WorldWideScience

Sample records for hdpe vertical containment

  1. Installing a HDPE vertical containment and collection system in one pass utilizing a deep trencher

    International Nuclear Information System (INIS)

    Bocchino, W.M.; Burson, B.

    1997-01-01

    A unique method has been developed to install high density polyethylene (HDPE) vertical containment panels and a horizontal collection system for the containment and collection of contaminated groundwater. Unlike other means of creating this type of system, this barrier wall and collection system is installed in one step and in one narrow trench, utilizing a one-pass deep trencher. Originally HDPE vertical barriers were installed using conventional slurry trenching techniques. Use of this method raised questions of trench stability and disposal costs for the trench spoils. In addition, if a collection system was desired, a separate trench or vertical wells were required. In response to these concerns, a trenchless vibratory installation method was developed. Although this method addressed the concerns of trench stability and disposal costs, it raised a whole new set of concerns dealing with drivable soil conditions, buried debris and obstructions. Again, if a collection system was desired, a separate trench or vertical wells had to be installed. The latest development, the one-pass, deep trencher, has eliminated or significantly reduced the previously discussed construction concerns. The trencher methods reduce the amount of spoils generated because a trench width of 61 cm (24 inches) is constantly maintained by the machine. Additionally, soil classification and density are not as critical as with a vibratory installation. This is due to the trencher's ability to trench in all but the hardest of materials (blow counts exceeding 35 blows/ft). Finally, the cost to add a collection system adjacent to the cutoff wall is substantially reduced and is limited only to the cost of the additional hydraulic fill and 4 inches HDPE collection piping. The trench itself is already constructed with the installation of the wall

  2. HDPE

    African Journals Online (AJOL)

    2013-08-02

    Aug 2, 2013 ... Analysis of the Weld Strength of the High Density Polyethylene (HDPE) Dam Liner. Young's modulus of 0.7 GN/m2 , Brinnel hardness of 2 and an elongation of 150%-500% at failure [4, 5, 6,. 7]When used for lining reservoirs, HDPE sheeting does not require soil cover unlike the other materials which are.

  3. Electrical resistivity of carbon black-filled high-density polyethylene (HDPE) composite containing radiation crosslinked HDPE particles

    International Nuclear Information System (INIS)

    Lee, M.-G.; Nho, Y.C.

    2001-01-01

    The room-temperature volume resistivity of high-density polyethylene (HDPE)-carbon black (CB) blends containing previously radiation crosslinked HDPE powder was studied. The results showed that the room-temperature volume resistivity decreases with increasing concentration of crosslinked HDPE powder. It is considered that the crosslinked HDPE particles act as a filler that increases the CB volume fraction in the HDPE matrix. The results of an optical microscope observation indicated that the crosslinked polymer particles are dispersed in the HDPE/CB composite. This effect of the crosslinked particles is attributed to the fact that the crosslinked mesh size of the HDPE particles is so small that the CB particles cannot go inside them. The effect of 60 Co γ-ray and electron beam (EB) irradiation on the positive temperature coefficient, negative temperature coefficient and electrical resistivity behavior of the blends were studied

  4. SYNTHESIS AND CHARACTERIZATION OF HDPE PLASTIC FILM FOR HERBICIDE CONTAINER USING FLY ASH CLASS F AS FILLER

    Directory of Open Access Journals (Sweden)

    Yatim Lailun Ni’mah

    2010-06-01

    Full Text Available High Density Polyethylene (HDPE plastic plays an important role in various applications, for example, it can be used as a container (bottle. Petrokimia Kayaku Company, a branch of Petrokimia Company of Gresik, produces herbicides using HDPE plastic bottles as their container. Those plastic bottles undergo degradation (kempot for certain period of time. The aim of this research is to characterize and to synthesize the HDPE plastic film with class F fly ash as filler. The results expected from this research are producing the plastic with a better properties and durability. This research was initiated by taking the sample of HDPE plastic bottle and herbicides (containing Gramakuat, on active material parakuat dichloride at Petrokimia Kayaku Company. Both the initial HDPE and the degraded bottles was analyzed their tensile strength and Fourier Transform-Infra Red (FTIR spectral. The next step was to synthesize the HDPE plastic film using class F fly ash as filler and a coupling agent. The filler concentrations were 0%, 5%, 10%, 15%, and 20wt %. The best result was 5% filler concentration with tensile strength of 27.7 lbs. This HDPE film was then subjected to degradation test using pyridine solution with various concentrations (1%, 3% and 5% for two weeks, thermal degradation at 100 °C for two weeks and chemical resistance by xylene with soak time variation of 24 h, 98 h and 168 h. The result of degradations test show that the value of tensile strength was decreased with the increase of filler consentration. The chemical resistance, however, was increased.   Keywords: degradation, filler, fly ash, HDPE, Herbicide

  5. Radiation Effects on Thermoluminescence Characteristics of HDPE Containing Additives

    International Nuclear Information System (INIS)

    Kim, Ki Yup; Lee, Chung; Ryu, Boo Hyung

    2005-01-01

    Polymeric materials are widely used for electrical insulation in a broad range of applications that cover the power supply industry to inner and outer space. However, the electrical performance of these materials could be compromised by their working environment and one of the most deleterious is that where a nuclear radiation is present. Radiation effects on polymers can be interpreted by two main reactions, a cross-linking reaction and degradation reactions or a main-chain scission process. There are no absolute rules for determining whether or not any given polymer will cross-link or degrade upon an irradiation. But, the polymers can be divided empirically into two groups; polymers which are crosslinked by radiation (especially by the incorporation of chemical cross-linking promoters) and polymers which degrade by radiation into a product of lower molecular weight due to random main-chain scission process. These polymers become very hard and brittle with a high dose of radiation. Most polymeric materials contain some stabilizers such as flame retardant and antioxidant to prevent combustion and oxidation. Because of these additives, degradation mechanism of the polymer became complicated. Many of the novel properties of the insulating materials used in nuclear power plants are important for radiation degradation. Therefore we have used the thermal methods such as thermoluminescence (TL) detection for irradiated high density polyethylene containing flame retardant and antioxidant

  6. A study on UV irradiated HDPE

    International Nuclear Information System (INIS)

    Sang Haibo; Liu Zimin; Wu Shishan; Shen Jian

    2006-01-01

    The structure and properties of HDPE irradiated by ultraviolet (UV) in ozone atmosphere were studied by FT-IR, XPS, gel, and water contact angle test. The oxygen-containing groups such as C=O, C-O and C(=O)O were introduced onto high density polyethylene (HDPE) chains through ultraviolet irradiation in ozone atmosphere, their content increased with the UV irradiation time. Under the same UV irradiation conditions, amount of the oxygen-containing groups introduced in ozone atmosphere was more than that in air atmosphere, indicating that the speed of oxygen-containing groups introduced through UV irradiation in ozone atmosphere was faster than that in air. Therefore, HDPE could be quickly functionalized through UV irradiation in ozone atmosphere. There was no gel formed in the HDPE irradiated in ozone atmosphere. After UV irradiation, the water contact angle of HDPE decreased, and its hydrophilicity was improved, suggesting that the compatibility between the irradiated HDPE and polar polymer or inorganic fillers may be better. Compared with HDPE, the temperature of initial weight loss for irradiated HDPE decreased. The structure and properties of irradiated HDPE/CaCO 3 blend were also investigated. The results showed that the compatibility and interfacial action of the irradiated HDPE/CaCO 3 blend were improved compared to that of HDPE/CaCO 3 blend. The mechanical properties of irradiated HDPE/CaCO 3 blend increased with increasing irradiation time. (authors)

  7. The Effect of Water Cement Ratio on Cement Brick Containing High Density Polyethylene (HDPE as Sand Replacement

    Directory of Open Access Journals (Sweden)

    Ali Noorwirdawati

    2018-01-01

    Full Text Available Waste disposal can contribute to the problem of environmental pollution. Most of the waste material is plastic based, because the nature of difficult of plastic degradable by itself. In order to overcome the problem, many study has been conducted on the reuse of plastic material into various field such as civil engineering and construction. In this study, municipal solid waste (MSW in the form of High Density Polyethylene (HDPE plastic was used to replace sand in cement sand brick production. The HDPE used in this study was obtained from a recycle factory at Nilai, Negeri Sembilan. 3% of HDPE replacement was applied in this study, with the cement-sand mix design of 1:6 and water-cement ratio 0.35, 0.40, 0.45 and 0.50 respectively. All specimens were tested for compressive strength and water absorption at 7 and 28 days. The density of the bricks was also recorded. The finding show that brick with 3% HDPE content and 0.45 of water-cement ratio at 28 days of age curing show the highest compressive strength, which is 19.5N/mm2 compared to the control specimen of 14.4 N/mm2.

  8. Influence of nanoclay on properties of HDPE/wood composites

    Science.gov (United States)

    Yong Lei; Qinglin Wu; Craig M. Clemons; Fei Yao; Yanjun Xu

    2007-01-01

    Composites based on high density polyethylene (HDPE), pine flour, and organic clay were made by melt compounding and then injection molding. The influence of clay on crystallization behavior, mechanical properties, water absorption, and thermal stability of HDPE/pine composites was investigated. The HDPE/pine composites containing exfoliated clay were made by a two-...

  9. Characterization of the microporous HDPE film with alpha alumina

    International Nuclear Information System (INIS)

    Park, Jong Seok; Sung, Hae Jun; Gwon, Hui Jeong; Lim, Youn Mook; Nho, Young Chang

    2010-01-01

    The effects of the addition of the alpha alumina on the properties of the microporous high density polyethylene (HDPE) films were investigated. The particle size and the specific surface area of alpha alumina were 400 nm and 7.3 m 2 g -1 . The HDPE and the alpha alumina were mixed to obtain the precursor film in the twin extruder. The precursor films were uni-axially stretched up to 600% in oven 120 .deg. C and then the stretched HDPE films were irradiated by gamma rays. The pore volume of the microporous HDPE films was increased with an increasing content of the alpha alumina. The mechanical characteristics of the microporous HDPE films were increased with a content of alpha alumina up to 15%, but decreased at 20%. The electrochemical stability of the microporous HDPE film containing alpha alumia was increased with an increased irradiation dose up ti 50 kGy

  10. Compressive strength and initial water absorption rate for cement brick containing high-density polyethylene (HDPE) as a substitutional material for sand

    Science.gov (United States)

    Ali, Noorwirdawati; Din, Norhasmiza; Sheikh Khalid, Faisal; Shahidan, Shahiron; Radziah Abdullah, Siti; Samad, Abdul Aziz Abdul; Mohamad, Noridah

    2017-11-01

    The rapid growth of today’s construction sector requires high amount of building materials. Bricks, known to have solid properties and easy to handle, which leads to the variety of materials added or replaced in its mixture. In this study, high density polyethylene (HDPE) was selected as the substitute materials in the making of bricks. The reason behind the use of HDPE is because of its recyclable properties and the recycling process that do not emit hazardous gases to the atmosphere. Other than that, the use of HDPE will help reducing the source of pollution by avoiding the millions of accumulated plastic waste in the disposal sites. Furthermore, the material has high endurance level and is weatherproof. This study was carried out on experimenting the substitute materials in the mixture of cement bricks, a component of building materials which is normally manufactured using the mixture of cement, sand and water, following a certain ratios, and left dried to produce blocks of bricks. A series of three different percentages of HDPE were used, which were 2.5%, 3.0% and 3.5%. Tests were done on the bricks, to study its compressive strength and the initial water absorption rate. Both tests were conducted on the seventh and 28th day. Based on the results acquired, for compressive strength tests on the 28th day, the use of 2.5% of HDPE shown values of 12.6 N/mm2 while the use of 3.0% of HDPE shown values of 12.5 N/mm2. Onto the next percentage, 3.5% of HDPE shown values of 12.5 N/mm2.

  11. STRESS DISTRIBUTION IN THE STRATIFIED MASS CONTAINING VERTICAL ALVEOLE

    Directory of Open Access Journals (Sweden)

    Bobileva Tatiana Nikolaevna

    2017-08-01

    Full Text Available Almost all subsurface rocks used as foundations for various types of structures are stratified. Such heterogeneity may cause specific behaviour of the materials under strain. Differential equations describing the behaviour of such materials contain rapidly fluctuating coefficients, in view of this, solution of such equations is more time-consuming when using today’s computers. The method of asymptotic averaging leads to getting homogeneous medium under study to averaged equations with fixed factors. The present article is concerned with stratified soil mass consisting of pair-wise alternative isotropic elastic layers. In the results of elastic modules averaging, the present soil mass with horizontal rock stratification is simulated by homogeneous transversal-isotropic half-space with isotropy plane perpendicular to the standing axis. Half-space is loosened by a vertical alveole of circular cross-section, and virgin ground is under its own weight. For horizontal parting planes of layers, the following two types of surface conditions are set: ideal contact and backlash without cleavage. For homogeneous transversal-isotropic half-space received with a vertical alveole, the analytical solution of S.G. Lekhnitsky, well known in scientific papers, is used. The author gives expressions for stress components and displacements in soil mass for different marginal conditions on the alveole surface. Such research problems arise when constructing and maintaining buildings and when composite materials are used.

  12. Toughening mechanisms in interfacially modified HDPE/thermoplastic starch blends.

    Science.gov (United States)

    Taguet, Aurélie; Bureau, Martin N; Huneault, Michel A; Favis, Basil D

    2014-12-19

    The mechanical behavior of polymer blends containing 80 wt% of HDPE and 20 wt% of TPS and compatibilized with HDPE-g-MA grafted copolymer was investigated. Unmodified HDPE/TPS blends exhibit high fracture resistance, however, the interfacial modification of those blends by addition of HDPE-g-MA leads to a dramatic drop in fracture resistance. The compatibilization of HDPE/TPS blends increases the surface area of TPS particles by decreasing their size. It was postulated that the addition of HDPE-g-MA induces a reaction between maleic anhydride and hydroxyl groups of the glycerol leading to a decrease of the glycerol content in the TPS phase. This phenomenon increases the stiffness of the modified TPS particles and stiffer TPS particles leading to an important reduction in toughness and plastic deformation, as measured by the EWF method. It is shown that the main toughening mechanism in HDPE/TPS blends is shear-yielding. This article demonstrates that stiff, low diameter TPS particles reduce shear band formation and consequently decrease the resistance to crack propagation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Thermoforming of HDPE

    Science.gov (United States)

    McKelvey, David; Menary, Gary; Martin, Peter; Yan, Shiyong

    2017-10-01

    The thermoforming process involves a previously extruded sheet of material being reheated to a softened state below the melting temperature and then forced into a mould either by a plug, air pressure or a combination of both. Thermoplastics such as polystyrene (PS) and polypropylene (PP) are commonly processed via thermoforming for products in the packaging industry. However, high density polyethylene (HDPE) is generally not processed via thermoforming and yet HDPE is extensively processed throughout the packaging industry. The aim of this study was to investigate the potential of thermoforming HDPE. The objectives were to firstly investigate the mechanical response under comparable loading conditions and secondly, to investigate the final mechanical properties post-forming. Obtaining in-process stress-strain behavior during thermoforming is extremely challenging if not impossible. To overcome this limitation the processing conditions were replicated offline using the QUB biaxial stretcher. Typical processing conditions that the material will experience during the process are high strain levels, high strain rates between 0.1-10s-1 and high temperatures in the solid phase (1). Dynamic Mechanical Analysis (DMA) was used to investigate the processing range of the HDPE grade used in this study, a peak in the tan delta curve was observed just below the peak melting temperature and hence, a forming temperature was selected in this range. HPDE was biaxially stretched at 128°C at a strain rate of 4s-1, under equal biaxial deformation (EB). The results showed a level of biaxial orientation was induced which was accompanied by an increase in the modulus from 606 MPa in the non-stretched sample to 1212MPa in the stretched sample.

  14. Elongational viscometry and bubble inflation experiments of two HDPE materials with different molecular structures

    DEFF Research Database (Denmark)

    Rasmussen, Henrik Koblitz; Eggen, Svein; Malmberg, Anneli

    2002-01-01

    The most common materials used for manufacturing of bottles and containers for household and industrial packaging has been single reactor Chromium-catalyst HDPE materials. These materials etc.......The most common materials used for manufacturing of bottles and containers for household and industrial packaging has been single reactor Chromium-catalyst HDPE materials. These materials etc....

  15. Electromagnetic confinement for vertical casting or containing molten metal

    Science.gov (United States)

    Lari, Robert J.; Praeg, Walter F.; Turner, Larry R.

    1991-01-01

    An apparatus and method adapted to confine a molten metal to a region by means of an alternating electromagnetic field. As adapted for use in the present invention, the alternating electromagnetic field given by B.sub.y =(2.mu..sub.o .rho.gy).sup.1/2 (where B.sub.y is the vertical component of the magnetic field generated by the magnet at the boundary of the region; y is the distance measured downward form the top of the region, .rho. is the metal density, g is the acceleration of gravity and .mu..sub.o is the permeability of free space) induces eddy currents in the molten metal which interact with the magnetic field to retain the molten metal with a vertical boudnary. As applied to an apparatus for the continuous casting of metal sheets or rods, metal in liquid form can be continuously introduced into the region defined by the magnetic field, solidified and conveyed away from the magnetic field in solid form in a continuous process.

  16. Autonomic Vertical Elasticity of Docker Containers with ElasticDocker

    OpenAIRE

    Al-Dhuraibi , Yahya; Paraiso , Fawaz; Djarallah , Nabil; Merle , Philippe

    2017-01-01

    International audience; Elasticity is the key feature of cloud computing to scale computing resources according to application workloads timely. In the literature as well as in industrial products, much attention was given to the elasticity of virtual machines, but much less to the elasticity of containers. However, containers are the new trend for packaging and deploying microservices-based applications. Moreover, most of approaches focus on horizontal elasticity, fewer works address vertica...

  17. Tribological investigation of oriented HDPE.

    Science.gov (United States)

    Hoseini, Mohammed; Lausmaa, Jukka; Boldizar, Antal

    2002-09-15

    The possibility to control the wear properties of high-density polyethylene (HDPE) material at an early processing stage is explored. Wear measurements of cold roll-drawn HDPE with two different draw ratios were carried out for three sliding planes, each in two directions. The dependence of the wear properties on the degree and direction of orientation was investigated. The experiments were performed in a pin-on-disc machine in a dry environment. The tribo-couple consisted of HDPE plates versus a standardised diamond coated steel disc. The results show that the wear resistance of cold roll-drawn HDPE differ widely, by a factor up to 6, depending on the sliding direction relative to the drawing direction. The material has a significantly better wear resistance when the sliding direction was perpendicular to the processing direction. The best wear resistance was in the end plane and it was improved by a factor up to 3.6 when the draw ratio was increased from 2 to 4. These results indicate that molecular orientation by polymer processing is a promising method to improve the wear properties and decrease the wear debris production of HDPE. Copyright 2002 Wiley Periodicals, Inc.

  18. The Effect of Different Shape and Perforated rHDPE in Concrete Structures on Flexural Strength

    Science.gov (United States)

    Yuhazri, MY; Hafiz, KM; Myia, YZA; Jia, CP; Sihombing, H.; Sapuan, SM; Badarulzaman, NA

    2017-10-01

    This research was carried out to develop a reinforcing structure from recycled HDPE plastic lubricant containers to be embedded in concrete structure. Different forms and shapes of recycled HDPE plastic are designed as reinforcement incorporate with cement. In this study, the reinforcing structure was prepared by washing, cutting, dimensioning and joining of the waste HDPE containers (direct technique without treatment on plastic surface). Then, the rHDPE reinforced concrete was produced by casting based on standard of procedure in civil engineering technique. Eight different shapes of rHDPE in concrete structure were used to determine the concrete’s ability in terms of flexural strength. Embedded round shape in solid and perforated of rHDPE in concrete system drastically improved flexural strength at 17.78 % and 13.79 %. The result would seem that the concrete with reinforcing rHDPE structure exhibits a more gradual or flexible properties than concrete beams without reinforcement that has the properties of fragile.

  19. Heat transfer effects in vertically emplaced high level nuclear waste container

    International Nuclear Information System (INIS)

    Moujaes, S.F.; Lei, Y.M.

    1994-01-01

    Modeling free convection heat transfer in an cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rack. These waste containers are vertically emplaced in the borehole 300 meters below ground, and in a horizontal grid of 30 x 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3--4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions

  20. Heat transfer effects in vertically emplaced high level nuclear waste container

    International Nuclear Information System (INIS)

    Moujaes, S.F.; Lei, Y.M.

    1994-01-01

    Modeling free convection heat transfer in a cylindrical annular enclosure is still an active area of research and an important problem to be addressed in the high level nuclear waste repository. For the vertically emplaced waste container, the air gap which is between the container shell and the rock borehole, have an important role of dissipating heat to surrounding rock. These waste containers are vertically emplaced in the borehole 300 meters just below ground, and in a horizontal grid of 30 x 8 meters apart. The borehole will be capped after the container emplacement. The expected initial heat generated is between 3-4.74 kW per container depending on the type of waste. The goal of this study is to use a computer simulation model to find the borehole wall, air-gap and the container outer wall temperature distributions. The borehole wall temperature history has been found in the previous study, and was estimated to reach a maximum temperature of about 218 degrees C after 18 years from the emplacement. The temperature history of the rock surface is then used for the air-gap simulation. The problem includes convection and radiation heat transfer in a vertical enclosure. This paper will present the results of the convection in the air-gap over one thousand years after the containers' emplacement. During this long simulation period it was also observed that a multi-cellular air flow pattern can be generated in the air gap

  1. Studies on the suitability of HDPE material for gill nets

    OpenAIRE

    Subramania Pillai, N.; Boopendranath, M.R.; Kunjipalu, K.K.

    1989-01-01

    The suitability of HDPE yarn and HDPE twine in place of nylon for gill nets has been studied. As regards total catch nylon gill net is found to be better than HDPE nets. However, statistical analysis of the catch in respect of quality fishes shows that HDPE yarn nets are equally efficient as nylon nets.

  2. Vertical cut-off walls for the containment of contaminated ground

    International Nuclear Information System (INIS)

    Jessberger, H.L.; Krubasik, K.; Beine, R.A.

    1997-01-01

    Vertical cut-off walls are widely used for the containment of contaminated sites, where a capping system is not sufficient for the protection of groundwater. Various types of cut-off walls are introduced and new developments are prescribed. Design and testing principles are outlined. Containment techniques are the appropriate measure for old landfills and abandoned industrial sites with contaminated ground and groundwater, too, since the shortage of financial resources in many countries classifies clean-up techniques as too cost intensive in most cases

  3. Vertices Contained In All Or In No Minimum Semitotal Dominating Set Of A Tree

    Directory of Open Access Journals (Sweden)

    Henning Michael A.

    2016-02-01

    Full Text Available Let G be a graph with no isolated vertex. In this paper, we study a parameter that is squeezed between arguably the two most important domination parameters; namely, the domination number, γ(G, and the total domination number, γt(G. A set S of vertices in a graph G is a semitotal dominating set of G if it is a dominating set of G and every vertex in S is within distance 2 of another vertex of S. The semitotal domination number, γt2(G, is the minimum cardinality of a semitotal dominating set of G. We observe that γ(G ≤ γt2(G ≤ γt(G. We characterize the set of vertices that are contained in all, or in no minimum semitotal dominating set of a tree.

  4. Forensic characterization of HDPE pipes by DSC.

    Science.gov (United States)

    Sajwan, Madhuri; Aggarwal, Saroj; Singh, R B

    2008-03-05

    The melting behavior of 28 high density polyethylene (HDPE) pipe samples manufactured and supplied by 13 different manufacturers in India was examined by 'differential scanning calorimetry (DSC)' to find out if this parameter could be used in differentiating between these HDPE pipe samples which are chemically the same and being manufactured by different manufacturer. The results indicate that the melting temperature may serve as the useful criteria for differentiating HDPE (i) pipe samples from different sources and (ii) samples of different diameter from the same source.

  5. Hybrid hydrogels containing vertically aligned carbon nanotubes with anisotropic electrical conductivity for muscle myofiber fabrication.

    Science.gov (United States)

    Ahadian, Samad; Ramón-Azcón, Javier; Estili, Mehdi; Liang, Xiaobin; Ostrovidov, Serge; Shiku, Hitoshi; Ramalingam, Murugan; Nakajima, Ken; Sakka, Yoshio; Bae, Hojae; Matsue, Tomokazu; Khademhosseini, Ali

    2014-03-19

    Biological scaffolds with tunable electrical and mechanical properties are of great interest in many different fields, such as regenerative medicine, biorobotics, and biosensing. In this study, dielectrophoresis (DEP) was used to vertically align carbon nanotubes (CNTs) within methacrylated gelatin (GelMA) hydrogels in a robust, simple, and rapid manner. GelMA-aligned CNT hydrogels showed anisotropic electrical conductivity and superior mechanical properties compared with pristine GelMA hydrogels and GelMA hydrogels containing randomly distributed CNTs. Skeletal muscle cells grown on vertically aligned CNTs in GelMA hydrogels yielded a higher number of functional myofibers than cells that were cultured on hydrogels with randomly distributed CNTs and horizontally aligned CNTs, as confirmed by the expression of myogenic genes and proteins. In addition, the myogenic gene and protein expression increased more profoundly after applying electrical stimulation along the direction of the aligned CNTs due to the anisotropic conductivity of the hybrid GelMA-vertically aligned CNT hydrogels. We believe that platform could attract great attention in other biomedical applications, such as biosensing, bioelectronics, and creating functional biomedical devices.

  6. Radiation Improved Mechanical and Thermal Property of PP/HDPE

    International Nuclear Information System (INIS)

    Chaisupaditsin, M.; Thammit, C.; Techakiatkul, C.

    1998-01-01

    The mechanical properties, thermal properties and gel contents of PP-irradiated HDPE blends were studied. HDPE was gamma irradiated in the dose range of 10-30 kGy. The ratios of polymer blends of 30PP:70HDPE was mixed by a twin screw extruder at speed of 50 rpm. Irradiated HDPE with 30 kGy showed the highest gel contents. The blends ratio of 30PP:70HDPE (30 kGy) shows better heat resistance than the blends with non-irradiated HDPE. With increasing the radiation doses, the mechanical properties of the blends were improved

  7. Ultraviolet weathering of HDPE/wood-flour composites coextruded with a clear HDPE cap layer

    Science.gov (United States)

    Laurent M. Matuana; Shan Jin; Nicole M. Stark

    2011-01-01

    This study examined the effect coextruding a clear HDPE cap layer onto HDPE/wood-flour composites has on the discoloration of coextruded composites exposed to accelerated UV tests. Chroma meter, FTIRATR, XPS, SEM, and UV vis measurements accounted for the analysis of discoloration, functional groups, and degree of oxidation of both uncapped (control) and coextruded...

  8. Compatibilization of recycled and virgin PET with radiation-oxidized HDPE

    International Nuclear Information System (INIS)

    Burillo, Guillermina; Herrera-Franco, Pedro; Vazquez, Margarito; Adem, Esbaide

    2002-01-01

    Blends of high-density polyethylene (HDPE), which cross-links on radiation, and both, recycled and pristine polyethylene terephtalate (PET), one of the most radiation-stable polymers, that contain aromatic groups, which are effective at dissipation of the energy of the ionizing radiation, were irradiated with gamma rays, in order to form a copolymer capable of improving the compatibility of the blend HDPE/PET. Due to the low content of the PET in the resulting copolymer, blends PET and radiation-oxidized HDPE, were also studied. The tensile and flexural properties were improved when the PET content was increased and when the HDPE was pre-irradiated; the largest increase in the mechanical properties was observed for PET contents between 10% and 20% (w/w). The improvement in the properties is believed to occur because of a percolation effect of the PET in the HDPE matrix and the radiation-improved compatibility by means of polar groups formed in the polyethylene. However, impact properties were observed to decrease when the PET content increased in spite of the irradiation

  9. Effect of EPDM-g-MAH on properties of HDPE/OBC blends

    Science.gov (United States)

    Li, M.; Yu, L. Y.; Li, P. F.; Bin, Y. H.; Zhang, H. J.

    2017-04-01

    In this paper, we take the HDPE as the matrix material, OBC as the toughening material, and EDPM-g-MAH as the compatibility agent, HDPE/OBC/EPDM-g-MAH blends were prepared by high speed mixing, melt extrusion, injection molding and so on. The effects of OBC and EPDM-g-MAH on mechanical properties, crystalline properties, fracture surface structure and rheological properties of HDPE were analyzed by universal tensile tester, melt mass flow rate test machine, DSC and SEM. Experimental results show that: with the addition of EPDM-g-MAH, the notched impact strength of the blends increased first and then decreased; HDPE/OBC blend containing 4% EPDM-g-MAH, OBC dispersion in the matrix is more uniform, particle size is significantly refined, melt flow has some improvement, Compared with HDPE/OBC blend materials, notched impact strength and elongation at break increased by 41.07% and 107.28% respectively, the toughness of the blend was greatly improved.

  10. Flows and Stratification of an Enclosure Containing Both Localised and Vertically Distributed Sources of Buoyancy

    Science.gov (United States)

    Partridge, Jamie; Linden, Paul

    2013-11-01

    We examine the flows and stratification established in a naturally ventilated enclosure containing both a localised and vertically distributed source of buoyancy. The enclosure is ventilated through upper and lower openings which connect the space to an external ambient. Small scale laboratory experiments were carried out with water as the working medium and buoyancy being driven directly by temperature differences. A point source plume gave localised heating while the distributed source was driven by a controllable heater mat located in the side wall of the enclosure. The transient temperatures, as well as steady state temperature profiles, were recorded and are reported here. The temperature profiles inside the enclosure were found to be dependent on the effective opening area A*, a combination of the upper and lower openings, and the ratio of buoyancy fluxes from the distributed and localised source Ψ =Bw/Bp . Industrial CASE award with ARUP.

  11. Extreme value prediction of the wave-induced vertical bending moment in large container ships

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher

    2015-01-01

    increase the extreme hull girder response significantly. Focus in the present paper is on the influence of the hull girder flexibility on the extreme response amidships, namely the wave-induced vertical bending moment (VBM) in hogging, and the prediction of the extreme value of the same. The analysis...... in the present paper is based on time series of full scale measurements from three large container ships of 8600, 9400 and 14000 TEU. When carrying out the extreme value estimation the peak-over-threshold (POT) method combined with an appropriate extreme value distribution is applied. The choice of a proper...... threshold level as well as the statistical correlation between clustered peaks influence the extreme value prediction and are taken into consideration in the present paper....

  12. Comparative biodegradation of HDPE and LDPE using an indigenously developed microbial consortium.

    Science.gov (United States)

    Satlewal, Alok; Soni, Ravindra; Zaidi, Mgh; Shouche, Yogesh; Goel, Reeta

    2008-03-01

    A variety of bacterial strains were isolated from waste disposal sites of Uttaranchal, India, and some from artificially developed soil beds containing maleic anhydride, glucose, and small pieces of polyethylene. Primary screening of isolates was done based on their ability to utilize high- and low-density polyethylenes (HDPE/LDPE) as a primary carbon source. Thereafter, a consortium was developed using potential strains. Furthermore, a biodegradation assay was carried out in 500-ml flasks containing minimal broth (250 ml) and HDPE/ LDPE at 5 mg/ml concentration. After incubation for two weeks, degraded samples were recovered through filtration and subsequent evaporation. Fourier transform infrared spectroscopy (FTIR) and simultaneous thermogravimetric-differential thermogravimetry-differential thermal analysis TG-DTG-DTA) were used to analyze these samples. Results showed that consortium-treated HDPE (considered to be more inert relative to LDPE) was degraded to a greater extent 22.41% weight loss) in comparison with LDPE (21.70% weight loss), whereas, in the case of untreated samples, weight loss was more for LDPE than HDPE (4.5% and 2.5%, respectively) at 400 degrees . Therefore, this study suggests that polyethylene could be degraded by utilizing microbial consortia in an eco-friendly manner.

  13. Partitioning and diffusion of PBDEs through an HDPE geomembrane.

    Science.gov (United States)

    Rowe, R Kerry; Saheli, Pooneh T; Rutter, Allison

    2016-09-01

    Polybrominated diphenyl ether (PBDE) has been measured in MSW landfill leachate and its migration through a modern landfill liner has not been investigated previously. To assure environmental protection, it is important to evaluate the efficacy of landfill liners for controlling the release of PBDE to the environment to a negligible level. The partitioning and diffusion of a commercial mixture of PBDEs (DE-71: predominantly containing six congeners) with respect to a high-density polyethylene (HDPE) geomembrane is examined. The results show that the partitioning coefficients of the six congeners in this mixture range from 700,000 to 7,500,000 and the diffusion coefficients range from 1.3 to 6.0×10(-15)m(2)/s depending on the congener. This combination of very high partitioning coefficients and very low diffusion coefficients suggest that a well constructed HDPE geomembrane liner will be an extremely effective barrier for PBDEs with respect to diffusion from a municipal solid waste landfill, as illustrated by an example. The results for pure diffusion scenario showed that the congeners investigated meet the guidelines by at least a factor of three for an effective geomembrane liner where diffusion is the controlling transport mechanism. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Evaluation on Compression Properties of Different Shape and Perforated rHDPE in Concrete Structures

    Science.gov (United States)

    Yuhazri, M. Y.; Hafiz, K. M.; Myia, Y. Z. A.; Jia, C. P.; Sihombing, H.; Sapuan, S. M.; Badarulzaman, N. A.

    2017-10-01

    The purpose of this study was to develop a concrete structure by incorporating waste HDPE plastic as the main reinforcement material and cement as the matrix via standard casting technique. There are eight different shapes of rHDPE reinforcing structure were used to investigate the compression properties of produced concrete composites. Experimental result shown that the highest shape in compressive strength of rHDPE reinforcing structure were the concrete with the addition of X-perforated beam (18.22 MPa), followed by X-beam (17.7 MPa), square perforated tube (17.54 MPa), round tube (17.42 MPa) and round perforated tube (16.69 MPa). In terms of their compressive behavior, the average concrete containing rHDPE reinforcement was successfully improved by 6 % of the mechanical characteristic compared to control concrete. It is shown that the addition of waste plastic as reinforcement structure can provide better compressive strength based on their shape and pattern respectively.

  15. Morphology, rheology and electrical resistivity of PLLA/HDPE/CNT nanocomposites: Effect of maleic anhydride

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Li-na; Chen, Jie; Dai, Jian; Chen, Hai-ming; Yang, Jing-hui [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Wang, Yong, E-mail: yongwang1976@163.com [Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031 (China); Zhang, Chao-liang [State Key Laboratory of Oral Diseases, Sichuan University, Chengdu 610041 (China)

    2015-02-15

    As a part of serial work about tuning the selective location of carbon nanotubes (CNTs) in immiscible polymer blends, this work reports the effects of component polarity and viscosity ratio between components on the selective location of CNTs and the resultant electrical resistivity of the nanocomposites. To achieve the research aim, maleic anhydride (MA) was grafted onto poly(L-lactide) (PLLA) main chain through a reactive compounding processing. After that, different contents of CNTs were incorporated into blends of high density polyethylene (HDPE) and PLLA (or PLLA-g-MA). The morphologies of the ternary nanocomposites and the selective location of CNTs in the nanocomposites were characterized using scanning electron microscope (SEM) and transmission electron microscope (TEM). The microstructure of nanocomposites and the dispersion of CNTs were further proved by rheological measurement. Finally, the electrical resistivity of nanocomposites containing different CNT contents was measured. The results showed that through increasing the polarity of PLLA and decreasing the melt viscosity, CNTs were kinetically trapped at the blend interface region. Consequently, largely decreased percolation threshold was achieved for the PLLA-g-MA/HDPE/CNT nanocomposites. The morphological changes as well as the rheological properties were also comparatively analyzed. - Highlights: • PLLA/HDPE/CNT and PLLA-g-MA/HDPE/CNT composites were prepared. • Different selective location states of CNTs were achieved in different composites. • Selectively located CNTs at the interface resulted in lower percolation threshold.

  16. A Study of Array Direction HDPE Fiber Reinforced Mortar

    Science.gov (United States)

    Kamsuwan, Trithos

    2018-02-01

    This paper presents the effect of array direction HDPE fiber using as the reinforced material in cement mortar. The experimental data were created reference to the efficiency of using HDPE fiber reinforced on the tensile properties of cement mortar with different high drawn ratio of HDPE fibers. The fiber with the different drawn ratio 25x (d25 with E xx), and 35x (d35 with E xx) fiber volume fraction (0%, 1.0%, 1.5%) and fiber length 20 mm. were used to compare between random direction and array direction of HDPE fibers and the stress - strain displacement relationship behavior of HDPE short fiber reinforced cement mortar were investigated. It was found that the array direction with HDPE fibers show more improved in tensile strength and toughness when reinforced in cement mortar.

  17. Case study installation of a HDPE curtain wall with sheetpile tie-in on both ends

    International Nuclear Information System (INIS)

    Schindler, R.M.; Maltese, P.C.

    1997-01-01

    The plans for eliminating the off-site migration of non-aqueous phase liquid (NAPL) from a refinery into a nearby river included the installation of a High Density Polyethylene (HDPE) curtain wall and an underdrain system. A 640 m (2100 lineal feet) HDPE Curtain Wall was installed along the river boundary, tying into an existing sheet pile wall on both ends. The wall varied from approximately 4.5 m (15 feet) deep at the northern end to about 7 m (23 feet) deep at the southern end, running approximately 3 to 3.6 m (10 to 12 feet) inland of an existing wooden bulkhead. The curtain wall was successfully installed through a slurry supported trench. A 930 m (3050 lineal feet) interception/collection trench was installed parallel to the HDPE Curtain Wall, continuing on beyond the curtain wall on the southern end. The depth of the trench varied from approximately 3 to 4 m (10 to 13 feet) deep. A 20.32 cm (8 inch) diameter perforated HDPE header pipe was placed in the trench to convey groundwater and product to two sumps. The trench is 53.34 cm (21 inches) wide and contained aggregate to approximately 0.9 m (3 feet) below ground. This work was accomplished using the bio-polymer slurry drainage trench (BP Drain) technique. This paper briefly describes the construction methods utilized during this project, specifically HDPE curtain wall installation thru a bentonite slurry and tie-in to the existing sheet pile wall

  18. Data characterizing tensile behavior of cenosphere/HDPE syntactic foam.

    Science.gov (United States)

    Kumar, B R Bharath; Doddamani, Mrityunjay; Zeltmann, Steven E; Gupta, Nikhil; Ramakrishna, Seeram

    2016-03-01

    The data set presented is related to the tensile behavior of cenosphere reinforced high density polyethylene syntactic foam composites "Processing of cenosphere/HDPE syntactic foams using an industrial scale polymer injection molding machine" (Bharath et al., 2016) [1]. The focus of the work is on determining the feasibility of using an industrial scale polymer injection molding (PIM) machine for fabricating syntactic foams. The fabricated syntactic foams are investigated for microstructure and tensile properties. The data presented in this article is related to optimization of the PIM process for syntactic foam manufacture, equations and procedures to develop theoretical estimates for properties of cenospheres, and microstructure of syntactic foams before and after failure. Included dataset contains values obtained from the theoretical model.

  19. Diffusion of multiwall carbon nanotubes (MWCNTs) through a high density polyethylene (HDPE) geomembrane.

    Science.gov (United States)

    Saheli, P T; Rowe, R K; Petersen, E J; O'Carroll, D M

    2017-05-01

    The new applications for carbon nanotubes (CNTs) in various fields and consequently their greater production volume have increased their potential release to the environment. Landfills are one of the major locations where carbon nanotubes are expected to be disposed and it is important to ensure that they can limit the release of CNTs. Diffusion of multiwall carbon nanotubes (MWCNTs) dispersed in an aqueous media through a high-density polyethylene (HDPE) geomembrane (as a part of the landfill barrier system) was examined. Based on the laboratory tests, the permeation coefficient was estimated to be less than 5.1×10 -15 m 2 /s. The potential performance of a HDPE geomembrane and geosynthetic clay liner (GCL) as parts of a composite liner in containing MWCNTs was modelled for six different scenarios. The results suggest that the low value of permeation coefficient of an HDPE geomembrane makes it an effective diffusive barrier for MWCNTs and by keeping the geomembrane defects to minimum during the construction (e.g., number of holes and length of wrinkles) a composite liner commonly used in municipal solid waste landfills will effectively contain MWCNTs.

  20. Study on properties of cation-exchange membranes containing sulfonate groups

    International Nuclear Information System (INIS)

    Zu Jianhua; Wu Minghong; Qiu Shilong; Yao Side; Ye Yin

    2004-01-01

    Strong acid cation-exchange membranes were obtained by irradiation grafting of acrylic acid (AA) and sodium styrene sulfonate (SSS) onto high-density polyethylene (HDPE). Thermal and chemical stability of the cation-exchange membranes was investigated. The effectiveness of sulfonate-containing films was conformed in inducing high resistance to oxidative degradation. Thermal stability of the grafted HDPE was weaker than HDPE as detected by TGA analyzing technique. Char residue by TGA of the grafted HDPE is greater than that of HDPE. It shows that the branch chains including -SO 3 Na and -COOH was grafted onto the backbone of HDPE, and thus give a catalytic impetus to the charing. Crystallinity of the grafted membranes decreased with increasing grafting yield of the membrane samples. It is supposed that the decreased crystallinity is due to collective effects of the inherent crystallinity dilution by the amorphous grafted chains and disruption of spherulitic crystallites of the HDPE component

  1. Investigations of bi-directional flow behaviour of a large vertical opening in containment

    International Nuclear Information System (INIS)

    Sharma, Pavan K.; Markandeya, S.G.; Ghosh, A.K.; Kushwaha, H.S.

    2002-01-01

    Full text: In the complex codes developed for fire analysis and for containment thermal hydraulic analysis. The junction in the multi-compartment geometries are often modeled as uni-directional junctions. However, certain large size junctions are known to depict bi-directional flow behaviour under specific circumstances. Detailed investigations have been carried out to understand the bi-directionality of a junction by analyzing an earlier reported case study of fire in an enclosure. A computer code FDS was used for the analysis. The paper presents the details of the analysis, the results obtained and further studies required to be conducted so that the findings can be applied to the fire/containment thermal hydraulics analysis codes successfully

  2. Acoustical and mechanical behavior of HDPE/EPDM/NFU blends

    OpenAIRE

    Colom Fajula, Xavier; Pola, E.; Casas, P.; Nogués Morell, Francesc; Carrillo Navarrete, Fernando; Cañavate Ávila, Francisco Javier

    2010-01-01

    En este trabajo se pretende caracterizar el comportamiento acústico y mecánico de mezclas formadas por HDPE/EPDM/NFU. Los Neumáticos Fuera de Uso(NFU) son un gran problema debido al elevado grado de contaminación que generan. Se han analizado HDPE y HDPE/EPDM, para mejorar la compatibilidad entre la matriz y el refuerzo y obtener mejores propiedades mecánicas. Asimismo también se ha caracterizado el comportamiento acústico con el fin de conseguir incrementar el rango de aplicaciones de los mi...

  3. Mechanical Reinforcement of Epoxy Composites with Carbon Fibers and HDPE

    Science.gov (United States)

    He, R.; Chang, Q.; Huang, X.; Li, J.

    2018-01-01

    Silanized carbon fibers (CFs) and a high-density polyethylene with amino terminal groups (HDPE) were introduced into epoxy resins to fabricate high-performance composites. A. mechanical characterization of the composites was performed to investigate the effect of CFs in cured epoxy/HDPE systems. The composites revealed a noticeable improvement in the tensile strength, elongation at break, flexural strength, and impact strength in comparison with those of neat epoxy and cured epoxy/HDPE systems. SEM micrographs showed that the toughening effect could be explained by yield deformations, phase separation, and microcracking.

  4. Post-consumer contamination in high-density polyethylene (HDPE) milk bottles and the design of a bottle-to-bottle recycling process.

    Science.gov (United States)

    Welle, F

    2005-10-01

    Six hundred conventional recycled HDPE flake samples, which were recollected and sorted in the UK, were screened for post-consumer contamination levels. Each analysed sample consisted of 40-50 individual flakes so that the amount of analysed individual containers was in the range 24,000-30,000 post-consumer milk bottles. Predominant contaminants in hot-washed flake samples were unsaturated oligomers, which can be also be found in virgin high-density polyethylene (HDPE) pellet samples used for milk bottle production. In addition, the flavour compound limonene, the degradation product of antioxidant additives di-tert-butylphenol and low amounts of saturated oligomers were found in higher concentrations in the post-consumer samples in comparison with virgin HDPE. However, the overall concentrations in post-consumer recycled samples were similar to or lower than concentration ranges in comparison with virgin HDPE. Contamination with other HDPE untypical compounds was rare and was in most cases related to non-milk bottles, which are HDPE and on the high cleaning efficiency of the super-clean recycling process especially for highly volatile compounds, the recycling process investigated is suitable for recycled post-consumer HDPE bottles for direct food-contact applications. However, hand-picking after automatically sorting is recommended to decrease the amount of non-milk bottles. The conclusions for suitability are valid, provided that the migration testing of recyclate contains milk bottles up to 100% and that both shelf-life testing and sensorial testing of the products are successful, which are topics of further investigations.

