thousands of times those achievable in conventional radiofrequency (RF) accelerators, spurring interest in laser accelerators as compact next generation sources of energetic electrons and radiation. To date however, acceleration distances have been severely limited by lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance results in low energy beams with 100% electron energy spread, limiting applications. Here we demonstrate that a relativistically intense laser can be guided by a preformed plasma density channel and that the longer propagation distance can result in electron beams of percent energy spread with low emittance and increased energy, containing >10 9 electrons above 80 MeV. The preformed plasma channel technique forms the basis of a new class of accelerators, combining beam quality comparable to RF accelerators with the high gradients of laser accelerators to produce compact tunable high brightness electron and radiation sources

  1. Crossed molecular beam-tunable laser determination of velocity dependence of intramultiplet mixing: K(4p2P1/2)+He →K(4p2P3/2)+He

    International Nuclear Information System (INIS)

    Anderson, R.W.; Goddard, T.P.; Parravano, C.; Warner, J.

    1976-01-01

    The velocity dependence of intramultiplet mixing, K(4p 2 P 1 / 2 ) +He→K(4p 2 P 3 / 2 )+He, has been measured over the relative velocity range v=1.3--3.4 km/sec. The cross section appears to fit a linear function Q (v) =A (v-v 0 ), where a=6.3 x 10 -4 A 2 and v 0 = 7.9 x 10 4 cm/sec. The value of A is obtained by normalization to the literature thermal average cross section. The intramultiplet mixing theory of Nikitin is modified to yield Q (v) for the process. The modified theory correctly exhibits detailed balancing, and it is normalized to provide a very good fit to the observed Q (v). The magnitude of the normalization factor, however, is larger than that predicted from recent pseudopotential calculations of the excited state potentials. The temperature dependence of intramultiplet mixing is predicted. The use of laser polarization to determine the m/subj/ dependence of the process K(4p 2 P 3 / 2 +He→K(4p 2 P 1 / 2 )+He and other collision processes of excited 2 P 3 / 2 states is examined

  2. Bromine doping of CdTe and CdMnTe epitaxial layers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Waag, A. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Scholl, S. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Schierstedt, K. von (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Hommel, D. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Landwehr, G. (Physikalisches Inst. der Univ. Wuerzburg (Germany)); Bilger, G. (Zentrum fuer Sonnenenergie und Wasserstoff-Forschung, Stuttgart (Germany))

    1993-03-01

    We report on the n-type doping of CdTe and CdMnTe with bormine as a novel dopant material. /the thin films were grown by molecular beam epitaxy. ZnBr[sub 2] was used as a source material for the n-type doping. Free carrier concentrations at room temperature of up to 2.8x10[sup 18] cm[sup -3] could be readily obtained for both CdTe as well as CdMnTe thin films with Mn concentrations below 10%. This is to our knowledge the highest value ever obtained for the dilute magnetic semiconductor CdMnTe. For ZnBr[sub 2] source temperatures up to 60 C - corresponding to a free carrier concentration of (2-3)x10[sup 18] cm[sup -3] - the free carrier concentration of the epitaxial film increases with ZnBr[sub 2] source temperature. For higher ZnBr[sub 2] source temperatures compensation becomes dominant, which is indicated by a steep decrease of the free carrier concentration with increasing ZnBr[sub 2] source temperature. In addition the carrier mobility decreases drastically for such high dopant fluxes. A model of bromine incorporation is proposed. (orig.)

  3. Fast parallel diffractive multi-beam femtosecond laser surface micro-structuring

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Kuang, E-mail: z.kuang@liv.ac.uk [Laser Group, Department of Engineering, University of Liverpool, Brodie Building, Liverpool L69 3GQ (United Kingdom); Dun Liu; Perrie, Walter; Edwardson, Stuart; Sharp, Martin; Fearon, Eamonn; Dearden, Geoff; Watkins, Ken [Laser Group, Department of Engineering, University of Liverpool, Brodie Building, Liverpool L69 3GQ (United Kingdom)

    2009-04-15

    Fast parallel femtosecond laser surface micro-structuring is demonstrated using a spatial light modulator (SLM). The Gratings and Lenses algorithm, which is simple and computationally fast, is used to calculate computer generated holograms (CGHs) producing diffractive multiple beams for the parallel processing. The results show that the finite laser bandwidth can significantly alter the intensity distribution of diffracted beams at higher angles resulting in elongated hole shapes. In addition, by synchronisation of applied CGHs and the scanning system, true 3D micro-structures are created on Ti6Al4V.

