WorldWideScience

Sample records for hdr brachytherapy combined

  1. Oxidative Stress Markers in Prostate Cancer Patients after HDR Brachytherapy Combined with External Beam Radiation

    OpenAIRE

    Alina Woźniak; Rafał Masiak; Michał Szpinda; Celestyna Mila-Kierzenkowska; Bartosz Woźniak; Roman Makarewicz; Anna Szpinda

    2012-01-01

    Assessment of oxidative stress markers was perfomed in prostate cancer (PCa) patients subjected to high-dose brachytherapy (HDR) with external beam radiotherapy (EBRT). Sixty men with PCa were subjected to combined two-fraction treatment with HDR (tot. 20 Gy) and EBRT (46 Gy). Blood samples were taken before treatment, immediately afterwards, after 1.5–3 months, and approx. 2 years. Control group consisted of 30 healthy men. Erythrocyte glutathione peroxidase activity in the patients was lowe...

  2. Salvage prostate HDR brachytherapy combined with interstitial hyperthermia for local recurrence after radiation therapy failure

    Energy Technology Data Exchange (ETDEWEB)

    Kukielka, A.M.; Hetnal, M.; Dabrowski, T.; Walasek, T.; Brandys, P.; Reinfuss, M. [Centre of Oncology, M. Sklodowska - Curie Institute, Krakow Branch, Department of Radiotherapy, Krakow (Poland); Nahajowski, D.; Kudzia, R.; Dybek, D. [Centre of Oncology, M. Sklodowska - Curie Institute, Krakow Branch, Department of Medical Physics, Department of Radiotherapy, Krakow (Poland)

    2014-02-15

    The aim of the present retrospective study is to evaluate toxicity and early clinical outcomes of interstitial hyperthermia (IHT) combined with high-dose rate (HDR) brachytherapy as a salvage treatment in patients with biopsy-confirmed local recurrence of prostate cancer after previous external beam radiotherapy. Between September 2008 and March 2013, 25 patients with local recurrence of previously irradiated prostate cancer were treated. The main eligibility criteria for salvage prostate HDR brachytherapy combined with interstitial hyperthermia were biopsy confirmed local recurrence and absence of nodal and distant metastases. All patients were treated with a dose of 30 Gy in 3 fractions at 21-day intervals. We performed 62 hyperthermia procedures out of 75 planned (83 %). The aim of the hyperthermia treatment was to heat the prostate to 41-43 C for 60 min. Toxicity for the organs of the genitourinary system and rectum was assessed according to the Common Terminology Criteria for Adverse Events (CTCAE, v. 4.03). Determination of subsequent biochemical failure was based on the Phoenix definition (nadir + 2 ng/ml). The median age was 71 years (range 62-83 years), the median initial PSA level was 16.3 ng/ml (range 6.37-64 ng/ml), and the median salvage PSA level was 2.8 ng/ml (1.044-25.346 ng/ml). The median follow-up was 13 months (range 4-48 months). The combination of HDR brachytherapy and IHT was well tolerated. The most frequent complications were nocturia, weak urine stream, urinary frequency, hematuria, and urgency. Grade 2 rectal hemorrhage was observed in 1 patient. No grade 3 or higher complications were observed. The 2-year Kaplan-Meier estimate of biochemical control after salvage treatment was 74 %. The PSA in 20 patients decreased below the presalvage level, while 11 patients achieved a PSA nadir < 0.5 ng/ml. All patients are still alive. Of the 7 patients who experienced biochemical failure, bone metastases were found in 2 patients. IHT in combination

  3. Oxidative Stress Markers in Prostate Cancer Patients after HDR Brachytherapy Combined with External Beam Radiation

    Directory of Open Access Journals (Sweden)

    Alina Woźniak

    2012-01-01

    Full Text Available Assessment of oxidative stress markers was perfomed in prostate cancer (PCa patients subjected to high-dose brachytherapy (HDR with external beam radiotherapy (EBRT. Sixty men with PCa were subjected to combined two-fraction treatment with HDR (tot. 20 Gy and EBRT (46 Gy. Blood samples were taken before treatment, immediately afterwards, after 1.5–3 months, and approx. 2 years. Control group consisted of 30 healthy men. Erythrocyte glutathione peroxidase activity in the patients was lower than in healthy subjects by 34% (, 50% (, 30% (, and 61% (, respectively, at all periods. No significant differences were found by comparing superoxide dismutase and catalase activity in PCa patients with that of the controls. After 2 years of the end of treatment, the activity of studied enzymes demonstrated a decreasing tendency versus before therapy. Blood plasma thiobarbituric acid reactive substances (TBARS concentration was higher than in the controls at all periods, while erythrocyte TBARS decreased after 2 years to control levels. The results confirm that in the course of PCa, imbalance of oxidant-antioxidant processes occurs. The therapy did not alter the levels of oxidative stress markers, which may prove its applicability. Two years is too short a period to restore the oxidant-antioxidant balance.

  4. Interactive, multi-modality image registrations for combined MRI/MRSI-planned HDR prostate brachytherapy

    Directory of Open Access Journals (Sweden)

    Galen Reed

    2011-03-01

    Full Text Available Purpose: This study presents the steps and criteria involved in the series of image registrations used clinically during the planning and dose delivery of focal high dose-rate (HDR brachytherapy of the prostate. Material and methods: Three imaging modalities – Magnetic Resonance Imaging (MRI, Magnetic Resonance Spectroscopic Imaging (MRSI, and Computed Tomography (CT – were used at different steps during the process. MRSI is used for identification of dominant intraprosatic lesions (DIL. A series of rigid and nonrigid transformations were applied to the data to correct for endorectal-coil-induced deformations and for alignment with the planning CT. Mutual information was calculated as a morphing metric. An inverse planning optimization algorithm was applied to boost dose to the DIL while providing protection to the urethra, penile bulb, rectum, and bladder. Six prostate cancer patients were treated using this protocol. Results: The morphing algorithm successfully modeled the probe-induced prostatic distortion. Mutual information calculated between the morphed images and images acquired without the endorectal probe showed a significant (p = 0.0071 increase to that calculated between the unmorphed images and images acquired without the endorectal probe. Both mutual information and visual inspection serve as effective diagnostics of image morphing. The entire procedure adds less than thirty minutes to the treatment planning. Conclusion: This work demonstrates the utility of image transformations and registrations to HDR brachytherapy of prostate cancer.

  5. SU-F-BRA-05: Utility of the Combined Use of Two Types of HDR Sources with the Direction Modulation Brachytherapy (DMBT) Tandem Applicator for Cervical Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); Han, D [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, Nevada (United States); Scanderbeg, D [UCSD Medical Center, La Jolla, CA (United States)

    2015-06-15

    Purpose: To maximize the dose to HRCTV while minimizing dose to the OARs, the combination of two HDR brachytherapy sources, 192-Ir and 169-Yb, used in combination with the recently-proposed novel direction modulated brachytherapy (DMBT) tandem applicator were examined. Methods: The DMBT tandem, made from nonmagnetic tungsten-alloy rod, with diameter of 5.4mm, has 6 symmetric peripheral holes of 1.3mm diameter. The 0.3mm thick bio-compatible plastic tubing wraps the tandem. MCNPX v.2.6 was used to simulate the mHDR 192-Ir V2 and 4140 HDR 169-Yb sources inside the DMBT applicator. Thought was by combining the higher energy 192-Ir (380keV) and lower energy 169-Yb (92.7keV) sources could create unprecedented level of dose conformality when combined with the high-degree intensity modulation capable DMBT tandem applicator. 3D dose matrices, with 1 mm3 resolution, were imported into an in-house-coded inverse optimization planning system to evaluate plan quality of 19 clinical patient cases. Prescription dose was 15Gy. All plans were normalized to receive the same HRCTV D90. Results: Generally, the use of dual sources produced better plans than using either of the sources alone, with significantly better performance in some patients. The mean D2cc for bladder, rectum, and sigmoid were 11.65±2.30Gy, 7.47±3.05Gy, and 9.84±2.48Gy for 192-Ir-only, respectively. For 169 -Yb-only, they were 11.67±2.26Gy, 7.44±3.02Gy, and 9.83±2.38Gy, respectively. The corresponding data for the dual sources were 11.51±2.24Gy, 7.30±3.00Gy, and 9.68 ±2.39Gy, respectively. The HRCTV D98 and V100 were 16.37±1.86Gy and 97.37±1.92Gy for Ir-192-only, respectively. For 169-Yb-only, they were 16.43±1.86Gy, and 97.51±1.91Gy, respectively. For the dual source, they were 16.42±1.87Gy and 97.47±1.93Gy, respectively. Conclusion: The plan quality improves, in some cases quite significantly, for when dual 192-Ir and 169-Yb sources are used in combination with highly intensity modulation capable

  6. CT-based interstitial HDR brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kolotas, C.; Baltas, D.; Zamboglou, N. [Staedtische Kliniken Offenbach (Germany). Strahlenklinik

    1999-09-01

    Purpose: Development, application and evaluation of a CT-guided implantation technique and a fully CT-based treatment planning procedure for brachytherapy. Methods and Materials: A brachytherapy procedure based on CT-guided implantation technique and CT-based treatment planning has been developed and clinical evaluated. For this purpose a software system (PROMETHEUS) for the 3D reconstruction of brachytherapy catheters and patient anatomy using only CT scans has been developed. An interface for the Nucletron PLATO BPS treatment planning system for optimization and calculation of dose distribution has been devised. The planning target volume(s) are defined as sets of points using contouring tools and are used for optimization of the 3D dose distribution. Dose-volume histogram based analysis of the dose distribution (COIN analysis) enables a clinically realistic evaluation of the brachytherapy application to be made. The CT-guided implantation of catheters and the CT-based treatment planning procedure has been performed for interstitial brachytherapy and for different tumor sites in 197 patients between 1996 and 1997. Results: The accuracy of the CT reconstruction was tested using first a quality assurance phantom and second, a simulated interstitial implant of 12 needles. These were compared with the results of reconstruction using radiographs. Both methods gave comparable results with regard to accuracy, but the CT based reconstruction was faster. Clinical feasibility was proved in pre-irradiated recurrences of brain tumors, in pretreated recurrences or metastatic disease, and in breast carcinomas. The tumor volumes treated were in the range 5.1 to 2,741 cm{sup 3}. Analysis of implant quality showed a slightly significant lower COIN value for the bone implants, but no differences with respect to the planning target volume. Conclusions: The Offenbach system, incorporating the PROMETHEUS software for interstitial HDR brachytherapy has proved to be extremely valuable

  7. Interstitial brachytherapy for carcinoma of the tongue using microselectron-HDR

    Energy Technology Data Exchange (ETDEWEB)

    Shimizutani, Kimishige; Koseki, Yonoshin [Osaka Dental Univ. (Japan); Inoue, Toshihiko; Inoue, Takehiro; Yoshida, Ken; Kakimoto, Naoya; Murakami, Shumei; Furukawa, Souhei; Tanaka, Yoshihiro

    2001-12-01

    The purpose of this study was to analyse the treatment results of high dose rate (HDR) interstital brachytherapy (ISBT) for early (T1N0, T2N0) mobile tongue cancer using micorSelectron-HDR. From January 1993 through January 1999, a total of 63 patients with squamous cell carcinomas of the early mobile tongue were treated with microSelectron-HDR (HDR: high dose rate) interstitial brachytherapy at the Department of Radiology, Osaka University Medical School. Tumors were located at the lateral border and ventral surface of the mobile tongue. Nineteen percent of all cases were treated with a combination of prior external radiation and HDR ISBT. Eighty-one percent of all cases were treated with HDR ISBT alone. In the case of HDR ISBT alone, all of which were administered a total dose of 54 Gy/9 fractions/5 days or 60 Gy/10 fractions/8 days. In a combined therapy with an external dose of 30 Gy to 40 Gy, HDR ISBT was given at a total dose of 42-48 Gy. The local control rate was 84% for HDR ISBT alone and 75% for combined therapy. The difference in the results of HDR ISBT alone and combined therapy was not significant. Nodal metastasis of patients with T1 was 29% (5/17), and that of T2 was 47% (16/34) in the HDR ISBT-alone group and 25% (3/12) in the combined therapy group. HDR ISBT is useful and easily applied under local anesthesia to early or superficial lesions of the mobile tongue. In addition, this method can eliminate radiation exposure to the medical staff. (author)

  8. Intraoperative HDR Brachytherapy: Present and Future

    NARCIS (Netherlands)

    I.-K.K. Kolkman-Deurloo (Inger-Karina)

    2007-01-01

    textabstractRadiotherapy is one of the most effective modalities in cancer treatment, and can be applied either by external beam radiotherapy or by brachytherapy. Brachytherapy is a treatment modality in which tumors are irradiated by positioning radioactive sources very close to or in the tumor

  9. Intraoperative HDR Brachytherapy: Present and Future

    NARCIS (Netherlands)

    I.-K.K. Kolkman-Deurloo (Inger-Karina)

    2007-01-01

    textabstractRadiotherapy is one of the most effective modalities in cancer treatment, and can be applied either by external beam radiotherapy or by brachytherapy. Brachytherapy is a treatment modality in which tumors are irradiated by positioning radioactive sources very close to or in the tumor vol

  10. BrachyView, a novel in-body imaging system for HDR prostate brachytherapy: Experimental evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Safavi-Naeini, M.; Han, Z.; Alnaghy, S.; Cutajar, D.; Petasecca, M.; Lerch, M. L. F.; Rosenfeld, A. B., E-mail: anatoly@uow.edu.au [Centre for Medical Radiation Physics, University of Wollongong, Wollongong 2522 (Australia); Franklin, D. R. [Faculty of Engineering and Information Technology, University of Technology, Sydney 2007 (Australia); Bucci, J. [St George Hospital Cancer Care Centre, Kogarah 2217 (Australia); Carrara, M. [Fondazione IRCCS Istituto Nazionale dei Tumori, Milan 20133 (Italy); Zaider, M. [Memorial Sloan Kettering Cancer Center, New York, New York 10065 (United States)

    2015-12-15

    Purpose: This paper presents initial experimental results from a prototype of high dose rate (HDR) BrachyView, a novel in-body source tracking system for HDR brachytherapy based on a multipinhole tungsten collimator and a high resolution pixellated silicon detector array. The probe and its associated position estimation algorithms are validated and a comprehensive evaluation of the accuracy of its position estimation capabilities is presented. Methods: The HDR brachytherapy source is moved through a sequence of positions in a prostate phantom, for various displacements in x, y, and z. For each position, multiple image acquisitions are performed, and source positions are reconstructed. Error estimates in each dimension are calculated at each source position and combined to calculate overall positioning errors. Gafchromic film is used to validate the accuracy of source placement within the phantom. Results: More than 90% of evaluated source positions were estimated with an error of less than one millimeter, with the worst-case error being 1.3 mm. Experimental results were in close agreement with previously published Monte Carlo simulation results. Conclusions: The prototype of HDR BrachyView demonstrates a satisfactory level of accuracy in its source position estimation, and additional improvements are achievable with further refinement of HDR BrachyView’s image processing algorithms.

  11. Source geometry factors for HDR 192Ir brachytherapy secondary standard well-type ionization chamber calibrations

    Science.gov (United States)

    Shipley, D. R.; Sander, T.; Nutbrown, R. F.

    2015-03-01

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) 192Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated 192Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR 192Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, ksg, is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR 192Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR 192Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR 192Ir Flexisource ksg was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  12. Dosimetry revisited for the HDR {sup 192}Ir brachytherapy source model mHDR-v2

    Energy Technology Data Exchange (ETDEWEB)

    Granero, Domingo; Vijande, Javier; Ballester, Facundo; Rivard, Mark J. [Radiation Physics Department, ERESA, Hospital General Universitario, E-46014 Valencia (Spain); Department of Atomic, Molecular, and Nuclear Physics, University of Valencia, E-46100 Burjassot (Spain) and IFIC, CSIC-University of Valencia, E-46100 Burjassot (Spain); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2011-01-15

    Purpose: Recently, the manufacturer of the HDR {sup 192}Ir mHDR-v2 brachytherapy source reported small design changes (referred to herein as mHDR-v2r) that are within the manufacturing tolerances but may alter the existing dosimetric data for this source. This study aimed to (1) check whether these changes affect the existing dosimetric data published for this source; (2) obtain new dosimetric data in close proximity to the source, including the contributions from {sup 192}Ir electrons and considering the absence of electronic equilibrium; and (3) obtain scatter dose components for collapsed cone treatment planning system implementation. Methods: Three different Monte Carlo (MC) radiation transport codes were used: MCNP5, PENELOPE2008, and GEANT4. The source was centrally positioned in a 40 cm radius water phantom. Absorbed dose and collision kerma were obtained using 0.1 mm (0.5 mm) thick voxels to provide high-resolution dosimetry near (far from) the source. Dose-rate distributions obtained with the three MC codes were compared. Results: Simulations of mHDR-v2 and mHDR-v2r designs performed with three radiation transport codes showed agreement typically within 0.2% for r{>=}0.25 cm. Dosimetric contributions from source electrons were significant for r<0.25 cm. The dose-rate constant and radial dose function were similar to those from previous MC studies of the mHDR-v2 design. The 2D anisotropy function also coincided with that of the mHDR-v2 design for r{>=}0.25 cm. Detailed results of dose distributions and scatter components are presented for the modified source design. Conclusions: Comparison of these results to prior MC studies showed agreement typically within 0.5% for r{>=}0.25 cm. If dosimetric data for r<0.25 cm are not needed, dosimetric results from the prior MC studies will be adequate.

  13. Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer.

    Science.gov (United States)

    Murali, V; Kurup, P G G; Mahadev, P; Mahalakshmi, S

    2010-04-01

    Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT) and intensity modulated radiotherapy (IMRT) are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR) with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR), namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage.

  14. Dosimetric analysis and comparison of IMRT and HDR brachytherapy in treatment of localized prostate cancer

    Directory of Open Access Journals (Sweden)

    Murali V

    2010-01-01

    Full Text Available Radical radiotherapy is one of the options for the management of prostate cancer. In external beam therapy, 3D conformal radiotherapy (3DCRT and intensity modulated radiotherapy (IMRT are the options for delivery of increased radiation dose, as vital organs are very close to the prostate and a higher dose to these structures leads to an increased toxicity. In brachytherapy, low dose rate brachytherapy with permanent implant of radioactive seeds and high dose rate brachytherapy (HDR with remote after loaders are available. A dosimetric analysis has been made on IMRT and HDR brachytherapy plans. Ten cases from each IMRT and HDR brachytherapy have been taken for the study. The analysis includes comparison of conformity and homogeneity indices, D100, D95, D90, D80, D50, D10 and D5 of the target. For the organs at risk (OAR, namely rectum and bladder, V100, V90 and V50 are compared. In HDR brachytherapy, the doses to 1 cc and 0.1 cc of urethra have also been studied. Since a very high dose surrounds the source, the 300% dose volumes in the target and within the catheters are also studied in two plans, to estimate the actual volume of target receiving dose over 300%. This study shows that the prescribed dose covers 93 and 92% of the target volume in IMRT and HDR brachytherapy respectively. HDR brachytherapy delivers a much lesser dose to OAR, compared to the IMRT. For rectum, the V50 in IMRT is 34.0cc whilst it is 7.5cc in HDR brachytherapy. With the graphic optimization tool in HDR brachytherapy planning, the dose to urethra could be kept within 120% of the target dose. Hence it is concluded that HDR brachytherapy may be the choice of treatment for cancer of prostate in the early stage.

  15. Thermal dosimetry analysis combined with patient-specific thermal modeling of clinical interstitial ultrasound hyperthermia integrated within HDR brachytherapy for treatment of locally advanced prostate cancer

    Science.gov (United States)

    Salgaonkar, Vasant A.; Wootton, Jeff; Prakash, Punit; Scott, Serena; Hsu, I. C.; Diederich, Chris J.

    2017-03-01

    This study presents thermal dosimetry analysis from clinical treatments where ultrasound hyperthermia (HT) was administered following high-dose rate (HDR) brachytherapy treatment for locally advanced prostate cancer as part of a clinical pilot study. HT was administered using ultrasound applicators from within multiple 13-g brachytherapy catheters implanted along the posterior periphery of the prostate. The heating applicators were linear arrays of sectored tubular transducers (˜7 MHz), with independently powered array elements enabling energy deposition with 3D spatial control. Typical heat treatments employed time-averaged peak acoustic intensities of 1 - 3 W/cm2 and lasted for 60 - 70 minutes. Throughout the treatments, temperatures at multiple points were monitored using multi-junction thermocouples, placed within available brachytherapy catheters throughout mid-gland prostate and identified as the hyperthermia target volume (HTV). Clinical constraints allowed placement of 8 - 12 thermocouple sensors in the HTV and patient-specific 3D thermal modeling based on finite element methods (FEM) was used to supplement limited thermometry. Patient anatomy, heating device positions, orientations, and thermometry junction locations were obtained from patient CT scans and HDR and hyperthermia planning software. The numerical models utilized the applied power levels recorded during the treatments. Tissue properties such as perfusion and acoustic absorption were varied within physiological ranges such that squared-errors between measured and simulated temperatures were minimized. This data-fitting was utilized for 6 HT treatments to estimate volumetric temperature distributions achieved in the HTV and surrounding anatomy devoid of thermocouples. For these treatments, the measured and simulated T50 values in the hyperthermia target volume (HTV) were between 40.1 - 43.9 °C and 40.3 - 44.9 °C, respectively. Maximum temperatures between 46.8 - 49.8 °C were measured during

  16. Pudendal nerve block in HDR-brachytherapy patients: do we really need general or regional anesthesia?

    Science.gov (United States)

    Schenck, Marcus; Schenck, Catarina; Rübben, Herbert; Stuschke, Martin; Schneider, Tim; Eisenhardt, Andreas; Rossi, Roberto

    2013-04-01

    In male patients, the pudendal block was applied only in rare cases as a therapy of neuralgia of the pudendal nerve. We compared pudendal nerve block (NPB) and combined spinal-epidural anesthesia (CSE) in order to perform a pain-free high-dose-rate (HDR) brachytherapy in a former pilot study in 2010. Regarding this background, in the present study, we only performed the bilateral perineal infiltration of the pudendal nerve. In 25 patients (71.8 ± 4.18 years) suffering from a high-risk prostate carcinoma, we performed the HDR-brachytherapy with the NPB. The perioperative compatibility, the subjective feeling (German school marks principle 1-6), subjective pain (VAS 1-10) and the early postoperative course (mobility, complications) were examined. All patients preferred the NPB. There was no change of anesthesia form necessary. The expense time of NPB was 10.68 ± 2.34 min. The hollow needles (mean 24, range 13-27) for the HDR-brachytherapy remained on average 79.92 ± 12.41 min. During and postoperative, pain feeling was between 1.4 ± 1.08 and 1.08 ± 1.00. A transurethral 22 French Foley catheter was left in place for 6 h. All patients felt the bladder catheter as annoying, but they considered postoperative mobility as more important as complete lack of pain. The subjective feeling was described as 2.28 ± 0.74. Any side effects or complications did not appear. Bilateral NPB is a safe and effective analgesic option in HDR-brachytherapy and can replace CSE. It offers the advantage of almost no impaired mobility of the patient and can be performed by the urologist himself. Using transrectal ultrasound guidance, the method can be learned quickly.

  17. Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Calatayud, J [Department of Atomic, Molecular and Nuclear Physics, and IFIC, CSIC-University of Valencia, Burjassot (Spain); Granero, D [Department of Atomic, Molecular and Nuclear Physics, and IFIC, CSIC-University of Valencia, Burjassot (Spain); Ballester, F [Department of Atomic, Molecular and Nuclear Physics, and IFIC, CSIC-University of Valencia, Burjassot (Spain); Casal, E [Department of Atomic, Molecular and Nuclear Physics, and IFIC, CSIC-University of Valencia, Burjassot (Spain); Crispin, V [FIVO, Fundacion Instituto Valenciano De OncologIa, Valencia (Spain); Puchades, V [Grupo IMO-SFA, Madrid (Spain); Leon, A [Department of Chemistry and Nuclear Engineering, Polytechnic University of Valencia, Valencia (Spain); Verdu, G [Department of Chemistry and Nuclear Engineering, Polytechnic University of Valencia, Valencia (Spain)

    2004-12-21

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater. (note)

  18. WE-E-BRD-01: HDR Brachytherapy I: Overview of Clinical Application and QA

    Energy Technology Data Exchange (ETDEWEB)

    Libby, B [University of Virginia, Charlottesville, VA (United States); Showalter, T

    2014-06-15

    With the increased usage of high dose rate (HDR) brachytherapy and the introduction of dedicated image guided brachytherapy suites, it is necessary to review the processes and procedures associated with safely delivering these treatments in the expedited time scales that dedicated treatment suites afford. The speakers will present the clinical aspects of switching from LDR to HDR treatments, including guidelines for patient selection, and the clinical outcomes comparing LDR to HDR. The speakers will also discuss the HDR treatment process itself, because the shortened clinical timeline involved with a streamlined scan/plan/treat workflow can introduce other issues. Safety and QA aspects involved with the streamlined process, including increased personnel required for parallel tasks, and possible interfering tasks causing delays in patient treatments will also be discussed. Learning Objectives: To understand the clinical aspects of HDR Brachytherapy, including common clinical indications, patient selection, and the evolving evidence in support of this therapeutic modality To review the current prominent clinical trials for HDR brachytherapy To interpret the established guidelines for HDR brachytherapy quality assurance for implementation into practical clinical settings. To introduce the basic requirements for image guided brachytherapy.

  19. Simultaneous radiochemotherapy and endoluminal HDR brachytherapy in esophageal cancer; Simultane Radiochemotherapie mit intraluminaler HDR-Brachytherapie des Oesophaguskarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Patonay, P.; Naszaly, A.; Mayer, A. [Hauptstaedtisches Zentrum fuer Radioonkologie und Strahlentherapie, Budapest (Hungary)

    2007-02-15

    Purpose: to study efficacy and toxicity of radiochemotherapy in esophageal cancer including initial endoluminal high-dose-rate brachytherapy (HDR-BT). Patients and methods: between 01/1995 and 06/2005, 61 patients with esophageal cancer were treated preoperatively with definitive and palliative intent. Treatment started with intraluminal HDR-BT for recanalization of the esophagus (single fraction size of 8 Gy in 0.5 cm depth, three times, q7d) followed by external-beam radiation therapy (50 Gy total dose, 5 x 2 Gy/week, 25 fractions in 5 weeks). Chemotherapy was started simultaneously with external irradiation (three courses of cisplatin and 5-fluorouracil, q21d). Results: swallowing function improved in 55/61 patients (dysphagia classification according to the RTOG), and worsened in 6/61 patients, respectively. Median duration of symptomatic improvement was 11 months, median follow-up 12 months (range 3-68 months). Following simultaneous radiochemotherapy, tumor resectability was achieved in 7/25 patients of the neoadjuvant group, and the histological specimen showed complete remission in 6/7 patients. Conclusion: these results indicate a favorable effect of simultaneous radiochemotherapy starting with endoluminal HDR-after-loading-(AL-)BT in esophageal cancer. (orig.)

  20. MRS-guided HDR brachytherapy boost to the dominant intraprostatic lesion in high risk localised prostate cancer

    Directory of Open Access Journals (Sweden)

    Kazi Aleksandra

    2010-09-01

    Full Text Available Abstract Background It is known that the vast majority of prostate cancers are multifocal. However radical radiotherapy historically treats the whole gland rather than individual cancer foci. Magnetic resonance spectroscopy (MRS can be used to non-invasively locate individual cancerous tumours in prostate. Thus an intentionally non-uniform dose distribution treating the dominant intraprostatic lesion to different dose levels than the remaining prostate can be delivered ensuring the maximum achievable tumour control probability. The aim of this study is to evaluate, using radiobiological means, the feasibility of a MRS-guided high dose rate (HDR brachytherapy boost to the dominant lesion. Methods Computed tomography and MR/MRS were performed for treatment planning of a high risk localised prostate cancer. Both were done without endorectal coil, which distorts shape of prostate during the exams. Three treatment plans were compared: - external beam radiation therapy (EBRT only - combination of EBRT and HDR brachytherapy - combination of EBRT and HDR brachytherapy with a synchronous integrated boost to the dominant lesion The criteria of plan comparison were: the minimum, maximum and average doses to the targets and organs at risk; dose volume histograms; biologically effective doses for organs at risk and tumour control probability for the target volumes consisting of the dominant lesion as detected by MR/MRS and the remaining prostate volume. Results Inclusion of MRS information on the location of dominant lesion allows a safe increase of the dose to the dominant lesion while dose to the remaining target can be even substantially decreased keeping the same, high tumour control probability. At the same time an improved urethra sparing was achieved comparing to the treatment plan using a combination of EBRT and uniform HDR brachytherapy. Conclusions MRS-guided HDR brachytherapy boost to dominant lesion has the potential to spare the normal tissue

  1. Gafchromic film dosimetry of a new HDR  192Ir brachytherapy source

    National Research Council Canada - National Science Library

    Ayoobian, Navid; Asl, Akbar Sarabi; Poorbaygi, Hosein; Javanshir, Mohammad Reza

    2016-01-01

    High‐dose‐rate (HDR) brachytherapy is a popular modality for treating cancers of the prostate, cervix, endometrium, breast, skin, bronchus, esophagus, and head and neck as well as soft‐tissue sarcomas...

  2. Penile cancer brachytherapy HDR mould technique used at the Holycross Cancer Center

    OpenAIRE

    Matys, Robert; Kubicka-Mendak, Iwona; Łyczek, Jarosław; Pawłowski, Piotr; Stawiarska, Iwona; Miedzinska, Joanna; Banatkiewicz, Paweł; Łaskawska-Wiatr, Aldona; Wittych, Justyna

    2011-01-01

    The aim of this pictorial essay is to present the mould based HDR brachytherapy technique used at the Holycross Cancer Center for penile cancer patients. We use images to describe this method step by step.

  3. Penile cancer brachytherapy HDR mould technique used at the Holycross Cancer Center.

    Science.gov (United States)

    Matys, Robert; Kubicka-Mendak, Iwona; Lyczek, Jarosław; Pawłowski, Piotr; Stawiarska, Iwona; Miedzinska, Joanna; Banatkiewicz, Paweł; Laskawska-Wiatr, Aldona; Wittych, Justyna

    2011-12-01

    The aim of this pictorial essay is to present the mould based HDR brachytherapy technique used at the Holycross Cancer Center for penile cancer patients. We use images to describe this method step by step.

  4. Prostate Specific Antigen (PSA as Predicting Marker for Clinical Outcome and Evaluation of Early Toxicity Rate after High-Dose Rate Brachytherapy (HDR-BT in Combination with Additional External Beam Radiation Therapy (EBRT for High Risk Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Thorsten H. Ecke

    2016-11-01

    Full Text Available High-dose-rate brachytherapy (HDR-BT with external beam radiation therapy (EBRT is a common treatment option for locally advanced prostate cancer (PCa. Seventy-nine male patients (median age 71 years, range 50 to 79 with high-risk PCa underwent HDR-BT following EBRT between December 2009 and January 2016 with a median follow-up of 21 months. HDR-BT was administered in two treatment sessions (one week interval with 9 Gy per fraction using a planning system and the Ir192 treatment unit GammaMed Plus iX. EBRT was performed with CT-based 3D-conformal treatment planning with a total dose administration of 50.4 Gy with 1.8 Gy per fraction and five fractions per week. Follow-up for all patients was organized one, three, and five years after radiation therapy to evaluate early and late toxicity side effects, metastases, local recurrence, and prostate-specific antigen (PSA value measured in ng/mL. The evaluated data included age, PSA at time of diagnosis, PSA density, BMI (body mass index, Gleason score, D’Amico risk classification for PCa, digital rectal examination (DRE, PSA value after one/three/five year(s follow-up (FU, time of follow-up, TNM classification, prostate volume, and early toxicity rates. Early toxicity rates were 8.86% for gastrointestinal, and 6.33% for genitourinary side effects. Of all treated patients, 84.81% had no side effects. All reported complications in early toxicity were grade 1. PSA density at time of diagnosis (p = 0.009, PSA on date of first HDR-BT (p = 0.033, and PSA on date of first follow-up after one year (p = 0.025 have statistical significance on a higher risk to get a local recurrence during follow-up. HDR-BT in combination with additional EBRT in the presented design for high-risk PCa results in high biochemical control rates with minimal side-effects. PSA is a negative predictive biomarker for local recurrence during follow-up. A longer follow-up is needed to assess long-term outcome and toxicities.

  5. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator

    OpenAIRE

    Chin-Hui Wu; Yi-Jen Liao; An-Cheng Shiau; Hsin-Yu Lin; Yen-Wan Hsueh Liu; Shih-Ming Hsu

    2015-01-01

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR 192Ir dose distribution in cervical can...

  6. Interstitial HDR-brachytherapy of unresectable pancreatic carcinoma by 3D-CT-planning in combination with external beam radiation and chemotherapy, methodology and clinical results; 3D-CT-geplante interstitielle HDR-Brachytherapie + perkutane Bestrahlung und Chemotherapie bei inoperablen Pankreaskarzinomen. Methodik und klinische Ergebnisse

    Energy Technology Data Exchange (ETDEWEB)

    Pfreundner, L.; Baier, K.; Schwab, F.; Willner, J.; Bratengeier, K.; Flentje, M. [Wuerzburg Univ. (Germany). Klinik fuer Strahlentherapie; Feustel, H. [Chirurgische Abt. der Missionsaerztlichen Klinik, Wuerzburg (Germany); Fuchs, K.H. [Chirurgische Universitaetsklinik, Wuerzburg (Germany)

    1998-03-01

    Nineteen patients (9 female, 10 male, median age 67 years) with unresectable carcinoma of the pancreas have been treated with interstitial brachytherapy. Distribution according to UICC stages showed 4, 10 and 5 patients in stage II to IV respectively. In all cases afterloading technique with 192-iridium in HDR-modus was used. A total dose of 10 to 34 Gy to the reference isodose was delivered (single dose 1.88 to 5 Gy, median 2.5 Gy). Brachytherapy was followed by external radiotherapy, delivering an additional dose of 40 to 58 Gy. Nine patients received simultaneous chemotherapy (5-fluorouracil, leucovorin). Treatment planning was performed based on CT scans, allowing spatial correlation of isodose curves to the patient`s anatomy. Median survival time was 6 months. A trend of lower survival rates with advanced stage of disease (median survival stage IV 4 months, stage II and III 6.5 months) was seen. Local control rate was 70%. Brachytherapy treatment was well tolerated, severe acute side effects were not observed. One patient developed pancreatic fistulae 4 months and 1 patient a gastric ulcer 7 months after treatment. Pain release was achieved in all patients. (orig./MG) [Deutsch] 19 Patienten (neun Frauen, zehn Maenner) mit einem inoperablen Adenokarzinom des Pankreas (UICC-Stadium IV n=5, Stadium III n=10, Stadium II n=4) im Alter von median 67 Jahren wurden mit einer interstitiellen Brachytherapie mit 192-Iridium HDR im Afterloadingverfahren behandelt. Die auf die Referenzisodose eingestrahlten Dosen lagen zwischen 10 und 34 Gy, bei Einzeldosen von 1,88 bis 5 Gy (median 2,0 Gy). Der interstitiellen Therapie schloss sich eine perkutane Radiatio mit Gesamtdosen zwischen 40 und 58 Gy an. Bei neun Patienten wurde zusaetzlich eine Chemotherapie mit 5-Fluorouracil und Leucovorin appliziert. Fuer die interstitielle Brachytherapie wurde ein CT-gestuetztes Planungsverfahren angewandt, das eine raeumliche Zuordnung der Isodosenverteilung zur Patientenanatomie gestattet

  7. Source geometry factors for HDR ¹⁹²Ir brachytherapy secondary standard well-type ionization chamber calibrations.

    Science.gov (United States)

    Shipley, D R; Sander, T; Nutbrown, R F

    2015-03-21

    Well-type ionization chambers are used for measuring the source strength of radioactive brachytherapy sources before clinical use. Initially, the well chambers are calibrated against a suitable national standard. For high dose rate (HDR) (192)Ir, this calibration is usually a two-step process. Firstly, the calibration source is traceably calibrated against an air kerma primary standard in terms of either reference air kerma rate or air kerma strength. The calibrated (192)Ir source is then used to calibrate the secondary standard well-type ionization chamber. Calibration laboratories are usually only equipped with one type of HDR (192)Ir source. If the clinical source type is different from that used for the calibration of the well chamber at the standards laboratory, a source geometry factor, k(sg), is required to correct the calibration coefficient for any change of the well chamber response due to geometric differences between the sources. In this work we present source geometry factors for six different HDR (192)Ir brachytherapy sources which have been determined using Monte Carlo techniques for a specific ionization chamber, the Standard Imaging HDR 1000 Plus well chamber with a type 70010 HDR iridium source holder. The calculated correction factors were normalized to the old and new type of calibration source used at the National Physical Laboratory. With the old Nucletron microSelectron-v1 (classic) HDR (192)Ir calibration source, ksg was found to be in the range 0.983 to 0.999 and with the new Isodose Control HDR (192)Ir Flexisource k(sg) was found to be in the range 0.987 to 1.004 with a relative uncertainty of 0.4% (k = 2). Source geometry factors for different combinations of calibration sources, clinical sources, well chambers and associated source holders, can be calculated with the formalism discussed in this paper.

  8. SU-F-BRA-04: Prostate HDR Brachytherapy with Multichannel Robotic System

    Energy Technology Data Exchange (ETDEWEB)

    Joseph, F Maria; Podder, T [University Hospitals Case Medical Center, Cleveland, OH (United States); Yu, Y [Thomas Jefferson University, Philadelphia, PA (United States)

    2015-06-15

    Purpose: High-dose-rate (HDR) brachytherapy is gradually becoming popular in treating patients with prostate cancers. However, placement of the HDR needles at desired locations into the patient is challenging. Application of robotic system may improve the accuracy of the clinical procedure. This experimental study is to evaluate the feasibility of using a multichannel robotic system for prostate HDR brachytherapy. Methods: In this experimental study, the robotic system employed was a 6-DOF Multichannel Image-guided Robotic Assistant for Brachytherapy (MIRAB), which was designed and fabricated for prostate seed implantation. The MIRAB has the provision of rotating 16 needles while inserting them. Ten prostate HDR brachytherapy needles were simultaneously inserted using MIRAB into a commercially available prostate phantom. After inserting the needles into the prostate phantom at desired locations, 2mm thick CT slices were obtained for dosimetric planning. HDR plan was generated using Oncetra planning system with a total prescription dose of 34Gy in 4 fractions. Plan quality was evaluated considering dose coverage to prostate and planning target volume (PTV), with 3mm margin around prostate, as well as the dose limit to the organs at risk (OARs) following the American Brachytherapy Society (ABS) guidelines. Results: From the CT scan, it is observed that the needles were inserted straight into the desired locations and they were adequately spaced and distributed for a clinically acceptable HDR plan. Coverage to PTV and prostate were about 91% (V100= 91%) and 96% (V100=96%), respectively. Dose to 1cc of urethra, rectum, and bladder were within the ABS specified limits. Conclusion: The MIRAB was able to insert multiple needles simultaneously into the prostate precisely. By controlling the MIRAB to insert all the ten utilized needles into the prostate phantom, we could achieve the robotic HDR brachytherapy successfully. Further study for assessing the system

  9. IMMEDIATE RESULTS OF CONFORMIC HDR BRACHYTHERAPY USING THE MULTISOURCE APPARATUS FOR ORAL MUCOSAL TUMORS

    Directory of Open Access Journals (Sweden)

    A. A. Lozhkov

    2012-01-01

    Full Text Available In February to August 2011, the Chelyabinsk District Clinical Oncology Dispensary performed combined radiotherapy using conformic HDR brachytherapy (BT with daily dose fractionaton on a Multisource apparatus in 10 patients with squamous cell carcinoma of the oral mucosa. An algorithm for planning conformic BT was developed, by combining the data of multislice spiral computed tomography and magnetic resonance imaging, by using the inverse procedures for dose calculation, and by choosing the parameters of plan assessment. No complications or severe toxic reactions were noted. The immediate results of the treatment were studied. A complete effect was obtained in 4 patients with Stages I−II. There was process stabilization in 2 patients and continued tumor growth in 1 case. Recurrent tumor was diagnosed in 2 cases following 3 and 9 months. The enhanced efficiency of BT was associated with the increased accuracy of tumor imaging.

  10. HDR Brachytherapy in the Management of High-Risk Prostate Cancer

    Directory of Open Access Journals (Sweden)

    Susan Masson

    2012-01-01

    Full Text Available High-dose-rate (HDR brachytherapy is used with increasing frequency for the treatment of prostate cancer. It is a technique which allows delivery of large individual fractions to the prostate without exposing adjacent normal tissues to unacceptable toxicity. This approach is particularly favourable in prostate cancer where tumours are highly sensitive to dose escalation and to increases in radiotherapy fraction size, due to the unique radiobiological behaviour of prostate cancers in contrast with other malignancies. In this paper we discuss the rationale and the increasing body of clinical evidence for the use of this technique in patients with high-risk prostate cancer, where it is combined with external beam radiotherapy. We highlight practical aspects of delivering treatment and discuss toxicity and limitations, with particular reference to current practice in the United Kingdom.

  11. HDR Brachytherapy in the Management of High-Risk Prostate Cancer

    Science.gov (United States)

    Masson, Susan; Persad, Raj; Bahl, Amit

    2012-01-01

    High-dose-rate (HDR) brachytherapy is used with increasing frequency for the treatment of prostate cancer. It is a technique which allows delivery of large individual fractions to the prostate without exposing adjacent normal tissues to unacceptable toxicity. This approach is particularly favourable in prostate cancer where tumours are highly sensitive to dose escalation and to increases in radiotherapy fraction size, due to the unique radiobiological behaviour of prostate cancers in contrast with other malignancies. In this paper we discuss the rationale and the increasing body of clinical evidence for the use of this technique in patients with high-risk prostate cancer, where it is combined with external beam radiotherapy. We highlight practical aspects of delivering treatment and discuss toxicity and limitations, with particular reference to current practice in the United Kingdom. PMID:22461791

  12. A gEUD-based inverse planning technique for HDR prostate brachytherapy: Feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    Giantsoudi, D. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78229 (United States); Department of Radiation Oncology, Francis H. Burr Proton Therapy Center, Boston, Massachusetts 02114 (United States); Baltas, D. [Department of Medical Physics and Engineering, Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Nuclear and Particle Physics Section, Physics Department, University of Athens, 15701 Athens (Greece); Karabis, A. [Pi-Medical Ltd., Athens 10676 (Greece); Mavroidis, P. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 and Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University, 17176 (Sweden); Zamboglou, N.; Tselis, N. [Strahlenklinik, Klinikum Offenbach GmbH, 63069 Offenbach (Germany); Shi, C. [St. Vincent' s Medical Center, 2800 Main Street, Bridgeport, Connecticut 06606 (United States); Papanikolaou, N. [Department of Radiological Sciences, University of Texas Health Sciences Center, San Antonio, Texas 78299 (United States)

    2013-04-15

    Purpose: The purpose of this work was to study the feasibility of a new inverse planning technique based on the generalized equivalent uniform dose for image-guided high dose rate (HDR) prostate cancer brachytherapy in comparison to conventional dose-volume based optimization. Methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO (Hybrid Inverse Planning Optimization) is compared with alternative plans, which were produced through inverse planning using the generalized equivalent uniform dose (gEUD). All the common dose-volume indices for the prostate and the organs at risk were considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by comparing dose volume histogram and gEUD evaluators. Results: Our results demonstrate the feasibility of gEUD-based inverse planning in HDR brachytherapy implants for prostate. A statistically significant decrease in D{sub 10} or/and final gEUD values for the organs at risk (urethra, bladder, and rectum) was found while improving dose homogeneity or dose conformity of the target volume. Conclusions: Following the promising results of gEUD-based optimization in intensity modulated radiation therapy treatment optimization, as reported in the literature, the implementation of a similar model in HDR brachytherapy treatment plan optimization is suggested by this study. The potential of improved sparing of organs at risk was shown for various gEUD-based optimization parameter protocols, which indicates the ability of this method to adapt to the user's preferences.

  13. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    NARCIS (Netherlands)

    Balvert, M.; Gorissen, B.L.; den Hertog, D.; Hoffmann, A.L.

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell

  14. Interactive multiobjective optimization for anatomy-based three-dimensional HDR brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, Henri [Department of Physics and Mathematics, University of Eastern Finland, PO Box 1627, FI-70211 Kuopio (Finland); Miettinen, Kaisa [Department of Mathematical Information Technology, PO Box 35 (Agora), FI-40014 University of Jyvaeskylae (Finland); Palmgren, Jan-Erik; Lahtinen, Tapani, E-mail: henrimatias.ruotsalainen@gmail.co [Department of Oncology, Kuopio University Hospital, PO Box 1777, FI-70211 Kuopio (Finland)

    2010-08-21

    In this paper, we present an anatomy-based three-dimensional dose optimization approach for HDR brachytherapy using interactive multiobjective optimization (IMOO). In brachytherapy, the goals are to irradiate a tumor without causing damage to healthy tissue. These goals are often conflicting, i.e. when one target is optimized the other will suffer, and the solution is a compromise between them. IMOO is capable of handling multiple and strongly conflicting objectives in a convenient way. With the IMOO approach, a treatment planner's knowledge is used to direct the optimization process. Thus, the weaknesses of widely used optimization techniques (e.g. defining weights, computational burden and trial-and-error planning) can be avoided, planning times can be shortened and the number of solutions to be calculated is small. Further, plan quality can be improved by finding advantageous trade-offs between the solutions. In addition, our approach offers an easy way to navigate among the obtained Pareto optimal solutions (i.e. different treatment plans). When considering a simulation model of clinical 3D HDR brachytherapy, the number of variables is significantly smaller compared to IMRT, for example. Thus, when solving the model, the CPU time is relatively short. This makes it possible to exploit IMOO to solve a 3D HDR brachytherapy optimization problem. To demonstrate the advantages of IMOO, two clinical examples of optimizing a gynecologic cervix cancer treatment plan are presented.

  15. NPIP: A skew line needle configuration optimization system for HDR brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Siauw, Timmy; Cunha, Adam; Berenson, Dmitry; Atamtuerk, Alper; Hsu, I-Chow; Goldberg, Ken; Pouliot, Jean [Department of Civil and Environmental Engineering, University of California, Berkeley, 760 Davis Hall, Berkeley, California 94720-1710 (United States); Department of Radiation Oncology, University of California, San Francisco, Comprehensive Cancer Center, 1600 Divisadero Street, Suite H1031, San Francisco, California 94143-1708 (United States); Department of Electrical Engineering and Computer Science, University of California, Berkeley, 4th Floor Sutardja Dai Hall, Berkeley, California 94720-1764 (United States); Department of Industrial Engineering and Operations, University of California, Berkeley, 4141 Etcheverry Hall, Berkeley, California 94720-1777 (United States); Department of Radiation Oncology, University of California, San Francisco, Comprehensive Cancer Center, 1600 Divisadero Street, Suite H1031, San Francisco, California 94143-1708 (United States); Department of Industrial Engineering and Operations Research and Department of Electrical Engineering and Computer Science, University of California, Berkeley, 4141 Etcheverry Hall, Berkeley, California 94720-1777 (United States); Department of Radiation Oncology, University of California, San Francisco, Comprehensive Cancer Center, 1600 Divisadero Street, Suite H1031, San Francisco, California 94143-1708 (United States)

    2012-07-15

    or fewer needles than the current HDR brachytherapy workflow. Combined with robot assisted brachytherapy, this system has the potential to reduce side effects associated with treatment. A physical trial should be done to test the implant feasibility of NPIP needle configurations.

  16. A dosimetric selectivity intercomparison of HDR brachytherapy, IMRT and helical tomotherapy in prostate cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hermesse, Johanne; Biver, Sylvie; Jansen, Nicolas; Coucke, Philippe [Dept. of Radiation Oncology, Liege Univ. Hospital (Belgium); Lenaerts, Eric [Dept. of Medical Physics, Liege Univ. Hospital (Belgium); De Patoul, Nathalie; Vynckier, Stefaan [Dept. of Medical Physics, St Luc Univ. Hospital, Brussels (Belgium); Scalliet, Pierre [Dept. of Radiation Oncology, St Luc Univ. Hospital, Brussels (Belgium); Nickers, Philippe [Dept. of Radiation Oncology, Oscar Lambret Center, Lille (France)

    2009-11-15

    Background and purpose: dose escalation in order to improve the biochemical control in prostate cancer requires the application of irradiation techniques with high conformality. The dosimetric selectivity of three radiation modalities is compared: high-dose-rate brachytherapy (HDR-BT), intensity-modulated radiation radiotherapy (IMRT), and helical tomotherapy (HT). Patients and methods: ten patients with prostate adenocarcinoma treated by a 10-Gy HDR-BT boost after external-beam radiotherapy were investigated. For each patient, HDR-BT, IMRT and HT theoretical treatment plans were realized using common contour sets. A 10-Gy dose was prescribed to the planning target volume (PTV). The PTVs and critical organs' dose-volume histograms obtained were compared using Student's t-test. Results: HDR-BT delivers spontaneously higher mean doses to the PTV with smaller cold spots compared to IMRT and HT. 33% of the rectal volume received a mean HDR-BT dose of 3.86 {+-} 0.3 Gy in comparison with a mean IMRT dose of 6.57 {+-} 0.68 Gy and a mean HT dose of 5.58 {+-} 0.71 Gy (p < 0.0001). HDR-BT also enables to better spare the bladder. The hot spots inside the urethra are greater with HDR-BT. The volume of healthy tissue receiving 10% of the prescribed dose is reduced at least by a factor of 8 with HDR-BT (p < 0.0001). Conclusion: HDR-BT offers better conformality in comparison with HT and IMRT and reduces the volume of healthy tissue receiving a low dose. (orig.)

  17. Dosimetry in HDR brachytherapy with Fricke-gel layers and Fricke-gel catheters

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G; Carrara, M; Negri, A; Invernizzi, M; Tenconi, C; Scotti, A; Pirola, L; Borroni, M; Tomatis, S; Fallai, C, E-mail: grazia.gambarini@mi.infn.i

    2010-11-01

    Fricke-gel layer dosimeters (FGLD) and Fricke gel dosimetric catheters (FGDC) have been designed and tested with the aim of enquiring their suitability for HDR {sup 192}Ir brachytherapy source control and for in-vivo dose verification during treatment. Anisotropy function measurements have been carried out with FGLDs in which a thin plastic tube has been placed in for the {sup 192}Ir source insertion. FGDCs are constituted by plastic tubes (3 mm of external diameter and 13 cm of length) filled with the dosimeter-gel. Absorbed dose images and profiles were attained by means of optical analysis. Dedicated software has been developed both for achieving anisotropy function values and for obtaining reliable results in visible light absorbance measurements across the thin cylindrical dosimeters. Preparation and analysis procedures have been optimised. The results confirm that the proposed methods are very promising for HDR brachytherapy dosimetry.

  18. Dosimetric equivalence of non-standard high dose rate (HDR) brachytherapy catheter patterns

    CERN Document Server

    Cunha, J Adam M; Pouliot, Jean

    2009-01-01

    Purpose: To determine whether alternative HDR prostate brachytherapy catheter patterns can result in improved dose distributions while providing better access and reducing trauma. Methods: Prostate HDR brachytherapy uses a grid of parallel needle positions to guide the catheter insertion. This geometry does not easily allow the physician to avoid piercing the critical structures near the penile bulb nor does it provide position flexibility in the case of pubic arch interference. On CT data from ten previously-treated patients new catheters were digitized following three catheter patterns: conical, bi-conical, and fireworks. The conical patterns were used to accommodate a robotic delivery using a single entry point. The bi-conical and fireworks patterns were specifically designed to avoid the critical structures near the penile bulb. For each catheter distribution, a plan was optimized with the inverse planning algorithm, IPSA, and compared with the plan used for treatment. Irrelevant of catheter geometry, a p...

  19. Quality control for cervical cancer treatments on Hdr brachytherapy with Ir-192

    Energy Technology Data Exchange (ETDEWEB)

    Alvarino B, G.; Cogollo P, R.; Paez M, M., E-mail: lvarinog@hotmail.com [Universidad de Cordoba, Physics and Electronics Department, Carrera 6 No. 76-103, Monteria, Cordoba (Colombia)

    2013-10-01

    This work, developed at the National Cancer Institute in partnership with Universidad Nacional de Colombia located in Bogota, Colombia, presents the results of simulations of cervical cancer treatments, on Hdr brachytherapy with Ir-192, using as a physical simulator a natural female pelvis bone with soft tissue elaborated with the experimental material JJT. The doses were measured experimentally, prior to dosimetric characterization, with crystal thermoluminescence 100 LiF: Mg, Ti, located in the organs at risk: rectum and bladder. On the other hand, these treatments were planned and calculated theoretically by the system Micro-Selectron Hdr, with Plato brachytherapy software V 14.1 from the Netherlands Nucletron, and doses obtained in the same organs were compared with experimental results using dosimeters. The comparison of these results shows the correlation degree between the planning of dosimetric treatments and the experimental results, making the process in a form of quality control in vivo, of this type of procedure. (Author)

  20. Dosimetric study of surface applicators of HDR brachytherapy GammaMed Plus equipment

    Energy Technology Data Exchange (ETDEWEB)

    Reyes-Rivera, E., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Sosa, M., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Reyes, U., E-mail: eric-1985@fisica.ugto.mx, E-mail: modesto@fisica.ugto.mx, E-mail: uvaldoreyes@fisica.ugto.mx; Jesús Bernal-Alvarado, José de, E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx; Córdova, T., E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx; Gil-Villegas, A., E-mail: bernal@fisica.ugto.mx, E-mail: theo@fisica.ugto.mx, E-mail: gil@fisica.ugto.mx [División de Ciencias e Ingenierías, Universidad de Guanajuato, 37150 León, Gto. (Mexico); Monzón, E., E-mail: emonzon@imss.gob.mx [Unidad de Alta Especialidad No.1, Instituto Mexicano del Seguro Social, Léon, Gto. (Mexico)

    2014-11-07

    The cone type surface applicators used in HDR brachytherapy for treatment of small skin lesions are an alternative to be used with both electron beams and orthovoltage X-ray equipment. For a good treatment planning is necessary to know the dose distribution of these applicators, which can be obtained by experimental measurement and Monte Carlo simulation as well. In this study the dose distribution of surface applicators of 3 and 3.5 cm diameter, respectively of HDR brachytherapy GammaMed Plus equipment has been estimated using the Monte Carlo method, MCNP code. The applicators simulated were placed on the surface of a water phantom of 20 × 20 × 20 cm and the dose was calculated at depths from 0 to 3 cm with increments of 0.25 mm. The dose profiles obtained at depth show the expected gradients for surface therapy.

  1. Comparison of 60Co and 192Ir sources in HDR brachytherapy

    Directory of Open Access Journals (Sweden)

    Grzegorz Zwierzchowski

    2011-12-01

    Full Text Available This paper compares the isotopes 60Co and 192Ir as radiation sources for high-dose-rate (HDR afterloadingbrachytherapy. The smaller size of 192Ir sources made it the preferred radionuclide for temporary brachytherapy treatments.Recently also 60Co sources have been made available with identical geometrical dimensions. This paper comparesthe characteristics of both nuclides in different fields of brachytherapy based on scientific literature. In an additionalpart of this paper reports from medical physicists of several radiation therapy institutes are discussed. The purposeof this work is to investigate the advantages or disadvantages of both radionuclides for HDR brachytherapy due to theirphysical differences. The motivation is to provide useful information to support decision-making procedures in theselection of equipment for brachytherapy treatment rooms. The results of this work show that no advantages or disadvantagesexist for 60Co sources compared to 192Ir sources with regard to clinical aspects. Nevertheless, there are potentiallogistical advantages of 60Co sources due to its longer half-life (5.3 years vs. 74 days, making it an interesting alternativeespecially in developing countries.

  2. HDR Brachytherapy Dose Distribution is Influenced by the Metal Material of the Applicator.

    Science.gov (United States)

    Wu, Chin-Hui; Liao, Yi-Jen; Shiau, An-Cheng; Lin, Hsin-Yu; Hsueh Liu, Yen-Wan; Hsu, Shih-Ming

    2015-12-11

    Applicators containing metal have been widely used in recent years when applying brachytherapy to patients with cervical cancer. However, the high dose rate (HDR) treatment-planning system (TPS) that is currently used in brachytherapy still assumes that the treatment environment constitutes a homogeneous water medium and does not include a dose correction for the metal material of the applicator. The primary purpose of this study was to evaluate the HDR (192)Ir dose distribution in cervical cancer patients when performing brachytherapy using a metal-containing applicator. Thermoluminescent dosimeter (TLD) measurements and Monte Carlo N-Particle eXtended (MCNPX) code were used to explore the doses to the rectum and bladder when using a Henschke applicator containing metal during brachytherapy. When the applicator was assumed to be present, the absolute dose difference between the TLD measurement and MCNPX simulation values was within approximately 5%. A comparison of the MCNPX simulation and TPS calculation values revealed that the TPS overestimated the International Commission of Radiation Units and Measurement (ICRU) rectum and bladder reference doses by 57.78% and 49.59%, respectively. We therefore suggest that the TPS should be modified to account for the shielding effects of the applicator to ensure the accuracy of the delivered doses.

  3. SU-C-16A-03: Direction Modulated Brachytherapy for HDR Treatment of Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Han, D; Webster, M; Scanderbeg, D; Yashar, C; Choi, D; Song, B; Song, W [University of California, San Diego, La Jolla, CA (United States); Devic, S [McGill University, Montreal, QC (Canada); Ravi, A [Sunnybrook Odette Cancer Centre, Toronto (Canada)

    2014-06-15

    Purpose: To investigate a new Directional Modulated Brachytherapy (DMBT) intra-uterine tandem using various 192-Ir after-loaders. Methods: Dose distributions from the 192-Ir sources were modulated using a 6.3mm diameter tungsten shield (18.0g/cm3). The source moved along 6 longitudinal grooves, each 1.3mm in diameter, evenly spaced along periphery of the shield, The tungsten rod was enclosqed by 0.5mm thick Delrin (1.41g/cc). Monte Carlo N particle (MCNPX) was used to calculate dose distributions. 51million particles were calculated on 504 cores of a supercomputer. Fifteen different patients originally treated with a traditional tandem-and-ovoid applicator, with 5 fractions each, (15 patients X 5 fxs = 75 plans) were re-planned with the DMBT applicator combined with traditional ovoids, on an in-house developed HDR brachytherapy planning platform, which used intensity modulated planning capabilities using a constrained gradient optimization algorithm. For all plans the prescription dose was 6 Gy and they were normalized to match the clinical treated V100. Results: Generally, the DMBT plan quality was a remarkable improvement from conventional T and O plans because of the anisotropic dose distribution of DMBT. The largest difference was to the bladder which had a 0.59±0.87 Gy (8.5±28.7%) reduction in dose. This was because of the the horseshoe shape (U-shape) of the bladder. The dose reduction to rectum and sigmoid were 0.48±0.55 Gy (21.1±27.2%) and 0.10±0.38 Gy (40.6±214.9%), respectively. The D90 to the HRCTV was 6.55±0.96 Gy (conventional T and O) and 6.59±1.06 Gy (DMBT). Conclusion: For image guided adaptive brachytherapy, greater flexibility of radiation intensity is essential and DMBT can be the solution.

  4. Quality control of the breast cancer treatments on Hdr brachytherapy with TLD-100

    Energy Technology Data Exchange (ETDEWEB)

    Torres H, F. [Universidad de Cordoba, Materials and Applied Physics Group, 230002 Monteria, Cordoba (Colombia); De la Espriella V, N. [Universidad de Cordoba, Grupo Avanzado de Materiales y Sistemas Complejos, 230002 Monteria, Cordoba (Colombia); Sanchez C, A., E-mail: franciscotorreshoyos@yahoo.com [Universidad de Cordoba, Departamento de Enfermeria, 230002 Monteria, Cordoba (Colombia)

    2014-07-01

    An anthropomorphic Phantom, a female trunk, was built with a natural bone structure and experimental material coated, glycerin and water-based material called JJT to build soft tissue equivalent to the muscle of human tissue, and a polymer (styrofoam) to build the lung as critical organ to simulate the treatment of breast cancer, with high dose rate brachytherapy (Hdr) and sources of Ir-192. The treatments were planned and calculated for the critical organ: Lung, and injury of 2 cm in diameter in breast with Micro Selectron Hdr system and the software Plato Brachytherapy V 14.1 of the Nucletron (Netherlands) which uses the standard protocol of radiotherapy for brachytherapy treatments. The dose experimentally measured with dosimeters TLD-100 LiF: Mg; Ti, which were previously calibrated, were placed in the same positions and bodies mentioned above, with less than 5% uncertainty. The reading dosimeters was carried out in a Harshaw TLD 4500. The results obtained for calculated treatments, using the standard simulator, and the experimental with TLD-100, show a high concordance, as they are on average a ± 1.1% making process becomes in a quality control of this type of treatments. (Author)

  5. Variability of marker-based rectal dose evaluation in HDR cervical brachytherapy.

    Science.gov (United States)

    Wang, Zhou; Jaggernauth, Wainwright; Malhotra, Harish K; Podgorsak, Matthew B

    2010-01-01

    In film-based intracavitary brachytherapy for cervical cancer, position of the rectal markers may not accurately represent the anterior rectal wall. This study was aimed at analyzing the variability of rectal dose estimation as a result of interfractional variation of marker placement. A cohort of five patients treated with multiple-fraction tandem and ovoid high-dose-rate (HDR) brachytherapy was studied. The cervical os point and the orientation of the applicators were matched among all fractional plans for each patient. Rectal points obtained from all fractions were then input into each clinical treated plan. New fractional rectal doses were obtained and a new cumulative rectal dose for each patient was calculated. The maximum interfractional variation of distances between rectal dose points and the closest source positions was 1.1 cm. The corresponding maximum variability of fractional rectal dose was 65.5%. The percentage difference in cumulative rectal dose estimation for each patient was 5.4%, 19.6%, 34.6%, 23.4%, and 13.9%, respectively. In conclusion, care should be taken when using rectal markers as reference points for estimating rectal dose in HDR cervical brachytherapy. The best estimate of true rectal dose for each fraction should be determined by the most anterior point among all fractions.

  6. Tolerance and efficacy of preoperative intracavitary HDR brachytherapy in IB and IIA cervical cancer

    Science.gov (United States)

    Bialas, Brygida; Fijalkowski, Marek; Raczek-Zwierzycka, Katarzyna

    2009-01-01

    Purpose The aim of this work is to analyze the efficacy and tolerance of preoperative intracavitary HDR brachytherapy (HDR-BT) in patients with IB and IIA cervical cancer. Material and methods 139 patients with cervical cancer IB-IIA with preoperative HDR-BT, out of which 60 patients with cervical cancer IB (43.2%) and 79 with IIA (56.8%) were treated since 1996 to 2002. In preoperative BT total dose to point A ranged from 30-45 Gy in 6-9 fractions twice a week. The fraction dose was 4-5 Gy at point A. Six weeks after BT all patients underwent radical Wertheim-Meigs hysterectomy. Patients with disadvantageous risk factors or with positive specimen histology had a complementary therapy: external-beam radiotherapy (EBRT) given to the whole pelvic volume in daily fractions of 2 Gy up to total dose of 36-52 Gy (20 patients) or EBRT with cisplatin-based chemotherapy with the dose of 30-40 mg/m2 in 5-7 fractions given weekly (7 patients) or chemotherapy (6 patients). Acute and late radiation toxicity was evaluated according to EORTC/RTOG. Results In postoperative specimen histopathology the number of 114 women (82%) had tumor-free specimen within brachytherapy target (in cervix and cavity), 96 women (60.1%) had tumor-free specimen both in and outside brachytherapy target (lymph nodes, parametra, adnexis). The 5-year and 10-year DFS were 93.8% and 88% for IB and 89.7% and 64.7% for IIA respectively. 7.9% of patients developed acute toxicity both in rectum and bladder (only in I and II grade of EORTC/RTOG). Late severe complication occurred in rectum in 2.2% of patients and in bladder 1.4%. Conclusions 1. Preoperative HDR-BT in patients with IB and IIA cervical cancer is an effective and well tolerated therapy with acceptable rate of side effects. 2. Preoperative HDR-BT followed by surgery in a group without risk factors is a sufficient treatment option with no additional adjuvant therapy requirement.

  7. Dosimetric equivalence of nonstandard HDR brachytherapy catheter patterns

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, J. A. M.; Hsu, I-C.; Pouliot, J. [University of California, San Francisco, California 94115 (United States)

    2009-01-15

    Purpose: To determine whether alternative high dose rate prostate brachytherapy catheter patterns can result in similar or improved dose distributions while providing better access and reducing trauma. Materials and Methods: Standard prostate cancer high dose rate brachytherapy uses a regular grid of parallel needle positions to guide the catheter insertion. This geometry does not easily allow the physician to avoid piercing the critical structures near the penile bulb nor does it provide position flexibility in the case of pubic arch interference. This study used CT datasets with 3 mm slice spacing from ten previously treated patients and digitized new catheters following three hypothetical catheter patterns: conical, bi-conical, and fireworks. The conical patterns were used to accommodate a robotic delivery using a single entry point. The bi-conical and fireworks patterns were specifically designed to avoid the critical structures near the penile bulb. For each catheter distribution, a plan was optimized with the inverse planning algorithm, IPSA, and compared with the plan used for treatment. Irrelevant of catheter geometry, a plan must fulfill the RTOG-0321 dose criteria for target dose coverage (V{sub 100}{sup Prostate}>90%) and organ-at-risk dose sparing (V{sub 75}{sup Bladder}<1 cc, V{sub 75}{sup Rectum}<1 cc, V{sub 125}{sup Urethra}<<1 cc). Results: The three nonstandard catheter patterns used 16 nonparallel, straight divergent catheters, with entry points in the perineum. Thirty plans from ten patients with prostate sizes ranging from 26 to 89 cc were optimized. All nonstandard patterns fulfilled the RTOG criteria when the clinical plan did. In some cases, the dose distribution was improved by better sparing the organs-at-risk. Conclusion: Alternative catheter patterns can provide the physician with additional ways to treat patients previously considered unsuited for brachytherapy treatment (pubic arch interference) and facilitate robotic guidance of

  8. Neodadjuvante und adjuvante Kurzzeit-Hormontherapie in Kombination mit konformaler HDR-Brachytherapie beim Prostatakarzinom

    Directory of Open Access Journals (Sweden)

    Martin T

    2004-01-01

    Full Text Available Zielsetzung: Auswertung der Behandlungsergebnisse der neoadjuvanten und adjuvanten Kurzzeit-Hormontherapie kombiniert mit konformaler HDR-Brachytherapie und externer Radiotherapie beim Prostatakarzinom. Patienten und Methoden: Von 01/97 bis 09/99 behandelten wir 102 Patienten mit Prostatakarzinomen im Stadium T1–3 N0 M0. Im Stadium T1–2 befanden sich 71, im Stadium T3 31 Patienten. Der mediane prätherapeutische PSA-Wert betrug 15,3 ng/ml. Nach ultraschallgesteuerter transrektaler Implantation von vier Afterloadingnadeln erfolgte die CT-gestützte 3D-Brachytherapie- Planung. Alle Patienten erhielten vier HDR-Implantate mit einer Referenzdosis von 5 Gy oder 7 Gy pro Implantat. Die Zeit zwischen jedem Implantat betrug jeweils 14 Tage. Nach der Brachytherapie folgte die externe Radiotherapie bis 39,6 Gy oder 45,0 Gy. Alle Patienten erhielten eine neoadjuvante und adjuvante Kurzzeit-Hormontherapie, die 2–19 Monate vor der Brachytherapie eingeleitet und 3 Monate nach Abschluß der externen Radiotherapie abgesetzt wurde (mediane Dauer: 9 Monate. Ergebnisse: Die mediane Nachbeobachtungszeit war 2,6 Jahre (range: 2,0–4,1 Jahre. Die biochemische Kontrollrate betrug 82 % nach 3 Jahren. Bei 14/102 Patienten registrierten wir ein biochemisches Rezidiv, bei 5/102 Patienten ein klinisches Rezidiv. Das Gesamtüberleben betrug 90 %, das krankheitsspezifische Überleben 98,0 % nach 3 Jahren. Ein Patient entwickelte eine prostato-urethro-rektale Fistel als späte Grad 4-Toxizität. Akute Grad-3 Toxizitäten traten bei 4 %, späte Grad-3 Toxizitäten bei 5 % der Patienten auf. Schlußfolgerung: Die neoadjuvante und adjuvante Kurzzeit-Hormontherapie kombiniert mit konformaler HDR-Brachytherapie und externer Radiotherapie erweist sich als sichere und wirksame Behandlungsmodalität beim Prostatakarzinom mit minimalen behandlungsbedingten Toxizitäten und einer vielversprechenden biochemischen Kontrollrate nach medianer Nachbeobachtungszeit von 2,6 Jahren.

  9. Management of a HDR brachytherapy system in the Hospital Juarez of Mexico; Gestion de un sistema de braquiterapia HDR een el Hospital Juarez de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Serrano F, A.G.; Ramirez R, G.; Gil G, R. [Hospital Juarez de Mexico, Av. l.P.N. 5160, Col. Magdalena de las Salinas, 07760 Mexico D.F. (Mexico); Azorin N, J. [UAM-I, 09340 Mexico D.F. (Mexico); Rivera M, T. [Centro de Investigacion en Ciencia Aplicada y Tecnologia Avanzada, Unidad Legaria del IPN, Av. Legaria 694, Col. Irrigacion, 11500 Mexico D.F. (Mexico)

    2007-07-01

    Full text: In the Hospital Juarez of Mexico, it is carried out a project to implement a Brachytherapy system with high dose rate (HDR) through a Management quality program. In our work center this treatment modality in patients with cervicouterine cancer is used (CaCu), and constantly it is necessary to carry out improvements in the procedures, with the purpose of optimizing them and in consequence to complete the principles of the Radiological Protection, guaranteeing this way, an attention with the quality and safety, such that allow to diminish the risks to the patients and to assure that the received dose in critical organs it finds inside the permitted therapeutic limits, without commit the radiosensitive response of healthy organs. In this work an analysis of the implementation of this system is presented, detailing the procedures so much in the technological infrastructure like human and indicating the necessary technical and operative requirements to reach an adequate practice in HDR brachytherapy. (Author)

  10. 3-D conformal HDR brachytherapy as monotherapy for localized prostate cancer. A pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Martin, T.; Baltas, D.; Kurek, R.; Roeddiger, S.; Kontova, M.; Anagnostopoulos, G.; Skazikis, G.; Zamboglou, N. [Dept. of Radiation Oncology, Klinikum Offenbach, Offenbach/Main (Germany); Dannenberg, T.; Buhleier, T.; Tunn, U. [Dept. of Urology, Klinikum Offenbach, Offenbach/Main (Germany)

    2004-04-01

    Purpose: pilot study to evaluate feasibility, acute toxicity and conformal quality of three-dimensional (3-D) conformal high-dose-rate (HDR) brachytherapy as monotherapy for localized prostate cancer using intraoperative real-time planning. Patients and methods: between 05/2002 and 05/2003, 52 patients with prostate cancer, prostate-specific antigen (PSA) {<=} 10 ng/ml, Gleason score {<=} 7 and clinical stage {<=} T2a were treated. Median PSA was 6.4 ng/ml and median Gleason score 5. 24/52 patients had stage T1c and 28/52 stage T2a. For transrectal ultrasound-(TRUS-)guided transperineal implantation of flexible plastic needles into the prostate, the real-time HDR planning system SWIFT trademark was used. After implantation, CT-based 3-D postplanning was performed. All patients received one implant for four fractions of HDR brachytherapy in 48 h using a reference dose (D{sub ref}) of 9.5 Gy to a total dose of 38.0 Gy. Dose-volume histograms (DVHs) were analyzed to evaluate the conformal quality of each implant using D{sub 90}, D{sub 10} urethra, and D{sub 10} rectum. Acute toxicity was evaluated using the CTC (common toxicity criteria) scales. Results: median D{sub 90} was 106% of D{sub ref} (range: 93-115%), median D{sub 10} urethra 159% of D{sub ref} (range: 127-192%), and median D{sub 10} rectum 55% of D{sub ref} (range: 35-68%). Median follow-up is currently 8 months. In 2/52 patients acute grade 3 genitourinary toxicity was observed. No gastrointestinal toxicity > grade 1 occurred. Conclusion: 3-D conformal HDR brachytherapy as monotherapy using intraoperative real-time planning is a feasible and highly conformal treatment for localized prostate cancer associated with minimal acute toxicity. Longer follow-up is needed to evaluate late toxicity and biochemical control. (orig.)

  11. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    DEFF Research Database (Denmark)

    Kertzscher Schwencke, Gustavo Adolfo Vladimir; Andersen, Claus E.; Tanderup, Kari

    2014-01-01

    Purpose:This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction...

  12. A study of optimization techniques in HDR brachytherapy for the prostate

    Science.gov (United States)

    Pokharel, Ghana Shyam

    Several studies carried out thus far are in favor of dose escalation to the prostate gland to have better local control of the disease. But optimal way of delivery of higher doses of radiation therapy to the prostate without hurting neighboring critical structures is still debatable. In this study, we proposed that real time high dose rate (HDR) brachytherapy with highly efficient and effective optimization could be an alternative means of precise delivery of such higher doses. This approach of delivery eliminates the critical issues such as treatment setup uncertainties and target localization as in external beam radiation therapy. Likewise, dosimetry in HDR brachytherapy is not influenced by organ edema and potential source migration as in permanent interstitial implants. Moreover, the recent report of radiobiological parameters further strengthen the argument of using hypofractionated HDR brachytherapy for the management of prostate cancer. Firstly, we studied the essential features and requirements of real time HDR brachytherapy treatment planning system. Automating catheter reconstruction with fast editing tools, fast yet accurate dose engine, robust and fast optimization and evaluation engine are some of the essential requirements for such procedures. Moreover, in most of the cases we performed, treatment plan optimization took significant amount of time of overall procedure. So, making treatment plan optimization automatic or semi-automatic with sufficient speed and accuracy was the goal of the remaining part of the project. Secondly, we studied the role of optimization function and constraints in overall quality of optimized plan. We have studied the gradient based deterministic algorithm with dose volume histogram (DVH) and more conventional variance based objective functions for optimization. In this optimization strategy, the relative weight of particular objective in aggregate objective function signifies its importance with respect to other objectives

  13. NOTE: Monte Carlo evaluation of kerma in an HDR brachytherapy bunker

    Science.gov (United States)

    Pérez-Calatayud, J.; Granero, D.; Ballester, F.; Casal, E.; Crispin, V.; Puchades, V.; León, A.; Verdú, G.

    2004-12-01

    In recent years, the use of high dose rate (HDR) after-loader machines has greatly increased due to the shift from traditional Cs-137/Ir-192 low dose rate (LDR) to HDR brachytherapy. The method used to calculate the required concrete and, where appropriate, lead shielding in the door is based on analytical methods provided by documents published by the ICRP, the IAEA and the NCRP. The purpose of this study is to perform a more realistic kerma evaluation at the entrance maze door of an HDR bunker using the Monte Carlo code GEANT4. The Monte Carlo results were validated experimentally. The spectrum at the maze entrance door, obtained with Monte Carlo, has an average energy of about 110 keV, maintaining a similar value along the length of the maze. The comparison of results from the aforementioned values with the Monte Carlo ones shows that results obtained using the albedo coefficient from the ICRP document more closely match those given by the Monte Carlo method, although the maximum value given by MC calculations is 30% greater.