  5. Effect of phenol formaldehyde resin as vulcanizing agent on flow behavior of HDPE/PB blend

    Directory of Open Access Journals (Sweden)

    Moayad N. Khalaf

    2014-07-01

    Full Text Available Thermoplastic elastomer (TPE based on High density polyethylene (HDPE/polybutadiene (HDPE/PB = 70/30 parts blends containing 1, 3, 5, 7 and 10 wt.% of dimethylol phenolic resin as a vulcanizing agent in the presence of SnCl2 as catalyst was prepared. The dimethylol phenolic resin was prepared in our laboratory. The blends were compounded in mixer-60 attached to a Haake rheochord meter-90. The rheological properties were measured at temperatures 140, 160, 180 and 200 °C. The linearity of the flow curve appeared for 5% of the vulcanizing agent. The shear stress and shear viscosity have increased upon increasing the shear rate over a range of loading levels of vulcanizing agent of 1%, 3%, 5%, 7% and 10%. This may be attributed to the increased vulcanization between polyethylene and the rubber blend. The flow behavior index of the system shows a pseudo plastic nature behavior (since n < 1. The consistency index (K increased with the increase in the phenol formaldehyde resin content and the temperature. Hence, the increase in the value of the consistency index (K of the polymer melts refers to more viscous materials prepared. The activation energy for the TPE blends fluctuated indicating that there is phase separation; where each polymer behaved separately. This study showed that HDPE/PB blends are characterized with good rheological properties, which can be recommended to be processed with the injection molding technique.

  6. Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids

    Science.gov (United States)

    Zang, Duyang; Zhai, Zhicong; Li, Lin; Lin, Kejun; Li, Xiaoguang; Geng, Xingguo

    2016-09-01

    We have studied the levitation and oscillation dynamics of complex drops containing two immiscible liquids. Two types of drops, core-shell drop and abnormal-shaped drop, have been obtained depending on the levitation procedures. The oscillation dynamics of the drops have been studied using a high speed camera. It has been found that the oscillation of the abnormal-shaped drop has a longer oscillation period and decays much faster than that of the core-shell drop, which cannot be accounted for by the air resistance itself. The acoustic streaming induced by ultrasound may bring an additional force against the motion of the drop due to the Bernoulli effect. This is responsible for the enhanced damping during the oscillation in acoustic levitation.

  7. Structural analysis of nanocomposites based on HDPE/EPDM blends.

    Science.gov (United States)

    Zitzumbo, Roberto; Alonso, Sergio; Avalos, Felipe; Ortiz, José C; López-Manchado, Miguel A; Arroyo, Miguel

    2006-02-01

    Intercalated and exfoliated nanocomposites based on HDPE and EPDM blends with an organoclay have been obtained through the addition of EPDM-g-MA as a compatibilizer. The combined effect of clay and EPDM-g-MA on the rheological behaviour is very noticeable with a sensible increase in viscosity which suggests the formation of a structural net of percolation induced by the presence of intercalated and exfoliated silicate layer. As deduced from rheological studies, a morphology based on nanostructured micro-domains dispersed in HDPE continuous phase is proposed for EPDM/HDPE blend nanocomposites. XRD and SEM analysis suggest that two different transport phenomena take simultaneously place during the intercalation process in the melt. One due to diffusion of HDPE chains into the tactoid and the other to diffusion of EPDM-g-MA into the silicate galleries.

  8. Synthesis and characterization of HDPE/N-MWNT nanocomposite films.

    Science.gov (United States)

    Chouit, Fairouz; Guellati, Ounassa; Boukhezar, Skander; Harat, Aicha; Guerioune, Mohamed; Badi, Nacer

    2014-01-01

    In this work, a series of nitrogen-doped multi-walled carbon nanotubes (N-MWCNTs) with several weight percentages (0.1, 0.4, 0.8, and 1.0 wt.%) were synthesized by catalytic chemical vapor deposition (CCVD) technique. The N-MWCNTs were first characterized and then dispersed in high-density polyethylene (HDPE) polymer matrix to form a nanocomposite. The HDPE/N-MWCNT nanocomposite films were prepared by melt mixing and hot pressing; a good dispersion in the matrix and a good N-MWCNT-polymer interfacial adhesion have been verified by scanning electron microscopy (SEM). Raman spectroscopy measurements have been performed on prepared samples to confirm the presence and nature of N-MWNTs in HDPE matrix. The X-ray diffraction (XRD) analysis demonstrated that the crystalline structure of HDPE matrix was not affected by the incorporation of the N-MWNTs.

  9. Heat transfer modelling in the vertical tubes of a natural circulation passive containment loop with noncondensable gas

    International Nuclear Information System (INIS)

    Herranz, L.E.; Munoz-Cobo, J.L.; Tachenko, I.; Sancho, J.; Escriva, A.; Verdu, G.

    1994-01-01

    One of the key safety systems of the Simplified Boiling Water Reactor (SBWR) of General Electric is the Passive Containment Cooling System (PCCS). This system is designed to behave as a heat sink without need of operator actions in case of a reactor accident. Such a function relies on setting up a natural circulation loop between drywell and wetwell. Along this loop heat is removed by condensing the steam coming from the drywell onto the inner surface of externally cooled vertical tubes. Therefore, a successful design of the condenser requires a good knowledge of the local heat transmission coefficients. In this paper a model of steam condensation into vertical tubes is presented. Based on a modified diffusion boundary layer approach for noncondensables, this model accounts for the effect of shear stress caused by the cocurrent steam-gas mixture on the liquid film thickness. An approximate method to calculate film thickness, avoiding iterative algorithms, has been proposed. At present, this model has been implemented in HTCPIPE code and its results are being checked in terms of local heat transfer coefficients against the experimental data available. A good agreement between measurements and predictions is being observed for tests at atmospheric pressure. Further development and validation of the model is needed to consider aspects such as mist formation, wavy flow and high pressure. (author)

  10. Tenth-Order Lepton Anomalous Magnetic Moment--Sixth-Order Vertices Containing Vacuum-Polarization Subdiagrams

    International Nuclear Information System (INIS)

    Aoyama, Tatsumi; Hayakawa, Masashi; Kinoshita, Toichiro; Nio, Makiko

    2011-01-01

    This paper reports the values of contributions to the electron g-2 from 300 Feynman diagrams of the gauge-invariant Set III(a) and 450 Feynman diagrams of the gauge-invariant Set III(b). The evaluation is carried out in two versions. Version A is to start from the sixth-order magnetic anomaly M 6 obtained in the previous work. The mass-independent contributions of Set III(a) and Set III(b) are 2.1275(2) and 3.3271(6) in units of (α/π) 5 , respectively. Version B is based on the recently developed automatic code generation scheme. This method yields 2.1271(3) and 3.3271(8) in units of (α/π) 5 , respectively. They are in excellent agreement with the results of the first method within the uncertainties of numerical integration. Combining these results as statistically independent we obtain the best values, 2.1273(2), and 3.3271(5) times (α/π) 5 , for the mass-independent contributions of the Set III(a) and Set III(b), respectively. We have also evaluated mass-dependent contributions of diagrams containing muon and/or tau-particle loop. Including them the total contribution of Set III(a) is 2.1349(2) and that of Set III(b) is 3.3299(5) in units of (α/π) 5 . The total contributions to the muon g-2 of various leptonic vacuum-polarization loops of Set III(a) and Set III(b) are 112.418(32) and 15.407(5) in units of (α/π) 5 , respectively.

  11. Verticality and containment in song and improvisation: an application of schema theory to Nordoff-Robbins music therapy.

    Science.gov (United States)

    Aigen, Kenneth

    2009-01-01

    This study illustrates the use of a new musicological method for analyzing music in music therapy. It examines two pieces of clinical music through the constructs of schema theory. It begins with an argument for enhanced musical analysis in music therapy as a means of elevating the status of explanation in music therapy. Schema theory is introduced as a means of integrating musical with clinical concerns. Some basic ideas in schema theory are explained and the schemas of VERTICALITY and CONTAINER are presented as central ones in the analysis of music. Two transcriptions-one of a composed song and one of an improvisation-are examined in detail to illustrate how decisions in the temporal, melodic, and harmonic dimensions of the music are linked to specific clinical goals. The article concludes with a discussion of the implications of this type of musicological analysis for explanatory theory in music therapy.

  12. Study of the motion and deposition of micro particles in a vertical tube containing uniform gas flow

    Science.gov (United States)

    Abolpour, Bahador; Afsahi, M. Mehdi; Soltani Goharrizi, Ataallah; Azizkarimi, Mehdi

    2017-12-01

    In this study, effects of a gaseous jet, formed in a vertical tube containing a uniform gas flow, on the injected micro particles have been investigated. A CFD model has been developed to simulate the particle motion in the tube. This simulation is very close to the experimental data. The results show that, increasing the flow rate of carrier gas or decreasing the flow rate of surrounding gas increases the effect of gaseous jet and also increases trapping rate of the particles by the tube wall. The minimum and maximum residence times of particles approach together with increasing the size of solid particles. Particles larger than 60 μm have a certain and fixed residence time at different flow rates of the carrier or surrounding gas. About 40 μm particle size has minimal trapping by the tube wall at various experimental conditions.

  13. Effect of TiO2 Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO2 Nanocomposites

    Science.gov (United States)

    Mozumder, Mohammad Sayem; Mourad, Abdel-Hamid I.; Mairpady, Anusha; Pervez, Hifsa; Haque, Md Emdadul

    2018-05-01

    The necessity for advanced and effective biomimetic tissue engineering materials has increased massively as bone diseases such as osteoporosis and bone cancer have become a major public health problem. Therefore, the objective of this study is to develop titanium dioxide (TiO2) nanoparticles-enriched high-density polyethylene (HDPE) nanocomposites that could serve as potential biomaterials. HDPE/TiO2 nanocomposites with varying TiO2 nanoparticles content were fabricated by using injection molding technique and were subjected to mechanical, thermal and biological characterization. SEM-EDS analysis confirmed even dispersion of TiO2 nanoparticles into the HDPE matrix. It was observed from the mechanical testing that the addition of TiO2 nanoparticles to HDPE noticeably improved the stiffness (from 345 to 378 MPa) while maintaining almost similar yield strength of pure HDPE. The thermal analyses revealed that TiO2 nanoparticles inclusion to HDPE matrix enhanced the thermal stability of nanocomposites, as the overall rate of crystallization increased by almost 4%. Furthermore, biocompatibility of nanocomposites was also studied by means of various cell culture experiments; human osteoblasts (hFOB) were seeded on the HDPE/TiO2 nanocomposites and were visualized through SEM after 72 h of incubation; surface morphology revealed normal cell growth and spreading with more attachment on PNC-10 that contains 10 wt.% of TiO2. Moreover, cell viability assays (i.e., MTT and cell attachment) revealed consistent increase in cell count and metabolic activity when triplicate cultures were incubated for 1, 3 and 7 days.

  14. Effect of TiO2 Nanofiller Concentration on the Mechanical, Thermal and Biological Properties of HDPE/TiO2 Nanocomposites

    Science.gov (United States)

    Mozumder, Mohammad Sayem; Mourad, Abdel-Hamid I.; Mairpady, Anusha; Pervez, Hifsa; Haque, Md Emdadul

    2018-03-01

    The necessity for advanced and effective biomimetic tissue engineering materials has increased massively as bone diseases such as osteoporosis and bone cancer have become a major public health problem. Therefore, the objective of this study is to develop titanium dioxide (TiO2) nanoparticles-enriched high-density polyethylene (HDPE) nanocomposites that could serve as potential biomaterials. HDPE/TiO2 nanocomposites with varying TiO2 nanoparticles content were fabricated by using injection molding technique and were subjected to mechanical, thermal and biological characterization. SEM-EDS analysis confirmed even dispersion of TiO2 nanoparticles into the HDPE matrix. It was observed from the mechanical testing that the addition of TiO2 nanoparticles to HDPE noticeably improved the stiffness (from 345 to 378 MPa) while maintaining almost similar yield strength of pure HDPE. The thermal analyses revealed that TiO2 nanoparticles inclusion to HDPE matrix enhanced the thermal stability of nanocomposites, as the overall rate of crystallization increased by almost 4%. Furthermore, biocompatibility of nanocomposites was also studied by means of various cell culture experiments; human osteoblasts (hFOB) were seeded on the HDPE/TiO2 nanocomposites and were visualized through SEM after 72 h of incubation; surface morphology revealed normal cell growth and spreading with more attachment on PNC-10 that contains 10 wt.% of TiO2. Moreover, cell viability assays (i.e., MTT and cell attachment) revealed consistent increase in cell count and metabolic activity when triplicate cultures were incubated for 1, 3 and 7 days.

  15. Variation of Neutron Moderating Power on HDPE by Gamma Radiation

    International Nuclear Information System (INIS)

    Park, Kwang June; Ju, June Sik; Kang, Hee Young; Shin, Hee Sung; Kim, Ho Dong

    2009-01-01

    High density polyethylene (HDPE) is degraded due to a radiation-induced oxidation when it is used as a neutron moderator in a neutron counter for a nuclear material accounting of spent fuels. The HDPE exposed to the gamma-ray emitted from the fission products in a spent nuclear fuel results in a radiation-induced degradation which changes its original molecular structure to others. So a neutron moderating power variation of HDPE, irradiated by a gamma radiation, was investigated in this work. Five HDPE moderator structures were exposed to the gamma radiation emitted from a 60 Co source to a level of 10 5 -10 9 rad to compare their post-irradiation properties. As a result of the neutron measurement test with 5 irradiated HDPE structures and a neutron measuring system, it was confirmed that the neutron moderating power for the 105 rad irradiated HDPE moderator revealed the largest decrease when the un-irradiated pure one was used as a reference. It implies that a neutron moderating power variation of HDPE is not directly proportional to the integrated gamma dose rate. To clarify the cause of these changes, some techniques such as a FTIR, an element analysis and a densitometry were employed. As a result of these analyses, it was confirmed that the molecular structure of the gamma irradiated HDPEs had partially changed to others, and the contents of hydrogen and oxygen had varied during the process of a radiation-induced degradation. The mechanism of these changes cannot be explained in detail at present, and thus need further study

  16. A new alternative in vertical barrier wall construction

    International Nuclear Information System (INIS)

    Rawl, G.F.

    1997-01-01

    A new proprietary vertical barrier wall system has been developed to revolutionize the construction process by eliminating many of the concerns of conventional installation method's with respect to performance, installation constraints and costs. Vertical barrier walls have been used in the environmental and construction industries for a variety of purposes, usually for cut-off or containment. The typical scenario involves a groundwater contamination problem, in which a vertical barrier wall is utilized to contain or confine the spread of contaminants below the ground surface. Conventional construction techniques have been adequate in many applications, but often fall short of their intended purposes due to physical constraints. In many instances, the economics of these conventional methods have limited the utilization of physical barrier walls. Polywall, the trade name for this new barrier wall technology, was subsequently developed to meet these needs and offer a number of distinct advantages in a variety of scenarios by maximizing confinement and minimizing installation costs. Polywall is constructed from chemically resistant high density polyethylene (HDPE) plastic. It has proven in a half-dozen projects to date to be the most cost-effective and technically sound approach to many containment situations. This paper will cover the development of the technology and will provide a brief synopsis of several installations

  17. Pengaruh Penggunaan Serat High Density Polyethylene (Hdpe) Pada Campuran Beton Terhadap Kuat Tarik Beton

    OpenAIRE

    Rommel, Erwin; Rusdianto, Yunan; Kurniati, Anita

    2014-01-01

    Research on the addition of HDPE fibers in normal concrete is intended to determine therelationship between the percentage of variation of fiber addition of HDPE to the workability, tensilestrength and determine the pattern of deployment of fiber in concrete. The addition of HDPE fibersis intended to increase the tensile strength of concrete.The concrete was mixed using gresik cement type PPC, sand with the gradation limits zone 2,the gravel with a maximum grain size of 20 mm, and HDPE fibers...

  18. Enhanced Thermal, Mechanical and Morphological Properties of CNT/HDPE Nanocomposite Using MMT as Secondary Filler

    OpenAIRE

    M. E. Ali Mohsin; Agus Arsad; Othman Y. Alothman

    2014-01-01

    This study explains the influence of secondary filler on the dispersion of carbon nanotube (CNT) reinforced high density polyethylene (HDPE) nanocomposites (CNT/HDPE). In order to understand the mixed-fillers system, Montmorillonite (MMT) was added to CNT/HDPE nanocomposites. It was followed by investigating their effect on the thermal, mechanical and morphological properties of the aforesaid nanocomposite. Incorporation of 3 wt% each of MMT into CNT/HDPE nanocomposite resulted to the increas...

  19. The extrudate swell of HDPE: Rheological effects

    Science.gov (United States)

    Konaganti, Vinod Kumar; Ansari, Mahmoud; Mitsoulis, Evan; Hatzikiriakos, Savvas G.

    2017-05-01

    The extrudate swell of an industrial grade high molecular weight high-density polyethylene (HDPE) in capillary dies is studied experimentally and numerically using the integral K-BKZ constitutive model. The non-linear viscoelastic flow properties of the polymer resin are studied for a broad range of large step shear strains and high shear rates using the cone partitioned plate (CPP) geometry of the stress/strain controlled rotational rheometer. This allowed the determination of the rheological parameters accurately, in particular the damping function, which is proven to be the most important in simulating transient flows such as extrudate swell. A series of simulations performed using the integral K-BKZ Wagner model with different values of the Wagner exponent n, ranging from n=0.15 to 0.5, demonstrates that the extrudate swell predictions are extremely sensitive to the Wagner damping function exponent. Using the correct n-value resulted in extrudate swell predictions that are in excellent agreement with experimental measurements.

  20. Effect of aging in HDPE blended with DEM in decalin

    International Nuclear Information System (INIS)

    Silva, P.; Albano, C.; Karam, A.; Vargas, M.G.; Perera, R.

    2006-01-01

    Electron paramagnetic resonance (EPR) was used to study the effect of aging on irradiated samples of high-density polyethylene (HDPE) blended with diethyl maleate (DEM) in different proportions. Initially, we synthesize the HDPE using bis-(cyclopentadienyl) zirconium dichloride and P-MAO. The functionalization of the synthesized HDPE was carried out in a 10% weight/vol of polyethylene in decalin solution using different percentages of diethyl maleate (5, 10, 15 and 30% in weight). The samples were irradiated at 5, 15 and 30 kGy. An exponential decay in the total free radicals concentration was observed in the pure HDPE sample at the 15 and 30 kGy irradiation doses, as it was expected. For the 15 and 30 kGy irradiation doses the HDPE blended with 15 and 30% of DEM in decalin shows an increase in the total free radical concentrations as the storage time is increased. This behavior has been interpreted in terms of trapped free radicals. (Author)

  1. Calibrated Pulse-Thermography Procedure for Inspecting HDPE

    Directory of Open Access Journals (Sweden)

    Mohammed A. Omar

    2008-01-01

    Full Text Available This manuscript discusses the application of a pulse-thermography modality to evaluate the integrity of a high-density polyethylene HDPE joint for delamination, in nonintrusive manner. The inspected HDPE structure is a twin-cup shape, molded through extrusion, and the inspection system comprises a high-intensity, short-duration radiation pulse to excite thermal emission; the text calibrates the experiment settings (pulse duration, and detector sampling rate to accommodate HDPE bulks thermal response. The acquired thermal scans are processed through new contrast computation named “self-referencing”, to investigate the joint tensile strength and further map its adhesion interface in real-time. The proposed system (hardware, software combination performance is assessed through an ultrasound C-scan validation and further benchmarked using a standard pulse phase thermography (PPT routine.

  2. Influence of blending sequence on the rheological behavior of HDPE/LLDPE/MMT nano composites

    International Nuclear Information System (INIS)

    Passador, F.R.; Pessan, L.A.; Ruvolo Filho, A.

    2010-01-01

    The blending sequence affects the rheological behavior and the morphology formation of the nanocomposites. In this work, the blending sequences were explored to see its influence in the rheological behavior of HDPE/LLDPE/MMT nanocomposites. The nanocomposites were obtained by melt-intercalation using HDPE-g-MA as a compatibilizer in a torque rheometer (Haake Rheomix 600p at 180 deg C and rotor speed of 80rpm) and five blending sequences were studied. The materials structures were characterized by wide angle X-ray diffraction (WAXD) and by rheological properties. The nanoclay's addition increased the shear viscosity at low shear rates, changing the behavior of HDPE/LLDPE matrix to a Bingham model behavior with an apparent yield stress. Intense interactions were obtained for the blending sequence where HDPE and HDPE-g-MA were first reinforced with organoclay and then the HDPE/HDPE-g-MA/organoclay nanocomposite was later blended with LLDPE. (author)

  3. Enhancement of in vitro high-density polyethylene (HDPE) degradation by physical, chemical, and biological treatments.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Rajeshkannan, V; Perumal, P

    2014-11-01

    Partially degraded high-density polyethylene (HDPE) was collected from plastic waste dump yard for biodegradation using fungi. Of various fungi screened, strain MF12 was found efficient in degrading HDPE by weight loss and Fourier transform infrared (FT-IR) spectrophotometric analysis. Strain MF12 was selected as efficient HDPE degraders for further studies, and their growth medium composition was optimized. Among those different media used, basal minimal medium (BMM) was suitable for the HDPE degradation by strain MF12. Strain MF12 was subjected to 28S rRNA sequence analysis and identified as Aspergillus terreus MF12. HDPE degradation was carried out using combinatorial physical and chemical treatments in conjunction to biological treatment. The high level of HDPE degradation was observed in ultraviolet (UV) and KMnO4/HCl with A. terreus MF12 treatment, i.e., FT10. The abiotic physical and chemical factors enhance the biodegradation of HDPE using A. terreus MF12.

  4. Steam condensation heat transfer in the presence of noncondensables in a vertical tube of passive containment cooling system

    International Nuclear Information System (INIS)

    Park, Hyun Sik

    1999-02-01

    A database for laminar condensation heat transfer is constructed from the previous experimental data at various condensation conditions. Based on the database, the condensation models in the standard RELAP5/MOD3.2 code are assessed and improved. Two wall film condensation models, the default and the alternative, are used in RELAP5/MOD3.2. The default model of the laminar film condensation in RELAP5/MOD3.2 does not give any reliable predictions, and its alternative model always predicts higher values than the experimental data. Therefore, it is needed to develop a new correlation based on the experimental data of various operating ranges. A set of condensation experiments in the presence of noncondensable gas in a vertical tube of the passive containment cooling system of the CP-1300 are performed. The experimental results show that the heat transfer coefficients (HTCs) increase as the inlet air mass fraction decreases and the inlet saturated steam temperature decreases. However, the dependence of the inlet mixture Reynolds number on the HTC is small for the operating range. An empirical correlation is developed, and its predictions are compared with experimental data to show good agreement with the standard deviation of 22.3%. The experimental HTCs are also compared with the predictions from the default and the alternative models used in RELAP5/MOD3.2. The experimental apparatus is modeled with two wall-film condensation models in RELAP5/MOD3.2 and the empirical correlation, and simulations are performed for several subtests to be compared with the experimental results. Overall, the simulation results show that the default model of RELAP5/MOD3.2 underpredicts the HTCs, and the alternative model overpredicts them, while the empirical correlation predicts them well throughout the condensing tube. Both the nodalization study and the sensitivity study are also performed. The nodalization study shows that the variation of the node number does not change both modeling

  5. Direct current electric potential in an anisotropic half-space with vertical contact containing a conductive 3D body

    Directory of Open Access Journals (Sweden)

    Li Ping

    2004-01-01

    Full Text Available Detailed studies of anomalous conductors in otherwise homogeneous media have been modelled. Vertical contacts form common geometries in galvanic studies when describing geological formations with different electrical conductivities on either side. However, previous studies of vertical discontinuities have been mainly concerned with isotropic environments. In this paper, we deal with the effect on the electric potentials, such as mise-à-la-masse anomalies, due to a conductor near a vertical contact between two anisotropic regions. We also demonstrate the interactive effects when the conductive body is placed across the vertical contact. This problem is normally very difficult to solve by the traditional numerical methods. The integral equations for the electric potential in anisotropic half-spaces are established. Green's function is obtained using the reflection and transmission image method in which five images are needed to fit the boundary conditions on the vertical interface and the air-earth surface. The effects of the anisotropy of the environments and the conductive body on the electric potential are illustrated with the aid of several numerical examples.

  6. Surface Spectroscopic Signatures of Mechanical Deformation in HDPE.

    Science.gov (United States)

    Averett, Shawn C; Stanley, Steven K; Hanson, Joshua J; Smith, Stacey J; Patterson, James E

    2018-01-01

    High-density polyethylene (HDPE) has been extensively studied, both as a model for semi-crystalline polymers and because of its own industrial utility. During cold drawing, crystalline regions of HDPE are known to break up and align with the direction of tensile load. Structural changes due to deformation should also manifest at the surface of the polymer, but until now, a detailed molecular understanding of how the surface responds to mechanical deformation has been lacking. This work establishes a precedent for using vibrational sum-frequency generation (VSFG) spectroscopy to investigate changes in the molecular-level structure of the surface of HDPE after cold drawing. X-ray diffraction (XRD) was used to confirm that the observed surface behavior corresponds to the expected bulk response. Before tensile loading, the VSFG spectra indicate that there is significant variability in the surface structure and tilt of the methylene groups away from the surface normal. After deformation, the VSFG spectroscopic signatures are notably different. These changes suggest that hydrocarbon chains at the surface of visibly necked HDPE are aligned with the direction of loading, while the associated methylene groups are oriented with the local C 2 v symmetry axis roughly parallel to the surface normal. Small amounts of unaltered material are also found at the surface of necked HDPE, with the relative amount of unaltered material decreasing as the amount of deformation increases. Aspects of the nonresonant SFG response in the transition zone between necked and undeformed polymer provide additional insight into the deformation process and may provide the first indication of mechanical deformation. Nonlinear surface spectroscopy can thus be used as a noninvasive and nondestructive tool to probe the stress history of a HPDE sample in situations where X-ray techniques are not available or not applicable. Vibrational sum-frequency generation thus has great potential as a platform for

  7. Modification of HDPE by γ ray radiation in oxygen atmosphere and blend with PA6

    International Nuclear Information System (INIS)

    Ding Yunsheng; Shi Tiejun; Zhang Zhicheng; Hu Keliang

    2002-01-01

    A study on the oxidation of high density polyethylene (HDPE) by γ ray irradiation in oxygen atmosphere has been made. The influence of irradiated time on the oxidation has been investigated with the help of Fourier Transform Infrared-Photoacoustics Spectroscopy (FTIR-PAS). Results of FTIR-PAS show after irradiation groups like -C=O, -O-C-O-, O=C-O- were introduced into the HDPE. Although the γ ray has powerful penetrability, the oxidation mainly takes place on the surface of HDPE. after 4 h irradiation in oxygen (dose rate 66 Gy/min.), -C=O is the main group which was introduced into the surface of HDPE. Lengthening the irradiation process makes the pre-produced oxidized section in HDPE surface continue their reactions to yield some oxidation products with the structures of -O-C-O-, O=C-O- and so on. FTIR shows there are reactions or week interaction like hydrogen bond between the irradiated HDPE and PA6 in the binary blends, this is helpful to increase the compatibility of the phase of HDPE and polyamide-6 (PA6) in the blend. Scanning Electron Microscope (SEM) result shows that the interface between HDPE matrix and PA6 domains is much clear and smoother in 0γHDPE/PA6 blends than in 4γHDPE/PA6 and 7γHDPE/PA6 blends. These suggested the miscibility of PA6 and HDPE was improved after HDPE irradiating in oxygen by γ ray radiation

  8. Migration of residual nonvolatile and inorganic compounds from recycled post-consumer PET and HDPE

    Energy Technology Data Exchange (ETDEWEB)

    Dutra, Camila; Reyes, Felix G.R., E-mail: reyesfgr@fea.unicamp.br [Universidade de Campinas (UNICAMP), SP (Brazil). Escola de Engenharia dos Alimentos. Dept. de Ciencias dos Alimentos; Freire, Maria Teresa de A. [Universidade de Sao Paulo (USP), Pirassununga, SP (Brazil). Fac. de Ciencia Animal e Engenharia dos Alimentos. Dept. de Engenharia dos Alimentos; Nerin, Cristina; Bentayeb, Karim; Rodriguez-Lafuente, Angel; Aznar, Margarita [Dept. of Analytical Chemistry, Arago Inst. of Engineering Research, University of Zaragoza (Spain)

    2014-04-15

    Migration of nonvolatile and inorganic residual compounds from post-consumer recycled polyethylene terephthalate (PET) submitted to cleaning processes for subsequent production of materials intended to food contact, as well as from multilayer packaging material containing post-consumer recycled high-density polyethylene (HDPE) was determined. Tests were carried out using food simulant. Nonvolatile organic contaminants from PET, determined by liquid chromatography-mass spectrometry (UPLC-QqQ/MS), showed significant migration reduction as consequence of the more complex cleaning technologies applied. However, contaminants not allowed by Brazilian and European Union regulations were identified even in deep cleaning samples. Results from multilayer HDPE showed a greater number of contaminants when compared to recycled pellets. Inorganic contaminants, determined by inductively coupled plasma mass spectrometry were below the acceptable levels. Additional studies for identification and quantitation of unknown molecules which were not possible to identify in this study by UPLC-QqQ/MS are required to ascertain the safety of using post-consumer recycled packaging material. (author)

  9. HDPE (High Density Polyethylene) pipeline and riser design in Guanabara Bay: challenges and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Bomfimsilva, Carlos; Jorge, Joao Paulo Carrijo; Schmid, Dominique; Gomes, Rodrigo Klim [INTECSEA, Sao Paulo, SP (Brazil); Lima, Alexander Piraja [GDK, Salvador, BA (Brazil)

    2009-12-19

    Worldwide shipments of plastic pipes are forecasted to increase 5.2% per year since 2008, being commonly used for water supply and sewage disposal. The HDPE (High Density Polyethylene) pipes have been applied recently to deliver potable water and fire fighting water for the main pier of the LNG system in Guanabara Bay, Rio de Janeiro. The system contains three sizes of pipe outside diameter, 110 mm and 160 mm for water supply, and 500 mm for the fire fighting system. The main design challenges of the pipeline system included providing on-bottom stability, a suitable installation procedure and a proper riser design. The on-bottom stability calculations, which are quite different from the conventional steel pipelines, were developed by designing concrete blocks to be assembled on the pipeline in a required spacing to assure long term stability, knowing that plastic pipes are buoyant even in flooded conditions. The installation procedure was developed considering the lay down methodology based on surface towing technique. The riser was designed to be installed together with additional steel support structure to allow the entire underwater system to have the same plastic pipe specification up to the surface. This paper presents the main challenges that were faced during the design of the HDPE pipelines for the LNG system in Guanabara Bay, addressing the solutions and recommendations adopted for the plastic underwater pipeline system.

  10. The velocity distribution caused by an airplane at the points of a vertical plane containing the span

    Science.gov (United States)

    Munk, Max M

    1925-01-01

    A formula for the computation of the vertical velocity component on all sides of an airplane is deduced and discussed. The formation is of value for the interpretation of such free flight tests where two airplanes fly alongside each other to facilitate observation.

  11. Polyethylene/boron-containing composites for radiation shielding

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji Wook [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Seo, Yongsok [School of Materials Science and Engineering, Seoul National University, Seoul 151-744 (Korea, Republic of); Kim, Woo Nyon [Department of Chemical and Biological Engineering, Korea University, Seoul 136-701 (Korea, Republic of); Hong, Soon Man, E-mail: smhong@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of); Koo, Chong Min, E-mail: koo@kist.re.kr [Center for Materials Architecturing, Institute for Multi-Disciplinary Convergence of Materials, Korea Institute of Science and Technology (KIST), Seoul 136-791 (Korea, Republic of); Nanomaterials Science and Engineering, University of Science and Technology, Daejeon 305-350 (Korea, Republic of)

    2014-06-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B{sub 4}C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B{sub 4}C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B{sub 4}C composites.

  12. Polyethylene/boron-containing composites for radiation shielding

    International Nuclear Information System (INIS)

    Shin, Ji Wook; Lee, Jang-Woo; Yu, Seunggun; Baek, Bum Ki; Hong, Jun Pyo; Seo, Yongsok; Kim, Woo Nyon; Hong, Soon Man; Koo, Chong Min

    2014-01-01

    Graphical abstract: - Highlights: • HDPE/silane-treated boron nitride (mBN) composites were fabricated. • The HDPE/mBN composites revealed a strong adhesion behavior at the interface of matrix/filler. • The HDPE/mBN composites show superior radiation shielding, thermoconductive and mechanical properties to the composites containing pristine BN and B 4 C fillers. - Abstract: High-density polyethylene (HDPE) composites with modified boron nitride (mBN) fillers, functionalized with an organosilane, were fabricated through conventional melt-extrusion processing techniques. The properties and performances of these composites were compared with those of the composites containing pristine BN and boron carbide (B 4 C) fillers. The silane functionalization of the BN fillers strongly improved the interfacial adhesion between the polymer matrix and the filler. As a result, the HDPE/mBN composites showed a better dispersion state of the filler particles, larger tensile modulus, greater effective thermal conductivity, and better neutron shielding property compared with the HDPE/BN and HDPE/B 4 C composites

  13. In vitro cytotoxicity and in vivo osseointergration properties of compression-molded HDPE-HA-Al2O3 hybrid biocomposites.

    Science.gov (United States)

    Tripathi, Garima; Gough, Julie E; Dinda, Amit; Basu, Bikramjit

    2013-06-01

    The aim of this study was to investigate the in vivo biocompatibility in terms of healing of long segmental bone defect in rabbit model as well as in vitro cytotoxicity of eluates of compression-molded High density polyethylene (HDPE)-hydroxyapatite (HA)-aluminum oxide (Al2O3) composite-based implant material. Based on the physical property in terms of modulus and strength properties, as reported in our recent publication, HDPE-40 wt % HA and HDPE-20 wt % HA-20 wt % Al2O3 hybrid composites were used for biocompatibility assessment. Osteoblasts cells were cultured in conditioned media, which contains varying amount of composite eluate (0.01, 0.1, and 1.0 wt %). In vitro, the eluates did not exhibit any significant negative impact on proliferation, mineralization or on morphology of human osteoblast cells. In vivo, the histological assessment revealed neobone formation at the bone/implant interface, characterized by the presence of osteoid and osteoblasts. The observation of osteoclastic activity indicates the process of bone remodeling. No inflammation to any noticeable extent was observed at the implantation site. Overall, the combination of in vitro and in vivo results are suggestive of potential biomedical application of compression-molded HDPE- 20 wt % HA- 20 wt % Al2O3 composites to heal long segmental bone defects without causing any toxicity of bone cells. Copyright © 2012 Wiley Periodicals, Inc.

  14. In vitro biological evaluation of beta-TCP/HDPE--A novel orthopedic composite: a survey using human osteoblast and fibroblast bone cells.

    Science.gov (United States)

    Homaeigohar, S Sh; Shokrgozar, M A; Khavandi, A; Sadi, A Yari

    2008-02-01

    Beta-tricalcium phosphate reinforced high density polyethylene (beta-TCP/HDPE) was prepared to simulate bone composition and to study its capacity to act as bone tissue. This material was produced by replacing the mineral component and collagen soft tissue of the bone with beta-TCP and HDPE, respectively. The biocompatibility of the composite samples with different volume fractions of TCP (20, 30 and 40 vol %) was examined in vitro using two osteoblast cell lines G-292 and Saos-2, and also a type of fibroblast cell isolated from bone tissue, namely human bone fibroblast (HBF) by proliferation, and cell adhesion assays. Cell-material interaction with the surface of the composite samples was examined by scanning electron microscopy (SEM). The effect of beta-TCP/HDPE on the behavior of osteoblast and fibroblast cells was compared with those of composite and negative control samples; polyethylene (PE) and tissue culture polystyrene (TPS), respectively. In general, the results showed that the composite samples containing beta-TCP as reinforcement supported a higher rate of proliferation by various bone cells after 3, 7, and 14 days of incubation compared to the composite control sample. Furthermore, more osteoblast cells were attached to the surface of the composite samples when compared to the composite control samples after the above incubation periods (p HDPE composites are biocompatible, nontoxic, and act to stimulate proliferation and adhesion of the cells, whether osteoblast or fibroblast. (c) 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008.

  15. Characterization of the microporous HDPE film with a stearyl alcohol and its physical properties

    International Nuclear Information System (INIS)

    Park, Jong Seok; Sung, Hae Jun; Gwon, Hui Jeong; Lim, Youn Mook; Nho, Young Chang

    2009-01-01

    The addition effects of the stearyl alcohol (STE) on the properties of the microporous high density polyethylene (HDPE) films were investigated. STE and dibuthyl phthalate (DBP) were premixed as a codiluent. The HDPE and the codiluent were mixed to obtain the precursor film in the twin extruder. The precursor films were uni-axially stretched up to 600% in a bath 80 .deg. C and then the stretched HDPE films were irradiated by gamma rays. The pore volume and pore size on the microporous HDPE films were increased with an increasing content of STE. The mechanical characteristics of the microporous HDPE films were increased with an irradiation dose up to 50 kGy. Also, the thermal shrinkage behavior of the microporous HDPE films was decreased with an increasing radiation dose up to 50 kGy

  16. Study on HDPE Mixed with Sand as Backfilled Material on Retaining Structure

    Science.gov (United States)

    Talib, Z. A.

    2018-04-01

    The failure of the retaining wall is closely related to backfill material. Granular soils such as sand and gravel are most suitable backfill material because of its drainage properties. However two basic materials are quite heavy and contribute high amount of lateral loads. This study was to determine the effectiveness High Density Polyethylene (HDPE) as a backfill material. HDPE has a lighter weight compare to the sand. It makes HDPE has potential to be used as backfill material. The objective of this study is to identify the most effective percentage of HDPE to replace sand as a backfill material. The percentage of HDPE used in this study was 20%, 30%, 50%, 75% and also 100%. Testing involved in this study were sieve analysis test, constant head permeability test, direct shear test and relative density test. The result shows that the HDPE can be used as backfilled material and save the cost of backfill material

  17. Study on grafting glycidyl methacrylate onto HDPE membranes by pre-irradiation graft copolymerization

    International Nuclear Information System (INIS)

    Tong Long; Zu Jianhua; Liu Xinwen; Sun Guisheng; Yu Chunhui

    2006-01-01

    Glycidyl methacrylate (GMA) was grafted onto HDPE membranes by pre-irradiation method with 1.8 MeV E-beam and a kind of membranes having reactive epoxy groups was successfully synthesized. Effects of monomer concentration, reaction temperature and time and irradiation dose on the grafting yield were studied. Composition, thermo-property and surface morphology of the grafted membranes were studied by FTIR, DSC and Tapping-mode AFM, respectively. The FTIR measurements proved the synthesized copolymer is HDPE-g-GMA. The DSC results indicated the grafted HDPE's melting temperature (T m ) and heat of fusion (ΔH f ( HDPE) ) which was reduced with increasing grafting yield. The AFM images indicated that surface of the HDPE-g-GMA membranes was rougher than the virgin HDPE. (authors)

  18. Oxygen-containing polycyclic aromatic hydrocarbons (OPAHs) in urban soils of Bratislava, Slovakia: Patterns, relation to PAHs and vertical distribution

    International Nuclear Information System (INIS)

    Musa Bandowe, Benjamin A.; Sobocka, Jaroslava; Wilcke, Wolfgang

    2011-01-01

    We determined concentrations, sources, and vertical distribution of OPAHs and PAHs in soils of Bratislava. The Σ14 OPAHs concentrations in surface soil horizons ranged 88-2692 ng g -1 and those of Σ34 PAHs 842-244,870 ng g -1 . The concentrations of the Σ9 carbonyl-OPAHs (r = 0.92, p = 0.0001) and the Σ5 hydroxyl-OPAHs (r = 0.73, p = 0.01) correlated significantly with Σ34 PAHs concentrations indicating the close association of OPAHs with parent-PAHs. OPAHs were quantitatively dominated by 9-fluorenone, 9,10-anthraquinone, 1-indanone and benzo[a]anthracene-7,12-dione. At several sites, individual carbonyl-OPAHs had higher concentrations than parent PAHs. The concentration ratios of several OPAHs to their parent-PAHs and contribution of the more soluble OPAHs (1-indanone and 9-fluorenone) to Σ14 OPAHs concentrations increased with soil depth suggesting that OPAHs were faster vertically transported in the study soils by leaching than PAHs which was supported by the correlation of subsoil:surface soil ratios of OPAH concentrations at several sites with K OW . - Research highlights: → Oxygenated polycyclic aromatic hydrocarbons (OPAHs) are closely associated with PAHs in all studied urban soils. → The concentrations of OPAHs in urban soils of Bratislava are similar as in other European and North American cities. → Concentrations of OPAHs are frequently higher than those of the corresponding parent-PAHs. → For 2-hydroxybenzaldehyde, 1-naphthaldehyde, 2-biphenylcarboxaldehyde and 1,8-naphthalic anhydride there are indications for abiotic or biological production. → The OPAHs are faster vertically transported in soils than their parent-PAHs. - OPAHs and PAHs in urban soils are closely associated but OPAHs are faster translocated than PAHs.

  19. Effect of HDPE plastic waste towards batako properties

    Science.gov (United States)

    Nursyamsi, N.; Indrawan, I.; Theresa, V.

    2018-02-01

    Indonesia is the world’s second largest producer of plastic waste to the sea, after China. Most of the plastic waste is polyethylene. Polyethylene is a polymer consisting of long chains of ethylene monomers. Moreover, polyethylene is plastic that has characteristics such as; thermoplastic, elastic, non-translucent, odorless, slightly opaque and transparent, resistant to impact and has a resistance of up to 135 degrees Celsius. The type of HDPE plastic (high-density polyethylene), which has been cleaned and chopped as a substitute of fine aggregate, is used in the brick’s making process. HDPE has a stronger, harder, smoother and more resistant to high-temperature properties. In this study, a weight variation of 0%, 10%, and 20% of HDPE plastic wastes was used from the total weight of sand as a substitution. Furthermore, the tensile and compressive strength were tested on day 7. Based on the research, the quality of the specimen achieved was categorized in quality III according to SNI 03-0349-1989.

  20. Blends of HDPE wastes: study of the properties.

    Science.gov (United States)

    Sánchez-Soto, M; Rossa, A; Sánchez, A J; Gámez-Pérez, J

    2008-12-01

    In this work we have analysed the properties of blends of recycled high-density polyethylene (HDPE) filled with talc. We have used two kinds of polymer matrices. The first one came entirely from ground injection moulded parts whereas the second was bimodal, incorporating 80% of the previous HDPE and 20% of recycled HDPE coming from bottles. We have also used two kinds of commercial talc characterized by a medium particle size of 2 microm and 10 microm, respectively. The amount of talc added to both matrices weighed of 10% and 20%. With regards to the mechanical properties of the analysed composites, greater values of Young's modulus and break stresses were found using a smaller particle size and higher talc content. On the other hand, the combination of the two HDPEs with very different viscosities produced a notable increase in the strain at break and in the absorbed energy; both measured at high and low strain rates. Despite the differences in viscosities between the two HDPEs, we did not observe separation of phases during either the processing or testing. Under impact loading, the higher energy absorption in the composites was observed when the finest talc grade with a 10% content weight was added to the bimodal matrix.

  1. Characterization by EPR of radicals in HDPE, PA6 and HDPE/PA6 blend irradiated with gamma rays

    Energy Technology Data Exchange (ETDEWEB)

    Silva, P. [Centro de Fisica, Instituto Venezolano de Investigacion Cientifica IVIC, Carretera Panamericana Km. 11, A.P. 21827, Caracas 1020-A (Venezuela); Albano, C.; Lovera, D. [Centro de Quimica, IVIC (Venezuela); Perera, R. [Departamento de Mecanica, Universidad Simon Bolivar, Caracas (Venezuela)

    2003-07-01

    Using electron paramagnetic resonance (EPR), we studied the tree radical formation in high-density Polyethylene (HDPE), polyamide (PA6) and HDPE/PA6 (80/20)blend, irradiated with integral doses (D), 0 < D < 1000 KGy, with a dose rate of irradiation in air of 6.6 KGy/h. Typical spectra indicative of the formation of allyl, alkyl and poly enyl radicals were obtained. A decay in the total number of spins per gram (C/g), when the samples are aged by a period of time of 30 days, was found, which is typical of a recombination of radicals with their environment. Additionally, a different order fit for the C/g as a function of D was obtained, which is indicative of the complex behavior of the kinetics of the decomposition. (Author)

  2. Containment

    International Nuclear Information System (INIS)

    Anon.

    1987-01-01

    The primary mission of the Containment Group is to ensure that underground nuclear tests are satisfactorily contained. The main goal is the development of sound technical bases for containment-related methodology. Major areas of activity include siting, geologic description, emplacement hole stemming, and phenomenological predictions. Performance results of sanded gypsum concrete plugs on the Jefferson, Panamint, Cornucopia, Labquark, and Bodie events are given. Activities are also described in the following areas: computational capabilities site description, predictive modeling, and cavity-pressure measurement. Containment publications are listed. 8 references

  3. Determination of thermal and mechanical properties of HDPE-based polymer blends for use in traffic signs

    Directory of Open Access Journals (Sweden)

    Benito A. Stradi-Granados

    2016-06-01

    Full Text Available Two recycled high-density polyethylene specimens and two recycled high-density polyethylene blends were characterized in terms of their thermal and mechanical properties with the purpose of assessing their suitability for the construction of traffic signs. Traffic signs constructed from recycled plastics provide an application for materials that otherwise with end up in landfills. The HDPE composite containing 25% LDPE and 5% ABS had the best mechanical and thermal performance. Of importance is the recycling of ABS that traditionally had not been recycled locally and found its final fate in landfills.

  4. Suspension-like hardening behavior of HDPE and time-hardening superposition

    NARCIS (Netherlands)

    Roozemond, P.C.; Janssens, V.; Puyvelde, van P.C.J.; Peters, G.W.M.

    2012-01-01

    The rheology of solidifying high-density polyethylene (HDPE) is investigated. Experiments on an HDPE were performed with a novel RheoDSC device. Results agree quantitatively with simulations for a suspension of elastic spheres in a viscoelastic matrix except for very low values of space filling

  5. Sintesis Bahan Dasar Tibial Tray Berbasis HDPE Yang Diperkuat Dengan Iradiasi Gamma

    Directory of Open Access Journals (Sweden)

    Sulistioso Giat S.