  4. Fundamentals and industrial applications of high power laser beam cladding

    International Nuclear Information System (INIS)

    Bruck, G.J.

    1988-01-01

    Laser beam cladding has been refined such that clad characteristics are precisely determined through routine process control. This paper reviews the state of the art of laser cladding optical equipment, as well as the fundamental process/clad relationships that have been developed for high power processing. Major categories of industrial laser cladding are described with examples chose to highlight particular process attributes

  5. Electron accelerator with a laser ignition for investigation of beam plasma by optical methods

    International Nuclear Information System (INIS)

    Kabanov, S.N.; Korolev, A.A.; Kul'beda, V.E.; Razumovskij, A.I.; Trukhin, V.A.

    1990-01-01

    Facility to conduct investigations into dense gas beam plasma is described. Facility comprises: electron accelerator (200-300 keV, 5kA, 20ns), OGM-40 ignition ruby laser LZhI-501 diagnostic laser (with 0.55-0.66 μm tunable wave length), Michelson interferometer and diagnostic equipment for optical measurements. Laser ignition of spark gap is introduced to strong synchronization (±10ns) of radiation pulse of diagnostic laser with beam current pulse

  6. Coherent beam combination of fiber lasers with a strongly confined waveguide: numerical model.

    Science.gov (United States)

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-20

    Self-imaging properties of fiber lasers in a strongly confined waveguide (SCW) and their application in coherent beam combination (CBC) are studied theoretically. Analytical formulas are derived for the positions, amplitudes, and phases of the N images at the end of an SCW, which is important for quantitative analysis of waveguide CBC. The formulas are verified with experimental results and numerical simulation of a finite difference beam propagation method (BPM). The error of our analytical formulas is less than 6%, which can be reduced to less than 1.5% with Goos-Hahnchen penetration depth considered. Based on the theoretical model and BPM, we studied the combination of two laser beams based on an SCW. The effects of the waveguide refractive index and Gaussian beam waist are studied. We also simulated the CBC of nine and 16 fiber lasers, and a single beam without side lobes was achieved.

  7. Laser beam complex amplitude measurement by phase diversity.

    Science.gov (United States)

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  8. Ultrashort megaelectronvolt positron beam generation based on laser-accelerated electrons

    Science.gov (United States)

    Xu, Tongjun; Shen, Baifei; Xu, Jiancai; Li, Shun; Yu, Yong; Li, Jinfeng; Lu, Xiaoming; Wang, Cheng; Wang, Xinliang; Liang, Xiaoyan; Leng, Yuxin; Li, Ruxin; Xu, Zhizhan

    2016-03-01

    Experimental generation of ultrashort MeV positron beams with high intensity and high density using a compact laser-driven setup is reported. A high-density gas jet is employed experimentally to generate MeV electrons with high charge; thus, a charge-neutralized MeV positron beam with high density is obtained during laser-accelerated electrons irradiating high-Z solid targets. It is a novel electron-positron source for the study of laboratory astrophysics. Meanwhile, the MeV positron beam is pulsed with an ultrashort duration of tens of femtoseconds and has a high peak intensity of 7.8 × 1021 s-1, thus allows specific studies of fast kinetics in millimeter-thick materials with a high time resolution and exhibits potential for applications in positron annihilation spectroscopy.