  14. Dosimetry evaluation of SAVI-based HDR brachytherapy for partial breast irradiation

    Directory of Open Access Journals (Sweden)

    Manoharan Sivasubramanian

    2010-01-01

    Full Text Available Accelerated partial breast irradiation (APBI with high dose rate (HDR brachytherapy offers an excellent compact course of radiation due to its limited number of fractions for early-stage carcinoma of breast. One of the recent devices is SAVI (strut-adjusted volume implant, which has 6, 8 or 10 peripheral source channels with one center channel. Each channel can be differentially loaded. This paper focuses on the treatment planning, dosimetry and quality assurance aspects of HDR brachytherapy implant with GammaMed Plus HDR afterloader unit. The accelerated PBI balloon devices normally inflate above 35 cc range, and hence these balloon type devices cannot be accommodated in small lumpectomy cavity sizes. CT images were obtained and 3-D dosimetric plans were done with Brachyvision planning system. The 3-D treatment planning and dosimetric data were evaluated with planning target volume (PTV_eval V90, V95, V150, V200 skin dose and minimum distance to skin. With the use of the SAVI 6-1 mini device, we were able to accomplish an excellent coverage - V90, V95, V150 and V200 to 98%, 95%, 37 cc (<50 cc volume and 16 cc (<20 cc volume, respectively. Maximum skin dose was between 73% and 90%, much below the prescribed dose of 34 Gy. The minimum skin distance achieved was 5 to 11 mm. The volume that received 50% of the prescribed radiation dose was found to be lower with SAVI. The multi-channel SAVI-based implants reduced the maximum skin dose to markedly lower levels as compared to other modalities, simultaneously achieving best dose coverage to target volume. Differential-source dwell-loading allows modulation of the radiation dose distribution in symmetric or asymmetric opening of the catheter shapes and is also advantageous in cavities close to chest wall.

  15. SU-E-T-169: Characterization of Pacemaker/ICD Dose in SAVI HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kalavagunta, C; Lasio, G; Yi, B; Zhou, J; Lin, M [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: It is important to estimate dose to pacemaker (PM)/Implantable Cardioverter Defibrillator (ICD) before undertaking Accelerated Partial Breast Treatment using High Dose Rate (HDR) brachytherapy. Kim et al. have reported HDR PM/ICD dose using a single-source balloon applicator. To the authors knowledge, there have so far not been any published PM/ICD dosimetry literature for the Strut Adjusted Volume Implant (SAVI, Cianna Medical, Aliso Viejo, CA). This study aims to fill this gap by generating a dose look up table (LUT) to predict maximum dose to the PM/ICD in SAVI HDR brachytherapy. Methods: CT scans for 3D dosimetric planning were acquired for four SAVI applicators (6−1-mini, 6−1, 8−1 and 10−1) expanded to their maximum diameter in air. The CT datasets were imported into the Elekta Oncentra TPS for planning and each applicator was digitized in a multiplanar reconstruction window. A dose of 340 cGy was prescribed to the surface of a 1 cm expansion of the SAVI applicator cavity. Cartesian coordinates of the digitized applicator were determined in the treatment leading to the generation of a dose distribution and corresponding distance-dose prediction look up table (LUT) for distances from 2 to 15 cm (6-mini) and 2 to 20 cm (10–1).The deviation between the LUT doses and the dose to the cardiac device in a clinical case was evaluated. Results: Distance-dose look up table were compared to clinical SAVI plan and the discrepancy between the max dose predicted by the LUT and the clinical plan was found to be in the range (−0.44%, 0.74%) of the prescription dose. Conclusion: The distance-dose look up tables for SAVI applicators can be used to estimate the maximum dose to the ICD/PM, with a potential usefulness for quick assessment of dose to the cardiac device prior to applicator placement.

  16. Study of the workload to be applied in the shielding calculation in HDR brachytherapy facilities with IR-192; Estudio de la carga de trabajo a aplicar en el calculo de blindajes en instalaciones de braquiterapia HDR con IR-192

    Energy Technology Data Exchange (ETDEWEB)

    Pujades-Clamarchirant, M. C.; Perez-Calatayud, J.; Ballester, F.; Gimeno, J.; Granero, D.; Camacho, C.; Carmona, V.; Lliso, F.; Vijande, J.

    2011-07-01

    The design of shielding facilities high rate brachytherapy (HDR) requires an estimate of the workload (w) . The aim of this study was to evaluate the W typical service HDR BT with a high number of applications and their impact on the final thickness the shielding of the room. To do this, a review of patients treated in our center HDR W has been evaluated and studied their impact on the shielding design of the facility.

  17. SU-E-J-270: Study of PET Response to HDR Brachytherapy of Rectal Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, R; Le, Y; Armour, E; Efron, J; Azad, N; Wahl, R; Gearhart, S; Herman, J [Johns Hopkins University, Baltimore, MD (United States)

    2014-06-01

    Purpose: Dose-response studies in radiation therapy are typically using single response values for tumors across ensembles of tumors. Using the high dose rate (HDR) treatment plan dose grid and pre- and post-therapy FDG-PET images, we look for correlations between voxelized dose and FDG uptake response in individual tumors. Methods: Fifteen patients were treated for localized rectal cancer using 192Ir HDR brachytherapy in conjunction with surgery. FDG-PET images were acquired before HDR therapy and 6–8 weeks after treatment (prior to surgery). Treatment planning was done on a commercial workstation and the dose grid was calculated. The two PETs and the treatment dose grid were registered to each other using non-rigid registration. The difference in PET SUV values before and after HDR was plotted versus absorbed radiation dose for each voxel. The voxels were then separated into bins for every 400 cGy of absorbed dose and the bin average values plotted similarly. Results: Individual voxel doses did not correlate with PET response; however, when group into tumor subregions corresponding to dose bins, eighty percent of the patients showed a significant positive correlation (R2 > 0) between PET uptake difference in the targeted region and the absorbed dose. Conclusion: By considering larger ensembles of voxels, such as organ average absorbed dose or the dose bins considered here, valuable information may be obtained. The dose-response correlations as measured by FDG-PET difference potentially underlines the importance of FDG-PET as a measure of response, as well as the value of voxelized information.

  18. A study on room design and radiation safety around room for Co-60 after loading HDR brachytherapy unit converted from room for Ir-192 after loading HDR brachytherapy unit

    Directory of Open Access Journals (Sweden)

    Om Prakash Gurjar

    2015-01-01

    Full Text Available Context: Use of Co-60 source in place of Ir-192 in high dose rate brachytherapy unit (HDR unit has come for discussion in recent publications. Co-60 based system has been advocated for centers which have fewer brachytherapy procedures as it has comparative economically and administrative advantage. This study has direct practical application for such institutions, which are at the cusp of moving from Ir-192 to Co-60 based brachytherapy. Aims: Conversion of Ir-192 HDR room to Co-60 HDR room and to analyze radiation safety around the room. Materials and Methods: Uniform thickness of 15 cm concrete was added to all walls (except one wall adjoining to linear accelerator bunker to convert existing room forIr-192 HDR unit to suitable room for Co-60 HDR unit. Radiation survey around room was done. Actual and calculated wall thicknesses were compared. Results: Radiation survey data indicates that modified room is suitable for Co-60 HDR unit and all values are in full conformity to annual dose limits mentioned in Safety Code for Radiation Therapy Sources (SCRTS, Atomic Energy Regulatory Body (AERB; the regulatory body in India. Also, modified wall thicknesses are appropriate for annual design dose limits mentioned in Safety Report Series No. 47 of International Atomic Energy Agency (IAEA. However, console wall thickness (0.45 m is less than the calculated thickness (0.53 m for instantaneous dose rate (IDR design dose limit (7.5 ΅Sv/h as perabove safety report of IAEA. Conclusions: The modified wall thicknesses are appropriate for annual design dose limits. However, console wall thickness is less than the required thickness for IDR design dose limit. It has been suggested to add 2.64 cm steel on console wall. It has been found that design dose limits should be considered while making room layout plan and regulatory body should add these constraints inSCRTS.

  19. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Jeffery H; Prakash, Punit; Hsu, I-Chow Joe; Diederich, Chris J, E-mail: CDiederich@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco, CA 94115 (United States)

    2011-07-07

    Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue {>=}41 deg. C in a hyperthermia treatment volume was maximized with constraints T{sub max} {<=} 47 deg. C, T{sub rectum} {<=} 41.5 deg. C, and T{sub bladder} {<=} 42.5 deg. C. Hyperthermia treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360{sup 0} or 2 x 180{sup 0} output; 6 mm OD) and interstitial (180{sup 0}, 270{sup 0}, or 360{sup 0} output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m{sup -3} s{sup -1}) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm{sup 3}) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 deg. C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T{sub 90} in example patient cases was 40.5-42.7 deg. C (1.9-39.6 EM{sub 43deg.C}) at 1 kg m{sup -3} s{sup -1} with 10/14 patients {>=}41 deg. C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T{sub 90} {>=} 41 deg. C in clinically practical implant

  20. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer

    Science.gov (United States)

    Wootton, Jeffery H.; Prakash, Punit; Hsu, I.-Chow Joe; Diederich, Chris J.

    2011-07-01

    Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue >=41 °C in a hyperthermia treatment volume was maximized with constraints Tmax treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360° or 2 × 180° output; 6 mm OD) and interstitial (180°, 270°, or 360° output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m-3 s-1) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm3) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 °C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T90 in example patient cases was 40.5-42.7 °C (1.9-39.6 EM43 °C) at 1 kg m-3 s-1 with 10/14 patients >=41 °C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T90 >= 41 °C in clinically practical implant configurations. Catheter-based ultrasound devices, when adhering to the guidelines, show potential to generate conformal therapeutic heating ranging from a single endocervical device targeting small

  1. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Xiaofeng, E-mail: xyang43@emory.edu; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Curran, Walter J.; Liu, Tian [Department of Radiation Oncology and Winship Cancer Institute, Emory University, Atlanta, Georgia 30322 (United States); Mao, Hui [Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia 30322 (United States)

    2014-11-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  2. Prostate CT segmentation method based on nonrigid registration in ultrasound-guided CT-based HDR prostate brachytherapy

    Science.gov (United States)

    Yang, Xiaofeng; Rossi, Peter; Ogunleye, Tomi; Marcus, David M.; Jani, Ashesh B.; Mao, Hui; Curran, Walter J.; Liu, Tian

    2014-01-01

    Purpose: The technological advances in real-time ultrasound image guidance for high-dose-rate (HDR) prostate brachytherapy have placed this treatment modality at the forefront of innovation in cancer radiotherapy. Prostate HDR treatment often involves placing the HDR catheters (needles) into the prostate gland under the transrectal ultrasound (TRUS) guidance, then generating a radiation treatment plan based on CT prostate images, and subsequently delivering high dose of radiation through these catheters. The main challenge for this HDR procedure is to accurately segment the prostate volume in the CT images for the radiation treatment planning. In this study, the authors propose a novel approach that integrates the prostate volume from 3D TRUS images into the treatment planning CT images to provide an accurate prostate delineation for prostate HDR treatment. Methods: The authors’ approach requires acquisition of 3D TRUS prostate images in the operating room right after the HDR catheters are inserted, which takes 1–3 min. These TRUS images are used to create prostate contours. The HDR catheters are reconstructed from the intraoperative TRUS and postoperative CT images, and subsequently used as landmarks for the TRUS–CT image fusion. After TRUS–CT fusion, the TRUS-based prostate volume is deformed to the CT images for treatment planning. This method was first validated with a prostate-phantom study. In addition, a pilot study of ten patients undergoing HDR prostate brachytherapy was conducted to test its clinical feasibility. The accuracy of their approach was assessed through the locations of three implanted fiducial (gold) markers, as well as T2-weighted MR prostate images of patients. Results: For the phantom study, the target registration error (TRE) of gold-markers was 0.41 ± 0.11 mm. For the ten patients, the TRE of gold markers was 1.18 ± 0.26 mm; the prostate volume difference between the authors’ approach and the MRI-based volume was 7.28% ± 0

  3. Evaluation of PC-ISO for customized, 3D printed, gynecologic 192Ir HDR brachytherapy applicators.

    Science.gov (United States)

    Cunha, J Adam M; Mellis, Katherine; Sethi, Rajni; Siauw, Timmy; Sudhyadhom, Atchar; Garg, Animesh; Goldberg, Ken; Hsu, I-Chow; Pouliot, Jean

    2015-01-01

    The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment. PACS number: none.

  4. Evaluation of PC-ISO for customized, 3D Printed, gynecologic 192-Ir HDR brachytherapy applicators.

    Science.gov (United States)

    Cunha, J Adam M; Mellis, Katherine; Sethi, Rajni; Siauw, Timmy; Sudhyadhom, Atchar; Garg, Animesh; Goldberg, Ken; Hsu, I-Chow; Pouliot, Jean

    2015-01-08

    The purpose of this study was to evaluate the radiation attenuation properties of PC-ISO, a commercially available, biocompatible, sterilizable 3D printing material, and its suitability for customized, single-use gynecologic (GYN) brachytherapy applicators that have the potential for accurate guiding of seeds through linear and curved internal channels. A custom radiochromic film dosimetry apparatus was 3D-printed in PC-ISO with a single catheter channel and a slit to hold a film segment. The apparatus was designed specifically to test geometry pertinent for use of this material in a clinical setting. A brachytherapy dose plan was computed to deliver a cylindrical dose distribution to the film. The dose plan used an 192Ir source and was normalized to 1500 cGy at 1 cm from the channel. The material was evaluated by comparing the film exposure to an identical test done in water. The Hounsfield unit (HU) distributions were computed from a CT scan of the apparatus and compared to the HU distribution of water and the HU distribution of a commercial GYN cylinder applicator. The dose depth curve of PC-ISO as measured by the radiochromic film was within 1% of water between 1 cm and 6 cm from the channel. The mean HU was -10 for PC-ISO and -1 for water. As expected, the honeycombed structure of the PC-ISO 3D printing process created a moderate spread of HU values, but the mean was comparable to water. PC-ISO is sufficiently water-equivalent to be compatible with our HDR brachytherapy planning system and clinical workflow and, therefore, it is suitable for creating custom GYN brachytherapy applicators. Our current clinical practice includes the use of custom GYN applicators made of commercially available PC-ISO when doing so can improve the patient's treatment. 

  5. Additional androgen deprivation makes the difference. Biochemical recurrence-free survival in prostate cancer patients after HDR brachytherapy and external beam radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Schiffmann, Jonas; Tennstedt, Pierre; Beyer, Burkhard; Boehm, Katharina; Tilki, Derya; Salomon, Georg; Graefen, Markus [University Medical Center Hamburg-Eppendorf, Martini-Clinic Prostate Cancer Center, Hamburg (Germany); Lesmana, Hans; Platz, Volker; Petersen, Cordula; Kruell, Andreas; Schwarz, Rudolf [University Medical Center Hamburg-Eppendorf, Department of Radiation oncology, Hamburg (Germany)

    2015-04-01

    The role of additional androgen deprivation therapy (ADT) in prostate cancer (PCa) patients treated with combined HDR brachytherapy (HDR-BT) and external beam radiotherapy (EBRT) is still unknown. Consecutive PCa patients classified as D'Amico intermediate and high-risk who underwent HDR-BT and EBRT treatment ± ADT at our institution between January 1999 and February 2009 were assessed. Multivariable Cox regression models predicting biochemical recurrence (BCR) were performed. BCR-free survival was assessed with Kaplan-Meier analyses. Overall, 392 patients were assessable. Of these, 221 (56.4 %) underwent trimodality (HDR-BT and EBRT and ADT) and 171 (43.6 %) bimodality (HDR-BT and EBRT) treatment. Additional ADT administration reduced the risk of BCR (HR: 0.4, 95 % CI: 0.3-0.7, p < 0.001). D'Amico high-risk patients had superior BCR-free survival when additional ADT was administered (log-rank p < 0.001). No significant difference for BCR-free survival was recorded when additional ADT was administered to D'Amico intermediate-risk patients (log-rank p = 0.2). Additional ADT administration improves biochemical control in D'Amico high-risk patients when HDR-BT and EBRT are combined. Physicians should consider the oncological benefit of ADT administration for these patients during the decision-making process. (orig.) [German] Der Nutzen einer zusaetzlichen Hormonentzugstherapie (ADT, ''androgen deprivation therapy'') fuer Patienten mit Prostatakarzinom (PCa), welche mit einer Kombination aus HDR-Brachytherapie (HDR-BT) und perkutaner Bestrahlung (EBRT) behandelt werden, ist weiterhin ungeklaert. Fuer diese Studie wurden konsekutive, nach der D'Amico-Risikoklassifizierung in ''intermediate'' und ''high-risk'' eingeteilte Patienten ausgewaehlt, die zwischen Januar 1999 und Februar 2009 in unserem Institut eine kombinierte Therapie aus HDR-BT, EBRT ± ADT erhalten haben. Eine

  6. Custom-designed mouthpiece for HDR brachytherapy of embryonal rhabdomyosarcoma of the soft palate.

    Science.gov (United States)

    Ekwelundu, Emmanuel; Krasin, Matthew J; Farr, Jonathan B

    2014-10-01

    This paper describes the design and fabrication of the mouthpiece used for high-dose-rate (HDR) brachytherapy of a cancerous lesion in the soft palate of a pediatric patient. A custom mouth guard made with Thermo-forming material (Clear - Mouthguard) similar to those used by athletes, with a bite section, alveolar sulcus, hard and soft palate sections was made. Markers were placed around the lesion using a color transfer applicator and the impression transferred to the mouthpiece. Ten catheters arranged in a plane were placed on the inferior side (concave part) of the mouthpiece, and held in place by stitching each to the mouthpiece. Two pieces of lead (Pb) sheets with total thickness of 5.7 mm were placed beneath the catheters. Wax was used to create additional distance between the tongue and the catheters, and the entire assembly was covered with wax.

  7. Mixed integer programming improves comprehensibility and plan quality in inverse optimization of prostate HDR-brachytherapy

    CERN Document Server

    Gorissen, Bram L; Hoffmann, Aswin L

    2014-01-01

    Current inverse treatment planning methods that optimize both catheter positions and dwell times in prostate HDR brachytherapy use surrogate linear or quadratic objective functions that have no direct interpretation in terms of dose-volume histogram (DVH) criteria, do not result in an optimum or have long solution times. We decrease the solution time of existing linear and quadratic dose-based programming models (LP and QP, respectively) to allow optimizing over potential catheter positions using mixed integer programming. An additional average speed-up of 75% can be obtained by stopping the solver at an early stage, without deterioration of the plan quality. For a fixed catheter configuration, the dwell time optimization model LP solves to optimality in less than 15 seconds, which confirms earlier results. We propose an iterative procedure for QP that allows to prescribe the target dose as an interval, while retaining independence between the solution time and the number of dose calculation points. This iter...

  8. Implant strategies for endocervical and interstitial ultrasound hyperthermia adjunct to HDR brachytherapy for the treatment of cervical cancer.

    Science.gov (United States)

    Wootton, Jeffery H; Prakash, Punit; Hsu, I-Chow Joe; Diederich, Chris J

    2011-07-07

    Catheter-based ultrasound devices provide a method to deliver 3D conformable heating integrated with HDR brachytherapy delivery. Theoretical characterization of heating patterns was performed to identify implant strategies for these devices which can best be used to apply hyperthermia to cervical cancer. A constrained optimization-based hyperthermia treatment planning platform was used for the analysis. The proportion of tissue ≥41 °C in a hyperthermia treatment volume was maximized with constraints T(max) ≤ 47 °C, T(rectum) ≤ 41.5 °C, and T(bladder) ≤ 42.5 °C. Hyperthermia treatment was modeled for generalized implant configurations and complex configurations from a database of patients (n = 14) treated with HDR brachytherapy. Various combinations of endocervical (360° or 2 × 180° output; 6 mm OD) and interstitial (180°, 270°, or 360° output; 2.4 mm OD) applicators within catheter locations from brachytherapy implants were modeled, with perfusion constant (1 or 3 kg m(-3) s(-1)) or varying with location or temperature. Device positioning, sectoring, active length and aiming were empirically optimized to maximize thermal coverage. Conformable heating of appreciable volumes (>200 cm(3)) is possible using multiple sectored interstitial and endocervical ultrasound devices. The endocervical device can heat >41 °C to 4.6 cm diameter compared to 3.6 cm for the interstitial. Sectored applicators afford tight control of heating that is robust to perfusion changes in most regularly spaced configurations. T(90) in example patient cases was 40.5-42.7 °C (1.9-39.6 EM(43 °C)) at 1 kg m(-3) s(-1) with 10/14 patients ≥41 °C. Guidelines are presented for positioning of implant catheters during the initial surgery, selection of ultrasound applicator configurations, and tailored power schemes for achieving T(90) ≥ 41 °C in clinically practical implant configurations. Catheter-based ultrasound devices, when adhering to the guidelines, show potential to

  9. Sci-Sat AM(2): Brachy-01: A novel HDR Ir-192 brachytherapy water calorimeter standard.

    Science.gov (United States)

    Sarfehnia, A; Seuntjens, J

    2008-07-01

    Parameters influencing the accuracy of absorbed dose measurements for HDR 192Ir brachytherapy using water calorimetry were investigated with the goal to develop a novel primary absorbed dose to water standard. To provide greater stability, flexibility, and accuracy in the source-detector distance dsrc-det positioning and measurement, a new spring-loaded catheter holder composed of two concentric cylindrical sleeves with multiple orthogonal adjusting screws was developed. The absorbed dose from Nucletron microSelectron-HDR 192Ir brachytherapy sources with air kerma strengths ranging between 21000-38000 U was studied. dsrc-det is optimized so as to balance signal-to-noise ratio (decreasing with increasing dsrc-det ) and temperature drift effects resulting from source self-heating. The irradiation times were adjusted to yield a minimum 1 Gy of dose at the measurement point. Successful measurements at dsrc-det ranging between 25-50 mm were performed. COMSOL MULTIPHYSICS™ software was used to determine the heat loss correction due to conduction defined as the ratio between temperature rise at a point under ideal conditions to realistic conditions (i.e., no conduction). An agreement of better than 6.5% was observed between TG-43 calculated and calorimetrically measured absorbed dose rates. The effects of convection where calculated to be negligible as the glass vessel provides a convective barrier significantly decoupling the water velocity in the interior and exterior of the vessel (water velocities were 1-2 orders of magnitude different). Our work paves the way to successful primary absorbed dose determination for radioactive sources using calorimetric techniques. © 2008 American Association of Physicists in Medicine.

  10. Dwell time modulation restrictions do not necessarily improve treatment plan quality for prostate HDR brachytherapy

    Science.gov (United States)

    Balvert, Marleen; Gorissen, Bram L.; den Hertog, Dick; Hoffmann, Aswin L.

    2015-01-01

    Inverse planning algorithms for dwell time optimisation in interstitial high-dose-rate (HDR) brachytherapy may produce solutions with large dwell time variations within catheters, which may result in undesirable selective high-dose subvolumes. Extending the dwell time optimisation model with a dwell time modulation restriction (DTMR) that limits dwell time differences between neighboring dwell positions has been suggested to eliminate this problem. DTMRs may additionally reduce the sensitivity for uncertainties in dwell positions that inevitably result from catheter reconstruction errors and afterloader source positioning inaccuracies. This study quantifies the reduction of high-dose subvolumes and the robustness against these uncertainties by applying a DTMR to template-based prostate HDR brachytherapy implants. Three different DTMRs were consecutively applied to a linear dose-based penalty model (LD) and a dose-volume based model (LDV), both obtained from literature. The models were solved with DTMR levels ranging from no restriction to uniform dwell times within catheters in discrete steps. Uncertainties were simulated on clinical cases using in-house developed software, and dose-volume metrics were calculated in each simulation. For the assessment of high-dose subvolumes, the dose homogeneity index (DHI) and the contiguous dose volume histogram were analysed. Robustness was measured by the improvement of the lowest D90% of the planning target volume (PTV) observed in the simulations. For (LD), a DTMR yields an increase in DHI of approximately 30% and reduces the size of the largest high-dose volume by 2-5 cc. However, this comes at a cost of a reduction in D90% of the PTV of 10%, which often implies that it drops below the desired minimum of 100%. For (LDV), none of the DTMRs were able to improve high-dose volume measures. DTMRs were not capable of improving robustness of PTV D90% against uncertainty in dwell positions for both models.

  11. MO-FG-210-02: Implementation of Image-Guided Prostate HDR Brachytherapy Using MR-Ultrasound Fusion

    Energy Technology Data Exchange (ETDEWEB)

    Libby, B. [University of Virginia (United States)

    2015-06-15

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefit from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.

  12. Accuracy Evaluation of Oncentra™ TPS in HDR Brachytherapy of Nasopharynx Cancer Using EGSnrc Monte Carlo Code

    Directory of Open Access Journals (Sweden)

    Hadad K

    2015-03-01

    Full Text Available Background: HDR brachytherapy is one of the commonest methods of nasopharyngeal cancer treatment. In this method, depending on how advanced one tumor is, 2 to 6 Gy dose as intracavitary brachytherapy is prescribed. Due to high dose rate and tumor location, accuracy evaluation of treatment planning system (TPS is particularly important. Common methods used in TPS dosimetry are based on computations in a homogeneous phantom. Heterogeneous phantoms, especially patient-specific voxel phantoms can increase dosimetric accuracy. Materials and Methods: In this study, using CT images taken from a patient and ctcreate-which is a part of the DOSXYZnrc computational code, patient-specific phantom was made. Dose distribution was plotted by DOSXYZnrc and compared with TPS one. Also, by extracting the voxels absorbed dose in treatment volume, dosevolume histograms (DVH was plotted and compared with Oncentra™ TPS DVHs. Results: The results from calculations were compared with data from Oncentra™ treatment planning system and it was observed that TPS calculation predicts lower dose in areas near the source, and higher dose in areas far from the source relative to MC code. Absorbed dose values in the voxels also showed that TPS reports D90 value is 40% higher than the Monte Carlo method. Conclusion: Today, most treatment planning systems use TG-43 protocol. This protocol may results in errors such as neglecting tissue heterogeneity, scattered radiation as well as applicator attenuation. Due to these errors, AAPM emphasized departing from TG-43 protocol and approaching new brachytherapy protocol TG-186 in which patient-specific phantom is used and heterogeneities are affected in dosimetry

  13. Development and implementation of a remote audit tool for high dose rate (HDR) Ir-192 brachytherapy using optically stimulated luminescence dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Casey, Kevin E.; Kry, Stephen F.; Howell, Rebecca M.; Followill, David [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 and The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030 (United States); Alvarez, Paola; Lawyer, Ann [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030 (United States)

    2013-11-15

    Purpose: The aim of this work was to create a mailable phantom with measurement accuracy suitable for Radiological Physics Center (RPC) audits of high dose-rate (HDR) brachytherapy sources at institutions participating in National Cancer Institute-funded cooperative clinical trials. Optically stimulated luminescence dosimeters (OSLDs) were chosen as the dosimeter to be used with the phantom.Methods: The authors designed and built an 8 × 8 × 10 cm{sup 3} prototype phantom that had two slots capable of holding Al{sub 2}O{sub 3}:C OSLDs (nanoDots; Landauer, Glenwood, IL) and a single channel capable of accepting all {sup 192}Ir HDR brachytherapy sources in current clinical use in the United States. The authors irradiated the phantom with Nucletron and Varian {sup 192}Ir HDR sources in order to determine correction factors for linearity with dose and the combined effects of irradiation energy and phantom characteristics. The phantom was then sent to eight institutions which volunteered to perform trial remote audits.Results: The linearity correction factor was k{sub L}= (−9.43 × 10{sup −5}× dose) + 1.009, where dose is in cGy, which differed from that determined by the RPC for the same batch of dosimeters using {sup 60}Co irradiation. Separate block correction factors were determined for current versions of both Nucletron and Varian {sup 192}Ir HDR sources and these vendor-specific correction factors differed by almost 2.6%. For the Nucletron source, the correction factor was 1.026 [95% confidence interval (CI) = 1.023–1.028], and for the Varian source, it was 1.000 (95% CI = 0.995–1.005). Variations in lateral source positioning up to 0.8 mm and distal/proximal source positioning up to 10 mm had minimal effect on dose measurement accuracy. The overall dose measurement uncertainty of the system was estimated to be 2.4% and 2.5% for the Nucletron and Varian sources, respectively (95% CI). This uncertainty was sufficient to establish a ±5% acceptance

  14. A BrachyPhantom for verification of dose calculation of HDR brachytherapy planning system

    Energy Technology Data Exchange (ETDEWEB)

    Austerlitz, C. [Clinica Diana Campos, Recife, PE 52020-030 (Brazil); Campos, C. A. T. [Pontifícia Universidade Católica do Rio de Janeiro, RJ 22451-900 (Brazil)

    2013-11-15

    Purpose: To develop a calibration phantom for {sup 192}Ir high dose rate (HDR) brachytherapy units that renders possible the direct measurement of absorbed dose to water and verification of treatment planning system.Methods: A phantom, herein designated BrachyPhantom, consists of a Solid Water™ 8-cm high cylinder with a diameter of 14 cm cavity in its axis that allows the positioning of an A1SL ionization chamber with its reference measuring point at the midheight of the cylinder's axis. Inside the BrachyPhantom, at a 3-cm radial distance from the chamber's reference measuring point, there is a circular channel connected to a cylindrical-guide cavity that allows the insertion of a 6-French flexible plastic catheter from the BrachyPhantom surface. The PENELOPE Monte Carlo code was used to calculate a factor, P{sub sw}{sup lw}, to correct the reading of the ionization chamber to a full scatter condition in liquid water. The verification of dose calculation of a HDR brachytherapy treatment planning system was performed by inserting a catheter with a dummy source in the phantom channel and scanning it with a CT. The CT scan was then transferred to the HDR computer program in which a multiple treatment plan was programmed to deliver a total dose of 150 cGy to the ionization chamber. The instrument reading was then converted to absorbed dose to water using the N{sub gas} formalism and the P{sub sw}{sup lw} factor. Likewise, the absorbed dose to water was calculated using the source strength, S{sub k}, values provided by 15 institutions visited in this work.Results: A value of 1.020 (0.09%, k= 2) was found for P{sub sw}{sup lw}. The expanded uncertainty in the absorbed dose assessed with the BrachyPhantom was found to be 2.12% (k= 1). To an associated S{sub k} of 27.8 cGy m{sup 2} h{sup −1}, the total irradiation time to deliver 150 cGy to the ionization chamber point of reference was 161.0 s. The deviation between the absorbed doses to water assessed with

  15. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    Science.gov (United States)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  16. Evaluation of the Kerma at the entrance of the labyrin thin in facilities with Co-60 HDR brachytherapy; Evaluacion del Kerma en la entrada del laberinto en instalaciones de braquiterapia de HDR con Co-60

    Energy Technology Data Exchange (ETDEWEB)

    Pujades, M. C.; Granero, D.; Ballester, F.; Perez-Calatayud, J.; Vijande, J.

    2013-07-01

    The purpose of this study is to evaluate the kerma's collision at the entrance of the labyrinth adapting the methodology of the NCRP-151 to a bunker of brachytherapy with Co-60, similar to the one carried out in a previous work with HDR Ir-192. To validate the result is simulated using techniques Monte Carlo (MC) two typical designs of HDR with Co-60 bunker. (Author)

  17. Dosimetric analysis of Co-60 source based high dose rate (HDR) brachytherapy: A case series of ten patients with carcinoma of the uterine cervix.

    Science.gov (United States)

    Gurjar, Om Prakash; Batra, Manika; Bagdare, Priyusha; Kaushik, Sandeep; Tyagi, Atul; Naik, Ayush; Bhandari, Virendra; Gupta, Krishna Lal

    2016-01-01

    To analyse the dosimetric parameters of Co-60 based high dose rate (HDR) brachytherapy plans for patients of carcinoma uterine cervix. Co-60 high dose rate (HDR) brachytherapy unit has been introduced in past few years and is gaining importance owing to its long half life, economical benefits and comparable clinical outcome compared to Ir-192 HDR brachytherapy. A study was conducted on ten patients with locally advanced carcinoma of the uterine cervix (Ca Cx). Computed tomography (CT) images were taken after three channel applicator insertions. The planning for 7 Gray per fraction (7 Gy/#) was done for Co-60 HDR brachytherapy unit following the American Brachytherapy Society (ABS) guidelines. All the patients were treated with 3# with one week interval between fractions. The mean dose to high risk clinical target volumes (HRCTV) for D90 (dose to 90% volume) was found to be 102.05% (Standard Deviation (SD): 3.07). The mean D2cc (dose to 2 cubic centimeter volume) of the bladder, rectum and sigmoid were found to be 15.9 Gy (SD: 0.58), 11.5 Gy (SD: 0.91) and 4.1 Gy (SD: 1.52), respectively. The target coverage and doses to organs at risk (OARs) were achieved as per the ABS guidelines. Hence, it can be concluded that the Co-60 HDR brachytherapy unit is a good choice especially for the centers with a small number of brachytherapy procedures as no frequent source replacement is required like in an Ir-192 HDR unit.

  18. A CT-based analytical dose calculation method for HDR {sup 192}Ir brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Poon, Emily; Verhaegen, Frank [Medical Physics Unit, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada); Medical Physics Unit, McGill University, 1650 Cedar Avenue, Montreal, Quebec H3G 1A4 (Canada) and Department of Radiation Oncology (MAASTRO), GROW, University Hospital Maastricht, Maastricht 6229ET (Netherlands)

    2009-09-15

    esophagus patient plans, P{sub {gamma}{>=}1} are {>=}99% for both calculation methods. Conclusions: A correction-based dose calculation method has been validated for HDR {sup 192}Ir brachytherapy. Its high calculation efficiency makes it feasible for use in treatment planning. Because tissue inhomogeneity effects are small and primary dose predominates in the near-source region, TG-43 is adequate for target dose estimation provided shielding and contrast solution are not used.

  19. A CT-based analytical dose calculation method for HDR 192Ir brachytherapy.

    Science.gov (United States)

    Poon, Emily; Verhaegen, Frank

    2009-09-01

    = 99% for both calculation methods. A correction-based dose calculation method has been validated for HDR 192Ir brachytherapy. Its high calculation efficiency makes it feasible for use in treatment planning. Because tissue inhomogeneity effects are small and primary dose predominates in the near-source region, TG-43 is adequate for target dose estimation provided shielding and contrast solution are not used.

  20. Monte Carlo characterization of the Gamma-Med Hdr plus Ir-192 brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, E.; Sosa, M. A.; Gil V, A. [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Av. Insurgentes 2354, 37150 Leon, Guanajuato (Mexico); Monzon, E., E-mail: eric_1985@fisica.ugto.mx [IMSS, Unidad Medica de Alta Especialidad No. 1, Av. Adolfo Lopez Mateos 1813, 37340 Leon, Guanajuato (Mexico)

    2015-10-15

    Full text: The MCNP4C Monte Carlo code was used to simulate the dosimetry around the Gamma-Med Hdr Plus iridium-192 brachytherapy source in both air/vacuum and water environments. Dosimetry data in water was calculated and are presented into an away-along table. All dosimetric quantities recommended by the AAPM Task Group 43 report have been also calculated. These quantities are air kerma strength, dose rate constant, radial dose function and anisotropy function. The obtained data are compared to this source reference data, finding results in good agreement with them. In this study, recommendations of the AAPM TG-43U1 report have been followed and comply with the most recent AAPM and ESTRO physics committee recommendations about Monte Carlo techniques. The data in the present study complement published data and can be used as input in the Tps or as benchmark data to verify the results of the treatment planning systems as well as a means of comparison with other datasets from this source. (Author)

  1. A novel optical calorimetry dosimetry approach applied to an HDR Brachytherapy source

    Science.gov (United States)

    Cavan, A.; Meyer, J.

    2013-06-01

    The technique of Digital Holographic Interferometry (DHI) is applied to the measurement of radiation absorbed dose distribution in water. An optical interferometer has been developed that captures the small variations in the refractive index of water due to the radiation induced temperature increase ΔT. The absorbed dose D is then determined with high temporal and spatial resolution using the calorimetric relation D=cΔT (where c is the specific heat capacity of water). The method is capable of time resolving 3D spatial calorimetry. As a proof-of-principle of the approach, a prototype DHI dosimeter was applied to the measurement of absorbed dose from a High Dose Rate (HDR) Brachytherapy source. Initial results are in agreement with modelled doses from the Brachyvision treatment planning system, demonstrating the viability of the system for high dose rate applications. Future work will focus on applying corrections for heat diffusion and geometric effects. The method has potential to contribute to the dosimetry of diverse high dose rate applications which require high spatial resolution such as microbeam radiotherapy (MRT) or small field proton beam dosimetry but may potentially also be useful for interface dosimetry.

  2. Air-kerma evaluation at the maze entrance of HDR brachytherapy facilities.

    Science.gov (United States)

    Pujades, M C; Granero, D; Vijande, J; Ballester, F; Perez-Calatayud, J; Papagiannis, P; Siebert, F A

    2014-12-01

    In the absence of procedures for evaluating the design of brachytherapy (BT) facilities for radiation protection purposes, the methodology used for external beam radiotherapy facilities is often adapted. The purpose of this study is to adapt the NCRP 151 methodology for estimating the air-kerma rate at the door in BT facilities. Such methodology was checked against Monte Carlo (MC) techniques using the code Geant4. Five different facility designs were studied for (192)Ir and (60)Co HDR applications to account for several different bunker layouts.For the estimation of the lead thickness needed at the door, the use of transmission data for the real spectra at the door instead of the ones emitted by (192)Ir and (60)Co will reduce the lead thickness by a factor of five for (192)Ir and ten for (60)Co. This will significantly lighten the door and hence simplify construction and operating requirements for all bunkers.The adaptation proposed in this study to estimate the air-kerma rate at the door depends on the complexity of the maze: it provides good results for bunkers with a maze (i.e. similar to those used for linacs for which the NCRP 151 methodology was developed) but fails for less conventional designs. For those facilities, a specific Monte Carlo study is in order for reasons of safety and cost-effectiveness.

  3. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de physique, de génie physique et d’optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de radio-oncologie et Axe Oncologie du Centre de recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Binnekamp, Dirk [Integrated Clinical Solutions and Marketing, Philips Healthcare, Veenpluis 4-6, Best 5680 DA (Netherlands)

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  4. Implementation of the technique of partial irradiation accelerated the breast with high doses (HDR) brachytherapy; Puesta en marcha de la tecnica de irradiacion parcial acelerada de la mama con braquterapia de alta tasa de dosis (HDR)

    Energy Technology Data Exchange (ETDEWEB)

    Molina Lopez, M. Y.; Pardo Perez, E.; Castro Novais, J.; Martinez Ortega, J.; Ruiz Maqueda, S.; Cerro Penalver, E. del

    2013-07-01

    The objective of this work is presents procedure carried out in our Centre for the implementation of the accelerated partial breast irradiation (APBI, accelerated partial-breast irradiation) with high-rate brachytherapy (HDR), using plastic tubes as applicators. Carried out measures, the evaluation of the dosimetric parameters analyzing and presenting the results. (Author)

  5. Medically inoperable endometrial cancer in patients with a high body mass index (BMI): Patterns of failure after 3-D image-based high dose rate (HDR) brachytherapy

    DEFF Research Database (Denmark)

    Acharya, Sahaja; Esthappan, Jacqueline; Badiyan, Shahed

    2016-01-01

    BACKGROUND AND PURPOSE: High BMI is a reason for medical inoperability in patients with endometrial cancer in the United States. Definitive radiation is an alternative therapy for these patients; however, data on patterns of failure after definitive radiotherapy are lacking. We describe...... the patterns of failure after definitive treatment with 3-D image-based high dose rate (HDR) brachytherapy for medically inoperable endometrial cancer. MATERIALS AND METHODS: Forty-three consecutive patients with endometrial cancer FIGO stages I-III were treated definitively with HDR brachytherapy...

  6. Estimation of distance error by fuzzy set theory required for strength determination of HDR (192)Ir brachytherapy sources.

    Science.gov (United States)

    Kumar, Sudhir; Datta, D; Sharma, S D; Chourasiya, G; Babu, D A R; Sharma, D N

    2014-04-01

    Verification of the strength of high dose rate (HDR) (192)Ir brachytherapy sources on receipt from the vendor is an important component of institutional quality assurance program. Either reference air-kerma rate (RAKR) or air-kerma strength (AKS) is the recommended quantity to specify the strength of gamma-emitting brachytherapy sources. The use of Farmer-type cylindrical ionization chamber of sensitive volume 0.6 cm(3) is one of the recommended methods for measuring RAKR of HDR (192)Ir brachytherapy sources. While using the cylindrical chamber method, it is required to determine the positioning error of the ionization chamber with respect to the source which is called the distance error. An attempt has been made to apply the fuzzy set theory to estimate the subjective uncertainty associated with the distance error. A simplified approach of applying this fuzzy set theory has been proposed in the quantification of uncertainty associated with the distance error. In order to express the uncertainty in the framework of fuzzy sets, the uncertainty index was estimated and was found to be within 2.5%, which further indicates that the possibility of error in measuring such distance may be of this order. It is observed that the relative distance li estimated by analytical method and fuzzy set theoretic approach are consistent with each other. The crisp values of li estimated using analytical method lie within the bounds computed using fuzzy set theory. This indicates that li values estimated using analytical methods are within 2.5% uncertainty. This value of uncertainty in distance measurement should be incorporated in the uncertainty budget, while estimating the expanded uncertainty in HDR (192)Ir source strength measurement.

  7. Correction factors for source strength determination in HDR brachytherapy using the in-phantom method

    Energy Technology Data Exchange (ETDEWEB)

    Ubrich, Frank; Engenhart-Cabillic, Rita [University Hospital Giessen-Marburg, Marburg (Germany). Dept. of Radiotherapy and Radiation Oncology; Wulff, Joerg [University of Applied Sciences (THM) Giessen (Germany). Inst. of Medical Physics and Radiation Protection (IMPS); Zink, Klemens [University Hospital Giessen-Marburg, Marburg (Germany). Dept. of Radiotherapy and Radiation Oncology; University of Applied Sciences (THM) Giessen (Germany). Inst. of Medical Physics and Radiation Protection (IMPS)

    2014-09-01

    For the purpose of clinical source strength determination for HDR brachytherapy sources, the German society for Medical Physics (DGMP) recommends in their report 13 the usage of a solid state phantom (Krieger-phantom) with a thimble ionization chamber. In this work, the calibration chain for the determination of the reference air-kerma rate K{sub a,100} and reference dose rate to water D{sub w,1} by ionization chamber measurement in the Krieger-phantom was modeled via Monte Carlo simulations. These calculations were used to determine global correction factors k{sub tot}, which allows a user to directly convert the reading of an ionization chamber calibrated in terms of absorbed dose to water, into the desired quantity K{sub a,100} or D{sub w,1}. The factor k{sub tot} was determined for four available {sup 192}Ir sources and one {sup 60}Co source with three different thimble ionization chambers. Finally, ionization chamber measurements on three μSelectron V2 HDR sources within the Krieger-phantom were performed and K{sub a,100} was determined according to three different methods: (1) using a calibration factor in terms of absorbed dose to water wth the global correction factor (k{sub tot}){sub K{sub a{sub ,{sub 1{sub 0{sub 0}}}}}} according DGMP 13 (2) using a global correction factor calculated via Monte Carlo (3) using a direct reference air-kerma rate calibration factor determined by the national metrology institute PTB. The comparison of Monte Carlo based (k{sub tot}){sub K{sub a{sub ,{sub 1{sub 0{sub 0}}}}}} with those from DGMP 13 showed that the DGMP data were systematically smaller by about 2-2.5%. The experimentally determined (k{sub tot}){sub K{sub a{sub ,{sub 1{sub 0{sub 0}}}}}}, based on the direct K{sub a,100} calibration were also systematically smaller by about 1.5%. Despite of these systematical deviations, the agreement of the different methods was in almost all cases within the 1σ level of confidence of the interval of their respective

  8. Comparison of single and multiple dwell position methods in MammoSite high dose rate (HDR) brachytherapy planning.

    Science.gov (United States)

    Kim, Yongbok; Trombetta, Mark G; Miften, Moyed

    2010-05-28

    The purpose of this study is to dosimetrically compare two plans generated using single dwell position method (SDPM) and multiple dwell position methods (MDPM) in MammoSite high dose rate (HDR) brachytherapy planning for 19 breast cancer patients. In computed tomography (CT) image-based HDR planning, a surface optimization technique was used in both methods. Following dosimetric parameters were compared for fraction 1 plans: %PTV_EVAL (planning target volume for plan evaluation) coverage, dose homogeneity index (DHI), dose con-formal index (COIN), maximum dose to skin and ipsilateral lung, and breast tissue volume receiving 150% (V150[cc]) and 200% (V200[cc]) of the prescribed dose. In addition, a plan was retrospectively generated for each fraction 2-10 to simulate the clinical situation where the fraction 1 plan was used for fractions 2-10 without modification. In order to create nine derived plans for each method and for each of the 19 patients, the catheter location and contours of target and critical structures were defined on the CT images acquired prior to each fraction 2-10, while using the same dwell-time distribution as used for fraction 1 (original plan). Interfraction dose variations were evaluated for 19 patients by comparing the derived nine plans (each for fractions 2-10) with the original plan (fraction 1) using the same dosimetric parameters used for fraction 1 plan comparison. For the fraction 1 plan comparison, the MDPM resulted in slightly increased %PTV_EVAL coverage, COIN, V150[cc] and V200[cc] values by an average of 1.2%, 0.025, 0.5 cc and 0.7cc, respectively, while slightly decreased DHI, maximum skin and ipsilateral lung dose by an average of 0.003, 3.2 cGy and 5.8 cGy, respectively. For the inter-fraction dose variation comparison, the SDPM resulted in slightly smaller variations in %PTV_EVAL coverage, DHI, maximum skin dose and V150[cc] values by an average of 0.4%, 0.0005, 0.5 cGy and 0.2 cc, respectively, while slightly higher average

  9. Vaginal-cuff control and toxicity results of a daily HDR brachytherapy schedule in endometrial cancer patients.

    Science.gov (United States)

    Ríos, I; Rovirosa, A; Ascaso, C; Valduvieco, I; Herreros, A; Castilla, L; Sabater, S; Holub, K; Pahisa, J; Biete, A; Arenas, M

    2016-09-01

    To analyze the vaginal-cuff local control (VCC) and toxicity in postoperative endometrial carcinoma patients (EC) underwent high-dose-rate brachytherapy (HDR-BT) administered daily. 154 consecutive patients received postoperative HDR-BT for EC from January 2007 to September 2011. FIGO-staging I-IIIC2 patients were divided into two groups according to risk classification: Group 1 (94/154) included high-risk or advanced disease patients and Group 2 (60/154) included intermediate-risk EC patients. Group 1 underwent external beam irradiation (EBI) plus HDR-BT (2 fractions of 5 Gy) and Group 2 underwent HDR-BT alone (4 fractions of 5 Gy). Toxicity evaluation was done with RTOG scores for bladder and rectum, and the objective criteria of LENT-SOMA for vagina. With a median follow-up of 46.7 months (36.6-61 months) only two patients developed vaginal-cuff recurrence in Group 1 (2.1 %) and none in group 2 (0 %). Early toxicity in Group 1 appeared 5.3 % in rectum, 7.5 % in bladder (G1-G2) and 2.1 % in vagina (G1); late toxicity was present in 7.3 % in rectum (all G1-G2 but 1 G3) and in 27.7 % in vagina (all G1-G2 but one G4). In Group 2, 6.7 % developed acute G1-G2 bladder and 6.6 % acute vaginal (G1-G2) toxicity. No late rectal or bladder toxicity was observed; 21.7 % of G1-G2 presented late problems in vagina. The present HDR-BT schedule of 2 fractions of 5 Gy after EBI and 4 fractions of 5 Gy administered daily showed excellent results in terms of VCC and toxicity.

  10. A linear programming model for optimizing HDR brachytherapy dose distributions with respect to mean dose in the DVH-tail

    Energy Technology Data Exchange (ETDEWEB)

    Holm, Åsa; Larsson, Torbjörn [Department of Mathematics, Linköping University, SE-581 83 Linköping (Sweden); Tedgren, Åsa Carlsson [Department of Medical and Health Sciences, Radiation Physics, Linköping University, SE 581-83 Linköping, Sweden and Swedish Radiation Safety Authority, SE-171 16 Stockholm (Sweden)

    2013-08-15

    Purpose: Recent research has shown that the optimization model hitherto used in high-dose-rate (HDR) brachytherapy corresponds weakly to the dosimetric indices used to evaluate the quality of a dose distribution. Although alternative models that explicitly include such dosimetric indices have been presented, the inclusion of the dosimetric indices explicitly yields intractable models. The purpose of this paper is to develop a model for optimizing dosimetric indices that is easier to solve than those proposed earlier.Methods: In this paper, the authors present an alternative approach for optimizing dose distributions for HDR brachytherapy where dosimetric indices are taken into account through surrogates based on the conditional value-at-risk concept. This yields a linear optimization model that is easy to solve, and has the advantage that the constraints are easy to interpret and modify to obtain satisfactory dose distributions.Results: The authors show by experimental comparisons, carried out retrospectively for a set of prostate cancer patients, that their proposed model corresponds well with constraining dosimetric indices. All modifications of the parameters in the authors' model yield the expected result. The dose distributions generated are also comparable to those generated by the standard model with respect to the dosimetric indices that are used for evaluating quality.Conclusions: The authors' new model is a viable surrogate to optimizing dosimetric indices and quickly and easily yields high quality dose distributions.

  11. Investigation of Dosimetric Parameters of $^{192}$Ir MicroSelectron v2 HDR Brachytherapy Source Using EGSnrc Monte Carlo Code

    CERN Document Server

    Naeem, Hamza; Zheng, Huaqing; Cao, Ruifen; Pei, Xi; Hu, Liqin; Wu, Yican

    2016-01-01

    The $^{192}$Ir sources are widely used for high dose rate (HDR) brachytherapy treatments. The aim of this study is to simulate $^{192}$Ir MicroSelectron v2 HDR brachytherapy source and calculate the air kerma strength, dose rate constant, radial dose function and anisotropy function established in the updated AAPM Task Group 43 protocol. The EGSnrc Monte Carlo (MC) code package is used to calculate these dosimetric parameters, including dose contribution from secondary electron source and also contribution of bremsstrahlung photons to air kerma strength. The Air kerma strength, dose rate constant and radial dose function while anisotropy functions for the distance greater than 0.5 cm away from the source center are in good agreement with previous published studies. Obtained value from MC simulation for air kerma strength is $9.762\\times 10^{-8} \\textrm{UBq}^{-1}$and dose rate constant is $1.108\\pm 0.13\\%\\textrm{cGyh}^{-1} \\textrm{U}^{-1}$.

  12. Monte Carlo study of the impact of a magnetic field on the dose distribution in MRI-guided HDR brachytherapy using Ir-192

    NARCIS (Netherlands)

    Beld, E; Seevinck, P R; Lagendijk, J J W; Viergever, M A; Moerland, M A

    2016-01-01

    In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner's magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic f

  13. External radiation and HDR-brachytherapy in the treatment of breast cancer. Externe Bestrahlung und interstitielle HDR-Brachytherapie in der Bestrahlung des Mammakarzinoms

    Energy Technology Data Exchange (ETDEWEB)

    Track, C. (Abt. fuer Radioonkologie, Krankenhaus der Barmherzigen Schwestern, Linz (Austria)); Seewald, D.H. (Abt. fuer Radioonkologie, Krankenhaus der Barmherzigen Schwestern, Linz (Austria)); Zoidl, J.P. (Abt. fuer Radioonkologie, Krankenhaus der Barmherzigen Schwestern, Linz (Austria)); Hammer, J. (Abt. fuer Radioonkologie, Krankenhaus der Barmherzigen Schwestern, Linz (Austria))

    1994-04-01

    In the breast conserving management of mammary cancer a high-dose-rate (HDR)-Iridium-192 source is used for interstitial boosting of the primary tumor site after external radiotherapy. We want to show the clinical results and side effects and to demonstrate the safe use of a HDR source. From December 1984 until November 1988, 154 patients with breast cancer stage T1-2, N0-1 were treated by conservative surgery and radiation. A dose of 45 to 50 Gy was given to the whole breast by external radiotherapy, and the previous tumor area was boosted by an interstitial implant with Iridium-192 HDR. We applied 10 Gy in one or two fractions. The mean follow-up period of survivors is 76 months (range 57 to 107 months). In 36 patients failures occured: eight patients (5%) developed local recurrences, 31 patients (20%) had distant metastases, and 19 (12%) died with cancer. The Kaplan-Meier estimation for five year overall survival is 86.9%, for disease-specific survival 89.3%, for local control 95.8%, and for disease free survival 80.1%. The most frequent late effects were telangiectasia (11%), fibrotic masses in the previous tumor area (6.5%), and lymphedema of the arm (6.5%). No serious complications could be observed. (orig./MG)

  14. Gold marker displacement due to needle insertion during HDR-brachytherapy for treatment of prostate cancer: A prospective cone beam computed tomography and kilovoltage on-board imaging (kV-OBI study

    Directory of Open Access Journals (Sweden)

    Herrmann Markus KA

    2012-02-01

    Full Text Available Abstract Purpose To evaluate gold marker displacement due to needle insertion during HDR-brachytherapy for therapy of prostate cancer. Patients and methods 18 patients entered into this prospective evaluation. Three gold markers were implanted into the prostate during the first HDR-brachytherapy procedure after the irradiation was administered. Three days after marker implantation all patients had a CT-scan for planning purpose of the percutaneous irradiation. Marker localization was defined on the digitally-reconstructed-radiographs (DRR for daily (VMAT technique or weekly (IMRT set-up error correction. Percutaneous therapy started one week after first HDR-brachytherapy. After the second HDR-brachytherapy, two weeks after first HDR-brachtherapy, a cone-beam CT-scan was done to evaluate marker displacement due to needle insertion. In case of marker displacement, the actual positions of the gold markers were adjusted on the DRR. Results The value of the gold marker displacement due to the second HDR-brachytherapy was analyzed in all patients and for each gold marker by comparison of the marker positions in the prostate after soft tissue registration of the prostate of the CT-scans prior the first and second HDR-brachytherapy. The maximum deviation was 5 mm, 7 mm and 12 mm for the anterior-posterior, lateral and superior-inferior direction. At least one marker in each patient showed a significant displacement and therefore new marker positions were adjusted on the DRRs for the ongoing percutaneous therapy. Conclusions Needle insertion in the prostate due to HDR-brachytherapy can lead to gold marker displacements. Therefore, it is necessary to verify the actual position of markers after the second HDR-brachytherapy. In case of significant deviations, a new DRR with the adjusted marker positions should be generated for precise positioning during the ongoing percutaneous irradiation.

  15. Computed tomography-guided interstitial HDR brachytherapy (CT-HDRBT) of the liver in patients with irresectable intrahepatic cholangiocarcinoma.

    Science.gov (United States)

    Schnapauff, Dirk; Denecke, Timm; Grieser, Christian; Collettini, Federico; Colletini, Federico; Seehofer, Daniel; Sinn, Marianne; Banzer, Jan; Lopez-Hänninen, Enrique; Hamm, Bernd; Wust, Peter; Gebauer, Bernhard

    2012-06-01

    This study was designed to investigate the clinical outcome of patients with irresectable, intrahepatic cholangiocarcinoma (IHC) treated with computed tomography (CT)-guided HDR-brachytherapy (CT-HDRBT) for local tumor ablation. Fifteen consecutive patients with histologically proven cholangiocarcinoma were selected for this retrospective study. Patients were treated by high-dose-rate internal brachytherapy (HDRBT) using an Iridium-192 source in afterloading technique through CT-guided percutaneous placed catheters. A total of 27 brachytherapy treatments were performed in these patients between 2006 and 2009. Median tumor enclosing target dose was 20 Gy, and mean target volume of the radiated tumors was 131 (±90) ml (range, 10-257 ml). Follow-up consisted of clinical visits and magnetic resonance imaging of the liver every third month. Statistical evaluation included survival analysis using the Kaplan-Meier method. After a median follow-up of 18 (range, 1-27) months after local ablation, 6 of the 15 patients are still alive; 4 of them did not get further chemotherapy and are regarded as disease-free. The reached median local tumor control was 10 months; median local tumor control, including repetitive local ablation, was 11 months. Median survival after local ablation was 14 months and after primary diagnosis 21 months. In view of current clinical data on the clinical outcome of cholangiocarcinoma, locally ablative treatment with CT-HDRBT represents a promising and safe technique for patients who are not eligible for tumor resection.

  16. Evaluation of Dose Distribution Accuracy in HDR Brachytherapy of Esophagus Cancer Based on MRI Normoxic Polymer Gel Dosimetry

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Bahreyni Toossi

    2010-03-01

    Full Text Available Introduction: The purpose of this work was to study the ability of MRI normoxic polymer gel dosimetry for evaluating the dose distribution in HDR brachytherapy of esophagial cancer at Imam Reza brachytherapy center (Mashhad, Iran. Materials and Methods: Initially, 2liters of normoxic gel (MAGIC was fabricated and then poured into 12 calibration test tubes and placed in a perspex walled phantom. The gel phantom was irradiated with a brachytherapy remote-afterloader unit using a cobalt-60 brachytherapy source and the test tubes were irradiated with a range of known doses with a cobalt-60 teletherapy unit. Imaging was performed with a multi-spin-echo protocol and a T2 quantitative technique using a Siemens 1.5 T MRI machine. The MRI images were transferred to a computer and then image processing was performed in the MATLAB environment to extract R2 maps of the irradiated area. Results: In this study and at the reference point, the dose deviation between the gel dosimetry and the calculated data was 4.5%. The distance to agreement (DTA for dose profiles was 2.7 mm. Also, dose sensitivity of the MAGIC gel dosimeter was 0.693 S-1Gy-1 (R2 =0.9376. Conclusion: In this work, the data obtained from TPS calculations were found in very good agreement with the measured results provided by gel dosimetry. It was evaluated using a comparison of isodoses and dose at the reference point, and dose profile verification. It is also concluded that the gel dosimetry systems have proven to be a useful tool for dosimetry in clinical radiotherapy applications.

  17. Evaluation of wall correction factor of INER's air-kerma primary standard chamber and dose variation by source displacement for HDR ¹⁹²Ir brachytherapy.

    Science.gov (United States)

    Lee, J H; Wang, J N; Huang, T T; Su, S H; Chang, B J; Su, C H; Hsu, S M

    2013-01-01

    The aim of the present study was to estimate the wall effect of the self-made spherical graphite-walled cavity chamber with the Monte Carlo method for establishing the air-kerma primary standard of high-dose-rate (HDR) ¹⁹²Ir brachytherapy sources at the Institute of Nuclear Energy Research (INER, Taiwan). The Monte Carlo method established in this paper was also employed to respectively simulate wall correction factors of the ¹⁹²Ir air-kerma standard chambers used at the National Institute of Standards and Technology (NIST, USA) and the National Physical Laboratory (NPL, UK) for comparisons and verification. The chamber wall correction calculation results will be incorporated into INER's HDR ¹⁹²Ir primary standard in the future. For the brachytherapy treatment in the esophagus or in the bronchi, the position of the isotope may have displacement in the cavity. Thus the delivered dose would differ from the prescribed dose in the treatment plan. We also tried assessing dose distribution due to the position displacement of HDR ¹⁹²Ir brachytherapy source in a phantom with a central cavity by the Monte Carlo method. The calculated results could offer a clinical reference for the brachytherapy within the human organs with cavity.

  18. A comprehensive study on HDR brachytherapy treatments of cervical cancers: using the first Co-60 BEBIG Multisource Unit in Bangladesh

    Directory of Open Access Journals (Sweden)

    Naheed Rukhsana

    2011-07-01

    Full Text Available Purpose: The report presents an extraordinary synthesis of customer acceptance procedures (CAP, quality assurance tests (QA in the treatment of cervical cancer patients, using the first Co-60 Multisource Unit® in Bangladesh. The QA and commissioning required measurements and emergency tests verifying the functional limits of parameters acceptable for the new HDR afterloader. Acceptable limits were: 1 the deviation between specified and measured source strength: ± 3%; 2 the positional accuracy and uniformity: ± 1 mm; 3 the temporal accuracy (i.e. timer error and linearity and end error: ± 1% or 30 sec.; 4 treatment planning system (digitizer and localization software: ± 3% or 1 mm; 5 the distance from line to first dwell position and all the others: 5 mm and 10 mm (± 1 mm. Material and methods: Till February 2011, 47 patients were treated with HDR with more than 140 insertions applied. Amongst them, 12 patients were in stage IIB and IIIB, 22 were postoperative (IA and IB while the remaining 13 patients were with unknown stage. All the cases with stage IIB and IIIB received concurrent chemo-radiation and brachytherapy. Postoperative patients received EBRT (50 Gy and HDR according to the institutional protocol. CT scans were completed before HDR-plus planning with a good reproducibility (± 2% and were documented in repeating the plan for the same set up of a patient. Absorbed dose (Gy to a point P, at a distance of “r” in centimeters from a source of the Reference Air Kerma Rate (RAKR has been utilized for the QA of the source, where source strength measurement was accomplished. Results: All methods and analysis applicable to the QA and commissioning of Co-60 have been investigated and systematically analyzed, measured and documented before the treatment of a patient. Studies and safety requirements of this HDR remote afterloader were carried out. Acceptance and the QA were imperative to justify functionality and dependability in

  19. An intrauterine ultrasound applicator for targeted delivery of thermal therapy in conjunction with HDR brachytherapy to the cervix

    Science.gov (United States)

    Wootton, Jeffery H.; Juang, Titania; Pouliot, Jean; Hsu, I.-Chow Joe; Diederich, Chris J.

    2009-02-01

    An intracavitary hyperthermia applicator for targeted heat delivery to the cervix was developed based on a linear array of sectored tubular ultrasound transducers that provides truly 3-D heating control (angular and along the length). A central conduit can incorporate an HDR source for sequential or simultaneous delivery of heat and radiation. Hyperthermia treatment volumes were determined from brachytherapy treatment planning data and used as a basis for biothermal simulations analyzing the effects of device parameters, tissue properties, and catheter materials on heating patterns. Devices were then developed with 1-3 elements at 6.5-8 MHz with 90-180° sectors and a 15-35 mm heating length, housed within a 6-mm diameter water-cooled PET catheter. Directional heating from sectored transducers could extend lateral penetration of therapeutic heating (41°C) >2 cm while maintaining rectum and bladder temperatures within 12 mm below thermal damage thresholds. Imaging artifacts were evaluated with standard CT, cone beam CT, and MR images. MR thermal imaging was used to demonstrate shaping of heating profiles in axial and coronal slices with artifact <2 mm from the device. The impact of the high-Z applicator materials on the HDR dose distribution was assessed using a well-type ionization chamber and was found to be less than 6% attenuation, which can readily be accounted for with treatment planning software. The intrauterine ultrasound device has demonstrated potential for 3-D conformal heating of clinical tumors in the delivery of targeted hyperthermia in conjunction with brachytherapy to the cervix.

  20. SU-E-T-205: Improving Quality Assurance of HDR Brachytherapy: Verifying Agreement Between Planned and Delivered Dose Distributions Using DICOM RTDose and Advanced Film Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A L [Portsmouth Hospitals NHS Trust, Portsmouth, Hampshire (United Kingdom); University of Surrey, Guildford, Surrey (United Kingdom); Bradley, D A [University of Surrey, Guildford, Surrey (United Kingdom); Nisbet, A [University of Surrey, Guildford, Surrey (United Kingdom); Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey (United Kingdom)

    2014-06-01

    Purpose: HDR brachytherapy is undergoing significant development, and quality assurance (QA) checks must keep pace. Current recommendations do not adequately verify delivered against planned dose distributions: This is particularly relevant for new treatment planning system (TPS) calculation algorithms (non TG-43 based), and an era of significant patient-specific plan optimisation. Full system checks are desirable in modern QA recommendations, complementary to device-centric individual tests. We present a QA system incorporating TPS calculation, dose distribution export, HDR unit performance, and dose distribution measurement. Such an approach, more common in external beam radiotherapy, has not previously been reported in the literature for brachytherapy. Methods: Our QA method was tested at 24 UK brachytherapy centres. As a novel approach, we used the TPS DICOM RTDose file export to compare planned dose distribution with that measured using Gafchromic EBT3 films placed around clinical brachytherapy treatment applicators. Gamma analysis was used to compare the dose distributions. Dose difference and distance to agreement were determined at prescription Point A. Accurate film dosimetry was achieved using a glass compression plate at scanning to ensure physically-flat films, simultaneous scanning of known dose films with measurement films, and triple-channel dosimetric analysis. Results: The mean gamma pass rate of RTDose compared to film-measured dose distributions was 98.1% at 3%(local), 2 mm criteria. The mean dose difference, measured to planned, at Point A was -0.5% for plastic treatment applicators and -2.4% for metal applicators, due to shielding not accounted for in TPS. The mean distance to agreement was 0.6 mm. Conclusion: It is recommended to develop brachytherapy QA to include full-system verification of agreement between planned and delivered dose distributions. This is a novel approach for HDR brachytherapy QA. A methodology using advanced film

  1. Radiobiological evaluation of the influence of dwell time modulation restriction in HIPO optimized HDR prostate brachytherapy implants

    Directory of Open Access Journals (Sweden)

    Dimos Baltas

    2010-10-01

    Full Text Available Purpose: One of the issues that a planner is often facing in HDR brachytherapy is the selective existence of high dose volumes around some few dominating dwell positions. If there is no information available about its necessity (e.g. location of a GTV, then it is reasonable to investigate whether this can be avoided. This effect can be eliminated by limiting the free modulation of the dwell times. HIPO, an inverse treatment plan optimization algorithm, offers this option.In treatment plan optimization there are various methods that try to regularize the variation of dose non-uniformity using purely dosimetric measures. However, although these methods can help in finding a good dose distribution they do not provide any information regarding the expected treatment outcome as described by radiobiology based indices.Material and methods: The quality of 12 clinical HDR brachytherapy implants for prostate utilizing HIPO and modulation restriction (MR has been compared to alternative plans with HIPO and free modulation (without MR.All common dose-volume indices for the prostate and the organs at risk have been considered together with radiobiological measures. The clinical effectiveness of the different dose distributions was investigated by calculating the response probabilities of the tumors and organs-at-risk (OARs involved in these prostate cancer cases. The radiobiological models used are the Poisson and the relative seriality models. Furthermore, the complication-free tumor control probability, P+ and the biologically effective uniform dose (D = were used for treatment plan evaluation and comparison.Results: Our results demonstrate that HIPO with a modulation restriction value of 0.1-0.2 delivers high quality plans which are practically equivalent to those achieved with free modulation regarding the clinically used dosimetric indices.In the comparison, many of the dosimetric and radiobiological indices showed significantly different results. The

  2. Clinical experience of high dose rate brachytherapy using Ir-192 remote afterloading system (microSELECTRON-HDR)

    Energy Technology Data Exchange (ETDEWEB)

    Fukui, Akira; Yamamoto, Koji; Yoshioka, Shinji [Uwajima City Hospital, Ehime (Japan); Kataoka, Masaaki; Fujii, Takashi; Ikezoe, Junpei

    1999-03-01

    Twenty-one lesions were reviewed of 20 patients who were treated with high-dose-rate brachytherapy using Ir-192 remote afterloading system (microSELECTRON-HDR) between August, 1997 and August, 1998. Esophageal cancer (n=6), lung cancer (n=3), cholangioma (n=3), epipharyngeal cancer (n=2) and uterine cervical cancer (n=2) were treated with intracavitary irradiation. Regional skin recurrence of breast cancer (n=3) was treated with interstitial irradiation, and oral cavity cancer (n=2) was treated with the mold method. Eleven lesions were controlled locally with a short follow-up period. There was no significant complication related to the insertion procedures of the applicator or the tubes without pneumothorax in one patient with lung cancer. So far, this treatment is relatively safe and effective not only for curative therapy for early stage cancer but also for palliative therapy for the advanced cancer. Furthermore, it is very important that medical staffs are kept free from radiation exposure. There is no established treatment protocol in high-dose-rate brachytherapy, therefore, a careful longer follow-up is necessary to clarify the true tumor control rate and the development of the late effect on normal tissue. (author)

  3. SU-E-T-634: Analysis of Volume Based GYN HDR Brachytherapy Plans for Dose Calculation to Organs At Risk(OAR)

    Energy Technology Data Exchange (ETDEWEB)

    Nair, M; Li, C; White, M; Davis, J [Joe Arrington Cancer Center, Lubbock, TX (United States)

    2014-06-15

    Purpose: We have analyzed the dose volume histogram of 140 CT based HDR brachytherapy plans and evaluated the dose received to OAR ; rectum, bladder and sigmoid colon based on recommendations from ICRU and Image guided brachytherapy working group for cervical cancer . Methods: Our treatment protocol consist of XRT to whole pelvis with 45 Gy at 1.8Gy/fraction followed by 30 Gy at 6 Gy per fraction by HDR brachytherapy in 2 weeks . The CT compatible tandem and ovoid applicators were used and stabilized with radio opaque packing material. The patient was stabilized using special re-locatable implant table and stirrups for reproducibility of the geometry during treatment. The CT scan images were taken at 3mm slice thickness and exported to the treatment planning computer. The OAR structures, bladder, rectum and sigmoid colon were outlined on the images along with the applicators. The prescription dose was targeted to A left and A right as defined in Manchester system and optimized on geometry . The dosimetry was compared on all plans using the parameter Ci.sec.cGy-1 . Using the Dose Volume Histogram (DVH) obtained from the plans the doses to rectum, sigmoid colon and bladder for ICRU defined points and 2cc volume were analyzed and reported. The following criteria were used for limiting the tolerance dose by volume (D2cc) were calculated. The rectum and sigmoid colon doses were limited to <75Gy. The bladder dose was limited to < 90Gy from both XRT and HDR brachytherapy. Results: The average total (XRT+HDRBT) BED values to prescription volume was 120 Gy. Dose 2cc to rectum was 70Gy +/− 17Gy, dose to 2cc bladder was 82+/−32 Gy. The average Ci.sec.cGy-1 calculated for the HDR plans was 6.99 +/− 0.5 Conclusion: The image based treatment planning enabled to evaluati volume based dose to critical structures for clinical interpretation.

  4. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    NARCIS (Netherlands)

    Borot, Maxence; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-01-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance.

  5. Calculated organ doses using Monte Carlo simulations in a reference male phantom undergoing HDR brachytherapy applied to localized prostate carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Candela-Juan, Cristian [Radioprotection Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Perez-Calatayud, Jose [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2013-03-15

    Purpose: The aim of this study was to obtain equivalent doses in radiosensitive organs (aside from the bladder and rectum) when applying high-dose-rate (HDR) brachytherapy to a localized prostate carcinoma using {sup 60}Co or {sup 192}Ir sources. These data are compared with results in a water phantom and with expected values in an infinite water medium. A comparison with reported values from proton therapy and intensity-modulated radiation therapy (IMRT) is also provided. Methods: Monte Carlo simulations in Geant4 were performed using a voxelized phantom described in International Commission on Radiological Protection (ICRP) Publication 110, which reproduces masses and shapes from an adult reference man defined in ICRP Publication 89. Point sources of {sup 60}Co or {sup 192}Ir with photon energy spectra corresponding to those exiting their capsules were placed in the center of the prostate, and equivalent doses per clinical absorbed dose in this target organ were obtained in several radiosensitive organs. Values were corrected to account for clinical circumstances with the source located at various positions with differing dwell times throughout the prostate. This was repeated for a homogeneous water phantom. Results: For the nearest organs considered (bladder, rectum, testes, small intestine, and colon), equivalent doses given by {sup 60}Co source were smaller (8%-19%) than from {sup 192}Ir. However, as the distance increases, the more penetrating gamma rays produced by {sup 60}Co deliver higher organ equivalent doses. The overall result is that effective dose per clinical absorbed dose from a {sup 60}Co source (11.1 mSv/Gy) is lower than from a {sup 192}Ir source (13.2 mSv/Gy). On the other hand, equivalent doses were the same in the tissue and the homogeneous water phantom for those soft tissues closer to the prostate than about 30 cm. As the distance increased, the differences of photoelectric effect in water and soft tissue, and appearance of other materials

  6. SU-F-19A-02: Comparison of Absorbed Dose to Water Standards for HDR Ir-192 Brachytherapy Between the LCR, Brazil and NRC, Canada

    Energy Technology Data Exchange (ETDEWEB)

    Salata, C; David, M; Almeida, C de [Universidade do Estado do Rio de Janeiro, Rio De Janeiro, RJ (Brazil); El Gamal, I; Cojocaru, C; Mainegra-Hing, E; McEwen, M [National Research Council, Ottawa, ON (Canada)

    2014-06-15

    Purpose: To compare absorbed dose to water standards for HDR brachytherapy dosimetry developed by the Radiological Science Laboratory of Rio de Janeiro State University (LCR) and the National Research Council, Canada (NRC). Methods: The two institutions have separately developed absorbed dose standards based on the Fricke dosimetry system. There are important differences between the two standards, including: preparation and read-out of the Fricke solution, irradiation geometry of the Fricke holder in relation to the Ir-192 source, and determination of the G-value to be used at Ir-192 energies. All measurements for both standards were made directly at the NRC laboratory (i.e., no transfer instrument was used) using a single Ir-192 source (microSelectron v2). In addition, the NRC group has established a self-consistent method to determine the G-value for Ir-192, based on an interpolation between G-values obtained at Co-60 and 250kVp X-rays, and this measurement was repeated using the LCR Fricke solution to investigate possible systematic uncertainties. Results: G-values for Co-60 and 250 kVp x-rays, obtained using the LCR Fricke system, agreed with the NRC values within 0.5 % and 1 % respectively, indicating that the general assumption of universal G-values is appropriate in this case. The standard uncertainty in the determination of G for Ir-192 is estimated to be 0.6 %. For the comparison of absorbed dose measurements at the reference point for Ir-192 (1 cm depth in water, perpendicular to the seed long-axis), the ratio Dw(NRC)/Dw(LCR) was found to be 1.011 with a combined standard uncertainty of 1.7 %, k=1. Conclusion: The agreement in the absorbed dose to water values for the LCR and NRC systems is very encouraging. Combined with the lower uncertainty in this approach compared to the present air-kerma approach, these results reaffirm the use of Fricke solution as a potential primary standard for HDR Ir-192 brachytherapy.

  7. A dosimetric comparison of 169Yb and 192Ir for HDR brachytherapy of the breast, accounting for the effect of finite patient dimensions and tissue inhomogeneities.

    Science.gov (United States)

    Lymperopoulou, G; Papagiannis, P; Angelopoulos, A; Karaiskos, P; Georgiou, E; Baltas, D

    2006-12-01

    Monte Carlo simulation dosimetry is used to compare 169Yb to 192Ir for breast high dose rate (HDR) brachytherapy applications using multiple catheter implants. Results for bare point sources show that while 169Yb delivers a greater dose rate per unit air kerma strength at the radial distance range of interest to brachytherapy in homogeneous water phantoms, it suffers a greater dose rate deficit in missing scatter conditions relative to 192Ir. As a result of these two opposing factors, in the scatter conditions defined by the presence of the lung and the finite patient dimensions in breast brachytherapy the dose distributions calculated in a patient equivalent mathematical phantom by Monte Carlo simulations for the same implant of either 169Yb or 1921r commercially available sources are found comparable. Dose volume histogram results support that 169Yb could be at least as effective as 192Ir delivering the same dose to the lung and slightly reduced dose to the breast skin. The current treatment planning systems' approach of employing dosimetry data precalculated in a homogeneous water phantom of given shape and dimensions, however, is shown to notably overestimate the delivered dose distribution for 169Yb. Especially at the skin and the lung, the treatment planning system dose overestimation is on the order of 15%-30%. These findings do not undermine the potential of 169Yb HDR sources for breast brachytherapy relative to the most commonly used 192Ir HDR sources. They imply, however, that there could be a need for the amendment of dose calculation algorithms employed in clinical treatment planning of particular brachytherapy applications, especially for intermediate photon energy sources such as 169Yb.

