WorldWideScience

Sample records for hdr test facility

  1. Seismic tests at the HDR facility using explosives and solid propellant rockets

    International Nuclear Information System (INIS)

    Corvin, P.; Steinhilber, H.

    1981-01-01

    In blast tests the HDR reactor building and its mechanical equipment were subjected to earthquake-type excitations through the soil and the foundation. A series of six tests was carried out, two tests being made with HDR facility under operating conditions (BWR conditions, 285 0 C, 70 bar). The charges were placed in boreholes at a depth of 4 to 10 m and a distance of 16 to 25 m from the reactor building. The tests with solid propellant rockets were made in order to try a new excitation technique. The rockets used in these tests were of compact design and had a short combustion period (500 ms) at high constant thrust (100 kN per combustion chamber). These rockets were fixed to the concrete dome of the building in such a way that the thrust generated during the combustion of the propellant resulted in an impulsive load acting on the building. This type of excitation was selected with a view to investigating the global effects of the load case 'aircraft impact' on the building and the mechanical equipment. In the four tests made so far, up to four rockets were ignited simultaneously, so that the maximum impulse was 2 x 10 5 Ns. The excitation level can be markedly increased by adding further rockets. This excitation technique was characterised by excellent reproducibility of the load parameters. (orig./HP)

  2. A summary of the Fire Testing Program at the German HDR Test Facility

    International Nuclear Information System (INIS)

    Nowlen, S.P.

    1995-11-01

    This report provides an overview of the fire safety experiments performed under the sponsorship of the German government in the containment building of the decommissioned pilot nuclear power plant known as HDR. This structure is a highly complex, multi-compartment, multi-level building which has been used as the test bed for a wide range of nuclear power plant operation safety experiments. These experiments have included numerous fire tests. Test fire fuel sources have included gas burners, wood cribs, oil pools, nozzle release oil fires, and cable in cable trays. A wide range of ventilation conditions including full natural ventilation, full forced ventilation, and combined natural and forced ventilation have been evaluated. During most of the tests, the fire products mixed freely with the full containment volume. Macro-scale building circulation patterns which were very sensitive to such factors as ventilation configuration were observed and characterized. Testing also included the evaluation of selective area pressurization schemes as a means of smoke control for emergency access and evacuation stairwells

  3. HDR flood-water storage-tank modal vibration tests

    International Nuclear Information System (INIS)

    Gorman, V.W.; Thinnes, G.L.

    1983-01-01

    Modal vibration tests were conducted by EG and G Idaho on two vessels located at West Germany's Heissdampfreaktor (HDR) facility which is 25 kilometers east of Frankfurt. The tests were performed during May and June 1982 for the US Nuclear Regulatory Commission (NRC) as part of their cooperative effort with Kernforschungszentrum Karlsruhe (KfK) of West Germany. The primary purpose for performing this task was to determine modal properties (frequencies, mode shapes and associated damping ratios) in order to eventually provide guidelines for standards development by the NRC in modeling similar vessels. One of the vessels tested was a flood water storage tank (FWST) for empty, half full and full water conditions. The FWST was excited randomly with an electromagnetic shaker and by impulsive hammer blows. Excitation or input forces together with measured vessel responses were processed by a digital modal analyzer and stored on magnetic disks for subsequent evaluation

  4. Heissdampfreaktor (HDR) steel-containment-vessel and floodwater-storage-tank structural-dynamics tests

    International Nuclear Information System (INIS)

    Arendts, J.G.

    1982-01-01

    Inertance (vibration) testing of two significant vessels at the Heissdampfreaktor (HDR) facility, located near Kahl, West Germany, was recently completed. Transfer functions were obtained for determination of the modal properties (frequencies, mode shapes and damping) of the vessels using two different test methods for comparative purposes. One of the vessels tested was the steel containment vessel (SCV). The SCV is approximately 180 feet high and 65 feet in diameter with a 1.2-inch wall thickness. The other vessel, called the floodwater storage tank (FWST), is a vertically standing vessel approximately 40 feet high and 10 feet in diameter with a 1/2-inch wall thickness. The FWST support skirt is square (in plan views) with its corners intersecting the ellipsoidal bottom head near the knuckle region

  5. Vibrational experiments at the HDR [Heissdampfreaktor] German/US cooperation

    International Nuclear Information System (INIS)

    Kot, C.A.; Malcher, L.; Costello, J.F.

    1987-04-01

    As part of an overall effort on the validation of seismic calculational methods, the US NRC/RES is collaborating with the Kernforschungszentrum Karlsruhe, FRG, in the vibrational/earthquake experiments conducted at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG. In the most recent experiments (SHAG), high level excitations were produced in the HDR by means of an eccentric-mass coastdown shaker capable of developing 1000 tons of force. The purpose of the experiments was to investigate full-scale structural response, soil-structure interaction, and piping and equipment response. Data obtained in the tests serve to evaluate analysis methods. In the SHAG experiments, loadings of the HDR soil-structure system approached incipient failure levels as evidenced by high peak accelerations and displacements, local damage, nonlinear behavior, soil subsidence, and wall strains which exceeded estimated limit values. Also, the performance of different pipe hanger configurations for the VKL piping system was compared in these tests under high excitation levels. The support configurations ranged from very rigid systems (strut/snubbers) to very flexible configurations (spring and constant force supports). Pretest and post-test analyses for the building/soil and piping response were performed and are being validated with the test data

  6. High-level seismic tests of piping at the HDR [Heissdampfreaktor

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Costello, J.F.

    1989-01-01

    As part of the second-phase testing at the Heissdampfreaktor (HDR) Test Facility in Kahl/Main, Federal Republic of Germany (FRG), high-level seismic experiments, designated SHAM, were performed on an in-plant piping system during the period of 19 April to 27 May 1988. The objectives of the SHAM experiments were to (1) study the response of piping subjected to seismic excitation levels that exceed design levels manifold and which may result in failure/plastification of pipe supports and pipe elements; (2) provide data for the validation of linear and nonlinear pipe response analyses; (3) compare and evaluate, under identical loading conditions, the performance of various dynamic support system, ranging from very flexible to very stiff support configurations; (4) establish seismic margins for piping, dynamic pipe supports, and pipe anchorages; and (5) investigate the response, operability, and fragility of dynamic supports and of a typical US gate valve under extreme levels of seismic excitation. A brief description of the SHAM tests is provided, followed by highlights of the test results that are given primarily in the form of maximum response values. Also presented are very limited comparisons of experimental data and pretest analytical predictions. 6 refs., 8 figs

  7. Response of HDR-VKL piping system to seismic test excitations: Comparison of analytical predictions and test measurements

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1989-01-01

    As part of the earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, simulated seismic tests (SHAM) were performed during April--May 1988 on the VKL (Versuchskreislauf) piping system. The purpose of these experiments was to study the behavior of piping subjected to a range of seismic excitation levels including those that exceed design levels manifold and that might induce failure of pipe supports or plasticity in the pipe runs, and to establish seismic margins for piping and pipe supports. Data obtained in the tests are also used to validate analysis methods. Detailed reports on the SHAM experiments are given elsewhere. The objective of this document is to evaluate a subsystem analysis module of the SMACS code. This module is a linear finite-element based program capable of calculating the response of nuclear power plant subsystems subjected to independent multiple-acceleration input excitation. The evaluation is based on a comparison of computational results of simulation of SHAM tests with corresponding test measurements

  8. SHAM: High-level seismic tests of piping at the HDR

    International Nuclear Information System (INIS)

    Kot, C.A.; Srinivasan, M.G.; Hsieh, B.J.; Malcher, L.; Schrammel, D.; Steinhilber, H.; Costello, J.F.

    1988-01-01

    As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level simulated seismic tests (SHAM) were performed during April--May 1988 on the VKL (Versuchskreislauf) in-plant piping system with two servohydraulic actuators, each capable of generating 40 tons of force. The purpose of these experiments was to study the behavior of piping subjected to seismic excitation levels that exceed design levels manifold and may result in failure/plastification of pipe supports and pipe elements, and to establish seismic margins for piping and pipe supports. The performance of six different dynamic pipe support systems was compared in these tests and the response, operability, and fragility of dynamic supports and of a typical US gate valve were investigated. Data obtained in the tests are used to validate analysis methods. Very preliminary evaluations lead to the observation that, in general, failures of dynamic supports (in particular snubbers) occur only at load levels that substantially exceed the design capacity. Pipe strains at load levels exceeding the design level threefold are quite small, and even when exceeding the design level eightfold are quite tolerable. Hence, under seismic loading, even at extreme levels and in spite of multiple support failures, pipe failure is unlikely. 5 refs., 16 figs

  9. Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities

    International Nuclear Information System (INIS)

    Pujades, M C; Granero, D; Vijande, J; Ballester, F; Perez-Calatayud, J; Papagiannis, P; Siebert, F A

    2014-01-01

    In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for 192 Ir and 60 Co HDR applications to account for several different bunker layouts. For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emitted by 192 Ir and 60 Co will reduce the lead thickness by a factor of five for 192 Ir and ten for 60 Co. This will significantly lighten the door and hence simplify construction and operating requirements for all bunkers. The adaptation proposed in this study to estimate the air-kerma rate at the door depends on the complexity of the maze: it provides good results for bunkers with a maze (i.e. similar to those used for linacs for which the NCRP 151 methodology was developed) but fails for less conventional designs. For those facilities, a specific Monte Carlo study is in order for reasons of safety and cost-effectiveness. (paper)

  10. Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities.

    Science.gov (United States)

    Pujades, M C; Granero, D; Vijande, J; Ballester, F; Perez-Calatayud, J; Papagiannis, P; Siebert, F A

    2014-12-01

    In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for (192)Ir and (60)Co HDR applications to account for several different bunker layouts.For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emitted by (192)Ir and (60)Co will reduce the lead thickness by a factor of five for (192)Ir and ten for (60)Co. This will significantly lighten the door and hence simplify construction and operating requirements for all bunkers.The adaptation proposed in this study to estimate the air-kerma rate at the door depends on the complexity of the maze: it provides good results for bunkers with a maze (i.e. similar to those used for linacs for which the NCRP 151 methodology was developed) but fails for less conventional designs. For those facilities, a specific Monte Carlo study is in order for reasons of safety and cost-effectiveness.

  11. Vibrational experiments at the HDR [Heissdampfreaktor]: SHAG results and planning for SHAM

    International Nuclear Information System (INIS)

    Kot, C.A.; Malcher, L.; Steinhilber, H.

    1987-01-01

    As part of the second phase of vibrational/earthquake investigations at the HDR (Heissdampfreaktor) Test Facility in Kahl/Main, FRG, high-level shaker tests (SHAG) were performed during June and July 1986 using a coast-down shaker capable of generating 1000 tons of force. The purpose of these experiments was to investigate full-scale structural response, soil/structure interaction, and piping and equipment response under strong excitation conditions. While global safety considerations imposed load limitations, the HDR soil/structure system was nevertheless tested to incipient failure. The performance of pipe support systems in as many as seven different multiple support pipe hanger configurations, ranging from flexible to stiff systems, was evaluated in the tests. Data obtained in the tests are used to validate analysis methods. The vibrational/earthquake investigations at the HDR are continuing with the SHAM experiments, planned for the spring of 1988. In these experiments the VKL piping loop will be subjected to direct multiple-point excitation at extremely high levels. The objective is to investigate different pipe support configurations at extreme loading, to establish seismic margins for piping, and to investigate possible failure/plastification modes in an in situ piping system

  12. A JPEG backward-compatible HDR image compression

    Science.gov (United States)

    Korshunov, Pavel; Ebrahimi, Touradj

    2012-10-01

    High Dynamic Range (HDR) imaging is expected to become one of the technologies that could shape next generation of consumer digital photography. Manufacturers are rolling out cameras and displays capable of capturing and rendering HDR images. The popularity and full public adoption of HDR content is however hindered by the lack of standards in evaluation of quality, file formats, and compression, as well as large legacy base of Low Dynamic Range (LDR) displays that are unable to render HDR. To facilitate wide spread of HDR usage, the backward compatibility of HDR technology with commonly used legacy image storage, rendering, and compression is necessary. Although many tone-mapping algorithms were developed for generating viewable LDR images from HDR content, there is no consensus on which algorithm to use and under which conditions. This paper, via a series of subjective evaluations, demonstrates the dependency of perceived quality of the tone-mapped LDR images on environmental parameters and image content. Based on the results of subjective tests, it proposes to extend JPEG file format, as the most popular image format, in a backward compatible manner to also deal with HDR pictures. To this end, the paper provides an architecture to achieve such backward compatibility with JPEG and demonstrates efficiency of a simple implementation of this framework when compared to the state of the art HDR image compression.

  13. Verification of experimental modal modeling using HDR (Heissdampfreaktor) dynamic test data

    International Nuclear Information System (INIS)

    Srinivasan, M.G.; Kot, C.A.; Hsieh, B.J.

    1983-01-01

    Experimental modal modeling involves the determination of the modal parameters of the model of a structure from recorded input-output data from dynamic tests. Though commercial modal analysis algorithms are being widely used in many industries their ability to identify a set of reliable modal parameters of an as-built nuclear power plant structure has not been systematically verified. This paper describes the effort to verify MODAL-PLUS, a widely used modal analysis code, using recorded data from the dynamic tests performed on the reactor building of the Heissdampfreaktor, situated near Frankfurt, Federal Republic of Germany. In the series of dynamic tests on HDR in 1979, the reactor building was subjected to forced vibrations from different types and levels of dynamic excitations. Two sets of HDR containment building input-output data were chosen for MODAL-PLUS analyses. To reduce the influence of nonlinear behavior on the results, these sets were chosen so that the levels of excitation are relatively low and about the same in the two sets. The attempted verification was only partially successful in that only one modal model, with a limited range of validity, could be synthesized and in that the goodness of fit could be verified only in this limited range

  14. Westinghouse-GOTHIC distributed parameter modelling for HDR test E11.2

    International Nuclear Information System (INIS)

    Narula, J.S.; Woodcock, J.

    1994-01-01

    The Westinghouse-GOTHIC (WGOTHIC) code is a sophisticated mathematical computer code designed specifically for the thermal hydraulic analysis of nuclear power plant containment and auxiliary buildings. The code is capable of sophisticated flow analysis via the solution of mass, momentum, and energy conservation equations. Westinghouse has investigated the use of subdivided noding to model the flow patterns of hydrogen following its release into a containment atmosphere. For the investigation, several simple models were constructed to represent a scale similar to the German HDR containment. The calculational models were simplified to test the basic capability of the plume modeling methods to predict stratification while minimizing the number of parameters. A large empty volume was modeled, with the same volume and height as HDR. A scenario was selected that would be expected to stably stratify, and the effects of noding on the prediction of stratification was studied. A single phase hot gas was injected into the volume at a height similar to that of HDR test E11.2, and there were no heat sinks modeled. Helium was released into the calculational models, and the resulting flow patterns were judged relative to the expected results. For each model, only the number of subdivisions within the containment volume was varied. The results of the investigation of noding schemes has provided evidence of the capability of subdivided (distributed parameter) noding. The results also showed that highly inaccurate flow patterns could be obtained by using an insufficient number of subdivided nodes. This presents a significant challenge to the containment analyst, who must weigh the benefits of increased noding with the penalties the noding may incur on computational efficiency. Clearly, however, an incorrect noding choice may yield erroneous results even if great care has been taken in modeling accurately all other characteristics of containments. (author). 9 refs., 9 figs

  15. Comparison of radiation shielding requirements for HDR brachytherapy using 169Yb and 192Ir sources

    International Nuclear Information System (INIS)

    Lymperopoulou, G.; Papagiannis, P.; Sakelliou, L.; Georgiou, E.; Hourdakis, C. J.; Baltas, D.

    2006-01-01

    169 Yb has received a renewed focus lately as an alternative to 192 Ir sources for high dose rate (HDR) brachytherapy. Following the results of a recent work by our group which proved 169 Yb to be a good candidate for HDR prostate brachytherapy, this work seeks to quantify the radiation shielding requirements for 169 Yb HDR brachytherapy applications in comparison to the corresponding requirements for the current 192 Ir HDR brachytherapy standard. Monte Carlo simulation (MC) is used to obtain 169 Yb and 192 Ir broad beam transmission data through lead and concrete. Results are fitted to an analytical equation which can be used to readily calculate the barrier thickness required to achieve a given dose rate reduction. Shielding requirements for a HDR brachytherapy treatment room facility are presented as a function of distance, occupancy, dose limit, and facility workload, using analytical calculations for both 169 Yb and 192 Ir HDR sources. The barrier thickness required for 169 Yb is lower than that for 192 Ir by a factor of 4-5 for lead and 1.5-2 for concrete. Regarding 169 Yb HDR brachytherapy applications, the lead shielding requirements do not exceed 15 mm, even in highly conservative case scenarios. This allows for the construction of a lead door in most cases, thus avoiding the construction of a space consuming, specially designed maze. The effects of source structure, attenuation by the patient, and scatter conditions within an actual treatment room on the above-noted findings are also discussed using corresponding MC simulation results

  16. Requirements tests for QC of microSelectron-HDR

    International Nuclear Information System (INIS)

    Gesheva-Atanasova, N.; Gogova, A.; Peycheva, S.; Constantinov, B.; Ganchev, M.

    2000-01-01

    The Quality Control (QC) considers checks and measurements with the purpose of reconstruction, maintaining and increasing the quality of medical procedures and equipment. The QC tests for micro Selectron HDR afterloading machine with 192 Ir which allows more precise calculation and realisation of the tumour's dose have been created and introduced regularly in National Oncological Centre, Sofia. This paper has been cover the machine and software performance, source positioning, application equipment and radiation safety. A list of tests, their frequency, tolerance and action levels, as well as the tests' procedures have been worked out. The used methods are based on establishment of QC protocols. The documents have achieved for a certain period of time and they are available at any time. The experience shows drastically reduction of failures during medical treatment, ensuring the reliability of the used equipment and confidence that all the patients have treated adequate. Where some parameter is above the tolerance is it possible to do proper corrections measures immediately. This QA protocols give assurance that specific objectives being successfully met

  17. Viewpoint adaptive display of HDR images

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Mantel, Claire

    2017-01-01

    In this paper viewpoint adaptive display of HDR images incorporating the effects of ambient light is presented and evaluated. LED backlight displays may render HDR images, but while at a global scale a high dynamic range may be achieved, locally the contrast is limited by the leakage of light...... through the LC elements of the display. To render high quality images, the display with backlight dimming can compute the values of the LED backlight and LC elements based on the input image, information about the viewpoint of the observer(s) and information of the ambient light. The goal is to achieve...... the best perceptual reproduction of the specified target image derived from the HDR input image in the specific viewing situation including multiple viewers, possibly having different preferences. An optimization based approach is presented. Some tests with reproduced images are also evaluated subjectively...

  18. Simulation of atmosphere stratification in the HDR test facility with the CONTAIN code

    International Nuclear Information System (INIS)

    Skerlavaj, A.; Mavko, B.; Kljenak, I.

    2001-01-01

    The test E11.2 'Hydrogen distribution in loop flow geometry', which was performed in the Heissdampf Reaktor containment test facility in Germany, was simulated with the CONTAIN computer code. The predicted pressure history and thermal stratification are in relatively good agreement with the measurements. The compositional stratification within the containment was qualitatively well predicted, although the degree of the stratification in the dome area was slightly underestimated. The analysis of simulation results enabled a better understanding of the physical phenomena during the test.(author)

  19. Quality assurance of Vari-source high dose rate (HDR) brachytherapy- remote after loader and cost effectiveness of Vari-source HDR- brachytherapy: NORI, Islamabad experience

    International Nuclear Information System (INIS)

    Ahmad, N.; Mahmood, H.; Jafri, S.R.A.

    2004-01-01

    A quality control of Vari-Source high dose rate (HDR) remote after loading brachytherapy machine was carried out and the cost effectiveness of HDR brachytherapy machine was also evaluated considering the cost of ten Iridium-192 wire sources at Nuclear Medicine, Oncology and Radiotherapy Institute (NORI), Islamabad, Pakistan. A total number of 253 intracavitary insertions were done in 98 patients from October 1996 to May 2001. The results of the quality control tests performed during 1996 to 2001 were within the acceptable limits. The cost effectiveness of Vari-Source HDR brachytherapy machine was also evaluated. The average cost per patient was calculated as US$ 491. Small number of patients was treated as the machine was used for gynecologic malignancies only. The objective was to assess the quality control status of HDR brachytherapy machine on patient treatment day, source exchange day and periodic day (monthly basis). It was found that the cost per patient can be minimized if other type of cancer patients are also treated on Vari-Source HDR machine. (author)

  20. Robust Estimation of HDR in fMRI using H-infinity Filters

    DEFF Research Database (Denmark)

    Puthusserypady, Sadasivan; Jue, R.; Ratnarajah, T.

    2010-01-01

    Estimation and detection of the hemodynamic response (HDR) are of great importance in functional MRI (fMRI) data analysis. In this paper, we propose the use of three H-infinity adaptive filters (finite memory, exponentially weighted, and timevarying) for accurate estimation and detection of the HDR......-1487]. Performances of the proposed techniques are compared to the conventional t-test method as well as the well-known LMSs and recursive least squares algorithms. Extensive numerical simulations show that the proposed methods result in better HDR estimations and activation detections....

  1. TU-C-201-00: Clinical Implementation of HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Recent use of HDR has increased while planning has become more complex often necessitating 3D image-based planning. While many guidelines for the use of HDR exist, they have not kept pace with the increased complexity of 3D image-based planning. Furthermore, no comprehensive document exists to describe the wide variety of current HDR clinical indications. This educational session aims to summarize existing national and international guidelines for the safe implementation of an HDR program. A summary of HDR afterloaders available on the market and their existing applicators will be provided, with guidance on how to select the best fit for each institution’s needs. Finally, the use of checklists will be discussed as a means to implement a safe and efficient HDR program and as a method by which to verify the quality of an existing HDR program. This session will provide the perspective of expert HDR physicists as well as the perspective of a new HDR user. Learning Objectives: Summarize national and international safety and staffing guidelines for HDR implementation Discuss the process of afterloader and applicator selection for gynecologic, prostate, breast, interstitial, surface treatments Learn about the use of an audit checklist tool to measure of quality control of a new or existing HDR program Describe the evolving use of checklists within an HDR program.

  2. Hydrogen dressings HDR

    International Nuclear Information System (INIS)

    Rosiak, J.M.

    1990-01-01

    Within the past several years new developments in biomaterials have enabled a significant progress in the healing of different kinds of wounds. One of such biomaterials is synthetic hydrogels. They can be formed by means of radiation technology which gives some advantages over chemical methods. Hydrogel dressings HDR have the shape of transparent foil, 3-4 mm thick, which contain over 90% water. They can be used for healing exuding wounds and especially burns, ulcers, bedsores and skin grafts. HDR dressings are sterile, transparent and mechanically resistant

  3. Evaluation of the Kerma at the entrance of the labyrin thin in facilities with Co-60 HDR brachytherapy

    International Nuclear Information System (INIS)

    Pujades, M. C.; Granero, D.; Ballester, F.; Perez-Calatayud, J.; Vijande, J.

    2013-01-01

    The purpose of this study is to evaluate the kerma's collision at the entrance of the labyrinth adapting the methodology of the NCRP-151 to a bunker of brachytherapy with Co-60, similar to the one carried out in a previous work with HDR Ir-192. To validate the result is simulated using techniques Monte Carlo (MC) two typical designs of HDR with Co-60 bunker. (Author)

  4. Structural safety of HDR reactor building during large scale vibration tests

    International Nuclear Information System (INIS)

    Stangenberg, F.; Zinn, R.

    1985-01-01

    In the second phase of the HDR investigations, a high shaker excitation of the building is planned using a large shaker which will be located on the operating floor and will be brought up to speed in a balanced condition and then unbalanced and decoupled from the drive system. With decreasing speed the shaker comes in resonance with the building frequencies and its energy is transferred to the building. In this paper the structural safety of the reactor building during the projected shaker tests is analysed. Dynamic response calculations with coupling between building and shaker by simultaneously integrating the equilibrium equations of both building and shaker are presented. The resulting building stresses, soil pressures etc. are compared with allowable values. (orig.)

  5. Development of optimized dosimetric models for HDR brachytherapy

    International Nuclear Information System (INIS)

    Thayalan, K.; Jagadeesan, M.

    2003-01-01

    High dose rate brachytherapy (HDRB) systems are in clinical use for more than four decades particularly in cervical cancer. Optimization is the method to produce dose distribution which assures that doses are not compromised at the treatment sites whilst reducing the risk of overdosing critical organs. Hence HDRB optimization begins with the desired dose distribution and requires the calculations of the relative weighting factors for each dwell position with out changing the source activity. The optimization for Ca. uterine cervix treatment is simply duplication of the dose distribution used for Low dose rate (LDR) applications. In the present work, two optimized dosimetric models were proposed and studied thoroughly, to suit the local clinical conditions. These models are named as HDR-C and HDR-D, where C and D represent configuration and distance respectively. These models duplicate exactly the LDR pear shaped dose distribution, which is a golden standard. The validity of these models is tested in different clinical situations and in actual patients (n=92). These models: HDR-C and HDR-D reduce bladder dose by 11.11% and 10% and rectal dose by 8% and 7% respectively. The treatment time is also reduced by 12-14%. In a busy hospital setup, these models find a place to cater large number of patients, while addressing individual patients geometry. (author)

  6. MO-B-BRC-02: Ultrasound Based Prostate HDR

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Z. [Duke University Medical Center (United States)

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  7. MO-B-BRC-02: Ultrasound Based Prostate HDR

    International Nuclear Information System (INIS)

    Chang, Z.

    2016-01-01

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions

  8. MO-B-BRC-04: MRI-Based Prostate HDR

    International Nuclear Information System (INIS)

    Mourtada, F.

    2016-01-01

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions

  9. MO-B-BRC-03: CT-Based Prostate HDR

    International Nuclear Information System (INIS)

    Zoberi, J.

    2016-01-01

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions

  10. MO-B-BRC-04: MRI-Based Prostate HDR

    Energy Technology Data Exchange (ETDEWEB)

    Mourtada, F. [Christiana Care Hospital (United States)

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  11. MO-B-BRC-03: CT-Based Prostate HDR

    Energy Technology Data Exchange (ETDEWEB)

    Zoberi, J. [Washington University School of Medicine (United States)

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  12. Seismic investigations of the HDR Safety Program. Summary report

    International Nuclear Information System (INIS)

    Malcher, L.; Schrammel, D.; Steinhilber, H.; Kot, C.A.

    1994-08-01

    The primary objective of the seismic investigations, performed at the HDR facility in Kahl/Main, FRG was to validate calculational methods for the seismic evaluation of nuclear-reactor systems, using experimental data from an actual nuclear plant. Using eccentric mass shaker excitation the HDR soil/structure system was tested to incipient failure, exhibiting highly nonlinear response and demonstrating that structures not seismically designed can sustain loads equivalent to a design basin earthquake (DBE). Load transmission from the structure to piping/equipment indicated significant response amplifications and shifts to higher frequencies, while the response of tanks/vessels depended mainly on their support conditions. The evaluation of various piping support configurations demonstrated that proper system design (for a given spectrum) rather than number of supports or system stiffness is important to limiting pipe greens. Piping at loads exceeding the DBE eightfold still had significant margins and failure is improbable inspite of multiple support failures. The mean value for pipe damping, even under extreme loads, was found to be about 4%. Comparison of linear and nonlinear computational results with piping response measurements showed that predictions have a wide scatter and do not necessarily yield conservative responses underpredicting, in particular, peak support forces. For the soil/structure system the quality of the predictions did not depend so much on the complexity of the modeling, but rather on whether the model captured the salient features and nonlinearities of the system

  13. HDR Efex Pro After the Shoot

    CERN Document Server

    Sholik, Stan

    2011-01-01

    A concise, on-the-go guide to the new HDR Efex Pro imaging toolkit for photographers Now that you've gone mobile and HDR, you want to be able to download and enhance your favorite photos on the run, without having to return to the mother ship (i.e., your desktop computer). This book shows you just how to do that using the amazing HDR Efex Pro, the image editing toolset from Nik Software. In brilliant color and using plenty of show-stopping examples, this practical guide explains all tools and features. Follow numbered steps and you'll soon be handling things like alignment, ghosting control, h

  14. A dosimetric selectivity intercomparison of HDR brachytherapy, IMRT and helical tomotherapy in prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hermesse, Johanne; Biver, Sylvie; Jansen, Nicolas; Coucke, Philippe [Dept. of Radiation Oncology, Liege Univ. Hospital (Belgium); Lenaerts, Eric [Dept. of Medical Physics, Liege Univ. Hospital (Belgium); De Patoul, Nathalie; Vynckier, Stefaan [Dept. of Medical Physics, St Luc Univ. Hospital, Brussels (Belgium); Scalliet, Pierre [Dept. of Radiation Oncology, St Luc Univ. Hospital, Brussels (Belgium); Nickers, Philippe [Dept. of Radiation Oncology, Oscar Lambret Center, Lille (France)

    2009-11-15

    Background and purpose: dose escalation in order to improve the biochemical control in prostate cancer requires the application of irradiation techniques with high conformality. The dosimetric selectivity of three radiation modalities is compared: high-dose-rate brachytherapy (HDR-BT), intensity-modulated radiation radiotherapy (IMRT), and helical tomotherapy (HT). Patients and methods: ten patients with prostate adenocarcinoma treated by a 10-Gy HDR-BT boost after external-beam radiotherapy were investigated. For each patient, HDR-BT, IMRT and HT theoretical treatment plans were realized using common contour sets. A 10-Gy dose was prescribed to the planning target volume (PTV). The PTVs and critical organs' dose-volume histograms obtained were compared using Student's t-test. Results: HDR-BT delivers spontaneously higher mean doses to the PTV with smaller cold spots compared to IMRT and HT. 33% of the rectal volume received a mean HDR-BT dose of 3.86 {+-} 0.3 Gy in comparison with a mean IMRT dose of 6.57 {+-} 0.68 Gy and a mean HT dose of 5.58 {+-} 0.71 Gy (p < 0.0001). HDR-BT also enables to better spare the bladder. The hot spots inside the urethra are greater with HDR-BT. The volume of healthy tissue receiving 10% of the prescribed dose is reduced at least by a factor of 8 with HDR-BT (p < 0.0001). Conclusion: HDR-BT offers better conformality in comparison with HT and IMRT and reduces the volume of healthy tissue receiving a low dose. (orig.)

  15. HDR economy with special reference to conditions in Europe

    International Nuclear Information System (INIS)

    Smolka, K.; Kappelmeyer, O.

    1992-01-01

    A cost benefit model for the economic evaluation of HDR energy production cost was developed. It can be used for systematic cost analyses of different components of a HDR plant. This relates to natural subsurface conditions (i.e., geothermal gradient, tectonic stress) as well as technical components (i.e., boreholes, heat/power conversion system). The model provides the limiting conditions for an economic HDR energy production. The economic model was applied for an evaluation of the natural parameters in the subsurface of Germany regarding their HDR-suitability. Within a site selection program in Europe the model is part of feasibility studies for the conceptual design of a HDR demonstration plant at three candidate sites: Bad Urach (Germany); Soultz-sous-Forets (France) and Cornwall (UK)

  16. TU-C-201-02: Clinical Implementation of HDR: Afterloader and Applicator Selection

    Energy Technology Data Exchange (ETDEWEB)

    Esthappan, J. [Washington University School of Medicine (United States)

    2015-06-15

    Recent use of HDR has increased while planning has become more complex often necessitating 3D image-based planning. While many guidelines for the use of HDR exist, they have not kept pace with the increased complexity of 3D image-based planning. Furthermore, no comprehensive document exists to describe the wide variety of current HDR clinical indications. This educational session aims to summarize existing national and international guidelines for the safe implementation of an HDR program. A summary of HDR afterloaders available on the market and their existing applicators will be provided, with guidance on how to select the best fit for each institution’s needs. Finally, the use of checklists will be discussed as a means to implement a safe and efficient HDR program and as a method by which to verify the quality of an existing HDR program. This session will provide the perspective of expert HDR physicists as well as the perspective of a new HDR user. Learning Objectives: Summarize national and international safety and staffing guidelines for HDR implementation Discuss the process of afterloader and applicator selection for gynecologic, prostate, breast, interstitial, surface treatments Learn about the use of an audit checklist tool to measure of quality control of a new or existing HDR program Describe the evolving use of checklists within an HDR program.

  17. Independent technique of verifying high-dose rate (HDR) brachytherapy treatment plans

    International Nuclear Information System (INIS)

    Saw, Cheng B.; Korb, Leroy J.; Darnell, Brenda; Krishna, K. V.; Ulewicz, Dennis

    1998-01-01

    Purpose: An independent technique for verifying high-dose rate (HDR) brachytherapy treatment plans has been formulated and validated clinically. Methods and Materials: In HDR brachytherapy, dwell times at respective dwell positions are computed, using an optimization algorithm in a HDR treatment-planning system to deliver a specified dose to many target points simultaneously. Because of the variability of dwell times, concerns have been expressed regarding the ability of the algorithm to compute the correct dose. To address this concern, a commercially available low-dose rate (LDR) algorithm was used to compute the doses at defined distances, based on the dwell times obtained from the HDR treatment plans. The percent deviation between doses computed using the HDR and LDR algorithms were reviewed for HDR procedures performed over the last year. Results: In this retrospective study, the difference between computed doses using the HDR and LDR algorithms was found to be within 5% for about 80% of the HDR procedures. All of the reviewed procedures have dose differences of less than 10%. Conclusion: An independent technique for verifying HDR brachytherapy treatment plans has been validated based on clinical data. Provided both systems are available, this technique is universal in its applications and not limited to either a particular implant applicator, implant site, or implant type

  18. Computed versus measured response of HDR reactor building in large scale shaking tests

    International Nuclear Information System (INIS)

    Werkle, H.; Waas, G.

    1987-01-01

    The earthquake resistant design of NPP structures and their installations is commonly based on linear analysis methods. Nonlinear effects, which may occur during strong earthquakes, are approximately accounted for in the analysis by adjusting the structural damping values. Experimental investigations of nonlinear effects were performed with an extremely heavy shaker at the decommissioned HDR reactor building in West Germany. The tests were directed by KfK (Nuclear Research Center Karlsruhe, West Germany) and supported by several companies and institutes from West Germany, Switzerland and the USA. The objective was the dynamic repsonse behaviour of the structure, piping and components to strong earthquake-like shaking including nonlinear effects. This paper presents some results of safety analyses and measurements, which were performed prior and during the test series. It was intended to shake the building up to a level where only a marginal safety against global structural failure was left

  19. Relocation of a nucletron microselectron-HDR brachytherapy system

    Energy Technology Data Exchange (ETDEWEB)

    Bartrum, T; Tran, T; Freeman, N; Morales, J [St Vincents Hospital, Darlinghurst, NSW (Australia)

    2004-12-15

    Full text: For a period of four weeks, our clinical Nucletron microSelectron high dose rate (HDR) brachytherapy system was pulled out of clinical use and relocated to a new building. During this period decommission tests, de-wiring of the treatment unit and its associated safety system (such as radiation detector, emergency off circuits and door interlocks), transportation of all equipment, re-wiring of this equipment in the new location and recommission tests were carried out. The decommission and recommission test program was designed upon consultation with the manufacturer's (Nucletron) acceptance test procedures and work carried out by others. The ACPSEM tolerances for remote afterloaders was used as a guideline. In addition to mandatory dosimetry, positional, workstation database and safety tests, two Australian Standard compliance tests were carried out. The compliance tests involved one for remote afterloaders and another for treatment room design. This testing program was designed and implemented with the aim of ensuring ongoing safe delivery of brachytherapy doses to the patient. The testing program consisted of two parts. The first involved a series of decommissioning tests that consisted of dosimetry tests such as source and check cable positional accuracy and source calibration tests. In addition to these tests an inventory of standard plans, patient records and system configuration information was catalogued. The second part involved a series of recommission tests and involved carrying out dosimetry tests on the brachytherapy system (positional accuracy and calibration tests), simulating common treatment scenarios (prostate, cervical, vaginal and bile duct) and checking standard plans; patient records and system configuration had remained unchanged. During this period, other tests were carried out. These included Nucletron acceptance and preventative maintenance tests, Australian Standards compliance testing and integrity of network transfer of

  20. Relocation of a nucletron microselectron-HDR brachytherapy system

    International Nuclear Information System (INIS)

    Bartrum, T.; Tran, T.; Freeman, N.; Morales, J.

    2004-01-01

    Full text: For a period of four weeks, our clinical Nucletron microSelectron high dose rate (HDR) brachytherapy system was pulled out of clinical use and relocated to a new building. During this period decommission tests, de-wiring of the treatment unit and its associated safety system (such as radiation detector, emergency off circuits and door interlocks), transportation of all equipment, re-wiring of this equipment in the new location and recommission tests were carried out. The decommission and recommission test program was designed upon consultation with the manufacturer's (Nucletron) acceptance test procedures and work carried out by others. The ACPSEM tolerances for remote afterloaders was used as a guideline. In addition to mandatory dosimetry, positional, workstation database and safety tests, two Australian Standard compliance tests were carried out. The compliance tests involved one for remote afterloaders and another for treatment room design. This testing program was designed and implemented with the aim of ensuring ongoing safe delivery of brachytherapy doses to the patient. The testing program consisted of two parts. The first involved a series of decommissioning tests that consisted of dosimetry tests such as source and check cable positional accuracy and source calibration tests. In addition to these tests an inventory of standard plans, patient records and system configuration information was catalogued. The second part involved a series of recommission tests and involved carrying out dosimetry tests on the brachytherapy system (positional accuracy and calibration tests), simulating common treatment scenarios (prostate, cervical, vaginal and bile duct) and checking standard plans; patient records and system configuration had remained unchanged. During this period, other tests were carried out. These included Nucletron acceptance and preventative maintenance tests, Australian Standards compliance testing and integrity of network transfer of

  1. MR-based source localization for MR-guided HDR brachytherapy

    Science.gov (United States)

    Beld, E.; Moerland, M. A.; Zijlstra, F.; Viergever, M. A.; Lagendijk, J. J. W.; Seevinck, P. R.

    2018-04-01

    For the purpose of MR-guided high-dose-rate (HDR) brachytherapy, a method for real-time localization of an HDR brachytherapy source was developed, which requires high spatial and temporal resolutions. MR-based localization of an HDR source serves two main aims. First, it enables real-time treatment verification by determination of the HDR source positions during treatment. Second, when using a dummy source, MR-based source localization provides an automatic detection of the source dwell positions after catheter insertion, allowing elimination of the catheter reconstruction procedure. Localization of the HDR source was conducted by simulation of the MR artifacts, followed by a phase correlation localization algorithm applied to the MR images and the simulated images, to determine the position of the HDR source in the MR images. To increase the temporal resolution of the MR acquisition, the spatial resolution was decreased, and a subpixel localization operation was introduced. Furthermore, parallel imaging (sensitivity encoding) was applied to further decrease the MR scan time. The localization method was validated by a comparison with CT, and the accuracy and precision were investigated. The results demonstrated that the described method could be used to determine the HDR source position with a high accuracy (0.4–0.6 mm) and a high precision (⩽0.1 mm), at high temporal resolutions (0.15–1.2 s per slice). This would enable real-time treatment verification as well as an automatic detection of the source dwell positions.

  2. HDR video synthesis for vision systems in dynamic scenes

    Science.gov (United States)

    Shopovska, Ivana; Jovanov, Ljubomir; Goossens, Bart; Philips, Wilfried

    2016-09-01

    High dynamic range (HDR) image generation from a number of differently exposed low dynamic range (LDR) images has been extensively explored in the past few decades, and as a result of these efforts a large number of HDR synthesis methods have been proposed. Since HDR images are synthesized by combining well-exposed regions of the input images, one of the main challenges is dealing with camera or object motion. In this paper we propose a method for the synthesis of HDR video from a single camera using multiple, differently exposed video frames, with circularly alternating exposure times. One of the potential applications of the system is in driver assistance systems and autonomous vehicles, involving significant camera and object movement, non- uniform and temporally varying illumination, and the requirement of real-time performance. To achieve these goals simultaneously, we propose a HDR synthesis approach based on weighted averaging of aligned radiance maps. The computational complexity of high-quality optical flow methods for motion compensation is still pro- hibitively high for real-time applications. Instead, we rely on more efficient global projective transformations to solve camera movement, while moving objects are detected by thresholding the differences between the trans- formed and brightness adapted images in the set. To attain temporal consistency of the camera motion in the consecutive HDR frames, the parameters of the perspective transformation are stabilized over time by means of computationally efficient temporal filtering. We evaluated our results on several reference HDR videos, on synthetic scenes, and using 14-bit raw images taken with a standard camera.

  3. A review of the HDR research programme

    International Nuclear Information System (INIS)

    Talja, H.; Koski, K.; Rintamaa, R.; Keskinen, R.

    1995-10-01

    In the German HDR (Heissdampfreaktor, hot steam reactor) reactor safety programme, experiments and simulating numerical analyses have been undertaken since 1976 to study the integrity and safety of light water reactors under operational and faulted conditions. The last experiments of the programme were conducted in 1991. The post test analyses have been finished by March 1994 and the last final reports were obtained a few months later. The report aims to inform the utilities and the regulatory body of Finland about the contents of the lokset HDR research programme and to consider the applicability of the results to safety analyses of Finnish nuclear power plants. The report centers around the thermal shock and piping component experiments within the last or third phase of the HDR programme. Investigations into severe reactor accidents, fire safety and non-destructive testing, also conducted during the third phase, are not considered. The report presents a review of the following experiment groups: E21 (crack growth under corrosive conditions, loading due to thermal stratification), E22 (leak rate and leak detection experiments of through-cracked piping), E23 (thermal transient and stratification experiments for a pipe nozzle), E31 (vibration of cracked piping due to blow down and closure of isolation valve), E32 (seismically induced vibrations of cracked piping), E33 (condensation phenomena in horizontal piping during emergency cooling). A comprehensive list of reference reports, received by VTT and containing a VTT more detailed description, is given for each experiment group. The review is focused on the loading conditions and their theoretical modelling. A comparison of theoretical and experimental results is presented for each experiment group. The safety margins are finally assessed with special reference to leak-before-break, a well known principle for assuring the integrity of primary circuit piping of nuclear power plants. (orig.) (71 figs., 5 tabs.)

  4. Performance evaluation of objective quality metrics for HDR image compression

    Science.gov (United States)

    Valenzise, Giuseppe; De Simone, Francesca; Lauga, Paul; Dufaux, Frederic

    2014-09-01

    Due to the much larger luminance and contrast characteristics of high dynamic range (HDR) images, well-known objective quality metrics, widely used for the assessment of low dynamic range (LDR) content, cannot be directly applied to HDR images in order to predict their perceptual fidelity. To overcome this limitation, advanced fidelity metrics, such as the HDR-VDP, have been proposed to accurately predict visually significant differences. However, their complex calibration may make them difficult to use in practice. A simpler approach consists in computing arithmetic or structural fidelity metrics, such as PSNR and SSIM, on perceptually encoded luminance values but the performance of quality prediction in this case has not been clearly studied. In this paper, we aim at providing a better comprehension of the limits and the potentialities of this approach, by means of a subjective study. We compare the performance of HDR-VDP to that of PSNR and SSIM computed on perceptually encoded luminance values, when considering compressed HDR images. Our results show that these simpler metrics can be effectively employed to assess image fidelity for applications such as HDR image compression.

  5. Verification of the HDR-test V44 using the computer program RALOC-MOD1/83

    International Nuclear Information System (INIS)

    Jahn, H.; Pham, T. v.; Weber, G.; Pham, B.T.

    1985-01-01

    RALOC-MOD1/83 was extended by a drainage and sump level modul and several component models to serve as a containment systems code for various LWR types. One such application is to simulate the blowdown in a full pressure containment which is important for the short and long term hydrogen distribution. The post test calculation of the containment standard problem experiment HDR-V44 shows a good agreement, to the test data. The code may be used for short and long term predictions, but it was learned that double containments need the representation of the gap between the inner and outer shell into several zones to achieve a good long-term temperature prediction. The present work completes the development, verification and documentation of RALOC-MOD1. (orig.) [de

  6. Consideration of the reservoir by the temperature history at the Hijiori HDR (hot dry rock) wells; Hijiori koon gantai no kokukosei ni okeru ondo rireki wo mochiita choryuso no kosatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, W; Shinohara, N; Osato, K; Takasugi, S [GERD Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1997-10-22

    Hot dry rock (HDR) power generation has been promoted by NEDO since 1984 at Hijiori, Okura village, Mogami-gun, Yamagata Prefecture. Hydraulic fracture tests and circulation tests have been conducted using four wells named as SKG-2, HDR-1, HDR-2 and HDR-3. Based on these test results, flow models of Hijiori shallow and deep reservoirs have been proposed. Conventional circulation tests have been analyzed only using temperature profile data. In this paper, circulation tests are analyzed by numerical simulation, to discuss individual characteristics of the shallow and deep reservoirs. Injection flow, production flow and circulation days were inputted as past circulation test data, to discuss the characteristics of geological layers, especially the permeability data, by which the features of temperature profiles in each well can be explained. As a result, it was found that the extension of permeable zone affecting the temperature in the SKG-2 well equivalent to the shallow reservoir was larger than that in the HDR-1 well. It was also found that there was a large difference in the permeability between the HDR-2a and HDR-3 wells. 5 refs., 8 figs., 2 tabs.

  7. Traceable calibration of hospital 192Ir HDR sources

    International Nuclear Information System (INIS)

    Govinda Rajan, K.N.; Bhatt, B.C.; Pendse, A.M.; Kannan, V.

    2002-01-01

    Presently, no primary standard exists for the standardization of remote afterloading 192 Ir HDR sources. These sources are, therefore, being standardized by a few Secondary Standard Dosimetry Laboratories (SSDLs), in terms of Air Kerma Strength (AKS) or Reference Air Kerma Rate (RAKR) using a 0.6 cc Farmer type chamber, set up as an Interim Standard. These SSDLs offer calibration to well type of ionization chambers that are normally used by the hospitals for calibrating the 192 lr HDR source. Presently, in many countries, including India, well chambers are not commercially available. Nor do these countries offer any calibration service for 192 lr HDR source. With the result users make use of well chambers imported from different countries with their calibration traceable to the country of origin. Since no intercomparisons between these countries have been reported, the measurement consistency between hospitals becomes questionable. The problem is compounded by the fact that these chambers are used for several years without re-calibration since no calibration service is locally available. For instance, in India, the chambers have been in use in hospitals, since 1994, without a second calibration. Not all hospitals use the well chamber for the calibration of the 192 lr HDR source. Many hospitals make use of 0.6 cc chambers, in air, at short source to chamber distances, for measuring the AKS of the source. The latter method is prone to much larger inaccuracy due to the use of very short source to chamber distances without proper calibration jigs, use of 60 Co calibration factor for 192 Ir HDR source calibrations, neglecting correction factors for room scatter, fluence non-uniformity, use of arbitrary buildup factors for the buildup cap of the chamber etc. A comparison of the procedures used at hospitals revealed that various arbitrary methods are in use at hospitals. An indigenously developed well chamber was calibrated against a Reference Standard traceable to the

  8. HDR Image Quality Enhancement Based on Spatially Variant Retinal Response

    Directory of Open Access Journals (Sweden)

    Horiuchi Takahiko

    2010-01-01

    Full Text Available There is a growing demand for being able to display high dynamic range (HDR images on low dynamic range (LDR devices. Tone mapping is a process for enhancing HDR image quality on an LDR device by converting the tonal values of the original image from HDR to LDR. This paper proposes a new tone mapping algorithm for enhancing image quality by deriving a spatially-variant operator for imitating S-potential response in human retina, which efficiently improves local contrasts while conserving good global appearance. The proposed tone mapping operator is studied from a system construction point of view. It is found that the operator is regarded as a natural extension of the Retinex algorithm by adding a global adaptation process to the local adaptation. The feasibility of the proposed algorithm is examined in detail on experiments using standard HDR images and real HDR scene images, comparing with conventional tone mapping algorithms.

  9. Towards real-time 3D ultrasound planning and personalized 3D printing for breast HDR brachytherapy treatment

    International Nuclear Information System (INIS)

    Poulin, Eric; Gardi, Lori; Fenster, Aaron; Pouliot, Jean; Beaulieu, Luc

    2015-01-01

    Two different end-to-end procedures were tested for real-time planning in breast HDR brachytherapy treatment. Both methods are using a 3D ultrasound (3DUS) system and a freehand catheter optimization algorithm. They were found fast and efficient. We demonstrated a proof-of-concept approach for personalized real-time guidance and planning to breast HDR brachytherapy treatments

  10. Pre- and post-calculations for crack opening and leak rate experiments on piping components within the HDR-program

    International Nuclear Information System (INIS)

    Grebner, H.; Hoefler, A.; Hunger, H.

    1991-01-01

    In this paper calculations to experiments on leak opening and leak rates of piping components are presented. The experiments are performed at the HDR-facility at Karlstein/Germany and up to now straight pipes and pipe branches were considered. Numerical and experimental results are compared. (author)

  11. Investigation of superstructure damping identification for the HDR containment building

    International Nuclear Information System (INIS)

    Hsieh, B.J.; Kot, C.A.; Srinivasan, M.G.

    1985-01-01

    A method for the estimation of first mode structural damping, developed by other investigators, was applied to shaker test data of the HDR containment building. Due to inadequate precision in the experimental phase measurements no valid results could be obtained. Based on modal analysis it was also noted that for systems such as the HDR building, contributions of higher modes are not negligible as was assumed in the original approach. Therefore, the procedure for the determination of superstructure damping using experimental data was extended to include the effects of higher modes. The extended method does not lead to any higher order nonlinear equations than the first mode approximation and was found to be as simple to apply as the original approach

  12. Dosimetry experience of 192IR sources used In HDR brachytherapy for cervical cancer

    International Nuclear Information System (INIS)

    Daci, Lulzime; Myrku, Rodina Cela

    2013-01-01

    Purpose/Objective: The 192IR Sources are the most commonly used in radiotherapy treatments HDR worldwide. According to international recommendations on quality assurance in HDR brachytherapy, an acceptance test based on the determination of the source strength of any new source shall be carried out before first application to verify the manufacturer’s calibration data. The present paper gives the experimental determination of the source strength for our brachytherapy sources used until now in brachytherapy treatments. Materials/Methods: At Mother Teresa University Hospital we have a cost-effective gynecological brachytherapy unit from Eckert & Ziegler BEBIG named GyneSource® that is a five channel HDR after loader equipped with an 192IR source. The software used is HDR plus™ 2.5 that delivers an optimized treatment plan and makes the process especially fast and we use intracavitary BEBIG applicators. From April 2009 up to December 2012, we have imported nine HDR 192IR Sources. The exchange of the source and acceptance test is done by the physicist of the clinic once the source is imported. The measurements are done with a Well-type ionization chamber HDR1000 Plus and the electrometer used is MAX4000. Only seven sources are compared as we miss the dosimetry data of the first source, and the forth source was not measured and not used because the machine was not working in that time. Results/Conclusions: Eight sources were accepted for clinically use as the measurement were within the tolerance. The source number four with e deviation of -1.92% has been double checked compared with a free in-air measurement with farmer type chamber that gave a deviation to source certificate of 4% that is still inside the tolerance to accept a source for clinical use. The deviations of measured Air Kerma rate to the value of the sources certificates of all our used 192IR sources are less than 2%, which are within the tolerance. The checked value of updated source strength in

  13. Color sensitivity of the multi-exposure HDR imaging process

    Science.gov (United States)

    Lenseigne, Boris; Jacobs, Valéry Ann; Withouck, Martijn; Hanselaer, Peter; Jonker, Pieter P.

    2013-04-01

    Multi-exposure high dynamic range(HDR) imaging builds HDR radiance maps by stitching together different views of a same scene with varying exposures. Practically, this process involves converting raw sensor data into low dynamic range (LDR) images, estimate the camera response curves, and use them in order to recover the irradiance for every pixel. During the export, applying white balance settings and image stitching, which both have an influence on the color balance in the final image. In this paper, we use a calibrated quasi-monochromatic light source, an integrating sphere, and a spectrograph in order to evaluate and compare the average spectral response of the image sensor. We finally draw some conclusion about the color consistency of HDR imaging and the additional steps necessary to use multi-exposure HDR imaging as a tool to measure the physical quantities such as radiance and luminance.

  14. Guidelines for optimization of planar HDR implants

    International Nuclear Information System (INIS)

    Zwicker, R.D.; Schmidt-Ullrich, R.

    1996-01-01

    Purpose: Conventional low dose rate (LDR) planar Ir-192 implants are typically carried out using at most a few different source strengths. Remote afterloading offers a much higher degree of flexibility with individually programmable dwell times. Dedicated software is available to generate individual dwell times producing isodose surfaces which contour as closely as possible the target volume. The success of these algorithms in enclosing the target volume while sparing normal tissues is dependent on the positioning of the source guides which constrain the dwell points. In this work we provide source placement guidelines for optimal coverage and dose uniformity in planar high dose rate (HDR) implants. The resulting distributions are compared with LDR treatments in terms of dose uniformity and early and late tissue effects. Materials and methods: Computer studies were undertaken to determine source positions and dwell times for optimal dose uniformity in planar HDR implants, and the results were compared to those obtained using corresponding LDR implant geometries. The improvements in the dose distributions achieved with the remote after loader are expected to help offset the increased late tissue effects which can occur when LDR irradiation is replaced with a few large HDR fractions. Equivalent differential volume-dose (DVD) curves for early and late effects were calculated for different numbers of HDR fractions using a linear-quadratic model and compared to the corresponding curves for the LDR regime. Results: Tables of source placement parameters were generated as guidelines for achieving highly homogeneous planar HDR dose distributions. Differential volume-dose data generated inside the target volume provide a quantitative measure of the improvement in real dose homogeneity obtained with remote afterloading. The net result is a shift of the peak in the DVD curve toward lower doses relative to the LDR implant. The equivalent DVD curves for late effects obtained

  15. MO-B-BRC-00: Prostate HDR Treatment Planning - Considering Different Imaging Modalities

    International Nuclear Information System (INIS)

    2016-01-01

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions

  16. MO-B-BRC-00: Prostate HDR Treatment Planning - Considering Different Imaging Modalities

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2016-06-15

    Brachytherapy has proven to be an effective treatment option for prostate cancer. Initially, prostate brachytherapy was delivered through permanently implanted low dose rate (LDR) radioactive sources; however, high dose rate (HDR) temporary brachytherapy for prostate cancer is gaining popularity. Needle insertion during prostate brachytherapy is most commonly performed under ultrasound (U/S) guidance; however, treatment planning may be performed utilizing several imaging modalities either in an intra- or post-operative setting. During intra-operative prostate HDR, the needles are imaged during implantation, and planning may be performed in real time. At present, the most common imaging modality utilized for intra-operative prostate HDR is U/S. Alternatively, in the post-operative setting, following needle implantation, patients may be simulated with computed tomography (CT) or magnetic resonance imaging (MRI). Each imaging modality and workflow provides its share of benefits and limitations. Prostate HDR has been adopted in a number of cancer centers across the nation. In this educational session, we will explore the role of U/S, CT, and MRI in HDR prostate brachytherapy. Example workflows and operational details will be shared, and we will discuss how to establish a prostate HDR program in a clinical setting. Learning Objectives: Review prostate HDR techniques based on the imaging modality Discuss the challenges and pitfalls introduced by the three imagebased options for prostate HDR brachytherapy Review the QA process and learn about the development of clinical workflows for these imaging options at different institutions.

  17. Observation and simulation of non-laminar flow phenomena at the HDR site near Soulth-sous-forets; Beobachtung und Simulation von nicht-laminarem Fliessverhalten am HDR-Standort Soultz

    Energy Technology Data Exchange (ETDEWEB)

    Kohl, T [ETH Hoenggerberg, Zuerich (Switzerland). Inst. fuer Geophysik; Evans, K F; Hopkirk, R J [Polydynamics Engineering, Maennedorf (Switzerland); Jung, R [Bundesanstalt fuer Geowissenschaften und Rohstoffe, Hannover (Germany); Rybach, L [ETH Hoenggerberg, Zuerich (Switzerland). Inst. fuer Geophysik und Radiometrie

    1997-12-01

    Three independent multi-rate flow experiments were conducted in 1994 and 1995 in the open hole depth interval of a wellbore at the Hot-Dry-Rocks (HDR) test site Soultz. The steady state and transient dowmhole pressure records gave clear indications of non-Darcian flow. A numerical model has been set-up to evaluate these two measurements. An excellent fit of the transient pressure responses of all three flow tests could be achieved by assuming a simple model geometry. The models predict fluid transport along a conduit with substantial surface area in which fully-turbulent flow is occurring. The parameters required by our best-fit simulation all fall into a physically reasonable range. Sensitivity analysis demonstrates a non-Darcian flow regime along highly conductive features. The existence of high capacity far-field faults as postulated in our model confirms earlier characterisations of the Soultz test site. (orig.) [Deutsch] In den Jahren 1994 und 1995 wurden drei unabhaengige Druck- bzw. Fliessratentests in den Bohrungen GPK1 und GPK2 des HDR Standortes Soultz durchgefuehrt. Sowohl die stationaeren wie auch die instationaeren Druckaufzeichnungen gaben bereits klare Hinweise auf nichtlaminare, turbulent-aehnliche Stroemungsverhaeltnisse. Zur genaueren Interpretation dieser Daten wurde das numerische Programm FRACTure erweitert. Unter der Annahme eines geometrisch einfachen Modells konnten die instationaeren Druckantworten sehr gut angepasst werden. Es gelang sogar, die beiden in GPK1 durchgefuehrten Tests durch dieselben Modelle zu erklaeren. Die hierfuer benoetigten Modellparameter liegen in einem physikalisch sinnvollem Rahmen und bestaetigen z.T. fruehere Untersuchungen. Die Existenz grosser Stoerungszonen, welche von den Modellen vorausgesetzt werden, bestaetigt ebenfalls fruehere Charakterisierungen des HDR Standortes Soultz als ein teilweise offenes hydraulisches System. (orig.)

  18. HDR-Clinical Data Service (CDS)

    Data.gov (United States)

    Department of Veterans Affairs — CDS is a SOAP/REST web service interface that supports Create, Retrieve, Update, and Delete (CRUD) operations against HDR data stores over secure Hypertext Transfer...

  19. Comparing subjective and objective quality assessment of HDR images compressed with JPEG-XT

    DEFF Research Database (Denmark)

    Mantel, Claire; Ferchiu, Stefan Catalin; Forchhammer, Søren

    2014-01-01

    In this paper a subjective test in which participants evaluate the quality of JPEG-XT compressed HDR images is presented. Results show that for the selected test images and display, the subjective quality reached its saturation point starting around 3bpp. Objective evaluations are obtained...

  20. Acceptance testing and commissioning of a new model HDR afterloader

    International Nuclear Information System (INIS)

    McDermott, Patrick N.; Somnay, Archana R.; Alecu, Rodica

    1996-01-01

    We have recently performed acceptance testing procedures and have commissioned a new model HDR afterloader, the Varian VariSource with ''Intelligent Drive.'' Our site was one of the first installations worldwide. It is our intent to describe our tests and the results of the tests particularly as they may differ from other afterloaders. The Ir-192 source is unique among afterloaders marketed in the US in that it is very slender (OD of source wire is 0.59 mm) and relatively long (two 0.5 cm sources for a total active length of 1.0 cm). A check of source homogeneity by autoradiograph as urged by the US Nuclear Regulatory Commission demonstrates no detectable source inhomogeneity. Reentrant well ionization chambers are calibrated in the US with a 3.5 mm long source at Accredited Dosimetry Calibration Laboratories. Therefore calibration needs to be considered with some care. Calibration of the first delivered source with a well ionization chamber indicated agreement with the manufacturer's stated activity to within 0.5%. Source positioning is checked with a device called a 'cam scale'. Tests have been carried out on this system and it has been found to accurately indicate source position to within ±0.5 mm. Timer accuracy has been found to be better than 0.1% for dwell times of several hundred seconds. The intelligent drive system and the small source diameter allow the source wire to negotiate paths with small radius of curvature. A series of tests have been made in which the source is forced to negotiate 'U' turns of decreasing radius of curvature. A 4.7 F, 100 cm long catheter was used for these tests and the 'U' turn was positioned at approximately 90 cm. Under these conditions, the VariSource was consistently able to traverse a 1.25 cm radius of curvature, which is better than the manufacturer's stated limit of 1.5 cm

  1. Evaluating HDR photos using Web 2.0 technology

    Science.gov (United States)

    Qiu, Guoping; Mei, Yujie; Duan, Jiang

    2011-01-01

    High dynamic range (HDR) photography is an emerging technology that has the potential to dramatically enhance the visual quality and realism of digital photos. One of the key technical challenges of HDR photography is displaying HDR photos on conventional devices through tone mapping or dynamic range compression. Although many different tone mapping techniques have been developed in recent years, evaluating tone mapping operators prove to be extremely difficult. Web2.0, social media and crowd-sourcing are emerging Internet technologies which can be harnessed to harvest the brain power of the mass to solve difficult problems in science, engineering and businesses. Paired comparison is used in the scientific study of preferences and attitudes and has been shown to be capable of obtaining an interval-scale ordering of items along a psychometric dimension such as preference or importance. In this paper, we exploit these technologies for evaluating HDR tone mapping algorithms. We have developed a Web2.0 style system that enables Internet users from anywhere to evaluate tone mapped HDR photos at any time. We adopt a simple paired comparison protocol, Internet users are presented a pair of tone mapped images and are simply asked to select the one that they think is better or click a "no difference" button. These user inputs are collected in the web server and analyzed by a rank aggregation algorithm which ranks the tone mapped photos according to the votes they received. We present experimental results which demonstrate that the emerging Internet technologies can be exploited as a new paradigm for evaluating HDR tone mapping algorithms. The advantages of this approach include the potential of collecting large user inputs under a variety of viewing environments rather than limited user participation under controlled laboratory environments thus enabling more robust and reliable quality assessment. We also present data analysis to correlate user generated qualitative

  2. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng, E-mail: xyang43@emory.edu; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 (United States); Mao, Hui [Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States)

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  3. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2014-01-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  4. Occurrence Prospect of HDR and Target Site Selection Study in Southeastern of China

    Science.gov (United States)

    Lin, W.; Gan, H.