    2014-04-01

    Full Text Available Tibial tray yang sudah komersil dibuat dari Polimer Ultra High Molecular Weight Polyethylene (UHMWPE tetapi harganya sangat mahal. Oleh karena itu pada penelitian ini digunakan polimer High Density Polyethylene (HDPE untuk pembuatan tibial tray karena harganya yang lebih murah dan memiliki kemiripan sifat dengan UHMWPE. HDPE dibuat dengan dua metode, yaitu metode hot press dan pemanasan tanpa tekanan (PTT. UHMWPE dengan metode hot press digunakan sebagai pembanding. Metode hot press dilakukan pada suhu 180 °C dan diberi tekanan sebesar 200 kg/cm2. Sedangkan metode pemanasan tanpa tekanan (PTT dilakukan di dalam oven pada suhu 180°C. Film tipis UHMWPE dan sampel HDPE yang dihasilkan dari kedua metode tersebut, kemudian diiradiasi sinar gamma dengan variasi dosis 0, 100, 200, 300 dan 500 kGy. Karakterisasi mencakup analisis morfologi dengan Scanning Electron Microscope (SEM, uji kekerasan, kekuatan tarik, dan derajat kristalinitas. Semakin tinggi dosis radiasi, maka kekerasan dan derajat kristalinitas semakin meningkat, tetapi kekuatan tarik semakin menurun. Dosis radiasi untuk sampel HDPE yang optimum , adalah 100 kGy untuk HDPE yang dibuat dengan metoda hot press, pada kondisi ini HDPE mempunyai kekuatan mekanik mendekati nilai kekuatan mekanik UHMWPE, sedangkan HDPE yang dibuat dengan metode PTT kekuatan mekaniknya masih dibawah kekuatan mekanik HDPE yang dibuat dengan metoda hot press 

  6. Study of positron annihilation lifetime spectroscopy in carbon black-filled HDPE composite

    CERN Document Server

    Zhang Xian Feng; Zhou Xian Yi; Weng Hu Imin; Ye Bang Jiao; Han Rong Dian; Jia Shao Jin; Zhang Zhi Cheng

    2002-01-01

    The variation of the electrical conductivity of high density polyethylene (HDPE) with the carbon black (CB) content was studied using positron annihilation lifetime spectroscopy (PALS) and free-volume model, the crystallinity of HDPE/CB composite and 'percolation' effect were discussed with measurements of conductivity and DSC test

  7. Contribution of Brazil nut shell fiber and electron-beam irradiation in thermomechanical properties of HDPE

    International Nuclear Information System (INIS)

    Polato, Pamella; Lorusso, Leandro Alex; Souza, Clecia de Moura; Moura, Esperidiana Augusta Barretos de; Chinellato, Anne; Rosa, Ricardo de

    2010-01-01

    In the present work, the influence of electron-beam irradiation on thermo-mechanical properties of HDPE and HDPE/Brazil nut shell fiber composite was investigated. The materials were irradiated at radiation dose 50 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated samples were submitted to thermo-mechanical tests and the correlation between their properties was discussed. The results showed that the incorporation of Brazil nut shell fiber represented a significant gain (p < 0,05) in tensile strength at break, flexural strength, flexural module, Vicat softening temperature and heat distortion temperature (HDT) properties of the HDPE. In addition, the irradiated HDPE/Brazil nut shell fiber composite presented a significant increase (p < 0.05) in this properties compared with irradiated HDPE. (author)

  8. AFM study of the morphologic change of HDPE surface photografted with glycidyl methacrylate.

    Science.gov (United States)

    Wang, Huiliang; Han, Jianmei

    2009-05-01

    The UV-induced grafting of glycidyl methacrylate (GMA) onto high-density polyethylene (HDPE) and the atomic force microscopy (AFM) study of the morphologic change of the grafted surface are reported. The grafting was carried out in GMA acetone solutions with different monomer concentrations. Grafting was much faster in a solution with a higher monomer concentration. FTIR analyses proved that GMA had been successfully grafted onto HDPE. The morphologies of grafted HDPE surfaces changed with UV irradiation time. The monomer concentration had a significant effect on the morphologies of the grafted HDPE surfaces. The HDPE surface grafted in a solution with a higher monomer concentration was much rougher than that grafted in a solution with a lower monomer concentration. The growth models of the grafted granules or clusters are also proposed.

  9. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    International Nuclear Information System (INIS)

    Banowati, Lies; Hadi, Bambang K.; Suratman, Rochim; Faza, Aulia

    2016-01-01

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  10. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Banowati, Lies, E-mail: liesbano@gmail.com; Hadi, Bambang K., E-mail: bkhadi@ae.itb.ac.id; Suratman, Rochim, E-mail: rochim@material.itb.ac.id; Faza, Aulia [Faculty of Mechanical and Aerospace Engineering, Bandung Institute of Technology, Indonesia Jl. Ganesha 10, Bandung (Indonesia)

    2016-03-29

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed “Green technology”. In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  11. Effect of free swirl flow on the rate of mass and heat transfer at the bottom of a vertical cylindrical container and possible applications

    International Nuclear Information System (INIS)

    Konsowa, A.H.; Abdel-Aziz, M.H.; Abdo, M.S.E.; Hassan, M.S.; Sedahmed, G.H.

    2017-01-01

    Highlights: • Mass transfer at the bottom of a cylindrical container was studied under decaying swirl flow. • Parameters studied are swirl flow velocity, diameter of the inlet nozzle and solution properties. • A dimensionless equation was obtained using the significant parameters. • The present results were compared with the results obtained using perpendicular inlet nozzle. • Relevance of study to the design of membrane processes was highlighted. - Abstract: Rates of mass transfer at the base of a vertical cylindrical container were determined under decaying swirl flow by the electrochemical technique. Variables studied were swirl flow solution velocity, diameter of the tangential inlet nozzle and physical properties of the solution. The data were correlated by a dimensionless mass transfer equation. The equation can be used to predict the rate of heat loss from the bottom of swirl flow equipment as well as the rate of diffusion controlled corrosion of the bottom. The importance of the derived equation in the design and scale up of a cylindrical batch recirculating catalytic or electrochemical reactor with a catalyst layer or electrode at the bottom and a cooling jacket around the vertical wall suitable for conducting exothermic liquid – solid diffusion controlled reactions which need rapid temperature control to avoid the loss of heat sensitive catalysts or heat sensitive products was pointed out. Comparison of the present results with the results obtained using perpendicular inlet nozzle which generates parallel flow at the bottom and axial flow along the cylindrical container revealed the fact that although swirl flow produces higher rates of heat and mass transfer at the cylindrical wall than axial flow and the reverse is true at the container base. Relevance of the present study to the design and operation of membrane processes and heat recovery from hot pools of liquid metals and low melting alloys in the production stage was highlighted.

  12. Effects of chemical and gamma irradiation environments on the mechanical properties of high-density polyethylene (HDPE)

    International Nuclear Information System (INIS)

    Soo, P.

    1988-01-01

    High-density polyethylene (HDPE) is currently being used as a high-integrity container material for low-level wastes. Potential failure/degration modes must be determined for realistic environmental conditions. These include consideration of mechanical stress, gaseous/liquid environments within and external to the container, and the gamma radiation field. A combination of simple inexpensive tests (stressed U-bend samples) and more sophisticated longer-term uniaxial creep tests are being used to define the ranges of conditions for which mechanical failure/degradation is important. Test environments include Igepal CO-630, turbine oil and liquid scintillation fluid as well as air and deionized water, the control environments. Igepal CO-630 is a surfactant specified in standard ASTM tests for environmental stress cracking. Turbine oil is a possible constituent of low-level waste generated at reactor power plants, and is used in the current tests because of its known detrimental behavior to many types of plastic. Liquid scintillation fluids are being evaluated here because they are representative of the class of organiz solvents containing toluene and xylene. As such they will give valuable insights regarding a type of potential failure or degradation mode for HDPE. The effect of gamma irradiation on crack initiation and propagation is also being studied. A description of the work and results are presented. 8 refs., 6 figs., 2 tabs

  13. Determination of water vapor transmission rate (WVTR) of HDPE bottles for pharmaceutical products.

    Science.gov (United States)

    Chen, Yisheng; Li, Yanxia

    2008-06-24

    The objective of this study was to investigate the effects of experimental conditions for measuring the water vapor transmission rate (WVTR) of high-density polyethylene (HDPE) bottles using a steady-state sorption method. Bottles were filled with desiccant, closed with caps and heat induction sealed, and then stored in stability chambers at controlled temperature and relative humidity. Weight gain of the bottles was determined every 1 or 2 weeks until a linear weight gain profile was obtained. WVTR of the bottles was determined from the slope of the linear portion of the weight gain versus time profile. The effects of desiccants and temperature/humidity were studied. Results show that, with a sufficient amount of anhydrous calcium chloride in bottles, a negligibly low and sufficiently constant headspace humidity is maintained, and a steady-state permeation rate is achieved. For all 8 sizes of bottles used in this study, steady-state was achieved in 1 or 2 weeks after the experiment was started. This method provided reproducible WVTR data for HDPE bottles. Apparent moisture permeability of all 8 sizes of bottles was (2.3+/-0.3)x10(-7), (2.6+/-0.2)x10(-7), and (3.4+/-0.2)x10(-7)cm(2)/s at 25 degrees C, 30 degrees C, 40 degrees C, respectively. Moisture permeability determined from the current study was similar to data reported in the literature, indicating that the steady-state weight gain method can be used to obtain reliable WVTR of containers for pharmaceutical products.

  14. Segregation effect of radiation induced crosslinking of HDPE: morphology change

    International Nuclear Information System (INIS)

    Deng Pengyang; Zhong Xiaoguang

    2000-01-01

    Scanning Electronic Microscopy has been used to study morphology of pure gel; sol-gel blend and sol-gel segregation samples of radiation induced crosslinking of HDPE. The results show that the morphology of segregation sample is the same as that of pure gel and different from that of sol-gel blend. This kind of morphology change proves that the sol-gel blend have occurred a liquid---solid phase segregation in the melting state. The liquid phase (sol) will naturally immersed in the network of the gel. (author)

  15. LENRA as compatibilizer in NR/HDPE blends

    International Nuclear Information System (INIS)

    Mahathir Mohamed; Dahlan Mohd

    2004-01-01

    Polymer blends of 60/40 NR/HDPE were prepared using Brabender PL2000 plasticorder with 60g capacity. The blends were added with radiation sensitive natural rubber (NR)-based compatibilizer, known as LENRA. They were irradiated in air with electron beam radiation at various doses. The efficacy of the compatibilizer was monitored by measuring various properties of the blends such as physical and dynamic mechanical properties including morphological studies by electron microscopic technique. Early results show that the addition of LENRA improves the properties of the TPNR blends. (Author)

  16. Influence of blending sequence on the rheological behavior of HDPE/LLDPE/MMT nano composites; Influencia da sequencia de mistura no comportamento reologico de nanocompositos HDPE/LLDPE/MMT

    Energy Technology Data Exchange (ETDEWEB)

    Passador, F.R.; Pessan, L.A., E-mail: fabiopassador@gmail.co [Universidade Federal de Sao Carlos (DEMA/UFSCAR), SP (Brazil). Dept. de Engenharia de Materiais; Ruvolo Filho, A. [Universidade Federal de Sao Carlos (PPGCEM/UFSCAR), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    The blending sequence affects the rheological behavior and the morphology formation of the nanocomposites. In this work, the blending sequences were explored to see its influence in the rheological behavior of HDPE/LLDPE/MMT nanocomposites. The nanocomposites were obtained by melt-intercalation using HDPE-g-MA as a compatibilizer in a torque rheometer (Haake Rheomix 600p at 180 deg C and rotor speed of 80rpm) and five blending sequences were studied. The materials structures were characterized by wide angle X-ray diffraction (WAXD) and by rheological properties. The nanoclay's addition increased the shear viscosity at low shear rates, changing the behavior of HDPE/LLDPE matrix to a Bingham model behavior with an apparent yield stress. Intense interactions were obtained for the blending sequence where HDPE and HDPE-g-MA were first reinforced with organoclay and then the HDPE/HDPE-g-MA/organoclay nanocomposite was later blended with LLDPE. (author)

  17. Technical Letter Report - Preliminary Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion

    International Nuclear Information System (INIS)

    Crawford, Susan L.; Cumblidge, Stephen E.; Doctor, Steven R.; Hall, Thomas E.; Anderson, Michael T.

    2008-01-01

    The U.S. Nuclear Regulatory Commission (NRC) has a multi-year program at the Pacific Northwest National Laboratory (PNNL) to provide engineering studies and assessments of issues related to the use of nondestructive evaluation (NDE) methods for the reliable inspection of nuclear power plant components. As part of this program, there is a subtask 2D that was set up to address an assessment of issues related to the NDE of high density polyethylene (HDPE) butt fusion joints. This work is being driven by the nuclear industry wanting to employ HDPE materials in nuclear power plant systems. This being a new material for use in nuclear applications, there are a number of issues related to its use and potential problems that may evolve. The industry is pursuing ASME Code Case N-755 entitled 'Use of Polyethylene (PE) Plastic Pipe for Section III, Division 1, Construction and Section XI Repair/Replacement Activities' that contains the requirements for nuclear power plant applications of HDPE. This Code Case requires that inspections be performed after the fusion joint is made by visually examining the bead that is formed and conducting a pressure test of the joint. These tests are only effective in general if gross through-wall flaws exist in the fusion joint. The NRC wants to know whether a volumetric inspection can be conducted on the fusion joint that will reliably detect lack-of-fusion conditions that may be produced during joint fusing. The NRC has requested that the work that PNNL is conducting be provided to assist them in resolving this inspection issue of whether effective volumetric NDE can be conducted to detect lack of fusion (LOF) in the butt HDPE joints. PNNL had 24 HDPE pipe specimens manufactured of 3408 material to contain LOF conditions that could be used to assess the effectiveness of NDE in detecting the LOF. Basic ultrasonic material properties were measured and used to guide the use of phased arrays and time-of-flight diffraction (TOFD) work that was

  18. On the Effect of Hull Girder Flexibility on the Vertical Wave Bending Moment for Ultra Large Container Vessels

    DEFF Research Database (Denmark)

    Andersen, Ingrid Marie Vincent; Jensen, Jørgen Juncher

    2012-01-01

    Currently, a number of very large container ships are being built and more are on order, and some concerns have been expressed about the importance of the reduced hull girder stiffness to the wave-induced loads. The main concern is related to the fatigue life, but also a possible increase...... in the global hull girder loads as consequence of the increased hull flexibility must be considered. This is especially so as the rules of the classification societies do not explicitly account for the effect of hull flexibility on the global loads. In the present paper an analysis has been carried out...... in the waves. Slamming forces are determined by a standard momentum formulation. The hull flexibility is modelled as a nonprismatic Timoshenko beam. Generally, good agreement with experimental results and more accurate numerical predictions has previously been obtained in a number of studies. The statistical...

  19. Preparations and thermal properties of micro- and nano-BN dispersed HDPE composites

    International Nuclear Information System (INIS)

    Jung, Jinwoo; Kim, Jaewoo; Uhm, Young Rang; Jeon, Jae-Kyun; Lee, Sol; Lee, Hi Min; Rhee, Chang Kyu

    2010-01-01

    The thermal properties of micro-sized boron nitride (BN) and nano-sized BN dispersed high density polyethylene (HDPE) composites were investigated by means of differential scanning calorimetry (DSC) and thermo-gravimetric analysis (TGA). Nano-BN powder was prepared by using a ball mill process before it was mixed in HDPE. To enhance the dispersivity of nano-BN in the polymer matrix, the surfaces of the nano-particles were treated with low density polyethylene (LDPE) which was dissolved in the cyclohexane solvent. The average particle sizes of micro-BN powder and LDPE coated nano-BN powder were ∼10 μm and ∼100 nm respectively. Dispersion and distribution of 5 wt% and 20 wt% of micro-BN and nano-BN respectively mixed in HDPE were observed by using the scanning electron microscope (SEM). According to the thermal analyses of pure HDPE, micro-BN/HDPE, and nano-BN/HDPE, 20 wt% nano-BN/HDPE composite shows the lowest enthalpy of fusion (ΔH m ) and better thermal conductive characteristics compared to the others.

  20. Biodegradation of thermally treated high-density polyethylene (HDPE) by Klebsiella pneumoniae CH001.

    Science.gov (United States)

    Awasthi, Shraddha; Srivastava, Pratap; Singh, Pardeep; Tiwary, D; Mishra, Pradeep Kumar

    2017-10-01

    Biodegradation of plastics, which are the potential source of environmental pollution, has received a great deal of attention in the recent years. We aim to screen, identify, and characterize a bacterial strain capable of degrading high-density polyethylene (HDPE). In the present study, we studied HDPE biodegradation using a laboratory isolate, which was identified as Klebsiella pneumoniae CH001 (Accession No MF399051). The HDPE film was characterized by Universal Tensile Machine (UTM), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope (SEM), and Atomic Force Microscope (AFM) before and after microbial incubation. We observed that this strain was capable of adhering strongly on HDPE surface and form a thick biofilm, when incubated in nutrient broth at 30 °C on 120 rpm for 60 days. UTM analysis showed a significant decrease in weight (18.4%) and reduction in tensile strength (60%) of HDPE film. Furthermore, SEM analysis showed the cracks on the HDPE surface, whereas AFM results showed an increase in surface roughness after bacterial incubation. Overall, these results indicate that K. pneumoniae CH001 can be used as potential candidate for HDPE degradation in eco-friendly and sustainable manner in the environment.

  1. Improvement of CNT dispersion in HDPE by acid and octadecylamine functionalizations

    International Nuclear Information System (INIS)

    Menezes, Beatriz Rossi Canuto de; Ferreira, Filipe Vargas; Franceschi, Wesley; Brito, Felipe Sales; Nunes, Evelyn Alves; Rodrigues, Karla Faquine; Cividanes, Luciana de Simone; Thim, Gilmar Patrocínio; Rosa, Cintia

    2016-01-01

    Full text: Since their discovery in 1991, carbon nanotubes (CNTs) have attracted great attention due to their extraordinary structure and exceptional mechanical properties that make them a suitable candidate for polymer-based nanocomposites reinforcement [1]. However, CNTs full potential can only be achieved with a proper dispersion in the matrix, that depends of Van der Waals interactions among CNTs due to the large surface area and the small size. These interactions decrease the CNT dispersion due to the formation of agglomerates. In order to overcome this limitation, surface functionalization with acid and alkyl groups has been used to increase the CNTs dispersion and compatibility with polymer matrix [2]. Therefore, the focus of the present work is to improve the dispersion of CNTs in high density polyethylene (HDPE) matrix through their functionalization with acid (H 2 SO 4 +HNO 3 ) and octadecylamine (ODA:CH 3 (CH 2 ) 17 NH 2 ). The CNT/HDPE nanocomposites (0.8%wt of CNTs) were prepared by mechanical agitation of the melted mixture of CNTs and HDPE and subsequent compression molding. Three nanocomposites were prepared: (1) HDPE + pristine CNTs, (2) HDPE + acid functionalized CNTs, and (3) HDPE + ODA functionalized CNTs. In order to confirm the surface treatment, CNTs was characterized by FT-IR, XPS, Raman, and TEM. The improvement in CNTs dispersion and compatibility with HDPE was verified by tensile test, microhardness, SEM-FEG. The results showed an improvement in the CNTs dispersion for HDPE with acid and ODA functionalized CNTs. The Young's modulus and Vickers microhardness increased significantly for HDPE with treated CNTs when compared with pristine CNTs. References: [1] S Iijima, Nature 354, 56-58 (1991). [2] R Ansari, S Ajori, S Rouhi, Appl Surf Sci 332, 640-647 (2015). (author)

  2. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.

    Science.gov (United States)

    Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting

    2007-04-02

    The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (pHDPE as barriers in the field.

  3. Study of Crossling Agent and Couplink Agent Synergism on Mechanical Properties of HDPE-Cu Composites

    International Nuclear Information System (INIS)

    Mashuri; Sujud, A.A.; Karo Karo, Aloma

    2001-01-01

    The effects of crosslink agents, coupling agents and synergism on mechanical properties of HDPE-Cu composites materials has been investigated. The crosslink was made with dicumyl peroxide as crosslink agents of 2% concentration, so the interface adhesion of matrix-filler was made with 3-amino propyl triethoxysilane as coupling agents of 0.5% concentration. The results of research's showed, that the crosslink and interface adhesion of matrix-filler can increase tensile strength and elongation at break of HDPE-Cu composites. The synergism of two agents can increase tensile strength to 20% and elongation at break to 23% of HDPE-Cu composites materials

  4. Dynamic Viscoelastic Behavior and Phase Morphology of HIPS/HDPE Blends

    OpenAIRE

    LIU Jing-ru; XIA Yang-yang; GAO Li-qun; YU Qiang

    2017-01-01

    The dynamic viscoelastic behavior and phase morphology of high impact polystyrene (HIPS)/high density polyethylene (HDPE) blends were investigated by dynamic rheological test and scanning electron microscopy (SEM). The compatibilizing effect of 1%(mass fraction, same as below) micron-CaCO3 and nano-CaCO3 on HIPS/HDPE(30/70) immiscible blend was compared. The results indicate that the complex viscosity and storage modulus of HIPS/HDPE blends at low frequencies show positive deviation from the ...

  5. An investigation on morphology and mechanical properties of HDPE/nanoclay/nanoCaCO{sub 3} ternary nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Garmabi, Hamid, E-mail: garmabi@aut.ac.ir; Tabari, Seyed Emad Alavi; Javadi, Azizeh [Department of Polymer Engineering and Color Technology, Amirkabir University of Technology - Tehran - Iran (Iran, Islamic Republic of); Behrouzi, Hormoz; Hosseini, Gholamabbas [Boushehr Province Gas Company - Boushehr - Iran (Iran, Islamic Republic of)

    2016-03-09

    Ternary Nanocomposites of high-density polyethylene (HDPE) containing two types of nano particles, a layered organoclay (Closite 15A) and a spherical nano Calcium Carbonate (CaCO{sub 3}), with various compositions were prepared using melt mixing. Maleic anhydride grafted polyethylene (MA-g-PE) was used to enhance the dispersion of nanofillers and better interface adhesion. Three different levels of nanoclay (1, 3, 5 wt. %), CaCO{sub 3} (6, 8, 10 wt. %) and MA-g-PE (3, 6, 9 wt. %) were used. The mixing was done in two steps: First a concentrated masterbatch of nanoparticles in HPDE and MA-g-PE was prepared using an internal mixer and then melt-mixing of nanocomposites was done in a lab scale co-rotating twin screw extruder. The morphology of samples was studied using Scanning Electron Microscopy (SEM) and mechanical properties were evaluated using tensile and impact tests. According to the SEM micrographs, nanofillers were well dispersed in the HDPE matrix and XRD patterns showed the intercalation of nanoclay layers too. Generally using the layered nanoclay can enhance the tensile modulus while the use of spherical nano CaCO{sub 3} results into improved toughness. It was found that co-incorporation of these two types of nanofillers, leads to improve the stiffness and minimize the reduction of impact strength, simultaneously.

  6. An investigation on morphology and mechanical properties of HDPE/nanoclay/nanoCaCO_3 ternary nanocomposites

    International Nuclear Information System (INIS)

    Garmabi, Hamid; Tabari, Seyed Emad Alavi; Javadi, Azizeh; Behrouzi, Hormoz; Hosseini, Gholamabbas

    2016-01-01

    Ternary Nanocomposites of high-density polyethylene (HDPE) containing two types of nano particles, a layered organoclay (Closite 15A) and a spherical nano Calcium Carbonate (CaCO_3), with various compositions were prepared using melt mixing. Maleic anhydride grafted polyethylene (MA-g-PE) was used to enhance the dispersion of nanofillers and better interface adhesion. Three different levels of nanoclay (1, 3, 5 wt. %), CaCO_3 (6, 8, 10 wt. %) and MA-g-PE (3, 6, 9 wt. %) were used. The mixing was done in two steps: First a concentrated masterbatch of nanoparticles in HPDE and MA-g-PE was prepared using an internal mixer and then melt-mixing of nanocomposites was done in a lab scale co-rotating twin screw extruder. The morphology of samples was studied using Scanning Electron Microscopy (SEM) and mechanical properties were evaluated using tensile and impact tests. According to the SEM micrographs, nanofillers were well dispersed in the HDPE matrix and XRD patterns showed the intercalation of nanoclay layers too. Generally using the layered nanoclay can enhance the tensile modulus while the use of spherical nano CaCO_3 results into improved toughness. It was found that co-incorporation of these two types of nanofillers, leads to improve the stiffness and minimize the reduction of impact strength, simultaneously.

  7. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE

    Directory of Open Access Journals (Sweden)

    S. S. Cota

    2007-06-01

    Full Text Available This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates.

  8. Durability and Reliability of Large Diameter HDPE Pipe for Water Main Applications (Web Report 4485)

    Science.gov (United States)

    Research validates HDPE as a suitable material for use in municipal piping systems, and more research may help users maximize their understanding of its durability and reliability. Overall, corrosion resistance, hydraulic efficiency, flexibility, abrasion resistance, toughness, f...

  9. Facile fabrication of HDPE-g-MA/nanodiamond nanocomposites via one-step reactive blending.

    Science.gov (United States)

    Song, Ping'an; Yu, Youming; Wu, Qiang; Fu, Shenyuan

    2012-06-29

    In this letter, nanocomposites based on maleic anhydride grafted high density polyethylene (HDPE-g-MA) and amine-functionalized nanodiamond (ND) were fabricated via one-step reactive melt-blending, generating a homogeneous dispersion of ND, as evidenced by transmission electron microscope observations. Thermal analysis results suggest that addition of ND does not affect significantly thermal stability of polymer matrix in nitrogen. However, it was interestingly found that incorporating pure ND decreases the thermal oxidation degradation stability temperature, but blending amino-functionalized ND via reactive processing significantly enhances it of HDPE in air condition. Most importantly, cone tests revealed that both ND additives and reactive blending greatly reduce the heat release rate of HDPE. The results suggest that ND has a potential application as flame retardant alternative for polymers. Tensile results show that adding ND considerably enhances Young's modulus, and reactive blending leads to further improvement in Young's modulus while hardly reducing the elongation at break of HDPE.

  10. Changes in mechanical properties due to gamma irradiation of high-density polyethylene (HDPE)

    International Nuclear Information System (INIS)

    Cota, S.S.; Vasconcelos, V.; Senne Junior, M.; Carvalho, L.L.; Rezende, D.B.; Correa, R.F.

    2007-01-01

    This paper presents an experimental analysis of the effect of dose and dose rate parameters during gamma irradiation of high-density polyethylene (HDPE) samples. Considerations concerning the influence of these parameters on HDPE mechanical strength properties as a result of the predominance of oxidative degradation or of cross-linking are presented. The experimental results show an improvement of HDPE mechanical strength as dose increases, indicating the predominance of cross-linking over oxidative degradation and that lower doses are necessary to obtain a similar change in resistance parameters when radiation is applied at lower dose rates, showing that gamma radiation affects the HDPE in a more efficient way at lower dose rates. (author)

  11. Effect of compatibilizer on impact and morphological analysis of recycled HDPE/PET blends

    Energy Technology Data Exchange (ETDEWEB)

    Salleh, Mohd Nazry [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia and School of Materials Engineering, Universiti Malaysia Perlis, 02600 Jejawi, Perlis (Malaysia); Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Chen, Ruey Shan [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia)

    2013-11-27

    Blends based on recycled high density polyethylene (rHDPE) and recycled polyethylene terephthalate (rPET) were prepared using a corotating twin screw extruder. PET and HDPE are incompatible polymers and their blends showed poor properties. Compatibilization is a step to obtain blends with good mechanical properties and in this work, ethylene glycidyl methacrylate copolymer (E-GMA) was used as a compatibilizing agent. The effect of blends based on rHDPE and rPET with and without a compatibilizer, E-GMA were examined. From the studies clearly showed that the addition of 5% E-GMA increased the impact strength. SEM analysis of rHDPE/rPET blends confirmed the morphological interaction and improved interfacial bonding between two phases.

  12. Surface chemistry changes of weathered HDPE/wood-flour composites studied by XPS and FTIR spectroscopy

    Science.gov (United States)

    Nicole M. Stark; Laurent M. Matuana

    2004-01-01

    The use of wood-derived fillers by the thermoplastic industry has been growing, fueled in part by the use of wood-fiber–thermoplastic composites by the construction industry. As a result, the durability of wood-fiber– thermoplastic composites after ultraviolet exposure has become a concern. Samples of 100% high-density polyethylene (HDPE) and HDPE filled with 50% wood-...

  13. Isothermal Crystallization Kinetics of HDPE/HA Compounds Irradiated with Sterilization Doses of Gamma Rays

    International Nuclear Information System (INIS)

    Albano, C.

    2006-01-01

    The objective of this work was to study the isothermal crystallization of High Density Polyethylene/Hydroxyapatite nanocomposites, with 2 and 5 ppc of HA, irradiated with 25 kGy (sterilization dose) of γ-Ray from a 60 C o source, at a rate of 4.8 kGy/h in air and at room temperature. The selected crystallization temperatures were 118, 117, 116 and 115 degree. The crystallization kinetics was analyzed using the Avrami's model whose parameters were optimized using a non-linear regression technique. Regression results show that the Avrami exponent varies between 1.8 and 1.5, meaning that the spherulitic growth is mainly two dimensional. Values for specific crystallization constant 'k' were found to be higher for HDPE/HA compounds than for pure HDPE, clearly indicating the presence of an HA nucleation effect. It was also observed that values for the specific crystallization constant 'k' decreases with increasing temperatures, being this effect more noticeable for HDPE/HA compounds than for pure HDPE. Regarding to irradiated samples, their 'k' values were found to be lower than those for non irradiated samples, the difference getting more significant with decreasing crystallization temperature. Simulation of experimental data with the Avrami's model show a clear influence of the crystallization temperature, the HA content in the sample and the amount of applied radiation. It was also observed that the Avrami model correlates satisfactorily experimental data for not irradiated samples of pure HDPE and HDPE/HA compounds at the highest crystallization (T c ). However, as the crystallization temperature decreases, the values simulated with the Avrami model increasingly deviate from experimental data, specifically at the highest values of the relative crystallinity. This effect is even stronger on irradiated samples of HDPE and HDPE/HA compounds

  14. Volatile organic components migrating from plastic pipes (HDPE, PEX and PVC) into drinking water.

    Science.gov (United States)

    Skjevrak, Ingun; Due, Anne; Gjerstad, Karl Olav; Herikstad, Hallgeir

    2003-04-01

    High-density polyethylene pipes (HDPE), crossbonded polyethylene pipes (PEX) and polyvinyl chloride (PVC) pipes for drinking water were tested with respect to migration of volatile organic components (VOC) to water. The odour of water in contact with plastic pipes was assessed according to the quantitative threshold odour number (TON) concept. A major migrating component from HDPE pipes was 2,4-di-tert-butyl-phenol (2,4-DTBP) which is a known degradation product from antioxidants such as Irgafos 168(R). In addition, a range of esters, aldehydes, ketones, aromatic hydrocarbons and terpenoids were identified as migration products from HDPE pipes. Water in contact with HDPE pipes was assessed with respect to TON, and values > or =4 were determined for five out of seven brands of HDPE pipes. The total amount of VOC released to water during three successive test periods were fairly constant for the HDPE pipes. Corresponding migration tests carried out for PEX pipes showed that VOC migrated in significant amounts into the test water, and TON >/=5 of the test water were observed in all tests. Several of the migrated VOC were not identified. Oxygenates predominated the identified VOC in the test water from PEX pipes. Migration tests of PVC pipes revealed few volatile migrants in the test samples and no significant odour of the test water.

  15. Containment barrier at Pride Park, Derby, England

    International Nuclear Information System (INIS)

    Barker, P.; Esnault, A.; Braithwaite, P.

    1997-01-01

    The Pride Park site at Derby occupies 96ha of derelict land close to the city centre. Approximately one third of the site was a closed landfill with a further third being an old gas works site. The remainder comprised former heavy engineering works and gravel pit workings. The River Derwent bounds the site on two sides. The objectives of the remediation strategy for the site included minimising off-site disposal of contaminated soils and ensuring that contaminants do not migrate into the adjacent river. The eastern part of the site, including the landfill and gasworks sites, was therefore contained by a 600mm wide bentonite cement vertical cut-off wall, with HDPE membrane, sealed by 1m into the underlying mudstone. The cut-off wall is some 3km long and a maximum 10m deep. The works were complicated by the need to construct the wall around 36 existing underground services. The paper briefly covers the background to the remediation of the site, describes the construction process and discusses design considerations in relation to the durability requirements of the containment barrier in the potentially aggressive environment

  16. A novel wood flour-filled composite based on microfibrillar high-density polyethylene (HDPE)/Nylon-6 blends.

    Science.gov (United States)

    Liu, Hongzhi; Yao, Fei; Xu, Yanjun; Wu, Qinglin

    2010-05-01

    A novel wood flour (WF)-filled composite based on the microfibrillar high-density polyethylene (HDPE) and Nylon-6 co-blend, in which both in situ formed Nylon-6 microfibrils and WF acted as reinforcing elements, was successfully developed using a two-step extrusion method. At the 30wt.% WF loading level, WF-filled composite based on the microfibrillized HDPE/Nylon-6 blend exhibited higher strengths and moduli than the corresponding HDPE-based composite. The incorporation of WF reduced short-term creep response of HDPE matrix and the presence of Nylon-6 microfibrils further contributed to the creep reduction. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. The influence of gamma radiation on HDPE properties for tibial tray

    International Nuclear Information System (INIS)

    Sulistioso, G.S.; Dewi, R.K.; Maria, C.P.; Nada, M.

    2012-01-01

    A research on HDPE as tibial tray in total knee joint replacement surgery has been done. The aims of this research were to characterize the influence of gamma radiation on chemical, and mechanical properties on HDPE is made by using hot press method then irradiated with various doses of gamma rays of 0 kGy, 25 kGy, 50 kGy, 75 kGy, 100 kGy, 125 kGy, and 150 kGy at a dose rate 9 kGy/h. The irradiated HDPE were tested for their chemical, and mechanical properties. The chemical properties test, involve crosslinking and free radicals. The mechanical properties test, involve hardness, tensile strength, and elongation at break. The results showed that gamma radiation from IRKA IV th category can enhance the, chemical properties of HDPE in terms of percentage and number of radical crosslinking and mechanical properties of HDPE in terms of hardness, tensile strength and elongation at break with different changes from the initial state before radiation also the optimum dose to obtain better physical, chemical, and mechanical properties of HDPE, crosslinking percentage at 99.71%; height of radical peroxide curve at 13 cm; hardness (shore A) at 94.33; modulus of elasticity at 1113.03 N/mm 2 ; yield stress at 26.38 N/mm 2 ; tensile strength at 31.11 N/mm 2 ; and elongation at break at 440.37%, so that HDPE can be used as tibial tray. (author)

  18. Modulation of Protein Adsorption and Cell Proliferation on Polyethylene Immobilized Graphene Oxide Reinforced HDPE Bionanocomposites.

    Science.gov (United States)

    Upadhyay, Rahul; Naskar, Sharmistha; Bhaskar, Nitu; Bose, Suryasarathi; Basu, Bikramjit

    2016-05-18

    The uniform dispersion of nanoparticles in a polymer matrix, together with an enhancement of interfacial adhesion is indispensable toward achieving better mechanical properties in the nanocomposites. In the context to biomedical applications, the type and amount of nanoparticles can potentially influence the biocompatibility. To address these issues, we prepared high-density polyethylene (HDPE) based composites reinforced with graphene oxide (GO) by melt mixing followed by compression molding. In an attempt to tailor the dispersion and to improve the interfacial adhesion, we immobilized polyethylene (PE) onto GO sheets by nucleophilic addition-elimination reaction. A good combination of yield strength (ca. 20 MPa), elastic modulus (ca. 600 MPa), and an outstanding elongation at failure (ca. 70%) were recorded with 3 wt % polyethylene grafted graphene oxide (PE-g-GO) reinforced HDPE composites. Considering the relevance of protein adsorption as a biophysical precursor to cell adhesion, the protein adsorption isotherms of bovine serum albumin (BSA) were determined to realize three times higher equilibrium constant (Keq) for PE-g-GO-reinforced HDPE composites as compared to GO-reinforced composites. To assess the cytocompatibility, we grew osteoblast cell line (MC3T3) and human mesenchymal stem cells (hMSCs) on HDPE/GO and HDPE/PE-g-GO composites, in vitro. The statistically significant increase in metabolically active cell over different time periods in culture for up to 6 days in MC3T3 and 7 days for hMSCs was observed, irrespective of the substrate composition. Such observation indicated that HDPE with GO or PE-g-GO addition (up to 3 wt %) can be used as cell growth substrate. The extensive proliferation of cells with oriented growth pattern also supported the fact that tailored GO addition can support cellular functionality in vitro. Taken together, the experimental results suggest that the PE-g-GO in HDPE can effectively be utilized to enhance both mechanical and

  19. Electrical Properties of MWCNT/HDPE Composite-Based MSM Structure Under Neutron Irradiation

    Science.gov (United States)

    Kasani, H.; Khodabakhsh, R.; Taghi Ahmadi, M.; Rezaei Ochbelagh, D.; Ismail, Razali

    2017-04-01

    Because of their low cost, low energy consumption, high performance, and exceptional electrical properties, nanocomposites containing carbon nanotubes are suitable for use in many applications such as sensing systems. In this research work, a metal-semiconductor-metal (MSM) structure based on a multiwall carbon nanotube/high-density polyethylene (MWCNT/HDPE) nanocomposite is introduced as a neutron sensor. Scanning electron microscopy, Fourier-transform infrared, and infrared spectroscopy techniques were used to characterize the morphology and structure of the fabricated device. Current-voltage ( I- V) characteristic modeling showed that the device can be assumed to be a reversed-biased Schottky diode, if the voltage is high enough. To estimate the depletion layer length of the Schottky contact, impedance spectroscopy was employed. Therefore, the real and imaginary parts of the impedance of the MSM system were used to obtain electrical parameters such as the carrier mobility and dielectric constant. Experimental observations of the MSM structure under irradiation from an americium-beryllium (Am-Be) neutron source showed that the current level in the device decreased significantly. Subsequently, current pulses appeared in situ I- V and current-time ( I- t) curve measurements when increasing voltage was applied to the MSM system. The experimentally determined depletion region length as well as the space-charge-limited current mechanism for carrier transport were compared with the range for protons calculated using Monte Carlo n-particle extended (MCNPX) code, yielding the maximum energy of recoiled protons detectable by the device.

  20. Melting and crystallization behavior of partially miscible high density polyethylene/ethylene vinyl acetate copolymer (HDPE/EVA) blends

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yang; Zou, Huawei, E-mail: hwzou@163.com; Liang, Mei, E-mail: liangmeiww@163.com; Cao, Ya

    2014-06-01

    Highlights: • HDPE/EVA blends undergo phase separation, making it an interesting topic to investigate the relationships between miscibility and crystallization. • Influences from blending on the crystallization kinetics were successfully evaluated by Friedman's and Khanna's method. • X-ray diffraction studies revealed that blending with EVA the unit length of the unit cell of the HDPE increases. • Thermal fractionation method was successfully used to characterize the co-crystallization in HDPE/EVA blends. - Abstract: Crystallization studies on HDPE/EVA blends and the individual components were performed with differential scanning calorimetry (DSC) technique and wide angle X-ray scattering (WAXS). Influences of blending on the crystallization kinetics of each component in HDPE/EVA mixture were evaluated by Friedman's activation energy and Khanna's crystallization rate coefficient (CRC). The addition of more HDPE into the EVA matrix causes more heterogeneous nucleation while the addition of EVA would hinder the nucleation of HDPE at the beginning of cooling process. Inter-molecular interaction in the melt facilitated the crystallization of both EVA and HDPE components. X-ray diffraction studies revealed that HDPE and EVA have orthorhombic unit cell. Blending with EVA did not affect the crystalline structure of HDPE. In addition, a little shift of (1 1 0), (2 0 0) and (0 2 0) crystalline peaks toward lower 2θ values of samples indicating a little increase of unit cell parameters of the orthorhombic unit cell of polyethylene. Thermal fractionation results showed that co-crystallization took place in the HDPE/EVA blend. All those results indicated that the polymer pair we choose was partially miscible.

  1. Effects of chemical contamination on HDPE - thermo-mechanical and characterisation properties

    International Nuclear Information System (INIS)

    Ashraf, G.

    2002-01-01

    Studying the effects of chemical contamination on HDPE is an important precursor in recycling of plastic packaging and polymer reprocessing. This research involves and discusses the results of an in-depth investigation into the effects of chemically contaminating, using various acids, commercial grade high density polyethylene (HDPE) used commonly in packaging applications. An extensive formulation study was conducted and it became obvious that in some cases degradation had occurred to HDPE when chemically contaminated with particular functional group types. The functional groups in contaminated HDPE were successfully identified. A variety of analytical techniques such as Fourier transform Infra-red spectroscopy, X-ray Florescence, x-ray photo electron spectroscopy could identify compounds such as HCl acid, HNO/sub 3/ acid and other related contaminants. Some chemical additives had effects on the mechanical and thermal properties when added in the most appropriate concentration. The results have shown lower tensile modulus and strength tensile elongation, lower modular weight, melt flow index and crystallinity. The amount of contaminant concentration, the type of chemical functional groups used and the type of test selected to affect degradation are important factors in proving the effects of chemical contamination on HDPE in the melt state. (author)

  2. HDPE-Al2O3-HAp composites for biomedical applications: processing and characterizations.

    Science.gov (United States)

    Nath, Shekhar; Bodhak, Subhadip; Basu, Bikramjit

    2009-01-01

    The objective of this work is to demonstrate how the stiffness, hardness, as well as the biocompatibility property, of bioinert high-density polyethylene (HDPE) can be significantly improved by the combined addition of both bioinert and bioactive ceramic fillers. For this purpose, different volume fractions of hydroxyapatite and alumina, limited to a total of 40 vol %, have been incorporated in HDPE matrix. All the hybrid composites and monolithic HDPE were developed under optimized hot pressing condition (130 degrees C, 0.5 h, 92 MPa pressure). The results of the mechanical property characterization reveal that higher elastic modulus (6.2 GPa) and improved hardness (226.5 MPa) could be obtained in the developed HDPE-20 vol %-HAp-20 vol % Al(2)O(3) composite. Under the selected fretting conditions against various counterbody materials (steel, Al(2)O(3), and ZrO(2)), an extremely low COF of (0.07-0.11) and higher wear resistance (order of 10(-6) mm(3)/Nm) are obtained with the HDPE/20 vol % HAp/20 vol % Al(2)O(3) composite in both air and simulated body fluid environment. Importantly, in-vitro cell culture study using L929 fibroblast cells confirms favorable cell adhesion properties in the developed hybrid composite. (c) 2008 Wiley Periodicals, Inc.

  3. Modeling benzene permeation through drinking water high density polyethylene (HDPE) pipes.

    Science.gov (United States)

    Mao, Feng; Ong, Say Kee; Gaunt, James A

    2015-09-01

    Organic compounds such as benzene, toluene, ethyl benzene and o-, m-, and p-xylene from contaminated soil and groundwater may permeate through thermoplastic pipes which are used for the conveyance of drinking water in water distribution systems. In this study, permeation parameters of benzene in 25 mm (1 inch) standard inside dimension ratio (SIDR) 9 high density polyethylene (HDPE) pipes were estimated by fitting the measured data to a permeation model based on a combination of equilibrium partitioning and Fick's diffusion. For bulk concentrations between 6.0 and 67.5 mg/L in soil pore water, the concentration-dependent diffusion coefficients of benzene were found to range from 2.0×10(-9) to 2.8×10(-9) cm2/s while the solubility coefficient was determined to be 23.7. The simulated permeation curves of benzene for SIDR 9 and SIDR 7 series of HDPE pipes indicated that small diameter pipes were more vulnerable to permeation of benzene than large diameter pipes, and the breakthrough of benzene into the HDPE pipe was retarded and the corresponding permeation flux decreased with an increase of the pipe thickness. HDPE pipes exposed to an instantaneous plume exhibited distinguishable permeation characteristics from those exposed to a continuous source with a constant input. The properties of aquifer such as dispersion coefficients (DL) also influenced the permeation behavior of benzene through HDPE pipes.