  9. On formation of a partially coherent beam in a stable-resonator laser

    International Nuclear Information System (INIS)

    Suvorov, A A

    2010-01-01

    A new method involving the expansion of the field coherence function in partially coherent modes - the eigensolutions of the problem for the second-order coherence function in a stable resonator - is proposed for the theoretical description of the process of multimode laser beam formation. The method for solving the problem for arbitrary partially coherent modes is formulated and the expressions for these modes are derived in the general form. The characteristics of the fundamental partially coherent mode, which coincides with the coherence function of a Gaussian partially coherent beam, are analysed in detail. The partially coherent modes are shown to possess two spatial scales - the effective radius and the coherence radius, which makes them a convenient tool for solving the problem of generation of a partially coherent beam. It is found that the unambiguous relation between the characteristics of partially coherent modes and the stable-resonator parameters is achieved by involving into consideration not only the process of the beam formation by the resonator mirrors but also the process of interaction of radiation with the active laser medium. (laser beams and resonators)

  10. Ultra-compact laser beam steering device using holographically formed two dimensional photonic crystal.

    Science.gov (United States)

    Dou, Xinyuan; Chen, Xiaonan; Chen, Maggie Yihong; Wang, Alan Xiaolong; Jiang, Wei; Chen, Ray T

    2010-03-01

    In this paper, we report the theoretical study of polymer-based photonic crystals for laser beam steering which is based on the superprism effect as well as the experiment fabrication of the two dimensional photonic crystals for the laser beam steering. Superprism effect, the principle for beam steering, was separately studied in details through EFC (Equifrequency Contour) analysis. Polymer based photonic crystals were fabricated through double exposure holographic interference method using SU8-2007. The experiment results showed a beam steering angle of 10 degree for 30 nm wavelength variation.

  11. Determination of electron beam parameters by means of laser-Compton scattering

    Directory of Open Access Journals (Sweden)

    K. Chouffani

    2006-05-01

    Full Text Available Laser-Compton scattering (LCS experiments were carried out at the Idaho Accelerator Center using the 5 ns (FWHM and 22 MeV electron beam. The electron beam was brought to an approximate head-on collision with a 29 MW, 7 ns (FWHM, 10 Hz Nd:YAG laser. Clear and narrow x-ray peaks resulting from the interaction of relativistic electrons with the Nd:YAG laser second harmonic line at 532 nm were observed. We have developed a relatively new method of using LCS as a nonintercepting electron beam monitor. Our method focused on the variation of the shape of the LCS spectrum rather than the LCS intensity as a function of the observation angle in order to extract the electron beam parameters at the interaction region. The electron beam parameters were determined by making simultaneous fits to spectra taken across the LCS x-ray cone. This scan method allowed us also to determine the variation of LCS x-ray peak energies and spectral widths as a function of the detector angles. Experimental data show that in addition to being viewed as a potential bright, tunable, and quasimonochromatic x-ray source, LCS can provide important information on the electron beam pulse length, direction, energy, angular and energy spread. Since the quality of LCS x-ray peaks, such as degree of monochromaticity, peak energy and flux, depends strongly on the electron beam parameters, LCS can therefore be viewed as an important nondestructive tool for electron beam diagnostics.

  12. Astigmatism-free high-brightness 1060 nm edge-emitting lasers with narrow circular beam profile.

    Science.gov (United States)

    Miah, Md Jarez; Kalosha, Vladimir P; Bimberg, Dieter; Pohl, Johannes; Weyers, Markus

    2016-12-26

    1060 nm high-brightness vertical broad-area edge-emitting lasers providing anastigmatic high optical power into a narrow circular beam profile are demonstrated. Ridge-waveguide (RW) lasers yield record 2.2 W single-transverse mode power in the 1060-nm wavelength range under continuous-wave (cw) operation at room temperature with excellent beam quality factor M2 ≤ 2. Independent of operating current the astigmatism is only 2.5 µm. 3 mm long broad-area (BA) lasers produce a θvert as narrow as 9° full width at half maximum, which agrees well with our simulation results, being insensitive to drive current. 5 mm long BA lasers deliver highest ever reported cw 12 W multimode output power among lasers showing θvert <10° in the 1060-nm wavelength range. The emitted laser beams from both RW and BA lasers show a perfect circular shape with ≤10° divergence angle at record 2.1 W and 4.2 W cw-mode output power, respectively.

  13. Laser beams in high energy physics

    International Nuclear Information System (INIS)

    Milburn, R.H.