    2017-12-01

    Hot dry rock (HDR) geothermal resource is one of the most important clean energy in future. Site selection a HDR resource is a fundamental work to explore the HDR resources. This paper compiled all the HDR development projects domestic and abroad, and summarized the location of HDR geothermal geological index. After comparing the geological background of HDR in the southeast coastal area of China, Yangjiang Xinzhou in Guangdong province, Leizhou Peninsula area, Lingshui in Hainan province and Huangshadong in Guangzhou were selected from some key potential target area along the southeast coast of China. Deep geothermal field model of the study area is established based on the comprehensive analysis of the target area of deep geothermal geological background and deep thermal anomalies. This paper also compared the hot dry rock resources target locations, and proposed suggestions for the priority exploration target area and exploration scheme.

  5. TU-C-201-01: Clinical Implementation of HDR: A New User’s Perspective

    Energy Technology Data Exchange (ETDEWEB)

    Al-Hallaq, H. [The University of Chicago (United States)

    2015-06-15

    Recent use of HDR has increased while planning has become more complex often necessitating 3D image-based planning. While many guidelines for the use of HDR exist, they have not kept pace with the increased complexity of 3D image-based planning. Furthermore, no comprehensive document exists to describe the wide variety of current HDR clinical indications. This educational session aims to summarize existing national and international guidelines for the safe implementation of an HDR program. A summary of HDR afterloaders available on the market and their existing applicators will be provided, with guidance on how to select the best fit for each institution’s needs. Finally, the use of checklists will be discussed as a means to implement a safe and efficient HDR program and as a method by which to verify the quality of an existing HDR program. This session will provide the perspective of expert HDR physicists as well as the perspective of a new HDR user. Learning Objectives: Summarize national and international safety and staffing guidelines for HDR implementation Discuss the process of afterloader and applicator selection for gynecologic, prostate, breast, interstitial, surface treatments Learn about the use of an audit checklist tool to measure of quality control of a new or existing HDR program Describe the evolving use of checklists within an HDR program.

  6. SU-E-T-124: Dosimetric Comparison of HDR Brachytherapy and Intensity Modulated Proton Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Wu, J [Purdue University, West Lafayette, IN (United States); Wu, H [IUPUI, Indianapolis, IN (United States); Das, I [Indiana University- School of Medicine, Indianapolis, IN (United States)

    2014-06-01

    Purpose: Brachytherapy is known to be able to deliver more radiation dose to tumor while minimizing radiation dose to surrounding normal tissues. Proton therapy also provides superior dose distribution due to Bragg peak. Since both HDR and Intensity Modulated Proton Therapy (IMPT) are beneficial for their quick dose drop off, our goal in this study is to compare the pace of dose gradient drop-off between HDR and IMPT plans based on the same CT image data-set. In addition, normal tissues sparing were also compared among HDR, IMPT and SBRT. Methods: Five cervical cancer cases treated with EBRT + HDR boost combination with Tandem and Ovoid applicator were used for comparison purpose. Original HDR plans with prescribed dose of 5.5 Gy x 5 fractions were generated and optimized. The 100% isodose line of HDR plans was converted to a dose volume, and treated as CTV for IMPT and SBRT planning. The same HDR CT scans were also used for IMPT plan and SBRT plan for direct comparison. The philosophy of the IMPT and SBRT planning was to create the same CTV coverage as HDR plans. All three modalities treatment plans were compared to each other with a set of predetermined criteria. Results: With similar target volume coverage in cervix cancer boost treatment, HDR provides a slightly sharper dose drop-off from 100% to 50% isodose line, averagely in all directions compared to IMPT. However, IMPT demonstrated more dose gradient drop-off at the junction of the target and normal tissues by providing more normal tissue sparing and superior capability to reduce integral dose. Conclusion: IMPT is capable of providing comparable dose drop-off as HDR. IMPT can be explored as replacement for HDR brachytherapy in various applications.

  7. Commissioning and clinical implementation of HDR brachytherapy in El Salvador

    International Nuclear Information System (INIS)

    Morales Lopez, Jorge Luis; Castillo, Luis Frank; Castillo Bahi, Ramon del

    2009-01-01

    The Gynecologic Cancer is one of the best known malignancies in different countries of the world, with a high incidence in developing countries. In the treatment of this disease have been used multiple treatment arms among which is the high rate brachytherapy (HDR). The IAEA has put much emphasis on supporting all programs to treat this disease and in this context within the project 'Human Resource Development and Nuclear Technology Support', collaborated with the dispatch of experts on mission ELS0006 01 'Assistance to the ICES in HDR brachytherapy initiating Treatments at the Cancer Institute of El Salvador 'Dr. Narciso Diaz Bazan' in San Salvador, El Salvador. The process of commissioning and implementing clinical service Brachytherapy High Dose Rate (HDR BT) is a relatively complex process that begins with the formation of functional and technical service, based on flow patients to be treated, availability of local technological capability to install, and culminates with the preparation and implementation of protocols. Experts involved in the implementation of this service divided this task in stages organized chronologically: 1st. Study of existing infrastructure and level of training of technical personnel available, 2nd. Proposal and application of amendments in order to adapt the facility to the planned patient flow and optimal use of technological infrastructure, 3rd. Establishment of the process of securing the disposable waste materials and not required, 4th. Performance of tests of physical commissioning clinical dosimetry and instrumentation unit, surgical and therapeutic, 5th. Training of technical personnel, 6th. Preparation of clinical protocol and 7th. Initiation and development of treatment for patients. All these steps are carried out with the integration and consensus of the entire multidisciplinary team that makes up the service and with the support of the administration as a prerequisite. Within two weeks the service was modified according to

  8. Simultaneous radiochemotherapy and endoluminal HDR brachytherapy in esophageal cancer; Simultane Radiochemotherapie mit intraluminaler HDR-Brachytherapie des Oesophaguskarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Patonay, P.; Naszaly, A.; Mayer, A. [Hauptstaedtisches Zentrum fuer Radioonkologie und Strahlentherapie, Budapest (Hungary)

    2007-02-15

    Purpose: to study efficacy and toxicity of radiochemotherapy in esophageal cancer including initial endoluminal high-dose-rate brachytherapy (HDR-BT). Patients and methods: between 01/1995 and 06/2005, 61 patients with esophageal cancer were treated preoperatively with definitive and palliative intent. Treatment started with intraluminal HDR-BT for recanalization of the esophagus (single fraction size of 8 Gy in 0.5 cm depth, three times, q7d) followed by external-beam radiation therapy (50 Gy total dose, 5 x 2 Gy/week, 25 fractions in 5 weeks). Chemotherapy was started simultaneously with external irradiation (three courses of cisplatin and 5-fluorouracil, q21d). Results: swallowing function improved in 55/61 patients (dysphagia classification according to the RTOG), and worsened in 6/61 patients, respectively. Median duration of symptomatic improvement was 11 months, median follow-up 12 months (range 3-68 months). Following simultaneous radiochemotherapy, tumor resectability was achieved in 7/25 patients of the neoadjuvant group, and the histological specimen showed complete remission in 6/7 patients. Conclusion: these results indicate a favorable effect of simultaneous radiochemotherapy starting with endoluminal HDR-after-loading-(AL-)BT in esophageal cancer. (orig.)

  9. Radiobiological considerations in gynaecological HDR and LDR brachytherapy

    International Nuclear Information System (INIS)

    Bauer, M.; Schulz-Wendtland, R.

    1989-01-01

    In brachytherapy the advantages of high dose rate over low dose rate afterloading therapy were obvious. Out-patient treatment becomes possible, the position of the sources is reproducible and can be observed during the treatment and the patients have to be immobilised for only a short time, giving less psychological stress and a decreased risk of thrombosis and embolism. When changing from LDR to HDR afterloading therapy we are not yet able to evaluate its biological impact. Radiobiological considerations and our experimental data, however, give us the following clinical consequences by using HDR brachytherapy: There is a need for about 15 fractions or more and each increase in dose rate requires higher fractioning. Due to the steep dose rate decline and the inhomogeneous dose distribution, multiple equivalence factors are necessary when fractioning is not sufficiently high. Correction factors to reduce the dose close to the source are low, with increasing distance from the source they increase. If HDR radiation therapy is used, the percutaneous dose in the pelvic wall region should be reduced. The reduction of the dose in HDR brachytherapy is a compromise to limit the side effects caused by the radiation. The drawback is a small therapeutic range and reduced therapeutic effectivity at the tumour. (orig.) [de

  10. Dose rate considerations in brachytherapy: biological equivalence of LDR and HDR

    International Nuclear Information System (INIS)

    Orton, C.G.

    1994-01-01

    The linear-quadratic model for cell survival and bioeffect doses is discussed and equations for low dose rate (LDR), high dose rate (HDR) and intermediate situations are presented. The model, when used to define LDR and single fractions of HDR, shows, that these correspond to irradiations lasting longer than about 14 hours or shorter than about 0.7 hours, respectively. It is shown that, for HDR to be as safe and effective as LDR, the dose-rate effect of LDR has to be replaced by the fractionation-effect of HDR. This is necessary in order to take advantage of the differential repair characteristics between late-reacting normal tissue and tumor cells at low doses and low dose rates. Using the linear-quadratic model to simulate repair mathematically, it is shown that the number of fractions required is highly dependent upon what parameters are assumed for normal tissues and tumor, as well as whether or not there is any physical advantage gained by conversion from LDR to HDR. (author). 20 refs., 7 figs

  11. Traceable calibration of hospital 192Ir HDR sources

    International Nuclear Information System (INIS)

    Govinda Rajan, K.N.; Sharma, S.D.; Palaniselvam, T.; Vandana, S.; Bhatt, B.C.; Vinatha, S.; Patki, V.S.; Pendse, A.M.; Kannan, V.

    2004-01-01

    A HDR 1000 PLUS well type ionization chamber, procured from Standard Imaging, USA, and maintained by medical Physics and Safety Section (MPSS), Bhabha Atomic Research Centre (BARC), India, as a reference well chamber 1 (RWCH1), was traceably calibrated against the primary standard established by Radiological Standards Laboratory (RSL), BARC for 192 Ir HDR source, in terms of air kerma strength (AKS). An indigenously developed well-type ionization chamber, reference well chamber 2 (RWCH2) and electrometer system, fabricated by CD High Tech (CDHT) Instruments Private Ltd., Bangalore, India, was in turn calibrated against RWCH1. The CDHT system (i.e. RWCH2 and CDHT electrometer system) was taken to several hospitals, in different regions of the country, to check the calibration status of 192 Ir HDR sources. The result of this calibration audit work is reported here. (author)

  12. HDR-Aggregate Read Service (ARS)

    Data.gov (United States)

    Department of Veterans Affairs — ARS is a SOAP web service exposed over HTTPS that provides an aggregated (report) view of HTH Survey, DMP and Census data stored in the HDR DB. ARS is deployed in...

  13. SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System

    International Nuclear Information System (INIS)

    Joseph, F Maria; Podder, T; Yu, Y

    2015-01-01

    Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostate HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system

  14. Use of CT or MR dosimetry in high dose rate (HDR) brachytherapy for prostate cancer

    International Nuclear Information System (INIS)

    Liu, C.; Das, R.; See, A.; Duchesne, G.M.; Van Dyk, S.; Tai, K.H.

    2003-01-01

    Brachytherapy (BT) has, in recent years, become a well-utilised treatment option for prostate cancer. Tumour control probability relies on accurate dosimetry, which in turn relies on the accurate definition of the prostate gland. In external beam radiotherapy and BT, MRI has been shown to be a superior imaging modality when delineating the prostate gland especially at the apex. To date, data on MRI planning in prostate BT has focussed mainly on permanent interstitial implants. No data currently exists comparing MRI vs CT planning in HDR BT and its subsequent impact on prostate dosimetry. To determine the effects of MRI vs CT in HDR BT with respect to prostatic volumes and normal tissue doses, with the evaluations made using dose-volume histograms (DVH). Dosimetry parameters derived using CT and MRI (T2 weighted) scans of 11 patients who had received TRUS guided implants for HDR BT, were compared using the PlatoTM computer planning system. Treatment plans were generated on volumes marked by the same radiation oncologist for each patient. Comparison was made of the treatment plans (dosimetry) between: 1. CT generated plans; 2. CT generated plans assessed using MRI marked volumes and 3. MRI generated plans. We confirm the previously reported results that CT scans can overestimate prostatic volumes compared with MRI. Variations were noted in CT and MRI based plans that may allow improved sparing of the rectum and urethra when using MRI planning. The main disadvantages of using MRI scans are access to facilities as well as identifying a dummy source to adequately define the tips of our catheters. It is feasible to utilise MRI scans for HDR BT planning. The clearer definition of anatomical structures has added advantages when contouring the prostate

  15. Coexistence Mechanism for Colocated HDR/LDR WPANs Air Interfaces

    Directory of Open Access Journals (Sweden)

    Prasad Ramjee

    2010-01-01

    Full Text Available This paper addresses the issues of interference management among Low Data Rate (LDR and High Data Rate (HDR WPAN air interfaces that are located in close-proximity (up to 10 cm and eventually on the same multimode device. After showing the noticeable performance degradation in terms of Bit Error Rate (BER and goodput due to the out-of-band interference of an HDR air interface over an LDR air interface, the paper presents a novel coexistence mechanism, named Alternating Wireless Activity (AWA, which is shown to greatly improve the performance in terms of goodput of the most interference vulnerable air interface (i.e., the LDR air interface. The main difference of the proposed mechanism with respect to other collaborative mechanisms based on time-scheduling is that it synchronizes the transmission of the LDR and HDR WPANs at the superframe level instead of packet level. Advantages and limitations of this choice are presented in the paper. Furthermore the functionalities of the AWA mechanism are positioned in a common protocol layer over the Medium Access Control (MAC sublayers of the HDR and LDR devices and it can be used with any standard whose MAC is based on a superframe structure.

  16. Cost modelling of electricity producing hot dry rock (HDR) geothermal systems in the UK

    International Nuclear Information System (INIS)

    Doherty, P.S.

    1992-03-01

    A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. (Author)

  17. Cost modelling of electricity-producing hot dry rock (HDR) geothermal systems in the United Kingdom

    International Nuclear Information System (INIS)

    Doherty, P.; Harrison, R.

    1995-01-01

    A detailed and comprehensive cost model for Hot Dry Rock (HDR) electricity producing systems has been developed in this study. The model takes account of the major aspects of the HDR system, parameterized in terms of the main physical and cost parameters of the resource and the utilization system. A doublet configuration is assumed, and the conceptual HDR system which is defined in the study is based upon the UK Department of Energy (DEn) HDR geothermal R and D programme. The model has been used to calculate the costs of HDR electricity for a UK defined base case which represents a consensus view of what might be achieved in Cornwall in the long term. At 14.2 p/kWh (1988 costs) this cost appears to be unacceptably high. A wide-ranging sensitivity study has also been carried out on the main resource, geometrical, and operational parameters of the HDR system centred around the UK base case. The sensitivity study shows the most important parameters to be thermal gradient and depth. The geometrical arrangement and the shape of the reservoir constitute major uncertainties in HDR systems. Their effect on temperature has a major influence on system performance, and therefore a range of theoretically possible geometries have been studied and the importance of geometrical effects on HDR electricity costs assessed. The most cost effective HDR arrangement in terms of optimized volumes and flow rates has been investigated for a world-wide range of thermal settings. The main conclusions from this study suggests that for HDR electricity to be economic, thermal gradients of 55 o C/km and above, well depths of 5 km or less, and production fluid temperatures of 210 o C and above are required. (UK)

  18. A novel GATA3 nonsense mutation in a newly diagnosed adult patient of hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome.

    Science.gov (United States)

    Nanba, Kazutaka; Usui, Takeshi; Nakamura, Michikazu; Toyota, Yuko; Hirota, Keisho; Tamanaha, Tamiko; Kawashima, Sachiko-Tsukamoto; Nakao, Kanako; Yuno, Akiko; Tagami, Tetsuya; Naruse, Mitsuhide; Shimatsu, Akira

    2013-01-01

    Hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome is an autosomal dominant disorder caused by a GATA3 gene mutation. Here we report a novel mutation of GATA3 in a patient diagnosed with HDR syndrome at the age of 58 with extensive intracranial calcification. A 58-year-old Japanese man showed severe hypocalcemia and marked calcification in the basal ganglia, cerebellum, deep white matter, and gray-white junction on computed tomography (CT). The serum intact parathyroid hormone level was relatively low against low serum calcium concentration. The patient had been diagnosed with bilateral sensorineural deafness in childhood and had a family history of hearing disorders. Imaging studies revealed no renal anomalies. The patient was diagnosed with HDR syndrome, and genetic testing was performed. Genetic analysis of GATA3 showed a novel nonsense mutation at codon 198 (S198X) in exon 3. The S198X mutation leads to a loss of two zinc finger deoxyribonucleic acid (DNA) binding domains and is considered to be responsible for HDR syndrome. We identified a novel nonsense mutation of GATA3 in an adult patient with HDR syndrome who showed extensive intracranial calcification.

  19. HDR ühest kaadrist? / Janno Loide

    Index Scriptorium Estoniae

    Loide, Janno

    2008-01-01

    HDR-töötluse (High dynamic range - pildi kõrge dünaamiline ulatus) ja toonide kohandamise (tone mapping) meetodite kasutamisest pildi digitaalsel salvestusel ning sobiva hele-tumeduse leidmisel loodusfotode parema kvaliteedi saamiseks

  20. The effect of split pixel HDR image sensor technology on MTF measurements

    Science.gov (United States)

    Deegan, Brian M.

    2014-03-01

    Split-pixel HDR sensor technology is particularly advantageous in automotive applications, because the images are captured simultaneously rather than sequentially, thereby reducing motion blur. However, split pixel technology introduces artifacts in MTF measurement. To achieve a HDR image, raw images are captured from both large and small sub-pixels, and combined to make the HDR output. In some cases, a large sub-pixel is used for long exposure captures, and a small sub-pixel for short exposures, to extend the dynamic range. The relative size of the photosensitive area of the pixel (fill factor) plays a very significant role in the output MTF measurement. Given an identical scene, the MTF will be significantly different, depending on whether you use the large or small sub-pixels i.e. a smaller fill factor (e.g. in the short exposure sub-pixel) will result in higher MTF scores, but significantly greater aliasing. Simulations of split-pixel sensors revealed that, when raw images from both sub-pixels are combined, there is a significant difference in rising edge (i.e. black-to-white transition) and falling edge (white-to-black) reproduction. Experimental results showed a difference of ~50% in measured MTF50 between the falling and rising edges of a slanted edge test chart.

  1. Rocketball Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — This test facility offers the capability to emulate and measure guided missile radar cross-section without requiring flight tests of tactical missiles. This facility...

  2. Preliminary results of study comparing HDR with LDR brachytherapy for IIIb cervical cancer

    International Nuclear Information System (INIS)

    Trippe, N.; Pellizzon, A.C.A.; Novaes, P.; Salvajoli, J.V.; Fogaroli, R.; Maia, M.A.C.; Baraldi, H.; Ferrigno, R.

    1996-01-01

    Since 1992 we have been using a Micro-Selectron HDR device, working with Iridium 192 to treat the cervical cancer and some others pathologies. With a minimum follow up of 24 months, 59 patients with cervical cancer were randomizated for one of the following schedule of treatment: EBRT - 45Gy - fx 1,8Gy plus Brachytherapy 1-HDR - 36 (61%) - 4 weekly insertions of 6,0Gy at point A 2-LDR - 29 (39%) - two insertions fifteen days apart of 17,5Gy at point A EBRT was performed with a Linac 4MV, in box arrangement and parametrial complementation of dose with AP-PA fields. For Brachytherapy Fletcher Colpostats are used in association with intrauterine tamdens, in both arms. Brachyterapy starts in HDR group after ten days of the beginning of the treatment. The total time of treatment is shortened here in two weeks. LDR brachytherapy starts only after the end of EBRT. Results - local control was 61% in 12 months and 50% in 24 months for HDR group, versus 52,6% and 47,8% for LDR group. Local failures of 39% and 50% in 12 and 24 months for HDR and 47,8% and 52,8% for LDR groups respectively. Complications were restricted to rectites and cistites - 8,3% for HDR and 13% for LDR. Conclusions - HDR brachytherapy has an equivalent local control when compared to LDR, can treat a larger number of patients in a shorter period, has possibilities of dose optimizations and decrease the radiation exposure to the staff

  3. Test and User Facilities | NREL

    Science.gov (United States)

    Test and User Facilities Test and User Facilities Our test and user facilities are available to | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z B Battery Thermal and Life Test Facility Biochemical Conversion Pilot Plant C Controllable Grid Interface Test System D Dynamometer Test Facilities

  4. CLEAR test facility

    CERN Multimedia

    Ordan, Julien Marius

    2017-01-01

    A new user facility for accelerator R&D, the CERN Linear Electron Accelerator for Research (CLEAR), started operation in August 2017. CLEAR evolved from the former CLIC Test Facility 3 (CTF3) used by the Compact Linear Collider (CLIC). The new facility is able to host and test a broad range of ideas in the accelerator field.

  5. LDR vs. HDR brachytherapy for localized prostate cancer: the view from radiobiological models.

    Science.gov (United States)

    King, Christopher R

    2002-01-01

    Permanent LDR brachytherapy and temporary HDR brachytherapy are competitive techniques for clinically localized prostate radiotherapy. Although a randomized trial will likely never be conducted comparing these two forms of brachytherapy, a comparative radiobiological modeling analysis proves useful in understanding some of their intrinsic differences, several of which could be exploited to improve outcomes. Radiobiological models based upon the linear quadratic equations are presented for fractionated external beam, fractionated (192)Ir HDR brachytherapy, and (125)I and (103)Pd LDR brachytherapy. These models incorporate the dose heterogeneities present in brachytherapy based upon patient-derived dose volume histograms (DVH) as well as tumor doubling times and repair kinetics. Radiobiological parameters are normalized to correspond to three accepted clinical risk factors based upon T-stage, PSA, and Gleason score to compare models with clinical series. Tumor control probabilities (TCP) for LDR and HDR brachytherapy (as monotherapy or combined with external beam) are compared with clinical bNED survival rates. Predictions are made for dose escalation with HDR brachytherapy regimens. Model predictions for dose escalation with external beam agree with clinical data and validate the models and their underlying assumptions. Both LDR and HDR brachytherapy achieve superior tumor control when compared with external beam at conventional doses (LDR brachytherapy as boost achieves superior tumor control than when used as monotherapy. Stage for stage, both LDR and current HDR regimens achieve similar tumor control rates, in agreement with current clinical data. HDR monotherapy with large-dose fraction sizes might achieve superior tumor control compared with LDR, especially if prostate cancer possesses a high sensitivity to dose fractionation (i.e., if the alpha/beta ratio is low). Radiobiological models support the current clinical evidence for equivalent outcomes in localized

  6. Air kerma standard for calibration of well-type chambers in Brazil using {sup 192}Ir HDR sources and its traceability

    Energy Technology Data Exchange (ETDEWEB)

    Di Prinzio, Renato; Almeida, Carlos Eduardo de [Laboratorio de Ciencias Radiologicas-Universidade do Estado do Rio de Janeiro (LCR/UERJ), R. Sao Francisco Xavier, 524, Pavilhao Haroldo Lisboa da Cunha, Terreo, Sala 136-Maracana, CEP 20550-900-Rio de Janeiro/RJ-Rio de Janeiro, RJ (Brazil) and Instituto de Radioprotecao e Dosimetria-Comissao Nacional de Energia Nuclear (IRD/CNEN), Av. Salvador Allende, s/n, Jacarepagua-CE22780-160-Rio de Janeiro, RJ (Brazil); Laboratorio de Ciencias Radiologicas-Universidade do Estado do Rio de Janeiro (LCR/UERJ), R. Sao Francisco Xavier, 524, Pavilhao Haroldo Lisboa da Cunha, Terreo, Sala 136-Maracana, CEP 20550-900-Rio de Janeiro/RJ-Rio de Janeiro, RJ (Brazil)

    2009-03-15

    In Brazil there are over 100 high dose rate (HDR) brachytherapy facilities using well-type chambers for the determination of the air kerma rate of {sup 192}Ir sources. This paper presents the methodology developed and extensively tested by the Laboratorio de Ciencias Radiologicas (LCR) and presently in use to calibrate those types of chambers. The system was initially used to calibrate six well-type chambers of brachytherapy services, and the maximum deviation of only 1.0% was observed between the calibration coefficients obtained and the ones in the calibration certificate provided by the UWADCL. In addition to its traceability to the Brazilian National Standards, the whole system was taken to University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) for a direct comparison and the same formalism to calculate the air kerma was used. The comparison results between the two laboratories show an agreement of 0.9% for the calibration coefficients. Three Brazilian well-type chambers were calibrated at the UWADCL, and by LCR, in Brazil, using the developed system and a clinical HDR machine. The results of the calibration of three well chambers have shown an agreement better than 1.0%. Uncertainty analyses involving the measurements made both at the UWADCL and LCR laboratories are discussed.

  7. Evaluation of a HDR image sensor with logarithmic response for mobile video-based applications

    Science.gov (United States)

    Tektonidis, Marco; Pietrzak, Mateusz; Monnin, David

    2017-10-01

    The performance of mobile video-based applications using conventional LDR (Low Dynamic Range) image sensors highly depends on the illumination conditions. As an alternative, HDR (High Dynamic Range) image sensors with logarithmic response are capable to acquire illumination-invariant HDR images in a single shot. We have implemented a complete image processing framework for a HDR sensor, including preprocessing methods (nonuniformity correction (NUC), cross-talk correction (CTC), and demosaicing) as well as tone mapping (TM). We have evaluated the HDR sensor for video-based applications w.r.t. the display of images and w.r.t. image analysis techniques. Regarding the display we have investigated the image intensity statistics over time, and regarding image analysis we assessed the number of feature correspondences between consecutive frames of temporal image sequences. For the evaluation we used HDR image data recorded from a vehicle on outdoor or combined outdoor/indoor itineraries, and we performed a comparison with corresponding conventional LDR image data.

  8. Characteristics of hearing loss in HDR (hypoparathyroidism, sensorineural deafness, renal dysplasia) syndrome

    NARCIS (Netherlands)

    van Looij, Marjolein A. J.; Meijers-Heijboer, Hanne; Beetz, Rolf; Thakker, Rajesh V.; Christie, Paul T.; Feenstra, Lou W.; van Zanten, Bert G. A.

    2006-01-01

    Haploinsufficiency of the zinc finger transcription factor GATA3 causes the triad of hypoparathyroidism, deafness and renal dysplasia, known by its acronym HDR syndrome. The purpose of the current study was to describe in detail the auditory phenotype in human HDR patients and compare these to

  9. HDR imaging and color constancy: two sides of the same coin?

    Science.gov (United States)

    McCann, John J.

    2011-01-01

    At first, we think that High Dynamic Range (HDR) imaging is a technique for improved recordings of scene radiances. Many of us think that human color constancy is a variation of a camera's automatic white balance algorithm. However, on closer inspection, glare limits the range of light we can detect in cameras and on retinas. All scene regions below middle gray are influenced, more or less, by the glare from the bright scene segments. Instead of accurate radiance reproduction, HDR imaging works well because it preserves the details in the scene's spatial contrast. Similarly, on closer inspection, human color constancy depends on spatial comparisons that synthesize appearances from all the scene segments. Can spatial image processing play similar principle roles in both HDR imaging and color constancy?

  10. Experimental work and know-how transfer in the framework of the individual project 'Earthquake investigations on the HDR reactor'

    International Nuclear Information System (INIS)

    Corvin, P.; Metz, K.

    1976-03-01

    In the framework of investigations to determine the earthquake resistance of nuclear power plant, carried out by the Applied Nucleonics Company on the HDR reactor in Grosswelzheim/Main, theoretical fundamentals and experimental test procedures in the sense of know-how transfer were elaborated. This enables the corresponding German institutions to carry out similar investigations on their own. In addition ANC carried out safety control measures during the investigations in order to prevent structural damage to the HDR reactor and neighbouring buildings. (orig.) 891 HP [de

  11. Needle displacement during HDR brachytherapy in the treatment of prostate cancer

    International Nuclear Information System (INIS)

    Damore, Steven J.; Syed, A.M. Nisar; Puthawala, Ajmel A.; Sharma, Anil

    2000-01-01

    Purpose: We used clinical patient data to examine implant displacement between high dose rate (HDR) brachytherapy fractions for prostate cancer to determine its impact on treatment delivery. Materials and Methods: We analyzed the verification films taken prior to each fraction for 96 consecutive patients treated with HDR brachytherapy boosts as part of their radiation therapy for definitive treatment of organ-confined prostate cancer at our institution. Patients were treated with 18-24 Gy in 4 fractions of HDR delivered in 40 hours followed by 36-39.6 Gy external beam radiation to the prostate. We determined the mean and maximum displacement distances of marker seeds placed in the prostate and of the implanted needles between HDR fractions. Results: Mean and maximum displacement distances between fractions were documented up to 7.6 mm and 28.5 mm, respectively, for the implant needles and 3.6 mm and 11.4 mm, respectively, for the gold marker seeds. All displacement of implant needles occurred in the caudal direction. At least 1 cm caudal displacement of needles occurred prior to 15.5% all fractions. Manual adjustment of needles was required prior to 15% of fractions, and adjustment of the CLP only was required in 24%. Most of the displacement for both the marker seeds and needles occurred between the first and second fractions. Conclusions: There is significant caudal displacement of interstitial implant needles between HDR fractions in our prostate cancer patients. Obtaining verification films and making adjustments in the treatment volume prior to each fraction is necessary to avoid significant inaccuracies in treatment delivery

  12. Quality assurance of HDR prostate plans: Program implementation at a community hospital

    International Nuclear Information System (INIS)

    Rush, Jennifer B.; Thomas, Michael D.

    2005-01-01

    Adenocarcinoma of the prostate is currently the most commonly diagnosed cancer in men in the United States, and the second leading cause of cancer mortality. The utilization of radiation therapy is regarded as the definitive local therapy of choice for intermediate- and high-risk disease, in which there is increased risk for extracapsular extension, seminal vesicle invasion, or regional node involvement. High-dose-rate (HDR) brachytherapy is a logical treatment modality to deliver the boost dose to an external beam radiation therapy (EBRT) treatment to increase local control rates. From a treatment perspective, the utilization of a complicated treatment delivery system, the compressed time frame in which the procedure is performed, and the small number of large dose fractions make the implementation of a comprehensive quality assurance (QA) program imperative. One aspect of this program is the QA of the HDR treatment plan. Review of regulatory and medical physics professional publications shows that substantial general guidance is available. We provide some insight to the implementation of an HDR prostate plan program at a community hospital. One aspect addressed is the utilization of the low-dose-rate (LDR) planning system and the use of existing ultrasound image sets to familiarize the radiation therapy team with respect to acceptable HDR implant geometries. Additionally, the use of the LDR treatment planning system provided a means to prospectively determine the relationship between the treated isodose volume and the product of activity and time for the department's planning protocol prior to the first HDR implant. For the first 12 HDR prostate implants, the root-mean-square (RMS) deviation was 3.05% between the predicted product of activity and time vs. the actual plan values. Retrospective re-evaluation of the actual implant data reduced the RMS deviation to 2.36%

  13. Quality assurance of HDR prostate plans: program implementation at a community hospital.

    Science.gov (United States)

    Rush, Jennifer B; Thomas, Michael D

    2005-01-01

    Adenocarcinoma of the prostate is currently the most commonly diagnosed cancer in men in the United States, and the second leading cause of cancer mortality. The utilization of radiation therapy is regarded as the definitive local therapy of choice for intermediate- and high-risk disease, in which there is increased risk for extracapsular extension, seminal vesicle invasion, or regional node involvement. High-dose-rate (HDR) brachytherapy is a logical treatment modality to deliver the boost dose to an external beam radiation therapy (EBRT) treatment to increase local control rates. From a treatment perspective, the utilization of a complicated treatment delivery system, the compressed time frame in which the procedure is performed, and the small number of large dose fractions make the implementation of a comprehensive quality assurance (QA) program imperative. One aspect of this program is the QA of the HDR treatment plan. Review of regulatory and medical physics professional publications shows that substantial general guidance is available. We provide some insight to the implementation of an HDR prostate plan program at a community hospital. One aspect addressed is the utilization of the low-dose-rate (LDR) planning system and the use of existing ultrasound image sets to familiarize the radiation therapy team with respect to acceptable HDR implant geometries. Additionally, the use of the LDR treatment planning system provided a means to prospectively determine the relationship between the treated isodose volume and the product of activity and time for the department's planning protocol prior to the first HDR implant. For the first 12 HDR prostate implants, the root-mean-square (RMS) deviation was 3.05% between the predicted product of activity and time vs. the actual plan values. Retrospective re-evaluation of the actual implant data reduced the RMS deviation to 2.36%.

  14. The use of nomograms in LDR-HDR prostate brachytherapy.

    Science.gov (United States)

    Pujades, Ma Carmen; Camacho, Cristina; Perez-Calatayud, Jose; Richart, José; Gimeno, Jose; Lliso, Françoise; Carmona, Vicente; Ballester, Facundo; Crispín, Vicente; Rodríguez, Silvia; Tormo, Alejandro

    2011-09-01

    The common use of nomograms in Low Dose Rate (LDR) permanent prostate brachytherapy (BT) allows to estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for each clinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adapted to High Dose Rate (HDR). This work sets nomograms for LDR and HDR prostate-BT implants, which are applied to three different institutions that use different implant techniques. Patients treated throughout 2010 till April 2011 were considered for this study. This example was chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficient number of cases for both BT modalities, prescription dose and different work methodology (depending on the institution) were taken into account. The specific nomograms were built using the correlation between the prostate volume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, number of implanted seeds in LDR or total radiation time in HDR. For each institution and BT modality, nomograms normalized to the prescribed dose were obtained and fitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting. It should be noted that for each institution these linear function parameters are different, indicating that each centre should construct its own nomograms. Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific for each institution. Nevertheless, their use should be complementary to the necessary independent verification.

  15. The use of nomograms in LDR-HDR prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Ma Carmen Pujades

    2011-09-01

    Full Text Available Purpose: The common use of nomograms in Low Dose Rate (LDR permanent prostate brachytherapy (BT allowsto estimate the number of seeds required for an implant. Independent dosimetry verification is recommended for eachclinical dosimetry in BT. Also, nomograms can be useful for dose calculation quality assurance and they could be adaptedto High Dose Rate (HDR. This work sets nomograms for LDR and HDR prostate-BT implants, which are applied tothree different institutions that use different implant techniques. Material and methods: Patients treated throughout 2010 till April 2011 were considered for this study. This examplewas chosen to be the representative of the latest implant techniques and to ensure consistency in the planning. A sufficientnumber of cases for both BT modalities, prescription dose and different work methodology (depending on theinstitution were taken into account. The specific nomograms were built using the correlation between the prostatevo lume and some characteristic parameters of each BT modality, such as the source Air Kerma Strength, numberof implanted seeds in LDR or total radiation time in HDR. Results: For each institution and BT modality, nomograms normalized to the prescribed dose were obtained andfitted to a linear function. The parameters of the adjustment show a good agreement between data and the fitting.It should be noted that for each institution these linear function parameters are different, indicating that each centreshould construct its own nomograms. Conclusions: Nomograms for LDR and HDR prostate brachytherapy are simple quality assurance tools, specific foreach institution. Nevertheless, their use should be complementary to the necessary independent verification.

  16. The relative efficacy of HDR and LDR interstitial brachytherapy in squamous cell carcinoma of vagina

    International Nuclear Information System (INIS)

    Demanes, D. J.; Hsu, I-C.; Lin, S.; Ewing, T.; Rodriguez, R.

    1996-01-01

    Introduction: Beginning in 1982 we performed low dose rate (LDR) interstitial template brachytherapy (ISTB) for carcinoma of the vagina. High dose rate (HDR) remote afterloading has been used exclusively since 1991. We compare the results LDR and HDR brachytherapy. Material and Methods: Between 1982 and 1994, 30 patients with primary squamous cell carcinoma of vagina received external beam radiotherapy (EBRT) and brachytherapy. The AJCC stage distribution was 3 stage I, 25 stage II, and 2 stage III. The average central pelvic EBRT dose was 35 Gy. Pelvic side wall EBRT doses ranged from 45 to 50.4 Gy. Nineteen patients had LDR treatment; 3 intracavitary brachytherapy (ICB) and 16 ISTB. Eleven patients had HDR treatment; 2 ICB and 9 ISB. The average dose delivered by LDR was 41.2 Gy usually in 2 fractions, and by HDR 32.5 Gy in 6 fractions of 500-550 cGy. Local failures were confirmed pathologically. The absolute survival (AS) and relapse-free survival (RFS) were calculated using Kaplan-Meier method and compared with logrank statistics. Results: The mean follow-up was 77 months for LDR and 23 months for HDR. Local and regional control was achieved in 90% (27/30) of the patients. Three year AS was 84% and RFS was 87%. There was no significant difference between LDR and HDR in AS, RFS or local-regional control, (log rank p=0.85, p=0.12 and p=0.35 respectively). The single HDR local failure presented in a patient with extensive stage II disease who declined ISTB. There were fewer complications following HDR. The 1 case of extensive vaginal necrosis and the 3 cases of rectovaginal fistula that required surgery occurred only with LDR brachytherapy. Discussion: Excellent local and regional control of carcinoma of the vagina can be achieved by administering limited doses of external radiation and brachytherapy. Interstitial template implants are the best means of encompassing paravaginal disease while sparing the adjacent uninvolved normal tissues from high doses of

  17. Essential results of analyses accompanying the leak rate experiments E22 at HDR

    International Nuclear Information System (INIS)

    Grebner, H.; Hoefler, A.; Hunger, H.

    1994-01-01

    Under the E22 test group of phase III of the HDR safety programme, experiments were performed on the crack opening and leak rate behaviour of pipe components of smaller nominal bores. The experiments were complemented by computations, in particular verifications, to qualify the computation models as one of the main aims of the HDR safety programme. Most of the analyses to determine crack openings were performed by means of the finite-element method, including elastic-plastic materials behaviour and, complementarily, assessing engineering methods. The leak rate was calculated by means of separate 2-phase computation models. Altogether, it may be concluded from the structural and fracture mechanical experiments with pipes, elbows and branch pieces, that crack openings and incipient cracks at loading with internal pressure or bending moment can be described with good accuracy by means of the finite-element programme ADINA and the developed FE-models. (orig.) [de

  18. SU-D-19A-07: Dosimetric Comparison of HDR Plesiotherapy and Electron Beam Therapy for Superficial Lesions

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, A; Jacob, D; Andreou, K; Raben, A; Chen, H; Koprowski, C; Mourtada, F [Christiana Care Hospital, Newark, DE (United States)

    2014-06-01

    Purpose: Large superficial (skin, soft tissue sarcoma) lesions located on curved areas are hard to treat with electrons. The Freiburg Flap (Nucletron, Netherlands) is a flexible mesh style surface which can be easily shaped to fit curved surfaces for reproducible HDR fraction delivery. To understand the fundamental dosimetric differences, a dosimetric comparison was made between HDR plesiotherapy (Freiburg applicator for lesions over 4cm) and external electron beam radiotherapy over cases with varying target curvature (both stylized and clinical cases). Methods: Four stylized cases with variable complexity were created using artificial DICOM axial CT slices and RT structures (a square and three curved structures on a 4.5cm radius cylinder). They were planned using Oncentra v4.3 and exported to Pinnacle v9.6 for electrons planning. The HDR source dwell positions were optimized for the best coverage of the targets using graphical optimization. Electron treatment plans were created in Pinnacle using the same CT and RT structures of three HDR cases with surface lesions previously treated with the Freiburg flap. The En face electron plans used 6-12 MeV electrons and 0.5–1 cm bolus was added to increase surface dose. The electron plans were prescribed to an isodose line to conform to the target. Results: For all lesions, the average target dose coverage was similar (D90ave of 100% for HDR vs 101% for electrons). For lesions with high curvature, the HDR coverage was better (D90 102% vs D90 97% for electron). For all cases, adjacent structures high dose region was lower for HDR than electrons (D1cc 100% for HDR vs D1cc 111% for electrons). Conclusion: HDR plesiotherapy offers excellent target conformity for superficial targets similar to electrons. However, for lesions with complex curved surfaces, HDR has the advantage to achieve better dose distributions using graphical optimization to spare adjacent normal tissue while maximizing target coverage.

  19. Reflooding phenomena of German PWR estimated from CCTF [Cylindrical Core Test Facility], SCTF [Slab Core Test Facility] and UPTF [Upper Plenum Test Facility] results

    International Nuclear Information System (INIS)

    Murao, Y.; Iguchi, T.; Sugimoto, J.

    1988-09-01

    The reflooding behavior in a PWR with a combined injection type ECCS was studied by comparing the test results from Cylindrical Core Test Facility (CCTF), Slab Core Test Facility (SCTF) and Upper Plenum Test Facility (UPTF). Core thermal-hydraulics is discussed mainly based on SCTF test data. In addition, the water accumulation behavior in hot legs and the break-through characteristics at tie plate are discussed

  20. National Solar Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The National Solar Thermal Test Facility (NSTTF) is the only test facility in the United States of its type. This unique facility provides experimental engineering...

  1. Developing A Directional High-Dose Rate (d-HDR) Brachytherapy Source

    Science.gov (United States)

    Heredia, Athena Yvonne

    Conventional sources used in brachytherapy provide nearly isotropic or radially symmetric dose distributions. Optimizations of dose distributions have been limited to varied dwell times at specified locations within a given treatment volume, or manipulations in source position for seed implantation techniques. In years past, intensity modulated brachytherapy (IMBT) has been used to reduce the amount of radiation to surrounding sensitive structures in select intracavitary cases by adding space or partial shields. Previous work done by Lin et al., at the University of Wisconsin-Madison, has shown potential improvements in conformality for brachytherapy treatments using a directionally shielded low dose rate (LDR) source for treatments in breast and prostate. Directional brachytherapy sources irradiate approximately half of the radial angles around the source, and adequately shield a quarter of the radial angles on the opposite side, with sharp gradient zones between the treated half and shielded quarter. With internally shielded sources, the radiation can be preferentially emitted in such a way as to reduce toxicities in surrounding critical organs. The objective of this work is to present findings obtained in the development of a new directional high dose rate (d-HDR) source. To this goal, 103Pd (Z = 46) is reintroduced as a potential radionuclide for use in HDR brachytherapy. 103Pd has a low average photon energy (21 keV) and relatively short half -life (17 days), which is why it has historically been used in low dose rate applications and implantation techniques. Pd-103 has a carrier-free specific activity of 75000 Ci/g. Using cyclotron produced 103Pd, near carrier-free specific activities can be achieved, providing suitability for high dose rate applications. The evolution of the d-HDR source using Monte Carlo simulations is presented, along with dosimetric parameters used to fully characterize the source. In addition, a discussion on how to obtain elemental

  2. Transition from LDR to HDR brachytherapy for cervical cancer: Evaluation of tumor control, survival, and toxicity.

    Science.gov (United States)

    Romano, K D; Pugh, K J; Trifiletti, D M; Libby, B; Showalter, T N

    In 2012, our institution transitioned from low-dose-rate (LDR) brachytherapy to high dose-rate (HDR) brachytherapy. We report clinical outcomes after brachytherapy for cervical cancer at our institution over a continuous 10-year period. From 2004 to 2014, 258 women (184 LDR and 74 HDR) were treated with tandem and ovoid brachytherapy in the multidisciplinary management of International Federation of Gynecology and Obstetrics Stages IA-IVB cervical cancer. Clinical and treatment-related prognostic factors including age, stage, smoking status, relevant doses, and toxicity data were recorded. Median followup for the LDR and HDR groups was 46 months and 12 months, respectively. The majority of patients (92%) received external beam radiotherapy as well as concurrent chemotherapy (83%) before the start of brachytherapy. For all stages, the 1-year local control and overall survival (OS) rates were comparable between the LDR and HDR groups (87% vs. 81%, p = 0.12; and 75% vs. 85%, p = 0.16), respectively. Factors associated with OS on multivariate analysis include age, stage, and nodal involvement. On multivariate analysis, severe toxicity (acute or chronic) was higher with HDR than LDR (24% vs. 10%, p = 0.04). Additional prognostic factors associated with increased severe toxicity include former/current smokers and total dose to lymph nodes. This comparative retrospective analysis of a large cohort of women treated with brachytherapy demonstrates no significant difference in OS or local control between the LDR and HDR. Acute and chronic toxicity increased shortly after the implementation of HDR, highlighting the importance of continued refinement of HDR methods, including integrating advanced imaging. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Liquefied Gaseous Fuels Spill Test Facility

    International Nuclear Information System (INIS)

    1993-02-01

    The US Department of Energy's liquefied Gaseous Fuels Spill Test Facility is a research and demonstration facility available on a user-fee basis to private and public sector test and training sponsors concerned with safety aspects of hazardous chemicals. Though initially designed to accommodate large liquefied natural gas releases, the Spill Test Facility (STF) can also accommodate hazardous materials training and safety-related testing of most chemicals in commercial use. The STF is located at DOE's Nevada Test Site near Mercury, Nevada, USA. Utilization of the Spill Test Facility provides a unique opportunity for industry and other users to conduct hazardous materials testing and training. The Spill Test Facility is the only facility of its kind for either large- or small-scale testing of hazardous and toxic fluids including wind tunnel testing under controlled conditions. It is ideally suited for test sponsors to develop verified data on prevention, mitigation, clean-up, and environmental effects of toxic and hazardous gaseous liquids. The facility site also supports structured training for hazardous spills, mitigation, and clean-up. Since 1986, the Spill Test Facility has been utilized for releases to evaluate the patterns of dispersion, mitigation techniques, and combustion characteristics of select materials. Use of the facility can also aid users in developing emergency planning under US P.L 99-499, the Superfund Amendments and Reauthorization Act of 1986 (SARA) and other regulations. The Spill Test Facility Program is managed by the US Department of Energy (DOE), Office of Fossil Energy (FE) with the support and assistance of other divisions of US DOE and the US Government. DOE/FE serves as facilitator and business manager for the Spill Test Facility and site. This brief document is designed to acquaint a potential user of the Spill Test Facility with an outline of the procedures and policies associated with the use of the facility

  4. : Light Steering Projection Systems and Attributes for HDR Displays

    KAUST Repository

    Damberg, Gerwin

    2017-06-02

    New light steering projectors in cinema form images by moving light away from dark regions into bright areas of an image. In these systems, the peak luminance of small features can far exceed full screen white luminance. In traditional projectors where light is filtered or blocked in order to give shades of gray (or colors), the peak luminance is fixed. The luminance of chromatic features benefit in the same way as white features, and chromatic image details can be reproduced at high brightness leading to a much wider overall color gamut coverage than previously possible. Projectors of this capability are desired by the creative community to aid in and enhance storytelling. Furthermore, reduced light source power requirements of light steering projectors provide additional economic and environmental benefits. While the dependency of peak luminance level on (bright) image feature size is new in the digital cinema space, display technologies with identical characteristics such as OLED, LED LCD and Plasma TVs are well established in the home. Similarly, direct view LED walls are popular in events, advertising and architectural markets. To enable consistent color reproduction across devices in today’s content production pipelines, models that describe modern projectors and display attributes need to evolve together with HDR standards and available metadata. This paper is a first step towards rethinking legacy display descriptors such as contrast, peak luminance and color primaries in light of new display technology. We first summarize recent progress in the field of light steering projectors in cinema and then, based on new projector and existing display characteristics propose the inclusion of two simple display attributes: Maximum Average Luminance and Peak (Color) Primary Luminance. We show that the proposed attributes allow a better prediction of content reproducibility on HDR displays. To validate this assertion, we test professional content on a commercial HDR

  5. Rendering of HDR content on LDR displays: an objective approach

    Science.gov (United States)

    Krasula, Lukáš; Narwaria, Manish; Fliegel, Karel; Le Callet, Patrick

    2015-09-01

    Dynamic range compression (or tone mapping) of HDR content is an essential step towards rendering it on traditional LDR displays in a meaningful way. This is however non-trivial and one of the reasons is that tone mapping operators (TMOs) usually need content-specific parameters to achieve the said goal. While subjective TMO parameter adjustment is the most accurate, it may not be easily deployable in many practical applications. Its subjective nature can also influence the comparison of different operators. Thus, there is a need for objective TMO parameter selection to automate the rendering process. To that end, we investigate into a new objective method for TMO parameters optimization. Our method is based on quantification of contrast reversal and naturalness. As an important advantage, it does not require any prior knowledge about the input HDR image and works independently on the used TMO. Experimental results using a variety of HDR images and several popular TMOs demonstrate the value of our method in comparison to default TMO parameter settings.

  6. Quality assurance of HDR 192Ir sources using a Fricke dosimeter.

    Science.gov (United States)

    Austerlitz, C; Mota, H; Almeida, C E; Allison, R; Sibata, C

    2007-04-01

    A prototype of a Fricke dosimetry system consisting of a 15 x 15 x 15 cm3 water phantom made of Plexiglas and a 11.3-ml Pyrex balloon fitted with a 0.2 cm thick Pyrex sleeve in its center was created to assess source strength and treatment planning algorithms for use in high dose rate (HDR) 192Ir afterloading units. In routine operation, the radioactive source is positioned at the end of a sleeve, which coincides with the center of the spherical balloon that is filled with Fricke solution, so that the solution is nearly isotropically irradiated. The Fricke system was calibrated in terms of source strength against a reference well-type ionization chamber, and in terms of radial dose by means of an existing algorithm from the HDR's treatment planning system. Because the system is based on the Fricke dosimeter itself, for a given type and model of 192Ir source, the system needs initial calibration but no recalibration. The results from measurements made over a 10 month period, including source decay and source substitutions, have shown the feasibility of using such a system for quality control (QC) of HDR afterloading equipment, including both the source activity and treatment planning parameters. The benefit of a large scale production and the use of this device for clinical HDR QC audits via mail are also discussed.

  7. Comparison of leak opening and leak rate calculations to HDR experimental results

    International Nuclear Information System (INIS)

    Grebner, H.; Hoefler, A.; Hunger, H.

    1993-01-01

    During the last years a number of calculations of leak opening and leak rate for through cracks in piping components have been performed. Analyses are pre- or mostly post-calculations to experiments performed at the HDR facility under PWR operating conditions. Piping components under consideration were small diameter straight pipes with circumferential cracks, pipe bends with longitudinal or circumferential cracks and pipe branches with weldment cracks. The components were loaded by internal pressure and opening as well as closing bending moment. The finite element method and two-phase flow leak rate programs were used for the calculations. Results of the analyses are presented as J-integral values, crack opening displacements and areas and leak rates as well as comparisons to the experimental results

  8. Structural Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Provides a wide variety of testing equipment, fixtures and facilities to perform both unique aviation component testing as well as common types of materials testing...

  9. Essential results of analyses accompanying the leak rate experiments E22 at HDR

    International Nuclear Information System (INIS)

    Grebner, H.; Hoefler, A.; Hunger, H.

    1997-01-01

    During phase III of the HDR Safety Programme (HDR: decommissioned overheated steam reactor in Karlstein, Germany), experiments were performed in test group E22 on small-bore austenitic straight piping and on pipe elbows and branches containing through-wall cracks. The main aim was the determination of crack opening and leak rate behaviour for the cracked components under almost operational pressure and temperature loading conditions, especially including transient bending moments. In addition to machined slits, naturally grown fatigue cracks were also considered to cover the leakage behaviour. The experiments were accompanied by calculations, mainly performed by GRS. The paper describes the most important aspects and the essential results of the calculations and analysis. The main outcome was that the crack opening and initiation of crack growth can be described with the finite element techniques applied with sufficient accuracy. However, the qualification of the leak rate models could not be completed successfully, and therefore more sophisticated experiments of this kind are needed. (orig.)

  10. Survey of solar thermal test facilities

    Energy Technology Data Exchange (ETDEWEB)

    Masterson, K.

    1979-08-01

    The facilities that are presently available for testing solar thermal energy collection and conversion systems are briefly described. Facilities that are known to meet ASHRAE standard 93-77 for testing flat-plate collectors are listed. The DOE programs and test needs for distributed concentrating collectors are identified. Existing and planned facilities that meet these needs are described and continued support for most of them is recommended. The needs and facilities that are suitable for testing components of central receiver systems, several of which are located overseas, are identified. The central contact point for obtaining additional details and test procedures for these facilities is the Solar Thermal Test Facilities Users' Association in Albuquerque, N.M. The appendices contain data sheets and tables which give additional details on the technical capabilities of each facility. Also included is the 1975 Aerospace Corporation report on test facilities that is frequently referenced in the present work.

  11. Intraoperative HDR implant boost for breast cancer (preliminary results)

    International Nuclear Information System (INIS)

    Rodriguez, I.; Torre, M. de la; Gonzalez, E.; Bourel, V.

    1996-01-01

    Introduction: In spite of the fact that it is been discussed whether or not a boost is necessary for all conservative treated breast cancer patients, it is a generalized radiotherapy practice. Since september 1993 we developed a breast conservative protocol for early stage breast cancer (T1-T2) with intraoperative HDR implant boost. Side effects, cosmetic results and recurrence rates are reviewed. Method and Material: From September 1993 we treated 55 patients with intraoperative HDR implant boost to the lumpectomy site for clinical T1 or T2 invasive breast cancer, followed by external megavoltage radiotherapy to the entire breast. We used the Nucletron microselectron HDR remote afterloading system with flexible implant tubes. The geometric distribution of the tubes was performed according to the 'Paris' configuration. Each implant was evaluated by calculating the dose-volume natural histograms. The HDR fractionation schedule consists of three fractions of 4.5Gy each given at least 48 hs apart, and starting between 48-72hs from surgical procedure. The external radiotherapy to the entire breast started one week after the completion of brachytherapy, using conventional fractionation of 5 fractions per week, 1,8Gy per fraction up to 45-50Gy. Results: So far there is not any local recurrence, but medium follow up is only 18 months. We did not observe any acute damage and the cosmetic outcome was 60% excellent, 30% good and 10% acceptable. Two patients developed localized fibrosis, in both the implant involved the submamary fold. Conclusion: The intraoperative implant is the most accurate way to localize the lumpectomy site, to define the target volume, decrease the total treatment time and avoid a second anesthetic procedure without delaying the inpatient time or the initial wound healing process

  12. Experience of the first application of HDR brachytherapy in nasopharynx

    International Nuclear Information System (INIS)

    Vega Hernandez, Manuel I.; Alfonso Laguardia, Rodolfo; Silvestre Patallo, Ileana; Roca Muchuli, Carlos; Garcia Heredia, Gilda

    2006-01-01

    A research was made by applying boost on the area of the nasopharynx relapse with high dose rate (HDR) in a diagnosis of nasopharynx carcinoma previously treated with telecobalt therapy, at a dose of 70 Gy. There was persistence of the injury. Three sessions were planned, with consecutive fractions of 6.5 Gy in 15 days, with optimization, using a personal mould of autopolymerizable acrylic. The successful possibility to apply the high rate modern brachytherapy was reaffirmed, as a treatment complementary to teletherapy in case of persistence or relapse. A Micro Selectron HDR equipment was used

  13. The Integral Test Facility Karlstein

    Directory of Open Access Journals (Sweden)

    Stephan Leyer

    2012-01-01

    Full Text Available The Integral Test Facility Karlstein (INKA test facility was designed and erected to test the performance of the passive safety systems of KERENA, the new AREVA Boiling Water Reactor design. The experimental program included single component/system tests of the Emergency Condenser, the Containment Cooling Condenser and the Passive Core Flooding System. Integral system tests, including also the Passive Pressure Pulse Transmitter, will be performed to simulate transients and Loss of Coolant Accident scenarios at the test facility. The INKA test facility represents the KERENA Containment with a volume scaling of 1 : 24. Component heights and levels are in full scale. The reactor pressure vessel is simulated by the accumulator vessel of the large valve test facility of Karlstein—a vessel with a design pressure of 11 MPa and a storage capacity of 125 m3. The vessel is fed by a benson boiler with a maximum power supply of 22 MW. The INKA multi compartment pressure suppression Containment meets the requirements of modern and existing BWR designs. As a result of the large power supply at the facility, INKA is capable of simulating various accident scenarios, including a full train of passive systems, starting with the initiating event—for example pipe rupture.

  14. GPS Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Global Positioning System (GPS) Test Facility Instrumentation Suite (GPSIS) provides great flexibility in testing receivers by providing operational control of...

  15. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    International Nuclear Information System (INIS)

    Zhen, Xin; Chen, Haibin; Zhou, Linghong; Yan, Hao; Jiang, Steve; Jia, Xun; Gu, Xuejun; Mell, Loren K; Yashar, Catheryn M; Cervino, Laura

    2015-01-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses. (paper)

  16. A segmentation and point-matching enhanced efficient deformable image registration method for dose accumulation between HDR CT images

    Science.gov (United States)

    Zhen, Xin; Chen, Haibin; Yan, Hao; Zhou, Linghong; Mell, Loren K.; Yashar, Catheryn M.; Jiang, Steve; Jia, Xun; Gu, Xuejun; Cervino, Laura

    2015-04-01

    Deformable image registration (DIR) of fractional high-dose-rate (HDR) CT images is challenging due to the presence of applicators in the brachytherapy image. Point-to-point correspondence fails because of the undesired deformation vector fields (DVF) propagated from the applicator region (AR) to the surrounding tissues, which can potentially introduce significant DIR errors in dose mapping. This paper proposes a novel segmentation and point-matching enhanced efficient DIR (named SPEED) scheme to facilitate dose accumulation among HDR treatment fractions. In SPEED, a semi-automatic seed point generation approach is developed to obtain the incremented fore/background point sets to feed the random walks algorithm, which is used to segment and remove the AR, leaving empty AR cavities in the HDR CT images. A feature-based ‘thin-plate-spline robust point matching’ algorithm is then employed for AR cavity surface points matching. With the resulting mapping, a DVF defining on each voxel is estimated by B-spline approximation, which serves as the initial DVF for the subsequent Demons-based DIR between the AR-free HDR CT images. The calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative analysis and visual inspection of the DIR results indicate that SPEED can suppress the impact of applicator on DIR, and accurately register HDR CT images as well as deform and add interfractional HDR doses.

  17. A Survey on the Acceptance and the Use of HDR Photography Among Croatian Photographers

    Directory of Open Access Journals (Sweden)

    Maja Strgar Kurecic

    2013-04-01

    Full Text Available The emerging field of high dynamic range (HDR imaging is directly linked to diverse existing disciplines such as radiometry, photometry, colorimetry and colour appearance - each dealing with specific aspects of light and its perception by humans. Although the idea is not new, it has not been widely used until just a few years ago when digital cameras gained popularity and the computers processing power increased significantly. Now this photographic technique is widely spread and used, but even more often – misused. A research was conducted by means of a questionnaire in order to get some actual information about how Croatian photographers see the HDR photography and how they employ it. The results of the survey proved that indeed a great interest exists in the technique, but that many photographers are scared away from the HDR photography because of the misconception that the artificial look is an unavoidable side effect of the HDR processing. The fact is, however, that the final HDR image is a result of the tone mapping process and post-corrections and adjustments, entirely dependent on the photographer’s intent and vision, as well as his understanding of various adjustments available. The results of the questionnaire have also pointed out to other widely spread misconceptions which are discussed in this paper.

  18. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes.

    Science.gov (United States)

    Wang, Bangmei; Li, Kunyu; Wang, Amy; Reiser, Michelle; Saunders, Thom; Lockey, Richard F; Wang, Jia-Wang

    2015-10-01

    The clustered regularly interspaced short palindromic repeat (CRISPR) gene editing technique, based on the non-homologous end-joining (NHEJ) repair pathway, has been used to generate gene knock-outs with variable sizes of small insertion/deletions with high efficiency. More precise genome editing, either the insertion or deletion of a desired fragment, can be done by combining the homology-directed-repair (HDR) pathway with CRISPR cleavage. However, HDR-mediated gene knock-in experiments are typically inefficient, and there have been no reports of successful gene knock-in with DNA fragments larger than 4 kb. Here, we describe the targeted insertion of large DNA fragments (7.4 and 5.8 kb) into the genomes of mouse embryonic stem (ES) cells and zygotes, respectively, using the CRISPR/HDR technique without NHEJ inhibitors. Our data show that CRISPR/HDR without NHEJ inhibitors can result in highly efficient gene knock-in, equivalent to CRISPR/HDR with NHEJ inhibitors. Although NHEJ is the dominant repair pathway associated with CRISPR-mediated double-strand breaks (DSBs), and biallelic gene knock-ins are common, NHEJ and biallelic gene knock-ins were not detected. Our results demonstrate that efficient targeted insertion of large DNA fragments without NHEJ inhibitors is possible, a result that should stimulate interest in understanding the mechanisms of high efficiency CRISPR targeting in general.

  19. Genitourinary Toxicity After High-Dose-Rate (HDR) Brachytherapy Combined With Hypofractionated External Beam Radiotherapy for Localized Prostate Cancer: An Analysis to Determine the Correlation Between Dose-Volume Histogram Parameters in HDR Brachytherapy and Severity of Toxicity

    International Nuclear Information System (INIS)

    Ishiyama, Hiromichi; Kitano, Masashi; Satoh, Takefumi; Kotani, Shouko; Uemae, Mineko; Matsumoto, Kazumasa; Okusa, Hiroshi; Tabata, Ken-ichi; Baba, Shiro; Hayakawa, Kazushige

    2009-01-01

    Purpose: To evaluate the severity of genitourinary (GU) toxicity in high-dose-rate (HDR) brachytherapy combined with hypofractionated external beam radiotherapy (EBRT) for prostate cancer and to explore factors that might affect the severity of GU toxicity. Methods and Materials: A total of 100 Japanese men with prostate cancer underwent 192 Ir HDR brachytherapy combined with hypofractionated EBRT. Mean (SD) dose to 90% of the planning target volume was 6.3 (0.7) Gy per fraction of HDR. After 5 fractions of HDR treatment, EBRT with 10 fractions of 3 Gy was administrated. The urethral volume receiving 1-15 Gy per fraction in HDR brachytherapy (V1-V15) and the dose to at least 5-100% of urethral volume in HDR brachytherapy (D5-D100) were compared between patients with Grade 3 toxicity and those with Grade 0-2 toxicity. Prostate volume, patient age, and International Prostate Symptom Score were also compared between the two groups. Results: Of the 100 patients, 6 displayed Grade 3 acute GU toxicity, and 12 displayed Grade 3 late GU toxicity. Regarding acute GU toxicity, values of V1, V2, V3, and V4 were significantly higher in patients with Grade 3 toxicity than in those with Grade 0-2 toxicity. Regarding late GU toxicity, values of D70, D80, V12, and V13 were significantly higher in patients with Grade 3 toxicity than in those with Grade 0-2 toxicity. Conclusions: The severity of GU toxicity in HDR brachytherapy combined with hypofractionated EBRT for prostate cancer was relatively high. The volume of prostatic urethra was associated with grade of acute GU toxicity, and urethral dose was associated with grade of late GU toxicity.