  8. Endocervical ultrasound applicator for integrated hyperthermia and HDR brachytherapy in the treatment of locally advanced cervical carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Wootton, Jeffery H.; Hsu, I-Chow Joe; Diederich, Chris J. [Thermal Therapy Research Group, Department of Radiation Oncology, University of California, San Francisco, California 94115 (United States) and Joint Graduate Group in Bioengineering, University of California, Berkeley and San Francisco, California 94115 (United States)

    2011-02-15

    Purpose: The clinical success of hyperthermia adjunct to radiotherapy depends on adequate temperature elevation in the tumor with minimal temperature rise in organs at risk. Existing technologies for thermal treatment of the cervix have limited spatial control or rapid energy falloff. The objective of this work is to develop an endocervical applicator using a linear array of multisectored tubular ultrasound transducers to provide 3-D conformal, locally targeted hyperthermia concomitant to radiotherapy in the uterine cervix. The catheter-based device is integrated within a HDR brachytherapy applicator to facilitate sequential and potentially simultaneous heat and radiation delivery. Methods: Treatment planning images from 35 patients who underwent HDR brachytherapy for locally advanced cervical cancer were inspected to assess the dimensions of radiation clinical target volumes (CTVs) and gross tumor volumes (GTVs) surrounding the cervix and the proximity of organs at risk. Biothermal simulation was used to identify applicator and catheter material parameters to adequately heat the cervix with minimal thermal dose accumulation in nontargeted structures. A family of ultrasound applicators was fabricated with two to three tubular transducers operating at 6.6-7.4 MHz that are unsectored (360 deg.), bisectored (2x180 deg.), or trisectored (3x120 deg.) for control of energy deposition in angle and along the device length in order to satisfy anatomical constraints. The device is housed in a 6 mm diameter PET catheter with cooling water flow for endocervical implantation. Devices were characterized by measuring acoustic efficiencies, rotational acoustic intensity distributions, and rotational temperature distributions in phantom. Results: The CTV in HDR brachytherapy plans extends 20.5{+-}5.0 mm from the endocervical tandem with the rectum and bladder typically <8 mm from the target boundary. The GTV extends 19.4{+-}7.3 mm from the tandem. Simulations indicate that for 60

  9. TU-AB-201-07: Image Guided Endorectal HDR Brachytherapy Using a Compliant Balloon Applicator

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, G; Goodman, K [Memorial Sloan Kettering Cancer Center, New York, NY (United States)

    2015-06-15

    Purpose: High dose rate endorectal brachytherapy is an option to deliver a focal, high-dose radiotherapy to rectal tumors for patients undergoing non-operative management. We investigate a new multichannel, MR compatible applicator with a novel balloon-based design to provide improved treatment geometry. We report on the initial clinical experience using this applicator. Methods: Patients were enrolled on an IRB-approved, dose-escalation protocol evaluating the use of the anorectal (AR-1) applicator (Ancer Medical, Hialeah, FL), a multichannel applicator with two concentric balloons. The inner balloon supports 8 source lumens; the compliant outer balloon expands to separate the normal rectal wall and the source lumens, yet deforms around a firm, exophytic rectal mass, leading to dose escalation to tumor while sparing normal rectum. Under general anesthesia, gold fiducial markers were inserted above and below the tumor, and the AR applicator was placed in the rectum. MRI-based treatment plans were prepared to deliver 15 Gy in 3 weekly fractions to the target volume while sparing healthy rectal tissue, bladder, bowel and anal muscles. Prior to each treatment, CBCT/Fluoroscopy were used to place the applicator in the treatment position and confirm the treatment geometry using rigid registration of the CBCT and planning MRI. After registration of the applicator images, positioning was evaluated based on the match of the gold markers. Results: Highly conformal treatment plans were achieved. MR compatibility of the applicator enabled good tumor visualization. In spite of the non-rigid nature of the applicators and the fact that a new applicator was used at each treatment session, treatment geometry was reproducible to within 2.5 mm. Conclusions: This is the first report on using the AR applicator in patients. Highly conformal plans, confidence in MRI target delineation, in combination with reproducible treatment geometry provide encouraging feedback for continuation with

  10. SU-E-T-507: Interfractional Variation of Fiducial Marker Position During HDR Brachytherapy with Cervical Interstitial Needle Template

    Energy Technology Data Exchange (ETDEWEB)

    Shen, S; Kim, R; Benhabib, S; Araujo, J; Burnett, L; Duan, J; Popple, R; Wu, X; Cardan, R; Brezovich, I [UniversityAlabama Birmingham, Birmingham, AL (United Kingdom)

    2014-06-01

    Purpose: HDR brachytherapy using interstitial needle template for cervical cancer is commonly delivered in 4-5 fractions. Routine verification of needle positions before each fraction is often based on radiographic imaging of implanted fiducial markers. The current study evaluated interfractional displacement of implanted fiducial markers using CT images. Methods: 9 sequential patients with cervical interstitial needle implants were evaluated. The superior and inferior borders of the target volumes were defined by fiducial markers in planning CT. The implant position was verified with kV orthogonal images before each fraction. A second CT was acquired prior 3rd fraction (one or 2 days post planning CT). Distances from inferior and superior fiducial markers to pubic symphysis plane (perpendicular to vaginal obtulator)were measured. Distance from needle tip of a reference needle (next to the inferior marker) to the pubic symphysis plane was also determined. The difference in fiducial marker distance or needle tip distance between planning CT and CT prior 3rd fraction were measured to assess markers migration and needle displacement. Results: The mean inferior marker displacement was 4.5 mm and ranged 0.9 to 11.3 mm. The mean superior marker displacement was 2.7 mm and ranged 0 to 10.4 mm. There was a good association between inferior and superior marker displacement (r=0.95). Mean averaged inferior and superior marker displacement was 3.3 mm and ranged from 0.1 to 10.9 mm, with a standard deviation of 3.2 mm. The mean needle displacement was 5.6 mm and ranged 0.2 to 15.6 mm. Needle displacements were reduced (p<0.05) after adjusting according to needle-to-fiducials distance. Conclusion: There were small fiducial marker displacements between HDR fractions. Our study suggests a target margin of 9.7 mm to cover interfractional marker displacements (in 95% cases) for pretreatment verification based on radiographic imaging.

  11. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    Science.gov (United States)

    Singh, Hardev; Herman, Tania De La Fuente; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin

    2012-10-01

    This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem & ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

  12. TU-AB-201-04: Optimizing the Number of Catheter Implants and Their Tracks for Prostate HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Riofrio, D; Luan, S [University of New Mexico, Albuquerque, New Mexico (United States); Zhou, J [William Beaumont Hospital, Royal Oak, MI (United States); Ma, L [UCSF Comprehensive Cancer Center, San Francisco, CA (United States)

    2015-06-15

    Purpose: In prostate HDR brachytherapy, interstitial implants are placed manually on the fly. The aim for this research is to develop a computer algorithm to find optimal and reliable implant trajectories using minimal number of implants. Methods: Our new algorithm mainly uses these key ideas: (1) positive charged static particles are uniformly placed on the surface of prostate and critical structures such as urethra, bladder, and rectum. (2) Positive charged kinetic particles are placed at a cross-section of the prostate with an initial velocity parallel to the principal implant direction. (3) The kinetic particles move through the prostate, interacting with each other, spreading out, while staying away from the prostate surface and critical structures. The initial velocity ensures that the trajectories observe the curvature constraints of typical implant procedures. (4) The finial trajectories of kinetic particles are smoothed using a third-degree polynomial regression, which become the implant trajectories. (5) The dwelling times and final dose distribution are calculated using least-distance programming. Results: (1) We experimented with previously treated cases. Our plan achieves all prescription goals while reducing the number of implants by 41%! Our plan also has less uniform target dose, which implies a higher dose is delivered to the prostate. (2) We expect future implant procedures will be performed under the guidance of such pre-calculated trajectories. To assess the applicability, we randomly perturb the tracks to mimic the manual implant errors. Our studies showed the impact of these perturbations are negligible, which is compensated by the least distance programming. Conclusions: We developed a new inverse planning system for prostate HDR therapy that can find optimal implant trajectories while minimizing the number of implants. For future work, we plan to integrate our new inverse planning system with an existing needle tracking system.

  13. Dosimetric evaluation of PLATO and Oncentra treatment planning systems for High Dose Rate (HDR) brachytherapy gynecological treatments

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Hardev; De La Fuente Herman, Tania; Showalter, Barry; Thompson, Spencer J.; Syzek, Elizabeth J.; Herman, Terence; Ahmad, Salahuddin [Department of Radiation Oncology, Peggy and Charles Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 (United States)

    2012-10-23

    This study compares the dosimetric differences in HDR brachytherapy treatment plans calculated with Nucletron's PLATO and Oncentra MasterPlan treatment planning systems (TPS). Ten patients (1 T1b, 1 T2a, 6 T2b, 2 T4) having cervical carcinoma, median age of 43.5 years (range, 34-79 years) treated with tandem and ring applicator in our institution were selected retrospectively for this study. For both Plato and Oncentra TPS, the same orthogonal films anterior-posterior (AP) and lateral were used to manually draw the prescription and anatomical points using definitions from the Manchester system and recommendations from the ICRU report 38. Data input for PLATO was done using a digitizer and Epson Expression 10000XL scanner was used for Oncentra where the points were selected on the images in the screen. The prescription doses for these patients were 30 Gy to points right A (RA) and left A (LA) delivered in 5 fractions with Ir-192 HDR source. Two arrangements: one dwell position and two dwell positions on the tandem were used for dose calculation. The doses to the patient points right B (RB) and left B (LB), and to the organs at risk (OAR), bladder and rectum for each patient were calculated. The mean dose and the mean percentage difference in dose calculated by the two treatment planning systems were compared. Paired t-tests were used for statistical analysis. No significant differences in mean RB, LB, bladder and rectum doses were found with p-values > 0.14. The mean percent difference of doses in RB, LB, bladder and rectum are found to be less than 2.2%, 1.8%, 1.3% and 2.2%, respectively. Dose calculations based on the two different treatment planning systems were found to be consistent and the treatment plans can be made with either system in our department without any concern.

  14. Determination of absorbed dose in water at the reference point d(r0, theta0) for an 192Ir HDR brachytherapy source using a Fricke system.

    Science.gov (United States)

    Austerlitz, C; Mota, H C; Sempau, J; Benhabib, S M; Campos, D; Allison, R; DeAlmeida, C E; Zhu, D; Sibata, C H

    2008-12-01

    A ring-shaped Fricke device was developed to measure the absolute dose on the transverse bisector of a 192Ir high dose rate (HDR) source at 1 cm from its center in water, D(r0, theta0). It consists of a polymethylmethacrylate (PMMA) rod (axial axis) with a cylindrical cavity at its center to insert the 192Ir radioactive source. A ring cavity around the source with 1.5 mm thickness and 5 mm height is centered at 1 cm from the central axis of the source. This ring cavity is etched in a disk shaped base with 2.65 cm diameter and 0.90 cm thickness. The cavity has a wall around it 0.25 cm thick. This ring is filled with Fricke solution, sealed, and the whole assembly is immersed in water during irradiations. The device takes advantage of the cylindrical geometry to measure D(r0, theta0). Irradiations were performed with a Nucletron microselectron HDR unit loaded with an 192Ir Alpha Omega radioactive source. A Spectronic 1001 spectrophotometer was used to measure the optical absorbance using a 1 mL quartz cuvette with 1.00 cm light pathlength. The PENELOPE Monte Carlo code (MC) was utilized to simulate the Fricke device and the 192Ir Alpha Omega source in detail to calculate the perturbation introduced by the PMMA material. A NIST traceable calibrated well type ionization chamber was used to determine the air-kerma strength, and a published dose-rate constant was used to determine the dose rate at the reference point. The time to deliver 30.00 Gy to the reference point was calculated. This absorbed dose was then compared to the absorbed dose measured by the Fricke solution. Based on MC simulation, the PMMA of the Fricke device increases the D(r0, theta0) by 2.0%. Applying the corresponding correction factor, the D(r0, theta0) value assessed with the Fricke device agrees within 2.0% with the expected value with a total combined uncertainty of 3.43% (k=1). The Fricke device provides a promising method towards calibration of brachytherapy radiation sources in terms of D(r0

  15. Validation of a novel robot-assisted 3DUS system for real-time planning and guidance of breast interstitial HDR brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Beaulieu, Luc, E-mail: Luc.Beaulieu@phy.ulaval.ca [Département de Physique, de Génie Physique et d’optique et Centre de Recherche sur le Cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de Radio-oncologie et Axe Oncologie du Centre de Recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Gardi, Lori; Barker, Kevin; Montreuil, Jacques; Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (Canada)

    2015-12-15

    Purpose: In current clinical practice, there is no integrated 3D ultrasound (3DUS) guidance system clinically available for breast brachytherapy. In this study, the authors present a novel robot-assisted 3DUS system for real-time planning and guidance of breast interstitial high dose rate (HDR) brachytherapy treatment. Methods: For this work, a new computer controlled robotic 3DUS system was built to perform a hybrid motion scan, which is a combination of a 6 cm linear translation with a 30° rotation at both ends. The new 3DUS scanner was designed to fit on a modified Kuske assembly, keeping the current template grid configuration but modifying the frame to allow the mounting of the 3DUS system at several positions. A finer grid was also tested. A user interface was developed to perform image reconstruction, semiautomatic segmentation of the surgical bed as well as catheter reconstruction and tracking. A 3D string phantom was used to validate the geometric accuracy of the reconstruction. The volumetric accuracy of the system was validated with phantoms using magnetic resonance imaging (MRI) and computed tomography (CT) images. In order to accurately determine whether 3DUS can effectively replace CT for treatment planning, the authors have compared the 3DUS catheter reconstruction to the one obtained from CT images. In addition, in agarose-based phantoms, an end-to-end procedure was performed by executing six independent complete procedures with both 14 and 16 catheters, and for both standard and finer Kuske grids. Finally, in phantoms, five end-to-end procedures were performed with the final CT planning for the validation of 3DUS preplanning. Results: The 3DUS acquisition time is approximately 10 s. A paired Student t-test showed that there was no statistical significant difference between known and measured values of string separations in each direction. Both MRI and CT volume measurements were not statistically different from 3DUS volume (Student t-test: p > 0

  16. SU-E-T-149: Brachytherapy Patient Specific Quality Assurance for a HDR Vaginal Cylinder Case

    Energy Technology Data Exchange (ETDEWEB)

    Barbiere, J; Napoli, J; Ndlovu, A [Hackensack Univ Medical Center, Hackensack, NJ (United States)

    2015-06-15

    Purpose: Commonly Ir-192 HDR treatment planning system commissioning is only based on a single absolute measurement of source activity supplemented by tabulated parameters for multiple factors without independent verification that the planned distribution corresponds to the actual delivered dose. The purpose on this work is to present a methodology using Gafchromic film with a statistically valid calibration curve that can be used to validate clinical HDR vaginal cylinder cases by comparing the calculated plan dose distribution in a plane with the corresponding measured planar dose. Methods: A vaginal cylinder plan was created with Oncentra treatment planning system. The 3D dose matrix was exported to a Varian Eclipse work station for convenient extraction of a 2D coronal dose plane corresponding to the film position. The plan was delivered with a sheet of Gafchromic EBT3 film positioned 1mm from the catheter using an Ir-192 Nucletron HDR source. The film was then digitized with an Epson 10000 XL color scanner. Film analysis is performed with MatLab imaging toolbox. A density to dose calibration curve was created using TG43 formalism for a single dwell position exposure at over 100 points for statistical accuracy. The plan and measured film dose planes were registered using a known dwell position relative to four film marks. The plan delivered 500 cGy to points 2 cm from the sources. Results: The distance to agreement of the 500 cGy isodose between the plan and film measurement laterally was 0.5 mm but can be as much as 1.5 mm superior and inferior. The difference between the computed plan dose and film measurement was calculated per pixel. The greatest errors up to 50 cGy are near the apex. Conclusion: The methodology presented will be useful to implement more comprehensive quality assurance to verify patient-specific dose distributions.

  17. A comparison of inverse optimization algorithms for HDR/PDR prostate brachytherapy treatment planning.

    Science.gov (United States)

    Dinkla, Anna M; van der Laarse, Rob; Kaljouw, Emmie; Pieters, Bradley R; Koedooder, Kees; van Wieringen, Niek; Bel, Arjan

    2015-01-01

    Graphical optimization (GrO) is a common method for high-dose-rate/pulsed-dose-rate (PDR) prostate brachytherapy treatment planning. New methods performing inverse optimization of the dose distribution have been developed over the past years. The purpose is to compare GrO and two established inverse methods, inverse planning simulated annealing (IPSA) and hybrid inverse treatment planning and optimization (HIPO), and one new method, enhanced geometric optimization-interactive inverse planning (EGO-IIP), in terms of speed and dose-volume histogram (DVH) parameters. For 26 prostate cancer patients treated with a PDR brachytherapy boost, an experienced treatment planner optimized the dose distributions using four different methods: GrO, IPSA, HIPO, and EGO-IIP. Relevant DVH parameters (prostate-V100%, D90%, V150%; urethra-D(0.1cm3) and D(1.0cm3); rectum-D(0.1cm3) and D(2.0cm3); bladder-D(2.0cm3)) were evaluated and their compliance to the constraints. Treatment planning time was also recorded. All inverse methods resulted in shorter planning time (mean, 4-6.7 min), as compared with GrO (mean, 7.6 min). In terms of DVH parameters, none of the inverse methods outperformed the others. However, all inverse methods improved on compliance to the planning constraints as compared with GrO. On average, EGO-IIP and GrO resulted in highest D90%, and the IPSA plans resulted in lowest bladder D2.0cm3 and urethra D(1.0cm3). Inverse planning methods decrease planning time as compared with GrO for PDR/high-dose-rate prostate brachytherapy. DVH parameters are comparable for all methods. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  18. Head and neck (192)Ir HDR-brachytherapy dosimetry using a grid-based Boltzmann solver.

    Science.gov (United States)

    Siebert, Frank-André; Wolf, Sabine; Kóvacs, George

    2013-12-01

    To compare dosimetry for head and neck cancer patients, calculated with TG-43 formalism and a commercially available grid-based Boltzmann solver. This study included 3D-dosimetry of 49 consecutive brachytherapy head and neck cancer patients, computed by a grid-based Boltzmann solver that takes into account tissue inhomogeneities as well as TG-43 formalism. 3D-treatment planning was carried out by using computed tomography. Dosimetric indices D90 and V100 for target volume were about 3% lower (median value) for the grid-based Boltzmann solver relative to TG-43-based computation (p Boltzmann solver to TG-43 (p Boltzmann solver and TG-43 formalism for high-dose-rate head and neck brachytherapy patients to the target volume were found. Distinctions in D90 of CTV were low (2.63 Gy for grid-based Boltzmann solver vs. 2.71 Gy TG-43 in mean). In our clinical practice, prescription doses remain unchanged for high-dose-rate head and neck brachytherapy for the time being.

  19. Design and implementation of a film dosimetry audit tool for comparison of planned and delivered dose distributions in high dose rate (HDR) brachytherapy

    Science.gov (United States)

    Palmer, Antony L.; Lee, Chris; Ratcliffe, Ailsa J.; Bradley, David; Nisbet, Andrew

    2013-10-01

    A novel phantom is presented for ‘full system’ dosimetric audit comparing planned and delivered dose distributions in HDR gynaecological brachytherapy, using clinical treatment applicators. The brachytherapy applicator dosimetry test object consists of a near full-scatter water tank with applicator and film supports constructed of Solid Water, accommodating any typical cervix applicator. Film dosimeters are precisely held in four orthogonal planes bisecting the intrauterine tube, sampling dose distributions in the high risk clinical target volume, points A and B, bladder, rectum and sigmoid. The applicator position is fixed prior to CT scanning and through treatment planning and irradiation. The CT data is acquired with the applicator in a near clinical orientation to include applicator reconstruction in the system test. Gamma analysis is used to compare treatment planning system exported RTDose grid with measured multi-channel film dose maps. Results from two pilot audits are presented, using Ir-192 and Co-60 HDR sources, with a mean gamma passing rate of 98.6% using criteria of 3% local normalization and 3 mm distance to agreement (DTA). The mean DTA between prescribed dose and measured film dose at point A was 1.2 mm. The phantom was funded by IPEM and will be used for a UK national brachytherapy dosimetry audit.

  20. Comparison of dosimetric standards of USA and France for HDR brachytherapy

    Science.gov (United States)

    Douysset, Guilhem; Gouriou, Jean; Delaunay, Frank; DeWerd, Larry; Stump, Kurt; Micka, John

    2005-05-01

    A bilateral comparison of national dosimetric standards for high dose rate brachytherapy has been conducted between the Laboratoire National Henri Becquerel and the University of Wisconsin Accredited Dosimetry Calibration Laboratory. A complete overview of the methods that are currently in use to establish the two national standards is given. The comparison has been carried out using well-type transfer ionization chambers. Three units have been calibrated in both laboratories, and calibration coefficients have been compared. The discrepancies between the two measurements are within 0.3%.

  1. In vivo dosimetry in the urethra using alanine/ESR during (192)Ir HDR brachytherapy of prostate cancer--a phantom study.

    Science.gov (United States)

    Anton, Mathias; Wagner, Daniela; Selbach, Hans-Joachim; Hackel, Thomas; Hermann, Robert Michael; Hess, Clemens Friedrich; Vorwerk, Hilke

    2009-05-07

    A phantom study for dosimetry in the urethra using alanine/ESR during (192)Ir HDR brachytherapy of prostate cancer is presented. The measurement method of the secondary standard of the Physikalisch-Technische Bundesanstalt had to be slightly modified in order to be able to measure inside a Foley catheter. The absorbed dose to water response of the alanine dosimetry system to (192)Ir was determined with a reproducibility of 1.8% relative to (60)Co. The resulting uncertainty for measurements inside the urethra was estimated to be 3.6%, excluding the uncertainty of the dose rate constant Lambda. The applied dose calculated by a treatment planning system is compared to the measured dose for a small series of (192)Ir HDR irradiations in a gel phantom. The differences between the measured and applied dose are well within the limits of uncertainty. Therefore, the method is considered to be suitable for measurements in vivo.

  2. In vivo dosimetry in the urethra using alanine/ESR during 192Ir HDR brachytherapy of prostate cancer—a phantom study

    Science.gov (United States)

    Anton, Mathias; Wagner, Daniela; Selbach, Hans-Joachim; Hackel, Thomas; Hermann, Robert Michael; Hess, Clemens Friedrich; Vorwerk, Hilke

    2009-05-01

    A phantom study for dosimetry in the urethra using alanine/ESR during 192Ir HDR brachytherapy of prostate cancer is presented. The measurement method of the secondary standard of the Physikalisch-Technische Bundesanstalt had to be slightly modified in order to be able to measure inside a Foley catheter. The absorbed dose to water response of the alanine dosimetry system to 192Ir was determined with a reproducibility of 1.8% relative to 60Co. The resulting uncertainty for measurements inside the urethra was estimated to be 3.6%, excluding the uncertainty of the dose rate constant Λ. The applied dose calculated by a treatment planning system is compared to the measured dose for a small series of 192Ir HDR irradiations in a gel phantom. The differences between the measured and applied dose are well within the limits of uncertainty. Therefore, the method is considered to be suitable for measurements in vivo.

  3. In vivo dosimetry in the urethra using alanine/ESR during {sup 192}Ir HDR brachytherapy of prostate cancer-a phantom study

    Energy Technology Data Exchange (ETDEWEB)

    Anton, Mathias; Selbach, Hans-Joachim; Hackel, Thomas [Physikalisch-Technische Bundesanstalt, Braunschweig (Germany); Wagner, Daniela; Hess, Clemens Friedrich; Vorwerk, Hilke [Department of Radiotherapy and Radiooncology, University Hospital Goettingen, Goettingen (Germany); Hermann, Robert Michael [Zentrum fuer Strahlentherapie und Radioonkologie, Bremen (Germany)], E-mail: mathias.anton@ptb.de

    2009-05-07

    A phantom study for dosimetry in the urethra using alanine/ESR during {sup 192}Ir HDR brachytherapy of prostate cancer is presented. The measurement method of the secondary standard of the Physikalisch-Technische Bundesanstalt had to be slightly modified in order to be able to measure inside a Foley catheter. The absorbed dose to water response of the alanine dosimetry system to {sup 192}Ir was determined with a reproducibility of 1.8% relative to {sup 60}Co. The resulting uncertainty for measurements inside the urethra was estimated to be 3.6%, excluding the uncertainty of the dose rate constant {lambda}. The applied dose calculated by a treatment planning system is compared to the measured dose for a small series of {sup 192}Ir HDR irradiations in a gel phantom. The differences between the measured and applied dose are well within the limits of uncertainty. Therefore, the method is considered to be suitable for measurements in vivo.

  4. Adaptive error detection for HDR/PDR brachytherapy: Guidance for decision making during real-time in vivo point dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Kertzscher, Gustavo, E-mail: guke@dtu.dk; Andersen, Claus E., E-mail: clan@dtu.dk [Centre for Nuclear Technologies, Technical University of Denmark, DTU Nutech, Frederiksborgvej 399, DK-4000 Roskilde (Denmark); Tanderup, Kari, E-mail: karitand@rm.dk [Department of Oncology, Aarhus University Hospital and Institute of Clinical Medicine, Aarhus University, Norrebrogade 44, DK-8000 Aarhus (Denmark)

    2014-05-15

    Purpose: This study presents an adaptive error detection algorithm (AEDA) for real-timein vivo point dosimetry during high dose rate (HDR) or pulsed dose rate (PDR) brachytherapy (BT) where the error identification, in contrast to existing approaches, does not depend on an a priori reconstruction of the dosimeter position. Instead, the treatment is judged based on dose rate comparisons between measurements and calculations of the most viable dosimeter position provided by the AEDA in a data driven approach. As a result, the AEDA compensates for false error cases related to systematic effects of the dosimeter position reconstruction. Given its nearly exclusive dependence on stable dosimeter positioning, the AEDA allows for a substantially simplified and time efficient real-time in vivo BT dosimetry implementation. Methods: In the event of a measured potential treatment error, the AEDA proposes the most viable dosimeter position out of alternatives to the original reconstruction by means of a data driven matching procedure between dose rate distributions. If measured dose rates do not differ significantly from the most viable alternative, the initial error indication may be attributed to a mispositioned or misreconstructed dosimeter (false error). However, if the error declaration persists, no viable dosimeter position can be found to explain the error, hence the discrepancy is more likely to originate from a misplaced or misreconstructed source applicator or from erroneously connected source guide tubes (true error). Results: The AEDA applied on twoin vivo dosimetry implementations for pulsed dose rate BT demonstrated that the AEDA correctly described effects responsible for initial error indications. The AEDA was able to correctly identify the major part of all permutations of simulated guide tube swap errors and simulated shifts of individual needles from the original reconstruction. Unidentified errors corresponded to scenarios where the dosimeter position was

  5. Evaluation of radiation doses on critical organs in the treatment of cancer of the cervix using HDR-brachytherapy; Avaliacao das doses em orgaos criticos no tratamento do cancer de colo uterino com braquiterapia de alta taxa de dose

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Taciana; Jansem, Teresa [Pernambuco Univ., Recife, PE (Brazil). Dept. de Biofisica e Radiobiologia; Amaral, Ademir [Pernambuco Univ., Recife, PE (Brazil). Dept. de Energia Nuclear; Cavalcanti, Homero; Vicente, Marcos [Centro de Radioterapia de Pernambuco (CERAPE), Recife, PE (Brazil)

    2000-07-01

    High dose-rate (HDR) brachytherapy is one type of treatment of the cervix carcinoma. During the planning for this therapy, especial attention is given to proximal normal organs such as bladder and rectum. In fact, due to their radiosensibility and localization, bladder and rectum are considered as critical organs. In this work we have studied the influence of the positioning of patient legs in the dose delivered to these critical organs in the treatment of cancer of the cervix using HDR-brachytherapy. (author)

  6. A simplified analytical approach to estimate the parameters required for strength determination of HDR 192Ir brachytherapy sources using a Farmer-type ionization chamber.

    Science.gov (United States)

    Kumar, Sudhir; Srinivasan, P; Sharma, S D; Mayya, Y S

    2012-01-01

    Measuring the strength of high dose rate (HDR) (192)Ir brachytherapy sources on receipt from the vendor is an important component of a quality assurance program. Owing to their ready availability in radiotherapy departments, the Farmer-type ionization chambers are also used to determine the strength of HDR (192)Ir brachytherapy sources. The use of a Farmer-type ionization chamber requires the estimation of the scatter correction factor along with positioning error (c) and the constant of proportionality (f) to determine the strength of HDR (192)Ir brachytherapy sources. A simplified approach based on a least squares method was developed for estimating the values of f and M(s). The seven distance method was followed to record the ionization chamber readings for parameterization of f and M(s). Analytically calculated values of M(s) were used to determine the room scatter correction factor (K(sc)). The Monte Carlo simulations were also carried out to calculate f and K(sc) to verify the magnitude of the parameters determined by the proposed analytical approach. The value of f determined using the simplified analytical approach was found to be in excellent agreement with the Monte Carlo simulated value (within 0.7%). Analytically derived values of K(sc) were also found to be in good agreement with the Monte Carlo calculated values (within 1.47%). Being far simpler than the presently available methods of evaluating f, the proposed analytical approach can be adopted for routine use by clinical medical physicists to estimate f by hand calculations.

  7. SU-E-T-758: To Determine the Source Dwell Positions of HDR Brachytherapy Using 2D 729 Ion Chamber Array

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Syam [Malabar Cancer Centre, Kannur, Kerala (India); Sitha [University of Calicut, Calicut, Kerala (India)

    2015-06-15

    Purpose: Determination of source dwell positions of HDR brachytherapy using 2D 729 ion chamber array Methods: Nucletron microselectron HDR and PTW 2D array were used for the study. Different dwell positions were assigned in the HDR machine. Rigid interstitial needles and vaginal applicator were positioned on the 2D array. The 2D array was exposed for this programmed dwell positions. The positional accuracy of the source was analyzed after the irradiation of the 2D array. This was repeated for different dwell positions. Different test plans were transferred from the Oncentra planning system and irradiated with the same applicator position on the 2D array. The results were analyzed using the in house developed excel program. Results: Assigned dwell positions versus corresponding detector response were analyzed. The results show very good agreement with the film measurements. No significant variation found between the planned and measured dwell positions. Average dose response with 2D array between the planned and nearby dwell positions was found to be 0.0804 Gy for vaginal cylinder applicator and 0.1234 Gy for interstitial rigid needles. Standard deviation between the doses for all the measured dwell positions for interstitial rigid needle for 1 cm spaced positions were found to be 0.33 and 0.37 for 2cm spaced dwell positions. For intracavitory vaginal applicator this was found to be 0.21 for 1 cm spaced dwell positions and 0.06 for 2cm spaced dwell positions. Intracavitory test plans reproduced on the 2D array with the same applicator positions shows the ideal dose distribution with the TPS planned. Conclusion: 2D array is a good tool for determining the dwell position of HDR brachytherapy. With the in-house developed program in excel it is easy and accurate. The traditional way with film analysis can be replaced by this method, as the films will be more costly.

  8. VMAT for the treatment of gynecologic malignancies for patients unable to receive HDR brachytherapy.

    Science.gov (United States)

    Merrow, Caitlin; deBoer, Steven; Podgorsak, Matthew B

    2014-09-08

    This investigation studies the use of volumetric-modulated arc therapy (VMAT) to deliver the following conceptual gynecological brachytherapy (BT) dose distributions: Type 1, traditional pear-shaped dose distribution with substantial dose gradients; Type 2, homogeneous dose distribution throughout PTV (BT prescription volume); and Type 3, increased dose to PTV without organ-at-risk (OAR) overdose. A tandem and ovoid BT treatment plan, with the prescription dose of 6 Gy to point A, was exported into the VMAT treatment planning system (TPS) and became the baseline for comparative analysis. The 200%, 150%, 130%, 100%, 75%, and 50% dose volumes were converted into structures for optimization and evaluation purposes. The 100% dose volume was chosen to be the PTV. Five VMAT plans (Type 1) were created to duplicate the Ir-192 tandem and ovoid inhomogeneous dose distribution. Another five VMAT plans (Type 2) were generated to deliver a homogeneous dose of 6 Gy to the PTV. An additional five VMAT plans (Type 3) were created to increase the dose to the PTV with a homogeneous dose distribution. In the first set of plans, the dose given to 99% of the 200%-100% dose volumes agreed within 2% of the BT plan on average. Additionally, it was found that the 75% dose volumes agreed within 5% of the BT plan and the 50% dose volumes agreed within 6.4% of the BT plan. In the second set of comparative analyses, the 100% dose volume was found to be within 1% of the original plan. Furthermore, the maximum increase of dose to the PTV in the last set of comparative analyses was 8 Gy with similar doses to OARs as the other VMAT plans. The maximum increase of dose was 2.50 Gy to the rectum and the maximum decrease of dose was 0.70 Gy to the bladder. Henceforth, VMAT was successful at reproducing brachytherapy dose distributions demonstrating that alternative dose distributions have the potential to be used in lieu of brachytherapy. It should also be noted that differences in radiobiology need

  9. Dose verification in HDR brachytherapy and IMRT with Fricke gel-layer dosimeters

    Energy Technology Data Exchange (ETDEWEB)

    Gambarini, G.; Negri, A.; Bartesaghi, G.; Pirola, L. [Department of Physics, Universita degli Studi di Milano, Italy (Italy); Carrara, M.; Gambini, I.; Tomatis, S.; Fallai, C.; Zonca, G. [Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy (Italy); Stokucova, J. [Faculty Hospital Na Bulovce, Prague, Czech Republic (Czech Republic)

    2009-10-15

    At the Department of Physics of the Universita degli Studi di Milano in collaboration with the Medical Physics Unit and the Radiotherapy Unit of the Fondazione IRCCS Istituto Nazionale dei Tumori di Milano the research of a dosimetric technique based on Fricke gel layers and optical analysis in under study. In fact, Fricke gel layer dosimeters (FGLD) have various advantages such as the tissue-equivalence for photons in the clinical energy interval, the possibility to obtain the spatial information about continuous dose distribution and not only a point dose distribution as it is for example in the case of ionization chambers, TLD or diodes and the possibility to obtain the information about 3D dose distributions. In this work, specific applications of FGLD to absolute dosimetry in radiotherapy have been studied, i.e. in-phantom measurements of complex intensity modulated radiation therapy fields (IMRT) and complex brachytherapy fields. (Author)

  10. Comparison of IPSA and HIPO inverse planning optimization algorithms for prostate HDR brachytherapy.

    Science.gov (United States)

    Panettieri, Vanessa; Smith, Ryan L; Mason, Natasha J; Millar, Jeremy L

    2014-11-08

    Publications have reported the benefits of using high-dose-rate brachytherapy (HDRB) for the treatment of prostate cancer, since it provides similar biochemical control as other treatments while showing lowest long-term complications to the organs at risk (OAR). With the inclusion of anatomy-based inverse planning opti- mizers, HDRB has the advantage of potentially allowing dose escalation. Among the algorithms used, the Inverse Planning Simulated Annealing (IPSA) optimizer is widely employed since it provides adequate dose coverage, minimizing dose to the OAR, but it is known to generate large dwell times in particular positions of the catheter. As an alternative, the Hybrid Inverse treatment Planning Optimization (HIPO) algorithm was recently implemented in Oncentra Brachytherapy V. 4.3. The aim of this work was to compare, with the aid of radiobiological models, plans obtained with IPSA and HIPO to assess their use in our clinical practice. Thirty patients were calculated with IPSA and HIPO to achieve our department's clinical constraints. To evaluate their performance, dosimetric data were collected: Prostate PTV D90(%), V100(%), V150(%), and V200(%), Urethra D10(%), Rectum D2cc(%), and conformity indices. Additionally tumor control probability (TCP) and normal tissue complication probability (NTCP) were calculated with the BioSuite software. The HIPO optimization was performed firstly with Prostate PTV (HIPOPTV) and then with Urethra as priority 1 (HIPOurethra). Initial optimization constraints were then modified to see the effects on dosimetric parameters, TCPs, and NTCPs. HIPO optimizations could reduce TCPs up to 10%-20% for all PTVs lower than 74 cm3. For the urethra, IPSA and HIPOurethra provided similar NTCPs for the majority of volume sizes, whereas HIPOPTV resulted in large NTCP values. These findings were in agreement with dosimetric values. By increasing the PTV maximum dose constraints for HIPOurethra plans, TCPs were found to be in agreement with

  11. Comparison between beta radiation dose distribution due to LDR and HDR ocular brachytherapy applicators using GATE Monte Carlo platform.

    Science.gov (United States)

    Mostafa, Laoues; Rachid, Khelifi; Ahmed, Sidi Moussa

    2016-08-01

    Eye applicators with 90Sr/90Y and 106Ru/106Rh beta-ray sources are generally used in brachytherapy for the treatment of eye diseases as uveal melanoma. Whenever, radiation is used in treatment, dosimetry is essential. However, knowledge of the exact dose distribution is a critical decision-making to the outcome of the treatment. The Monte Carlo technique provides a powerful tool for calculation of the dose and dose distributions which helps to predict and determine the doses from different shapes of various types of eye applicators more accurately. The aim of this work consisted in using the Monte Carlo GATE platform to calculate the 3D dose distribution on a mathematical model of the human eye according to international recommendations. Mathematical models were developed for four ophthalmic applicators, two HDR 90Sr applicators SIA.20 and SIA.6, and two LDR 106Ru applicators, a concave CCB model and a flat CCB model. In present work, considering a heterogeneous eye phantom and the chosen tumor, obtained results with the use of GATE for mean doses distributions in a phantom and according to international recommendations show a discrepancy with respect to those specified by the manufacturers. The QC of dosimetric parameters shows that contrarily to the other applicators, the SIA.20 applicator is consistent with recommendations. The GATE platform show that the SIA.20 applicator present better results, namely the dose delivered to critical structures were lower compared to those obtained for the other applicators, and the SIA.6 applicator, simulated with MCNPX generates higher lens doses than those generated by GATE.

  12. SU-F-19A-12: Split-Ring Applicator with Interstitial Needle for Improved Volumetric Coverage in HDR Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sherertz, T; Ellis, R; Colussi, V; Mislmani, M; Traughber, B; Herrmann, K; Podder, T [University Hospitals Case Medical Center, Cleveland, OH (United States)

    2014-06-15

    Purpose: To evaluate volumetric coverage of a Mick Radionuclear titanium Split-Ring applicator (SRA) with/without interstitial needle compared to an intracavitary Vienna applicator (VA), interstitial-intracavitary VA, and intracavitary ring and tandem applicator (RTA). Methods: A 57 year-old female with FIGO stage IIB cervical carcinoma was treated following chemoradiotherapy (45Gy pelvic and 5.4Gy parametrial boost) with highdose- rate (HDR) brachytherapy to 30Gy in 5 fractions using a SRA. A single interstitial needle was placed using the Ellis Interstitial Cap for the final three fractions to increase coverage of left-sided gross residual disease identified on 3T-MRI. High-risk (HR) clinical target volume (CTV) and intermediate-risk (IR) CTV were defined using axial T2-weighted 2D and 3D MRI sequences (Philips PET/MRI unit). Organs-at-risks (OARs) were delineated on CT. Oncentra planning system was used for treatment optimization satisfying GEC-ESTRO guidelines for target coverage and OAR constraints. Retrospectively, treatment plans (additional 20 plans) were simulated using intracavitary SRA (without needle), intracavitary VA (without needle), interstitial-intracavitary VA, and intracavitary RTA with this same patient case. Plans were optimized for each fraction to maintain coverage to HR-CTV. Results: Interstitial-intracavitary SRA achieved the following combined coverage for external radiation and brachytherapy (EQD2): D90 HR-CTV =94.6Gy; Bladder-2cc =88.9Gy; Rectum-2cc =65.1Gy; Sigmoid-2cc =48.9Gy; Left vaginal wall (VW) =103Gy, Right VW =99.2Gy. Interstitial-intracavitary VA was able to achieve identical D90 HR-CTV =94.6Gy, yet Bladder-2cc =91.9Gy (exceeding GEC-ESTRO recommendations of 2cc<90Gy) and Left VW =120.8Gy and Right VW =115.5Gy. Neither the SRA nor VA without interstitial needle could cover HR-CTV adequately without exceeding dose to Bladder-2cc. Conventional RTA was unable to achieve target coverage for the HR-CTV >80Gy without severely

  13. A review of the clinical experience in pulsed dose rate brachytherapy.

    Science.gov (United States)

    Balgobind, Brian V; Koedooder, Kees; Ordoñez Zúñiga, Diego; Dávila Fajardo, Raquel; Rasch, Coen R N; Pieters, Bradley R

    2015-01-01

    Pulsed dose rate (PDR) brachytherapy is a treatment modality that combines physical advantages of high dose rate (HDR) brachytherapy with the radiobiological advantages of low dose rate brachytherapy. The aim of this review was to describe the effective clinical use of PDR brachytherapy worldwide in different tumour locations. We found 66 articles reporting on clinical PDR brachytherapy including the treatment procedure and outcome. Moreover, PDR brachytherapy has been applied in almost all tumour sites for which brachytherapy is indicated and with good local control and low toxicity. The main advantage of PDR is, because of the small pulse sizes used, the ability to spare normal tissue. In certain cases, HDR resembles PDR brachytherapy by the use of multifractionated low-fraction dose.

  14. Monte Carlo study of the impact of a magnetic field on the dose distribution in MRI-guided HDR brachytherapy using Ir-192

    Science.gov (United States)

    Beld, E.; Seevinck, P. R.; Lagendijk, J. J. W.; Viergever, M. A.; Moerland, M. A.

    2016-09-01

    In the process of developing a robotic MRI-guided high-dose-rate (HDR) prostate brachytherapy treatment, the influence of the MRI scanner’s magnetic field on the dose distribution needs to be investigated. A magnetic field causes a deflection of electrons in the plane perpendicular to the magnetic field, and it leads to less lateral scattering along the direction parallel with the magnetic field. Monte Carlo simulations were carried out to determine the influence of the magnetic field on the electron behavior and on the total dose distribution around an Ir-192 source. Furthermore, the influence of air pockets being present near the source was studied. The Monte Carlo package Geant4 was utilized for the simulations. The simulated geometries consisted of a simplified point source inside a water phantom. Magnetic field strengths of 0 T, 1.5 T, 3 T, and 7 T were considered. The simulation results demonstrated that the dose distribution was nearly unaffected by the magnetic field for all investigated magnetic field strengths. Evidence was found that, from a dose perspective, the HDR prostate brachytherapy treatment using Ir-192 can be performed safely inside the MRI scanner. No need was found to account for the magnetic field during treatment planning. Nevertheless, the presence of air pockets in close vicinity to the source, particularly along the direction parallel with the magnetic field, appeared to be an important point for consideration.

  15. A simplified analytical approach to estimate the parameters required for strength determination of HDR {sup 192}Ir brachytherapy sources using a Farmer-type ionization chamber

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Sudhir [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Anushaktinagar, Mumbai 400094 (India); Srinivasan, P. [Radiation Safety Systems Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sharma, S.D., E-mail: sdsharma_barc@rediffmail.com [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Anushaktinagar, Mumbai 400094 (India); Mayya, Y.S. [Radiological Physics and Advisory Division, Bhabha Atomic Research Centre, CTCRS, Anushaktinagar, Mumbai 400094 (India)

    2012-01-15

    Measuring the strength of high dose rate (HDR) {sup 192}Ir brachytherapy sources on receipt from the vendor is an important component of a quality assurance program. Owing to their ready availability in radiotherapy departments, the Farmer-type ionization chambers are also used to determine the strength of HDR {sup 192}Ir brachytherapy sources. The use of a Farmer-type ionization chamber requires the estimation of the scatter correction factor along with positioning error (c) and the constant of proportionality (f) to determine the strength of HDR {sup 192}Ir brachytherapy sources. A simplified approach based on a least squares method was developed for estimating the values of f and M{sub s}. The seven distance method was followed to record the ionization chamber readings for parameterization of f and M{sub s}. Analytically calculated values of M{sub s} were used to determine the room scatter correction factor (K{sub sc}). The Monte Carlo simulations were also carried out to calculate f and K{sub sc} to verify the magnitude of the parameters determined by the proposed analytical approach. The value of f determined using the simplified analytical approach was found to be in excellent agreement with the Monte Carlo simulated value (within 0.7%). Analytically derived values of K{sub sc} were also found to be in good agreement with the Monte Carlo calculated values (within 1.47%). Being far simpler than the presently available methods of evaluating f, the proposed analytical approach can be adopted for routine use by clinical medical physicists to estimate f by hand calculations. - Highlights: Black-Right-Pointing-Pointer RAKR measurement of a brachytherapy source by 7 distance method requires the evaluation of 'f'. Black-Right-Pointing-Pointer A simplified analytical approach based on least square method to evaluate 'f' and 'M{sub s}' was developed. Black-Right-Pointing-Pointer Parameter 'f' calculated by proposed analytical

  16. Brachytherapy for early oral tongue cancer. Low dose rate to high dose rate

    Energy Technology Data Exchange (ETDEWEB)

    Yamazaki, Hideya [Toyonaka Municipal Hospital, Osaka (Japan); Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Shimizutani, Kimishige; Inoue, Toshihiko [Osaka Univ., Suita (Japan). Graduate School of Medicine; Furukawa, Souhei; Kakimoto, Naoya [Osaka Univ., Suita (Japan). Graduate School of Dentistry

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n=341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer. (author)

  17. Brachytherapy for early oral tongue cancer: low dose rate to high dose rate.

    Science.gov (United States)

    Yamazaki, Hideya; Inoue, Takehiro; Yoshida, Ken; Yoshioka, Yasuo; Furukawa, Souhei; Kakimoto, Naoya; Shimizutani, Kimishige; Inoue, Toshihiko

    2003-03-01

    To examine the compatibility of low dose rate (LDR) with high dose rate (HDR) brachytherapy, we reviewed 399 patients with early oral tongue cancer (T1-2N0M0) treated solely by brachytherapy at Osaka University Hospital between 1967 and 1999. For patients in the LDR group (n = 341), the treatment sources consisted of Ir-192 pin for 227 patients (1973-1996; irradiated dose, 61-85 Gy; median, 70 Gy), Ra-226 needle for 113 patients (1967-1986; 55-93 Gy; median, 70 Gy). Ra-226 and Ir-192 were combined for one patient. Ir-192 HDR (microSelectron-HDR) was used for 58 patients in the HDR group (1991-present; 48-60 Gy; median, 60 Gy). LDR implantations were performed via oral and HDR via a submental/submandibular approach. The dose rates at the reference point for the LDR group were 0.30 to 0.8 Gy/h, and for the HDR group 1.0 to 3.4 Gy/min. The patients in the HDR group received a total dose of 48-60 Gy (8-10 fractions) during one week. Two fractions were administered per day (at least a 6-h interval). The 3- and 5-year local control rates for patients in the LDR group were 85% and 80%, respectively, and those in the HDR group were both 84%. HDR brachytherapy showed the same lymph-node control rate as did LDR brachytherapy (67% at 5 years). HDR brachytherapy achieved the same locoregional result as did LDR brachytherapy. A converting factor of 0.86 is applicable for HDR in the treatment of early oral tongue cancer.

  18. A new modification of combining vacuum therapy and brachytherapy in large subfascial soft-tissue sarcomas of the extremities

    Energy Technology Data Exchange (ETDEWEB)

    Rudert, Maximilian; Holzapfel, Boris Michael [Dept. of Orthopedics, Univ. of Wuerzburg (Germany); Dept. of Orthopedics and Traumatology, Klinikum Muenchen rechts der Isar, Technical Univ. of Munich (Germany); Winkler, Cornelia; Kneschaurek, Peter; Molls, Michael; Roeper, Barbara [Dept. of Radiation Oncology, Technical Univ. of Munich (Germany); Rechl, Hans; Gradinger, Reiner [Dept. of Orthopedics and Traumatology, Klinikum Muenchen rechts der Isar, Technical Univ. of Munich (Germany)

    2010-04-15

    Purpose: To present a modification of a technique combining the advantages of brachytherapy for local radiation treatment and vacuum therapy for wound conditioning after resection of subfascial soft-tissue sarcomas (STS) of the extremities. Patients and methods: Between January and May 2008, four patients with large (> 10 cm) subfascial STS of the thigh underwent marginal tumor excision followed by early postoperative HDR (high-dose-rate) brachytherapy (iridium-192) and vacuum therapy as part of their interdisciplinary treatment. The sponge of the vacuum system was used to stabilize brachytherapy applicators in parallel positions and to allow for a maximal wound contraction in the early postoperative phase, thus preventing seroma and deterioration of local dose distribution as optimized in computed tomography-(CT-)based three-dimensional conformal treatment planning. In three patients this was followed by external-beam radiotherapy. Acute wound complications and late effects according to LENT-SOMA after 4-8 months of follow-up were recorded. Results: the combination of vacuum and brachytherapy was applicable in all patients. CT scans from the 1st postoperative day showed the shrinkage of the sponge located in the tumor bed with the brachytherapy applicators in the intended position and easily visible. 15-18 Gy in fractions of 3 Gy bid prescribed to 5 mm tissue depth were applied over the next days with removal of the sponge and applicators on days 5-8. No early or late toxicity exceeding grade 2 was observed. The mean Enneking Score for functional outcome was 63% (perfect function = 100%). Conclusion: The combination of vacuum and brachytherapy is applicable and safe in the treatment of large subfascial STS. (orig.)

  19. SU-E-T-615: Investigation of the Dosimetric Impact of Tandem Loading in the Treatment of Cervical Cancer for HDR Brachytherapy Procedures

    Energy Technology Data Exchange (ETDEWEB)

    Esquivel, C; Patton, L; Nelson, K; Lin, B [Cancer Care Centers of South Texas, San Antonio, TX (United States)

    2014-06-01

    Purpose: To quantify the dosimetric impact of the tandem loading in the treatment of cervical cancer for HDR brachytherapy procedures. Methods: Ten patients were evaluated, each of whom received 5 fractions of treatment. Tandem and ovoid sets were inserted into the uterine cavity based on institutional protocols and procedures. Following insertion and stabilization, CT image sets of 1.5mm slice thickness were acquired and sent to the Oncentra V4.3 Treatment Planning System. Critical structures such as the CTV, bladder, rectum, sigmoid, and bowel were contoured and a fractional dose of 5.5Gy was prescribed to Point A for each patient. Six different treatment plans were created for each fraction using varying tandem weightings; from 0.5 to 1.4 times that of the ovoids. Surface dose evaluation of various ovoid diameters, 2.0-3.5cm, at the vaginal fornices was also investigated. Results: Critical structures were evaluated based on varying dose and volume constraints, in particular the 2.0 cc volume recommendation cited by the gynecological GEC-ESTRO working group. Based on dose volume histogram evaluation, a reduction of dose to the critical structures was most often discovered when the tandem weighting was increased. CTV coverage showed little change as the tandem weighting was varied. Ovoid surface dose decreased by 50-65% as the tandem weighting increased. Conclusion: The advantage of 3D planning with HDR brachytherapy is the dose optimization for each individual treatment plan. This investigation shows that by utilizing large tandem weightings, 1.4 times greater than the ovoid, one can still achieve adequate coverage of the CTV and relatively low doses to the critical structures. In some cases, one would still have to optimize further per individual case. In addition, the ovoid surface dose was greatly decreased when large tandem weighting was utilized; especially for small ovoid diameters.

  20. Brachytherapy

    Science.gov (United States)

    ... days. A patient receiving LDR brachytherapy will stay overnight at the hospital. This is so the delivery device can remain in place throughout the treatment period. Pulsed dose-rate (PDR) brachytherapy is delivered in a similar way, ...

  1. Imaging of implant needles for real-time HDR-brachytherapy prostate treatment using biplane ultrasound transducers.

    Science.gov (United States)

    Siebert, Frank-André; Hirt, Markus; Niehoff, Peter; Kovács, György

    2009-08-01

    Ultrasound imaging is becoming increasingly important in prostate brachytherapy. In high-dose-rate (HDR) real-time planning procedures the definition of the implant needles is often performed by transrectal ultrasound. This article describes absolute measurements of the visibility and accuracy of manual detection of implant needle tips and compares measurement results of different biplane ultrasound systems in transversal and longitudinal (i.e., sagittal) ultrasound modes. To obtain a fixed coordinate system and stable conditions the measurements were carried out in a water tank using a dedicated marker system. Needles were manually placed in the phantom until the observer decided by the real-time ultrasound image that the zero position was reached. A comparison of three different ultrasound systems yielded an offset between 0.8 and 3.1 mm for manual detection of the needle tip in ultrasound images by one observer. The direction of the offset was discovered to be in the proximal direction, i.e., the actual needle position was located more distally compared to the ultrasound-based definition. In the second part of the study, the ultrasound anisotropy of trocar implant needles is reported. It was shown that the integrated optical density in a region of interest around the needle tip changes with needle rotation. Three peaks were observed with a phase angle of 120 degrees. Peaks appear not only in transversal but also in longitudinal ultrasound images, with a phase shift of 60 degrees. The third section of this study shows results of observer dependent influences on needle tip detection in sagittal ultrasound images considering needle rotation. These experiments were carried out using the marker system in a water tank. The needle tip was placed exactly at the position z=0 mm. It was found that different users tend to differently interpret the same ultrasound images. The needle tip was manually detected five times in the ultrasound images by three experienced observers

  2. Comparison of air kerma standards of LNE-LNHB and NPL for 192Ir HDR brachytherapy sources: EUROMET project no 814.

    Science.gov (United States)

    Douysset, Guilhem; Sander, Thorsten; Gouriou, Jean; Nutbrown, Rebecca

    2008-03-21

    An indirect comparison has been made in the air kerma standards for high dose rate (HDR) 192Ir brachytherapy sources at the Laboratoire National Henri Becquerel (LNHB) and the National Physical Laboratory (NPL). The measurements were carried out at both laboratories between November and December 2004. The comparison was based on measurements using well-type transfer ionization chambers and two different source types, Nucletron microSelectron HDR Classic and version 2. The results show the reported calibration coefficients to agree within 0.47% to 0.63%, which is within the overall standard uncertainty of 0.65% reported by both laboratories at the time of this comparison. Following this comparison, some of the NPL primary standard correction factors were re-evaluated resulting in a change of +0.17% in the overall correction factor. The new factor was implemented in May 2006. Applying the revised chamber factor to the measurements reported in this comparison report will reduce the difference between the two standards by 0.17%.

  3. SU-E-T-413: Examining Acquisition Rate for Using MatriXX Ion Chamber Array to Measure HDR Brachytherapy Treatments

    Energy Technology Data Exchange (ETDEWEB)

    Wagar, M; Bhagwat, M; O’Farrell, D; Friesen, S; Buzurovic, I; Damato, A; Devlin, P; Cormack, R [Dana-Farber/Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: There are unique obstacles to implementing the MatriXX ionchamber array as a QA tool in Brachytherapy given that the device is designed for use in the MV energy range. One of the challenges we investigate is the affect of acquisition rates on dose measurement accuracy for HDR treatment plans. Methods: A treatment plan was optimized in Oncentra Brachy TPS to deliver a planar dose to a 5×5cm region at 10mm depth. The applicator was affixed to the surface of the MatriXX array. The plan was delivered multiple times using a Nucleatron HDR afterloader with a 2.9Ci Ir192 source. For each measurement the sampling rate of the MatriXX movie mode was varied (30ms and 500ms). This experiment was repeated with identical parameters, following a source exchange, with an 11.2Ci Ir192 source. Finally, a single snap measurement was acquired. Analysis was preformed to evaluate the fidelity of the dose delivery for each iteration of the experiment. Evaluation was based on the comparison between the measured and TPS predicted dose. Results: Higher sample rates induce a greater discrepancy between the predicted and measured dose. Delivering the plan using a lower activity source also produced greater discrepancy in the measurement due to the increased delivery time. Analyzing the single snap measurement showed little difference from the 500ms integral dose measurement. Conclusion: The advantage of using movie mode for HDR treatment delivery QA is the ability for real time source tracking in addition to dose measurement. Our analysis indicates that 500ms is an optimal frame rate.

  4. Interstitial hyperthermia in combination with brachytherapy.

    Science.gov (United States)

    Coughlin, C T; Douple, E B; Strohbehn, J W; Eaton, W L; Trembly, B S; Wong, T Z

    1983-07-01

    Flexible coaxial cables were modified to serve as microwave antennas operating at a frequency of 915 MHz. These antennas were inserted into nylon afterloading tubes that had been implanted in tumors using conventional interstitial implantation techniques for iridium-192 seed brachytherapy. The tumor volume was heated to 42-45 degrees C within 15 minutes and heating was continued for a total of 1 hour per treatment. Immediately following a conventional brachytherapy dose and removal of the iridium seeds the tumors were heated again in a second treatment. This interstitial technique for delivering local hyperthermia should be compatible with most brachytherapy methods. The technique has proved so far to be practical and without complications. Temperature distributions obtained in tissue phantoms and a patient are described.

  5. SU-C-16A-01: In Vivo Source Position Verification in High Dose Rate (HDR) Prostate Brachytherapy Using a Flat Panel Imager: Initial Clinical Experience

    Energy Technology Data Exchange (ETDEWEB)

    Franich, R; Smith, R; Millar, J [RMIT University, Melbourne, Victoria (Australia); The Alfred Hospital, Melbourne, Victoria (Australia); Haworth, A [RMIT University, Melbourne, Victoria (Australia); Peter MacCallum Cancer Centre, Melbourne, Victoria (Australia); Taylor, M [RMIT University, Melbourne, Victoria (Australia); Australian Federal Police, Canberra, ACT (Australia); McDermott, L [RMIT University, Melbourne, Victoria (Australia)

    2014-06-15

    Purpose: We report our initial clinical experience with a novel position-sensitive source-tracking system based on a flat panel imager. The system has been trialled with 4 prostate HDR brachytherapy patients (8 treatment fractions) in this initial study. Methods: The flat panel imaging system was mounted under a customised carbon fibre couch top assembly (Figure 1). Three gold fiducial markers were implanted into the prostate of each patient at the time of catheter placement. X-ray dwell position markers were inserted into three catheters and a radiograph acquired to locate the implant relative to the imaging device. During treatment, as the HDR source dwells were delivered, images were acquired and processed to determine the position of the source in the patient. Source positions measured by the imaging device were compared to the treatment plan for verification of treatment delivery. Results: Measured dwell positions provided verification of relative dwell spacing within and between catheters, in the coronal plane. Measurements were typically within 2.0mm (0.2mm – 3.3mm, s.d. 0.8mm) of the planned positions over 60 dwells (Figure 2). Discrimination between larger dwell intervals and catheter differentiation were clear. This confirms important delivery attributes such as correct transfer tube connection, source step size, relative catheter positions and therefore overall correct plan selection and delivery. The fiducial markers, visible on the radiograph, provided verification of treatment delivery to the correct anatomical location. The absolute position of the dwells was determined by comparing the measured dwell positions with the x-ray markers from the radiograph, validating the programmed treatment indexer length. The total impact on procedure time was less than 5 minutes. Conclusion: The novel, noninvasive HDR brachytherapy treatment verification system was used clinically with minor impact on workflow. The system allows verification of correct treatment

  6. A method for verification of treatment delivery in HDR prostate brachytherapy using a flat panel detector for both imaging and source tracking

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Ryan L., E-mail: ryan.smith@wbrc.org.au; Millar, Jeremy L.; Franich, Rick D. [Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, VIC 3004, Australia and School of Science, RMIT University, Melbourne, VIC 3000 (Australia); Haworth, Annette [School of Science, RMIT University, Melbourne, VIC 3000, Australia and Physical Sciences, Peter MacCallum Cancer Centre, East Melbourne, VIC 3002 (Australia); Panettieri, Vanessa [Alfred Health Radiation Oncology, The Alfred Hospital, Melbourne, VIC 3004 (Australia)

    2016-05-15

    Purpose: Verification of high dose rate (HDR) brachytherapy treatment delivery is an important step, but is generally difficult to achieve. A technique is required to monitor the treatment as it is delivered, allowing comparison with the treatment plan and error detection. In this work, we demonstrate a method for monitoring the treatment as it is delivered and directly comparing the delivered treatment with the treatment plan in the clinical workspace. This treatment verification system is based on a flat panel detector (FPD) used for both pre-treatment imaging and source tracking. Methods: A phantom study was conducted to establish the resolution and precision of the system. A pretreatment radiograph of a phantom containing brachytherapy catheters is acquired and registration between the measurement and treatment planning system (TPS) is performed using implanted fiducial markers. The measured catheter paths immediately prior to treatment were then compared with the plan. During treatment delivery, the position of the {sup 192}Ir source is determined at each dwell position by measuring the exit radiation with the FPD and directly compared to the planned source dwell positions. Results: The registration between the two corresponding sets of fiducial markers in the TPS and radiograph yielded a registration error (residual) of 1.0 mm. The measured catheter paths agreed with the planned catheter paths on average to within 0.5 mm. The source positions measured with the FPD matched the planned source positions for all dwells on average within 0.6 mm (s.d. 0.3, min. 0.1, max. 1.4 mm). Conclusions: We have demonstrated a method for directly comparing the treatment plan with the delivered treatment that can be easily implemented in the clinical workspace. Pretreatment imaging was performed, enabling visualization of the implant before treatment delivery and identification of possible catheter displacement. Treatment delivery verification was performed by measuring the

  7. [Pudendal block or combined spinal-epidural anaesthesia in high-dose-rate brachytherapy for prostate carcinoma?].

    Science.gov (United States)

    Schenck, M; Kliner, S J; Achilles, M; Schenck, C; Berkovic, K; Ruebben, H; Stuschke, M

    2010-01-01

    In male patients the pudendal block has been applied only in rare cases as a therapy for neuralgia of the pudendal nerve. Up to now there is no comparison of pudendal block with an anaesthesia form close to the spinal cord. In this pilot study the bilateral perineal infiltration of the pudendal nerve was compared to combined spinal-epidural anaesthesia in high-dose-rate (HDR) brachytherapy. In 30 patients (68.8 +/- 5.4 years) who underwent a core needle biopsy for high-risk prostate carcinoma, an HDR brachytherapy in CSE or NPB was carried out. Both anaesthesia forms were examined concerning the perioperative compatibility, the subjective feeling (German school marks principle 1-6), the pain feeling (VAS, 1-10) and the early postoperative course (mobility, complications). Both anaesthesia procedures were offered to all patients. For 2 patients the NPB was favoured primarily, because they had undergone surgery of the lumbal spine, so that the CSE was not applicable. There was no change of anaesthesia form necessary. The expense of time for NPB was 10.5 +/- 2.5 min, for CSE 30.5 +/- 5.5 min (p subjective feeling in the NPB group was described as 2.06 +/- 0.59 and in the CSE group 2.73 +/- 0.79. This is a significant difference (p subjective feeling there are no essential significant differences. (c) Georg Thieme Verlag Stuttgart - New York.

  8. Definitive salvage for vaginal recurrence of endometrial cancer: the impact of modern intensity-modulated-radiotherapy with image-based HDR brachytherapy and the interplay of the PORTEC 1 risk stratification.

    Science.gov (United States)

    Vargo, John A; Kim, Hayeon; Houser, Christopher J; Berhane, Hebist; Sukumvanich, Paniti; Olawaiye, Alexander B; Kelley, Joseph L; Edwards, Robert P; Comerci, John T; Huang, Marilyn; Courtney-Brooks, Madeleine; Beriwal, Sushil

    2014-10-01

    Data for salvage radiotherapy for recurrent endometrial cancer are limited especially in the era of modern radiotherapy including IMRT and 3-dimensional image-based HDR brachytherapy. Theoretically, modern radiotherapy reduces the dose to critical organs-at-risk and maximizes dose to the target volume, possibly decreasing morbidity and increasing tumor control. Forty-one patients completing definitive salvage radiotherapy for vaginal recurrence of endometrial cancer from June 2004 to December 2013 were retrospectively reviewed. HDR Brachytherapy was completed using image-based planning with contouring/optimization with each fraction to a median dose of 23.75 Gy in 5 fractions. HDR brachytherapy was preceded by external beam radiotherapy predominately using an IMRT technique (90%) to a median dose of 45 Gy in 25 fractions. Toxicity was reported according to CTCAEv4. At a median follow-up of 18 months (range: 3-78), the clinical complete response rate was 95%. The 3-year local control, distant control, recurrence free survival, and overall survival were 95%, 61%, 68%, and 67%. Significant predictors of both distant failure and overall survival were primary prognostic factors of depth of myometrial invasion, FIGO stage, and FIGO grade. There was no grade 3+ acute toxicity; the 3-year rate of grade 3+ late toxicity was 8%. Salvage IMRT plus 3-dimensional image-based HDR brachytherapy shows excellent tumor control and minimal morbidity for vaginal recurrence of endometrial cancer. Anticipated salvage rates must be taken in the context of primary risk factors including depth of myometrial invasion, FIGO stage, and FIGO grade. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. An innovative method to acquire the location of point A for cervical cancer treatment by HDR brachytherapy.

    Science.gov (United States)

    Chang, Liyun; Ho, Sheng-Yow; Yeh, Shyh-An; Lee, Tsair-Fwu; Chen, Pang-Yu

    2016-11-01

    Brachytherapy of local cervical cancer is generally accomplished through film-based treatment planning with the prescription directed to point A, which is invisible on images and is located at a high-dose gradient area. Through a standard reconstruction method by digitizing film points, the location error for point A would be 3 mm with a condition of 30° curvature tandem, which is 10° away from the gantry rotation axis of a simulator, and has an 8.7 cm interval between the flange and the isocenter. To reduce the location error of the reconstructed point A, this paper proposes a method and demonstrates its accuracy. The Cartesian coordinates of point A were derived by acquiring the locations of the cervical os (tandem flange) and a dummy seed located in the tandem above the flange. To verify this analytical method, ball marks in a commercial "Isocentric Beam Checker" were selected to simulate the two points A, the os, and the dummies. The Checker was placed on the simulator couch with its center ball coincident with the simulator isocenter and its rotation axis perpendicular to the gantry rotation axis. With different combinations of the Checker and couch rotation angles, the orthogonal films were shot and all coordinates of the selected points were reconstructed through the treatment planning system and compared with that calculated through the analytical method. The position uncertainty and the deviation prediction of point A were also evaluated. With a good choice of the reference dummy point, the position deviations of point A obtained through this analytical method were found to be generally within 1 mm, with the standard uncertainty less than 0.5 mm. In summary, this new method is a practical and accurate tool for clinical usage to acquire the accurate location of point A for the treatment of cervical cancer patient. PACS number(s): 87.55.km. © 2016 The Authors.

  10. Dosimetric feasibility of ablative dose escalated focal monotherapy with MRI-guided high-dose-rate (HDR) brachytherapy for prostate cancer.

    Science.gov (United States)

    Hosni, Ali; Carlone, Marco; Rink, Alexandra; Ménard, Cynthia; Chung, Peter; Berlin, Alejandro

    2017-01-01

    To determine the dosimetric feasibility of dose-escalated MRI-guided high-dose-rate brachytherapy (HDR-BT) focal monotherapy for prostate cancer (PCa). In all patients, GTV was defined with mpMRI, and deformably registered onto post-catheter insertion planning MRI. PTV included the GTV plus 9mm craniocaudal and 5mm in every other direction. In discovery-cohort, plans were obtained for each PTV independently aiming to deliver ⩾16.5Gy/fraction (two fraction schedule) while respecting predefined organs-at-risk (OAR) constraints or halted when achieved equivalent single-dose plan (24Gy). Dosimetric results of original and focal HDR-BT plans were evaluated to develop a planning protocol for the validation-cohort. In discovery-cohort (20-patients, 32-GTVs): PTV D95% ⩾16.5Gy could not be reached in a single plan (3%) and was accomplished (range 16.5-23.8Gy) in 15 GTVs (47%). Single-dose schedule was feasible in 16 (50%) plans. In the validation-cohort (10-patients, 10-GTVs, two separate implants each): plans met acceptable and ideal criteria in 100% and 43-100% respectively. Migration to single-dose treatment schedule was feasible in 7 implants (35%), without relaxing OAR's constraints or increasing the dose (D100% and D35%) to mpMRI-normal prostate (p>0.05). Focal ablative dose-escalated radiation is feasible with the proposed protocol. Prospective studies are warranted to determine the clinical outcomes. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Determination of absorbed dose in water at the reference point D(r{sub 0},{theta}{sub 0}) for an {sup 192}Ir HDR brachytherapy source using a Fricke system

    Energy Technology Data Exchange (ETDEWEB)

    Austerlitz, C.; Mota, H. C.; Sempau, J.; Benhabib, S. M.; Campos, D.; Allison, R.; Almeida, C. E. de; Zhu, D.; Sibata, C. H. [Department of Radiation Oncology, East Carolina University, Greenville, North Carolina 27834 (United States); Institut de Tecniques Energetiques, Universitat Politecnica de Catalunya, 08028 Barcelona (Spain); Department of Radiation Oncology, East Carolina University, Greenville, North Carolina 27834 (United States); Laboratorio de Cie circumflex ncias Radiologicas, Universidade do Estado do Rio de Janeiro, 20550 Rio de Janeiro (Brazil); Department of Radiation Oncology, East Carolina University, Greenville, North Carolina 27834 (United States)

    2008-12-15

    A ring-shaped Fricke device was developed to measure the absolute dose on the transverse bisector of a {sup 192}Ir high dose rate (HDR) source at 1 cm from its center in water, D(r{sub 0},{theta}{sub 0}). It consists of a polymethylmethacrylate (PMMA) rod (axial axis) with a cylindrical cavity at its center to insert the {sup 192}Ir radioactive source. A ring cavity around the source with 1.5 mm thickness and 5 mm height is centered at 1 cm from the central axis of the source. This ring cavity is etched in a disk shaped base with 2.65 cm diameter and 0.90 cm thickness. The cavity has a wall around it 0.25 cm thick. This ring is filled with Fricke solution, sealed, and the whole assembly is immersed in water during irradiations. The device takes advantage of the cylindrical geometry to measure D(r{sub 0},{theta}{sub 0}). Irradiations were performed with a Nucletron microselectron HDR unit loaded with an {sup 192}Ir Alpha Omega radioactive source. A Spectronic 1001 spectrophotometer was used to measure the optical absorbance using a 1 mL quartz cuvette with 1.00 cm light pathlength. The PENELOPE Monte Carlo code (MC) was utilized to simulate the Fricke device and the {sup 192}Ir Alpha Omega source in detail to calculate the perturbation introduced by the PMMA material. A NIST traceable calibrated well type ionization chamber was used to determine the air-kerma strength, and a published dose-rate constant was used to determine the dose rate at the reference point. The time to deliver 30.00 Gy to the reference point was calculated. This absorbed dose was then compared to the absorbed dose measured by the Fricke solution. Based on MC simulation, the PMMA of the Fricke device increases the D(r{sub 0},{theta}{sub 0}) by 2.0%. Applying the corresponding correction factor, the D(r{sub 0},{theta}{sub 0}) value assessed with the Fricke device agrees within 2.0% with the expected value with a total combined uncertainty of 3.43%(k=1). The Fricke device provides a promising

  12. Comparison of 3D dose distributions for HDR {sup 192}Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system

    Energy Technology Data Exchange (ETDEWEB)

    Senkesen, Oznur [Department of Radiation Oncology, Acibadem Kozyatagi Hospital, Istanbul (Turkey); Tezcanli, Evrim, E-mail: tezcanlievrim@gmail.com [Department of Radiation Oncology, Acibadem University, Istanbul (Turkey); Buyuksarac, Bora [Institute of Biomedical Engineering, Bogazici University Istanbul (Turkey); Ozbay, Ismail [Istanbul University, Institute of Oncology, Istanbul (Turkey)

    2014-10-01

    Radiation fluence changes caused by the dosimeter itself and poor spatial resolution may lead to lack of 3-dimensional (3D) information depending on the features of the dosimeter and quality assurance of dose distributions for high–dose rate (HDR) iridium-192 ({sup 192}Ir) brachytherapy sources is challenging and experimental dosimetry methods used for brachytherapy sources are limited. In this study, we investigated 3D dose distributions of {sup 192}Ir brachytherapy sources for irradiation with single and multiple dwell positions using a normoxic gel dosimeter and compared them with treatment planning system (TPS) calculations. For dose calibration purposes, 100-mL gel-containing vials were irradiated at predefined doses and then scanned in an magnetic resonance (MR) imaging unit. Gel phantoms prepared in 2 spherical glasses were irradiated with {sup 192}Ir for the calculated dwell positions, and MR scans of the phantoms were obtained. The images were analyzed with MATLAB software. Dose distributions and profiles derived with 1-mm resolution were compared with TPS calculations. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. The x-, y-, and z-axes were defined as the sagittal, coronal, and axial planes, respectively, the sagittal and axial planes were defined parallel to the long axis of the source while the coronal plane was defined horizontally to the long axis of the source. The differences between measured and calculated profile widths of 3-cm source length and point source for 70%, 50%, and 30% isodose lines were evaluated at 3 dose levels using 18 profiles of comparison. The calculations for 3-cm source length revealed a difference of > 3 mm in 1 coordinate at 50% profile width on the sagittal plane and 3 coordinates at 70% profile width and 2 coordinates at 50% and 30% profile widths on the axial plane. Calculations on the coronal plane for 3-cm source length showed > 3-mm difference in 1

  13. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, E; Racine, E; Beaulieu, L [CHU de Quebec - Universite Laval, Quebec, Quebec (Canada); Binnekamp, D [Integrated Clinical Solutions and Marketing, Philips Healthcare, Best, DA (Netherlands)

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  14. Accelerated partial breast irradiation with iridium-192 multicatheter PDR/HDR brachytherapy. Preliminary results of the German-Austrian multicenter trial

    Energy Technology Data Exchange (ETDEWEB)

    Ott, O.J.; Lotter, M.; Sauer, R.; Strnad, V. [Dept. of Radiation Oncology, Univ. Hospital Erlangen, Erlangen (Germany); Poetter, R.; Resch, A. [Dept. of Radiotherapy and Radiobiology, Univ. Hospital AKH Wien, Vienna (Austria); Hammer, J. [Dept. of Radiation Oncology, Barmherzige Schwestern Hospital Linz, Linz (Austria); Hildebrandt, G. [Dept. of Radiation Oncology, Univ. Hospital Leipzig, Leipzig (Germany); Poehls, U.; Beckmann, M.W. [Dept. of Gynecology, Univ. Hospital Erlangen, Erlangen (Germany)

    2004-10-01

    Purpose: to evaluate perioperative morbidity, toxicity, and cosmetic outcome in patients treated with interstitial brachytherapy to the tumor bed as the sole irradiation modality after breast-conserving surgery. Patients and methods: from November 1, 2000 to January 31, 2004, 176 women with early-stage breast cancer became partakers in a protocol of tumor bed irradiation alone using pulsed-dose-rate (PDR) or high-dose-rate (HDR) interstitial multicatheter implants. Patients became eligible, if their tumor was an infiltrating carcinoma {<=} 3 cm in diameter, the surgical margins were clear by at least 2 mm, the axilla was surgically staged node-negative, the tumor was estrogen and/or progesterone receptor-positive, well or moderately differentiated (G1/2), the tumor did not contain an extensive intraductal component (EIC) and the patient's age was > 35 years. Implants were positioned using a template guide, delivering either 49.8 Gy in 83 consecutive hours (PDR) or 32.0 Gy in two daily fractions over 4 days (HDR). Perioperative morbidity, toxicity, and cosmetic outcome were assessed. Interim findings of the first 69 patients, who were treated in this multicenter trial, after a median follow-up of 24 months (range, 15-39 months) are presented. Results: one of the 69 patients (1.4%) developed a bacterial infection of the implant. No other perioperative complications, for example bleeding or hematoma, were observed. Acute toxicity was low: 2.9% of the patients (2/69) experienced mild radiodermatitis. Late toxicity: hypersensation/mild pain 7.2% (5/69), intermittent but tolerable pain 1.4% (1/69), mild dyspigmentation 10.1% (7/69), mild fibrosis 11.6% (8/69), moderate fibrosis 1.4% (1/69), mild telangiectasia (< 1 cm{sup 2}) 11.6% (8/69), and moderate teleangiectasia (1-4 cm{sup 2}) 1.4% (1/69). Good to excellent cosmetic results were observed in 92.4% of the patients evaluated. All patients (n = 176) remained disease-free to the date of evaluation. Conclusion

  15. Application of a pelvic phantom in brachytherapy dosimetry for high-dose-rate (HDR) 192Ir source based on Monte Carlo simulations

    Science.gov (United States)

    Ahn, Woo Sang; Choi, Wonsik; Shin, Seong Soo; Jung, Jinhong

    2014-08-01

    In this study, we evaluate how the radial dose function is influenced by the source position as well as the phantom size and shape. A pelvic water phantom similar to the pelvic shape of a human body was designed by averaging dimensions obtained from computed tomography (CT) images of patients treated with brachytherapy for cervical cancer. Furthermore, for the study of the effects of source position on the dose distribution, the position of the source in the water phantom was determined by using the center of mass of the gross target volume (GTV) in the CT images. To obtain the dosimetric parameter of a high-dose-rate (HDR) 192Ir source, we performed Monte Carlo simulations by using the Monte Carlo n-particle extended code (MCNPX). The radial dose functions obtained using the pelvic water phantom were compared with those of spherical phantom with different sizes, including the Monte Carlo (MC) results of Williamson and Li. Differences between the radial dose functions from this study and the data in the literature increased with the radial distances. The largest differences appeared for spherical phantom with the smallest size. In contrast to the published MC results, the radial dose function of the pelvic water phantom significantly decreased with radial distance in the vertical direction because full scattering was not possible. When the source was located in posterior position 2 cm from the center in the pelvic water phantom, the differences between the radial dose functions rapidly decreased with the radial distance in the lower vertical direction. If the International Commission on Radiation Units and Measurements bladder and rectum points are considered, doses to these reference points could be underestimated by up to 1%-2% at a distance of 3 to 6 cm. Our simulation results provide a valid clinical reference data and can used to improve the accuracy of the doses delivered during brachytherapy applied to patients with cervical cancer.