  4. Biodegradation of HDPE by Aspergillus spp. from marine ecosystem of Gulf of Mannar, India.

    Science.gov (United States)

    Sangeetha Devi, Rajendran; Rajesh Kannan, Velu; Nivas, Duraisamy; Kannan, Kanthaiah; Chandru, Sekar; Robert Antony, Arokiaswamy

    2015-07-15

    High density polyethylene (HDPE) is the most commonly found non-degradable solid waste among the polyethylene. In this present study, HDPE degrading various fungal strains were isolated from the polyethylene waste dumped marine coastal area and screened under in vitro condition. Based on weight loss and FT-IR Spectrophotometric analysis, two fungal strains designated as VRKPT1 and VRKPT2 were found to be efficient in HDPE degradation. Through the sequence analysis of ITS region homology, the isolated fungi were identified as Aspergillus tubingensis VRKPT1 and Aspergillus flavus VRKPT2. The biofilm formation observed under epifluorescent microscope had shown the viability of fungal strains even after one month of incubation. The biodegradation of HDPE film nature was further investigated through SEM analysis. HDPE poses severe environmental threats and hence the ability of fungal isolates was proved to utilize virgin polyethylene as the carbon source without any pre-treatment and pro-oxidant additives. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Study on the Mechanical Properties of Stay Cable HDPE Sheathing Fatigue in Dynamic Bridge Environments

    Directory of Open Access Journals (Sweden)

    Danhui Dan

    2015-08-01

    Full Text Available As the main force-bearing component of a cable-stayed bridge, a durable stay cable is paramount to the safety and durability of the entire bridge. High-density polyethylene (HDPE sheathing is the main protective component of a stay cable and is the key to insuring cable durability. To address the issue of HDPE sheathing fracture on service, strain level data for in-service, HDPE bridge cable sheathing was used in this study as the basis for HDPE material aging and fatigue testing. A fatigue yield phenomenon with a yield platform on the hysteresis curve of the fatigue cycles is observed by the fatigue test. The parameters to describe this phenomenon are proposed and defined in this paper. A preliminary examination of the relationship between these parameters and the factors, such as the number of cycles, the strain amplitude, and strain rate, are presented. Based on the results obtained, it is suggested that the condition of fatigue yield of HDPE sheathing be defined as the fatigue durability limit state for the purposes of durability design, assessment, and protection of cable-stayed bridges.

  6. Effects of γ-irradiation and thermal treatment of crystallinity of drawn HDPE

    International Nuclear Information System (INIS)

    Liu Zhanjun; Silverman, J.

    1997-01-01

    The effect of absorbed dose irradiated in vacuum and air on the crystallinity of drawn HDPE was studied. Experimental results show that up to 250 kGy of absorbed dose when irradiated in vacuum, the crystallinity of drawn HDPE is decreased from about 75% to about 71%, and then the increase of absorbed dose until 1000 kGy has no further effect in lowering the crystallinity; when irradiated in air, an absorbed dose of 1000 kGy has no effect on the crystallinity of drawn HDPE. The effect of temperature of thermal treatment on the crystallinity of unirradiated drawn HDPE was also investigated. At first, the crystallinity is increased with the increase of temperature of thermal treatment, at about 120 degree C, it reaches the maximum value, and then it is rapidly lowered with the further increase of temperature of thermal treatment. Based on the existence of a lot of voids and lattice defects inside the drawn HDPE, the above experimental results were explained

  7. Effect of TiO2 photocatalytic activity in a HDPE-based food packaging on the structural and microbiological stability of a short-ripened cheese.

    Science.gov (United States)

    Gumiero, Matteo; Peressini, Donatella; Pizzariello, Andrea; Sensidoni, Alessandro; Iacumin, Lucilla; Comi, Giuseppe; Toniolo, Rosanna

    2013-06-01

    A high density polyethylene (HDPE)/calcium carbonate (CaCO(3)) film containing TiO(2) was prepared via blown film extrusion process. The photocatalytic properties of this film were evaluated by voltammetric, UV-Vis spectrophotometric and gas chromatographic measurements following the decomposition rate of suitably selected molecular probes, such as 4-hydroxybenzoic acid and methylene blue. The film containing 1% w/w of TiO(2) displayed a profitable and reproducible photoinduced degradation activity towards target organic compounds. The effect of packaging photocatalytic activity on the structural and microbiological stability of a short-ripened cheese was studied. Cheese structure was assessed by dynamic, small deformation rheological tests. A container consisting of a multilayer material, where the layer brought in contact with the food, made from the HDPE+CaCO(3)+TiO(2) composite matrix, was able to provide a greater maintenance of the original cheese structure than a rigid container currently used, mainly due to the inhibition of lactic acid bacteria and coliforms. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Effects of Cross-Linking on the Hydrostatic Pressure Testing for HDPE Pipe Material using Electron Beam Machine

    International Nuclear Information System (INIS)

    Mohd Jamil Bin Hashim

    2011-01-01

    One of the most inventive, sustainable strategies used in engineering field is to improve the quality of material and minimize production cost of material for example in this paper is HDPE material. This is because HDPE is an oil base material. This paper proposes to improve its hydrostatic pressure performance for HDPE pipe. The burst test is the most direct measurement of a pipe materials resistance to hydrostatic pressure. Test will be conducted in accordance with ASTM standard for HDPE pipe that undergo electron beam irradiation cross-linking. Studies show the effect of electron beam irradiation will improve the mechanical properties of HDPE pipe. When cross-linking is induced, the mechanical properties such as tensile strength and young modulus is increase correspond to the radiation dose. This happen because the structure of HDPE, which is thermoplastic change to thermosetting. This will indicate the variability of irradiation dose which regard to the pipe pressure rating. Hence, the thickness ratio of pipe will be re-examining in order to make the production of HDPE pipe become more economical. This research review the effects of electron beam on HDPE pipe, as well as to reduce the cost of its production to improve key properties of selected plastic pipe products. (author)

  9. Preparation and characterization of electron-beam treated HDPE composites reinforced with rice husk ash and Brazilian clay

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, A.V., E-mail: angelortiz@ipen.br [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil); Teixeira, J.G.; Gomes, M.G.; Oliveira, R.R. [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil); Díaz, F.R.V. [Metallurgical and Materials Engineering Department, Polytechnic School, University of São Paulo Av. Prof. Mello de Morais 2463, São Paulo, SP 05508-900 (Brazil); Moura, E.A.B. [Nuclear and Energy Research Institute, IPEN-CNEN/SP Av. Prof. Lineu Prestes 2242, São Paulo, SP 05508-000 (Brazil)

    2014-08-15

    Highlights: • We examine changes in HDPE properties when waste and clay are used as reinforcement. • The addition of only 3% of clay leads to important gains in HDPE properties. • The use of electron-beam contributes to greater improvements in material properties. • We observe 85% of cross-linking degree for the HDPE when treated with e-beam. - Abstract: This work evaluates the morphology, mechanical and thermo-mechanical properties of high density polyethylene (HDPE) composites. HDPE reinforced with rice husk ashes (80:20 wt%), HDPE reinforced with clay (97:3 wt%) and HDPE reinforced with both rice husk ashes and clay(77:20:3 wt%) were obtained. The Brazilian bentonite chocolate clay was used in this study. This Brazilian smectitic clay is commonly used to produce nanocomposites. The composites were produced by melting extrusion process and then irradiation was carried out in a 1.5 MeV electron-beam accelerator (room temperature, presence of air). Comparisons using the irradiated and non-irradiated neat polymer, and the irradiated and non-irradiated composites were made. The materials obtained were submitted to tensile, flexural and impact tests. Additionally HDT, SEM and XRD analyses were carried out along with the sol–gel analysis which aimed to assess the cross-linking degree of the irradiated materials. Results showed great improvement in most HDPE properties and a high cross-linking degree of 85% as a result of electron-beam irradiation of the material.

  10. Studies on the effects of EPDM, SR on PTC- of HDPE/CB before and after γ-radiation

    International Nuclear Information System (INIS)

    Jia Shaojin; Jiang Pingkai; Xiu Qihui; Wang Zongguang; Zhang Zhicheng

    2004-01-01

    High-density-polyethylene (HDPE), Si rubber (SR) and ethylene-density-polyethylene (EPDM) were used as the polymer matrices. A kinds of carbon blacks was used as the conductive filler. The positive temperature coefficient (PTC) intensity of the HDPE/CB, HDPE/EPDM/CB composites flow during extrusion to produced was tested before and after irradiation. Compared to that of HDPE/CB composites, the electrical reproducibility of the irradiated HDPE/EPDM/CB composites of is better. The effects of γ-rays irradiation were also estimated. The results showed that the reproductive of the PTC effect was related to the adhesion between the interface of the polymer matrices and CB particles. These PTC phenomena and their distinctive aspects were described. The explanations were given from the structural characteristics of the blends, CB particles distribution and motion of polymer segments. (authors)

  11. Effect of Addition of Soybean Oil and Gamma-Ray Cross-linking on the Nanoporous HDPE Membrane

    Directory of Open Access Journals (Sweden)

    Jong-Seok Park

    2012-01-01

    Full Text Available A nanoporous high-density polyethylene (HDPE membrane was prepared by a wet process. Soybean oil and dibutyl phthalate (DBP were premixed as codiluents, and gamma-rays were used for the cross-linking of HDPE. The pore volume of the nanoporous HDPE membranes with soybean oil was affected by the extracted amount of oil. The tensile strength of the membrane improved with an increasing absorbed dose up to 60 kGy, but decreased at 80 kGy due to severe degradation. The ionic conductivity of the nanoporous HDPE membrane did not really change with an increasing absorbed dose because the pores had already been formed before the gamma-ray radiation. Finally, the electrochemical stability of the HDPE membrane increased when the absorbed dose increased up to 60 kGy.

  12. A study on thermal and mechanical properties of mechanically milled HDPE and PP

    International Nuclear Information System (INIS)

    Can, S.; Tan, S.

    2003-01-01

    In this study, mechanical mixing of HDPE and PP was performed via ball milling. Prepared compositions were 75/25 , 50/50 , 25/75 w/w HDPE/PP. Milling time and ball to powder ratio (B/P) were kept constant and system was cooled by adding solid CO 2 to improve the milling efficiency. To compare these systems with traditional methods, mixtures were also melt mixed by Brabender Plasti-Corder. Both milled and melt mixed systems were examined with DSC for thermal properties and tensile testing for mechanical properties Results are discussed by comparing milled , melt mixed and as-received polymers. It is observed that, unlike ball milled systems' in melt mixed systems mechanical properties are composition dependent. In addition , ball milling results in amorphization of both polymers and very high amounts of PP (75wt %) creates very amorphous HDPE structure. (Original)

  13. Life cycle assessment of a road safety product made with virgin and recycled HDPE.

    Science.gov (United States)

    Simões, Carla L; Xará, Susana M; Bernardo, C A

    2011-04-01

    The present study aims at evaluating the potential environmental impact of using recycled high-density polyethylene (HDPE) in the production of an anti-glare lamella (AGL), a road safety device currently manufactured from virgin (not recycled) polymer. The impact was evaluated using the life cycle assessment (LCA) technique and comparing two alternative systems: current AGL, manufactured from virgin HDPE, and optional AGL, made with recycled HDPE obtained from post-consumer packages. The AGL manufacturing phase was found to be responsible for most of the impacts in both systems, with the production of the raw material being the largest contributor for that phase. The present study makes a contribution to the problem of developing value-added products made from post-consumer polymeric recyclates.

  14. On the Injection Molding Processing Parameters of HDPE-TiO2 Nanocomposites

    Science.gov (United States)

    Mourad, Abdel-Hamid I.; Mozumder, Mohammad Sayem; Mairpady, Anusha; Pervez, Hifsa; Kannuri, Uma Maheshwara

    2017-01-01

    In recent years, the development and use of polymeric nanocomposites in creating advanced materials has expanded exponentially. A substantial amount of research has been done in order to design polymeric nanocomposites in a safe and efficient manner. In the present study, the impact of processing parameters, such as, barrel temperature, and residence time on the mechanical and thermal properties of high density polyethylene (HDPE)-TiO2 nanocomposites were investigated. Additionally, scanning electron microscopy and X-ray diffraction spectroscopy were used to analyze the dispersion, location, and phase morphology of TiO2 on the HDPE matrix. Mechanical tests revealed that tensile strength of the fabricated HDPE-TiO2 nanocomposites ranged between 22.53 and 26.30 MPa, while the Young’s modulus showed a consistent increase as the barrel temperature increased from 150 °C to 300 °C. Moreover, the thermal stability decreased as the barrel temperature increased. PMID:28772444

  15. On the Injection Molding Processing Parameters of HDPE-TiO₂ Nanocomposites.

    Science.gov (United States)

    Mourad, Abdel-Hamid I; Mozumder, Mohammad Sayem; Mairpady, Anusha; Pervez, Hifsa; Kannuri, Uma Maheshwara

    2017-01-20

    In recent years, the development and use of polymeric nanocomposites in creating advanced materials has expanded exponentially. A substantial amount of research has been done in order to design polymeric nanocomposites in a safe and efficient manner. In the present study, the impact of processing parameters, such as, barrel temperature, and residence time on the mechanical and thermal properties of high density polyethylene (HDPE)-TiO₂ nanocomposites were investigated. Additionally, scanning electron microscopy and X-ray diffraction spectroscopy were used to analyze the dispersion, location, and phase morphology of TiO₂ on the HDPE matrix. Mechanical tests revealed that tensile strength of the fabricated HDPE-TiO₂ nanocomposites ranged between 22.53 and 26.30 MPa, while the Young's modulus showed a consistent increase as the barrel temperature increased from 150 °C to 300 °C. Moreover, the thermal stability decreased as the barrel temperature increased.

  16. Structural characterization of HDPE/LLDPE blend-based nano composites obtained by different blending sequence

    International Nuclear Information System (INIS)

    Passador, Fabio R.; Ruvolo Filho, Adhemar; Pessan, Luiz A.

    2011-01-01

    The blending sequence affects the morphology formation of the nanocomposites. In this work, the blending sequences were explored to determine its influence in the rheological behavior of HDPE/LLDPE/OMMT nanocomposites. The nanocomposites were obtained by melt-intercalation using a mixture of LLDPE-g-MA and HDPE-g-MA as compatibilizer system in a torque rheometer at 180 deg C and five blending sequences were studied. The materials structures were characterized by wide angle X-ray diffraction (WAXD) and by rheological properties. The nanoclay's addition increased the shear viscosity at low shear rates, changing the behavior of HDPE/LLDPE matrix to a Bingham model behavior with an apparent yield stress. Intense interactions were obtained for the blending sequence where LLDPE and/or LLDPE-g-MA were first reinforced with organoclay since the intercalation process occurs preferentially in the amorphous phase. (author)

  17. Assessment of NDE Methods on Inspection of HDPE Butt Fusion Piping Joints for Lack of Fusion with Validation from Mechanical Testing

    International Nuclear Information System (INIS)

    Anderson, Michael T.; Cinson, Anthony D.; Crawford, Susan L.; Doctor, Steven R.; Moran, Traci L.; Watts, Michael W.

    2010-01-01

    Studies at the Pacific Northwest National Laboratory (PNNL) in Richland, Washington, are being conducted to evaluate nondestructive examinations (NDE) coupled with mechanical testing of butt fusion joints in high-density polyethylene (HDPE) pipe for assessing lack of fusion. The work provides information to the U.S. Nuclear Regulatory Commission (NRC) on the effectiveness of volumetric inspection techniques of HDPE butt fusion joints in Section III, Division 1, Class 3, buried piping systems in nuclear power plants. This paper describes results from preliminary assessments using ultrasonic and microwave nondestructive techniques and mechanical testing with the high-speed tensile impact test and the side-bend test for determining joint integrity. A series of butt joints were fabricated in 3408, 12-in. IPS DR-11 HDPE material by varying the fusion parameters to create good joints and joints containing a range of lack-of-fusion conditions. Six of these butt joints were volumetrically examined with time-of-flight diffraction (TOFD), phased-array (PA) ultrasound, and the Evisive microwave system. The outer-diameter weld beads were removed for the microwave inspection. In two of the four pipes, both the outer and inner weld beads were removed and the pipe joints re-evaluated. The pipes were sectioned and the joints destructively evaluated with the side-bend test by cutting portions of the fusion joint into slices that were planed and bent. The last step in this limited study will be to correlate the fusion parameters, nondestructive, and destructive evaluation results to validate the effectiveness of what each NDE technology detects and what each does not detect. The results of the correlation will be used in identifying any future work that is needed.

  18. The effect of partially stabilized zirconia on the biological properties of HA/HDPE composites in vitro.

    Science.gov (United States)

    Sadi, A Yari; Shokrgozar, M A; Homaeigohar, S Sh; Hosseinalipour, M; Khavandi, A; Javadpour, J

    2006-05-01

    The effect of partially stabilized zirconia (PSZ) on the biological properties of the hyroxyapatite - high density polyethylene (HA/HDPE) composites was studied by investigating the simultaneous effect of hydroxyapatite and PSZ volume fractions on the in vitro response of human osteoblast cells. The biocompatibility of composite samples with different volume fraction of HA and PSZ powders was assessed by proliferation, alkaline phosphatase (ALP) and cell attachment assays on the osteoblast cell line (G-292) in different time periods. The effect of composites on the behavior of G-292 cells was compared with those of HDPE and TPS (Tissue Culture Poly Styrene as negative control) samples. Results showed a higher proliferation rate of G-292 cells in the presence of composite samples as compared to the HDPE sample after 7 and 14 days of incubation period. ALP production rate in all composite samples was higher than HDPE and TPS samples. The number of adhered cells on the composite samples was higher than the number adhered on the HDPE and TPS samples after the above mentioned incubation periods. These findings indicates that the addition of PSZ does not have any adverse affect on the biocompatibility of HA/HDPE composites. In fact in some experiments PSZ added HA/HDPE composites performed better in proliferation, differentiation and attachment of osteoblastic cells.

  19. Effect of admixed high-density polyethylene (HDPE) spheres on contraction stress and properties of experimental composites.

    Science.gov (United States)

    Ferracane, J L; Ferracane, L L; Braga, R R

    2003-07-15

    Additives that provide stress relief may be incorporated into dental composites to reduce contraction stress (CS). This study attempted to test the hypothesis that conventional fillers could be replaced by high-density polyethylene (HDPE) spheres in hybrid and nanofill composites to reduce CS, but with minimal effect on mechanical properties. Nanofill and hybrid composites were made from a Bis-GMA/TEGDMA resin having either all silica nanofiller or 75 wt.% strontium glass + 5 wt.% silica and replacing some of the nanofiller or the glass with 0%, 5% (hybrid only), 10% or 20 wt.% HDPE. The surface of the HDPE was either left untreated or had a reactive gas surface treatment (RGST). Contraction stress (CS) was monitored for 10 min in a tensilometer (n = 5) after light curing for 60 s at 390 mW/cm(2). Other specimens (n = 5) were light cured 40 s from two sides in a light-curing unit and aged 1 d in water before testing fracture toughness (K(Ic)), flexure strength (FS), and modulus (E). Results were analyzed by ANOVA with Tukey's multiple comparison test at p HDPE except for FS-10% HDPE hybrid (RGST higher). An increased level of HDPE reduced contraction stress for both types of composites. Flexure strength, modulus (hybrid only), and fracture toughness were also reduced as the concentration of HDPE increased. SEM showed evidence for HDPE debonding and plastic deformation during fracture of the hybrid composites. In conclusion, the addition of HDPE spheres reduces contraction stress in composites, either through stress relief or a reduction in elastic modulus. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 66B: 318-323, 2003

  20. Tensile behaviour and properties of a bone analogue composite (HA, HDPE) crosslinked by gamma radiation

    International Nuclear Information System (INIS)

    Romero, G.; Smolko, Eduardo E.

    2005-01-01

    A natural composite material, hydroxyapatite (HA) and high density polyethylene (HDPE) crosslinked by ionizing radiations is been developed as a bioactive analogue material for bone replacement. Mechanical properties of the composites irradiated up to 300 kGy under tensile tests was studied. Gel content and micrographs of different composite fractures are shown. (author)

  1. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Sever, K. [Department of Mechanical Engineering, Dokuz Eylul University, 35100, Izmir (Turkey); Erden, S. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey); Guelec, H.A. [Department of Food Engineering, Yuzuncu Yil University, 65250, Van (Turkey); Seki, Y., E-mail: yoldas.seki@deu.edu.tr [Department of Chemistry, Dokuz Eylul University, 35160, Buca, Izmir (Turkey); Sarikanat, M. [Department of Mechanical Engineering, Ege University, 35100, Izmir (Turkey)

    2011-09-15

    Highlights: {yields} To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. {yields} LF and RF plasma systems at different plasma powers were used for treatment. {yields} In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  2. Barrier Properties and Structural Study of Nanocomposite of HDPE/Montmorillonite Modified with Polyvinylalcohol

    Directory of Open Access Journals (Sweden)

    María C. Carrera

    2013-01-01

    Full Text Available In this work was studied the permeation of CO2 in films of high-density polyethylene (HDPE and organoclay modified with polyvinylalcohol (MMTHDTMA/PVA obtained from melt blending. Permeation study showed that the incorporation of the modified organoclay generates a significant effect on the barrier properties of HDPE. When a load of 2 wt% of MMTHDTMA/PVA was incorporated in the polymer matrix, the flow of CO2 decreased 43.7% compared to pure polyethylene. The results of TEM showed that clay layers were dispersed in the polymeric matrix, obtaining an exfoliated-structure nanocomposite. The thermal stability of nanocomposite was significantly enhanced with respect to the pristine HDPE. DSC results showed that the crystallinity was maintained as the pure polymeric matrix. Consequently, the decrease of permeability was attributable only to the effect of tortuosity generated by the dispersion of MMTHDTMA/PVA. Notably the mechanical properties remain equal to those of pure polyethylene, but with an increase in barrier properties to CO2. This procedure allows obtaining nanocomposites of HDPE with a good barrier property to CO2 which would make it competitive in the use of packaging.

  3. Effects of electron-beam irradiation on HDPE/Brazil nut shell fiber composite

    International Nuclear Information System (INIS)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Moura, Esperidiana A.B.

    2013-01-01

    In recent years, research on the replacement of synthetic fibers by natural fibers as reinforcement in thermoplastic composites has increased dramatically due to the advantages of natural fibers, such as low density, low cost, environmental appeal and recyclability. In the present work, the influence of electron-beam irradiation on mechanical properties of HDPE and HDPE/Brazil Nut Shell (Bertholletia excelsa) fiber compositive was investigated. The HDPE composite reinforced with 5% or 10%, by weight of Brazil nut shell fiber powder with particle sizes equal or smaller than 250 μm were obtained by extrusion, using a twin screw extruder. The materials were irradiated at 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated specimens tests samples were submitted to mechanical and thermo-mechanical tests, scanning electron microscopy (SEM), X-Ray diffraction (XRD) and sol-gel analysis and the correlation between their properties was discussed. The results showed significant changes in HDPE mechanical and thermo-mechanical properties due to Brazil nut shell fibers addition and electron-beam irradiation. The surface of the cryo fractured composite samples irradiated showed important visual changes which suggest a better fiber-matrix interfacial adhesion, due to irradiation treatment. These results showed that it is possible to get interesting property gains by using waste from renewable sources instead of the traditional ones and electron-beam radiation treatment. (author)

  4. Quality monitoring of salt produced in Indonesia through seawater evaporation on HDPE geomembrane lined ponds

    Science.gov (United States)

    Jumaeri; Sulistyaningsih, T.; Alighiri, D.

    2018-03-01

    Salt is one of the primary ingredients that humans always need for various purposes, both for consumption and industry. The need for high-quality salt continues to increase, as long as industry growth. It must improve product quality through the development of salt production process technology. In this research, the quality monitoring of salt produced in Indonesia by evaporation of seawater on ponds lined using high-density polyethylene (HDPE) geomembrane has been studied. The manufacturing of salt carried out through the gradual precipitation principle on prepared ponds. HDPE geomembrane is used to coat evaporation ponds with viscosity 12-22°Be and crystallization ponds with a viscosity of 23°Be. The monitoring of the product is carried out in the particular periods during the salt production period. The result of control shows that the quality of salt produced in HDPE geomembrane coated salt ponds has an average NaCl content of 95.75%, so it has fulfilled with Indonesia National Standard (SNI), that is NaCl> 94.70%. The production of salt with HDPE geomembrane can improve the quality of salt product from NaCl 85.4% (conventional system) to 95.75%.

  5. Oxygen plasma treatments of jute fibers in improving the mechanical properties of jute/HDPE composites

    International Nuclear Information System (INIS)

    Sever, K.; Erden, S.; Guelec, H.A.; Seki, Y.; Sarikanat, M.

    2011-01-01

    Highlights: → To improve mechanical properties of jute/HDPE composites, jute fabric was subjected to oxygen plasma treatment. → LF and RF plasma systems at different plasma powers were used for treatment. → In LF system, interlaminar shear strength, tensile and flexure strengths showed a tendency to increase at plasma powers of 30 and 60 W. - Abstract: The surfaces of jute fabrics have been oxygen plasma treated using low frequency (LF) and radio frequency (RF) plasma systems at different plasma powers (30, 60, and 90 W) for 15 min to improve the mechanical properties of jute fiber/HDPE (high density polyethylene) composites. The effect of oxygen plasma treatment on the functional groups of jute fibers was examined by X-ray photoelectron spectroscopy (XPS) analysis. Effects of oxygen plasma treatments on the mechanical properties of jute fiber/HDPE composites were investigated by means of tensile, flexure, and short-beam shear tests. Surface morphology of the fractured surfaces of composites was observed by using scanning electron microscopy (SEM). When RF plasma system was used, the interlaminar shear strength (ILSS) values of the composites increased with increasing plasma power. Similarly, in LF plasma system, ILSS values showed a tendency to increase at plasma powers of 30 and 60 W. However, increasing of plasma power to 90 W decreased the ILSS value of jute/HDPE composite. Also, tensile and flexure strengths of the composites showed similar trends.

  6. SAXS investigation of latent track structure in HDPE irradiated with high energy Fe ions

    Energy Technology Data Exchange (ETDEWEB)

    Hai, Yang; Huang, Can [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Ma, Mingwang [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Institute of Electronic Engineering, CAEP, Mianyang 621900 (China); Liu, Qi; Wang, Yuzhu; Liu, Yi; Tian, Feng; Lin, Jun [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Zhu, Zhiyong, E-mail: zhuzhiyong@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2015-08-01

    Semi-crystalline high density polyethylene (HDPE) samples were irradiated with 1.157 GeV {sup 56}Fe ion beams to fluences ranging from 1 × 10{sup 11} to 6 × 10{sup 12} ions/cm{sup 2}. The radiation induced changes in nano/microstructure were investigated with small angle X-ray scattering (SAXS) technique. The scattering contributions from HDPE matrix and ion tracks are successfully separated and analyzed through tilted SAXS measurements with respect to the X-ray beam direction. Lorentz correction, one-dimensional correlation function calculation, fractal nature analysis of the isotropic scattering pattern reveal that HDPE long period polymeric structures are damaged and new materials, possibly clusters of carbon-rich materials, are formed inside the ion tracks. Least square curve fitting of the scattering contribution from the ion track reveals that the track is composed of a core of about 5.3 nm in radius, characterized by a significant density deficit compared to the virgin HDPE, surrounded by a shell of about 4.3 nm in thickness with less density reduction.

  7. The Tension and Puncture Properties of HDPE Geomembrane under the Corrosion of Leachate.

    Science.gov (United States)

    Xue, Qiang; Zhang, Qian; Li, Zhen-Ze; Xiao, Kai

    2013-09-17

    To investigate the gradual failure of high-density polyethylene (HDPE) geomembrane as a result of long-term corrosion, four dynamic corrosion tests were conducted at different temperatures and durations. By combining tension and puncture tests, we systematically studied the variation law of tension and puncture properties of the HDPE geomembrane under different corrosion conditions. Results showed that tension and puncture failure of the HDPE geomembrane was progressive, and tensile strength in the longitudinal grain direction was evidently better than that in the transverse direction. Punctures appeared shortly after puncture force reached the puncture strength. The tensile strength of geomembrane was in inversely proportional to the corrosion time, and the impact of corrosion was more obvious in the longitudinal direction than transverse direction. As corrosion time increased, puncture strength decreased and corresponding deformation increased. As with corrosion time, the increase of corrosion temperature induced the decrease of geomembrane tensile strength. Tensile and puncture strength were extremely sensitive to temperature. Overall, residual strength had a negative correlation with corrosion time or temperature. Elongation variation increased initially and then decreased with the increase in temperature. However, it did not show significant law with corrosion time. The reduction in puncture strength and the increase in puncture deformation had positive correlations with corrosion time or temperature. The geomembrane softened under corrosion condition. The conclusion may be applicable to the proper designing of the HDPE geomembrane in landfill barrier system.

  8. Effects of electron-beam irradiation on HDPE/Brazil nut shell fiber composite

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Maiara S.; Sartori, Mariana N.; Oliveira, Rene R.; Moura, Esperidiana A.B., E-mail: maiara.sferreira@gmail.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    In recent years, research on the replacement of synthetic fibers by natural fibers as reinforcement in thermoplastic composites has increased dramatically due to the advantages of natural fibers, such as low density, low cost, environmental appeal and recyclability. In the present work, the influence of electron-beam irradiation on mechanical properties of HDPE and HDPE/Brazil Nut Shell (Bertholletia excelsa) fiber compositive was investigated. The HDPE composite reinforced with 5% or 10%, by weight of Brazil nut shell fiber powder with particle sizes equal or smaller than 250 μm were obtained by extrusion, using a twin screw extruder. The materials were irradiated at 200 kGy using a 1.5 MeV electron beam accelerator, at room temperature in presence of air. The irradiated and non-irradiated specimens tests samples were submitted to mechanical and thermo-mechanical tests, scanning electron microscopy (SEM), X-Ray diffraction (XRD) and sol-gel analysis and the correlation between their properties was discussed. The results showed significant changes in HDPE mechanical and thermo-mechanical properties due to Brazil nut shell fibers addition and electron-beam irradiation. The surface of the cryo fractured composite samples irradiated showed important visual changes which suggest a better fiber-matrix interfacial adhesion, due to irradiation treatment. These results showed that it is possible to get interesting property gains by using waste from renewable sources instead of the traditional ones and electron-beam radiation treatment. (author)

  9. Changes in wood flour/HDPE composites after accelerated weathering with and without water spray

    Science.gov (United States)

    Nicole M. Stark

    2005-01-01

    Wood-plastic lumber is promoted as a low-maintenance high-durability product. After weathering, however, wood-plasticcomposites (WPCs) often fide and lose mechanical properties. In the first part ofthis study, 50%wood-flour-filled high-density polyethylene (HDPE) composite samples were injection molded or extruded. Composites were exposed to two accelerated weathering...

  10. Effect of Boron and Phosphate compounds on Thermal and Fire Properties of wood/HDPE composites

    Science.gov (United States)

    Turgay Akbulut; Nadir Ayrilmis; Turker Dundar; Ali Durmus; Robert H. White; Murat Teker

    2011-01-01

    Melting and non-isothermal crystallization behaviors, oxidative induction time, and fire performance of the injection-molded wood flour-high density polyethylene (HDPE) composites (WPCs) incorporated with different levels (4, 8, or 12 wt %) of boron compounds [borax/boric acid (BX/BA) (0.5:0.5 wt %), zinc borate (ZB)] and phosphorus compounds [mono- and di-ammonium...

  11. Morphology and properties of SEBS block copolymer compatibilized PS/HDPE blends

    Czech Academy of Sciences Publication Activity Database

    Rek, V.; Vranješ, N.; Šlouf, Miroslav; Fortelný, Ivan; Jelčic, Ž.

    2008-01-01

    Roč. 40, č. 3 (2008), s. 237-251 ISSN 0095-2443 Grant - others:Ministry of Science, Education and Sport (HR) 0125059 Institutional research plan: CEZ:AV0Z40500505 Keywords : aPS/HDPE/SEBS blends * morphology * processing * rheological Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.658, year: 2008

  12. [Study on biocompatibility of hydroxyapatite/high density polyethylene (HA/HDPE) nano-composites artificial ossicle].

    Science.gov (United States)

    Wang, Guohui; Zhu, Shaihong; Tan, Guolin; Zhou, Kechao; Huang, Suping; Zhao, Yanzhong; Li, Zhiyou; Huang, Boyun

    2008-06-01

    This study was aimed to evaluate the biocompatibility of Hydroxyapatite/High density polyethylene (HA/ HDPE) nano-composites artificial ossicle. The percentage of S-period cells were detected by flow cytometry after L929 cells being incubated with extraction of the HA/HDPE nano-composites; the titanium materials for clinical application served as the contrast. In addition, both materials were implanted in animals and the histopathological evaluations were conducted. There were no statistically significant differences between the two groups (P >0.05). The results demonstrated that the HA/HDPE nano-composite artificial ossicle made by our laboratory is of a good biocompatibility and clinical application outlook.

  13. Temperature and loading frequency effects of fatigue crack growth in HDPE pipe material

    International Nuclear Information System (INIS)

    Merah, N.; Khan, Z.; Bazoune, A.; Saghir, F.

    2006-01-01

    High density polyethylene (HDPE) pipes are being extensively used for gas, water, sewage and waste water distribution systems. Laboratory tests appear to show that HDPE is more able to suppress rapid crack propagation, while remaining somehow resistant to slow crack growth failures observed in service. Procedures for estimating pipe life in service have been established by making use of fatigue crack growth (FCG) results. These procedures are concerned mainly with room temperature. Applications with some safety factor to include the temperature effect. Use of HDPE pipes in water and gas distribution in the Gulf area has seen a net increase. This study addresses the combined effects of temperature and frequency on FCG properties of commercial HDPE pipe material. FCG accelerated tests were conducted on single-etch notch (SEN) specimens in the temperature range of -10 to 70C at frequencies ranging from 0.1 to 50 Hz. The FCG tests are conducted at a stress amplitude level approximately 1/4 of room temperature yield stress and crack growth behavior was investigated using linear elastic fracture mechanics concepts. The stress intensity range delta K gave satisfactory correlation of crack, growth rate (da/dN) at the temperatures of -10, 0, 23 and 40C and at frequencies of 0.1, 1, and 50 Hz. The crack growth resistance was found to decrease with increase in test temperature and decrease growth resistance was found to decrease with increase in test temperature and decrease with frequency. For 70C no crack propagation was observed, the failure was observed to occur by collapse or generalized yielding. Fractographic analyses results are used to explain temperature and frequency effects on FCG. The effect of temperature on da/dN for HDPE material was investigated by considering the variation of mechanical properties with temperature. Master curves were developed by normalizing delta K yield stress. (author)

  14. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Pourdanesh, Fereydoun [Dental Research Center, Research Institute of Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 8916733754 (Iran, Islamic Republic of); Jebali, Ali, E-mail: alijebal2011@gmail.com [Department of Medical Physics and Biomedical Engineering, Shahid Beheshti University of Medical Sciences, Tehran (Iran, Islamic Republic of); Hekmatimoghaddam, Seyedhossein [Department of Laboratory Sciences, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd (Iran, Islamic Republic of); Allaveisie, Azra [Department of Genetics, Research and Clinical Center for Infertility, Shahid Sadoughi University of Medical Sciences, Yazd (Iran, Islamic Republic of)

    2014-07-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca{sub 3}(PO{sub 4}){sub 2}) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. - Highlights: • The effect of various nanoparticles like as Ca{sub 3}(PO{sub 4}){sub 2}, hydroxyapatite, and MgO was studied. • HDPE/TCP/HA/MgO nanocomposite was biocompatible. • The effect of nanoparticles showed high antibacterial property.

  15. In vitro and in vivo evaluation of a new nanocomposite, containing high density polyethylene, tricalcium phosphate, hydroxyapatite, and magnesium oxide nanoparticles

    International Nuclear Information System (INIS)

    Pourdanesh, Fereydoun; Jebali, Ali; Hekmatimoghaddam, Seyedhossein; Allaveisie, Azra

    2014-01-01

    In this study, a new nanocomposite, which contained high density polyethylene (HDPE), tricalcium phosphate (Ca 3 (PO 4 ) 2 ) nanoparticles (TCP NPs), hydroxyapatite nanoparticles (HA NPs), and magnesium oxide nanoparticles (MgO NPs) was prepared. As in vitro experiment, human osteoblasts (HOB) cells were exposed to pristine HDPE and its nanocomposite for a period of 1, 4, and 7 days at 37 °C, and then different assays were carried out, including osteoblast cell proliferation, Trypan blue staining, cell viability, alkaline phosphatase (ALP), and cell adhesion. Antibacterial property of pristine HDPE and its nanocomposite was evaluated, and also their mechanical properties were measured after 2 and 4 months. As in vivo experiment, pristine HDPE and its nanocomposite were separately implanted on calvarium bone of rabbits, and tissue inflammation and osteogenesis were investigated after 2, 4, and 6 months. In case of HOB cells treated with HDPE or nanocomposite, as incubation time was increased, cell proliferation, live/dead ratio, and cell viability were decreased. But, the ALP activity and cell adhesion of HOB cells which treated with nanocomposite were raised after increase of incubation time. This study demonstrated that although the mechanical properties of nanocomposite were similar to HDPE sheet, but their antibacterial property was not similar. The in vivo experiment showed that both pristine HDPE and its nanocomposite had same inflammation responses. Interestingly, osteogenesis was observed after 2 months at bone/nanocomposite interface, and was highly increased after 4 and 6 months. It must be noted that such pattern was not seen at bone/HDPE interface. - Highlights: • The effect of various nanoparticles like as Ca 3 (PO 4 ) 2 , hydroxyapatite, and MgO was studied. • HDPE/TCP/HA/MgO nanocomposite was biocompatible. • The effect of nanoparticles showed high antibacterial property

  16. Vertical integration

    International Nuclear Information System (INIS)

    Antill, N.

    1999-01-01

    This paper focuses on the trend in international energy companies towards vertical integration in the gas chain from wellhead to power generation, horizontal integration in refining and marketing businesses, and the search for larger projects with lower upstream costs. The shape of the petroleum industry in the next millennium, the creation of super-major oil companies, and the relationship between size and risk are discussed. The dynamics of vertical integration, present events and future developments are considered. (UK)

  17. Fabrication and materials properties of high-density polyethylene (HDPE)/biphasic calcium phosphate (BCP) hybrid bone plates

    International Nuclear Information System (INIS)

    Jo, Sun Young; Youn, Min Ho; Lim, Youn Mook; Gwon, Hui Jeong; Park, Jong Seok; Nho, Young Chang

    2010-01-01

    Biphasic calcium phosphate-reinforced high-density polyethylene (BCP/HDPE) hybrid composite is a new orthopedic biomaterial, which was made to simulate a natural bone composition. Calcium phosphate systems and HDPE hybrid composites have been used in biomedical applications without any inflammatory response. Differences in natural bone of both materials have motivated the use of coupling agents to improve their interfacial interfacial interactions. The composites were prepared using medical grade BCP powder and granular polyethylene. This material was produced by replacing the mineral component and collagen soft tissue of the bone with BCP and HDPE, respectively. As expected, increased volume fraction of either reinforcement type over 0 ∼ 50 vol.% resulted in a increased Vickers hardness and Young's modulus. Thus, BCP particle-reinforced HDPE composites possessed improved material and mechanical properties. BCP particles-reinforced composites were anisotropic due to an alignment of the particles in the matrix during a processing. On the other hand, bending and tensile strength was dramatically changed in the matrix. To change the material and mechanical properties of HDPE/BCP composites, the process of a blending was used, and its effect on the microstructure and mechanical proprieties of HDPE/BCP composites were investigated by means of FT-IR/ATR spectroscopy, XRD, FE-SEM, Vickers Hardness Testing Machine, Universal Testing Machine, Mercury Porosimeter and Ultrasonic Flaw Detector at room temperature. For the evaluation of the cell viability and proliferation onto the external surface of HDPE/BCP hybrid plates with a HaCaT cell line, which is a multipotent cell line able to differentiate towards different phenotypes under the action of biological factors, has been evaluated with in vitro studies and quantified by colormetric assays. These findings indicate that the HDPE/BCP hybrid plates are biocompatible and non-toxic

  18. Pengaruh Konsentrasi Maleat Anhidrat Terhadap Derajat Grafting Maleat Anhidrat Pada High Density Polyethylene ( HDPE ) Dengan Inisiator Benzoil Peroksida

    OpenAIRE

    Iwan Pranata Sitepu

    2009-01-01

    Telah dilakukan penelitian tentang pengaruh konsentrasi maleat anhidrat terhadap derajat grafting maleat anhidrat pada High Density Polyethylene ( HDPE ) dengan inisiator Benzoil Peroksida, dilakukan dengan teknik pengolahan reaktif dalam Internal Mixer pada suhu 1450C dan waktu proses selama 60 menit dengan variasi komposisi HDPE:MA:BPO, 95:3:2, 92:6:2, 89:9:2, 86:12:2 dan 83:15:2. Selanjutnya dilakukan penentuan derajat grafting dengan metode titrasi dan analisis spektra FTIR untuk menen...

  19. 微胶囊化阻燃剂对HDPE阻燃性能的影响%Effect of Microencapsulated Flame Retardant on Flame Retardancy of HDPE

    Institute of Scientific and Technical Information of China (English)

    陶圣熹; 夏艳平; 章诚; 曹峥; 陶国良

    2017-01-01

    以环氧树脂为囊材,阻燃剂二乙基次磷酸铝(ADP)和聚磷酸铵(APP)为芯材,制备了具有核壳结构的ADP微胶囊和APP微胶囊,并考察了其对高密度聚乙烯(HDPE)的阻燃性能.结果表明,当ADP微胶囊和APP微胶囊的总添加量为质量分数20%,复配质量比为2:1时,对HDPE的阻燃效果好,垂直燃烧达到V-0级,极限氧指数为32%,热失重残炭率为16.8%,拉伸强度达到21.6 M Pa.%Aluminum diethylphosphinate ( ADP ) microcapsules and ammonium polyphosphate (APP) microcapsules are prepared ,in which the epoxy resin is the shell , ADP and APP are the core .The effects of ADP and APP microcapsules on flame retarclancy of HDPE were studied . The results show that the total mass fraction of ADP microcap-sules and APP microcapsules is 20% with the ratio of 2 to 1 . The vertical burning is V-0 ,and the limit oxygen index is 32% . The carbon residue rate in the thermogravimetric (TG) test is 16 .8% . The maximum tensile strength is 21 .6 MPa ,and the material has the best flame retardant property .

  20. Qualification Testing of the SmartVault Household Goods Shipping Container

    Science.gov (United States)

    2011-01-06

    base with 4-way forklift entry and molded high-density polyethylene (HDPE) ribbed walls and ( translucent ) lid which are held together with stainless...and four edge drops of the container onto a smooth concrete surface (Appendix 2, Figure 22). The container was visually inspected for damage

  1. Study of the Mechanical and Morphology Properties of Recycled HDPE Composite Using Rice Husk Filler

    Directory of Open Access Journals (Sweden)

    Jia Ying Tong

    2014-01-01

    Full Text Available WPCs are being used in a large number of applications in the automotive, construction, electronic, and aerospace industries. There are an increasing number of research studies and developments in WPC technology involving rice husk as fillers. This study investigated the effects of different compositions of rice husk (RH filler on the mechanical and morphological properties of recycled HDPE (rHDPE composite. The composites were prepared with five different loading contents of RH fibers (0, 10, 20, 30, and 40 wt% using the twin screw extrusion method. Maleic acid polyethylene (MAPE was added as a coupling agent. Results showed that tensile and flexural properties improved with increasing RH loading. However, the impact strength of the composites decreased as the RH loading increased. SEM micrographs revealed good interfacial bonding between the fiber and polymer matrix.

  2. Examining Mechanical Strength Characteristics of Selective Inhibition Sintered HDPE Specimens Using RSM and Desirability Approach

    Science.gov (United States)

    Rajamani, D.; Esakki, Balasubramanian

    2017-09-01

    Selective inhibition sintering (SIS) is a powder based additive manufacturing (AM) technique to produce functional parts with an inexpensive system compared with other AM processes. Mechanical properties of SIS fabricated parts are of high dependence on various process parameters importantly layer thickness, heat energy, heater feedrate, and printer feedrate. In this paper, examining the influence of these process parameters on evaluating mechanical properties such as tensile and flexural strength using Response Surface Methodology (RSM) is carried out. The test specimens are fabricated using high density polyethylene (HDPE) and mathematical models are developed to correlate the control factors to the respective experimental design response. Further, optimal SIS process parameters are determined using desirability approach to enhance the mechanical properties of HDPE specimens. Optimization studies reveal that, combination of high heat energy, low layer thickness, medium heater feedrate and printer feedrate yielded superior mechanical strength characteristics.

  3. Effect of processing method on the mechanical and thermal of Silvergrass/HDPE composites

    Science.gov (United States)

    Liu, Bing; Jin, Yueqiang; Wang, Shuying

    2017-05-01

    This paper investigates the effect of compression and injection molding methods on properties of Silvergrass-HDPE (High Density Polyethylene) composites, with respect to mechanical behaviors. Maleated polyethylene (MAPE) was added in the composite and improved the mechanical property of the composite. The research founds MAPE can improve the mechanical property because it improved the interfacial compatibility as a coupling agent. When added a content of 8% of MAPE, Silvergrass-HDPE composites made from compression molding shows a better mechanical performance in tensile strength and flexural strength than that made from injection molding, with increasing Silvergrass fiber content from 30% to 50%. However, the WPCs (wood plastics composites) made from injection molding had a lower degree of crystallinity with or without MAPE treatment.

  4. Effect of ionizing radiation exposure in the morphology of modified HDPE with amphiphilic particles

    International Nuclear Information System (INIS)

    Saldanha, Ana Luiza M.; Vivas, Viviane; Zylberberg, Marcel P.; Silva, Tamara I.; Cardoso, Andre Luis V.; Pereira, Iaci M.; Patricio, Patricia S.O.

    2015-01-01

    One of the techniques used to improve the properties of high performance polymers is the addition of hybrid particles in the polymer. In this context, amphiphilic particles were synthesized in order to provide surface characteristics that enhance the interaction of the interface with the polymeric matrix of high density polyethylene (HDPE). The amphiphilic particles were added to matrix of HDPE and the modified polymer composites were exposed to ionizing radiation (x-rays) for different times. The changes caused by exposure to ionizing radiation in the composite morphology was observed through the small angle x-ray technique. The results suggest that the addition of amphiphilic particles increased the stability of the composite to degradation by radiation. (author)

  5. EVALUATION OF ULTRASONIC PHASED-ARRAY FOR DETECTION OF PLANAR FLAWS IN HIGH-DENSITY POLYETHYLENE (HDPE) BUTT-FUSION JOINTS

    Energy Technology Data Exchange (ETDEWEB)

    Prowant, Matthew S.; Denslow, Kayte M.; Moran, Traci L.; Jacob, Rick E.; Hartman, Trenton S.; Crawford, Susan L.; Mathews, Royce; Neill, Kevin J.; Cinson, Anthony D.