  20. SU-F-T-55: Reproducibility of Interstitial HDR Brachytherapy Plans

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Ellis, R; Traughber, B; Podder, T [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2016-06-15

    Purpose: Treating gynecological cancers with interstitial high-dose-rate (HDR) brachytherapy requires precise reconstruction of catheter positions to obtain accurate dosimetric plans. In this study, we investigated the degree of reproducibility of dosimetric plans for Syed HDR brachytherapy. Methods: We randomly selected five patients having cervix-vaginal cancer who were recently treated in our clinic with interstitial HDR brachytherapy with a prescription dose of 25–30 Gy in five fractions. Interstitial needles/catheters were placed under fluoroscopic guidance and intra-operative 3T MRI scan was performed to confirm the desired catheter placement for adequate target volume coverage. A CT scan was performed and fused with the MRI for delineating high-risk CTV (HR-CTV), intermediate-risk CTV (IR-CTV) and OARs. HDR treatment plans were generated using Oncentra planning software. A single plan was used for all five fractions of treatment for each patient. For this study, we took the original clinical plan and removed all the reconstructed catheters from the plan keeping the original contours unchanged. Then, we manually reconstructed all the catheters and entered the same dwell time from the first original clinical plan. The dosimetric parameters studied were: D90 for HR-CTV and IR-CV, and D2cc for bladder, rectum, sigmoid and bowel. Results: The mean of absolute differences in dosimetric coverage (D90) were (range): 1.3% (1.0–2.0%) and 2.0% (0.9–3.6%) for HR-CTV and IR-CTV, respectively. In case of OARs, the mean of absolute variations in D2cc were (range): 4.7% (0.7–8.9%) for bladder, 1.60% (0.3–3.2%) for rectum, 1.6% (0–3.9%) for sigmoid, and 1.8% (0–5.1%) for bowel. Conclusion: Overall, the reproducibility of interstitial HDR plans was within clinically acceptable limit. Observed maximum variation in D2cc for bladder. If number of catchers and dwell points were relatively low or any one catheter was heavily loaded, then reproducibility of the plan

  1. Energy Systems Test Area (ESTA). Power Systems Test Facilities

    Science.gov (United States)

    Situ, Cindy H.

    2010-01-01

    This viewgraph presentation provides a detailed description of the Johnson Space Center's Power Systems Facility located in the Energy Systems Test Area (ESTA). Facilities and the resources used to support power and battery systems testing are also shown. The contents include: 1) Power Testing; 2) Power Test Equipment Capabilities Summary; 3) Source/Load; 4) Battery Facilities; 5) Battery Test Equipment Capabilities Summary; 6) Battery Testing; 7) Performance Test Equipment; 8) Battery Test Environments; 9) Battery Abuse Chambers; 10) Battery Abuse Capabilities; and 11) Battery Test Area Resources.

  2. Corrosion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Corrosion Testing Facility is part of the Army Corrosion Office (ACO). It is a fully functional atmospheric exposure site, called the Corrosion Instrumented Test...

  3. Perioperative high dose rate (HDR brachytherapy in unresectable locally advanced pancreatic tumors

    Directory of Open Access Journals (Sweden)

    Brygida Białas

    2011-07-01

    Full Text Available Purpose: The aim of the study was to present an original technique of catheter implantation for perioperative HDR-Ir192 brachytherapy in patients after palliative operations of unresectable locally advanced pancreatic tumors and to estimate the influence of perioperative HDR-Ir192 brachytherapy on pain relief in terminal pancreatic cancer patients. Material and methods: Eight patients with pancreatic tumors located in the head of pancreas underwent palliative operations with the use of HDR-Ir192 brachytherapy. All patients qualified for surgery reported pain of high intensity and had received narcotic painkillers prior to operation. During the last phase of the surgery, the Nucletron® catheters were implanted in patients to prepare them for later perioperative brachytherapy. Since the 6th day after surgery HDR brachytherapy was performed. Before each brachytherapy fraction the location of implants were checked using fluoroscopy. A fractional dose was 5 Gy and a total dose was 20 Gy in the area of radiation. A comparative study of two groups of patients (with and without brachytherapy with stage III pancreatic cancer according to the TNM scale was taken in consideration. Results and Conclusions: The authors claim that the modification of catheter implantation using specially designed cannula, facilitates the process of inserting the catheter into the tumor, shortens the time needed for the procedure, and reduces the risk of complications. Mean survival time was 5.7 months. In the group of performed brachytherapy, the mean survival time was 6.7 months, while in the group of no brachytherapy performed – 4.4 months. In the group of brachytherapy, only one patient increased the dose of painkillers in the last month of his life. Remaining patients took constant doses of medicines. Perioperative HDR-Ir192 brachytherapy could be considered as a practical application of adjuvant therapy for pain relief in patients with an advanced pancreatic cancer.

  4. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  5. Distributed Energy Resources Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — NREL's Distributed Energy Resources Test Facility (DERTF) is a working laboratory for interconnection and systems integration testing. This state-of-the-art facility...

  6. High dynamic range adaptive real-time smart camera: an overview of the HDR-ARTiST project

    Science.gov (United States)

    Lapray, Pierre-Jean; Heyrman, Barthélémy; Ginhac, Dominique

    2015-04-01

    Standard cameras capture only a fraction of the information that is visible to the human visual system. This is specifically true for natural scenes including areas of low and high illumination due to transitions between sunlit and shaded areas. When capturing such a scene, many cameras are unable to store the full Dynamic Range (DR) resulting in low quality video where details are concealed in shadows or washed out by sunlight. The imaging technique that can overcome this problem is called HDR (High Dynamic Range) imaging. This paper describes a complete smart camera built around a standard off-the-shelf LDR (Low Dynamic Range) sensor and a Virtex-6 FPGA board. This smart camera called HDR-ARtiSt (High Dynamic Range Adaptive Real-time Smart camera) is able to produce a real-time HDR live video color stream by recording and combining multiple acquisitions of the same scene while varying the exposure time. This technique appears as one of the most appropriate and cheapest solution to enhance the dynamic range of real-life environments. HDR-ARtiSt embeds real-time multiple captures, HDR processing, data display and transfer of a HDR color video for a full sensor resolution (1280 1024 pixels) at 60 frames per second. The main contributions of this work are: (1) Multiple Exposure Control (MEC) dedicated to the smart image capture with alternating three exposure times that are dynamically evaluated from frame to frame, (2) Multi-streaming Memory Management Unit (MMMU) dedicated to the memory read/write operations of the three parallel video streams, corresponding to the different exposure times, (3) HRD creating by combining the video streams using a specific hardware version of the Devebecs technique, and (4) Global Tone Mapping (GTM) of the HDR scene for display on a standard LCD monitor.

  7. NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    Science.gov (United States)

    Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.

    2004-12-01

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.

  8. Dosimetric comparison between the microSelectron HDR 192Ir v2 source and the BEBIG 60Co source for HDR brachytherapy using the EGSnrc Monte Carlo transport code

    International Nuclear Information System (INIS)

    Anwarul Islam, M.; Akramuzzaman, M.M.; Zakaria, G.A.

    2012-01-01

    Manufacturing of miniaturized high activity 192 Ir sources have been made a market preference in modern brachytherapy. The smaller dimensions of the sources are flexible for smaller diameter of the applicators and it is also suitable for interstitial implants. Presently, miniaturized 60 Co HDR sources have been made available with identical dimensions to those of 192 Ir sources. 60 Co sources have an advantage of longer half life while comparing with 192 Ir source. High dose rate brachytherapy sources with longer half life are logically pragmatic solution for developing country in economic point of view. This study is aimed to compare the TG-43U1 dosimetric parameters for new BEBIG 60 Co HDR and new microSelectron 192 Ir HDR sources. Dosimetric parameters are calculated using EGSnrc-based Monte Carlo simulation code accordance with the AAPM TG-43 formalism for microSelectron HDR 192 Ir v2 and new BEBIG 60 Co HDR sources. Air-kerma strength per unit source activity, calculated in dry air are 9.698x10 -8 ± 0.55% U Bq -1 and 3.039x10 -7 ± 0.41% U Bq -1 for the above mentioned two sources, respectively. The calculated dose rate constants per unit air-kerma strength in water medium are 1.116±0.12% cGy h -1 U -1 and 1.097±0.12% cGy h -1 U -1 , respectively, for the two sources. The values of radial dose function for distances up to 1 cm and more than 22 cm for BEBIG 60 Co HDR source are higher than that of other source. The anisotropic values are sharply increased to the longitudinal sides of the BEBIG 60 Co source and the rise is comparatively sharper than that of the other source. Tissue dependence of the absorbed dose has been investigated with vacuum phantom for breast, compact bone, blood, lung, thyroid, soft tissue, testis, and muscle. No significant variation is noted at 5 cm of radial distance in this regard while comparing the two sources except for lung tissues. The true dose rates are calculated with considering photon as well as electron transport using

  9. HDR brachytherapy for superficial non-melanoma skin cancers

    International Nuclear Information System (INIS)

    Gauden, Ruth; Pracy, Martin; Avery, Anne-Marie; Hodgetts, Ian; Gauden, Stan

    2013-01-01

    Our initial experience using recommended high dose per fraction skin brachytherapy (BT) treatment schedules, resulted in poor cosmesis. This study aimed to assess in a prospective group of patients the use of Leipzig surface applicators for High Dose Rate (HDR) brachytherapy, for the treatment of small non-melanoma skin cancers (NMSC) using a protracted treatment schedule. Treatment was delivered by HDR brachytherapy with Leipzig applicators. 36Gy, prescribed to between 3 to 4mm, was given in daily 3Gy fractions. Acute skin toxicity was evaluated weekly during irradiation using the Radiation Therapy Oncology Group criteria. Local response, late skin effects and cosmetic results were monitored at periodic intervals after treatment completion. From March 2002, 200 patients with 236 lesions were treated. Median follow-up was 66 months (range 25–121 months). A total of 162 lesions were macroscopic, while in 74 cases, BT was given after resection because of positive microscopic margins. There were 121 lesions that were basal cell carcinomas, and 115 were squamous cell carcinomas. Lesions were located on the head and neck (198), the extremities (26) and trunk (12). Local control was 232/236 (98%). Four patients required further surgery to treat recurrence. Grade 1 acute skin toxicity was detected in 168 treated lesions (71%) and grade 2 in 81 (34%). Cosmesis was good or excellent in 208 cases (88%). Late skin hypopigmentation changes were observed in 13 cases (5.5%). Delivering 36Gy over 2 weeks to superficial NMSC using HDR brachytherapy is well tolerated and provides a high local control rate without significant toxicity.

  10. Aircraft Test & Evaluation Facility (Hush House)

    Data.gov (United States)

    Federal Laboratory Consortium — The Aircraft Test and Evaluation Facility (ATEF), or Hush House, is a noise-abated ground test sub-facility. The facility's controlled environment provides 24-hour...

  11. Time to PSA rise differentiates the PSA bounce after HDR and LDR brachytherapy of prostate cancer.

    Science.gov (United States)

    Burchardt, Wojciech; Skowronek, Janusz

    2018-02-01

    To investigate the differences in prostate-specific antigen (PSA) bounce (PB) after high-dose-rate (HDR-BT) or low-dose-rate (LDR-BT) brachytherapy alone in prostate cancer patients. Ninety-four patients with localized prostate cancer (T1-T2cN0), age ranged 50-81 years, were treated with brachytherapy alone between 2008 and 2010. Patients were diagnosed with adenocarcinoma, Gleason score ≤ 7. The LDR-BT total dose was 144-145 Gy, in HDR-BT - 3 fractions of 10.5 or 15 Gy. The initial PSA level (iPSA) was assessed before treatment, then PSA was rated every 3 months over the first 2 years, and every 6 months during the next 3 years. Median follow-up was 3.0 years. Mean iPSA was 7.8 ng/ml. In 58 cases, PSA decreased gradually without PB or biochemical failure (BF). In 24% of patients, PB was observed. In 23 cases (24%), PB was observed using 0.2 ng/ml definition; in 10 cases (11%), BF was diagnosed using nadir + 2 ng/ml definition. The HDR-BT and LDR-BT techniques were not associated with higher level of PB (26 vs. 22%, p = 0.497). Time to the first PSA rise finished with PB was significantly shorter after HDR-BT then after LDR-BT (median, 10.5 vs. 18.0 months) during follow-up. Predictors for PB were observed only after HDR-BT. Androgen deprivation therapy (ADT) and higher Gleason score decreased the risk of PB (HR = 0.11, p = 0.03; HR = 0.51, p = 0.01). The higher PSA nadir and longer time to PSA nadir increased the risk of PB (HR 3.46, p = 0.02; HR 1.04, p = 0.04). There was no predictors for PB after LDR-BT. HDR-BT and LDR-BT for low and intermediate risk prostate cancer had similar PB rate. The PB occurred earlier after HDR-BT than after LDR-BT. ADT and higher Gleason score decreased, and higher PSA nadir and longer time to PSA nadir increased the risk of PB after HDR-BT.

  12. The Oryza sativa Regulator HDR1 Associates with the Kinase OsK4 to Control Photoperiodic Flowering.

    Directory of Open Access Journals (Sweden)

    Xuehui Sun

    2016-03-01

    Full Text Available Rice is a facultative short-day plant (SDP, and the regulatory pathways for flowering time are conserved, but functionally modified, in Arabidopsis and rice. Heading date 1 (Hd1, an ortholog of Arabidopsis CONSTANS (CO, is a key regulator that suppresses flowering under long-day conditions (LDs, but promotes flowering under short-day conditions (SDs by influencing the expression of the florigen gene Heading date 3a (Hd3a. Another key regulator, Early heading date 1 (Ehd1, is an evolutionarily unique gene with no orthologs in Arabidopsis, which acts as a flowering activator under both SD and LD by promoting the rice florigen genes Hd3a and RICE FLOWERING LOCUST 1 (RFT1. Here, we report the isolation and characterization of the flowering regulator Heading Date Repressor1 (HDR1 in rice. The hdr1 mutant exhibits an early flowering phenotype under natural LD in a paddy field in Beijing, China (39°54'N, 116°23'E, as well as under LD but not SD in a growth chamber, indicating that HDR1 may functionally regulate flowering time via the photoperiod-dependent pathway. HDR1 encodes a nuclear protein that is most active in leaves and floral organs and exhibits a typical diurnal expression pattern. We determined that HDR1 is a novel suppressor of flowering that upregulates Hd1 and downregulates Ehd1, leading to the downregulation of Hd3a and RFT1 under LDs. We have further identified an HDR1-interacting kinase, OsK4, another suppressor of rice flowering under LDs. OsK4 acts similarly to HDR1, suppressing flowering by upregulating Hd1 and downregulating Ehd1 under LDs, and OsK4 can phosphorylate HD1 with HDR1 presents. These results collectively reveal the transcriptional regulators of Hd1 for the day-length-dependent control of flowering time in rice.

  13. Manual for operation of the multipurpose thermalhydraulic test facility TOPFLOW (Transient Two Phase Flow Test Facility)

    International Nuclear Information System (INIS)

    Beyer, M.; Carl, H.; Schuetz, H.; Pietruske, H.; Lenk, S.

    2004-07-01

    The Forschungszentrum Rossendorf (FZR) e. V. is constructing a new large-scale test facility, TOPFLOW, for thermalhydraulic single effect tests. The acronym stands for transient two phase flow test facility. It will mainly be used for the investigation of generic and applied steady state and transient two phase flow phenomena and the development and validation of models of computational fluid dynamic (CFD) codes. The manual of the test facility must always be available for the staff in the control room and is restricted condition during operation of personnel and also reconstruction of the facility. (orig./GL)

  14. LLNL superconducting magnets test facility

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, R; Martovetsky, N; Moller, J; Zbasnik, J

    1999-09-16

    The FENIX facility at Lawrence Livermore National Laboratory was upgraded and refurbished in 1996-1998 for testing CICC superconducting magnets. The FENIX facility was used for superconducting high current, short sample tests for fusion programs in the late 1980s--early 1990s. The new facility includes a 4-m diameter vacuum vessel, two refrigerators, a 40 kA, 42 V computer controlled power supply, a new switchyard with a dump resistor, a new helium distribution valve box, several sets of power leads, data acquisition system and other auxiliary systems, which provide a lot of flexibility in testing of a wide variety of superconducting magnets in a wide range of parameters. The detailed parameters and capabilities of this test facility and its systems are described in the paper.

  15. Eccentric Coil Test Facility (ECTF)

    International Nuclear Information System (INIS)

    Burn, P.B.; Walstrom, P.L.; Anderson, W.C.; Marguerat, E.F.

    1975-01-01

    The conceptual design of a facility for testing superconducting coils under some conditions peculiar to tokamak systems is given. A primary element of the proposed facility is a large 25 MJ background solenoid. Discussions of the mechanical structure, the stress distribution and the thermal stability for this coil are included. The systems for controlling the facility and diagnosing test coil behavior are also described

  16. Determinación de la distribución de dosis en tratamientos de cáncer de mama con fuentes de 192 Ir HDR / Determination of doses distributions on breast cancer treatments with 192 Ir HDR sources

    OpenAIRE

    Beltrán Gómez, Cristian Camilo

    2010-01-01

    La Braquiterapia de alta tasa de dosis HDR es una moderna técnica de tratamiento que ha venido teniendo un rápido crecimiento en su uso clínico, reemplazando a la braquiterapia de baja tasa de dosis LDR. La braquiterapia HDR se caracteriza por utilizar fuentes radiactivas con tasas de dosis mayores a 12 Gy/h, por tanto con propósitos de protección radiológica debe ser realizada con equipos de carga remota, es común en los tratamientos de braquiterapia HDR depositar altas dosis por fracción, c...

  17. Ouellette Thermal Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Thermal Test Facility is a joint Army/Navy state-of-the-art facility (8,100 ft2) that was designed to:Evaluate and characterize the effect of flame and thermal...

  18. Engine Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Air Force Arnold Engineering Development Center's Engine Test Facility (ETF) test cells are used for development and evaluation testing of propulsion systems for...

  19. SU-E-T-785: Using Systems Engineering to Design HDR Skin Treatment Operation for Small Lesions to Enhance Patient Safety

    International Nuclear Information System (INIS)

    Saw, C; Baikadi, M; Peters, C; Brereton, H

    2015-01-01

    Purpose: Using systems engineering to design HDR skin treatment operation for small lesions using shielded applicators to enhance patient safety. Methods: Systems engineering is an interdisciplinary field that offers formal methodologies to study, design, implement, and manage complex engineering systems as a whole over their life-cycles. The methodologies deal with human work-processes, coordination of different team, optimization, and risk management. The V-model of systems engineering emphasize two streams, the specification and the testing streams. The specification stream consists of user requirements, functional requirements, and design specifications while the testing on installation, operational, and performance specifications. In implementing system engineering to this project, the user and functional requirements are (a) HDR unit parameters be downloaded from the treatment planning system, (b) dwell times and positions be generated by treatment planning system, (c) source decay be computer calculated, (d) a double-check system of treatment parameters to comply with the NRC regulation. These requirements are intended to reduce human intervention to improve patient safety. Results: A formal investigation indicated that the user requirements can be satisfied. The treatment operation consists of using the treatment planning system to generate a pseudo plan that is adjusted for different shielded applicators to compute the dwell times. The dwell positions, channel numbers, and the dwell times are verified by the medical physicist and downloaded into the HDR unit. The decayed source strength is transferred to a spreadsheet that computes the dwell times based on the type of applicators and prescribed dose used. Prior to treatment, the source strength, dwell times, dwell positions, and channel numbers are double-checked by the radiation oncologist. No dosimetric parameters are manually calculated. Conclusion: Systems engineering provides methodologies to

  20. Several new thermo-hydraulic test facilities in NPIC

    International Nuclear Information System (INIS)

    Ye Shurong; Sun Yufa; Ji Fuyun; Zong Guifang; Guo Zhongchuan

    1997-01-01

    Several new thermo-hydraulic test facilities are under construction in Nuclear Power Institute of Chinese (NPIC) at Chengdu. These facilities include: 1. Nuclear Power Component Comprehensive Test Facility. 2. Reactor Hydraulic Modeling Test Facility. 3. Control Rod Drive Line Hydraulic Test Facility. 4. Large Scale Thermo-Hydraulic Test Facility. The construction of these facilities will make huge progress in the research and development capability of nuclear power technology in CHINA. The author will present a brief description of the design parameters flowchart and test program of these facilities

  1. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  2. MO-C-17A-11: A Segmentation and Point Matching Enhanced Deformable Image Registration Method for Dose Accumulation Between HDR CT Images

    International Nuclear Information System (INIS)

    Zhen, X; Chen, H; Zhou, L; Yan, H; Jiang, S; Jia, X; Gu, X; Mell, L; Yashar, C; Cervino, L

    2014-01-01

    Purpose: To propose and validate a novel and accurate deformable image registration (DIR) scheme to facilitate dose accumulation among treatment fractions of high-dose-rate (HDR) gynecological brachytherapy. Method: We have developed a method to adapt DIR algorithms to gynecologic anatomies with HDR applicators by incorporating a segmentation step and a point-matching step into an existing DIR framework. In the segmentation step, random walks algorithm is used to accurately segment and remove the applicator region (AR) in the HDR CT image. A semi-automatic seed point generation approach is developed to obtain the incremented foreground and background point sets to feed the random walks algorithm. In the subsequent point-matching step, a feature-based thin-plate spline-robust point matching (TPS-RPM) algorithm is employed for AR surface point matching. With the resulting mapping, a DVF characteristic of the deformation between the two AR surfaces is generated by B-spline approximation, which serves as the initial DVF for the following Demons DIR between the two AR-free HDR CT images. Finally, the calculated DVF via Demons combined with the initial one serve as the final DVF to map doses between HDR fractions. Results: The segmentation and registration accuracy are quantitatively assessed by nine clinical HDR cases from three gynecological cancer patients. The quantitative results as well as the visual inspection of the DIR indicate that our proposed method can suppress the interference of the applicator with the DIR algorithm, and accurately register HDR CT images as well as deform and add interfractional HDR doses. Conclusions: We have developed a novel and robust DIR scheme that can perform registration between HDR gynecological CT images and yield accurate registration results. This new DIR scheme has potential for accurate interfractional HDR dose accumulation. This work is supported in part by the National Natural ScienceFoundation of China (no 30970866 and no

  3. Cryogenic test facility at VECC, Kolkata

    International Nuclear Information System (INIS)

    Sarkar, Amit; Bhunia, Uttam; Pradhan, J.; Sur, A.; Bhandari, R.K.; Ranganathan, R.

    2003-01-01

    In view of proposed K-500 superconducting cyclotron project, cryogenic test facility has been set up at the centre. The facility can broadly be categorized into two- a small scale test facility and a large scale test facility. This facility has been utilized for the calibration of liquid helium level probe, cryogenic temperature probe, and I-B plot for a 7 T superconducting magnet. Spiral-shaped superconducting short sample with specific dimension and specially designed stainless steel sample holder has already been developed for the electrical characterisation. The 1/5 th model superconducting coil along with its quench detection circuit and dump resistor has also been developed

  4. Construction and commissioning test report of the CEDM test facility

    Energy Technology Data Exchange (ETDEWEB)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system.

  5. Construction and commissioning test report of the CEDM test facility

    International Nuclear Information System (INIS)

    Chung, C. H.; Kim, J. T.; Park, W. M.; Youn, Y. J.; Jun, H. G.; Choi, N. H.; Park, J. K.; Song, C. H.; Lee, S. H.; Park, J. K.

    2001-02-01

    The test facility for performance verification of the control element drive mechanism (CEDM) of next generation power plant was installed at the site of KAERI. The CEDM was featured a mechanism consisting of complicated mechanical parts and electromagnetic control system. Thus, a new CEDM design should go through performance verification tests prior to it's application in a reactor. The test facility can simulate the reactor operating conditions such as temperature, pressure and water quality and is equipped with a test chamber to accomodate a CEDM as installed in the power plant. This test facility can be used for the following tests; endurance test, coil cooling test, power measurement and reactivity rod drop test. The commissioning tests for the test facility were performed up to the CEDM test conditions of 320 C and 150 bar, and required water chemistry was obtained by operating the on-line water treatment system

  6. Ice condenser testing facility and plans

    International Nuclear Information System (INIS)

    Kannberg, L.D.; Ross, B.A.; Eschbach, E.J.; Ligotke, M.W.

    1987-01-01

    A facility is being constructed to experimentally validate the ICEDF computer code. The code was developed to estimate the extent of fission product retention in the ice compartments of pressurized water reactor ice condenser containment systems during severe accidents. The design and construction of the facility is based on a test design that addresses the validation needs of the code for conditions typical of those expected to occur during severe pressurized water reactor accidents. Detailed facility design has followed completion of a test design (i.e., assembled test cases each involving a different set of aerosol and thermohydraulic flow conditions). The test design was developed with the aid of statistical test design software and was scrutinized for applicability with the aid of ICEDF simulations. The test facility will incorporate a small section of a prototypic ice condenser (e.g., a cross section comprising the equivalent of four 1-ft-diameter ice baskets to their full prototypic height of 48 ft). The development of the test design, the detailed facility design, and the construction progress are described in this paper

  7. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    Science.gov (United States)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-08-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  8. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    International Nuclear Information System (INIS)

    Ruotsalainen, Henri; Miettinen, Kaisa; Palmgren, Jan-Erik; Lahtinen, Tapani

    2010-01-01

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  9. Mark 1 Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Mark I Test Facility is a state-of-the-art space environment simulation test chamber for full-scale space systems testing. A $1.5M dollar upgrade in fiscal year...

  10. Pavement Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Comprehensive Environmental and Structural AnalysesThe ERDC Pavement Testing Facility, located on the ERDC Vicksburg campus, was originally constructed to provide an...

  11. Distribution of hydrogen within the HDR-containment under severe accident conditions. OECD standard problem. Final comparison report

    Energy Technology Data Exchange (ETDEWEB)

    Karwat, H

    1992-08-15

    The present report summarizes the results of the International Standard Problem Exercise ISP-29, based on the HDR Hydrogen Distribution Experiment E11.2. Post-test analyses are compared to experimentally measured parameters, well-known to the analysis. This report has been prepared by the Institute for Reactor Dynamics and Reactor Safety of the Technical University Munich under contract with the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) which received funding for this activity from the German Ministry for Research and Technology (BMFT) under the research contract RS 792. The HDR experiment E11.2 has been performed by the Kernforschungszentrum Karlsruhe (KfK) in the frame of the project 'Projekt HDR-Sicherheitsprogramm' sponsored by the BMFT. Ten institutions from eight countries participated in the post-test analysis exercise which was focussing on the long-lasting gas distribution processes expected inside a PWR containment under severe accident conditions. The gas release experiment was coupled to a long-lasting steam release into the containment typical for an unmitigated small break loss-of-coolant accident. In lieu of pure hydrogen a gas mixture consisting of 15% hydrogen and 85% helium has been applied in order to avoid reaching flammability during the experiment. Of central importance are common overlay plots comparing calculated transients with measurements of the global pressure, the local temperature-, steam- and gas concentration distributions throughout the entire HDR containment. The comparisons indicate relatively large margins between most calculations and the experiment. Having in mind that this exercise was specified as an 'open post-test' analysis of well-known measured data the reasons for discrepancies between measurements and simulations were extensively discussed during a final workshop. It was concluded that analytical shortcomings as well as some uncertainties of experimental boundary conditions may be responsible for deviations

  12. Distribution of hydrogen within the HDR-containment under severe accident conditions. OECD standard problem. Final comparison report

    International Nuclear Information System (INIS)

    Karwat, H.

    1992-08-01

    The present report summarizes the results of the International Standard Problem Exercise ISP-29, based on the HDR Hydrogen Distribution Experiment E11.2. Post-test analyses are compared to experimentally measured parameters, well-known to the analysis. This report has been prepared by the Institute for Reactor Dynamics and Reactor Safety of the Technical University Munich under contract with the Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) which received funding for this activity from the German Ministry for Research and Technology (BMFT) under the research contract RS 792. The HDR experiment E11.2 has been performed by the Kernforschungszentrum Karlsruhe (KfK) in the frame of the project 'Projekt HDR-Sicherheitsprogramm' sponsored by the BMFT. Ten institutions from eight countries participated in the post-test analysis exercise which was focussing on the long-lasting gas distribution processes expected inside a PWR containment under severe accident conditions. The gas release experiment was coupled to a long-lasting steam release into the containment typical for an unmitigated small break loss-of-coolant accident. In lieu of pure hydrogen a gas mixture consisting of 15% hydrogen and 85% helium has been applied in order to avoid reaching flammability during the experiment. Of central importance are common overlay plots comparing calculated transients with measurements of the global pressure, the local temperature-, steam- and gas concentration distributions throughout the entire HDR containment. The comparisons indicate relatively large margins between most calculations and the experiment. Having in mind that this exercise was specified as an 'open post-test' analysis of well-known measured data the reasons for discrepancies between measurements and simulations were extensively discussed during a final workshop. It was concluded that analytical shortcomings as well as some uncertainties of experimental boundary conditions may be responsible for deviations

  13. Comparison of the cost between 60Co and 192Ir, as the sources for high-dose-rate remote control afterloading systems (HDR-RALS)

    International Nuclear Information System (INIS)

    Ogata, Hitoshi

    1994-01-01

    High-Dose-Rate remote control afterloading systems (HDR-RALS) installing 60 Co sources have been prevailing currently in Japan. The survey conducted by Japan Isotope Association (JIA) reports that 180 machines are at working condition. Although the wide prevalence of the HDR-RALS, the stable supply of 60 Co is becoming difficult because of the short availability of raw materials. The supply of 60 Co is planned to be terminated in March 1996. In place of 60 Co, 192 Ir is going to be produced in 1996. The size of 192 Ir, which is much smaller than that of 60 Co, may facilitate broader clinical usability. On the other hand, for the reason that the half life of 192 Ir (73.8 days) is much shorter than that of 60 Co (5.27 years), several exchanges of the sources in a year are necessary. This report analyses the difference of the cost between 60 Co and 192 Ir as the sources for HDR-RALS. As the cost of the 60 Co sources is dependent on the distance from Tokyo. Radiation activity, etc., the cost-calculation was done on the basis the 60 Co sources were installed for the HDR-RALS systems in Yamanashi Central Hospital. The total cost of 60 Co is 3,377,000 yen on the data from JIA. According to the half life of 5.27 years, the available duration can be thought as 7 years and the monthly cost be calculated as about 40,000 yen. In case of 192 Ir, the prices for Buchler' system and Nucletron's system are 800,000 yen and 990,000 yen respectively. Concerning the shortness of the half life, an exchange in every 3 months is ideal. Therefore the monthly cost of 192 Ir would be 260,000-330,000 yen. Consequently the cost-ratio for 192 Ir and 60 Co would become 6.7-8.3. The cost of intracavitary irradiation is controlled by the government as 10,000 yen per treatment in Japan. If this setting remains the same for HDR-RALS installing 192 Ir, almost all the facilities of radiation therapy would suffer from the cost-income inbalance in the near future. (author)

  14. Hot Hydrogen Test Facility

    International Nuclear Information System (INIS)

    W. David Swank

    2007-01-01

    The core in a nuclear thermal rocket will operate at high temperatures and in hydrogen. One of the important parameters in evaluating the performance of a nuclear thermal rocket is specific impulse, ISp. This quantity is proportional to the square root of the propellant's absolute temperature and inversely proportional to square root of its molecular weight. Therefore, high temperature hydrogen is a favored propellant of nuclear thermal rocket designers. Previous work has shown that one of the life-limiting phenomena for thermal rocket nuclear cores is mass loss of fuel to flowing hydrogen at high temperatures. The hot hydrogen test facility located at the Idaho National Lab (INL) is designed to test suitability of different core materials in 2500 C hydrogen flowing at 1500 liters per minute. The facility is intended to test non-uranium containing materials and therefore is particularly suited for testing potential cladding and coating materials. In this first installment the facility is described. Automated Data acquisition, flow and temperature control, vessel compatibility with various core geometries and overall capabilities are discussed

  15. Textiles Performance Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — The Textiles Performance Testing Facilities has the capabilities to perform all physical wet and dry performance testing, and visual and instrumental color analysis...

  16. A comparison of HDR brachytherapy and IMRT techniques for dose escalation in prostate cancer: A radiobiological modeling study

    Energy Technology Data Exchange (ETDEWEB)

    Fatyga, M.; Williamson, J. F.; Dogan, N.; Todor, D.; Siebers, J. V.; George, R.; Barani, I.; Hagan, M. [Department of Radiation Oncology, Virginia Commonwealth University Medical Center, 401 College Street, Richmond, Virginia 23298 (United States)

    2009-09-15

    A course of one to three large fractions of high dose rate (HDR) interstitial brachytherapy is an attractive alternative to intensity modulated radiation therapy (IMRT) for delivering boost doses to the prostate in combination with additional external beam irradiation for intermediate risk disease. The purpose of this work is to quantitatively compare single-fraction HDR boosts to biologically equivalent fractionated IMRT boosts, assuming idealized image guided delivery (igIMRT) and conventional delivery (cIMRT). For nine prostate patients, both seven-field IMRT and HDR boosts were planned. The linear-quadratic model was used to compute biologically equivalent dose prescriptions. The cIMRT plan was evaluated as a static plan and with simulated random and setup errors. The authors conclude that HDR delivery produces a therapeutic ratio which is significantly better than the conventional IMRT and comparable to or better than the igIMRT delivery. For the HDR, the rectal gBEUD analysis is strongly influenced by high dose DVH tails. A saturation BED, beyond which no further injury can occur, must be assumed. Modeling of organ motion uncertainties yields mean outcomes similar to static plan outcomes.

  17. Prediction of HDR quality by combining perceptually transformed display measurements with machine learning

    Science.gov (United States)

    Choudhury, Anustup; Farrell, Suzanne; Atkins, Robin; Daly, Scott

    2017-09-01

    We present an approach to predict overall HDR display quality as a function of key HDR display parameters. We first performed subjective experiments on a high quality HDR display that explored five key HDR display parameters: maximum luminance, minimum luminance, color gamut, bit-depth and local contrast. Subjects rated overall quality for different combinations of these display parameters. We explored two models | a physical model solely based on physically measured display characteristics and a perceptual model that transforms physical parameters using human vision system models. For the perceptual model, we use a family of metrics based on a recently published color volume model (ICT-CP), which consists of the PQ luminance non-linearity (ST2084) and LMS-based opponent color, as well as an estimate of the display point spread function. To predict overall visual quality, we apply linear regression and machine learning techniques such as Multilayer Perceptron, RBF and SVM networks. We use RMSE and Pearson/Spearman correlation coefficients to quantify performance. We found that the perceptual model is better at predicting subjective quality than the physical model and that SVM is better at prediction than linear regression. The significance and contribution of each display parameter was investigated. In addition, we found that combined parameters such as contrast do not improve prediction. Traditional perceptual models were also evaluated and we found that models based on the PQ non-linearity performed better.

  18. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, D. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114 (United States); Baltas, D. [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Nuclear and Particle Physics Section, Physics Department, University of Athens, 15701 Athens (Greece); Karabis, A. [Pi-Medical Ltd., Athens 10676 (Greece); Mavroidis, P. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 and Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, 17176 (Sweden); Zamboglou, N.; Tselis, N. [Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Shi, C. [St. Vincent' s Medical Center, 2800 Main Street, Bridgeport, Connecticut 06606 (United States); Papanikolaou, N. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 (United States)

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  19. Millimeter-wave Instrumentation Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Millimeter-wave Instrumentation Test Facility conducts basic research in propagation phenomena, remote sensing, and target signatures. The facility has a breadth...

  20. Ground test facility for nuclear testing of space reactor subsystems

    International Nuclear Information System (INIS)

    Quapp, W.J.; Watts, K.D.

    1985-01-01

    Two major reactor facilities at the INEL have been identified as easily adaptable for supporting the nuclear testing of the SP-100 reactor subsystem. They are the Engineering Test Reactor (ETR) and the Loss of Fluid Test Reactor (LOFT). In addition, there are machine shops, analytical laboratories, hot cells, and the supporting services (fire protection, safety, security, medical, waste management, etc.) necessary to conducting a nuclear test program. This paper presents the conceptual approach for modifying these reactor facilities for the ground engineering test facility for the SP-100 nuclear subsystem. 4 figs

  1. Environmental Test Facility (ETF)

    Data.gov (United States)

    Federal Laboratory Consortium — The Environmental Test Facility (ETF) provides non-isolated shock testing for stand-alone equipment and full size cabinets under MIL-S-901D specifications. The ETF...

  2. 40 CFR 792.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true Testing facility management. 792.31... facility management. For each study, testing facility management shall: (a) Designate a study director as... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  3. Mathematical simulation of biologically equivalent doses for LDR-HDR

    International Nuclear Information System (INIS)

    Slosarek, K.; Zajusz, A.

    1996-01-01

    Based on the LQ model examples of biologically equivalent doses LDR, HDR and external beams were calculated. The biologically equivalent doses for LDR were calculated by appending to the LQ model the corrector for the time of repair of radiation sublethal damages. For radiation continuously delivered at a low dose rate the influence of sublethal damage repair time changes on biologically equivalent doses were analysed. For fractionated treatment with high dose rate the biologically equivalent doses were calculated by adding to the LQ model the formula of accelerated repopulation. For total biologically equivalent dose calculation for combine LDR-HDR-Tele irradiation examples are presented with the use of different parameters of the time of repair of sublethal damages and accelerated repopulation. The calculations performed show, that the same biologically equivalent doses can be obtained for different parameters of cell kinetics changes during radiation treatment. It also shows, that during biologically equivalent dose calculations for different radiotherapy schedules, ignorance of cell kinetics parameters can lead to relevant errors

  4. 40 CFR 160.31 - Testing facility management.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 23 2010-07-01 2010-07-01 false Testing facility management. 160.31... GOOD LABORATORY PRACTICE STANDARDS Organization and Personnel § 160.31 Testing facility management. For each study, testing facility management shall: (a) Designate a study director as described in § 160.33...

  5. The Testing Behind The Test Facility: The Acoustic Design of the NASA Glenn Research Center's World-Class Reverberant Acoustic Test Facility

    Science.gov (United States)

    Hozman, Aron D.; Hughes, William O.; McNelis, Mark E.; McNelis, Anne M.

    2011-01-01

    The National Aeronautics and Space Administration (NASA) Glenn Research Center (GRC) is leading the design and build of the new world-class vibroacoustic test capabilities at the NASA GRC's Plum Brook Station in Sandusky, Ohio, USA. Benham Companies, LLC is currently constructing modal, base-shake sine and reverberant acoustic test facilities to support the future testing needs of NASA's space exploration program. The large Reverberant Acoustic Test Facility (RATF) will be approximately 101,000 cu ft in volume and capable of achieving an empty chamber acoustic overall sound pressure level (OASPL) of 163 dB. This combination of size and acoustic power is unprecedented amongst the world's known active reverberant acoustic test facilities. The key to achieving the expected acoustic test spectra for a range of many NASA space flight environments in the RATF is the knowledge gained from a series of ground acoustic tests. Data was obtained from several NASA-sponsored test programs, including testing performed at the National Research Council of Canada's acoustic test facility in Ottawa, Ontario, Canada, and at the Redstone Technical Test Center acoustic test facility in Huntsville, Alabama, USA. The majority of these tests were performed to characterize the acoustic performance of the modulators (noise generators) and representative horns that would be required to meet the desired spectra, as well as to evaluate possible supplemental gas jet noise sources. The knowledge obtained in each of these test programs enabled the design of the RATF sound generation system to confidently advance to its final acoustic design and subsequent on-going construction.

  6. Effectiveness of two different HDR brachytherapy regimens with the same BED value in cervical cancer

    Directory of Open Access Journals (Sweden)

    Rajesh Vashistha

    2010-07-01

    Full Text Available Purpose: To analyze the effectiveness of biologically effective dose (BED in two different regimens of HDR brachytherapy keeping the same total BED to point A and to compare the relationship of overall treatment time in terms of local control and bladder and rectal complications.Material and methods: The study included two groups comprising a total of 90 cervical cancer patients who underwent external beam radiotherapy (EBRT followed by HDR intracavitary brachytherapy (ICBT. EBRT treatment was delivered by a Co-60 teletherapy unit to a prescribed dose of 45 Gy with 1.8 Gy per fraction in 25 fractions over a period of five weeks. Parallel opposed anterior–posterior (AP/PA fields with no central shielding were used, followed by the HDR ICBT dose, to point A, of either two fractions of 9.5 Gy with a gap of 10 days, or three fractions of 7.5 Gy with a gap of 7 days between the fractions. Gemcitabine (dose of 150 mg/m2 was given weekly to all the patients as a radiosensitizer. The calculate BED3 to point A was almost the same in both groups to keep the same late complication rates. The doses, and BED10 and BED3, were calculated at different bladder and rectal point as well as at the lymphatictrapezoid points. During and after treatment patients were evaluated for local control and complications for 24 months.Results and Conclusions: Doses and BEDs at different bladder, rectal and lymphatic trapezoid points, local control, and complications in both HDR ICBT groups did not have statistically significant differences (p > 0.05. Both HDR ICBT schedules are well tolerable and equally effective.

  7. Comparative Analysis between LDR and HDR Images for Automatic Fruit Recognition and Counting

    Directory of Open Access Journals (Sweden)

    Tatiana M. Pinho

    2017-01-01

    Full Text Available Precision agriculture is gaining an increasing interest in the current farming paradigm. This new production concept relies on the use of information technology (IT to provide a control and supervising structure that can lead to better management policies. In this framework, imaging techniques that provide visual information over the farming area play an important role in production status monitoring. As such, accurate representation of the gathered production images is a major concern, especially if those images are used in detection and classification tasks. Real scenes, observed in natural environment, present high dynamic ranges that cannot be represented by the common LDR (Low Dynamic Range devices. However, this issue can be handled by High Dynamic Range (HDR images since they have the ability to store luminance information similarly to the human visual system. In order to prove their advantage in image processing, a comparative analysis between LDR and HDR images, for fruits detection and counting, was carried out. The obtained results show that the use of HDR images improves the detection performance to more than 30% when compared to LDR.

  8. SU-F-T-65: AutomaticTreatment Planning for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    International Nuclear Information System (INIS)

    Zhou, Y; Tan, J; Jiang, S; Albuquerque, K; Jia, X

    2016-01-01

    Purpose: High dose rate (HDR) brachytherapy treatment planning is conventionally performed in a manual fashion. Yet it is highly desirable to perform computerized automated planning to improve treatment planning efficiency, eliminate human errors, and reduce plan quality variation. The goal of this research is to develop an automatic treatment planning tool for HDR brachytherapy with a cylinder applicator for vaginal cancer. Methods: After inserting the cylinder applicator into the patient, a CT scan was acquired and was loaded to an in-house developed treatment planning software. The cylinder applicator was automatically segmented using image-processing techniques. CTV was generated based on user-specified treatment depth and length. Locations of relevant points (apex point, prescription point, and vaginal surface point), central applicator channel coordinates, and dwell positions were determined according to their geometric relations with the applicator. Dwell time was computed through an inverse optimization process. The planning information was written into DICOM-RT plan and structure files to transfer the automatically generated plan to a commercial treatment planning system for plan verification and delivery. Results: We have tested the system retrospectively in nine patients treated with vaginal cylinder applicator. These cases were selected with different treatment prescriptions, lengths, depths, and cylinder diameters to represent a large patient population. Our system was able to generate treatment plans for these cases with clinically acceptable quality. Computation time varied from 3–6 min. Conclusion: We have developed a system to perform automated treatment planning for HDR brachytherapy with a cylinder applicator. Such a novel system has greatly improved treatment planning efficiency and reduced plan quality variation. It also served as a testbed to demonstrate the feasibility of automatic HDR treatment planning for more complicated cases.

  9. SU-F-T-65: AutomaticTreatment Planning for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y; Tan, J; Jiang, S; Albuquerque, K; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: High dose rate (HDR) brachytherapy treatment planning is conventionally performed in a manual fashion. Yet it is highly desirable to perform computerized automated planning to improve treatment planning efficiency, eliminate human errors, and reduce plan quality variation. The goal of this research is to develop an automatic treatment planning tool for HDR brachytherapy with a cylinder applicator for vaginal cancer. Methods: After inserting the cylinder applicator into the patient, a CT scan was acquired and was loaded to an in-house developed treatment planning software. The cylinder applicator was automatically segmented using image-processing techniques. CTV was generated based on user-specified treatment depth and length. Locations of relevant points (apex point, prescription point, and vaginal surface point), central applicator channel coordinates, and dwell positions were determined according to their geometric relations with the applicator. Dwell time was computed through an inverse optimization process. The planning information was written into DICOM-RT plan and structure files to transfer the automatically generated plan to a commercial treatment planning system for plan verification and delivery. Results: We have tested the system retrospectively in nine patients treated with vaginal cylinder applicator. These cases were selected with different treatment prescriptions, lengths, depths, and cylinder diameters to represent a large patient population. Our system was able to generate treatment plans for these cases with clinically acceptable quality. Computation time varied from 3–6 min. Conclusion: We have developed a system to perform automated treatment planning for HDR brachytherapy with a cylinder applicator. Such a novel system has greatly improved treatment planning efficiency and reduced plan quality variation. It also served as a testbed to demonstrate the feasibility of automatic HDR treatment planning for more complicated cases.

  10. A comprehensive study on HDR brachytherapy treatments of cervical cancers: using the first Co-60 BEBIG Multisource Unit in Bangladesh

    Directory of Open Access Journals (Sweden)

    Naheed Rukhsana

    2011-07-01

    Full Text Available Purpose: The report presents an extraordinary synthesis of customer acceptance procedures (CAP, quality assurance tests (QA in the treatment of cervical cancer patients, using the first Co-60 Multisource Unit® in Bangladesh. The QA and commissioning required measurements and emergency tests verifying the functional limits of parameters acceptable for the new HDR afterloader. Acceptable limits were: 1 the deviation between specified and measured source strength: ± 3%; 2 the positional accuracy and uniformity: ± 1 mm; 3 the temporal accuracy (i.e. timer error and linearity and end error: ± 1% or 30 sec.; 4 treatment planning system (digitizer and localization software: ± 3% or 1 mm; 5 the distance from line to first dwell position and all the others: 5 mm and 10 mm (± 1 mm. Material and methods: Till February 2011, 47 patients were treated with HDR with more than 140 insertions applied. Amongst them, 12 patients were in stage IIB and IIIB, 22 were postoperative (IA and IB while the remaining 13 patients were with unknown stage. All the cases with stage IIB and IIIB received concurrent chemo-radiation and brachytherapy. Postoperative patients received EBRT (50 Gy and HDR according to the institutional protocol. CT scans were completed before HDR-plus planning with a good reproducibility (± 2% and were documented in repeating the plan for the same set up of a patient. Absorbed dose (Gy to a point P, at a distance of “r” in centimeters from a source of the Reference Air Kerma Rate (RAKR has been utilized for the QA of the source, where source strength measurement was accomplished. Results: All methods and analysis applicable to the QA and commissioning of Co-60 have been investigated and systematically analyzed, measured and documented before the treatment of a patient. Studies and safety requirements of this HDR remote afterloader were carried out. Acceptance and the QA were imperative to justify functionality and dependability in

  11. A comprehensive study on HDR brachytherapy treatments of cervical cancers: using the first Co-60 BEBIG Multisource Unit in Bangladesh.

    Science.gov (United States)

    Malik, Sadiq R; Banu, Parvin A; Rukhsana, Naheed

    2011-06-01

    The report presents an extraordinary synthesis of customer acceptance procedures (CAP), quality assurance tests (QA) in the treatment of cervical cancer patients, using the first Co-60 Multisource Unit ® in Bangladesh. The QA and commissioning required measurements and emergency tests verifying the functional limits of parameters acceptable for the new HDR afterloader. Acceptable limits were: 1) the deviation between specified and measured source strength: ± 3%; 2) the positional accuracy and uniformity: ± 1 mm; 3) the temporal accuracy (i.e. timer error and linearity and end error): ± 1% or 30 sec.; 4) treatment planning system (digitizer and localization software): ± 3% or 1 mm; 5) the distance from line to first dwell position and all the others: 5 mm and 10 mm (± 1 mm). Till February 2011, 47 patients were treated with HDR with more than 140 insertions applied. Amongst them, 12 patients were in stage IIB and IIIB, 22 were postoperative (IA and IB) while the remaining 13 patients were with unknown stage. All the cases with stage IIB and IIIB received concurrent chemo-radiation and brachytherapy. Postoperative patients received EBRT (50 Gy and HDR) according to the institutional protocol. CT scans were completed before HDR-plus planning with a good reproducibility (± 2%) and were documented in repeating the plan for the same set up of a patient. Absorbed dose (Gy) to a point P, at a distance of "r" in centimeters from a source of the Reference Air Kerma Rate (RAKR) has been utilized for the QA of the source, where source strength measurement was accomplished. All methods and analysis applicable to the QA and commissioning of Co-60 have been investigated and systematically analyzed, measured and documented before the treatment of a patient. Studies and safety requirements of this HDR remote afterloader were carried out. Acceptance and the QA were imperative to justify functionality and dependability in delivering the treatment. Implications of these studies

  12. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    2001-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L' Air Liquide in the form of a NET contract. (author)

  13. Test facility TIMO for testing the ITER model cryopump

    International Nuclear Information System (INIS)

    Haas, H.; Day, C.; Mack, A.; Methe, S.; Boissin, J.C.; Schummer, P.; Murdoch, D.K.

    1999-01-01

    Within the framework of the European Fusion Technology Programme, FZK is involved in the research and development process for a vacuum pump system of a future fusion reactor. As a result of these activities, the concept and the necessary requirements for the primary vacuum system of the ITER fusion reactor were defined. Continuing that development process, FZK has been preparing the test facility TIMO (Test facility for ITER Model pump) since 1996. This test facility provides for testing a cryopump all needed infrastructure as for example a process gas supply including a metering system, a test vessel, the cryogenic supply for the different temperature levels and a gas analysing system. For manufacturing the ITER model pump an order was given to the company L'Air Liquide in the form of a NET contract. (author)

  14. Oak Ridge rf Test Facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Hoffman, D.J.; McCurdy, H.C.; McManamy, T.J.; Moeller, J.A.; Ryan, P.M.

    1985-01-01

    The rf Test Facility (RFTF) of Oak Ridge National Laboratory (ORNL) provides a national facility for the testing and evaluation of steady-state, high-power (approx.1.0-MW) ion cyclotron resonance heating (ICRH) systems and components. The facility consists of a vacuum vessel and two fully tested superconducting development magnets from the ELMO Bumpy Torus Proof-of-Principle (EBT-P) program. These are arranged as a simple mirror with a mirror ratio of 4.8. The axial centerline distance between magnet throat centers is 112 cm. The vacuum vessel cavity has a large port (74 by 163 cm) and a test volume adequate for testing prototypic launchers for Doublet III-D (DIII-D), Tore Supra, and the Tokamak Fusion Test Reactor (TFTR). Attached to the internal vessel walls are water-cooled panels for removing the injected rf power. The magnets are capable of generating a steady-state field of approx.3 T on axis in the magnet throats. Steady-state plasmas are generated in the facility by cyclotron resonance breakdown using a dedicated 200-kW, 28-GHz gyrotron. Available rf sources cover a frequency range of 2 to 200 MHz at 1.5 kW and 3 to 18 MHz at 200 kW, with several sources at intermediate parameters. Available in July 1986 will be a >1.0-MW, cw source spanning 40 to 80 MHz. 5 figs

  15. Acute genitourinary toxicity after high-dose-rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: Correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Ito, Kazuto; Saitoh, Jun-ichi; Noda, Shin-ei; Harashima, Koichi; Sakurai, Hideyuki; Nakayama, Yuko; Yamamoto, Takumi; Suzuki, Kazuhiro; Nakano, Takashi; Niibe, Hideo

    2005-01-01

    Purpose: Several investigations have revealed that the α/β ratio for prostate cancer is atypically low, and that hypofractionation or high-dose-rate (HDR) brachytherapy regimens using appropriate radiation doses may be expected to yield tumor control and late sequelae rates that are better or at least as favorable as those achieved with conventional radiation therapy. In this setting, we attempted treating localized prostate cancer patients with HDR brachytherapy combined with hypofractionated external beam radiation therapy (EBRT). The purpose of this study was to evaluate the feasibility of using this approach, with special emphasis on the relationship between the severity of acute genitourinary (GU) toxicity and the urethral dose calculated from the dose-volume histogram (DVH) of HDR brachytherapy. Methods and Materials: Between September 2000 and December 2003, 70 patients with localized prostate cancer were treated by iridium-192 HDR brachytherapy combined with hypofractionated EBRT at the Gunma University Hospital. Hypofractionated EBRT was administered in fraction doses of 3 Gy, three times per week; a total dose of 51 Gy was delivered to the prostate gland and the seminal vesicles using the four-field technique. No elective pelvic irradiation was performed. After the completion of EBRT, all the patients additionally received transrectal ultrasonography (TRUS)-guided HDR brachytherapy. The fraction size and the number of fractions in HDR brachytherapy were prospectively changed, whereas the total radiation dose for EBRT was fixed at 51 Gy. The fractionation in HDR brachytherapy was as follows: 5 Gy x 5, 7 Gy x 3, 9 Gy x 2, administered twice per day, although the biologic effective dose (BED) for HDR brachytherapy combined with EBRT, assuming that the α/β ratio is 3, was almost equal to 138 in each fractionation group. The planning target volume was defined as the prostate gland with 5-mm margin all around, and the planning was conducted based on

  16. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Syam [Malabar Cancer Centre, Kannur, Kerala (India); Sitha [University of Calicut, Calicut, Kerala (India)

    2015-06-15

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on the 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.

  17. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    International Nuclear Information System (INIS)

    Kumar, Syam; Sitha

    2015-01-01

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on the 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly

  18. Near constant-time optimal piecewise LDR to HDR inverse tone mapping

    Science.gov (United States)

    Chen, Qian; Su, Guan-Ming; Yin, Peng

    2015-02-01

    In a backward compatible HDR image/video compression, it is a general approach to reconstruct HDR from compressed LDR as a prediction to original HDR, which is referred to as inverse tone mapping. Experimental results show that 2- piecewise 2nd order polynomial has the best mapping accuracy than 1 piece high order or 2-piecewise linear, but it is also the most time-consuming method because to find the optimal pivot point to split LDR range to 2 pieces requires exhaustive search. In this paper, we propose a fast algorithm that completes optimal 2-piecewise 2nd order polynomial inverse tone mapping in near constant time without quality degradation. We observe that in least square solution, each entry in the intermediate matrix can be written as the sum of some basic terms, which can be pre-calculated into look-up tables. Since solving the matrix becomes looking up values in tables, computation time barely differs regardless of the number of points searched. Hence, we can carry out the most thorough pivot point search to find the optimal pivot that minimizes MSE in near constant time. Experiment shows that our proposed method achieves the same PSNR performance while saving 60 times computation time compared to the traditional exhaustive search in 2-piecewise 2nd order polynomial inverse tone mapping with continuous constraint.

  19. An experimental MOSFET approach to characterize (192)Ir HDR source anisotropy.

    Science.gov (United States)

    Toye, W C; Das, K R; Todd, S P; Kenny, M B; Franich, R D; Johnston, P N

    2007-09-07

    The dose anisotropy around a (192)Ir HDR source in a water phantom has been measured using MOSFETs as relative dosimeters. In addition, modeling using the EGSnrc code has been performed to provide a complete dose distribution consistent with the MOSFET measurements. Doses around the Nucletron 'classic' (192)Ir HDR source were measured for a range of radial distances from 5 to 30 mm within a 40 x 30 x 30 cm(3) water phantom, using a TN-RD-50 MOSFET dosimetry system with an active area of 0.2 mm by 0.2 mm. For each successive measurement a linear stepper capable of movement in intervals of 0.0125 mm re-positioned the MOSFET at the required radial distance, while a rotational stepper enabled angular displacement of the source at intervals of 0.9 degrees . The source-dosimeter arrangement within the water phantom was modeled using the standardized cylindrical geometry of the DOSRZnrc user code. In general, the measured relative anisotropy at each radial distance from 5 mm to 30 mm is in good agreement with the EGSnrc simulations, benchmark Monte Carlo simulation and TLD measurements where they exist. The experimental approach employing a MOSFET detection system of small size, high spatial resolution and fast read out capability allowed a practical approach to the determination of dose anisotropy around a HDR source.

  20. Importance of tests in nuclear facilities

    International Nuclear Information System (INIS)

    Guillemard, B.

    1985-10-01

    In nuclear facilities, safety related systems and equipments are subject, along their whole service-life, to numerous tests. This paper analyses the role of tests in the successive stages of design, construction, exploitation of a nuclear facility. It examines several aspects of test quality control: definition of needs, test planning, intrinsic quality of each test, control of interfaces (test are both the end and the starting point of many actions concerned by quality) and the application [fr

  1. Engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper described the design status of the ETF

  2. Additional androgen deprivation makes the difference. Biochemical recurrence-free survival in prostate cancer patients after HDR brachytherapy and external beam radiotherapy

    International Nuclear Information System (INIS)

    Schiffmann, Jonas; Tennstedt, Pierre; Beyer, Burkhard; Boehm, Katharina; Tilki, Derya; Salomon, Georg; Graefen, Markus; Lesmana, Hans; Platz, Volker; Petersen, Cordula; Kruell, Andreas; Schwarz, Rudolf

    2015-01-01

    The role of additional androgen deprivation therapy (ADT) in prostate cancer (PCa) patients treated with combined HDR brachytherapy (HDR-BT) and external beam radiotherapy (EBRT) is still unknown. Consecutive PCa patients classified as D'Amico intermediate and high-risk who underwent HDR-BT and EBRT treatment ± ADT at our institution between January 1999 and February 2009 were assessed. Multivariable Cox regression models predicting biochemical recurrence (BCR) were performed. BCR-free survival was assessed with Kaplan-Meier analyses. Overall, 392 patients were assessable. Of these, 221 (56.4 %) underwent trimodality (HDR-BT and EBRT and ADT) and 171 (43.6 %) bimodality (HDR-BT and EBRT) treatment. Additional ADT administration reduced the risk of BCR (HR: 0.4, 95 % CI: 0.3-0.7, p < 0.001). D'Amico high-risk patients had superior BCR-free survival when additional ADT was administered (log-rank p < 0.001). No significant difference for BCR-free survival was recorded when additional ADT was administered to D'Amico intermediate-risk patients (log-rank p = 0.2). Additional ADT administration improves biochemical control in D'Amico high-risk patients when HDR-BT and EBRT are combined. Physicians should consider the oncological benefit of ADT administration for these patients during the decision-making process. (orig.) [de

  3. SU-F-T-11: Scintillator Based Quality Assurance Device for HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Jozsef, G [New York University Medical Center, New York, NY (United States)

    2016-06-15

    Purpose: To build a test device for HDR afterloaders capable of checking source positions, times at positions and estimate the activity of the source. Methods: A catheter is taped on a plastic scintillation sheet. When a source travels through the catheter, the scintillator sheet lights up around the source. The sheet is monitored with a video camera, and records the movement of the light spot. The center of the spot on each image on the video provides the source location, and the time stamps of the images can provide the dwell time the source spend in each location. Finally, the brightness of the light spot is related to the activity of the source. A code was developed for noise removal, calibrate the scale of the image to centimeters, eliminate the distortion caused by the oblique view angle, identifying the boundaries of the light spot, transforming the image into binary and detect and calculate the source motion, positions and times. The images are much less noisy if the camera is shielded. That requires that the light spot is monitored in a mirror, rather than directly. The whole assembly is covered from external light and has a size of approximately 17×35×25cm (H×L×W) Results: A cheap camera in BW mode proved to be sufficient with a plastic scintillator sheet. The best images were resulted by a 3mm thick sheet with ZnS:Ag surface coating. The shielding of the camera decreased the noise, but could not eliminate it. A test run even in noisy condition resulted in approximately 1 mm and 1 sec difference from the planned positions and dwell times. Activity tests are in progress. Conclusion: The proposed method is feasible. It might simplify the monthly QA process of HDR Brachytherapy units.

  4. 40 CFR 792.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    .... (a) A testing facility shall have a sufficient number of animal rooms or other test system areas, as... different tests. (b) A testing facility shall have a number of animal rooms or other test system areas... waste and refuse or for safe sanitary storage of waste before removal from the testing facility...

  5. Arc Heated Scramjet Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Arc Heated Scramjet Test Facility is an arc heated facility which simulates the true enthalpy of flight over the Mach number range of about 4.7 to 8 for free-jet...

  6. 40 CFR 160.43 - Test system care facilities.

    Science.gov (United States)

    2010-07-01

    ... testing facility shall have a number of animal rooms or other test system areas separate from those... housed, facilities shall exist for the collection and disposal of all animal waste and refuse or for safe sanitary storage of waste before removal from the testing facility. Disposal facilities shall be so...

  7. Drop test facility available to private industry

    International Nuclear Information System (INIS)

    Shappert, L.B.; Box, W.D.