  16. Dosimetric comparison of MRI-based HDR brachytherapy and stereotactic radiotherapy in patients with advanced cervical cancer: A virtual brachytherapy study

    Science.gov (United States)

    Otahal, Bretislav; Dolezel, Martin; Cvek, Jakub; Simetka, Ondrej; Klat, Jaroslav; Knybel, Lukas; Molenda, Lukas; Skacelikova, Eva; Hlavka, Ales; Feltl, David

    2014-01-01

    Aim To evaluate the treatment plans of 3D image-guided brachytherapy (BT) and stereotactic robotic radiotherapy with online image guidance – CyberKnife (CK) in patients with locally advanced cervix cancer. Methods and materials Ten pairs of plans for patients with locally advanced inoperable cervical cancer were created using MR based 3D brachytherapy and stereotaxis CK. The dose that covers 98% of the target volume (HR CTV D98) was taken as a reference and other parameters were compared. Results Of the ten studied cases, the dose from D100 GTV was comparable for both devices, on average, the BT GTV D90 was 10–20% higher than for CK. The HR CTV D90 was higher for CK with an average difference of 10–20%, but only fifteen percent of HR CTV (the peripheral part) received a higher dose from CK, while 85% of the target volume received higher doses from BT. We found a significant organ-sparing effect of CK compared to brachytherapy (20–30% lower doses in 0.1 cm3, 1 cm3, and 2 cm3). Conclusion BT remains to be the best method for dose escalation. Due to the significant organ-sparing effect of CK, patients that are not candidates for BT could benefit from stereotaxis more than from classical external beam radiotherapy. PMID:25337413

  17. Monte Carlo modeling of 60 Co HDR brachytherapy source in water and in different solid water phantom materials

    Directory of Open Access Journals (Sweden)

    Sahoo S

    2010-01-01

    Full Text Available The reference medium for brachytherapy dose measurements is water. Accuracy of dose measurements of brachytherapy sources is critically dependent on precise measurement of the source-detector distance. A solid phantom can be precisely machined and hence source-detector distances can be accurately determined. In the present study, four different solid phantom materials such as polymethylmethacrylate (PMMA, polystyrene, Solid Water, and RW1 are modeled using the Monte Carlo methods to investigate the influence of phantom material on dose rate distributions of the new model of BEBIG 60 Co brachytherapy source. The calculated dose rate constant is 1.086 ± 0.06% cGy h−1 U−1 for water, PMMA, polystyrene, Solid Water, and RW1. The investigation suggests that the phantom materials RW1 and Solid Water represent water-equivalent up to 20 cm from the source. PMMA and polystyrene are water-equivalent up to 10 cm and 15 cm from the source, respectively, as the differences in the dose data obtained in these phantom materials are not significantly different from the corresponding data obtained in liquid water phantom. At a radial distance of 20 cm from the source, polystyrene overestimates the dose by 3% and PMMA underestimates it by about 8% when compared to the corresponding data obtained in water phantom.

  18. TU-AB-201-05: Automatic Adaptive Per-Operative Re-Planning for HDR Prostate Brachytherapy - a Simulation Study On Errors in Needle Positioning

    Energy Technology Data Exchange (ETDEWEB)

    Borot de Battisti, M; Maenhout, M; Lagendijk, J J W; Van Vulpen, M; Moerland, M A [University Medical Center Utrecht, Dept. of Radiotherapy, Utrecht (Netherlands); Senneville, B Denis de [University Medical Center Utrecht, Dept. of Radiotherapy, Utrecht (Netherlands); IMB, UMR 5251 CNRS/University of Bordeaux (France); Hautvast, G; Binnekamp, D [Philips Group Innovation - Biomedical Systems, Eindhoven (Netherlands)

    2015-06-15

    Purpose: To develop adaptive planning with feedback for MRI-guided focal HDR prostate brachytherapy with a single divergent needle robotic implant device. After each needle insertion, the dwell positions for that needle are calculated and the positioning of remaining needles and dosimetry are both updated based on MR imaging. Methods: Errors in needle positioning may occur due to inaccurate needle insertion (caused by e.g. the needle’s bending) and unpredictable changes in patient anatomy. Consequently, the dose plan quality might dramatically decrease compared to the preplan. In this study, a procedure was developed to re-optimize, after each needle insertion, the remaining needle angulations, source positions and dwell times in order to obtain an optimal coverage (D95% PTV>19 Gy) without exceeding the constraints of the organs at risk (OAR) (D10% urethra<21 Gy, D1cc bladder<12 Gy and D1cc rectum<12 Gy). Complete HDR procedures with 6 needle insertions were simulated for a patient MR-image set with PTV, prostate, urethra, bladder and rectum delineated. Random angulation errors, modeled by a Gaussian distribution (standard deviation of 3 mm at the needle’s tip), were generated for each needle insertion. We compared the final dose parameters for the situations (I) without re-optimization and (II) with the automatic feedback. Results: The computation time of replanning was below 100 seconds on a current desk computer. For the patient tested, a clinically acceptable dose plan was achieved while applying the automatic feedback (median(range) in Gy, D95% PTV: 19.9(19.3–20.3), D10% urethra: 13.4(11.9–18.0), D1cc rectum: 11.0(10.7–11.6), D1cc bladder: 4.9(3.6–6.8)). This was not the case without re-optimization (median(range) in Gy, D95% PTV: 19.4(14.9–21.3), D10% urethra: 12.6(11.0–15.7), D1cc rectum: 10.9(8.9–14.1), D1cc bladder: 4.8(4.4–5.2)). Conclusion: An automatic guidance strategy for HDR prostate brachytherapy was developed to compensate

  19. Design and Implementation of a Complementary Treatment Planning Software for the GZP6 HDR Brachytherapy System (GZP6 CTPS

    Directory of Open Access Journals (Sweden)

    Sanaz Hariri Tabrizi

    2011-03-01

    Full Text Available Introduction: Brachytherapy is one of the most common treatment modalities for gynecological cancer. The GZP6 brachytherapy system is one of the devices utilized in Iran. It has been considered particularly due to its low cost compared to other more complete and established systems. This system has some deficiencies including lack of a treatment planning software for non-predefined treatments, inability to change the gradually changeable dosimetric variables and using a point source estimation in dose calculation. This report presents a complementary treatment planning software (CTPS to the system’s own dedicated program. Material and Methods: First, the dosimetric characteristics of three GZP6 sources were calculated based on the TG-43 protocol using the MCNP4C Monte Carlo code. Then, the calculated dose distribution around the implanted applicators, based on the selected dwell positions and dwell times, was shown in a graphical user interface (GUI written using the MATLAB software. Results: The computation uncertainty in the resulting TG-43 parameters was about 1% and the calculated parameters were in good agreement with similar studies on cobalt-60 source dosimetry. Furthermore, the GUI is prepared as a user-friendly executable file which can be installed on any operating system. Discussion and Conclusion: Since different patients have distinct anatomy and physical conditions, a program for non-predefined situations of source arrangement is necessary. Using GZP6 CTPS can satisfy this requirement.

  20. SU-F-BRF-09: A Non-Rigid Point Matching Method for Accurate Bladder Dose Summation in Cervical Cancer HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H; Zhen, X; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China); Zhong, Z [The University of Texas at Dallas, Department of Computer Science, TX (United States); Pompos, A; Yan, H; Jiang, S; Gu, X [UT Southwestern Medical Center, Dallas, TX (United States)

    2014-06-15

    Purpose: To propose and validate a deformable point matching scheme for surface deformation to facilitate accurate bladder dose summation for fractionated HDR cervical cancer treatment. Method: A deformable point matching scheme based on the thin plate spline robust point matching (TPSRPM) algorithm is proposed for bladder surface registration. The surface of bladders segmented from fractional CT images is extracted and discretized with triangular surface mesh. Deformation between the two bladder surfaces are obtained by matching the two meshes' vertices via the TPS-RPM algorithm, and the deformation vector fields (DVFs) characteristic of this deformation is estimated by B-spline approximation. Numerically, the algorithm is quantitatively compared with the Demons algorithm using five clinical cervical cancer cases by several metrics: vertex-to-vertex distance (VVD), Hausdorff distance (HD), percent error (PE), and conformity index (CI). Experimentally, the algorithm is validated on a balloon phantom with 12 surface fiducial markers. The balloon is inflated with different amount of water, and the displacement of fiducial markers is benchmarked as ground truth to study TPS-RPM calculated DVFs' accuracy. Results: In numerical evaluation, the mean VVD is 3.7(±2.0) mm after Demons, and 1.3(±0.9) mm after TPS-RPM. The mean HD is 14.4 mm after Demons, and 5.3mm after TPS-RPM. The mean PE is 101.7% after Demons and decreases to 18.7% after TPS-RPM. The mean CI is 0.63 after Demons, and increases to 0.90 after TPS-RPM. In the phantom study, the mean Euclidean distance of the fiducials is 7.4±3.0mm and 4.2±1.8mm after Demons and TPS-RPM, respectively. Conclusions: The bladder wall deformation is more accurate using the feature-based TPS-RPM algorithm than the intensity-based Demons algorithm, indicating that TPS-RPM has the potential for accurate bladder dose deformation and dose summation for multi-fractional cervical HDR brachytherapy. This work is supported

  1. The non-uniformity correction factor for the cylindrical ionization chambers in dosimetry of an HDR 192Ir brachytherapy source

    Directory of Open Access Journals (Sweden)

    Majumdar Bishnu

    2006-01-01

    Full Text Available The aim of this study is to derive the non-uniformity correction factor for the two therapy ionization chambers for the dose measurement near the brachytherapy source. The two ionization chambers of 0.6 cc and 0.1 cc volume were used. The measurement in air was performed for distances between 0.8 cm and 20 cm from the source in specially designed measurement jig. The non-uniformity correction factors were derived from the measured values. The experimentally derived factors were compared with the theoretically calculated non-uniformity correction factors and a close agreement was found between these two studies. The experimentally derived non-uniformity correction factor supports the anisotropic theory.

  2. SU-E-T-263: Point Dose Variation Using a Single Ir-192 HDR Brachytherapy Plan for Two Treatments with a Single Tandem-Ovoid Insertion for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liang, X; Morrill, S; Hardee, M; Han, E; Penagaricano, J; Zhang, X; Vaneerat, R [University of Arkansas Medical Science, Little Rock, AR (United States)

    2014-06-01

    Purpose: To evaluate the point dose variations between Ir-192 HDR treatments on two consecutive days using a single tandem-ovoid insertion without replanning in cervical cancer patients. Methods: This study includes eleven cervical cancer patients undergoing HDR brachytherapy with a prescribed dose of 28 Gy in 4 fractions. Each patient had two tandemovoid insertions one week apart. Each insertion was treated on consecutive days with rescanning and replanning prior to each treatment. To study the effect of no replanning for day 2 treatments, the day 1 plan dwell position and dwell time with decay were applied to the day 2 CT dataset. The point dose variations on the prescription point H (defined according to American Brachytherapy Society), and normal tissue doses at point B, bladder, rectum and vaginal mucosa (based on ICRU Report 38) were obtained. Results: Without replanning, the mean point H dose variation was 4.6 ± 10.7% on the left; 2.3 ± 2.9% on the right. The mean B point variation was 3.8 ± 4.9% on the left; 3.6 ± 4.7% on the right. The variation in the left vaginal mucosal point was 12.2 ± 10.7%; 9.5 ± 12.5% on the right; the bladder point 5.5 ± 7.4%; and the rectal point 7.9 ± 9.1%. Conclusion: Without replanning, there are variations both in the prescription point and the normal tissue point doses. The latter can vary as much as 10% or more. This is likely due to the steep dose gradient from brachytherapy compounded by shifts in the positions of the applicator in relationship to the patients anatomy. Imaging prior to each treatment and replanning ensure effective and safe brachytherapy are recommended.

  3. External-beam radiotherapy and/or HDR brachytherapy in postoperative endometrial cancer patients: clinical outcomes and toxicity rates.

    Science.gov (United States)

    De Sanctis, V; Agolli, L; Valeriani, M; Narici, S; Osti, M F; Patacchiola, F; Mossa, B; Moscarini, M; Maurizi Enrici, R

    2013-03-01

    The objectives of this study were to evaluate local disease control, overall survival (OS), disease-free survival (DFS) and local relapse-free survival (LRFS) in patients with endometrial cancer undergoing adjuvant vaginal brachytherapy (VBT )± external-beam radiotherapy (EBRT). From September 2007 to February 2011, 40 patients with endometrial cancer were retrospectively analysed. Surgery consisted of total hysterectomy and bilateral salpingo-oophorectomy without node dissection (16 patients) or with bilateral pelvic node dissection (24 patients). The stage distribution was as follows: two IA, nine IB, 12 IC, five IIA, eight IIB, two IIIA and two IIIC. Thirty-four patients underwent EBRT and VBT. Six patients received VBT alone. Median follow-up was 26 months. The 5-year OS and DFS were 96.4% and 86.9%, respectively. No local recurrence was observed. Four patients presented distant disease (three had lung metastases and one had hepatic node metastases). Acute EBRT-related toxicities were seen in 15 (38%) patients. We recorded late toxicities in 14 patients (35%). There was no evidence of grade 3-4 toxicity. Adjuvant EBRT and/or VBT in patients with endometrial cancer showed good outcomes in terms of local disease control, with an acceptable toxicity profile.

  4. Comparison of methods for the measurement of radiation dose distributions in high dose rate (HDR) brachytherapy: Ge-doped optical fiber, EBT3 Gafchromic film, and PRESAGE{sup Registered-Sign} radiochromic plastic

    Energy Technology Data Exchange (ETDEWEB)

    Palmer, A. L. [Department of Physics, Faculty of Engineering and Physical Science, University of Surrey, Surrey GU2 7JP (United Kingdom); Department of Medical Physics, F-Level, Queen Alexandra Hospital, Portsmouth Hospitals NHS Trust, Portsmouth, Hampshire PO6 3LY (United Kingdom); Di Pietro, P.; Alobaidli, S.; Issa, F.; Doran, S.; Bradley, D. [Department of Physics, Faculty of Engineering and Physical Science, University of Surrey, Surrey GU2 7JP (United Kingdom); Nisbet, A. [Department of Physics, Faculty of Engineering and Physical Science, University of Surrey, Surrey GU2 7JP (United Kingdom); Department of Medical Physics, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX (United Kingdom)

    2013-06-15

    Purpose: Dose distribution measurement in clinical high dose rate (HDR) brachytherapy is challenging, because of the high dose gradients, large dose variations, and small scale, but it is essential to verify accurate treatment planning and treatment equipment performance. The authors compare and evaluate three dosimetry systems for potential use in brachytherapy dose distribution measurement: Ge-doped optical fibers, EBT3 Gafchromic film with multichannel analysis, and the radiochromic material PRESAGE{sup Registered-Sign} with optical-CT readout. Methods: Ge-doped SiO{sub 2} fibers with 6 {mu}m active core and 5.0 mm length were sensitivity-batched and their thermoluminescent properties used via conventional heating and annealing cycles. EBT3 Gafchromic film of 30 {mu}m active thickness was calibrated in three color channels using a nominal 6 MV linear accelerator. A 48-bit transmission scanner and advanced multichannel analysis method were utilized to derive dose measurements. Samples of the solid radiochromic polymer PRESAGE{sup Registered-Sign }, 60 mm diameter and 100 mm height, were analyzed with a parallel beam optical CT scanner. Each dosimetry system was used to measure the dose as a function of radial distance from a Co-60 HDR source, with results compared to Monte Carlo TG-43 model data. Each system was then used to measure the dose distribution along one or more lines through typical clinical dose distributions for cervix brachytherapy, with results compared to treatment planning system (TPS) calculations. Purpose-designed test objects constructed of Solid Water and held within a full-scatter water tank were utilized. Results: All three dosimetry systems reproduced the general shape of the isolated source radial dose function and the TPS dose distribution. However, the dynamic range of EBT3 exceeded those of doped optical fibers and PRESAGE{sup Registered-Sign }, and the latter two suffered from unacceptable noise and artifact. For the experimental

  5. SU-E-T-580: On the Significance of Model Based Dosimetry for Breast and Head and Neck 192Ir HDR Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Peppa, V; Pappas, E; Pantelis, E; Papagiannis, P [Medical Physics Laboratory, Medical School, University of Athens, Athens (Greece); Major, T; Polgar, C [National Institute of Oncology, Budapest (Hungary)

    2015-06-15

    Purpose: To assess the dosimetric and radiobiological differences between TG43-based and model-based dosimetry in the treatment planning of {sup 192}Ir HDR brachytherapy for breast and head and neck cancer. Methods: Two cohorts of 57 Accelerated Partial Breast Irradiation (APBI) and 22 head and neck (H&N) patients with oral cavity carcinoma were studied. Dosimetry for the treatment plans was performed using the TG43 algorithm of the Oncentra Brachy v4.4 treatment planning system (TPS). Corresponding Monte Carlo (MC) simulations were performed using MCNP6 with input files automatically prepared by the BrachyGuide software tool from DICOM RT plan data. TG43 and MC data were compared in terms of % dose differences, Dose Volume Histograms (DVHs) and related indices of clinical interest for the Planning Target Volume (PTV) and the Organs-At-Risk (OARs). A radiobiological analysis was also performed using the Equivalent Uniform Dose (EUD), mean survival fraction (S) and Tumor Control Probability (TCP) for the PTV, and the Normal Tissue Control Probability (N TCP) and the generalized EUD (gEUD) for the OARs. Significance testing of the observed differences performed using the Wilcoxon paired sample test. Results: Differences between TG43 and MC DVH indices, associated with the increased corresponding local % dose differences observed, were statistically significant. This is mainly attributed to their consistency however, since TG43 agrees closely with MC for the majority of DVH and radiobiological parameters in both patient cohorts. Differences varied considerably among patients only for the ipsilateral lung and ribs in the APBI cohort, with a strong correlation to target location. Conclusion: While the consistency and magnitude of differences in the majority of clinically relevant DVH indices imply that no change is needed in the treatment planning practice, individualized dosimetry improves accuracy and addresses instances of inter-patient variability observed. Research

  6. 4D analysis of influence of patient movement and anatomy alteration on the quality of 3D U/S-based prostate HDR brachytherapy treatment delivery

    Energy Technology Data Exchange (ETDEWEB)

    Milickovic, Natasa; Mavroidis, Panayiotis; Tselis, Nikolaos; Nikolova, Iliyana; Katsilieri, Zaira; Kefala, Vasiliki; Zamboglou, Nikolaos; Baltas, Dimos [Department of Medical Physics and Engineering, Offenbach Clinic, Starkenburgring 66, 63069 Offenbach am Main (Germany); Department of Medical Radiation Physics, Karolinska Institutet and Stockholm University (Sweden); Department of Radiation Oncology, Offenbach Clinic, Starkenburgring 66, 63069 Offenbach am Main (Germany); Department of Medical Physics and Engineering, Offenbach Clinic, Starkenburgring 66, 63069 Offenbach am Main (Germany); Department of Radiation Oncology, Offenbach Clinic, Starkenburgring 66, 63069 Offenbach am Main (Germany); Department of Medical Physics and Engineering, Offenbach Clinic, Starkenburgring 66, 63069 Offenbach am Main, Germany and Nuclear and Particle Physics Section, Physics Department, University of Athens, 15771 Athens (Greece)

    2011-09-15

    Purpose: Modern HDR brachytherapy treatment for prostate cancer based on the 3D ultrasound (U/S) plays increasingly important role. The purpose of this study is to investigate possible patient movement and anatomy alteration between the clinical image set acquisition, made after the needle implantation, and the patient irradiation and their influence on the quality of treatment. Methods: The authors used 3D U/S image sets and the corresponding treatment plans based on a 4D-treatment planning procedure: plans of 25 patients are obtained right after the needle implantation (clinical plan is based on this 3D image set) and just before and after the treatment delivery. The authors notice the slight decrease of treatment quality with increase of time gap between the clinical image set acquisition and the patient irradiation. 4D analysis of dose-volume-histograms (DVHs) for prostate: CTV1 = PTV, and urethra, rectum, and bladder as organs at risk (OARs) and conformity index (COIN) is presented, demonstrating the effect of prostate, OARs, and needles displacement. Results: The authors show that in the case that the patient body movement/anatomy alteration takes place, this results in modification of DVHs and radiobiological parameters, hence the plan quality. The observed average displacement of needles (1 mm) and of prostate (0.57 mm) is quite small as compared with the average displacement noted in several other reports [A. A. Martinez et al., Int. J. Radiat. Oncol., Biol., Phys. 49(1), 61-69 (2001); S. J. Damore et al., Int. J. Radiat. Oncol., Biol., Phys. 46(5), 1205-1211 (2000); P. J. Hoskin et al., Radiotherm. Oncol. 68(3), 285-288 (2003); E. Mullokandov et al., Int. J. Radiat. Oncol., Biol., Phys. 58(4), 1063-1071 (2004)] in the literature. Conclusions: Although the decrease of quality of dosimetric and radiobiological parameters occurs, this does not cause clinically unacceptable changes to the 3D dose distribution, according to our clinical protocol.

  7. WE-A-17A-06: Evaluation of An Automatic Interstitial Catheter Digitization Algorithm That Reduces Treatment Planning Time and Provide Means for Adaptive Re-Planning in HDR Brachytherapy of Gynecologic Cancers

    Energy Technology Data Exchange (ETDEWEB)

    Dise, J [Philadelphia, PA (United States); Liang, X; Lin, L [University of Pennsylvania, Philadelphia, Pennsylvania (United States); Teo, B [University of Pennsylvania, Wayne, PA (United States)

    2014-06-15

    Purpose: To evaluate an automatic interstitial catheter digitization algorithm that reduces treatment planning time and provide means for adaptive re-planning in HDR Brachytherapy of Gynecologic Cancers. Methods: The semi-automatic catheter digitization tool utilizes a region growing algorithm in conjunction with a spline model of the catheters. The CT images were first pre-processed to enhance the contrast between the catheters and soft tissue. Several seed locations were selected in each catheter for the region growing algorithm. The spline model of the catheters assisted in the region growing by preventing inter-catheter cross-over caused by air or metal artifacts. Source dwell positions from day one CT scans were applied to subsequent CTs and forward calculated using the automatically digitized catheter positions. This method was applied to 10 patients who had received HDR interstitial brachytherapy on an IRB approved image-guided radiation therapy protocol. The prescribed dose was 18.75 or 20 Gy delivered in 5 fractions, twice daily, over 3 consecutive days. Dosimetric comparisons were made between automatic and manual digitization on day two CTs. Results: The region growing algorithm, assisted by the spline model of the catheters, was able to digitize all catheters. The difference between automatic and manually digitized positions was 0.8±0.3 mm. The digitization time ranged from 34 minutes to 43 minutes with a mean digitization time of 37 minutes. The bulk of the time was spent on manual selection of initial seed positions and spline parameter adjustments. There was no significance difference in dosimetric parameters between the automatic and manually digitized plans. D90% to the CTV was 91.5±4.4% for the manual digitization versus 91.4±4.4% for the automatic digitization (p=0.56). Conclusion: A region growing algorithm was developed to semi-automatically digitize interstitial catheters in HDR brachytherapy using the Syed-Neblett template. This automatic

  8. Comparative dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Samia de Freitas, E-mail: samiabrandao@gmail.com [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil). Departamento de Engenharia Nuclear; Campos, Tarcisio Passos Ribeiro de [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2013-06-15

    Objective: comparative analysis of dosimetry in intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT for treatment of brain tumors. Materials and methods: simulations of intracavitary balloon catheter brachytherapy with I-125 and in Cf-252 brachytherapy combined with BNCT were performed with the MCNP5 code, modeling the treatment of a brain tumor on a voxel computational phantom representing a human head. Absorbed dose rates were converted into biologically weighted dose rates. Results: intracavitary balloon catheter brachytherapy with I-125 produced biologically weighted mean dose rates of 3.2E-11, 1.3E-10, 1.9E-11 and 6.9E-13 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively, on the healthy tissue, on the balloon periphery and on the /{sub 1} and /{sub 2} tumor infiltration zones. On the other hand, Cf-252 brachytherapy combined with BNCT produced a biologically weighted mean dose rate of 5.2E-09, 2.3E-07, 8.7E-09 and 2.4E-09 RBE.Gy.h{sup -1}.p{sup -1}.s, respectively on the healthy tissue, on the target tumor and on the /{sub 1} and /{sub 2} infiltration zones. Conclusion: Cf-252 brachytherapy combined with BNCT delivered a selective irradiation to the target tumor and to infiltration zones, while intracavitary balloon catheter brachytherapy with I-125 delivered negligible doses on the tumor infiltration zones. (author)

  9. SU-E-T-525: Dose Volume Histograms (DVH) Analysis and Comparison with ICRU Point Doses in MRI Guided HDR Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Badkul, R; McClinton, C; Kumar, P; Mitchell, M [University of Kansas Medical Center, Kansas City, KS (United States)

    2014-06-01

    Purpose: Brachytherapy plays a crucial role in management of cervix cancer. MRI compatible applicators have made it possible to accurately delineate gross-target-volume(GTV) and organs-at-risk(OAR) volumes, as well as directly plan, optimize and adapt dose-distribution for each insertion. We sought to compare DVH of tumor-coverage and OARs to traditional Point-A, ICRU-38 bladder and rectum point-doses for four different planning-techniques. Methods: MRI based 3D-planning was performed on Nucletron-Oncentra-TPS for 3 selected patients with varying tumor-sizes and anatomy. GTV,high-risk-clinical-target-volume(HR-CTV), intermediate-risk-clinical-target-volume(IR-CTV) and OARs: rectum, bladder, sigmoid-colon, vaginal-mucosa were delineated. Three conventionally used techniques: mg-Radium-equivalent(RaEq),equal-dwell-weights(EDW), Medical-College-of-Wisconsin proposed points-optimization (MCWO) and a manual-graphical-optimization(MGO) volume-coverage based technique were applied for each patient. Prescription was 6Gy delivered to point-A in Conventional techniques (RaEq, EDW, MCWO). For MGO, goal was to achieve 90%-coverage (D90) to HR-CTV with prescription-dose. ICRU point doses for rectum and bladder, point-A doses, DVH-doses for HR-CTV-D90,0.1cc-volume(D0.1),1ccvolume( D1),2cc-volume(D2) were collected for all plans and analyzed . Results: Mean D90 for HR-CTV normalized to MGO were 0.89,0.84,0.9,1.0 for EDW, RaEq, MCWO, MGO respectively. Mean point-A doses were 21.7% higher for MGO. Conventional techniques with Point-A prescriptions under covered HR-CTV-D90 by average of 12% as compared to MGO. Rectum, bladder and sigmoid doses were highest in MGO-plans for ICRU points as well as D0.1,D1 and D2 doses. Among conventional-techniques, rectum and bladder ICRU and DVH doses(0.1,1,2cc) were not significantly different (within 7%).Rectum D0.1 provided good estimation of ICRU-rectum-point doses (within 3.9%),rectum D0.1 were higher from 0.8 to 3.9% while bladder D0

  10. High-dose-rate interstitial brachytherapy in combination with androgen deprivation therapy for prostate cancer. Are high-risk patients good candidates

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ken; Narumi, Yoshifumi [Osaka Medical College, Department of Radiology, Takatsuki, Osaka (Japan); Yamazaki, Hideya; Masui, Koji [Kyoto Prefectural University of Medicine, Department of Radiology, Kyoto (Japan); Takenaka, Tadashi [National Hospital Organization Osaka National Hospital, Department of Radiology, Osaka city, Osaka (Japan); Kotsuma, Tadayuki; Yoshida, Mineo; Tanaka, Eiichi [National Hospital Organization Osaka National Hospital, Department of Radiation Oncology, Osaka city, Osaka (Japan); Yoshioka, Yasuo [Osaka University Graduate School of Medicine, Department of Radiation Oncology, Suita, Osaka (Japan); Oka, Toshitsugu [National Hospital Organization Osaka National Hospital, Department of Urology, Osaka city, Osaka (Japan)

    2014-11-15

    To evaluate the effectiveness of high-dose-rate interstitial brachytherapy (HDR-ISBT) as the only form of radiotherapy for high-risk prostate cancer patients. Between July 2003 and June 2008, we retrospectively evaluated the outcomes of 48 high-risk patients who had undergone HDR-ISBT at the National Hospital Organization Osaka National Hospital. Risk group classification was according to the criteria described in the National Comprehensive Cancer Network (NCCN) guidelines. Median follow-up was 73 months (range 12-109 months). Neoadjuvant androgen deprivation therapy (ADT) was administered to all 48 patients; 12 patients also received adjuvant ADT. Maximal androgen blockade was performed in 37 patients. Median total treatment duration was 8 months (range 3-45 months). The planned prescribed dose was 54 Gy in 9 fractions over 5 days for the first 13 patients and 49 Gy in 7 fractions over 4 days for 34 patients. Only one patient who was over 80 years old received 38 Gy in 4 fractions over 3 days. The clinical target volume (CTV) was calculated for the prostate gland and the medial side of the seminal vesicles. A 10-mm cranial margin was added to the CTV to create the planning target volume (PTV). The 5-year overall survival and biochemical control rates were 98 and 87 %, respectively. Grade 3 late genitourinary and gastrointestinal complications occurred in 2 patients (4 %) and 1 patient (2 %), respectively; grade 2 late genitourinary and gastrointestinal complications occurred in 5 patients (10 %) and 1 patient (2 %), respectively. Even for high-risk patients, HDR-ISBT as the only form of radiotherapy combined with ADT achieved promising biochemical control results, with acceptable late genitourinary and gastrointestinal complication rates. (orig.) [German] Beurteilung der Wirksamkeit von interstitieller Brachytherapie mit Hochdosisraten (''high-dose-rate interstitial brachytherapy'', HDR-ISBT) als einzige Form der Radiotherapie fuer Hochrisiko

  11. A case of percutaneous high dose rate brachytherapy for superior pulmonary sulcus tumor

    Energy Technology Data Exchange (ETDEWEB)

    Asakura, Tamaki; Imamura, Masahiro; Murata, Takashi [Kansai Medical Univ., Moriguchi, Osaka (Japan)] [and others

    1996-07-01

    A 64-year-old man with advanced superior pulmonary sulcus tumor suffered severe unrelieved pain even after chemotherapy, external irradiation and hyperthermia. So we planned to introduce a percutaneous high dose rate brachytherapy using the microselectron HDR {sup 192}Ir. With the estimation using the Pain Score, satisfying pain relief was attainable with a combination of the percutaneous high dose rate brachytherapy and conventional treatment. So the percutaneous high dose rate brachytherapy had the possibility to contribute to the alleviation of the pain. (author)

  12. Growth delay effect of combined interstitial hyperthermia and brachytherapy in a rat solid tumor model.

    Science.gov (United States)

    Papadopoulos, D; Kimler, B F; Estes, N C; Durham, F J

    1989-01-01

    The rat mammary AC33 solid tumor model was used to investigate the efficacy of interstitial hyperthermia and/or brachytherapy. Subcutaneous flank tumors were heated with an interstitial microwave (915 MHz) antenna to a temperature of 43 +/- 0.5 degrees C for 45 min for two treatments, three days apart, and/or implanted with Ir-192 seeds for three days (-25 Gy tumor dose). Following treatments, tumors were measured 2 to 3 times per week. Hyperthermia alone produced a modest delay in tumor volume regrowth, while brachytherapy was substantially more effective. The combination produced a improvement in tumor regrowth delay compared to brachytherapy alone.

  13. Image guided radiation therapy boost in combination with high-dose-rate intracavitary brachytherapy for the treatment of cervical cancer.

    Science.gov (United States)

    Wang, Xianliang; Li, Jie; Wang, Pei; Yuan, Ke; Yin, Gang; Wan, Bin

    2016-04-01

    The purpose of this study was to demonstrate the dosimetric and clinical feasibility of image guided radiation therapy (IGRT) combined with high-dose-rate (HDR) intracavitary brachytherapy (ICBT) to improve dose distribution in cervical cancer treatment. For 42 cervical cancer patients, magnetic resonance imaging (MRI) scans were acquired after completion of whole pelvic irradiation 45-46 Gy and 5 fractions of B + I (ICBT + IGRT) treatment were subsequently received. The high risk clinical target volume (HRCTV), intermediate risk clinical target volume (IRCTV), bladder, rectum, and sigmoid were contoured on the computed tomography (CT) scans. The total planning aim doses for HRCTV was D90% > 85 Gy, whilst constraints for rectum and sigmoid were D2cc D100%, IRCTV D100%, and IRCTV D90% were significantly increased by a mean of 10.52 Gy, 5.61 Gy, and 2.70 Gy, respectively (p < 0.01). The D2cc for bladder, rectum, and sigmoid were lower by a mean of 21.36, 6.78, and 10.65 Gy, respectively (p < 0.01). The mean rectum V60 Gy value over 42 patients was almost the same for both techniques but for bladder and sigmoid B + I had higher V60 Gy mean values as compared with the O-ICBT. B + I can improve dose distribution in cervical cancer treatment; it could be useful for tumors extended beyond the reach of intracavitary/interstitial brachytherapy (IC/ISBT) or for centers that are inexperienced or ill-equipped with IC/ISBT techniques. Additional confirmatory prospective studies with larger numbers of patients and longer follow-up are required to validate the durability.

  14. Computed Tomography–Guided Interstitial High-Dose-Rate Brachytherapy in Combination With Regional Positive Lymph Node Intensity-Modulated Radiation Therapy in Locally Advanced Peripheral Non–Small Cell Lung Cancer: A Phase 1 Clinical Trial

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Li; Zhang, Jian-wen; Lin, Sheng; Luo, Hui-Qun; Wen, Qing-Lian; He, Li-Jia; Shang, Chang-Ling; Ren, Pei-Rong; Yang, Hong-Ru; Pang, Hao-Wen; Yang, Bo; He, Huai-Lin [Department of Oncology, Affiliated Hospital of Luzhou Medical College, Luzhou (China); Chen, Yue, E-mail: chenyue5523@126.com [Department of Nuclear Medicine, Affiliated Hospital of Luzhou Medical College, Luzhou (China); Wu, Jing-Bo, E-mail: wjb6147@163.com [Department of Oncology, Affiliated Hospital of Luzhou Medical College, Luzhou (China)

    2015-08-01

    Purpose: To assess the technical safety, adverse events, and efficacy of computed tomography (CT)-guided interstitial high-dose-rate (HDR) brachytherapy in combination with regional positive lymph node intensity modulated radiation therapy in patients with locally advanced peripheral non–small cell lung cancer (NSCLC). Methods and Materials: Twenty-six patients with histologically confirmed NSCLC were enrolled in a prospective, officially approved phase 1 trial. Primary tumors were treated with HDR brachytherapy. A single 30-Gy dose was delivered to the 90% isodose line of the gross lung tumor volume. A total dose of at least 70 Gy was administered to the 95% isodose line of the planning target volume of malignant lymph nodes using 6-MV X-rays. The patients received concurrent or sequential chemotherapy. We assessed treatment efficacy, adverse events, and radiation toxicity. Results: The median follow-up time was 28 months (range, 7-44 months). There were 3 cases of mild pneumothorax but no cases of hemothorax, dyspnea, or pyothorax after the procedure. Grade 3 or 4 acute hematologic toxicity was observed in 5 patients. During follow-up, mild fibrosis around the puncture point was observed on the CT scans of 2 patients, but both patients were asymptomatic. The overall response rates (complete and partial) for the primary mass and positive lymph nodes were 100% and 92.3%, respectively. The 1-year and 2-year overall survival (OS) rates were 90.9% and 67%, respectively, with a median OS of 22.5 months. Conclusion: Our findings suggest that HDR brachytherapy is safe and feasible for peripheral locally advanced NSCLC, justifying a phase 2 clinical trial.

  15. Brachytherapy in Gynecologic Cancers: Why Is It Underused?

    Science.gov (United States)

    Han, Kathy; Viswanathan, Akila N

    2016-04-01

    Despite its established efficacy, brachytherapy is underused in the management of cervical and vaginal cancers in some parts of the world. Possible reasons for the underutilization of brachytherapy include the adoption of less invasive techniques, such as intensity-modulated radiotherapy; reimbursement policies favoring these techniques over brachytherapy; poor physician or patient access to brachytherapy; inadequate maintenance of brachytherapy skills among practicing radiation oncologists; transitioning to high-dose-rate (HDR) brachytherapy with increased time requirements; and insufficient training of radiation oncology residents.

  16. Proposed methodology for estimating the in HDR brachytherapy facilities Ir-192; Propuesta de metodologia para estimar la dosis absorbida en la entrada del laberinto en instalaciones de braquiterapia HDR con Ir-192

    Energy Technology Data Exchange (ETDEWEB)

    Pujades-Clamarchirant, M. C.; Perez-Calatayud, J.; Ballester, F.; Gimeno, J.; Granero, D.; Camacho, C.; Lliso, F.; Carmona, V.; Vijande, J.

    2011-07-01

    In the absence of procedures for assessing the design of a room brachytherapy (BT) with maze, usually adopting the formalism of external irradiation with different variations, The purpose of this study is to adapt the methodology of NCRP151 [1] to estimate the absorbed dose at the entrance to a room of ET and compare with the corresponding dosimetry data obtained with Monte Carlo (MC) in a previous work.

  17. In vivo dosimetry HDR brachytherapy prostate with source CO-60: Results of measures in a point urethra; Dosimetria in vivo en braquiterapia HDR de prostate con fuente de CO-60: Resultados de medidas en un punto de uretra

    Energy Technology Data Exchange (ETDEWEB)

    Latorre, D.; Fernandez, J.; Rivero, G.; Crelgo, D.; Gonzalez, J. M.; Sanchez, P.; Villace, A.; Sanchez, E.; Arroyo, M. A.; Garcia, E.; Trabanco, E.

    2015-07-01

    In this study we present and analyze the results of the in vivo dosimetry made a point of urethra with a group of 30 patients treated with brachytherapy prostate high rate with Co-60 source. Taking into account the uncertainties, the results and integration, globally evaluate this system DIV. This DIV system, due to its ease of calibration and use, and provides a relatively simple integration way to avoid serious errors in administering treatment. (Author)

  18. Image guided radiation therapy boost in combination with high-dose-rate intracavitary brachytherapy for the treatment of cervical cancer

    Directory of Open Access Journals (Sweden)

    Xianliang Wang

    2016-04-01

    Full Text Available Purpose : The purpose of this study was to demonstrate the dosimetric and clinical feasibility of image guided radiation therapy (IGRT combined with high-dose-rate (HDR intracavitary brachytherapy (ICBT to improve dose distribution in cervical cancer treatment. Material and methods: For 42 cervical cancer patients, magnetic resonance imaging (MRI scans were acquired after completion of whole pelvic irradiation 45-46 Gy and 5 fractions of B + I (ICBT + IGRT treatment were subsequently received. The high risk clinical target volume (HRCTV, intermediate risk clinical target volume (IRCTV, bladder, rectum, and sigmoid were contoured on the computed tomography (CT scans. The total planning aim doses for HRCTV was D 90% > 85 Gy, whilst constraints for rectum and sigmoid were D 2cc < 75 Gy and D 2cc < 90 Gy for bladder in terms of an equivalent dose in 2 Gy (EQD2 for external beam radiotherapy (EBRT and brachytherapy boost. The IGRT plan was optimized on top of the ICBT dose distribution. A dosimetric comparison was made between B + I and optimized ICBT (O-ICBT only. Results: The mean D 90% of HRCTV was comparable for B + I and O-ICBT (p = 0.82. For B + I plan, HRCTV D100%, IRCTV D 100% , and IRCTV D 90% were significantly increased by a mean of 10.52 Gy, 5.61 Gy, and 2.70 Gy, respectively (p < 0.01. The D 2cc for bladder, rectum, and sigmoid were lower by a mean of 21.36, 6.78, and 10.65 Gy, respectively (p < 0.01. The mean rectum V60 Gy value over 42 patients was almost the same for both techniques but for bladder and sigmoid B + I had higher V60 Gy mean values as compared with the O-ICBT. Conclusions : B + I can improve dose distribution in cervical cancer treatment; it could be useful for tumors extended beyond the reach of intracavitary/interstitial brachytherapy (IC/ISBT or for centers that are inexperienced or ill-equipped with IC/ISBT techniques. Additional confirmatory prospective studies with larger numbers of patients and longer follow

  19. Braquiterapia intersticial de alta tasa de rescate en cáncer cabeza cuello previamente radiado High-dose-rate (HDR brachytherapy in previously irradiated recurrent head and neck cancer

    Directory of Open Access Journals (Sweden)

    Lucía Gutiérrez-Bayard

    2011-09-01

    Full Text Available A pesar de los avances en el tratamiento de cáncer de cabeza y cuello (CCC, el 15-50% de los pacientes presentan recurrencia locorregional. Para los pacientes que presentan enfermedad localmente recurrente o un segundo tumor primario en un campo previamente irradiado, las opciones terapéuticas de rescate son limitadas, siendo la resección quirúrgica con intención curativa la opción de elección para los pacientes con enfermedad limitada. Reirradiación con o sin la adición de quimioterapia puede ser una buena opción, obteniendo en pacientes seleccionados supervivencia a largo plazo. La braquiterapia de alta tasa de dosis (HDRBT puede jugar un papel importante en el tratamiento de rescate en tumores de cabeza y cuello recurrentes. Presentamos un paciente de 56 años diagnosticado de cáncer de lengua sometido a cirugía y radioterapia externa adyuvante, y recurrencia metastásica ganglionar cervical contralateral a los 18 meses. Recibió tratamiento multidisciplinar con quimioterapia, cirugía y braquiterapia intersticial.Despite advances in the treatment of head and neck cancer (HNC, 15-50% of patients present locoregional disease recurrence. The therapeutic options are limited for patients who present locally recurrent disease or a second primary tumor in a previously irradiated field. Surgical salvage with curative intent is the preferred option for patients with limited-volume disease. Re-irradiation with or without the addition of chemotherapy may hold promise for long-term survival for selected patients. High-dose-rate (HDR brachytherapy can play an important role in the salvage treatment of previously irradiated recurrent head and neck cancer. The case reported was a 56-year old man diagnosed of tongue cancer who presented recurrent metastatic contralateral cervical node 1.5 years after radical treatment with surgery and adjuvant external radiotherapy. He received multidisciplinary treatment with chemotherapy, surgery and HDR

  20. Comparison of Oncentra® Brachy IPSA and graphical optimisation techniques: a case study of HDR brachytherapy head and neck and prostate plans

    Energy Technology Data Exchange (ETDEWEB)

    Jameson, Michael G, E-mail: michael.jameson@sswahs.nsw.gov.au [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales (Australia); Ingham Institute of Applied Medical Research, Liverpool, New South Wales (Australia); Ohanessian, Lucy [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales (Australia); Batumalai, Vikneswary [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales (Australia); Ingham Institute of Applied Medical Research, Liverpool, New South Wales (Australia); South Western Sydney Clinical School, School of Medicine, University of New South Wales (Australia); Patel, Virendra [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales (Australia); Holloway, Lois C [Liverpool and Macarthur Cancer Therapy Centres, Liverpool, New South Wales (Australia); Centre for Medical Radiation Physics, University of Wollongong, Wollongong, New South Wales (Australia); Ingham Institute of Applied Medical Research, Liverpool, New South Wales (Australia); South Western Sydney Clinical School, School of Medicine, University of New South Wales (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, New South Wales (Australia)

    2015-06-15

    There are a number of different dwell positions and time optimisation options available in the Oncentra® Brachy (Elekta Brachytherapy Solutions, Veenendaal, The Netherlands) brachytherapy treatment planning system. The purpose of this case study was to compare graphical (GRO) and inverse planning by simulated annealing (IPSA) optimisation techniques for interstitial head and neck (HN) and prostate plans considering dosimetry, modelled radiobiology outcome and planning time. Four retrospective brachytherapy patients were chosen for this study, two recurrent HN and two prostatic boosts. Manual GRO and IPSA plans were generated for each patient. Plans were compared using dose–volume histograms (DVH) and dose coverage metrics including; conformity index (CI), homogeneity index (HI) and conformity number (CN). Logit and relative seriality models were used to calculate tumour control probability (TCP) and normal tissue complication probability (NTCP). Approximate planning time was also recorded. There was no significant difference between GRO and IPSA in terms of dose metrics with mean CI of 1.30 and 1.57 (P > 0.05) respectively. IPSA achieved an average HN TCP of 0.32 versus 0.12 for GRO while for prostate there was no significant difference. Mean GRO planning times were greater than 75 min while average IPSA planning times were less than 10 min. Planning times for IPSA were greatly reduced compared to GRO and plans were dosimetrically similar. For this reason, IPSA makes for a useful planning tool in HN and prostate brachytherapy.

  1. Substantial advantage of CT-planned HDR brachytherapy for cervical cancer patients compared to a historical series with regard to local control and toxicity?; Substantieller Vorteil durch CT-geplante HDR-Brachytherapie bei Zervixkarzinompatientinnen im Vergleich zu historischen Serien bezueglich lokaler Kontrolle und Toxizitaet

    Energy Technology Data Exchange (ETDEWEB)

    Marnitz, Simone [Klinik fuer Strahlentherapie der Uniklinik Koeln, Medizinische Fakultaet der Universitaet zu Koeln, CyberKnife Centrum, Koeln (Germany)

    2017-03-15

    The primary radiochemotherapy is the standard treatment for patients with nodal positive and/or locally advanced cervical carcinoma. The therapy consists of percutaneous radiotherapy, simultaneous chemotherapy with cisplatin and an intracervical brachytherapy. The application of highly standardized brachytherapy based on NMR imaging allowed an improved local contol and a considerable reduction of toxicity.

  2. Radiation therapy for localized prostate cancer. For high-dose rate conformal brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kinugawa, Keigo; Jo, Yoshimasa; Morioka, Masaaki; Tanaka, Hiroyoshi; Hiratsuka, Junichi; Imajo, Yoshinari [Kawasaki Medical School, Kurashiki, Okayama (Japan)

    1999-05-01

    Sixteen patients with localized prostate cancer were referred to our clinic for radiation therapy in combination with HDR brachytherapy using Ir-192 pellets between October 1997 and August 1998. The patients were given external beam radiation of 45 Gy to the whole pelvis in combination with an interstitial HDR brachytherapy implant of 3 fractions each delivering 5.5 Gy during two days. Using an implanting device especially designed for HDR, 10-18 applicator needles (17 gauge) were implanted into the prostate using transrectal ultrasound (TRUS) with perineal template guidance under spinal anesthesia. Pathological evaluation was performed at 6 months after treatment. This technique of external beam radiation combined with HDR brachytherapy was well tolerated. Serum prostatic antigen (PSA) levels became normalized in 87.5% of the patients (14 out of 16) within 1-14 months (median 2 months) after the irradiation. No significant intraoperative or perioperative complications occurred, however one patient (6.25%) experienced Grade 3 hematuria. Most of the early complications were otherwise Grade 1 or 2. From prospectively planned prostatic rebiopsies performed at 6 months, we can observe the radiation effects in the pathological findings such as fibrosis, basal cell hyperplasia, bizarre cells and intraductal calcifications. (K.H.)

  3. Feasibility of combined operation and perioperative intensity-modulated brachytherapy of advanced/recurrent malignancies involving the skull base

    Energy Technology Data Exchange (ETDEWEB)

    Strege, R.J.; Eichmann, T.; Mehdorn, H.M. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Neurosurgery; Kovacs, G.; Niehoff, P. [University Hospital Schleswig-Holstein, Kiel (Germany). Interdisciplinary Brachytherapy Center; Maune, S. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Otolaryngology; Holland, D. [University Hospital Schleswig-Holstein, Kiel (Germany). Dept. of Ophthalmology

    2005-02-01

    Purpose: To assess the technical feasibility and toxicity of combined operation and perioperative intensity-modulated fractionated interstitial brachytherapy (IMBT) in advanced-stage malignancies involving the skull base with the goal of preserving the patients' senses of sight. Patients and Methods: This series consisted of 18 consecutive cases: ten patients with paranasal sinus carcinomas, five with sarcomas, two with primitive neuroectodermal tumors (PNETs), and one with parotid gland carcinoma. After, in most cases, subtotal surgical resection (R1-R2: carried out so that the patients' senses of sight were preserved), two to twelve (mean five) afterloading plastic tubes were placed into the tumor bed. IMBT was performed with an iridium-192 stepping source in pulsed-dose-rate/high-dose-rate (PDR/HDR) afterloading technique. The total IMBT dose, ranging from 10 to 30 Gy, was administered in a fractionated manner (3-5 Gy/day, 5 days/week). Results: Perioperative fractionated IMBT was performed in 15 out of 18 patients and was well tolerated. Complications that partially prevented or delayed IMBT in some cases included cerebrospinal fluid leakage (twice), meningitis (twice), frontal brain syndrome (twice), afterloading tube displacement (twice), seizure (once), and general morbidity (once). No surgery- or radiation-induced injuries to the cranial nerves or eyes occurred. Median survival times were 33 months after diagnosis and 16 months after combined operation and IMBT. Conclusion: Perioperative fractionated IMBT after extensive but vision-preserving tumor resection seems to be a safe and well-tolerated treatment of advanced/recurrent malignancies involving the skull base. These preliminary state suggest that combined operation and perioperative fractionated IMBT is a palliative therapeutic option in the management of fatal malignancies involving the base of the skull, a strategy which leaves the patients' visual acuity intact. (orig.)

  4. Implants quality in HDR prostate brachytherapy related to the number of needles used;Qualidade de implantes de prostata com BATD em funcao do numero de agulhas usadas

    Energy Technology Data Exchange (ETDEWEB)

    Moura, Dayanne E.E.S; Martins, Homero L. [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Servico de Fisica Medica

    2009-07-01

    This paper aims to relate the quality of prostate implants (HDR) with the amount of needles used. 51 needle insertions performed in the institution were analyzed. The maximum diameter, the maximum height and target volume delineated by radiation oncologist were measured and this compared with the prostate volume obtained by the radiologist. It was concluded that the prostate volume measured by the radiologist is not a reliable indication to determine how the implant will be done and that the increase in the number of needles implanted did not necessarily ensure a better dose distribution. (author)

  5. Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

    DEFF Research Database (Denmark)

    Kertzscher, Gustavo; Andersen, Claus Erik; Siebert, Frank-André

    2011-01-01

    treatment errors, including interchanged pairs of afterloader guide tubes and 2–20mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al2O3:C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated...... conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. Materials and methodsPhantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed...

  6. SU-E-T-620: Dosimetric Compliance Study for a New Prostate Protocol of Combined High Dose Rate Brachytherapy and Stereotactic Body Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Peng, C; Giaddui, T; Den, R; Harrison, A; Yu, Y [Thomas Jefferson University, Philadelphia, PA (United States)

    2014-06-15

    Purpose: To investigate the adherence of treatment plans of prostate cancer patients with the dosimetric compliance criteria of the new in house phase I trial of high dose rate (HDR) brachytherapy combined with stereotactic body radiotherapy (SBRT) for intermediate risk prostate cancer patients. Methods: Ten prostate cancer patients were treated using this trial. They received one fraction of HDR to 15Gy, followed by external beam(EB) boost of 3.2Gy(Level 1, five patients) or 3.94Gy(level 2, five patients) per fraction for 10 or 7 fractions, respectively, both equivalent to EB treatments of 113.5Gy in 2Gy fractions. The EB plans were either IMRT or VMAT plans. DVH analysis was performed to verify the adherence of treatment plans to the dosimetric criteria of the trial. Results: For Level 1 patients, target coverage were adequate, with CTV V32Gy(%) of 99.0±1.0 (mean ± 1 standard deviation), and PTV V31Gy(%) of 99.6±0.3. PTV V32.9Gy(%) is 1.4±3.1 and PTVmax is 32.9±0.2Gy. Rectum, bladder and femoral heads sparing were well within protocol criteria. For Level 2 patients, CTV V27.6Gy(%) is 98.7±1.8; PTV V26.7Gy(%) is 99.0±1.4. PTV V28.4Gy(%) is 1.3±1.4, with three patients having minor deviation from protocol. Again critical structures were spared compliant to the protocol. The analysis of HDR plans show similar results, with adequate dose coverage to the prostate and sparing of critical structures including urethra and rectum. V100(%) and V90(%) of prostate are 96.0±1.1 and 98.9±0.5. Urethra D10(%) is 113.1±2.9. Rectum V80(cc) is 1.4±0.5. Hotspot in prostate is substantially higher than what the protocol specifies. But the criteria for hotspot are only guidelines, serving to lower the dose to urethra . Conclusion: This new high biological equivalent dose prostate trial has been carried out successfully for ten patients. Based on dosimetric analysis, all HDR and external plans were compliant to the protocol criteria, with only minor deviations.

  7. Three-dimensional ultrasound system for guided breast brachytherapy.

    Science.gov (United States)

    De Jean, Paul; Beaulieu, Luc; Fenster, Aaron

    2009-11-01

    Breast-conserving surgery combined with subsequent radiation therapy is a standard procedure in breast cancer treatment. The disadvantage of whole-breast beam irradiation is that it requires 20-25 treatment days, which is inconvenient for patients with limited mobility or who reside far from the treatment center. However, interstitial high-dose-rate (HDR) brachytherapy is an irradiation method requiring only 5 treatment days and that delivers a lower radiation dose to the surrounding healthy tissue. It involves delivering radiation through 192Ir seeds placed inside the catheters, which are inserted into the breast. The catheters are attached to a HDR afterloader, which controls the seed placement within the catheters and irradiation times to deliver the proper radiation dose. One disadvantage of using HDR brachytherapy is that it requires performing at least one CT scan during treatment planning. The procedure at our institution involves the use of two CT scans. Performing CT scans requires moving the patient from the brachytherapy suite with catheters inserted in their breasts. One alternative is using three-dimensional ultrasound (3DUS) to image the patient. In this study, the authors developed a 3DUS translation scanning system for use in breast brachytherapy. The new system was validated using CT, the current clinical standard, to image catheters in a breast phantom. Once the CT and 3DUS images were registered, the catheter trajectories were then compared. The results showed that the average angular separation between catheter trajectories was 2.4 degrees, the average maximum trajectory separation was 1.0 mm, and the average mean trajectory separation was found to be 0.7 mm. In this article, the authors present the 3DUS translation scanning system's capabilities as well as its potential to be used as the primary treatment planning imaging modality in breast brachytherapy.

  8. SU-E-T-787: Utility of the Two Candidate 192-Ir and 169-Yb HDR Sources for Use with a Novel Direction Modulated Brachytherapy Tandem Applicator for Cervical Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); Han, D [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States)

    2015-06-15

    Purpose: A novel tungsten alloy shielded, MRI-compatible, direction modulated brachytherapy (DMBT) concept tandem applicator, which enables unprecedented intensity modulation, was used to evaluate treatment plan quality improvement over a conventional tandem. The utility of the 192-Ir and 169-Yb HDR sources, for use with the DMBT applicator, was evaluated. Methods: The total diameter of the DMBT tandem applicator is 6.0 mm, which consists of 5.4-mm diameter tungsten alloy and 0.3 mm thick plastic sheath. The tandem has 6 symmetric peripheral 1.3-mm diameter grooves for the source to travel. MCNPX v.2.6 was used to simulate the 192-Ir and 169-Yb sources inside the DMBT applicator. First, TG-43 source parameters were evaluated. Second, 3D dose matrix with 1 mm3 resolution were imported into an in-house-coded inverse optimization treatment planning program to obtain optimal plans for 19 clinical cases. All plans were compared with the standard tandem and ring plans. Prescription dose was 15.0 Gy. All plans were normalized to receive the same HRCTV D90. Results: Generally, the DMBT tandem (and ring) plans were better than the conventional tandem and ring plans for 192-Ir and 169-Yb HDR sources. The mean data of D2cc for bladder, rectum, and sigmoid were 11.65±2.30 Gy, 7.47±3.05 Gy, and 9.84±2.48 Gy for Ir-192 DMBT tandem, respectively. These data for Yb-169 were 11.67±2.26 Gy, 7.44±3.02 Gy, and 9.83±2.38 Gy, respectively. The HR-CTV D98 and V100 were 16.37±1.86 Gy and 97.37 ± 1.92 Gy for Ir-192 DMBT, respectively. The corresponding values for Yb-169 were 16.43±1.86 Gy, and 97.51 ± 1.91 Gy. Plans with the 169-Yb source generally produced more favorable results where V100 increased by 13.65% while D2cc across all OARs reduced by 0.54% compared with the 192-Ir plans. Conclusion: For the DMBT tandem applicator, 169-Yb source seems to produce more directional beams resulting in increased intensity modulation capacity, thus resulting in more conformal plans.

  9. SU-E-T-491: Influence of Applicator Dimensions On Doses to Bladder, Rectum and Sigmoid in HDR Brachytherapy for Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Dumane, V; Rhome, R; Yuan, Y; Gupta, V [The Mount Sinai Medical Center, New York, NY (United States)

    2015-06-15

    Purpose: To study the influence of dimensions of the tandem and ring applicator on bladder D2cc, rectum D2cc and sigmoid D2cc in HDR treatment planning for cervical cancer. Methods: 53 plans from 13 patients treated at our institution with the tandem and ring applicator were retrospectively reviewed. Prescription doses were one of the following: 8 Gy x 3, 7 Gy x 4 and 5.5 Gy x 5. Doses to the D2ccs of the bladder, rectum and the sigmoid were recorded. These doses were normalized to their relative prescriptions doses. Correlations between the normalized bladder D2cc, rectum D2cc and sigmoid D2cc were investigated and linear regression models were developed to study the dependence of these doses on the ring diameter and the applicator angle. Results: Normalized doses to the D2cc of the bladder, rectum and sigmoid showed statistically significant correlation (P < 0.05) to the applicator angle. Significant correlation was also noted for the normalized D2cc of the rectum and the sigmoid with the ring diameter. The normalized bladder D2cc was found to decrease with applicator angle on an average by 22.65% ± 4.43% while the same for the rectum and sigmoid were found to increase on an average by 14.43% ± 1.65% and 14.01% ± 1.42% respectively. Both the rectum and sigmoid D2cc reduced with increasing ring diameter by 12.93% ± 1.95% and 11.27% ± 1.79%. No correlation was observed between the normalized bladder D2cc and the ring diameter. Conclusion: Preliminary regression models developed in this study can potentially aid in the choice of the appropriate applicator angle and ring diameter for tandem and ring implant so as to optimize doses to the bladder, rectum and sigmoid.

  10. SU-E-T-23: A Novel Two-Step Optimization Scheme for Tandem and Ovoid (T and O) HDR Brachytherapy Treatment for Locally Advanced Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, M; Todor, D [Virginia Commonwealth University, Richmond, VA (United States); Fields, E [Virginia Commonwealth University, Richmond, Virginia (United States)

    2014-06-01

    Purpose: To present a novel method allowing fast, true volumetric optimization of T and O HDR treatments and to quantify its benefits. Materials and Methods: 27 CT planning datasets and treatment plans from six consecutive cervical cancer patients treated with 4–5 intracavitary T and O insertions were used. Initial treatment plans were created with a goal of covering high risk (HR)-CTV with D90 > 90% and minimizing D2cc to rectum, bladder and sigmoid with manual optimization, approved and delivered. For the second step, each case was re-planned adding a new structure, created from the 100% prescription isodose line of the manually optimized plan to the existent physician delineated HR-CTV, rectum, bladder and sigmoid. New, more rigorous DVH constraints for the critical OARs were used for the optimization. D90 for the HR-CTV and D2cc for OARs were evaluated in both plans. Results: Two-step optimized plans had consistently smaller D2cc's for all three OARs while preserving good D90s for HR-CTV. On plans with “excellent” CTV coverage, average D90 of 96% (range 91–102), sigmoid D2cc was reduced on average by 37% (range 16–73), bladder by 28% (range 20–47) and rectum by 27% (range 15–45). Similar reductions were obtained on plans with “good” coverage, with an average D90 of 93% (range 90–99). For plans with inferior coverage, average D90 of 81%, an increase in coverage to 87% was achieved concurrently with D2cc reductions of 31%, 18% and 11% for sigmoid, bladder and rectum. Conclusions: A two-step DVH-based optimization can be added with minimal planning time increase, but with the potential of dramatic and systematic reductions of D2cc for OARs and in some cases with concurrent increases in target dose coverage. These single-fraction modifications would be magnified over the course of 4–5 intracavitary insertions and may have real clinical implications in terms of decreasing both acute and late toxicity.

  11. Body mass index versus bladder and rectal doses using 2D planning for patients with carcinoma of the cervix undergoing HDR brachytherapy

    Directory of Open Access Journals (Sweden)

    Anil Kumar Talluri

    2016-06-01

    Full Text Available Purpose: To assess bladder and rectum doses in relation to body mass index of patients undergoing high dose rate brachytherapy for the treatment of carcinoma of the cervix.Methods: The cohort consists of fifty subjects with carcinoma of the uterine cervix presented with grade II and III. Patient’s height and weight was measured before the insertion of applicator in situ. Body mass index (BMI of the patient was calculated in accordance to World Health Organization definition (weight in Kg/ height in m2. Adequacy of position and orientation of the applicator was confirmed with the help of orthogonal X-ray images and the same were transferred to the treatment planning system (TPS to generate treatment plan. Prescription doses were optimized to Point A and to reference lines placed at 0.5 cm apart from the surface of ovoids. The following dose reference points were identified on orthogonal x-ray images for analysis using the rectal marker and Foleys bulb inflated with radio opaque dye Rectal points at the level of femoral heads (RL and pubis symphysis (RLP, Anorectum Junction (AR Jn point and Rectosigmoid (RS point and Bladder point (BL. Pearson regression analysis was used to analyze data from TPS.Results: The mean BMI was 22.7 kg/m2 and average age was 49.9 years. Analysis showed that RL point dose and BMI were inversely correlated with a coefficient -0.45 (p = 0.001. The trend continued along the rectal tube in cranio-caudal direction, as RLP and AR Jn points showed inversion co-efficiency with increase in BMI,-0.48 (p < 0.01 and -0.51 (p < 0.01 respectively. Bladder point showed weak positive correlation to BMI, 0.12 (p = 0.38.Conclusion: Significant rectal dose reduction is observed with increase in BMI. Bladder dose did not show statistically significant correlation with BMI. Based on the findings, BMI constitutes a confounding factor in the treatment of carcinoma of cervix.

  12. LOW POWER BRACHYTHERAPY IN COMBINED TREATMENT IN PATIENTS WITH INTERMEDIATE RISK OF LOCALIZED PROST ATE CANCER

    Directory of Open Access Journals (Sweden)

    V. A. Biryukov

    2014-01-01

    Full Text Available Objective. Estimation of the effectiveness of low power brachytherapy sources I-125 in the combined treatment in group of patients of intermediate risk of localized prostate cancer.Material and methods. The study included 126 patients with prostate cancer of intermediate risk. 104 patients (83,9% were conducted low power brachytherapy I‑125 in combination with hormone therapy by analogues of LHWG. 22 patients (16.1% received external beam irradiation in combination with brachytherapy I‑125 and hormonal treatment. Relapse-free survival of patients was evaluated in accordance with the criteria Phoenix (Nadir PSA + ng/ml. Evaluation of side effects of radiation treatment were carried out according to the RTOG criteria.Results. PSA relapse-free survival in the group of brachytherapy and hormone treatment at the time of observation 5 years amounted to 97.1%. In the group of combined radiation therapy with brachytherapy, and hormonal treatment PSA relapse-free survival rate was 95.5%.In both groups, relapse-free survival was noted in 96,8% of cases. Tumor-specific and overall survival in bothgroups was 100%. The major complications of treatment in both groups were radiation urethritis 1 to 2 degrees in 9.5% of cases (12 patients, urethral stricture in 5 patients (3.9% of cases, acute urinary retention in 1 patient (0.8% of cases and late radiation rectitis of 2 degree in 1.58% of cases (2 patients.Conclusions. It is possible to draw tentative conclusions about the high rate of survival without progression in both treatment groups on the background of the relatively low frequency of adverse reactions. It is necessary further follow-up for patients with estimating of survival for a longer period.

  13. Clinical outcome of high-dose-rate interstitial brachytherapy in patients with oral cavity cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sung Uk; Cho, Kwan Ho; Moon, Sung Ho; Choi, Sung Weon; Park, Joo Yong; Yun, Tak; Lee, Sang Hyun; Lim, Young Kyung; Jeong, Chi Young [National Cancer Center, Goyang (Korea, Republic of)

    2014-12-15

    To evaluate the clinical outcome of high-dose-rate (HDR) interstitial brachytherapy (IBT) in patients with oral cavity cancer. Sixteen patients with oral cavity cancer treated with HDR remote-control afterloading brachytherapy using 192Ir between 2001 and 2013 were analyzed retrospectively. Brachytherapy was administered in 11 patients as the primary treatment and in five patients as salvage treatment for recurrence after the initial surgery. In 12 patients, external beam radiotherapy (50-55 Gy/25 fractions) was combined with IBT of 21 Gy/7 fractions. In addition, IBT was administered as the sole treatment in three patients with a total dose of 50 Gy/10 fractions and as postoperative adjuvant treatment in one patient with a total of 35 Gy/7 fractions. The 5-year overall survival of the entire group was 70%. The actuarial local control rate after 3 years was 84%. All five recurrent cases after initial surgery were successfully salvaged using IBT +/- external beam radiotherapy. Two patients developed local recurrence at 3 and 5 months, respectively, after IBT. The acute complications were acceptable (< or =grade 2). Three patients developed major late complications, such as radio-osteonecrosis, in which one patient was treated by conservative therapy and two required surgical intervention. HDR IBT for oral cavity cancer was effective and acceptable in diverse clinical settings, such as in the cases of primary or salvage treatment.

  14. Prospective multi-center trial utilizing electronic brachytherapy for the treatment of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Thropay John P

    2010-07-01

    Full Text Available Abstract Background A modified form of high dose rate (HDR brachytherapy has been developed called Axxent Electronic Brachytherapy (EBT. EBT uses a kilovolt X-ray source and does not require treatment in a shielded vault or a HDR afterloader unit. A multi-center clinical study was carried out to evaluate the success of treatment delivery, safety and toxicity of EBT in patients with endometrial cancer. Methods A total of 15 patients with stage I or II endometrial cancer were enrolled at 5 sites. Patients were treated with vaginal EBT alone or in combination with external beam radiation. Results The prescribed doses of EBT were successfully delivered in all 15 patients. From the first fraction through 3 months follow-up, there were 4 CTC Grade 1 adverse events and 2 CTC Grade II adverse events reported that were EBT related. The mild events reported were dysuria, vaginal dryness, mucosal atrophy, and rectal bleeding. The moderate treatment related adverse events included dysuria, and vaginal pain. No Grade III or IV adverse events were reported. The EBT system performed well and was associated with limited acute toxicities. Conclusions EBT shows acute results similar to HDR brachytherapy. Additional research is needed to further assess the clinical efficacy and safety of EBT in the treatment of endometrial cancer.

  15. A Feasibility Study of Fricke Dosimetry as an Absorbed Dose to Water Standard for 192Ir HDR Sources

    Science.gov (United States)

    deAlmeida, Carlos Eduardo; Ochoa, Ricardo; de Lima, Marilene Coelho; David, Mariano Gazineu; Pires, Evandro Jesus; Peixoto, José Guilherme; Salata, Camila; Bernal, Mario Antônio

    2014-01-01

    High dose rate brachytherapy (HDR) using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future. PMID:25521914

  16. A feasibility study of Fricke dosimetry as an absorbed dose to water standard for 192Ir HDR sources.

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo deAlmeida

    Full Text Available High dose rate brachytherapy (HDR using 192Ir sources is well accepted as an important treatment option and thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of the absolute dose to water for this particular source type is currently not available. An improved standard for the absorbed dose to water based on Fricke dosimetry of HDR 192Ir brachytherapy sources is presented in this study. The main goal of this paper is to demonstrate the potential usefulness of the Fricke dosimetry technique for the standardization of the quantity absorbed dose to water for 192Ir sources. A molded, double-walled, spherical vessel for water containing the Fricke solution was constructed based on the Fricke system. The authors measured the absorbed dose to water and compared it with the doses calculated using the AAPM TG-43 report. The overall combined uncertainty associated with the measurements using Fricke dosimetry was 1.4% for k = 1, which is better than the uncertainties reported in previous studies. These results are promising; hence, the use of Fricke dosimetry to measure the absorbed dose to water as a standard for HDR 192Ir may be possible in the future.

  17. Intravitreal bevacizumab combined with plaque brachytherapy reduces melanoma tumor volume and enhances resolution of exudative detachment

    Directory of Open Access Journals (Sweden)

    Houston SK

    2013-01-01

    volume following combined therapy was shown to be reduced by 22.2% at 3 months, 28.9% at 6 months, 39.3% at 12 months, and 52.2% at 24 months (all P < 0.001. All patients tolerated the procedure well without systemic side effects.Conclusion: Intravitreal bevacizumab may be used as an adjuvant agent following plaque brachytherapy. Treated choroidal melanomas show reduction in tumor volume as well as resolution of exudative retinal detachments.Keywords: choroidal melanoma, brachytherapy, Avastin (bevacizumab, retinal detachment

  18. High-dose-rate intraluminal brachytherapy prior to external radiochemotherapy in locally advanced esophageal cancer: preliminary results.

    Science.gov (United States)

    Safaei, Afsaneh Maddah; Ghalehtaki, Reza; Khanjani, Nezhat; Farazmand, Borna; Babaei, Mohammad; Esmati, Ebrahim

    2017-02-01

    Dysphagia is a common initial presentation in locally advanced esophageal cancer and negatively impacts patient quality of life and treatment compliance. To induce fast relief of dysphagia in patients with potentially operable esophageal cancer high-dose-rate (HDR) brachytherapy was applied prior to definitive radiochemotherapy. In this single arm phase II clinical trial between 2013 to 2014 twenty patients with locally advanced esophageal cancer (17 squamous cell and 3 adenocarcinoma) were treated with upfront 10 Gy HDR brachytherapy, followed by 50.4 Gy external beam radiotherapy (EBRT) and concurrent chemotherapy with cisplatin/5-fluorouracil. Tumor response, as measured by endoscopy and/or computed tomography scan, revealed complete remission in 16 and partial response in 4 patients (overall response rate 100%). Improvement of dysphagia was induced by brachytherapy within a few days and maintained up to the end of treatment in 80% of patients. No differences in either response rate or dysphagia resolution were found between squamous cell and adenocarcinoma histology. The grade 2 and 3 acute pancytopenia or bicytopenia reported in 4 patients, while sub-acute adverse effects with painful ulceration was seen in five patients, occurring after a median of 2 months. A perforation developed in one patient during the procedure of brachytherapy that resolved successfully with immediate surgery. Brachytherapy before EBRT was a safe and effective procedure to induce rapid and durable relief from dysphagia, especially when combined with EBRT.

  19. Combined transperineal radiofrequency (RF) interstitial hyperthermia and brachytherapy for localized prostate cancer (PC)

    Energy Technology Data Exchange (ETDEWEB)

    Urakami, Shinji; Gonda, Nobuko; Kikuno, Nobuyuki [Shimane Medical Univ., Izumo (Japan)] (and others)

    2001-05-01

    Hyperthermia has been used effectively as a radiation sensitizer. Interstitial hyperthermoradiotherapy has been therefore utilized as a minimal invasive therapy in attempts to improve local tumor control for various cancers, but not for urological cancer. The purpose of this study was to investigate the safety and feasibility of transperineal hyperthermoradiotherapy for localized PC. Based on our basic study of hyperthermoradiotherapy, we devised the procedure of combined transperineal RF interstitial hyperthermia and brachytherapy for localized prostate cancer. Two patients with localized PC underwent transperineal RF interstitial hyperthermia combined with brachytherapy operation the 192-Ir remote after-loading system (RALS). Under transrectal ultrasound guidance, a total number of 12-18 stainless steel needles for 192-Ir RALS were implanted into the prostatic gland and seminal vesicles (SV) in an optimized pattern. Eight of the needles were used as electrodes for hyperthermia, and were electrically insultated using the vinyl catheter along the length of the subdermal fatty tissue to protect from overheating. Three other needles were utilized for continuous temperature mapping in the prostate. Rectal temperature was also monitored. Total radiation doses of 70 Gy to the prostate and SV were planned as a combination of brachytherapy (24 Gy/4 fraction) and external irradiation using a four-field box technique (46 Gy/23 fraction). Hyperthermic treatment (goal of 42 to 43 deg C for 60 minutes) was performed twice following the 1st and 4th brachytherapy at an interval of more than 48 hours for the recovery of cancer cells from thermotolerance. Both patients reached the treatment goal of all intraprostatic temperatures >43.0 deg C, which was considered favorable for hyperthermia, and the rectal temperatures of both patients remained <38 deg C during hyperthermia. In serial PSA measurements of both patients, serum PSA was less than 1.0 ng/ml within 3 months and has since

  20. High Dose Rate Brachytherapy as a Treatment Option in Endobronchial Tumors

    Directory of Open Access Journals (Sweden)

    Ali Hosni

    2016-01-01

    Full Text Available Purpose. To report our experience with high dose rate endobronchial brachytherapy (HDR-EBBT and to assess its efficacy and tolerability with possibility of its use in selected cases with curative intent. Method. Retrospective review of patients with endobronchial tumors treated at our institution in 2007–2013 with HDR-EBBT. Subjective response and treatment related toxicity were extracted from patients’ records. Clinical response was evaluated by chest CT +/− bronchoscopy 2-3 months after treatment. Local control (LC and overall survival (OS were analyzed. Results. Overall 23 patients were identified. Ten patients were treated with curative intent, in 8 of them HDR-EBBT was combined with external beam radiotherapy. Short term palliation was as follows: dyspnea (13/15, cough (12/14, and hemoptysis (3/3. Seventeen patients were evaluated, of whom 9 (53% showed complete response. Four patients developed local failure (only 1 of them treated with curative intent and were salvaged with HDR-EBBT (n=1, chemotherapy (n=2, and laser (n=1. Among patients treated with curative intent, the 2-year LC and OS were 89% and 67%, respectively, and 2 out of 4 deaths were cancer-related. Late toxicity included bronchial stenosis (n=1. Only 1 patient had fatal hemoptysis and postmortem examination indicated local recurrence. Conclusion. HDR-EBBT is promising treatment with tolerable complication if used in properly selected patients.