    2016-09-21

    The desire to use high-density polyethylene (HDPE) piping in buried Class 3 service and cooling water systems in nuclear power plants is primarily motivated by the material’s high resistance to corrosion relative to that of steel and metal alloys. The rules for construction of Class 3 HDPE pressure piping systems were originally published in Code Case N-755 and were recently incorporated into the American Society of Mechanical Engineers Boiler and Pressure Vessel Code (ASME BPVC) Section III as Mandatory Appendix XXVI (2015 Edition). The requirements for HDPE examination are guided by criteria developed for metal pipe and are based on industry-led HDPE research or conservative calculations.

  6. Preparation and Characterization of HDPE/EVA Flat Sheet Membranes by Thermally Induced Phase Separation Method

    Directory of Open Access Journals (Sweden)

    Zahra Shoeyb

    2015-06-01

    Full Text Available The adjustment of material composition in fabrication of modified polymeric membrane has been considered the most efficient and easiest method. For this purpose blended membranes of high density polyethylene (HDPE–ethylene vinyl acetate (EVA were prepared by thermally induced phase separation method. The impact of EVA in the presence of diluent on the crystalization temperature was assessed using differential scanning calorimetry (DSC. The obtained results showed that EVA has no significant effect on the crystalization temperature of HDPE. The absorption frequencies at 1248 and 1749 cm-1, respectively, due to C-O and C=O streching vibrations of EVA functional groups, confirmed the existence of EVA in HDPE membrane. The pure water permeability of HDPE/EVA blend was measured and compared with that of neat HDPE membrane. The results showed that an EVA content up to 2.5 wt% raised water permeability considerably and the leafy structure of the membranes contracted and the pure water permeation dropped with higher EVA content. The results of porosity measurement and scanning electronic microscopic (SEM analysis also confirmed these findings. Contact angel measurements and atomic force microscopy (AFM examinations and static absorption of collagen protein on the membrane surfaces revealed that EVA content up to 5 wt% lowered the hydrophobicity of the membrane. By EVA content above 10 wt%, due to the structural alteration on the membrane surface, the contact angel and the collagen absorption on the surface of membrane increased. The measurement of tensile strength showed that with increasing EVA content the mechanical properties of the membranes improved due to interactions of polar groups in EVA.

  7. ESR Study of PE, HDPE and UHMWPE Irradiated with Ion Beams and Neutrons

    International Nuclear Information System (INIS)

    Reyes-Romero, J.

    2006-01-01

    We report the Electron Spin Resonance (RES) studies on the effects produced by bombarding with accelerated Sulfur ions, Protons and Neutrons on the Polyethylene, PE, (Hostalen and Romanian), ultra-high molecular weight polyethylene, UHMWPE, ( GUR 1050, medical grade Lennite), and high density polyethylene, HDPE, (HDPE-7000F, Polinter de Venezuela, PDVSA). The resonance spectra have been recorded using a Varian E-line-X ESR spectrometer at 100 KHz modulation frequency. In thin films of Polyethylene (Hostalen and UHMWPE) have been irradiated with Sulfur ions, S, accelerated at about 7 MeV/nucleons, and Protons at about 5 MeV/nucleons (IFIN, Romania). Samples of Polyethylene ( HDPE 7000-F) were irradiate with neutrons from a Pu-Be source (flux of 1.19 x 10 6 n/s. cm 2 , 5.65 MeV, IVIC, Venezuela) from 0 to 8 hours in the presence of air and at room temperature (RT). The ESR measurements were performed after a storage time of about 7 months, in air at room temperature. The nature of the free radicals induced by irradiation as well as the dependence of resonance line, resonance line shape and radicals concentration has been studied

  8. Interfacial thermal resistance between high-density polyethylene (HDPE) and sapphire

    International Nuclear Information System (INIS)

    Zheng Kun; Ma Yong-Mei; Wang Fo-Song; Zhu Jie; Tang Da-Wei

    2014-01-01

    To improve the thermal conductivity of polymeric composites, the numerous interfacial thermal resistance (ITR) inside is usually considered as a bottle neck, but the direct measurement of the ITR is hardly reported. In this paper, a sandwich structure which consists of transducer/high density polyethylene (HDPE)/sapphire is prepared to study the interface characteristics. Then, the ITRs between HDPE and sapphire of two samples with different HDPE thickness values are measured by time-domain thermoreflectance (TDTR) method and the results are ∼ 2 × 10 −7 m 2 ·K·W −1 . Furthermore, a model is used to evaluate the importance of ITR for the thermal conductivity of composites. The model's analysis indicates that reducing the ITR is an effective way of improving the thermal conductivity of composites. These results will provide valuable guidance for the design and manufacture of polymer-based thermally conductive materials. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  9. Collagen-grafted porous HDPE/PEAA scaffolds for bone reconstruction.

    Science.gov (United States)

    Kim, Chang-Shik; Jung, Kyung-Hye; Kim, Hun; Kim, Chan-Bong; Kang, Inn-Kyu

    2016-01-01

    After tumor resection, bone reconstruction such as skull base reconstruction using interconnected porous structure is absolutely necessary. In this study, porous scaffolds for bone reconstruction were prepared using heat-pressing and salt-leaching methods. High-density polyethylene (HDPE) and poly(ethylene-co-acrylic acid) (PEAA) were chosen as the polymer composites for producing a porous scaffold of high mechanical strength and having high reactivity with biomaterials such as collagen, respectively. The porous structure was observed through surface images, and its intrusion volume and porosity were measured. Owing to the carboxylic acids on PEAA, collagen was successfully grafted onto the porous HDPE/PEAA scaffold, which was confirmed by FT-IR spectroscopy and electron spectroscopy for chemical analysis. Osteoblasts were cultured on the collagen-grafted porous scaffold, and their adhesion, proliferation, and differentiation were investigated. The high viability and growth of the osteoblasts suggest that the collagen-grafted porous HDPE/PEAA is a promising scaffold material for bone generation.

  10. Sintering Process and Mechanical Property of MWCNTs/HDPE Bulk Composite.

    Science.gov (United States)

    Ming-Wen, Wang; Tze-Chi, Hsu; Jie-Ren, Zheng

    2009-08-01

    Studies have proved that increasing polymer matrices by carbon nanotubes to form structural reinforcement and electrical conductivity have significantly improved mechanical and electrical properties at very low carbon nanotubes loading. In other words, increasing polymer matrices by carbon nanotubes to form structural reinforcement can reduce friction coefficient and enhance anti-wear property. However, producing traditional MWCNTs in polymeric materix is an extremely complicated process. Using melt-mixing process or in situ polymerization leads to better dispersion effect on composite materials. In this study, therefore, to simplify MWCNTs /HDPE composite process and increase dispersion, powder was used directly to replace pellet to mix and sinter with MWCNTs. The composite bulks with 0, 0.5, 1, 2 and 4% nanotube content by weight was analyzed under SEM to observe nanotubes dispersion. At this rate, a MWCNTs/HDPE composite bulk with uniformly dispersed MWCNTs was achieved, and through the wear bench (Pin-on-Disk), the wear experiment has accomplished. Accordingly, the result suggests the sintered MWCNTs/HDPE composites amplify the hardness and wear-resist property.

  11. Structural Studies of dielectric HDPE+ZrO2 polymer nanocomposites: filler concentration dependences

    Science.gov (United States)

    Nabiyev, A. A.; Islamov, A. Kh; Maharramov, A. M.; Nuriyev, M. A.; Ismayilova, R. S.; Doroshkevic, A. S.; Pawlukojc, A.; Turchenko, V. A.; Olejniczak, A.; Rulev, M. İ.; Almasan, V.; Kuklin, A. I.

    2018-03-01

    Structural properties of HDPE+ZrO2 polymer nanocomposites thin films of 80-100μm thicknesses were investigated using SANS, XRD, Laser Raman and FTIR spectroscopy. The mass fraction of the filler was 1, 3, 10, and 20%. Results of XRD analysis showed that ZrO2 powder was crystallized both in monoclinic and in cubic phase under normal conditions. The percentages of monoclinic and cubic phase were found to be 99.8% and 0.2%, respectively. It was found that ZrO2 nanoparticles did not affect the main crystal and chemical structure of HDPE, but the degree of crystallinity of the polymer decreases with increasing concentration of zirconium oxide. SANS experiments showed that at ambient conditions ZrO2 nanoparticles mainly distributed like mono-particles in the polymer matrix at all concentrations of filler.The structure of HDPE+ZrO2 does not changes up to 132°C at 1-3% of filler, excepting changing of the polymer structure at temperatures upper 82°C. At high concentrations of filler 10-20% the aggregation of ZrO2 nanoparticles occurs, forming domains of 2.5μm. The results of Raman and FTIR spectroscopy did not show additional specific chemical bonds between the filler and the polymer matrix. New peaks formation was not observed. These results suggest that core-shell structure does not exist in the polymer nanocomposite system.

  12. Coupling of HDPE/hydroxyapatite composites by silane-based methodologies.

    Science.gov (United States)

    Sousa, R A; Reis, R L; Cunha, A M; Bevis, M J

    2003-06-01

    Several coupling treatments based on silane chemicals were investigated for the development of high density (HDPE)/hydroxyapatite (HA) composites. Two HA powders, sintered HA (HAs) and non sintered HA (HAns), were studied in combination with five silanes, namely y-methacryloxy propyltrimethoxy silane (MEMO), 3-(2-aminoethyl)aminopropyltrimethoxy silane (DAMO), vinyltrimethoxy silane (VTMO), 3-aminopropyltriethoxy silane (AMEO) and trimethoxypropyl silane (PTMO). The HA particles were treated by a dipping in method or by spraying with silane solutions. After drying, the treated powders were compounded with HDPE or HDPE with acrylic acid and/or organic peroxide and subsequently compression molded. The tensile test specimens obtained from the molded plates were tensile tested and their fracture surfaces were observed by scanning electron microscopy (SEM). For the sintered HA (HAs) composites, the most effective coupling treatments concerning stiffness are those based on MEMO and AMEO. The low influence of these coupling procedures on strength is believed to be associated to the low volume fraction and the relatively smooth surface of the used HA particles. For the non-sintered HA (HAns) composites, it was possible to improve significantly both the stiffness and the strength. Amino silanes demonstrated to be highly efficient concerning strength enhancement. The higher effectiveness of the coupling treatments for HAns filled composites is attributed to their higher particle surface area, smaller particle size distribution and expected higher chemical reactivity. For both cases, the improvement in mechanical performance after the coupling treatment is consistent with the enhancement in interfacial adhesion observed by SEM.

  13. Study of herbicide ametryne degradation in HDPE packaging using the advanced oxidation process by ionizing radiation

    International Nuclear Information System (INIS)

    Andrade, Debora Cristina de

    2008-01-01

    This study is part of the project with the objective to evaluate pesticides degradation for decontamination of commercial polymeric packaging of high density polyethylene, HDPE, used in agriculture. The herbicide used to this study was the herbicide ametryne (commercial name, Gesapax 500), due to its great use, mainly on field crops and on corn. Ametryne is commercialized since 1975, and, depending on the pesticide formulation and type of application, residues may be detectable in water, soil and on the surfaces for months or years. In order to evaluate the efficiency of radiation processing on removal the pesticides contamination, HDPE packaging were irradiated using Radiation Dynamics Electron Beam Accelerator with 1,5 MeV energy and 37 kW, in batch system. The samples were irradiated with water, in various absorbed doses. Ametryne was analyzed by gas chromatography (GC Shimadzu 17A), after extraction with hexane/dichloromethane (1:1 v/v) solution. The calibration curve was obtained with a regression coefficient of 0.986, and the relative standard deviation was lower than 10%. The radiation processing yield was evaluated by the rate of ametryne degradation and by the destruction G-value (Gd). The electron beam irradiation processing, showed high efficiency in destroying ametryne in the HDPE packaging when the samples were irradiated in presence of small quantities of water. (author)

  14. LCA comparison of container systems in municipal solid waste management

    International Nuclear Information System (INIS)

    Rives, Jesus; Rieradevall, Joan; Gabarrell, Xavier

    2010-01-01

    The planning and design of integrated municipal solid waste management (MSWM) systems requires accurate environmental impact evaluation of the systems and their components. This research assessed, quantified and compared the environmental impact of the first stage of the most used MSW container systems. The comparison was based on factors such as the volume of the containers, from small bins of 60-80 l to containers of 2400 l, and on the manufactured materials, steel and high-density polyethylene (HDPE). Also, some parameters such as frequency of collections, waste generation, filling percentage and waste container contents, were established to obtain comparable systems. The methodological framework of the analysis was the life cycle assessment (LCA), and the impact assessment method was based on CML 2 baseline 2000. Results indicated that, for the same volume, the collection systems that use HDPE waste containers had more of an impact than those using steel waste containers, in terms of abiotic depletion, global warming, ozone layer depletion, acidification, eutrophication, photochemical oxidation, human toxicity and terrestrial ecotoxicity. Besides, the collection systems using small HDPE bins (60 l or 80 l) had most impact while systems using big steel containers (2400 l) had less impact. Subsequent sensitivity analysis about the parameters established demonstrated that they could change the ultimate environmental impact of each waste container collection system, but that the comparative relationship between systems was similar.

  15. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    Science.gov (United States)

    Aras, Neny Rasnyanti M.; Arcana, I. Made

    2015-09-01

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm-1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese stearate

  16. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    Energy Technology Data Exchange (ETDEWEB)

    Aras, Neny Rasnyanti M., E-mail: neny.rasnyanti@gmail.com; Arcana, I Made, E-mail: arcana@chem.itb.ac.id [Inorganic and Physical Chemistry Research Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha 10, Bandung 40132 (Indonesia)

    2015-09-30

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm{sup −1} which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  17. Synthesis of manganese stearate for high density polyethylene (HDPE) and its biodegradation

    International Nuclear Information System (INIS)

    Aras, Neny Rasnyanti M.; Arcana, I Made

    2015-01-01

    An oxidant additive is one type of additive used for oxo-biodegradable polymers. This additive was prepared by reaction multivalent transition metals and fatty acids to accelerate the degradation process of polymers by providing a thermal treatment or irradiation with light. This study focused on the synthesis of manganese stearate as an additive for application in High Density Polyethylene (HDPE), and the influence of manganese stearate on the characteristics of HDPE including their biodegradability. Manganese stearate was synthesized by the reaction of stearic acid with sodium hydroxide, and sodium stearate formed was reacted with manganese chloride tetrahydrate to form manganese stearate with a melting point of 100-110 °C. Based on the FTIR spectrum showed absorption peak at wave number around 1560 cm −1 which is an asymmetric vibration of CO functional group that binds to the manganese. The films of oxo-biodegradable polymer were prepared by blending HDPE and manganese stearate additives at various concentrations with using the polymer melting method, followed heating at a temperature of 50°C and 70°C for 10 days. The characterizations of the oxo-biodegradable polymers were carried out by analysis the functional groups (FTIR and ATR),thermal properties (TGA), surface properties (SEM), as well as analysis of the biodegradability (the biodegradation test by using activated sludge, % weight loss). Based on COi indicate that the additive of manganese stearate is active in oxidizing polymer by heating treatment. Results of biodegradation by microorganisms from activated sludge showed that the percentage weight loss of polymers increase with the increasing incubation time and the concentration of manganese stearate in HDPE. Biodegradability of HDPE with the addition of manganese stearate and followed by heating at a higher temperature was better observed. The highest percentage weight loss was obtained at the polymer with concentration of 0.2% manganese

  18. Application of glass particles doped by Zn+2 as an antimicrobial and atoxic compound in LLDPE and HDPE

    International Nuclear Information System (INIS)

    Santos, M.F.; Machado, C.; Tachinski, C.G.; Júnior, J.F.; Piletti, R.; Peterson, M.; Fiori, M.A.

    2014-01-01

    This study demonstrates the potential application of glass particles doped with Zn +2 (GZn) as an atoxic, antimicrobial additive when used in conjunction with high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) polymers. Toxicity tests demonstrated that these modified glass particles were nontoxic to human cells, and atomic absorption analyses demonstrated the migration of ionic species in quantities less than 2.0 ppm for both the HDPE/GZn and LLDPE/GZn compounds. Microbiological tests demonstrated the antimicrobial effect of the pure GZn compound as well as the polymeric HDPE/GZn and LLDPE/GZn compounds. In addition, at percentages of GZn higher than 2.00 wt.% and at a time of 4 h, the bactericidal performance is excellent and equal for both polymeric compounds. - Highlights: • Glass doped with Zn +2 (GZn) promoted a good bactericidal properties in LLDPE and HDPE. • LLDPE and HDPE doped with GZn have capacity of liberty ionic zinc during a time period. • GZn is not toxic to human and can be used with antimicrobial additive to polymers. • GZn has an antimicrobial effect in bacteria type Gram positive and Gram negative

  19. Engineering cartilage substitute with a specific size and shape using porous high-density polyethylene (HDPE) as internal support.

    Science.gov (United States)

    Wu, Yujia; Zhu, Lie; Jiang, Hua; Liu, Wei; Liu, Yu; Cao, Yilin; Zhou, Guangdong

    2010-04-01

    Despite the great advances in cartilage engineering, constructing cartilage of large sizes and appropriate shapes remains a great challenge, owing to limits in thickness of regenerated cartilage and to inferior mechanical properties of scaffolds. This study introduces a pre-shaped polyglycolic acid (PGA)-coated porous high-density polyethylene (HDPE) scaffold to overcome these challenges. HDPE was carved into cylindrical rods and wrapped around by PGA fibres to form PGA-HDPE scaffolds. Porcine chondrocytes were seeded into the scaffolds and the constructs were cultured in vitro for 2 weeks before subcutaneous implantation into nude mice. Scaffolds made purely of PGA with the same size and shape were used as a control. After 8 weeks of implantation, the construct formed cartilage-like tissue and retained its pre-designed shape and size. In addition, the regenerated cartilage grew and completely surrounded the HDPE core, which made the entire cartilage substitute biocompatible to its implanted environment as native cartilage similarly does. By contrast, the shape and size of the constructs in the control group seriously deformed and obvious hollow cavity and necrotic tissue were observed in the inner region. These results demonstrate that the use of HDPE as the internal support of a biodegradable scaffold has the potential to circumvent the problems of limitations in size and shape, with promising implications for the development of engineered cartilage appropriate for clinical applications. Copyright 2009 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  20. Effect of EVA on thermal stability, flammability, mechanical properties of HDPE/EVA/Mg(OH)2 composites

    Science.gov (United States)

    Cao, R.; Deng, Z. L.; Ma, Y. H.; Chen, X. L.

    2017-06-01

    In this work, ethylene vinyl acetate (EVA) is introduced to improve the properties of high-density polyethylene (HDPE)/magnesium hydroxide (MH) composites. The thermal stability, flame retardancy and mechanical properties of HDPE/EVA/MH composites are investigated and discussed. With increasing content of EVA, the limiting oxygen index (LOI) of the composites increases. The thermal stability analysis shows that the initial decomposition temperature begins at a low temperature; however, the residues of the composites at 600°C increase when HDPE is replaced by small amounts of EVA. The early degradation absorbs heat, dilute oxygen and residue. During this process, it protects the matrix inside. Compared with the HDPE/MH and EVA/MH composites, the ternary HDPE/EVA/MH composites exhibit better flame retardancy by increasing the LOI values, and reducing the heat release rate (HRR) and total heat release (THR). With increasing content of EVA, the mechanical properties can also be improved, which is attributed to the good affinity between EVA and MH particles.

  1. Application of glass particles doped by Zn{sup +2} as an antimicrobial and atoxic compound in LLDPE and HDPE

    Energy Technology Data Exchange (ETDEWEB)

    Santos, M.F. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarianese/UNESC, Av. Universitária, 1105, CEP 88806-000, Criciúma, Santa Catarina (Brazil); Machado, C.; Tachinski, C.G.; Júnior, J.F.; Piletti, R. [Laboratory of Advanced Materials and Processes, Universidade do Extremo Sul Catarianese/UNESC, iParque, Rod. Gov. Jorge Lacerda, km 4,5, CEP 88806-000, Criciúma, SC (Brazil); Peterson, M. [Post-Graduate Program in Science and Materials Engineering, Universidade do Extremo Sul Catarianese/UNESC, Av. Universitária, 1105, CEP 88806-000, Criciúma, Santa Catarina (Brazil); Laboratory of Advanced Materials and Processes, Universidade do Extremo Sul Catarianese/UNESC, iParque, Rod. Gov. Jorge Lacerda, km 4,5, CEP 88806-000, Criciúma, SC (Brazil); Fiori, M.A., E-mail: fiori@unochapeco.edu.br [Post-Graduation Program in Environmental Science, Universidade Comunitária da Região de Chapecó (Unochapecó), Chapecó, SC (Brazil); Post-Graduation Program in Technology and Management of the Innovation, Universidade Comunitária da Região de Chapecó (Unochapecó), Chapecó, SC (Brazil)

    2014-06-01

    This study demonstrates the potential application of glass particles doped with Zn{sup +2} (GZn) as an atoxic, antimicrobial additive when used in conjunction with high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) polymers. Toxicity tests demonstrated that these modified glass particles were nontoxic to human cells, and atomic absorption analyses demonstrated the migration of ionic species in quantities less than 2.0 ppm for both the HDPE/GZn and LLDPE/GZn compounds. Microbiological tests demonstrated the antimicrobial effect of the pure GZn compound as well as the polymeric HDPE/GZn and LLDPE/GZn compounds. In addition, at percentages of GZn higher than 2.00 wt.% and at a time of 4 h, the bactericidal performance is excellent and equal for both polymeric compounds. - Highlights: • Glass doped with Zn{sup +2} (GZn) promoted a good bactericidal properties in LLDPE and HDPE. • LLDPE and HDPE doped with GZn have capacity of liberty ionic zinc during a time period. • GZn is not toxic to human and can be used with antimicrobial additive to polymers. • GZn has an antimicrobial effect in bacteria type Gram positive and Gram negative.

  2. KARAKTERISTIK MORFOLOGI, TERMAL, FISIK-MEKANIK, DAN BARRIER PLASTIK BIODEGRADABEL BERBAHAN BAKU KOMPOSIT PATI TERMOPLASTIK-LLDPE/HDPE

    Directory of Open Access Journals (Sweden)

    Waryat Waryat

    2013-08-01

      ABSTRAK   Plastik sebagai kemasan suatu produk sudah banyak dipakai dan digunakan dalam kurun waktu lama. Namun, limbah plastik tersebut dapat menimbulkan pencemaran lingkungan dikarenakan plastik sulit untuk terdegradasi oleh mikroorganisme. Usaha untuk mengurangi ketergantungan terhadap plastik salah satunya adalah penggunaan plastik ramah lingkungan dari bahan baku yang dapat diperbaruhi dengan metode pencampuran/blending. Permasalahan yang dihadapi dalam pembuatan plastik biodegradabel berbahan baku campuran antara bahan alami dan sintetis adalah tidak kompatibel antara kedua bahan tersebut karena bahan alami bersifat hidrofilik/polar dan bahan sintetis bersifat hidrofobik/non polar. Untuk meningkatkan kompatibilitas antara kedua campuran itu perlu ditambahkan bahan seperti compatibilizer. Tujuan penelitian ini adalah untuk mengetahui karakteristik morfologi permukaan plastik, kecepatan alir, densitas, suhu leleh, sifat mekanik, dan barrier pastik biodegradabel berbahan baku campuran pati termoplastik-LLDPE/HDPE. Penelitian ini dibagi menjadi tiga tahap yaitu pembuatan pati termoplastik, pembuatan compatibilizer LLDPE/HDPE-g-MA dan pembuatan plastik biodegradabel. Karakteristik sifat aliran, kekuatan tarik, perpanjangan putus, dan permeabilitas oksigen plastik biodegradabel berbahan baku pati termoplastik-LLDPE/HDPE cenderung menurun, sedangkan karakteristik permeabilitas terhadap uap air cenderung meningkat dengan semakin meningkatnya kandungan pati termoplastik. Adanya compatibilizer LLDPE/HDPE-g-MA menghasilkan sifat mekanik lebih baik pada plastik biodegradabel. Kata kunci: plastik biodegradabel, pati termoplastik, compatibilizer MA-g-LLDPE/HDPE

  3. Environmental and economic assessment of a road safety product made with virgin and recycled HDPE: a comparative study.

    Science.gov (United States)

    L Simões, Carla; Costa Pinto, Lígia M; Bernardo, C A

    2013-01-15

    The development of value-added products made from post-consumer plastic recyclates has become an important goal in the quest for a sustainable society. To attain such goal, tools with higher accuracy and wider scope are increasingly necessary. The present work describes the application of a Life Cycle Assessment (LCA)/Life Cycle Costing (LCC) integrated model, with inclusion of externalities (environmental and social costs), to Anti-Glare Lamellae (AGL) made with High Density Polyethylene (HDPE). It compares an AGL currently manufactured from virgin HDPE (current AGL) with an alternative one made with recycled HDPE (optional AGL). The results obtained show that neither the current nor the optional AGL depict the best environmental performance in all impact categories. Nevertheless, there is a clear overall environmental and economic advantage in replacing virgin HDPE with recycled HDPE. The present work also makes evident that the LCA/LCC integrated model allows the identification of economic and environmental win-win and trade-off situations related to the full life cycle of products. As such, its results can be used as valuable guidelines in product development. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Influence of the surfactant in the shear-induced crystallization kinetics of HDPE/MMT nano composites; Influencia do tratamento superficial da montmorilonita na cinetica de cristalizacao induzida por fluxo de nanocompositos de HDPE

    Energy Technology Data Exchange (ETDEWEB)

    Bonel, A.B. [Universidade Federal de Sao Carlos (DEMA/UFSCAR), SP (Brazil). Dept. de Engenharia de Materiais; Beatrice, C.A.G.; Marini, J.; Bretas, R.E.S., E-mail: bretas@ufscar.b [Universidade Federal de Sao Carlos (UFSCAR), SP (Brazil). Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais

    2010-07-01

    High-density polyethylene (HDPE) compatibilized with ethylene vinyl-acetate copolymer (EVA)r, with 5 wt% of two different organically modified montmorillonite (with polar and non-polar surfactant) were prepared by melt blending in a corrotational twin-screw extruder at 225 deg C, 100rpm and 3kg/h. Both nanocomposites were characterized by wide-angle x-ray scattering (WAXS), transmission electron microscopy (TEM) and rheological measurements. The nanoclay's lamellas were intercalated in both samples. The storage and the loss moduli of the nanocomposites, at low frequencies, showed that the particles of the nanoclay modified with a polar surfactant were well dispersed thru the HDPE matrix, while the particles of the other nanoclay were well distributed thru the matrix. The presence of a nanoclay modified with a non-polar surfactant reduced the induction times for the crystals growth, due to the strong interactions with the HDPE chains. (author)

  5. HDPE/LLDPE blend-based nanocomposites - Part I: evaluation of thermo-mechanical properties and weathering resistance; Nanocompositos de blendas HDPE/LLDPE e OMMT - parte I: avaliacao das propriedades termo-mecanicas e da resistencia ao intemperismo

    Energy Technology Data Exchange (ETDEWEB)

    Passador, Fabio R.; Backes, Eduardo H.; Travain, Daniel R.; Ruvolo Filho, Adhemar; Pessan, Luiz A., E-mail: fabiopassador@gmail.com [Universidade Federal de Sao Carlos (UFSCar), SP (Brazil). Departamento de Engenharia de Materiais

    2013-07-01

    Nano composites from high density polyethylene/ linear low density polyethylene (HDPE/LLDPE) blends were prepared at the melt state in an extruder, using HDPE-g-MA as compatibilizer agent. The structural characterization was performed through wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The results showed that adding the compatibilizer induced formation of a predominant intercalated microstructure. Dynamic-mechanical studies showed that the addition of the compatibilizer increases the interactions between the nano clay surface and the polyolefin matrix. The weathering conditions affected the mechanical behavior of HDPE/LLDPE blend-based nano composites. Both treatments performed in hot water and in a forced convection air oven provided the relief of residual stresses in the polymer matrix, while the treatment in an accelerated aging chamber provided the formation of carbonyl groups that lead to a decreased degree of crystallinity and elastic modulus of the nanocomposites. (author)

  6. HDPE/LLDPE blend-based nanocomposites - Part I: evaluation of thermo-mechanical properties and weathering resistance

    International Nuclear Information System (INIS)

    Passador, Fabio R.; Backes, Eduardo H.; Travain, Daniel R.; Ruvolo Filho, Adhemar; Pessan, Luiz A.

    2013-01-01

    Nano composites from high density polyethylene/ linear low density polyethylene (HDPE/LLDPE) blends were prepared at the melt state in an extruder, using HDPE-g-MA as compatibilizer agent. The structural characterization was performed through wide angle X-ray diffraction (WAXD) and transmission electron microscopy (TEM). The results showed that adding the compatibilizer induced formation of a predominant intercalated microstructure. Dynamic-mechanical studies showed that the addition of the compatibilizer increases the interactions between the nano clay surface and the polyolefin matrix. The weathering conditions affected the mechanical behavior of HDPE/LLDPE blend-based nano composites. Both treatments performed in hot water and in a forced convection air oven provided the relief of residual stresses in the polymer matrix, while the treatment in an accelerated aging chamber provided the formation of carbonyl groups that lead to a decreased degree of crystallinity and elastic modulus of the nanocomposites. (author)

  7. Application of glass particles doped by Zn(+2) as an antimicrobial and atoxic compound in LLDPE and HDPE.

    Science.gov (United States)

    Santos, M F; Machado, C; Tachinski, C G; Júnior, J F; Piletti, R; Peterson, M; Fiori, M A

    2014-06-01

    This study demonstrates the potential application of glass particles doped with Zn(+2) (GZn) as an atoxic, antimicrobial additive when used in conjunction with high density polyethylene (HDPE) and linear low density polyethylene (LLDPE) polymers. Toxicity tests demonstrated that these modified glass particles were nontoxic to human cells, and atomic absorption analyses demonstrated the migration of ionic species in quantities less than 2.0ppm for both the HDPE/GZn and LLDPE/GZn compounds. Microbiological tests demonstrated the antimicrobial effect of the pure GZn compound as well as the polymeric HDPE/GZn and LLDPE/GZn compounds. In addition, at percentages of GZn higher than 2.00wt.% and at a time of 4h, the bactericidal performance is excellent and equal for both polymeric compounds. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    Energy Technology Data Exchange (ETDEWEB)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A., E-mail: ferelenakq@gmail.co [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Buenos Aires (Argentina). Inst. de Investigaciones para la Industria Quimica; Pita, Victor J.R.R.; Dias, Marcos L. [Universidade Federal do Rio de Janeiro (IMA/UFRJ), RJ (Brazil). Inst. de Macromoleculas Profa. Eloisa Mano

    2009-07-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  9. HDPE/clay hybrids: the effect of clay modified with poly(diphenyl siloxanes) on thermal and rheological properties

    International Nuclear Information System (INIS)

    Monasterio, Fernanda E.; Carrera, Maria C.; Erdmann, Eleonora; Destefanis, Hugo A.; Pita, Victor J.R.R.; Dias, Marcos L.

    2009-01-01

    Poly(diphenyl siloxanes) (PDPhS) were synthesized in presence of organophilic clay in order to modify its nano structure. Two silane monomers were used: dimethoxydiphenylsilane and dichlorodiphenylsilane. The following characterizations were performed for all clays: XRD, FTIR and TGA/DTG. These siloxane-modified clays were more hydrophobic and had enhanced thermal stability. Solvent extraction was carried out in the siloxane-modified clays and the PDPhS soluble fraction analyzed according the molecular weight via GPC. The presence of free and grafted oligomers on clay surface was identified. The modified clays were added to HDPE by melt processing to obtain HDPE/clay hybrids which exhibited marked differences in the rheological behavior when compared with neat HDPE. (author)

  10. Persamaan Prediksi Umur Simpan Filet Ikan Nila (Oreochromis niloticus yang Dikemas Vakum dalam HDPE

    Directory of Open Access Journals (Sweden)

    Rudi Riyanto

    2014-06-01

    Full Text Available Penelitian ini dilakukan untuk mendapatkan data laju penurunan mutu filet ikan nila (Oreochromis niloticus yang dikemas vakum dengan HDPE. Hasil analisis digunakan untuk menentukan indikator yang paling tepat untuk persamaan prediksi umur simpan menggunakan persamaan regresi. Dalam percobaan yang dilakukan filet ikan nila yang dikemas vakum dengan HDPE disimpan pada suhu 0, 10, 20, dan 30 oC. Parameter yang dianalisis adalah TVB-N, pH, TBA, Organoleptik (hedonik, dan TPC (aerob dan anaerob. Data yang dihasilkan menunjukkan bahwa suhu dan lama penyimpanan berpengaruh nyata terhadap laju penurunan mutu filet ikan nila (P<0,05. Berdasarkan tingkat kecepatan parameter mutu untuk mencapai limit toleransi, nilai TVB-N merupakan parameter mutu yang paling tepat untuk dijadikan parameter penentu kinetika pembusukan filet ikan nila. Kandungan TVB filet ikan nila yang disimpan pada suhu 30, 20, 10, dan 0 °C telah melampaui batas mutu (30 mg-N/100 g secara berturut-turut pada penyimpanan 9, 24, 72, dan 168 jam. Berdasarkan hasil pengolahan data nilai TVB filet ikan nila pada beberapa suhu penyimpanan menggunakan persamaan Arrhenius, nilai Ea yang didapatkan sebesar 72,17 KJ/mol dengan menggunakan nilai TVB 30 mg-N/100 g sebagai nilai batas penolakan mutu filet ikan nila. Persamaan prediksi umur simpan (t=jam filet ikan nila dalam HDPE vakum yang didapatkan adalah ln A = ln A0 + (t.exp[26,44-8681(1/T] dengan tingkat akurasi nilai prediksi terhadap nilai mutu filet ikan nila percobaan adalah 73–78%.

  11. Five-year performance monitoring of a high-density polyethylene (HDPE) cover system at a reclaimed mine waste rock pile in the Sydney Coalfield (Nova Scotia, Canada).

    Science.gov (United States)

    Power, Christopher; Ramasamy, Murugan; MacAskill, Devin; Shea, Joseph; MacPhee, Joseph; Mayich, David; Baechler, Fred; Mkandawire, Martin

    2017-12-01

    Cover systems are commonly placed over waste rock piles (WRPs) to limit atmospheric water and oxygen ingress and control the generation and release of acid mine drainage (AMD) to the receiving environment. Although covers containing geomembranes such as high-density polyethylene (HDPE) exhibit the attributes to be highly effective, there are few, if any, published studies monitoring their performance at full-scale WRPs. In 2011, a HDPE cover was installed over the Scotchtown Summit WRP in Nova Scotia, Canada, and extensive field performance monitoring was conducted over the next five years. A range of parameters within the atmosphere, cover, waste rock, groundwater and surface water, were monitored and integrated into a comprehensive hydrogeochemical conceptual model to assess (i) atmospheric ingress to the waste rock, (ii) waste rock acidity and depletion and (iii) evolution of groundwater and surface water quality. Results demonstrate that the cover is effective and meeting site closure objectives. Depletion in oxygen influx resulted in slower sulphide oxidation and AMD generation, while a significant reduction in water influx (i.e. 512 to 50 mm/year) resulted in diminished AMD release. Consistent improvements in groundwater quality (decrease in sulphate and metals; increase in pH) beneath and downgradient of the WRP were observed. Protection and/or significant improvement in surface water quality was evident in all surrounding watercourses due to the improved groundwater plume and elimination of contaminated runoff over previously exposed waste rock. A variably saturated flow and contaminant transport model is currently being developed to predict long-term cover system performance.

  12. Pengaruh Penambahan Cacahan Limbah Plastik Jenis High Density Polyethylene (Hdpe) Pada

    OpenAIRE

    Sina, Dantje A. T; Udiana, I Made; Da Costa, Bernad D

    2012-01-01

    Waste is a very complex problem in urban area. Plastic waste is increasing every year. Kupang with population of 291,794 people generate waste reaches 926 m3/day. Organic waste to 700 m3 and inorganic waste about 226 m3. Concrete is planned by strength quality 25 MPa. Based on the analysis in this study obtained that concrete flexural strength value increased due to the addition of HDPE plastic shredded into the concrete, with chopped levels are added to the concrete at 0%, 0.50% and 0.90...

  13. Mechanical properties of concrete reinforced with recycled HDPE plastic fibres\\ud

    OpenAIRE

    Pešić, Ninoslav; Živanović, Stana; Garcia, Reyes; Papastergiou, Panos

    2016-01-01

    This work investigates potential engineering benefits of the pioneering application of simply extruded recycled high-density polyethylene (HDPE) plastic fibres in structural concrete. Mechanical and serviceability properties of concrete are studied through the testing of seven series of specimens: one made of the plain concrete and, for each of the two fibre diameters View the MathML source and View the MathML source, three series with 0.40%, 0.75% and 1.25% volume fraction of fibres. While t...

  14. Blends of ground tire rubber devulcanized by microwaves/HDPE - Part A: influence of devulcanization process

    Directory of Open Access Journals (Sweden)

    Fabiula Danielli Bastos de Sousa

    2015-06-01

    Full Text Available AbstractThe main objective of this work is the study of the influence of microwaves devulcanization of the elastomeric phase on dynamically revulcanized blends based on Ground Tire Rubber (GTR/High Density Polyethylene (HDPE. The devulcanization of the GTR was performed in a system comprised of a conventional microwave oven adapted with a motorized stirring at a constant microwaves power and at various exposure times. The influence of the devulcanization process on the final properties of the blends was evaluated in terms of mechanical, viscoelastic, thermal and rheological properties. The morphology was also studied.

  15. Development of Composite Made of HDPE and Fiber Reinforced Polymer Dust

    International Nuclear Information System (INIS)

    Muhamad Noor Izwan Ishak; Ismail Mustapha; Mohd Reusmazran Yusof; Yusof Abdullah; Nor Pai'za Mohamad Hasan; Mohamad Ridzuan Ahamad; Md Fakarudin Ab Rahman; Hafizal Yazid; Ainul Mardhiah Terry; Airwan Affandi Mahmood; Nurliyana Abdullah

    2016-01-01

    Full text: Composite of High Density Polyethylene and Fiber Reinforced Polymer Dust (HDPE/ FRPD) were prepared by melt mixing technique. The blend was mixed and compression molded by hydraulic press at 150 degree Celsius. Effect of blend ratio on mechanical properties of the developed composite was determined. Tensile properties of the blends found to show decreasing trend with addition of FRPD. While impact strength and hardness properties showed promising result. Reuse of ' Fiber Reinforced Polymer ' dust can be improved by the present invention. (author)

  16. Evaluasi Kuat Tumpu Alat Sambung Baut pada Papan WPC dari Limbah Sengon dan Plastik HDPE

    Directory of Open Access Journals (Sweden)

    Yudhi Arnandha

    2016-12-01

    Full Text Available Wood Plastic Composite (WPC is wood based material that been produce by mixing sawdust as main composition and plastic polymer as bonding agent. Nowadays, WPC board already been produced in Indonesia using Sengon sawdust and recycle HDPE plastic. Sengon sawdust was used as WPC since its availability from plywood production waste, moreover HDPE plastic considered had higher strength and more rigid than PET plastic. WPC occasionally being used as non structural material, moreover from previous study about mechanical properties of WPC, it was found that WPC Sengon has high shear strength around 25 – 30 MPa. These lead that WPC Sengon had a potential used as shear wall sheathing, thus additional research need to be conducted in order to study the type of bolt and diameter of the bolt can be used for these shear wall. This study aimed to investigate the dowel bearing of bolt using full hole method based on ASTM D5764 with type and bolt diameter as specimen variation. Two types of bolt were used in this study; stainless bolt and standard bolt with diameter each of 6 mm, 8 mm, 10 mm and 12 mm. According to ANOVA, there was insignificant result between stainless bolt and standard one, but there was significant result based on diameter of the bolt. Hereafter, it can be recommended the used of 10 mm diameter of bolt for structural purpose with dowel bearing strength around 67 – 70 MPa.

  17. Investigation on the hot melting temperature field simulation of HDPE water supply pipeline in gymnasium pool

    Science.gov (United States)

    Cai, Zhiqiang; Dai, Hongbin; Fu, Xibin

    2018-06-01

    In view of the special needs of the water supply and drainage system of swimming pool in gymnasium, the correlation of high density polyethylene (HDPE) pipe and the temperature field distribution during welding was investigated. It showed that the temperature field distribution has significant influence on the quality of welding. Moreover, the mechanical properties of the welded joint were analyzed by the bending test of the weld joint, and the micro-structure of the welded joint was evaluated by scanning electron microscope (SEM). The one-dimensional unsteady heat transfer model of polyethylene pipe welding joints was established by MARC. The temperature field distribution during welding process was simulated, and the temperature field changes during welding were also detected and compared by the thermo-couple temperature automatic acquisition system. Results indicated that the temperature of the end surface of the pipe does not reach the maximum value, when it is at the end of welding heating. Instead, it reaches the maximum value at 300 sand latent heat occurs during the welding process. It concludes that the weld quality is the highest when the welding pressure is 0.2 MPa, and the heating temperature of HDPE heat fusion welding is in the range of 210 °C-230 °C.

  18. Mechanical properties of HDPE/UHMWPE blends: effect of filler loading and filler treatment.

    Science.gov (United States)

    Lai, K L K; Roziyanna, A; Ogunniyi, D S; Zainal, Arifin M I; Azlan, Ariffin A

    2004-05-01

    Various blend ratios of high-density polyethylene (HDPE) and ultra high molecular weight polyethylene (UHMWPE) were prepared with the objective of determining their suitability as biomaterials. In the unfilled state, a blend of 50/50 (HDPE/UHMWPE) ratio by weight was found to yield optimum properties in terms of processability and mechanical properties. Hydroxyapatite (HA) was compounded with the optimum blend ratio. The effects of HA loading, varied from 0 to 50wt% for both filled and unfilled blends were tested for mechanical properties. It was found that the inclusion of HA in the blend led to a remarkable improvement of mechanical properties compared to the unfilled blend. In order to improve the bonding between the polymer blend and the filler, the HA used was chemically treated with a coupling agent known as 3-(trimethoxysiyl) propyl methacrylate and the treated HA was mixed into the blend. The effect of mixing the blend with silane-treated HA also led to an overall improvement of mechanical properties.

  19. Characterization of laser beam transmission through a High Density Polyethylene (HDPE) plate

    Science.gov (United States)

    Genna, S.; Leone, C.; Tagliaferri, V.

    2017-02-01

    Infrared (IR) light propagation in semicrystalline polymers involves mechanisms such as reflection, transmission, absorption and internal scattering. These different rates determine either the interaction mechanism, either the temperatures reached in the IR heating processes. Consequently, the knowledge of these rates is fundamental in the development of IR heating processes in order to avoid the polymer's damage and to increase the process energy efficiency. Aim of this work is to assess a simple procedure to determine the rates of absorbed, reflected, transmitted and scattered energy in the case of an unfilled High Density Polyethylene (HDPE) plate. Experimental tests were performed by exposing a HDPE plate, 3 mm in thickness, to a diode laser source, working at the fundamental wavelength of 975 nm. The transmitted power was measured by power meter, the reflected one by applying the Beer-Lambert law to sample of different thickness. IR thermal images were adopted to measure the absorbed ratio. The scattered ratio was measured by energetic balance, as difference between the incoming power and the other ratios. Finally, IR thermal images were adopted to measure the scattered ratio and to validate the procedure.

  20. White HDPE bottles as source of serious contamination of water samples with Ba and Zn.

    Science.gov (United States)

    Reimann, Clemens; Grimstvedt, Andreas; Frengstad, Bjørn; Finne, Tor Erik

    2007-03-15

    During a recent study of surface water quality factory new white high-density polyethylene (HDPE) bottles were used for collecting the water samples. According to the established field protocol of the Geological Survey of Norway the bottles were twice carefully rinsed with water in the field prior to sampling. Several blank samples using milli-Q (ELGA) water (>18.2 MOmega) were also prepared. On checking the analytical results the blanks returned values of Ag, Ba, Sr, V, Zn and Zr. For Ba and Zn the values (c. 300 microg/l and 95 microg/l) were about 10 times above the concentrations that can be expected in natural waters. A laboratory test of the bottles demonstrated that the bottles contaminate the samples with significant amounts of Ba and Zn and some Sr. Simple acid washing of the bottles prior to use did not solve the contamination problem for Ba and Zn. The results suggest that there may exist "clean" and "dirty" HDPE bottles depending on manufacturer/production process. When collecting water samples it is mandatory to check bottles regularly as a possible source of contamination.

  1. Dynamic mechanical analysis of multi-walled carbon nanotube/HDPE composites.

    Science.gov (United States)

    Kanagaraj, S; Guedes, R M; Oliveira, Mónica S A; Simões, José A O

    2008-08-01

    Since the discovery of carbon nanotubes (CNTs), their remarkable properties make them ideal candidates to reinforce in advanced composites. In this attempt, an enhancement of mechanical properties of high density polyethylene (HDPE) by adding 1 wt% of CNTs is studied using Dynamic mechanical and Thermal analyzer (DMTA). The chemically treated and functionalized CNTs were homogeneously dispersed with HDPE and the test samples were made using injection molding machine. Using DMTA, storage modulus (E'), loss modulus (E") and damping factor (tan delta) of the sample under oscillating load were studied as a function of frequency of oscillation and temperatures. The storage modulus decreases with an increase of temperature and increases by adding CNTs in the composites where the reinforcing effect of CNT is confirmed. It is concluded that the large scale polymer relaxations in the composites are effectively restrained by the presence of CNTs and thus the mechanical properties of nanocomposites increase. The transition frequency of loss modulus is observed at 1 Hz. The loss modulus decreases with an increase of temperature at below 1 Hz but opposite trend was observed at above 1 Hz. The shift factor could be predicted from Williams-Landel-Ferry (WLF) model which has good agreement with experimental results.