    1983-01-01

    In 1978, a virtually unyielding drop test impact pad was constructed at Oak Ridge National Laboratory's (ORNL's) Tower Shielding Facility (TSF) for the testing of heavy shipping containers designed for transporting radioactive materials. Because of the facility's unique capability for drop-testing large, massive shipping packages, it has been identified as a facility which can be made available for non-DOE users

  8. SU-E-T-574: Fessiblity of Using the Calypso System for HDR Interstitial Catheter Reconstruction

    International Nuclear Information System (INIS)

    Li, J S; Ma, C

    2014-01-01

    Purpose: It is always a challenge to reconstruct the interstitial catheter for high dose rate (HDR) brachytherapy on patient CT or MR images. This work aims to investigate the feasibility of using the Calypso system (Varian Medical, CA) for HDR catheter reconstruction utilizing its accuracy on tracking the electromagnetic transponder location. Methods: Experiment was done with a phantom that has a HDR interstitial catheter embedded inside. CT scan with a slice thickness of 1.25 mm was taken for this phantom with two Calypso beacon transponders in the catheter. The two transponders were connected with a wire. The Calypso system was used to record the beacon transponders’ location in real time when they were gently pulled out with the wire. The initial locations of the beacon transponders were used for registration with the CT image and the detected transponder locations were used for the catheter path reconstruction. The reconstructed catheter path was validated on the CT image. Results: The HDR interstitial catheter was successfully reconstructed based on the transponders’ coordinates recorded by the Calypso system in real time when the transponders were pulled in the catheter. After registration with the CT image, the shape and location of the reconstructed catheter are evaluated against the CT image and the result shows an accuracy of 2 mm anywhere in the Calypso detectable region which is within a 10 cm X 10 cm X 10 cm cubic box for the current system. Conclusion: It is feasible to use the Calypso system for HDR interstitial catheter reconstruction. The obstacle for its clinical usage is the size of the beacon transponder whose diameter is bigger than most of the interstitial catheters used in clinic. Developing smaller transponders and supporting software and hardware for this application is necessary before it can be adopted for clinical use

  9. Additional androgen deprivation makes the difference. Biochemical recurrence-free survival in prostate cancer patients after HDR brachytherapy and external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, Jonas; Tennstedt, Pierre; Beyer, Burkhard; Boehm, Katharina; Tilki, Derya; Salomon, Georg; Graefen, Markus [University Medical Center Hamburg-Eppendorf, Martini-Clinic Prostate Cancer Center, Hamburg (Germany); Lesmana, Hans; Platz, Volker; Petersen, Cordula; Kruell, Andreas; Schwarz, Rudolf [University Medical Center Hamburg-Eppendorf, Department of Radiation oncology, Hamburg (Germany)

    2015-04-01

    The role of additional androgen deprivation therapy (ADT) in prostate cancer (PCa) patients treated with combined HDR brachytherapy (HDR-BT) and external beam radiotherapy (EBRT) is still unknown. Consecutive PCa patients classified as D'Amico intermediate and high-risk who underwent HDR-BT and EBRT treatment ± ADT at our institution between January 1999 and February 2009 were assessed. Multivariable Cox regression models predicting biochemical recurrence (BCR) were performed. BCR-free survival was assessed with Kaplan-Meier analyses. Overall, 392 patients were assessable. Of these, 221 (56.4 %) underwent trimodality (HDR-BT and EBRT and ADT) and 171 (43.6 %) bimodality (HDR-BT and EBRT) treatment. Additional ADT administration reduced the risk of BCR (HR: 0.4, 95 % CI: 0.3-0.7, p < 0.001). D'Amico high-risk patients had superior BCR-free survival when additional ADT was administered (log-rank p < 0.001). No significant difference for BCR-free survival was recorded when additional ADT was administered to D'Amico intermediate-risk patients (log-rank p = 0.2). Additional ADT administration improves biochemical control in D'Amico high-risk patients when HDR-BT and EBRT are combined. Physicians should consider the oncological benefit of ADT administration for these patients during the decision-making process. (orig.) [German] Der Nutzen einer zusaetzlichen Hormonentzugstherapie (ADT, ''androgen deprivation therapy'') fuer Patienten mit Prostatakarzinom (PCa), welche mit einer Kombination aus HDR-Brachytherapie (HDR-BT) und perkutaner Bestrahlung (EBRT) behandelt werden, ist weiterhin ungeklaert. Fuer diese Studie wurden konsekutive, nach der D'Amico-Risikoklassifizierung in ''intermediate'' und ''high-risk'' eingeteilte Patienten ausgewaehlt, die zwischen Januar 1999 und Februar 2009 in unserem Institut eine kombinierte Therapie aus HDR-BT, EBRT ± ADT erhalten haben. Eine

  10. Toroid magnet test facility

    CERN Multimedia

    2002-01-01

    Because of its exceptional size, it was not feasible to assemble and test the Barrel Toroid - made of eight coils - as an integrated toroid on the surface, prior to its final installation underground in LHC interaction point 1. It was therefore decided to test these eight coils individually in a dedicated test facility.

  11. STG-ET: DLR electric propulsion test facility

    Directory of Open Access Journals (Sweden)

    Andreas Neumann

    2017-04-01

    Full Text Available DLR operates the High Vacuum Plume Test Facility Göttingen – Electric Thrusters (STG-ET. This electric propulsion test facility has now accumulated several years of EP-thruster testing experience. Special features tailored to electric space propulsion testing like a large vacuum chamber mounted on a low vibration foundation, a beam dump target with low sputtering, and a performant pumping system characterize this facility. The vacuum chamber is 12.2m long and has a diameter of 5m. With respect to accurate thruster testing, the design focus is on accurate thrust measurement, plume diagnostics, and plume interaction with spacecraft components. Electric propulsion thrusters have to run for thousands of hours, and with this the facility is prepared for long-term experiments. This paper gives an overview of the facility, and shows some details of the vacuum chamber, pumping system, diagnostics, and experiences with these components.

  12. Thermal-hydraulic tests with out-of-pile test facility for BOCA development

    International Nuclear Information System (INIS)

    Kitagishi, Shigeru; Aoyama, Masashi; Tobita, Masahiro; Inaba, Yoshitomo; Yamaura, Takayuki

    2012-01-01

    The fuel transient test facility was prepared for power ramping tests of light-water-reactor (LWR) fuels in the Japan Materials Testing Reactor (JMTR) under a contract project with the Nuclear Industrial Safety Agent (NISA) of the Ministry of Economy, Trade and Industry (METI). It is necessary to develop high accuracy analysis procedure for power ramping tests after restart of the JMTR. The out-of-pile test facility to simulate thermal-hydraulic conditions of the fuel transient test facility was therefore developed. Applicability of the analysis code ACE-3D was examined for thermal-hydraulic analysis of power ramping tests for 10x10 BWR fuels by the fuel transient test facility. As the results, the calculated temperature was 304°C in comparison with measured value of 304.9-317.4°C in the condition of 600 W/cm. There is a bright prospect of high accuracy power ramping tests by the fuel transient test facility in JMTR. (author)

  13. Fusion Materials Irradiation Test Facility: a facility for fusion-materials qualification

    International Nuclear Information System (INIS)

    Trego, A.L.; Hagan, J.W.; Opperman, E.K.; Burke, R.J.

    1983-01-01

    The Fusion Materials Irradiation Test Facility will provide a unique testing environment for irradiation of structural and special purpose materials in support of fusion power systems. The neutron source will be produced by a deuteron-lithium stripping reaction to generate high energy neutrons to ensure damage similar to that of a deuterium-tritium neutron spectrum. The facility design is now ready for the start of construction and much of the supporting lithium system research has been completed. Major testing of key low energy end components of the accelerator is about to commence. The facility, its testing role, and the status and major aspects of its design and supporting system development are described

  14. New facilities in Japan materials testing reactor for irradiation test of fusion reactor components

    International Nuclear Information System (INIS)

    Kawamura, H.; Sagawa, H.; Ishitsuka, E.; Sakamoto, N.; Niiho, T.

    1996-01-01

    The testing and evaluation of fusion reactor components, i.e. blanket, plasma facing components (divertor, etc.) and vacuum vessel with neutron irradiation is required for the design of fusion reactor components. Therefore, four new test facilities were developed in the Japan Materials Testing Reactor: an in-pile functional testing facility, a neutron multiplication test facility, an electron beam facility, and a re-weldability facility. The paper describes these facilities

  15. Anatomy-based inverse planning dose optimization in HDR prostate implant: A toxicity study

    International Nuclear Information System (INIS)

    Mahmoudieh, Alireza; Tremblay, Christine; Beaulieu, Luc; Lachance, Bernard; Harel, Francois; Lessard, Etienne; Pouliot, Jean; Vigneault, Eric

    2005-01-01

    Background and purpose: The aim of this study is to evaluate the acute and late complications in patients who have received HDR implant boost using inverse planning, and to determine dose volume correlations. Patients and methods: Between September 1999 and October 2002, 44 patients with locally advanced prostate cancer (PSA ≥10 ng/ml, and/or Gleason score ≥7, and/or Stage T2c or higher) were treated with 40-45 Gy external pelvic field followed by 2-3 fraction of inverse-planned HDR implant boost (6-9.5 Gy /fraction). Median follow-up time was 1.7 years with 81.8% of patients who had at least 12 months of follow up (range 8.6-42.5. Acute and late morbidity data were collected and graded according to RTOG criteria. Questionnaires were used to collect prostate related measures of quality of life, and international prostate symptom score (IPSS) before and after treatment. Dose-volume histograms for prostate, urethra, bladder, penis bulb and rectum were analyzed. Results: The median patient age was 64 years. Of these, 32% were in the high risk group, and 61% in the intermediate risk group. 3 patients (7%) had no adverse prognostic factors. A single grade 3 GU acute toxicity was reported but no grade 3-4 acute GI toxicity. No grade 3-4 late GU or GI toxicity was reported. Acute (late) grade 2 urinary and rectal symptoms were reported in 31.8 (11.4%) and 4.6% (4.6%) of patients, respectively. A trend for predicting acute GU toxicity is seen for total HDR dose of more than 18 Gy (OR=3.6, 95%CI=[0.96-13.5], P=0.058). The evolution of toxicity is presented for acute and late GU/GI toxicity. Erectile dysfunction occurs in approximately 27% of patients who were not on hormonal deprivation, but may be taking sildenafil. The IPSS peaked on averaged 6 weeks post-implant and returned to the baseline at a median of 6 months. Conclusions: Inverse-planned HDR brachytherapy is a viable option to deliver higher dose to the prostate as a boost without increasing GU or rectal

  16. A national survey of HDR source knowledge among practicing radiation oncologists and residents: Establishing a willingness-to-pay threshold for cobalt-60 usage.

    Science.gov (United States)

    Mailhot Vega, Raymond; Talcott, Wesley; Ishaq, Omar; Cohen, Patrice; Small, Christina J; Duckworth, Tamara; Sarria Bardales, Gustavo; Perez, Carmen A; Schiff, Peter B; Small, William; Harkenrider, Matthew M

    Ir-192 is the predominant source for high-dose-rate (HDR) brachytherapy in United States markets. Co-60, with longer half-life and fewer source exchanges, has piloted abroad with comparable clinical dosimetry but increased shielding requirements. We sought to identify practitioner knowledge of Co-60 and establish acceptable willingness-to-pay (WTP) thresholds for additional shielding requirements for use in future cost-benefit analysis. A nationwide survey of U.S. radiation oncologists was conducted from June to July 2015, assessing knowledge of HDR sources, brachytherapy unit shielding, and factors that may influence source-selection decision-making. Self-identified decision makers in radiotherapy equipment purchase and acquisition were asked their WTP on shielding should a more cost-effective source become available. Four hundred forty surveys were completed and included. Forty-four percent were ABS members. Twenty percent of respondents identified Co-60 as an HDR source. Respondents who identified Co-60 were significantly more likely to be ABS members, have attended a national brachytherapy conference, and be involved in brachytherapy selection. Sixty-six percent of self-identified decision makers stated that their facility would switch to a more cost-effective source than Ir-192, if available. Cost and experience were the most common reasons provided for not switching. The most common WTP value selected by respondents was decision makers to establish WTP for shielding costs that source change to Co-60 may require. These results will be used to establish WTP threshold for future cost-benefit analysis. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  17. HDR IMAGING FOR FEATURE DETECTION ON DETAILED ARCHITECTURAL SCENES

    Directory of Open Access Journals (Sweden)

    G. Kontogianni

    2015-02-01

    Full Text Available 3D reconstruction relies on accurate detection, extraction, description and matching of image features. This is even truer for complex architectural scenes that pose needs for 3D models of high quality, without any loss of detail in geometry or color. Illumination conditions influence the radiometric quality of images, as standard sensors cannot depict properly a wide range of intensities in the same scene. Indeed, overexposed or underexposed pixels cause irreplaceable information loss and degrade digital representation. Images taken under extreme lighting environments may be thus prohibitive for feature detection/extraction and consequently for matching and 3D reconstruction. High Dynamic Range (HDR images could be helpful for these operators because they broaden the limits of illumination range that Standard or Low Dynamic Range (SDR/LDR images can capture and increase in this way the amount of details contained in the image. Experimental results of this study prove this assumption as they examine state of the art feature detectors applied both on standard dynamic range and HDR images.

  18. Fricke gel-layer dosimetry in HDR brachytherapy

    International Nuclear Information System (INIS)

    Gambarini, G.; Negri, A.; Carrara, M.; Marchesini, R.

    2008-01-01

    Full text: In the last decade, technological improvements in radiotherapy have been significant and consequently the use and importance of radiotherapy in cancer treatment have increased greatly. In brachytherapy, new possibilities have been opened by the impressive progresses in 3D imaging, by the development of sophisticated techniques for modern afterloaders and by the constantly increasing speed and capacity of computers. However, these methodological improvements require corresponding improvements in the dosimetry methods, in order to ensure that the values calculated with computer treatment planning systems, adopted in the clinical praxis, agree with the delivered dose distributions. Fricke gel-layer dosimeters (FGLD) are under study by our group as a reliable alternative to films, semiconductors arrays or thermoluminescent dosimeters (TLDs). In the last years, we have significantly improved this technique by defining the FGLD best chemical composition, by optimizing the image acquisition assessment and by developing a dedicated software for image analysis. In this study, experimental measurements of planar dose distributions of a clinical 192 Ir source (Microselectron HDR, Nucletron) obtained by irradiating a series of piled-up FGL dosimeters in a tissue-equivalent phantom are presented. The obtained results were in accordance to TLD measurements and to treatment planning system (Plato, Nucletron) calculations. FGLD have proven to be a reliable tool to achieve HDR brachytherapy dose distribution measurements

  19. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs

  20. Operation of the nuclear fuel cycle test facilities -Operation of the hot test loop facilities

    Energy Technology Data Exchange (ETDEWEB)

    Chun, S. Y.; Jeong, M. K.; Park, C. K.; Yang, S. K.; Won, S. Y.; Song, C. H.; Jeon, H. K.; Jeong, H. J.; Cho, S.; Min, K. H.; Jeong, J. H.

    1997-01-01

    A performance and reliability of a advanced nuclear fuel and reactor newly designed should be verified by performing the thermal hydraulics tests. In thermal hydraulics research team, the thermal hydraulics tests associated with the development of an advanced nuclear fuel and reactor haven been carried out with the test facilities, such as the Hot Test Loop operated under high temperature and pressure conditions, Cold Test Loop, RCS Loop and B and C Loop. The objective of this project is to obtain the available experimental data and to develop the advanced measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics research team have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for the double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of CANFLEX fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within HANARO fuel bundle and to study a thermal mixing characteristic of PWR fuel bundle. RCS thermal hydraulic loop was constructed and the experiments have been carried out to measure the critical heat flux. In B and C Loop, the performance tests for each component were carried out. (author). 19 tabs., 78 figs., 19 refs.

  1. Upgrade of the Cryogenic CERN RF Test Facility

    CERN Document Server

    Pirotte, O; Brunner, O; Inglese, V; Koettig, T; Maesen, P; Vullierme, B

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented.

  2. Upgrade of the cryogenic CERN RF test facility

    International Nuclear Information System (INIS)

    Pirotte, O.; Benda, V.; Brunner, O.; Inglese, V.; Maesen, P.; Vullierme, B.; Koettig, T.

    2014-01-01

    With the large number of superconducting radiofrequency (RF) cryomodules to be tested for the former LEP and the present LHC accelerator a RF test facility was erected early in the 1990’s in the largest cryogenic test facility at CERN located at Point 18. This facility consisted of four vertical test stands for single cavities and originally one and then two horizontal test benches for RF cryomodules operating at 4.5 K in saturated helium. CERN is presently working on the upgrade of its accelerator infrastructure, which requires new superconducting cavities operating below 2 K in saturated superfluid helium. Consequently, the RF test facility has been renewed in order to allow efficient cavity and cryomodule tests in superfluid helium and to improve its thermal performances. The new RF test facility is described and its performances are presented

  3. Characterizing experiments of the PPOOLEX test facility

    Energy Technology Data Exchange (ETDEWEB)

    Puustinen, M.; Laine, J. (Lappeenranta Univ. of Technology, Nuclear Safety Research Unit (Finland))

    2008-07-15

    This report summarizes the results of the characterizing test series in 2007 with the scaled down PPOOLEX facility designed and constructed at Lappeenranta University of Technology. Air and steam/air mixture was blown into the dry well compartment and from there through a DN200 blowdown pipe to the condensation pool (wet well). Altogether eight air and four steam/air mixture experiments, each consisting of several blows (tests), were carried out. The main purpose of the experiment series was to study the general behavior of the facility and the performance of basic instrumentation. Proper operation of automation, control and safety systems was also tested. The test facility is a closed stainless steel vessel divided into two compartments, dry well and wet well. The facility is equipped with high frequency measurements for capturing different aspects of the investigated phenomena. The general behavior of the PPOOLEX facility differs significantly from that of the previous POOLEX facility because of the closed two-compartment structure of the test vessel. Heat-up by several tens of degrees due to compression in both compartments was the most obvious evidence of this. Temperatures also stratified. Condensation oscillations and chugging phenomenon were encountered in those tests where the fraction of non-condensables had time to decrease significantly. A radical change from smooth condensation behavior to oscillating one occurred quite abruptly when the air fraction of the blowdown pipe flow dropped close to zero. The experiments again demonstrated the strong diminishing effect that noncondensable gases have on dynamic unsteady loadings experienced by submerged pool structures. BWR containment like behavior related to the beginning of a postulated steam line break accident was observed in the PPOOLEX test facility during the steam/air mixture experiments. The most important task of the research project, to produce experimental data for code simulation purposes, can be

  4. DOE LeRC photovoltaic systems test facility

    Science.gov (United States)

    Cull, R. C.; Forestieri, A. F.

    1978-01-01

    The facility was designed and built and is being operated as a national facility to serve the needs of the entire DOE National Photovoltaic Program. The object of the facility is to provide a place where photovoltaic systems may be assembled and electrically configured, without specific physical configuration, for operation and testing to evaluate their performance and characteristics. The facility as a breadboard system allows investigation of operational characteristics and checkout of components, subsystems and systems before they are mounted in field experiments or demonstrations. The facility as currently configured consist of 10 kW of solar arrays built from modules, two inverter test stations, a battery storage system, interface with local load and the utility grid, and instrumentation and control necessary to make a flexible operating facility. Expansion to 30 kW is planned for 1978. Test results and operating experience are summaried to show the variety of work that can be done with this facility.

  5. Characterization of HDR Ir-192 source for 3D planning system

    International Nuclear Information System (INIS)

    Fonseca, Gabriel P.; Yoriyaz, Helio; Antunes, Paula C.G.; Siqueira, Paulo T.D.; Rubo, Rodrigo; Ferreira, Louise A.

    2011-01-01

    Brachytherapy treatment involves surgical or cavitary insertion of radioactive sources for diseases treatments, such as: lung, gynecologic or prostate cancer. This technique has great ability to administer high doses to the tumor, with adjacent normal tissue preservation equal or better than external beam radiation therapy. Several innovations have been incorporated in this treatment technique, such as, 3D treatment planning system and computer guided sources. In detriment to scientific advances there are no protocols that relate dose with tumor volume, organs or A point, established by ICRU38 and used to prescribe dose in treatment planning system. Several international studies, like as EMBRACE, the multicentre international study, has been trying to correlate the dose volume using 3D planning systems and medical images, as those obtained by CT or MRI, to establish treatment protocols. With the objective of analyzing the 3D dose distribution, a micro Selectron-HDR remote afterloading device for high dose-rate (HDR) was characterized in the present work. Through the data provided by the manufacturer the source was simulated, using the MCNP5 code to calculate American Association of Physicists in Medicine Task Group No. 43 report (AAPM TG43) specified parameters. The simulations have shown great agreement when compared to the ONCENTRA planning system results and those provided by literature. The micro Selectron-HDR remote afterloading device will be utilized to simulate 3D dose distribution through CT images processed by an auxiliary software which process DICOM images. (author)

  6. Characterization of HDR Ir-192 source for 3D planning system

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Gabriel P.; Yoriyaz, Helio; Antunes, Paula C.G.; Siqueira, Paulo T.D., E-mail: gabriel.fonseca@usp.b, E-mail: hyoriyaz@ipen.b, E-mail: ptsiquei@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rubo, Rodrigo [Universidade de Sao Paulo (HC/FMUSP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia; Minamisawa, Renato A., E-mail: renato.minamisawa@psi.c [Paul Scherrer Institut (PSI), Villigen (Switzerland); Ferreira, Louise A. [Universidade Estadual de Maringa (UEM), PR (Brazil). Fac. de Medicina

    2011-07-01

    Brachytherapy treatment involves surgical or cavitary insertion of radioactive sources for diseases treatments, such as: lung, gynecologic or prostate cancer. This technique has great ability to administer high doses to the tumor, with adjacent normal tissue preservation equal or better than external beam radiation therapy. Several innovations have been incorporated in this treatment technique, such as, 3D treatment planning system and computer guided sources. In detriment to scientific advances there are no protocols that relate dose with tumor volume, organs or A point, established by ICRU38 and used to prescribe dose in treatment planning system. Several international studies, like as EMBRACE, the multicentre international study, has been trying to correlate the dose volume using 3D planning systems and medical images, as those obtained by CT or MRI, to establish treatment protocols. With the objective of analyzing the 3D dose distribution, a micro Selectron-HDR remote afterloading device for high dose-rate (HDR) was characterized in the present work. Through the data provided by the manufacturer the source was simulated, using the MCNP5 code to calculate American Association of Physicists in Medicine Task Group No. 43 report (AAPM TG43) specified parameters. The simulations have shown great agreement when compared to the ONCENTRA planning system results and those provided by literature. The micro Selectron-HDR remote afterloading device will be utilized to simulate 3D dose distribution through CT images processed by an auxiliary software which process DICOM images. (author)

  7. SU-E-J-270: Study of PET Response to HDR Brachytherapy of Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, R; Le, Y; Armour, E; Efron, J; Azad, N; Wahl, R; Gearhart, S; Herman, J [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-01

    Purpose: Dose-response studies in radiation therapy are typically using single response values for tumors across ensembles of tumors. Using the high dose rate (HDR) treatment plan dose grid and pre- and post-therapy FDG-PET images, we look for correlations between voxelized dose and FDG uptake response in individual tumors. Methods: Fifteen patients were treated for localized rectal cancer using 192Ir HDR brachytherapy in conjunction with surgery. FDG-PET images were acquired before HDR therapy and 6–8 weeks after treatment (prior to surgery). Treatment planning was done on a commercial workstation and the dose grid was calculated. The two PETs and the treatment dose grid were registered to each other using non-rigid registration. The difference in PET SUV values before and after HDR was plotted versus absorbed radiation dose for each voxel. The voxels were then separated into bins for every 400 cGy of absorbed dose and the bin average values plotted similarly. Results: Individual voxel doses did not correlate with PET response; however, when group into tumor subregions corresponding to dose bins, eighty percent of the patients showed a significant positive correlation (R2 > 0) between PET uptake difference in the targeted region and the absorbed dose. Conclusion: By considering larger ensembles of voxels, such as organ average absorbed dose or the dose bins considered here, valuable information may be obtained. The dose-response correlations as measured by FDG-PET difference potentially underlines the importance of FDG-PET as a measure of response, as well as the value of voxelized information.

  8. HTS power lead testing at the Fermilab magnet test facility

    Energy Technology Data Exchange (ETDEWEB)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.; /Fermilab

    2005-08-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV C0 interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads.

  9. HTS power lead testing at the Fermilab magnet test facility

    International Nuclear Information System (INIS)

    Rabehl, R.; Carcagno, R.; Feher, S.; Huang, Y.; Orris, D.; Pischalnikov, Y.; Sylvester, C.; Tartaglia, M.

    2005-01-01

    The Fermilab Magnet Test Facility has tested high-temperature superconductor (HTS) power leads for cryogenic feed boxes to be placed at the Large Hadron Collider (LHC) interaction regions and at the new BTeV CO interaction region of the Fermilab Tevatron. A new test facility was designed and operated, successfully testing 20 pairs of HTS power leads for the LHC and 2 pairs of HTS power leads for the BTeV experiment. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. Results from the facility commissioning are included, as is the performance of a new insulation method to prevent frost accumulation on the warm ends of the power leads

  10. Virtual HDR CyberKnife SBRT for Localized Prostatic Carcinoma: 5-year Disease-free Survival and Toxicity Observations

    Directory of Open Access Journals (Sweden)

    Donald Blake Fuller

    2014-11-01

    Full Text Available PURPOSEProstate stereotactic body radiotherapy (SBRT may substantially recapitulate the dose distribution of high-dose-rate (HDR brachytherapy, representing an externally delivered Virtual HDR treatment method. Herein we present 5-year outcomes from a cohort of consecutively treated Virtual HDR SBRT prostate cancer patients.METHODSSeventy-nine patients were treated from 2006 - 2009, 40 low-risk and 39 intermediate-risk, under IRB-approved clinical trial, to 38 Gy in 4 fractions. The planning target volume (PTV included prostate plus a 2-mm volume expansion in all directions, with selective use of a 5-mm prostate-to-PTV expansion and proximal seminal vesicle coverage in intermediate-risk patients, to better cover potential extraprostatic disease; rectal PTV margin reduced to zero in all cases. The prescription dose covered > 95% of the PTV (V100 >= 95%, with a minimum 150% PTV dose escalation to create HDR-like PTV dose distribution.RESULTSMedian pre-SBRT PSA level of 5.6 ng/mL decreased to 0.05 ng/mL 5 years out and 0.02 ng/mL 6 years out. At least one PSA bounce was seen in 55 patients (70% but only 3 of them subsequently relapsed, Biochemical-relapse-free survival was 100% and 92% for low-risk and intermediate-risk patients, respectively, by ASTRO definition (98% and 92% by Phoenix definition. Local relapse did not occur, distant metastasis-free survival was 100% and 95% by risk-group, and disease-specific survival was 100%. Acute and late grade 2 GU toxicity incidence was 10% and 9%, respectively; with 6% late grade 3 GU toxicity. Acute urinary retention did not occur. Acute and late grade 2 GI toxicity was 0% and 1%, respectively, with no grade 3 or higher toxicity. Of patients potent pre-SBRT, 65% remained so at 5 years.CONCLUSIONSVirtual HDR prostate SBRT creates a very low PSA nadir, a high rate of 5-year disease-free survival and an acceptable toxicity incidence, with results closely resembling those reported post-HDR brachytherapy.

  11. Management of a HDR brachytherapy system in the Hospital Juarez of Mexico; Gestion de un sistema de braquiterapia HDR een el Hospital Juarez de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Serrano F, A.G.; Ramirez R, G.; Gil G, R. [Hospital Juarez de Mexico, Av. l.P.N. 5160, Col. Magdalena de las Salinas, 07760 Mexico D.F. (Mexico); Azorin N, J. [UAM-I, 09340 Mexico D.F. (Mexico); Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria del IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico)

    2007-07-01

    Full text: In the Hospital Juarez of Mexico, it is carried out a project to implement a Brachytherapy system with high dose rate (HDR) through a Management quality program. In our work center this treatment modality in patients with cervicouterine cancer is used (CaCu), and constantly it is necessary to carry out improvements in the procedures, with the purpose of optimizing them and in consequence to complete the principles of the Radiological Protection, guaranteeing this way, an attention with the quality and safety, such that allow to diminish the risks to the patients and to assure that the received dose in critical organs it finds inside the permitted therapeutic limits, without commit the radiosensitive response of healthy organs. In this work an analysis of the implementation of this system is presented, detailing the procedures so much in the technological infrastructure like human and indicating the necessary technical and operative requirements to reach an adequate practice in HDR brachytherapy. (Author)

  12. Climatic Environmental Test Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — RTTC has an extensive suite of facilities for supporting MIL-STD-810 testing, toinclude: Temperature/Altitude, Rapid Decompression, Low/High Temperature,Temperature...

  13. Testing lifting systems in nuclear facilities

    International Nuclear Information System (INIS)

    Kling, H.; Laug, R.

    1984-01-01

    Lifting systems in nuclear facilities must be inspected at regular intervals after having undergone their first acceptance test. These inspections are frequently carried out by service firms which not only employ the skilled personnel required for such jobs but also make available the necessary test equipment. The inspections in particular include a number of sophisticated load tests for which test load systems have been developed to allow lifting systems to be tested so that reactor specific boundary conditions are taken into account. In view of the large number of facilities to be inspected, the test load system is a modular system. (orig.) [de

  14. Massachusetts Large Blade Test Facility Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Rahul Yarala; Rob Priore

    2011-09-02

    Project Objective: The Massachusetts Clean Energy Center (CEC) will design, construct, and ultimately have responsibility for the operation of the Large Wind Turbine Blade Test Facility, which is an advanced blade testing facility capable of testing wind turbine blades up to at least 90 meters in length on three test stands. Background: Wind turbine blade testing is required to meet international design standards, and is a critical factor in maintaining high levels of reliability and mitigating the technical and financial risk of deploying massproduced wind turbine models. Testing is also needed to identify specific blade design issues that may contribute to reduced wind turbine reliability and performance. Testing is also required to optimize aerodynamics, structural performance, encourage new technologies and materials development making wind even more competitive. The objective of this project is to accelerate the design and construction of a large wind blade testing facility capable of testing blades with minimum queue times at a reasonable cost. This testing facility will encourage and provide the opportunity for the U.S wind industry to conduct more rigorous testing of blades to improve wind turbine reliability.

  15. Balloon-based adjuvant radiotherapy in breast cancer: comparison between 99mTc and HDR 192Ir

    Directory of Open Access Journals (Sweden)

    Tarcísio Passos Ribeiro de Campos

    2016-04-01

    Full Text Available Abstract Objective: To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with 99mTc and balloon brachytherapy with high-dose-rate (HDR 192Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and Methods: Simulations of implants with 99mTc-filled and HDR 192Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results: The 99mTc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h-1.mCi-1 and 0.190 cGyh-1.mCi-1 at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh-1.mCi-1, respectively, for the HDR 192Ir balloon. An exposure time of 24 hours was required for the 99mTc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR 192Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion: Temporary 99mTc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR 192Ir balloon implantation, which is the current standard in clinical practice.

  16. Independent verification of the delivered dose in High-Dose Rate (HDR) brachytherapy

    International Nuclear Information System (INIS)

    Portillo, P.; Feld, D.; Kessler, J.

    2009-01-01

    An important aspect of a Quality Assurance program in Clinical Dosimetry is an independent verification of the dosimetric calculation done by the Treatment Planning System for each radiation treatment. The present paper is aimed at creating a spreadsheet for the verification of the dose recorded at a point of an implant with radioactive sources and HDR in gynecological injuries. An 192 Ir source automatic differed loading equipment, GammaMedplus model, Varian Medical System with HDR installed at the Angel H. Roffo Oncology Institute has been used. The planning system implemented for getting the dose distribution is the BraquiVision. The sources coordinates as well as those of the calculation point (Rectum) are entered into the Excel-devised verification program by assuming the existence of a point source in each one of the applicators' positions. Such calculation point has been selected as the rectum is an organ at risk, therefore determining the treatment planning. The dose verification is performed at points standing at a sources distance having at least twice the active length of such sources, so they may be regarded as point sources. Most of the sources used in HDR brachytherapy with 192 Ir have a 5 mm active length for all equipment brands. Consequently, the dose verification distance must be at least of 10 mm. (author)

  17. Assembly and installation of the large coil test facility test stand

    International Nuclear Information System (INIS)

    Queen, C.C. Jr.

    1983-01-01

    The Large Coil Test Facility (LCTF) was built to test six tokamak-type superconducting coils, with three to be designed and built by US industrial teams and three provided by Japan, Switzerland, and Euratom under an international agreement. The facility is designed to test these coils in an environment which simulates that of a tokamak. The heart of this facility is the test stand, which is made up of four major assemblies: the Gravity Base Assembly, the Bucking Post Assembly, the Torque Ring Assembly, and the Pulse Coil Assembly. This paper provides a detailed review of the assembly and installation of the test stand components and the handling and installation of the first coil into the test stand

  18. 33-GVA interrupter test facility

    International Nuclear Information System (INIS)

    Parsons, W.M.; Honig, E.M.; Warren, R.W.

    1979-01-01

    The use of commercial ac circuit breakers for dc switching operations requires that they be evaluated to determine their dc limitations. Two 2.4-GVA facilities have been constructed and used for this purpose at LASL during the last several years. In response to the increased demand on switching technology, a 33-GVA facility has been constructed. Novel features incorporated into this facility include (1) separate capacitive and cryogenic inductive energy storage systems, (2) fiber-optic controls and optically-coupled data links, and (3) digital data acquisition systems. Facility details and planned tests on an experimental rod-array vacuum interrupter are presented

  19. Fusion Materials Irradiation Test Facility: experimental capabilities and test matrix

    International Nuclear Information System (INIS)

    Opperman, E.K.

    1982-01-01

    This report describes the experimental capabilities of the Fusion Materials Irradiation Test Facility (FMIT) and reference material specimen test matrices. The description of the experimental capabilities and the test matrices has been updated to match the current single test cell facility ad assessed experimenter needs. Sufficient detail has been provided so that the user can plan irradiation experiments and conceptual hardware. The types of experiments, irradiation environment and support services that will be available in FMIT are discussed

  20. 21 CFR 58.31 - Testing facility management.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false Testing facility management. 58.31 Section 58.31... management. For each nonclinical laboratory study, testing facility management shall: (a) Designate a study... appropriately tested for identity, strength, purity, stability, and uniformity, as applicable. (e) Assure that...

  1. Evaluation of water-mimicking solid phantom materials for use in HDR and LDR brachytherapy dosimetry

    Science.gov (United States)

    Schoenfeld, Andreas A.; Thieben, Maike; Harder, Dietrich; Poppe, Björn; Chofor, Ndimofor

    2017-12-01

    In modern HDR or LDR brachytherapy with photon emitters, fast checks of the dose profiles generated in water or a water-equivalent phantom have to be available in the interest of patient safety. However, the commercially available brachytherapy photon sources cover a wide range of photon emission spectra, and the range of the in-phantom photon spectrum is further widened by Compton scattering, so that the achievement of water-mimicking properties of such phantoms involves high requirements on their atomic composition. In order to classify the degree of water equivalence of the numerous commercially available solid water-mimicking phantom materials and the energy ranges of their applicability, the radial profiles of the absorbed dose to water, D w, have been calculated using Monte Carlo simulations in these materials and in water phantoms of the same dimensions. This study includes the HDR therapy sources Nucletron Flexisource Co-60 HDR (60Co), Eckert und Ziegler BEBIG GmbH CSM-11 (137Cs), Implant Sciences Corporation HDR Yb-169 Source 4140 (169Yb) as well as the LDR therapy sources IsoRay Inc. Proxcelan CS-1 (131Cs), IsoAid Advantage I-125 IAI-125A (125I), and IsoAid Advantage Pd-103 IAPd-103A (103Pd). Thereby our previous comparison between phantom materials and water surrounding a Varian GammaMed Plus HDR therapy 192Ir source (Schoenfeld et al 2015) has been complemented. Simulations were performed in cylindrical phantoms consisting of either water or the materials RW1, RW3, Solid Water, HE Solid Water, Virtual Water, Plastic Water DT, Plastic Water LR, Original Plastic Water (2015), Plastic Water (1995), Blue Water, polyethylene, polystyrene and PMMA. While for 192Ir, 137Cs and 60Co most phantom materials can be regarded as water equivalent, for 169Yb the materials Plastic Water LR, Plastic Water DT and RW1 appear as water equivalent. For the low-energy sources 106Pd, 131Cs and 125I, only Plastic Water LR can be classified as water equivalent.

  2. Buffet test in the National Transonic Facility

    Science.gov (United States)

    Young, Clarence P., Jr.; Hergert, Dennis W.; Butler, Thomas W.; Herring, Fred M.

    1992-01-01

    A buffet test of a commercial transport model was accomplished in the National Transonic Facility at the NASA Langley Research Center. This aeroelastic test was unprecedented for this wind tunnel and posed a high risk to the facility. This paper presents the test results from a structural dynamics and aeroelastic response point of view and describes the activities required for the safety analysis and risk assessment. The test was conducted in the same manner as a flutter test and employed onboard dynamic instrumentation, real time dynamic data monitoring, automatic, and manual tunnel interlock systems for protecting the model. The procedures and test techniques employed for this test are expected to serve as the basis for future aeroelastic testing in the National Transonic Facility. This test program was a cooperative effort between the Boeing Commercial Airplane Company and the NASA Langley Research Center.

  3. HDR brachytherapy in carcinoma of cervix: initial experience at AWARE hospitals

    International Nuclear Information System (INIS)

    Rajendran, M.; Reddy, K.D.; Reddy, R.M.; Reddy, J.M.; Reddy, B.V.N.; Kiran Kumar; Gopi, S.; Dharaniraj; Janardhanan

    2002-01-01

    High dose rate (HDR) brachytherapy is well established in the management of gynaecological malignancies. A report on the initial results of one and half year experience with a consistent dose/fractionation schedule and procedure of planning with delivery of treatment schedule is presented

  4. E-4 Test Facility Design Status

    Science.gov (United States)

    Ryan, Harry; Canady, Randy; Sewell, Dale; Rahman, Shamim; Gilbrech, Rick

    2001-01-01

    Combined-cycle propulsion technology is a strong candidate for meeting NASA space transportation goals. Extensive ground testing of integrated air-breathing/rocket system (e.g., components, subsystems and engine systems) across all propulsion operational modes (e.g., ramjet, scramjet) will be needed to demonstrate this propulsion technology. Ground testing will occur at various test centers based on each center's expertise. Testing at the NASA John C. Stennis Space Center will be primarily concentrated on combined-cycle power pack and engine systems at sea level conditions at a dedicated test facility, E-4. This paper highlights the status of the SSC E-4 test Facility design.

  5. A test matrix sequencer for research test facility automation

    Science.gov (United States)

    Mccartney, Timothy P.; Emery, Edward F.

    1990-01-01

    The hardware and software configuration of a Test Matrix Sequencer, a general purpose test matrix profiler that was developed for research test facility automation at the NASA Lewis Research Center, is described. The system provides set points to controllers and contact closures to data systems during the course of a test. The Test Matrix Sequencer consists of a microprocessor controlled system which is operated from a personal computer. The software program, which is the main element of the overall system is interactive and menu driven with pop-up windows and help screens. Analog and digital input/output channels can be controlled from a personal computer using the software program. The Test Matrix Sequencer provides more efficient use of aeronautics test facilities by automating repetitive tasks that were once done manually.

  6. Experimental and theoretical investigations of soil-structure interaction effect at HDR-reactor-building

    International Nuclear Information System (INIS)

    Wassermann, K.

    1983-01-01

    Full-scale dynamic testing on intermediate and high levels was performed at the Heissdampfreaktor (HDR) in 1979. Various types of dynamic forces were applied and response of the reactor containment structure and internal components was measured. Precalculations of dynamic behaviour and response of the structure were made through different mathematical models for the structure and the underlying soil. Soil-Structure Interaction effects are investigated and different theoretical models are compared with experimental results. In each model, the soil is represented by springs attached to the structural model. Stiffnesses of springs are calculated by different finite-element idealizations and half-space approximations. Eigenfrequencies and damping values related to interaction effects (translation, rocking, torsion) are identified from test results. The comparisons of dynamic characteristic of the soil-structure system between precalculations and test results show good agreement in general. (orig.)

  7. Wind Tunnel Testing Facilities

    Data.gov (United States)

    Federal Laboratory Consortium — NASA Ames Research Center is pleased to offer the services of our premier wind tunnel facilities that have a broad range of proven testing capabilities to customers...

  8. The PANDA facility and first test results

    International Nuclear Information System (INIS)

    Dreier, J.; Huggenberger, M.; Aubert, C.; Bandurski, T.; Fischer, O.; Healzer, J.; Lomperski, S.; Strassberger, H.J.; Varadi, G.; Yadigaroglu, G.

    1996-01-01

    The PANDA test facility at the Paul Scherrer Institute is used to study the long-term performance of the Simplified Boiling Water Reactor's passive containment cooling system. The PANDA tests demonstrate performance on a larger scale than previous tests and examine the effects of any non-uniform spatial distributions of steam and non-condensable gases in the system. The facility is in 1:1 vertical scale and 1:25 scale for volume, power etc. Extensive facility characterization tests and steady-state passive containment condenser performance tests are presented. The results of the base case test of a series of transient system behaviour tests are reviewed. The first PANDA tests exhibited reproducibility, and indicated that the Simplified Boiling Water Reactor's containment is likely to be favorably responsive and highly robust to changes in the thermal transport patterns. (orig.) [de

  9. Advanced Control Test Operation (ACTO) facility

    International Nuclear Information System (INIS)

    Ball, S.J.

    1987-01-01

    The Advanced Control Test Operation (ACTO) project, sponsored by the US Department of Energy (DOE), is being developed to enable the latest modern technology, automation, and advanced control methods to be incorporated into nuclear power plants. The facility is proposed as a national multi-user center for advanced control development and testing to be completed in 1991. The facility will support a wide variety of reactor concepts, and will be used by researchers from Oak Ridge National Laboratory (ORNL), plus scientists and engineers from industry, other national laboratories, universities, and utilities. ACTO will also include telecommunication facilities for remote users

  10. Kauai Test Facility hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  11. Development of turbopump cavitation performance test facility and the test of inducer performance

    International Nuclear Information System (INIS)

    Sohn, Dong Kee; Kim, Chun Tak; Yoon, Min Soo; Cha, Bong Jun; Kim, Jin Han; Yang, Soo Seok

    2001-01-01

    A performance test facility for turbopump inducer cavitation was developed and the inducer cavitation performance tests were performed. Major components of the performance test facility are driving unit, test section, piping, water tank, and data acquisition and control system. The maximum of testing capability of this facility are as follows: flow rate - 30kg/s; pressure - 13 bar, rotational speed - 10,000rpm. This cavitation test facility is characterized by the booster pump installed at the outlet of the pump that extends the flow rate range, and by the pressure control system that makes the line pressure down to vapor pressure. The vacuum pump is used for removing the dissolved air in the water as well as the line pressure. Performance tests were carried out and preliminary data of test model inducer were obtained. The cavitation performance test and cavitation bubble flow visualization were also made. This facility is originally designed for turbopump inducer performance test and cavitation test. However it can be applied to the pump impeller performance test in the future with little modification

  12. Realistic camera noise modeling with application to improved HDR synthesis

    Science.gov (United States)

    Goossens, Bart; Luong, Hiêp; Aelterman, Jan; Pižurica, Aleksandra; Philips, Wilfried

    2012-12-01

    Due to the ongoing miniaturization of digital camera sensors and the steady increase of the "number of megapixels", individual sensor elements of the camera become more sensitive to noise, even deteriorating the final image quality. To go around this problem, sophisticated processing algorithms in the devices, can help to maximally exploit the knowledge on the sensor characteristics (e.g., in terms of noise), and offer a better image reconstruction. Although a lot of research focuses on rather simplistic noise models, such as stationary additive white Gaussian noise, only limited attention has gone to more realistic digital camera noise models. In this article, we first present a digital camera noise model that takes several processing steps in the camera into account, such as sensor signal amplification, clipping, post-processing,.. We then apply this noise model to the reconstruction problem of high dynamic range (HDR) images from a small set of low dynamic range (LDR) exposures of a static scene. In literature, HDR reconstruction is mostly performed by computing a weighted average, in which the weights are directly related to the observer pixel intensities of the LDR image. In this work, we derive a Bayesian probabilistic formulation of a weighting function that is near-optimal in the MSE sense (or SNR sense) of the reconstructed HDR image, by assuming exponentially distributed irradiance values. We define the weighting function as the probability that the observed pixel intensity is approximately unbiased. The weighting function can be directly computed based on the noise model parameters, which gives rise to different symmetric and asymmetric shapes when electronic noise or photon noise is dominant. We also explain how to deal with the case that some of the noise model parameters are unknown and explain how the camera response function can be estimated using the presented noise model. Finally, experimental results are provided to support our findings.

  13. Directory of transport packaging test facilities

    International Nuclear Information System (INIS)

    1983-08-01

    Radioactive materials are transported in packagings or containers which have to withstand certain tests depending on whether they are Type A or Type B packagings. In answer to a request by the International Atomic Energy Agency, 13 Member States have provided information on the test facilities and services existing in their country which can be made available for use by other states by arrangement for testing different kinds of packagings. The directory gives the technical information on the facilities, the services, the tests that can be done and in some cases even the financial arrangement is included

  14. Test facilities for future linear colliders

    International Nuclear Information System (INIS)

    Ruth, R.D.

    1995-12-01

    During the past several years there has been a tremendous amount of progress on Linear Collider technology world wide. This research has led to the construction of the test facilities described in this report. Some of the facilities will be complete as early as the end of 1996, while others will be finishing up around the end 1997. Even now there are extensive tests ongoing for the enabling technologies for all of the test facilities. At the same time the Linear Collider designs are quite mature now and the SLC is providing the key experience base that can only come from a working collider. All this taken together indicates that the technology and accelerator physics will be ready for a future Linear Collider project to begin in the last half of the 1990s

  15. An assessment of testing requirement impacts on nuclear thermal propulsion ground test facility design

    International Nuclear Information System (INIS)

    Shipers, L.R.; Ottinger, C.A.; Sanchez, L.C.

    1993-01-01

    Programs to develop solid core nuclear thermal propulsion (NTP) systems have been under way at the Department of Defense (DoD), the National Aeronautics and Space Administration (NASA), and the Department of Energy (DOE). These programs have recognized the need for a new ground test facility to support development of NTP systems. However, the different military and civilian applications have led to different ground test facility requirements. The Department of Energy (DOE) in its role as landlord and operator of the proposed research reactor test facilities has initiated an effort to explore opportunities for a common ground test facility to meet both DoD and NASA needs. The baseline design and operating limits of the proposed DoD NTP ground test facility are described. The NASA ground test facility requirements are reviewed and their potential impact on the DoD facility baseline is discussed

  16. Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Munn, W.I.

    1981-01-01

    The Fast Flux Test Facility (FFTF), located on the Hanford site a few miles north of Richland, Washington, is a major link in the chain of development required to sustain and advance Liquid Metal Fast Breeder Reactor (LMFBR) technology in the United States. This 400 MWt sodium cooled reactor is a three loop design, is operated by Westinghouse Hanford Company for the US Department of Energy, and is the largest research reactor of its kind in the world. The purpose of the facility is three-fold: (1) to provide a test bed for components, materials, and breeder reactor fuels which can significantly extend resource reserves; (2) to produce a complete body of base data for the use of liquid sodium in heat transfer systens; and (3) to demonstrate inherent safety characteristics of LMFBR designs

  17. New facility for testing LHC HTS power leads

    CERN Document Server

    Rabehl, Roger Jon; Fehér, S; Huang, Y; Orris, D; Pischalnikov, Y; Sylvester, C D; Tartaglia, M

    2005-01-01

    A new facility for testing HTS power leads at the Fermilab Magnet Test Facility has been designed and operated. The facility has successfully tested 19 pairs of HTS power leads, which are to be integrated into the Large Hadron Collider Interaction Region cryogenic feed boxes. This paper describes the design and operation of the cryogenics, process controls, data acquisition, and quench management systems. HTS power lead test results from the commissioning phase of the project are also presented.

  18. ORNL 150 keV neutral beam test facility

    International Nuclear Information System (INIS)

    Gardner, W.L.; Kim, J.; Menon, M.M.; Schilling, G.

    1977-01-01

    The 150 keV neutral beam test facility provides for the testing and development of neutral beam injectors and beam systems of the class that will be needed for the Tokamak Fusion Test Reactor (TFTR) and The Next Step (TNS). The test facility can simulate a complete beam line injection system and can provide a wide range of experimental operating conditions. Herein is offered a general description of the facility's capabilities and a discussion of present system performance

  19. Commissioning of a well type chamber for HDR and LDR brachytherapy applications: a review of methodology and outcomes.

    Science.gov (United States)

    Mukwada, Godfrey; Neveri, Gabor; Alkhatib, Zaid; Waterhouse, David K; Ebert, Martin

    2016-03-01

    For safe and accurate dose delivery in brachytherapy, associated equipment is subject to commissioning and ongoing quality assurance (QA). Many centres depend on the use of a well-type chamber ('well chamber') for performing brachytherapy dosimetry. Documentation of well chamber commissioning is scarce despite the important role the chamber plays in the whole brachytherapy QA process. An extensive and structured commissioning of the HDR 1000 plus well chamber (Standard Imaging Inc, Middleton WI) for HDR and LDR dosimetry was undertaken at Sir Charles Gairdner Hospital. The methodology and outcomes of this commissioning is documented and presented as a guideline to others involved in brachytherapy. The commissioning tests described include mechanical integrity, leakage current, directional dependence, response, length of uniform response, the influence of insert holders, ion collection efficiency, polarity effect, accuracy of measured air kerma strength (S(K)) or reference air kerma rate (K(R)) and baseline setting (for ongoing constancy checks). For the HDR 1000 plus well chamber, some of the insert holders modify the response curve. The measured sweet length was 2.5 cm which is within 0.5% of that specified by the manufacturer. Correction for polarity was negligible (0.9999) and ion recombination was small (0.9994). Directional dependence was small (less than 0.2%) and leakage current was negligible. The measured K(R) for (192)Ir agreed within 0.11% compared with a second well chamber of similar model and was within 0.5% of that determined via a free-in-air measurement method. Routine constancy checks over a year agreed with the baseline within 0.4%.

  20. Clinical implementation of a new HDR brachytherapy device for partial breast irradiation

    International Nuclear Information System (INIS)

    Scanderbeg, Daniel J.; Yashar, Catheryn; Rice, Roger; Pawlicki, Todd

    2009-01-01

    Purpose: To present the clinical implementation of a new HDR device for partial breast irradiation, the Strut-Adjusted Volume Implant (SAVI), at the University of California, San Diego. Methods and materials: The SAVI device has multiple peripheral struts that can be differentially loaded with the HDR source. Planning criteria used for evaluation of the treatment plans included the following dose volume histogram (DVH) criteria: V90 >90%, V150 <50 cc and V200 <20 cc. Results: SAVI has been used on 20 patients to date at UC San Diego. In each case, the dose was modulated according to patient-specific anatomy to cover the tumor bed, while sparing normal tissues. The dosimetric data show that we can achieve greater than 90% coverage with respect to V90 (median of 95.3%) and also keep a low V150 and V200 dose at 24.5 and 11.2 cc, respectively. Complete treatment can be done within a 30-min time slot, which includes implant verification, setup, and irradiation time as well as wound dressing. Conclusion: SAVI has been implemented at UC San Diego for accelerated partial breast irradiation with excellent tumor bed conformance and minimal normal tissue exposure. Patient positioning is the key to identifying any inter-fraction device motion. Device asymmetry or tissue conformance has been shown to resolve itself 24 h after the device implantation. The device can be implemented into an existing HDR program with minimal effort

  1. Photometric and Colorimeric Comparison of HDR and Spctrally Resolved Rendering Images

    DEFF Research Database (Denmark)

    Amdemeskel, Mekbib Wubishet; Soreze, Thierry Silvio Claude; Thorseth, Anders

    2017-01-01

    In this paper, we will demonstrate a comparison between measured colorimetric images, and simulated images from a physics based rendering engine. The colorimetric images are high dynamic range (HDR) and taken with a luminance and colour camera mounted on a goniometer. For the comparison, we have ...

  2. DeBeNe Test Facilities for Fast Breeder Development

    International Nuclear Information System (INIS)

    Storz, R.

    1980-10-01

    This report gives an overview and a short description of the test facilities constructed and operated within the collaboration for fast breeder development in Germany, Belgium and the Netherlands. The facilities are grouped into Sodium Loops (Large Facilities and Laboratory Loops), Special Equipment including Hot Cells and Reprocessing, Test Facilities without Sodium, Zero Power Facilities and In-pile Loops including Irradiation Facilities

  3. Plasma-Materials Interactions Test Facility

    International Nuclear Information System (INIS)

    Uckan, T.

    1986-11-01

    The Plasma-Materials Interactions Test Facility (PMITF), recently designed and constructed at Oak Ridge National Laboratory (ORNL), is an electron cyclotron resonance microwave plasma system with densities around 10 11 cm -3 and electron temperatures of 10-20 eV. The device consists of a mirror cell with high-field-side microwave injection and a heating power of up to 0.8 kW(cw) at 2.45 GHz. The facility will be used for studies of plasma-materials interactions and of particle physics in pump limiters and for development and testing of plasma edge diagnostics

  4. Dosimetric study of surface applicators of HDR brachytherapy GammaMed Plus equipment

    International Nuclear Information System (INIS)

    Reyes-Rivera, E.; Sosa, M.; Reyes, U.; Jesús Bernal-Alvarado, José de; Córdova, T.; Gil-Villegas, A.; Monzón, E.

    2014-01-01

    The cone type surface applicators used in HDR brachytherapy for treatment of small skin lesions are an alternative to be used with both electron beams and orthovoltage X-ray equipment. For a good treatment planning is necessary to know the dose distribution of these applicators, which can be obtained by experimental measurement and Monte Carlo simulation as well. In this study the dose distribution of surface applicators of 3 and 3.5 cm diameter, respectively of HDR brachytherapy GammaMed Plus equipment has been estimated using the Monte Carlo method, MCNP code. The applicators simulated were placed on the surface of a water phantom of 20 × 20 × 20 cm and the dose was calculated at depths from 0 to 3 cm with increments of 0.25 mm. The dose profiles obtained at depth show the expected gradients for surface therapy

  5. Dosimetric study of surface applicators of HDR brachytherapy GammaMed Plus equipment

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rivera, E., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Sosa, M., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Reyes, U., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Jesús Bernal-Alvarado, José de, E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx; Córdova, T., E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx; Gil-Villegas, A., E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx [División de Ciencias e Ingenierías, Universidad de Guanajuato, 37150 León, Gto. (Mexico); Monzón, E., E-mail: emonzon@imss.gob.mx [Unidad de Alta Especialidad No.1, Instituto Mexicano del Seguro Social, Léon, Gto. (Mexico)

    2014-11-07

    The cone type surface applicators used in HDR brachytherapy for treatment of small skin lesions are an alternative to be used with both electron beams and orthovoltage X-ray equipment. For a good treatment planning is necessary to know the dose distribution of these applicators, which can be obtained by experimental measurement and Monte Carlo simulation as well. In this study the dose distribution of surface applicators of 3 and 3.5 cm diameter, respectively of HDR brachytherapy GammaMed Plus equipment has been estimated using the Monte Carlo method, MCNP code. The applicators simulated were placed on the surface of a water phantom of 20 × 20 × 20 cm and the dose was calculated at depths from 0 to 3 cm with increments of 0.25 mm. The dose profiles obtained at depth show the expected gradients for surface therapy.

  6. Final design of ITER port plug test facility

    Energy Technology Data Exchange (ETDEWEB)

    Cerisier, Thierry, E-mail: thierry.cerisier@yahoo.fr [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Levesy, Bruno [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Romannikov, Alexander [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation); Rumyantsev, Yuri [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Cordier, Jean-Jacques; Dammann, Alexis [ITER Organization, Route de Vinon-sur-Verdon, CS 90046, St Paul-lez-Durance Cedex, 13067 (France); Minakov, Victor; Rosales, Natalya; Mitrofanova, Elena [JSC “Cryogenmash”, Moscow reg., Balashikha 143907 (Russian Federation); Portone, Sergey; Mironova, Ekaterina [Institution “Project Center ITER”, Kurchatov sq. 1, Building 3, Moscow 123182 (Russian Federation)

    2016-11-01

    Highlights: • We introduce the port plug test facility (purpose and status of the design). • We present the PPTF sub-systems. • We present the environmental and functional tests. • We present the occupational and nuclear safety functions. • We conclude on the achievements and next steps. - Abstract: To achieve the overall ITER machine availability target, the availability of diagnostics and heating port plugs shall be as high as 99.5%. To fulfill this requirement, it is mandatory to test the port plugs at operating temperature before installation on the machine and after refurbishment. The ITER port plug test facility (PPTF) is composed of several test stands that can be used to test the port plugs whereas at the end of manufacturing (in a non-nuclear environment), or after refurbishment in the ITER hot cell facility. The PPTF provides the possibility to perform environmental (leak tightness, vacuum and thermo-hydraulic performances) and functional tests (radio frequency acceptance tests, behavior of the plugs’ steering mechanism and calibration of diagnostics) on upper and equatorial port plugs. The final design of the port plug test facility is described. The configuration of the standalone test stands and the integration in the hot cell facility are presented.

  7. SU-C-202-02: A Comprehensive Evaluation of Adaptive Daily Planning for Cervical Cancer HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Meerschaert, R; Paul, A; Zhuang, L [Department of Oncology, Radiation Oncology Division, Wayne State University School of Medicine, Detroit, MI (United States); Nalichowski, A [Department of Oncology, Radiation Oncology Division, Karmanos Cancer Institute, Detroit, MI (United States); Burmeister, J; Miller, A [Department of Oncology, Radiation Oncology Division, Wayne State University School of Medicine, Detroit, MI (United States); Department of Oncology, Radiation Oncology Division, Karmanos Cancer Institute, Detroit, MI (United States)

    2016-06-15

    Purpose: To evaluate adaptive daily planning for cervical cancer patients who underwent high-dose-rate intra-cavitary brachytherapy (HDR-ICBT). Methods: This study included 22 cervical cancer patients who underwent 5 fractions of HDR ICBT. Regions of interest (ROIs) including high-risk clinical tumor volume (HR-CTV) and organs-at-risk (OARs) were manually contoured on daily CT images. All patients were treated with adaptive daily plans, which involved ROI delineation and dose optimization at each treatment fraction. Single treatment plans were retrospectively generated by applying the first treatment fraction’s dwell times adjusted for decay and dwell positions of the applicator to subsequent treatment fractions. Various existing similarity metrics were calculated for the ROIs to quantify interfractional organ variations. A novel similarity score (JRARM) was established, which combined both volumetric overlap metrics (DSC, JSC, and RVD) and distance metrics (ASD, MSD, and RMSD). Linear regression was performed to determine a relationship between inter-fractional organ variations of various similarity metrics and D2cc variations from both plans. Wilcoxon Signed Rank Tests were used to assess adaptive daily plans and single plans by comparing EQD2 D2cc (α/β=3) for OARs. Results: For inter-fractional organ variations, the sigmoid demonstrated the greatest variations based on the JRARM and DSC similarity metrics. Comparisons between paired ROIs showed differences in JRARM scores and DSCs at each treatment fraction. RVD, MSD, and RMSD were found to be significantly correlated to D2cc variations for bladder and sigmoid. The comparison between plans found that adaptive daily planning provided lower EQD2 D2cc of OARs than single planning, specifically for the sigmoid (p=0.015). Conclusion: Substantial inter-fractional organ motion can occur during HDR-BT, which may significantly affect D2cc of OARs. Adaptive daily planning provides improved dose sparing for OARs

  8. The engineering test facility

    International Nuclear Information System (INIS)

    Steiner, D.; Becraft, W.R.; Sager, P.H.

    1981-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test-bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This paper describes the design status of the ETF. (orig.)

  9. Flow characteristic of Hijiori HDR reservoir from circulation test in 1991; Koon tantai Hijiori jikkenjo ni okeru senbu choryuso shiken (1991 nendo) kekka to ryudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Shiga, T; Hyodo, M; Shinohara, N; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper reports one example of flow analyses on a circulation test carried out in fiscal 1991 at the Hijiori hot dry rock experimental field (Yamagata Prefecture). A fluid circulation model was proposed to simulate an HDR circulation system for a shallow reservoir (at a depth of about 1800 m) demonstrated in the circulation test by using an electric circuit network (which expresses continuity impedance in resistance and fluid storage in capacitance). Storage capacity of the reservoir was estimated by deriving time constant of the system from data of time-based change in reservoir pressure associated with transition phenomena during the circulation test. The storage capacity was estimated separately by dividing change of storage in the reservoir by change in the reservoir pressure. To derive the storage in the reservoir, a method to calculate non-recovered flows in the circulation test was utilized. The results of evaluating the reservoir capacity in the shallow reservoir using the above two independent methods were found substantially consistent. 3 refs., 6 figs., 1 tab.

  10. 3-D conformal HDR brachytherapy as monotherapy for localized prostate cancer. A pilot study

    International Nuclear Information System (INIS)

    Martin, T.; Baltas, D.; Kurek, R.; Roeddiger, S.; Kontova, M.; Anagnostopoulos, G.; Skazikis, G.; Zamboglou, N.; Dannenberg, T.; Buhleier, T.; Tunn, U.

    2004-01-01

    Purpose: pilot study to evaluate feasibility, acute toxicity and conformal quality of three-dimensional (3-D) conformal high-dose-rate (HDR) brachytherapy as monotherapy for localized prostate cancer using intraoperative real-time planning. Patients and methods: between 05/2002 and 05/2003, 52 patients with prostate cancer, prostate-specific antigen (PSA) ≤ 10 ng/ml, Gleason score ≤ 7 and clinical stage ≤ T2a were treated. Median PSA was 6.4 ng/ml and median Gleason score 5. 24/52 patients had stage T1c and 28/52 stage T2a. For transrectal ultrasound-(TRUS-)guided transperineal implantation of flexible plastic needles into the prostate, the real-time HDR planning system SWIFT trademark was used. After implantation, CT-based 3-D postplanning was performed. All patients received one implant for four fractions of HDR brachytherapy in 48 h using a reference dose (D ref ) of 9.5 Gy to a total dose of 38.0 Gy. Dose-volume histograms (DVHs) were analyzed to evaluate the conformal quality of each implant using D 90 , D 10 urethra, and D 10 rectum. Acute toxicity was evaluated using the CTC (common toxicity criteria) scales. Results: median D 90 was 106% of D ref (range: 93-115%), median D 10 urethra 159% of D ref (range: 127-192%), and median D 10 rectum 55% of D ref (range: 35-68%). Median follow-up is currently 8 months. In 2/52 patients acute grade 3 genitourinary toxicity was observed. No gastrointestinal toxicity > grade 1 occurred. Conclusion: 3-D conformal HDR brachytherapy as monotherapy using intraoperative real-time planning is a feasible and highly conformal treatment for localized prostate cancer associated with minimal acute toxicity. Longer follow-up is needed to evaluate late toxicity and biochemical control. (orig.)

  11. The high-temperature helium test facility (HHV)

    International Nuclear Information System (INIS)

    Noack, G.; Weiskopf, H.

    1977-03-01

    The report describes the high-temperature helium test facility (HHV). Construction of this plant was started in 1972 by Messrs. BBC, Mannheim, on behalf of the Kernforschungsanlage Juelich. By the end of 1976, the construction work is in its last stage, so that the plant may start operation early in 1977. First of all, the cycle system and the arrangement of components are dealt with, followed by a discussion of individual components. Here, emphasis is laid on components typical for HHT systems, while conventional components are mentioned without further structural detail. The projected test programme for the HHV facility in phase IB of the HHT project is shortly dealt with. After this, the potential of this test facility with regard to the possible use of test components and to fluid- and thermodynamic boundary conditions is pointed out. With the unique potential the facility offers here, aspects of shortened service life at higher cycle temperatures do not remain disregarded. (orig./UA) [de

  12. Large coil test facility

    International Nuclear Information System (INIS)

    Nelms, L.W.; Thompson, P.B.