    1976-01-01

    Back-scattered ruby laser light from energetic electrons has facilitated a family of bubble chamber experiments in the interactions of highly polarized and quasi-monochromatic photons up to 10 GeV with 4π acceptance at the 100 to 200 event/μb level. Further studies of this sort demand the use of high-repetition-rate track chambers. To exploit the polarization and energetic purity intrinsic to the back-scattered beam one must achieve nearly two orders of magnitude increase in the average input optical power, and preferably also higher quantum energies. Prospects for this technique and its applications given modern laser capabilities and new accelerator developments are discussed

  14. Tailoring the laser pulse shape to improve the quality of the self-injected electron beam in laser wakefield acceleration

    International Nuclear Information System (INIS)

    Upadhyay, Ajay K.; Samant, Sushil A.; Krishnagopal, S.

    2013-01-01

    In laser wakefield acceleration, tailoring the shape of the laser pulse is one way of influencing the laser-plasma interaction and, therefore, of improving the quality of the self-injected electron beam in the bubble regime. Using three-dimensional particle-in-cell simulations, the evolution dynamics of the laser pulse and the quality of the self-injected beam, for a Gaussian pulse, a positive skew pulse (i.e., one with sharp rise and slow fall), and a negative skew pulse (i.e., one with a slow rise and sharp fall) are studied. It is observed that with a negative skew laser pulse there is a substantial improvement in the emittance (by around a factor of two), and a modest improvement in the energy-spread, compared to Gaussian as well as positive skew pulses. However, the injected charge is less in the negative skew pulse compared to the other two. It is also found that there is an optimal propagation distance that gives the best beam quality; beyond this distance, though the energy increases, the beam quality deteriorates, but this deterioration is least for the negative skew pulse. Thus, the negative skew pulse gives an improvement in terms of beam quality (emittance and energy spread) over what one can get with a Gaussian or positive skew pulse. In part, this is because of the lesser injected charge, and the strong suppression of continuous injection for the negative skew pulse.

  15. Generation of mega-electron-volt electron beams by an ultrafast intense laser pulse

    International Nuclear Information System (INIS)

    Wang Xiaofang; Saleh, Ned; Krishnan, Mohan; Wang Haiwen; Backus, Sterling; Murnane, Margaret; Kapteyn, Henry; Umstadter, Donald; Wang Quandong; Shen Baifei

    2003-01-01

    Mega-electron-volt (MeV) electron emission from the interaction of an ultrafast (τ∼29 fs), intense (>10 18 W/cm 2 ) laser pulse with underdense plasmas has been studied. A beam of MeV electrons with a divergence angle as small as 1 deg. is observed in the forward direction, which is correlated with relativistic filamentation of the laser pulse in plasmas. A novel net-energy-gain mechanism is proposed for electron acceleration resulting from the relativistic filamentation and beam breakup. These results suggest an approach for generating a beam of femtosecond, MeV electrons at a kilohertz repetition rate with a compact ultrafast intense laser system

  16. Exploring vacuum birefringence based on a 100 PW laser and an x-ray free electron laser beam

    Science.gov (United States)

    Shen, Baifei; Bu, Zhigang; Xu, Jiancai; Xu, Tongjun; Ji, Liangliang; Li, Ruxin; Xu, Zhizhan

    2018-04-01

    Exploring vacuum birefringence with the station of extreme light at Shanghai Coherent Light Facility is considered. Laser pulses of intensity beyond 1023 W cm-2 are capable of polarizing the vacuum due to the ultra-strong electro-magnetic fields. The subtle difference of the vacuum refractive indexes along electric and magnetic fields leads to a birefringence effect for lights propagating through. The vacuum birefringence effect can now be captured by colliding a hard x-ray free electron laser (XFEL) beam with a high-power laser. The initial XFEL beam of pure linear polarization is predicated to gain a very small ellipticity after passing through the laser stimulated vacuum. Various interaction geometries are considered, showing that the estimated ellipticity lies between 1.8 × 10-10 and 10-9 for a 100 PW laser interacting with a 12.9 keV XFEL beam, approaching the threshold for todays’ polarity detection technique. The detailed experimental set-up is designed, including the polarimeter, the focusing compound refractive lens and the optical path. When taking into account the efficiencies of the x-ray instruments, it is found that about 10 polarization-flipped x-ray photons can be detected for a single shot for our design. Considering the background noise level, accumulating runs are necessary to obtain high confident measurement.