  1. Adjuvant radiation therapy for the treatment of endometrial cancer: experience with combination of external radiation therapy and high-dose rate brachytherapy; Radioterapia adjuvante no tratamento do cancer de endometrio: experiencia com a associacao de radioterapia externa e braquiterapia de alta taxa de dose

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Michael Jenwei; Novaes, Paulo Eduardo Ribeiro Soares; Pellizzon, Antonio Cassio de Assis; Ferrigno, Robson; Fogaroli, Ricardo Cesar; Maia, Maria Aparecida Conte; Salvajoli, Joao Victor [Hospital do Cancer A.C. Camargo, Sao Paulo, SP (Brazil). Dept. de Radioterapia]. E-mail: michael.chen@ig.com.br; Nishimoto, Ines Nobuko [Hospital do Cancer A.C. Camargo, Sao Paulo, SP (Brazil). Centro de Estudos

    2005-12-01

    Objective: To review the results of adjuvant external beam radiation therapy (EBRT) combined with high-dose rate brachytherapy (HDR-BT) for the treatment of endometrial carcinoma. Materials and methods: We retrospectively evaluated 141 patients treated with EBRT and HDR-BT after surgery between January 1993 and January 2001. EBRT was performed with a median dose of 45 Gy, and HDR-BT was performed with a median dose of 24 Gy, with four weekly insertions of 6 Gy. The median age of the patients was 63 years and the disease stage distribution was: CS I (FIGO), 52.4%; CS II, 13.5%; CS III, 29.8%; CS IV, 4.3%. Results: With a median follow-up of 53.7 months, the disease free survival (DFS) at five years was: CS I, 88.0%; CS II, 70.8%; CS III, 55.1%; CS IV, 50.0% (p = 0.0003). Global survival after five years was: CS I, 79.6%; CS II, 74.0%; CS III, 53.6%; CS IV, 100.0% (p = 0.0062). Factors affecting the DFS were histological grade and serous-papillary histology. Recurrence of the disease was observed in 33 cases, 13 (9.2%) of these occurred in the pelvis, vagina or vaginal vault. EBRT + HDR-BT of the vaginal vault allowed disease control in 90.8% of the cases. Conclusion: Radiation therapy is essential for loco-regional control of endometrial cancer and can achieve excellent cure rates in the initial stages. In more advanced stages, therapeutic failure frequently appears as distant metastases suggesting the need for complementary systemic therapy using new treatment modalities, particularly chemotherapy. (author)

  2. Pulsed dose rate brachytherapy – is it the right way?

    Directory of Open Access Journals (Sweden)

    Janusz Skowronek

    2010-10-01

    Full Text Available Pulsed dose rate (PDR-BT treatment is a brachytherapy modality that combines physical advantages of high-doserate (HDR-BT technology (isodose optimization, radiation safety with the radiobiological advantages of low-dose-rate (LDR-BT brachytherapy. Pulsed brachytherapy consists of using stronger radiation source than for LDR-BT and producing series of short exposures of 10 to 30 minutes in every hour to approximately the same total dose in the sameoverall time as with the LDR-BT. Modern afterloading equipment offers certain advantages over interstitial or intracavitaryinsertion of separate needles, tubes, seeds or wires. Isodose volumes in tissues can be created flexibly by a combinationof careful placement of the catheter and the adjustment of the dwell times of the computerized stepping source.Automatic removal of the radiation sources into a shielded safe eliminates radiation exposures to staff and visitors.Radiation exposure is also eliminated to the staff who formerly loaded and unloaded multiplicity of radioactive sources into the catheters, ovoids, tubes etc. This review based on summarized clinical investigations, analyses the feasibility and the background to introduce this brachytherapy technique and chosen clinical applications of PDR-BT.

  3. Nanoparticle-Based Brachytherapy Spacers for Delivery of Localized Combined Chemoradiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajiv, E-mail: r.kumar@neu.edu [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States); Belz, Jodi [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Markovic, Stacey [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts (United States); Jadhav, Tej; Fowle, William [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Niedre, Mark [Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts (United States); Cormack, Robert; Makrigiorgos, Mike G. [Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States); Sridhar, Srinivas [Nanomedicine Science and Technology Center, Northeastern University, Boston, Massachusetts (United States); Department of Radiation Oncology, Brigham and Women' s Hospital, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts (United States)

    2015-02-01

    Purpose: In radiation therapy (RT), brachytherapy-inert source spacers are commonly used in clinical practice to achieve high spatial accuracy. These implanted devices are critical technical components of precise radiation delivery but provide no direct therapeutic benefits. Methods and Materials: Here we have fabricated implantable nanoplatforms or chemoradiation therapy (INCeRT) spacers loaded with silica nanoparticles (SNPs) conjugated containing a drug, to act as a slow-release drug depot for simultaneous localized chemoradiation therapy. The spacers are made of poly(lactic-co-glycolic) acid (PLGA) as matrix and are physically identical in size to the commercially available brachytherapy spacers (5 mm × 0.8 mm). The silica nanoparticles, 250 nm in diameter, were conjugated with near infrared fluorophore Cy7.5 as a model drug, and the INCeRT spacers were characterized in terms of size, morphology, and composition using different instrumentation techniques. The spacers were further doped with an anticancer drug, docetaxel. We evaluated the in vivo stability, biocompatibility, and biodegradation of these spacers in live mouse tissues. Results: The electron microscopy studies showed that nanoparticles were distributed throughout the spacers. These INCeRT spacers remained stable and can be tracked by the use of optical fluorescence. In vivo optical imaging studies showed a slow diffusion of nanoparticles from the spacer to the adjacent tissue in contrast to the control Cy7.5-PLGA spacer, which showed rapid disintegration in a few days with a burst release of Cy7.5. The docetaxel spacers showed suppression of tumor growth in contrast to control mice over 16 days. Conclusions: The imaging with the Cy7.5 spacer and therapeutic efficacy with docetaxel spacers supports the hypothesis that INCeRT spacers can be used for delivering the drugs in a slow, sustained manner in conjunction with brachytherapy, in contrast to the rapid clearance of the drugs when

  4. Progress on system for applying simultaneous heat and brachytherapy to large-area surface disease (Invited Paper)

    Science.gov (United States)

    Stauffer, Paul R.; Schlorff, Jaime L.; Juang, Titania; Neuman, Daniel G., Jr.; Johnson, Jessi E.; Maccarini, Paolo F.; Pouliot, Jean

    2005-04-01

    Laboratory experiments have shown that thermal enhancement of radiation response increases substantially for higher thermal dose (approaching 100 CEM43) and when hyperthermia and radiation are delivered simultaneously. Unfortunately, equipment capable of delivering uniform doses of heat and radiation simultaneously has not been available to test the clinical potential of this approach. We present recent progress on the clinical implementation of a system that combines the uniform heating capabilities of flexible printed circuit board microwave array applicators with an array of brachytherapy catheters held a fixed distance from the skin for uniform radiation of tissue deep with a scanning high dose rate (HDR) brachytherapy source. The system is based on the Combination Applicator which consists of an array of up to 32 Dual Concentric Conductor (DCC) apertures driven at 915 MHz for heating tissue, coupled with an array of 1 cm spaced catheters for HDR therapy. Efforts to optimize the clinical interface and move from rectangular to more complex shape applicators that accommodate the entire disease in a larger number of patients are described. Improvements to the system for powering and controlling the applicator are also described. Radiation dosimetry and experimental performance results of a prototype 15 x 15 cm dual-purpose applicator demonstrate dose distributions with good homogeneity under large contoured surfaces typical of diffuse chestwall recurrence of breast carcinoma. Investigations of potential interaction between heat and brachytherapy components of a Combination Applicator demonstrate no perceptible perturbation of the heating field from an HDR source or leadwire, no perceptible effect of a scanning HDR source on fiberoptic thermometry, and heat and radiation simultaneously for maximum synergism of modalities, this dual therapy system should expand the number of patients that can benefit from effective thermoradiotherapy treatments.

  5. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer

    National Research Council Canada - National Science Library

    Zhou, Qian; Tang, Cheng; Zhao, Ke-Wei; Xiong, Yan-Li; Chen, Shu; Xu, Wen-Jing; Lei, Xin

    2016-01-01

    The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer...

  6. Image guided adaptive brachytherapy with combined intracavitary and interstitial technique improves the therapeutic ratio in locally advanced cervical cancer: Analysis from the retroEMBRACE study

    DEFF Research Database (Denmark)

    LU, Fokdal; Sturdza, Alina; Mazeron, Renaud

    2016-01-01

    Background and purpose Image guided adaptive brachytherapy (IGABT) using intracavitary applicators (IC) has led to a significant improvement of local control in locally advanced cervical cancer (LACC). Further improvement has been obtained with combined intracavitary/interstitial (IC/IS) applicat......Background and purpose Image guided adaptive brachytherapy (IGABT) using intracavitary applicators (IC) has led to a significant improvement of local control in locally advanced cervical cancer (LACC). Further improvement has been obtained with combined intracavitary/interstitial (IC...

  7. Chemoradiation in cervical cancer with cisplatin and high-dose rate brachytherapy combined with external beam radiotherapy. Results of a phase-II study

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, H.G.; Laban, C.; Puschmann, D.; Koelbl, H. [Dept. of Gynecology, Martin-Luther Univ. Halle-Wittenberg (Germany); Kuhnt, T.; Pigorsch, S.; Dunst, J.; Haensgen, G. [Dept. of Radiotherapy, Martin-Luther Univ. Halle-Wittenberg (Germany)

    2002-07-01

    Background: In 1999, five randomized studies demonstrated that chemoradiation with cisplatin and low-dose rate (LDR) brachytherapy has a benefit in locally advanced cervical cancer and for surgically treated patients in high-risk situations. We evaluated the safety and efficacy of concomitant chemoradiation with cisplatin and high-dose rate (HDR) brachytherapy in patients with cervical cancer. Patients and Method: 27 patients were included in our phase-II trial: 13 locally advanced cases (group A) and 14 adjuvant-therapy patients in high-risk situations (group B). A definitive radiotherapy was performed with 25 fractions of external beam therapy (1.8 Gy per fraction/middle shielded after eleven fractions). Brachytherapy was delivered at HDR schedules with 7 Gy in point A per fraction (total dose 35 Gy) in FIGO Stages IIB-IIIB. The total dose of external and brachytherapy was 70 Gy in point A and 52-54 Gy in point B. All patients in stage IVA were treated without brachytherapy. Adjuvant radiotherapy was performed with external beam radiotherapy of the pelvis with 1.8 Gy single-dose up to 50.4 Gy. Brachytherapy was delivered at HDR schedules with two fractions of 5 Gy only in patients with tumor-positive margins or tumor involvement of the upper vagina. The chemotherapeutic treatment schedule provided six courses of cisplatin 40 mg/m{sup 2} weekly recommended in the randomized studies GOG-120 and -123. Results: A total of 18/27 patients (66.7%) completed all six courses of chemotherapy. Discontinuation of radiotherapy due to therapy-related morbidity was not necessary in the whole study group. G3 leukopenia (29.6%) was the only relevant acute toxicity. There were no differences in toxicity between group A and B. Serious late morbidity occurred in 2/27 patients (7.4%). 12/13 patients (92.3%) with IIB-IVA cervical cancer showed a complete response (CR). 13/14 adjuvant cases (92.8%) are free of recurrence (median follow up: 19.1 months). Conclusion: Concomitant

  8. Salvage brachytherapy in combination with interstitial hyperthermia for locally recurrent prostate carcinoma following external beam radiation therapy: a prospective phase II study.

    Science.gov (United States)

    Kukiełka, Andrzej M; Strnad, Vratislav; Stauffer, Paul; Dąbrowski, Tomasz; Hetnał, Marcin; Nahajowski, Damian; Walasek, Tomasz; Brandys, Piotr; Matys, Robert

    2015-06-01

    Optimal treatment for patients with only local prostate cancer recurrence after external beam radiation therapy (EBRT) failure remains unclear. Possible curative treatments are radical prostatectomy, cryosurgery, and brachytherapy. Several single institution series proved that high-dose-rate brachytherapy (HDRBT) and pulsed-dose-rate brachytherapy (PDRBT) are reasonable options for this group of patients with acceptable levels of genitourinary and gastrointestinal toxicity. A standard dose prescription and scheme have not been established yet, and the literature presents a wide range of fractionation protocols. Furthermore, hyperthermia has shown the potential to enhance the efficacy of re-irradiation. Consequently, a prospective trial is urgently needed to attain clear structured prospective data regarding the efficacy of salvage brachytherapy with adjuvant hyperthermia for locally recurrent prostate cancer. The purpose of this report is to introduce a new prospective phase II trial that would meet this need. The primary aim of this prospective phase II study combining Iridium-192 brachytherapy with interstitial hyperthermia (IHT) is to analyze toxicity of the combined treatment; a secondary aim is to define the efficacy (bNED, DFS, OS) of salvage brachytherapy. The dose prescribed to PTV will be 30 Gy in 3 fractions for HDRBT, and 60 Gy in 2 fractions for PDRBT. During IHT, the prostate will be heated to the range of 40-47°C for 60 minutes prior to brachytherapy dose delivery. The protocol plans for treatment of 77 patients.

  9. Calibration of well-type chambers in Brazil using {sup 192}Ir HDR sources

    Energy Technology Data Exchange (ETDEWEB)

    Alves, Carlos Frederico Estrada; Pires, Evandro Jesus; David, Mariano Gazineu; Almeida, Carlos Eduardo de, E-mail: cfealves@gmail.com, E-mail: evjpires@gmail.com, E-mail: marianogd08@gmail.com, E-mail: cea71@yahoo.com.br [Universidade do Estado do Rio de Janeiro (UERJ/LCR), Rio de Janeiro, RJ (Brazil). Lab. de Ciencias Radiologicas; Di Prinzio, Renato, E-mail: rprinzio@cnen.gov.br [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil)

    2014-07-01

    The results obtained by performing of a traceable calibration service for well-type reentrant ionization chamber for HDR 192Ir sources used in brachytherapy physical procedures at the Laboratorio de Ciencias Radiologicas from Universidade do Estado do Rio de Janeiro -LCR/UERJ are described. (author)

  10. American Society for Radiation Oncology (ASTRO) and American College of Radiology (ACR) practice guideline for the performance of high-dose-rate brachytherapy.

    Science.gov (United States)

    Erickson, Beth A; Demanes, D Jeffrey; Ibbott, Geoffrey S; Hayes, John K; Hsu, I-Chow J; Morris, David E; Rabinovitch, Rachel A; Tward, Jonathan D; Rosenthal, Seth A

    2011-03-01

    High-Dose-Rate (HDR) brachytherapy is a safe and efficacious treatment option for patients with a variety of different malignancies. Careful adherence to established standards has been shown to improve the likelihood of procedural success and reduce the incidence of treatment-related morbidity. A collaborative effort of the American College of Radiology (ACR) and American Society for Therapeutic Radiation Oncology (ASTRO) has produced a practice guideline for HDR brachytherapy. The guideline defines the qualifications and responsibilities of all the involved personnel, including the radiation oncologist, physicist and dosimetrists. Review of the leading indications for HDR brachytherapy in the management of gynecologic, thoracic, gastrointestinal, breast, urologic, head and neck, and soft tissue tumors is presented. Logistics with respect to the brachytherapy implant procedures and attention to radiation safety procedures and documentation are presented. Adherence to these practice guidelines can be part of ensuring quality and safety in a successful HDR brachytherapy program.

  11. Tone compatibility between HDR displays

    Science.gov (United States)

    Bist, Cambodge; Cozot, Rémi; Madec, Gérard; Ducloux, Xavier

    2016-09-01

    High Dynamic Range (HDR) is the latest trend in television technology and we expect an in ux of HDR capable consumer TVs in the market. Initial HDR consumer displays will operate on a peak brightness of about 500-1000 nits while in the coming years display peak brightness is expected to go beyond 1000 nits. However, professionally graded HDR content can range from 1000 to 4000 nits. As with Standard Dynamic Range (SDR) content, we can expect HDR content to be available in variety of lighting styles such as low key, medium key and high key video. This raises concerns over tone-compatibility between HDR displays especially when adapting to various lighting styles. It is expected that dynamic range adaptation between HDR displays uses similar techniques as found with tone mapping and tone expansion operators. In this paper, we survey simple tone mapping methods of 4000 nits color-graded HDR content for 1000 nits HDR displays. We also investigate tone expansion strategies when HDR content graded in 1000 nits is displayed on 4000 nits HDR monitors. We conclude that the best tone reproduction technique between HDR displays strongly depends on the lighting style of the content.

  12. Clinical Report on Californium-252 Neutron Intraluminal Brachytherapy Combined with External Irradiation for Cervical Carcinoma Treatment

    Institute of Scientific and Technical Information of China (English)

    Huanyu Zhao; Keming Wang; Jian Sun; Xin Geng; Weiming Zhang

    2006-01-01

    OBJECTIVE To observe the curative effects and complications of californium-252 (252Cf) neutron intraluminal brachytherapy (IBT) combined with external irradiation (El) for treatment of cervical carcinoma.METHODS From December 2000 to December 2004, 128 cases of cervical carcinoma staged into ⅡA~ⅢB according to the International Federation of Gynecology and Obstetrics (FIGO) standards were treated with 252Cf neutron IBT using 8~10 Gy per fraction, once a week. The total dose at reference A point was 36~40 Gy in 4~5 fractions. From the second day after 252Cf neutron IBT treatment, the whole pelvic cavity was treated with 60Co γ-ray El, applying 2 Gy per fraction, 4 times per week. After 20~25 Gy of El, the center of the whole pelvic field was blocked with 4 cm of lead in width. The total dose of El was 45~50 Gy.RESULTS The short-term therapeutic effects were CR 95.3% and PR 4.7%. The 3 and 5-year local control rates were 93.5% and 87.9%. The overall 3-year survival rate was 87.5% and for Stages Ⅱ and Ⅲ , 90.9%and 81.5% respectively; the overall 5-year survival rate was 70% and for Stages Ⅱ and Ⅲ, 76.2% and 61% respectively. The rate of radiation complications was 4.7% for radiation cystitis, 7.8% for radiation proctitis, 6.3%for vagina contracture and adhesion and 5.5% for protracted radiation proctitis.CONCLUSION An combination of 252Cf neutron IBT with El for treatment of cervical carcinoma can be well-tolerated by cervical carcinoma patients. The rate of local tumor control is high and radiation complications are few.

  13. The effect of surgical excision combined with radioactive particles interstitial brachytherapy on serum indexes of patients with hepatocellular carcinoma

    Institute of Scientific and Technical Information of China (English)

    Zhi-Gang Dong; Li-Li Ma; Ya-Juan Li; Zhan-Hong Zhang

    2015-01-01

    Objective:To study the effect of surgical excision combined with radioactive particles interstitial brachytherapy on serum indexes of patients with hepatocellular carcinoma.Methods: 120 cases of patients with hepatocellular carcinoma received surgical treatment in our hospital were chosen and divided into combined treatment group and simple surgery group. Serum was collected after treatment and contents of miRNAs, hepatocellular carcinoma markers and Wnt signal molecules were detected.Results:(1) miRNAs: compared with serum miRNAs contents of simple surgery group, serum miR-1, miR-10a and miR-451 contents of combined treatment group were higher; miR-106b and miR-224 contents were lower; (2) hepatocellular carcinoma markers: compared with serum hepatocellular carcinoma marker contents of simple surgery group, serum AFP-L3, GP73, sB7-H3, AFU and Cat S contents of combined treatment group were all lower; (3) Wnt signal molecules: compared with serum Wnt signal molecule contents of simple surgery group, serum mRNA contents of Wnt,β-catenin, CyclinD1, c-myc, CD44v6 and VEGF of combined treatment group were lower.Conclusion:Surgical excision combined with radioactive particles interstitial brachytherapy is helpful to regulate miRNAs contents, reduce hepatocellular carcinoma marker contents and inhibit Wnt signal pathway function; it’s an ideal method in the treatment of hepatocellular carcinoma.

  14. External beam radiotherapy and intracavitary brachytherapy is an acceptable treatment for locally advanced carcinoma of the uterine cervix

    Directory of Open Access Journals (Sweden)

    Md. Zillur Rahman Bhuiyan

    2016-08-01

    Full Text Available Background: Cervical carcinoma is the second most common neoplasm in women worldwide and is the most frequent cancer among women in Bangladesh. In recent years, High Dose Rate (HDR brachytherapy in combination with External Beam Radiotherapy (EBRT has been popular in the management of cancers of uterine cervix.Objectives: To evaluate the effectiveness and acute toxicity of four fractions high dose rate intracavitary brachytherapy following pelvic external beam radiotherapy in the treatment of locally advanced cervical carcinoma. Methods: Bangabandhu Sheikh Mujib Medi­cal University & NICRH chosen as a research place for EBRT and HOR brachytherapy. A typical radiotherapy treatment involves daily inadiation for several weeks. Whole pelvis was treated with total dose of SO Gy in 5 weeks. Patients were treated once a day, 5 days a week with a daily fraction size of 2.0 Gy. EBRT: Pelvic radiotherapy dose is 50 Gy in 25 fractions (2.0 Gy per fraction over 5 weeks. HDR brachytberapy dose is 7 Gy per fraction, total 4 fractions, each in a week over 4 weeks. Results: Ninety-eight patients were entered in the study. Three patients were excluded due to active non-malignant diseases. One patient had active tuberculosis, two patients had severe skin reactions and two patients withdrew following the first HDR application. The remaining Ninety patients were analyzed. Ninety patients completed the prescribed treatment and were evaluated. Eighty had complete response with relief of symptoms, negative Pap-smear and no clinical signs of persistence disease at 3 months. Ten patients had a positive Pap-smear with clinical signs of persis­tence disease. Patients were evaluated before statting treatment with EBRT and before starting treatment with HDR ICBT. Conclusion: It can be easily concluded that 4 fractions of HDR ICBT, 7 Gy each weekly and pelvic EBRT can effectively and safely control locally advanced carcinoma of the uterine cervix. So that EBRT and HDR ICBT

  15. High-dose rate brachytherapy in the treatment of prostate cancer: acute toxicity and biochemical behavior analysis; Braquiterapia de alta taxa de dose no tratamento do carcinoma da prostata: analise da toxicidade aguda e do comportamento bioquimico

    Energy Technology Data Exchange (ETDEWEB)

    Esteves, Sergio Carlos Barros; Oliveira, Antonio Carlos Zuliani de; Cardoso, Herbeni; Tagawa, Eduardo Komai; Castelo, Roberto [Beneficencia Portuguesa de Sao Paulo, SP (Brazil). Hospital Sao Joaquim. Servico de Radioterapia]. E-mail: estevesrt@uol.com.br; D' Imperio, Marcio [Beneficencia Portuguesa de Sao Paulo, SP (Brazil). Hospital Sao Joaquim. Servico de Urologia

    2006-03-15

    Objective: this study focuses on the biochemical response of the following variables: prostate volume, prostate-specific antigen (PSA) value, Gleason scores, staging, the risk of the disease, and hormone therapy. Objective: in the period between February of 1998 and July of 2001, 46 patients with prostate cancer were treated with radiotherapy, in a combination of teletherapy and high-dose rate (HDR) brachytherapy. The age ranged from 51 to 79 years (averaging 66.4 years). T1c stage was the most frequent one: 30 (65%). The Gleason score was below 7 in 78% of the patients. PSA ranged from 3.4 to 33.3, being below 10 in 39% of the cases. The average prostatic volume was 32.3 cc. Twenty-eight percent of the patients received hormone therapy. Teletherapy dose ranged from 45 to 50.4 Gy, associated to four fractions of 4 Gy of HDR brachytherapy. Results: the follow-up period varied from 6 to 43 months. Four patients missed the follow-up and four died (one due to the disease). Out of the 39 patients that were analyzed, 76% presented a less than 1.5 PSA. None of the analyzed variables were found to be of statistical significance (p > 0.05) regarding biochemical control. Conclusion: the use of HDR brachytherapy was found to be effective in the treatment of prostate cancer and, in this study, the variables considered as prognostic factors did not interfere in the biochemical control. (author)

  16. Comparison of treatment using teletherapy (external beam radiation) alone versus teletherapy combined with brachytherapy for advanced squamous cell carcinoma of the esophagus

    Energy Technology Data Exchange (ETDEWEB)

    Samea, Renato; Lourenco, Laercio Gomes, E-mail: renatosamea@globo.com [Department of Surgical Oncology of Dr. Arnaldo Vieira de Carvalho Hospital, Sao Paulo, SP (Brazil)

    2011-10-15

    Background - Squamous cell carcinoma of the esophagus is still a difficult tumor to treat with very poor prognosis. Aim - To compare the response to teletherapy treatment (external beam radiotherapy) alone versus teletherapy combined with brachytherapy for patients with advanced squamous cell carcinoma of the esophagus. Methods - Were studied 49 patients with advanced squamous cell carcinoma of the esophagus on clinical stage III (TNM-1999). They were separated into two groups. The first, underwent radiation therapy alone with linear accelerator of particles, average dose of 6000 cGy and the second to external beam radiation therapy at a dose of 5040 cGy combined with brachytherapy with Iridium 192 at a dose of 1500 cGy. Brachytherapy started one to two weeks after the end of teletherapy, and it was divided into three weekly applications of 500 cGy. Age, gender, race, habits (smoking and drinking), body mass index (BMI), complications with treatment benefits (pain relief and food satisfaction) and survival were analyzed. Results - The quality of life (food satisfaction, and pain palliation of dysphagia) were better in the group treated with external beam radiation therapy combined with brachytherapy. Survival was higher in the brachytherapy combined with external beam radiation therapy alone. Conclusion - Although the cure rate of squamous cell cancer of the esophagus is almost nil when treated with irradiation alone, this therapy is a form of palliative treatment for most patients in whom surgical contraindication exists. (author)

  17. Preliminary experience on the implementation of computed tomography (CT)-based image guided brachytherapy (IGBT) of cervical cancer using high-dose-rate (HDR) Cobalt-60 source in University of Malaya Medical Centre (UMMC)

    Science.gov (United States)

    Jamalludin, Z.; Min, U. N.; Ishak, W. Z. Wan; Malik, R. Abdul

    2016-03-01

    This study presents our preliminary work of the computed tomography (CT) image guided brachytherapy (IGBT) implementation on cervical cancer patients. We developed a protocol in which patients undergo two Magnetic Resonance Imaging (MRI) examinations; a) prior to external beam radiotherapy (EBRT) and b) prior to intra-cavitary brachytherapy for tumour identification and delineation during IGBT planning and dosimetry. For each fraction, patients were simulated using CT simulator and images were transferred to the treatment planning system. The HR-CTV, IR-CTV, bladder and rectum were delineated on CT-based contouring for cervical cancer. Plans were optimised to achieve HR-CTV and IR-CTV dose (D90) of total EQD2 80Gy and 60Gy respectively, while limiting the minimum dose to the most irradiated 2cm3 volume (D2cc) of bladder and rectum to total EQD2 90Gy and 75Gy respectively. Data from seven insertions were analysed by comparing the volume-based with traditional point- based doses. Based on our data, there were differences between volume and point doses of HR- CTV, bladder and rectum organs. As the number of patients having the CT-based IGBT increases from day to day in our centre, it is expected that the treatment and dosimetry accuracy will be improved with the implementation.

  18. Novel Parameter Predicting Grade 2 Rectal Bleeding After Iodine-125 Prostate Brachytherapy Combined With External Beam Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Yutaka, E-mail: shiraishi@rad.med.keio.ac.jp [Department of Radiology, Keio University School of Medicine, Tokyo (Japan); Hanada, Takashi; Ohashi, Toshio [Department of Radiology, Keio University School of Medicine, Tokyo (Japan); Yorozu, Atsunori; Toya, Kazuhito [Department of Radiology, National Hospital Organization Tokyo Medical Center, Tokyo (Japan); Saito, Shiro [Department of Urology, National Hospital Organization Tokyo Medical Center, Tokyo (Japan); Shigematsu, Naoyuki [Department of Radiology, Keio University School of Medicine, Tokyo (Japan)

    2013-09-01

    Purpose: To propose a novel parameter predicting rectal bleeding on the basis of generalized equivalent uniform doses (gEUD) after {sup 125}I prostate brachytherapy combined with external beam radiation therapy and to assess the predictive value of this parameter. Methods and Materials: To account for differences among radiation treatment modalities and fractionation schedules, rectal dose–volume histograms (DVHs) of 369 patients with localized prostate cancer undergoing combined therapy retrieved from corresponding treatment planning systems were converted to equivalent dose-based DVHs. The gEUDs for the rectum were calculated from these converted DVHs. The total gEUD (gEUD{sub sum}) was determined by a summation of the brachytherapy and external-beam radiation therapy components. Results: Thirty-eight patients (10.3%) developed grade 2+ rectal bleeding. The grade 2+ rectal bleeding rate increased as the gEUD{sub sum} increased: 2.0% (2 of 102 patients) for <70 Gy, 10.3% (15 of 145 patients) for 70-80 Gy, 15.8% (12 of 76 patients) for 80-90 Gy, and 19.6% (9 of 46 patients) for >90 Gy (P=.002). Multivariate analysis identified age (P=.024) and gEUD{sub sum} (P=.000) as risk factors for grade 2+ rectal bleeding. Conclusions: Our results demonstrate gEUD to be a potential predictive factor for grade 2+ late rectal bleeding after combined therapy for prostate cancer.

  19. SU-E-T-310: Dosimetric Comparison of Tandem and Ovoid (TO) Vs. Tandem and Ring (TR) Applicators in High-Dose Rate (HDR) Brachytherapy (BT) for the Treatment of Locally-Advanced Cervical-Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Kuo, L; Viswanathan, A; Damato, A [Brigham and Women’s Hospital, Boston, MA (United States)

    2015-06-15

    Purpose: To investigate the dosimetric differences associated with the use of TO or TR applicators for cervical-cancer HDR BT. Methods: The records of all cervical-cancer patients treated with image-guided HDR BT in 2013 were reviewed. Image-based planning based on isodose line and DVH metrics inspections was performed following the GEC-ESTRO recommendations. CTV volume, CTV D90, and rectum, bladder and sigmoid D2cc were collected as % of the prescription dose (80Gy EQD2). Patients receiving both TO and TR were identified and plans were compared (paired analysis). A Student T-test was used to evaluate statistical significance (p ≤ 0.05). Results: Twenty-eight patients were identified (20 TR only, 4 TO only, 4 TO and TR), associated with 116 plans (109 TR, 7 TO). Overall metrics: CTV volume, 26.5±10.4 cm3 (TR) and 39.1±14.0 cm3 (TO, p < 0.01); CTV D90, 126±28% (TR) and 110±15% (TO, p = 0.15); rectum D2cc, 56±11% (TR) and 58±19% (TO, p = 0.91); bladder D2cc, 74±20% (TR) and 88±19% (TO, p = 0.09); sigmoid D2cc, 52±17% (TR) and 49±20% (TO, p = 0.63). The paired analysis results were: CTV volume, 37.3±11.9 cm3 (TR) and 51.0±23.1 cm3 (TO, p = 0.23); CTV D90, 111±12% (TR) and 101±17% (TO, p = 0.50); rectum D2cc, 56±12% (TR) and 53±16% (TO, p = 0.71); bladder D2cc, 73±14% (TR) and 90±20% (TO, p = 0.22); sigmoid D2cc, 59±10% (TR) and 59±22% (TO, p = 0.98). Conclusion: TR and TO were both used with good dosimetric results. TO were used for patients with larger CTV volumes than TR, although paired analysis suggest that tissue distortion and contouring bias may partially explain this Result. CTV D90 on average > 80 Gy EQD2 were achieved in both groups despite the different CTV volume. Higher bladder D2cc for TO than TR was observed.

  20. Combining transrectal ultrasound and CT for image-guided adaptive brachytherapy of cervical cancer: Proof of concept.

    Science.gov (United States)

    Nesvacil, Nicole; Schmid, Maximilian P; Pötter, Richard; Kronreif, Gernot; Kirisits, Christian

    To investigate the feasibility of a treatment planning workflow for three-dimensional image-guided cervix cancer brachytherapy, combining volumetric transrectal ultrasound (TRUS) for target definition with CT for dose optimization to organs at risk (OARs), for settings with no access to MRI. A workflow for TRUS/CT-based volumetric treatment planning was developed, based on a customized system including ultrasound probe, stepper unit, and software for image volume acquisition. A full TRUS/CT-based workflow was simulated in a clinical case and compared with MR- or CT-only delineation. High-risk clinical target volume was delineated on TRUS, and OARs were delineated on CT. Manually defined tandem/ring applicator positions on TRUS and CT were used as a reference for rigid registration of the image volumes. Treatment plan optimization for TRUS target and CT organ volumes was performed and compared to MRI and CT target contours. TRUS/CT-based contouring, applicator reconstruction, image fusion, and treatment planning were feasible, and the full workflow could be successfully demonstrated. The TRUS/CT plan fulfilled all clinical planning aims. Dose-volume histogram evaluation of the TRUS/CT-optimized plan (high-risk clinical target volume D90, OARs D2cm³ for) on different image modalities showed good agreement between dose values reported for TRUS/CT and MRI-only reference contours and large deviations for CT-only target parameters. A TRUS/CT-based workflow for full three-dimensional image-guided cervix brachytherapy treatment planning seems feasible and may be clinically comparable to MRI-based treatment planning. Further development to solve challenges with applicator definition in the TRUS volume is required before systematic applicability of this workflow. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  1. Triple-tandem high-dose-rate brachytherapy for early-stage medically inoperable endometrial cancer: Initial report on acute toxicity and dosimetric comparison to stereotactic body radiation therapy.

    Science.gov (United States)

    Kauffmann, Greg; Wu, Tianming; Al-Hallaq, Hania; Hasan, Yasmin

    Stereotactic body radiotherapy (SBRT) may be appealing in medically inoperable endometrial cancer to avoid procedural risks. We performed a dosimetric comparison to triple-tandem, high-dose-rate (HDR) brachytherapy. Six consecutive clinical stage I, grade 1-2, medically inoperable endometrial cancer patients were treated with triple-tandem HDR brachytherapy. We report patient factors and acute toxicity. Also, we performed dosimetric comparison to SBRT using both 3D conformal arc (3DArc) and volumetric-modulated arc therapy. D2cc values for normal tissues were calculated and compared to the HDR plans. Median age was 57 years. Patient comorbidities included morbid obesity, congestive heart failure, diabetes, and pulmonary emboli. In three patients who received prior external beam radiation (EBRT), median EBRT and HDR doses were 46 Gy and 20 Gy, respectively. The median dose with HDR brachytherapy monotherapy was 35 Gy. Acute toxicities during EBRT included gastrointestinal (3/3 with grade 1-2) and genitourinary (3/3 with grade 1-2). Acute toxicities during HDR brachytherapy were gastrointestinal (2/6 total with grade 1-2) and genitourinary (2/6 total with grade 1). The mean D2cc/Gy of prescription dose for rectum, sigmoid, and bladder were 0.58, 0.40, and 0.47 respectively. Overall, doses to normal tissues were higher for SBRT plans as compared to HDR. Also, the R50 (ratio of the 50% prescription isodose volume to the PTV) was lowest with HDR brachytherapy. In medically inoperable, clinical stage I endometrial cancer patients with multiple comorbidities, definitive triple-tandem, HDR brachytherapy results in mild acute toxicity. In addition, HDR brachytherapy achieves relatively lower doses to surrounding normal tissues as compared to SBRT. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  2. Salvage high-dose-rate brachytherapy for isolated vaginal recurrence of endometrial cancer.

    Science.gov (United States)

    Baek, Sungjae; Isohashi, Fumiaki; Yamaguchi, Hiroko; Mabuchi, Seiji; Yoshida, Ken; Kotsuma, Tadayuki; Yamazaki, Hideya; Tanaka, Eiichi; Sumida, Iori; Tamari, Keisuke; Otani, Keisuke; Seo, Yuji; Suzuki, Osamu; Yoshioka, Yasuo; Kimura, Tadashi; Ogawa, Kazuhiko

    We have retrospectively analyzed the outcomes of high-dose-rate (HDR) brachytherapy as a salvage therapy for vaginal recurrence of endometrial cancer. From 1997 to 2012, salvage HDR brachytherapy was performed in 43 patients. The median age was 64 years (range, 41-88 years). HDR brachytherapy was performed by interstitial brachytherapy in 34 patients (79%) and by intracavity brachytherapy in nine patients (21%). Seventeen (40%) of the 43 patients were treated with external beam radiotherapy. The median followup period was 58 months (range, 6-179 months). The 5-year overall survival (OS), progression-free survival (PFS), and local control rates (LC) were 84%, 52%, and 78%, respectively. Patients who received brachytherapy with external beam radiotherapy experienced no nodal recurrence (0 of 17 patients), whereas 23% of the patients (6 of 26 patients) who received brachytherapy alone experienced nodal recurrence (p = 0.047). The pathologic grade at the time of initial surgery (G1-2 vs. G3) was found to be a significant prognostic factor for both OS and PFS. The respective 5-year OS was 96% vs. 40% (p endometrial cancer. Pathologic grade, age, and modality were significant prognostic factors. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. High dose rate versus low dose rate brachytherapy for oral cancer--a meta-analysis of clinical trials.

    Directory of Open Access Journals (Sweden)

    Zhenxing Liu

    Full Text Available OBJECTIVE: To compare the efficacy and safety of high dose rate (HDR and low dose rate (LDR brachytherapy in treating early-stage oral cancer. DATA SOURCES: A systematic search of MEDLINE, EMBASE and Cochrane Library databases, restricted to English language up to June 1, 2012, was performed to identify potentially relevant studies. STUDY SELECTION: Only randomized controlled trials (RCT and controlled trials that compared HDR to LDR brachytherapy in treatment of early-stage oral cancer (stages I, II and III were of interest. DATA EXTRACTION AND SYNTHESIS: Two investigators independently extracted data from retrieved studies and controversies were solved by discussion. Meta-analysis was performed using RevMan 5.1. One RCT and five controlled trials (607 patients: 447 for LDR and 160 for HDR met the inclusion criteria. The odds ratio showed no statistically significant difference between LDR group and HDR group in terms of local recurrence (OR = 1.12, CI 95% 0.62-2.01, overall mortality (OR = 1.01, CI 95% 0.61-1.66 and Grade 3/4 complications (OR = 0.86, CI 95% 0.52-1.42. CONCLUSIONS: This meta-analysis indicated that HDR brachytherapy was a comparable alternative to LDR brachytherapy in treatment of oral cancer. HDR brachytherapy might become a routine choice for early-stage oral cancer in the future.

  4. Tandem-ring dwell time ratio in Nigeria: dose comparisons of two loading patterns in standard high-dose-rate brachytherapy planning for cervical cancer

    OpenAIRE

    2015-01-01

    Purpose In high-dose-rate (HDR) brachytherapy (BT), the source dwell times and dwell positions are essential treatment planning parameters. An optimal choice of these factors is fundamental to obtain the desired target coverage with the lowest achievable dose to the organs at risk (OARs). This study evaluates relevant dose parameters in cervix brachytherapy in order to assess existing tandem-ring dwell time ratio used at the first HDR BT center in Nigeria, and compare it with an alternative s...

  5. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer

    Directory of Open Access Journals (Sweden)

    Qian Zhou

    2016-01-01

    Full Text Available OBJECTIVE: The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. METHODS: Thirty-one patients with stage I-III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. RESULTS: The five-year local control rate was 80.6% (25/31, the overall survival rate was 51.6% (16/31, and the disease-free survival rate was 54.8% (17/31. The incidence of serious late complications was 12.9% (4/31. CONCLUSIONS: 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range.

  6. Clinical assessment of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for endometrial cancer.

    Science.gov (United States)

    Zhou, Qian; Tang, Cheng; Zhao, Ke-Wei; Xiong, Yan-Li; Chen, Shu; Xu, Wen-Jing; Lei, Xin

    2016-01-01

    The aim of this study was to determine the efficacy of 252Californium neutron intracavitary brachytherapy using a two-channel Y applicator combined with external beam radiotherapy for the treatment of endometrial cancer. Thirty-one patients with stage I-III endometrial cancer were recruited for this study. The stage I patients received only 252Californium neutron intracavitary brachytherapy with a two-channel applicator. The stage II and III patients received both 252Californium neutron intracavitary brachytherapy using a two-channel applicator and parallel-opposed whole pelvic radiotherapy. The five-year local control rate was 80.6% (25/31), the overall survival rate was 51.6% (16/31), and the disease-free survival rate was 54.8% (17/31). The incidence of serious late complications was 12.9% (4/31). 252Californium neutron intracavitary brachytherapy using a two-channel applicator combined with external beam radiotherapy was effective for treating endometrial cancer and the incidence of serious late complications related to this combination was within an acceptable range.

  7. Combined experimental and Monte Carlo verification of brachytherapy plans for vaginal applicators

    Science.gov (United States)

    Sloboda, Ron S.; Wang, Ruqing

    1998-12-01

    Dose rates in a phantom around a shielded and an unshielded vaginal applicator containing Selectron low-dose-rate sources were determined by experiment and Monte Carlo simulation. Measurements were performed with thermoluminescent dosimeters in a white polystyrene phantom using an experimental protocol geared for precision. Calculations for the same set-up were done using a version of the EGS4 Monte Carlo code system modified for brachytherapy applications into which a new combinatorial geometry package developed by Bielajew was recently incorporated. Measured dose rates agree with Monte Carlo estimates to within 5% (1 SD) for the unshielded applicator, while highlighting some experimental uncertainties for the shielded applicator. Monte Carlo calculations were also done to determine a value for the effective transmission of the shield required for clinical treatment planning, and to estimate the dose rate in water at points in axial and sagittal planes transecting the shielded applicator. Comparison with dose rates generated by the planning system indicates that agreement is better than 5% (1 SD) at most positions. The precision thermoluminescent dosimetry protocol and modified Monte Carlo code are effective complementary tools for brachytherapy applicator dosimetry.

  8. Adaptation of the CVT algorithm for catheter optimization in high dose rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Poulin, Eric; Fekete, Charles-Antoine Collins; Beaulieu, Luc [Département de Physique, de Génie Physique et d’Optique et Centre de recherche sur le cancer de l’Université Laval, Université Laval, Québec, Québec G1V 0A6, Canada and Département de Radio-Oncologie et Axe oncologie du Centre de Recherche du CHU de Québec, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Létourneau, Mélanie [Département de Radio-Oncologie, CHU de Québec, 11 Côte du Palais, Québec, Québec G1R 2J6 (Canada); Fenster, Aaron [Imaging Research Laboratories, Robarts Research Institute, 100 Perth Drive, London, Ontario N6A 5K8 (United Kingdom); Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, Helen Diller Family Comprehensive Cancer Center, 1600 Divisadero Street, San Francisco, California 94143-1708 (United States)

    2013-11-15

    Purpose: An innovative, simple, and fast method to optimize the number and position of catheters is presented for prostate and breast high dose rate (HDR) brachytherapy, both for arbitrary templates or template-free implants (such as robotic templates).Methods: Eight clinical cases were chosen randomly from a bank of patients, previously treated in our clinic to test our method. The 2D Centroidal Voronoi Tessellations (CVT) algorithm was adapted to distribute catheters uniformly in space, within the maximum external contour of the planning target volume. The catheters optimization procedure includes the inverse planning simulated annealing algorithm (IPSA). Complete treatment plans can then be generated from the algorithm for different number of catheters. The best plan is chosen from different dosimetry criteria and will automatically provide the number of catheters and their positions. After the CVT algorithm parameters were optimized for speed and dosimetric results, it was validated against prostate clinical cases, using clinically relevant dose parameters. The robustness to implantation error was also evaluated. Finally, the efficiency of the method was tested in breast interstitial HDR brachytherapy cases.Results: The effect of the number and locations of the catheters on prostate cancer patients was studied. Treatment plans with a better or equivalent dose distributions could be obtained with fewer catheters. A better or equal prostate V100 was obtained down to 12 catheters. Plans with nine or less catheters would not be clinically acceptable in terms of prostate V100 and D90. Implantation errors up to 3 mm were acceptable since no statistical difference was found when compared to 0 mm error (p > 0.05). No significant difference in dosimetric indices was observed for the different combination of parameters within the CVT algorithm. A linear relation was found between the number of random points and the optimization time of the CVT algorithm. Because the

  9. High-dose-rate interstitial brachytherapy for the treatment of penile carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Petera, J.; Odrazka, K.; Zouhar, M.; Bedrosova, J.; Dolezel, M. [Dept. of Oncology and Radiotherapy, Charles Univ. Medical School and Teaching Hospital, Hradec Kralove (Czech Republic)

    2004-02-01

    Background: interstitial low-dose-rate (LDR) brachytherapy allows conservative treatment of T1-T2 penile carcinoma. High-dose-rate (HDR) is often considered to be dangerous for interstitial implants because of a higher risk of complications, but numerous reports suggest that results may be comparable to LDR. Nevertheless, there are no data in the literature available regarding HDR interstitial brachytherapy for carcinoma of the penis. Case report: a 64-year-old man with T1 NO MO epidermoid carcinoma of the glans is reported. Interstitial HDR brachytherapy was performed using the stainless hollow needle technique and a breast template for fixation and good geometry. The dose delivered was 18 x 3 Gy twice daily. Results: after 232 days from brachytherapy, the patient was without any evidence of the tumor, experienced no serious radiation-induced complications, and had a fully functional organ. Conclusion: HDR interstitial brachytherapy is feasible in selected case of penis carcinoma, when careful planning and small single fractions are used. (orig.)

  10. Ir-192 HDR transit dose and radial dose function determination using alanine/EPR dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Calcina, Carmen S Guzman [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil); Almeida, Adelaide de [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil); Rocha, Jose R Oliveira [Setor de FIsica Medica-CEB-UNICAMP e Setor de Radioterapia-CAISM-UNICAMP (Brazil); Abrego, Felipe Chen [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil); Baffa, Oswaldo [Departamento de FIsica e Matematica, FFCLRP, Universidade de Sao Paulo, Av Bandeirantes 3900, 14040-901, Ribeirao Preto, SP (Brazil)

    2005-03-21

    Source positioning close to the tumour in high dose rate (HDR) brachytherapy is not instantaneous. An increment of dose will be delivered during the movement of the source in the trajectory to its static position. This increment is the transit dose, often not taken into account in brachytherapeutic treatment planning. The transit dose depends on the prescribed dose, number of treatment fractions, velocity and activity of the source. Combining all these factors, the transit dose can be 5% higher than the prescribed absorbed dose value (Sang-Hyun and Muller-Runkel, 1994 Phys. Med. Biol. 39 1181-8, Nath et al 1995 Med. Phys. 22 209-34). However, it cannot exceed this percentage (Nath et al 1995). In this work, we use the alanine-EPR (electron paramagnetic resonance) dosimetric system using analysis of the first derivative of the signal. The transit dose was evaluated for an HDR system and is consistent with that already presented for TLD dosimeters (Bastin et al 1993 Int. J. Radiat. Oncol. Biol. Phys. 26 695-702). Also using the same dosimetric system, the radial dose function, used to evaluate the geometric dose degradation around the source, was determined and its behaviour agrees better with those obtained by Monte Carlo simulations (Nath et al 1995, Williamson and Nath 1991 Med. Phys. 18 434-48, Ballester et al 1997 Med. Phys. 24 1221-8, Ballester et al 2001 Phys. Med. Biol. 46 N79-90) than with TLD measurements (Nath et al 1990 Med. Phys. 17 1032-40)

  11. Definitive three-dimensional high-dose-rate brachytherapy for inoperable endometrial cancer

    Science.gov (United States)

    Draghini, Lorena; Casale, Michelina; Trippa, Fabio; Anselmo, Paola; Arcidiacono, Fabio; Fabiani, Stefania; Italiani, Marco; Chirico, Luigia; Muti, Marco

    2017-01-01

    Purpose To report our experience on high-dose-rate brachytherapy (HDR-BT) in patients with stage I-III endometrial cancer unfit to surgery. Material and methods Seventeen patients underwent HDR-BT as definitive treatment. Median age was 79 years (range, 60-95), median Karnofsky performance status 90% (range, 60-100). Histology was endometrial adenocarcinoma in 14 (82%), and non-endometrial in 3 (18%) patients. In 15 (88%) patients, clinical stage was I and in remaining 2 (12%) was III. All patients were evaluated with computed tomography (CT) and endometrial biopsy. Using the Fletcher applicator, a CT-based planning HDR-BT was delivered. Local control (LC) was obtained when there was an interruption of vaginal bleeding in absence of CT-imaging progression. Results Fourteen patients underwent HDR-BT alone and three external beam radiotherapy (EBRT) combined with HDR-BT. All patients had a clinical LC, after a median follow-up of 53 months (range, 6-131), 3 and 6 years LC rates were 86% and 69%, respectively. Cancer specific survival (CSS) at 1, 2, and 6 years was 93%, 85%, and 85%, respectively. Age, stage, dose, and type of radiotherapy did not result significant prognostic factors for LC and CSS. Only histology significantly influenced LC: for high-risk histology (i.e., non-endometrial carcinoma or grade [G] 3 endometrial adenocarcinoma) LC was 73% at 1 year and 36% at 6 years; for low-risk histology (i.e., G1-2 endometrial adenocarcinoma) was 100% at 1 and 6 years (p = 0.05). Two (12%) patients had G2 acute toxicity and two others (12%) G1 late toxicity. Conclusions Although some limitations of our analysis (relatively few number of patients recruited, retrospective evaluation, and consequent suboptimal patient selection), it confirms effectiveness and safety of definitive HDR-BT for medically inoperable stage I-III endometrial cancer. The best LC was obtained in stage I low-risk histology. PMID:28533799

  12. Definitive three-dimensional high-dose-rate brachytherapy for inoperable endometrial cancer

    Directory of Open Access Journals (Sweden)

    Lorena Draghini

    2017-04-01

    Full Text Available Purpose : To report our experience on high-dose-rate brachytherapy (HDR-BT in patients with stage I-III endometrial cancer unfit to surgery. Material and methods : Seventeen patients underwent HDR-BT as definitive treatment. Median age was 79 years (range, 60-95, median Karnofsky performance status 90% (range, 60-100. Histology was endometrial adenocarcinoma in 14 (82%, and non-endometrial in 3 (18% patients. In 15 (88% patients, clinical stage was I and in remaining 2 (12% was III. All patients were evaluated with computed tomography (CT and endometrial biopsy. Using the Fletcher applicator, a CT-based planning HDR-BT was delivered. Local control (LC was obtained when there was an interruption of vaginal bleeding in absence of CT-imaging progression. Results : Fourteen patients underwent HDR-BT alone and three external beam radiotherapy (EBRT combined with HDR-BT. All patients had a clinical LC, after a median follow-up of 53 months (range, 6-131, 3 and 6 years LC rates were 86% and 69%, respectively. Cancer specific survival (CSS at 1, 2, and 6 years was 93%, 85%, and 85%, respectively. Age, stage, dose, and type of radiotherapy did not result significant prognostic factors for LC and CSS. Only histology significantly influenced LC: for high-risk histology (i.e., non-endometrial carcinoma or grade [G] 3 endometrial adeno­carcinoma LC was 73% at 1 year and 36% at 6 years; for low-risk histology (i.e., G1-2 endometrial adenocarcinoma was 100% at 1 and 6 years (p = 0.05. Two (12% patients had G2 acute toxicity and two others (12% G1 late toxicity. Conclusions : Although some limitations of our analysis (relatively few number of patients recruited, retrospective evaluation, and consequent suboptimal patient selection, it confirms effectiveness and safety of definitive HDR-BT for medically inoperable stage I-III endometrial cancer. The best LC was obtained in stage I low-risk histology.

  13. Toward endobronchial Ir-192 high-dose-rate brachytherapy therapeutic optimization

    Energy Technology Data Exchange (ETDEWEB)

    Gay, H A [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Allison, R R [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Downie, G H [Section of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Mota, H C [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Austerlitz, C [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Jenkins, T [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States); Sibata, C H [Department of Radiation Oncology, Brody School of Medicine at East Carolina University, Greenville, NC (United States)

    2007-06-07

    A number of patients with lung cancer receive either palliative or curative high-dose-rate (HDR) endobronchial brachytherapy. Up to a third of patients treated with endobronchial HDR die from hemoptysis. Rather than accept hemoptysis as an expected potential consequence of HDR, we have calculated the radial dose distribution for an Ir-192 HDR source, rigorously examined the dose and prescription points recommended by the American Brachytherapy Society (ABS), and performed a radiobiological-based analysis. The radial dose rate of a commercially available Ir-192 source was calculated with a Monte Carlo simulation. Based on the linear quadratic model, the estimated palliative, curative and blood vessel rupture radii from the center of an Ir-192 source were obtained for the ABS recommendations and a series of customized HDR prescriptions. The estimated radius at risk for blood vessel perforation for the ABS recommendations ranges from 7 to 9 mm. An optimized prescription may in some situations reduce this radius to 4 mm. The estimated blood perforation radius is generally smaller than the palliative radius. Optimized and individualized endobronchial HDR prescriptions are currently feasible based on our current understanding of tumor and normal tissue radiobiology. Individualized prescriptions could minimize complications such as fatal hemoptysis without sacrificing efficacy. Fiducial stents, HDR catheter centering or spacers and the use of CT imaging to better assess the relationship between the catheter and blood vessels promise to be useful strategies for increasing the therapeutic index of this treatment modality. Prospective trials employing treatment optimization algorithms are needed.

  14. Concomitant chemoradiotherapy with high dose rate brachytherapy ...

    African Journals Online (AJOL)

    Tamer Refaat

    2011-06-12

    Jun 12, 2011 ... Generally, radiation therapy for cervical cancer consists of a combination of ...... breast, prostate, skin, lung, and pancreas, NF-jB nuclear expression .... Applicator reconstruction for HDR cervix treatment planning using images ...

  15. SU-E-T-242: Design of a Novel Afterloader Clearance QA Device for Biliary HDR Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mullins, JP; Deufel, CL [Mayo Clinic, Rochester, MN (United States)

    2015-06-15

    Purpose: Bile duct cancer affects 2–3 thousand people annually in the United States. Radiation therapy has been shown to double median survival, with combined external beam and intraluminal high dose-rate (HDR) brachytherapy being most effective. Endoscopic retrograde cholangiopancreatography (ERCP) biliary HDR, a less-invasive alternative to trans-hepatic brachytherapy, is delivered through a catheter that travels a tortuous path from nose to bile duct, requiring wire drive force and dexterity beyond typical afterloader performance specifications. Thus, specific afterloader quality assurance(QA) is recommended for this procedure. Our aim was to create a device and process for Varisource afterloader clearance QA with objectives that it be quantitative and can monitor afterloader performance over time, compare performance between two distinct afterloaders and potentially Result in a predictive nomogram for patient-specific clearance. Methods: Based on retrospective reconstruction of 20 ERCP patient anatomies, we designed a phantom to test afterloader ability to drive the source wire along an intended treatment path. The ability of the afterloader to fully extend the intended treatment path is a function of number and diameters of turns. We have determined experimentally that relative position of the turns does not impact performance. Results: Both patient and QA paths involve three common turns/loops: a large turn representing the stomach(10.8cm±2.0cm), an elliptical loop representing the duodenum(7.3cm±1.5cmx4.8cm±0.7cm), and a final turn at the end of the bile duct that may be tight for some patient-specific anatomies and absent in others(3.7cm±0.7cm, where present). Our phantom design uses anatomical average turn diameters for the stomach and duodenum then terminates in a turn of quantitatively selectable diameter. The smallest final turn diameter that an afterloader can pass is recorded as the QA parameter. Conclusion: With this device and QA process, we

  16. Combined use of transverse and scout computed tomography scans to localize radioactive seeds in an interstitial brachytherapy implant.

    Science.gov (United States)

    Yue, N; Chen, Z; Bond, J E; Son, Y H; Nath, R

    1999-04-01

    Various techniques have been developed to localize radioactive sources in brachytherapy implants. The most common methods include the orthogonal film method, the stereo-shift film method, and recently, direct localization from a series of contiguous CT transverse images. The major advantage of the CT method is that it provides the seed locations relative to anatomic structures. However, it is often the case that accurate identification and localization of the sources become difficult because of partial source artifacts in more than one transverse cut and other artifacts on CT images. A new algorithm has been developed to combine the advantages of using a pair of orthogonal scout views with the advantages of using a stack of transverse cuts. In the new algorithm, a common reference point is used to correlate CT transverse images and two orthogonal scout CT scans (AP and lateral). The radioactive sources are localized on CT transverse images. At the same time, the sources are displayed automatically on the two CT scout scans. In this way, the individual sources can be clearly distinguished and ambiguities arising from partial source artifacts are resolved immediately. Because of the finite slice thickness of transverse cuts, the longitudinal coordinates are more accurately obtained from the scout views. Therefore, the longitudinal coordinates of seeds localized on the transverse cuts are adjusted so that they match the position of the seeds on scout views. The algorithm has been tested on clinical cases and has proved to be a time saving and accurate method.

  17. A dosimetry method for low dose rate brachytherapy by EGS5 combined with regression to reflect source strength shortage

    Science.gov (United States)

    Tanaka, Kenichi; Tateoka, Kunihiko; Asanuma, Osamu; Kamo, Ken-ichi; Sato, Kaori; Takeda, Hiromitsu; Takagi, Masaru; Hareyama, Masato; Takada, Jun

    2014-01-01

    The post-implantation dosimetry for brachytherapy using Monte Carlo calculation by EGS5 code combined with the source strength regression was investigated with respect to its validity. In this method, the source strength for the EGS5 calculation was adjusted with the regression, so that the calculation would reproduce the dose monitored with the glass rod dosimeters (GRDs) on a water phantom. The experiments were performed, simulating the case where one of two 125I sources of Oncoseed 6711 was lacking strength by 4–48%. As a result, the calculation without regression was in agreement with the GRD measurement within 26–62%. In this case, the shortage in strength of a source was neglected. By the regression, in order to reflect the strength shortage, the agreement was improved up to 17–24%. This agreement was also comparable with accuracy of the dose calculation for single source geometry reported previously. These results suggest the validity of the dosimetry method proposed in this study. PMID:24449715

  18. Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA.

    Science.gov (United States)

    Zwierzchowski, Grzegorz; Bielęda, Grzegorz; Skowronek, Janusz; Mazur, Magdalena

    2016-08-01

    Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm), accurate tissues segmentation, and the structure's elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS) verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Calibration data was collected by separately irradiating 14 sheets of Gafchromic(®) EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR (192)Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft(®) package. Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm). Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy.

  19. HDR monotherapy for prostate cancer: A simulation study to determine the effect of catheter displacement on target coverage and normal tissue irradiation

    NARCIS (Netherlands)

    I.-K.K. Kolkman-Deurloo (Inger-Karina); M.A. Roos (Martin); S. Aluwini (Shafak)

    2011-01-01

    textabstractPurpose: The aim of this study was to systematically analyse the effect of catheter displacements both on target coverage and normal tissue irradiation in fractionated high dose rate (HDR) prostate brachytherapy, using a simulation study, and to define tolerances for catheter displacemen

  20. Californium-252 Brachytherapy Combined With External-Beam Radiotherapy for Cervical Cancer: Long-Term Treatment Results

    Energy Technology Data Exchange (ETDEWEB)

    Lei Xin; Qian Chengyuan; Qing Yi; Zhao Kewei; Yang Zhengzhou; Dai Nan; Zhong Zhaoyang; Tang Cheng; Li Zheng; Gu Xianqing; Zhou Qian; Feng Yan; Xiong Yanli; Shan Jinlu [Cancer Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing (China); Wang Dong, E-mail: dongwang64@hotmail.com [Cancer Center, Research Institute of Surgery and Daping Hospital, Third Military Medical University, Chongqing (China)

    2011-12-01

    Purpose: To observe, by retrospective analysis, the curative effects and complications due to californium-252 ({sup 252}Cf) neutron intracavitary brachytherapy (ICBT) combined with external-beam radiotherapy (EBRT) in the treatment of cervical cancer. Methods and Materials: From February 1999 to December 2007, 696 patients with cervical cancer (Stages IB to IIIB) were treated with {sup 252}Cf-ICBT in combination of EBRT. Of all, 31 patients were at Stage IB, 104 at IIA, 363 at IIB, 64 at IIIA, and 134 at IIIB. Californium-252 ICBT was delivered at 7-12 Gy per insertion per week, with a total dose of 29-45 Gy to reference point A in three to five insertions. The whole pelvic cavity was treated with 8-MV X-ray external irradiation at 2 Gy per fraction, four times per week. After 16-38 Gy of external irradiation, the center of the whole pelvic field was blocked with a 4-cm-wide lead shield, with a total external irradiation dose of 44-56 Gy. The total treatment course was 5 to 6 weeks. Results: Overall survival rate at 3 and 5 years for all patients was 76.0% and 64.9%, respectively. Disease-free 3- and 5-year survival rates of patients were 71.2% and 58.4%, respectively. Late complications included vaginal contracture and adhesion, radiation proctitis, radiation cystitis, and inflammatory bowel, which accounted for 5.8%, 7.1%, 6.2%, and 4.9%, respectively. Univariate analysis results showed significant correlation of stage, age, histopathologic grade, and lymph node status with overall survival. Cox multiple regression analysis showed that the independent variables were stage, histopathologic grade, tumor size, and lymphatic metastasis in all patients. Conclusion: Results of this series suggest that the combined use of {sup 252}Cf-ICBT with EBRT is an effective method for treatment of cervical cancer.

  1. Stereotactic iodine-125 brachytherapy for brain tumors: temporary versus permanent implantation

    Directory of Open Access Journals (Sweden)

    Ruge Maximilian I

    2012-06-01

    Full Text Available Abstract Stereotactic brachytherapy (SBT has been described in several publications as an effective, minimal invasive and safe highly focal treatment option in selected patients with well circumscribed brain tumors 40 cGy/h in combination with adjuvant external beam radiation and/or chemotherapy for the treatment of malignant gliomas and metastases resulted in increased rates of radiation induced adverse tissue changes requiring surgical intervention. Vice versa, such effects have been only minimally observed in numerous studies applying low dose rate (LDR regiments (3–8 cGy/h for low grade gliomas, metastases and other rare indications. Besides these observations, there are, however, no data available directly comparing the long term incidences of tissue changes after HDR and LDR and there is, furthermore, no evidence regarding a difference between temporary or permanent LDR implantation schemes. Thus, recommendations for effective and safe implantation schemes have to be investigated and compared in future studies.

  2. Brachytherapy for prostate cancer: Comparative characteristics of procedures

    Directory of Open Access Journals (Sweden)

    S. V. Kanaev

    2015-01-01

    Full Text Available The introduction of interstitial radiation sources is the «youngest» of the radical method of treatment of patients with prostate cancer (PC. The high level of efficiency comparable to prostatectomy at a significantly lower rate of complications causes rapid growth of clinical use of brachytherapy (BT. Depending on the radiation source and the mode of administration into the prostate gland are two types BT – high-dose rate (temporary (HDR-BT and low-dose rate (permanent (LDR-BT brachytherapy. At the heart of these two methods are based on a single principle of direct effect of the quantum gamma radiation on the area of interest. However, the differences between the characteristics of isotopes used and technical aspects of the techniques cause the difference in performance and complication rates for expression HDR-BT and LDR-BT.

  3. ``In Vivo'' Dosimetry in High Dose Rate Brachytherapy for Cervical Cancer Treatments

    Science.gov (United States)

    González-Azcorra, S. A.; Mota-García, A.; Poitevín-Chacón, M. A.; Santamaría-Torruco, B. J.; Rodríguez-Ponce, M.; Herrera-Martínez, F. P.; Gamboa de Buen, I.; Ruíz-Trejo, C.; Buenfil, A. E.

    2008-08-01

    In this prospective study, rectal dose was measured "in vivo" using TLD-100 crystals (3×3×1 mm3), and it has been compared to the prescribed dose. Measurements were performed in patients with cervical cancer classified in FIGO stages IB-IIIB and treated with high dose rate brachytherapy (HDR BT) at the Instituto Nacional de Cancerología (INCan).

  4. A single session of intraluminal brachytherapy in palliation of oesophageal cancer

    NARCIS (Netherlands)

    Jager, J; Langendijk, H; Pannebakker, M; Rijken, J; deJong, J

    1995-01-01

    Between September 1987 and September 1993, 88 patients with oesophageal cancer were treated by a single session of intraluminal brachytherapy of 15 Gy prescribed at 1 cm distance from the central axis, using MDR Cs-137 (n = 51) during the first part of the study and HDR Ir-192 (n = 37) during the se

  5. Brachytherapy for stage IIIB squamous cell carcinoma of the uterine cervix: survival and toxicity

    Energy Technology Data Exchange (ETDEWEB)

    Zuliani, Antonio Carlos; Cunha, Maercio de Oliveira, E-mail: aczo.rt@gmail.co [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Esteves, Sergio C.B. [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Ciencias Medicas. Secao de Radioterapia; Teixeira, Julio Cesar [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Ciencias Medicas. Dept. de Tocoginecologia

    2010-07-01

    Objective: to compare survival and toxicity of three different treatments for stage IIIB cervix cancer: low-dose-rate (LDR), high-dose-rate (HDR) brachytherapy and association of HDR and chemotherapy. Methods: between 1985 and 2005, 230 patients with FIGO stage IIIB squamous cell carcinoma of the uterine cervix received 4-field pelvic teletherapy at doses between 40 and 50.4 Gy, with a different complementation in each group. The LDRB group, with 42 patients, received one or two insertions of LDR, with Cesium-137, in a total dose of 80 to 100Gy at point A. The HDR group, 155 patients received HDR in 4 weekly 7 Gy fractions and 9 Gy to 14.4 Gy applied to the involved parametria. The CHT group, 33 patients, were given the same treatment as the HDR group and received 5 or 6 weekly cycles of cisplatin, 40 mg per m2. Results: the five-year progression-free survival (PFS) was 60% for the HDR group and 45% for the LDR group, and the two-year PFS for the CHT group was 65% (p = 0.02). The five-year Overall Survival (OS) was 65% for the HDR group and 49% for the LDR group. The two-year OS was 86% for the CHT group (p 0.02). Rectum toxicity grade II was 7% for the LDR group, 4% for the HDR group and 7% for the CHT group that had one case of rectum toxicity grade IV. Conclusion: patients that received HDR had better OS and PFS. The Chemotherapy-HDR association showed no benefit when compared to HDR only. Toxicity rates showed no difference between the three groups. (author)

  6. Local control and survival in patients with soft tissue sarcomas treated with limb sparing surgery in combination with interstitial brachytherapy and external radiation

    DEFF Research Database (Denmark)

    Muhic, A.; Hovgaard, D.; Mork, Petersen M.;

    2008-01-01

    PURPOSE: The purpose of this study was to evaluate local control, survival and complication rate after treatment of soft tissue sarcoma (STS) with limb-sparing surgery combined with pulsed-dose rate (PDR) interstitial brachytherapy (BRT) and external beam radiotherapy (EBRT). PATIENTS AND METHODS...... surgery, combined with PDR BRT and EBRT can result in good local control in patients with soft tissue sarcomas. BRT is an effective modality with good cosmetic results and acceptable toxicity Udgivelsesdato: 2008/9......PURPOSE: The purpose of this study was to evaluate local control, survival and complication rate after treatment of soft tissue sarcoma (STS) with limb-sparing surgery combined with pulsed-dose rate (PDR) interstitial brachytherapy (BRT) and external beam radiotherapy (EBRT). PATIENTS AND METHODS......: A retrospective review of 39 adult patients (female/male=25/14, mean age 51(range 21-78) years) with STS who underwent primary limb-sparing surgery combined with PDR BRT (20Gy) and additional post-operative EBRT (50Gy) during the years 1995-2004. RESULTS: Five patients developed local recurrence after a mean...

  7. Retrospective analysis of role of interstitial brachytherapy using template (MUPIT in locally advanced gynecological malignancies

    Directory of Open Access Journals (Sweden)

    Nandwani Pooja

    2007-01-01

    Full Text Available Aim : The aim of this retrospective study was to assess treatment outcomes for patients with locally advanced gynecological malignancies being treated with interstitial brachytherapy using Martinez universal perineal interstitial template (MUPIT and to study the acute and late sequelae and survival after treatment by this technique. Materials and Methods : Ninety seven patients untreated with histopathological confirmation of carcinoma of cervix (37 vault (40 and vagina (20 were treated by combination of external beam RT (EBRT using megavoltage irradiation to pelvis to dose of 4000-5000 cGy followed by interstitial brachytherapy using MUPIT between September 2001 to March 2005. Median age was 46 years. Only those patients who were found unsuitable for conventional brachytherapy or in whom intracavitatory radiotherapy was found to be unlikely to encompass a proper dose distribution were treated by interstitial template brachytherapy using MUPIT application and were enrolled in this study. The dose of MUPIT was 1600-2400 cGy in 4-6# with 400 cGy /# and two fractions a day with minimum gap of six hours in between two fractions on micro-HDR. Criteria for inclusion of patients were as follows: Hb minimum 10 gm/dl, performance status - 70% or more (Karnofsy scale, histopathological confirmation FIGO stage IIB-IIIB (excluding frozen pelvis. Results : Among the 97 patients studied, 12 patients lost to follow-up and hence they were excluded from the study. Follow-up of rest of the patients was then done up to September 2006. The duration of follow-up was in the range of 20-60 months. Parameters studied were local control rate, complication rate, mortality rate and number of patients developing systemic metastasis. Local control was achieved in 56/85 (64.7% and complication rate was 15/85 (17.6%. Local control was better for nonbulky tumors compared bulky tumors irrespective of stage of disease. Local control was better in patients with good regression of

  8. Y-configured metallic stent combined with (125)I seed strands cavity brachytherapy for a patient with type IV Klatskin tumor.

    Science.gov (United States)

    Dechao, Jiao; Han, Xinwei; Yanli, Wang; Zhen, Li

    2016-08-01

    We report a case in an inoperable patient with type IV Klatskin tumor treated by the use of a novel, two piece, Y-configured self-expandable metallic stent (SEMS) combined with two (125)I seed strands via bilateral approach. The placement of the Y-shaped SEMS was successful and resulted in adequate biliary drainage. After 2 months of intraluminal brachytherapy (ILBT), both (125)I seed strands and temporary drainage catheter were removed after patency of the expanded stents was confirmed by the cholangiogram. This technique was feasible and could be considered for the treatment of patients with Bismuth type IV Klatskin tumors.

  9. Y-configured metallic stent combined with 125I seed strands cavity brachytherapy for a patient with type IV Klatskin tumor

    Science.gov (United States)

    Dechao, Jiao; Yanli, Wang; Zhen, Li

    2016-01-01

    We report a case in an inoperable patient with type IV Klatskin tumor treated by the use of a novel, two piece, Y-configured self-expandable metallic stent (SEMS) combined with two 125I seed strands via bilateral approach. The placement of the Y-shaped SEMS was successful and resulted in adequate biliary drainage. After 2 months of intraluminal brachytherapy (ILBT), both 125I seed strands and temporary drainage catheter were removed after patency of the expanded stents was confirmed by the cholangiogram. This technique was feasible and could be considered for the treatment of patients with Bismuth type IV Klatskin tumors. PMID:27648091

  10. ALGEBRA: ALgorithm for the heterogeneous dosimetry based on GEANT4 for BRAchytherapy.

    Science.gov (United States)

    Afsharpour, H; Landry, G; D'Amours, M; Enger, S; Reniers, B; Poon, E; Carrier, J-F; Verhaegen, F; Beaulieu, L

    2012-06-07

    Task group 43 (TG43)-based dosimetry algorithms are efficient for brachytherapy dose calculation in water. However, human tissues have chemical compositions and densities different than water. Moreover, the mutual shielding effect of seeds on each other (interseed attenuation) is neglected in the TG43-based dosimetry platforms. The scientific community has expressed the need for an accurate dosimetry platform in brachytherapy. The purpose of this paper is to present ALGEBRA, a Monte Carlo platform for dosimetry in brachytherapy which is sufficiently fast and accurate for clinical and research purposes. ALGEBRA is based on the GEANT4 Monte Carlo code and is capable of handling the DICOM RT standard to recreate a virtual model of the treated site. Here, the performance of ALGEBRA is presented for the special case of LDR brachytherapy in permanent prostate and breast seed implants. However, the algorithm is also capable of handling other treatments such as HDR brachytherapy.

  11. Pretreatment Endorectal Coil Magnetic Resonance Imaging Findings Predict Biochemical Tumor Control in Prostate Cancer Patients Treated With Combination Brachytherapy and External-Beam Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Riaz, Nadeem [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Afaq, Asim; Akin, Oguz [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Pei Xin; Kollmeier, Marisa A.; Cox, Brett [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Hricak, Hedvig [Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States); Zelefsky, Michael J., E-mail: zelefskm@mskcc.org [Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York, New York (United States)

    2012-11-01

    Purpose: To investigate the utility of endorectal coil magenetic resonance imaging (eMRI) in predicting biochemical relapse in prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Methods and Materials: Between 2000 and 2008, 279 men with intermediate- or high-risk prostate cancer underwent eMRI of their prostate before receiving brachytherapy and supplemental intensity-modulated radiotherapy. Endorectal coil MRI was performed before treatment and retrospectively reviewed by two radiologists experienced in genitourinary MRI. Image-based variables, including tumor diameter, location, number of sextants involved, and the presence of extracapsular extension (ECE), were incorporated with other established clinical variables to predict biochemical control outcomes. The median follow-up was 49 months (range, 1-13 years). Results: The 5-year biochemical relapse-free survival for the cohort was 92%. Clinical findings predicting recurrence on univariate analysis included Gleason score (hazard ratio [HR] 3.6, p = 0.001), PSA (HR 1.04, p = 0.005), and National Comprehensive Cancer Network risk group (HR 4.1, p = 0.002). Clinical T stage and the use of androgen deprivation therapy were not correlated with biochemical failure. Imaging findings on univariate analysis associated with relapse included ECE on MRI (HR 3.79, p = 0.003), tumor size (HR 2.58, p = 0.04), and T stage (HR 1.71, p = 0.004). On multivariate analysis incorporating both clinical and imaging findings, only ECE on MRI and Gleason score were independent predictors of recurrence. Conclusions: Pretreatment eMRI findings predict for biochemical recurrence in intermediate- and high-risk prostate cancer patients treated with combination brachytherapy and external-beam radiotherapy. Gleason score and the presence of ECE on MRI were the only significant predictors of biochemical relapse in this group of patients.

  12. Analysis of high–dose rate brachytherapy dose distribution resemblance in CyberKnife hypofractionated treatment plans of localized prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Sudahar, H., E-mail: h.sudahar@gmail.com [Department of Radiotherapy, Apollo Speciality Hospital, Chennai (India); Kurup, P.G.G.; Murali, V.; Mahadev, P. [Department of Radiotherapy, Apollo Speciality Hospital, Chennai (India); Velmurugan, J. [Department of Medical Physics, Anna University, Chennai (India)

    2013-01-01

    The present study is to analyze the CyberKnife hypofractionated dose distribution of localized prostate cancer in terms of high–dose rate (HDR) brachytherapy equivalent doses to assess the degree of HDR brachytherapy resemblance of CyberKnife dose distribution. Thirteen randomly selected localized prostate cancer cases treated using CyberKnife with a dose regimen of 36.25 Gy in 5 fractions were considered. HDR equivalent doses were calculated for 30 Gy in 3 fractions of HDR brachytherapy regimen. The D{sub 5%} of the target in the CyberKnife hypofractionation was 41.57 ± 2.41 Gy. The corresponding HDR fractionation (3 fractions) equivalent dose was 32.81 ± 1.86 Gy. The mean HDR fractionation equivalent dose, D{sub 98%}, was 27.93 ± 0.84 Gy. The V{sub 100%} of the prostate target was 95.57% ± 3.47%. The V{sub 100%} of the bladder and the rectum were 717.16 and 79.6 mm{sup 3}, respectively. Analysis of the HDR equivalent dose of CyberKnife dose distribution indicates a comparable resemblance to HDR dose distribution in the peripheral target doses (D{sub 98%} to D{sub 80%}) reported in the literature. However, there is a substantial difference observed in the core high-dose regions especially in D{sub 10%} and D{sub 5%}. The dose fall-off within the OAR is also superior in reported HDR dose distribution than the HDR equivalent doses of CyberKnife.