  2. A Taguchi approach on optimal process control parameters for HDPE pipe extrusion process

    Science.gov (United States)

    Sharma, G. V. S. S.; Rao, R. Umamaheswara; Rao, P. Srinivasa

    2017-06-01

    High-density polyethylene (HDPE) pipes find versatile applicability for transportation of water, sewage and slurry from one place to another. Hence, these pipes undergo tremendous pressure by the fluid carried. The present work entails the optimization of the withstanding pressure of the HDPE pipes using Taguchi technique. The traditional heuristic methodology stresses on a trial and error approach and relies heavily upon the accumulated experience of the process engineers for determining the optimal process control parameters. This results in setting up of less-than-optimal values. Hence, there arouse a necessity to determine optimal process control parameters for the pipe extrusion process, which can ensure robust pipe quality and process reliability. In the proposed optimization strategy, the design of experiments (DoE) are conducted wherein different control parameter combinations are analyzed by considering multiple setting levels of each control parameter. The concept of signal-to-noise ratio ( S/ N ratio) is applied and ultimately optimum values of process control parameters are obtained as: pushing zone temperature of 166 °C, Dimmer speed at 08 rpm, and Die head temperature to be 192 °C. Confirmation experimental run is also conducted to verify the analysis and research result and values proved to be in synchronization with the main experimental findings and the withstanding pressure showed a significant improvement from 0.60 to 1.004 Mpa.

  3. Impact of landfill liner time-temperature history on the service life of HDPE geomembranes.

    Science.gov (United States)

    Rowe, R Kerry; Islam, M Z

    2009-10-01

    The observed temperatures in different landfills are used to establish a number of idealized time-temperature histories for geomembrane liners in municipal solid waste (MSW) landfills. These are then used for estimating the service life of different HDPE geomembranes. The predicted antioxidant depletion times (Stage I) are between 7 and 750 years with the large variation depending on the specific HDPE geomembrane product, exposure conditions, and most importantly, the magnitude and duration of the peak liner temperature. The higher end of the range corresponds to data from geomembranes aged in simulated landfill liner tests and a maximum liner temperature of 37 degrees C. The lower end of the range corresponds to a testing condition where geomembranes were immersed in a synthetic leachate and a maximum liner temperature of 60 degrees C. The total service life of the geomembranes was estimated to be between 20 and 3300 years depending on the time-temperature history examined. The range illustrates the important role that time-temperature history could play in terms of geomembrane service life. The need for long-term monitoring of landfill liner temperature and for geomembrane ageing studies that will provide improved data for assessing the likely long-term performance of geomembranes in MSW landfills are highlighted.

  4. γ-Radiation (0-150 kGy) Effects on HDPE/LDPE Blends

    International Nuclear Information System (INIS)

    Albano, C.

    2006-01-01

    In the present work, irradiation with 60 C o source was employed to study the effect of γ-rays on some physical properties of HDPE/LDPE blends (0/100, 10/90, 25/75, 50/50, 75/25, 100/0), using various doses: 0, 50, 150 kGy. The blends were prepared by extrusion and plates were compression molded employing fast and slow cooling methods from the melt. Density, degree of crystallinity and mechanical properties were dependant on the cooling rate used and blend composition. Better properties were found for HDPE-rich blends. Mechanical properties showed no significant variations in tensile modulus and yield stress. Instead, a decrease in elongation at break, due to molecular crosslinking or branching reaction effects, with the raise of radiation dose was obtained. Density measurements and differential scanning calorimetry results failed to exhibit significant changes with radiation dose. Some qualitative aspects included changes in endotherms shape. These were attributed to the variation of in crystallite sizes, probably due to structural changes originated by crosslinking and chain scission reactions occurring as a result of γ-rays exposure. On the other hand, there was an abrupt reduction of the melt flow index (MFI) from the range of 16-9 dg/min for 0 kGy to non-fluidity for an exposure of 150 kGy; this behavior is another sign of high crosslinking, impairing the viscous fluidity of the blends

  5. Effect of gamma irradiation on mechanical, thermal and rheological behavior of HDPE filled with seaweed residues

    International Nuclear Information System (INIS)

    Catano, L.; Albano, C.; Karam, A.; Dominguez, N.; Sanchez, Y.; Gonzalez, J.

    2005-01-01

    The present work shows the results obtained during the investigation of the influence of gamma irradiation on mechanical, thermal and rheological properties of high-density polyethylene (HDPE) filled with seaweed residues (SR). The SR used was located on Venezuelan coastlines and they are composed mainly by CaCO 3 in aragonite phase. The HDPE was extruded along with the filler at different compositions (20, 30 and 40 wt.%). The composites were exposed to a 60 Co source irradiated at 25 and 100 kGy. From the obtained results, it was noticed that Young modulus remained constant with filler content. Moreover, the influence of filler content was found to be more prominent on properties like tensile stress and elongation at break. On the other hand, thermal analysis showed that filler content had no significant influence on thermal stability. Still, it is necessary to point out that low radiation doses improved thermal stability of the composites. From rheological studies it was observed a decreasing of melt flow index (MFI) by increasing the SR amount and radiation. Therefore, was determinate that high filler content composites are the best choice to be considered for biomedical and industrial applications

  6. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.

  7. Morphology, mechanical and thermal oxidative aging properties of HDPE composites reinforced by nonmetals recycled from waste printed circuit boards.

    Science.gov (United States)

    Yang, Shuangqiao; Bai, Shibing; Wang, Qi

    2016-11-01

    In this study nonmetals recycled from waste printed circuit boards (NPCB) is used as reinforce fillers in high-density polyethylene (HDPE) composites. The morphology, mechanical and thermal oxidative aging properties of NPCB reinforced HDPE composites are assessed and it compared with two other commercial functional filler for the first time. Mechanical test results showed that NPCB could be used as reinforcing fillers in the HDPE composites and mechanical properties especially for stiffness is better than other two commercial fillers. The improved mechanical property was confirmed by the higher aspect ratio and strong interfacial adhesion in scanning electron microscopy (SEM) studies. The heat deflection temperature (HDT) test showed the presence of fiberglass in NPCB can improve the heat resistance of composite for their potential applications. Meanwhile, the oxidation induction time (OIT) and the Fourier transform infrared (FTIR) spectroscopy results showed that NPCB has a near resistance to oxidation as two other commercial fillers used in this paper. The above results show the reuse of NPCB in the HDPE composites represents a promising way for resolving both the environmental pollution and the high-value reuse of resources. Copyright © 2015. Published by Elsevier Ltd.

  8. The Effects of Coupling Agents on the Mechanical and Thermal Properties of Eucalyptus Flour/HDPE Composite

    Directory of Open Access Journals (Sweden)

    Metanawin Siripan

    2015-01-01

    Full Text Available The aim of this research was to study the effects of the coupling agents, FusabondTM E-528 (polyethylene-grafted maleic anhydride; PE-g-MA, MA and Amino Silane (Si, on the thermal properties, and mechanical properties of Eucalyptus flour-HDPE composite. Variation of the Eucalyptus flour contents in the HDPE resulted in properties of the composite. With increasing in the contents of Eucalyptus flour in polymer matrix, the mechanical properties of the HDPE composite decreased in EU-MA series samples while they were gradually decreased in EU-Si series samples. SEM micrographs showed the fracture surface of the HDPE/Eucalyptus composite at different ratios of Eucalyptus flour. SEM micrograpgh exhibited the dispersion of EU flour in polymer matrix. The samples of both coupling agents showed an increase in interfacial adhesion, observed for the considerable decreased of gaps between the matrix and the dispersed phase. However, the EU-MA sample appeared to be more uniformly than the EU-Si sample.

  9. Biocompatibility evaluation of HDPE-UHMWPE reinforced β-TCP nanocomposites using highly purified human osteoblast cells.

    Science.gov (United States)

    Shokrgozar, M A; Farokhi, M; Rajaei, F; Bagheri, M H A; Azari, Sh; Ghasemi, I; Mottaghitalab, F; Azadmanesh, K; Radfar, J

    2010-12-15

    Biocompatibility of β-TCP/HDPE-UHMWPE nanocomposite as a new bone substitute material was evaluated by using highly purified human osteoblast cells. Human osteoblast cells were isolated from bone tissue and characterized by immunofluorescence Staining before and after purification using magnetic bead system. Moreover, proliferation, alkaline phosphatase production, cell attachment, calcium deposition, gene expression, and morphology of osteoblast cells on β-TCP/HDPE-UHMWPE nanocomposites were evaluated. The results have shown that the human osteoblast cells were successfully purified and were suitable for subsequent cell culturing process. The high proliferation rate of osteoblast cells on β-TCP/HDPE-UHMWPE nanocomposite confirmed the great biocompatibility of the scaffold. Expression of bone-specific genes was taken place after the cells were incubated in composite extract solutions. Furthermore, osteoblast cells were able to mineralize the matrix next to composite samples. Scanning electron microscopy demonstrated that cells had normal morphology on the scaffold. Thus, these results indicated that the nanosized β-TCP/HDPE-UHMWPE blend composites could be potential scaffold, which is used in bone tissue engineering. Copyright © 2010 Wiley Periodicals, Inc.

  10. Amine modified polyethylenes, prepared in near critical propane, as adhesion promoting agents in multilayered HDPE/PET films

    NARCIS (Netherlands)

    Gooijer, de J.M.; Scheltus, M.; Koning, C.E.

    2001-01-01

    High d. polyethylene (HDPE) grafted with 0.13, 0.40 and 1.04 wt% maleic anhydride (abbreviation PEMA) was modified with an excess of a variety of diamines in near crit. propane. The resulting amic acid groups were quant. imidized to the corresponding imide (PEMI) in the melt. Increasing the

  11. THE ANALYSIS OF PARTIAL DISCHARGE (PD FROM ELECTRICAL TREEING IN LINEAR LOW DENSITY POLYETHYLENE (LLDPE AND HIGH DENSITY POLYETHYLENE (HDPE

    Directory of Open Access Journals (Sweden)

    Hermawan Hermawan

    2012-02-01

    Full Text Available Recently, the transmission of electric energy has been developed by insulated cable. The suitable materialas an insulated cable is LLDPE and HDPE. In order to understand the quality of insulation system, themeasuring of PD has done. PD could begin completely insulation failure (breakdown. Therefore, it is veryimportant to understand the characteristic of PD and the enclose event on it, because PD is a main factorwhich caused insulation failure.This paper presents the result of PD measurement in the laboratory that used needle-plane electrode. Itwas supported by equipments such as osiloskop Digital GDS 2104 GW Instek, HPF, and RC detector.Polymer sample that used in this research is LLDPE (Linier Low Density Polyethylene and HDPE with 20x 4 x 25 mm3 dimension in each. Needle was made by steel (length 50 mm and diameter 1.15 mm, it wasstick to the polymer material. The distance between needle to the plane is 5 mm. The applied voltage foreach sample was 16 kVrms, 18 kVrms, 20 kVrms and 22 kVrms. The Taking of PD data was done in thefirst minute, 10th minute, 20th and so on until 180th minute.The measurement result shows that the characteristic of PD number and maximum charge as a function oftime and as a function of applied voltage inclined increasing both on LLDPE and HDPE. But, PD intensityin HDPE is higher than LLDPE.

  12. Comparison of rheological, mechanical, electrical properties of HDPE filled with BaTiO{sub 3} with different polar surface tension

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jun [Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China); College of Mechanics Engineering, Nanjing Institute of Industry Technology, Nanjing, 210023 (China); Zhang, Jun, E-mail: zhangjun@njtech.edu.cn [Department of Polymer Science and Engineering, College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009 (China)

    2016-12-01

    Graphical abstract: - Highlights: • The non-polar and short vinyl groups can greatly reduce G′ of HDPE composites. • Long chains on BaTiO{sub 3} surface enhance the interaction of BaTiO{sub 3} with HDPE. • Polar amino groups on BaTiO{sub 3} surface raise the interaction of BaTiO{sub 3} with HDPE. • Polar amino groups can boost the dielectric constant of HDPE composites. • The potential use in electronic equipment of the KH550 composites is obtained. - Abstract: In this work, three types of coupling agents: isopropyl trioleic titanate (NDZ105), vinyltriethoxysilane (SG-Si151), 3-aminopropyltriethoxysilane (KH550) were applied to modify the surface tension of Barium titanate (BaTiO{sub 3}) particles. The Fourier transform infrared (FT-IR) spectra confirm the chemical adherence of coupling agents to the particle surface. The long hydrocarbon chains in NDZ105 can cover the particle surface and reduce the polar surface tension of BaTiO{sub 3} from 37.53 mJ/m{sup 2} to 7.51 mJ/m{sup 2}, turning it from hydrophilic to oleophilic properties. The short and non-polar vinyl groups in SG-Si151 does not influence the surface tension of BaTiO{sub 3}, but make BaTiO{sub 3} have both hydrophilic and oleophilic properties. The polar amino in KH550 can keep BaTiO{sub 3} still with hydrophilic properties. It is found that SG-Si151 modified BaTiO{sub 3} has the lowest interaction with HDPE matrix, lowering the storage modulus of HDPE composites to the greatest extent. As for mechanical properties, the polar amino groups in KH550 on BaTiO{sub 3} surface can improve the adhesion of BaTiO{sub 3} with HDPE matrix, which increases the elongation at break of HDPE composites to the greatest extent. In terms of electrical properties, the polar amino groups on surface of BaTiO{sub 3} can boost the dielectric properties of HDPE/BaTiO{sub 3} composites and decrease the volume resistivity of HDPE/BaTiO{sub 3} composites. The aim of this study is to investigate how functional groups

  13. MEASUREMENT AND MODELLING OF SORPTION EQUILIBRIUM CURVE OF WATER ON PA6, PP, HDPE AND PVC BY USING FLORY-HUGGINS MODEL

    Directory of Open Access Journals (Sweden)

    Suherman Suherman

    2012-02-01

    Full Text Available The sorption of water on granular polyamide-6 (PA6, granular polypropylene (PP, and powdery high density polyethylene (HDPE and powdery polyvinyl chloride (PVC were measured using a gravimetric method in a magnetic suspension balance (MSB. The Flory-Huggins model was successfully applied on the sorption equilibrium curve of all investigated polymers. The influence of temperature is low. The value of Flory-Huggins parameters(c of PA6, PVC, PP and HDPE were 1.8, 5.8, 6.3, and 8.1, respectively. The water in PA6 is mainly bound moisture, while in PP, HDPE and PVC it is mainly surface moisture.

  14. Influence of the nanotube oxidation on the rheological and electrical properties of CNT/HDPE composites

    Energy Technology Data Exchange (ETDEWEB)

    Nobile, Maria Rossella, E-mail: mrnobile@unisa.it; Somma, Elvira; Valentino, Olga; Neitzert, Heinz-Christoph [Department of Industrial Engineering – DIIn - Università di Salerno Via Giovanni Paolo II, 132 - 84084 Fisciano (Italy); Simon, George [Department of Materials Engineering, Monash University, Clayton, Victoria 3800 (Australia)

    2016-05-18

    Rheological and electrical properties of nanocomposites based on multi-walled carbon nanotubes (MWNTs) and high density polyethylene (HDPE), prepared by melt mixing in a micro-twin screw extruder, have been investigated. The effect of MWNT concentration (0.5 and 2.5 wt %) and nanotube surface treatment (oxidative treatment in a tubular furnace at 500°C for 1 hr in a 95% nitrogen, 5% oxygen atmosphere) has been analyzed. It has been found that the sample conductivity with oxidation of the nanotubes decreases more than 2 orders of magnitude. Scanning electron microscopy showed good adhesion and dispersion of nanotubes in the matrix, independently of the surface treatment. Electrical and rheological measurements revealed that the oxidative treatment, causing some reduction of the MWNT quality, decreases the efficiency of the nanotube matrix interaction.

  15. Fabrication and Characterization of Micro- and Nano- Gd2O3 Dispersed HDPE/EPM Composites

    International Nuclear Information System (INIS)

    Uhm, Young Rang; Kim, Jae Woo; Jun, Ji Heon; Lee, Sol; Rhee, Chang Kyu

    2010-01-01

    Hydrophobic polymer mixed with Gd 2 O 3 can be used in nuclear industry as a neutron shield because of its neutron attenuating and absorbing property, while it was reported that the smaller particles dispersed polymer composites can enhance radiation shielding efficiency compared to larger particles dispersed ones. However, preparations of such materials are difficult because of the poor dispersion of the fine particles in the polymer matrix. Surface modification of the nanoparticles is therefore required for the homogeneous dispersion of the particles in the polymer matrix. In this study, pulverization of the micro-Gd 2 O 3 particles and simultaneous surface coating of the nanoparticles by polymeric surfactant low density polyethylene (LDPE) were performed by using one-step of high energy wet ball-mill. Dispersion and neutron shielding effect of the nano- and micro-Gd 2 O 3 fillers in mixed polymer of ethylene propylene monomer (EPM) and high density polyethylene (HDPE) were examined

  16. Research on FR-HDPE/EPDM for cable and wire insulation by γ rays

    International Nuclear Information System (INIS)

    Jia Shaojin; Zhang Zhicheng; Ge Xuewu; Du Zhiwen; Wang Zhenzhou

    2002-01-01

    By blending low-halogen flame-retarding agent with the basic resin and using γ irradiation FR-HDPE/EPDM for cable and wire insulation with 125 degree C heat resistance was prepared. The mechanical and electrical measurement showed that radiation crosslinking improves some essential properties of the material, such as the heat resistance, tensile strength et al. The dynamic flammability of the material was researched by cone calorimeter, it was found that radiation crosslinking decreases both release heat rate and effective heat of combustion while burning, besides, crosslinking increases oxygen index and the residues of combustion though the time to ignition of the irradiated material is somewhat decreased. The work was compared with the traditional method TG measurement

  17. A study on residual stress mitigation of the HDPE pipe for various annealing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Sung [Sunchon National University, Sunchon (Korea, Republic of); Yoo, Jeong Ho [Korea Laboratory Engineering System, Daejeon (Korea, Republic of); Oh, Young Jin [KEPCO E and C, Sungnam (Korea, Republic of)

    2015-03-15

    This paper presents effects of the annealing condition variables such as temperature and time on the residual stress mitigation. The effects were investigated by using the various measurement methods such as hole-drilling method and slitting method. As a result of the investigation, the residual stress mitigation magnitude increases with increasing the annealing time and temperature. Based on the investigation results, the quantitative correlations between the annealing variables and the residual stress mitigation were derived. Finally, the effect of long-term operation under the normal operating temperature conditions on the residual stress mitigation was investigated by referring to the derived equations and performing some additional tests, and it is identified that the residual stresses are not significantly relaxed over the design lifetime of the safety class III buried HDPE pipes.

  18. Shear and elongational rheology of photo-oxidative degraded HDPE and LLDPE

    Science.gov (United States)

    Wagner, Manfred Hermann; Zheng, Wang; Wang, Peng; Talamante, Sebastián Ramos; Narimissa, Esmaeil

    2017-05-01

    The effect of photo-oxidative degradation of high-density polyethylene (HDPE) and linear low-density polyethylene (LLDPE) was investigated by linear and non-linear rheological measurements. The linear-viscoelastic rheological measurements were performed at different temperatures, while the elongational viscosity was measured at 170°C and at different strain rates. The rheological data are indicative of structural changes caused by photo-oxidative degradation including formation of long-chain branches (LCB), cross-linking, and chain scission, and they revealed a cyclic and continuing competition between chain scission and LCB/gel formation. These findings are supported by additional FTIR measurements and direct measurements of the gel content of the degraded samples.

  19. Controlling Short-Range Interactions by Tuning Surface Chemistry in HDPE/Graphene Nanoribbon Nanocomposites.

    Science.gov (United States)

    Sadeghi, Soheil; Zehtab Yazdi, Alireza; Sundararaj, Uttandaraman

    2015-09-03

    Unique dispersion states of nanoparticles in polymeric matrices have the potential to create composites with enhanced mechanical, thermal, and electrical properties. The present work aims to determine the state of dispersion from the melt-state rheological behavior of nanocomposites based on carbon nanotube and graphene nanoribbon (GNR) nanomaterials. GNRs were synthesized from nitrogen-doped carbon nanotubes via a chemical route using potassium permanganate and some second acids. High-density polyethylene (HDPE)/GNR nanocomposite samples were then prepared through a solution mixing procedure. Different nanocomposite dispersion states were achieved using different GNR synthesis methods providing different surface chemistry, interparticle interactions, and internal compartments. Prolonged relaxation of flow induced molecular orientation was observed due to the presence of both carbon nanotubes and GNRs. Based on the results of this work, due to relatively weak interactions between the polymer and the nanofillers, it is expected that short-range interactions between nanofillers play the key role in the final dispersion state.

  20. Post-{gamma}-irradiation reactions in vitamin E stabilised and unstabilised HDPE

    Energy Technology Data Exchange (ETDEWEB)

    Mallegol, J.; Carlsson, D.J. E-mail: dave.carlsson@nrc.ca; Deschenes, L

    2001-12-01

    The oxidation of high density polyethylene (HDPE), both unstabilised and vitamin E stabilised, has been studied by infrared (IR) and electron paramagnetic resonance (EPR) spectroscopies in the period following {gamma}-irradiation at doses from 1 to 60 kGy (range of food sterilisation). Derivatisation by reaction with sulphur tetrafluoride was used to identify macro-ketone and carboxylic acid components of the overlapped IR carbonyl region. Oxidation continued for several hundred hours after the cessation of irradiation as shown by the increase in hydroxyl, ketone and acid groups. Carboxylic acid groups are particularly important as a direct indication of backbone scission. Vitamin E, although an effective antioxidant during {gamma}-irradiation, was less effective in reducing the post-irradiation changes, which are probably driven by migration of radical sites along the polymer backbone from within the crystalline phase to the amorphous/crystalline inter-phase, where they become oxygen accessible.

  1. Effect of gamma radiation and accelerated aging on the mechanical and thermal behavior of HDPE/HA nano-composites for bone tissue regeneration.

    Science.gov (United States)

    Alothman, Othman Y; Almajhdi, Fahad N; Fouad, H

    2013-09-24

    The replacement of hard tissues demands biocompatible and sometimes bioactive materials with properties similar to those of bone. Nano-composites made of biocompatible polymers and bioactive inorganic nano particles such as HDPE/HA have attracted attention as permanent bone substitutes due to their excellent mechanical properties and biocompatibility. The HDPE/HA nano-composite is prepared using melt blending at different HA loading ratios. For evaluation of the degradation by radiation, gamma rays of 35 kGy, and 70 kGy were used to irradiate the samples at room temperature in vacuum. The effects of accelerated ageing after gamma irradiation on morphological, mechanical and thermal properties of HDPE/HA nano-composites were measured. In Vitro test results showed that the HDPE and all HDPE/HA nano-composites do not exhibit any cytotoxicity to WISH cell line. The results also indicated that the tensile properties of HDPE/HA nano-composite increased with increasing the HA content except fracture strain decreased. The dynamic mechanical analysis (DMA) results showed that the storage and loss moduli increased with increasing the HA ratio and the testing frequency. Finally, it is remarked that all properties of HDPE/HA is dependent on the irradiation dose and accelerated aging. Based on the experimental results, it is found that the addition of 10%, 20% and 30% HA increases the HDPE stiffness by 23%, 44 and 59% respectively. At the same time, the G' increased from 2.25E11 MPa for neat HDPE to 4.7E11 MPa when 30% HA was added to the polymer matrix. Also, significant improvements in these properties have been observed due to irradiation. Finally, the overall properties of HDPE and its nano-composite properties significantly decreased due to aging and should be taken into consideration in the design of bone substitutes. It is attributed that the developed HDPE/HA nano-composites could be a good alternative material for bone tissue regeneration due to their acceptable

  2. HDPE/HA composites obtained in solution: Effect of the gamma radiation

    International Nuclear Information System (INIS)

    Carmen, Albano; Arquimedes, Karam; Rosestela, Perera; Gema, Gonzalez; Nohemy, Dominguez; Jeanette, Gonzalez; Yanixia, Sanchez

    2006-01-01

    Radiation is employed to sterilize composite materials used in the biomedical field. Due to the changes induced by radiation onto polymeric materials, it is important to study variations in their melt flow index (MFI), as well as in their mechanical and thermal properties. In this work, those previous parameters were determined in composites obtained via solution of a high-density polyethylene (HDPE) in decalin, with different amounts of hydroxyapatite (HA), varying from 10 to 30 parts per hundred, after being exposed to gamma radiation at absorbed doses between 25 and 100 kGy. After the irradiation, the MFI of HDPE dissolved in decalin and precipitated afterwards and without filler increased from 6 to 24 g/10 min at the highest absorbed doses. This behavior was also observed in composites with 10 pph of HA, being the increase less pronounced, specifically in the range between 50 and 100 kGy. Composites with 20 and 30 pph of HA showed a maximum MFI value at 50 kGy, which decreased at higher doses. This implies that the filler begin to exert an influence because it does not melt at the test temperature and consequently, it does not flow. It was observed that Young's modulus increased with HA addition due to rigidity of the ceramic filler. Radiation did not significantly affect this tensile property. On the other hand, the tensile strength did not show significant variations at the different doses but the filler content did affect this property improving it. Finally, elongation at break showed a drastic decrease with filler addition. When the thermal behavior was studied it was noticed that crystallization and melting temperatures remained unchanged. Instead, crystallinity degree slightly increased in the composites, and a little decrease was obtained when they were irradiated

  3. Comparative study of three different kinds of geomembranes (PVC-P, HDPE, EPDM) used in the waterproofing of reservoirs

    International Nuclear Information System (INIS)

    Blanco Fernandez, M.; Castillo Rubi, F.; Soriano Carrillo, J.; Noval Arango, A. M.; Touze-Foltz, N.; Pargada Iglesias, L.; Rico Arnaiz, G.; Aguilar gonzalez, E.

    2014-01-01

    This work describes the long-term behaviour of three kinds of geomembranes which are constituted by plasticized poly vinyl chloride (PVC-P), high density polyethylene (HDPE) and terpolymer rubber of ethylene-propylene-dienic monomer (EPDM) used as the waterproofing system of the reservoirs Los Llanos de Mesa, San Isidro and El Golfo, respectively. Characteristics of the three original geomembranes and their behaviour along time are presented. Thicknesses, content and nature of the plasticizers ( in PVC-P), tensile properties dynamic and static puncture, foldability at low temperature, shore hardeness, tear resistance and carbon black ( in HDPE), joint strength (shear and peeling test) and microscopy, both optical and electronic scanning tests were carried out. Results obtained conclude with a long-term durability of geomembranes, independently of their macromolecular nature. These characteristics were determined by advanced analytical techniques in PVC-P samples, such as fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography (GC) and Mass Spectrometry (MS). Spectrometry (MS). (Author)

  4. Effect of fiber orientation on tensile and impact properties of Zalacca Midrib fiber-HDPE composites by compression molding

    Science.gov (United States)

    Lasikun, Ariawan, Dody; Surojo, Eko; Triyono, Joko

    2018-02-01

    The research aims to investigate the fiber orientation effect on the tensile and impact properties of zalacca midrib fiber /HDPE composites. The composites were produced by compression molding with pressing temperature at 150°C, pressing pressure at 50 bar, and holding time of 25 minutes. The fiber orientations applied in composites were 0°, 15°, 30°, 45°, 60°, 75°, and 90°, at 10% fiber volume fraction. The samples were evaluated by using: Tensile test and Izod impact test according to ASTM D638 and ASTM D5941, respectively. The result of experiments indicate that the orientation of zalacca midrib fiber influences the characteristics of HDPE composite-zalacca midrib fiber. The composite mechanical strength decline with the increase of orientation fibers from 0° to 90°. The composite failure mode of composites are observed by Scanning Electron Microscope (SEM).

  5. Thermal, tensile and rheological properties of high density polyethylene (HDPE) processed and irradiated by gamma-ray in different atmospheres

    Energy Technology Data Exchange (ETDEWEB)

    Ferreto, H. F. R., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Oliveira, A. C. F., E-mail: hferreto@ipen.br, E-mail: ana-feitoza@yahoo.com.br; Parra, D. F., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br; Lugão, A. B., E-mail: dfparra@ipen.br, E-mail: ablugao@ipen.br [Center of Chemistry and Environment, Institute of Energy and Nuclear Research - IPEN (Brazil); Gaia, R., E-mail: renan-gaia7@hotmail.com [Faculdades Oswaldo Cruz (Brazil)

    2014-05-15

    The aim of this paper is to investigate structural changes of high density polyethylene (HDPE) modified by ionizing radiation (gamma rays) in different atmospheres. The gamma radiation process for modification of commercial polymers is a widely applied technique to promote new physical-chemical and mechanical properties. Gamma irradiation originates free radicals which can induce chain scission or recombination, providing its annihilation, branching or crosslinking. This polymer was irradiated with gamma source of {sup 60}Co at doses of 5, 10, 20, 50 or 100 kGy at a dose rate of 5 kGy/h. The changes in molecular structure of HDPE, after gamma irradiations were evaluated using thermogravimetric analysis (TGA) and tensile machine and oscillatory rheology. The results showed the variations of the properties depending on the dose at each atmosphere.

  6. Three Point Bending of Top-Hat Stiffened Chopped Short Fibre Ramie/HDPE Thermoplastic Composite Beam

    Science.gov (United States)

    Hadi, Bambang K.; Nuril, Yogie S.

    2018-04-01

    The use of natural fibre and thermoplastic matrices in composite materials increased significantly during the last decade especially in the automotive industries. Ramie is one of these potential natural fibres. In this paper, a three point bending of top-hat beam made of ramie/HDPE (High-Density-Polyethylene) composites was performed. Top-hat stiffened structures were common structures found in the aerospace industries. Nevertheless, these structures are beginning to be applied in automotive structures in the forms of chassis and bumpers. The ramie/HDPE composite was manufactured using hot-press technique. The temperature was set to be 135°C and the pressure was 6 bars. Chopped short ramie fibre was used, due to good drape ability characteristics. The experiments showed that the beams produced a large non-linearity. Linear Finite Element Analysis was carried out to be compared with the experimental data. The differences are reasonable.

  7. Environmental and economic analysis of end of life management options for an HDPE product using a life cycle thinking approach.

    Science.gov (United States)

    Simões, Carla L; Pinto, Lígia M Costa; Bernardo, C A

    2014-05-01

    Manufacturers have been increasingly considering the implication of materials used in commercial products and the management of such products at the end of their useful lives (as waste or as post-consumer secondary materials). The present work describes the application of the life cycle thinking approach to a plastic product, specifically an anti-glare lamellae (used for road safety applications) made with high-density polyethylene (HDPE). This study shows that optimal environmental and economic outcomes associated with this product can be realized by recovering the material at the end of its useful life (end of life, EoL) and by using the recycled HDPE as a raw material in the production of new similar products. The study confirmed the applicability of the life cycle thinking approach by industry in sustainable products development, supporting the development of robust environmental and economic guidelines.

  8. Friction and wear properties of novel HDPE--HAp--Al2O3 biocomposites against alumina counterface.

    Science.gov (United States)

    Bodhak, Subhadip; Nath, Shekhar; Basu, Bikramjit

    2009-03-01

    In an effort to enhance physical properties of biopolymers (high-density polyethylene, HDPE) in terms of elastic modulus and hardness, various ceramic fillers, like alumina (Al2O3) and hydroxyapatite (HAp) are added, and therefore it is essential to assess the friction and wear resistance properties of HDPE biocomposites. In this perspective, HDPE composites with varying ceramic filler content (upto 40 vol%) were fabricated under the optimal compression molding conditions and their friction and wear properties were evaluated against Al2O3 at fretting contacts. All the experiments were conducted at a load of 10 N for duration of 100,000 cycles in both dry as well as simulated body fluid (SBF). Such planned set of experiments has been designed to address three important issues: (a) whether the improvement in physical properties (hardness, E-modulus) will lead to corresponding improvement in friction and wear properties; (b) whether the fretting in SBF will provide sufficient lubrication in order to considerably enhance the tribological properties, as compared to that in ambient conditions; and (c) whether the generation of wear debris particles be reduced for various compositionally modified polymer composites, in comparison to unreinforced HDPE. The experimental results indicate the possibility of achieving extremely low coefficient of friction (COF approximately 0.047) as well as higher wear resistance (wear rate in the order of approximately 10(-7) mm3 N(-1) m(-1)) with the newly developed composites in SBF. A low wear depth of 3.5-4 microm is recorded, irrespective of fretting environment. Much effort has been put forward to correlate the friction and wear mechanisms with abrasion, adhesion, and wear debris formation.

  9. High-density polyethylene (HDPE)-degrading potential bacteria from marine ecosystem of Gulf of Mannar, India.

    Science.gov (United States)

    Balasubramanian, V; Natarajan, K; Hemambika, B; Ramesh, N; Sumathi, C S; Kottaimuthu, R; Rajesh Kannan, V

    2010-08-01

    Assessment of high-density polyethylene (HDPE)-degrading bacteria isolated from plastic waste dumpsites of Gulf of Mannar. Rationally, 15 bacteria (GMB1-GMB15) were isolated by enrichment technique. GMB5 and GMB7 were selected for further studies based on their efficiency to degrade the HDPE and identified as Arthrobacter sp. and Pseudomonas sp., respectively. Assessed weight loss of HDPE after 30 days of incubation was nearly 12% for Arthrobacter sp. and 15% for Pseudomonas sp. The bacterial adhesion to hydrocarbon (BATH) assay showed that the cell surface hydrophobicity of Pseudomonas sp. was higher than Arthrobacter sp. Both fluorescein diacetate hydrolysis and protein content of the biofilm were used to test the viability and protein density of the biomass. Acute peak elevation was observed between 2 and 5 days of inoculation for both bacteria. Fourier transform infrared (FT-IR) spectrum showed that keto carbonyl bond index (KCBI), Ester carbonyl bond index (ECBI) and Vinyl bond index (VBI) were increased indicating changes in functional group(s) and/or side chain modification confirming the biodegradation. The results pose us to suggest that both Pseudomonas sp. and Arthrobacter sp. were proven efficient to degrade HDPE, albeit the former was more efficacious, yet the ability of latter cannot be neglected. Recent alarm on ecological threats to marine system is dumping plastic waste in the marine ecosystem and coastal arena by anthropogenic activity. In maintenance phase of the plastic-derived polyethylene waste, the microbial degradation plays a major role; the information accomplished in this work will be the initiating point for the degradation of polyethylene by indigenous bacterial population in the marine ecosystem and provides a novel eco-friendly solution in eco-management.

  10. Preparation and properties of banana fiber-reinforced composites based on high density polyethylene (HDPE)/Nylon-6 blends.

    Science.gov (United States)

    Liu, H; Wu, Q; Zhang, Q

    2009-12-01

    Banana fiber (BaF)-filled composites based on high density polyethylene (HDPE)/Nylon-6 blends were prepared via a two-step extrusion method. Maleic anhydride grafted styrene/ethylene-butylene/styrene triblock polymer (SEBS-g-MA) and maleic anhydride grafted polyethylene (PE-g-MA) were used to enhance impact performance and interfacial bonding between BaF and the resins. Mechanical, crystallization/melting, thermal stability, water absorption, and morphological properties of the composites were investigated. In the presence of SEBS-g-MA, better strengths and moduli were found for HDPE/Nylon-6 based composites compared with corresponding HDPE based composites. At a fixed weight ratio of PE-g-MA to BaF, an increase of BaF loading up to 48.2 wt.% led to a continuous improvement in moduli and flexural strength of final composites, while impact toughness was lowered gradually. Predicted tensile modulus by the Hones-Paul model for three-dimensional random fiber orientation agreed well with experimental data at the BaF loading of 29.3 wt.%. However, the randomly-oriented fiber models underestimated experimental data at higher fiber levels. It was found that the presence of SEBS-g-MA had a positive influence on reinforcing effect of the Nylon-6 component in the composites. Thermal analysis results showed that fractionated crystallization of the Nylon-6 component in the composites was induced by the addition of both SEBS-g-MA and PE-g-MA. Thermal stability of both composite systems differed slightly, except an additional decomposition peak related to the minor Nylon-6 for the composites from the HDPE/Nylon-6 blends. In the presence of SEBS-g-MA, the addition of Nylon-6 and increased BaF loading level led to an increase in the water absorption value of the composites.

  11. Dosimetric evaluation of multi-sided irradiation on HDPE pipes under 2 MeV electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Benny, P.G., E-mail: bennypg@yahoo.com; Khader, S.A.; Sarma, K.S.S.

    2014-03-01

    The use of electron beam technology has enabled the production of heat resistant pipe for hot water circulation. One of the difficulties in the irradiation of pipe products is the uneven penetration of electrons. Quality of the radiation process depends on radiation dose and homogeneity of the dose distribution, which becomes a major concern when treatments of circular objects like pipes are performed. One method to achieve uniformity in the absorbed dose in the product is to use multi-sided irradiation. The paper discusses the importance of dosimetry mapping in industrial electron beam radiation processing and outlines the challenges in delivering a uniform dose to cylindrical objects. In this study, HDPE pipe of 5 mm thickness of homogeneous material (40 mm outer diameter and 30 mm inner diameter) has been chosen for multi-sided irradiation under 2 MeV scanned electron beam from the ILU-6 accelerator. - Highlights: • The paper outlines the challenges in delivering uniform dose to cylindrical objects at 2 MeV industrial electron beam facility. • HDPE pipe of 40 mm outer diameter and 30 mm inner diameter has been chosen for the study. • The circumferential dose distribution inside and outside of the pipes were evaluated by using calibrated CTA dosimeter strips. • Using stack of dosimeter strips, changes in circumferential dose distribution in the annular region of the pipe was evaluated. • Optimization of multi-sided irradiation on the HDPE pipes for better dose homogeneity is reported in the paper.

  12. Nucleation and growth of apatite on NaOH-treated PEEK, HDPE and UHMWPE for artificial cornea materials.

    Science.gov (United States)

    Pino, M; Stingelin, N; Tanner, K E

    2008-11-01

    The skirt of an artificial cornea must integrate the implant to the host sclera, a major failure of present devices. Thus, it is highly desirable to encourage the metabolic activity of the cornea by using more bioactive, flexible skirt materials. Here we describe attempts to increase the bioactivity of polyether ether ketone (PEEK), high-density polyethylene (HDPE) and ultra-high molecular weight polyethylene (UHMWPE) films. The effectiveness of different strength NaOH pre-treatments to initiate apatite deposition on PEEK, HDPE and UHMWPE is investigated. We find that exposure of PEEK, HDPE and UHMWPE films to NaOH solutions induces the formation of potential nuclei for apatite (calcium phosphate), from which the growth of an apatite coating is stimulated when subsequently immersing the polymer films in 1.5 strength Simulated Body Fluid (SBF). As immersion time in SBF increases, further nucleation and growth produces a thicker and more compact apatite coating that can be expected to be highly bioactive. Interestingly, the apatite growth is found to also be dependent on both the concentration of NaOH solution and the structure of the polymer surface.

  13. Research on the suitability of organosolv semi-chemical triticale fibers as reinforcement for recycled HDPE composites

    Directory of Open Access Journals (Sweden)

    Nour-Eddine El Mansouri

    2012-11-01

    Full Text Available The main objective of this research was to study the feasibility of incorporating organosolv semi-chemical triticale fibers as the reinforcing element in recycled high density polyethylene (HDPE. In the first step, triticale fibers were characterized in terms of chemical composition and compared with other biomass species (wheat, rye, softwood, and hardwood. Then, organosolv semi-chemical triticale fibers were prepared by the ethanolamine process. These fibers were characterized in terms of its yield, kappa number, fiber length/diameter ratio, fines, and viscosity; the obtained results were compared with those of eucalypt kraft pulp. In the second step, the prepared fibers were examined as a reinforcing element for recycled HDPE composites. Coupled and non-coupled HDPE composites were prepared and tested for tensile properties. Results showed that with the addition of the coupling agent maleated polyethylene (MAPE, the tensile properties of composites were significantly improved, as compared to non-coupled samples and the plain matrix. Furthermore, the influence of MAPE on the interfacial shear strength (IFSS was studied. The contributions of both fibers and matrix to the composite strength were also studied. This was possible by the use of a numerical iterative method based on the Bowyer-Bader and Kelly-Tyson equations.

  14. Dosimetric evaluation of multi-sided irradiation on HDPE pipes under 2 MeV electron beam

    International Nuclear Information System (INIS)

    Benny, P.G.; Khader, S.A.; Sarma, K.S.S.

    2014-01-01

    The use of electron beam technology has enabled the production of heat resistant pipe for hot water circulation. One of the difficulties in the irradiation of pipe products is the uneven penetration of electrons. Quality of the radiation process depends on radiation dose and homogeneity of the dose distribution, which becomes a major concern when treatments of circular objects like pipes are performed. One method to achieve uniformity in the absorbed dose in the product is to use multi-sided irradiation. The paper discusses the importance of dosimetry mapping in industrial electron beam radiation processing and outlines the challenges in delivering a uniform dose to cylindrical objects. In this study, HDPE pipe of 5 mm thickness of homogeneous material (40 mm outer diameter and 30 mm inner diameter) has been chosen for multi-sided irradiation under 2 MeV scanned electron beam from the ILU-6 accelerator. - Highlights: • The paper outlines the challenges in delivering uniform dose to cylindrical objects at 2 MeV industrial electron beam facility. • HDPE pipe of 40 mm outer diameter and 30 mm inner diameter has been chosen for the study. • The circumferential dose distribution inside and outside of the pipes were evaluated by using calibrated CTA dosimeter strips. • Using stack of dosimeter strips, changes in circumferential dose distribution in the annular region of the pipe was evaluated. • Optimization of multi-sided irradiation on the HDPE pipes for better dose homogeneity is reported in the paper

  15. Enhancement of high density polyethylene high integrity containers at a low level radioactive waste disposal site

    International Nuclear Information System (INIS)

    Sauer, R.E.; Wong, O.P.

    1989-01-01

    High integrity containers (HIC) made of high density polyethylene (HDPE) have been used for disposal in South Carolina since the late seventies. With the recent definitive position taken by the NRC on the suitability of these containers for disposal, alternative means of assuring the structural integrity of the containers for the long term became necessary. The authors' company has developed an utilized reinforced concrete caissons at the Hanford, Washington site as an additional barrier and structural element to assure the long term high integrity function of the current HDPE HIC's also known as Poly HIC's on the market. This paper outlines the background of the HIC's in question, the NRC positions and ruling, and presents technical bases for the applicability of appropriately designed concrete overpacks to augment the structural integrity of HIC's

  16. Effect of titanium dioxide (TiO{sub 2}) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shichao; Zhang, Jun, E-mail: zhangjun@njtech.edu.cn

    2014-12-25

    Highlights: • HDPE/TiO{sub 2} composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO{sub 2} composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO{sub 2}) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO{sub 2} particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO{sub 2} particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO{sub 2} particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO{sub 2} particles in HDPE matrix. It was found the rutile TiO{sub 2} could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result.

  17. Effect of titanium dioxide (TiO2) on largely improving solar reflectance and cooling property of high density polyethylene (HDPE) by influencing its crystallization behavior

    International Nuclear Information System (INIS)

    Wang, Shichao; Zhang, Jun

    2014-01-01

    Highlights: • HDPE/TiO 2 composites have more perfect crystal structure. • Refractive index is the key factor affecting the final solar reflectance. • HDPE/TiO 2 composites can achieve high solar reflectance. • The real cooling property is in accordance with solar reflectance. - Abstract: In this study, the different crystal forms of titanium dioxide (TiO 2 ) were added into high density polyethylene (HDPE) to fabricate cool material. Crystal structure, crystallization behavior, crystal morphology were investigated by wide angle X-ray diffraction (WAXD), differential scanning calorimetry (DSC) and polarized optical microscope (POM). Scanning electron microscope (SEM) was applied to observe dispersion of TiO 2 particles in the HDPE matrix and the cross section morphology. The solar reflectance and actual cooling property were evaluated by UV–Vis–NIR spectrometer and a self-designed device. By adding TiO 2 particles into HDPE matrix, the polymer chain could crystallize into more perfect and thermal stable lamella. The presence of TiO 2 particles dramatically increased the number of nucleation site therefore decreased the crystal size. The subsequent solar reflectance was related to the degree of crystallinity, the spherulite size of HDPE, refractive index, and distribution of TiO 2 particles in HDPE matrix. It was found the rutile TiO 2 could largely improve the total solar reflectance from 28.2% to 51.1%. Finally, the temperature test showed that the composites had excellent cooling property, which was in accordance with solar reflectance result

  18. Horizontally rotating disc recirculated photoreactor with TiO2-P25 nanoparticles immobilized onto a HDPE plate for photocatalytic removal of p-nitrophenol.