  17. Electron acceleration by longitudinal electric field of a gaussian laser beam

    International Nuclear Information System (INIS)

    Takeuchi, Satoshi; Sugihara, Ryo; Shimoda, Koichi.

    1991-11-01

    It is shown that the longitudinal electric field of a transverse magnetic mode of a Gaussian laser beam accelerates an electron to an ultra-relativistic energy. The electron is captured and accelerated in a length of the order of the Rayleigh range. The ultimate energy increment of the electron with a single laser beam is given by the product of transverse field intensity and the beam waist, and can be of the order of 100MeV. This fact implies that a multi-stage acceleration enables TeV-order-acceleration in a length of a few kilometers with the present state of the art. (author)

  18. Dual beam translator for use in Laser Doppler anemometry

    Science.gov (United States)

    Brudnoy, David M.

    1987-01-01

    A method and apparatus for selectively translating the path of at least one pair of light beams in a Laser Doppler anemometry device whereby the light paths are translated in a direction parallel to the original beam paths so as to enable attainment of spacial coincidence of the two intersection volumes and permit accurate measurements of Reynolds shear stress.

  19. Evolution of a Gaussian laser beam in warm collisional magnetoplasma

    Energy Technology Data Exchange (ETDEWEB)

    Jafari, M. J.; Jafari Milani, M. R., E-mail: mrj.milani@gmail.com [Plasma Physics Research School, NSTRI, Tehran (Iran, Islamic Republic of); Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of)

    2016-07-15

    In this paper, the spatial evolution of an intense circularly polarized Gaussian laser beam propagated through a warm plasma is investigated, taking into account the ponderomotive force, Ohmic heating, external magnetic field, and collisional effects. Using the momentum transfer and energy equations, both modified electron temperature and electron density in plasma are obtained. By introducing the complex dielectric permittivity of warm magnetized plasma and using the complex eikonal function, coupled differential equations for beam width parameter are established and solved numerically. The effects of polarization state of laser and magnetic field on the laser spot size evolution are studied. It is observed that in case of the right-handed polarization, an increase in the value of external magnetic field causes an increase in the strength of the self-focusing, especially in the higher values, and consequently, the self-focusing occurs in shorter distance of propagation. Moreover, the results demonstrate the existence of laser intensity and electron temperature ranges where self-focusing can occur, while the beam diverges outside of these regions; meanwhile, in these intervals, there exists a turning point for each of intensity and temperature in which the self-focusing process has its strongest strength. Finally, it is found that the self-focusing effect can be enhanced by increasing the plasma frequency (plasma density).

  20. XUV laser-produced plasma sheet beam and microwave agile mirror

    International Nuclear Information System (INIS)

    Shen, W.; Scharer, J.E.; Porter, B.; Lam, N.T.

    1994-01-01

    An excimer-laser (λ = 193 nm) produced plasma in an organic gas (TMAE) has been generated and studied. These studies have determined the ion-electron recombination coefficient and the photon absorption cross-section, of the neutral gas. The dependences of wave transmission, reflection and absorption on plasma density are obtained. A new optical system with an array of cylindrical XUV coated lenses has been implemented to form a plasma sheet to study its usage as agile mirror microwave reflector. The lens system expands the incident laser beam in X direction and compresses it in Y direction to form a sheet beam. The expanded beam then passes through a vacuum chamber filled with TMAE at 50--500 nTorr to produce the plasma sheet. Space-time measurements of the plasma density and temperature as measured by a Langmuir probe are presented. XUV optical measurements of the laser beam as measured by a photodiode are presented. Initial experiments have generated a plasma sheet of 5--10 mm x 11 cm with peak plasma density of 5 x 10 13 cm -3 . A microwave source will be utilized to study the agile mirror character of the plasma sheet. Modeling of the microwave reflection from the plasma profile will also be discussed