    1980-01-01

    Final design of the facility is nearing completion, and 20% of the construction has been accomplished. A large vacuum chamber, houses the test assembly which is coupled to appropriate cryogenic, electrical, instrumentation, diagnostc systems. Adequate assembly/disassembly areas, shop space, test control center, offices, and test support laboratories are located in the same building. Assembly and installation operations are accomplished with an overhead crane. The major subsystems are the vacuum system, the test stand assembly, the cryogenic system, the experimental electric power system, the instrumentation and control system, and the data aquisition system

  13. Altitude simulation facility for testing large space motors

    Science.gov (United States)

    Katz, U.; Lustig, J.; Cohen, Y.; Malkin, I.

    1993-02-01

    This work describes the design of an altitude simulation facility for testing the AKM motor installed in the 'Ofeq' satellite launcher. The facility, which is controlled by a computer, consists of a diffuser and a single-stage ejector fed with preheated air. The calculations of performance and dimensions of the gas extraction system were conducted according to a one-dimensional analysis. Tests were carried out on a small-scale model of the facility in order to examine the design concept, then the full-scale facility was constructed and operated. There was good agreement among the results obtained from the small-scale facility, from the full-scale facility, and from calculations.

  14. IPIP: A new approach to inverse planning for HDR brachytherapy by directly optimizing dosimetric indices

    International Nuclear Information System (INIS)

    Siauw, Timmy; Cunha, Adam; Atamtuerk, Alper; Hsu, I-Chow; Pouliot, Jean; Goldberg, Ken

    2011-01-01

    Purpose: Many planning methods for high dose rate (HDR) brachytherapy require an iterative approach. A set of computational parameters are hypothesized that will give a dose plan that meets dosimetric criteria. A dose plan is computed using these parameters, and if any dosimetric criteria are not met, the process is iterated until a suitable dose plan is found. In this way, the dose distribution is controlled by abstract parameters. The purpose of this study is to develop a new approach for HDR brachytherapy by directly optimizing the dose distribution based on dosimetric criteria. Methods: The authors developed inverse planning by integer program (IPIP), an optimization model for computing HDR brachytherapy dose plans and a fast heuristic for it. They used their heuristic to compute dose plans for 20 anonymized prostate cancer image data sets from patients previously treated at their clinic database. Dosimetry was evaluated and compared to dosimetric criteria. Results: Dose plans computed from IPIP satisfied all given dosimetric criteria for the target and healthy tissue after a single iteration. The average target coverage was 95%. The average computation time for IPIP was 30.1 s on an Intel(R) Core TM 2 Duo CPU 1.67 GHz processor with 3 Gib RAM. Conclusions: IPIP is an HDR brachytherapy planning system that directly incorporates dosimetric criteria. The authors have demonstrated that IPIP has clinically acceptable performance for the prostate cases and dosimetric criteria used in this study, in both dosimetry and runtime. Further study is required to determine if IPIP performs well for a more general group of patients and dosimetric criteria, including other cancer sites such as GYN.

  15. Qualification test for ITER HCCR-TBS mockups with high heat flux test facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk-Kwon, E-mail: skkim93@kaeri.re.kr [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Park, Seong Dae; Jin, Hyung Gon; Lee, Eo Hwak; Yoon, Jae-Sung; Lee, Dong Won [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2016-11-01

    Highlights: • The test mockups for ITER HCCR (Helium Cooled Ceramic Reflector) TBS (Test Blanket System) in Korea were designed and fabricated. • A thermo-hydraulic analysis was performed using a high heat flux test facility by using electron beam. • The plan for qualification tests was developed to evaluate the thermo-hydraulic efficiency in accordance with the requirements of the ITER Organization. - Abstract: The test mockups for ITER HCCR (Helium Cooled Ceramic Reflector) TBS (Test Blanket System) in Korea were designed and fabricated, and an integrity and thermo-hydraulic performance test should be completed under the same or similar operation conditions of ITER. The test plan for a thermo-hydraulic analysis was developed by using a high heat flux test facility, called the Korean heat load test facility by using electron beam (KoHLT-EB). This facility is utilized for a qualification test of the plasma facing component (PFC) for the ITER first wall and DEMO divertor, and for the thermo-hydraulic experiments. In this work, KoHLT-EB will be used for the plan of the performance qualification test of the ITER HCCR-TBS mockups. This qualification tests should be performed to evaluate the thermo-hydraulic efficiency in accordance with the requirements of the ITER Organization (IO), which describe the specifications and qualifications of the heat flux test facility and test procedure for ITER PFC.

  16. SU-G-201-01: An Automated Treatment Plan Quality Assurance Program for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Y; Tan, J; Jiang, S; Albuquerque, K; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2016-06-15

    Purpose: Plan specific quality assurance (QA) is an important step in high dose rate (HDR) brachytherapy to ensure the integrity of a treatment plan. The conventional approach is to assemble a set of plan screen-captures in a document and have an independent plan-checker to verify it. Not only is this approach cumbersome and time-consuming, using a document also limits the items that can be verified, hindering plan quality and patient safety. We have initiated efforts to develop a web-based HDR brachytherapy QA system called AutoBrachy QA, for comprehensive and efficient QA. This abstract reports a new plugin in this system for the QA of a cylinder HDR brachytherapy treatment. Methods: A cylinder plan QA module was developed using Python. It was plugged into our AutoBrachy QA system. This module extracted information from CT images and treatment plan. Image processing techniques were employed to obtain geometric parameters, e.g. cylinder diameter. A comprehensive set of eight geometrical and eight dosimetric features of the plan were validated against user specified planning parameter, such as prescription value, treatment depth and length, etc. A PDF document was generated, consisting of a summary QA sheet with all the QA results, as well as images showing plan details. Results: The cylinder QA program has been implemented in our clinic. To date, it has been used in 11 patient cases and was able to successfully perform QA tests in all of them. The QA program reduced the average plan QA time from 7 min using conventional manual approach to 0.5 min. Conclusion: Being a new module in our AutoBrachy QA system, an automated treatment plan QA module for cylinder HDR brachytherapy has been successfully developed and clinically implemented. This module improved clinical workflow and plan integrity compared to the conventional manual approach.

  17. SU-G-201-01: An Automated Treatment Plan Quality Assurance Program for High-Dose Rate (HDR) Brachytherapy with a VaginalCylinder Applicator

    International Nuclear Information System (INIS)

    Zhou, Y; Tan, J; Jiang, S; Albuquerque, K; Jia, X

    2016-01-01

    Purpose: Plan specific quality assurance (QA) is an important step in high dose rate (HDR) brachytherapy to ensure the integrity of a treatment plan. The conventional approach is to assemble a set of plan screen-captures in a document and have an independent plan-checker to verify it. Not only is this approach cumbersome and time-consuming, using a document also limits the items that can be verified, hindering plan quality and patient safety. We have initiated efforts to develop a web-based HDR brachytherapy QA system called AutoBrachy QA, for comprehensive and efficient QA. This abstract reports a new plugin in this system for the QA of a cylinder HDR brachytherapy treatment. Methods: A cylinder plan QA module was developed using Python. It was plugged into our AutoBrachy QA system. This module extracted information from CT images and treatment plan. Image processing techniques were employed to obtain geometric parameters, e.g. cylinder diameter. A comprehensive set of eight geometrical and eight dosimetric features of the plan were validated against user specified planning parameter, such as prescription value, treatment depth and length, etc. A PDF document was generated, consisting of a summary QA sheet with all the QA results, as well as images showing plan details. Results: The cylinder QA program has been implemented in our clinic. To date, it has been used in 11 patient cases and was able to successfully perform QA tests in all of them. The QA program reduced the average plan QA time from 7 min using conventional manual approach to 0.5 min. Conclusion: Being a new module in our AutoBrachy QA system, an automated treatment plan QA module for cylinder HDR brachytherapy has been successfully developed and clinically implemented. This module improved clinical workflow and plan integrity compared to the conventional manual approach.

  18. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1985-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  19. Startup of Large Coil Test Facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Eventually, six different coils from four countries will be tested. Operations began in 1983 with acceptance testing of the helium refrigerator/liquefier system. Comprehensive shakedown of the facility and tests with the first three coils (from Japan, the United States, and Switzerland) were successfully accomplished in the summer of 1984. Currents up to 10,200 A and fields up to 6.4 T were reached. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils

  20. Stored energy analysis in the scaled-down test facilities

    International Nuclear Information System (INIS)

    Deng, Chengcheng; Chang, Huajian; Qin, Benke; Wu, Qiao

    2016-01-01

    Highlights: • Three methods are developed to evaluate stored energy in the scaled-down test facilities. • The mechanism behind stored energy distortion in the test facilities is revealed. • The application of stored energy analysis is demonstrated for the ACME facility of China. - Abstract: In the scaled-down test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy release in the metal structures has an important influence on the accuracy and effectiveness of the experimental data. Three methods of stored energy analysis are developed, and the mechanism behind stored energy distortion in the test facilities is revealed. Moreover, the application of stored energy analysis is demonstrated for the ACME test facility newly built in China. The results show that the similarity requirements of three methods analyzing the stored energy release decrease gradually. The physical mechanism of stored energy release process can be characterized by the dimensionless numbers including Stanton number, Fourier number and Biot number. Under the premise of satisfying the overall similarity of natural circulation, the stored energy release process in the scale-down test facilities cannot maintain exact similarity. The results of the application of stored energy analysis illustrate that both the transient release process and integral total stored energy of the reactor pressure vessel wall of CAP1400 power plant can be well reproduced in the ACME test facility.

  1. Quality control and performance evaluation of microselectron HDR machine over 30 months

    International Nuclear Information System (INIS)

    Balasubramanian, N.; Annex, E.H.; Sunderam, N.; Patel, N.P.; Kaushal, V.

    2008-01-01

    To assess the performance evaluation of Microselectron HDR machine the standard quality control and quality assurance checks were carried out after each loading of new 192 Ir brachytherapy source In the machine. Total 9 loadings were done over a period of 30 months

  2. Cold moderator test facilities working group

    International Nuclear Information System (INIS)

    Bauer, Guenter S.; Lucas, A. T.

    1997-09-01

    The working group meeting was chaired by Bauer and Lucas.Testing is a vital part of any cold source development project. This applies to specific physics concept verification, benchmarking in conjunction with computer modeling and engineering testing to confirm the functional viability of a proposed system. Irradiation testing of materials will always be needed to continuously extend a comprehensive and reliable information database. An ever increasing worldwide effort to enhance the performance of reactor and accelerator based neutron sources, coupled with the complexity and rising cost of building new generation facilities, gives a new dimension to cold source development and testing programs. A stronger focus is now being placed on the fine-tuning of cold source design to maximize its effectiveness in fully exploiting the facility. In this context, pulsed spallation neutron sources pose an extra challenge due to requirements regarding pulse width and shape which result from a large variety of different instrument concepts. The working group reviewed these requirements in terms of their consequences on the needs for testing equipment and compiled a list of existing and proposed facilities suitable to carry out the necessary development work.

  3. Air pollution control system testing at the DOE offgas components test facility

    International Nuclear Information System (INIS)

    Burns, D.B.; Speed, D.; VanPelt, W.; Burns, H.H.

    1997-01-01

    In 1997, the Department of Energy (DOE) Savannah River Site (SRS) plans to begin operation of the Consolidated Incineration Facility (CIF) to treat solid and liquid RCRA hazardous and mixed wastes. The Savannah River Technology Center (SRTC) leads an extensive technical support program designed to obtain incinerator and air pollution control equipment performance data to support facility start-up and operation. A key component of this technical support program includes the Offgas Components Test Facility (OCTF), a pilot-scale offgas system test bed. The primary goal for this test facility is to demonstrate and evaluate the performance of the planned CIF Air Pollution Control System (APCS). To accomplish this task, the OCTF has been equipped with a 1/10 scale CIF offgas system equipment components and instrumentation. In addition, the OCTF design maximizes the flexibility of APCS operation and facility instrumentation and sampling capabilities permit accurate characterization of all process streams throughout the facility. This allows APCS equipment performance to be evaluated in an integrated system under a wide range of possible operating conditions. This paper summarizes the use of this DOE test facility to successfully demonstrate APCS operability and maintainability, evaluate and optimize equipment and instrument performance, and provide direct CIF start-up support. These types of facilities are needed to permit resolution of technical issues associated with design and operation of systems that treat and dispose combustible hazardous, mixed, and low-level radioactive waste throughout and DOE complex

  4. FFTF [Fast Flux Test Facility] management

    International Nuclear Information System (INIS)

    Bennett, C.L.

    1986-11-01

    Fuel Management at the Fast Flux Test Facility (FFTF) involves more than just the usual ex-core and in-core management of standard fuel and non-fuel components between storage locations and within the core since it is primarily an irradiation test facility. This mission involves testing an ever increasing variety of fueled and non-fueled experiments, each having unique requirements on the reactor core as well as having its own individual impact on the reload design. This paper describes the fuel management process used by the Westinghouse Hanford Company Core Engineering group that has led to the successful reload design of nine operating cycles and the irradiation of over 120 tests

  5. Construction of the two-phase critical flow test facility

    International Nuclear Information System (INIS)

    Chung, C. H.; Chang, S. K.; Park, H. S.; Min, K. H.; Choi, N. H.; Kim, C. H.; Lee, S. H.; Kim, H. C.; Chang, M. H.

    2002-03-01

    The two-phase critical test loop facility has been constructed in the KAERI engineering laboratory for the simulation of small break loss of coolant accident entrained with non-condensible gas of SMART. The test facility can operate at 12 MPa of pressure and 0 to 60 C of sub-cooling with 0.5 kg/s of non- condensible gas injection into break flow, and simulate up to 20 mm of pipe break. Main components of the test facility were arranged such that the pressure vessel containing coolant, a test section simulating break and a suppression tank inter-connected with pipings were installed vertically. As quick opening valve opens, high pressure/temperature coolant flows through the test section forming critical two-phase flow into the suppression tank. The pressure vessel was connected to two high pressure N2 gas tanks through a control valve to control pressure in the pressure vessel. Another N2 gas tank was also connected to the test section for the non-condensible gas injection. The test facility operation was performed on computers supported with PLC systems installed in the control room, and test data such as temperature, break flow rate, pressure drop across test section, gas injection flow rate were all together gathered in the data acquisition system for further data analysis. This test facility was classified as a safety related high pressure gas facility in law. Thus the loop design documentation was reviewed, and inspected during construction of the test loop by the regulatory body. And the regulatory body issued permission for the operation of the test facility

  6. Mirror Fusion Test Facility (MFTF)

    International Nuclear Information System (INIS)

    Thomassen, K.I.

    1978-01-01

    A large, new Mirror Fusion Test Facility is under construction at LLL. Begun in FY78 it will be completed at the end of FY78 at a cost of $94.2M. This facility gives the mirror program the flexibility to explore mirror confinement principles at a signficant scale and advances the technology of large reactor-like devices. The role of MFTF in the LLL program is described here

  7. Flow analysis of HANARO flow simulated test facility

    International Nuclear Information System (INIS)

    Park, Yong-Chul; Cho, Yeong-Garp; Wu, Jong-Sub; Jun, Byung-Jin

    2002-01-01

    The HANARO, a multi-purpose research reactor of 30 MWth open-tank-in-pool type, has been under normal operation since its initial critical in February, 1995. Many experiments should be safely performed to activate the utilization of the NANARO. A flow simulated test facility is being developed for the endurance test of reactivity control units for extended life times and the verification of structural integrity of those experimental facilities prior to loading in the HANARO. This test facility is composed of three major parts; a half-core structure assembly, flow circulation system and support system. The half-core structure assembly is composed of plenum, grid plate, core channel with flow tubes, chimney and dummy pool. The flow channels are to be filled with flow orifices to simulate core channels. This test facility must simulate similar flow characteristics to the HANARO. This paper, therefore, describes an analytical analysis to study the flow behavior of the test facility. The computational flow analysis has been performed for the verification of flow structure and similarity of this test facility assuming that flow rates and pressure differences of the core channel are constant. The shapes of flow orifices were determined by the trial and error method based on the design requirements of core channel. The computer analysis program with standard k - ε turbulence model was applied to three-dimensional analysis. The results of flow simulation showed a similar flow characteristic with that of the HANARO and satisfied the design requirements of this test facility. The shape of flow orifices used in this numerical simulation can be adapted for manufacturing requirements. The flow rate and the pressure difference through core channel proved by this simulation can be used as the design requirements of the flow system. The analysis results will be verified with the results of the flow test after construction of the flow system. (author)

  8. Impact of using linear optimization models in dose planning for HDR brachytherapy

    International Nuclear Information System (INIS)

    Holm, Aasa; Larsson, Torbjoern; Carlsson Tedgren, Aasa

    2012-01-01

    Purpose: Dose plans generated with optimization models hitherto used in high-dose-rate (HDR) brachytherapy have shown a tendency to yield longer dwell times than manually optimized plans. Concern has been raised for the corresponding undesired hot spots, and various methods to mitigate these have been developed. The hypotheses upon this work is based are (a) that one cause for the long dwell times is the use of objective functions comprising simple linear penalties and (b) that alternative penalties, as these are piecewise linear, would lead to reduced length of individual dwell times. Methods: The characteristics of the linear penalties and the piecewise linear penalties are analyzed mathematically. Experimental comparisons between the two types of penalties are carried out retrospectively for a set of prostate cancer patients. Results: When the two types of penalties are compared, significant changes can be seen in the dwell times, while most dose-volume parameters do not differ significantly. On average, total dwell times were reduced by 4.2%, with a reduction of maximum dwell times by 25%, when the alternative penalties were used. Conclusions: The use of linear penalties in optimization models for HDR brachytherapy is one cause for the undesired long dwell times that arise in mathematically optimized plans. By introducing alternative penalties, a significant reduction in dwell times can be achieved for HDR brachytherapy dose plans. Although various measures for mitigating the long dwell times are already available, the observation that linear penalties contribute to their appearance is of fundamental interest.

  9. Recommissioning the K-1600 seismic test facility

    International Nuclear Information System (INIS)

    Wynn, C.C.; Brewer, D.W.

    1991-01-01

    The Center for Natural Phenomena Engineering (CNPE) was established under the technical direction of Dr. James E. Beavers with a mandate to assess, by analyses and testing, the seismic capacity of building structures that house sensitive processes at the Oak Ridge Y-12 Plant. This mandate resulted in a need to recommission the K-1600 Seismic Test Facility (STF) at the Oak Ridge K-25 Site, which had been shutdown for 6 years. This paper documents the history of the facility and gives some salient construction, operation, and performance details of its 8-ton, 20-foot center of gravity payload biaxial seismic simulator. A log of activities involved in the restart of this valuable resource is included as Table 1. Some of the problems and solutions associated with recommissioning the facility under a relatively limited budget are included. The unique attributes of the shake table are discussed. The original mission and performance requirements are compared to current expanded mission and performance capabilities. Potential upgrades to further improve the capabilities of the test facility as an adjunct to the CNPE are considered. Additional uses for the facility are proposed, including seismic qualification testing of devices unique to enrichment technologies and associated hazardous waste treatment and disposal processes. In summary, the STF restart in conjunction with CNPE has added a vital, and unique facility to the list of current national resources utilized for earthquake engineering research and development

  10. Balloon-based adjuvant radiotherapy in breast cancer: comparison between {sup 99m}Tc and HDR {sup 192}Ir

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Tarcisio Passos Ribeiro de; Lima, Carla Flavia de; Cuperschmid, Ethel Mizrahy, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2016-03-15

    Objective: To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with {sup 99m}Tc and balloon brachytherapy with high-dose-rate (HDR) {sup 192}Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and methods: simulations of implants with {sup 99m}Tc-filled and HDR {sup 192}Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results: the {sup 99m}Tc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h{sup -1}.mCi{sup -1} and 0.190 cGyh{sup -1} at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh{sup -1}.mCi{sup -1}, respectively, for the HDR {sup 192}Ir balloon. An exposure time of 24 hours was required for the {sup 99m}Tc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR {sup 192}Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion: temporary {sup 99m}Tc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR {sup 192}Ir balloon implantation, which is the current standard in clinical practice. (author)

  11. UPTF test 21D counterpart test in the MIDAS test facility

    International Nuclear Information System (INIS)

    Yoon, B. C.; Ah, D. J.; Joo, I. C.; Kwon, T. S.; Park, W. M.; Song, C. H.

    2002-01-01

    This paper describes the experimental results of UPTF Test 21D counterpart tests in the downcomer during the late reflood phase of LBLOCA. The experiments have been performed in the MIDAS test facility using superheated steam and water. The test condition was determined,based on the test results of UPTF Test 21D, by applying the 'modified linear scaling method of 1/4.077 length scale. The tests of ECC direct bypass and void height are performed separately to estimate each phenomena quantitatively. The tests were carried out by varying the injection steam flow rate of intact cold legs widely to investigate the effect of steam flow rate on the direct bypass fraction and void height. In the tests, separate effect tests have been performed in cases of DVI-1,DVI- 2 and DVI-1 and 2 injections to see the direct bypass fraction according to the DVI nozzle combination. From the tests, we found that the fraction of direct ECC bypass and the void height observed in the MIDAS test facility reasonably well agree with those of UPTF test 21- D. It confirms that the applied 'modified linear scaling law' reproduces major thermal hydraulics phenomena in the downcomer during the LBLOCA reflood phase

  12. Engineered Barrier Test Facility status report, 1984

    International Nuclear Information System (INIS)

    Phillips, S.J.; Adams, M.R.; Gilbert, T.W.; Meinhardt, C.C.; Mitchell, R.M.; Waugh, W.J.

    1985-02-01

    This report provides a general summary of activities completed to date at the Hanford Engineered Barrier Test Facility. This facility is used to test and compare construction practices and performance of alternative designs of engineered barrier cover systems. These cover systems are being evaluated for potential use for isolation and confinement of buried waste disposal structures

  13. ITER primary cryopump test facility

    International Nuclear Information System (INIS)

    Petersohn, N.; Mack, A.; Boissin, J.C.; Murdoc, D.

    1998-01-01

    A cryopump as ITER primary vacuum pump is being developed at FZK under the European fusion technology programme. The ITER vacuum system comprises of 16 cryopumps operating in a cyclic mode which fulfills the vacuum requirements in all ITER operation modes. Prior to the construction of a prototype cryopump, the concept is tested on a reduced scale model pump. To test the model pump, the TIMO facility is being built at FZK in which the model pump operation under ITER environmental conditions, except for tritium exposure, neutron irradiation and magnetic fields, can be simulated. The TIMO facility mainly consists of a test vessel for ITER divertor duct simulation, a 600 W refrigerator system supplying helium in the 5 K stage and a 30 kW helium supply system for the 80 K stage. The model pump test programme will be performed with regard to the pumping performance and cryogenic operation of the pump. The results of the model pump testing will lead to the design of the full scale ITER cryopump. (orig.)

  14. 10 CFR 26.125 - Licensee testing facility personnel.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Licensee testing facility personnel. 26.125 Section 26.125 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Licensee Testing Facilities § 26.125... reports, if any; results of tests that establish employee competency for the position he or she holds...

  15. Results of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) in treatment of obstructive endobronchial non-small cell lung cancer

    Science.gov (United States)

    Weinberg, Benjamin D.; Allison, Ron R.; Sibata, Claudio; Parent, Teresa; Downie, Gordon

    2009-06-01

    We reviewed the outcome of combined photodynamic therapy (PDT) and high dose rate brachytherapy (HDR) for patients with symptomatic obstruction from endobronchial non-small cell lung cancer. Methods: Nine patients who received combined PDT and HDR for endobronchial cancers were identified and their charts reviewed. The patients were eight males and one female aged 52-73 at diagnosis, initially presenting with various stages of disease: stage IA (N=1), stage IIA (N=1), stage III (N=6), and stage IV (N=1). Intervention was with HDR (500 cGy to 5 mm once weekly for 3 weeks) and PDT (2 mg/kg Photofrin, followed by 200 J/cm2 illumination 48 hours post infusion). Treatment group 1 (TG-1, N=7) received HDR first; Treatment group 2 (TG-2, N=2) received PDT first. Patients were followed by regular bronchoscopies. Results: Treatments were well tolerated, all patients completed therapy, and none were lost to follow-up. In TG-1, local tumor control was achieved in six of seven patients for: 3 months (until death), 15 months, 2+ years (until death), 2+ years (ongoing), and 5+ years (ongoing, N=2). In TG-2, local control was achieved in only one patient, for 84 days. Morbidities included: stenosis and/or other reversible benign local tissue reactions (N=8); photosensitivity reaction (N=2), and self-limited pleural effusion (N=2). Conclusions: Combined HDR/PDT treatment for endobronchial tumors is well tolerated and can achieve prolonged local control with acceptable morbidity when PDT follows HDR and when the spacing between treatments is one month or less. This treatment regimen should be studied in a larger patient population.

  16. High Brightness HDR Projection Using Dynamic Freeform Lensing

    KAUST Repository

    Damberg, Gerwin

    2016-05-03

    Cinema projectors need to compete with home theater displays in terms of image quality. High frame rate and spatial resolution as well as stereoscopic 3D are common features today, but even the most advanced cinema projectors lack in-scene contrast and, more important, high peak luminance, both of which are essential perceptual attributes of images appearing realistic. At the same time, HDR image statistics suggest that the average image intensity in a controlled ambient viewing environment such as the cinema can be as low as 1% for cinematic HDR content and not often higher than 18%, middle gray in photography. Traditional projection systems form images and colors by blocking the source light from a lamp, therefore attenuating between 99% and 82% of light, on average. This inefficient use of light poses significant challenges for achieving higher peak brightness levels. In this work, we propose a new projector architecture built around commercially available components, in which light can be steered to form images. The gain in system efficiency significantly reduces the total cost of ownership of a projector (fewer components and lower operating cost), and at the same time increases peak luminance and improves black level beyond what is practically achievable with incumbent projector technologies. At the heart of this computational display technology is a new projector hardware design using phase modulation in combination with a new optimization algorithm that is capable of on-the-fly computation of freeform lens surfaces. © 2016 ACM.

  17. TOP 01-1-011B Vehicle Test Facilities at Aberdeen Test Center and Yuma Test Center

    Science.gov (United States)

    2017-12-12

    Test Center 400 Colleran Road Aberdeen Proving Ground, MD 21005-5059 U.S. Army Yuma Proving Ground Yuma Test Center 301 C. Street Yuma, AZ...22 2.6 Munson Test Area (MTA) ..................................................... 24 2.7 Land Vehicle Maintenance Facility...127 3.6 Maintenance Facilities ........................................................... 143

  18. The Ansel Adams zone system: HDR capture and range compression by chemical processing

    Science.gov (United States)

    McCann, John J.

    2010-02-01

    We tend to think of digital imaging and the tools of PhotoshopTM as a new phenomenon in imaging. We are also familiar with multiple-exposure HDR techniques intended to capture a wider range of scene information, than conventional film photography. We know about tone-scale adjustments to make better pictures. We tend to think of everyday, consumer, silver-halide photography as a fixed window of scene capture with a limited, standard range of response. This description of photography is certainly true, between 1950 and 2000, for instant films and negatives processed at the drugstore. These systems had fixed dynamic range and fixed tone-scale response to light. All pixels in the film have the same response to light, so the same light exposure from different pixels was rendered as the same film density. Ansel Adams, along with Fred Archer, formulated the Zone System, staring in 1940. It was earlier than the trillions of consumer photos in the second half of the 20th century, yet it was much more sophisticated than today's digital techniques. This talk will describe the chemical mechanisms of the zone system in the parlance of digital image processing. It will describe the Zone System's chemical techniques for image synthesis. It also discusses dodging and burning techniques to fit the HDR scene into the LDR print. Although current HDR imaging shares some of the Zone System's achievements, it usually does not achieve all of them.

  19. Lewis Research Center space station electric power system test facilities

    Science.gov (United States)

    Birchenough, Arthur G.; Martin, Donald F.

    1988-01-01

    NASA Lewis Research Center facilities were developed to support testing of the Space Station Electric Power System. The capabilities and plans for these facilities are described. The three facilities which are required in the Phase C/D testing, the Power Systems Facility, the Space Power Facility, and the EPS Simulation Lab, are described in detail. The responsibilities of NASA Lewis and outside groups in conducting tests are also discussed.

  20. Evaluation of radiation doses on critical organs in the treatment of cancer of the cervix using HDR-brachytherapy

    International Nuclear Information System (INIS)

    Soares, Taciana; Jansem, Teresa

    2000-01-01

    High dose-rate (HDR) brachytherapy is one type of treatment of the cervix carcinoma. During the planning for this therapy, especial attention is given to proximal normal organs such as bladder and rectum. In fact, due to their radiosensibility and localization, bladder and rectum are considered as critical organs. In this work we have studied the influence of the positioning of patient legs in the dose delivered to these critical organs in the treatment of cancer of the cervix using HDR-brachytherapy. (author)

  1. A multicentre audit of HDR/PDR brachytherapy absolute dosimetry in association with the INTERLACE trial (NCT015662405)

    Science.gov (United States)

    Díez, P.; Aird, E. G. A.; Sander, T.; Gouldstone, C. A.; Sharpe, P. H. G.; Lee, C. D.; Lowe, G.; Thomas, R. A. S.; Simnor, T.; Bownes, P.; Bidmead, M.; Gandon, L.; Eaton, D.; Palmer, A. L.

    2017-12-01

    A UK multicentre audit to evaluate HDR and PDR brachytherapy has been performed using alanine absolute dosimetry. This is the first national UK audit performing an absolute dose measurement at a clinically relevant distance (20 mm) from the source. It was performed in both INTERLACE (a phase III multicentre trial in cervical cancer) and non-INTERLACE brachytherapy centres treating gynaecological tumours. Forty-seven UK centres (including the National Physical Laboratory) were visited. A simulated line source was generated within each centre’s treatment planning system and dwell times calculated to deliver 10 Gy at 20 mm from the midpoint of the central dwell (representative of Point A of the Manchester system). The line source was delivered in a water-equivalent plastic phantom (Barts Solid Water) encased in blocks of PMMA (polymethyl methacrylate) and charge measured with an ion chamber at 3 positions (120° apart, 20 mm from the source). Absorbed dose was then measured with alanine at the same positions and averaged to reduce source positional uncertainties. Charge was also measured at 50 mm from the source (representative of Point B of the Manchester system). Source types included 46 HDR and PDR 192Ir sources, (7 Flexisource, 24 mHDR-v2, 12 GammaMed HDR Plus, 2 GammaMed PDR Plus, 1 VS2000) and 1 HDR 60Co source, (Co0.A86). Alanine measurements when compared to the centres’ calculated dose showed a mean difference (±SD) of  +1.1% (±1.4%) at 20 mm. Differences were also observed between source types and dose calculation algorithm. Ion chamber measurements demonstrated significant discrepancies between the three holes mainly due to positional variation of the source within the catheter (0.4%-4.9% maximum difference between two holes). This comprehensive audit of absolute dose to water from a simulated line source showed all centres could deliver the prescribed dose to within 5% maximum difference between measurement and calculation.

  2. Stored energy analysis in scale-down test facility

    International Nuclear Information System (INIS)

    Deng Chengcheng; Qin Benke; Fang Fangfang; Chang Huajian; Ye Zishen

    2013-01-01

    In the integral test facilities that simulate the accident transient process of the prototype nuclear power plant, the stored energy in the metal components has a direct influence on the simulation range and the test results of the facilities. Based on the heat transfer theory, three methods analyzing the stored energy were developed, and a thorough study on the stored energy problem in the scale-down test facilities was further carried out. The lumped parameter method and power integration method were applied to analyze the transient process of energy releasing and to evaluate the average total energy stored in the reactor pressure vessel of the ACME (advanced core-cooling mechanism experiment) facility, which is now being built in China. The results show that the similarity requirements for such three methods to analyze the stored energy in the test facilities are reduced gradually. Under the condition of satisfying the integral similarity of natural circulation, the stored energy releasing process in the scale-down test facilities can't maintain exact similarity. The stored energy in the reactor pressure vessel wall of ACME, which is released quickly during the early stage of rapid depressurization of system, will not make a major impact on the long-term behavior of system. And the scaling distortion of integral average total energy of the stored heat is acceptable. (authors)

  3. Management of a HDR brachytherapy system in the Hospital Juarez of Mexico

    International Nuclear Information System (INIS)

    Serrano F, A.G.; Ramirez R, G.; Gil G, R.; Azorin N, J.; Rivera M, T.

    2007-01-01

    Full text: In the Hospital Juarez of Mexico, it is carried out a project to implement a Brachytherapy system with high dose rate (HDR) through a Management quality program. In our work center this treatment modality in patients with cervicouterine cancer is used (CaCu), and constantly it is necessary to carry out improvements in the procedures, with the purpose of optimizing them and in consequence to complete the principles of the Radiological Protection, guaranteeing this way, an attention with the quality and safety, such that allow to diminish the risks to the patients and to assure that the received dose in critical organs it finds inside the permitted therapeutic limits, without commit the radiosensitive response of healthy organs. In this work an analysis of the implementation of this system is presented, detailing the procedures so much in the technological infrastructure like human and indicating the necessary technical and operative requirements to reach an adequate practice in HDR brachytherapy. (Author)

  4. Remote-handling demonstration tests for the Fusion Materials Irradiation Test (FMIT) Facility

    International Nuclear Information System (INIS)

    Shen, E.J.; Hussey, M.W.; Kelly, V.P.; Yount, J.A.

    1982-01-01

    The mission of the Fusion Materials Irradiation Test (FMIT) Facility is to create a fusion-like environment for fusion materials development. Crucial to the success of FMIT is the development and testing of remote handling systems required to handle materials specimens and maintenance of the facility. The use of full scale mock-ups for demonstration tests provides the means for proving these systems

  5. On-line conformal HDR dose escalation trial in prostate cancer

    International Nuclear Information System (INIS)

    Martinez, Alvaro; Stromberg, Jannifer; Edmundson, Gregory; Gustafson, Gary; Vicini, Frank; Brabbins, Donald

    1996-01-01

    Purpose: To improve treatment results on prostatic adenocarcinoma, we began the first prospective Phase I/II dose-escalating clinical trial of conformal brachytherapy (CB) and concurrent external beam irradiation. Methods and Materials: Fifty-four patients with T2b-T3c prostatic adenocarcinoma received 172 transperineal conformal high-dose rate (HDR) boost implants. All patients received concomitant external beam pelvic irradiation. Dose escalation of the three HDR fractions were: 5.5 Gy (18 patients), 6 Gy (15 patients), and 6.5 Gy (21 patients). The urethra, anterior rectal wall, and prostate boundaries were identified individually and outlined at 5 mm intervals from the base to the apex of the gland. The CB using real-time ultrasound guidance with interactive online isodose distributions was performed on an outpatient basis. As needles were placed into the prostate, corrections for prostate displacement were recorded and the isodose distributions were recalculated to represent the new relationship between the needles, prostate, and normal structures. Results: Craniocaudal motion of the gland ranged from 0.5-2.0 cm (mean=1.0 cm), whereas lateral displacement was 0.1-0.4 cm. With the interactive online planning system, organ motion was immediately detected, accounted for, and corrected prior to each HDR treatment. The rectal dose has ranged from 45 to 87%, and the urethral dose from 97 to 112% of the prostate dose. Negative prostatic biopsies at 18 months were seen in (30(32)) patients. Biochemical (PSA <1.5 ng/ml) control at 36 months is is 89%. It is significant that operator dependence has been completely removed because the interactive online planning system uniformly guides the physicians. Conclusions: With ultrasound guidance and the interactive online dosimetry system, organ motion is insignificant because it can be corrected during the procedure. Common pitfalls of brachytherapy, including operator dependence and difficulty with reproducibility, have been

  6. High Power RF Test Facility at the SNS

    CERN Document Server

    Kang, Yoon W; Campisi, Isidoro E; Champion, Mark; Crofford, Mark; Davis, Kirk; Drury, Michael A; Fuja, Ray E; Gurd, Pamela; Kasemir, Kay-Uwe; McCarthy, Michael P; Powers, Tom; Shajedul Hasan, S M; Stirbet, Mircea; Stout, Daniel; Tang, Johnny Y; Vassioutchenko, Alexandre V; Wezensky, Mark

    2005-01-01

    RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducti...

  7. Calibration and use of filter test facility orifice plates

    Science.gov (United States)

    Fain, D. E.; Selby, T. W.

    1984-07-01

    There are three official DOE filter test facilities. These test facilities are used by the DOE, and others, to test nuclear grade HEPA filters to provide Quality Assurance that the filters meet the required specifications. The filters are tested for both filter efficiency and pressure drop. In the test equipment, standard orifice plates are used to set the specified flow rates for the tests. There has existed a need to calibrate the orifice plates from the three facilities with a common calibration source to assure that the facilities have comparable tests. A project has been undertaken to calibrate these orifice plates. In addition to reporting the results of the calibrations of the orifice plates, the means for using the calibration results will be discussed. A comparison of the orifice discharge coefficients for the orifice plates used at the seven facilities will be given. The pros and cons for the use of mass flow or volume flow rates for testing will be discussed. It is recommended that volume flow rates be used as a more practical and comparable means of testing filters. The rationale for this recommendation will be discussed.

  8. Reverberant Acoustic Test Facility (RATF)

    Data.gov (United States)

    Federal Laboratory Consortium — The very large Reverberant Acoustic Test Facility (RATF) at the NASA Glenn Research Center (GRC), Plum Brook Station, is currently under construction and is due to...

  9. TU-D-201-06: HDR Plan Prechecks Using Eclipse Scripting API

    Energy Technology Data Exchange (ETDEWEB)

    Palaniswaamy, G; Morrow, A; Kim, S; Rangaraj, D [Baylor Scott & White Health, Temple, TX (United States)

    2016-06-15

    Purpose: Automate brachytherapy treatment plan quality check using Eclipse v13.6 scripting API based on pre-configured rules to minimize human error and maximize efficiency. Methods: The HDR Precheck system is developed based on a rules-driven approach using Eclipse scripting API. This system checks for critical plan parameters like channel length, first source position, source step size and channel mapping. The planned treatment time is verified independently based on analytical methods. For interstitial or SAVI APBI treatment plans, a Patterson-Parker system calculation is performed to verify the planned treatment time. For endobronchial treatments, an analytical formula from TG-59 is used. Acceptable tolerances were defined based on clinical experiences in our department. The system was designed to show PASS/FAIL status levels. Additional information, if necessary, is indicated appropriately in a separate comments field in the user interface. Results: The HDR Precheck system has been developed and tested to verify the treatment plan parameters that are routinely checked by the clinical physicist. The report also serves as a reminder or checklist for the planner to perform any additional critical checks such as applicator digitization or scenarios where the channel mapping was intentionally changed. It is expected to reduce the current manual plan check time from 15 minutes to <1 minute. Conclusion: Automating brachytherapy plan prechecks significantly reduces treatment plan precheck time and reduces human errors. When fully developed, this system will be able to perform TG-43 based second check of the treatment planning system’s dose calculation using random points in the target and critical structures. A histogram will be generated along with tabulated mean and standard deviation values for each structure. A knowledge database will also be developed for Brachyvision plans which will then be used for knowledge-based plan quality checks to further reduce

  10. SSC string test facility for superconducting magnets: Testing capabilities and program for collider magnets

    International Nuclear Information System (INIS)

    Kraushaar, P.; Burgett, W.; Dombeck, T.; McInturff, A.; Robinson, W.; Saladin, V.

    1993-05-01

    The Accelerator Systems String Test (ASST) R ampersand D Testing Facility has been established at the SSC Laboratory to test Collider and High Energy Booster (HEB) superconducting magnet strings. The facility is operational and has had two testing periods utilizing a half cell of collider prototypical magnets with the associated spool pieces and support systems. This paper presents a description of the testing capabilities of the facility with respect to components and supporting subsystems (cryogenic, power, quench protection, controls and instrumentation), the planned testing program for the collider magnets

  11. Construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hyun Whee; Lee, Kang Moo; Koo, Jun Mo; Jung, In Ha; Lee, Jong Ryeul; Kim, Sung Whan; Bae, Sang Min; Cho, Kang Whon; Sung, Suk Jong

    1989-02-01

    The Solid Waste Form Test Facility (SWFTF) is now construction at DAEDUCK in Korea. In SWFTF, the characteristics of solidified waste products as radiological homogeneity, mechanical and thermal property, water resistance and lechability will be tested and evaluated to meet conditions for long-term storage or final disposal of wastes. The construction of solid waste form test facility has been started with finishing its design of a building and equipments in Sep. 1984, and now building construction is completed. Radioactive gas treatment system, extinguishers, cooling and heating system for the facility, electrical equipments, Master/Slave manipulator, power manipulator, lead glass and C.C.T.V. has also been installed. SWFTF will be established in the beginning of 1990's. At this report, radiation shielding door, nondestructive test of the wall, instrumentation system for the utility supply system and cell lighting system are described. (Author)

  12. Utilization of the capsule out-pile test facilities(2000-2003)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, M. S.; Oh, J. M.; Cho, Y. G. and others

    2003-06-01

    Two out-pile test facilities were installed and being utilized for the non-irradiation tests outside the HANARO. The names of the facilities are the irradiation equipment design verification test facilities and the one-channel flow test device. In these facilities, the performance test of all capsules manufactured before loading in the HANARO and the design verification test for newly developed capsules were performed. The tests in these facilities include loading/unloading, pressure drop, endurance and vibration test etc. of capsules. In the period 2000{approx}2003, the performance tests for 8 material capsules of 99M-01K{approx}02M-05U were carried out, and the design verification tests of creep and fuel capsules developed newly were performed. For development of the creep capsule, pressure drop measurement, operation test of heater, T/C, LVDT and stress loading test were performed. In the design stage of the fuel capsule, the endurance and vibration test besides the above mentioned tests were carried out for verification of the safe operation during irradiation test in the HANARO. And in-chimeny bracket and the capsule supporting system were fixed and the flow tubes and the handling tools were manufactured for use at the facilities.

  13. (abstract) Cryogenic Telescope Test Facility

    Science.gov (United States)

    Luchik, T. S.; Chave, R. G.; Nash, A. E.

    1995-01-01

    An optical test Dewar is being constructed with the unique capability to test mirrors of diameter less than or equal to 1 m, f less than or equal to 6, at temperatures from 300 to 4.2 K with a ZYGO Mark IV interferometer. The design and performance of this facility will be presented.

  14. Kauai Test Facility hazards assessment document

    International Nuclear Information System (INIS)

    Swihart, A.

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility's chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the open-quotes Main Complexclose quotes and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the open-quotes Main Complexclose quotes is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility's site boundary

  15. Acute genitourinary toxicity after high dose rate (HDR) brachytherapy combined with hypofractionated external-beam radiation therapy for localized prostate cancer: Second analysis to determine the correlation between the urethral dose in HDR brachytherapy and the severity of acute genitourinary toxicity

    International Nuclear Information System (INIS)

    Akimoto, Tetsuo; Katoh, Hiroyuki; Noda, Shin-ei; Ito, Kazuto; Yamamoto, Takumi; Kashiwagi, Bunzo; Nakano, Takashi

    2005-01-01

    Purpose: We have been treating localized prostate cancer with high-dose-rate (HDR) brachytherapy combined with hypofractionated external beam radiation therapy (EBRT) at our institution. We recently reported the existence of a correlation between the severity of acute genitourinary (GU) toxicity and the urethral radiation dose in HDR brachytherapy by using different fractionation schema. The purpose of this study was to evaluate the role of the urethral dose in the development of acute GU toxicity more closely than in previous studies. For this purpose, we conducted an analysis of patients who had undergone HDR brachytherapy with a fixed fractionation schema combined with hypofractionated EBRT. Methods and Materials: Among the patients with localized prostate cancer who were treated by 192-iridium HDR brachytherapy combined with hypofractionated EBRT at Gunma University Hospital between August 2000 and November 2004, we analyzed 67 patients who were treated by HDR brachytherapy with the fractionation schema of 9 Gy x two times combined with hypofractionated EBRT. Hypofractionated EBRT was administered at a fraction dose of 3 Gy three times weekly, and a total dose of 51 Gy was delivered to the prostate gland and seminal vesicles using the four-field technique. No elective pelvic irradiation was performed. After the completion of EBRT, all the patients additionally received transrectal ultrasonography-guided HDR brachytherapy. The planning target volume was defined as the prostate gland with a 5-mm margin all around, and the planning was conducted based on computed tomography images. The tumor stage was T1c in 13 patients, T2 in 31 patients, and T3 in 23 patients. The Gleason score was 2-6 in 12 patients, 7 in 34 patients, and 8-10 in 21 patients. Androgen ablation was performed in all the patients. The median follow-up duration was 11 months (range 3-24 months). The toxicities were graded based on the Radiation Therapy Oncology Group and the European Organization

  16. Implementation of microsource high dose rate (mHDR) brachytherapy in developing countries

    International Nuclear Information System (INIS)

    2001-11-01

    Brachytherapy using remote afterloading of a single high dose rate 192 Ir microsource was developed in the 1970s. After its introduction to clinics, this system has spread rapidly among developed Member States and has become a highly desirable modality in cancer treatment. This technique is now gradually being introduced to the developing Member States. The 192 Ir sources are produced with a high specific activity. This results in a high dose rate (HDR) to the tumour and shorter treatment times. The high specific activity simultaneously results in a much smaller source (so-called micro source, around I mm in diameter) which may be easily inserted into tissue through a thin delivery tube, the so-called interstitial treatment, as well as easily inserted into body cavities, the so-called intracavitary or endoluminal treatment. Another advantage is the ability to change dwell time (the time a source remains in one position) of the stepping source which allows dose distribution to match the target volume more closely. The purpose of this TECDOC is to advise radiation oncologists, medical physicists and hospital administrators in hospitals which are planning to introduce 192 Ir microsource HDR (mHDR) remote afterloading systems. The document supplements IAEA-TECDOC-1040, Design and Implementation of a Radiotherapy Programme: Clinical, Medical Physics, Radiation Protection and Safety Aspects, and will facilitate implementation of this new brachytherapy technology, especially in developing countries. The operation of the system, 'how to use the system', is not within the scope of this document. This TECDOC is based on the recommendations of an Advisory Group meeting held in Vienna in April 1999

  17. Automation of electromagnetic compatability (EMC) test facilities

    Science.gov (United States)

    Harrison, C. A.

    1986-01-01

    Efforts to automate electromagnetic compatibility (EMC) test facilities at Marshall Space Flight Center are discussed. The present facility is used to accomplish a battery of nine standard tests (with limited variations) deigned to certify EMC of Shuttle payload equipment. Prior to this project, some EMC tests were partially automated, but others were performed manually. Software was developed to integrate all testing by means of a desk-top computer-controller. Near real-time data reduction and onboard graphics capabilities permit immediate assessment of test results. Provisions for disk storage of test data permit computer production of the test engineer's certification report. Software flexibility permits variation in the tests procedure, the ability to examine more closely those frequency bands which indicate compatibility problems, and the capability to incorporate additional test procedures.

  18. Transfer of test samples and wastes between post-irradiation test facilities (FMF, AGF, MMF)

    International Nuclear Information System (INIS)

    Ishida, Yasukazu; Suzuki, Kazuhisa; Ebihara, Hikoe; Matsushima, Yasuyoshi; Kashiwabara, Hidechiyo

    1975-02-01

    Wide review is given on the problems associated with the transfer of test samples and wastes between post-irradiation test facilities, FMF (Fuel Monitoring Facility), AGF (Alpha Gamma Facility), and MMF (Material Monitoring Facility) at the Oarai Engineering Center, PNC. The test facilities are connected with the JOYO plant, an experimental fast reactor being constructed at Oarai. As introductory remarks, some special features of transferring irradiated materials are described. In the second part, problems on the management of nuclear materials and radio isotopes are described item by item. In the third part, the specific materials that are envisaged to be transported between JOYO and the test facilities are listed together with their geometrical shapes, dimensions, etc. In the fourth part, various routes and methods of transportation are explained with many block charts and figures. Brief explanation with lists and drawings is also given to transportation casks and vessels. Finally, some future problems are discussed, such as the prevention of diffusive contamination, ease of decontamination, and the identification of test samples. (Aoki, K.)

  19. Fast exposure time decision in multi-exposure HDR imaging

    Science.gov (United States)

    Piao, Yongjie; Jin, Guang

    2012-10-01

    Currently available imaging and display system exists the problem of insufficient dynamic range, and the system cannot restore all the information for an high dynamic range (HDR) scene. The number of low dynamic range(LDR) image samples and fastness of exposure time decision impacts the real-time performance of the system dramatically. In order to realize a real-time HDR video acquisition system, this paper proposed a fast and robust method for exposure time selection in under and over exposure area which is based on system response function. The method utilized the monotony of the imaging system. According to this characteristic the exposure time is adjusted to an initial value to make the median value of the image equals to the middle value of the system output range; then adjust the exposure time to make the pixel value on two sides of histogram be the middle value of the system output range. Thus three low dynamic range images are acquired. Experiments show that the proposed method for adjusting the initial exposure time can converge in two iterations which is more fast and stable than average gray control method. As to the exposure time adjusting in under and over exposed area, the proposed method can use the dynamic range of the system more efficiently than fixed exposure time method.

  20. Freshwater Treatment and Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Freshwater Treatment and Test Facility, located at SANGB, has direct year-round access to water from Lake St. Clair and has a State of Michigan approved National...

  1. Biological effective dose evaluation in gynaecological brachytherapy: LDR and HDR treatments, dependence on radiobiological parameters, and treatment optimisation.

    Science.gov (United States)

    Bianchi, C; Botta, F; Conte, L; Vanoli, P; Cerizza, L

    2008-10-01

    This study was undertaken to compare the biological efficacy of different high-dose-rate (HDR) and low-dose-rate (LDR) treatments of gynaecological lesions, to identify the causes of possible nonuniformity and to optimise treatment through customised calculation. The study considered 110 patients treated between 2001 and 2006 with external beam radiation therapy and/or brachytherapy with either LDR (afterloader Selectron, (137)Cs) or HDR (afterloader microSelectron Classic, (192)Ir). The treatments were compared in terms of biologically effective dose (BED) to the tumour and to the rectum (linear-quadratic model) by using statistical tests for comparisons between independent samples. The difference between the two treatments was statistically significant in one case only. However, within each technique, we identified considerable nonuniformity in therapeutic efficacy due to differences in fractionation schemes and overall treatment time. To solve this problem, we created a Microsoft Excel spreadsheet allowing calculation of the optimal treatment for each patient: best efficacy (BED(tumour)) without exceeding toxicity threshold (BED(rectum)). The efficacy of a treatment may vary as a result of several factors. Customised radiobiological evaluation is a useful adjunct to clinical evaluation in planning equivalent treatments that satisfy all dosimetric constraints.

  2. Space nuclear thermal propulsion test facilities accommodation at INEL

    International Nuclear Information System (INIS)

    Hill, T.J.; Reed, W.C.; Welland, H.J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway

  3. Space nuclear thermal propulsion test facilities accommodation at INEL

    Science.gov (United States)

    Hill, Thomas J.; Reed, William C.; Welland, Henry J.

    1993-01-01

    The U.S. Air Force (USAF) has proposed to develop the technology and demonstrate the feasibility of a particle bed reactor (PBR) propulsion system that could be used to power an advanced upper stage rocket engine. The U.S. Department of Energy (DOE) is cooperating with the USAF in that it would host the test facility if the USAF decides to proceed with the technology demonstration. Two DOE locations have been proposed for testing the PBR technology, a new test facility at the Nevada Test Site, or the modification and use of an existing facility at the Idaho National Engineering Laboratory. The preliminary evaluations performed at the INEL to support the PBR technology testing has been completed. Additional evaluations to scope the required changes or upgrade needed to make the proposed USAF PBR test facility meet the requirements for testing Space Exploration Initiative (SEI) nuclear thermal propulsion engines are underway.

  4. HIV testing in nonhealthcare facilities among adolescent MSM.

    Science.gov (United States)

    Marano, Mariette R; Stein, Renee; Williams, Weston O; Wang, Guoshen; Xu, Songli; Uhl, Gary; Cheng, Qi; Rasberry, Catherine N

    2017-07-01

    To describe the extent to which Centers for Disease Control and Prevention (CDC)-funded HIV testing in nonhealthcare facilities reaches adolescent MSM, identifies new HIV infections, and links those newly diagnosed to medical care. We describe HIV testing, newly diagnosed positivity, and linkage to medical care for adolescent MSM who received a CDC-funded HIV test in a nonhealthcare facility in 2015. We assess outcomes by race/ethnicity, HIV-related risk behaviors, and US geographical region. Of the 703 890 CDC-funded HIV testing events conducted in nonhealthcare facilities in 2015, 6848 (0.9%) were provided to adolescent MSM aged 13-19 years. Among those tested, 1.8% were newly diagnosed with HIV, compared with 0.7% among total tests provided in nonhealthcare facilities regardless of age and sex. The odds of testing positive among black adolescent MSM were nearly four times that of white adolescent MSM in multivariable analysis (odds ratio = 3.97, P adolescent MSM newly diagnosed with HIV, 67% were linked to HIV medical care. Linkage was lower among black (59%) and Hispanic/Latino adolescent MSM (71%) compared with white adolescent MSM (88%). CDC-funded nonhealthcare facilities can reach and provide HIV tests to adolescent MSM and identify new HIV infections; however, given the low rate of HIV testing overall and high engagement in HIV-related risk behaviors, there are opportunities to increase access to HIV testing and linkage to care for HIV-positive adolescent MSM. Efforts are needed to identify and address the barriers that prevent black and Hispanic/Latino adolescent MSM from being linked to HIV medical care in a timely manner.

  5. Gas cooled fast breeder reactor design for a circulator test facility (modified HTGR circulator test facility)

    Energy Technology Data Exchange (ETDEWEB)

    1979-10-01

    A GCFR helium circulator test facility sized for full design conditions is proposed for meeting the above requirements. The circulator will be mounted in a large vessel containing high pressure helium which will permit testing at the same power, speed, pressure, temperature and flow conditions intended in the demonstration plant. The electric drive motor for the circulator will obtain its power from an electric supply and distribution system in which electric power will be taken from a local utility. The conceptual design decribed in this report is the result of close interaction between the General Atomic Company (GA), designer of the GCFR, and The Ralph M. Parson Company, architect/engineer for the test facility. A realistic estimate of total project cost is presented, together with a schedule for design, procurement, construction, and inspection.

  6. Fast Flux Test Facility (FFTF) maintenance provisions

    International Nuclear Information System (INIS)

    Marshall, J.L.

    1981-05-01

    The Fast Flux Test Facility (FFTF) was designed with maintainability as a primary parameter, and facilities and provisions were designed into the plant to accommodate the maintenance function. This paper describes the FFTF and its systems. Special maintenance equipment and facilities for performing maintenance on radioactive components are discussed. Maintenance provisions designed into the plant to enhance maintainability are also described

  7. Elevated Fixed Platform Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Elevated Fixed Platform (EFP) is a helicopter recovery test facility located at Lakehurst, NJ. It consists of a 60 by 85 foot steel and concrete deck built atop...

  8. Sultan - forced flow, high field test facility

    International Nuclear Information System (INIS)

    Horvath, I.; Vecsey, G.; Weymuth, P.; Zellweger, J.

    1981-01-01

    Three European laboratories: CNEN (Frascati, I) ECN (Petten, NL) and SIN (Villigen, CH) decided to coordinate their development efforts and to install a common high field forced flow test facility at Villigen Switzerland. The test facility SULTAN (Supraleiter Testanlage) is presently under construction. As a first step, an 8T/1m bore solenoid with cryogenic periphery will be ready in 1981. The cryogenic system, data acquisition system and power supplies which are contributed by SIN are described. Experimental feasibilities, including cooling, and instrumentation are reviewed. Progress of components and facility construction is described. Planned extension of the background field up to 12T by insert coils is outlined. 5 refs

  9. Technical bases for establishing a salt test facility

    International Nuclear Information System (INIS)

    1985-05-01

    The need for a testing facility in which radioactive materials may be used in an underground salt environment is explored. No such facility is currently available in salt deposits in the United States. A salt test facility (STF) would demonstrate the feasibility of safely storing radioactive waste in salt and would provide data needed to support the design, construction, licensing, and operation of a radioactive waste repository in salt. Nineteen issues that could affect long-term isolation of waste materials in a salt repository are identified from the most pertinent recent literature. The issues are assigned an overall priority and a priority relative to the activities of the STF. Individual tests recommended for performance in the STF to resolve the 19 issues are described and organized under three groups: waste package performance, repository design and operation, and site characterization and evaluation. The requirements for a salt test facility are given in the form of functional criteria, and the approach that will be used in the design, execution, interpretation, and reporting of tests is discussed

  10. Analysis on working pressure selection of ACME integral test facility

    International Nuclear Information System (INIS)

    Chen Lian; Chang Huajian; Li Yuquan; Ye Zishen; Qin Benke

    2011-01-01

    An integral effects test facility, advanced core cooling mechanism experiment facility (ACME) was designed to verify the performance of the passive safety system and validate its safety analysis codes of a pressurized water reactor power plant. Three test facilities for AP1000 design were introduced and review was given. The problems resulted from the different working pressures of its test facilities were analyzed. Then a detailed description was presented on the working pressure selection of ACME facility as well as its characteristics. And the approach of establishing desired testing initial condition was discussed. The selected 9.3 MPa working pressure covered almost all important passive safety system enables the ACME to simulate the LOCAs with the same pressure and property similitude as the prototype. It's expected that the ACME design would be an advanced core cooling integral test facility design. (authors)

  11. Status of superconducting RF test facility (STF)

    International Nuclear Information System (INIS)

    Hayano, Hitoshi

    2005-01-01

    A superconducting technology was recommended for the main linac design of the International Linear Collider (ILC) by the International Technology Recommendation Panel (ITRP). The basis for this design has been developed and tested at DESY, and R and D is progressing at many laboratories around the world including DESY, Orsay, KEK, FNAL, SLAC, Cornell, and JLAB. In order to promote Asian SC-technology for ILC, construction of a test facility in KEK was discussed and decided. The role and status of the superconducting RF test facility (STF) is reported in this paper. (author)

  12. Design of a hydrogen test facility

    International Nuclear Information System (INIS)

    Morgan, M.J.; Beam, J.E.; Sehmbey, M.S.; Pais, M.R.; Chow, L.C.; Hahn, O.J.

    1992-01-01

    The Air Force has sponsored a program at the University of Kentucky which will lead to a better understanding of the thermal and fluid instabilities during blowdown of supercritical fluids at cryogenic temperatures. An integral part of that program is the design and construction of that hydrogen test facility. This facility will be capable of providing supercritical hydrogen at 30 bars and 35 K at a maximum flow rate of 0.1 kg/s for 90 seconds. Also presented here is an extension of this facility to accommodate the use of supercritical helium

  13. Engineering test facility design center

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    The vehicle by which the fusion program would move into the engineering testing phase of fusion power development is designated the Engineering Test Facility (ETF). The ETF would provide a test bed for reactor components in the fusion environment. In order to initiate preliminary planning for the ETF decision, the Office of Fusion Energy established the ETF Design Center activity to prepare the design of the ETF. This section describes the status of this design

  14. Establishment and operation of a photovoltaic cell test facility

    Energy Technology Data Exchange (ETDEWEB)

    Pearsall, N.M.; Forbes, I.

    1999-07-01

    This report describes the setting up of a test facility at the University of Northumbria. Details of the equipment specification and procurement are given, and the commissioning and initial operation of the facility, and the measurement procedures for I-V characteristics, spectral response measurements, optical scanning and test charges are outlined. The business plan for the test facility is discussed, and operating experience is reviewed in terms of publicity, services provided, and collaboration.

  15. TESLA Test Facility. Status

    International Nuclear Information System (INIS)

    Aune, B.

    1996-01-01

    The TESLA Test Facility (TTF), under construction at DESY by an international collaboration, is an R and D test bed for the superconducting option for future linear e+/e-colliders. It consists of an infrastructure to process and test the cavities and of a 500 MeV linac. The infrastructure has been installed and is fully operational. It includes a complex of clean rooms, an ultra-clean water plant, a chemical etching installation and an ultra-high vacuum furnace. The linac will consist of four cryo-modules, each containing eight 1 meter long nine-cell cavities operated at 1.3 GHz. The base accelerating field is 15 MV/m. A first injector will deliver a low charge per bunch beam, with the full average current (8 mA in pulses of 800 μs). A more powerful injector based on RF gun technology will ultimately deliver a beam with high charge and low emittance to allow measurements necessary to qualify the TESLA option and to demonstrate the possibility of operating a free electron laser based on the Self-Amplified-Spontaneous-Emission principle. Overview and status of the facility will be given. Plans for the future use of the linac are presented. (R.P.)

  16. Overview of the IFMIF test facility design in IFMIF/EVEDA phase

    International Nuclear Information System (INIS)

    Tian, Kuo; Abou-Sena, Ali; Arbeiter, Frederik; García, Ángela; Gouat, Philippe; Heidinger, Roland; Heinzel, Volker; Ibarra, Ángel; Leysen, Willem; Mas, Avelino; Mittwollen, Martin; Möslang, Anton; Theile, Jürgen; Yamamoto, Michiyoshi; Yokomine, Takehiko

    2015-01-01

    Highlights: • This paper summarizes the current design status of IFMIF EVEDA test facility. • The principle functions of the test facility and key components are described. • The brief specifications of the systems and key components are addressed. - Abstract: The test facility (TF) is one of the three major facilities of the International Fusion Material Irradiation Facility (IFMIF). Engineering designs of TF main systems and key components have been initiated and developed in the IFMIF EVEDA (Engineering Validation and Engineering Design Activities) phase since 2007. The related work covers the designs of a test cell which is the meeting point of the TF and accelerator facility and lithium facility, a series of test modules for experiments under different irradiation conditions, an access cell to accommodate remote handling systems, four test module handling cells for test module processing and assembling, and test facility ancillary systems for engineering support on energy, media, and control infrastructure. This paper summarizes the principle functions, brief specifications, and the current design status of the above mentioned IFMIF TF systems and key components.

  17. Brachytherapy for Buccal Cancer: From Conventional Low Dose Rate (LDR) or Mold Technique to High Dose Rate Interstitial Brachytherapy (HDR-ISBT).