    Science.gov (United States)

    Behnajady, Mohammad A; Dadkhah, Hojjat; Eskandarloo, Hamed

    2018-04-01

    In this study, a horizontally rotating disc recirculated (HRDR) photoreactor equipped with two UV lamps (6 W) was designed and fabricated for photocatalytic removal of p-nitrophenol (PNP). Photocatalyst (TiO 2 ) nanoparticles were immobilized onto a high-density polyethylene (HDPE) disc, and PNP containing solution was allowed to flow (flow rate of 310 mL min -1 ) in radial direction along the surface of the rotating disc illuminated with UV light. The efficiency of direct photolysis and photocatalysis and the effect of rotating speed on the removal of PNP were studied in the HRDR photoreactor. It was found that TiO 2 -P25 nanoparticles are needed for the effective removal of PNP and there was an optimum rotating speed (450 rpm) for the efficient performance of the HRDR photoreactor. Then effects of operational variables on the removal efficiency were optimized using response surface methodology. The results showed that the predicted values of removal efficiency are consistent with experimental results with an R 2 of 0.9656. Optimization results showed that maximum removal percent (82.6%) was achieved in the HRDR photoreactor at the optimum operational conditions. Finally, the reusability of the HRDR photoreactor was evaluated and the results showed high reusability and stability without any significant decrease in the photocatalytic removal efficiency.

  19. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP)

    International Nuclear Information System (INIS)

    Achilias, D.S.; Roupakias, C.; Megalokonomos, P.; Lappas, A.A.; Antonakou, E.V.

    2007-01-01

    The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels

  20. Thermal characterization of the HDPE/LDPE blend (10/90) irradiated using γ-rays

    International Nuclear Information System (INIS)

    Puig, C.C.; Albano, C.; Laredo, E.; Quero, E.; Karam, A.

    2010-01-01

    Gamma irradiation effect over the properties of slow cooled and fast cooled HDPE/LDPE 10/90 blend was studied. The blend and the neat polyethylenes were irradiated at room temperature in the presence of air using the following doses (4.8 kGy/h): 0, 50, 150, 400 and 1000 kGy. Differential scanning calorimetry (DSC) experiments were carried out using the following heating rates: 5, 10 and 20 deg. C/min. DSC results for the slow and fast cooled blend showed traces with three melting peaks and with increasing irradiation dose two melting peaks were obtained, i.e. the high melting peak shifts toward lower temperatures to merge with the intermediate melting peak into one endotherm. No changes in crystal structure by X-ray diffraction were found as a result of samples irradiation. Radiation crosslinking prevents crystal rearrangements during heating in the DSC. Gel content and melt flow index (MFI) measurements showed that radiation induced a high degree of crosslinking for all samples; gel content values were above 50% and a drop of more than 90% in the MFI was found. Irradiation of slow cooled samples resulted in larger values of gel content and lower MFI values than for fast cooled samples, mainly because of the higher degree of crosslinking for the former.

  1. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization

    Science.gov (United States)

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-01

    Plastic in any form is a nuisance to the well-being of the environment. The ‘pestilence’ caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.

  2. Evaluation of mechanical properties and durability performance of HDPE-wood composites

    International Nuclear Information System (INIS)

    Tazi, M.; Erchiqui, F.; Kaddami, H.; Bouazara, M.; Poaty, B.

    2015-01-01

    The objective of this work is to evaluate the mechanical properties and durability performance of bio-composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The thermal and mechanical properties were successively characterized. The results indicate that adding wood fillers to a polymer matrix increases the degree of crystallinity and improves the tensile strength and ductility of composites. On the contrary, resistance to water absorption decreases as a function of the wood fillers. Scanning electron microscopy (SEM) was used to analyze morphological structure alteration when exposed to intense weathering. The biodegradability of bio-composites up to 97 days was also investigated; the results indicate that, by increasing the filler content, the amount of weight loss increased as well. In other words, even though the addition of sawdust to thermoplastic polymer improves the mechanical performance of a composite material, it also accelerates the biodegradation rate of the composite. An optimum amount of filler content might compromise the effect of biodegradation and mechanical properties of composite materials

  3. Evaluation of mechanical properties and durability performance of HDPE-wood composites

    Energy Technology Data Exchange (ETDEWEB)

    Tazi, M.; Erchiqui, F. [Engineering department, Université de Quebec en Abitibi-Témiscamingue (Canada); Kaddami, H. [Université Caddi Ayad Marrakech, Laboratoire ’LCO2MC’, B.P. 549, Marrakech 40000, Maroc (Morocco); Bouazara, M. [Mechanical department, Université de Québec à Chicoutimi Canada (Canada); Poaty, B. [Technology Center of industrial residuals, QC Canada (Canada)

    2015-05-22

    The objective of this work is to evaluate the mechanical properties and durability performance of bio-composite materials made from sawdust and thermoplastic polymer (HDPE). For the preparation of the composites, sawdust in different proportions with Maleic Anhydride grafted Polyethylene (MAPE) as the coupling agent was used. The thermal and mechanical properties were successively characterized. The results indicate that adding wood fillers to a polymer matrix increases the degree of crystallinity and improves the tensile strength and ductility of composites. On the contrary, resistance to water absorption decreases as a function of the wood fillers. Scanning electron microscopy (SEM) was used to analyze morphological structure alteration when exposed to intense weathering. The biodegradability of bio-composites up to 97 days was also investigated; the results indicate that, by increasing the filler content, the amount of weight loss increased as well. In other words, even though the addition of sawdust to thermoplastic polymer improves the mechanical performance of a composite material, it also accelerates the biodegradation rate of the composite. An optimum amount of filler content might compromise the effect of biodegradation and mechanical properties of composite materials.

  4. Thermal characterization of the HDPE/LDPE blend (10/90) irradiated using gamma-rays

    Energy Technology Data Exchange (ETDEWEB)

    Puig, C.C., E-mail: cpuig@usb.v [Universidad Simon Bolivar, Departamento de Ciencia de los Materiales, Grupo de Polimeros USB, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Albano, C., E-mail: calbano@ivic.v [Instituto Venezolano de Investigaciones Cientificas (IVIC), Centro de Quimica, Laboratorio de Polimeros, Apdo. 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of); Universidad Central de Venezuela, Facultad de Ingenieria, Escuela de Ingenieria Quimica, Laboratorio de Polimeros, Caracas (Venezuela, Bolivarian Republic of); Laredo, E. [Universidad Simon Bolivar, Departamento de Fisica, Grupo de Fisica de Materiales Amorfos y Cristalinos, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Quero, E. [Universidad Simon Bolivar, Departamento de Ciencia de los Materiales, Grupo de Polimeros USB, Apdo. 89000, Caracas 1080-A (Venezuela, Bolivarian Republic of); Karam, A. [Instituto Venezolano de Investigaciones Cientificas (IVIC), Centro de Quimica, Laboratorio de Polimeros, Apdo. 21827, Caracas 1020-A (Venezuela, Bolivarian Republic of)

    2010-05-01

    Gamma irradiation effect over the properties of slow cooled and fast cooled HDPE/LDPE 10/90 blend was studied. The blend and the neat polyethylenes were irradiated at room temperature in the presence of air using the following doses (4.8 kGy/h): 0, 50, 150, 400 and 1000 kGy. Differential scanning calorimetry (DSC) experiments were carried out using the following heating rates: 5, 10 and 20 deg. C/min. DSC results for the slow and fast cooled blend showed traces with three melting peaks and with increasing irradiation dose two melting peaks were obtained, i.e. the high melting peak shifts toward lower temperatures to merge with the intermediate melting peak into one endotherm. No changes in crystal structure by X-ray diffraction were found as a result of samples irradiation. Radiation crosslinking prevents crystal rearrangements during heating in the DSC. Gel content and melt flow index (MFI) measurements showed that radiation induced a high degree of crosslinking for all samples; gel content values were above 50% and a drop of more than 90% in the MFI was found. Irradiation of slow cooled samples resulted in larger values of gel content and lower MFI values than for fast cooled samples, mainly because of the higher degree of crosslinking for the former.

  5. Chemical recycling of plastic wastes made from polyethylene (LDPE and HDPE) and polypropylene (PP).

    Science.gov (United States)

    Achilias, D S; Roupakias, C; Megalokonomos, P; Lappas, A A; Antonakou, Epsilon V

    2007-11-19

    The recycling of either model polymers or waste products based on low-density polyethylene (LDPE), high-density polyethylene (HDPE) or polypropylene (PP) is examined using the dissolution/reprecipitation method, as well as pyrolysis. In the first technique, different solvents/non-solvents were examined at different weight percent amounts and temperatures using as raw material both model polymers and commercial products (packaging film, bags, pipes, food-retail outlets). The recovery of polymer in every case was greater than 90%. FT-IR spectra and tensile mechanical properties of the samples before and after recycling were measured. Furthermore, catalytic pyrolysis was carried out in a laboratory fixed bed reactor with an FCC catalyst using again model polymers and waste products as raw materials. Analysis of the derived gases and oils showed that pyrolysis gave a mainly aliphatic composition consisting of a series of hydrocarbons (alkanes and alkenes), with a great potential to be recycled back into the petrochemical industry as a feedstock for the production of new plastics or refined fuels.

  6. Preparation and characterization of bagasse/HDPE composites using multi-walled carbon nanotubes.

    Science.gov (United States)

    Ashori, Alireza; Sheshmani, Shabnam; Farhani, Foad

    2013-01-30

    This article presents the preparation and characterization of bagasse/high density polyethylene (HDPE) composites. The effects of multi-walled carbon nanotubes (MWCNTs), as reinforcing agent, on the mechanical and physical properties were also investigated. In order to increase the interphase adhesion, maleic anhydride grafted polyethylene (MAPE) was added as a coupling agent to all the composites studied. In the sample preparation, MWCNTs and MAPE contents were used as variable factors. The morphology of the specimens was characterized using scanning electron microscopy (SEM) technique. The results of strength measurement indicated that when 1.5 wt% MWCNTs were added, tensile and flexural properties reached their maximum values. At high level of MWCNTs loading (3 or 4 wt%), increased population of MWCNTs lead to agglomeration and stress transfer gets blocked. The addition of MWCNTs filler slightly decreased the impact strength of composites. Both mechanical and physical properties were improved when 4 wt% MAPE was applied. SEM micrographs also showed that the surface roughness improved with increasing MAPE loading from 0 to 4 wt%. The improvement of physicomechanical properties of composites confirmed that MWCNTs have good reinforcement and the optimum synergistic effect of MWCNTs and MAPE was achieved at the combination of 1.5 and 4 wt%, respectively. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Prediction of mechanical properties of composites of HDPE/HA/EAA.

    Science.gov (United States)

    Albano, C; Perera, R; Cataño, L; Karam, A; González, G

    2011-04-01

    In this investigation, the behavior of the mechanical properties of composites of high-density polyethylene/hydroxyapatite (HDPE/HA) with and without ethylene-acrylic acid copolymer (EAA) as possible compatibilizer, was studied. Different mathematical models were used to predict their Young's modulus, tensile strength and elongation at break. A comparison with the experimental results shows that the theoretical models of Guth and Kerner modified can be used to predict the Young's modulus. On the other hand, the values obtained by the Verbeek model do not show a good agreement with the experimental data, since different factors that influence the mechanical properties are considered in this model such as: aspect ratio of the reinforcement, interfacial adhesion, porosity and binder content. TEM analysis confirms the discrepancies obtained between the experimental Young's modulus values and those predicted by the Verbeek model. The values of "P", "a" and "σ(A)" suggest that an interaction among the carboxylic groups of the copolymer and the hydroxyl groups of hydroxyapatite might be present. In composites with 20 and 30 wt% of filler, this interaction does not improve the Young's modulus values, since the deviations of the Verbeek model are significant. Copyright © 2010 Elsevier Ltd. All rights reserved.

  8. Influence of HMW tail chains on the structural evolution of HDPE induced by second melt penetration.

    Science.gov (United States)

    Zhu, Chun-Xia; Xia, Xiao-Chao; Huang, Yan-Hao; Xie, Dan-Dan; Chen, Rui; Yang, Ming-Bo

    2017-07-21

    It is widely accepted that the role of the high molecular weight (HMW) component is cooperative in shear-induced crystallization, owing to entanglements among long chains. However, this paper demonstrates that the HMW component has a novel effect on structural evolution during the process of multi-melt multi-injection molding (M 3 IM), organized as follows. First, the appropriate HDPE system with an incremental concentration of HMW tails was established. Second, the crystalline morphologies and orientation behaviors of the M 3 IM samples were characterized using a combination of scanning electron microscopy (SEM) and two-dimensional small angle X-ray scattering (2D-SAXS), and these suggested that the amount of shish-kebabs was not monotonically promoted with an increasing content of HMW tails but tended to reduce at a certain value. Third, in order to explain this phenomenon, the special temperature and shear profiles of M 3 IM were depicted subsequently, and finally the mechanism of hierarchical structure formation with the influence of various amounts of HMW tail chains was discussed, based on the classical rheological viewpoint.

  9. Evaluation of HDPE and LDPE degradation by fungus, implemented by statistical optimization.

    Science.gov (United States)

    Ojha, Nupur; Pradhan, Neha; Singh, Surjit; Barla, Anil; Shrivastava, Anamika; Khatua, Pradip; Rai, Vivek; Bose, Sutapa

    2017-01-04

    Plastic in any form is a nuisance to the well-being of the environment. The 'pestilence' caused by it is mainly due to its non-degradable nature. With the industrial boom and the population explosion, the usage of plastic products has increased. A steady increase has been observed in the use of plastic products, and this has accelerated the pollution. Several attempts have been made to curb the problem at large by resorting to both chemical and biological methods. Chemical methods have only resulted in furthering the pollution by releasing toxic gases into the atmosphere; whereas; biological methods have been found to be eco-friendly however they are not cost effective. This paves the way for the current study where fungal isolates have been used to degrade polyethylene sheets (HDPE, LDPE). Two potential fungal strains, namely, Penicillium oxalicum NS4 (KU559906) and Penicillium chrysogenum NS10 (KU559907) had been isolated and identified to have plastic degrading abilities. Further, the growth medium for the strains was optimized with the help of RSM. The plastic sheets were subjected to treatment with microbial culture for 90 days. The extent of degradation was analyzed by, FE-SEM, AFM and FTIR. Morphological changes in the plastic sheet were determined.

  10. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 33, - (2004), s. 404-407 ISSN 1436-3445 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotential WO * vertical systems * global vertical frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  11. Vertical axis wind turbines

    Science.gov (United States)

    Krivcov, Vladimir [Miass, RU; Krivospitski, Vladimir [Miass, RU; Maksimov, Vasili [Miass, RU; Halstead, Richard [Rohnert Park, CA; Grahov, Jurij [Miass, RU

    2011-03-08

    A vertical axis wind turbine is described. The wind turbine can include a top ring, a middle ring and a lower ring, wherein a plurality of vertical airfoils are disposed between the rings. For example, three vertical airfoils can be attached between the upper ring and the middle ring. In addition, three more vertical airfoils can be attached between the lower ring and the middle ring. When wind contacts the vertically arranged airfoils the rings begin to spin. By connecting the rings to a center pole which spins an alternator, electricity can be generated from wind.

  12. Clay slurry and engineered soils as containment technologies for remediation of contaminated sites

    International Nuclear Information System (INIS)

    Williams, J.R.; Dudka, S.; Miller, W.P.; Johnson, D.O.

    1997-01-01

    Clay Slurry and Engineered Soils are containment technologies for remediation of waste disposal sites where leaching, groundwater plumes and surface runoff of contaminants are serious ecological hazards to adjacent environments. This technology is a patent-pending process which involves the use of conditioned clay materials mixed with sand and water to form a readily pourable suspension, a clay slurry, which is either placed into a trench barrier system or allowed to de-water to create Engineered Soils. The Engineered Soil forms a layer impervious to water and air, therefore by inhibiting both water and oxygen from penetrating through the soil the material. This material can be installed in layers and as a vertical barrier to create a surface barrier containment system. The clay percentage in the clay slurry and Engineered Soils varies depending on site characteristics and desired performance standards. For example Engineered Soils with 1-2% of clay (dry wt.) had a hydraulic conductivity (K) of 10 -8 to 10 -1 cm/sec. Tests of tailing materials from a kyanite and pyrite mine showed that the clay slurry was effective not only in reducing the permeability of the treated tailings, but also in decreasing their acidity due to the inherent alkalinity of the clay. The untreated tailings had pH values in the range of 2.4 - 3.1; whereas, the effluent from clay and tailings mixtures had pH values in a slightly alkaline range (7.7-7.9). Pug-mills and high volume slurry pumps can be readily adapted for use in constructing and placing caps and creating Engineered Soils. Moreover, material on site or from a local sand supply can be used to create clay slurries and engineered soils. Clay materials used in cap construction are likewise readily available commercially. As a result, the clay slurry system is very cost effective compared to other capping systems, including the commonly used High Density Polyethylene (HDPE) liner systems

  13. SURFACE MODIFICATION OF SUGARCANE BAGASSE CELLULOSE AND ITS EFFECT ON MECHANICAL AND WATER ABSORPTION PROPERTIES OF SUGARCANE BAGASSE CELLULOSE/ HDPE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Daniella Regina Mulinari

    2010-05-01

    Full Text Available Cellulose fibres from sugarcane bagasse were bleached and modified by zirconium oxychloride in order to improve the mechanical properties of composites with high density polyethylene (HDPE. The mechanical properties of the composites prepared from chemically modified cellulose fibres were found to increase compared to those of bleached fibres. Tensile strengths of the composites showed a decreasing trend with increasing filler content. However, the values for the chemically modified cellulose fibres/HDPE composites at all mixing ratios were found to be higher than that of neat HDPE. Results of water immersion tests showed that the water absorption affected the mechanical properties. The fracture surfaces of the composites were recorded using scanning electron microscopy (SEM. The SEM micrographs revealed that interfacial bonding between the modified filler and the matrix was significantly improved by the fibre modification.

  14. Sensory aspects and water quality impacts of chlorinated and chloraminated drinking water in contact with HDPE and cPVC pipe.

    Science.gov (United States)

    Heim, Timothy H; Dietrich, Andrea M

    2007-02-01

    Pipes constructed with high-density polyethylene (HDPE) or chlorinated polyvinyl chloride (cPVC) are commonly used in drinking water distribution systems and premise plumbing. In this comprehensive investigation, the effects on odor, organic chemical release, trihalomethane (THM) formation, free chlorine demand and monochloramine demand were determined for water exposed to HDPE and cPVC pipes. The study was conducted in accordance with the Utility Quick Test (UQT), a migration/leaching protocol for analysis of materials in contact with drinking water. The sensory panel consistently attributed a weak to moderate intensity of a "waxy/plastic/citrus" odor to the water from the HDPE pipes but not the cPVC-contacted water samples. The odor intensity generated by the HDPE pipe remained relatively constant for multiple water flushes, and the odor descriptors were affected by disinfectant type. Water samples stored in both types of pipe showed a significant increase in the leaching of organic compounds when compared to glass controls, with HDPE producing 0.14 microgTOC/cm(2) pipe surface, which was significantly greater than the TOC release from cPVC. Water stored in both types of pipe showed disinfectant demands of 0.1-0.9 microg disinfectant/cm(2) pipe surface, with HDPE exerting more demand than cPVC. No THMs were detected in chlorinated water exposed to the pipes. The results demonstrate the impact that synthetic plumbing materials can have on sensory and chemical water quality, as well as the significant variations in drinking water quality generated from different materials.

  15. Hydrogen-rich gas production by continuous pyrolysis and in-line catalytic reforming of pine wood waste and HDPE mixtures

    International Nuclear Information System (INIS)

    Arregi, Aitor; Amutio, Maider; Lopez, Gartzen; Artetxe, Maite; Alvarez, Jon; Bilbao, Javier; Olazar, Martin

    2017-01-01

    Highlights: • Plastic co-feeding improves the flexibility of biomass pyrolysis-reforming strategy. • Hydrogen production is enhanced by increasing plastic content in the feed. • The joint valorization of biomass and plastics attenuates catalyst deactivation. • The amorphous coke derived from biomass is the main responsible for deactivation. - Abstract: The continuous pyrolysis-reforming of pine sawdust and high density polyethylene mixtures (25, 50 and 75 wt% HDPE) has been performed in a two-stage reaction system provided with a conical spouted bed reactor (CSBR) and a fluidized bed reactor. The influence HDPE co-feeding has on the conversion, yields and composition of the reforming outlet stream and catalyst deactivation has been studied at a reforming temperature of 700 °C, with a space time of 16.7 g_c_a_t min g_f_e_e_d_i_n_g"−"1 and a steam/(biomass + HDPE) mass ratio of 4, and a comparison has been made between these results and those recorded by feeding pine sawdust and HDPE separately. Co-feeding plastics enhances the hydrogen production, which increases from 10.9 g of H_2 per 100 g of feed (only pine sawdust in the feed) to 37.3 g of H_2 per 100 g of feed (only HDPE in the feed). Catalyst deactivation by coke is attenuated when HDPE is co-fed due to the lower content of oxygenated compounds in the reaction environment. The higher yield of hydrogen achieved with this two-step (pyrolysis-reforming) strategy, its ability to jointly valorise biomass and plastic mixtures and the lower temperatures required compared to gasification make this promising process for producing H_2 from renewable raw materials and wastes.

  16. The roles of liquid epoxidized natural rubber acrylate (LENRA) as compatibiliser in NR/HDPE blends: structural studies by electron microscopy and SANS techniques

    International Nuclear Information System (INIS)

    Dahlan Mohd; Mahathir Mohamed; Abdul Aziz Mohamed

    2006-01-01

    Further works have been carried out to determine the roles of LENRA in inducing compatibility between immiscible blends of NR/HDPE 60/40. In addition to electron microscopy images, SANS technique has been used to determine the interface thickness between the blend components. Phase-separated structures of HDPE domain embedded in NR matrix were observed by electron microscopy technique. From the results so far, the combination of 15% LENRA and 200 kGy EB radiation gives us the best Porod plot indicating the more meaningful SANS results. (Author)

  17. A study of the dynamic flammability of radiation cross-linked flame-retardant HDPE/EPDM/silicon-elastomer compound

    Energy Technology Data Exchange (ETDEWEB)

    Jia, Shaojin E-mail: jiashaojin2@yahoo.com.cn; Zhang Zhicheng E-mail: zczhang@ustc.edu.cn; Du Zhiwen; Teng Renrui; Wang Zhengzhou

    2003-04-01

    A dynamic flammability study of flame-retardant compound consisting of HDPE, EPDM and silicon elastomer blended with additives, as wire and cable insulation was made before and after irradiation. The data of RHR, EHC, SEC and the concentration of CO and CO{sub 2} from cone colorimeter shown in the burning process were accessed. By blending silicon elastomer, CO release rate was reduced and the thermal endurance was improved. Oxygen index, mechanical property, morphology of the char formed in dynamical flame and thermal stability were also investigated.

  18. A study of the dynamic flammability of radiation cross-linked flame-retardant HDPE/EPDM/silicon-elastomer compound

    International Nuclear Information System (INIS)

    Jia, Shaojin; Zhang Zhicheng; Du Zhiwen; Teng Renrui; Wang Zhengzhou

    2003-01-01

    A dynamic flammability study of flame-retardant compound consisting of HDPE, EPDM and silicon elastomer blended with additives, as wire and cable insulation was made before and after irradiation. The data of RHR, EHC, SEC and the concentration of CO and CO 2 from cone colorimeter shown in the burning process were accessed. By blending silicon elastomer, CO release rate was reduced and the thermal endurance was improved. Oxygen index, mechanical property, morphology of the char formed in dynamical flame and thermal stability were also investigated

  19. Influence of fiber length on flexural and impact properties of Zalacca Midrib fiber/HDPE by compression molding

    Science.gov (United States)

    Pamungkas, Agil Fitri; Ariawan, Dody; Surojo, Eko; Triyono, Joko

    2018-02-01

    The aim of the research is to investigate the effect of fiber length on the flexural and impact properties of the composite of Zalacca Midrib Fiber (ZMF)/HDPE. The process of making composite was using compression molding method. The variation of fiber length were 1 mm, 3 mm, 5 mm, 7 mm and 9 mm, at 30% fiber volume fraction. The flexural and impact test according to ASTM D790 and ASTM D5941, respectively. Observing fracture surface was examained by using Scanning Electron Microscopy (SEM). The results showed that the flexural and impact strengths would be increase with the increase of fiber length.

  20. Thermal and optical excitation of trapped electrons in high-density polyethylene (HDPE) studied through positron annihilation

    International Nuclear Information System (INIS)

    Nahid, F.; Zhang, J.D.; Yu, T.F.; Ling, C.C.; Fung, S.; Beling, C.D.

    2011-01-01

    Positronium (Ps) formation in high-density polyethylene (HDPE) has been studied below the glass transition temperature. The formation probability increases with positron irradiation time due to an increasing number of inter-track trapped electrons becoming available for positron capture. The temperature variation of the saturated Ps level is discussed in different models. The quenching of trapped electrons by light has been studied and the optical de-trapping cross-section for different photon energies has been estimated over the visible region.

  1. Comprehensive analysis of shielding effectiveness for HDPE, BPE and concrete as candidate materials for neutron shielding

    International Nuclear Information System (INIS)

    Dhang, Prosenjit; Verma, Rishi; Shyam, Anurag

    2015-01-01

    In the compact accelerator based DD neutron generator, the deuterium ions generated by the ion source are accelerated after the extraction and bombarded to a deuterated titanium target. The emitted neutrons have typical energy of ∼2.45MeV. Utilization of these compact accelerator based neutron generators of yield up to 10 9 neutron/second (DD) is under active consideration in many research laboratories for conducting active neutron interrogation experiments. Requirement of an adequately shielded laboratory is mandatory for the effective and safe utilization of these generators for intended applications. In this reference, we report the comprehensive analysis of shielding effectiveness for High Density Polyethylene (HDPE), Borated Polyethylene (BPE) and Concrete as candidate materials for neutron shielding. In shielding calculations, neutron induced scattering and absorption gamma dose has also been considered along with neutron dose. Contemporarily any material with higher hydrogenous concentration is best suited for neutron shielding. Choice of shielding material is also dominated by practical issues like economic viability and availability of space. Our computational analysis results reveal that utilization of BPE sheets results in minimum wall thickness requirement for attaining similar range of attenuation in neutron and gamma dose. The added advantage of using borated polyethylene is that it reduces the effect of both neutron and gamma dose by absorbing neutron and producing lithium and alpha particle. It has also been realized that for deciding upon optimum thickness determination of any shielding material, three important factors to be necessarily considered are: use factor, occupancy factor and work load factor. (author)

  2. Influence of processing variables on the mechanical behavior of HDPE/clay nanocomposites

    Directory of Open Access Journals (Sweden)

    Renata Barbosa

    2012-06-01

    Full Text Available Nanocomposites were processed using the technique of melt intercalation, starting from a concentrated polar compatibilizer/organoclay (PE-g-MA/organoclay prepared in an internal mixer. The concentrate was incorporated into the matrix of HDPE by two methods: I counter-rotating twin-screw extruder and II co-rotating twin-screw extruder, using two screw profiles (ROS and 2KB90. After extrusion, the specimens of the extruded composites were injection molded. The X-ray diffraction (XRD technique was used to analyze the degree of expansion of the prepared clays. To analyze the degree of exfoliation of obtained nanocomposites, XRD and TEM (transmission electron microscopy were used. The influence of processing variables on mechanical properties was studied through the behavior of the modulus and tensile strength of nanocomposite systems. By XRD and TEM, it was seen that the clay was well dispersed in the matrix and the presence of intercalated and partially exfoliated hybrid structure for nanocomposites was observed when the systems were prepared in counter-rotating twin-screw extruder. A similar behavior was observed in the use of screws (2KB90 or ROS of the nanocomposites, with a reduction in modulus and tensile strength. Although the mixing process by extruding be the most common industrial practice, and also it is the preferred strategy for the preparation of polymer nanocomposites, much of the literature was directed to the study of chemical modification of clay, type and level of compatibilizer, in order to maximize the compatibility between clay and the polymeric matrix. On the other hand, studies about the role of the processing and configurations of screws are relatively scarce. The main motivation of this work was to expand and to contribute to spread a better understanding of the effects of processing to obtain polymer nanocomposites.

  3. Sugarcane bagasse ash reinforced HDPE composites: effects of electron-beam radiation crosslinking on tensile and morphological properties

    International Nuclear Information System (INIS)

    Teixeira, Jaciele G.; Gomes, Michelle G.; Oliveira, Rene R.; Silva, Valquiria A.; Sartori, Mariana M.; Ortiz, Angel V.; Moura, Esperidiana A.B.

    2013-01-01

    Environmental issues have led to the development of polymeric materials reinforced with fibers originated from renewable agricultural sources such as pineapple leaf, sisal, jute, piassava, coir, and sugarcane bagasse. Although sugarcane bagasse fiber residues has been extensively studied and used as a source of reinforcement of polymers, the major portion of these residues is currently burnt for energy supply in the sugar and alcohol industries and as a result of its burning, tons of ashes are produced. Due to the inorganic composition, ashes can be used as reinforcement in polymeric materials. This study presents the preparation and characterization of a composite based on HDPE matrix and sugarcane bagasse ashes as reinforcement cross-linked by electron-beam radiation. The HDPE /Ash composite (95:5 wt %) was obtained by using a twin-screw extruder machine followed by injection molding. After extrusion and injection molding process, the composites were subjected to electron-beam radiation, at radiation doses of 150 kGy and 250 kGy using a Dynamitron electron beam accelerator, at room temperature in the presence of air. The irradiated and non-irradiated composite specimens were characterization by tensile and MFI tests, scanning electron microscopy (SEM), X-ray diffraction (XRD) and sol-gel analysis. In addition, ash from bagasse fiber was characterized by WDXRF. (author)

  4. Synthesis of carbon nanostructures from high density polyethylene (HDPE) and polyethylene terephthalate (PET) waste by chemical vapour deposition

    Science.gov (United States)

    Hatta, M. N. M.; Hashim, M. S.; Hussin, R.; Aida, S.; Kamdi, Z.; Ainuddin, AR; Yunos, MZ

    2017-10-01

    In this study, carbon nanostructures were synthesized from High Density Polyethylene (HDPE) and Polyethylene terephthalate (PET) waste by single-stage chemical vapour deposition (CVD) method. In CVD, iron was used as catalyst and pyrolitic of carbon source was conducted at temperature 700, 800 and 900°C for 30 minutes. Argon gas was used as carrier gas with flow at 90 sccm. The synthesized carbon nanostructures were characterized by FESEM, EDS and calculation of carbon yield (%). FESEM micrograph shows that the carbon nanostructures were only grown as nanofilament when synthesized from PET waste. The synthesization of carbon nanostructure at 700°C was produced smooth and the smallest diameter nanofilament compared to others. The carbon yield of synthesized carbon nanostructures from PET was lower from HDPE. Furthermore, the carbon yield is recorded to increase with increasing of reaction temperature for all samples. Elemental study by EDS analysis were carried out and the formation of carbon nanostructures was confirmed after CVD process. Utilization of polymer waste to produce carbon nanostructures is beneficial to ensure that the carbon nanotechnology will be sustained in future.

  5. Sugarcane bagasse ash reinforced HDPE composites: effects of electron-beam radiation crosslinking on tensile and morphological properties

    Energy Technology Data Exchange (ETDEWEB)

    Teixeira, Jaciele G.; Gomes, Michelle G.; Oliveira, Rene R.; Silva, Valquiria A.; Sartori, Mariana M.; Ortiz, Angel V.; Moura, Esperidiana A.B., E-mail: jacielegteixeira@yahoo.com [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Environmental issues have led to the development of polymeric materials reinforced with fibers originated from renewable agricultural sources such as pineapple leaf, sisal, jute, piassava, coir, and sugarcane bagasse. Although sugarcane bagasse fiber residues has been extensively studied and used as a source of reinforcement of polymers, the major portion of these residues is currently burnt for energy supply in the sugar and alcohol industries and as a result of its burning, tons of ashes are produced. Due to the inorganic composition, ashes can be used as reinforcement in polymeric materials. This study presents the preparation and characterization of a composite based on HDPE matrix and sugarcane bagasse ashes as reinforcement cross-linked by electron-beam radiation. The HDPE /Ash composite (95:5 wt %) was obtained by using a twin-screw extruder machine followed by injection molding. After extrusion and injection molding process, the composites were subjected to electron-beam radiation, at radiation doses of 150 kGy and 250 kGy using a Dynamitron electron beam accelerator, at room temperature in the presence of air. The irradiated and non-irradiated composite specimens were characterization by tensile and MFI tests, scanning electron microscopy (SEM), X-ray diffraction (XRD) and sol-gel analysis. In addition, ash from bagasse fiber was characterized by WDXRF. (author)

  6. Substitution potentials of recycled HDPE and wood particles from post-consumer packaging waste in Wood-Plastic Composites.

    Science.gov (United States)

    Sommerhuber, Philipp F; Welling, Johannes; Krause, Andreas

    2015-12-01

    The market share of Wood-Plastic Composites (WPC) is small but expected to grow sharply in Europe. This raises some concerns about suitable wood particles needed in the wood-based panels industry in Europe. Concerns are stimulated by the competition between the promotion of wooden products through the European Bioeconomy Strategy and wood as an energy carrier through the Renewable Energy Directive. Cascade use of resources and valorisation of waste are potential strategies to overcome resource scarcity. Under experimental design conditions, WPC made from post-consumer recycled wood and plastic (HDPE) were compared to WPC made from virgin resources. Wood content in the polymer matrix was raised in two steps from 0% to 30% and 60%. Mechanical and physical properties and colour differences were characterized. The feasibility of using cascaded resources for WPC is discussed. Results indicate the technical and economic feasibility of using recycled HDPE from packaging waste for WPC. Based on technical properties, 30% recycled wood content for WPC is feasible, but economic and political barriers of efficient cascading of biomass need to be overcome. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Vertical pump assembly

    International Nuclear Information System (INIS)

    Dohnal, M.; Rosel, J.; Skarka, V.

    1988-01-01

    The mounting is described of the drive assembly of a vertical pump for nuclear power plants in areas with seismic risk. The assembly is attached to the building floor using flexible and damping elements. The design allows producing seismically resistant pumps without major design changes in the existing types of vertical pumps. (E.S.). 1 fig

  8. Preparation and characterizations of HDPE-EVA alloy/OMT nanocomposites/paraffin compounds as a shape stabilized phase change thermal energy storage material

    International Nuclear Information System (INIS)

    Cai Yibing; Hu Yuan; Song Lei; Lu Hongdian; Chen Zuyao; Fan Weicheng

    2006-01-01

    A kind of shape stabilized phase change nanocomposites materials (PCNM) based on high density polyethylene (HDPE)/ethylene-vinyl acetate (EVA) alloy, organophilic montmorillonite (OMT), paraffin and intumescent flame retardant (IFR) are prepared using twin-screw extruder technique. The structures of the HDPE-EVA alloy/OMT nanocomposites are evidenced by the X-ray diffraction (XRD) and transmission electron microscopy (TEM). The results show that an ordered intercalated nanomorphology of the HDPE-EVA alloy/OMT nanocomposites is formed. Then the structures of the shape stabilized PCNM are characterized by scanning electron microscopy (SEM). The HDPE-EVA alloy/OMT nanocomposites act as the supporting material and form the three-dimensional network structure. The paraffin acts as a phase change material and disperses in the three-dimensional network structure. Its latent heat is given by differential scanning calorimeter (DSC) method. The SEM and DSC results show that the additives of IFR have little effect on the network structure and the latent heat of shape stabilized PCNM, respectively. The thermal stability properties are characterized by thermogravimetric analysis (TGA). The TGA analysis results indicate that the flame retardant shape stabilized PCNM produce a larger amount of char residue at 800 deg. C than that of shape stabilized PCNM, although the onset of weight loss of the flame retardant shape stabilized PCNM occur at a lower temperature. The formed multicellular char residue contributes to the improvement of thermal stability performance. The probable combustion mechanisms are also discussed in this paper

  9. Fluidized bed pyrolysis of HDPE: A study of the influence of operating variables and the main fluid dynamic parameters on the composition and production of gases

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Lidia; Aguado, Alicia; Moral, Alberto [CARTOF Centro Tecnologico, Valladolid (Spain). Environmental Div.; Irusta, Ruben [CARTOF Centro Tecnologico, Valladolid (Spain). Environmental Div.; Valladolid Univ. (Spain). Dept. of Chemical Engineering and Environmental Technology

    2011-02-15

    In the present work, a preliminary study of the pyrolysis process of high density polyethylene (HDPE) in a fluidized bed is investigated in order to determine the influence between the fluid dynamic properties of the bed reactor and the amount and composition of the gases produced. As is known, fluidized bed technology is a very interesting option to apply in the pyrolysis field due to i) the lack of moving parts in the hot region that facilitates the maintenance of equipment, ii) the high surface area to volume ratio available in the bed, and iii) the high heat transfer coefficient reached which governs the reaction products. But, heat and mass transfer coefficients are strongly affected by the fluid dynamic properties of the bed. During the pyrolysis of HDPE, a fluid dynamic characterization of the bed particles that consist of char-coated sand of HDPE has been carried out. Parameters such as the minimum fluidizing velocity (u{sub mf}), terminal velocity (u{sub t}), bed height (h{sub f}), bed voidage ({epsilon}{sub f}), fraction of the bed occupied by bubbles ({delta}), bubble diameter (d{sub b}), bubble velocity (u{sub b}), the mass transfer coefficients between the bubble and the cloud (K{sub bc}) and between the cloud and the emulsion (K{sub ce}) were determined. Subsequently, the influence of major operating variables and the fluid dynamic parameters on the composition and the gas yield of the pyrolysis of HDPE were studied. (author)

  10. Vertices in the abelized picture

    International Nuclear Information System (INIS)

    Embacher, F.

    1990-01-01

    Covariant vertices of open bosonic string theory are transformed to the abelized picture. The way the pure transverse (light-cone gauge) vertex is contained therein is exhibited explicitly. The formalism shows in a quite transparent way that all further content of a covariant vertex is of gauge type. By applying the transverse projection operator in the abelized picture, an algebraic condition whether a set of Neumann coefficients define a vertex for string theory is obtained. A speculation concerning field redefinitions in string field theory is added. (Author) 33 refs

  11. Coordination in vertical jumping

    NARCIS (Netherlands)

    Bobbert, Maarten F.; van Ingen Schenau, Gerrit Jan

    1988-01-01

    The present study was designed to investigate for vertical jumping the relationships between muscle actions, movement pattern and jumping achievement. Ten skilled jumpers performed jumps with preparatory countermovement. Ground reaction forces and cinematographic data were recorded. In addition,

  12. Efeito da adição de diferentes copolímeros em blendas HDPE/HIPS pós-consumo: morfologia de fases e propriedades térmicas The effect of different block copolymers on post consumer HDPE/HIPS Blends: phase morphology and thermal properties

    Directory of Open Access Journals (Sweden)

    Igor S. B. Perez

    2008-09-01

    Full Text Available Blendas de poliolefinas/HIPS têm sido exploradas para obter filmes especiais com determinadas propriedades desejadas, tornando imperativo desenvolver vários estudos para um melhor conhecimento do comportamento desses materiais. Neste trabalho, efeitos da adição dos copolímeros comerciais de estireno-butadieno multibloco (SBS e de estireno-(etileno-co-butileno-estireno (SEBS tribloco linear em blendas pós-consumo de HDPE e HIPS são reportados. A diminuição nas dimensões da microfase dispersa, aliada à rugosidade superficial da fase HDPE após extração seletiva do HIPS, independentemente de a fase matriz ser HIPS ou HDPE, mostraram mais eficiência do SEBS como modificador interfacial de tensão ou como surfactante entre os diferentes domínios quando comparado com o SBS. Os resultados das caracterizações térmicas, por exemplo, menor Tm e menor grau de cristalinidade do HDPE, e maior Tg do poliestireno na presença de SEBS corroboraram esta conclusão, como será discutido posteriormente.Blending of post-consumer polyolefins/HIPS has been exploited for obtaining special films with a desired set of properties, which has required studies to understand the behavior of these materials. In this work the effects of commercial multiblock styrene-butadiene (SBS and linear triblock styrene-(ethylene-co-butylene-styrene (SEBS copolymers in blends of post-consumer high density polyethylene (HDPE and HIPS are reported. Thermal properties and phase morphology were comparatively analyzed for the additives aiming at verifying possible correlations between them. Decreased dimensions of the minor micro phase along with HDPE surface roughness after HIPS selective extraction, independently of the matrix being HIPS or HDPE, showed better effectiveness for SEBS as interfacial tension modifier or as surfactant at the different domains interface when compared with SBS. The results of thermal characterizations, e.g. lower HDPE melting temperature, lower

  13. Hybrid vertical cavity laser

    DEFF Research Database (Denmark)

    Chung, Il-Sug; Mørk, Jesper

    2010-01-01

    A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide.......A new hybrid vertical cavity laser structure for silicon photonics is suggested and numerically investigated. It incorporates a silicon subwavelength grating as a mirror and a lateral output coupler to a silicon ridge waveguide....

  14. The influence of sol on the behavior of melting and nonisothermal crystallization kinetic of radiation cross-linking HDPE

    International Nuclear Information System (INIS)

    Deng Pengyang; Xie Hongfeng; Deng Mingxiao; Zhong Xiaoguang

    2000-01-01

    By using DSC, the behavior of second melting and nonisothermal crystallization of pure gel pure sol and sol-gel blend of radiation crosslinking HDPE was studied. The authors found that, because of the existence of sol, there is notable difference between pure gel and pure sol or sol-gel blend. Under the same dose, the melting point and crystallization temperature of pure sol and sol-gel blend are higher than that of pure gel. At the same time, the authors also found that the Avrami exponent of original PE, pure sol and sol-gel blend is the similar to each other and different to that of pure gel, which means that the procedure of nucleation and growth of these samples is the same and also different to that of pure gel

  15. Physical, mechanical and neutron shielding properties of h-BN/Gd2O3/HDPE ternary nanocomposites

    Science.gov (United States)

    İrim, Ş. Gözde; Wis, Abdulmounem Alchekh; Keskin, M. Aker; Baykara, Oktay; Ozkoc, Guralp; Avcı, Ahmet; Doğru, Mahmut; Karakoç, Mesut

    2018-03-01

    In order to prepare an effective neutron shielding material, not only neutron but also gamma absorption must be taken into account. In this research, a polymer nanocomposite based novel type of multifunctional neutron shielding material is designed and fabricated. For this purpose, high density polyethylene (HDPE) was compounded with different amounts of hexagonal boron nitride (h-BN) and Gd2O3 nanoparticles having average particle size of 100 nm using melt-compounding technique. The mechanical, thermal and morphological properties of nanocomposites were investigated. As filler content increased, the absorption of both neutron and gamma fluxes increased despite fluctuating neutron absorption curves. Adding h-BN and Gd2O3 nano particles had a significant influence on both neutron and gamma attenuation properties (Σ, cm-1 and μ/ρ, cm-2/g) of ternary shields and they show an enhancement of 200-280%, 14-52% for neutron and gamma radiations, respectively, in shielding performance.

  16. Effect of Weathering Time on the Physical - Mechanical Properties and Color Change in Wood Flour/HDPE Composite

    Directory of Open Access Journals (Sweden)

    Behzad Kord

    2014-05-01

    Full Text Available This study was carried out to investigate the effect of weathering time on the physical and mechanical properties and color change in composite made of wood flour and high density polyethylene (HDPE. For this purpose, wood flour and polyethylene at a weight ratio of 60:40 with coupling agent were compounded in an internal mixer, and the samples were made in injection molding. Then, the weathering process by ultraviolet irradiation and water spray was done on the samples at different times of 250, 500, 1000 and 2000 hours in accelerated weathering apparatus. Finally, the physical and mechanical properties and color measurement of samples were tested, and compared with control samples. Results indicated that the flexural strength, flexural modulus, tensile strength and tensile modulus decreased with an increase in weathering time; however, the water absorption increased. Also, the yellowness of wood plastic samples decreased with an increase in weathering time and due to the lightness and color change increased.

  17. Different senescent HDPE pipe-risk: brief field investigation from source water to tap water in China (Changsha City).

    Science.gov (United States)

    Tang, Jing; Tang, Lin; Zhang, Chang; Zeng, Guangming; Deng, Yaocheng; Dong, Haoran; Wang, Jingjing; Wu, Yanan

    2015-10-01

    Semi-volatile organic compounds (SVOCs) derived from plastic pipes widely used in water distribution definitely influence our daily drinking water quality. There are still few scientific or integrated studies on the release and degradation of the migrating chemicals in pipelines. This investigation was carried out at field sites along a pipeline in Changsha, China. Two chemicals, 2, 4-tert-buthylphenol and 1, 3-diphenylguanidine, were found to be migrating from high density polyethylene (HDPE) pipe material. New pipes released more of these two compounds than older pipes, and microorganisms living in older pipes tended to degrade them faster, indicating that the aged pipes were safer for water transmission. Microorganism degradation in water plays a dominant role in the control of these substances. To minimize the potential harm to human, a more detailed study incorporating assessment of their risk should be carried out, along with seeking safer drinking pipes.

  18. Numerical Simulation of Heat and Flow Behaviors in Butt-fusion Welding Process of HDPE Pipes with Curved Fusion Surface

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jae Hyun; Ahn, Kyung Hyun [Seoul National University, Seoul (Korea, Republic of); Choi, Sunwoong; Oh, Ju Seok [Hannam University, Daejeon (Korea, Republic of)

    2017-08-15

    Butt-fusion welding process is used to join the polymeric pipes. Recently, some researchers suggest the curved surface to enhance a welding quality. We investigated how curved welding surface affects heat and flow behaviors of polymer melt during the process in 2D axisymmetric domain with finite element method, and discussed the effect to the welding quality. In this study, we considered HDPE pipes. In heat soak stage, curved phase interface between the melt and solid is shown along the shape of welding surface. In jointing stage, squeezing flow is generated between curved welding surface and phase interface. The low shear rate in fusion domain reduces the alignment of polymer to the perpendicular direction of pipes, and then this phenomenon is expected to help to enhance the welding quality.

  19. [Preliminary study of constructing tissue-engineered cartilage with the endoskeletal scaffold of HDPE by bone marrow stromal cells].