  13. Dynamic rotating-shield brachytherapy.

    Science.gov (United States)

    Liu, Yunlong; Flynn, Ryan T; Kim, Yusung; Yang, Wenjun; Wu, Xiaodong

    2013-12-01

    To present dynamic rotating shield brachytherapy (D-RSBT), a novel form of high-dose-rate brachytherapy (HDR-BT) with electronic brachytherapy source, where the radiation shield is capable of changing emission angles during the radiation delivery process. A D-RSBT system uses two layers of independently rotating tungsten alloy shields, each with a 180° azimuthal emission angle. The D-RSBT planning is separated into two stages: anchor plan optimization and optimal sequencing. In the anchor plan optimization, anchor plans are generated by maximizing the D90 for the high-risk clinical-tumor-volume (HR-CTV) assuming a fixed azimuthal emission angle of 11.25°. In the optimal sequencing, treatment plans that most closely approximate the anchor plans under the delivery-time constraint will be efficiently computed. Treatment plans for five cervical cancer patients were generated for D-RSBT, single-shield RSBT (S-RSBT), and (192)Ir-based intracavitary brachytherapy with supplementary interstitial brachytherapy (IS + ICBT) assuming five treatment fractions. External beam radiotherapy doses of 45 Gy in 25 fractions of 1.8 Gy each were accounted for. The high-risk clinical target volume (HR-CTV) doses were escalated such that the D2cc of the rectum, sigmoid colon, or bladder reached its tolerance equivalent dose in 2 Gy fractions (EQD2 with α∕β = 3 Gy) of 75 Gy, 75 Gy, or 90 Gy, respectively. For the patients considered, IS + ICBT had an average total dwell time of 5.7 minutes∕fraction (min∕fx) assuming a 10 Ci(192)Ir source, and the average HR-CTV D90 was 78.9 Gy. In order to match the HR-CTV D90 of IS + ICBT, D-RSBT required an average of 10.1 min∕fx more delivery time, and S-RSBT required 6.7 min∕fx more. If an additional 20 min∕fx of delivery time is allowed beyond that of the IS + ICBT case, D-RSBT and S-RSBT increased the HR-CTV D90 above IS + ICBT by an average of 16.3 Gy and 9.1 Gy, respectively. For cervical cancer patients, D-RSBT can boost HR-CTV D90

  14. Implementation of High-Dose-Rate Brachytherapy and Androgen Deprivation in Patients With Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lilleby, Wolfgang, E-mail: wolfgang.lilleby@ous-hf.no [Cancer Clinic, Oslo University Hospital, Norwegian Radiumhospital, Department of Radiotherapy and Oncology, Oslo (Norway); Tafjord, Gunnar; Raabe, Nils K. [Cancer Clinic, Oslo University Hospital, Norwegian Radiumhospital, Department of Radiotherapy and Oncology, Oslo (Norway)

    2012-07-01

    Purpose: To evaluate outcome (overall survival [OS], the actuarial 5-year cancer-specific survival [CSS], disease-free survival [DFS], biochemical failure-free survival [BFS]), complications and morbidity in patients treated with high-dose-rate brachytherapy (HDR-BT) boost and hormonal treatment with curative aims. Methods: Between 2004 and 2009, 275 prospectively followed pN0/N0M0 patients were included: 19 patients (7%) with T2, Gleason score 7 and prostate-specific antigen (PSA) <10 and 256 patients (93%) with T3 or Gleason score 8-10 or PSA >20 received multimodal treatment with conformal four-field radiotherapy (prostate/vesiculae 2 Gy Multiplication-Sign 25) combined with HDR-BT (iridium 192; prostate 10 Gy Multiplication-Sign 2) with long-term androgen deprivation therapy (ADT). Results: After a median observation time of 44.2 months (range, 10.4-90.5 months) 12 patients had relapsed clinically and/or biochemically and 10 patients were dead, of which 2 patients died from prostate cancer. Five-year estimates of BFS, CSS, DFS, and OS rates were 98.5%, 99.3%, 95.6%, and 96.3%, respectively. None of the patients with either Gleason score <8 or with intermediate risk profile had relapsed. The number of HDR-BT treatments was not related to outcome. Despite of age (median, 65.7 years; range, 45.7-77 years) and considerable pretreatment comorbidity in 39 of 275 patients, Genitourinary treatment-related morbidity was moderate with long-lasting Radiation Therapy Oncology Group Grade 2 voiding problems in 26 patients (9.5%) and occasionally mucous discharge in 20 patients (7%), none with Grade >2 for gastrointestinal at follow-up. Complications during implantations were related to pubic arch interference (4 patients) and lithotomy time, causing 2 patients to develop compartment syndrome. Conclusion: Despite still preliminary observations, our 5-year outcome estimates favor the implementation of high-dose-rate brachytherapy in high-risk patients combined with conformal

  15. Applications of tissue heterogeneity corrections and biologically effective dose volume histograms in assessing the doses for accelerated partial breast irradiation using an electronic brachytherapy source

    Energy Technology Data Exchange (ETDEWEB)

    Shi Chengyu; Guo Bingqi; Eng, Tony; Papanikolaou, Nikos [Cancer Therapy and Research Center, University of Texas Health Science Center at San Antonio, TX 78229 (United States); Cheng, Chih-Yao, E-mail: shic@uthscsa.ed [Radiation Oncology Department, Oklahoma University Health Science Center, Oklahoma, OK 73104 (United States)

    2010-09-21

    A low-energy electronic brachytherapy source (EBS), the model S700 Axxent(TM) x-ray device developed by Xoft Inc., has been used in high dose rate (HDR) intracavitary accelerated partial breast irradiation (APBI) as an alternative to an Ir-192 source. The prescription dose and delivery schema of the electronic brachytherapy APBI plan are the same as the Ir-192 plan. However, due to its lower mean energy than the Ir-192 source, an EBS plan has dosimetric and biological features different from an Ir-192 source plan. Current brachytherapy treatment planning methods may have large errors in treatment outcome prediction for an EBS plan. Two main factors contribute to the errors: the dosimetric influence of tissue heterogeneities and the enhancement of relative biological effectiveness (RBE) of electronic brachytherapy. This study quantified the effects of these two factors and revisited the plan quality of electronic brachytherapy APBI. The influence of tissue heterogeneities is studied by a Monte Carlo method and heterogeneous 'virtual patient' phantoms created from CT images and structure contours; the effect of RBE enhancement in the treatment outcome was estimated by biologically effective dose (BED) distribution. Ten electronic brachytherapy APBI cases were studied. The results showed that, for electronic brachytherapy cases, tissue heterogeneities and patient boundary effect decreased dose to the target and skin but increased dose to the bones. On average, the target dose coverage PTV V{sub 100} reduced from 95.0% in water phantoms (planned) to only 66.7% in virtual patient phantoms (actual). The actual maximum dose to the ribs is 3.3 times higher than the planned dose; the actual mean dose to the ipsilateral breast and maximum dose to the skin were reduced by 22% and 17%, respectively. Combining the effect of tissue heterogeneities and RBE enhancement, BED coverage of the target was 89.9% in virtual patient phantoms with RBE enhancement (actual BED) as

  16. Live HDR video streaming on commodity hardware

    Science.gov (United States)

    McNamee, Joshua; Hatchett, Jonathan; Debattista, Kurt; Chalmers, Alan

    2015-09-01

    High Dynamic Range (HDR) video provides a step change in viewing experience, for example the ability to clearly see the soccer ball when it is kicked from the shadow of the stadium into sunshine. To achieve the full potential of HDR video, so-called true HDR, it is crucial that all the dynamic range that was captured is delivered to the display device and tone mapping is confined only to the display. Furthermore, to ensure widespread uptake of HDR imaging, it should be low cost and available on commodity hardware. This paper describes an end-to-end HDR pipeline for capturing, encoding and streaming high-definition HDR video in real-time using off-the-shelf components. All the lighting that is captured by HDR-enabled consumer cameras is delivered via the pipeline to any display, including HDR displays and even mobile devices with minimum latency. The system thus provides an integrated HDR video pipeline that includes everything from capture to post-production, archival and storage, compression, transmission, and display.

  17. SU-F-P-42: “To Navigate, Or Not to Navigate: HDR BT in Recurrent Spine Lesions”

    Energy Technology Data Exchange (ETDEWEB)

    Voros, L; Cohen, G; Zaider, M; Yamada, Y [Memorial Sloan-Kettering Cancer Center, New York, NY (United States)

    2016-06-15

    Purpose: We compare the accuracy of HDR catheter placement for paraspinal lesions using O-arm CBCT imaging combined with StealthStation navigation and traditional fluoroscopically guided catheter placement. Methods: CT and MRI scans were acquired pre-treatment to outline the lesions and design treatment plans (pre-plans) to meet dosimetric constrains. The pre-planned catheter trajectories were transferred into the StealthStation Navigation system prior to the surgery. The StealthStation is an infra red (IR) optical navigation system used for guidance of surgical instruments. An intraoperative CBCT scan (O-arm) was acquired with reference IR optical fiducials anchored onto the patient and registered with the preplan image study to guide surgical instruments in relation to the patients’ anatomy and to place the brachytherapy catheters along the pre-planned trajectories. The final treatment plan was generated based on a 2nd intraoperative CBCT scan reflecting achieved implant geometry. The 2nd CBCT was later registered with the initial CT scan to compare the preplanned dwell positions with actual dwell positions (catheter placements). Similar workflow was used in placement of 8 catheters (1 patient) without navigation, but under fluoroscopy guidance in an interventional radiology suite. Results: A total of 18 catheters (3 patients) were placed using navigation assisted surgery. Average displacement of 0.66 cm (STD=0.37cm) was observed between the pre-plan source positions and actual source positions in the 3 dimensional space. This translates into an average 0.38 cm positioning error in one direction including registration errors, digitization errors, and the surgeons ability to follow the planned trajectory. In comparison, average displacement of non-navigated catheters was 0.50 cm (STD=0.22cm). Conclusion: Spinal lesion HDR brachytherapy planning is a difficult task. Catheter placement has a direct impact on target coverage and dose to critical structures. While

  18. Perioperative brachytherapy for pretreated chest wall recurrence of breast cancer

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, A.; Naszaly, A.; Patyanik, M. [Municipal Center of Oncoradiology, Budapest (Hungary)

    2002-11-01

    Purpose: To demonstrate the technical aspects of high-dose-rate afterloading (HDR-AL) brachytherapy for isolated local chest wall recurrence of breast cancer pretreated with mastectomy and axillary node dissection plus postoperative radiotherapy. Case Report: A 63-year-old female patient with left ductal breast cancer, pT2pN1biMO, was reoperated for an isolated local chest wall recurrence 13 years after primary treatment (mastectomy, axillary dissection, and 50 Gy postoperative irradiation). Radical surgery would have involved extreme multilation. Reoperative surgical margins of 3 mm width were involved, and four parallel afterloading catheters were placed intraoperatively in this histologically positive margin site. Perioperative HDR-AL (Ir-192 stepping source, 370 GBq activity, dose rate: reference air kerma rate at 1 m 40.84 mGy/h kg) was performed. Dose per fraction: 6 Gy to the reference line, two fractions per week, total dose 30 Gy. Follow-up after secondary treatment: 5 years. Results: Firm local control and 5-year disease-free survival were obtained with perioperative HDR-AL therapy; staging procedures (clinical exam, MRI, abdominal ultrasound, and bone scan) showed no evidence of disease. The development of radiodermatitis did not exceed grade 2 level and healed spontaneously within 6 weeks. Conclusions: Isolated local chest all relapse can be effectively controlled by wide surgical excision and perioperative reirradiation with HDR-AL. This technique may represent a treatment alternative to ultraradical surgery, with equal healing probability and a better quality of life. Small-volume irradiation of the postoperative scar can be performed with HDR-AL brachytherapy, and long-term local control can be achieved with a total dose of 30 Gy. (orig.)

  19. The history of HDR research and development

    Energy Technology Data Exchange (ETDEWEB)

    Duchane, D.

    1998-12-31

    An energy source rivaling the sun exists in the form of the heat emanating from the interior of the earth. Although limited quantities of this geothermal energy are produced today by bringing natural hot fluids to the surface, most of the earth`s heat is trapped in hot dry rock (HDR). The application of hydraulic fracturing technology to tap this vast HDR resource was pioneered by Los Alamos National Laboratory beginning in 1970. Since that time, engineered geothermal reservoirs have been constructed and operated at numerous locations around the world. Major work at the US HDR facility at Fenton Hill, NM, and at the British HDR site in Cornwall, UK, has been completed, but advanced HDR field work continues at two sites on the island of Honshu in Japan and at Soultz in northeastern France. In addition, plans are currently being completed for the construction of an HDR system on the continent of Australia. Over the past three decades the worldwide research and development effort has taken HDR from its early conceptual stage to its present state as a demonstrated technology that is on the verge of becoming commercially feasible. Extended flow tests in the United States, Japan, and Europe have proven that sustained operation of HDR reservoirs is possible. In support of these field tests, an international body of scientists and engineers have pursued a variety of innovative approaches for assessing HDR resources, constructing and characterizing engineered geothermal reservoirs, and operating HDR systems. Taken together, these developments form a strong base upon which to build the practical HDR systems that will provide clean energy for the world in the 21st century.

  20. High-dose-rate prostate brachytherapy based on registered transrectal ultrasound and in-room cone-beam CT images

    NARCIS (Netherlands)

    Even, Aniek J.G.; Nuver, Tonnis T.; Westendorp, Hendrik; Hoekstra, Carel J.; Slump, C.H.; Minken, Andre W.

    2014-01-01

    Purpose To present a high-dose-rate (HDR) brachytherapy procedure for prostate cancer using transrectal ultrasound (TRUS) to contour the regions of interest and registered in-room cone-beam CT (CBCT) images for needle reconstruction. To characterize the registration uncertainties between the two ima

  1. Intensity-Modulated Radiotherapy Causes Fewer Side Effects than Three-Dimensional Conformal Radiotherapy When Used in Combination With Brachytherapy for the Treatment of Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Forsythe, Kevin; Blacksburg, Seth [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, NY (United States); Stone, Nelson [Department of Urology, Mount Sinai School of Medicine, New York, NY (United States); Stock, Richard G., E-mail: richard.stock@moutsinai.org [Department of Radiation Oncology, Mount Sinai School of Medicine, New York, NY (United States)

    2012-06-01

    Purpose: To measure the benefits of intensity-modulated radiotherapy (IMRT) compared with three-dimensional conformal radiotherapy (3D-CRT) when used in combination with brachytherapy for the treatment of prostate cancer. Methods and Materials: We conducted a retrospective review of all patients with localized prostate cancer who received external-beam radiotherapy (EBRT) in combination with brachytherapy with at least 1 year follow-up (n = 812). Combination therapy consisted of {sup 103}Pd or {sup 125}I implant, followed by a course of EBRT. From 1993 to March 2003 521 patients were treated with 3D-CRT, and from April 2003 to March 2009 291 patients were treated with IMRT. Urinary symptoms were prospectively measured with the International Prostate Symptom Score questionnaire with a single quality of life (QOL) question; rectal bleeding was assessed per the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer Late Radiation Morbidity Scoring Schema. The Pearson {chi}{sup 2} test was used to compare toxicities experienced by patients who were treated with either IMRT or 3D-CRT. Logistic regression analyses were also performed to rule out possible confounding factors. Results: Within the first 3 months after treatment, patients treated with 3D-CRT scored their urinary symptoms as follows: 19% mild, 44% moderate, and 37% severe; patients treated with IMRT scored their urinary symptoms as follows: 36% mild, 47% moderate, and 17% severe (p < 0.001). The 3D-CRT patients rated their QOL as follows: 35% positive, 20% neutral, and 45% negative; IMRT patients rated their QOL as follows: 51% positive, 18% neutral, and 31% negative (p < 0.001). After 1 year of follow-up there was no longer any difference in urinary morbidity between the two groups. Logistic regression confirmed the differences in International Prostate Symptom Score and QOL in the acute setting (p < 0.001 for both). Grade {>=}2 rectal bleeding was reported by 11% of 3D

  2. Time-driven activity-based costing of low-dose-rate and high-dose-rate brachytherapy for low-risk prostate cancer.

    Science.gov (United States)

    Ilg, Annette M; Laviana, Aaron A; Kamrava, Mitchell; Veruttipong, Darlene; Steinberg, Michael; Park, Sang-June; Burke, Michael A; Niedzwiecki, Douglas; Kupelian, Patrick A; Saigal, Christopher

    Cost estimates through traditional hospital accounting systems are often arbitrary and ambiguous. We used time-driven activity-based costing (TDABC) to determine the true cost of low-dose-rate (LDR) and high-dose-rate (HDR) brachytherapy for prostate cancer and demonstrate opportunities for cost containment at an academic referral center. We implemented TDABC for patients treated with I-125, preplanned LDR and computed tomography based HDR brachytherapy with two implants from initial consultation through 12-month followup. We constructed detailed process maps for provision of both HDR and LDR. Personnel, space, equipment, and material costs of each step were identified and used to derive capacity cost rates, defined as price per minute. Each capacity cost rate was then multiplied by the relevant process time and products were summed to determine total cost of care. The calculated cost to deliver HDR was greater than LDR by $2,668.86 ($9,538 vs. $6,869). The first and second HDR treatment day cost $3,999.67 and $3,955.67, whereas LDR was delivered on one treatment day and cost $3,887.55. The greatest overall cost driver for both LDR and HDR was personnel at 65.6% ($4,506.82) and 67.0% ($6,387.27) of the total cost. After personnel costs, disposable materials contributed the second most for LDR ($1,920.66, 28.0%) and for HDR ($2,295.94, 24.0%). With TDABC, the true costs to deliver LDR and HDR from the health system perspective were derived. Analysis by physicians and hospital administrators regarding the cost of care afforded redesign opportunities including delivering HDR as one implant. Our work underscores the need to assess clinical outcomes to understand the true difference in value between these modalities. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  3. Dosimetry audits in Brazil for {sup 192}Ir high dose rate brachytherapy systems

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, L.A.R. da; Paiva, E. de.; Goncalves, M.G.; Velasco, A.F.; Di Prinzio, R.; Dovales, A.C.M.; Freire, B.L.V.; Brito, R.R.A.; Giannoni, R.A.; Castelo, L.H.R. [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Marechal, M.H.H. [Comissao Nacional de Energia Nuclear (CNEN), Rio de Janeiro, RJ (Brazil). Coordenacao de Instalacoes Radiativas (CORAD)

    2005-03-15

    In Brazil, among 200 radiotherapy centres, 30 have high dose rate (HDR) {sup 192}Ir brachytherapy systems. In August 2001, the Brazilian National Nuclear Energy Commission (CNEN) started a biennial audit program to those centres having HDR systems. This program consists of visiting each centre in order to investigate the radiation protection aspects of the centres and also to measure the intensity of the brachytherapy source, in terms of air kerma strength, with a well type chamber specially designed for HDR {sup 192} Ir sources. The audit dosimetry results are compared to measurements carried out by the local institution physicist and to the source intensity value provided by the manufacturer. Two methods have been used by the Brazilian physicists for HDR {sup 192}Ir brachytherapy source dosimetry, namely the employment of a farmer type chamber calibrated according to the interpolation methodology and the use of a well type chamber to provide direct intercomparison. The larger difference obtained was 18.9% and it can be explained in terms of the lack of knowledge of the institution physicist about the interpolation methodology using the farmer type chamber. Another difference of 5.82% was found as being the lack of an updated calibration factor for the clinic well type chamber. On the basis of these results, CNEN is able to establish a maximum deviation value for the dosimetry of HDR system. Additionally, with this program the radiotherapy services have an opportunity to have their HDR {sup 192}Ir sources calibrated and to test the validity of the calibration factors for their own well type chambers, using their calibrated sources. (author)

  4. Current situation of high-dose-rate brachytherapy for cervical cancer in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Rogerio Matias Vidal da; Souza, Divanizia do Nascimento, E-mail: rmv.fisica@gmail.com [Universidade Federal de Sergipe (UFS), Sao Cristovao, SE (Brazil); Pinezi, Juliana Castro Dourado [Pontificia Universidade Catolica de Goias (PUC-Goias), Goiania, GO (Brazil); Macedo, Luiz Eduardo Andrade [Hospital Chama, Arapiraca, AL (Brazil)

    2014-05-15

    To assess the current situation of high-dose-rate (HDR) brachytherapy for cancer of the cervix in Brazil, regarding apparatuses, planning methods, prescription, fractionation schedule and evaluation of dose in organs at risk. Materials and methods: in the period between March/2012 and May/2013, a multiple choice questionnaire was developed and sent to 89 Brazilian hospitals which perform HDR brachytherapy. Results: sixty-one services answered the questionnaire. All regions of the country experienced a sharp increase in the number of HDR brachytherapy services in the period from 2001 to 2013. As regards planning, although a three-dimensional planning software was available in 91% of the centers, conventional radiography was mentioned by 92% of the respondents as their routine imaging method for such a purpose. Approximately 35% of respondents said that brachytherapy sessions are performed after teletherapy. The scheme of four 7 Gy intracavitary insertions was mentioned as the most frequently practiced. Conclusion: the authors observed that professionals have difficulty accessing adjuvant three-dimensional planning tools such as computed tomography and magnetic resonance imaging. (author)

  5. Brachytherapy applications and techniques

    CERN Document Server

    Devlin, Phillip M

    2015-01-01

    Written by the foremost experts in the field, this volume is a comprehensive text and practical reference on contemporary brachytherapy. The book provides detailed, site-specific information on applications and techniques of brachytherapy in the head and neck, central nervous system, breast, thorax, gastrointestinal tract, and genitourinary tract, as well as on gynecologic brachytherapy, low dose rate and high dose rate sarcoma brachytherapy, vascular brachytherapy, and pediatric applications. The book thoroughly describes and compares the four major techniques used in brachytherapy-intraca

  6. SU-E-T-574: Fessiblity of Using the Calypso System for HDR Interstitial Catheter Reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Li, J S; Ma, C [Fox Chase Cancer Center, Philadelphia, PA (United States)

    2014-06-01

    Purpose: It is always a challenge to reconstruct the interstitial catheter for high dose rate (HDR) brachytherapy on patient CT or MR images. This work aims to investigate the feasibility of using the Calypso system (Varian Medical, CA) for HDR catheter reconstruction utilizing its accuracy on tracking the electromagnetic transponder location. Methods: Experiment was done with a phantom that has a HDR interstitial catheter embedded inside. CT scan with a slice thickness of 1.25 mm was taken for this phantom with two Calypso beacon transponders in the catheter. The two transponders were connected with a wire. The Calypso system was used to record the beacon transponders’ location in real time when they were gently pulled out with the wire. The initial locations of the beacon transponders were used for registration with the CT image and the detected transponder locations were used for the catheter path reconstruction. The reconstructed catheter path was validated on the CT image. Results: The HDR interstitial catheter was successfully reconstructed based on the transponders’ coordinates recorded by the Calypso system in real time when the transponders were pulled in the catheter. After registration with the CT image, the shape and location of the reconstructed catheter are evaluated against the CT image and the result shows an accuracy of 2 mm anywhere in the Calypso detectable region which is within a 10 cm X 10 cm X 10 cm cubic box for the current system. Conclusion: It is feasible to use the Calypso system for HDR interstitial catheter reconstruction. The obstacle for its clinical usage is the size of the beacon transponder whose diameter is bigger than most of the interstitial catheters used in clinic. Developing smaller transponders and supporting software and hardware for this application is necessary before it can be adopted for clinical use.

  7. Brachytherapy for Patients With Prostate Cancer: American Society of Clinical Oncology/Cancer Care Ontario Joint Guideline Update.

    Science.gov (United States)

    Chin, Joseph; Rumble, R Bryan; Kollmeier, Marisa; Heath, Elisabeth; Efstathiou, Jason; Dorff, Tanya; Berman, Barry; Feifer, Andrew; Jacques, Arthur; Loblaw, D Andrew

    2017-03-27

    Purpose To jointly update the Cancer Care Ontario guideline on brachytherapy for patients with prostate cancer to account for new evidence. Methods An Update Panel conducted a targeted systematic literature review and identified more recent randomized controlled trials comparing dose-escalated external beam radiation therapy (EBRT) with brachytherapy in men with prostate cancer. Results Five randomized controlled trials provided the evidence for this update. Recommendations For patients with low-risk prostate cancer who require or choose active treatment, low-dose rate brachytherapy (LDR) alone, EBRT alone, and/or radical prostatectomy (RP) should be offered to eligible patients. For patients with intermediate-risk prostate cancer choosing EBRT with or without androgen-deprivation therapy, brachytherapy boost (LDR or high-dose rate [HDR]) should be offered to eligible patients. For low-intermediate risk prostate cancer (Gleason 7, prostate-specific antigen < 10 ng/mL or Gleason 6, prostate-specific antigen, 10 to 20 ng/mL), LDR brachytherapy alone may be offered as monotherapy. For patients with high-risk prostate cancer receiving EBRT and androgen-deprivation therapy, brachytherapy boost (LDR or HDR) should be offered to eligible patients. Iodine-125 and palladium-103 are each reasonable isotope options for patients receiving LDR brachytherapy; no recommendation can be made for or against using cesium-131 or HDR monotherapy. Patients should be encouraged to participate in clinical trials to test novel or targeted approaches to this disease. Additional information is available at www.asco.org/Brachytherapy-guideline and www.asco.org/guidelineswiki .

  8. Applicator Attenuation Effect on Dose Calculations of Esophageal High-Dose Rate Brachytherapy Using EDR2 Film

    Directory of Open Access Journals (Sweden)

    Seyed Mohsen Hosseini Daghigh

    2012-03-01

    Full Text Available Introduction Interaluminal brachytherapy is one of the important methods of esophageal cancer treatment. The effect of applicator attenuation is not considered in dose calculation method released by AAPM-TG43. In this study, the effect of High-Dose Rate (HDR brachytherapy esophageal applicator on dose distribution was surveyed in HDR brachytherapy. Materials and Methods A cylindrical PMMA phantom was built in order to be inserted by various sizes of esophageal applicators. EDR2 films were placed at 33 mm from Ir-192 source and irradiated with 1.5 Gy after planning using treatment planning system for all applicators. Results The results of film dosimetry in reference point for 6, 8, 10, and 20 mm applicators were 1.54, 1.53, 1.48, and 1.50 Gy, respectively. The difference between practical and treatment planning system results was 0.023 Gy (

  9. MO-D-BRD-00: Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  10. Image-guided high dose rate endorectal brachytherapy.

    Science.gov (United States)

    Devic, Slobodan; Vuong, Té; Moftah, Belal; Evans, Michael; Podgorsak, Ervin B; Poon, Emily; Verhaegen, Frank

    2007-11-01

    Fractionated high dose rate endorectal brachytherapy (HDR-EBT) using CT-based treatment planning is an alternative method for preoperative down-sizing and down-staging of advanced rectal adeno-carcinomas. The authors present an image guidance procedure that was developed to ensure daily dose reproducibility for the four brachytherapy treatment fractions. Since the applicator might not be placed before each treatment fraction inside the rectal lumen in the same manner as it was placed during the 3D CT volume acquisition used for treatment planning, there is a shift along the catheter axis that may have to be performed. The required shift is determined by comparison of a daily radiograph with the treatment planning digitally-reconstructed radiograph (DRR). A procedure is developed for DRR reconstruction from the 3D data set used for the treatment planning, and two possible daily longitudinal shifts are illustrated: above and below the planning dose distribution. The authors also describe the procedure for rotational alignment illustrated on a clinical case. Reproduction of the treatment planned dose distribution on a daily basis is crucial for the success of fractionated 3D based brachytherapy treatments. Due to the cylindrical symmetry of the applicator used for preoperative HDR-EBT, two types of adjustments are necessary: applicator rotation and dwell position shift along the applicator's longitudinal axis. The impact of the longitudinal applicator shift prior to treatment delivery for 62 patients treated in our institution is also assessed.

  11. The general solution to HDR rendering

    Science.gov (United States)

    McCann, John

    2012-03-01

    Our High-Dynamic-Range (HDR) world is the result of nonuniform illumination. We like to believe that 21st century technology makes it possible to accurately reproduce any scene. On further study, we find that scene rendition remains a best compromise. Despite all the remarkable accomplishments in digital imaging, we cannot capture and reproduce the light in the world exactly. With still further study, we find that accurate reproduction is not necessary. We need an interdisciplinary study of image making - painting, photography and image processing - to find the general solution. HDR imaging would be very confusing, without two observations that resolve many paradoxes. First, optical veiling glare, that depends on the scene content, severely limits the range of light on cameras' sensors, and on retinas. Second, the neural spatial image processing in human vision counteracts glare with variable scene dependent responses. The counter actions of these optical and neural processes shape the goals of HDR imaging. Successful HDR increases the apparent contrast of details lost in the shadows and highlights of conventional images. They change the spatial relationships by altering the local contrast of edges and gradients. The goal of HDR imaging is displaying calculated appearance, rather than accurate light reproduction. By using this strategy we can develop universal algorithms that process all images, LDR and HDR, achromatic and color, by mimicking human vision. The study of the general solution for HDR imaging incorporates painting photography, vision research, color constancy and digital image processing.

  12. Effect of brachytherapy technique and patient characteristics on cervical cancer implant dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Anker, Christopher J., E-mail: chris.anker@hci.utah.edu [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States); O' Donnell, Kristen [Department of Radiation Oncology, The University of Arizona, Tucson, AZ (United States); Boucher, Kenneth M. [Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT (United States); Gaffney, David K. [Department of Radiation Oncology, Huntsman Cancer Hospital, University of Utah, Salt Lake City, UT (United States)

    2013-01-01

    Our purpose was to evaluate the relationship between brachytherapy technique and patient characteristics on dose to organs-at-risk (OARs) in patients undergoing high dose rate (HDR) brachytherapy for cervical cancer. From 1998 to 2008, 31 patients with cervical cancer with full dosimetric data were identified who received definitive external-beam radiation and HDR brachytherapy with tandem and ovoid applicators. Doses were recorded at point A, the International Commission on Radiation Units and Measurements (ICRU)-38 rectal point, the ICRU-38 bladder point, the vaginal surface, and the pelvic sidewall. Generalized estimating equations were used to determine the significance of changes in OAR to point A dose ratios with differences in brachytherapy technique or patient characteristics. Patients underwent a median of 5 brachytherapy procedures (range, 3 to 5), with a total of 179 procedures for 31 patients. For all brachytherapy treatments, the average ratios between the doses for the rectal, bladder, vaginal surface, and pelvic sidewall reference points to those at point A were 0.49, 0.59, 1.15, and 0.17, respectively. In general, decreased OAR dose was associated with a lower stage, younger age, increased ovoid size, increased tandem length, and earlier implant number. Increased tandem curvature significantly increased bladder dose and decreased rectal dose. Intravenous anesthesia usage was not correlated with improved dosimetry. This study allowed identification of patient and procedure characteristics influencing OAR dosing. Although the advent of 3-dimensional (3D) image-guided brachytherapy will bring new advances in treatment optimization, the actual technique involved at the time of the brachytherapy implant procedure will remain important.

  13. Interstitial rotating shield brachytherapy for prostate cancer

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Quentin E., E-mail: quentin-adams@uiowa.edu; Xu, Jinghzu; Breitbach, Elizabeth K.; Li, Xing; Rockey, William R.; Kim, Yusung; Wu, Xiaodong; Flynn, Ryan T. [Department of Radiation Oncology, University of Iowa, 200 Hawkins Drive, Iowa City, Iowa 52242 (United States); Enger, Shirin A. [Medical Physics Unit, McGill University, 1650 Cedar Ave, Montreal, Quebec H3G 1A4 (Canada)

    2014-05-15

    Purpose: To present a novel needle, catheter, and radiation source system for interstitial rotating shield brachytherapy (I-RSBT) of the prostate. I-RSBT is a promising technique for reducing urethra, rectum, and bladder dose relative to conventional interstitial high-dose-rate brachytherapy (HDR-BT). Methods: A wire-mounted 62 GBq{sup 153}Gd source is proposed with an encapsulated diameter of 0.59 mm, active diameter of 0.44 mm, and active length of 10 mm. A concept model I-RSBT needle/catheter pair was constructed using concentric 50 and 75 μm thick nickel-titanium alloy (nitinol) tubes. The needle is 16-gauge (1.651 mm) in outer diameter and the catheter contains a 535 μm thick platinum shield. I-RSBT and conventional HDR-BT treatment plans for a prostate cancer patient were generated based on Monte Carlo dose calculations. In order to minimize urethral dose, urethral dose gradient volumes within 0–5 mm of the urethra surface were allowed to receive doses less than the prescribed dose of 100%. Results: The platinum shield reduced the dose rate on the shielded side of the source at 1 cm off-axis to 6.4% of the dose rate on the unshielded side. For the case considered, for the same minimum dose to the hottest 98% of the clinical target volume (D{sub 98%}), I-RSBT reduced urethral D{sub 0.1cc} below that of conventional HDR-BT by 29%, 33%, 38%, and 44% for urethral dose gradient volumes within 0, 1, 3, and 5 mm of the urethra surface, respectively. Percentages are expressed relative to the prescription dose of 100%. For the case considered, for the same urethral dose gradient volumes, rectum D{sub 1cc} was reduced by 7%, 6%, 6%, and 6%, respectively, and bladder D{sub 1cc} was reduced by 4%, 5%, 5%, and 6%, respectively. Treatment time to deliver 20 Gy with I-RSBT was 154 min with ten 62 GBq {sup 153}Gd sources. Conclusions: For the case considered, the proposed{sup 153}Gd-based I-RSBT system has the potential to lower the urethral dose relative to HDR-BT by 29

  14. MO-FG-210-00: US Guided Systems for Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefit from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.

  15. SU-E-P-38: Comparison of Capri Applicator HDR Planning Methods to Meet the NCCN Uterine Neoplasm 2.2015 Guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Klash, S; Steinman, J [Radphys Oncology Services, LLC, Knoxville, TN (United States); Stanley, T [CCS Oncology Center, Kenmore, NY (United States); Kim, D; Yi, S [CCS Oncology, Williamsville, NY (United States); Yap, J [CCS Oncology, Williamsville, New York (United States)

    2015-06-15

    Purpose: To establish a systematic planning approach for Capri intravaginal multichannel balloon applicators that meet updated Version 2.2015 NCCN guidelines for uterine neoplasms, which dictate delivery of 400 to 600 cGy in 2 to 3 fractions prescribed to the vaginal mucosa for HDR combined with EBRT as well as a regimen of 600 cGy x 5 (to the vaginal mucosa) for HDR brachytherapy alone. Methods: Studies have shown three different channel configurations of the Capri applicator are optimal for dosimetric conformity: central channel combined with the six inner ring channels (R12), all inner and outer ring channels (R23), or all thirteen channels (R123). To minimize the dose to the vaginal mucosa, a traditional 0.5cm expansion contour from the Capri surface was created. Optimization limits were set to push 600 cGy to 100% of the Capri volume, while simultaneously restricting dose to the expansion contour. Results: Plans were created using all three configurations (R12, R23, R123) and evaluated to determine which was best for delivering 600 cGy to the vaginal mucosa. Our criteria was: Capri V100 > 98%, Vaginal Mucosa Dmax < 125%, Bladder Dmax < 100%, Rectum Dmax < 100%. All configurations show Capri V100 values greater than 98.5%, with differences between plans varying by less than 1%. Vaginal mucosal Dmax values showed differences of roughly 5% of prescription. The R12 configuration proved the lowest vaginal mucosa Dmax, on average. The OAR Dmax values showed an average dose difference of roughly 2% of prescription, with the R23 configuration having the best results. Conclusion: The R12 channel configuration optimally fits our planning criteria and NCCN guidelines for 600 cGy prescribed to the vaginal mucosa. On average, it produced the highest Capri V100, the lowest vaginal mucosal Dmax, and a marginally higher OAR Dmax doses compared to the R23 and R123 plans.

  16. HDR Efex Pro After the Shoot

    CERN Document Server

    Sholik, Stan

    2011-01-01

    A concise, on-the-go guide to the new HDR Efex Pro imaging toolkit for photographers Now that you've gone mobile and HDR, you want to be able to download and enhance your favorite photos on the run, without having to return to the mother ship (i.e., your desktop computer). This book shows you just how to do that using the amazing HDR Efex Pro, the image editing toolset from Nik Software. In brilliant color and using plenty of show-stopping examples, this practical guide explains all tools and features. Follow numbered steps and you'll soon be handling things like alignment, ghosting control, h

  17. Characterization of HDR Ir-192 source for 3D planning system

    Energy Technology Data Exchange (ETDEWEB)

    Fonseca, Gabriel P.; Yoriyaz, Helio; Antunes, Paula C.G.; Siqueira, Paulo T.D., E-mail: gabriel.fonseca@usp.b, E-mail: hyoriyaz@ipen.b, E-mail: ptsiquei@ipen.b [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil); Rubo, Rodrigo [Universidade de Sao Paulo (HC/FMUSP), Sao Paulo, SP (Brazil). Hospital das Clinicas. Servico de Radioterapia; Minamisawa, Renato A., E-mail: renato.minamisawa@psi.c [Paul Scherrer Institut (PSI), Villigen (Switzerland); Ferreira, Louise A. [Universidade Estadual de Maringa (UEM), PR (Brazil). Fac. de Medicina

    2011-07-01

    Brachytherapy treatment involves surgical or cavitary insertion of radioactive sources for diseases treatments, such as: lung, gynecologic or prostate cancer. This technique has great ability to administer high doses to the tumor, with adjacent normal tissue preservation equal or better than external beam radiation therapy. Several innovations have been incorporated in this treatment technique, such as, 3D treatment planning system and computer guided sources. In detriment to scientific advances there are no protocols that relate dose with tumor volume, organs or A point, established by ICRU38 and used to prescribe dose in treatment planning system. Several international studies, like as EMBRACE, the multicentre international study, has been trying to correlate the dose volume using 3D planning systems and medical images, as those obtained by CT or MRI, to establish treatment protocols. With the objective of analyzing the 3D dose distribution, a micro Selectron-HDR remote afterloading device for high dose-rate (HDR) was characterized in the present work. Through the data provided by the manufacturer the source was simulated, using the MCNP5 code to calculate American Association of Physicists in Medicine Task Group No. 43 report (AAPM TG43) specified parameters. The simulations have shown great agreement when compared to the ONCENTRA planning system results and those provided by literature. The micro Selectron-HDR remote afterloading device will be utilized to simulate 3D dose distribution through CT images processed by an auxiliary software which process DICOM images. (author)

  18. Determination of the Fricke G value for HDR {sup 192}Ir sources using ionometric measurements

    Energy Technology Data Exchange (ETDEWEB)

    Franco, L.; Coelho, M.; Almeida, C.E. de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Lab. de Ciencias Radiologicas; Gavazza, S. [Instituto Militar de Engenharia (IME), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    High Dose Rate (HDR) brachytherapy using {sup 192}Ir is widely accepted as an important treatment option, and it thus requires an accurate dosimetry standard. However, a dosimetry standard for the direct measurement of absolute dose to water is currently not available. The dose to water conversion is calculated via the dose rate constant {Lambda} and several correction factors accounting for the scatter, attenuation, and anisotropy of the dose distribution, among other effects. Two potentially useful procedures have been reported, including one by Sarfehnia et al. [3,4], which used a water-based calorimeter with an uncertainty of 1.9% for k=1, and a second by Austerlitz et al. and de Almeida et al., which used Fricke dosimetry with estimated uncertainties of 3.9% for k=1 and 1.4% for k=1, respectively. Chemical dosimetry using a standard FeSO{sub 4} solution has shown potential to be a reliable standard of absorbed dose for the HDR {sup 192}Ir source. A major uncertainty is associated with the G values reported by Fregene, which had a numerical value of 1.1 %. However, that reference provided very little detail of the experimental procedures for the {sup 192}Ir source. The G value may be obtained by using a calorimeter or ionometric measurements. In the absence of calorimetric data, this paper makes an attempt to measure the G value for the HDR {sup 192}Ir sources using ionometric measurements and recommendations from dosimetry protocols. (author)

  19. High dose-rate brachytherapy source position quality assurance using radiochromic film.

    Science.gov (United States)

    Evans, M D C; Devic, S; Podgorsak, E B

    2007-01-01

    Traditionally, radiographic film has been used to verify high-dose-rate brachytherapy source position accuracy by co-registering autoradiographic and diagnostic images of the associated applicator. Filmless PACS-based clinics that do not have access to radiographic film and wet developers may have trouble performing this quality assurance test in a simple and practical manner. We describe an alternative method for quality assurance using radiochromic-type film. In addition to being easy and practical to use, radiochromic film has some advantages in comparison with traditional radiographic film when used for HDR brachytherapy quality assurance.

  20. Prostate cancer brachytherapy; Braquiterapia de cancer de prostata

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Carlos Eduardo Vita; Silva, Joao L. F. [Hospital Sirio Libanes, Sao Paulo, SP (Brazil). Centro de Oncologia. Dep. de Radioterapia; Srougi, Miguel; Nesrallah, Adriano [Universidade Federal de Sao Paulo (UNIFESP), SP (Brazil). Escola Paulista de Medicina (EPM). Disciplina de Urologia]. E-mail: cevitabr@mandic.com.br

    1999-07-01

    The transperineal brachytherapy with {sup 125}I/Pd{sup 103} seed implantation guided by transurethral ultrasound must be presented as therapeutical option of low urinary morbidity in patients with localized prostate cancer. The combined clinical staging - including Gleason and initial PSA - must be encouraged, for definition of a group of low risk and indication of exclusive brachytherapy. Random prospective studies are necessary in order to define the best role of brachytherapy, surgery and external beam radiation therapy.

  1. Film based verification of calculation algorithms used for brachytherapy planning-getting ready for upcoming challenges of MBDCA

    Directory of Open Access Journals (Sweden)

    Grzegorz Zwierzchowski

    2016-08-01

    Full Text Available Purpose: Well-known defect of TG-43 based algorithms used in brachytherapy is a lack of information about interaction cross-sections, which are determined not only by electron density but also by atomic number. TG-186 recommendations with using of MBDCA (model-based dose calculation algorithm, accurate tissues segmentation, and the structure’s elemental composition continue to create difficulties in brachytherapy dosimetry. For the clinical use of new algorithms, it is necessary to introduce reliable and repeatable methods of treatment planning systems (TPS verification. The aim of this study is the verification of calculation algorithm used in TPS for shielded vaginal applicators as well as developing verification procedures for current and further use, based on the film dosimetry method. Material and methods : Calibration data was collected by separately irradiating 14 sheets of Gafchromic® EBT films with the doses from 0.25 Gy to 8.0 Gy using HDR 192Ir source. Standard vaginal cylinders of three diameters were used in the water phantom. Measurements were performed without any shields and with three shields combination. Gamma analyses were performed using the VeriSoft® package. Results : Calibration curve was determined as third-degree polynomial type. For all used diameters of unshielded cylinder and for all shields combinations, Gamma analysis were performed and showed that over 90% of analyzed points meets Gamma criteria (3%, 3 mm. Conclusions : Gamma analysis showed good agreement between dose distributions calculated using TPS and measured by Gafchromic films, thus showing the viability of using film dosimetry in brachytherapy.

  2. Interstitial brachytherapy for liver metastases and assessment of response by positron emission tomography: a case report

    Directory of Open Access Journals (Sweden)

    Goura Kishor Rath

    2010-10-01

    Full Text Available For liver metastases (LM, image guided percutaneous ablative procedures such as radiofrequency ablation (RFA, laser induced thermal therapy (LITT and trans-arterial chemo-embolisation (TACE are increasingly being used because they are relatively safer, less invasive and equally effective. CT scan guided interstitial brachytherapy (IBT with a single large dose of radiation by high dose rate (HDR brachytherapy is a novel technique of treating LM and has shown good results. Positron emission tomography (PET scan may provide better information for assessing the response toIBT procedures. We hereby report a case of LM that was treated by HDR IBT and PET scan was done in addition to CT scan for assessing the response.

  3. HDR ühest kaadrist? / Janno Loide

    Index Scriptorium Estoniae

    Loide, Janno

    2008-01-01

    HDR-töötluse (High dynamic range - pildi kõrge dünaamiline ulatus) ja toonide kohandamise (tone mapping) meetodite kasutamisest pildi digitaalsel salvestusel ning sobiva hele-tumeduse leidmisel loodusfotode parema kvaliteedi saamiseks

  4. Technical Note: Contrast solution density and cross section errors in inhomogeneity-corrected dose calculation for breast balloon brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Leonard H.; Zhang Miao; Howell, Roger W.; Yue, Ning J.; Khan, Atif J. [Department of Radiation Oncology, University of Medicine and Dentistry of New Jersey: Robert Wood Johnson Medical School and Cancer Institute of New Jersey, New Brunswick, New Jersey 08903 (United States); Department of Radiology, University of Medicine and Dentistry of New Jersey: New Jersey Medical School, Newark, New Jersey 07103 (United States); Department of Radiation Oncology, University of Medicine and Dentistry of New Jersey: Robert Wood Johnson Medical School and Cancer Institute of New Jersey, New Brunswick, New Jersey 08903 (United States)

    2013-01-15

    Purpose: Recent recommendations by the American Association of Physicists in Medicine Task Group 186 emphasize the importance of understanding material properties and their effect on inhomogeneity-corrected dose calculation for brachytherapy. Radiographic contrast is normally injected into breast brachytherapy balloons. In this study, the authors independently estimate properties of contrast solution that were expected to be incorrectly specified in a commercial brachytherapy dose calculation algorithm. Methods: The mass density and atomic weight fractions of a clinical formulation of radiographic contrast solution were determined using manufacturers' data. The mass density was verified through measurement and compared with the density obtained by the treatment planning system's CT calibration. The atomic weight fractions were used to determine the photon interaction cross section of the contrast solution for a commercial high-dose-rate (HDR) brachytherapy source and compared with that of muscle. Results: The density of contrast solution was 10% less than that obtained from the CT calibration. The cross section of the contrast solution for the HDR source was 1.2% greater than that of muscle. Both errors could be addressed by overriding the density of the contrast solution in the treatment planning system. Conclusions: The authors estimate the error in mass density and cross section parameters used by a commercial brachytherapy dose calculation algorithm for radiographic contrast used in a clinical breast brachytherapy practice. This approach is adaptable to other clinics seeking to evaluate dose calculation errors and determine appropriate density override values if desired.

  5. Drilling and Completion of the Urach III HDR Test Well

    Energy Technology Data Exchange (ETDEWEB)

    Meier, U.; Ernst, P. L.

    1981-01-01

    The hot dry rock (HDR) test well, urach III, was drilled and completed in 1979. The borehole is located in Southwest Germany in the geothermal anomaly of Urach. The purpose of project Urach was to study drilling and completion problems of HDR wells and to provide a test site for a HDR research program. The Urach III borehole was drilled to a total depth of 3,334 meters (10,939 feet), penetrating 1,700 meters (5,578 feet) into the granitic basement. Extensive coring was required to provide samples for geophysical and geochemical studies. Positive displacement downhole motors were used for coring and normal drilling operations. It was found that these motors in combination with the proper bits gave better results than conventional rotary drilling. Loss of circulation was encountered not only in sedimentary rocks but also in the granite. After drilling and completion of the borehole, a number of hydraulic fracturing experiments were performed in the open hole as well as in the cased section of Urach III. A circulation loop was established by using the single-borehole concept. It is not yet clear whether new fractures have actually been generated or preexisting joints and fissures have been reactivated. Evaluation of the results of this first step is almost completed and the planning of Phase II of the Urach project is under way.

  6. Re-irradiation of the chest wall for local breast cancer recurrence. Results of salvage brachytherapy with hyperthermia

    Energy Technology Data Exchange (ETDEWEB)

    Auoragh, A. [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Hospital Fuerth, Department of Radiation Oncology, Fuerth (Germany); Strnad, V.; Ott, O.J.; Fietkau, R. [University Hospital Erlangen, Department of Radiation Oncology, Erlangen (Germany); Beckmann, M.W. [University Hospital Erlangen, Department of Gynecology and Obstetrics, Erlangen (Germany)

    2016-09-15

    Following mastectomy and adjuvant external beam radiation therapy in patients with breast cancer, the incidence of local or locoregional recurrence is approximately 9 % (2-20 %). Alongside the often limited possibilities of surgical treatment, radiation therapy combined with superficial hyperthermia is the most effective local therapy. In the present work, a retrospective analysis of salvage brachytherapy combined with superficial hyperthermia for chest wall recurrences is presented. Between 2004 and 2011, 18 patients with a total of 23 target volumes resulting from chest wall recurrences after previously mastectomy and external beam radiation therapy (median 56 Gy, range 50-68 Gy) were treated with superficial brachytherapy as salvage treatment: 8 patients (44 %) had macroscopic tumor, 3 (17 %) had microscopic tumor (R1), and 7 (39 %) had undergone R0 resection and were treated due to risk factors. A dose of 50 Gy was given (high-dose rate [HDR] and pulsed-dose rate [PDR] procedures). In all, 5 of 23 patients (22 %) received additional concurrent chemotherapy, and in 20 of 23 (87 %) target volumes additional superficial hyperthermia was carried out twice weekly. The 5-year local recurrence-free survival was 56 %, the disease-free survival was 28 %, and a 5-year overall survival was 22 %. Late side effects Common Toxicity Criteria (CTC) grade 3 were reported in 17 % of the patients: 2 of 18 (11 %) had CTC grade 3 fibrosis, and 1 of 18 (6 %) had a chronic wound healing disorder. Re-irradiation as salvage brachytherapy with superficial hyperthermia for chest wall recurrences is a feasible and safe treatment with good local control results and acceptable late side effects. (orig.) [German] Nach einer Mastektomie und adjuvanter Strahlentherapie bei Patientinnen mit Mammakarzinom kommt es bei 9 % (2-20 %) zum lokalen bzw. lokoregionaeren Rezidiv. Neben den oft limitierten operativen Behandlungsmoeglichkeiten ist die Strahlentherapie mit Oberflaechenhyperthermie die

  7. Long term response stability of a well-type ionization chamber used in calibration of high dose rate brachytherapy sources

    Directory of Open Access Journals (Sweden)

    Vandana S

    2010-01-01

    Full Text Available Well-type ionization chamber is often used to measure strength of brachytherapy sources. This study aims to check long term response stability of High Dose Rate (HDR -1000 Plus well-type ionization chamber in terms of reference air kerma rate (RAKR of a reference 137 Cs brachytherapy source and recommend an optimum frequency of recalibration. An HDR-1000 Plus well-type ionization chamber, a reference 137 Cs brachytherapy source (CDCSJ5, and a MAX-4000 electrometer were used in this study. The HDR-1000 Plus well-type chamber was calibrated in terms of reference air kerma rate by the Standards Laboratory of the International Atomic Energy Agency (IAEA, Vienna. The response of the chamber was verified at regular intervals over a period of eight years using the reference 137 Cs source. All required correction factors were applied in the calculation of the RAKR of the 137 Cs source. This study reveals that the response of the HDR-1000 Plus well-type chamber was well within ±0.5% for about three years after calibration/recalibration. However, it shows deviations larger than ±0.5% after three years of calibration/recalibration and the maximum variation in response of the chamber during an eight year period was 1.71%. The optimum frequency of recalibration of a high dose rate well-type chamber should be three years.

  8. Long term response stability of a well-type ionization chamber used in calibration of high dose rate brachytherapy sources.

    Science.gov (United States)

    Vandana, S; Sharma, S D

    2010-04-01

    Well-type ionization chamber is often used to measure strength of brachytherapy sources. This study aims to check long term response stability of High Dose Rate (HDR)-1000 Plus well-type ionization chamber in terms of reference air kerma rate (RAKR) of a reference (137)Cs brachytherapy source and recommend an optimum frequency of recalibration. An HDR-1000 Plus well-type ionization chamber, a reference (137)Cs brachytherapy source (CDCSJ5), and a MAX-4000 electrometer were used in this study. The HDR-1000 Plus well-type chamber was calibrated in terms of reference air kerma rate by the Standards Laboratory of the International Atomic Energy Agency (IAEA), Vienna. The response of the chamber was verified at regular intervals over a period of eight years using the reference (137)Cs source. All required correction factors were applied in the calculation of the RAKR of the (137)Cs source. This study reveals that the response of the HDR-1000 Plus well-type chamber was well within +/-0.5% for about three years after calibration/recalibration. However, it shows deviations larger than +/-0.5% after three years of calibration/recalibration and the maximum variation in response of the chamber during an eight year period was 1.71%. The optimum frequency of recalibration of a high dose rate well-type chamber should be three years.

  9. MO-E-BRD-03: Intra-Operative Breast Brachytherapy: Is One Stop Shopping Best? [Non-invasive Image-Guided Breast Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Libby, B. [University of Virginia (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  10. 3D-printed applicators for high dose rate brachytherapy: Dosimetric assessment at different infill percentage.

    Science.gov (United States)

    Ricotti, Rosalinda; Vavassori, Andrea; Bazani, Alessia; Ciardo, Delia; Pansini, Floriana; Spoto, Ruggero; Sammarco, Vittorio; Cattani, Federica; Baroni, Guido; Orecchia, Roberto; Jereczek-Fossa, Barbara Alicja

    2016-12-01

    Dosimetric assessment of high dose rate (HDR) brachytherapy applicators, printed in 3D with acrylonitrile butadiene styrene (ABS) at different infill percentage. A low-cost, desktop, 3D printer (Hamlet 3DX100, Hamlet, Dublin, IE) was used for manufacturing simple HDR applicators, reproducing typical geometries in brachytherapy: cylindrical (common in vaginal treatment) and flat configurations (generally used to treat superficial lesions). Printer accuracy was investigated through physical measurements. The dosimetric consequences of varying the applicator's density by tuning the printing infill percentage were analysed experimentally by measuring depth dose profiles and superficial dose distribution with Gafchromic EBT3 films (International Specialty Products, Wayne, NJ). Dose distributions were compared to those obtained with a commercial superficial applicator. Measured printing accuracy was within 0.5mm. Dose attenuation was not sensitive to the density of the material. Surface dose distribution comparison of the 3D printed flat applicators with respect to the commercial superficial applicator showed an overall passing rate greater than 94% for gamma analysis with 3% dose difference criteria, 3mm distance-to-agreement criteria and 10% dose threshold. Low-cost 3D printers are a promising solution for the customization of the HDR brachytherapy applicators. However, further assessment of 3D printing techniques and regulatory materials approval are required for clinical application. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  11. An innovative method for {sup 192}Ir HDR calibration by farmer chamber, V-film, and solid phantom

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Liyun; Ding, Hueisch-Jy [Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan (China); Ho, Sheng-Yow, E-mail: shengho@seed.net.tw [Department of Radiation Oncology, Sinlau Christian Hospital, Tainan, Taiwan (China)

    2011-08-01

    A simple, practical and economical technique was proposed to calibrate an {sup 192}Ir HDR brachytherapy source in terms of air kerma strength. This technique makes use of the 0.6 cm{sup 3} Farmer type ion chamber, radiographic film and polystyrene phantom. These tools are commonly used for dosimetry quality assurance of the clinical linear accelerator. In this study, the Exradin A19, PTW N30004 and TM30001 Farmer type ion chambers were used for the calibration of the {sup 192}Ir HDR source. To perform the calibration, a 25.4x30.5 cm{sup 2} radiographic film was taped on a piece of polystyrene plate, and a straight applicator probe of a HDR brachytherapy unit and the Farmer type ion chamber were affixed to the film envelope. The film was irradiated by the {sup 192}Ir source, followed by an exposure in the simulator X-ray beam. The film set with the film removed was then placed on a 5 cm thick polystyrene phantom for calibration measurement. Based on the electrometer reading from the Farmer type ion chamber irradiated by {sup 192}Ir and the measured source-to-chamber distance by means of the images on the developed film, we can calculate the air kerma strength of the {sup 192}Ir using the new technique. Our calibration results were compared to the data provided by the manufacturer and that of five different well type ion chambers, namely, Sun Nuclear cooperation (SNC) 1008, Nucletron SDS 077.091, SDS 077.094, PTW TN33004 and Standard Imaging (SI) HDR-1000 Plus. The differences were all within 1.6%. Relative to the '7-distance measurement technique' by Stump et al., 2002, our method is more efficient if our empirical formula was used. In summary, our method is simpler and cost-effective to calibrate an {sup 192}Ir HDR brachytherapy source for those hospitals without a calibration jig or a well type ion chamber.

  12. Results of concomitant chemoradiation for cervical cancer using high dose rate intracavitary brachytherapy: Study of JROSG (Japan Radiation Oncology Study Group)

    Energy Technology Data Exchange (ETDEWEB)

    Sakata, Koh-Ichi (Dept. of Radiology, Sapporo Medical Univ., School of Medicine, Sapporo (JP)); Sakurai, Hideyuki; Suzuki, Yoshiyuki (Dept. of Radiology and Radiation Oncology, Gunna Univ., School of Medicine, Gunna (JP)) (and others)

    2008-03-15

    The purpose of this study was to clarify outcome for concurrent chemoradiation (CT-RT) in locally advanced cervix cancer in Japan. This is a non-randomized retrospective analysis of 226 patients treated with definitive CT-RT or radiotherapy alone (RT alone) in nine institutions between 2001 and 2003. External irradiation consisted of whole pelvic irradiation and pelvic side wall boost irradiation, using a central shield during the latter half of the treatment with the anteroposterior parallel opposing technique. The external beam irradiation was performed with 1.8 or 2 Gy per fraction. High-dose-rate intracavitary brachytherapy (HDR) was performed in all cases. In chemotherapy, platinum based drugs were used alone or in combination with other drugs such as 5FU. Grade of late complications was scaled retrospectively with CTCv2.0. Overall survival rate at 50 months of stage Ib, II and III, IV was 82% and 66% in CR-RT and 81% and 43% in R alone, respectively. Disease-free survival rate at 50 months of stage Ib, II and III, IV was 74% and 59% in CR-RT and 76% and 52% in R alone, respectively. There was no significant difference between CT-RT and RT for overall survival and disease free survival. Univariate analysis suggested that loco-regional control was better with CT-RT, but multivariate analysis could not confirm this finding. Compared to RT alone, CT-RT caused significantly more acute and late complications. Thus, late complication (grade 3-4) free survival rate at 50 month was 69% for CT-RT and 86% for RT alone (p<0.01). The therapeutic window with concomitant radiochemotherapy and HDR brachytherapy may be narrow, necessitating a close control of dose volume parameters and adherence to systems for dose prescription

  13. Verification of Oncentra brachytherapy planning using independent calculation

    Science.gov (United States)

    Safian, N. A. M.; Abdullah, N. H.; Abdullah, R.; Chiang, C. S.

    2016-03-01

    This study was done to investigate the verification technique of treatment plan quality assurance for brachytherapy. It is aimed to verify the point doses in 192Ir high dose rate (HDR) brachytherapy between Oncentra Masterplan brachytherapy treatment planning system and independent calculation software at a region of rectum, bladder and prescription points for both pair ovoids and full catheter set ups. The Oncentra TPS output text files were automatically loaded into the verification programme that has been developed based on spreadsheets. The output consists of source coordinates, desired calculation point coordinates and the dwell time of a patient plan. The source strength and reference dates were entered into the programme and then dose point calculations were independently performed. The programme shows its results in a comparison of its calculated point doses with the corresponding Oncentra TPS outcome. From the total of 40 clinical cases that consisted of two fractions for 20 patients, the results that were given in term of percentage difference, it shows an agreement between TPS and independent calculation are in the range of 2%. This programme only takes a few minutes to be used is preferably recommended to be implemented as the verification technique in clinical brachytherapy dosimetry.

  14. Advancements in brachytherapy

    DEFF Research Database (Denmark)

    Tanderup, Kari; Ménard, Cynthia; Polgar, Csaba

    2017-01-01

    Brachytherapy is a radiotherapy modality associated with a highly focal dose distribution. Brachytherapy treats the cancer tissue from the inside, and the radiation does not travel through healthy tissue to reach the target as with external beam radiotherapy techniques. The nature of brachytherap...... in terms of controlling dose and demonstrating excellent clinical outcome. Interests in focal, hypofractionated and adaptive treatments are increasing, and brachytherapy has significant potential to develop further in these directions with current and new treatment indications....

  15. Clinical feasibility of interstitial brachytherapy using a "hybrid" applicator combining uterine tandem and interstitial metal needles based on CT for locally advanced cervical cancer.

    Science.gov (United States)

    Liu, Zhong-Shan; Guo, Jie; Lin, Xia; Wang, Hong-Yong; Qiu, Ling; Ren, Xiao-Jun; Li, Yun-Feng; Zhang, Bing-Ya; Wang, Tie-Jun

    2016-01-01

    To explore the dosimetric advantage of target volume and surrounding normal tissue by using interstitial (IS) brachytherapy (BT) based on three-dimensional CT in locally advanced cervical cancer, as a simple and effective clinical treatment approach. Fifty-two patients with poor tumor response to external beam radiotherapy and a residual tumor >5 cm at the time of the first BT were included. IS BT was performed using a "hybrid" applicator combining uterine tandem and free metal needles based on three-dimensional CT. The high-risk clinical target volume (HR-CTV), intermediate-risk clinical target volume, and organs at risk were contoured. The total dose, including external beam radiotherapy (45 Gy in 25 fractions) and high-dose-rate BT (30 Gy in 5 fractions), was biologically normalized to conventional 2-Gy fractions. D90 and D100 for HR-CTV and intermediate-risk clinical target volume and D2cc for the bladder, rectum, and sigmoid were analyzed. The mean D90 value for HR-CTV was 88.4 ± 3.5 Gy. Totally, 88.5% of the patients received D90 for HR-CTV ≥87 Gy. The D2cc for the bladder, rectum, and sigmoid were 81.1 ± 5.6, 65.7 ± 5.1, and 63.1 ± 5.4 Gy, respectively. The mean number of needles was 6.9 ± 1.3 for each application. IS BT was associated with minor complications. IS BT using the "hybrid" applicator provides a dosimetric advantage for target volume and organs at risk in large-volume (>5 cm) tumors and is, thereby, clinically feasible. However, the long-term curative effect and possible toxicity need further clinical observation. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  16. Virtual HDR CyberKnife SBRT for Localized Prostatic Carcinoma: 5-year Disease-free Survival and Toxicity Observations

    Directory of Open Access Journals (Sweden)

    Donald Blake Fuller

    2014-11-01

    Full Text Available PURPOSEProstate stereotactic body radiotherapy (SBRT may substantially recapitulate the dose distribution of high-dose-rate (HDR brachytherapy, representing an externally delivered Virtual HDR treatment method. Herein we present 5-year outcomes from a cohort of consecutively treated Virtual HDR SBRT prostate cancer patients.METHODSSeventy-nine patients were treated from 2006 - 2009, 40 low-risk and 39 intermediate-risk, under IRB-approved clinical trial, to 38 Gy in 4 fractions. The planning target volume (PTV included prostate plus a 2-mm volume expansion in all directions, with selective use of a 5-mm prostate-to-PTV expansion and proximal seminal vesicle coverage in intermediate-risk patients, to better cover potential extraprostatic disease; rectal PTV margin reduced to zero in all cases. The prescription dose covered > 95% of the PTV (V100 >= 95%, with a minimum 150% PTV dose escalation to create HDR-like PTV dose distribution.RESULTSMedian pre-SBRT PSA level of 5.6 ng/mL decreased to 0.05 ng/mL 5 years out and 0.02 ng/mL 6 years out. At least one PSA bounce was seen in 55 patients (70% but only 3 of them subsequently relapsed, Biochemical-relapse-free survival was 100% and 92% for low-risk and intermediate-risk patients, respectively, by ASTRO definition (98% and 92% by Phoenix definition. Local relapse did not occur, distant metastasis-free survival was 100% and 95% by risk-group, and disease-specific survival was 100%. Acute and late grade 2 GU toxicity incidence was 10% and 9%, respectively; with 6% late grade 3 GU toxicity. Acute urinary retention did not occur. Acute and late grade 2 GI toxicity was 0% and 1%, respectively, with no grade 3 or higher toxicity. Of patients potent pre-SBRT, 65% remained so at 5 years.CONCLUSIONSVirtual HDR prostate SBRT creates a very low PSA nadir, a high rate of 5-year disease-free survival and an acceptable toxicity incidence, with results closely resembling those reported post-HDR brachytherapy.

  17. Study of encapsulated {sup 170}Tm sources for their potential use in brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Venselaar, Jack L. M.; Rivard, Mark J. [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, E-46100 Burjassot (Spain) and IFIC, CSIC, University of Valencia, E-46100 Burjassot (Spain); Department of Radiation Oncology, ERESA, Hospital General Universitario, E-46014 Valencia (Spain); Department of Radiation Oncology, La Fe University Hospital, E-46009 Valencia (Spain); Department of Medical Physics, Instituut Verbeeten, Tilburg 5000LA (Netherlands); Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2010-04-15

    Purpose: High dose-rate (HDR) brachytherapy is currently performed with {sup 192}Ir sources, and {sup 60}Co has returned recently into clinical use as a source for this kind of cancer treatment. Both radionuclides have mean photon energies high enough to require specific shielded treatment rooms. In recent years, {sup 169}Yb has been explored as an alternative for HDR-brachytherapy implants. Although it has mean photon energy lower than {sup 192}Ir, it still requires extensive shielding to deliver treatment. An alternative radionuclide for brachytherapy is {sup 170}Tm (Z=69) because it has three physical properties adequate for clinical practice: (a) 128.6 day half-life, (b) high specific activity, and (c) mean photon energy of 66.39 keV. The main drawback of this radionuclide is the low photon yield (six photons per 100 electrons emitted). The purpose of this work is to study the dosimetric characteristics of this radionuclide for potential use in HDR-brachytherapy. Methods: The authors have assumed a theoretical {sup 170}Tm cylindrical source encapsulated with stainless steel and typical dimensions taken from the currently available HDR {sup 192}Ir brachytherapy sources. The dose-rate distribution was calculated for this source using the GEANT4 Monte Carlo (MC) code considering both photon and electron {sup 170}Tm spectra. The AAPM TG-43 U1 brachytherapy dosimetry parameters were derived. To study general properties of {sup 170}Tm encapsulated sources, spherical sources encapsulated with stainless steel and platinum were also studied. Moreover, the influence of small variations in the active core and capsule dimensions on the dosimetric characteristics was assessed. Treatment times required for a {sup 170}Tm source were compared to those for {sup 192}Ir and {sup 169}Yb for the same contained activity. Results: Due to the energetic beta spectrum and the large electron yield, the bremsstrahlung contribution to the dose was of the same order of magnitude as from the

  18. Clinical outcomes following 3D image-guided brachytherapy for vaginal recurrence of endometrial cancer.

    Science.gov (United States)

    Lee, Larissa J; Damato, Antonio L; Viswanathan, Akila N

    2013-12-01

    To evaluate clinical outcomes for women with recurrent endometrial cancer treated with 3D image-guided brachytherapy 44 women, of whom 13 had received prior RT, received salvage RT for vaginal recurrence from 9/03 to 8/11. HDR or LDR interstitial brachytherapy was performed under MR or CT guidance in 35 patients (80%); 9 (20%) had CT-guided HDR cylinder brachytherapy. The median cumulative dose in EQD2 was 75.5 Gy. Actuarial estimates of local failure (LF), disease-free (DFS) and overall survival (OS) were calculated by Kaplan-Meier. Histologic subtypes were endometrioid (EAC, 33), papillary serous/clear cell (UPSC/CC, 5) and carcinosarcoma (CS, 6). The 2-year DFS/OS rates were 75%/89% for EAC and 11%/24% for UPSC/CC/CS (both pradiotherapy. 3D image-guided brachytherapy results in excellent local control for women with recurrent endometrial cancer, particularly with cumulative EQD2 doses greater than 70 Gy. Successful salvage of vaginal recurrence is related to tumor grade and histologic subtype. © 2013.

  19. The role of interstitial brachytherapy in the management of primary radiation therapy for uterine cervical cancer

    Directory of Open Access Journals (Sweden)

    Naoya Murakami

    2016-10-01

    Full Text Available Purpose : The aim of this study was to report the clinical results of uterine cervical cancer patients treated by primary radiation therapy including brachytherapy, and investigate the role of interstitial brachytherapy (ISBT. Material and methods: All consecutive uterine cervical cancer patients who were treated by primary radiation therapy were reviewed, and those who were treated by ISBT were further investigated for clinical outcomes and related toxicities. Results : From December 2008 to October 2014, 209 consecutive uterine cervical cancer patients were treated with primary radiation therapy. Among them, 142 and 42 patients were treated by intracavitary and hybrid brachytherapy, respectively. Twenty-five patients (12% were treated by high-dose-rate (HDR-ISBT. Five patients with distant metastasis other than para-aortic lymph node were excluded, and 20 patients consisted of the analysis. Three-year overall survival (OS, progression-free survival (PFS, and local control (LC rate were 44.4%, 38.9%, and 87.8%, respectively. Distant metastasis was the most frequent site of first relapse after HDR-ISBT. One and four patients experienced grade 3 and 2 rectal bleeding, one grade 2 cystitis, and two grade 2 vaginal ulcer. Conclusions : Feasibility and favorable local control of interstitial brachytherapy for locally advanced cervical cancer was demonstrated through a single institutional experience with a small number of patients.

  20. MO-FG-210-01: Commissioning An US System for Brachytherapy: An Overview of Physics, Instrumentation, and Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Z. [Duke University Medical Center (United States)

    2015-06-15

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefit from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.

  1. MO-FG-210-03: Intraoperative Ultrasonography-Guided Positioning of Plaque Brachytherapy in the Treatment of Choroidal Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Lamb, J. [University of California, Los Angeles (United States)

    2015-06-15

    Ultrasound (US) is one of the most widely used imaging modalities in medical practice. Since US imaging offers real-time imaging capability, it has becomes an excellent option to provide image guidance for brachytherapy (IGBT). (1) The physics and the fundamental principles of US imaging are presented, and the typical steps required to commission an US system for IGBT is provided for illustration. (2) Application of US for prostate HDR brachytherapy, including partial prostate treatments using MR-ultrasound co-registration to enable a focused treatment on the disease within the prostate is also presented. Prostate HDR with US image guidance planning can benefit from real time visualization of the needles, and fusion of the ultrasound images with T2 weighted MR allows the focusing of the treatment to the specific areas of disease within the prostate, so that the entire gland need not be treated. Finally, (3) ultrasound guidance for an eye plaque program is presented. US can be a key component of placement and QA for episcleral plaque brachytherapy for ocular cancer, and the UCLA eye plaque program with US for image guidance is presented to demonstrate the utility of US verification of plaque placement in improving the methods and QA in episcleral plaque brachytherapy. Learning Objectives: To understand the physics of an US system and the necessary aspects of commissioning US for image guided brachytherapy (IGBT). To understand real time planning of prostate HDR using ultrasound, and its application in partial prostate treatments using MR-ultrasound fusion to focus treatment on disease within the prostate. To understand the methods and QA in applying US for localizing the target and the implant during a episcleral plaque brachytherapy procedures.

  2. MO-E-BRD-00: Breast Brachytherapy: The Phoenix of Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  3. MO-E-BRD-01: Is Non-Invasive Image-Guided Breast Brachytherapy Good?

    Energy Technology Data Exchange (ETDEWEB)

    Hiatt, J. [Rhode Island Hospital (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  4. MO-E-BRD-02: Accelerated Partial Breast Irradiation in Brachytherapy: Is Shorter Better?

    Energy Technology Data Exchange (ETDEWEB)

    Todor, D. [Virginia Commonwealth University (United States)

    2015-06-15

    Is Non-invasive Image-Guided Breast Brachytherapy Good? – Jess Hiatt, MS Non-invasive Image-Guided Breast Brachytherapy (NIBB) is an emerging therapy for breast boost treatments as well as Accelerated Partial Breast Irradiation (APBI) using HDR surface breast brachytherapy. NIBB allows for smaller treatment volumes while maintaining optimal target coverage. Considering the real-time image-guidance and immobilization provided by the NIBB modality, minimal margins around the target tissue are necessary. Accelerated Partial Breast Irradiation in brachytherapy: is shorter better? - Dorin Todor, PhD VCU A review of balloon and strut devices will be provided together with the origins of APBI: the interstitial multi-catheter implant. A dosimetric and radiobiological perspective will help point out the evolution in breast brachytherapy, both in terms of devices and the protocols/clinical trials under which these devices are used. Improvements in imaging, delivery modalities and convenience are among the factors driving the ultrashort fractionation schedules but our understanding of both local control and toxicities associated with various treatments is lagging. A comparison between various schedules, from a radiobiological perspective, will be given together with a critical analysis of the issues. to review and understand the evolution and development of APBI using brachytherapy methods to understand the basis and limitations of radio-biological ‘equivalence’ between fractionation schedules to review commonly used and proposed fractionation schedules Intra-operative breast brachytherapy: Is one stop shopping best?- Bruce Libby, PhD. University of Virginia A review of intraoperative breast brachytherapy will be presented, including the Targit-A and other trials that have used electronic brachytherapy. More modern approaches, in which the lumpectomy procedure is integrated into an APBI workflow, will also be discussed. Learning Objectives: To review past and current

  5. Balloon-based adjuvant radiotherapy in breast cancer: comparison between {sup 99m}Tc and HDR {sup 192}Ir

    Energy Technology Data Exchange (ETDEWEB)

    Campos, Tarcisio Passos Ribeiro de; Lima, Carla Flavia de; Cuperschmid, Ethel Mizrahy, E-mail: tprcampos@pq.cnpq.br [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil)

    2016-03-15

    Objective: To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with {sup 99m}Tc and balloon brachytherapy with high-dose-rate (HDR) {sup 192}Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and methods: simulations of implants with {sup 99m}Tc-filled and HDR {sup 192}Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results: the {sup 99m}Tc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h{sup -1}.mCi{sup -1} and 0.190 cGyh{sup -1} at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh{sup -1}.mCi{sup -1}, respectively, for the HDR {sup 192}Ir balloon. An exposure time of 24 hours was required for the {sup 99m}Tc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR {sup 192}Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion: temporary {sup 99m}Tc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR {sup 192}Ir balloon implantation, which is the current standard in clinical practice. (author)

  6. Balloon-based adjuvant radiotherapy in breast cancer: comparison between 99mTc and HDR 192Ir*

    Science.gov (United States)

    de Campos, Tarcísio Passos Ribeiro; de Lima, Carla Flavia; Cuperschmid, Ethel Mizrahy

    2016-01-01

    Objective To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with 99mTc and balloon brachytherapy with high-dose-rate (HDR) 192Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Materials and Methods Simulations of implants with 99mTc-filled and HDR 192Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. Results The 99mTc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h-1.mCi-1 and 0.190 cGyh-1.mCi-1 at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh-1.mCi-1, respectively, for the HDR 192Ir balloon. An exposure time of 24 hours was required for the 99mTc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR 192Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Conclusion Temporary 99mTc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR 192Ir balloon implantation, which is the current standard in clinical practice. PMID:27141131

  7. Balloon-based adjuvant radiotherapy in breast cancer: comparison between (99m)Tc and HDR (192)Ir.

    Science.gov (United States)

    de Campos, Tarcísio Passos Ribeiro; de Lima, Carla Flavia; Cuperschmid, Ethel Mizrahy

    2016-01-01

    To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with (99m)Tc and balloon brachytherapy with high-dose-rate (HDR) (192)Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time. Simulations of implants with (99m)Tc-filled and HDR (192)Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified. The (99m)Tc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h(-1).mCi(-1) and 0.190 cGyh(-1).mCi(-1) at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh(-1).mCi(-1), respectively, for the HDR (192)Ir balloon. An exposure time of 24 hours was required for the (99m)Tc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR (192)Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions. Temporary (99m)Tc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR (192)Ir balloon implantation, which is the current standard in clinical practice.

  8. [Long-term oncologic outcomes of localized high-risk prostate cancer undergoing brachytherapy combined with external-beam radiation therapy and maximal androgen blockade].