    Science.gov (United States)

    Kotsuma, Tadayuki; Yamazaki, Hideya; Masui, Koji; Yoshida, Ken; Shimizutani, Kimishige; Akiyama, Hironori; Murakami, Shumei; Isohashi, Fumiaki; Yoshioka, Yasuo; Ogawa, Kazuhiko; Tanaka, Eiichi

    2017-12-01

    To examine the effectiveness of newly-installed high-dose-rate interstitial brachytherapy (HDR-ISBT) for buccal cancer. We retrospectively reviewed 36 patients (25 men and 11 women) with buccal cancer treated with curative brachytherapy with or without external radiotherapy with a median follow-up of 99 months. A total of 15 HDR-ISBT (median 48 Gy/ 8 fractions, range=24-60 Gy) patients were compared to conventional 15 cases LDR-ISBT (70 Gy, range=42.8-110 Gy) and 7 molds techniques (15 Gy, range=9-74 Gy). A total of 31 patients also underwent external radiotherapy (30 Gy, range=24-48 Gy). They comprised of 3T1, 23 T2, 8 T3, 3 T4 including 11 node positive cases. HDR-ISBT provided 82% of local control rate at 5 years, whereas conventional brachytherapy showed 72% [p=0.44; LDR-ISBT (65%), mold therapy (85.7%)]. Patients with early lesions (T1-2 or stage I-II) showed better local control rates than those with advanced lesions (T3-4 or stage III-IV). Severe late grade 3 complications developed in two patients treated with LDR-ISBT and EBRT. There is no significant difference in toxicity grade ≤2 between conventional brachytherapy (5/15=33%) and HDR-ISBT (7/32=32%, p=0.92). HDR-ISBT achieved good and comparable local control rates to conventional brachytherapy without elevating the toxicity. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  18. Universal Test Facility

    Science.gov (United States)

    Laughery, Mike

    A universal test facility (UTF) for Space Station Freedom is developed. In this context, universal means that the experimental rack design must be: automated, highly marketable, and able to perform diverse microgravity experiments according to NASA space station requirements. In order to fulfill these broad objectives, the facility's customers, and their respective requirements, are first defined. From these definitions, specific design goals and the scope of the first phase of this project are determined. An examination is first made into what types of research are most likely to make the UTF marketable. Based on our findings, the experiments for which the UTF would most likely be used included: protein crystal growth, hydroponics food growth, gas combustion, gallium arsenide crystal growth, microorganism development, and cell encapsulation. Therefore, the UTF is designed to fulfill all of the major requirements for the experiments listed above. The versatility of the design is achieved by taking advantage of the many overlapping requirements presented by these experiments.

  19. A study of optimization techniques in HDR brachytherapy for the prostate

    Science.gov (United States)

    Pokharel, Ghana Shyam

    Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives

  20. Commissioning and quality assurance procedures for the HDR Valencia skin applicators

    Directory of Open Access Journals (Sweden)

    Domingo Granero

    2016-11-01

    Full Text Available The Valencia applicators (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden are cup-shaped tungsten applicators with a flattening filter used to collimate the radiation produced by a high-dose-rate (HDR 192 Ir source, and provide a homogeneous absorbed dose at a given depth. This beam quality provides a good option for the treatment of skin lesions at shallow depth (3-4 mm. The user must perform commissioning and periodic testing of these applicators to guarantee the proper and safe delivery of the intended absorbed dose, as recommended in the standards in radiation oncology. In this study, based on AAPM and GEC-ESTRO guidelines for brachytherapy units and our experience, a set of tests for the commissioning and periodic testing of the Valencia applicators is proposed. These include general considerations, verification of the manufacturer documentation and physical integrity, evaluation of the source-to-indexer distance and reproducibility, setting the library plan in the treatment planning system, evaluation of flatness and symmetry, absolute output and percentage depth dose verification, independent calculation of the treatment time, and visual inspection of the applicator before each treatment. For each test, the proposed methodology, equipment, frequency, expected results, and tolerance levels (when applicable are provided.

  1. Presumed atypical HDR syndrome associated with Band Keratopathy and pigmentary retinopathy.

    Science.gov (United States)

    Kim, Cinoo; Cheong, Hae Il; Kim, Jeong Hun; Yu, Young Suk; Kwon, Ji Won

    2011-01-01

    This report describes presumed atypical hypoparathyroidism, deafness, and renal dysplasia (HDR) syndrome associated with unexpected ocular findings. The patient had exotropia, bilateral band keratopathy, and pigmentary retinopathy, including attenuated retinal vessels and atrophy of the retinal pigment epithelium. Even though the calcific plaques were successfully removed, visual acuity in both eyes gradually decreased and electroretinography was extinguished. Copyright 2009, SLACK Incorporated.

  2. Fast flux test facility hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This document establishes the technical basis in support of Emergency Planning Activities for the Fast Flux Test Facility on the Hanford Site. The document represents an acceptable interpretation of the implementing guidance document for DOE Order 5500.3A. Through this document, the technical basis for the development of facility specific Emergency Action Levels and the Emergency Planning Zone is demonstrated

  3. Successful start for new CLIC test facility

    CERN Document Server

    2004-01-01

    A new test facility is being built to study key feasibility issues for a possible future linear collider called CLIC. Commissioning of the first part of the facility began in June 2003 and nominal beam parameters have been achieved already.

  4. Counterpart experimental study of ISP-42 PANDA tests on PUMA facility

    International Nuclear Information System (INIS)

    Yang, Jun; Choi, Sung-Won; Lim, Jaehyok; Lee, Doo-Yong; Rassame, Somboon; Hibiki, Takashi; Ishii, Mamoru

    2013-01-01

    Highlights: ► Counterpart tests were performed on two large-scale BWR integral facilities. ► Similarity of post-LOCA system behaviors observed between two tests. ► Passive core and containment cooling systems work as design in both tests. -- Abstract: A counterpart test to the Passive Nachwärmeabfuhr und Druckabbau Test Anlage (Passive Decay Heat Removal and Depressurization Test Facility, PANDA) International Standard Problem (ISP)-42 test was conducted at the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. Aimed to support code validation on a range of light water reactor (LWR) containment issues, the ISP-42 test consists of six sequential phases (Phases A–F) with separately defined initial and boundary conditions, addressing different stages of anticipated accident scenario and system responses. The counterpart test was performed from Phases A to D, which are within the scope of the normal integral tests performed on the PUMA facility. A scaling methodology was developed by using the PANDA facility as prototype and PUMA facility as test model, and an engineering scaling has been applied to the PUMA facility. The counterpart test results indicated that functions of passive safety systems, such as passive containment cooling system (PCCS) start-up, gravity-driven cooling system (GDCS) discharge, PCCS normal operation and overload function were confirmed in both the PANDA and PUMA facilities with qualitative similarities

  5. Test facility for the evaluation of microwave transmission components

    International Nuclear Information System (INIS)

    Fong, C.G.; Poole, B.R.

    1985-01-01

    A Low Power Test Facility (LPTF) was developed to evaluate the performance of Electron Cyclotron Resonance Heating (ECRH) microwave transmission components for the Mirror Fusion Test Facility (MFTF-B). The facility generates 26 to 60 GHz in modes of TE 01 , TE 02 , or TE 03 launched at power levels of 1/2 milliwatt. The propagation of the rf as it radiates from either transmitting or secondary reflecting microwave transmission components is recorded by a discriminating crystal detector mechanically manipulated at constant radius in spherical coordinates. The facility is used to test, calibrate, and verify the design of overmoded, circular waveguide components, quasi-optical reflecting elements before high power use. The test facility consists of microwave sources and metering components, such as VSWR, power and frequency meters, a rectangular TE 10 to circular TE 01 mode transducer, mode filter, circular TE 01 to 2.5 in. diameter overmoded waveguide with mode converters for combination of TE 01 to TE 03 modes. This assembly then connects to a circular waveguide launcher or the waveguide component under test

  6. Tritium Systems Test Facility. Volume I

    International Nuclear Information System (INIS)

    Anderson, G.W.; Battleson, K.W.; Bauer, W.

    1976-10-01

    Sandia Laboratories proposes to build and operate a Tritium Systems Test Facility (TSTF) in its newly completed Tritium Research Laboratory at Livermore, California (see frontispiece). The facility will demonstrate at a scale factor of 1:200 the tritium fuel cycle systems for an Experimental Power Reactor (EPR). This scale for each of the TSTF subsystems--torus, pumping system, fuel purifier, isotope separator, and tritium store--will allow confident extrapolation to EPR dimensions. Coolant loop and reactor hall cleanup facilities are also reproduced, but to different scales. It is believed that all critical details of an EPR tritium system will be simulated correctly in the facility. Tritium systems necessary for interim devices such as the Ignition Test Reactor (ITR) or The Next Step (TNS) can also be simulated in TSTF at other scale values. The active tritium system will be completely enclosed in an inert atmosphere glove box which will be connected to the existing Gas Purification System (GPS) of the Tritium Research Laboratory. In effect, the GPS will become the scaled environmental control system which otherwise would have to be built especially for the TSTF

  7. Corrosion testing facilities in India

    International Nuclear Information System (INIS)

    Viswanathan, R.; Subramanian, Venu

    1981-01-01

    Major types of corrosion tests, establishment of specifications on corrosion testing and scope of their application in practice are briefly described. Important organizations in the world which publish specifications/standards are listed. Indian organizations which undertake corrosion testing and test facilities available at them are also listed. Finally in an appendix, a comprehensive list of specifications relevant to corrosion testing is given. It is arranged under the headings: environmental testing, humidity tests, salt spray/fog tests, immersion tests, specification corrosion phenomena, (tests) with respect to special corrosion media, (tests) with respect to specific corrosion prevention methods, and specific corrosion tests using electrical and electrochemical methods (principles). Each entry in the list furnishes information about: nature of the test, standard number, and its specific application. (M.G.B.)

  8. PANDA: A Multipurpose Integral Test Facility for LWR Safety Investigations

    International Nuclear Information System (INIS)

    Paladino, D.; Dreier, J.

    2012-01-01

    The PANDA facility is a large scale, multicompartmental thermal hydraulic facility suited for investigations related to the safety of current and advanced LWRs. The facility is multipurpose, and the applications cover integral containment response tests, component tests, primary system tests, and separate effect tests. Experimental investigations carried on in the PANDA facility have been embedded in international projects, most of which under the auspices of the EU and OECD and with the support of a large number of organizations (regulatory bodies, technical dupport organizations, national laboratories, electric utilities, industries) worldwide. The paper provides an overview of the research programs performed in the PANDA facility in relation to BWR containment systems and those planned for PWR containment systems.

  9. Qualification tests and facilities for the ITER superconductors

    International Nuclear Information System (INIS)

    Bruzzone, P.; Wesche, R.; Stepanov, B.; Cau, F.; Bagnasco, M.; Calvi, M.; Herzog, R.; Vogel, M.

    2009-01-01

    All the ITER superconductors are tested as short length samples in the SULTAN test facility at CRPP. Twenty-four TF conductor samples with small layout variations were tested since February 2007 with the aim of verifying the design and qualification of the manufacturers. The sample assembly and the measurement techniques at CRPP are discussed. Starting in 2010, another test facility for ITER conductors, named EDIPO, will be operating at CRPP to share with SULTAN the load of the samples for the acceptance tests during the construction of ITER.

  10. Australian national networked tele-test facility for integrated systems

    Science.gov (United States)

    Eshraghian, Kamran; Lachowicz, Stefan W.; Eshraghian, Sholeh

    2001-11-01

    The Australian Commonwealth government recently announced a grant of 4.75 million as part of a 13.5 million program to establish a world class networked IC tele-test facility in Australia. The facility will be based on a state-of-the-art semiconductor tester located at Edith Cowan University in Perth that will operate as a virtual centre spanning Australia. Satellite nodes will be located at the University of Western Australia, Griffith University, Macquarie University, Victoria University and the University of Adelaide. The facility will provide vital equipment to take Australia to the frontier of critically important and expanding fields in microelectronics research and development. The tele-test network will provide state of the art environment for the electronics and microelectronics research and the industry community around Australia to test and prototype Very Large Scale Integrated (VLSI) circuits and other System On a Chip (SOC) devices, prior to moving to the manufacturing stage. Such testing is absolutely essential to ensure that the device performs to specification. This paper presents the current context in which the testing facility is being established, the methodologies behind the integration of design and test strategies and the target shape of the tele-testing Facility.

  11. A rectum shield for the circular applicator system of a selectron unit (HDR and LDR afterloading)

    International Nuclear Information System (INIS)

    Hetzel, H.; McCoy, M.; Kamleitner, H.; Frommhold, H.

    1987-01-01

    In order to decrease the morbidity rate after combined radiotherapy of the cervix carcinoma, a tungsten shield 3 and 5 mm thick for the rectum has been developed by the authors which is applied with the ring and pin applicator of the selectron unit (LDR and HDR afterloading). The isodose curves were measured in a plexiglas phantom, and the radiation dose at the reference points was determined by means of a ionization dosemeter. The phantom measurements were performed with the same arrangement of sources as applied in radiotherapy. The measurements showed a dose reduction at point Rmax of 33% (HDR) and 44% (LDR) with the tungsten shield 5 mm thick. (orig.) [de

  12. Instrumentation and measurement method for the ATLAS test facility

    Energy Technology Data Exchange (ETDEWEB)

    Yun, Byong Jo; Chu, In Chul; Eu, Dong Jin; Kang, Kyong Ho; Kim, Yeon Sik; Song, Chul Hwa; Baek, Won Pil

    2007-03-15

    An integral effect test loop for pressurized water reactors (PWRs), the ATLAS is constructed by thermal-hydraulic safety research division in KAERI. The ATLAS facility has been designed to have the length scale of 1/2 and area scale of 1/144 compared with the reference plant, APR1400 which is a Korean evolution type nuclear reactors. A total 1300 instrumentations is equipped in the ATLAS test facility. In this report, the instrumentation of ATLAS test facility and related measurement methods were introduced.

  13. Palliative interstitial HDR brachytherapy for recurrent rectal cancer. Implantation techniques and results

    International Nuclear Information System (INIS)

    Kolotas, C.; Roeddiger, S.; Martin, T.; Tselis, N.; Baltas, D.; Zamboglou, N.; Strassmann, G.; Aebersold, D.M.

    2003-01-01

    Purpose: To report the methods and clinical results of CT-based interstitial high-dose-rate (HDR) brachytherapy procedures for the palliative treatment of recurrent rectal cancer. Patients and Methods: A total of 44 brachytherapy implants were performed in 38 patients. CT-guided catheter implants were performed in 34 patients under local anesthesia and sedation, and four patients were implanted intraoperatively. Of 40 CT-guided implants, 20 were done using metallic needles introduced via the sacrum and 20 were transperineal implants of plastic tubes in the presacral region. Postimplant CT scans were used for three-dimensional (3-D) conformal brachytherapy planning. Patients implanted with metallic needles were given a single fraction of 10-15 Gy using HDR 192 Ir, and those who received transperineal implants of plastic catheters were given fractionated brachytherapy, 5 Gy twice daily to a total dose of 30-40 Gy. The median tumor volume was 225 cm 3 with a range of 41-2,103 cm 3 . Results: After a median follow-up of 23.4 months, a total of 13/38 patients were alive. The median postbrachytherapy survival was 15 months with 18 of the 25 deaths due to distant metastases. Tumor response was as follows: 6/38 partial remission, 28/38 stable disease, and 4/38 local progression. A planning target volume (PTV) coverage > 85% was achieved in 42/44 implants. The treatment was well tolerated, and no acute complications were observed. One patient developed a fistula after 8 months. Pain relief was recorded in 34 patients (89.5%), and the median duration of this palliative effect was 5 months with a range of 1-13 months. Conclusions: Interstitial HDR brachytherapy is a valuable tool for the delivery of high doses and achieves effective palliation in recurrent rectal carcinoma. (orig.)

  14. Palliative interstitial HDR brachytherapy for recurrent rectal cancer. Implantation techniques and results

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C. [Dept. of Radiation Oncology, Offenbach Hospital, Offenbach (Germany); Dept. of Radio-Oncology, Univ. of Bern, Inselspital, Bern (Switzerland); Roeddiger, S.; Martin, T.; Tselis, N.; Baltas, D.; Zamboglou, N. [Dept. of Radiation Oncology, Offenbach Hospital, Offenbach (Germany); Strassmann, G. [Dept. of Radiotherapy, Univ. Hospital, Philipps Univ., Marburg (Germany); Aebersold, D.M. [Dept. of Radio-Oncology, Univ. of Bern, Inselspital, Bern (Switzerland)

    2003-07-01

    Purpose: To report the methods and clinical results of CT-based interstitial high-dose-rate (HDR) brachytherapy procedures for the palliative treatment of recurrent rectal cancer. Patients and Methods: A total of 44 brachytherapy implants were performed in 38 patients. CT-guided catheter implants were performed in 34 patients under local anesthesia and sedation, and four patients were implanted intraoperatively. Of 40 CT-guided implants, 20 were done using metallic needles introduced via the sacrum and 20 were transperineal implants of plastic tubes in the presacral region. Postimplant CT scans were used for three-dimensional (3-D) conformal brachytherapy planning. Patients implanted with metallic needles were given a single fraction of 10-15 Gy using HDR {sup 192}Ir, and those who received transperineal implants of plastic catheters were given fractionated brachytherapy, 5 Gy twice daily to a total dose of 30-40 Gy. The median tumor volume was 225 cm{sup 3} with a range of 41-2,103 cm{sup 3}. Results: After a median follow-up of 23.4 months, a total of 13/38 patients were alive. The median postbrachytherapy survival was 15 months with 18 of the 25 deaths due to distant metastases. Tumor response was as follows: 6/38 partial remission, 28/38 stable disease, and 4/38 local progression. A planning target volume (PTV) coverage > 85% was achieved in 42/44 implants. The treatment was well tolerated, and no acute complications were observed. One patient developed a fistula after 8 months. Pain relief was recorded in 34 patients (89.5%), and the median duration of this palliative effect was 5 months with a range of 1-13 months. Conclusions: Interstitial HDR brachytherapy is a valuable tool for the delivery of high doses and achieves effective palliation in recurrent rectal carcinoma. (orig.)

  15. Application of the Monte Carlo integration method in calculations of dose distributions in HDR-Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Baltas, D; Geramani, K N; Ioannidis, G T; Kolotas, C; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany); Giannouli, S [Department of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece)

    1999-12-31

    Source anisotropy is a very important factor in brachytherapy quality assurance of high dose rate HDR Ir 192 afterloading stepping sources. If anisotropy is not taken into account then doses received by a brachytherapy patient in certain directions can be in error by a clinically significant amount. Experimental measurements of anisotropy are very labour intensive. We have shown that within acceptable limits of accuracy, Monte Carlo integration (MCI) of a modified Sievert integral (3D generalisation) can provide the necessary data within a much shorter time scale than can experiments. Hence MCI can be used for routine quality assurance schedules whenever a new design of HDR or PDR Ir 192 is used for brachytherapy afterloading. Our MCI calculation results are comparable with published experimental data and Monte Carlo simulation data for microSelectron and VariSource Ir 192 sources. We have shown not only that MCI offers advantages over alternative numerical integration methods, but also that treating filtration coefficients as radial distance-dependent functions improves Sievert integral accuracy at low energies. This paper also provides anisotropy data for three new Ir 192 sources, one for microSelectron-HDR and two for the microSelectron-PDR, for which data currently is not available. The information we have obtained in this study can be incorporated into clinical practice.

  16. SULTAN test facility: Summary of recent results

    International Nuclear Information System (INIS)

    Stepanov, Boris; Bruzzone, Pierluigi; Sedlak, Kamil; Croari, Giancarlo

    2013-01-01

    The test campaigns of the ITER conductors in the SULTAN test facility re-started in December 2011 after three months break. The main focus of the activities is about the qualification tests of the Central Solenoid (CS) conductors, with three different samples for a total six variations of strand suppliers and cable layouts. In 2012, five Toroidal Field (TF) conductor samples have also been tested as part of the supplier and process qualification phase of the European, Korean, Chinese and Russian Federation Agencies. A summary of the test results for all the ITER samples tested in the last period is presented, including an updated statistics of the broad transition, the performance degradation and the impact of layout variations. The role of SULTAN test facility during the ITER construction is reviewed, and the load of work for the next three years is anticipated

  17. Electromagnetic Interference (EMI) and TEMPEST Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Electromagnetic Interference (EMI), Electromagnetic Compatibility (EMC) and TEMPEST testing are conducted at EPG's Blacktail Canyon Test Facility in one of its two...

  18. Current Status and Performance Tests of Korea Heat Load Test Facility KoHLT-EB

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sukkwon; Jin, Hyunggon; Shin, Kyuin; Choi, Boguen; Lee, Eohwak; Yoon, Jaesung; Lee, Dongwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Kim, Duckhoi; Cho, Seungyon [National Fusion Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    A commissioning test has been scheduled to establish the installation and preliminary performance experiments of the copper hypervapotron mockups. And a qualification test will be performed to evaluate the CuCrZr duct liner in the ITER neutral beam injection facility and the ITER first wall small-scale mockups of the semi-prototype, at up to 1.5 and 5 MW/m{sup 2} high heat flux. Also, this system will be used to test other PFCs for ITER and materials for tokamak reactors. Korean high heat flux test facility(KoHLT-EB; Korea Heat Load Test facility - Electron Beam) by using an electron beam system has been constructed in KAERI to perform the qualification test for ITER blanket FW semi-prototype mockups, hypervapotron cooling devices in fusion devices, and other ITER plasma facing components. The commissioning and performance tests with the supplier of e-gun system have been performed on November 2012. The high heat flux test for hypervapotron cooling device and calorimetry were performed to measure the surface heat flux, the temperature profile and cooling performance. Korean high heat flux test facility for the plasma facing components of nuclear fusion machines will be constructed to evaluate the performance of each component. This facility for the plasma facing materials will be equipped with an electron beam system with a 60 kV acceleration gun.

  19. The TOPFLOW multi-purpose thermohydraulic test facility

    International Nuclear Information System (INIS)

    Schaffrath, Andreas; Kruessenberg, A.-K.; Weiss, F.-P.; Prasser, H.-M.

    2002-01-01

    The TOPFLOW (Transient Two Phase Flow Test Facility) multi-purpose thermohydraulic test facility is being built for studies of steady-state and transient flow phenomena in two-phase flows, and for the development and validation of the models contained in CFD (Computational Fluid Dynamics) codes. The facility is under construction at the Institute for Safety Research of the Rossendorf Research Center (FZR). It will be operated together with the Dresden Technical University and the Zittau/Goerlitz School for Technology, Economics and Social Studies within the framework of the Nuclear Technology Competence Preservation Program. TOPFLOW, with its test sections and its flexible concept, is available as an attractive facility also to users from all European countries. Experiments are planned in these fields, among others: - Transient two-phase flows in vertical and horizontal pipes and pipes of any inclination as well as in geometries typical of nuclear reactors (annulus, hot leg). - Boiling in large vessels and water pools (measurements of steam generation, 3D steam content distribution, turbulence, temperature stratification). - Test of passive components and safety systems. - Condensation in horizontal pipes in the absence and presence of non-condensable gases. The construction phase of TOPFLOW has been completed more or less on schedule. Experiments can be started after a commissioning phase in the 3rd quarter of 2002. (orig.) [de

  20. ORNL instrumentation performance for Slab Core Test Facility (SCTF)-Core I Reflood Test Facility

    International Nuclear Information System (INIS)

    Hardy, J.E.; Hess, R.A.; Hylton, J.O.

    1983-11-01

    Instrumentation was developed for making measurements in experimental refill-reflood test facilities. These unique instrumentation systems were designed to survive the severe environmental conditions that exist during a simulated pressurized water reactor loss-of-coolant accident (LOCA). Measurement of in-vessel fluid phenomena such as two-phase flow velocity and void fraction and film thickness and film velocity are required for better understanding of reactor behavior during LOCAs. The Advanced Instrumentation for Reflood Studies (AIRS) Program fabricated and delivered instrumentation systems and data reduction software algorithms that allowed the above measurements to be made. Data produced by AIRS sensors during three experimental runs in the Japanese Slab Core Test Facility are presented. Although many of the sensors failed before any useful data could be obtained, the remaining probes gave encouraging and useful results. These results are the first of their kind produced during simulated refill-reflood stage of a LOCA near actual thermohydrodynamic conditions

  1. Clemson University Wind Turbine Drivetrain Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Tuten, James Maner [Clemson Univ., SC (United States); Haque, Imtiaz [Clemson Univ., SC (United States); Rigas, Nikolaos [Clemson Univ., SC (United States)

    2016-03-30

    In November of 2009, Clemson University was awarded a competitive grant from the U.S. Department of Energy to design, build and operate a facility for full-scale, highly accelerated mechanical testing of next-generation wind turbine drivetrain technologies. The primary goal of the project was to design, construct, commission, and operate a state-of-the-art sustainable facility that permits full-scale highly accelerated testing of advanced drivetrain systems for large wind turbines. The secondary goal was to meet the objectives of the American Recovery and Reinvestment Act of 2009, especially in job creation, and provide a positive impact on economically distressed areas in the United States, and preservation and economic recovery in an expeditious manner. The project was executed according to a managed cooperative agreement with the Department of Energy and was an extraordinary success. The resultant new facility is located in North Charleston, SC, providing easy transportation access by rail, road or ship and operates on an open access model such that it is available to the U.S. Wind Industry for research, analysis, and evaluation activities. The 72 m by 97 m facility features two mechanical dynamometer test bays for evaluating the torque and blade dynamic forces experienced by the rotors of wind turbine drivetrains. The dynamometers are rated at 7.5 MW and 15 MW of low speed shaft power and are configured as independent test areas capable of simultaneous operation. All six degrees of freedom, three linear and three rotational, for blade and rotor dynamics are replicated through the combination of a drive motor, speed reduction gearbox and a controllable hydraulic load application unit (LAU). This new LAU setup readily supports accelerated lifetime mechanical testing and load analysis for the entire drivetrain system of the nacelle and easily simulates a wide variety of realistic operating scenarios in a controlled laboratory environment. The development of these

  2. FY11 Facility Assessment Study for Aeronautics Test Program

    Science.gov (United States)

    Loboda, John A.; Sydnor, George H.

    2013-01-01

    This paper presents the approach and results for the Aeronautics Test Program (ATP) FY11 Facility Assessment Project. ATP commissioned assessments in FY07 and FY11 to aid in the understanding of the current condition and reliability of its facilities and their ability to meet current and future (five year horizon) test requirements. The principle output of the assessment was a database of facility unique, prioritized investments projects with budgetary cost estimates. This database was also used to identify trends for the condition of facility systems.

  3. Salvage prostate HDR brachytherapy combined with interstitial hyperthermia for local recurrence after radiation therapy failure

    Energy Technology Data Exchange (ETDEWEB)

    Kukielka, A.M.; Hetnal, M.; Dabrowski, T.; Walasek, T.; Brandys, P.; Reinfuss, M. [Centre of Oncology, M. Sklodowska - Curie Institute, Krakow Branch, Department of Radiotherapy, Krakow (Poland); Nahajowski, D.; Kudzia, R.; Dybek, D. [Centre of Oncology, M. Sklodowska - Curie Institute, Krakow Branch, Department of Medical Physics, Department of Radiotherapy, Krakow (Poland)

    2014-02-15

    The aim of the present retrospective study is to evaluate toxicity and early clinical outcomes of interstitial hyperthermia (IHT) combined with high-dose rate (HDR) brachytherapy as a salvage treatment in patients with biopsy-confirmed local recurrence of prostate cancer after previous external beam radiotherapy. Between September 2008 and March 2013, 25 patients with local recurrence of previously irradiated prostate cancer were treated. The main eligibility criteria for salvage prostate HDR brachytherapy combined with interstitial hyperthermia were biopsy confirmed local recurrence and absence of nodal and distant metastases. All patients were treated with a dose of 30 Gy in 3 fractions at 21-day intervals. We performed 62 hyperthermia procedures out of 75 planned (83 %). The aim of the hyperthermia treatment was to heat the prostate to 41-43 C for 60 min. Toxicity for the organs of the genitourinary system and rectum was assessed according to the Common Terminology Criteria for Adverse Events (CTCAE, v. 4.03). Determination of subsequent biochemical failure was based on the Phoenix definition (nadir + 2 ng/ml). The median age was 71 years (range 62-83 years), the median initial PSA level was 16.3 ng/ml (range 6.37-64 ng/ml), and the median salvage PSA level was 2.8 ng/ml (1.044-25.346 ng/ml). The median follow-up was 13 months (range 4-48 months). The combination of HDR brachytherapy and IHT was well tolerated. The most frequent complications were nocturia, weak urine stream, urinary frequency, hematuria, and urgency. Grade 2 rectal hemorrhage was observed in 1 patient. No grade 3 or higher complications were observed. The 2-year Kaplan-Meier estimate of biochemical control after salvage treatment was 74 %. The PSA in 20 patients decreased below the presalvage level, while 11 patients achieved a PSA nadir < 0.5 ng/ml. All patients are still alive. Of the 7 patients who experienced biochemical failure, bone metastases were found in 2 patients. IHT in combination

  4. SNS Target Test Facility for remote handling design and verification

    International Nuclear Information System (INIS)

    Spampinato, P.T.; Graves, V.B.; Schrock, S.L.

    1998-01-01

    The Target Test Facility will be a full-scale prototype of the Spallation Neutron Source Target Station. It will be used to demonstrate remote handling operations on various components of the mercury flow loop and for thermal/hydraulic testing. This paper describes the remote handling aspects of the Target Test Facility. Since the facility will contain approximately 1 cubic meter of mercury for the thermal/hydraulic tests, an enclosure will also be constructed that matches the actual Target Test Cell

  5. Comparison of air-kerma strength determinations for HDR 192Ir sources

    International Nuclear Information System (INIS)

    Rasmussen, Brian E.; Davis, Stephen D.; Schmidt, Cal R.; Micka, John A.; DeWerd, Larry A.

    2011-01-01

    Purpose: To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) 192 Ir brachytherapy sources maintained by University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. Methods: The improved, laser-aligned seven-distance apparatus of University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR 192 Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the 192 Ir air-kerma calibration coefficient from the NIST air-kerma standards at 137 Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A wall for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. Results: The average measurements when using the inverse N K interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Conclusions: Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well chambers was 0.01%, confirming that

  6. Comparison of air-kerma strength determinations for HDR (192)Ir sources.

    Science.gov (United States)

    Rasmussen, Brian E; Davis, Stephen D; Schmidt, Cal R; Micka, John A; Dewerd, Larry A

    2011-12-01

    To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) (192)Ir brachytherapy sources maintained by the University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. The improved, laser-aligned seven-distance apparatus of the University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR (192)Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the (192)Ir air-kerma calibration coefficient from the NIST air-kerma standards at (137)Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A(wall) for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. The average measurements when using the inverse N(K) interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well chambers was 0.01%, confirming that it is not necessary to

  7. Support of Construction and Verification of Out-of-Pile Fuel Assembly Test Facilities

    International Nuclear Information System (INIS)

    Park, Nam Gyu; Kim, K. T.; Park, J. K.

    2006-12-01

    Fuel assembly and components should be verified by the out-of-pile test facilities in order to load the developed fuel in reactor. Even though most of the component-wise tests have been performed using the facilities in land, the assembly-wise tests has been depended on the oversees' facility due to the lack of the facilities. KAERI started to construct the assembly-wise mechanical/hydraulic test facilities and KNF, as an end user, is supporting the mechanical/hydraulic test facility construction by using the technologies studied through the fuel development programs. The works performed are as follows: - Test assembly shipping container design and manufacturing support - Fuel handling tool design : Gripper, Upper and lower core simulators for assembly mechanical test facility, Internals for assembly hydraulic test facility - Manufacture of test specimens : skeleton and assembly for preliminary functional verification of assembly mechanical/hydraulic test facilities, two assemblies for the verification of assembly mechanical/hydraulic test facilities, Instrumented rod design and integrity evaluation - Verification of assembly mechanical/hydraulic test facilities : test data evaluation

  8. Support of Construction and Verification of Out-of-Pile Fuel Assembly Test Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Park, Nam Gyu; Kim, K. T.; Park, J. K. [KNF, Daejeon (Korea, Republic of)] (and others)

    2006-12-15

    Fuel assembly and components should be verified by the out-of-pile test facilities in order to load the developed fuel in reactor. Even though most of the component-wise tests have been performed using the facilities in land, the assembly-wise tests has been depended on the oversees' facility due to the lack of the facilities. KAERI started to construct the assembly-wise mechanical/hydraulic test facilities and KNF, as an end user, is supporting the mechanical/hydraulic test facility construction by using the technologies studied through the fuel development programs. The works performed are as follows: - Test assembly shipping container design and manufacturing support - Fuel handling tool design : Gripper, Upper and lower core simulators for assembly mechanical test facility, Internals for assembly hydraulic test facility - Manufacture of test specimens : skeleton and assembly for preliminary functional verification of assembly mechanical/hydraulic test facilities, two assemblies for the verification of assembly mechanical/hydraulic test facilities, Instrumented rod design and integrity evaluation - Verification of assembly mechanical/hydraulic test facilities : test data evaluation.

  9. Passive BWR integral LOCA testing at the Karlstein test facility INKA

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, Robert [AREVA GmbH, Erlangen (Germany); Wagner, Thomas [AREVA GmbH, Karlstein am Main (Germany); Leyer, Stephan [TH University of Applied Sciences, Deggendorf (Germany)

    2014-05-15

    KERENA is an innovative AREVA GmbH boiling water reactor (BWR) with passive safety systems (Generation III+). In order to verify the functionality of the reactor design an experimental validation program was executed. Therefore the INKA (Integral Teststand Karlstein) test facility was designed and erected. It is a mockup of the BWR containment, with integrated pressure suppression system. While the scaling of the passive components and the levels match the original values, the volume scaling of the containment compartments is approximately 1:24. The storage capacity of the test facility pressure vessel corresponds to approximately 1/6 of the KERENA RPV and is supplied by a benson boiler with a thermal power of 22 MW. In March 2013 the first integral test - Main Steam Line Break (MSLB) - was executed. The test measured the combined response of the passive safety systems to the postulated initiating event. The main goal was to demonstrate the ability of the passive systems to ensure core coverage, decay heat removal and to maintain the containment within defined limits. The results of the test showed that the passive safety systems are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them. The test proved that INKA is an unique test facility, capable to perform integral tests of passive safety concepts under plant-like conditions. (orig.)

  10. The construction of solid waste form test facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Kim, Joon Hyung; Lee, Byung Jik; Koo, Jun Mo; Kim, Jeong Guk; Jung, In Ha

    1990-03-01

    The solid waste form test facility (SWFTF) to test and/or evaluate the characteristics of waste forms, such as homogeniety, mechanical properties, thermal properties, waste resistance and leachability, have been constructed, and some equipments for testing actual waste forms has been purchased; radiocative monitoring system, glove box for the manipulator repair room, and uninteruppted power supply system, et al. Classifications of radioactive wastes, basic requirements and criteria to be considered during waste management were also reviewed. Some of the described items above have been standardized for the purpose of indigenigation. Therefore, safety assurance of waste forms, as well as increase in the range of participating of domestic companies in construction of further nuclear facilities could be obtained as results through constructing this facility. In the furture this facility is going to be utilized not only for the inspection of waste forms but also for the periodic decontamination for extending the life time of some expensive radiological equipments using remote handling techniques. (author)

  11. Fast Flux Test Facility fuel and test management: The first 10 years

    International Nuclear Information System (INIS)

    Bennett, R.A.; Bennett, C.L.; Campbell, L.R.; Dobbin, K.D.; Tang, E.L.

    1991-07-01

    Core design and fuel and test management have been performed efficiently at the Fast Flux Test Facility. No outages have been extended to adjust core loadings. Development of mixed oxide fuels for advanced liquid metal breeder reactors has been carried out successfully. In fact, the fuel performance is extraordinary. Failures have been so infrequent that further development and refinement of fuel requirements seem appropriate and could lead to a significant reduction in projected electrical busbar costs. The Fast Flux Test Facility is also involved in early metal fuel development tests and appears to be an ideal test bed for any further fuel development or refinement testing. 3 refs., 4 figs., 2 tabs

  12. RAMI strategies in the IFMIF Test Facilities design

    Energy Technology Data Exchange (ETDEWEB)

    Abal, Javier, E-mail: javier.abal@upc.edu [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Dies, Javier [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Arroyo, José Manuel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Bargalló, Enric [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Casal, Natalia; García, Ángela [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain); Martínez, Gonzalo; Tapia, Carlos; De Blas, Alfredo [Fusion Energy Engineering Laboratory (FEEL), Technical University of Catalonia (UPC) Barcelona-Tech, Barcelona (Spain); Mollá, Joaquín; Ibarra, Ángel [Laboratorio Nacional de Fusión por Confinamiento Magnético – CIEMAT, 28040 Madrid (Spain)

    2013-10-15

    Highlights: • We have implemented fault tolerant design strategies so that the strong availability requirements are met. • The evolution to the present design of the signal and cooling lines inside the TTC has also been compared. • The RAMI analyses have demonstrated a strong capability in being a complementary tool in the design of IFMIF Test Facilities. -- Abstract: In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation.

  13. RAMI strategies in the IFMIF Test Facilities design

    International Nuclear Information System (INIS)

    Abal, Javier; Dies, Javier; Arroyo, José Manuel; Bargalló, Enric; Casal, Natalia; García, Ángela; Martínez, Gonzalo; Tapia, Carlos; De Blas, Alfredo; Mollá, Joaquín; Ibarra, Ángel

    2013-01-01

    Highlights: • We have implemented fault tolerant design strategies so that the strong availability requirements are met. • The evolution to the present design of the signal and cooling lines inside the TTC has also been compared. • The RAMI analyses have demonstrated a strong capability in being a complementary tool in the design of IFMIF Test Facilities. -- Abstract: In this paper, a RAMI analysis of the different stages in Test Facilities (TF) design is described. The comparison between the availability results has been a milestone not only to evaluate the major unavailability contributors in the updates but also to implement fault tolerant design strategies when possible. These strategies encompass a wide range of design activities: from the definition of degraded modes of operation in the Test Facilities to specific modifications in the test modules in order to guarantee their fail safe operation

  14. Test facilities for evaluating nuclear thermal propulsion systems

    International Nuclear Information System (INIS)

    Beck, D.F.; Allen, G.C.; Shipers, L.R.; Dobranich, D.; Ottinger, C.A.; Harmon, C.D.; Fan, W.C.; Todosow, M.

    1992-01-01

    Interagency panels evaluating nuclear thermal propulsion (NTP) development options have consistently recognized the need for constructing a major new ground test facility to support fuel element and engine testing. This paper summarizes the requirements, configuration, and baseline performance of some of the major subsystems designed to support a proposed ground test complex for evaluating nuclear thermal propulsion fuel elements and engines being developed for the Space Nuclear Thermal Propulsion (SNTP) program. Some preliminary results of evaluating this facility for use in testing other NTP concepts are also summarized

  15. National Ignition Facility TestController for automated and manual testing

    Energy Technology Data Exchange (ETDEWEB)

    Zielinski, Jason, E-mail: fishler2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94551 (United States)

    2012-12-15

    The Controls and Information Systems (CIS) organization for the National Ignition Facility (NIF) has developed controls, configuration and analysis software applications that combine for several million lines of code. The team delivers updates throughout the year, from major releases containing hundreds of changes to patch releases containing a small number of focused updates. To ensure the quality of each delivery, manual and automated tests are performed using the NIF TestController test infrastructure. The TestController system provides test inventory management, test planning, automated and manual test execution, release testing summaries and results search, all through a web browser interface. As part of the three-stage software testing strategy, the NIF TestController system helps plan, evaluate and track the readiness of each release to the NIF production environment. After several years of use in testing NIF software applications, the TestController's manual testing features have been leveraged for verifying the installation and operation of NIF Target Diagnostic hardware. The TestController recorded its first test results in 2004. Today, the system has recorded the execution of more than 160,000 tests and continues to play a central role in ensuring that NIF hardware and software meet the requirements of a high reliability facility. This paper describes the TestController system and discusses its use in assuring the quality of software delivered to the NIF.

  16. National Ignition Facility TestController for automated and manual testing

    International Nuclear Information System (INIS)

    Zielinski, Jason

    2012-01-01

    The Controls and Information Systems (CIS) organization for the National Ignition Facility (NIF) has developed controls, configuration and analysis software applications that combine for several million lines of code. The team delivers updates throughout the year, from major releases containing hundreds of changes to patch releases containing a small number of focused updates. To ensure the quality of each delivery, manual and automated tests are performed using the NIF TestController test infrastructure. The TestController system provides test inventory management, test planning, automated and manual test execution, release testing summaries and results search, all through a web browser interface. As part of the three-stage software testing strategy, the NIF TestController system helps plan, evaluate and track the readiness of each release to the NIF production environment. After several years of use in testing NIF software applications, the TestController's manual testing features have been leveraged for verifying the installation and operation of NIF Target Diagnostic hardware. The TestController recorded its first test results in 2004. Today, the system has recorded the execution of more than 160,000 tests and continues to play a central role in ensuring that NIF hardware and software meet the requirements of a high reliability facility. This paper describes the TestController system and discusses its use in assuring the quality of software delivered to the NIF.

  17. Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Kemp, E.L.; Trego, A.L.

    1979-01-01

    A Fusion Materials Irradiation Test Facility is being designed to be constructed at Hanford, Washington, The system is designed to produce about 10 15 n/cm-s in a volume of approx. 10 cc and 10 14 n/cm-s in a volume of 500 cc. The lithium and target systems are being developed and designed by HEDL while the 35-MeV, 100-mA cw accelerator is being designed by LASL. The accelerator components will be fabricated by US industry. The total estimated cost of the FMIT is $105 million. The facility is scheduled to begin operation in September 1984

  18. Project assembling and commissioning of a rewetting test facility

    International Nuclear Information System (INIS)

    Rezende, H.C.

    1985-08-01

    A test facility (ITR - Instalacao de Testes de Remolhamento) has been erected at the Thermal-hydraulics Laboratory of CDTN, dedicated to the investigation of the basic phenomena that can occur during the reflood phase of a Loss of Coolant Accident (LOCA) in a Pressurized Water Reactor (PWR), utilizing tubular and annular test sections. The present work consists in a presentation of the facility design and a report of its commissioning. The mechanical aspects of the facility, its power supply system and its instrumentation are described. The results of the instruments calibration and two operational tests are presented and a comparison is done with calculations perfomed usign a computer code. (Author) [pt

  19. Determination of the dose of traffic in HDR brachytherapy with ALANINE/R PE technique

    International Nuclear Information System (INIS)

    Guzman Calcina, C. S.; Chen, F.; Almeida, A. de; Baffa, O.

    2001-01-01

    It determines, experimentally, the dose of traffic in brachytherapy for High Dose Rate (HDR), using for the first-time the Electronic Paramagnetic Resonance (EPR) technique with alanine detectors. The value obtained is the published next to obtained using lithium fluoride thermoluminescent dosimeters [es

  20. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  1. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    International Nuclear Information System (INIS)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-01-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: (1) Identifies pre-conceptual design requirements; (2) Develops test loop equipment schematics and layout; (3) Identifies space allocations for each of the facility functions, as required; (4) Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems; (5) Identifies pre-conceptual utility and support system needs; and (6) Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs

  2. THORS: a high-temperature sodium test facility rated at 2.0 MW

    International Nuclear Information System (INIS)

    Gnadt, P.A.; Anderson, A.H.; Clapp, N.E.; Montgomery, B.H.; Collins, C.W.; Stulting, R.D.

    1979-01-01

    The Thermal--Hydraulic Out-of-Reactor Safety (THORS) facility at Oak Ridge Naitonal Laboratory (ORNL) is a high-temperature sodium test facility operated for the United States Breeder Reactor Safety Program. The facility is primarily used for testing large simulated Liquid-Metal Fast Breeder Reactor (LMFBR) fuel subassemblies. The facility has recently been upgraded to provide a 2.0-MW test bundle power input and heat removal capability. A new test section, which will be capable of operating at 980 0 C and which will accommodate a 217-pin bundle, has also been added. A 61-pin bundle is currently under test in the facility. A description of the test facility is presented, along with a brief summary of the 8-year operating history of this safety-related test facility

  3. HDR Pathological Image Enhancement Based on Improved Bias Field Correction and Guided Image Filter

    Directory of Open Access Journals (Sweden)

    Qingjiao Sun

    2016-01-01

    Full Text Available Pathological image enhancement is a significant topic in the field of pathological image processing. This paper proposes a high dynamic range (HDR pathological image enhancement method based on improved bias field correction and guided image filter (GIF. Firstly, a preprocessing including stain normalization and wavelet denoising is performed for Haematoxylin and Eosin (H and E stained pathological image. Then, an improved bias field correction model is developed to enhance the influence of light for high-frequency part in image and correct the intensity inhomogeneity and detail discontinuity of image. Next, HDR pathological image is generated based on least square method using low dynamic range (LDR image, H and E channel images. Finally, the fine enhanced image is acquired after the detail enhancement process. Experiments with 140 pathological images demonstrate the performance advantages of our proposed method as compared with related work.

  4. Effect and toxicity of endoluminal high-dose-rate (HDR) brachytherapy in centrally located tumors of the upper respiratory tract

    International Nuclear Information System (INIS)

    Harms, W.; Wannenmacher, M.; Becker, H.; Herth, F.; Fritz, P.

    2000-01-01

    Aim: To assess effect an toxicity of high-dose-rate afterloading (HDR) alone or in combination with external beam radiotherapy (EBRT) in centrally located tumors of the upper respiratory tract. Patients and Methods: From 1987 to 1996, 55 patients were treated. Twenty-one patients (group A1: 17 non-small-cell lung cancer [NSCLC], A2: 4 metastases from other malignancies) were treated using HDR alone due to a relapse after external beam irradiation. In 34 previously untreated and inoperable patients (group B1: 27 NSCLC, B2: 7 metastases from other malignancies) HDR was given as a boost after EBRT (30 to 60 Gy, median 50). HDR was carried out with a 192 Ir source (370 GBq). The brachytherapy dose (group A: 5 to 27 Gy, median 20; B: 10 to 20 Gy, median 15) was prescribed to 1 cm distance from the source axis. A distanciable applicator was used in 39/55 patients. Results: In group A1, a response rate (CR, PR) of 53% (group B1: 77%) was reached. The median survival (Kaplan-Meier) was 5 months in group A1 (B1: 20 months). The 1-, 3- and 5-year local progression free survival rates (Kaplan-Meier) were 66% (15%), 52% (0%), and 37% (0%) in group B1 (group A1). Prognostic favorable factors in group B1 were a tumor diameter 70. Grade-1 or 2 toxicity (RTOG/EORTC) occurred in 0% in group A and in 6% in group B. We observed no Grad-3 or 4 toxicity. Complications caused by persistent or progressive local disease occurred in 3 patients in goup A (fatal hemorrhage, tracheomediastinal fistula, hemoptysis) and in 2 patients in group B (fatal hemorrhage, hemoptysis). Conclusions: HDR brachytherapy is an effective treatment with moderate side effects. In combination with external beam irradiation long-term remissions can be reached in one third of the patients. (orig.) [de

  5. BWR Full Integral Simulation Test (FIST) program: facility description report

    International Nuclear Information System (INIS)

    Stephens, A.G.

    1984-09-01

    A new boiling water reactor safety test facility (FIST, Full Integral Simulation Test) is described. It will be used to investigate small breaks and operational transients and to tie results from such tests to earlier large-break test results determined in the TLTA. The new facility's full height and prototypical components constitute a major scaling improvement over earlier test facilities. A heated feedwater system, permitting steady-state operation, and a large increase in the number of measurements are other significant improvements. The program background is outlined and program objectives defined. The design basis is presented together with a detailed, complete description of the facility and measurements to be made. An extensive component scaling analysis and prediction of performance are presented

  6. Safety test facilities - status, needs, future directions

    International Nuclear Information System (INIS)

    Heusener, G.; Cogne, F.

    1979-08-01

    A survey is given of the in-pile programs which are presently or in the near future being performed in the DeBeNe-area and in France. Only those in-pile programs are considered which are dealing with severe accidents that might lead to disruption of major parts of the core. By comparing the needs with the goals of the present programs points are identified which are not sufficiently well covered up till now. The future procedure is described: the existing facilities will be used to the largest possible extent. Whenever it is necessary, upgrading and improvement will be foreseen. Studies of a Test Facility allowing the transient testing of large pin bundles should be continued. The construction of such a facility in Europe in the near future however seems premature

  7. Prostate HDR brachytherapy catheter displacement between planning and treatment delivery

    International Nuclear Information System (INIS)

    Whitaker, May; Hruby, George; Lovett, Aimee; Patanjali, Nitya

    2011-01-01

    Background and purpose: HDR brachytherapy is used as a conformal boost for treating prostate cancer. Given the large doses delivered, it is critical that the volume treated matches that planned. Our outpatient protocol comprises two 9 Gy fractions, two weeks apart. We prospectively assessed catheter displacement between CT planning and treatment delivery. Materials and methods: Three fiducial markers and the catheters were implanted under transrectal ultrasound guidance. Metal marker wires were inserted into 4 reference catheters before CT; marker positions relative to each other and to the marker wires were measured from the CT scout. Measurements were repeated immediately prior to treatment delivery using pelvic X-ray with marker wires in the same reference catheters. Measurements from CT scout and film were compared. For displacements of 5 mm or more, indexer positions were adjusted prior to treatment delivery. Results: Results are based on 48 implants, in 25 patients. Median time from planning CT to treatment delivery was 254 min (range 81–367 min). Median catheter displacement was 7.5 mm (range −2.9–23.9 mm), 67% of implants had displacement of 5 mm or greater. Displacements were predominantly caudal. Conclusions: Catheter displacement can occur in the 1–3 h between the planning CT scan and treatment. It is recommended that departments performing HDR prostate brachytherapy verify catheter positions immediately prior to treatment delivery.

  8. RIA testing capability of the transient reactor test facility

    International Nuclear Information System (INIS)

    Crawford, D.C.; Swanson, R.W.

    1999-01-01

    The advent of high-burnup fuel implementation in LWRs has generated international interest in high-burnup LWR fuel performance. Recent testing under simulated RIA conditions has demonstrated that certain fuel designs fail at peak fuel enthalpy values that are below existing regulatory criteria. Because many of these tests were performed with non-prototypically aggressive test conditions (i.e., with power pulse widths less than 10 msec FWHM and with non-protoypic coolant configurations), the results (although very informative) do not indisputably identify failure thresholds and fuel behavior. The capability of the TREAT facility to perform simulated RIA tests with prototypic test conditions is currently being evaluated by ANL personnel. TREAT was designed to accommodate test loops and vehicles installed for in-pile transient testing. During 40 years of TREAT operation and fuel testing and evaluation, experimenters have been able to demonstrate and determine the transient behavior of several types of fuel under a variety of test conditions. This experience led to an evolution of test methodology and techniques which can be employed to assess RIA behavior of LWR fuel. A pressurized water loop that will accommodate RIA testing of LWR and CANDU-type fuel has completed conceptual design. Preliminary calculations of transient characteristics and energy deposition into test rods during hypothetical TREAT RIA tests indicate that with the installation of a pressurized water loop, the facility is quite capable of performing prototypic RIA testing. Typical test scenarios indicate that a simulated RIA with a 72 msec FWHM pulse width and energy deposition of 1200 kJ/kg (290 cal/gm) is possible. Further control system enhancements would expand the capability to pulse widths as narrow as 40 msec. (author)

  9. Controlled Archaeological Test Site (CATS) Facility

    Data.gov (United States)

    Federal Laboratory Consortium — CATS facility is at the Construction Engineering Research Laboratory (CERL), Champaign, IL. This 1-acre test site includes a variety of subsurface features carefully...

  10. Performance test results of mock-up test facility of HTTR hydrogen production system

    International Nuclear Information System (INIS)

    Ohashi, Hirofumi; Inaba, Yoshitomo; Nishihara, Tetsuo

    2004-01-01

    For the purpose to demonstrate effectiveness of high-temperature nuclear heat utilization, Japan Atomic Energy Research Institute has been developing a hydrogen production system and has planned to connect the hydrogen production system to High Temperature Engineering Test Reactor (HTTR). Prior to construction of a HTTR hydrogen production system, a mock-up test facility was constructed to investigate transient behavior of the hydrogen production system and to establish system controllability. The Mock-up test facility with a full-scale reaction tube is an approximately 1/30-scale model of the HTTR hydrogen production system and an electric heater is used as a heat source instead of a reactor. After its construction, a performance test of the test facility was carried out in the same pressure and temperature conditions as those of the HTTR hydrogen production system to investigate its performance such as hydrogen production ability, controllability and so on. It was confirmed that hydrogen was stably produced with a hot helium gas about 120m 3 /h, which satisfy the design value, and thermal disturbance of helium gas during the start-up could be mitigated within the design value by using a steam generator. The mock-up test of the HTTR hydrogen production system using this facility will continue until 2004. (author)

  11. SU-F-T-28: Evaluation of BEBIG HDR Co-60 After-Loading System for Skin Cancer Treatment Using Conical Surface Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W Y [Department of Medical Physics, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON (Canada); Meigooni, A S [Department of Radiation Therapy, Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States); Han, D [Departemt of Radiation Oncology, University of California San Francisco, San Francisco, CA (United States)

    2016-06-15

    Purpose: To evaluate the possibility of utilizing the BEBIG HDR 60Co remote after-loading system for malignant skin surface treatment using Monte Carlo (MC) simulation technique. Methods: First TG-43 parameters of BEBIG-Co-60 and Nucletron Ir-192-mHDR-V2 brachytherapy sources were simulated using MCNP6 code to benchmark the sources against the literature. Second a conical tungsten-alloy with 3-cm diameter of Planning-Target-Volume (PTV) at surface for use with a single stepping HDR source is designed. The HDR source is modeled parallel to treatment plane at the center of the conical applicator with a source surface distance (SSD) of 1.5-cm and a removable plastic end-cap with a 1-mm thickness. Third, MC calculated dose distributions from HDR Co-60 for conical surface applicator were compared with the simulated data using HDR Ir-192 source. The initial calculations were made with the same conical surface applicator (standard-applicator) dimensions as the ones used with the Ir-192 system. Fourth, the applicator wall-thickness for the Co-60 system was increased (doubled) to diminish leakage dose to levels received when using the Ir-192 system. With this geometry, percentage depth dose (PDD), and relative 2D-dose profiles in transverse/coronal planes were normalized at 3-mm prescription-depth evaluated along the central axis. Results: PDD for Ir-192 and Co-60 were similar with standard and thick-walled applicator. 2D-relative dose distribution of Co-60, inside the standard-conical-applicator, generated higher penumbra (7.6%). For thick-walled applicator, it created smaller penumbra (<4%) compared to Ir-192 source in the standard-conicalapplicator. Dose leakage outside of thick-walled applicator with Co-60 source was approximately equal (≤3%) with standard applicator using Ir-192 source. Conclusion: Skin cancer treatment with equal quality can be performed with Co-60 source and thick-walled conical applicators instead of Ir-192 with standard applicators. These conical

  12. S.E.T., CSNI Separate Effects Test Facility Validation Matrix

    International Nuclear Information System (INIS)

    1997-01-01

    1 - Description of test facility: The SET matrix of experiments is suitable for the developmental assessment of thermal-hydraulics transient system computer codes by selecting individual tests from selected facilities, relevant to each phenomena. Test facilities differ from one another in geometrical dimensions, geometrical configuration and operating capabilities or conditions. Correlation between SET facility and phenomena were calculated on the basis of suitability for model validation (which means that a facility is designed in such a way as to stimulate the phenomena assumed to occur in a plant and is sufficiently instrumented); limited suitability for model variation (which means that a facility is designed in such a way as to stimulate the phenomena assumed to occur in a plant but has problems associated with imperfect scaling, different test fluids or insufficient instrumentation); and unsuitability for model validation. 2 - Description of test: Whereas integral experiments are usually designed to follow the behaviour of a reactor system in various off-normal or accident transients, separate effects tests focus on the behaviour of a single component, or on the characteristics of one thermal-hydraulic phenomenon. The construction of a separate effects test matrix is an attempt to collect together the best sets of openly available test data for code validation, assessment and improvement, from the wide range of experiments that have been carried out world-wide in the field of thermal hydraulics. In all, 2094 tests are included in the SET matrix

  13. Full scale BWR containment LOCA response test at the INKA test facility

    International Nuclear Information System (INIS)

    Wagner, Thomas; Leyer, Stephan

    2015-01-01

    KERENA is an innovative boiling water reactor concept with passive safety systems (Generation III+) of AREVA. The reactor is an evolutionary design of operating BWRs (Generation II). In order to verify the functionality and performance of the KERENA safety concept required for the transient and accident management, the test facility “Integral Teststand Karlstein” (INKA) was built at Karlstein (Germany). It is a mock-up of the KERENA boiling water reactor containment, with integrated pressure suppression system. The complete chain of passive safety components is available. The passive components and the levels are represented in full scale. The volume scaling of the containment compartments is approximately 1:24. The reactor pressure vessel (RPV) is simulated via the steam accumulator of the Karlstein Large Valve Test Facility. This vessel provides an energy storage capacity of approximately 1/6 of the KERENA RPV and is supplied by a Benson boiler with a thermal power of 22 MW. With respect to the available power supply, the containment- and system-sizing of the facility is by far the largest one of its kind worldwide. From 2009 to 2012, several single component tests were conducted (Emergency Condenser, Containment Cooling Condenser, Core Flooding System etc.). On March 21st, 2013, the worldwide first large-scale only passively managed integral accident test of a boiling water reactor was simulated at INKA. The integral test measured the combined response of the KERENA passive safety systems to the postulated initiating event was the “Main Steam Line Break” (MSLB) inside the Containment with decay heat simulation. The results of the performed integral test (MSLB) showed that the passive safety systems alone are capable to bring the plant to stable conditions meeting all required safety targets with sufficient margins. Therefore the test verified the function of those components and the interplay between them as response to an anticipated accident scenario

  14. Development of a TLD mailed system for remote dosimetry audit for 192Ir HDR and PDR sources

    International Nuclear Information System (INIS)

    Roue, Amelie; Venselaar, Jack L.M.; Ferreira, Ivaldo H.; Bridier, Andre; Dam, Jan van

    2007-01-01

    Background and purpose: In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. Materials and methods: A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from 192 Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an 192 Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1 s). Results: To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. Conclusion: A method of absorbed dose to water determination in the vicinity of an 192 Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The

  15. Development of a TLD mailed system for remote dosimetry audit for (192)Ir HDR and PDR sources.

    Science.gov (United States)

    Roué, Amélie; Venselaar, Jack L M; Ferreira, Ivaldo H; Bridier, André; Van Dam, Jan

    2007-04-01

    In the framework of an ESTRO ESQUIRE project, the BRAPHYQS Physics Network and the EQUAL-ESTRO laboratory have developed a procedure for checking the absorbed dose to water in the vicinity of HDR or PDR sources using a mailed TLD system. The methodology and the materials used in the procedure are based on the existing EQUAL-ESTRO external radiotherapy dose checks. A phantom for TLD postal dose assurance service, adapted to accept catheters from different HDR afterloaders, has been developed. The phantom consists of three PMMA tubes supporting catheters placed at 120 degrees around a central TLD holder. A study on the use of LiF powder type DTL 937 (Philitech) has been performed in order to establish the TLD calibration in dose-to-water at a given distance from (192)Ir source, as well as to determine all correction factors to convert the TLD reading into absorbed dose to water. The dosimetric audit is based on the comparison between the dose to water measured with the TL dosimeter and the dose calculated by the clinical TPS. Results of the audits are classified in four different levels depending on the ratio of the measured dose to the stated dose. The total uncertainty budget in the measurement of the absorbed dose to water using TLD near an (192)Ir HDR source, including TLD reading, correction factors and TLD calibration coefficient, is determined as 3.27% (1s). To validate the procedures, the external audit was first tested among the members of the BRAPHYQS Network. Since November 2004, the test has been made available for use by all European brachytherapy centres. To date, 11 centres have participated in the checks and the results obtained are very encouraging. Nevertheless, one error detected has shown the usefulness of this audit. A method of absorbed dose to water determination in the vicinity of an (192)Ir brachytherapy source was developed for the purpose of a mailed TL dosimetry system. The accuracy of the procedure was determined. This method allows a

  16. HDR and LDR Brachytherapy in the Treatment of Lip Cancer: the Experience of the Catalan Institute of Oncology.

    Science.gov (United States)

    Ayerra, Arrate Querejeta; Mena, Estefanía Palacios; Fabregas, Joan Pera; Miguelez, Cristina Gutiérrez; Guedea, Ferran

    2010-03-01

    Lip cancer can be treated by surgery, external radiotherapy, and/or brachytherapy (BT). In recent years, BT has become increasingly favored for this type of cancer. The aim of the present study was to analyze local control and survival of patients treated at our institution between July 1989 and June 2008. We performed a retrospective study of 121 patients (109 males and 12 females) who underwent lip cancer brachytherapy from July 1989 to June 2008. Median age was 67 years and median follow-up was 31.8 months (range 20-188 months). Out of 121 patients, 100 (82.6%) were treated with low dose rate (LDR) BT while the remaining 21 patients (17.4%) received high dose rate (HDR) BT. The most common cell type was squamous cell carcinoma (115 cases; 95%) and most tumors were located on the lower lip (107 patients; 88.4%). Most cases were either stage T1 (62 patients; 51.2%), or T2 (44 cases; 36.4%). After 15 years of follow-up, overall survival was 89.5%, cause-specific survival 97.8%, and disease-free survival 86.6%. Local, regional, and distant control at 15 years were 90%, 92%, and 98.8%, respectively. Grade 3 mucosal toxicity was observed in 23% of patients treated with LDR compared to 33% of HDR patients, and grade 4 mucosal toxicity in 9% versus 0% in the HDR group. Our findings confirm that brachytherapy is an effective treatment for lip cancer. The results from our series are in line with those published elsewhere. Based on our limited data, HDR appears to be equally as good as LDR, although this needs to be confirmed by further studies.

  17. Neutron generator instrumentation at the Department 2350 Neutron Generator Test Facility

    International Nuclear Information System (INIS)

    Bryant, T.C.; Mowrer, G.R.

    1979-06-01

    The computer and waveform digitizing capability at the test facility has allowed several changes in the techniques used to test neutron generators. These changes include methods used to calibrate the instrumentation and changes in the operation of the test facility. These changes have increased the efficiency of the test facility as well as increasing both timing and amplitude accuracy of neutron generator waveforms

  18. Variability of Marker-Based Rectal Dose Evaluation in HDR Cervical Brachytherapy

    International Nuclear Information System (INIS)

    Wang Zhou; Jaggernauth, Wainwright; Malhotra, Harish K.; Podgorsak, Matthew B.

    2010-01-01

    In film-based intracavitary brachytherapy for cervical cancer, position of the rectal markers may not accurately represent the anterior rectal wall. This study was aimed at analyzing the variability of rectal dose estimation as a result of interfractional variation of marker placement. A cohort of five patients treated with multiple-fraction tandem and ovoid high-dose-rate (HDR) brachytherapy was studied. The cervical os point and the orientation of the applicators were matched among all fractional plans for each patient. Rectal points obtained from all fractions were then input into each clinical treated plan. New fractional rectal doses were obtained and a new cumulative rectal dose for each patient was calculated. The maximum interfractional variation of distances between rectal dose points and the closest source positions was 1.1 cm. The corresponding maximum variability of fractional rectal dose was 65.5%. The percentage difference in cumulative rectal dose estimation for each patient was 5.4%, 19.6%, 34.6%, 23.4%, and 13.9%, respectively. In conclusion, care should be taken when using rectal markers as reference points for estimating rectal dose in HDR cervical brachytherapy. The best estimate of true rectal dose for each fraction should be determined by the most anterior point among all fractions.