    Science.gov (United States)

    Luo, Y; Li, M C; Qi, H Z; Zhao, J H; Han, Y L; Lin, Y H; Hou, Z; Jiang, Y G

    2017-07-11

    Objective: To investigate the oncologic outcome and PSA kinetics of localized high-risk prostate cancer (PCa) patients treated with combination strategy of radiation therapy (RT) and maximal androgen blockade (MAB). Methods: We retrospectively reviewed the clinical data of 320 localized PCa patients undergoing RT+ MAB from 2001 to 2015. And radiation treatment protocol consisted of permanent prostate brachytherapy (PPB) at 110 Gy and EBRT at 45 Gy/23 fractions. Results: The median follow-up time was 90 (range: 12-186) months. And 117 (36.6%) cases underwent MAB + external-beam radiotherapy (EBRT), and other 203 (63.4%) cases received MAB+ EBRT+ PPB. Multivariate Cox regression analyses showed that PSA kinetics were positive indicators of oncologic outcomes. Furthermore, PSA kinetics were aberrantly improved by supplemental PPB to MAB+ EBRT as following, PSA nadir (1.3±0.7)μg/L vs(0.11±0.06)μg/L, time of PSA decrease to nadir (7.5±1.8)months vs (3.2±2.1)months, PSA doubling time (15.6±4.2)months vs (22.6±6.1)months, PSA decreasing amplitude (84.6±6.2)%vs(95.8±3.4)%. Additionally, the median time of several important oncologic events in MAB+ EBRT+ PPB group were also prolonged than that in MAB+ EBRT group as following, overall survival (12.3 years vs 9.1 years, PPPB is extremely effective combination strategy for localized high-risk PCa patients, and PPB plays the important synergistic role in improving PSA kinetics, which are independent predictor for oncologic outcomes.

  9. SU-E-J-181: Effect of Prostate Motion On Combined Brachytherapy and External Beam Dose Based On Daily Motion of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Narayana, V; McLaughlin, P [Providence Cancer Center, Southfield, MI (United States); University of Michigan, Ann Arbor, MI (United States); Ealbaj, J [University of Michigan, Ann Arbor, MI (United States)

    2015-06-15

    Purpose: In this study, the adequacy of target expansions on the combined external beam and implant dose was examined based on the measured daily motion of the prostate. Methods: Thirty patients received an I–125 prostate implant prescribed to dose of 90Gy. This was followed by external beam to deliver a dose of 90Gyeq (external beam equivalent) to the prostate over 25 to 30 fractions. An ideal IMRT plan was developed by optimizing the external beam dose based on the delivered implant dose. The implant dose was converted to an equivalent external beam dose using the linear quadratic model. Patients were set up on the treatment table by daily orthogonal imaging and aligning the marker seeds in the prostate. Orthogonal images were obtained at the end of treatment to assess prostate intrafraction motion. Based on the observed motion of the markers between the initial and final images, 5 individual plans showing the actual dose delivered to the patient were calculated. A final true dose distribution was established based on summing the implant dose and the 5 external beam plans. Dose to the prostate, seminal vesicles, lymphnodes and normal tissues, rectal wall, urethra and lower sphincter were calculated and compared to ideal. On 18 patients who were sexually active, dose to the corpus cavernosum and internal pudendal artery was also calculated. Results: The average prostate motion in 3 orthogonal directions was less than 1 mm with a standard deviation of less than +2 mm. Dose and volume parameters showed that there was no decrease in dose to the targets and a marginal decrease in dose to in normal tissues. Conclusion: Dose delivered by seed implant moves with the prostate, decreasing the impact of intrafractions dose movement on actual dose delivered. Combined brachytherapy and external beam dose delivered to the prostate was not sensitive to prostate motion.

  10. User's manual for HDR3 computer code

    Energy Technology Data Exchange (ETDEWEB)

    Arundale, C.J.

    1982-10-01

    A description of the HDR3 computer code and instructions for its use are provided. HDR3 calculates space heating costs for a hot dry rock (HDR) geothermal space heating system. The code also compares these costs to those of a specific oil heating system in use at the National Aeronautics and Space Administration Flight Center at Wallops Island, Virginia. HDR3 allows many HDR system parameters to be varied so that the user may examine various reservoir management schemes and may optimize reservoir design to suit a particular set of geophysical and economic parameters.

  11. Dosimetry analyses comparing high-dose-rate brachytherapy, administered as monotherapy for localized prostate cancer, with stereotactic body radiation therapy simulated using CyberKnife.

    Science.gov (United States)

    Fukuda, Shoichi; Seo, Yuji; Shiomi, Hiroya; Yamada, Yuji; Ogata, Toshiyuki; Morimoto, Masahiro; Konishi, Koji; Yoshioka, Yasuo; Ogawa, Kazuhiko

    2014-11-01

    The purpose of this study was to perform dosimetry analyses comparing high-dose-rate brachytherapy (HDR-BT) with simulated stereotactic body radiotherapy (SBRT). We selected six consecutive patients treated with HDR-BT monotherapy in 2010, and a CyberKnife SBRT plan was simulated for each patient using computed tomography images and the contouring set used in the HDR-BT plan for the actual treatment, but adding appropriate planning target volume (PTV) margins for SBRT. Then, dosimetric profiles for PTVs of the rectum, bladder and urethra were compared between the two modalities. The SBRT plan was more homogenous and provided lower dose concentration but better coverage for the PTV. The maximum doses in the rectum were higher in the HDR-BT plans. However, the HDR-BT plan provided a sharper dose fall-off around the PTV, resulting in a significant and considerable difference in volume sparing of the rectum with the appropriate PTV margins added for SBRT. While the rectum D5cm(3) for HDR-BT and SBRT was 30.7 and 38.3 Gy (P urethra. These results suggest that SBRT as an alternative to HDR-BT in hypofractionated radiotherapy for prostate cancer might have an advantage for bladder and urethra dose sparing, but for the rectum only when proper PTV margins for SBRT are adopted.

  12. Monte Carlo dosimetric study of the BEBIG Co-60 HDR source

    Energy Technology Data Exchange (ETDEWEB)

    Ballester, F [Department of Atomic, Molecular and Nuclear Physics and IFIC, University of Valencia-CSIC, Dr Moliner 50, E46100 Burjassot (Spain); Granero, D [Department of Atomic, Molecular and Nuclear Physics and IFIC, University of Valencia-CSIC, Dr Moliner 50, E46100 Burjassot (Spain); Perez-Calatayud, J [' La Fe' University Hospital, Radiotherapy Department, Avda Campanar 21, E46009 Valencia (Spain); Casal, E [Department of Atomic, Molecular and Nuclear Physics and IFIC, University of Valencia-CSIC, Dr Moliner 50, E46100 Burjassot (Spain); Agramunt, S [ITIC, Hospital ClInica Benidorm, Avd. Alfonso Puchades 8, E03500 Benidorm (Spain); Cases, R [Department of Atomic, Molecular and Nuclear Physics and IFIC, University of Valencia-CSIC, Dr Moliner 50, E46100 Burjassot (Spain)

    2005-11-07

    Although not as widespread as Ir-192, Co-60 is also available on afterloading equipment devoted to high dose rate brachytherapy, mainly addressed to the treatment of gynaecological lesions. The purpose of this study is to obtain the dosimetric parameters of the Co-60 source used by the BEBIG MultiSource remote afterloader (BEBIG GmbH, Germany) for which there are no dosimetric data available in the literature. The Monte Carlo code GEANT4 has been used to obtain the TG43 parameters and the 2D dose rate table in Cartesian coordinates of the BEBIG Co-60 HDR source. The dose rate constant, radial dose function and anisotropy function have been calculated and are presented in a tabular form as well as a detailed 2D dose rate table in Cartesian coordinates. These dosimetric datasets can be used as input data and to validate the treatment planning system calculations. (note)

  13. NOTE: Monte Carlo dosimetric study of the BEBIG Co-60 HDR source

    Science.gov (United States)

    Ballester, F.; Granero, D.; Pérez-Calatayud, J.; Casal, E.; Agramunt, S.; Cases, R.

    2005-11-01

    Although not as widespread as Ir-192, Co-60 is also available on afterloading equipment devoted to high dose rate brachytherapy, mainly addressed to the treatment of gynaecological lesions. The purpose of this study is to obtain the dosimetric parameters of the Co-60 source used by the BEBIG MultiSource remote afterloader (BEBIG GmbH, Germany) for which there are no dosimetric data available in the literature. The Monte Carlo code GEANT4 has been used to obtain the TG43 parameters and the 2D dose rate table in Cartesian coordinates of the BEBIG Co-60 HDR source. The dose rate constant, radial dose function and anisotropy function have been calculated and are presented in a tabular form as well as a detailed 2D dose rate table in Cartesian coordinates. These dosimetric datasets can be used as input data and to validate the treatment planning system calculations.

  14. Brachytherapy in France in 2002: results of the ESTRO-PCBE questionnaire; La curietherapie en France en 2002: resultats de l'enquete PCBE de l'ESTRO

    Energy Technology Data Exchange (ETDEWEB)

    Peiffert, D. [Centre Alexis-Vautrin, Dept. de Radiotherapie, 54 - Vandoeuvre-les-Nancy (France); Mazeron, J.J. [Hopital de la Pitie-Salpetriere, Centre des Tumeurs, 75 - Paris (France); Guedea, F. [Institut Catala d' Oncologia Idibell, L' hospitalet del Llobregat, Barcelone (Spain); Nisin, R. [ESTRO office, Bruxelles (Belgium)

    2007-05-15

    The authors report the results of the Patterns of Care for Brachytherapy in Europe (PCBE) throughout France. Responses were obtained for 91% of the Radiation Oncology departments, which have declared using brachytherapy for 67, and gave detailed data for 49 ones. The equipments and treated tumours were recorded. LDR brachytherapy remained the most often used (53.5 ), followed by HDR (28%). PDR represented 5.5% and permanent implants 11%. The authors discuss the development of new equipment, with an aggregation of the structures, and an increase of the PDR and prostate implants use. (authors)

  15. Use of a Flexible Inflatable Multi-Channel Applicator for Vaginal Brachytherapy in the Management of Gynecologic Cancer

    OpenAIRE

    Shin, Samuel M.; Duckworth, Tamara L.; Benjamin Thomas Cooper; Curtin, John P.; Schiff, Peter B.; J Keith DeWyngaert; Stella C Lymberis

    2015-01-01

    Introduction: Evaluate use of novel multi-channel applicator (MC) CapriTM to improve vaginal disease coverage achievable by single-channel applicator (SC) and comparable to Syed plan simulation. Material and Methods: 28 plans were evaluated from 4 patients with primary or recurrent gynecologic cancer in the vagina. Each received whole pelvis radiation, followed by 3 weekly treatments using HDR brachytherapy with a 13-channel MC. Upper vagina was treated to 5 mm depth to 1500 cGy/3 fractions...

  16. Use of a Flexible Inflatable Multi-Channel Applicator for Vaginal Brachytherapy in the Management of Gynecologic Cancer

    OpenAIRE

    Shin, Samuel M.; Duckworth, Tamara L.; Cooper, Benjamin T; Curtin, John P.; Schiff, Peter B.; DeWyngaert, J. Keith; Stella C Lymberis

    2015-01-01

    Introduction Evaluate use of novel multi-channel applicator (MC) Capri™ to improve vaginal disease coverage achievable by single-channel applicator (SC) and comparable to Syed plan simulation. Materials and methods Twenty-eight plans were evaluated from four patients with primary or recurrent gynecologic cancer in the vagina. Each received whole pelvis radiation, followed by three weekly treatments using HDR brachytherapy with a 13-channel MC. Upper vagina was treated to 5 mm depth...

  17. Single versus multichannel applicator in high-dose-rate vaginal brachytherapy optimized by inverse treatment planning.

    Science.gov (United States)

    Bahadur, Yasir A; Constantinescu, Camelia; Hassouna, Ashraf H; Eltaher, Maha M; Ghassal, Noor M; Awad, Nesreen A

    2015-01-01

    To retrospectively compare the potential dosimetric advantages of a multichannel vaginal applicator vs. a single channel one in intracavitary vaginal high-dose-rate (HDR) brachytherapy after hysterectomy, and evaluate the dosimetric advantage of fractional re-planning. We randomly selected 12 patients with endometrial carcinoma, who received adjuvant vaginal cuff HDR brachytherapy using a multichannel applicator. For each brachytherapy fraction, two inverse treatment plans (for central channel and multichannel loadings) were performed and compared. The advantage of fractional re-planning was also investigated. Dose-volume-histogram (DVH) analysis showed limited, but statistically significant difference (p = 0.007) regarding clinical-target-volume dose coverage between single and multichannel approaches. For the organs-at-risk rectum and bladder, the use of multichannel applicator demonstrated a noticeable dose reduction, when compared to single channel, but statistically significant for rectum only (p = 0.0001). For D2cc of rectum, an average fractional dose of 6.1 ± 0.7 Gy resulted for single channel vs. 5.1 ± 0.6 Gy for multichannel. For D2cc of bladder, an average fractional dose of 5 ± 0.9 Gy occurred for single channel vs. 4.9 ± 0.8 Gy for multichannel. The dosimetric benefit of fractional re-planning was demonstrated: DVH analysis showed large, but not statistically significant differences between first fraction plan and fractional re-planning, due to large inter-fraction variations for rectum and bladder positioning and filling. Vaginal HDR brachytherapy using a multichannel vaginal applicator and inverse planning provides dosimetric advantages over single channel cylinder, by reducing the dose to organs at risk without compromising the target volume coverage, but at the expense of an increased vaginal mucosa dose. Due to large inter-fraction dose variations, we recommend individual fraction treatment plan optimization.

  18. Verification of dosimetry planning in brachytherapy in format Dicom and EUD calculation of Risk in bodies; Verificacion de la planificacion dosimetria en braquiterapia en formato Dicom y calculo del EUD en organos de riesgo

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Hernandez, M. J.; Sendon del Rio, J. R.; Ayala Lazaro, R.; Jimenez Rojas, M. R.; Gomez Cores, S.; Polo Cezon, R.; Lopez Bote, M. A.

    2013-07-01

    This work Describes a program that automates the verification of the schedules in brachytherapy (configuration and dosimetric treatment parameters) for sources of Ir-192 (mHDR v2) and Co-60 (Co0.A86) from the plan exported in DICOM format data. (Author)

  19. Calculation Monte Carlo equivalent dose to organs in a treatment of prostate with Brachytherapy of high rate; Calculo Monte Carlo de dosis equivalente a organos en un tratamiento de prostata con braquiterapia de alta tasa

    Energy Technology Data Exchange (ETDEWEB)

    Candela-Juan, C.; Vijande, J.; Granero, D.; Ballester, F.; Perez-Calatayud, J.; Rivard, M. J.

    2013-07-01

    The objective of this study was to obtain equivalent dose to radiosensitive organs when applies brachytherapy high dose (HDR) with sources of 60 Co or 192 Go to a localized carcinoma of the prostate. The results are compared with those reported in the literature on treatment with protons and intensity modulated (IMRT) radiation therapy. (Author)

  20. Next stages in HDR technology development

    Energy Technology Data Exchange (ETDEWEB)

    Duchane, D.V.

    1993-03-01

    Twenty years of research and development have brought HDR heat mining technology from the purely conceptual stage to the establishment of an engineering-scale heat mine at Fenton Hill, NM. In April 1992, a long-term flow test (LTFT) of the HDR reservoir at Fenton Hill was begun. The test was carried out under steady-state conditions on a continuous basis for four months, but a major equipment failure in late July forced a temporary suspension of operations. Even this short test provided valuable information and extremely encouraging results as summarized below: There was no indication of thermal drawdown of the reservoir. There was evidence of increasing access to hot rock with time. Water consumption was in the rangki of 10--12%. Measured pumping costs were $0.003 per kilowatt of energy produced. Temperature logs conducted in the reservoir production zone during and after the flow test confirmed the fact that there was no decline in the average temperature of the fluid being produced from the reservoir. In fact, tracer testing showed that the fluid was taking more indirect pathways and thus contacting a greater amount of hot rock as the test progressed. Water usage quickly dropped to a level of 10--15 gallons per minute, an amount equivalent to about 10--12% of the injected fluid volume. At a conversion rate of 10--15%, these would translate to effective ``fuel costs`` of 2--3{cents} per kilowatt hour of electricity production potential. The completion of the LTFT will set the stage for commercialization of HDR but will not bring HDR technology to maturity. Relatively samples extensions of the current technology may bring significant improvements in efficiency, and these should be rapidly investigated. In the longer run, advanced operational concepts could further improve the efficiency of HDR energy extraction and may even offer the possibility of cogeneration schemes which solve both energy and water problems throughout the world.

  1. Evaluation of time, attendance of medical staff, and resources during interstitial brachytherapy for prostate cancer. DEGRO-QUIRO trial

    Energy Technology Data Exchange (ETDEWEB)

    Tselis, N.; Zamboglou, N. [Sana Klinikum Offenbach, Department of Radiation Oncology, Offenbach am Main (Germany); Maurer, U. [St.-Antonius-Hospital, Strahlentherapie, Eschweiler (Germany); Popp, W. [Prime Networks AG, Basel (Switzerland); Sack, H. [University of Essen, Department of Radiation Oncology, Essen (Germany)

    2014-04-15

    The German Society of Radiation Oncology initiated a multicenter trial to evaluate core processes and subprocesses of radiotherapy by prospective evaluation of all important procedures in the most frequent malignancies treated by radiation therapy. The aim of this analysis was to assess the required resources for interstitial high-dose-rate (HDR) and low-dose-rate (LDR) prostate brachytherapy (BRT) based on actual time measurements regarding allocation of personnel and room occupation needed for specific procedures. Two radiotherapy centers (community hospital of Offenbach am Main and community hospital of Eschweiler) participated in this prospective study. Working time of the different occupational groups and room occupancies for the workflow of prostate BRT were recorded and methodically assessed during a 3-month period. For HDR and LDR BRT, a total of 560 and 92 measurements, respectively, were documented. The time needed for treatment preplanning was median 24 min for HDR (n=112 measurements) and 6 min for LDR BRT (n=21). Catheter implantation with intraoperative HDR real-time planning (n=112), postimplantation HDR treatment planning (n=112), and remotely controlled HDR afterloading irradiation (n=112) required median 25, 39, and 50 min, respectively. For LDR real-time planning (n=39) and LDR treatment postplanning (n=32), the assessed median duration was 91 and 11 min, respectively. Room occupancy and overall mean medical staff times were 194 and 910 min respectively, for HDR, and 113 and 371 min, respectively, for LDR BRT. In this prospective analysis, the resource requirements for the application of HDR and LDR BRT of prostate cancer were assessed methodically and are presented for first time. (orig.)

  2. 3-D conformal treatment of prostate cancer to 74 Gy vs. high-dose-rate brachytherapy boost: A cross-sectional quality-of-life survey

    Energy Technology Data Exchange (ETDEWEB)

    Vordermark, Dirk [Univ. of Wuerzburg (DE). Dept. of Radiation Oncology] (and others)

    2006-09-15

    The effects of two modalities of dose-escalated radiotherapy on health-related quality of life (HRQOL) were compared. Forty-one consecutive patients were treated with a 3-D conformal (3-DC) boost to 74 Gy, and 43 with high-dose rate (HDR) brachytherapy boost (2x9 Gy), following 3-D conformal treatment to 46 Gy. Median age was 70 years in both groups, median initial PSA was 7.9 {mu}g/l in 3-DC boost patients and 8.1 {mu}g/l in HDR boost patients. Stage was 7 in 52% and 47%, respectively. HRQOL was assessed cross-sectionally using EORTC QLQ-C30 and organ-specific PR25 modules 3-32 (median 19) and 4-25 (median 14) months after treatment, respectively. Questionnaires were completed by 93% and 97% of patients, respectively. Diarrhea and insomnia scores were significantly increased in both groups. In the PR25 module, scores of 3-DC boost and HDR boost patients for urinary, bowel and treatment-related symptoms were similar. Among responders, 34% of 3-DC boost patients and 86% of HDR boost patients had severe erectile problems. Dose escalation in prostate cancer by either 3-DC boost to 74 Gy or HDR brachytherapy boost appears to result in similar HRQOL profiles.

  3. Is there a place for brachytherapy in the salvage treatment of cervical lymph node metastases of head and neck cancers?

    Science.gov (United States)

    Bartochowska, Anna; Skowronek, Janusz; Wierzbicka, Malgorzata; Leszczynska, Malgorzata; Szyfter, Witold

    2015-01-01

    Therapeutic options are limited for unresectable isolated cervical lymph node recurrences. The purpose of the study was to evaluate the feasibility, safety, and efficacy of high-dose-rate (HDR) and pulsed-dose-rate (PDR) brachytherapy (BT) in such cases. Sixty patients have been analyzed. All them had previously been treated with radical radiotherapy or chemoradiotherapy with or without surgery. PDR-BT and HDR-BT were used in 49 and 11 patients, respectively. In PDR-BT, a dose per pulse of 0.6-0.8 Gy (median 0.7 Gy) was given up to a median total dose of 20 Gy (range, 20-40 Gy). HDR-BT delivered a median total dose of 24 Gy (range, 7-60 Gy) in 3-10 fractions at 3-6 Gy per fraction. The overall survival and lymph node control rates at 1 and 2 years were estimated for 31.7% and 19%, and 41.4% and 27.3%, respectively. Serious late side effects (soft tissue necrosis) were observed in 11.7% of patients. Adverse events occurred statistically more often in patients >59 years (p = 0.02). HDR-BT and PDR-BT are feasible in previously irradiated patients with isolated regional lymph node metastases of head and neck cancers. The techniques should be considered if surgery is contraindicated. They provide acceptable toxicity and better tumor control than chemotherapy alone. Copyright © 2015 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  4. Dosimetric evaluation of a combination of brachytherapy applicators for uterine cervix cancer with involvement of the distal vagina; Avaliacao dosimetrica de uma combinacao de aplicadores para braquiterapia de tumores do colo uterino com acometimento da porcao distal da vagina

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Roger Guilherme Rodrigues [Real e Benemerita Sociedade Portuguesa de Beneficencia, Sao Paulo, SP (Brazil). Servico de Radioterapia Estereotactica; Carvalho, Heloisa de Andrade; Stuart, Silvia Radwanski; Rubo, Rodrigo Augusto [Universidade de Sao Paulo (USP), SP (Brazil). Hospital das Clinicas. Servico de Radioterapia], e-mail: handrade@hcnet.usp.br; Seraide, Rodrigo Migotto [Centro de Oncologia Campinas, SP (Brazil)

    2009-07-15

    Objective: To evaluate an alternative brachytherapy technique for uterine cervix cancer involving the distal vagina, without increasing the risk of toxicity. Materials And Methods: Theoretical study comparing three different high-dose rate intracavitary brachytherapy applicators: intrauterine tandem and vaginal cylinder (TC); tandem/ring applicator combined with vaginal cylinder (TR+C); and a virtual applicator combining both the tandem/ring and vaginal cylinder in a single device (TRC). Prescribed doses were 7 Gy at point A, and 5 Gy on the surface or at a 5 mm depth of the vaginal mucosa. Doses delivered to the rectum, bladder and sigmoid colon were kept below the tolerance limits. Volumes covered by the isodoses, respectively, 50% (V50), 100% (V100), 150% (V150) and 200% (V200) were compared. Results: Both the combined TR+C and TRC presented a better dose distribution as compared with the TC applicator. The TR+C dose distribution was similar to the TRC dose, with V150 and V200 being about 50% higher for TR+C (within the cylinder). Conclusion: Combined TR+C in a two-time single application may represent an alternative therapy technique for patients affected by uterine cervix cancer involving the distal vagina. (author)

  5. SU-E-T-523: Investigation of Various MR-Compatible Shielding Materials for Direction Modulated Brachytherapy (DMBT) Tandem Applicator for Cervical Cancer Treatment

    Energy Technology Data Exchange (ETDEWEB)

    Safigholi, H; Soliman, A; Song, W [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); Han, D [Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, U of T, Toronto, Ontario (Canada); University of California, San Diego, La Jolla, CA (United States); Meigooni, A Soleimani [Comprehensive Cancer Center of Nevada, Las Vegas, NV (United States); Scanderbeg, D [UCSD Medical Center, La Jolla, CA (United States)

    2015-06-15

    Purpose: To evaluate various shielding materials such as Gold (Au), Osmium (Os), Tantalum (Ta), and Tungsten (W) based alloys for use with a novel intensity modulation capable direction modulated brachytherapy (DMBT) tandem applicator for image guided cervical cancer HDR brachytherapy. Methods: The novel MRI-compatible DMBT tandem, made from nonmagnetic tungsten-alloy rod with diameter of 5.4 mm, has 6 symmetric peripheral holes of 1.3 mm diameter with 2.05 mm distance from the center for a high degree intensity modulation capacity. The 0.3 mm thickness of bio-compatible plastic tubing wraps the tandem. MCNPX was used for Monte Carlo simulations of the shields and the mHDR Ir-192 V2 source. MC-generated 3D dose matrices of different shielding materials of Au, Os, Ta, and W with 1 mm3 resolution were imported into an in-house-coded inverse optimization planning system to evaluate 19 clinical patient plans. Prescription dose was 15Gy. All plans were normalized to receive the same HRCTV D90. Results: In general, the plan qualities for various shielding materials were similar. The OAR D2cc for bladder was very similar for Au, Os, and Ta with 11.64±2.30Gy. For W, it was very close 11.65±2.30Gy. The sigmoid D2cc was 9.82±2.46Gy for Au and Os while it was 9.84±2.48Gy for Ta and W. The rectum D2cc was 7.44±3.06Gy for Au, 7.43±3.07Gy for Os, 7.48±3.05Gy for Ta, and 7.47±3.05Gy for W. The HRCTV D98 and V100 were very close with 16.37±1.87 Gy and 97.37±1.93 Gy, on average, respectively. Conclusion: Various MRI-compatible shielding alloys were investigated for the DMBT tandem applicator. The clinical plan qualities were not significantly different among these various alloys, however. Therefore, the candidate metals (or in combination) can be used to select best alloys for MRI image guided cervical cancer brachytherapy using the novel DMBT applicator that is capable of unprecedented level of intensity modulation.

  6. High Brightness HDR Projection Using Dynamic Freeform Lensing

    KAUST Repository

    Damberg, Gerwin

    2016-05-03

    Cinema projectors need to compete with home theater displays in terms of image quality. High frame rate and spatial resolution as well as stereoscopic 3D are common features today, but even the most advanced cinema projectors lack in-scene contrast and, more important, high peak luminance, both of which are essential perceptual attributes of images appearing realistic. At the same time, HDR image statistics suggest that the average image intensity in a controlled ambient viewing environment such as the cinema can be as low as 1% for cinematic HDR content and not often higher than 18%, middle gray in photography. Traditional projection systems form images and colors by blocking the source light from a lamp, therefore attenuating between 99% and 82% of light, on average. This inefficient use of light poses significant challenges for achieving higher peak brightness levels. In this work, we propose a new projector architecture built around commercially available components, in which light can be steered to form images. The gain in system efficiency significantly reduces the total cost of ownership of a projector (fewer components and lower operating cost), and at the same time increases peak luminance and improves black level beyond what is practically achievable with incumbent projector technologies. At the heart of this computational display technology is a new projector hardware design using phase modulation in combination with a new optimization algorithm that is capable of on-the-fly computation of freeform lens surfaces. © 2016 ACM.

  7. Vaginal brachytherapy for postoperative endometrial cancer: 2014 Survey of the American Brachytherapy Society.

    Science.gov (United States)

    Harkenrider, Matthew M; Grover, Surbhi; Erickson, Beth A; Viswanathan, Akila N; Small, Christina; Kliethermes, Stephanie; Small, William

    2016-01-01

    Report current practice patterns for postoperative endometrial cancer emphasizing vaginal brachytherapy (VBT). A 38-item survey was e-mailed to 1,598 American Brachytherapy Society (ABS) members and 4,329 US radiation oncologists in 2014 totaling 5,710 recipients. Responses of practitioners who had delivered VBT in the previous 12 months were included in the analysis. Responses were tabulated to determine relative frequency distributions. χ(2) analysis was used to compare current results with those from the 2003 ABS survey. A total of 331 respondents initiated the VBT survey, of whom 289 (87.3%) administered VBT in the prior 12 months. Lymph node dissection and number of nodes removed influenced treatment decisions for 90.5% and 69.8%, respectively. High-dose-rate was used by 96.2%. The most common vaginal length treated was 4 cm (31.0%). Three-dimensional planning was used by 83.2% with 73.4% of those for the first fraction only. Doses to normal tissues were reported by 79.8%. About half optimized to the location of dose specification and/or normal tissues. As monotherapy, the most common prescriptions were 7 Gy for three fractions to 0.5-cm depth and 6 Gy for five fractions to the surface. As a boost, the most common prescriptions were 5 Gy for three fractions to 0.5-cm depth and 6 Gy for three fractions to the vaginal surface. Optimization points were placed at the apex and lateral vagina by 73.1%. Secondary quality assurance checks were performed by 98.9%. VBT is a common adjuvant therapy for endometrial cancer patients, most commonly with HDR. Fractionation and planning processes are variable but generally align with ABS recommendations. Copyright © 2016 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  8. High-dose-rate brachytherapy with local injection of bleomycin for N0 oral tongue cancer. Possibilities of the control of tumor implant by inserting applicators and the decrease in tumor dose

    Energy Technology Data Exchange (ETDEWEB)

    Ohga, Saiji; Uehara, Satoru [National Kyushu Medical Center Hospital, Fukuoka (Japan); Miyoshi, Makoto [Kitakyushu Municipal Medical Center Hospital, Fukuoka (Japan); Jingu, Kenichi [Fukuoka Univ. (Japan). School of Medicine

    2003-01-01

    Twenty-eight patients with N0 oral tongue cancer were treated with high-dose-rate (HDR) interstitial brachytherapy combined with local injection of bleomycin between December 1997 and June 2001 at the Department of Radiology, National Kyushu Medical Center Hospital. A median dose of 5 mg of bleomycin was injected locally, and 16-20 Gy was delivered to the area surrounding applicators for control of the tumor implant during the initial two days. The two-year local recurrence-free survival rate was 96% [T1, 2: 100% (8/8, 15/15), T3: 80% (4/5)]. The two-year secondary neck node metastasis rate was 7.1% [T1: 12.5% (1/8), T2: 6.7% (1/15), T3: 0% (0/5)]. There were no tumor implants in any patients. We tried to decrease the minimal tumor dose step by step. The groups with median minimal tumor doses of 60 Gy, 50 Gy, and 40 Gy had local recurrence rates of 12.5% (1/8), 0% (0/14), and 0% (0/6), respectively. Local recurrence rates were not increased by decreasing the minimal tumor dose. Two patients (7%) had secondary neck node metastasis. Late adverse effects were tongue ulcer: 11% (3/28), oral floor ulcer: 4% (1/28), and osteonecrosis: 4% (1/28). These results suggest that control of the tumor implant and the decrease in minimal tumor dose below 60 Gy may be possible with the local injection of bleomycin and delivery of doses to the area surrounding the applicators when N0 tongue cancer is treated using {sup 192}Ir-HDR brachytherapy. (author)

  9. Aquarious Mountain Area, Arizona: APossible HDR Prospect

    Energy Technology Data Exchange (ETDEWEB)

    West, F.G.; Laughlin, A.W.

    1979-05-01

    Exploration for Hot Dry Rock (HDR) requires the ability to delineate areas of thermal enhancement. It is likely that some of these areas will exhibit various sorts of anomalous conditions such as seismic transmission delays, low seismic velocities, high attenuation of seismic waves, high electrical conductivity in the crust, and a relatively shallow depth to Curie point of Magnetization. The Aquarius Mountain area of northwest Arizona exhibits all of these anomalies. The area is also a regional Bouguer gravity low, which may indicate the presence of high silica type rocks that often have high rates of radioactive heat generation. The one deficiency of the area as a HDR prospect is the lack of a thermal insulating blanket.

  10. EM-navigated catheter placement for gynecologic brachytherapy: an accuracy study

    Science.gov (United States)

    Mehrtash, Alireza; Damato, Antonio; Pernelle, Guillaume; Barber, Lauren; Farhat, Nabgha; Viswanathan, Akila; Cormack, Robert; Kapur, Tina

    2014-03-01

    Gynecologic malignancies, including cervical, endometrial, ovarian, vaginal and vulvar cancers, cause significant mortality in women worldwide. The standard care for many primary and recurrent gynecologic cancers consists of chemoradiation followed by brachytherapy. In high dose rate (HDR) brachytherapy, intracavitary applicators and /or interstitial needles are placed directly inside the cancerous tissue so as to provide catheters to deliver high doses of radiation. Although technology for the navigation of catheters and needles is well developed for procedures such as prostate biopsy, brain biopsy, and cardiac ablation, it is notably lacking for gynecologic HDR brachytherapy. Using a benchtop study that closely mimics the clinical interstitial gynecologic brachytherapy procedure, we developed a method for evaluating the accuracy of image-guided catheter placement. Future bedside translation of this technology offers the potential benefit of maximizing tumor coverage during catheter placement while avoiding damage to the adjacent organs, for example bladder, rectum and bowel. In the study, two independent experiments were performed on a phantom model to evaluate the targeting accuracy of an electromagnetic (EM) tracking system. The procedure was carried out using a laptop computer (2.1GHz Intel Core i7 computer, 8GB RAM, Windows 7 64-bit), an EM Aurora tracking system with a 1.3mm diameter 6 DOF sensor, and 6F (2 mm) brachytherapy catheters inserted through a Syed-Neblett applicator. The 3D Slicer and PLUS open source software were used to develop the system. The mean of the targeting error was less than 2.9mm, which is comparable to the targeting errors in commercial clinical navigation systems.

  11. A generic TG-186 shielded applicator for commissioning model-based dose calculation algorithms for high-dose-rate (192) Ir brachytherapy.

    Science.gov (United States)

    Ma, Yunzhi; Vijande, Javier; Ballester, Facundo; Carlsson Tedgren, Åsa; Granero, Domingo; Haworth, Annette; Mourtada, Firas; Fonseca, Gabriel Paiva; Zourari, Kyveli; Papagiannis, Panagiotis; Rivard, Mark J; Siebert, Frank André; Sloboda, Ron S; Smith, Ryan; Chamberland, Marc J P; Thomson, Rowan M; Verhaegen, Frank; Beaulieu, Luc

    2017-07-19

    displaced" test cases and for the clinically-relevant part of the unshielded volume in the "source centered in applicator" case. Larger local differences appear in the shielded volume or at large distances. Considering clinically-relevant regions, global dose differences are smaller than the local ones. The most disadvantageous case for the MBDCAs is the one including the shielded applicator. In this case, ACUROS agrees with MC within [-4.2%, +4.2%] for the majority of voxels (95%) while presenting dose differences within [-0.12%, +0.12%] of the dose at a clinically relevant reference point. For ACE, 95% of the total volume presents differences with respect to MC in the range [-1.7%, +0.4%] of the dose at the reference point. The combination of the generic source and generic shielded applicator, together with the previously developed test cases and reference datasets (available in the Brachytherapy Source Registry), lay a solid foundation in supporting uniform commissioning procedures and direct comparisons among treatment planning systems for HDR (192) Ir brachytherapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. SU-E-T-383: Can Stereotactic Body Radiotherapy Mimic the Dose Distribution of High-Dose-Rate Tandem and Ovoids/ring Brachytherapy?

    Energy Technology Data Exchange (ETDEWEB)

    Park, S; Demanes, J; Kamrava, M [UCLA School of Medicine, Los Angeles, CA (United States); Scanderbeg, D [UCSD Medical Center, La Jolla, CA (United States)

    2014-06-01

    Purpose: To investigate whether stereotactic body radiotherapy (SBRT) using volumetric modulated arc therapy (VMAT) can mimic the dosimetry of tandem and ovoids/ring brachytherapy. Methods: We selected 5 patients treated with 3D-CT based high-dose rate (HDR) brachytherapy using 4 tandem and ovoid and 1 tandem and ring case. Manual optimization based on the Manchester system followed by graphical optimization (Nucletron Oncentra MasterPlan or Varian BrachyVision) was performed to deliver 6.0 Gy per fraction to a high-risk CTV while maintaining dose to organs at risk (OAR) below the ABS recommendations. For theoretical SBRT plans, CT images and OAR contours from the HDR plans were imported into Eclipse (Varian). The SBRT plan was created to mimic the heterogeneity of HDR plans by using a simultaneous integrated boost technique to match the V100, V150, and V200 isodose volumes from HDR. The OAR Dmax from HDR was used to define the OAR dose constraints for SBRT. Target coverage, dose spill-out, and OAR doses (D0.1cc, D1cc, and D2cc) between the HDR and SBRT plans were compared for significance using a two-tail paired ttest. Results: The mean isodose volumes for HDR vs. SBRT were 29.4 cc vs. 29.0 cc (V200, p = 0.674), 49.2 cc vs. 56.3 cc (V150, p = 0.017), 95.4 cc vs. 127.7 cc (V100, p = 0.001), and 271.9 cc vs. 581.6 cc (V50, p = 0.001). The D2cc to OAR for HDR vs. SBRT was 71.6% vs. 96.2% (bladder, p = 0.002), 69.2% vs. 101.7% (rectum, p = 0.0003), and 56.9% vs. 68.6% (sigmoid, p = 0.004). Conclusion: SBRT with VMAT can provide similar dose target coverage (V200), but dose spill-out and doses to OAR were statistically significantly higher than HDR. This study clearly demonstrated that brachytherapy can not be substituted with SBRT in gynecologic cervical cancer treatment.

  13. Long-Term Results of an RTOG Phase II Trial (00-19) of External-Beam Radiation Therapy Combined With Permanent Source Brachytherapy for Intermediate-Risk Clinically Localized Adenocarcinoma of the Prostate

    Energy Technology Data Exchange (ETDEWEB)

    Lawton, Colleen A., E-mail: clawton@mcw.edu [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Yan, Yan [Radiation Therapy Oncology Group Statistical Center, Philadelphia, PA (United States); Lee, W. Robert [Department of Radiation Oncology, Duke University School of Medicine, Durham, NC (United States); Gillin, Michael [Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas MD Anderson Cancer Center, Houston, TX (United States); Firat, Selim [Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, WI (United States); Baikadi, Madhava [Department of Radiation Oncology, Northeast Radiation Oncology Center, Scranton, PA (United States); Crook, Juanita [Department of Radiation Oncology, University of British Columbia, Kelowna, BC (Canada); Kuettel, Michael [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, NY (United States); Morton, Gerald [Department of Radiation Oncology, Toronto-Sunnybrook Regional Cancer Center, Toronto, ON (Canada); Sandler, Howard [Department of Radiation Oncology, Cedars-Sinai Medical Center, Los Angeles, CA (United States)

    2012-04-01

    Purpose: External-beam radiation therapy combined with low-doserate permanent brachytherapy are commonly used to treat men with localized prostate cancer. This Phase II trial was performed to document late gastrointestinal or genitourinary toxicity as well as biochemical control for this treatment in a multi-institutional cooperative group setting. This report defines the long-term results of this trial. Methods and Materials: All eligible patients received external-beam radiation (45 Gy in 25 fractions) followed 2-6 weeks later by a permanent iodine 125 implant of 108 Gy. Late toxicity was defined by the Radiation Therapy Oncology Group/European Organization for Research and Treatment of Cancer late radiation morbidity scoring scheme. Biochemical control was defined by the American Society for Therapeutic Radiology and Oncology (ASTRO) Consensus definition and the ASTRO Phoenix definition. Results: One hundred thirty-eight patients were enrolled from 20 institutions, and 131 were eligible. Median follow-up (living patients) was 8.2 years (range, 2.7-9.3 years). The 8-year estimate of late grade >3 genitourinary and/or gastrointestinal toxicity was 15%. The most common grade >3 toxicities were urinary frequency, dysuria, and proctitis. There were two grade 4 toxicities, both bladder necrosis, and no grade 5 toxicities. In addition, 42% of patients complained of grade 3 impotence (no erections) at 8 years. The 8-year estimate of biochemical failure was 18% and 21% by the Phoenix and ASTRO consensus definitions, respectively. Conclusion: Biochemical control for this treatment seems durable with 8 years of follow-up and is similar to high-dose external beam radiation alone or brachytherapy alone. Late toxicity in this multi-institutional trial is higher than reports from similar cohorts of patients treated with high-dose external-beam radiation alone or permanent low-doserate brachytherapy alone, perhaps suggesting further attention to strategies that limit doses to

  14. Real-time inverse high-dose-rate brachytherapy planning with catheter optimization by compressed sensing-inspired optimization strategies

    Science.gov (United States)

    Guthier, C. V.; Aschenbrenner, K. P.; Müller, R.; Polster, L.; Cormack, R. A.; Hesser, J. W.

    2016-08-01

    This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56-350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p  <  0.01). The optimization times were below one second and thus planing can be considered as real-time capable. The novel CS inspired strategy enables real-time ITP for HDR brachytherapy including catheter optimization. The generated plans are either clinically equivalent or show a better performance with respect to dosimetric measures.

  15. SU-E-T-254: Development of a HDR-BT QA Tool for Verification of Source Position with Oncentra Applicator Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kumazaki, Y; Miyaura, K; Hirai, R; Miyazawa, K; Makino, S; Tamaki, T; Shikama, N; Kato, S [Saitama Medical University International Medical Center, Hidaka, Saitama (Japan)

    2015-06-15

    Purpose: To develop a High Dose Rate Brachytherapy (HDR-BT) quality assurance (QA) tool for verification of source position with Oncentra applicator modeling, and to report the results of radiation source positions with this tool. Methods: We developed a HDR-BT QA phantom and automated analysis software for verification of source position with Oncentra applicator modeling for the Fletcher applicator used in the MicroSelectron HDR system. This tool is intended for end-to-end tests that mimic the clinical 3D image-guided brachytherapy (3D-IGBT) workflow. The phantom is a 30x30x3 cm cuboid phantom with radiopaque markers, which are inserted into the phantom to evaluate applicator tips and reference source positions; positions are laterally shifted 10 mm from the applicator axis. The markers are lead-based and scatter radiation to expose the films. Gafchromic RTQA2 films are placed on the applicators. The phantom includes spaces to embed the applicators. The source position is determined as the distance between the exposed source position and center position of two pairs of the first radiopaque markers. We generated a 3D-IGBT plan with applicator modeling. The first source position was 6 mm from the applicator tips, and the second source position was 10 mm from the first source position. Results: All source positions were consistent with the exposed positions within 1 mm for all Fletcher applicators using in-house software. Moreover, the distance between source positions was in good agreement with the reference distance. Applicator offset, determined as the distance from the applicator tips at the first source position in the treatment planning system, was accurate. Conclusion: Source position accuracy of applicator modeling used in 3D-IGBT was acceptable. This phantom and software will be useful as a HDR-BT QA tool for verification of source position with Oncentra applicator modeling.

  16. Evaluation of 101Rh as a brachytherapy source

    Science.gov (United States)

    Ghorbani, Mahdi; Meigooni, Ali Soleimani

    2015-01-01

    Purpose Recently a number of hypothetical sources have been proposed and evaluated for use in brachytherapy. In the present study, a hypothetical 101Rh source with mean photon energy of 121.5 keV and half-life of 3.3 years, has been evaluated as an alternative to the existing high-dose-rate (HDR) sources. Dosimetric characteristics of this source model have been determined following the recommendation of the Task Group 43 (TG-43) of the American Association of the Physicist in Medicine (AAPM), and the results are compared with the published data for 57Co source and Flexisource 192Ir sources with similar geometries. Material and methods MCNPX Monte Carlo code was used for simulation of the 101Rh hypothetical HDR source design. Geometric design of this hypothetical source was considered to be similar to that of Flexisource 192Ir source. Task group No. 43 dosimetric parameters, including air kerma strength per mCi, dose rate constant, radial dose function, and two dimensional (2D) anisotropy functions were calculated for the 101Rh source through simulations. Results Air kerma strength per activity and dose rate constant for the hypothetical 101Rh source were 1.09 ± 0.01 U/mCi and 1.18 ± 0.08 cGy/(h.U), respectively. At distances beyond 1.0 cm in phantom, radial dose function for the hypothetical 101Rh source is higher than that of 192Ir. It has also similar 2D anisotropy functions to the Flexisource 192Ir source. Conclusions 101Rh is proposed as an alternative to the existing HDR sources for use in brachytherapy. This source provides medium energy photons, relatively long half-life, higher dose rate constant and radial dose function, and similar 2D anisotropy function to the Flexisource 192Ir HDR source design. The longer half-life of the source reduces the frequency of the source exchange for the clinical environment. PMID:26034499

  17. Outcomes of salvage high-dose-rate brachytherapy with or without external beam radiotherapy for isolated vaginal recurrence of endometrial cancer

    Directory of Open Access Journals (Sweden)

    Shuhei Sekii

    2017-05-01

    Full Text Available Purpose: This study was designed to retrospectively analyze outcomes of high-dose-rate (HDR brachytherapy, with or without external beam radiotherapy (EBRT, in patients with vaginal recurrence of endometrial carcinoma, and to identify factors prognostic of patient outcomes. Material and methods : The medical records of all patients who underwent HDR brachytherapy for initial recurrence in the vagina of endometrial cancer after definitive surgery between 1992 and 2014 were retrospectively reviewed. All patients underwent either intracavitary brachytherapy (ICBT or interstitial brachytherapy (ISBT with or without EBRT. Late toxicity was graded using the EORTC (LENT/SOMA scale, revised in 1995. Results : Thirty-seven patients were identified. The median follow-up time was 48 months (range: 6-225 months. Of these 37 patients, 23 underwent ICBT, 14 underwent ISBT, and 26 underwent EBRT. Tumor size at first examination of initial relapse was significantly larger in the ISBT than in the ICBT group. The 4-year respective overall survival (OS, local control (LC, and progression-free survival (PFS rates in the entire cohort were 81.0%, 77.9%, and 56.8%, respectively. The interval between diagnosis of first recurrence and radiotherapy (< 3 months, ≥ 3 months was a significant predictor of LC and PFS. OS and LC rates did not differ significantly in the ICBT and ISBT groups. Two patients experienced grade 2 rectal bleeding, and four experienced grade 2 hematuria. No grade 3 or higher late complications were observed. Conclusions : Salvage HDR brachytherapy is an optimal for treating vaginal recurrence of endometrial carcinoma with acceptable morbidity. Early radiotherapy, including brachytherapy, should be considered for women who experience vaginal recurrence of endometrial cancer.

  18. Real-time inverse high-dose-rate brachytherapy planning with catheter optimization by compressed sensing-inspired optimization strategies.

    Science.gov (United States)

    Guthier, C V; Aschenbrenner, K P; Müller, R; Polster, L; Cormack, R A; Hesser, J W

    2016-08-21

    This paper demonstrates that optimization strategies derived from the field of compressed sensing (CS) improve computational performance in inverse treatment planning (ITP) for high-dose-rate (HDR) brachytherapy. Following an approach applied to low-dose-rate brachytherapy, we developed a reformulation of the ITP problem with the same mathematical structure as standard CS problems. Two greedy methods, derived from hard thresholding and subspace pursuit are presented and their performance is compared to state-of-the-art ITP solvers. Applied to clinical prostate brachytherapy plans speed-up by a factor of 56-350 compared to state-of-the-art methods. Based on a Wilcoxon signed rank-test the novel method statistically significantly decreases the final objective function value (p  plans are either clinically equivalent or show a better performance with respect to dosimetric measures.

  19. Calibration coefficient of reference brachytherapy ionization chamber using analytical and Monte Carlo methods.

    Science.gov (United States)

    Kumar, Sudhir; Srinivasan, P; Sharma, S D

    2010-06-01

    A cylindrical graphite ionization chamber of sensitive volume 1002.4 cm(3) was designed and fabricated at Bhabha Atomic Research Centre (BARC) for use as a reference dosimeter to measure the strength of high dose rate (HDR) (192)Ir brachytherapy sources. The air kerma calibration coefficient (N(K)) of this ionization chamber was estimated analytically using Burlin general cavity theory and by the Monte Carlo method. In the analytical method, calibration coefficients were calculated for each spectral line of an HDR (192)Ir source and the weighted mean was taken as N(K). In the Monte Carlo method, the geometry of the measurement setup and physics related input data of the HDR (192)Ir source and the surrounding material were simulated using the Monte Carlo N-particle code. The total photon energy fluence was used to arrive at the reference air kerma rate (RAKR) using mass energy absorption coefficients. The energy deposition rates were used to simulate the value of charge rate in the ionization chamber and N(K) was determined. The Monte Carlo calculated N(K) agreed within 1.77 % of that obtained using the analytical method. The experimentally determined RAKR of HDR (192)Ir sources, using this reference ionization chamber by applying the analytically estimated N(K), was found to be in agreement with the vendor quoted RAKR within 1.43%.

  20. Outcomes of salvage high-dose-rate brachytherapy with or without external beam radiotherapy for isolated vaginal recurrence of endometrial cancer.

    Science.gov (United States)

    Sekii, Shuhei; Murakami, Naoya; Kato, Tomoyasu; Harada, Ken; Kitaguchi, Mayuka; Takahashi, Kana; Inaba, Koji; Igaki, Hiroshi; Ito, Yoshinori; Sasaki, Ryohei; Itami, Jun

    2017-06-01

    This study was designed to retrospectively analyze outcomes of high-dose-rate (HDR) brachytherapy, with or without external beam radiotherapy (EBRT), in patients with vaginal recurrence of endometrial carcinoma, and to identify factors prognostic of patient outcomes. The medical records of all patients who underwent HDR brachytherapy for initial recurrence in the vagina of endometrial cancer after definitive surgery between 1992 and 2014 were retrospectively reviewed. All patients underwent either intracavitary brachytherapy (ICBT) or interstitial brachytherapy (ISBT) with or without EBRT. Late toxicity was graded using the EORTC (LENT/SOMA) scale, revised in 1995. Thirty-seven patients were identified. The median follow-up time was 48 months (range: 6-225 months). Of these 37 patients, 23 underwent ICBT, 14 underwent ISBT, and 26 underwent EBRT. Tumor size at first examination of initial relapse was significantly larger in the ISBT than in the ICBT group. The 4-year respective overall survival (OS), local control (LC), and progression-free survival (PFS) rates in the entire cohort were 81.0%, 77.9%, and 56.8%, respectively. The interval between diagnosis of first recurrence and radiotherapy (endometrial carcinoma with acceptable morbidity. Early radiotherapy, including brachytherapy, should be considered for women who experience vaginal recurrence of endometrial cancer.

  1. Comparative dosimetric and radiobiological assessment among a nonstandard RapidArc, standard RapidArc, classical intensity-modulated radiotherapy, and 3D brachytherapy for the treatment of the vaginal vault in patients affected by gynecologic cancer

    Energy Technology Data Exchange (ETDEWEB)

    Pedicini, Piernicola, E-mail: ppiern@libero.it [Service of Medical Physics, IRCCS Regional Cancer Hospital (C.R.O.B.), Rionero in Vulture (Italy); Caivano, Rocchina [Service of Medical Physics, IRCCS Regional Cancer Hospital (C.R.O.B.), Rionero in Vulture (Italy); Fiorentino, Alba [U.O. of Radiotherapy, IRCCS Regional Cancer Hospital (C.R.O.B.), Rionero in Vulture (Italy); Strigari, Lidia [Laboratory of Medical Physics and Expert Systems, Regina Elena National Cancer Institute, Rome (Italy); Califano, Giorgia [Service of Medical Physics, IRCCS Regional Cancer Hospital (C.R.O.B.), Rionero in Vulture (Italy); Barbieri, Viviana; Sanpaolo, Piero; Castaldo, Giovanni [U.O. of Radiotherapy, IRCCS Regional Cancer Hospital (C.R.O.B.), Rionero in Vulture (Italy); Benassi, Marcello [Service of Medical Physics, Scientific Institute of Tumors of Romagna IRST, Meldola (Italy); Fusco, Vincenzo [U.O. of Radiotherapy, IRCCS Regional Cancer Hospital (C.R.O.B.), Rionero in Vulture (Italy)

    2012-01-01

    To evaluate a nonstandard RapidArc (RA) modality as alternative to high-dose-rate brachytherapy (HDR-BRT) or IMRT treatments of the vaginal vault in patients with gynecological cancer (GC). Nonstandard (with vaginal applicator) and standard (without vaginal applicator) RapidArc plans for 27 women with GC were developed to compare with HDR-BRT and IMRT. Dosimetric and radiobiological comparison were performed by means of dose-volume histogram and equivalent uniform dose (EUD) for planning target volume (PTV) and organs at risk (OARs). In addition, the integral dose and the overall treatment times were evaluated. RA, as well as IMRT, results in a high uniform dose on PTV compared with HDR-BRT. However, the average of EUD for HDR-BRT was significantly higher than those with RA and IMRT. With respect to the OARs, standard RA was equivalent of IMRT but inferior to HDR-BRT. Furthermore, nonstandard RA was comparable with IMRT for bladder and sigmoid and better than HDR-BRT for the rectum because of a significant reduction of d{sub 2cc}, d{sub 1cc}, and d{sub max} (p < 0.01). Integral doses were always higher than HDR-BRT, although the values were very low. Delivery times were about the same and more than double for HDR-BRT compared with IMRT and RA, respectively. In conclusion, the boost of dose on vaginal vault in patients affected by GC delivered by a nonstandard RA technique was a reasonable alternative to the conventional HDR-BRT because of a reduction of delivery time and rectal dose at substantial comparable doses for the bladder and sigmoid. However HDR-BRT provides better performance in terms of PTV coverage as evidenced by a greater EUD.

  2. High-Dose-Rate Brachytherapy Boost for Prostate Cancer: Comparison of Two Different Fractionation Schemes

    Energy Technology Data Exchange (ETDEWEB)

    Kaprealian, Tania [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Weinberg, Vivian [Biostatistics and Computational Biology Core, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Speight, Joycelyn L. [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Gottschalk, Alexander R. [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Roach, Mack [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Shinohara, Katsuto [Department of Urology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States); Hsu, I.-Chow, E-mail: IHsu@radonc.ucsf.edu [Department of Radiation Oncology, University of California, San Francisco Helen Diller Family Comprehensive Cancer Center, San Francisco, California (United States)

    2012-01-01

    Purpose: This is a retrospective study comparing our experience with high-dose-rate (HDR) brachytherapy boost for prostate cancer, using two different fractionation schemes, 600 cGy Multiplication-Sign 3 fractions (patient group 1) and 950 cGy Multiplication-Sign 2 fractions (patient group 2). Methods and Materials: A total of 165 patients were treated for prostate cancer using external beam radiation therapy up to a dose of 45 Gy, followed by an HDR brachytherapy prostate radiation boost. Between July 1997 and Nov 1999, 64 patients were treated with an HDR boost of 600 cGy Multiplication-Sign 3 fractions; and between June 2000 and Nov 2005, 101 patients were treated with an HDR boost of 950 cGy Multiplication-Sign 2 fractions. All but 9 patients had at least one of the following risk features: pretreatment prostate-specific antigen (PSA) level >10, a Gleason score {>=}7, and/or clinical stage T3 disease. Results: Median follow-up was 105 months for group 1 and 43 months for group 2. Patients in group 2 had a greater number of high-risk features than group 1 (p = 0.02). Adjusted for comparable follow-up, there was no difference in biochemical no-evidence-of-disease (bNED) rate between the two fractionation scheme approaches, with 5-year Kaplan-Meier estimates of 93.5% in group 1 and 87.3% in group 2 (p = 0.19). The 5-year estimates of progression-free survival were 86% for group 1 and 83% for group 2 (p = 0.53). Among high-risk patients, there were no differences in bNED or PFS rate due to fractionation. Conclusions: Results were excellent for both groups. Adjusted for comparable follow-up, no differences were found between groups.

  3. Application of RADPOS in Vivo Dosimetry for QA of High Dose Rate Brachytherapy

    DEFF Research Database (Denmark)

    Cherpak, A.; Kertzscher Schwencke, Gustavo Adolfo Vladimir; Cygler, J.

    2012-01-01

    Gy. Conclusions: In vivo dosimetry can potentially signal errors in catheter placement or numbering before entire dose is delivered. The demonstrated accuracy of RADPOS dose measurements and its ability to simultaneously measure displacement makes it a powerful tool for HDR brachytherapy treatments for prostate...... cancer, where high dose gradients and movement of the prostate gland can present unique in vivo dosimetry challenges. Financial and technical support has been received from Best Medical Canada and Ascension Technology Corporation. © 2012 American Association of Physicists in Medicine...

  4. Dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with high-dose-rate brachytherapy for large prostate volumes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, George; Strom, Tobin J.; Shrinath, Kushagra; Mellon, Eric A.; Fernandez, Daniel C.; Biagioli, Matthew C. [Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL (United States); Wilder, Richard B., E-mail: mcbiagioli@yahoo.com [Cancer Treatment Centers of America, Newnan, GA (United States)

    2015-05-15

    Purpose: to evaluate dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with HDR brachytherapy for large prostate volumes. Materials and methods: one hundred and two prostate cancer patients with prostate volumes >50 mL (range: 5-29 mL) were treated with high-dose-rate (HDR) brachytherapy ± intensity modulated radiation therapy (IMRT) to 4,500 cGy in 25 daily fractions between 2009 and 2013. HDR brachytherapy monotherapy doses consisted of two 1,350-1,400 cGy fractions separated by 2-3 weeks, and HDR brachytherapy boost doses consisted of two 950-1,150 cGy fractions separated by 4 weeks. Twelve of 32 (38%) unfavorable intermediate risk, high risk, and very high risk patients received androgen deprivation therapy. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE) version 4. Results: median follow-up was 14 months. Dosimetric goals were achieved in over 90% of cases. Three of 102 (3%) patients developed Grade 2 acute proctitis. No variables were significantly associated with Grade 2 acute proctitis. Seventeen of 102 (17%) patients developed Grade 2 acute urinary retention. American Urological Association (AUA) symptom score was the only variable significantly associated with Grade 2 acute urinary retention (p-0.04). There was no ≥ Grade 3 acute toxicity. Conclusions: dosimetric coverage of the prostate and normal tissue sparing were adequate in patients with prostate volumes >50 mL. Higher pre-treatment AUA symptom scores increased the relative risk of Grade 2 acute urinary retention. However, the overall incidence of acute toxicity was acceptable in patients with large prostate volumes. (author)

  5. Dosimetric Coverage of the Prostate, Normal Tissue Sparing, and Acute Toxicity with High-Dose-Rate Brachytherapy for Large Prostate Volumes

    Directory of Open Access Journals (Sweden)

    George Yang

    2015-06-01

    Full Text Available ABSTRACTPurposeTo evaluate dosimetric coverage of the prostate, normal tissue sparing, and acute toxicity with HDR brachytherapy for large prostate volumes.Materials and MethodsOne hundred and two prostate cancer patients with prostate volumes >50 mL (range: 5-29 mL were treated with high-dose-rate (HDR brachytherapy ± intensity modulated radiation therapy (IMRT to 4,500 cGy in 25 daily fractions between 2009 and 2013. HDR brachytherapy monotherapy doses consisted of two 1,350-1,400 cGy fractions separated by 2-3 weeks, and HDR brachytherapy boost doses consisted of two 950-1,150 cGy fractions separated by 4 weeks. Twelve of 32 (38% unfavorable intermediate risk, high risk, and very high risk patients received androgen deprivation therapy. Acute toxicity was graded according to the Common Terminology Criteria for Adverse Events (CTCAE version 4.ResultsMedian follow-up was 14 months. Dosimetric goals were achieved in over 90% of cases. Three of 102 (3% patients developed Grade 2 acute proctitis. No variables were significantly associated with Grade 2 acute proctitis. Seventeen of 102 (17% patients developed Grade 2 acute urinary retention. American Urological Association (AUA symptom score was the only variable significantly associated with Grade 2 acute urinary retention (p=0.04. There was no ≥ Grade 3 acute toxicity.ConclusionsDosimetric coverage of the prostate and normal tissue sparing were adequate in patients with prostate volumes >50 mL. Higher pre-treatment AUA symptom scores increased the relative risk of Grade 2 acute urinary retention. However, the overall incidence of acute toxicity was acceptable in patients with large prostate volumes.

  6. Biological Shielding Design Effectiveness of the Brachytherapy Unit at the Korle Bu Teaching Hospital in Ghana Using Mcnp5 Monte Carlo Code

    Directory of Open Access Journals (Sweden)

    C.C. Arwui

    2011-05-01

    Full Text Available Design objectives for brachytherapy treatment facilities require sufficient shielding to reduce primary and scatter radiation to design limit in order to limit exposure to patients, staff and the general public. The primary aim of this study is to verify whether shielding of the brachytherapy unit at the Korle Bu teaching Hospital in Ghana provides adequate protection in order to assess any radiological health and safety impact and also test the suitability of other available sources. The study evaluates the effectiveness of the biological shielding design of a Cs-137 brachytherapy unit at the Korle-Bu Teaching Hospital in Ghana using MCNP5. The facility was modeled based on the design specifications for LDR Cs-137, MDR Cs-137, HDR Co-60 and HDR Ir-192 treatment modalities. The estimated dose rate ranged from (0.01-0.15 μSv/h and (0.37-3.05 μSv/h for the existing initial and decayed activities of LDR Cs-137 for the public and controlled areas respectively, (0.03-0.57 μSv/h and (1.53-8.06 μSv/h for MDR Cs-137, (7.47-59.46 μSv/h and (144.87-178.74 μSv/h for HDR Co- 60, (0.13-6.95 μSv/h and (19.47-242.98 μSv/h for HDR Ir-192 for the public and controlled areas respectively. The results were verified by dose rates measurement for the current LDR setup at the Brachytherapy unit and agreed quiet well. It was also compared with the reference values of 0.5 μSv/h for public areas and 7.5 μSv/h for controlled areas respectively. It can be concluded that the shielding is adequate for the existing source.

  7. Long term effect of cervix carcinoma treated by HDR 192 Ir afterloding intracavitory radiotherapy combined with external irradiation.%高剂量率192Ir后装腔内加外照射治疗宫颈癌的远期疗效分析

    Institute of Scientific and Technical Information of China (English)

    王青; 侯晓玲; 赵淑红

    2001-01-01

    Objective To analyze retrosrectively long- term effect of cervix carcinona treated by HDR 192Ir afterloading intracavitory radiotherapy combined with external irradiation. Methods From Mar 1993 to Dec 1994, 128 cases of cervix cancer(age from 29 years to 80 years) were treated with combination of external irradiation and HDR 192Ir afterloading intracavitory radiotherapy. 47 cases were stage Ⅱ and 81 were stage Ⅲ. The dose of external radiotherapy was 40 Gy or 50 Gy and afterloading irradiation was given in 6 or 7 fractions of 8 Gy. Results The overall local tumor control was 94.5%, the 1,3,5 year survival rates were 91.61%, 81.89%and 67.36%. The 1,3,5 year survival rates of stage Ⅱ and stage Ⅲ cases were 95.28% and 89. 47%, 87.19% and 79.50%, 72.76% and 64.95% (P>0.05). The rate of severe complications was 7.03% (9/128). Conclusion HDR 192Ir afterloading intracavitory radiotherapy combined with external irradiation for cervix carcinoma is effective and less side effects.%目的分析高剂量率192Ir后装腔内加外照射治疗宫颈癌的远期疗效及并发症。方法对128例Ⅱ、Ⅲ期放疗后宫颈癌进行了回顾分析。其中Ⅱ期47例,Ⅲ期81例。全盆腔外照射Dr20Gy/10次,全盆中间挡铅4cmDr20Gy~30Gy/10次~15次;后装A点剂量48Gy~56Gy/6次~7次。结果 1、3、5年生存率分别为91.61%、81.8%和67.36%;Ⅱ、Ⅲ期1、3、5年生存率无统计学差异(P>0.05);远期严重并发症的发生率7.03%(9/128)。结论高剂量率192Ir后装腔内加外照射治疗宫颈癌疗效肯定,并发症少。盆腔局部复发仍是放疗失败的主要原因。

  8. Brachytherapy for stage IIIB squamous cell carcinoma of the uterine cervix: survival and toxicity Braquiterapia para carcinoma epidermóide do colo do útero estádio IIIB: sobrevida e toxicidade

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Zuliani

    2010-01-01

    Full Text Available OBJECTIVE: To compare survival and toxicity of three different treatments for stage IIIB cervix cancer: low-dose-rate (LDR, high-dose-rate (HDR brachytherapy and association of HDR and chemotherapy. METHODS. Between 1985 and 2005, 230 patients with FIGO stage IIIB squamous cell carcinoma of the uterine cervix received 4-field pelvic teletherapy at doses between 40 and 50.4 Gy, with a different complementation in each group. The LDRB group, with 42 patients, received one or two insertions of LDR, with Cesium-137, in a total dose of 80 to 100Gy at point A. The HDR group, 155 patients received HDR in 4 weekly 7 Gy fractions and 9 Gy to 14.4 Gy applied to the involved parametria. The CHT group, 33 patients, were given the same treatment as the HDR group and received 5 or 6 weekly cycles of cisplatin, 40 mg per m2. RESULTS: The five-year progression-free survival (PFS was 60% for the HDR group and 45% for the LDR group, and the two-year PFS for the CHT group was 65% (p = 0.02. The five-year Overall Survival (OS was 65% for the HDR group and 49% for the LDR group. The two-year OS was 86% for the CHT group (p = 0.02. Rectum toxicity grade II was 7% for the LDR group, 4% for the HDR group and 7% for the CHT group that had one case of rectum toxicity grade IV. CONCLUSION: Patients that received HDR had better OS and PFS. The Chemotherapy-HDR association showed no benefit when compared to HDR only. Toxicity rates showed no difference between the three groups.OBJETIVO: Comparar três diferentes tratamentos para câncer de colo do útero, estádio IIIB: braquiterapia de baixa taxa de dose (LDR, alta taxa de dose (HDR e associação entre HDR e quimioterapia, quanto à sobrevida e toxicidade. MÉTODOS: Entre 1985 e 2005, 230 pacientes com carcinoma epidermoide de colo do útero estádio IIIB receberam teleterapia pélvica em quatro campos, doses entre 40 e 50.4 Gy, e três complementações diferentes. Grupo LDR, com 42 pacientes, recebeu uma ou duas inser

  9. High-Dose-Rate intraluminal brachytherapy for biliary obstruction by secondary malignant biliary tumors

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Won Sup; Kim, Tae Hyun; Yang, Dae Sik; Choi, Myung Sun; Kim, Chul Yong [College of Medicine, Korea Univ., Seoul (Korea, Republic of)

    2003-03-01

    To analyze the survival period, prognostic factors and complications of patients having under gone high-dose-rate intraluminal brachytherapy (HDR-ILB) as a salvage radiation therapy, while having a catheter, for percutaneous transhepatic biliary drainage (PTBD), inserted due to biliary obstruction caused by a secondary malignant biliary tumor. A retrospective study was performed on 24 patients having undergone HDR-ILB, with PTBD catheter insertion, between December 1992 and August 2001, Their median age was 58.5, ranging from 35 to 82 years. The primary cancer site were the stomach, gallbladder, liver, pancreas and the colon, with 12, 6, 3, 2 and 1 cases, respectively. Eighteen patients were treated with external beam radiation therapy and HDR-ILB, while six were treated with HDR-ILB only. The total external beam, and brachytherapy radiations dose were 30-61.2 and 9-30 Gy, with median doses of 50 and 15 Gy, respectively. Of the 24 patients analyzed, 22 died during the follow-up period, with a median survival of 7.3 months. The 6 and 12 months survival rates were 54.2 (13 patients) and 20.8% (5 patients), respectively. The median survivals for stomach and gallbladder cancers were 7.8 and 10.2 months, respectively. According to the univariate analysis, a significant factor affecting survival of over one year was the total radiation dose (over 50 Gy) (0=0.0200), with all the patients surviving more than one year had been irradiated with more than 50 Gy. The acute side effects during the radiation therapy were managed with conservative treatment. During the follow-up period, 5 patients showed symptoms of cholangitis due to the radiation therapy. An extension to the survival of those patients treated with HDR-ILB is suggested compared to the median historical survival of those patients treated with external biliary drainage. A boost radiation dose could be effectively given, by performing HDR-ILB, which is a prognostic factor. In addition, the acute complications of

  10. Organ-confined prostate carcinoma radiation brachytherapy compared with external either photon- or hadron-beam radiation therapy. Just a short up-to-date.

    Science.gov (United States)

    Alberti, C

    2011-07-01

    Both low dose rate (LDR) permanent either 1251 or 103Pd seed implant and high dose rate (HDR) 1921r temporary implant are an excellent way to release high dose of ionizing radiations to cancerous lesions while significantly sparing the surrounding healthy tissues. Therefore, the radiation brachytherapy, among the established treatment options of organ-confined prostate carcinoma--interstitial radiofrequency, high intensity focused ultrasound, cryotherapy--has gained large acceptance in the last decades. The LDR permanent interstitial radioactive seed implantation is often used as monotherapy for low risk prostate carcinoma whereas the HDR temporary implant may useful to treat intermediate-to-high risk prostate tumors as a radiation boost to combined external beam radiation therapy (EBRT). On the other hand, with recent refinement of EBRT techniques--either three-dimensional conformal- or intensity-modulated radiotherapy, cyber-knife radiosurgery with even 4D-high resolution image-guided tracking--high doses of X-rays may be precisely delivered to prostate malignant lesions without increasing toxicity for surrounding normal structures. Also hadron therapy is an increasingly successful technique that allows the release of effective energy of protons (H+), neutrons or carbon ions (6(12)C) to the limited extent of the cancerous target site, thus destroying malignant lesion with millimetric precision--just as bloodless surgery--while less damaging the neighbouring healthy tissues. Looking to the near future, even more effective oncotherapy modality appears to be the use of antiprotons because of their highly confined energy deposition at well defined body dept around the annihilation point in contact with protons of the ordinary matter, so targeting only a very limited body volume.

  11. Clinical outcome in patients with prostate cancer treated with external beam radiotherapy and high dose-rate iridium 192 brachytherapy boost: A 6-year follow-up

    Energy Technology Data Exchange (ETDEWEB)

    Kaelkner, Karl Mikael; Wahlgren, Thomas; Ryberg, Marianne; Cohn-Cedermark, G abriella; Castellanos, Enrique; Nilsson, Sten [Dept. of Oncology-Pathology, Radi umhemmet, Karolinska Univ. Hospital and Inst., Stockholm (Sweden); Zimmerman, Rolf [Dept. of Oncology-Pathology, Soedersjukhuset, Karolinska Univ. Hospital and Inst., Stockh olm (Sweden); Nilsson, Josef; Lundell, Marie [Dept. of Medical Physics, Karolinska Univ. Hospital and Inst., Stockholm (Sweden); Fowler, Jack [Dept. of Human Oncology , Univ. of Wisconsin Medical School, Madison (United States); Levitt, Seymour [Dept. of Therapeutic R adiology, Univ. of Minnesota, Minneapolis, MN (United States); Hellstroem, Magnus [Dept. o f Urology, Karolinska Univ. Hospital and Inst., Stockholm (Sweden)

    2007-10-15

    To report the long-term results for treatment of localized carcinoma of the prostate using high dose rate (HDR) brachytherapy, conformal external beam radiotherapy (3D EBRT) and neo-adjuvant hormonal therapy (TAB). From 1998 through 1999, 154 patients with localized prostate cancer were entered in the trial. Biologically no evidence of disease (bNED) was defined at PSA levels < 2 {mu}g/l. In order to compare the results of this treatment with other treatment modalities, the patient's pre-treatment data were used to calculate the estimated 5-year PSA relapse free survival using Kattan's nomograms for radical prostatectomy (RP) and 3D EBRT. After 6 years of follow-up, 129 patients remain alive. The actual 5-year relapse-free survival is 84%. None of the patients demonstrated clinical signs of local recurrence. The median PSA at follow-up among the relapse-free patients was 0.05 {mu}g/l. Among the 80 patients who presented with clinical stage T3 tumours, 55 (68%) were relapse-free. The expected 5-year relapse-free survival using nomograms for RP and 3D EBRT was 54% and 70%, respectively. Late rectal toxicity RTOG grade 3 occurred in 1% of the patients. Late urinary tract toxicity RTOG grade 3 developed in 4% of the patients. Combined treatment, utilizing HDR, 3D EBRT and TAB, produces good clinical results. Rectal toxicity is acceptable. Urinary tract toxicity, most likely can be explained by the fact that during the first years of this treatment, no effort was made to localize the urethra, which was assumed to be in the middle of the prostate.

  12. Modulation of toxicity following external beam irradiation preceded by high-dose rate brachytherapy in inoperable oesophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Taal, B.G.; Aleman, B.M.P.; Koning, C.C.E.; Boot, H. [Nederlands Kanker Inst. `Antoni van Leeuwenhoekhuis`, Amsterdam (Netherlands)

    1996-09-01

    To induce fast relief of dysphagia in inoperable oesephageal cancer, we applied high-dose rate (HDR) intraluminal irradiation followed by external irradiation (EBRT) in a phase II study. 15 patients (group A: n = 15; 10 men, 5 women; median age 66 years) were treated with 10 Gy HDR brachytherapy plus 40 Gy EBRT (15 fractions of 2.67 Gy). Severe side-effects were encountered in 60% of patients: 3 late ulceration, 2 pending fistula and 2 patients with fatal haemorrhage after an interval of 6 months. Overall response was excellent: 9 complete remissions (60%) and 6 partial responses (40%). Because of the high toxicity rate, in a subsequent study (group B: n = 30; 23 mean, 7 women; median age 66 years) the EBRT scheme was changed using smaller fractions (2.0 Gy) to reach the same total dose of 40 Gy. The complication rate (17%) was significantly reduced, while the overall response remained excellent (83%): 17 complete and 8 partial responses. The impressive change in complication rate of HDR brachytherapy and EBRT stresses the impact of the fraction per dose and illustrates the small therapeutic margins. (author).

  13. Determination of the tissue inhomogeneity correction in high dose rate Brachytherapy for Iridium-192 source

    Directory of Open Access Journals (Sweden)

    Barlanka Ravikumar

    2012-01-01

    Full Text Available In Brachytherapy treatment planning, the effects of tissue heterogeneities are commonly neglected due to lack of accurate, general and fast three-dimensional (3D dose-computational algorithms. In performing dose calculations, it is assumed that the tumor and surrounding tissues constitute a uniform, homogeneous medium equivalent to water. In the recent past, three-dimensional computed tomography (3D-CT based treatment planning for Brachytherapy applications has been popularly adopted. However, most of the current commercially available planning systems do not provide the heterogeneity corrections for Brachytherapy dosimetry. In the present study, we have measured and quantified the impact of inhomogeneity caused by different tissues with a 0.015 cc ion chamber. Measurements were carried out in wax phantom which was employed to measure the heterogeneity. Iridium-192 (192 Ir source from high dose rate (HDR Brachytherapy machine was used as the radiation source. The reduction of dose due to tissue inhomogeneity was measured as the ratio of dose measured with different types of inhomogeneity (bone, spleen, liver, muscle and lung to dose measured with homogeneous medium for different distances. It was observed that different tissues attenuate differently, with bone tissue showing maximum attenuation value and lung tissue resulting minimum value and rest of the tissues giving values lying in between those of bone and lung. It was also found that inhomogeneity at short distance is considerably more than that at larger distances.

  14. Methodology for commissioning a brachytherapy treatment planning system in the era of 3D planning.

    Science.gov (United States)

    Dempsey, Claire

    2010-12-01

    To describe the steps undertaken to commission a 3D high dose rate (HDR) brachytherapy treatment planning system (TPS). Emphasis was placed on validating previously published recommendations, in addition to checking 3D parameters such as treatment optimization and dose volume histogram (DVH) analysis. Commissioning was performed of the brachytherapy module of the Nucletron Oncentra MasterPlan treatment planning system (version 3.2). Commissioning test results were compared to an independent external beam TPS (Varian Eclipse v 8.6) and the previously commissioned Nucletron Plato (v 14.3.7) brachytherapy treatment planning system, with point doses also independently verified using the brachytherapy module in RadCalc (v 6.0) independent point dose calculation software. Tests were divided into eight categories: (i) Image import accuracy, (ii) Reconstruction accuracy, (iii) Source configuration data check, (iv) Dose calculation accuracy, (v) Treatment optimization validation, (vi) DVH reproducibility, (vii) Treatment export check and (viii) Printout consistency. Point dose agreement between Oncentra, Plato and RadCalc was better than 5% with source data and dose calculation protocols following the American Association of Physicists in Medicine (AAPM) guidelines. Testing of image accuracy (import and reconstruction), along with validation of automated treatment optimization and DVH analysis generated a more comprehensive set of testing procedures than previously listed in published recommendations.