  19. Operating experience of steam generator test facility

    International Nuclear Information System (INIS)

    Sureshkumar, V.A.; Madhusoodhanan, G.; Noushad, I.B.; Ellappan, T.R.; Nashine, B.K.; Sylvia, J.I.; Rajan, K.K.; Kalyanasundaram, P.; Vaidyanathan, G.

    2006-01-01

    Steam Generator (SG) is the vital component of a Fast Reactor. It houses both water at high pressure and sodium at low pressure separated by a tube wall. Any damage to this barrier initiates sodium water reaction that could badly affect the plant availability. Steam Generator Test Facility (SGTF) has been set up in Indira Gandhi Centre for Atomic Research (IGCAR) to test sodium heated once through steam generator of 19 tubes similar to the PFBR SG dimension and operating conditions. The facility is also planned as a test bed to assess improved designs of the auxiliary equipments used in Fast Breeder Reactors (FBR). The maximum power of the facility is 5.7 MWt. This rating is arrived at based on techno economic consideration. This paper covers the performance of various equipments in the system such as Electro magnetic pumps, Centrifugal sodium pump, in-sodium hydrogen meters, immersion heaters, and instrumentation and control systems. Experience in the system operation, minor modifications, overall safety performance, and highlights of the experiments carried out etc. are also brought out. (author)

  20. 400 Area/Fast Flux Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 400 Area at Hanford is home primarily to the Fast Flux Test Facility (FFTF), a DOE-owned, formerly operating, 400-megawatt (thermal) liquid-metal (sodium)-cooled...

  1. Results from the CLIC Test Facility

    CERN Document Server

    Braun, H; Bossart, Rudolf; Chautard, F; Corsini, R; Delahaye, J P; Godot, J C; Hutchins, S; Kamber, I; Madsen, J H B; Rinolfi, Louis; Rossat, G; Schreiber, S; Suberlucq, Guy; Thorndahl, L; Wilson, Ian H; Wuensch, Walter

    1996-01-01

    In order to study the principle of the Compact Linear Collider (CLIC) based on the Two Beam Acceleration (TBA) scheme at high frequency, a CLIC Test Facility (CTF) has been set-up at CERN. After four years of successful running, the experimental programme is now fully completed and all its objectives reached, particularly the generation of a high intensity drive beam with short bunches by a photo-injector, the production of 30 GHz RF power and the acceleration of a probe beam by 30 GHz structures. A summary of the CTF results and their impact on linear collider design is given. This covers 30 GHz high power testing, study of intense, short single bunches; as well as RF-Gun, photocathode and beam diagnostic developments. A second phase of the test facility (CTF2) is presently being installed to demonstrate the feasibility of the TBA scheme by constructing a fully engineered, 10 m long, test section very similar to the CLIC drive and main linacs, producing up to 480 MW of peak RF power at 30 GHz and acceleratin...

  2. Neodadjuvante und adjuvante Kurzzeit-Hormontherapie in Kombination mit konformaler HDR-Brachytherapie beim Prostatakarzinom

    Directory of Open Access Journals (Sweden)

    Martin T

    2004-01-01

    Full Text Available Zielsetzung: Auswertung der Behandlungsergebnisse der neoadjuvanten und adjuvanten Kurzzeit-Hormontherapie kombiniert mit konformaler HDR-Brachytherapie und externer Radiotherapie beim Prostatakarzinom. Patienten und Methoden: Von 01/97 bis 09/99 behandelten wir 102 Patienten mit Prostatakarzinomen im Stadium T1–3 N0 M0. Im Stadium T1–2 befanden sich 71, im Stadium T3 31 Patienten. Der mediane prätherapeutische PSA-Wert betrug 15,3 ng/ml. Nach ultraschallgesteuerter transrektaler Implantation von vier Afterloadingnadeln erfolgte die CT-gestützte 3D-Brachytherapie- Planung. Alle Patienten erhielten vier HDR-Implantate mit einer Referenzdosis von 5 Gy oder 7 Gy pro Implantat. Die Zeit zwischen jedem Implantat betrug jeweils 14 Tage. Nach der Brachytherapie folgte die externe Radiotherapie bis 39,6 Gy oder 45,0 Gy. Alle Patienten erhielten eine neoadjuvante und adjuvante Kurzzeit-Hormontherapie, die 2–19 Monate vor der Brachytherapie eingeleitet und 3 Monate nach Abschluß der externen Radiotherapie abgesetzt wurde (mediane Dauer: 9 Monate. Ergebnisse: Die mediane Nachbeobachtungszeit war 2,6 Jahre (range: 2,0–4,1 Jahre. Die biochemische Kontrollrate betrug 82 % nach 3 Jahren. Bei 14/102 Patienten registrierten wir ein biochemisches Rezidiv, bei 5/102 Patienten ein klinisches Rezidiv. Das Gesamtüberleben betrug 90 %, das krankheitsspezifische Überleben 98,0 % nach 3 Jahren. Ein Patient entwickelte eine prostato-urethro-rektale Fistel als späte Grad 4-Toxizität. Akute Grad-3 Toxizitäten traten bei 4 %, späte Grad-3 Toxizitäten bei 5 % der Patienten auf. Schlußfolgerung: Die neoadjuvante und adjuvante Kurzzeit-Hormontherapie kombiniert mit konformaler HDR-Brachytherapie und externer Radiotherapie erweist sich als sichere und wirksame Behandlungsmodalität beim Prostatakarzinom mit minimalen behandlungsbedingten Toxizitäten und einer vielversprechenden biochemischen Kontrollrate nach medianer Nachbeobachtungszeit von 2,6 Jahren.

  3. A negative ion source test facility

    Energy Technology Data Exchange (ETDEWEB)

    Melanson, S.; Dehnel, M., E-mail: morgan@d-pace.com; Potkins, D.; Theroux, J.; Hollinger, C.; Martin, J.; Stewart, T.; Jackle, P.; Withington, S. [D-Pace, Inc., P.O. Box 201, Nelson, British Columbia V1L 5P9 (Canada); Philpott, C.; Williams, P.; Brown, S.; Jones, T.; Coad, B. [Buckley Systems Ltd., 6 Bowden Road, Mount Wellington, Auckland 1060 (New Zealand)

    2016-02-15

    Progress is being made in the development of an Ion Source Test Facility (ISTF) by D-Pace Inc. in collaboration with Buckley Systems Ltd. in Auckland, NZ. The first phase of the ISTF is to be commissioned in October 2015 with the second phase being commissioned in March 2016. The facility will primarily be used for the development and the commercialization of ion sources. It will also be used to characterize and further develop various D-Pace Inc. beam diagnostic devices.

  4. ORNL facilities for testing first-wall components

    International Nuclear Information System (INIS)

    Tsai, C.C.; Becraft, W.R.; Gardner, W.L.; Haselton, H.H.; Hoffman, D.J.; Menon, M.M.; Stirling, W.L.

    1985-01-01

    Future long-impulse magnetic fusion devices will have operating characteristics similar to those described in the design studies of the Tokamak Fusion Core Experiment (TFCX), the Fusion Engineering Device (FED), and the International Tokamak Reactor (INTOR). Their first-wall components (pumped limiters, divertor plates, and rf waveguide launchers with Faraday shields) will be subjected to intense bombardment by energetic particles exhausted from the plasma, including fusion products. These particles are expected to have particle energies of approx.100 eV, particle fluxes of approx.10 18 cm -2 .s -1 , and heat fluxes of approx.1 kW/cm 2 CW to approx.100 kW/cm 2 transient. No components are available to simultaneously handle these particle and heat fluxes, survive the resulting sputtering erosion, and remove exhaust gas without degrading plasma quality. Critical issues for research and development of first-wall components have been identified in the INTOR Activity. Test facilities are needed to qualify candidate materials and develop components. At Oak Ridge National Laboratory (ORNL), existing neutral beam and wave heating test facilities can be modified to simulate first-wall environments with heat fluxes up to 30 kW/cm 2 , particle fluxes of approx.10 18 cm -2 .s -1 , and pulse lengths up to 30 s, within test volumes up to approx.100 L. The characteristics of these test facilities are described, with particular attention to the areas of particle flux, heat flux, particle energy, pulse length, and duty cycle, and the potential applications of these facilities for first-wall component development are discussed

  5. Integrated Human Test Facilities at NASA and the Role of Human Engineering

    Science.gov (United States)

    Tri, Terry O.

    2002-01-01

    Integrated human test facilities are a key component of NASA's Advanced Life Support Program (ALSP). Over the past several years, the ALSP has been developing such facilities to serve as a large-scale advanced life support and habitability test bed capable of supporting long-duration evaluations of integrated bioregenerative life support systems with human test crews. These facilities-targeted for evaluation of hypogravity compatible life support and habitability systems to be developed for use on planetary surfaces-are currently in the development stage at the Johnson Space Center. These major test facilities are comprised of a set of interconnected chambers with a sealed internal environment, which will be outfitted with systems capable of supporting test crews of four individuals for periods exceeding one year. The advanced technology systems to be tested will consist of both biological and physicochemical components and will perform all required crew life support and habitability functions. This presentation provides a description of the proposed test "missions" to be supported by these integrated human test facilities, the overall system architecture of the facilities, the current development status of the facilities, and the role that human design has played in the development of the facilities.

  6. Startup of large coil test facility

    International Nuclear Information System (INIS)

    Haubenreich, P.N.; Bohanan, R.E.; Fietz, W.A.; Luton, J.N.; May, J.R.

    1984-01-01

    The Large Coil Test Facility (LCTF) is being used to test superconducting toroidal field coils about one-third the size of those for INTOR. Data were obtained on performance of refrigerator, helium distribution, power supplies, controls, and data acquisition systems and on the acoustic emission, voltages, currents, and mechanical strains during charging and discharging the coils. (author)

  7. Testing of the West Valley Vitrification Facility transfer cart control system

    International Nuclear Information System (INIS)

    Halliwell, J.W.; Bradley, E.C.

    1995-01-01

    Oak Ridge National Laboratory (ORNL) has designed and tested the control system for the West Valley Demonstration Project Vitrification Facility transfer cart. The transfer cart will transfer canisters of vitrified high-level waste remotely within the Vitrification Facility. The control system operates the cart under battery power by wireless control. The equipment includes cart-mounted control electronics, battery charger, control pendants, engineer's console, and facility antennas. Testing was performed in several phases of development: (1) prototype equipment was built and tested during design, (2) board-level testing was then performed at ORNL during fabrication, and (3) system-level testing was then performed by ORNL at the fabrication subcontractor's facility for the completed cart system. These tests verified (1) the performance of the cart relative to design requirements and (2) operation of various built-in cart features. The final phase of testing is planned to be conducted during installation at the West Valley Vitrification Facility

  8. Common Data Acquisition Systems (DAS) Software Development for Rocket Propulsion Test (RPT) Test Facilities

    Science.gov (United States)

    Hebert, Phillip W., Sr.; Davis, Dawn M.; Turowski, Mark P.; Holladay, Wendy T.; Hughes, Mark S.

    2012-01-01

    The advent of the commercial space launch industry and NASA's more recent resumption of operation of Stennis Space Center's large test facilities after thirty years of contractor control resulted in a need for a non-proprietary data acquisition systems (DAS) software to support government and commercial testing. The software is designed for modularity and adaptability to minimize the software development effort for current and future data systems. An additional benefit of the software's architecture is its ability to easily migrate to other testing facilities thus providing future commonality across Stennis. Adapting the software to other Rocket Propulsion Test (RPT) Centers such as MSFC, White Sands, and Plumbrook Station would provide additional commonality and help reduce testing costs for NASA. Ultimately, the software provides the government with unlimited rights and guarantees privacy of data to commercial entities. The project engaged all RPT Centers and NASA's Independent Verification & Validation facility to enhance product quality. The design consists of a translation layer which provides the transparency of the software application layers to underlying hardware regardless of test facility location and a flexible and easily accessible database. This presentation addresses system technical design, issues encountered, and the status of Stennis development and deployment.

  9. Advanced Test Reactor National Scientific User Facility Partnerships

    International Nuclear Information System (INIS)

    Marshall, Frances M.; Allen, Todd R.; Benson, Jeff B.; Cole, James I.; Thelen, Mary Catherine

    2012-01-01

    In 2007, the United States Department of Energy designated the Advanced Test Reactor (ATR), located at Idaho National Laboratory, as a National Scientific User Facility (NSUF). This designation made test space within the ATR and post-irradiation examination (PIE) equipment at INL available for use by researchers via a proposal and peer review process. The goal of the ATR NSUF is to provide researchers with the best ideas access to the most advanced test capability, regardless of the proposer's physical location. Since 2007, the ATR NSUF has expanded its available reactor test space, and obtained access to additional PIE equipment. Recognizing that INL may not have all the desired PIE equipment, or that some equipment may become oversubscribed, the ATR NSUF established a Partnership Program. This program enables and facilitates user access to several university and national laboratories. So far, seven universities and one national laboratory have been added to the ATR NSUF with capability that includes reactor-testing space, PIE equipment, and ion beam irradiation facilities. With the addition of these universities, irradiation can occur in multiple reactors and post-irradiation exams can be performed at multiple universities. In each case, the choice of facilities is based on the user's technical needs. Universities and laboratories included in the ATR NSUF partnership program are as follows: (1) Nuclear Services Laboratories at North Carolina State University; (2) PULSTAR Reactor Facility at North Carolina State University; (3) Michigan Ion Beam Laboratory (1.7 MV Tandetron accelerator) at the University of Michigan; (4) Irradiated Materials at the University of Michigan; (5) Harry Reid Center Radiochemistry Laboratories at University of Nevada, Las Vegas; (6) Characterization Laboratory for Irradiated Materials at the University of Wisconsin-Madison; (7) Tandem Accelerator Ion Beam. (1.7 MV terminal voltage tandem ion accelerator) at the University of Wisconsin

  10. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    Science.gov (United States)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  11. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    International Nuclear Information System (INIS)

    Palmer, Antony L; Bradley, David; Nisbet, Andrew; Lee, Chris; Ratcliffe, Ailsa J

    2013-01-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit. (paper)

  12. Operation of the hot test loop facilities

    International Nuclear Information System (INIS)

    Cheong, Moon Ki; Park, Choon Kyeong; Won, Soon Yeon; Yang, Sun Kyu; Cheong, Jang Whan; Cheon, Se Young; Song, Chul Hwa; Jeon, Hyeong Kil; Chang, Suk Kyu; Jeong, Heung Jun; Cho, Young Ro; Kim, Bok Duk; Min, Kyeong Ho

    1994-12-01

    The objective of this project is to obtain the available experimental data and to develop the measuring techniques through taking full advantage of the facilities. The facilities operated by the thermal hydraulics department have been maintained and repaired in order to carry out the thermal hydraulics tests necessary for providing the available data. The performance tests for double grid type bottom end piece which was improved on the debris filtering effectivity were performed using the PWR-Hot Test Loop. The CANDU-Hot Test Loop was operated to carry out the pressure drop tests and strength tests of fuel. The Cold Test Loop was used to obtain the local velocity data in subchannel within fuel bundle and to understand the characteristic of pressure drop required for improving the nuclear fuel and to develop the advanced measuring techniques. RCS Loop, which is used to measure the CHF, is presently under design and construction. B and C Loop is designed and constructed to assess the automatic depressurization safety system behavior. 4 tabs., 79 figs., 7 refs. (Author) .new

  13. Plan for 3-D full-scale earthquake testing facility

    International Nuclear Information System (INIS)

    Ohtani, K.

    2001-01-01

    Based on the lessons learnt from the Great Hanshin-Awaji Earthquake, National Research Institute for Earth Science and Disaster Prevention plan to construct the 3-D Full-Scale Earthquake Testing Facility. This will be the world's largest and strongest shaking table facility. This paper describes the outline of the project for this facility. This facility will be completed in early 2005. (author)

  14. Testing experience with fast flux test facility

    International Nuclear Information System (INIS)

    Noordhoff, B.H.; McGough, C.B.; Nolan, J.E.

    1975-01-01

    Early FFTF project planning emphasized partial and full-scale testing of major reactor and plant prototype components under expected environmental conditions, excluding radiation fields. Confirmation of component performance during FFTF service was considered essential before actual FFTF startup, to provide increased assurance against FFTF startup delays or operational difficulties and downtime. Several new sodium facilities were constructed, and confirmation tests on the prototype components are now in progress. Test conditions and results to date are reported for the primary pump, intermediate heat exchanger, sodium-to-air dump heat exchanger, large and small sodium valves, purification cold trap, in-vessel handling machine, instrument tree, core restraint, control rod system, low-level flux monitor, closed loop ex-vessel machine, refueling equipment, and selected maintenance equipment. The significance and contribution of these tests to the FFTF and Liquid Metal Fast Breeder Reactor (LMFBR) program are summarized. (U.S.)

  15. SU-E-T-380: Evaluation of BEBIG HDR 60Co System for AccuBoost Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Zehtabian, M; Sina, S [Shiraz University, Shiraz, Fars (Iran, Islamic Republic of); Rivard, M [Tufts University School of Medicine, Boston, MA (United States); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States)

    2015-06-15

    Purpose: In this project, the possibility of utilizing the BEBIG 60Co HDR system for AccuBoostTM treatment has been evaluated. Methods: Dose distributions in various breast sizes have been calculated for both Co-60 and Ir-192 sources using the MCNP5 code. These calculations were performed in breast tissues with thicknesses of 4cm, 6cm, and 8cm. The initial calculations were performed with the same applicator dimensions as the existing applicators used with the HDR Ir-192 system. The activity of the Co-60 source was selected such that the dose at the breast center was the same as the values from 192Ir. Then, the applicator thicknesses were increased to twice of those used with HDR Ir-192 system, for reducing skin and chest doses by Co-60 system. Dose to breast skin and chest wall were compared for both applicators types, with and without inclusion of a focusing cone at the applicator center. Results: The results showed that loading HDR Co-60 source inside the thin applicators impose higher doses to breast skin and chest wall compared to the 192Ir source. The area of the chest wall covered by 10Gy when treated by Co-60 with the thin and thick applicators, or treated by Ir-192 with thin applicator are 79cm2, 39cm2, and 3.8cm2, respectively. These values are reduced to 34cm2, 0cm2, and 0cm2 by using the focusing cone. It is worth noting that the breast skin areas covered by the 60Gy isodose line are 9.9cm2 and 7.8cm2 for Co-60 with the thin and thick applicators, respectively, while it is 20cm2 for Ir-192 when no focusing cone is present. These values are 0cm2, 0cm2, and 11cm2 in the presence of the focusing cone. Conclusion: The results indicate that using Co-60 with the thicker applicators is beneficial because of the higher half-life of Co-60, and the reduced maximum skin dose when compared with Ir-192.

  16. Scaling analysis for the OSU AP600 test facility (APEX)

    International Nuclear Information System (INIS)

    Reyes, J.N.

    1998-01-01

    In this paper, the authors summarize the key aspects of a state-of-the-art scaling analysis (Reyes et al. (1995)) performed to establish the facility design and test conditions for the advanced plant experiment (APEX) at Oregon State University (OSU). This scaling analysis represents the first, and most comprehensive, application of the hierarchical two-tiered scaling (H2TS) methodology (Zuber (1991)) in the design of an integral system test facility. The APEX test facility, designed and constructed on the basis of this scaling analysis, is the most accurate geometric representation of a Westinghouse AP600 nuclear steam supply system. The OSU APEX test facility has served to develop an essential component of the integral system database used to assess the AP600 thermal hydraulic safety analysis computer codes. (orig.)

  17. Comparison of air-kerma strength determinations for HDR {sup 192}Ir sources

    Energy Technology Data Exchange (ETDEWEB)

    Rasmussen, Brian E.; Davis, Stephen D.; Schmidt, Cal R.; Micka, John A.; DeWerd, Larry A. [Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States)

    2011-12-15

    Purpose: To perform a comparison of the interim air-kerma strength standard for high dose rate (HDR) {sup 192}Ir brachytherapy sources maintained by University of Wisconsin Accredited Dosimetry Calibration Laboratory (UWADCL) with measurements of the various source models using modified techniques from the literature. The current interim standard was established by Goetsch et al. in 1991 and has remained unchanged to date. Methods: The improved, laser-aligned seven-distance apparatus of University of Wisconsin Medical Radiation Research Center (UWMRRC) was used to perform air-kerma strength measurements of five different HDR {sup 192}Ir source models. The results of these measurements were compared with those from well chambers traceable to the original standard. Alternative methodologies for interpolating the {sup 192}Ir air-kerma calibration coefficient from the NIST air-kerma standards at {sup 137}Cs and 250 kVp x rays (M250) were investigated and intercompared. As part of the interpolation method comparison, the Monte Carlo code EGSnrc was used to calculate updated values of A{sub wall} for the Exradin A3 chamber used for air-kerma strength measurements. The effects of air attenuation and scatter, room scatter, as well as the solution method were investigated in detail. Results: The average measurements when using the inverse N{sub K} interpolation method for the Classic Nucletron, Nucletron microSelectron, VariSource VS2000, GammaMed Plus, and Flexisource were found to be 0.47%, -0.10%, -1.13%, -0.20%, and 0.89% different than the existing standard, respectively. A further investigation of the differences observed between the sources was performed using MCNP5 Monte Carlo simulations of each source model inside a full model of an HDR 1000 Plus well chamber. Conclusions: Although the differences between the source models were found to be statistically significant, the equally weighted average difference between the seven-distance measurements and the well

  18. Facility-level association of preoperative stress testing and postoperative adverse cardiac events.

    Science.gov (United States)

    Valle, Javier A; Graham, Laura; Thiruvoipati, Thejasvi; Grunwald, Gary; Armstrong, Ehrin J; Maddox, Thomas M; Hawn, Mary T; Bradley, Steven M

    2018-06-22

    Despite limited indications, preoperative stress testing is often used prior to non-cardiac surgery. Patient-level analyses of stress testing and outcomes are limited by case mix and selection bias. Therefore, we sought to describe facility-level rates of preoperative stress testing for non-cardiac surgery, and to determine the association between facility-level preoperative stress testing and postoperative major adverse cardiac events (MACE). We identified patients undergoing non-cardiac surgery within 2 years of percutaneous coronary intervention in the Veterans Affairs (VA) Health Care System, from 2004 to 2011, facility-level rates of preoperative stress testing and postoperative MACE (death, myocardial infarction (MI) or revascularisation within 30 days). We determined risk-standardised facility-level rates of stress testing and postoperative MACE, and the relationship between facility-level preoperative stress testing and postoperative MACE. Among 29 937 patients undergoing non-cardiac surgery at 131 VA facilities, the median facility rate of preoperative stress testing was 13.2% (IQR 9.7%-15.9%; range 6.0%-21.5%), and 30-day postoperative MACE was 4.0% (IQR 2.4%-5.4%). After risk standardisation, the median facility-level rate of stress testing was 12.7% (IQR 8.4%-17.4%) and postoperative MACE was 3.8% (IQR 2.3%-5.6%). There was no correlation between risk-standardised stress testing and composite MACE at the facility level (r=0.022, p=0.81), or with individual outcomes of death, MI or revascularisation. In a national cohort of veterans undergoing non-cardiac surgery, we observed substantial variation in facility-level rates of preoperative stress testing. Facilities with higher rates of preoperative stress testing were not associated with better postoperative outcomes. These findings suggest an opportunity to reduce variation in preoperative stress testing without sacrificing patient outcomes. © Article author(s) (or their employer(s) unless otherwise

  19. European accelerator facilities for single event effects testing

    Energy Technology Data Exchange (ETDEWEB)

    Adams, L; Nickson, R; Harboe-Sorensen, R [ESA-ESTEC, Noordwijk (Netherlands); Hajdas, W; Berger, G

    1997-03-01

    Single event effects are an important hazard to spacecraft and payloads. The advances in component technology, with shrinking dimensions and increasing complexity will give even more importance to single event effects in the future. The ground test facilities are complex and expensive and the complexities of installing a facility are compounded by the requirement that maximum control is to be exercised by users largely unfamiliar with accelerator technology. The PIF and the HIF are the result of experience gained in the field of single event effects testing and represent a unique collaboration between space technology and accelerator experts. Both facilities form an essential part of the European infrastructure supporting space projects. (J.P.N.)

  20. Validity and Utilization of the Out-Pile Testing Facilities at HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Choo, Kee-Nam; Cho, Man-Soon; Yang, Sung-Woo; Shin, Yoon-Taek; Park, Seng-Jae; Jun, Byung-Hyuk; Kim, Myong-Seop [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Various neutron irradiation facilities such as rabbit irradiation facilities, loop facilities and the capsule irradiation facilities for irradiation tests of nuclear materials, fuels and radioisotope products have been developed at HANARO. Among these irradiation facilities, the capsule is the most useful device for coping with the various test requirements at HANARO. To support the national research and development programs on nuclear reactors and the nuclear fuel cycle technology in Korea, new irradiation capsules have been developed and actively utilized for the irradiation tests requested by numerous users. The environmental conditions for these reactors are generally beyond present day reactor technology, especially regarding the higher neutron fluence and higher operating temperature. To effectively support the national R and Ds relevant to the future nuclear systems, the development of advanced irradiation technologies concerning higher neutron fluence and irradiation temperature are being preferentially developed at HANARO. The utilization of the out-pile testing facilities to satisfy the criteria of safety evaluation for a new device installed in the core of HANARO was summarized. In addition, the validity of the out-pile testing facilities was evaluated and proved to be effective for verifying the integrity of irradiation capsule.

  1. Validity and Utilization of the Out-Pile Testing Facilities at HANARO

    International Nuclear Information System (INIS)

    Choo, Kee-Nam; Cho, Man-Soon; Yang, Sung-Woo; Shin, Yoon-Taek; Park, Seng-Jae; Jun, Byung-Hyuk; Kim, Myong-Seop

    2016-01-01

    Various neutron irradiation facilities such as rabbit irradiation facilities, loop facilities and the capsule irradiation facilities for irradiation tests of nuclear materials, fuels and radioisotope products have been developed at HANARO. Among these irradiation facilities, the capsule is the most useful device for coping with the various test requirements at HANARO. To support the national research and development programs on nuclear reactors and the nuclear fuel cycle technology in Korea, new irradiation capsules have been developed and actively utilized for the irradiation tests requested by numerous users. The environmental conditions for these reactors are generally beyond present day reactor technology, especially regarding the higher neutron fluence and higher operating temperature. To effectively support the national R and Ds relevant to the future nuclear systems, the development of advanced irradiation technologies concerning higher neutron fluence and irradiation temperature are being preferentially developed at HANARO. The utilization of the out-pile testing facilities to satisfy the criteria of safety evaluation for a new device installed in the core of HANARO was summarized. In addition, the validity of the out-pile testing facilities was evaluated and proved to be effective for verifying the integrity of irradiation capsule

  2. Source position verification and dosimetry in HDR brachytherapy using an EPID

    International Nuclear Information System (INIS)

    Smith, R. L.; Taylor, M. L.; McDermott, L. N.; Franich, R. D.; Haworth, A.; Millar, J. L.

    2013-01-01

    Purpose: Accurate treatment delivery in high dose rate (HDR) brachytherapy requires correct source dwell positions and dwell times to be administered relative to each other and to the surrounding anatomy. Treatment delivery inaccuracies predominantly occur for two reasons: (i) anatomical movement or (ii) as a result of human errors that are usually related to incorrect implementation of the planned treatment. Electronic portal imaging devices (EPIDs) were originally developed for patient position verification in external beam radiotherapy and their application has been extended to provide dosimetric information. The authors have characterized the response of an EPID for use with an 192 Ir brachytherapy source to demonstrate its use as a verification device, providing both source position and dosimetric information.Methods: Characterization of the EPID response using an 192 Ir brachytherapy source included investigations of reproducibility, linearity with dose rate, photon energy dependence, and charge build-up effects associated with exposure time and image acquisition time. Source position resolution in three dimensions was determined. To illustrate treatment verification, a simple treatment plan was delivered to a phantom and the measured EPID dose distribution compared with the planned dose.Results: The mean absolute source position error in the plane parallel to the EPID, for dwells measured at 50, 100, and 150 mm source to detector distances (SDD), was determined to be 0.26 mm. The resolution of the z coordinate (perpendicular distance from detector plane) is SDD dependent with 95% confidence intervals of ±0.1, ±0.5, and ±2.0 mm at SDDs of 50, 100, and 150 mm, respectively. The response of the EPID is highly linear to dose rate. The EPID exhibits an over-response to low energy incident photons and this nonlinearity is incorporated into the dose calibration procedure. A distance (spectral) dependent dose rate calibration procedure has been developed. The

  3. PLC based control system for RAM assembly test facility

    International Nuclear Information System (INIS)

    Kulkarni, S.S.; Kumar, Vinaya; Chandra, Umesh

    1994-01-01

    The flexibility, expandability, ease of programming and diagnostic features makes the programmable logic controller (PLC) suitable for a variety of control applications in engineering system test facilities. A PLC based control system for RAM assembly test facility (RATF) and for testing the related hydraulic components is being developed and installed at BARC. This paper describes the approach taken for meeting the control requirements and illustrates the PLC software that has been developed. (author). 1 fig

  4. Team Update on North American Proton Facilities for Radiation Testing

    Science.gov (United States)

    Label, Kenneth A.; Turflinger, Thomas; Haas, Thurman; George, Jeffrey; Moss, Steven; Davis, Scott; Kostic, Andrew; Wie, Brian; Reed, Robert; Guertin, Steven; hide

    2016-01-01

    In the wake of the closure of the Indiana University Cyclotron Facility (IUCF), this presentation provides an overview of the options for North American proton facilities. This includes those in use by the aerospace community as well as new additions from the cancer therapy regime. In addition, proton single event testing background is provided for understanding the criteria needed for these facilities for electronics testing.

  5. Cryogenic systems for the Mirror Fusion Test Facility

    International Nuclear Information System (INIS)

    Slack, D.S.; Chronis, W.C.; Nelson, R.L.

    1986-01-01

    This paper will include an in-depth discussion of the design, fabrication, and operation of the Mirror Fusion Test Facility (MFTF) cryogenic system located at Lawrence Livermore National Laboratory (LLNL). Each subsystem will be discussed to present a basic composite of the entire facility

  6. Conceptual design study advanced concepts test (ACT) facility

    Energy Technology Data Exchange (ETDEWEB)

    Zaloudek, F.R.

    1978-09-01

    The Advanced Concepts Test (ACT) Project is part of program for developing improved power plant dry cooling systems in which ammonia is used as a heat transfer fluid between the power plant and the heat rejection tower. The test facility will be designed to condense 60,000 lb/hr of exhaust steam from the No. 1 turbine in the Kern Power Plant at Bakersfield, CA, transport the heat of condensation from the condenser to the cooling tower by an ammonia phase-change heat transport system, and dissipate this heat to the environs by a dry/wet deluge tower. The design and construction of the test facility will be the responsibility of the Electric Power Research Institute. The DOE, UCC/Linde, and the Pacific Northwest Laboratories will be involved in other phases of the project. The planned test facilities, its structures, mechanical and electrical equipment, control systems, codes and standards, decommissioning requirements, safety and environmental aspects, and energy impact are described. Six appendices of related information are included. (LCL)

  7. The WR-1 corrosion test facility

    International Nuclear Information System (INIS)

    Murphy, E.V.; Simmons, G.R.

    1978-07-01

    This report describes a new Corrosion Test Facility which has recently been installed in the WR-1 organic-cooled research reactor. The irradiation facility is a single insert, installed in a reactor site, which can deliver a fast neutron flux density of 2.65 x 10 17 neutrons/(m 2 .s) to specimens under irradiation. A self-contained controlled-chemistry cooling water circuit removes the gamma- and neutron-heat generated in the insert and specimens. Specimen temperatures typically vary from 245 deg C to 280 deg C across the insert core region. (author)

  8. Upgraded Features of Newly Constructed Fuel Assembly Mechanical Characterization Test Facility in KAERI

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Kim, Hyung Kyu; Lee, Young Ho; Kim, Soo Ho; Yang, Jae Ho [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Fuel assembly mechanical characterization test facility (FAMeCT) in KAERI is newly constructed with upgraded functional features such as increased loading capacity, under-water vibration testing and severe earthquake simulation for extended fuel design guideline. The facility building is compactly designed in the scale of 3rd floor building and has regions for assembly-wise mechanical test equipment, dynamic load (seismic) simulating test system, small scale hydraulic loop and component wise test equipment. Figure 1 shows schematic regional layout of the facility building. Mechanical test platform and system is designed to increase loading capacity for axial compression test. Structural stability of the support system of new upper core plate simulator is validated through a limit case functional test. Fuel assembly mechanical characterization test facility in KAERI is newly constructed and upgraded with advanced functional features such as uprated loading capacity, under-water vibration testing and severe earthquake simulation for extended fuel design guideline. This paper briefly introduce the test facility construction and scope of the facility and is focused on the upgraded design features of the facility. Authors hope to facilitate the facility more in the future and collaborate with the industry.

  9. Mixed integer programming improves comprehensibility and plan quality in inverse optimization of prostate HDR Brachytherapy

    NARCIS (Netherlands)

    Gorissen, B.L.; den Hertog, D.; Hoffmann, A.L.

    2013-01-01

    Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or

  10. Project W-049H disposal facility test report

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    The purpose of this Acceptance Test Report (ATR) for the Project W-049H, Treated Effluent Disposal Facility, is to verify that the equipment installed in the Disposal Facility has been installed in accordance with the design documents and function as required by the project criteria

  11. The Brookhaven Accelerator Test Facility

    International Nuclear Information System (INIS)

    Batchelor, K.; Ben-Zvi, I.; Fernow, R.C.; Fischer, J.; Fisher, A.S.; Gallardo, J.; Jialin, Xie; Kirk, H.G.; Parsa, Z.; Palmer, R.B.; Rao, T.; Rogers, J.; Sheehan, J.; Tsang, T.Y.F.; Ulc, S.; Van Steenbergen, A.; Woodle, M.; Zhang, R.S.; McDonald, K.T.; Russell, D.P.; Jiang, Z.Y.; Pellegrini, C.; Wang, X.J.

    1990-01-01

    The Accelerator Test Facility (ATF), presently under construction at Brookhaven National laboratory, is described. It consists of a 50-MeV electron beam synchronizable to a high-peak power CO 2 laser. The interaction of electrons with the laser field will be probed, with some emphasis on exploring laser-based acceleration techniques. 5 refs., 2 figs

  12. Tritium Systems Test Facility

    International Nuclear Information System (INIS)

    Cafasso, F.A.; Maroni, V.A.; Smith, W.H.; Wilkes, W.R.; Wittenberg, L.J.

    1978-01-01

    This TSTF proposal has two principal objectives. The first objective is to provide by mid-FY 1981 a demonstration of the fuel cycle and tritium containment systems which could be used in a Tokamak Experimental Power Reactor for operation in the mid-1980's. The second objective is to provide a capability for further optimization of tritium fuel cycle and environmental control systems beyond that which is required for the EPR. The scale and flow rates in TSTF are close to those which have been projected for a prototype experimental power reactor (PEPR/ITR) and will permit reliable extrapolation to the conditions found in an EPR. The fuel concentrations will be the same as in an EPR. Demonstrations of individual components of the deuterium-tritium fuel cycle and of monitoring, accountability and containment systems and of a maintenance methodology will be achieved at various times in the FY 1979-80 time span. Subsequent to the individual component demonstrations--which will proceed from tests with hydrogen (and/or deuterium) through tracer levels of tritium to full operational concentrations--a complete test and demonstration of the integrated fuel processing and tritium containment facility will be performed. This will occur near the middle of FY 1981. Two options were considered for the TSTF: (1) The modification of an existing building and (2) the construction of a new facility

  13. National RF Test Facility as a multipurpose development tool

    International Nuclear Information System (INIS)

    McManamy, T.J.; Becraft, W.R.; Berry, L.A.

    1983-01-01

    Additions and modifications to the National RF Test Facility design have been made that (1) focus its use for technology development for future large systems in the ion cyclotron range of frequencies (ICRF), (2) expand its applicability to technology development in the electron cyclotron range of frequencies (ECRF) at 60 GHz, (3) provide a facility for ELMO Bumpy Torus (EBT) 60-GHz ring physics studies, and (4) permit engineering studies of steady-state plasma systems, including superconducting magnet performance, vacuum vessel heat flux removal, and microwave protection. The facility will continue to function as a test bed for generic technology developments for ICRF and the lower hybrid range of frequencies (LHRF). The upgraded facility is also suitable for mirror halo physics experiments

  14. Argonne to open new facility for advanced vehicle testing

    CERN Multimedia

    2002-01-01

    Argonne National Laboratory will open it's Advanced Powertrain Research Facility on Friday, Nov. 15. The facility is North America's only public testing facility for engines, fuel cells, electric drives and energy storage. State-of-the-art performance and emissions measurement equipment is available to support model development and technology validation (1 page).

  15. A new cryogenic test facility for large superconducting devices at CERN

    CERN Document Server

    Perin, A; Serio, L; Stewart, L; Benda, V; Bremer, J; Pirotte, O

    2015-01-01

    To expand CERN testing capability to superconducting devices that cannot be installed in existing test facilities because of their size and/or mass, CERN is building a new cryogenic test facility for large and heavy devices. The first devices to be tested in the facility will be the S-FRS superconducting magnets for the FAIR project that is currently under construction at the GSI Research Center in Darmstadt, Germany. The facility will include a renovated cold box with 1.2 kW at 4.5 K equivalent power with its compression system, two independent 15 kW liquid nitrogen precooling and warm-up units, as well as a dedicated cryogenic distribution system providing cooling power to three independent test benches. The article presents the main input parameters and constraints used to define the cryogenic system and its infrastructure. The chosen layout and configuration of the facility is presented and the characteristics of the main components are described.

  16. Development of a EUV Test Facility at the Marshall Space Flight Center

    Science.gov (United States)

    West, Edward; Pavelitz, Steve; Kobayashi, Ken; Robinson, Brian; Cirtain, Johnathan; Gaskin, Jessica; Winebarger, Amy

    2011-01-01

    This paper will describe a new EUV test facility that is being developed at the Marshall Space Flight Center (MSFC) to test EUV telescopes. Two flight programs, HiC - high resolution coronal imager (sounding rocket) and SUVI - Solar Ultraviolet Imager (GOES-R), set the requirements for this new facility. This paper will discuss those requirements, the EUV source characteristics, the wavelength resolution that is expected and the vacuum chambers (Stray Light Facility, Xray Calibration Facility and the EUV test chamber) where this facility will be used.

  17. WE-DE-201-11: Sensitivity and Specificity of Verification Methods Based On Total Reference Air Kerma (TRAK) Or On User Provided Dose Points for Graphically Planned Skin HDR Brachytherapy

    International Nuclear Information System (INIS)

    Damato, A; Devlin, P; Bhagwat, M; Buzurovic, I; Hansen, J; O’Farrell, D; Cormack, R

    2016-01-01

    Purpose: To investigate the sensitivity and specificity of a novel verification methodology for image-guided skin HDR brachytherapy plans using a TRAK-based reasonableness test, compared to a typical manual verification methodology. Methods: Two methodologies were used to flag treatment plans necessitating additional review due to a potential discrepancy of 3 mm between planned dose and clinical target in the skin. Manual verification was used to calculate the discrepancy between the average dose to points positioned at time of planning representative of the prescribed depth and the expected prescription dose. Automatic verification was used to calculate the discrepancy between TRAK of the clinical plan and its expected value, which was calculated using standard plans with varying curvatures, ranging from flat to cylindrically circumferential. A plan was flagged if a discrepancy >10% was observed. Sensitivity and specificity were calculated using as a criteria for true positive that >10% of plan dwells had a distance to prescription dose >1 mm different than prescription depth (3 mm + size of applicator). All HDR image-based skin brachytherapy plans treated at our institution in 2013 were analyzed. Results: 108 surface applicator plans to treat skin of the face, scalp, limbs, feet, hands or abdomen were analyzed. Median number of catheters was 19 (range, 4 to 71) and median number of dwells was 257 (range, 20 to 1100). Sensitivity/specificity were 57%/78% for manual and 70%/89% for automatic verification. Conclusion: A check based on expected TRAK value is feasible for irregularly shaped, image-guided skin HDR brachytherapy. This test yielded higher sensitivity and specificity than a test based on the identification of representative points, and can be implemented with a dedicated calculation code or with pre-calculated lookup tables of ideally shaped, uniform surface applicators.

  18. WE-DE-201-11: Sensitivity and Specificity of Verification Methods Based On Total Reference Air Kerma (TRAK) Or On User Provided Dose Points for Graphically Planned Skin HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Damato, A; Devlin, P; Bhagwat, M; Buzurovic, I; Hansen, J; O’Farrell, D; Cormack, R [Harvard Medical School, Boston, MA (United States)

    2016-06-15

    Purpose: To investigate the sensitivity and specificity of a novel verification methodology for image-guided skin HDR brachytherapy plans using a TRAK-based reasonableness test, compared to a typical manual verification methodology. Methods: Two methodologies were used to flag treatment plans necessitating additional review due to a potential discrepancy of 3 mm between planned dose and clinical target in the skin. Manual verification was used to calculate the discrepancy between the average dose to points positioned at time of planning representative of the prescribed depth and the expected prescription dose. Automatic verification was used to calculate the discrepancy between TRAK of the clinical plan and its expected value, which was calculated using standard plans with varying curvatures, ranging from flat to cylindrically circumferential. A plan was flagged if a discrepancy >10% was observed. Sensitivity and specificity were calculated using as a criteria for true positive that >10% of plan dwells had a distance to prescription dose >1 mm different than prescription depth (3 mm + size of applicator). All HDR image-based skin brachytherapy plans treated at our institution in 2013 were analyzed. Results: 108 surface applicator plans to treat skin of the face, scalp, limbs, feet, hands or abdomen were analyzed. Median number of catheters was 19 (range, 4 to 71) and median number of dwells was 257 (range, 20 to 1100). Sensitivity/specificity were 57%/78% for manual and 70%/89% for automatic verification. Conclusion: A check based on expected TRAK value is feasible for irregularly shaped, image-guided skin HDR brachytherapy. This test yielded higher sensitivity and specificity than a test based on the identification of representative points, and can be implemented with a dedicated calculation code or with pre-calculated lookup tables of ideally shaped, uniform surface applicators.

  19. The NRU blowdown test facility commissioning program

    Energy Technology Data Exchange (ETDEWEB)

    Walsworth, J A; Zanatta, R J; Yamazaki, A R; Semeniuk, D D; Wong, W; Dickson, L W; Ferris, C E; Burton, D H [Atomic Energy of Canada Ltd., Chalk River, ON (Canada). Chalk River Nuclear Labs.

    1990-12-31

    A major experimental program has been established at the Chalk River Nuclear Laboratories (CRL) that will provide essential data on the thermal and mechanical behaviour of nuclear fuel under abnormal reactor operating conditions and on the transient release, transport and deposition of fission product activity from severely degraded fuel. A number of severe fuel damage (SFD) experiments will be conducted within the Blowdown Test Facility (BTF) at CRL. A series of experiments are being conducted to commission this new facility prior to the SFD program. This paper describes the features and the commissioning program for the BTF. A development and testing program is described for critical components used on the reactor test section. In-reactor commissioning with a fuel assembly simulator commenced in 1989 June and preliminary results are given. The paper also outlines plans for future all-effects, in-reactor tests of CANDU-designed fuel. (author). 11 refs., 3 tabs., 7 figs.

  20. Switch evaluation test system for the National Ignition Facility

    International Nuclear Information System (INIS)

    Savage, M.E.; Simpson, W.W.; Reynolds, F.D.

    1997-01-01

    Flashlamp pumped lasers use pulsed power switches to commute energy stored in capacitor banks to the flashlamps. The particular application in which the authors are interested is the National Ignition Facility (NIF), being designed by Lawrence Livermore National Laboratory, Los Alamos National Laboratory, and Sandia National Laboratories (SNL). To lower the total cost of these switches, SNL has a research program to evaluate large closing switches. The target value of the energy switched by a single device is 1.6 MJ, from a 6 mF, 24kV capacitor bank. The peak current is 500 kA. The lifetime of the NIF facility is 24,000 shots. There is no switch today proven at these parameters. Several short-lived switches (100's of shots) exist that can handle the voltage and current, but would require maintenance during the facility life. Other type devices, notably ignitrons, have published lifetimes in excess of 20,000 shots, but at lower currents and shorter pulse widths. The goal of the experiments at SNL is to test switches with the full NIF wave shape, and at the correct voltage. The SNL facility can provide over 500 kA at 24 kV charge voltage. the facility has 6.4 mF total capacitance, arranged in 25 sub-modules. the modular design makes the facility more flexible (for possible testing at lower current) and safer. For pulse shaping (the NIF wave shape is critically damped) there is an inductor and resistor for each of the 25 modules. Rather than one large inductor and resistor, this lowers the current in the pulse shaping components, and raises their value to those more easily attained with lumped inductors and resistors. The authors show the design of the facility, and show results from testing conducted thus far. They also show details of the testing plan for high current switches

  1. Design of a high-flux test assembly for the Fusion Materials Irradiation Test Facility

    International Nuclear Information System (INIS)

    Opperman, E.K.; Vogel, M.A.

    1982-01-01

    The Fusion Material Test Facility (FMIT) will provide a high flux fusion-like neutron environment in which a variety of structural and non-structural materials irradiations can be conducted. The FMIT experiments, called test assemblies, that are subjected to the highest neutron flux magnitudes and associated heating rates will require forced convection liquid metal cooling systems to remove the neutron deposited power and maintain test specimens at uniform temperatures. A brief description of the FMIT facility and experimental areas is given with emphasis on the design, capabilities and handling of the high flux test assembly

  2. Cryogenics for a vertical test stand facility for testing superconducting radio frequency cavities at RRCAT

    International Nuclear Information System (INIS)

    Gupta, Prabhat Kumar; Kumar, Manoj; Kush, P.K.

    2015-01-01

    Vertical Test Stand (VTS) Facility is located in a newly constructed building of Cryo-Engineering and Cryo-Module Development Division (CCDD). This test facility is one of the important facilities to develop SCRF technologies for superconducting accelerators like Indian Spallation Neutron Source. VTS has to be used for regular testing of the Superconducting Radio Frequency (SRF) Niobium cavities at nominal frequency of 1.3 GHz/ 650 MHz at 4 K / 2 K liquid helium (LHe) bath temperatures. Testing of these cavities at 2 K evaluates cavity processing methods, procedures and would also serve as a pre-qualification test for cavity to test it in horizontal cryostat, called horizontal test stand, with other cavity components such as tuner and helium vessel. Cryogenic technologies play a major role in these cavity testing facilities. Achieving and maintaining a stable temperature of 2 K in these test stands on regular and reliable basis is a challenging task and require broad range of cryogenic expertise, large scale system level understanding and many in-house technological and process developments. Furthermore this test stand will handle large amount of liquid helium. Therefore, an appropriately designed infrastructure is required to handle such large amount of helium gas generated during the operation of VTS .This paper describes the different cryogenic design aspects, initial cryogenic operation results and different cryogenic safety aspects. (author)

  3. The DFVLR wind-energy test facility 'Ulrich Huetter' on Schnittlinger Berg

    Science.gov (United States)

    Kussmann, Alfred

    1986-11-01

    The DFVLR test facility for wind-energy systems (named after Ulrich Huetter, the designer of the 100-kW GFRP-rotor W 34 wind turbine first manufactured and tested in the 1950s) is described and illustrated with photographs. The history of the facility is traced, and current operations in gathering, archiving, processing, interpreting, and documenting performance-test data are outlined. The facility includes instrumentation for rotor telemetry, gondola motion measurements, and ground measurements and provides testing services to private users on both contract and leasing bases.

  4. Mirror Fusion Test Facility magnet system

    International Nuclear Information System (INIS)

    VanSant, J.H.; Kozman, T.A.; Bulmer, R.H.; Ng, D.S.

    1981-01-01

    In 1979, R.H. Bulmer of Lawrence Livermore National Laboratory (LLNL) discussed a proposed tandem-mirror magnet system for the Mirror Fusion Test Facility (MFTF) at the 8th symposium on Engineering Problems in Fusion Research. Since then, Congress has voted funds for expanding LLNL's MFTF to a tandem-mirror facility (designated MFTF-B). The new facility, scheduled for completion by 1985, will seek to achieve two goals: (1) Energy break-even capability (Q or the ratio of fusion energy to plasma heating energy = 1) of mirror fusion, (2) Engineering feasibility of reactor-scale machines. Briefly stated, 22 superconducting magnets contained in a 11-m-diam by 65-m-long vacuum vessel will confine a fusion plasma fueled by 80 axial streaming-plasma guns and over 40 radial neutral beams. We have already completed a preliminary design of this magnet system

  5. Remote Afterloading High Dose Rate (HDR) Endobronchial Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hyesook; Choi, Eun Kyung; Yi, Byong Yong; Kim, Won Dong; Kim, Woo Sung; Koh, Youn Suck [Ulsan University College of Medicine, Seoul (Korea, Republic of)

    1991-12-15

    Authors described the remote afterloading endobronchial brachytherapy (EBBT) technique using the microSelectron HDR Ir-192 and the Asan Medical Center experience. Total 28 EBBT in 9 patients were performed since November 1989 and 24 EBBT in 8 patients were employed for palliation and 3 EBBT in 1 patient was treated curatively. Authors observed a significant relief of obstructive symptom with tumor regression in 7 patients out of 8 who were treated palliatively but one of them died of pulmonary congestion in 3 weeks after EBBT. One patient with prior therapy of extensive electrocautery expired within 1 day after 2nd EBBT procedure with massive hemorrhage from the lesion. EBBT procedure has been tolerable and can be performed as an outpatient.

  6. Remote Afterloading High Dose Rate (HDR) Endobronchial Brachytherapy

    International Nuclear Information System (INIS)

    Chang, Hyesook; Choi, Eun Kyung; Yi, Byong Yong; Kim, Won Dong; Kim, Woo Sung; Koh, Youn Suck

    1991-01-01

    Authors described the remote afterloading endobronchial brachytherapy (EBBT) technique using the microSelectron HDR Ir-192 and the Asan Medical Center experience. Total 28 EBBT in 9 patients were performed since November 1989 and 24 EBBT in 8 patients were employed for palliation and 3 EBBT in 1 patient was treated curatively. Authors observed a significant relief of obstructive symptom with tumor regression in 7 patients out of 8 who were treated palliatively but one of them died of pulmonary congestion in 3 weeks after EBBT. One patient with prior therapy of extensive electrocautery expired within 1 day after 2nd EBBT procedure with massive hemorrhage from the lesion. EBBT procedure has been tolerable and can be performed as an outpatient

  7. Quality control of the breast cancer treatments on Hdr brachytherapy with TLD-100

    Energy Technology Data Exchange (ETDEWEB)

    Torres H, F. [Universidad de Cordoba, Materials and Applied Physics Group, 230002 Monteria, Cordoba (Colombia); De la Espriella V, N. [Universidad de Cordoba, Grupo Avanzado de Materiales y Sistemas Complejos, 230002 Monteria, Cordoba (Colombia); Sanchez C, A., E-mail: franciscotorreshoyos@yahoo.com [Universidad de Cordoba, Departamento de Enfermeria, 230002 Monteria, Cordoba (Colombia)

    2014-07-01

    An anthropomorphic Phantom, a female trunk, was built with a natural bone structure and experimental material coated, glycerin and water-based material called JJT to build soft tissue equivalent to the muscle of human tissue, and a polymer (styrofoam) to build the lung as critical organ to simulate the treatment of breast cancer, with high dose rate brachytherapy (Hdr) and sources of Ir-192. The treatments were planned and calculated for the critical organ: Lung, and injury of 2 cm in diameter in breast with Micro Selectron Hdr system and the software Plato Brachytherapy V 14.1 of the Nucletron (Netherlands) which uses the standard protocol of radiotherapy for brachytherapy treatments. The dose experimentally measured with dosimeters TLD-100 LiF: Mg; Ti, which were previously calibrated, were placed in the same positions and bodies mentioned above, with less than 5% uncertainty. The reading dosimeters was carried out in a Harshaw TLD 4500. The results obtained for calculated treatments, using the standard simulator, and the experimental with TLD-100, show a high concordance, as they are on average a ± 1.1% making process becomes in a quality control of this type of treatments. (Author)

  8. Marshall Space Flight Center's Impact Testing Facility Capabilities

    Science.gov (United States)

    Finchum, Andy; Hubbs, Whitney; Evans, Steve

    2008-01-01

    Marshall Space Flight Center s (MSFC) Impact Testing Facility (ITF) serves as an important installation for space and missile related materials science research. The ITF was established and began its research in spacecraft debris shielding in the early 1960s, then played a major role in the International Space Station debris shield development. As NASA became more interested in launch debris and in-flight impact concerns, the ITF grew to include research in a variety of impact genres. Collaborative partnerships with the DoD led to a wider range of impact capabilities being relocated to MSFC as a result of the closure of Particle Impact Facilities in Santa Barbara, California. The Particle Impact Facility had a 30 year history in providing evaluations of aerospace materials and components during flights through rain, ice, and solid particle environments at subsonic through hypersonic velocities. The facility s unique capabilities were deemed a "National Asset" by the DoD. The ITF now has capabilities including environmental, ballistic, and hypervelocity impact testing utilizing an array of air, powder, and two-stage light gas guns to accommodate a variety of projectile and target types and sizes. Numerous upgrades including new instrumentation, triggering circuitry, high speed photography, and optimized sabot designs have been implemented. Other recent research has included rain drop demise characterization tests to obtain data for inclusion in on-going model development. The current and proposed ITF capabilities range from rain to micrometeoroids allowing the widest test parameter range possible for materials investigations in support of space, atmospheric, and ground environments. These test capabilities including hydrometeor, single/multi-particle, ballistic gas guns, exploding wire gun, and light gas guns combined with Smooth Particle Hydrodynamics Code (SPHC) simulations represent the widest range of impact test capabilities in the country.

  9. SU-F-T-63: Dosimetric Relevance of the Valencia and Leipzig HDR Applicators Plastic Cap

    Energy Technology Data Exchange (ETDEWEB)

    Granero, D [ERESA-Hospital General Universitario, Valencia (Spain); Candela-Juan, C [National Dosimetry Centre (CND), Valencia (Spain); Vijande, J; Ballester, F [University of Valencia, Burjassot (Spain); Perez-Calatayud, J [Hospital La Fe, Valencia (Spain); Jacob, D; Mourtada, F [Helen F. Graham Cancer Center, Christiana Care Health System, Newark, DE (United States)

    2016-06-15

    Purpose: Utilization of HDR brachytherapy treatment of skin lesions using collimated applicators, such as the Valencia or Leipzig is increasing. These applicators are made of cup-shaped tungsten material in order to focalize the radiation into the lesion and to protect nearby tissues. These applicators have an attachable plastic cap that removes secondary electrons generated in the applicator and flattens the treatment surface. The purpose of this study is to examine the dosimetric impact of this cap, and the effect if the cap is not placed during the HDR fraction delivery. Methods: Monte Carlo simulations have been done using the code Geant4 for the Valencia and Leipzig applicators. Dose rate distributions have been obtained for the applicators with and without the plastic cap. An experimental study using EBT3 radiochromic film has been realized in order to verify the Monte Carlo results. Results: The Monte Carlo simulations show that absorbed dose in the first millimeter of skin can increase up to 180% for the Valencia applicator if the plastic cap is absent and up to 1500% for the Leipzig applicators. At deeper distances the increase of dose is smaller being about 10–15%. Conclusion: Important differences have been found if the plastic cap of the applicators is absent in the treatment producing an overdosage in the skin. The user should have a checklist to remind him check always before HDR fraction delivery to insure the plastic cap is placed on the applicator. This work was supported in part by Generalitat Valenciana under Project PROMETEOII/2013/010, by the Spanish Government under Project No. FIS2013-42156, and by a research agreement with Elekta Brachytherapy, Veenendaal, The Netherlands.

  10. WE-DE-201-02: A Statistical Analysis Tool for Plan Quality Verification in HDR Brachytherapy Forward Planning for Cervix Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Ma, R; Zhu, X; Li, S; Zheng, D; Lei, Y; Wang, S; Verma, V; Bennion, N; Wahl, A; Zhou, S [University of Nebraska Medical Center, Omaha, NE (United States)

    2016-06-15

    Purpose: High Dose Rate (HDR) brachytherapy forward planning is principally an iterative process; hence, plan quality is affected by planners’ experiences and limited planning time. Thus, this may lead to sporadic errors and inconsistencies in planning. A statistical tool based on previous approved clinical treatment plans would help to maintain the consistency of planning quality and improve the efficiency of second checking. Methods: An independent dose calculation tool was developed from commercial software. Thirty-three previously approved cervical HDR plans with the same prescription dose (550cGy), applicator type, and treatment protocol were examined, and ICRU defined reference point doses (bladder, vaginal mucosa, rectum, and points A/B) along with dwell times were collected. Dose calculation tool then calculated appropriate range with a 95% confidence interval for each parameter obtained, which would be used as the benchmark for evaluation of those parameters in future HDR treatment plans. Model quality was verified using five randomly selected approved plans from the same dataset. Results: Dose variations appears to be larger at the reference point of bladder and mucosa as compared with rectum. Most reference point doses from verification plans fell between the predicted range, except the doses of two points of rectum and two points of reference position A (owing to rectal anatomical variations & clinical adjustment in prescription points, respectively). Similar results were obtained for tandem and ring dwell times despite relatively larger uncertainties. Conclusion: This statistical tool provides an insight into clinically acceptable range of cervical HDR plans, which could be useful in plan checking and identifying potential planning errors, thus improving the consistency of plan quality.

  11. Status and Plans for a Superconducting RF Accelerator Test Facility at Fermilab

    International Nuclear Information System (INIS)

    Andrews, R.; Baffes, C.M.; Carlson, K.; Chase, B.; Church, M.D.; Harms, E.R.; Klebaner, A.L.; Leibfritz, J.R.; Martinez, A.; Nagaitsev, S.; Nobrega, L.E.

    2012-01-01

    The Advanced Superconducting Test Accelerator (ASTA) is being constructed at Fermilab. The existing New Muon Lab (NML) building is being converted for this facility. The accelerator will consist of an electron gun, injector, beam acceleration section consisting of 3 TTF-type or ILC-type cryomodules, multiple downstream beam lines for testing diagnostics and conducting various beam tests, and a high power beam dump. When completed, it is envisioned that this facility will initially be capable of generating a 750 MeV electron beam with ILC beam intensity. An expansion of this facility was recently completed that will provide the capability to upgrade the accelerator to a total beam energy of 1.5 GeV. Two new buildings were also constructed adjacent to the ASTA facility to house a new cryogenic plant and multiple superconducting RF (SRF) cryomodule test stands. In addition to testing accelerator components, this facility will be used to test RF power systems, instrumentation, and control systems for future SRF accelerators such as the ILC and Project-X. This paper describes the current status and overall plans for this facility.

  12. Assessment of the facilities on Jackass Flats and other Nevada Test Site facilities for the new nuclear rocket program

    International Nuclear Information System (INIS)

    Chandler, G.; Collins, D.; Dye, K.; Eberhart, C.; Hynes, M.; Kovach, R.; Ortiz, R.; Perea, J.; Sherman, D.

    1992-01-01

    Recent NASA/DOE studies for the Space Exploration Initiative have demonstrated a critical need for the ground-based testing of nuclear rocket engines. Experience in the ROVER/NERVA Program, experience in the Nuclear Weapons Testing Program, and involvement in the new nuclear rocket program has motivated our detailed assessment of the facilities used for the ROVER/NERVA Program and other facilities located at the Nevada Test Site (NTS). The ROVER/NERVA facilities are located in the Nevada Research L, Development Area (NRDA) on Jackass Flats at NTS, approximately 85 miles northwest of Las Vegas. To guide our assessment of facilities for an engine testing program we have defined a program goal, scope, and process. To execute this program scope and process will require ten facilities. We considered the use of all relevant facilities at NTS including existing and new tunnels as well as the facilities at NRDA. Aside from the facilities located at remote sites and the inter-site transportation system, all of the required facilities are available at NRDA. In particular we have studied the refurbishment of E-MAD, ETS-1, R-MAD, and the interconnecting railroad. The total cost for such a refurbishment we estimate to be about $253M which includes additional contractor fees related to indirect, construction management, profit, contingency, and management reserves. This figure also includes the cost of the required NEPA, safety, and security documentation

  13. Enhanced operator-training simulator for the Fast Flux Test Facility

    International Nuclear Information System (INIS)

    Schrader, F.D.; Swanson, C.D.

    1983-01-01

    The FFTF Plant Operator Training Simulator Facility has proven to be a valuable asset throughtout the testing, startup and early operational phases of the Fast Flux Test facility. However, limitations inherent in the existing simulation facility, increased emphasis on the required quality of operator training, and an expanded scope of applications (e.g., MNI development) justify an enhanced facility. Direct use of plant operators in the development of improved reactor control room displays and other man/machine interface equipment and procedures increases the credibility of proposed techniques and reported results. The FFTF Plant Operator Training Simulator provides a key element in this development program

  14. SU-E-T-169: Characterization of Pacemaker/ICD Dose in SAVI HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kalavagunta, C; Lasio, G; Yi, B; Zhou, J; Lin, M [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: It is important to estimate dose to pacemaker (PM)/Implantable Cardioverter Defibrillator (ICD) before undertaking Accelerated Partial Breast Treatment using High Dose Rate (HDR) brachytherapy. Kim et al. have reported HDR PM/ICD dose using a single-source balloon applicator. To the authors knowledge, there have so far not been any published PM/ICD dosimetry literature for the Strut Adjusted Volume Implant (SAVI, Cianna Medical, Aliso Viejo, CA). This study aims to fill this gap by generating a dose look up table (LUT) to predict maximum dose to the PM/ICD in SAVI HDR brachytherapy. Methods: CT scans for 3D dosimetric planning were acquired for four SAVI applicators (6−1-mini, 6−1, 8−1 and 10−1) expanded to their maximum diameter in air. The CT datasets were imported into the Elekta Oncentra TPS for planning and each applicator was digitized in a multiplanar reconstruction window. A dose of 340 cGy was prescribed to the surface of a 1 cm expansion of the SAVI applicator cavity. Cartesian coordinates of the digitized applicator were determined in the treatment leading to the generation of a dose distribution and corresponding distance-dose prediction look up table (LUT) for distances from 2 to 15 cm (6-mini) and 2 to 20 cm (10–1).The deviation between the LUT doses and the dose to the cardiac device in a clinical case was evaluated. Results: Distance-dose look up table were compared to clinical SAVI plan and the discrepancy between the max dose predicted by the LUT and the clinical plan was found to be in the range (−0.44%, 0.74%) of the prescription dose. Conclusion: The distance-dose look up tables for SAVI applicators can be used to estimate the maximum dose to the ICD/PM, with a potential usefulness for quick assessment of dose to the cardiac device prior to applicator placement.

  15. Astronaut Ronald Sega with Wake Shield Facility on test stand at JSC

    Science.gov (United States)

    1991-01-01

    The Wake Shield Facility is displayed on a test stand at JSC. Astronaut Ronald M. Sega, mission specialist for STS-60, is seen with the facility during a break in testing in the acoustic and vibration facility at JSC.

  16. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    Energy Technology Data Exchange (ETDEWEB)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated.

  17. Environmental Assessment for the LGF Spill Test Facility at Frenchman Flat, Nevada Test Site

    International Nuclear Information System (INIS)

    Patton, S.E.; Novo, M.G.; Shinn, J.H.

    1986-04-01

    The LGF Spill Test Facility at Frenchman Flat, Nevada Test Site, is being constructed by the United States Department of Energy (DOE). In this Environmental Assessment, environmental consequences of spilling hazardous materials in the Frenchman Flat basin are evaluated and mitigations and recommendations are stated in order to protect natural resources and reduce land-use impacts. Guidelines and restrictions concerning spill-test procedures will be determined by the LGF Test Facility Operations Manager and DOE based on toxicity documentation for the test material, provided by the user, and mitigations imposed by the Environmental Assessment. In addition to Spill Test Facility operational procedures, certain assumptions have been made in preparation of this document: no materials will be considered for testing that have cumulative, long-term persistence in the environment; spill tests will consist of releases of 15 min or less; and sufficient time will be allowed between tests for recovery of natural resources. Geographic limits to downwind concentrations of spill materials were primarily determined from meteorological data, human occupational exposure standards to hazardous materials and previous spill tests. These limits were established using maximum spill scenarios and environmental impacts are discussed as worst case scenarios; however, spill-test series will begin with smaller spills, gradually increasing in size after the impacts of the initial tests have been evaluated

  18. Overview of US fast-neutron facilities and testing capabilities

    International Nuclear Information System (INIS)

    Evans, E.A.; Cox, C.M.; Jackson, R.J.

    1982-01-01

    Rather than attempt a cataloging of the various fast neutron facilities developed and used in this country over the last 30 years, this paper will focus on those facilities which have been used to develop, proof test, and explore safety issues of fuels, materials and components for the breeder and fusion program. This survey paper will attempt to relate the evolution of facility capabilities with the evolution of development program which use the facilities. The work horse facilities for the breeder program are EBR-II, FFTF and TREAT. For the fusion program, RTNS-II and FMIT were selected

  19. Irradiation Facilities at the Advanced Test Reactor

    International Nuclear Information System (INIS)

    S. Blaine Grover

    2005-01-01

    The Advanced Test Reactor (ATR) is the third generation and largest test reactor built in the Reactor Technology Complex (RTC) (formerly known as the Test Reactor Area), located at the Idaho National Laboratory (INL), to study the effects of intense neutron and gamma radiation on reactor materials and fuels. The RTC was established in the early 1950s with the development of the Materials Testing Reactor (MTR), which operated until 1970. The second major reactor was the Engineering Test Reactor (ETR), which operated from 1957 to 1981, and finally the ATR, which began operation in 1967 and will continue operation well into the future. These reactors have produced a significant portion of the world's data on materials response to reactor environments. The wide range of experiment facilities in the ATR and the unique ability to vary the neutron flux in different areas of the core allow numerous experiment conditions to co-exist during the same reactor operating cycle. Simple experiments may involve a non-instrumented capsule containing test specimens with no real-time monitoring or control capabilities. More sophisticated testing facilities include inert gas temperature control systems and pressurized water loops that have continuous chemistry, pressure, temperature, and flow control as well as numerous test specimen monitoring capabilities. There are also apparatus that allow for the simulation of reactor transients on test specimens

  20. Introduction to flow visualization system in SPARC test facility

    International Nuclear Information System (INIS)

    Lee, Wooyoung; Song, Simon; Na, Young Su; Hong, Seong Wan

    2016-01-01

    The released hydrogen can be accumulated and mixed by steam and air depending on containment conditions under severe accident, which generates flammable mixture. Hydrogen explosion induced by ignition source cause severe damage to a structure or facility. Hydrogen risk regarding mixing, distribution, and combustion has been identified by several expert groups and studied actively since TMI accident. A large-scale thermal-hydraulic experimental facility is required to simulate the complex severe accident phenomena in the containment building. We have prepared the test facility, called the SPARC (Spray, Aerosol, Recombiner, Combustion), to resolve the international open issues regarding hydrogen risk. Gas mixing and stratification test using helium instead of hydrogen and estimation of a stratification surface erosion of helium owing to the vertical jet flow will be performed in SPARC. The measurement system is need to observe the gas flow in the large scale test facility such as SPARC. The PIV (particle image velocimetry) system have been installed to visualize gas flow. We are preparing the test facility, called the SPARC, for estimation the thermal-hydraulic process of hydrogen in a closed containment building and the PIV system for quantitative assessment of gas flow. In particular, we will perform gas mixing and erosion of stratification surface test using helium which is the replacement of hydrogen. It will be evaluated by measuring 2D velocity field using the PIV system. The PIV system mainly consists of camera, laser and tracer particle. Expected maximum size of FOV is 750 x 750 mm 2 limited by focal length of lens and high power laser corresponding to 425mJ/pulse at 532 wavelength is required due to large FOV

  1. Development of a fault test experimental facility model using Matlab

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Iraci Martinez; Moraes, Davi Almeida, E-mail: martinez@ipen.br, E-mail: dmoraes@dk8.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  2. Development of a fault test experimental facility model using Matlab

    International Nuclear Information System (INIS)

    Pereira, Iraci Martinez; Moraes, Davi Almeida

    2015-01-01

    The Fault Test Experimental Facility was developed to simulate a PWR nuclear power plant and is instrumented with temperature, level and pressure sensors. The Fault Test Experimental Facility can be operated to generate normal and fault data, and these failures can be added initially small, and their magnitude being increasing gradually. This work presents the Fault Test Experimental Facility model developed using the Matlab GUIDE (Graphical User Interface Development Environment) toolbox that consists of a set of functions designed to create interfaces in an easy and fast way. The system model is based on the mass and energy inventory balance equations. Physical as well as operational aspects are taken into consideration. The interface layout looks like a process flowchart and the user can set the input variables. Besides the normal operation conditions, there is the possibility to choose a faulty variable from a list. The program also allows the user to set the noise level for the input variables. Using the model, data were generated for different operational conditions, both under normal and fault conditions with different noise levels added to the input variables. Data generated by the model will be compared with Fault Test Experimental Facility data. The Fault Test Experimental Facility theoretical model results will be used for the development of a Monitoring and Fault Detection System. (author)

  3. 2-MW plasmajet facility thermal tests of concrete

    International Nuclear Information System (INIS)

    Goin, K.L.

    1977-07-01

    A test was made in the 2-Megawatt Plasmajet Facility to obtain experimental data relative to the thermal response of concrete to incident heat flux. 14.6 cm diameter by 8.0 cm long concrete cylinders were positioned in a supersonic flow of heated nitrogen from an arc heater. The end of the concrete cylinders impacted by the flow were subjected to heat fluxes in the range of 0.13 to 0.35 kW/cm 2 . Measurements included cold wall surface heat flux and pressure distributions, surface and indepth temperatures, ablation rates, and surface emission spectrographs. The test was part of the Sandia light water reactor safety research program and complements similar tests made in the Radiant Heat Facility at heat fluxes from 0.03 to 0.12 kW/cm 2 . A description of the tests and a tabulation of test data are included

  4. Gas Cooled Fast Breeder Reactor cost estimate for a circulator test facility (modified HTGR circulator test facility)

    International Nuclear Information System (INIS)

    1979-10-01

    This is a conceptual design cost estimate for a Helium Circulator Test Facility to be located at the General Atomic Company, San Diego, California. The circulator, drive motors, controllers, thermal barrier, and circulator service module installation costs are part of the construction cost included

  5. NPIP: A skew line needle configuration optimization system for HDR brachytherapy

    International Nuclear Information System (INIS)

    Siauw, Timmy; Cunha, Adam; Berenson, Dmitry; Atamtürk, Alper; Hsu, I-Chow; Goldberg, Ken; Pouliot, Jean

    2012-01-01

    needles than the current HDR brachytherapy workflow. Combined with robot assisted brachytherapy, this system has the potential to reduce side effects associated with treatment. A physical trial should be done to test the implant feasibility of NPIP needle configurations.

  6. TU-F-BRF-02: MR-US Prostate Registration Using Patient-Specific Tissue Elasticity Property Prior for MR-Targeted, TRUS-Guided HDR Brachytherapy

    International Nuclear Information System (INIS)

    Yang, X; Rossi, P; Ogunleye, T; Jani, A; Curran, W; Liu, T

    2014-01-01

    Purpose: High-dose-rate (HDR) brachytherapy has become a popular treatment modality for prostate cancer. Conventional transrectal ultrasound (TRUS)-guided prostate HDR brachytherapy could benefit significantly from MR-targeted, TRUS-guided procedure where the tumor locations, acquired from the multiparametric MRI, are incorporated into the treatment planning. In order to enable this integration, we have developed a MR-TRUS registration with a patient-specific biomechanical elasticity prior. Methods: The proposed method used a biomechanical elasticity prior to guide the prostate volumetric B-spline deformation in the MRI and TRUS registration. The patient-specific biomechanical elasticity prior was generated using ultrasound elastography, where two 3D TRUS prostate images were acquired under different probe-induced pressures during the HDR procedure, which takes 2-4 minutes. These two 3D TRUS images were used to calculate the local displacement (elasticity map) of two prostate volumes. The B-spline transformation was calculated by minimizing the Euclidean distance between the normalized attribute vectors of the prostate surface landmarks on the MR and TRUS. This technique was evaluated through two studies: a prostate-phantom study and a pilot study with 5 patients undergoing prostate HDR treatment. The accuracy of our approach was assessed through the locations of several landmarks in the post-registration and TRUS images; our registration results were compared with the surface-based method. Results: For the phantom study, the mean landmark displacement of the proposed method was 1.29±0.11 mm. For the 5 patients, the mean landmark displacement of the surface-based method was 3.25±0.51 mm; our method, 1.71±0.25 mm. Therefore, our proposed method of prostate registration outperformed the surfaced-based registration significantly. Conclusion: We have developed a novel MR-TRUS prostate registration approach based on patient-specific biomechanical elasticity prior

  7. LMFBR post accident heat removal testing needs and conceptual design of a test facility

    International Nuclear Information System (INIS)

    Kleefeldt, K.; Kuechle, M.; Royl, P.; Werle, H.; Boenisch, G.; Heinzel, V.; Mueller, R.A.; Schramm, K.; Smidt, D.

    1977-03-01

    A study has been carried out in which the needs and requirements for a test facility were derived, enabling detailed investigation of key phenomena anticipated during the post accident heat removal (PAHR) phase as a consequence of a postulated LMFBR whole core accident. Part I of the study concentrates on demonstrating the PAHR phenomena and related testing needs. Three types of experiments were identified which require in-pile testing, ranging from 10 to 70 cm test bed diameter and correspondingly, 30 to 5 W/g minimum power density in the test fuel. In part II a conceptual design for a test facility is presented, emphasizing the capability for accomodating large test beds. This is achieved by a below-reactor-vessel testing device, neutronically coupled to a 100 MWt sodium cooled fast reactor. (orig.) [de

  8. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    International Nuclear Information System (INIS)

    Gillard, J.E.

    2001-01-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  9. Test facilities for radioactive material transport packages (AEA Technology plc, Winfrith,UK)

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, J.E

    2001-07-01

    Transport containers for radioactive materials are tested to demonstrate compliance with national and international standards. Transport package design, testing, assessment and approval requires a wide range of skills and facilities. The comprehensive capability of AEA Technology in these areas is described. The facilities described include drop-test cranes and targets (up to 700 tonne); pool fires, furnaces and rigs for thermal tests, including heat dissipation on prototype flasks; shielding facilities; criticality simulations and leak test techniques. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  10. Test facility for astronomical x-ray optics

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Lewis, Robert A.; Bordas, J.

    1990-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has to appro......Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earth's atmosphere. These devices require a large collection aperture and the imaging of an x-ray source that is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions; however, the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area while still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes, is described. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  11. Thermionic system evaluated test (TSET) facility description

    Science.gov (United States)

    Fairchild, Jerry F.; Koonmen, James P.; Thome, Frank V.

    1992-01-01

    A consortium of US agencies are involved in the Thermionic System Evaluation Test (TSET) which is being supported by the Strategic Defense Initiative Organization (SDIO). The project is a ground test of an unfueled Soviet TOPAZ-II in-core thermionic space reactor powered by electrical heat. It is part of the United States' national thermionic space nuclear power program. It will be tested in Albuquerque, New Mexico at the New Mexico Engineering Research Institute complex by the Phillips Laboratoty, Sandia National Laboratories, Los Alamos National Laboratory, and the University of New Mexico. One of TSET's many objectives is to demonstrate that the US can operate and test a complete space nuclear power system, in the electrical heater configuration, at a low cost. Great efforts have been made to help reduce facility costs during the first phase of this project. These costs include structural, mechanical, and electrical modifications to the existing facility as well as the installation of additional emergency systems to mitigate the effects of utility power losses and alkali metal fires.

  12. Buildings, fields of activity, testing facilities

    International Nuclear Information System (INIS)

    1974-01-01

    Since 1969 the activities of the Materialpruefungsanstalt Stuttgart (MPA) have grown quickly as planned, especially in the field of reactor safety research, which made it necessary to increase the staff to approximately 165 members, to supplement the machines and equipment and to extend the fields of activities occasioning a further departmental reorganization. At present the MPA has the following departments: 1. Teaching (materials testing, materials science and strength of materials) 2. Materials and Welding Technology 3. Materials Science and General Materials Testing with Tribology 4. Design and Strength 5. Creep and Fatigue Testing 6. Central Facilities 7. Vessel and Component Testing. (orig./RW) [de

  13. An Experience of Thermowell Design in RCP Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Y. S.; Kim, B. D.; Youn, Y. J.; Jeon, W. J.; Kim, S.; Bae, B. U.; Cho, Y. J.; Choi, H. S.; Park, J. K; Cho, S. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    Flow rates for the test should vary in the range of 90% to 130% of rated flowrate under prototypic operational conditions, as shown in Table 1. Generally for the flow control, a combination of a control valve and an orifice was used in previous RCP test facilities. From the commissioning startup of the RCP test facility, it was found the combination of valve and orifice induced quite a large vibration for the RCP. As a solution to minimize the vibration and to facilitate the flowrate control, one of KAERI's staff suggested a variable restriction orifice (VRO), which controls most of the required flowrates except highest flowrates, as shown in Fig. 2. For the highest flowrates, e.g., around run-out flowrate (130%), control valves in bypass lines were also used to achieve required flowrates. From a performance test, it was found the VRO is very effective measures to control flowrates in the RCP test facility. During the commissioning startup operation, one of thermowells located at the upstream of the RCP was cracked due to high speed coolant velocity, which was - fortunately - found under a leakage test before running the RCP test loop. The cracked thermowell, whose tapered-shank was detached from the weld collar after uninstalling, is shown in Fig. 3. As can be seen the figure, most of the cross-section at the root of the thermowell shank was cracked. In this paper, an investigation of the integrity of thermowells in the RCP test facility was performed according to the current code and overall aspects on the thermowell designs were also discussed. An RCP test facility has been constructed in KAERI. During the commissioning startup operation, one of thermowells was cracked due to high speed coolant velocity. To complete the startup operation, a modified design of thermowells was proposed and all the original thermowells were replaced by the modified ones. From evaluation of the original and modified designs of thermowells according to the recent PTC code, the

  14. I and C functional test facility user guide

    International Nuclear Information System (INIS)

    Kwon, Ki Chun

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ''C'' language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author)

  15. I and C functional test facility user guide

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Ki Chun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-07-01

    The objective of I and C functional test facility (FTF) is to validate newly developed digital control and protection algorithm, alarm reduction algorithm and the function of operator support system and so on. Test facility is divided into three major parts; software, hardware and graphic user interface. Software consists of mathematical modeling which simulates 3 loop pressurizer water reactor, 993 MWe Westinghouse plant and supervisory module which interpret user instructions and data interface program. FTF is implemented in HP747I workstation using FORTRAN77 and ``C`` language under UNIX operating system. This User Guide provides file structure, instructions and program modification method and provides initial data, malfunction list, process variables list and simulation diagram as an appendix to test developed prototype. 12 figs. (Author).

  16. Implementation of the technique of partial irradiation accelerated the breast with high doses (HDR) brachytherapy

    International Nuclear Information System (INIS)

    Molina Lopez, M. Y.; Pardo Perez, E.; Castro Novais, J.; Martinez Ortega, J.; Ruiz Maqueda, S.; Cerro Penalver, E. del

    2013-01-01

    The objective of this work is presents procedure carried out in our Centre for the implementation of the accelerated partial breast irradiation (APBI, accelerated partial-breast irradiation) with high-rate brachytherapy (HDR), using plastic tubes as applicators. Carried out measures, the evaluation of the dosimetric parameters analyzing and presenting the results. (Author)

  17. In-pile experiments and test facilities proposed for fast reactor safety

    International Nuclear Information System (INIS)

    Grolmes, M.A.; Avery, R.; Goldman, A.J.; Fauske, H.K.; Marchaterre, J.F.; Rose, D.; Wright, A.E.

    1976-01-01

    The role of in-pile experiments in support of the resolution of fast breeder reactor safety and licensing issues has been re-examined, with emphasis on key safety issues. Experiment needs have been related to the specific characteristics of these safety issues and to realistic requirements for additional test facility capabilities which can be achieved and utilized within the next ten years. It is found that those safety issues related to the energetics of core disruptive accidents have the largest impact on new facility requirements. However, utilization of existing facilities with modifications can provide for a continuing increase in experiment capability and experiment results on a timely bases. Emphasis has been placed upon maximum utilization of existing facilities and minimum requirements for new facilities. This evaluation has concluded that a new Safety Test Facility, STF, along with major modifications to the EBR II facility, improvement in TREAT capabilities, the existing Sodium Loop Safety Facility and corresponding Support Facilities provide the essential elements of the Safety Research Experiment Facilities (SAREF) required for resolution of key issues

  18. Design and Construction of a Hydroturbine Test Facility

    Science.gov (United States)

    Ayli, Ece; Kavurmaci, Berat; Cetinturk, Huseyin; Kaplan, Alper; Celebioglu, Kutay; Aradag, Selin; Tascioglu, Yigit; ETU Hydro Research Center Team

    2014-11-01

    Hydropower is one of the clean, renewable, flexible and efficient energy resources. Most of the developing countries invest on this cost-effective energy source. Hydroturbines for hydroelectric power plants are tailor-made. Each turbine is designed and constructed according to the properties, namely the head and flow rate values of the specific water source. Therefore, a center (ETU Hydro-Center for Hydro Energy Research) for the design, manufacturing and performance tests of hydraulic turbines is established at TOBB University of Economics and Technology to promote research in this area. CFD aided hydraulic and structural design, geometry optimization, manufacturing and performance tests of hydraulic turbines are the areas of expertise of this center. In this paper, technical details of the design and construction of this one of a kind test facility in Turkey, is explained. All the necessary standards of IEC (International Electrotechnical Commission) are met since the test facility will act as a certificated test center for hydraulic turbines.

  19. Superconducting magnet development capability of the LLNL [Lawrence Livermore National Laboratory] High Field Test Facility

    International Nuclear Information System (INIS)

    Miller, J.R.; Shen, S.; Summers, L.T.

    1990-02-01

    This paper discusses the following topics: High-Field Test Facility Equipment at LLNL; FENIX Magnet Facility; High-Field Test Facility (HFTF) 2-m Solenoid; Cryogenic Mechanical Test Facility; Electro-Mechanical Conductor Test Apparatus; Electro-Mechanical Wire Test Apparatus; FENIX/HFTF Data System and Network Topology; Helium Gas Management System (HGMS); Airco Helium Liquefier/Refrigerator; CTI 2800 Helium Liquefier; and MFTF-B/ITER Magnet Test Facility

  20. The large-scale vented combustion test facility at AECL-WL: description and preliminary test results

    International Nuclear Information System (INIS)

    Loesel Sitar, J.; Koroll, G.W.; Dewit, W.A.; Bowles, E.M.; Harding, J.; Sabanski, C.L.; Kumar, R.K.

    1997-01-01

    Implementation of hydrogen mitigation systems in nuclear reactor containments requires testing the effectiveness of the mitigation system, reliability and availability of the hardware, potential consequences of its use and the technical basis for hardware placement, on a meaningful scale. Similarly, the development and validation of containment codes used in nuclear reactor safety analysis require detailed combustion data from medium- and large-scale facilities. A Large-Scale Combustion Test Facility measuring 10 m x 4 m x 3 m (volume, 120 m 3 ) has been constructed and commissioned at Whiteshell Laboratories to perform a wide variety of combustion experiments. The facility is designed to be versatile so that many geometrical configurations can be achieved. The facility incorporates extensive capabilities for instrumentation and high speed data acquisition, on-line gas sampling and analysis. Other features of the facility include operation at elevated temperatures up to 150 degrees C, easy access to the interior, and remote operation. Initial thermodynamic conditions in the facility can be controlled to within 0.1 vol% of constituent gases. The first series of experiments examined vented combustion in the full 120 m 3 -volume configuration with vent areas in the range of 0.56 to 2.24 m 2 . The experiments were performed at ∼27 degrees C and near-atmospheric pressures, with hydrogen concentrations in the range of 8 to 12% by volume. This paper describes the Large-Scale Vented Combustion Test Facility and preliminary results from the first series of experiments. (author)

  1. Analysis of Elektrogorsk 108 test facility experimental data

    International Nuclear Information System (INIS)

    Urbonas, R.

    2001-01-01

    In the paper an evaluation of experimental data obtained at Russian Elektrogorsk 108 (E-108) test facility is presented. E-108 facility is a scaled model of Russian RBMK design reactor. An attempt to validate state-of-the-art thermal hydraulic codes on the basis of E-108 test facility was made. Originally these codes were developed and validated for BWRs and PWRs. Since state-of-art thermal hydraulic codes are widely used for simulation of RBMK reactors further codes' implementation and validation is required. The facility was modelled by employing RELAP5 (INEEL, USA) thermal hydraulic system analysis best estimate code. The results show dependence from number of nodes used in the heated channels, frictional and form losses employed. The obtained oscillatory behaviour is resulted by density wave and critical heat flux. It is shown that codes are able to predict thermal hydraulic instability and sudden heat structure temperature excursion, when critical heat flux is approached, well. In addition, an uncertainty analysis of one of the experiments was performed by employing GRS developed System for Uncertainty and Sensitivity Analysis (SUSA). It was one of the first attempts to use this statistic-based methodology in Lithuania.(author)

  2. ACIGA's high optical power test facility

    International Nuclear Information System (INIS)

    Ju, L; Aoun, M; Barriga, P

    2004-01-01

    Advanced laser interferometer detectors utilizing more than 100 W of laser power and with ∼10 6 W circulating laser power present many technological problems. The Australian Consortium for Interferometric Gravitational Astronomy (ACIGA) is developing a high power research facility in Gingin, north of Perth, Western Australia, which will test techniques for the next generation interferometers. In particular it will test thermal lensing compensation and control strategies for optical cavities in which optical spring effects and parametric instabilities may present major difficulties

  3. Design study of an ERL Test Facility at CERN

    CERN Document Server

    Jensen, E; Brüning, O; Calaga, R; Catalan-Lasheras, N; Goddard, B; Klein, M; Torres-Sanchez, R; Valloni, A

    2014-01-01

    The modern concept of an Energy Recovery Linac allows providing large electron currents at large beam energy with low power consumption. This concept is used in FEL’s, electron-ion colliders and electron coolers. CERN has started a Design Study of an ERL Test Facility with the purpose of 1) studying the ERL principle, its specific beam dynamics and operational issues, as relevant for LHeC, 2) providing a test bed for superconducting cavity modules, cryogenics and integration, 3) studying beam induced quenches in superconducting magnets and protection methods, 4) providing test beams for detector R&D and other applications. It will be complementary to existing or planned facilities and is fostering international collaboration. The operating frequency of 802 MHz was chosen for performance and for optimum synergy with SPS and LHC; the design of the cryomodule has started. The ERL Test Facility can be constructed in stages from initially 150 MeV to ultimately 1 GeV in 3 passes, with beam currents of up to 8...

  4. SU-E-T-149: Brachytherapy Patient Specific Quality Assurance for a HDR Vaginal Cylinder Case

    Energy Technology Data Exchange (ETDEWEB)

    Barbiere, J; Napoli, J; Ndlovu, A [Hackensack Univ Medical Center, Hackensack, NJ (United States)

    2015-06-15

    Purpose: Commonly Ir-192 HDR treatment planning system commissioning is only based on a single absolute measurement of source activity supplemented by tabulated parameters for multiple factors without independent verification that the planned distribution corresponds to the actual delivered dose. The purpose on this work is to present a methodology using Gafchromic film with a statistically valid calibration curve that can be used to validate clinical HDR vaginal cylinder cases by comparing the calculated plan dose distribution in a plane with the corresponding measured planar dose. Methods: A vaginal cylinder plan was created with Oncentra treatment planning system. The 3D dose matrix was exported to a Varian Eclipse work station for convenient extraction of a 2D coronal dose plane corresponding to the film position. The plan was delivered with a sheet of Gafchromic EBT3 film positioned 1mm from the catheter using an Ir-192 Nucletron HDR source. The film was then digitized with an Epson 10000 XL color scanner. Film analysis is performed with MatLab imaging toolbox. A density to dose calibration curve was created using TG43 formalism for a single dwell position exposure at over 100 points for statistical accuracy. The plan and measured film dose planes were registered using a known dwell position relative to four film marks. The plan delivered 500 cGy to points 2 cm from the sources. Results: The distance to agreement of the 500 cGy isodose between the plan and film measurement laterally was 0.5 mm but can be as much as 1.5 mm superior and inferior. The difference between the computed plan dose and film measurement was calculated per pixel. The greatest errors up to 50 cGy are near the apex. Conclusion: The methodology presented will be useful to implement more comprehensive quality assurance to verify patient-specific dose distributions.

  5. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    International Nuclear Information System (INIS)

    Craciunescu, O; Todor, D; Leeuw, A de

    2014-01-01

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy

  6. WE-F-BRD-01: HDR Brachytherapy II: Integrating Imaging with HDR

    Energy Technology Data Exchange (ETDEWEB)

    Craciunescu, O [Duke University Medical Center, Durham, NC (United States); Todor, D [Virginia Commonwealth University, Richmond, VA (United States); Leeuw, A de

    2014-06-15

    In recent years, with the advent of high/pulsed dose rate afterloading technology, advanced treatment planning systems, CT/MRI compatible applicators, and advanced imaging platforms, image-guided adaptive brachytherapy treatments (IGABT) have started to play an ever increasing role in modern radiation therapy. The most accurate way to approach IGABT treatment is to provide the infrastructure that combines in a single setting an appropriate imaging device, a treatment planning system, and a treatment unit. The Brachytherapy Suite is not a new concept, yet the modern suites are incorporating state-of-the-art imaging (MRI, CBCT equipped simulators, CT, and /or US) that require correct integration with each other and with the treatment planning and delivery systems. Arguably, an MRI-equipped Brachytherapy Suite is the ideal setup for real-time adaptive brachytherapy treatments. The main impediment to MRI-IGABT adoption is access to MRI scanners. Very few radiation oncology departments currently house MRI scanners, and even fewer in a dedicated Brachytherapy Suite. CBCT equipped simulators are increasingly offered by manufacturers as part of a Brachytherapy Suite installation. If optimized, images acquired can be used for treatment planning, or can be registered with other imaging modalities. This infrastructure is relevant for all forms of brachytherapy, especially those utilizing multi-fractionated courses of treatment such as prostate and cervix. Moreover, for prostate brachytherapy, US imaging systems can be part of the suite to allow for real-time HDR/LDR treatments. Learning Objectives: Understand the adaptive workflow of MR-based IGBT for cervical cancer. Familiarize with commissioning aspects of a CBCT equipped simulator with emphasis on brachytherapy applications Learn about the current status and future developments in US-based prostate brachytherapy.

  7. TFTR neutral-beam test facility

    International Nuclear Information System (INIS)

    Turitzin, N.M.; Newman, R.A.

    1981-11-01

    TFTR Neutral Beam System will have thirteen discharge ion sources, each with its own power supply. Twelve of these will be utilized for supplemental heating of the TFTR tokamak plasma, while the thirteenth will be dedicated to an off-machine test chamber for source development and/or conditioning. A test installation for one source was set up using prototype equipment to discover and correct possible deficiencies, and to properly coordinate the equipment. This test facility represents the first opportunity for assembling an integrated system of hardware supplied by diverse vendors, each of whom designed and built his equipment to performance specifications. For the installation and coordination of the different portions of the total system, particular attention was given to personnel safety and safe equipment operation. This paper discusses various system components, their characteristics, interconnection and control. Results of the recently initiated test phase will be reported at a later date

  8. Safety report content and development for test loop facility on MARIA reactor

    International Nuclear Information System (INIS)

    Konechko, A.; Shumskij, A.M.; Mikul'ahin, V.E.

    1982-01-01

    A 600 kW test loop facility for investigatin.o safety problems is realized on MARIA reactor in Poland together with USSR organizations. Safety reports have been developed in two steps at the designstage. The 1st report being essentially a preliminary safety analysis was developed within the scope of the feasibility study. At the engineering design stage the preliminary test loop facility safety report had been prepared considering measures excluding the possibility of the MARIA reactor damage. The test loop facility safety report is fulfilled for normal, transient and emergency operation regimes. Separate safety basing for each group of experiments will be prepared. The report presents the test loop facility safety criteria coordinated by the nuclear safety comission. They contains the preliminary reports on the test loop facility safety. At the final stage of construction and at thecommitioning stage the start-up safety report will be developed which after required correction and adding up the putting into operation data will turn into operation safety report [ru

  9. CLIC Test Facility 3

    CERN Multimedia

    Kossyvakis, I; Faus-golfe, A

    2007-01-01

    The design of CLIC is based on a two-beam scheme, where short pulses of high power 30 GHz RF are extracted from a drive beam running parallel to the main beam. The 3rd generation CLIC Test Facility (CTF3) will demonstrate the generation of the drive beam with the appropriate time structure, the extraction of 30 GHz RF power from this beam, as well as acceleration of a probe beam with 30 GHz RF cavities. The project makes maximum use of existing equipment and infrastructure of the LPI complex, which became available after the closure of LEP.

  10. Test facilities for radioactive material transport packages (AEA Technology, Winfrith, UK)

    International Nuclear Information System (INIS)

    Burgess, M.H.

    1991-01-01

    Transport packages for radioactive materials are tested to demonstrate compliance with national and international regulations. The involvement of AEA Technology is traced from the establishment of the early IAEA Regulations. Transport package design, testing, assessment and approval requires a wide variety of skills and facilities. The comprehensive capability of AEA Technology in these areas is described with references to practical experience in the form of a short bibliography. The facilities described include drop-test cranes and targets (up to 700te); air guns for impacts up to sonic velocities; pool fires, furnaces and rigs for thermal tests including heat dissipation on prototype flasks; shielding facilities and instruments; criticality simulations and leak test instruments. These are illustrated with photographs demonstrating the comprehensive nature of package testing services supplied to customers. (author)

  11. Flow characteristics of Hijiori HDR reservoir form circulation test in 1995; Koon tantai Hijiori jikkenjo ni okeru shinbu choryuso yobi junkan shiken (1995 nendo) kekka to ryudo kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Fukushima, N; Hyodo, M; Shinohara, N; Takasugi, S [Geothermal Energy Research and Development Co. Ltd., Tokyo (Japan)

    1996-05-01

    This paper reports the result of a preliminary circulation test conducted in fiscal 1995 on a deep reservoir (at a depth of about 2200 m) in the Hijiori hot dry rock experimental field. One water injection well and two production wells were drilled to constitute a circulation loop, to which the circulation test was performed to investigate the flow characteristics thereof. The result revealed the following matters: total amount of injected water of 51500 m{sup 3} resulted in a total fluid recovery rate of about 40%; as a result of well stimulation given twice during the initial stage of the water injection, the continuity impedance in the vicinity of the injection well decreased largely (however, the continuity improvement upon the second attempt was considerably inferior to that from the first attempt); and increase in the water injection amount does not necessarily lead to increase in the production amount. The paper describes additionally that it is extremely difficult to interpret non-linearity between the injection and production amounts by using a model prepared previously with a main objective to analyze the Hijiori HDR circulation system. 1 ref., 9 figs., 1 tab.

  12. Summarisation of construction and commissioning experience for nuclear power integrated test facility

    International Nuclear Information System (INIS)

    Xiao Zejun; Jia Dounan; Jiang Xulun; Chen Bingde

    2003-01-01

    Since the foundation of Nuclear Power Institute of China, it has successively designed various engineering experimental facilities, and constructed nuclear power experimental research base, and accumulated rich construction experiences of nuclear power integrated test facility. The author presents experience on design, construction and commissioning of nuclear power integrated test facility

  13. A multicentre ‘end to end’ dosimetry audit for cervix HDR brachytherapy treatment

    International Nuclear Information System (INIS)

    Palmer, Antony L.; Diez, Patricia; Gandon, Laura; Wynn-Jones, Andrea; Bownes, Peter; Lee, Chris; Aird, Edwin; Bidmead, Margaret; Lowe, Gerry; Bradley, David; Nisbet, Andrew

    2015-01-01

    Purpose: To undertake the first multicentre fully ‘end to end’ dosimetry audit for HDR cervix brachytherapy, comparing planned and delivered dose distributions around clinical treatment applicators, with review of local procedures. Materials and methods: A film-dosimetry audit was performed at 46 centres, including imaging, applicator reconstruction, treatment planning and delivery. Film dose maps were calculated using triple-channel dosimetry and compared to RTDose data from treatment planning systems. Deviations between plan and measurement were quantified at prescription Point A and using gamma analysis. Local procedures were also discussed. Results: The mean difference between planned and measured dose at Point A was −0.6% for plastic applicators and −3.0% for metal applicators, at standard uncertainty 3.0% (k = 1). Isodose distributions agreed within 1 mm over a dose range 2–16 Gy. Mean gamma passing rates exceeded 97% for plastic and metal applicators at 3% (local) 2 mm criteria. Two errors were found: one dose normalisation error and one applicator library misaligned with the imaged applicator. Suggestions for quality improvement were also made. Conclusions: The concept of ‘end to end’ dosimetry audit for HDR brachytherapy has been successfully implemented in a multicentre environment, providing evidence that a high level of accuracy in brachytherapy dosimetry can be achieved

  14. Natural circulation in an integral CANDU test facility

    International Nuclear Information System (INIS)

    Ingham, P.J.; Sanderson, T.V.; Luxat, J.C.; Melnyk, A.J.

    2000-01-01

    Over 70 single- and two-phase natural circulation experiments have been completed in the RD-14M facility, an integral CANDU thermalhydraulic test loop. This paper describes the RD-14M facility and provides an overview of the impact of key parameters on the results of natural circulation experiments. Particular emphasis will be on phenomena which led to heat up at high system inventories in a small subset of experiments. Clarification of misunderstandings in a recently published comparison of the effectiveness of natural circulation flows in RD-14M to integral facilities simulating other reactor geometries will also be provided. (author)

  15. A Test Facility For Astronomical X-Ray Optics

    DEFF Research Database (Denmark)

    Lewis, R. A.; Bordas, J.; Christensen, Finn Erland

    1989-01-01

    Grazing incidence x-ray optics for x-ray astronomical applications are used outside the earths atmosphere. These devices require a large collection aperture and the imaging of an x-ray source which is essentially placed at infinity. The ideal testing system for these optical elements has...... to approximate that encountered under working conditions, however the testing of these optical elements is notoriously difficult with conventional x-ray generators. Synchrotron Radiation (SR) sources are sufficiently brilliant to produce a nearly perfect parallel beam over a large area whilst still retaining...... a flux considerably higher than that available from conventional x-ray generators. A facility designed for the testing of x-ray optics, particularly in connection with x-ray telescopes is described below. It is proposed that this facility will be accommodated at the Synchrotron Radiation Source...

  16. High dose rate intraoperative radiation therapy (HDR-IORT) as part of the management strategy for locally advanced primary and recurrent rectal cancer

    International Nuclear Information System (INIS)

    Harrison, Louis B.; Minsky, Bruce D.; Enker, Warren E.; Mychalczak, Borys; Guillem, Jose; Paty, Philip B.; Anderson, Lowell; White, Carol; Cohen, Alfred M.

    1998-01-01

    Purpose: Primary unresectable and locally advanced recurrent rectal cancer presents a significant clinical challenge. Local failure rates are high in both situations. Under such circumstances, there is a significant need to safely deliver tumoricidal doses of radiation in an attempt to improve local control. For this reason, we have incorporated a new approach utilizing high dose rate intraoperative radiation therapy (HDR-IORT). Methods and Materials: Between 11/92-12/96, a total of 112 patients were explored, of which 68 patients were treated with HDR-IORT, and 66 are evaluable. The majority of the 44 patients were excluded for unresectable disease or for distant metastases which eluded preoperative imaging. There were 22 patients with primary unresectable disease, and 46 patients who presented with recurrent disease. The histology was adenocarcinoma in 64 patients, and squamous cell carcinoma in four patients. In general, the patients with primary unresectable disease received preoperative chemotherapy with 5-fluorouracil (5-FU) and leucovorin, and external beam irradiation to 4500-5040 cGy, followed by surgical resection and HDR-IORT (1000-2000 cGy). In general , the patients with recurrent disease were treated with surgical resection and HDR-IORT (1000-2000 cGy) alone. All surgical procedures were done in a dedicated operating room in the brachytherapy suite, so that HDR-IORT could be delivered using the Harrison-Anderson-Mick (HAM) applicator. The median follow-up is 17.5 months (1-48 mo). Results: In primary cases, the actuarial 2-year local control is 81%. For patients with negative margins, the local control was 92% vs. 38% for those with positive margins (p = 0.002). The 2-year actuarial disease-free survival was 69%; 77% for patients with negative margins vs. 38% for patients with positive margins (p = 0.03). For patients with recurrent disease, the 2-year actuarial local control rate was 63%. For patients with negative margins, it was 82%, while it was

  17. An Eight-Year Experience of HDR Brachytherapy Boost for Localized Prostate Cancer: Biopsy and PSA Outcome

    International Nuclear Information System (INIS)

    Bachand, Francois; Martin, Andre-Guy; Beaulieu, Luc; Harel, Francois M.Sc.; Vigneault, Eric

    2009-01-01

    Purpose: To evaluate the biochemical recurrence-free survival (bRFS), the 2-year biopsy outcome and the prostate-specific antigen (PSA) bounce in patients with localized prostate cancer treated with an inversely planned high-dose-rate (HDR) brachytherapy boost. Materials and methods: Data were collected from 153 patients treated between 1999 and 2006 with external beam pelvic radiation followed by an HDR Ir-192 prostate boost. These patients were given a boost of 18 to 20 Gy using inverse-planning with simulated annealing (IPSA).We reviewed and analyzed all prostate-specific antigen levels and control biopsies. Results: The median follow-up was 44 months (18-95 months). When categorized by risk of progression, 74.5% of patients presented an intermediate risk and 14.4% a high one. Prostate biopsies at 2 years posttreatment were negative in 86 of 94 patients (91.5%), whereas two biopsies were inconclusive. Biochemical control at 60 months was at 96% according to the American Society for Therapeutic Radiology and Oncology and the Phoenix consensus definitions. A PSA bounce (PSA values of 2 ng/mL or more above nadir) was observed in 15 patients of 123 (9.8%). The median time to bounce was 15.2 months (interquartile range, 11.0-17.7) and the median bounce duration 18.7 months (interquartile range, 12.1-29). The estimate of overall survival at 60 months was 97.1% (95% CI, 91.6-103%). Conclusions: Considering that inverse planned HDR brachytherapy prostate boosts led to an excellent biochemical response, with a 2-year negative biopsy rate, we recommend a conservative approach in face of a PSA bounce even though it was observed in 10% of patients

  18. Commissioning and early operating experience with the Fermilab horizontal test facility

    Energy Technology Data Exchange (ETDEWEB)

    Carcagno, R.; Chase, B.; Harms, E.; Hocker, A.; Prieto, P.; Reid, J.; Rowe, A.; Theilacker, J.; Votava, M.; /Fermilab

    2007-10-01

    Fermilab has constructed a facility for testing dressed superconducting radiofrequency (RF) cavities at 1.8 K with high-power pulsed RF. This test stand was designed to test both 9-cell 1.3 GHz TESLA-style cavities and 9-cell 3.9 GHz cavities being built by Fermilab for DESY's TTF-FLASH facility. An overview of the test stand and a description of its initial commissioning is described here.

  19. Simulation Facilities and Test Beds for Galileo

    Science.gov (United States)

    Schlarmann, Bernhard Kl.; Leonard, Arian

    2002-01-01

    Galileo is the European satellite navigation system, financed by the European Space Agency (ESA) and the European Commission (EC). The Galileo System, currently under definition phase, will offer seamless global coverage, providing state-of-the-art positioning and timing services. Galileo services will include a standard service targeted at mass market users, an augmented integrity service, providing integrity warnings when fault occur and Public Regulated Services (ensuring a continuity of service for the public users). Other services are under consideration (SAR and integrated communications). Galileo will be interoperable with GPS, and will be complemented by local elements that will enhance the services for specific local users. In the frame of the Galileo definition phase, several system design and simulation facilities and test beds have been defined and developed for the coming phases of the project, respectively they are currently under development. These are mainly the following tools: Galileo Mission Analysis Simulator to design the Space Segment, especially to support constellation design, deployment and replacement. Galileo Service Volume Simulator to analyse the global performance requirements based on a coverage analysis for different service levels and degrades modes. Galileo System Simulation Facility is a sophisticated end-to-end simulation tool to assess the navigation performances for a complete variety of users under different operating conditions and different modes. Galileo Signal Validation Facility to evaluate signal and message structures for Galileo. Galileo System Test Bed (Version 1) to assess and refine the Orbit Determination &Time Synchronisation and Integrity algorithms, through experiments relying on GPS space infrastructure. This paper presents an overview on the so called "G-Facilities" and describes the use of the different system design tools during the project life cycle in order to design the system with respect to

  20. Evaluation of the Netherlands' International Test Facility for Smart Grids

    Energy Technology Data Exchange (ETDEWEB)

    Palmintier, Bryan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Pratt, Annabelle [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-06-01

    The Netherlands Enterprise Agency (Rijksdienst voor Ondernemend Nederland, or RVO) engaged the U.S. National Renewable Energy Laboratory (NREL) for two primary purposes: to evaluate the International Test Facility for Smart Grids (ITF) sponsored by RVO and to learn best practices for integrated test facilities from NREL's Energy Systems Integration Facility (ESIF). This report covers the ITF evaluation and is largely based on a one-week visit to the Netherlands in November 2014.

  1. Research and test facilities required in nuclear science and technology

    International Nuclear Information System (INIS)

    2009-01-01

    Experimental facilities are essential research tools both for the development of nuclear science and technology and for testing systems and materials which are currently being used or will be used in the future. As a result of economic pressures and the closure of older facilities, there are concerns that the ability to undertake the research necessary to maintain and to develop nuclear science and technology may be in jeopardy. An NEA expert group with representation from ten member countries, the International Atomic Energy Agency and the European Commission has reviewed the status of those research and test facilities of interest to the NEA Nuclear Science Committee. They include facilities relating to nuclear data measurement, reactor development, neutron scattering, neutron radiography, accelerator-driven systems, transmutation, nuclear fuel, materials, safety, radiochemistry, partitioning and nuclear process heat for hydrogen production. This report contains the expert group's detailed assessment of the current status of these nuclear research facilities and makes recommendations on how future developments in the field can be secured through the provision of high-quality, modern facilities. It also describes the online database which has been established by the expert group which includes more than 700 facilities. (authors)

  2. Ten years operating experience at the Fast Flux Test Facility: A decade of excellence

    International Nuclear Information System (INIS)

    Swaim, D.J.; Waldo, J.B.; Farabee, O.A.

    1991-07-01

    The Fast Flux Test Facility is a 400 MW(t) fast reactor cooled by three sodium loops. The Fast Flux Test Facility is managed by the Westinghouse Hanford Company for the US Department of Energy. The Fast Flux Test Facility was designed and constructed to provide irradiation testing of fuels and materials for the US Department of Energy Liquid Metal Reactor research program. Facility activities have increased to include fusion power materials testing, passive safety testing, isotope production, and international collaboration. 5 figs

  3. 200 area effluent treatment facility opertaional test report

    International Nuclear Information System (INIS)

    Crane, A.F.

    1995-01-01

    This document reports the results of the 200 Area Effluent Treatment Facility (200 Area ETF) operational testing activities. These Operational testing activities demonstrated that the functional, operational and design requirements of the 200 Area ETF have been met and identified open items which require retesting

  4. Sodium-water reaction test facility (SWAT-3)

    International Nuclear Information System (INIS)

    Shimazu, Hisashi; Ukechi, Kazutoshi; Sasakura, Kazutake; Kusunoki, Junichi

    1976-01-01

    In the development of the liquid metal cooled fast breeder reactor (LMFBR), the steam generator (SG) is considered one of the most important components. The Power Reactor and Nuclear Fuel Development Corporation (PNC) is now promoting the research and development of the SG system used with the prototype fast breeder reactor ''Monju''. In this research, the phenomena of the sodium-water reaction in the SG are the key which must be investigated for the solution of problems. The test facility (SWAT-3) simulating Monju's SG on the scale of 1/2.5 was designed, fabricated and installed by IHI at Oarai Engineering Center of PNC, its pre-operation being accomplished in February 1975. The purpose of SWAT-3 is summarized as follows: (1) To perform an overall test on the safety of Monju's SG and intermediate heat transport system under the design condition against sodium-water reaction accidents. (2) To investigate the damage of the SG structure caused by the sodium-water reaction, and the possibility of repair and recovery operations. The first test was accomplished successfully on June 9, 1975. As a result of the test, the fundamental function of this test facility was proven to be satisfactory as expected. (auth.)

  5. Test facility for rewetting experiments at CDTN

    International Nuclear Information System (INIS)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C.

    2015-01-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  6. Test facility for rewetting experiments at CDTN

    Energy Technology Data Exchange (ETDEWEB)

    Rezende, Hugo C.; Mesquita, Amir Z.; Ladeira, Luiz C.D.; Santos, Andre A.C., E-mail: hcr@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (SETRE/CDTN/CNEN-MG), Belo Horizonte, MG (Brazil). Servico de Tecnologia de Reatores

    2015-07-01

    One of the most important subjects in nuclear reactor safety analysis is the reactor core rewetting after a Loss-of-Coolant Accident (LOCA) in a Light Water Reactor LWR. Several codes for the prediction of the rewetting evolution are under development based on experimental results. In a Pressurized Water Reactor (PWR) the reflooding phase of a LOCA is when the fuel rods are rewetted from the bottom of the core to its top after having been totally uncovered and dried out. Out-of-pile reflooding experiments performed with electrical heated fuel rod simulators show different quench behavior depending the rods geometry. A test facility for rewetting experiments (ITR - Instalacao de Testes de Remolhamento) has been constructed at the Thermal Hydraulics Laboratory of the Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), with the objective of performing investigations on basic phenomena that occur during the reflood phase of a LOCA in a PWR, using tubular and annular test sections. This paper presents the design aspects of the facility, and the current stage of the works. The mechanical aspects of the installation as its instrumentation are described. Two typical tests are presented and results compered with theoretical calculations using computer code. (author)

  7. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    Directory of Open Access Journals (Sweden)

    Virpi Kouhia

    2012-01-01

    Full Text Available This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  8. PACTEL and PWR PACTEL Test Facilities for Versatile LWR Applications

    International Nuclear Information System (INIS)

    Virpi Kouhia, V.; Purhonen, H.; Riikonen, V.; Puustinen, M.; Kyrki-Rajamaki, R.; Vihavainen, J.

    2012-01-01

    This paper describes construction and experimental research activities with two test facilities, PACTEL and PWR PACTEL. The PACTEL facility, comprising of reactor pressure vessel parts, three loops with horizontal steam generators, a pressurizer, and emergency core cooling systems, was designed to model the thermal-hydraulic behaviour of VVER-440-type reactors. The facility has been utilized in miscellaneous applications and experiments, for example, in the OECD International Standard Problem ISP-33. PACTEL has been upgraded and modified on a case-by-case basis. The latest facility configuration, the PWR PACTEL facility, was constructed for research activities associated with the EPR-type reactor. A significant design basis is to utilize certain parts of PACTEL, and at the same time, to focus on a proper construction of two new loops and vertical steam generators with an extensive instrumentation. The PWR PACTEL benchmark exercise was launched in 2010 with a small break loss-of-coolant accident test as the chosen transient. Both facilities, PACTEL and PWR PACTEL, are maintained fully operational side by side.

  9. Comparison of high dose rate (HDR) and low dose rate (LDR) brachytherapy in the treatment of stage IIIB cervix cancer with radiation therapy alone. The preliminary results

    International Nuclear Information System (INIS)

    Trippe, Nivaldo; Novaes, P.E.; Ferrigno, R.; Pellizzon, A.C.; Salvajoli, J.V.; Fogaroli, R.C.; Maia, M.A.C.; Baraldi, H.E.

    1996-01-01

    Purpose/Objective: To compare the results between HDR and LDR brachytherapy in the treatment of stage IIIB cervix cancer with radiation therapy alone through a prospective and randomized trial. Materials and Methods: From September 1992 to December 1993, 65 patients with stage IIIB cervical cancer were randomized to one of the following treatment schedule according to the brachytherapy used to complement the dose of external beam radiotherapy (EBRT): 1 - High dose rate (HDR) - 36 patients - 4 weekly insertions of 6,0 Gy at point A 2 - Low dose rate (LDR) - 29 patients - 2 insertions two weeks apart of 17,5 Gy at point A The External Beam radiotherapy was performed through a Linac 4MV, in box arrangement for whole pelvis and in AP-PA fields for parametrial complementation of dose. The dose at the whole pelvis was 45 Gy in 25 fractions of 1,8 Gy and the parametrial dose was 16 Gy. The brachytherapy was realized with Fletcher colpostats and intrauterine tandem, in both arms. The HDR brachytherapy was realized through a Micro-Selectron device, working with Iridium-192 with initial activity of 10 Ci and started ten days after the beginning of EBRT. The total treatment time was shortened in two weeks for this group. The LDR brachytherapy started only after the end of EBRT. Results: With the minimum follow up of 24 months and medium of 31 months, the disease free survival was 50% among the 36 patients in HDR group and 47,8% among the 29 patients in LDR group. Local failures occurred in 50% and 52,8% respectively. Grade I and II complications were restricted to rectites and cistites and the incidence of them was 8,3% for HDR group and 13% for LDR group. Until the time of evaluation there were no grade III complications in any group. Conclusions: Although the number of patients is small and the time of follow up still short, these preliminary results suggest that the HDR brachytherapy has an equivalent efficiency in local control as the LDR in the treatment of stage IIIB

  10. The construction of solid waste form test and inspection facility

    International Nuclear Information System (INIS)

    Park, Hun Hwee; Lee, Kang Moo; Jung, In Ha; Kim, Sung Hwan; Yoo, Jeong Woo; Lee, Jong Youl; Bae, Sang Min

    1988-01-01

    The solid waste form test and inspection facility is a facility to test and inspect the characteristics of waste forms, such as homogenity, mechanical structure, thermal behaviour, water resistance and leachability. Such kinds of characteristics in waste forms are required to meet a certain conditions for long-term storage or for final disposal of wastes. The facility will be used to evaluate safety for the disposal of wastes by test and inspection. At this moment, the efforts to search the most effective management of the radioactive wastes generated from power plants and radioisotope user are being executed by the people related to this field. Therefore, the facility becomes more significant tool because of its guidance of sucessfully converting wastes into forms to give a credit to the safety of waste disposal for managing the radioactive wastes. In addition the overall technical standards for inspecting of waste forms such as the standardized equipment and processes in the facility will be estabilished in the begining of 1990's when the project of waste management will be on the stream. Some of the items of the project have been standardized for the purpose of localization. In future, this facility will be utilized not only for the inspection of waste forms but also for the periodic decontamination apparatus by remote operation techniques. (Author)

  11. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    Science.gov (United States)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  12. Latest status of the Japanese LCT coil and the domestic test facility

    International Nuclear Information System (INIS)

    Shimamoto, S.; Ando, T.; Hiyama, T.

    1981-01-01

    The Japan Atomic Energy Research Institute (JAERI), representing Japan, is now making one of six test coils for the International Energy Agency's (IEA) Large Coil Task(LCT). The Japanese LCT coil, which has a stored energy of 120 MJ, is based on a NgTi conductor, is pool-cooled, has a maximum field of 8T, and is edgewise, double-pancake wound, was completed in October, 1981. The LCT coil will be tested in the newly constructed domestic test facility up to its rated current in November, 1981, before transportation ORNL. The domestic test facility, which is composed of a cryogenic system a vacuum system, a power supply with protection system, and a data acqusition and control system, was completed and its performance measured at a new building for the LCT test at JSAERI in June, 1981. This paper describes the latest construction status of the Japanese LCT coil and the domestic test facility. The performance of the domestic test facility is described in this paper

  13. The CEA JOSEFA test facility for sub-size conductors and joints

    International Nuclear Information System (INIS)

    Decool, P.; Libeyre, P.; Van Houtte, D.; Ciazynski, D.; Zani, L.; Serries, J.P.; Cloez, H.; Bej, S.

    2003-01-01

    The JOSEFA (Joint Sub-size Experiment FAcility) experimental test facility, installed at CEA/Cadarache is devoted to perform tests at cryogenic temperature on sub-size superconducting conductor and joint samples under parallel or transverse magnetic field. This facility was built in 1993 to investigate the performances of joints of cable-in-conduit conductors at sub-size level and further upgraded in the framework of European tasks. The samples of hairpin type using sub-size ITER conductors are cooled by a circulation of supercritical helium in a temperature range from 5 to 15 K and tested at a maximum current up to 10 kA. Two different helium bath cooled magnets allow to apply DC or AC transverse magnetic field up to 3.5 T or longitudinal magnetic field up to 7.5 T. A sliding system with a 240 mm stroke on the sample cryostat allows to test separately in the same sample either the conductor or the joint performances. The paper reports on how, through the conductor and joint development tasks, the facility performances were successfully increased and tested. The ITER TFMC joints using Nb3Sn conductors were first developed on this facility. The last developments, performed on ITER PF NbTi conductors and joints proved this facility to be a versatile and useful tool for superconducting magnet developments and showed the interest of possible upgrading to finalize conductor design. (author)

  14. Implementation of the technique of partial irradiation accelerated the breast with high doses (HDR) brachytherapy; Puesta en marcha de la tecnica de irradiacion parcial acelerada de la mama con braquterapia de alta tasa de dosis (HDR)

    Energy Technology Data Exchange (ETDEWEB)

    Molina Lopez, M. Y.; Pardo Perez, E.; Castro Novais, J.; Martinez Ortega, J.; Ruiz Maqueda, S.; Cerro Penalver, E. del

    2013-07-01

    The objective of this work is presents procedure carried out in our Centre for the implementation of the accelerated partial breast irradiation (APBI, accelerated partial-breast irradiation) with high-rate brachytherapy (HDR), using plastic tubes as applicators. Carried out measures, the evaluation of the dosimetric parameters analyzing and presenting the results. (Author)

  15. An experimental investigation of 1% SBLOCA on PSB-VVER test facility

    Energy Technology Data Exchange (ETDEWEB)

    Lipatov, I.A.; Dremin, G.I.; Galtchanskaia, S.A.; Gorbunov, Yu.S. [Electrogorsk Research and Engineering Center, EREC, Electrogorsk (Russian Federation); Elkin, I.V. [Russian Research Centre Kurchatov Inst., Moscow (Russian Federation)

    2001-07-01

    The paper presents the results of the three tests carried out in the PSB-VVER large-scale integral test facility. The PSB-VVER test facility is a four loop, full pressure scaled down model bearing structural similarities to the primary system of the NRP with VVER-1000 Russian design reactor. Volume-power scale is 1/300 while elevation scale is 1/1. (orig.)

  16. Utilizing the Fast Flux Test Facility for international passive safety testing

    International Nuclear Information System (INIS)

    Shen, P.K.; Padilla, A.; Lucoff, D.M.; Waltar, A.E.

    1991-01-01

    A two-phased approach has been undertaken in the Fast Flux Test Facility (FFTF) to conduct passive safety testing. Phase I (1986 to 1987) was structured to obtain an initial understanding of the reactivity feedback components. The planned Phase II (1992 to 1993) international program will extend the testing to include static and dynamic feedback measurements, transient and demonstration tests, and gas expansion module (GEM) reactivity tests. The primary objective is to meet the needs for safety analysis code validation, with particular emphasis on reducing the uncertainties associated with structure reactivity feedback. Program scope and predicted FFTF responses are discussed and illustrated. (author)

  17. Does HDR Pre-Processing Improve the Accuracy of 3D Models Obtained by Means of two Conventional SfM-MVS Software Packages? The Case of the Corral del Veleta Rock Glacier

    Directory of Open Access Journals (Sweden)

    Álvaro Gómez-Gutiérrez

    2015-08-01

    Full Text Available The accuracy of different workflows using Structure-from-Motion and Multi-View-Stereo techniques (SfM-MVS is tested. Twelve point clouds of the Corral del Veleta rock glacier, in Spain, were produced with two different software packages (123D Catch and Agisoft Photoscan, using Low Dynamic Range images and High Dynamic Range compositions (HDR for three different years (2011, 2012 and 2014. The accuracy of the resulting point clouds was assessed using benchmark models acquired every year with a Terrestrial Laser Scanner. Three parameters were used to estimate the accuracy of each point cloud: the RMSE, the Cloud-to-Cloud distance (C2C and the Multiscale-Model-to-Model comparison (M3C2. The M3C2 mean error ranged from 0.084 m (standard deviation of 0.403 m to 1.451 m (standard deviation of 1.625 m. Agisoft Photoscan overcome 123D Catch, producing more accurate and denser point clouds in 11 out 12 cases, being this work, the first available comparison between both software packages in the literature. No significant improvement was observed using HDR pre-processing. To our knowledge, this is the first time that the geometrical accuracy of 3D models obtained using LDR and HDR compositions are compared. These findings may be of interest for researchers who wish to estimate geomorphic changes using SfM-MVS approaches.

  18. A new test facility for the E-ELT infrared detector program

    Science.gov (United States)

    Lizon, Jean Louis; Amico, Paola; Brinkmann, Martin; Delabre, Bernard; Finger, Gert; Guidolin, Ivan Maria; Guzman, Ronald; Hinterschuster, Renate; Ives, Derek; Klein, Barbara; Quattri, Marco

    2016-08-01

    During the development of the VLT instrumentation program, ESO acquired considerable expertise in the area of infrared detectors, their testing and optimizing their performance. This can mainly be attributed to a very competent team and most importantly to the availability of a very well suited test facility, namely, IRATEC. This test facility was designed more than 15 years ago, specifically for 1K × 1K detectors such as the Aladdin device, with a maximum field of only 30 mm square. Unfortunately, this facility is no longer suited for the testing of the new larger format detectors that are going to be used to equip the future E-ELT instruments. It is projected that over the next 20 years, there will be of the order of 50-100 very large format detectors to be procured and tested for use with E-ELT first and second generation instruments and VLT third generation instruments. For this reason ESO has initiated the in-house design and construction of a dedicated new IR detector arrays test facility: the Facility for Infrared Array Testing (FIAT). It will be possible to mount up to four 60 mm square detectors in the facility, as well as mosaics of smaller detectors. It is being designed to have a very low thermal background such that detectors with 5.3 μm cut-off material can routinely be tested. The paper introduces the most important use cases for which FIAT is designed: they range from performing routine performance measurements on acquired devices, optimization setups for custom applications (like spot scan intra-pixel response, persistence and surface reflectivity measurements), test of new complex operation modes (e.g. high speed subwindowing mode for low order sensing, flexure control, etc.) and the development of new tests and calibration procedures to support the scientific requirements of the E-ELT and to allow troubleshooting the unexpected challenges that arise when a new detector system is brought online. The facility is also being designed to minimize

  19. Cryogenic infrastructure for Fermilab's ILC vertical cavity test facility

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.; Fermilab

    2006-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands

  20. CRYOGENIC INFRASTRUCTURE FOR FERMILAB'S ILC VERTICAL CAVITY TEST FACILITY

    International Nuclear Information System (INIS)

    Carcagno, R.; Ginsburg, C.; Huang, Y.; Norris, B.; Ozelis, J.; Peterson, T.; Poloubotko, V.; Rabehl, R.; Sylvester, C.; Wong, M.

    2008-01-01

    Fermilab is building a Vertical Cavity Test Facility (VCTF) to provide for R and D and pre-production testing of bare 9-cell, 1.3-GHz superconducting RF (SRF) cavities for the International Linear Collider (ILC) program. This facility is located in the existing Industrial Building 1 (IB1) where the Magnet Test Facility (MTF) also resides. Helium and nitrogen cryogenics are shared between the VCTF and MTF including the existing 1500-W at 4.5-K helium refrigerator with vacuum pumping for super-fluid operation (125-W capacity at 2-K). The VCTF is being constructed in multiple phases. The first phase is scheduled for completion in mid 2007, and includes modifications to the IB1 cryogenic infrastructure to allow helium cooling to be directed to either the VCTF or MTF as scheduling demands require. At this stage, the VCTF consists of one Vertical Test Stand (VTS) cryostat for the testing of one cavity in a 2-K helium bath. Planning is underway to provide a total of three Vertical Test Stands at VCTF, each capable of accommodating two cavities. Cryogenic infrastructure improvements necessary to support these additional VCTF test stands include a dedicated ambient temperature vacuum pump, a new helium purification skid, and the addition of helium gas storage. This paper describes the system design and initial cryogenic operation results for the first VCTF phase, and outlines future cryogenic infrastructure upgrade plans for expanding to three Vertical Test Stands