  15. [Edge effect and late thrombosis -- inevitable complications of vascular brachytherapy?].

    Science.gov (United States)

    Schiele, T M; Staber, L; Kantlehner, R; Pöllinger, B; Dühmke, E; Theisen, K; Klauss, V

    2002-11-01

    Restenosis is the limiting entity after percutaneous coronary angioplasty. Vascular brachytherapy for the treatment of in-stent restenosis has been shown to reduce the repeat restenosis rate and the incidence of major adverse events in several randomized trials. Besides the beneficial effects, brachytherapy yielded some unwanted side effects. The development of new stenoses at the edges of the target lesion treated with radiation is termed edge effect. It occurs after afterloading brachytherapy as well as after implantation of radioactive stents. It is characterized by extensive intimal hyperplasia and negative remodeling. As contributing factors the axial dose fall-off, inherent to all radioactive sources, and the application of vessel wall trauma by angioplasty have been identified. The combination of both factors, by insufficient overlap of the radiation length over the injured vessel segment, has been referred to as geographic miss. It has been shown to be associated with a very high incidence of the edge effect. Avoidance of geographic miss is strongly recommended in vascular brachytherapy procedures. Late thrombosis after vascular brachytherapy is of multifactorial origin. It comprises platelet recruitment, fibrin deposition, disturbed vasomotion, non-healing dissection and stent malapposition predisposing to turbulent blood flow. The strongest predictors for late thrombosis are premature discontinuation of antiplatelet therapy and implantation of new stents during the brachytherapy procedure. With a consequent and prolonged antiplatelet therapy, the incidence of late thrombosis has been reduced to placebo levels. Edge effect and late thrombosis represent unwanted side effects of vascular brachytherapy. By means of a thorough treatment planning and prolonged antiplatelet therapy their incidences can be largely reduced. With regard to the very favorable net effect, they do not constitute relevant limitations of vascular brachytherapy.

  16. SU-E-T-783: Using Matrixx to Determine Transit Dose Contribution Over Clinically Useful Limits of HDR Source Activity

    Energy Technology Data Exchange (ETDEWEB)

    Bhagwat, M; O’Farrell, D; Wagar, M; Buzurovic, I; Friesen, S; Damato, A; Devlin, P; Cormack, R [Dana-Farber Brigham and Women’s Cancer Center, Harvard Medical School, Boston, MA (United States)

    2015-06-15

    Purpose: Most HDR brachytherapy treatment planning systems (TPS) use TG-43 formalism to calculate dose without including transit dose corrections. Historically, measurement of this contribution has required sophisticated apparatus unavailable in most hospitals. We use Matrixx to investigate several scenarios where transit dose contribution may effect a clinical treatment. Methods: Treatment plans were generated using Oncentra Brachy TPS (Version 4.3.0.410, Nucletron ) on a CT scan of a 24-catheter Freiburg applicator (Nucletron ) laid flat on the MatriXX (IBA) detector. This detector is an array of 1020 parallel plate ion chambers. All 24 catheters were digitized and dwells within a central square region of 5×5cm of the applicator were activated. Each of the active catheters had 6 dwells in increments of 1.0cm. The plans were normalized to 10mm. This places the 100% isodose line at the correct effective point of measurement, which lies half-way between the parallel plates of the ion chambers. It is also within the clinically relevant treatment depth for superficial applications. A total of 6 plans were delivered for 3 prescription doses, 1Gy, 2Gy and 4Gy using source activities of 2.9Ci and 11.2Ci. The MatriXX array was operated to capture dosimetric snaps every 500ms and yielded an integral dose at the end of treatment. Results: A comparison of integral dose from 2 different source activities shows that the transit dose contribution is larger when the source activity is higher. It is also observed that the relative transit dose contribution decreases as prescription dose increases. This is quantified by the Gamma analysis. Conclusion: We have demonstrated that the Matrixx detector can be used to evaluate the contribution for a HDR source during transit from the HDR afterloader to a dwell location, and between adjacent dwell locations.

  17. Evaluation of a real-time BeO ceramic fiber-coupled luminescence dosimetry system for dose verification of high dose rate brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Alexandre M. Caraça, E-mail: alexandre.santos@adelaide.edu.au [Department of Medical Physics, Royal Adelaide Hospital, Adelaide 5000, Australia and Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide 5005 (Australia); Mohammadi, Mohammad [Department of Medical Physics, Royal Adelaide Hospital, Adelaide 5000, Australia and Department of Medical Physics, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan 65167-3-8736 (Iran, Islamic Republic of); Shahraam, Afshar V. [Laser Physics and Photonic Devices Laboratories, School of Engineering, The University of South Australia, Adelaide 5095 (Australia); Institute for Photonics and Advanced Sensing, School of Physical Sciences, University of Adelaide, Adelaide 5005 (Australia)

    2015-11-15

    Purpose: The authors evaluate the capability of a beryllium oxide (BeO) ceramic fiber-coupled luminescence dosimeter, named radioluminescence/optically stimulated luminescence (RL/OSL) BeO FOD, for dosimetric verification of high dose rate (HDR) treatments. The RL/OSL BeO FOD is capable of RL and OSL measurements. Methods: The RL/OSL BeO FOD is able to be inserted in 6F proguide needles, used in interstitial HDR treatments. Using a custom built Perspex phantom, 6F proguide needles could be submerged in a water tank at 1 cm separations from each other. A second background fiber was required to correct for the stem effect. The stem effect, dose linearity, reproducibility, depth-dose curves, and angular and temperature dependency of the RL/OSL BeO FOD were characterised using an Ir-192 source. The RL/OSL BeO FOD was also applied to the commissioning of a 10 mm horizontal Leipzig applicator. Results: Both the RL and OSL were found to be reproducible and their percentage depth-dose curves to be in good agreement with those predicted via TG-43. A combined uncertainty of 7.9% and 10.1% (k = 1) was estimated for the RL and OSL, respectively. For the 10 mm horizontal Leipzig applicator, measured percentage depth doses were within 5% agreement of the published reference calculations. The output at the 3 mm prescription depth for a 1 Gy delivery was verified to be 0.99 ± 0.08 Gy and 1.01 ± 0.10 Gy by the RL and OSL, respectively. Conclusions: The use of the second background fiber under the current setup means that the two fibers cannot fit into a single 6F needle. Hence, use of the RL is currently not adequate for the purpose of in vivo brachytherapy dosimetry. While not real-time, the OSL is shown to be adequate for in vivo brachytherapy dosimetry.

  18. dose in cervical cancer intracavitary brachytherapy

    Directory of Open Access Journals (Sweden)

    Zahra Siavashpour

    2016-04-01

    Full Text Available Purpose: To analyze the optimum organ filling point for organs at risk (OARs dose in cervical cancer high-dose-rate (HDR brachytherapy. Material and methods : In a retrospective study, 32 locally advanced cervical cancer patients (97 insertions who were treated with 3D conformal external beam radiation therapy (EBRT and concurrent chemotherapy during 2010-2013 were included. Rotterdam HDR tandem-ovoid applicators were used and computed tomography (CT scanning was performed after each insertion. The OARs delineation and GEC-ESTRO-based clinical target volumes (CTVs contouring was followed by 3D forward planning. Then, dose volume histogram (DVH parameters of organs were recorded and patients were classified based on their OARs volumes, as well as their inserted tandem length. Results : The absorbed dose to point A ranged between 6.5-7.5 Gy. D 0.1cm ³ and D 2cm ³ of the bladder significantly increased with the bladder volume enlargement (p value < 0.05. By increasing the bladder volume up to about 140 cm3, the rectum dose was also increased. For the cases with bladder volumes higher than 140 cm3, the rectum dose decreased. For bladder volumes lower than 75 cm3, the sigmoid dose decreased; however, for bladder volumes higher than 75 cm3, the sigmoid dose increased. The D 2cm ³ of the bladder and rectum were higher for longer tandems than for shorter ones, respectively. The divergence of the obtained results for different tandem lengths became wider by the extension of the bladder volume. The rectum and sigmoid volume had a direct impact on increasing their D 0.1cm ³ and D 2cm ³, as well as decreasing their D 10 , D 30 , and D 50 . Conclusions : There is a relationship between the volumes of OARs and their received doses. Selecting a bladder with a volume of about 70 cm3 or less proved to be better with regards to the dose to the bladder, rectum, and sigmoid.

  19. Computed tomography-guided interstitial high dose rate brachytherapy for centrally located liver tumours: a single institution study

    Energy Technology Data Exchange (ETDEWEB)

    Tselis, Nikolaos; Chatzikonstantinou, Georgios; Zamboglou, Nikolaos [Klinikum Offenbach, Department of Radiation Oncology, Offenbach am Main (Germany); Kolotas, Christos [Hirslanden Medical Center, Institute for Radiotherapy, Aarau (Switzerland); Milickovic, Natasa; Baltas, Dimos [Klinikum Offenbach, Department of Medical Physics and Engineering, Offenbach am Main (Germany)

    2013-08-15

    To evaluate the clinical outcome of computed tomography (CT)-guided interstitial (IRT) high-dose-rate (HDR) brachytherapy (BRT) in the treatment of unresectable primary and secondary liver malignancies. This report updates and expands our previously described experience with this treatment technique. Forty-one patients with 50 tumours adjacent to the liver hilum and bile duct bifurcation were treated in 59 interventions of CT-guided IRT HDR BRT. The tumours were larger than 4 cm with a median volume of 84 cm{sup 3} (38-1,348 cm{sup 3}). The IRT HDR BRT delivered a median total physical dose of 20.0 Gy (7.0-32.0 Gy) in twice daily fractions of median 7.0 Gy (4.0-10.0 Gy) in 19 patients and in once daily fractions of median 8.0 Gy (7.0-14.0 Gy) in 22 patients. With a median follow-up of 12.4 months, the local control for metastatic hepatic tumours was 89 %, 73 % and 63 % at 6, 12 and 18 months respectively. The local control for primary hepatic tumours was 90 %, 81 % and 50 % at 6, 12 and 18 months respectively. Severe side effects occurred in 5.0 % of interventions with no treatment-related deaths. CT-guided IRT HDR BRT is a promising procedure for the radiation treatment of centrally located liver malignancies. (orig.)

  20. Effect of chemical composition and density of the pelvic structure in intracavitary brachytherapy dosimetry

    Science.gov (United States)

    Chávez-Aguilera, N.; Torres-García, E.; Mitsoura, E.

    2011-03-01

    High dose rate (HDR) and low dose rate (LDR) intracavitary brachytherapies dosimetry in clinical practice are typically performed by commercial treatment planning systems. However, these systems do not fully consider the heterogeneities present in the real structure of the patient. The aim of this work is to obtain isodose curves and surfaces around the usual array of sources used in LDR ( 137Cs) and HDR ( 192Ir) intracavitary brachytherapy by Monte Carlo simulation, considering the real anatomic structure, density and chemical composition of media and tissues from the female pelvic region. The structural information was obtained from computed tomography images in the DICOM format. A voxel phantom (VP) was developed to perform ionizing radiation transport, considering the gamma spectrum of 137Cs and 192Ir. The absorbed dose was computed within each voxel of 2×2×3 mm 3. Four materials were considered in the VP—air, fat, muscle tissue and bone; however, one material per voxel was defined. Results show and quantify the effect of density and chemical composition of the medium on the absorbed dose distribution. According to them, the treatment planning systems underestimate the absorbed dose by 8% approximately for both radionuclides. In a heterogeneous medium, the absorbed dose distribution of 192Ir is more irregular than that of 137Cs but spatially better defined.

  1. Effect of chemical composition and density of the pelvic structure in intracavitary brachytherapy dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    Chavez-Aguilera, N. [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico); Departamento de Fisica Medica, Instituto Estatal de Cancerologia ' Dr. Arturo Beltran Ortega' , Acapulco, Guerrero (Mexico); Torres-Garcia, E., E-mail: etorresg@uaemex.m [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico); Mitsoura, E. [Coordinacion de Investigacion y Estudios de Posgrado, Facultad de Medicina, Universidad Autonoma del Estado de Mexico, Paseo Tollocan s/n Esquina con Jesus Carranza, 50180 Toluca (Mexico)

    2011-03-15

    High dose rate (HDR) and low dose rate (LDR) intracavitary brachytherapies dosimetry in clinical practice are typically performed by commercial treatment planning systems. However, these systems do not fully consider the heterogeneities present in the real structure of the patient. The aim of this work is to obtain isodose curves and surfaces around the usual array of sources used in LDR ({sup 137}Cs) and HDR ({sup 192}Ir) intracavitary brachytherapy by Monte Carlo simulation, considering the real anatomic structure, density and chemical composition of media and tissues from the female pelvic region. The structural information was obtained from computed tomography images in the DICOM format. A voxel phantom (VP) was developed to perform ionizing radiation transport, considering the gamma spectrum of {sup 137}Cs and {sup 192}Ir. The absorbed dose was computed within each voxel of 2x2x3 mm{sup 3}. Four materials were considered in the VP-air, fat, muscle tissue and bone; however, one material per voxel was defined. Results show and quantify the effect of density and chemical composition of the medium on the absorbed dose distribution. According to them, the treatment planning systems underestimate the absorbed dose by 8% approximately for both radionuclides. In a heterogeneous medium, the absorbed dose distribution of {sup 192}Ir is more irregular than that of {sup 137}Cs but spatially better defined.

  2. The high dynamic range pixel array detector (HDR-PAD): Concept and design

    Energy Technology Data Exchange (ETDEWEB)

    Shanks, Katherine S.; Philipp, Hugh T.; Weiss, Joel T.; Becker, Julian; Tate, Mark W. [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Gruner, Sol M., E-mail: smg26@cornell.edu [Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY 14853 (United States); Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States)

    2016-07-27

    Experiments at storage ring light sources as well as at next-generation light sources increasingly require detectors capable of high dynamic range operation, combining low-noise detection of single photons with large pixel well depth. XFEL sources in particular provide pulse intensities sufficiently high that a purely photon-counting approach is impractical. The High Dynamic Range Pixel Array Detector (HDR-PAD) project aims to provide a dynamic range extending from single-photon sensitivity to 10{sup 6} photons/pixel in a single XFEL pulse while maintaining the ability to tolerate a sustained flux of 10{sup 11} ph/s/pixel at a storage ring source. Achieving these goals involves the development of fast pixel front-end electronics as well as, in the XFEL case, leveraging the delayed charge collection due to plasma effects in the sensor. A first prototype of essential electronic components of the HDR-PAD readout ASIC, exploring different options for the pixel front-end, has been fabricated. Here, the HDR-PAD concept and preliminary design will be described.

  3. Limitations of the TG-43 formalism for skin high-dose-rate brachytherapy dose calculations

    Energy Technology Data Exchange (ETDEWEB)

    Granero, Domingo, E-mail: dgranero@eresa.com [Department of Radiation Physics, ERESA, Hospital General Universitario, 46014 Valencia (Spain); Perez-Calatayud, Jose [Radiotherapy Department, La Fe University and Polytechnic Hospital, Valencia 46026 (Spain); Vijande, Javier [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100, Spain and IFIC (UV-CSIC), Paterna 46980 (Spain); Ballester, Facundo [Department of Atomic, Molecular and Nuclear Physics, University of Valencia, Burjassot 46100 (Spain); Rivard, Mark J. [Department of Radiation Oncology, Tufts University School of Medicine, Boston, Massachusetts 02111 (United States)

    2014-02-15

    Purpose: In skin high-dose-rate (HDR) brachytherapy, sources are located outside, in contact with, or implanted at some depth below the skin surface. Most treatment planning systems use the TG-43 formalism, which is based on single-source dose superposition within an infinite water medium without accounting for the true geometry in which conditions for scattered radiation are altered by the presence of air. The purpose of this study is to evaluate the dosimetric limitations of the TG-43 formalism in HDR skin brachytherapy and the potential clinical impact. Methods: Dose rate distributions of typical configurations used in skin brachytherapy were obtained: a 5 cm × 5 cm superficial mould; a source inside a catheter located at the skin surface with and without backscatter bolus; and a typical interstitial implant consisting of an HDR source in a catheter located at a depth of 0.5 cm. Commercially available HDR{sup 60}Co and {sup 192}Ir sources and a hypothetical {sup 169}Yb source were considered. The Geant4 Monte Carlo radiation transport code was used to estimate dose rate distributions for the configurations considered. These results were then compared to those obtained with the TG-43 dose calculation formalism. In particular, the influence of adding bolus material over the implant was studied. Results: For a 5 cm × 5 cm{sup 192}Ir superficial mould and 0.5 cm prescription depth, dose differences in comparison to the TG-43 method were about −3%. When the source was positioned at the skin surface, dose differences were smaller than −1% for {sup 60}Co and {sup 192}Ir, yet −3% for {sup 169}Yb. For the interstitial implant, dose differences at the skin surface were −7% for {sup 60}Co, −0.6% for {sup 192}Ir, and −2.5% for {sup 169}Yb. Conclusions: This study indicates the following: (i) for the superficial mould, no bolus is needed; (ii) when the source is in contact with the skin surface, no bolus is needed for either {sup 60}Co and {sup 192}Ir. For

  4. On source models for (192)Ir HDR brachytherapy dosimetry using model based algorithms.

    Science.gov (United States)

    Pantelis, Evaggelos; Zourari, Kyveli; Zoros, Emmanouil; Lahanas, Vasileios; Karaiskos, Pantelis; Papagiannis, Panagiotis

    2016-06-07

    A source model is a prerequisite of all model based dose calculation algorithms. Besides direct simulation, the use of pre-calculated phase space files (phsp source models) and parameterized phsp source models has been proposed for Monte Carlo (MC) to promote efficiency and ease of implementation in obtaining photon energy, position and direction. In this work, a phsp file for a generic (192)Ir source design (Ballester et al 2015) is obtained from MC simulation. This is used to configure a parameterized phsp source model comprising appropriate probability density functions (PDFs) and a sampling procedure. According to phsp data analysis 15.6% of the generated photons are absorbed within the source, and 90.4% of the emergent photons are primary. The PDFs for sampling photon energy and direction relative to the source long axis, depend on the position of photon emergence. Photons emerge mainly from the cylindrical source surface with a constant probability over  ±0.1 cm from the center of the 0.35 cm long source core, and only 1.7% and 0.2% emerge from the source tip and drive wire, respectively. Based on these findings, an analytical parameterized source model is prepared for the calculation of the PDFs from data of source geometry and materials, without the need for a phsp file. The PDFs from the analytical parameterized source model are in close agreement with those employed in the parameterized phsp source model. This agreement prompted the proposal of a purely analytical source model based on isotropic emission of photons generated homogeneously within the source core with energy sampled from the (192)Ir spectrum, and the assignment of a weight according to attenuation within the source. Comparison of single source dosimetry data obtained from detailed MC simulation and the proposed analytical source model show agreement better than 2% except for points lying close to the source longitudinal axis.

  5. Predictors of Toxicity After Image-guided High-dose-rate Interstitial Brachytherapy for Gynecologic Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Larissa J. [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States); Viswanathan, Akila N., E-mail: aviswanathan@lroc.harvard.edu [Department of Radiation Oncology, Brigham and Women' s Hospital and Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts (United States)

    2012-12-01

    Purpose: To identify predictors of grade 3-4 complications and grade 2-4 rectal toxicity after three-dimensional image-guided high-dose-rate (HDR) interstitial brachytherapy for gynecologic cancer. Methods and Materials: Records were reviewed for 51 women (22 with primary disease and 29 with recurrence) treated with HDR interstitial brachytherapy. A single interstitial insertion was performed with image guidance by computed tomography (n = 43) or magnetic resonance imaging (n = 8). The median delivered dose in equivalent 2-Gy fractions was 72.0 Gy (45 Gy for external-beam radiation therapy and 24 Gy for brachytherapy). Toxicity was reported according to the Common Toxicity Criteria for Adverse Events. Actuarial toxicity estimates were calculated by the Kaplan-Meier method. Results: At diagnosis, the median patient age was 62 years and the median tumor size was 3.8 cm. The median D90 and V100 were 71.4 Gy and 89.5%; the median D2cc for the bladder, rectum, and sigmoid were 64.6 Gy, 61.0 Gy, and 52.7 Gy, respectively. The actuarial rates of all grade 3-4 complications at 2 years were 20% gastrointestinal, 9% vaginal, 6% skin, 3% musculoskeletal, and 2% lymphatic. There were no grade 3-4 genitourinary complications and no grade 5 toxicities. Grade 2-4 rectal toxicity was observed in 10 patients, and grade 3-4 complications in 4; all cases were proctitis with the exception of 1 rectal fistula. D2cc for rectum was higher for patients with grade 2-4 (68 Gy vs 57 Gy for grade 0-1, P=.03) and grade 3-4 (73 Gy vs 58 Gy for grade 0-2, P=.02) rectal toxicity. The estimated dose that resulted in a 10% risk of grade 2-4 rectal toxicity was 61.8 Gy (95% confidence interval, 51.5-72.2 Gy). Discussion: Image-guided HDR interstitial brachytherapy results in acceptable toxicity for women with primary or recurrent gynecologic cancer. D2cc for the rectum is a reliable predictor of late rectal complications. Three-dimensional-based treatment planning should be performed to ensure

  6. Commissioning and quality assurance procedures for the HDR Valencia skin applicators.

    Science.gov (United States)

    Granero, Domingo; Candela-Juan, Cristian; Ballester, Facundo; Ouhib, Zoubir; Vijande, Javier; Richart, Jose; Perez-Calatayud, Jose

    2016-10-01

    The Valencia applicators (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden) are cup-shaped tungsten applicators with a flattening filter used to collimate the radiation produced by a high-dose-rate (HDR) (192)Ir source, and provide a homogeneous absorbed dose at a given depth. This beam quality provides a good option for the treatment of skin lesions at shallow depth (3-4 mm). The user must perform commissioning and periodic testing of these applicators to guarantee the proper and safe delivery of the intended absorbed dose, as recommended in the standards in radiation oncology. In this study, based on AAPM and GEC-ESTRO guidelines for brachytherapy units and our experience, a set of tests for the commissioning and periodic testing of the Valencia applicators is proposed. These include general considerations, verification of the manufacturer documentation and physical integrity, evaluation of the source-to-indexer distance and reproducibility, setting the library plan in the treatment planning system, evaluation of flatness and symmetry, absolute output and percentage depth dose verification, independent calculation of the treatment time, and visual inspection of the applicator before each treatment. For each test, the proposed methodology, equipment, frequency, expected results, and tolerance levels (when applicable) are provided.

  7. Commissioning and quality assurance procedures for the HDR Valencia skin applicators

    Directory of Open Access Journals (Sweden)

    Domingo Granero

    2016-11-01

    Full Text Available The Valencia applicators (Nucletron, an Elekta company, Elekta AB, Stockholm, Sweden are cup-shaped tungsten applicators with a flattening filter used to collimate the radiation produced by a high-dose-rate (HDR 192 Ir source, and provide a homogeneous absorbed dose at a given depth. This beam quality provides a good option for the treatment of skin lesions at shallow depth (3-4 mm. The user must perform commissioning and periodic testing of these applicators to guarantee the proper and safe delivery of the intended absorbed dose, as recommended in the standards in radiation oncology. In this study, based on AAPM and GEC-ESTRO guidelines for brachytherapy units and our experience, a set of tests for the commissioning and periodic testing of the Valencia applicators is proposed. These include general considerations, verification of the manufacturer documentation and physical integrity, evaluation of the source-to-indexer distance and reproducibility, setting the library plan in the treatment planning system, evaluation of flatness and symmetry, absolute output and percentage depth dose verification, independent calculation of the treatment time, and visual inspection of the applicator before each treatment. For each test, the proposed methodology, equipment, frequency, expected results, and tolerance levels (when applicable are provided.

  8. Evaluating adjacent organ radiation doses from postoperative intracavitary vaginal vault brachytherapy for endometrial cancer.

    Science.gov (United States)

    Caon, Julianna; Holloway, Caroline; Dubash, Rustom; Yuen, Conrad; Aquino-Parsons, Christina

    2014-01-01

    To document doses received by critical organs during adjuvant high-dose-rate (HDR) vaginal vault brachytherapy. Patients treated with HDR vaginal vault radiation between January 1, 2009, and January 31, 2012, who had a CT simulation with the treatment cylinder in situ were included. The CT scans were retrospectively reviewed and the rectum, sigmoid, small bowel, and bladder were contoured. Standardized plans treating the upper 4 cm of the vaginal vault were used to deliver a total of 21 Gy (Gy) at 0.5 cm from the apex of the vaginal vault in three fractions. There were 41 patients. Median age was 62 years. The median vaginal cylinder diameter was 3 cm. The mean 2cc dose to the rectum, sigmoid, small bowel, and bladder were 5.7, 4.7, 4.0, and 5.6 Gy, respectively. Bladder volume ranged from 67-797cc. Assuming minimal interfraction organ variation, the equivalent dose in 2 Gy/fraction was extrapolated from data and may be near or beyond organ tolerance for rectum, sigmoid, and small bowel in some cases. Spearman correlation found that increased bladder volume was not associated with adjacent organs at risk dose but may be associated with a trend (p=0.06) toward increased bladder dose (R=0.30). This study describes the dose received by adjacent critical structures during vaginal vault HDR brachytherapy. This is important information for documentation in the rare setting of treatment-related toxicity or recurrence. Bladder volume was not associated with dose to adjacent organs. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  9. Automated high-dose rate brachytherapy treatment planning for a single-channel vaginal cylinder applicator

    Science.gov (United States)

    Zhou, Yuhong; Klages, Peter; Tan, Jun; Chi, Yujie; Stojadinovic, Strahinja; Yang, Ming; Hrycushko, Brian; Medin, Paul; Pompos, Arnold; Jiang, Steve; Albuquerque, Kevin; Jia, Xun

    2017-06-01

    High dose rate (HDR) brachytherapy treatment planning is conventionally performed manually and/or with aids of preplanned templates. In general, the standard of care would be elevated by conducting an automated process to improve treatment planning efficiency, eliminate human error, and reduce plan quality variations. Thus, our group is developing AutoBrachy, an automated HDR brachytherapy planning suite of modules used to augment a clinical treatment planning system. This paper describes our proof-of-concept module for vaginal cylinder HDR planning that has been fully developed. After a patient CT scan is acquired, the cylinder applicator is automatically segmented using image-processing techniques. The target CTV is generated based on physician-specified treatment depth and length. Locations of the dose calculation point, apex point and vaginal surface point, as well as the central applicator channel coordinates, and the corresponding dwell positions are determined according to their geometric relationship with the applicator and written to a structure file. Dwell times are computed through iterative quadratic optimization techniques. The planning information is then transferred to the treatment planning system through a DICOM-RT interface. The entire process was tested for nine patients. The AutoBrachy cylindrical applicator module was able to generate treatment plans for these cases with clinical grade quality. Computation times varied between 1 and 3 min on an Intel Xeon CPU E3-1226 v3 processor. All geometric components in the automated treatment plans were generated accurately. The applicator channel tip positions agreed with the manually identified positions with submillimeter deviations and the channel orientations between the plans agreed within less than 1 degree. The automatically generated plans obtained clinically acceptable quality.

  10. Brachytherapy dose measurements in heterogeneous tissues

    Energy Technology Data Exchange (ETDEWEB)

    Paiva F, G.; Luvizotto, J.; Salles C, T.; Guimaraes A, P. C.; Dalledone S, P. de T.; Yoriyaz, H. [Instituto de Pesquisas Energeticas e Nucleares / CNEN, Av. Lineu Prestes 2242, Cidade Universitaria, 05508-000 Sao Paulo (Brazil); Rubo, R., E-mail: gabrielpaivafonseca@gmail.com [Hospital das Clinicas da Faculdade de Medicina da Universidade de Sao Paulo, 05403-900 Sao Paulo (Brazil)

    2014-08-15

    Recently, Beau lieu et al. published an article providing guidance for Model-Based Dose Calculation Algorithms (MBDCAs), where tissue heterogeneity considerations are addressed. It is well-known that T G-43 formalism which considers only water medium is limited and significant dose differences have been found comparing both methodologies. The aim of the present work is to experimentally quantify dose values in heterogeneous medium using different dose measurement methods and techniques and compare them with those obtained with Monte Carlo simulations. Experiments have been performed using a Nucletron micro Selectron-Hdr Ir-192 brachytherapy source and a heterogeneous phantom composed by PMMA and different tissue equivalent cylinders like bone, lungs and muscle. Several dose measurements were obtained using tissue equivalent materials with height 1.8 cm and 4.3 cm positioned between the radiation source and the detectors. Radiochromic films, TLDs and MOSFET S have been used for the dose measurements. Film dosimetry has been performed using two methodologies: a) linearization for dose-response curve based on calibration curves to create a functional form that linearize s the dose response and b) 177 multichannel analysis dosimetry where the multiple color channels are analyzed allowing to address not only disturbances in the measurements caused by thickness variation in the film layer, but also, separate other external influences in the film response. All experiments have been simulated using the MCNP5 Monte Carlo radiation transport code. Comparison of experimental results are in good agreement with calculated dose values with differences less than 6% for almost all cases. (Author)

  11. A review of the HDR research programme; HDR-tutkimusohjelman tulosten arviointi

    Energy Technology Data Exchange (ETDEWEB)

    Talja, H.; Koski, K.; Rintamaa, R. [VTT Manufacturing Technology, Espoo (Finland); Keskinen, R. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1995-10-01

    In the German HDR (Heissdampfreaktor, hot steam reactor) reactor safety programme, experiments and simulating numerical analyses have been undertaken since 1976 to study the integrity and safety of light water reactors under operational and faulted conditions. The last experiments of the programme were conducted in 1991. The post test analyses have been finished by March 1994 and the last final reports were obtained a few months later. The report aims to inform the utilities and the regulatory body of Finland about the contents of the lokset HDR research programme and to consider the applicability of the results to safety analyses of Finnish nuclear power plants. The report centers around the thermal shock and piping component experiments within the last or third phase of the HDR programme. Investigations into severe reactor accidents, fire safety and non-destructive testing, also conducted during the third phase, are not considered. The report presents a review of the following experiment groups: E21 (crack growth under corrosive conditions, loading due to thermal stratification), E22 (leak rate and leak detection experiments of through-cracked piping), E23 (thermal transient and stratification experiments for a pipe nozzle), E31 (vibration of cracked piping due to blow down and closure of isolation valve), E32 (seismically induced vibrations of cracked piping), E33 (condensation phenomena in horizontal piping during emergency cooling). A comprehensive list of reference reports, received by VTT and containing a VTT more detailed description, is given for each experiment group. The review is focused on the loading conditions and their theoretical modelling. A comparison of theoretical and experimental results is presented for each experiment group. The safety margins are finally assessed with special reference to leak-before-break, a well known principle for assuring the integrity of primary circuit piping of nuclear power plants. (orig.) (71 figs., 5 tabs.).

  12. A review of the HDR research programme; HDR-tutkimusohjelman tulosten arviointi

    Energy Technology Data Exchange (ETDEWEB)

    Talja, H.; Koski, K.; Rintamaa, R. [VTT Manufacturing Technology, Espoo (Finland); Keskinen, R. [Finnish Centre for Radiation and Nuclear Safety, Helsinki (Finland)

    1995-10-01

    In the German HDR (Heissdampfreaktor, hot steam reactor) reactor safety programme, experiments and simulating numerical analyses have been undertaken since 1976 to study the integrity and safety of light water reactors under operational and faulted conditions. The last experiments of the programme were conducted in 1991. The post test analyses have been finished by March 1994 and the last final reports were obtained a few months later. The report aims to inform the utilities and the regulatory body of Finland about the contents of the lokset HDR research programme and to consider the applicability of the results to safety analyses of Finnish nuclear power plants. The report centers around the thermal shock and piping component experiments within the last or third phase of the HDR programme. Investigations into severe reactor accidents, fire safety and non-destructive testing, also conducted during the third phase, are not considered. The report presents a review of the following experiment groups: E21 (crack growth under corrosive conditions, loading due to thermal stratification), E22 (leak rate and leak detection experiments of through-cracked piping), E23 (thermal transient and stratification experiments for a pipe nozzle), E31 (vibration of cracked piping due to blow down and closure of isolation valve), E32 (seismically induced vibrations of cracked piping), E33 (condensation phenomena in horizontal piping during emergency cooling). A comprehensive list of reference reports, received by VTT and containing a VTT more detailed description, is given for each experiment group. The review is focused on the loading conditions and their theoretical modelling. A comparison of theoretical and experimental results is presented for each experiment group. The safety margins are finally assessed with special reference to leak-before-break, a well known principle for assuring the integrity of primary circuit piping of nuclear power plants. (orig.) (71 figs., 5 tabs.).

  13. Design and optimization of a brachytherapy robot

    Science.gov (United States)

    Meltsner, Michael A.

    Trans-rectal ultrasound guided (TRUS) low dose rate (LDR) interstitial brachytherapy has become a popular procedure for the treatment of prostate cancer, the most common type of non-skin cancer among men. The current TRUS technique of LDR implantation may result in less than ideal coverage of the tumor with increased risk of negative response such as rectal toxicity and urinary retention. This technique is limited by the skill of the physician performing the implant, the accuracy of needle localization, and the inherent weaknesses of the procedure itself. The treatment may require 100 or more sources and 25 needles, compounding the inaccuracy of the needle localization procedure. A robot designed for prostate brachytherapy may increase the accuracy of needle placement while minimizing the effect of physician technique in the TRUS procedure. Furthermore, a robot may improve associated toxicities by utilizing angled insertions and freeing implantations from constraints applied by the 0.5 cm-spaced template used in the TRUS method. Within our group, Lin et al. have designed a new type of LDR source. The "directional" source is a seed designed to be partially shielded. Thus, a directional, or anisotropic, source does not emit radiation in all directions. The source can be oriented to irradiate cancerous tissues while sparing normal ones. This type of source necessitates a new, highly accurate method for localization in 6 degrees of freedom. A robot is the best way to accomplish this task accurately. The following presentation of work describes the invention and optimization of a new prostate brachytherapy robot that fulfills these goals. Furthermore, some research has been dedicated to the use of the robot to perform needle insertion tasks (brachytherapy, biopsy, RF ablation, etc.) in nearly any other soft tissue in the body. This can be accomplished with the robot combined with automatic, magnetic tracking.

  14. High-dose-rate interstitial brachytherapy in head and neck cancer: do we need a look back into a forgotten art - a single institute experience.

    Science.gov (United States)

    Bhalavat, Rajendra; Chandra, Manish; Pareek, Vibhay; Nellore, Lalitha; George, Karishma; Nandakumar, P; Bauskar, Pratibha

    2017-04-01

    To evaluate the treatment outcomes with high-dose-rate (HDR) interstitial brachytherapy (HDR-BRT) in head and neck cancers (HNC). Fifty-eight patients with HNC as per American Joint Committee on Cancer (AJCC) TNM staging criteria were analyzed retrospectively between 2008 and 2015. Forty-two patients received external beam radiotherapy (EBRT) with HDR-BRT and 16 patients received BRT alone. The survival was calculated with respect to median biological equivalent doses (BED) and median 2 Gy equivalent dose (EQD2), keeping α/β = 10 for tumor. Loco-regional control and disease free survival was assessed. The median follow-up period was 25 months (2-84 months). The disease-free survival (DFS) probability at year 1 was 82.7%, and 68% at year 7. The overall survival probability was 91.3% at year 1 and 85.8% at year 7. The local control rate was 70%. The rate of recurrence was 30%. Distant metastasis rate was 17.2%. The median BED and EQD2, respectively, were 86.78 Gy and 71.6 Gy. The DFS was 74.1% and 75.9% in patients receiving a dose more than median BED and EQD2, respectively, and was 64.8% and 61.5% for less than the median dose. The overall outcome was good with implementation of HDR-BRT used alone or as boost, and shows DFS as better when the dose received is more than the median BED and median EQD2. The role of HDR-BRT in HNC is a proven, effective, and safe treatment method with excellent long term outcome as seen in this study, which reflects the need for reviving the forgotten art and science of interstitial brachytherapy in HNC.

  15. CT computer-optimized high-dose-rate brachytherapy with surface applicator technique for scar boost radiation after breast reconstruction surgery.

    Science.gov (United States)

    Stewart, Alexandra J; O'Farrell, Desmond A; Bellon, Jennifer R; Hansen, Jorgen L; Duggan, Catherine; Czerminska, Maria A; Cormack, Robert A; Devlin, Phillip M

    2005-01-01

    Immediate breast reconstruction has become increasingly prevalent after mastectomy for breast cancer. Postoperative scar boost radiation for the reconstructed breast presents many planning challenges due to the shape, size, and curvature of the scar. High-dose-rate (HDR) surface applicator brachytherapy is a novel and effective method of delivering scar boost radiation. Two cases, one with a saline implant and one with a transverse rectus abdominis musculocutaneous flap reconstruction, illustrate the method and advantages of HDR optimization of surface applicators. For 2 patients a mold of the breast was made with Aquaplast sheets. A reproducible system was used for arm positioning. Skin fiducials, including tattoos from external beam planning, were matched to fiducials on the mold. HDR catheters were sited on the mold at 1cm intervals, with the central catheter situated along the scar. Topographically, both scars demonstrated extreme curvature in both craniocaudal and mediolateral directions. A CT computer-optimized HDR plan was developed, with the reference dose prescribed at the skin surface. The dosimetry was compared to single-field and matched-field electron plans. This surface applicator technique provided a uniform skin dose of 100% to the entire clinical target volume (CTV) without hot spots in both patients. The patient position and surface applicator setup were consistently reproducible. The patients tolerated the treatment well with minimal skin erythema. In the single-field electron plan, skin dose was decreased to 50% at the periphery of the scar. Matching fields addressed this depth dose decrement, but resulted in large localized hot spots of more than 200% centrally in each field. CT computer-optimized HDR surface applicator brachytherapy provided a reproducible homogeneous method of treating highly curved scars on the reconstructed breast. Electron beam treatment would result in longer and more complex treatments yet still provide a less

  16. A method for verification of treatment times for high-dose-rate intraluminal brachytherapy treatment

    Directory of Open Access Journals (Sweden)

    Muhammad Asghar Gadhi

    2016-06-01

    Full Text Available Purpose: This study was aimed to increase the quality of high dose rate (HDR intraluminal brachytherapy treatment. For this purpose, an easy, fast and accurate patient-specific quality assurance (QA tool has been developed. This tool has been implemented at Bahawalpur Institute of Nuclear Medicine and Oncology (BINO, Bahawalpur, Pakistan.Methods: ABACUS 3.1 Treatment planning system (TPS has been used for treatment planning and calculation of total dwell time and then results were compared with the time calculated using the proposed method. This method has been used to verify the total dwell time for different rectum applicators for relevant treatment lengths (2-7 cm and depths (1.5-2.5 cm, different oesophagus applicators of relevant treatment lengths (6-10 cm and depths (0.9 & 1.0 cm, and a bronchus applicator for relevant treatment lengths (4-7.5 cm and depth (0.5 cm.Results: The average percentage differences between treatment time TM with manual calculation and as calculated by the TPS is 0.32% (standard deviation 1.32% for rectum, 0.24% (standard deviation 2.36% for oesophagus and 1.96% (standard deviation 0.55% for bronchus, respectively. These results advocate that the proposed method is valuable for independent verification of patient-specific treatment planning QA.Conclusion: The technique illustrated in the current study is an easy, simple, quick and useful for independent verification of the total dwell time for HDR intraluminal brachytherapy. Our method is able to identify human error-related planning mistakes and to evaluate the quality of treatment planning. It enhances the quality of brachytherapy treatment and reliability of the system.

  17. Comparison of Dose When Prescribed to Point A and Point H for Brachytherapy in Cervical Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Gang, Ji Hyeong; Gim, Il Hwan; Hwang, Seon Boong; Kim, Woong; Im, Hyeong Seo; Gang, Jin Mook; Gim, Gi Hwan; Lee, Ah Ram [Dept. of Radiation Oncology, Korea Institute of Radiological and Medical Sciences, Seou (Korea, Republic of)

    2012-09-15

    The purpose of this study is to compare plans prescribed to point A with these prescribed to point H recommended by ABS (American Brachytherapy Society) in high dose rate intracavitary brachytherapy for cervical carcinoma. This study selected 103 patients who received HDR (High Dose Rate) brachytherapy using tandem and ovoids from March 2010 to January 2012. Point A, bladder point, and rectal point conform with Manchester System. Point H conforms with ABS recommendation. Also Sigmoid colon point, and vagina point were established arbitrarily. We examined distance between point A and point H. The percent dose at point A was calculated when 100% dose was prescribed to point H. Additionally, the percent dose at each reference points when dose is prescribed to point H and point A were calculated. The relative dose at point A was lower when point H was located inferior to point A. The relative doses at bladder, rectal, sigmoid colon, and vagina points were higher when point H was located superior to point A, and lower when point H was located inferior to point A. This study found out that as point H got located much superior to point A, the absorbed dose of surrounding normal organs became higher, and as point H got located much inferior to point A, the absorbed dose of surrounding normal organs became lower. This differences dose not seem to affect the treatment. However, we suggest this new point is worth being considered for the treatment of HDR if dose distribution and absorbed dose at normal organs have large differences between prescribed to point A and H.

  18. The curvHDR method for gating flow cytometry samples

    Directory of Open Access Journals (Sweden)

    Wand Matthew P

    2010-01-01

    Full Text Available Abstract Background High-throughput flow cytometry experiments produce hundreds of large multivariate samples of cellular characteristics. These samples require specialized processing to obtain clinically meaningful measurements. A major component of this processing is a form of cell subsetting known as gating. Manual gating is time-consuming and subjective. Good automatic and semi-automatic gating algorithms are very beneficial to high-throughput flow cytometry. Results We develop a statistical procedure, named curvHDR, for automatic and semi-automatic gating. The method combines the notions of significant high negative curvature regions and highest density regions and has the ability to adapt well to human-perceived gates. The underlying principles apply to dimension of arbitrary size, although we focus on dimensions up to three. Accompanying software, compatible with contemporary flow cytometry infor-matics, is developed. Conclusion The method is seen to adapt well to nuances in the data and, to a reasonable extent, match human perception of useful gates. It offers big savings in human labour when processing high-throughput flow cytometry data whilst retaining a good degree of efficacy.

  19. Clinical observation of external irradiation combined with 252Cf brachytherapy on advanced cardiac carcinoma%外照射加252Cf中子腔内治疗中晚期贲门癌临床观察

    Institute of Scientific and Technical Information of China (English)

    古力米拉木·艾热提; 阿依古丽·依布拉音; 杨杰; 热伊拉·买买提伊民

    2014-01-01

    目的 观察外照射结合252Cf中子腔内治疗中晚期贲门癌患者近期疗效及不良反应.方法 收集2005年3月至2010年12月间收治的48例均经病理检查证实的贲门癌患者,其中腺癌39例,鳞状细胞癌5例,印戒细胞癌4例.全部患者Karnofsky评分≥80分,无远处转移,均为首程放疗,放疗采用体外照射结合腔内治疗.体外照射:采用6 MV-X线直线加速器治疗,2 Gy/次,5次/周,总剂量38~45 Gy.腔内照射:采用ZH-1000型252Cf中子后装治疗机治疗,参考点为:距离放射源中心10 mm,照射范围:病灶上端各延长1~2 cm,3.5~4.0 Gy/次,1次/周,共3~4次,总剂量12~16 Gy.结果 进食哽噎症状明显改善,Ⅰ级18例,Ⅱ级26例,Ⅲ级4例;近期疗效评价有效率(CR+PR) 91.7%(44/48);生存率1年以上者39.6%,2年以上者6.3%;25例(52.1%)患者出现恶心、呕吐、食欲不佳等不良反应,骨髓抑制:Ⅰ级21例(43.8%),Ⅱ级3例(6.3%).结论 体外照射结合252Cf中子治疗为中晚期贲门癌患者提供了一种新的安全可靠且无痛苦的有效治疗方法.%Objective To observe the efficacy and the toxicity of external irradiation combined with 252Cf brachytherapy on advanced cardiac carcinoma.Methods 48 patients with advanced cardiac carcinoma hospitalized during March 2007 to December 2010 were recruited,in which 39 cases were adenocarcinoma,5 patients were squamous carcinoma and 4 cases were signet-ring cell carcinoma.All cases had a Kamofsky above 80,no metastasis and received radiotherapy sequenced external and internal irradiation.The external irradiation was conducted under a 6MV X linear accelerator,and a dose of 38-45 Gy (2 Gy/22 f).The type ZH-1000 252Cf neutron breach-loading machine was used for brachytherapy with a dose of 12-16 Gy.Results Dysphagia cleared in all cases.The short-term efficacy (PR+CR) rate was 91.7 % (44/48).One and two year survival rate were,respectively,39.6 % and 6.3 %.25 (52.1%) patients had

  20. A quality indicator to evaluate high-dose-rate intracavitary brachytherapy for cancer of the cervix; Determinacao de um indicador de qualidade para avaliar a braquiterapia intracavitaria com alta taxa de dose no cancer do colo uterino

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Francisco Contreras; Soboll, Daniel Scheidegger [Hospital A.C. Camargo, Sao Paulo, SP (Brazil). Dept. de Radioterapia. Servico de Fisica Medica

    2000-12-01

    The aim of this report is to prevent a simple quality indicator (QI) that can be promptly used to evaluate the high-dose-rate (HDR) intracavitary brachytherapy for the treatment of cancer of the cervix, and if necessary, to correct applicators' geometry before starting the treatment. We selected 51 HDR intracavitary applications of brachytherapy of patients with carcinoma of the cervix treated with 60 mm uterine tandem and small Fletcher colpostat, according to the Manchester method (dose prescription on point A). A QI was defined as the ratio between the volume of 100% isodose curve of the study insertion and the volume of the 100% isodose curve of an insertion considered to be ideal. The data obtained were distributed in three groups: the group with tandem placement slippage (67,5%), a group with colpostat placement slippage (21,9%), and a third group, considered normal (10,6%). Each group showed particular characteristics (p < 0.0001). QI can be the best auxiliary method to establish the error tolerance (%) allowed for HDR intracavitary brachytherapy. (author)

  1. High-Dose-Rate Monotherapy: Safe and Effective Brachytherapy for Patients With Localized Prostate Cancer

    Energy Technology Data Exchange (ETDEWEB)

    Demanes, D. Jeffrey, E-mail: jdemanes@mednet.ucla.edu [California Endocurietherapy at UCLA, Department of Radiation Oncology, David Geffen School of Medicine of University of California at Los Angeles, Los Angeles, CA (United States); Martinez, Alvaro A.; Ghilezan, Michel [William Beaumont Hospital, Royal Oak, MI (United States); Hill, Dennis R.; Schour, Lionel; Brandt, David [California Endocurietherapy, Oakland, CA (United States); Gustafson, Gary [William Beaumont Hospital, Royal Oak, MI (United States)

    2011-12-01

    Purpose: High-dose-rate (HDR) brachytherapy used as the only treatment (monotherapy) for early prostate cancer is consistent with current concepts in prostate radiobiology, and the dose is reliably delivered in a prospectively defined anatomic distribution that meets all the requirements for safe and effective therapy. We report the disease control and toxicity of HDR monotherapy from California Endocurietherapy (CET) and William Beaumont Hospital (WBH) in low- and intermediate-risk prostate cancer patients. Methods and Materials: There were 298 patients with localized prostate cancer treated with HDR monotherapy between 1996 and 2005. Two biologically equivalent hypofractionation protocols were used. At CET the dose was 42 Gy in six fractions (two implantations 1 week apart) delivered to a computed tomography-defined planning treatment volume. At WBH the dose was 38 Gy in four fractions (one implantation) based on intraoperative transrectal ultrasound real-time treatment planning. The bladder, urethral, and rectal dose constraints were similar. Toxicity was scored with the National Cancer Institute Common Toxicity Criteria for Adverse Events version 3. Results: The median follow-up time was 5.2 years. The median age of the patients was 63 years, and the median value of the pretreatment prostate-specific antigen was 6.0 ng/mL. The 8-year results were 99% local control, 97% biochemical control (nadir +2), 99% distant metastasis-free survival, 99% cause-specific survival, and 95% overall survival. Toxicity was scored per event, meaning that an individual patient with more than one symptom was represented repeatedly in the morbidity data table. Genitourinary toxicity consisted of 10% transient Grade 2 urinary frequency or urgency and 3% Grade 3 episode of urinary retention. Gastrointestinal toxicity was <1%. Conclusions: High disease control rates and low morbidity demonstrate that HDR monotherapy is safe and effective for patients with localized prostate cancer.

  2. SU-F-BRA-02: Electromagnetic Tracking in Brachytherapy as An Advanced Modality for Treatment Quality Assurance

    Energy Technology Data Exchange (ETDEWEB)

    Kellermeier, M; Herbolzheimer, J; Kreppner, S; Lotter, M; Strnad, V [University Clinic Erlangen, Department of Radiation Oncology, Erlangen, DE (Germany); Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE (Germany); Bert, C [University Clinic Erlangen, Department of Radiation Oncology, Erlangen, DE (Germany); Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, DE (Germany); GSI Helmholtz Centre for Heavy Ion Research, Darmstadt, DE (Germany)

    2015-06-15

    Purpose: To present the use of Electromagnetic Tracking (EMT) for quality assurance in brachytherapy by means of phantom studies and to assess the clinical applicability of EMT during HDR breast brachytherapy. Methods: An EMT system was investigated to examine its suitability for clinical applications in brachytherapy. A field generator served as electromagnetic field emitter. Sensors (magnetic sensitive only), connected to a control unit, were used and their respective position and orientation inside a pre-defined measurement volume (500 mm cube length) determined. Up to three 6DoF sensors were placed on the phantom’s surface to obtain additional reference coordinates used to derive relative measured positions of a smaller 5DoF sensor inserted in the 6F catheters of the implant. The catheters were successively measured by manual displacement of the sensor at ∼40 mm/s. The measured catheter tracks, acquired multiple times at various locations (CT and treatment room), were smoothed, divided into intervals (2.5 mm dwell step size), registered (rigid Iterative Closest Point transformation) and compared against the known phantom geometry. Results: The reference coordinates were used to exclude the influence of external (e.g., respiratory-induced) motion. Precision tests in a clinical setting showed variances below 1 mm (translational) and 1° (rotational), respectively. Our method for catheter reconstruction preserved the length of the tracked catheter (within 1 mm). The measured tracking accuracy was 1±0.3 mm (maximum: 2 mm). The results are less accurate in environments potentially interfering with the magnetic field, e.g., in the vicinity of ferromagnetic table components. Conclusion: Our EMT system is able to perform reproducible and accurate catheter tracking and reconstruction. Currently, measurements of the implant geometry in HDR breast treatments are initiated. Online implant monitoring by means of EM tracking may be a first step towards advanced

  3. Suitability of point kernel dose calculation techniques in brachytherapy treatment planning

    Directory of Open Access Journals (Sweden)

    Lakshminarayanan Thilagam

    2010-01-01

    Full Text Available Brachytherapy treatment planning system (TPS is necessary to estimate the dose to target volume and organ at risk (OAR. TPS is always recommended to account for the effect of tissue, applicator and shielding material heterogeneities exist in applicators. However, most brachytherapy TPS software packages estimate the absorbed dose at a point, taking care of only the contributions of individual sources and the source distribution, neglecting the dose perturbations arising from the applicator design and construction. There are some degrees of uncertainties in dose rate estimations under realistic clinical conditions. In this regard, an attempt is made to explore the suitability of point kernels for brachytherapy dose rate calculations and develop new interactive brachytherapy package, named as BrachyTPS, to suit the clinical conditions. BrachyTPS is an interactive point kernel code package developed to perform independent dose rate calculations by taking into account the effect of these heterogeneities, using two regions build up factors, proposed by Kalos. The primary aim of this study is to validate the developed point kernel code package integrated with treatment planning computational systems against the Monte Carlo (MC results. In the present work, three brachytherapy applicators commonly used in the treatment of uterine cervical carcinoma, namely (i Board of Radiation Isotope and Technology (BRIT low dose rate (LDR applicator and (ii Fletcher Green type LDR applicator (iii Fletcher Williamson high dose rate (HDR applicator, are studied to test the accuracy of the software. Dose rates computed using the developed code are compared with the relevant results of the MC simulations. Further, attempts are also made to study the dose rate distribution around the commercially available shielded vaginal applicator set (Nucletron. The percentage deviations of BrachyTPS computed dose rate values from the MC results are observed to be within plus/minus 5

  4. SU-E-J-96: Multi-Axis Dose Accumulation of Noninvasive Image-Guided Breast Brachytherapy Through Biomechanical Modeling of Tissue Deformation Using the Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Rivard, MJ [Tufts University School of Medicine, Boston, MA (United States); Ghadyani, HR [SUNY Farmingdale State College, Farmingdale, NY (United States); Bastien, AD; Lutz, NN [Univeristy Massachusetts Lowell, Lowell, MA (United States); Hepel, JT [Rhode Island Hospital, Providence, RI (United States)

    2015-06-15

    Purpose: Noninvasive image-guided breast brachytherapy delivers conformal HDR Ir-192 brachytherapy treatments with the breast compressed, and treated in the cranial-caudal and medial-lateral directions. This technique subjects breast tissue to extreme deformations not observed for other disease sites. Given that, commercially-available software for deformable image registration cannot accurately co-register image sets obtained in these two states, a finite element analysis based on a biomechanical model was developed to deform dose distributions for each compression circumstance for dose summation. Methods: The model assumed the breast was under planar stress with values of 30 kPa for Young’s modulus and 0.3 for Poisson’s ratio. Dose distributions from round and skin-dose optimized applicators in cranial-caudal and medial-lateral compressions were deformed using 0.1 cm planar resolution. Dose distributions, skin doses, and dose-volume histograms were generated. Results were examined as a function of breast thickness, applicator size, target size, and offset distance from the center. Results: Over the range of examined thicknesses, target size increased several millimeters as compression thickness decreased. This trend increased with increasing offset distances. Applicator size minimally affected target coverage, until applicator size was less than the compressed target size. In all cases, with an applicator larger or equal to the compressed target size, > 90% of the target covered by > 90% of the prescription dose. In all cases, dose coverage became less uniform as offset distance increased and average dose increased. This effect was more pronounced for smaller target-applicator combinations. Conclusions: The model exhibited skin dose trends that matched MC-generated benchmarking results and clinical measurements within 2% over a similar range of breast thicknesses and target sizes. The model provided quantitative insight on dosimetric treatment variables over

  5. Developing a Verification and Training Phantom for Gynecological Brachytherapy System

    Directory of Open Access Journals (Sweden)

    Mahbobeh Nazarnejad

    2012-03-01

    Full Text Available Introduction Dosimetric accuracy is a major issue in the quality assurance (QA program for treatment planning systems (TPS. An important contribution to this process has been a proper dosimetry method to guarantee the accuracy of delivered dose to the tumor. In brachytherapy (BT of gynecological (Gyn cancer it is usual to insert a combination of tandem and ovoid applicators with a complicated geometry which makes their dosimetry verification difficult and important. Therefore, evaluation and verification of dose distribution is necessary for accurate dose delivery to the patients. Materials and Methods The solid phantom was made from Perspex slabs as a tool for intracavitary brachytherapy dosimetric QA. Film dosimetry (EDR2 was done for a combination of ovoid and tandem applicators introduced by Flexitron brachytherapy system. Treatment planning was also done with Flexiplan 3D-TPS to irradiate films sandwiched between phantom slabs. Isodose curves obtained from treatment planning system and the films were compared with each other in 2D and 3D manners. Results The brachytherapy solid phantom was constructed with slabs. It was possible to insert tandems and ovoids loaded with radioactive source of Ir-192 subsequently. Relative error was 3-8.6% and average relative error was 5.08% in comparison with the films and TPS isodose curves. Conclusion Our results showed that the difference between TPS and the measurements is well within the acceptable boundaries and below the action level according to AAPM TG.45. Our findings showed that this phantom after minor corrections can be used as a method of choice for inter-comparison analysis of TPS and to fill the existing gap for accurate QA program in intracavitary brachytherapy. The constructed phantom also showed that it can be a valuable tool for verification of accurate dose delivery to the patients as well as training for brachytherapy residents and physics students.

  6. Interstitial high-dose rate brachytherapy for recurrent cervical cancer after radiation therapy; Braquiterapia intersticial para recidivas de cancer de colo uterino pos-radioterapia

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Antonio Carlos Zuliani de; Esteves, Sergio Carlos Barros; Feijo, Luiz Fernando Andrade; Tagawa, Eduardo Komai; Cunha, Maercio de Oliveira [Universidade Estadual de Campinas, SP (Brazil). Centro de Atencao Integral a Saude da Mulher (CAISM)]. E-mail: estevesrt@uol.com.br

    2005-04-01

    Objective: To evaluate the response and potential toxicity of fractionated interstitial high-dose rate (HDR) brachytherapy for post-radiation pelvic recurrence in cervical cancer. Materials And Methods: From 1998 to 2001, 11 patients aged 41 to 71 years with cervical carcinoma stages II to IV who presented pelvic recurrence after radiation therapy were treated wit interstitial HDR. Nine of these patients (82%) had squamous cell carcinoma and two had adenocarcinoma. Radiation consisted of 20 Gy to 30 Gy delivered in fractions of 4 Gy to 5 Gy over three days. The median follow-up was 22.5 months (2 to 54 months), with periodic physical examinations (three months interval). One patient died without evaluation of the response. Results: Ten patients (91%) presented complete clinical response, three patients (27%) were disease free, two were alive with disease, three (27%) died of cancer and three (27%) were lost in the follow-up after the second recurrence. Urinary tract toxicity grade III was 9% (one patient). Conclusion: Interstitial HDR brachytherapy is an alternative approach to selected patients with recurrent cervical carcinoma after radiation therapy. High response rates were achieved with low toxicity taking into account the studied group, time of follow-up and re-irradiation. (author)

  7. Inter-application displacement of brachytherapy dose received by the bladder and rectum of the patients with inoperable cervical cancer

    Science.gov (United States)

    Marosevic, Goran; Ljuca, Dzenita; Osmic, Hasan; Fazlic, Semir; Arsovski, Oliver; Mileusnic, Dusan

    2014-01-01

    Background The aim of the study was to examine on the CT basis the inter-application displacement of the positions D0.1cc, D1cc and D2cc of the brachytherapy dose applied to the bladder and rectum of the patients with inoperable cervical cancer. Patients and methods This prospective study included 30 patients with cervical cancer who were treated by concomitant chemo-radiotherapy. HDR intracavitary brachytherapy was made by the applicators type Fletcher tandem and ovoids. For each brachytherapy application the position D0.1cc was determined of the bladder and rectum that receive a brachytherapty dose. Then, based on the X, Y, and Z axis displacement, inter-application mean X, Y, and Z axis displacements were calculated as well as their displacement vectors (R). It has been analyzed whether there is statistically significant difference in inter-application displacement of the position of the brachytherapy dose D0.1cc, D1cc and D2cc of the bladder and rectum. The ANOVA test and post-hoc analysis by Tukey method were used for testing statistical importance of differences among the groups analyzed. The difference among the groups analyzed was considered significant if p < 0.05. Results There are significant inter-application displacements of the position of the brachytherapy dose D0,1cc, D1cc and D2cc of the bladder and rectum. Conclusions When we calculate the cumulative brachytherapy dose by summing up D0,1cc, D1cc and D2cc of the organs at risk for all the applications, we must bear in mind their inter-application displacement, and the fact that it is less likely that the worst scenario would indeed happen. PMID:24991211

  8. FVP10: enhancements of VPX for SDR/HDR applications

    Science.gov (United States)

    Topiwala, Pankaj; Dai, Wei; Krishnan, Madhu

    2016-09-01

    This paper describes a study to investigate possible ways to improve the VPX codecs in the context of both 8-bit SDR video and 10-bit HDR video content, for two types of applications: streaming and high quality (near lossless) coding for content contribution editing. For SDR content, the following tools are investigated: (a) lapped biorthogonal transforms for near lossless applications; and (b) optimized resampling filter pairs for adaptive resolution coding in streaming applications. For HDR content, a data adaptive grading technique in conjunction with the VP9/VP10 encoder is studied. Both the objective metrics (measured using BD rate) and informal subjective visual quality assessments are recorded. It is asserted that useful improvements are possible in each of these categories. In particular, substantial value is offered in the coding of HDR content, and especially in creating a coding scheme offering backwards compatibility with SDR.

  9. A Customized Finger Brachytherapy Carrier

    OpenAIRE

    Wadhwa, Supneet Singh; Duggal, Nidhi

    2013-01-01

    In recent years, radiation therapy has been used with increasing frequency in the management of neoplasms of the head and neck region. Brachytherapy is a method of radiation treatment in which sealed radioactive sources are used to deliver the dose a short distance by interstitial (direct insertion into tissue), intracavitary (placement within a cavity) or surface application (molds). Mold brachytherapy is radiation delivered via a custom-fabricated carriers, designed to provide a more consta...

  10. Evaluating HDR photos using Web 2.0 technology

    Science.gov (United States)

    Qiu, Guoping; Mei, Yujie; Duan, Jiang

    2011-01-01

    High dynamic range (HDR) photography is an emerging technology that has the potential to dramatically enhance the visual quality and realism of digital photos. One of the key technical challenges of HDR photography is displaying HDR photos on conventional devices through tone mapping or dynamic range compression. Although many different tone mapping techniques have been developed in recent years, evaluating tone mapping operators prove to be extremely difficult. Web2.0, social media and crowd-sourcing are emerging Internet technologies which can be harnessed to harvest the brain power of the mass to solve difficult problems in science, engineering and businesses. Paired comparison is used in the scientific study of preferences and attitudes and has been shown to be capable of obtaining an interval-scale ordering of items along a psychometric dimension such as preference or importance. In this paper, we exploit these technologies for evaluating HDR tone mapping algorithms. We have developed a Web2.0 style system that enables Internet users from anywhere to evaluate tone mapped HDR photos at any time. We adopt a simple paired comparison protocol, Internet users are presented a pair of tone mapped images and are simply asked to select the one that they think is better or click a "no difference" button. These user inputs are collected in the web server and analyzed by a rank aggregation algorithm which ranks the tone mapped photos according to the votes they received. We present experimental results which demonstrate that the emerging Internet technologies can be exploited as a new paradigm for evaluating HDR tone mapping algorithms. The advantages of this approach include the potential of collecting large user inputs under a variety of viewing environments rather than limited user participation under controlled laboratory environments thus enabling more robust and reliable quality assessment. We also present data analysis to correlate user generated qualitative

  11. Single-fraction high-dose-rate brachytherapy using real-time transrectal ultrasound based planning in combination with external beam radiotherapy for prostate cancer: dosimetrics and early clinical results

    Science.gov (United States)

    Lauche, Olivier; Delouya, Guila; Taussky, Daniel; Menard, Cynthia; Béliveau-Nadeau, Dominic; Hervieux, Yannick; Larouche, Renée

    2016-01-01

    Purpose To validate the feasibility of a single-fraction high-dose-rate brachytherapy (HDRBT) boost for prostate cancer using real-time transrectal ultrasound (TRUS) based planning. Material and methods From August 2012 to September 2015, 126 patients underwent a single-fraction HDRBT boost of 15 Gy using real-time TRUS based planning. External beam radiation therapy (EBRT) (37.5 Gy/15 fractions, 44 Gy/22 fractions, or 45 Gy/25 fractions) was performed before (31%) or after (69%) HDRBT boost. Genito-urinary (GU) and gastro-intestinal (GI) toxicity were assessed 4 and 12 months after the end of combined treatment using the international prostate symptom score scale (IPSS) and the common terminology criteria for adverse events (CTCAE) v3.0. Results All dose-planning objectives were achieved in 90% of patients. Prostate D90 ≥ 105% and ≤ 115% was achieved in 99% of patients, prostate V150 ≤ 40% in 99%, prostate V200 < 11% in 96%, urethra D10 < 120% for 99%, urethra V125 = 0% in 100%, and rectal V75 < 1 cc in 93% of patients. Median IPSS score was 4 at baseline and did not change at 4 and 12 months after combined treatment. No patients developed ≥ grade 2 GI toxicity. With a median follow-up of 10 months, only two patients experienced biochemical failure. Among patients who didn't receive ADT, cumulative percentage of patients with PSA ≤ 1 ng/ml at 4 and 18 months was respectively 23% and 66%. Conclusions Single-fraction HDRBT boost of 15 Gy using real-time TRUS based planning achieves consistently high dosimetry quality. In combination with EBRT, toxicity outcomes appear promising. A longer follow-up is needed to assess long-term outcome and toxicities. PMID:27257413

  12. Radiobiological restrictions and tolerance doses of repeated single-fraction hdr-irradiation of intersecting small liver volumes for recurrent hepatic metastases

    Directory of Open Access Journals (Sweden)

    Wust Peter

    2010-05-01

    Full Text Available Abstract Background To assess radiobiological restrictions and tolerance doses as well as other toxic effects derived from repeated applications of single-fraction high dose rate irradiation of small liver volumes in clinical practice. Methods Twenty patients with liver metastases were treated repeatedly (2 - 4 times at identical or intersecting locations by CT-guided interstitial brachytherapy with varying time intervals. Magnetic resonance imaging using the hepatocyte selective contrast media Gd-BOPTA was performed before and after treatment to determine the volume of hepatocyte function loss (called pseudolesion, and the last acquired MRI data set was merged with the dose distributions of all administered brachytherapies. We calculated the BED (biologically equivalent dose for a single dose d = 2 Gy for different α/β values (2, 3, 10, 20, 100 based on the linear-quadratic model and estimated the tolerance dose for liver parenchyma D90 as the BED exposing 90% of the pseudolesion in MRI. Results The tolerance doses D90 after repeated brachytherapy sessions were found between 22 - 24 Gy and proved only slightly dependent on α/β in the clinically relevant range of α/β = 2 - 10 Gy. Variance analysis showed a significant dependency of D90 with respect to the intervals between the first irradiation and the MRI control (p 90 and the pseudolesion's volume. No symptoms of liver dysfunction or other toxic effects such as abscess formation occurred during the follow-up time, neither acute nor on the long-term. Conclusions Inactivation of liver parenchyma occurs at a BED of approx. 22 - 24 Gy corresponding to a single dose of ~10 Gy (α/β ~ 5 Gy. This tolerance dose is consistent with the large potential to treat oligotopic and/or recurrent liver metastases by CT-guided HDR brachytherapy without radiation-induced liver disease (RILD. Repeated small volume irradiation may be applied safely within the limits of this study.

  13. MO-D-BRD-04: NIST Air-Kerma Standard for Electronic Brachytherapy Calibrations

    Energy Technology Data Exchange (ETDEWEB)

    Mitch, M. [Nat’l Institute of Standards & Technology (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  14. MO-D-BRD-03: Radiobiology and Commissioning of Electronic Brachytherapy for IORT

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J. [Oregon Health & Science Univ (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  15. MO-D-BRD-02: Radiological Physics and Surface Lesion Treatments with Electronic Brachytherapy

    Energy Technology Data Exchange (ETDEWEB)

    Fulkerson, R.

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  16. MO-D-BRD-01: Clinical Implementation of An Electronic Brachytherapy Program for the Skin

    Energy Technology Data Exchange (ETDEWEB)

    Ouhib, Z. [Lynn Regional Cancer Center (United States)

    2015-06-15

    Electronic brachytherapy (eBT) has seen an insurgence of manufacturers entering the US market for use in radiation therapy. In addition to the established interstitial, intraluminary, and intracavitary applications of eBT, many centers are now using eBT to treat skin lesions. It is important for medical physicists working with electronic brachytherapy sources to understand the basic physics principles of the sources themselves as well as the variety of applications for which they are being used. The calibration of the sources is different from vendor to vendor and the traceability of calibrations has evolved as new sources came to market. In 2014, a new air-kerma based standard was introduced by the National Institute of Standards and Technology (NIST) to measure the output of an eBT source. Eventually commercial treatment planning systems should accommodate this new standard and provide NIST traceability to the end user. The calibration and commissioning of an eBT system is unique to its application and typically entails a list of procedural recommendations by the manufacturer. Commissioning measurements are performed using a variety of methods, some of which are modifications of existing AAPM Task Group protocols. A medical physicist should be familiar with the different AAPM Task Group recommendations for applicability to eBT and how to properly adapt them to their needs. In addition to the physical characteristics of an eBT source, the photon energy is substantially lower than from HDR Ir-192 sources. Consequently, tissue-specific dosimetry and radiobiological considerations are necessary when comparing these brachytherapy modalities and when making clinical decisions as a radiation therapy team. In this session, the physical characteristics and calibration methodologies of eBt sources will be presented as well as radiobiology considerations and other important clinical considerations. Learning Objectives: To understand the basic principles of electronic

  17. Updated results of high-dose rate brachytherapy and external beam radiotherapy for locally and locally advanced prostate cancer using the RTOG-ASTRO phoenix definition

    Directory of Open Access Journals (Sweden)

    Antonio C. Pellizzon

    2008-06-01

    Full Text Available PURPOSE: To evaluate the prognostic factors for patients with local or locally advanced prostate cancer treated with external beam radiotherapy (RT and high dose rate brachytherapy (HDR according to the RTOG-ASTRO Phoenix Consensus Conference. MATERIALS AND METHODS: The charts of 209 patients treated between 1997 and 2005 with localized RT and HDR as a boost at the Department of Radiation Oncology, AC Camargo Hospital, Sao Paulo, Brazil were reviewed. Clinical and treatment parameters i.e.: patient's age, Gleason score, clinical stage, initial PSA (iPSA, risk group (RG for biochemical failure, doses of RT and HDR were evaluated. Median age and median follow-up time were 68 and 5.3 years, respectively. Median RT and HDR doses were 45 Gy and 20 Gy. RESULTS: Disease specific survival (DSS at 3.3 year was 94.2%. Regarding RG, for the LR (low risk, IR (intermediate risk and HR (high risk, the DSS rates at 3.3 years were 91.5%, 90.2% and 88.5%, respectively. On univariate analysis prognostic factors related to DSS were RG (p = 0.040, Gleason score ≤ 6 ng/mL (p = 0.002, total dose of HDR ≥ 20 Gy (p < 0.001 On multivariate analysis the only statistical significant predictive factor for biochemical control (bNED was the RG, p < 0.001 (CI - 1.147-3.561. CONCLUSIONS: Although the radiation dose administered to the prostate is an important factor related to bNED, this could not be established with statistical significance in this group of patients. To date , in our own experience, HDR associated to RT could be considered a successful approach in the treatment of prostate cancer.

  18. Analysis of risk assessment of brachytherapy from the radiotherapy services of the metropolitan region of Rio de Janeiro, RJ, Brazil; Analise da percepcao de risco da braquiterapia dos servicos de radioterapia da regiao metropolitana do Rio de Janeiro

    Energy Technology Data Exchange (ETDEWEB)

    Burgos, Adam de Freitas; Paiva, Eduardo de, E-mail: adam@bolsista.ird.gov.br, E-mail: epaiva@ird.gov.br [Instituto de Radioprotecao e Dosimetria (IRD/CNEN-RJ),Rio de Janeiro, RJ (Brazil); Souza, Roberto Salomon de, E-mail: salomon@inca.gov.br [Instituto Nacional de Cancer (PQRT/INCA), Rio de Janeiro, RJ (Brazil). Programa de Qualidade em Radioterapia

    2014-07-01

    Currently there are few applications on the risk analysis procedures related to radiotherapy, mainly in the practice of brachytherapy. The objective of this study was to analyze the perception of risk levels, present in the practice of high dose rate brachytherapy (HDR), using a form based on the concept of the risk matrix and a database (SEVRRA) containing information about the processes related to routine brachytherapy. A form containing information regarding the brachytherapy procedure HDR and an attachment indicating how to complete it properly was delivered to a medical physicist of each service/institution. The reference value for the risk levels found, considered acceptable for all performed analyzes, was set at a percentage limit of 33% (assuming a failure in each 3 existing processes). The results showed that the overall risk analysis showed a value for average percentage of prioritized risk of 18% below the recommended range. About the analyzed groups, the higher average percentage of relative risk was found less than 12% of the recommended range, associated with the group of patients. On existing steps, the highest average percentage of relative risk was found less than 1% of the recommended range, associated with stage records and treatment planning. This study showed that although this procedure does not have a large history of accidents, still poses risks considerable that must be managed with great accuracy and immediate action to an effective decrease these risk percentages.

  19. High-Dose-Rate Prostate Brachytherapy Consistently Results in High Quality Dosimetry

    Energy Technology Data Exchange (ETDEWEB)

    White, Evan C.; Kamrava, Mitchell R.; Demarco, John; Park, Sang-June; Wang, Pin-Chieh; Kayode, Oluwatosin; Steinberg, Michael L. [California Endocurietherapy at UCLA, Department of Radiation Oncology, David Geffen School of Medicine of University of California at Los Angeles, Los Angeles, California (United States); Demanes, D. Jeffrey, E-mail: jdemanes@mednet.ucla.edu [California Endocurietherapy at UCLA, Department of Radiation Oncology, David Geffen School of Medicine of University of California at Los Angeles, Los Angeles, California (United States)

    2013-02-01

    Purpose: We performed a dosimetry analysis to determine how well the goals for clinical target volume coverage, dose homogeneity, and normal tissue dose constraints were achieved with high-dose-rate (HDR) prostate brachytherapy. Methods and Materials: Cumulative dose-volume histograms for 208 consecutively treated HDR prostate brachytherapy implants were analyzed. Planning was based on ultrasound-guided catheter insertion and postoperative CT imaging; the contoured clinical target volume (CTV) was the prostate, a small margin, and the proximal seminal vesicles. Dosimetric parameters analyzed for the CTV were D90, V90, V100, V150, and V200. Dose to the urethra, bladder, bladder balloon, and rectum were evaluated by the dose to 0.1 cm{sup 3}, 1 cm{sup 3}, and 2 cm{sup 3} of each organ, expressed as a percentage of the prescribed dose. Analysis was stratified according to prostate size. Results: The mean prostate ultrasound volume was 38.7 {+-} 13.4 cm{sup 3} (range: 11.7-108.6 cm{sup 3}). The mean CTV was 75.1 {+-} 20.6 cm{sup 3} (range: 33.4-156.5 cm{sup 3}). The mean D90 was 109.2% {+-} 2.6% (range: 102.3%-118.4%). Ninety-three percent of observed D90 values were between 105 and 115%. The mean V90, V100, V150, and V200 were 99.9% {+-} 0.05%, 99.5% {+-} 0.8%, 25.4% {+-} 4.2%, and 7.8% {+-} 1.4%. The mean dose to 0.1 cm{sup 3}, 1 cm{sup 3}, and 2 cm{sup 3} for organs at risk were: Urethra: 107.3% {+-} 3.0%, 101.1% {+-} 14.6%, and 47.9% {+-} 34.8%; bladder wall: 79.5% {+-} 5.1%, 69.8% {+-} 4.9%, and 64.3% {+-} 5.0%; bladder balloon: 70.3% {+-} 6.8%, 59.1% {+-} 6.6%, and 52.3% {+-} 6.2%; rectum: 76.3% {+-} 2.5%, 70.2% {+-} 3.3%, and 66.3% {+-} 3.8%. There was no significant difference between D90 and V100 when stratified by prostate size. Conclusions: HDR brachytherapy allows the physician to consistently achieve complete prostate target coverage and maintain normal tissue dose constraints for organs at risk over a wide range of target volumes.

  20. Clinical impact of computed tomography-based image-guided brachytherapy for cervix cancer using the tandem-ring applicator - the Addenbrooke's experience.

    Science.gov (United States)

    Tan, L T; Coles, C E; Hart, C; Tait, E

    2009-04-01

    We report our initial 3-year experience of chemoradiotherapy for cervical cancer with computed tomography-based image-guided high dose rate (HDR) brachytherapy using the tandem-ring applicator. Twenty-eight patients were treated between February 2005 and December 2007. All patients received initial external beam radiotherapy (EBRT) followed by HDR brachytherapy (planned dose 21 Gy to point A in three fractions over 8 days). For each insertion, a computed tomography scan was obtained with the brachytherapy applicator in situ. The cer