    Science.gov (United States)

    Zhu, Lie; Jiang, Hua; Zhou, Guang-Dong; Wu, Yu-Jia; Luo, Xu-Song

    2008-09-01

    To explore the feasibility of using a nonreactive, permanent endoskeletal scaffold to create the prothesis in special shape which is covered with tissue-engineered cartilage. Porcine BMSCs and articular chondrocytes were isolated and expanded respectively in vitro. Porcine BMSC of passage 1 in the concentration of 10 x 10(7)/ml were seeded onto a cylinder-shaped PGA (1 mm in thickness)/Medpor (3mm in diameter and 5mm in highness) scaffold as the experimental group. After the cell-scaffold constructs were cultured for 5 days, the primary medium, high-glucose DMEM medium with 10% fetal bovine serum (FBS), was replaced by chondrogenically inductive medium for 4 weeks. BMSCs and chondrocytes of the same concentration were seeded respectively onto the scaffold as the negative control group and the positive control group. After cultured in vitro for 4 weeks, the cell-scaffolds construct were implanted into subcutaneous pockets on the back of nude mice. Four and eight weeks later, the formed cartilage prosthesis were harvested and then evaluated by gross view, histology, immunohistochemistry and glycosamino-glycan (GAG) content. Cells in all groups had fine adhesion to the scaffold and could secrete extracellular matrix. All specimens in experimental group and positive control group formed mature cartilage with collagen II expression.The mature catrtilage wraped HDPE compactly and grown into the gap of HDPE. Mature lacuna structures and metachromatic matrices were also observed in these specimens. GAG contents in experimental group were (5.13 +/- 0.32) mg/g (4 weeks), (5.37 +/- 0.12) mg/g (8 weeks). In contrast, specimens in BMSC group showed mainly fibrous tissue. It indicates that it is feasible to create special shaped tissue-engineering cartilage with the permanent internal support using BMSCs as seed cell.

  20. 20 Gbit/s error free transmission with ~850 nm GaAs-based vertical cavity surface emitting lasers (VCSELs) containing InAs-GaAs submonolayer quantum dot insertions

    Science.gov (United States)

    Lott, J. A.; Shchukin, V. A.; Ledentsov, N. N.; Stinz, A.; Hopfer, F.; Mutig, A.; Fiol, G.; Bimberg, D.; Blokhin, S. A.; Karachinsky, L. Y.; Novikov, I. I.; Maximov, M. V.; Zakharov, N. D.; Werner, P.

    2009-02-01

    We report on the modeling, epitaxial growth, fabrication, and characterization of 830-845 nm vertical cavity surface emitting lasers (VCSELs) that employ InAs-GaAs quantum dot (QD) gain elements. The GaAs-based VCSELs are essentially conventional in design, grown by solid-source molecular beam epitaxy, and include top and bottom gradedheterointerface AlGaAs distributed Bragg reflectors, a single selectively-oxidized AlAs waveguiding/current funneling aperture layer, and a quasi-antiwaveguiding microcavity. The active region consists of three sheets of InAs-GaAs submonolayer insertions separated by AlGaAs matrix layers. Compared to QWs the InAs-GaAs insertions are expected to offer higher exciton-dominated modal gain and improved carrier capture and retention, thus resulting in superior temperature stability and resilience to degradation caused by operating at the larger switching currents commonly employed to increase the data rates of modern optical communication systems. We investigate the robustness and temperature performance of our QD VCSEL design by fabricating prototype devices in a high-frequency ground-sourceground contact pad configuration suitable for on-wafer probing. Arrays of VCSELs are produced with precise variations in top mesa diameter from 24 to 36 μm and oxide aperture diameter from 1 to 12 μm resulting in VCSELs that operate in full single-mode, single-mode to multi-mode, and full multi-mode regimes. The single-mode QD VCSELs have room temperature threshold currents below 0.5 mA and peak output powers near 1 mW, whereas the corresponding values for full multi-mode devices range from about 0.5 to 1.5 mA and 2.5 to 5 mW. At 20°C we observe optical transmission at 20 Gb/s through 150 m of OM3 fiber with a bit error ratio better than 10-12, thus demonstrating the great potential of our QD VCSELs for applications in next-generation short-distance optical data communications and interconnect systems.

  1. Effect of γ-aminopropyltriethoxy silane (γ-APS) coupling agent on mechanical and morphological properties of high density polyethylene (HDPE)/acrylonitrile butadiene rubber (NBR)/palm pressed fibre (PPF) composites

    Science.gov (United States)

    Norizan, Nabila Najwa; Santiagoo, Ragunathan; Ismail, Hanafi

    2017-07-01

    The fabrication of High Density Polyethylene (HDPE)/ Acrylonitrile-butadiene rubber (NBR)/ Palm Pressed Fibre (PPF) composite were investigated. The effect of γ-Aminopropyltriethoxy Silane (APS) as coupling agent on the properties of HDPE/ NBR/ PPF composite were studied. The composites were melt mixed using heated two roll mill at 180°C and speed of 15rpm with six different loading (100/0/10, 80/20/10, 70/30/10, 60/40/10, 50/50/10, and 40/60/10). The effects of γ-APS silane on mechanical, and morphological properties were examined using universal tensile machine (UTM) and scanning electron microscopy (SEM), respectively. Tensile strength and Young's modulus of HDPE/ NBR/ PPF composites decrease with increasing of NBR loading, whilst increasing the elongation at break. However, treated composites have resulted 3% to 29%, and 9% to 19%, higher in tensile strength and young's modulus compared to untreated composites. This was due to the better adhesion between HDPE/ NBR matrices and PPF filler with the presence of silanol moieties. From the morphological study, the micrograph of treated composites has proved the well bonded and good attachment of PPF filler with HDPE/ NBR matrices which resulted to better tensile strength to the HDPE/ NBR/ PPF composites.

  2. Vertical and horizontal subsidiarity

    Directory of Open Access Journals (Sweden)

    Ivan V. Daniluk

    2016-02-01

    Full Text Available This article makes an attempt to analyze the principle of subsidiarity in its two main manifestations, namely vertical and horizontal, to outline the principles of relations between the state and regions within the vertical subsidiarity, and features a collaboration of the government and civil society within the horizontal subsidiarity. Scientists identify two types, or two levels of the subsidiarity principle: vertical subsidiarity and horizontal subsidiarity. First, vertical subsidiarity (or territorial concerning relations between the state and other levels of subnational government, such as regions and local authorities; second, horizontal subsidiarity (or functional concerns the relationship between state and citizen (and civil society. Vertical subsidiarity expressed in the context of the distribution of administrative responsibilities to the appropriate higher level lower levels relative to the state structure, ie giving more powers to local government. However, state intervention has subsidiary-lower action against local authorities in cases of insolvency last cope on their own, ie higher organisms intervene only if the duties are less authority is insufficient to achieve the goals. Horizontal subsidiarity is within the relationship between power and freedom, and is based on the assumption that the concern for the common good and the needs of common interest community, able to solve community members (as individuals and citizens’ associations and role of government, in accordance horizontal subsidiarity comes to attracting features subsidiarity assistance, programming, coordination and possibly control.

  3. Experimental investigation on the properties of concrete containing post-consumer plastic waste as coarse aggregate replacement

    Directory of Open Access Journals (Sweden)

    Zasiah TAFHEEM

    2018-03-01

    Full Text Available The consumption of various forms of plastic has been increased in recent days due to the boost in industrialization and other human activities. Most of the plastic wastes are abandoned and require large landfill area for storage. More importantly, the low biodegradability of plastic poses a serious threat to environment protection issue. Various methods have been followed for the disposal of plastic in an attempt to reduce the negative impact of the plastic on the environment. Recently, various types of plastic have been incorporated in concrete to minimize the exposure of plastic to the environment. The aim of this study is to investigate the properties of concrete containing polyethylene terephthalate (PET, and high density polyethylene (HDPE plastic that were used as partial replacement of coarse aggregate (CA. In this study, four compositions of stone aggregate(S: plastic waste ratios have been used by volume basis: 100% S: 0% Plastic (control concrete, 90% S: 10% PET, 90% S: 10% HDPE, and 90% S: 5% PET+5% HDPE. The effects of waste plastic addition on the mechanical properties of concrete are presented in this paper. Test results reveal that minimum reduction in compressive strength has been found 35% in case of 10% PET plastic replaced concrete whereas splitting tensile strength for 10% PET replaced concrete has been increased by 21% while compared to control concrete. In addition, fresh unit weight of concrete containing plastic waste has been decreased by 4% in comparison to control concrete.

  4. [Duane vertical surgical treatment].

    Science.gov (United States)

    Merino, M L; Gómez de Liaño, P; Merino, P; Franco, G

    2014-04-01

    We report 3 cases with a vertical incomitance in upgaze, narrowing of palpebral fissure, and pseudo-overaction of both inferior oblique muscles. Surgery consisted of an elevation of both lateral rectus muscles with an asymmetrical weakening. A satisfactory result was achieved in 2 cases, whereas a Lambda syndrome appeared in the other case. The surgical technique of upper-insertion with a recession of both lateral rectus muscles improved vertical incomitance in 2 of the 3 patients; however, a residual deviation remains in the majority of cases. Copyright © 2011 Sociedad Española de Oftalmología. Published by Elsevier Espana. All rights reserved.

  5. Vertical market participation

    DEFF Research Database (Denmark)

    Schrader, Alexander; Martin, Stephen

    1998-01-01

    Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids this stra......Firms that operate at both levels of vertically related Cournot oligopolies will purchase some input supplies from independent rivals, even though they can produce the good at a lower cost, driving up input price for nonintegrated firms at the final good level. Foreclosure, which avoids...

  6. Vertical Protocol Composition

    DEFF Research Database (Denmark)

    Groß, Thomas; Mödersheim, Sebastian Alexander

    2011-01-01

    The security of key exchange and secure channel protocols, such as TLS, has been studied intensively. However, only few works have considered what happens when the established keys are actually used—to run some protocol securely over the established “channel”. We call this a vertical protocol.......e., that the combination cannot introduce attacks that the individual protocols in isolation do not have. In this work, we prove a composability result in the symbolic model that allows for arbitrary vertical composition (including self-composition). It holds for protocols from any suite of channel and application...

  7. Robotic platform for traveling on vertical piping network

    Science.gov (United States)

    Nance, Thomas A; Vrettos, Nick J; Krementz, Daniel; Marzolf, Athneal D

    2015-02-03

    This invention relates generally to robotic systems and is specifically designed for a robotic system that can navigate vertical pipes within a waste tank or similar environment. The robotic system allows a process for sampling, cleaning, inspecting and removing waste around vertical pipes by supplying a robotic platform that uses the vertical pipes to support and navigate the platform above waste material contained in the tank.

  8. Gas-phase and liquid-phase pre-irradiation grafting of AAc onto LDPE and HDPE films for pervaporation membranes

    International Nuclear Information System (INIS)

    Rao Zhigong; Li Guixiang; Sugo, Takanobu; Okamoto, Jiro

    1992-01-01

    A study has been made on gas-phase and liquid-phase pre-irradiation grafting of acrylic acid onto LDPE and HDPE films for pervaporation membranes of ethanol-water mixtures. It was found that the degree of grafting, percent volume change of grafted membranes and length of grafting chains depend on the methods of grafting, crystal state of substrate films and diffusion rate of the monomer in the films. The pervaporation characteristics of grafted membranes is influenced directly by the surface hydrophilicity of grafted membranes, temperature of the feed, degree of grafting, crosslinking of grafted chains and alkaline metal ions in the functional groups. The potassium ion exchange membrane of HDPE synthesized by gas-phase grafting has better pervaporation efficiency. At 80 wt% ethanol in the feed, 25 o C feed temperature and 70% degree of grafting a grafted membrane has a 0.65 kg/m 2 h flux and a separation factor of 20. (Author)

  9. Effect of ionizing radiation exposure in the morphology of modified HDPE with amphiphilic particles; Efeito da exposicao a radiacao ionizante na morfologia de PEAD modificado com particulas anfifilicas

    Energy Technology Data Exchange (ETDEWEB)

    Saldanha, Ana Luiza M. [Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG (Brazil); Vivas, Viviane; Zylberberg, Marcel P.; Silva, Tamara I.; Cardoso, Andre Luis V.; Pereira, Iaci M., E-mail: iacipere@gmail.com [Centro Tecnologico do Exercito (CTEx), Rio de Janeiro, RJ (Brazil); Patricio, Patricia S.O. [Centro Federal de Educacao Tecnologica de Minas Gerias (CEFET), Belo Horizonte, MG (Brazil)

    2015-07-01

    One of the techniques used to improve the properties of high performance polymers is the addition of hybrid particles in the polymer. In this context, amphiphilic particles were synthesized in order to provide surface characteristics that enhance the interaction of the interface with the polymeric matrix of high density polyethylene (HDPE). The amphiphilic particles were added to matrix of HDPE and the modified polymer composites were exposed to ionizing radiation (x-rays) for different times. The changes caused by exposure to ionizing radiation in the composite morphology was observed through the small angle x-ray technique. The results suggest that the addition of amphiphilic particles increased the stability of the composite to degradation by radiation. (author)

  10. The effects of particle size and content on the thermal conductivity and mechanical properties of Al2O3/high density polyethylene (HDPE composites

    Directory of Open Access Journals (Sweden)

    2011-07-01

    Full Text Available The influences of filler size and content on the properties (thermal conductivity, impact strength and tensile strength of Al2O3/high density polyethylene (HDPE composites are studied. Thermal conductivity and tensile strength of the composites increase with the decrease of particle size. The dependence of impact strength on the particle size is more complicated. The SEM micrographs of the fracture surface show that Al2O3 with small particle size is generally more efficient for the enhancement of the impact strength, while the 100 nm particles prone to aggregation due to their high surface energy deteriorate the impact strength. Composite filled with Al2O3 of 0.5 µm at content of 25 vol% show the best synthetic properties. It is suggested that the addition of nano-Al2O3 to HDPE would lead to good performance once suitably dispersed.

  11. Vertical Search Engines

    OpenAIRE

    Curran, Kevin; Mc Glinchey, Jude

    2017-01-01

    This paper outlines the growth in popularity of vertical search engines, their origins, the differences between them and well-known broad based search engines such as Google and Yahoo. We also discuss their use in business-to-business, their marketing and advertising costs, what the revenue streams are and who uses them.

  12. Vertical cavity laser

    DEFF Research Database (Denmark)

    2016-01-01

    The present invention provides a vertical cavity laser comprising a grating layer comprising an in-plane grating, the grating layer having a first side and having a second side opposite the first side and comprising a contiguous core grating region having a grating structure, wherein an index...

  13. Global Vertical Reference Frame

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    -, č. 5 (2009), s. 53-63 ISSN 1801-8483 R&D Projects: GA ČR GA205/08/0328 Institutional research plan: CEZ:AV0Z10030501 Keywords : sea surface topography * satellite altimetry * vertical frames Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics

  14. Synthesis and thermal properties of the MA/HDPE composites with nano-additives as form-stable PCM with improved thermal conductivity

    International Nuclear Information System (INIS)

    Tang, Yaojie; Su, Di; Huang, Xiang; Alva, Guruprasad; Liu, Lingkun; Fang, Guiyin

    2016-01-01

    Highlights: • MA/HDPE composites with nano-additives were prepared for thermal conductivity enhancement. • Microstructure and chemical structure of the FSPCM were analyzed. • Thermal properties and thermal reliability of the FSPCM were investigated. • Thermal conductivity of the FSPCM can be enhanced by adding NAO and NG. - Abstract: For the purpose of improving the thermal conductivity of the form–stable phase change materials (FSPCM), two types of nano–powders with high thermal conductivity were added into the samples. In the modified FSPCM, myristic acid (MA) was used as a solid–liquid phase change material (PCM), high density polyethylene (HDPE) acted as supporting material to prevent the leakage of the melted MA. Nano–Al 2 O 3 (NAO) and nano–graphite (NG) were the additives for thermal conductivity enhancement. Scanning electronic microscope (SEM), Fourier transformation infrared spectroscope (FT–IR) and X-ray diffractometer (XRD) were used to analyze the microstructure, chemical structure and crystalline phase of the samples, respectively. Furthermore, the specific latent heat and phase transition temperature, thermal conductivity and thermal reliability were investigated using differential scanning calorimeter (DSC), thermal conductivity meter and thermo–gravimetric analyzer (TGA). The results showed that the MA was uniformly absorbed in the HDPE matrices and there was no leakage during the melting process when the mass fraction of the MA in the MA/HDPE composite was less than 70%. The DSC results revealed that the modified FSPCM have a constant phase change temperature and high specific latent heat. The thermal conductivity of the FSPCM was measured in the solid (30 °C) and liquid (60 °C) states of the MA. When the mass fraction of nano–powder additives is 12%, the thermal conductivities of the FSPCM increase by 95% (NAO) and 121% (NG) at 30 °C. It is anticipated that the FSPCM possess a potential application for thermal energy

  15. Study of mechanical and morphological properties of bio-based polyethylene (HDPE) and sponge-gourds (Luffa-cylindrica) agroresidue composites

    Science.gov (United States)

    Escocio, Viviane A.; Visconte, Leila L. Y.; Cavalcante, Andre de P.; Furtado, Ana Maria S.; Pacheco, Elen B. A. V.

    2015-05-01

    Brazil has a remarkable position in the use of renewable energy. The potential of natural resources in Brazil has motivated the use of these renewable resources to make technologies more sustainable. From the large variety of commercially available High Density Polyethylene (HDPE) from different sources, two were chosen for investigation: one produced from sugarcane ethanol, and the other one, a conventional polyethylene, produced from fossil resources. In the preparation of the composites, sponge-gourds also called Luffa cylindrica were selectec. The main application of this product is as bath sponge, whose production generates scraps that are generally burnt. In this work, the composites were prepared by blending the sponge scrap at different proportions (10, 20, 30 and 40% wt/wt) with high density polyethylene (HDPE) from renewable source by extrusion. The melt flow index analysis of the composites was determined and specimens were obtained by injection molding for the assessment of mechanical properties such as tensile (elasticity modulus), flexural and Izod impact strengths. The microstructure of the impact fractured surface of the specimen also was determined. The results showed that the addition of sponge scrap affects positively all the properties studied as compared to HDPE. The results of tensile strength, elasticity modulus and flexural strength were similar to those observed in the literature for composites of HDPE from fossil source. The microstructure corroborates the results of mechanical properties. It was shown that the sponge scrap has potential to be applied as cellulosic filler for renewable polyethylene, providing a totally renewable material with good mechanical properties.

  16. Effect of wood flour content on the optical color, surface chemistry, mechanical and morphological properties of wood flour/recycled high density polyethylene (rHDPE) composite

    Science.gov (United States)

    Sheng, Chan Kok; Amin, Khairul Anuar Mat; Kee, Kwa Bee; Hassan, Mohd Faiz; Ali, E. Ghapur E.

    2018-05-01

    In this study, effect of wood flour content on the color, surface chemistry, mechanical properties and surface morphology of wood-plastic composite (WPC) on different mixture ratios of recycled high density polyethylene (rHDPE) and wood flour were investigated in detail. The presence of wood flour in the composite indicates a significant total color change and a decrease of lightness. Functional groups of wood flour in WPC can be seen clearer from the Fourier transform infrared (FTIR) spectra as the wood flour content increases. The mechanical tensile testing shows that the tensile strength of Young's modulus is improved, whereas the strain and elongation at break were reduced by the addition of wood flour. The gap between the wood flour microvoid fibre and rHDPE matrix becomes closer when the wood flour content is increased as observed by scanning electron microscope (SEM) image. This finding implies a significant improvement on the interaction of interfacial adhesion between the rHDPE matrix and wood flour filler in the present WPC.

  17. Imaging of the vertical particle tracks without any depth scanning

    International Nuclear Information System (INIS)

    Soroko, L.M.

    2001-01-01

    The principle of a new optical microscope which enables us to get the image of a vertical particle track without any depth scanning is described. This new optical microscope contains a spatial transformer which consists of mirror lamellar elements and which produces a secondary in focus image of the vertical particle track. Properties of such a system are presented. A longitudinal resolution is estimated

  18. SU-E-I-45: Measurement of CT Dose to An HDPE Phantom Using Calorimetry: A Feasibility Study.

    Science.gov (United States)

    Chen-Mayer, H; Tosh, R; Bateman, F; Zimmerman, B

    2012-06-01

    Radiation dose in CT is traditionally evaluated using an ionization chamber calibrated in terms of air kerma in a phantom of specific dimensions. The radiation absorbed dose, J/kg, can also be realized directly by measuring the temperature rise in the medium. We investigate using this primary method to determine the CT dose at a point (a few mm), using the recently proposed (APMM TG220) high density polyethylene (HDPE) phantom as a medium. The calorimeter detection scheme is adapted from the second generation NIST water calorimeter using sensitive thermistors in a Wheatstone bridge powered by a lock-in amplifier. The temperature sensitivity is about 3 microK. The expected temperature rise in PE is about 0.6 mK per Gy. The thermistor sensors were placed inside a 26 cm dia. × 10 cm HDPE phantom. Two preliminary tests were made: at a linear accelerator with a 6 MV photon beam, and at a 16-slice CT scanner with a 120 kV beam, each with the thermal sensor and with a calibrated ionization chamber. The 6 MV photon beam with 10 on/off cycles at 60 s each yielded the (uncorrected) run-to-run average dose of 3.06 Gy per cycle (sdm 0.3%), about 8% higher than the Result from the ionization chamber (calibrated in terms of absorbed to water). The CT measurements were also made in the middle section of the TG200 30 cm phantom. Twenty consecutive axial scans at 250 mA, which delivers a nominal accumulated dose (CTDIvol) of 705 mGy in 50 s at three axial and three radial locations were measured. The accumulated dose measured by the ionization chamber at the center of the smaller phantom was 347 mGy. The calorimeter data show qualitative tracking of the chamber measurements. Detailed thermal and electrical analysis of the system are planned to obtain quantitative results. © 2012 American Association of Physicists in Medicine.

  19. Vertical steam generator

    International Nuclear Information System (INIS)

    Cuda, F.; Kondr, M.; Kresta, M.; Kusak, V.; Manek, O.; Turon, S.

    1982-01-01

    A vertical steam generator for nuclear power plants and dual purpose power plants consists of a cylindrical vessel in which are placed heating tubes in the form upside-down U. The heating tubes lead to the jacket of the cylindrical collector placed in the lower part of the steam generator perpendicularly to its vertical axis. The cylindrical collector is divided by a longitudinal partition into the inlet and outlet primary water sections of the heating tubes. One ends of the heating tube leads to the jacket of the collector for primary water feeding and the second ends of the heating tubes into the jacket of the collector which feeds and offtakes primary water from the heating tubes. (B.S.)

  20. Vertical organic transistors.

    Science.gov (United States)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-11-11

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted.

  1. Measurement of vertical bar Vub vertical bar in semi-inclusive charmless B → πX decays

    International Nuclear Information System (INIS)

    Kim, C.S.; Lee, Jake; Oha, Sechul

    2002-01-01

    We study semi-inclusive charmless decays B → πX, where X does not contain a charm (anti)quark. The mode B-bar 0 → π - X turns out to be be particularly useful for determination of the CKM matrix element vertical bar V ub vertical bar. We present the branching ratio (BR) of B-bar 0 → π - X as a function of vertical bar V ub vertical bar, with an estimation of possible uncertainty. The BR is expected to be an order of 10 -4

  2. Characterization of the crystal orientation in mono-oriented films of HDPE/LLDPE blends by IR dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Canevarolo, Sebastião V., E-mail: caneva@ufscar.br; Ravazzi, Camila; Silva, Jorge, E-mail: jorge.silva@ufscar.br [Departamento de Engenharia de Materiais, Universidade Federal de São Carlos Rod. Washington Luiz Km 235, 13565-905, SãoCarlos, SP - Brazil (Brazil); Elias, Marcelo [Motechfilm Produtos Plásticos, Estrada Municipal do Bonfim, 100, Pinhal, Cabreúva, SP - Brazil (Brazil)

    2016-03-09

    Polyethylene films are a common packaging material. The level and type of chain orientation in these films are a very important property which is of great care and concern of the converter personnel during the conformation process. Usually bi-orientation is the conventional procedure but when easy tear in one direction is needed mono-orientation is sought. This paper deal with the characterization of the crystalline orientation in films of polyethylene blends (HDPE/LLDPE) which have being oriented in two steps: initially the polymer was bi-oriented via extrusion-blown, cooled, and then in a second process hot stretched along the machine direction in order to produce mono-oriented films. In order to evaluate the orientation of the film, the polarization of the FT-IR beam was rotated 360° in steps of 5° by rotating the polarizer. In each step the absorbance spectrum was recorded and the corresponding dichroic ratio (DR) calculated after subtracting the baseline. With differential scanning calorimetry (DSC) was possible to infer about the changes in the morphology caused by the stretching.

  3. Effect of Rice Husk Surface Modification by LENR the on Mechanical Properties of NR/ HDPE Reinforced Rice Husk Composite

    International Nuclear Information System (INIS)

    Rahmadini Syafri; Ishak Ahmad; Ibrahim Abdullah

    2011-01-01

    Surface modification of rice husk (RH) with alkali pre-treatment (NaOH solution 5 % w/ v) was carried out at the initial state to investigate the effect of surface treatment of fibre on the surface interaction between fibre and rubber. Further modification of RH surfaces after alkali treatment was using Liquid Epoxidized Natural Rubber (LENR) coating at three concentrations, 5 %, 10 %, and 20 % wt LENR solution in toluene. Interfacial morphology and chemical reactions between RH fibre and rubber were analyzed by FTIR and Scanning Electron Microscope (SEM). It was found that 10 % wt LENR solution gave the optimum interaction between fibre and rubber. Matrix and composite blends derived from 60 % natural rubber (NR), 40 % high density polyethylene (HDPE) reinforced with RH fibre were prepared using an internal mixer (Brabender Plasticoder). Result showed that pre-treatment of RH treated with 5 % NaOH followed by treatment with 10 % LENR solution given the maximum interaction between fibre and matrix that gave rise to better mechanical properties of the composites. (author)

  4. Vertical axis wind turbine

    International Nuclear Information System (INIS)

    Obretenov, V.; Tsalov, T.; Chakarov, T.

    2012-01-01

    In recent years, the interest in wind turbines with vertical axis noticeably increased. They have some important advantages: low cost, relatively simple structure, reliable packaging system of wind aggregate long period during which require no maintenance, low noise, independence of wind direction, etc.. The relatively low efficiency, however, makes them applicable mainly for small facilities. The work presents a methodology and software for approximately aerodynamic design of wind turbines of this type, and also analyzed the possibility of improving the efficiency of their workflow

  5. Detection Dynamics Of Nitrogen Based Explosive Quantities In Selected Cylindrical Containers

    Directory of Open Access Journals (Sweden)

    Ngusha Tavershima Almighty

    2017-12-01

    Full Text Available An experimental set up for examining the variation of detection intensity with explosive quantity has been studied. Containers made from ceramic carbon steel wood and HDPE were filled with explosive masses ranging from 10 kg to 500 kg and irradiated by a 14.1 MeV point isotropic neutron source. The resulting gamma photons were analyzed for their C N and O composition and the sum computed to yield a quantity known as the material quotient MQ. Examination of MQ values indicates an initial increase in detection intensity with increasing explosive quantity. Saturation is however reached at an explosive quantity of about 25kg where detection intensity reduces with further increase in explosive quantity. Effects of variation in explosive quantity appeared to be more pronounced for explosives contained in HDPE and wooden containers and least pronounced for those in steel containers. Source-detector configuration was identified as a major factor affecting effective detection of large masses of explosives.

  6. Vertical vector face lift.

    Science.gov (United States)

    Somoano, Brian; Chan, Joanna; Morganroth, Greg

    2011-01-01

    Facial rejuvenation using local anesthesia has evolved in the past decade as a safer option for patients seeking fewer complications and minimal downtime. Mini- and short-scar face lifts using more conservative incision lengths and extent of undermining can be effective in the younger patient with lower face laxity and minimal loose, elastotic neck skin. By incorporating both an anterior and posterior approach and using an incision length between the mini and more traditional face lift, the Vertical Vector Face Lift can achieve longer-lasting and natural results with lesser cost and risk. Submentoplasty and liposuction of the neck and jawline, fundamental components of the vertical vector face lift, act synergistically with superficial musculoaponeurotic system plication to reestablish a more youthful, sculpted cervicomental angle, even in patients with prominent jowls. Dramatic results can be achieved in the right patient by combining with other procedures such as injectable fillers, chin implants, laser resurfacing, or upper and lower blepharoplasties. © 2011 Wiley Periodicals, Inc.

  7. Vertical organic transistors

    International Nuclear Information System (INIS)

    Lüssem, Björn; Günther, Alrun; Fischer, Axel; Kasemann, Daniel; Leo, Karl

    2015-01-01

    Organic switching devices such as field effect transistors (OFETs) are a key element of future flexible electronic devices. So far, however, a commercial breakthrough has not been achieved because these devices usually lack in switching speed (e.g. for logic applications) and current density (e.g. for display pixel driving). The limited performance is caused by a combination of comparatively low charge carrier mobilities and the large channel length caused by the need for low-cost structuring. Vertical Organic Transistors are a novel technology that has the potential to overcome these limitations of OFETs. Vertical Organic Transistors allow to scale the channel length of organic transistors into the 100 nm regime without cost intensive structuring techniques. Several different approaches have been proposed in literature, which show high output currents, low operation voltages, and comparatively high speed even without sub-μm structuring technologies. In this review, these different approaches are compared and recent progress is highlighted. (topical review)

  8. Compósitos de HDPE com resíduos de fibras têxteis. Parte I: caracterização mecânica HDPE composites with textile fibers waste. Part I: mechanical characterization

    Directory of Open Access Journals (Sweden)

    Maira Finkler

    2005-07-01

    Full Text Available Neste trabalho são apresentados e discutidos os resultados das propriedades mecânicas de novos materiais compósitos preparados com resíduos de fibras têxteis poliméricas e de polímeros commodities. As fibras naturais oferecem vantagens sobre as sintéticas, em termos de propriedades mecânicas e térmicas. Os compósitos foram preparados a partir da mistura de polietileno de alta densidade (HDPE e resíduos de fibras têxteis (50% algodão /50% acrílico em teores crescentes de 10 a 40%, em um misturador de alta velocidade, utilizando Surlyn 2601, Polybond 3009 e Polybond 1009 como agentes compatibilizantes. Corpos-de-prova para ensaios de tração, flexão e impacto foram produzidos a partir de chapas obtidas em uma prensa hidráulica. Os compósitos que utilizaram agentes compatibilizantes apresentaram os melhores resultados de resistência à tração e à flexão, principalmente com 5% do agente Polybond 3009 e 20 a 40% de resíduos de fibras têxteis.In this work, results of mechanical properties of new composites based on textile fiber residues from clothing industry and commodity polymers are discussed. Natural fibers offer some advantages over synthetic ones, regarding mechanical and thermal properties. The composites were produced by mixing high density polyethylene with the textile fibers (50% cotton /50% acrylic in increasing contents, from 10 to 40% in a thermokinetic mixer, using Surlyn 2601, Polybond 3009 and Polybond 1009 as coupling agents. The tensile, flexural and impact samples were produced by cutting sheets obtained in a hydraulic press. The composites with coupling agents showed good results of tensile and flexural strength, mainly with 5% of Polybond 3009 and 20-40% of textile fiber residues.

  9. Improvement of barrier properties of rotomolded PE containers with nanoclay

    Energy Technology Data Exchange (ETDEWEB)

    Jamshidi, Shadi; Sundararaj, Uttandaraman, E-mail: u.sundararaj@ucalgary.ca [Department of Chemical and Petroleum Engineering, University of Calgary, Calgary, Alberta, T2N 1N4 (Canada)

    2015-05-22

    Polyethylene (PE) is widely used to make bulk containers in rotational molding process. The challenge in this study is to improve permeation resistance of PE to hydrocarbon solvents and gases. Adding organomodified clay improves the thermal, barrier and mechanical properties of PE. In fact, clay layers create a tortuous path against the permeant, yielding better barrier properties. Due to the non-polar hydrophobic nature of PE and polar hydrophilic structure of clay minerals, the compatibilizer plays a crucial role to enhance the dispersion level of clay in the matrix. In this study High Density Polyethylene (HDPE) and Linear Low Density Polyethylene (LLDPE) layered silicate nanocomposite were melt-compounded with two concentrations of organomodified clay (2 and 4 wt. %). The interaction between nanoclay, compatibilizer and rotomolding grade of PE were examined by using X-ray diffraction, transmission electron microscopy (TEM) and rheology test. Rheology was used to determine the performance of our material at low shear processing condition.

  10. Reactor container

    International Nuclear Information System (INIS)

    Abe, Yoshihito; Sano, Tamotsu; Ueda, Sabuo; Tanaka, Kazuhisa.

    1987-01-01

    Purpose: To improve the liquid surface disturbance in LMFBR type reactors. Constitution: A horizontal flow suppressing mechanism mainly comprising vertical members is suspended near the free liquid surface of coolants in the upper plenum. The horizontal flow of coolants near the free liquid surface is reduced by the suppressing mechanism to effectively reduce the surface disturbance. The reduction in the liquid surface disturbance further prevails to the entire surface region with no particular vertical variations to the free liquid surface to remarkably improve the preventive performance for the liquid surface disturbance. Accordingly, it is also possible to attain the advantageous effects such as prevention for the thermal fatigue in reactor vessel walls, reactor upper mechanisms, etc. and prevention of burning damage to the reactor core due to the reduction of envolved Ar gas. (Kamimura, M.)

  11. Shielding container

    International Nuclear Information System (INIS)

    Darling, K.A.M.

    1981-01-01

    A shielding container incorporates a dense shield, for example of depleted uranium, cast around a tubular member of curvilinear configuration for accommodating a radiation source capsule. A lining for the tubular member, in the form of a close-coiled flexible guide, provides easy replaceability to counter wear while the container is in service. Container life is extended, and maintenance costs are reduced. (author)

  12. Vertical guidance of shearers

    International Nuclear Information System (INIS)

    Pocock, J.

    1985-01-01

    Mining Engineers have always been aware of the basic need to avoid contamination of the mined product, by controlling the cutting horizon at the coal face. The ability to maintain the optimum cutting horizon results in more effective roof control and ensures a safer and more efficient working environment, for men and machinery. The cost of treatment in the surface coal preparation plant is reduced. Transportation through the total mine system of material finally destined for the spoil heap is minimised. A reduction in product contamination is achieved and makes more effective use of the mine capacity. These benefits make possible significant improvements in productivity and financial returns. Exploitation of micro computer based systems has enabled the successful development of equipment which employs sensors to detect the very low natural gamma radiation from roof strata; to determine and allow control of the position of the cut relative to the roof and floor. This paper reviews the experience gained by the National Coal Board, particularly in South Yorkshire Area, with the vertical steering of ranging drum shearers. It outlines the benefits and considers the future for this technology and its contribution to total coal face automation

  13. Reactor container

    International Nuclear Information System (INIS)

    Ichiki, Tadaharu; Saba, Kazuhisa.

    1979-01-01

    Purpose: To improve the earthquake resistance as well as reduce the size of a container for a nuclear reactor with no adverse effects on the decrease of impact shock to the container and shortening of construction step. Constitution: Reinforcing profile steel materials are welded longitudinally and transversely to the inner surface of a container, and inner steel plates are secured to the above profile steel materials while keeping a gap between the materials and the container. Reactor shielding wall planted to the base concrete of the container is mounted to the pressure vessel, and main steam pipeways secured by the transverse beams and led to the outside of container is connected. This can improve the rigidity earthquake strength and the safetiness against the increase in the inside pressure upon failures of the container. (Yoshino, Y.)

  14. Catalytic co-pyrolysis of paper biomass and plastic mixtures (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) and product analysis

    International Nuclear Information System (INIS)

    Chattopadhyay, Jayeeta; Pathak, T.S.; Srivastava, R.; Singh, A.C.

    2016-01-01

    Catalytic co-pyrolysis of biomass and plastics (HDPE (high density polyethylene), PP (polypropylene) and PET (polyethylene terephthalate)) has been performed in a fixed-bed reactor in presence of cobalt based alumina, ceria and ceria-alumina catalysts to analyze the product distribution and selectivity. Catalysts are synthesized using co-precipitation method and characterized by BET (Brunauer–Emmett–Teller) surface area and XRD analysis. The effect of catalytic co-pyrolysis at different temperature with product distribution has been evaluated. The results have clearly shown the synergistic effect between biomass and plastics, the liquid products gradually increases forming with rise in the plastic content in the blend. Gaseous products have yielded most during pyrolysis of blend having biomass/plastics ratio of 5:1 with the presence of 40% Co/30% CeO_2/30% Al_2O_3 catalyst with hydrogen gas production touched its peak of 47 vol%. Catalytic performance enhanced with increase with the cobalt loading, with best performance attributing to 40% Co/30% CeO_2/30% Al_2O_3 catalyst. - Highlights: • Catalytic co-pyrolysis of biomass and plastics (HDPE, PP & PET) blends in fixed-bed reactor. • Strong synergistic effect evident between biomass and plastics. • Solid residue diminished with application of catalysts. • Aromatics and olefins production increases with higher plastic content. • More hydrogen production with application of catalysts with higher cobalt content.

  15. Effects of Rice Husk Modification with Liquid Natural Rubber and Exposure to Electron Beam Radiation on the Mechanical Properties of NR/ HDPE/ Rice Husk Composites

    International Nuclear Information System (INIS)

    Lane, C.E.; Ishak Ahmad; Ibrahim Abdullah; Dahlan Mohd

    2011-01-01

    Rice husk (RH) powder is a natural fibre capable of reinforcing natural rubber thermoplastic (TPNR) NR/ HDPE composites on specific modification of the particle surface. In this study the modification of RH powder involved pre-treatment with 5 % sodium hydroxide (NaOH) solution, soaking in LNR solution and exposure of LNR coated RH to electron beam (EB) irradiation. Preparation of NR/ HDPE/ RH composites was via melt-mixing in an internal mixer at predetermined conditions. Morphology study of the composites using scanning electron microscope (SEM) showed a homogeneous distribution of modified RH particles and particle-matrix interaction in the composite. Modified RH filled composites exhibited a significant change in mechanical properties. The maximum stress and impact strength were 6.7 MPa and 13.2 kJ/ m 2 , respectively at 20 kGy radiation, while the tensile modulus was 79 MPa at 30 kGy dose. The interfacial RH-TPNR interaction for the LNR-EB treated RH particles had improved in the EB dosage range of 20-30 kGy. However, over exposure to radiation caused degradation of rubber coat and interaction between particles to increase. Agglomeration of filler particles would occur and caused inhomogeneous distribution of filler in the composite. (author)

  16. Characterization of Alkaline Treatment and Fiber Content on the Physical, Thermal, and Mechanical Properties of Ground Coffee Waste/Oxobiodegradable HDPE Biocomposites

    Directory of Open Access Journals (Sweden)

    Ming Yee Tan

    2017-01-01

    Full Text Available Effect of alkali treatment on ground coffee waste/oxobiodegradable HDPE (GCW/oxo-HDPE composites was evaluated using 5%, 10%, 15%, and 20% volume fraction of GCW. The composites were characterized using structural (Fourier transform infrared spectroscopy (FTIR and scanning electron microscopy (SEM, thermal (thermogravimetric analysis (TGA and differential scanning calorimetry (DSC, mechanical (tensile and impact test properties, and water absorption. FTIR spectrum indicated the eradication of lipids, hemicellulose, lignin, and impurities after the treatments lead to an improvement of the filler/matrix interface adhesion. This is confirmed by SEM results. Degree of crystallinity index was increased by 5% after the treatment. Thermal stability for both untreated and treated GCW composites was alike. Optimum tensile result was achieved when using 10% volume fraction with enhancement of 25% for tensile strength and 24% for tensile modulus compared to untreated composite. Specific tensile strength and modulus had improved as the composite has lower density. The highest impact properties were achieved when using 15% volume fraction that lead to an improvement of 6%. Treated GCW composites show better water resistance with 57% improvement compared to the untreated ones. This lightweight and ecofriendly biocomposite has the potential in packaging, internal automotive parts, lightweight furniture, and other composite engineering applications.

  17. Tribological investigation of novel HDPE-HAp-Al2O3 hybrid biocomposites against steel under dry and simulated body fluid condition.

    Science.gov (United States)

    Nath, Shekhar; Bodhak, Subhadip; Basu, Bikramjit

    2007-10-01

    Among various biocompatible polymers, polyethylene based materials have received wider attention because of its excellent stability in body fluid, inertness, and easy formability. Attempts have been made to improve their physical properties (modulus/strength) to enable them to be used as load bearing hard tissue replacement applications. Among such attempts, high density polyethylene (HDPE)-hydroxyapatite (HAp) composite (HAPEX), has already been developed for total hip replacement (THR) acetabular cup and low load bearing bone tissue replacement. In the present work, alumina has been added as a partial replacement of HAp phase to improve the mechanical and tribological properties of the HAPEX composite. In an attempt to assess the suitability of the developed composite in THR application, the tribological properties against steel counterbody under both in air and simulated body fluid (SBF), have been investigated and efforts have been made to understand the wear mechanisms. The fretting wear study indicates the possibility of achieving extremely low COF (Coefficient of Friction approximately 0.09) as well as higher wear resistance (order of 10(-6) mm(3)/N m) with the newly developed composites in SBF. A low wear depth of approximately 4.6-5.3 microm is recorded, irrespective of fretting environment. The implication of the work is that optimal and combined addition of bioactive and bioinert ceramic filler to HDPE can provide a good opportunity to obtain hybrid biocomposites with better combination of physical properties (modulus, hardness) as well as low friction and high wear resistance.

  18. Optimization of Injection Molding Parameters for HDPE/TiO₂ Nanocomposites Fabrication with Multiple Performance Characteristics Using the Taguchi Method and Grey Relational Analysis.

    Science.gov (United States)

    Pervez, Hifsa; Mozumder, Mohammad S; Mourad, Abdel-Hamid I

    2016-08-22

    The current study presents an investigation on the optimization of injection molding parameters of HDPE/TiO₂ nanocomposites using grey relational analysis with the Taguchi method. Four control factors, including filler concentration (i.e., TiO₂), barrel temperature, residence time and holding time, were chosen at three different levels of each. Mechanical properties, such as yield strength, Young's modulus and elongation, were selected as the performance targets. Nine experimental runs were carried out based on the Taguchi L₉ orthogonal array, and the data were processed according to the grey relational steps. The optimal process parameters were found based on the average responses of the grey relational grades, and the ideal operating conditions were found to be a filler concentration of 5 wt % TiO₂, a barrel temperature of 225 °C, a residence time of 30 min and a holding time of 20 s. Moreover, analysis of variance (ANOVA) has also been applied to identify the most significant factor, and the percentage of TiO₂ nanoparticles was found to have the most significant effect on the properties of the HDPE/TiO₂ nanocomposites fabricated through the injection molding process.

  19. Optimization of Injection Molding Parameters for HDPE/TiO2 Nanocomposites Fabrication with Multiple Performance Characteristics Using the Taguchi Method and Grey Relational Analysis

    Directory of Open Access Journals (Sweden)

    Hifsa Pervez

    2016-08-01

    Full Text Available The current study presents an investigation on the optimization of injection molding parameters of HDPE/TiO2 nanocomposites using grey relational analysis with the Taguchi method. Four control factors, including filler concentration (i.e., TiO2, barrel temperature, residence time and holding time, were chosen at three different levels of each. Mechanical properties, such as yield strength, Young’s modulus and elongation, were selected as the performance targets. Nine experimental runs were carried out based on the Taguchi L9 orthogonal array, and the data were processed according to the grey relational steps. The optimal process parameters were found based on the average responses of the grey relational grades, and the ideal operating conditions were found to be a filler concentration of 5 wt % TiO2, a barrel temperature of 225 °C, a residence time of 30 min and a holding time of 20 s. Moreover, analysis of variance (ANOVA has also been applied to identify the most significant factor, and the percentage of TiO2 nanoparticles was found to have the most significant effect on the properties of the HDPE/TiO2 nanocomposites fabricated through the injection molding process.

  20. Optimization of Injection Molding Parameters for HDPE/TiO2 Nanocomposites Fabrication with Multiple Performance Characteristics Using the Taguchi Method and Grey Relational Analysis

    Science.gov (United States)

    Pervez, Hifsa; Mozumder, Mohammad S.; Mourad, Abdel-Hamid I.

    2016-01-01

    The current study presents an investigation on the optimization of injection molding parameters of HDPE/TiO2 nanocomposites using grey relational analysis with the Taguchi method. Four control factors, including filler concentration (i.e., TiO2), barrel temperature, residence time and holding time, were chosen at three different levels of each. Mechanical properties, such as yield strength, Young’s modulus and elongation, were selected as the performance targets. Nine experimental runs were carried out based on the Taguchi L9 orthogonal array, and the data were processed according to the grey relational steps. The optimal process parameters were found based on the average responses of the grey relational grades, and the ideal operating conditions were found to be a filler concentration of 5 wt % TiO2, a barrel temperature of 225 °C, a residence time of 30 min and a holding time of 20 s. Moreover, analysis of variance (ANOVA) has also been applied to identify the most significant factor, and the percentage of TiO2 nanoparticles was found to have the most significant effect on the properties of the HDPE/TiO2 nanocomposites fabricated through the injection molding process. PMID:28773830

  1. Mechanical properties of chemically modified Sansevieria trifasciata/natural rubber/high density polyethylene (STF/NR/HDPE) composites: Effect of silane coupling agent

    Science.gov (United States)

    Zakaria, Nurzam Ezdiani; Baharum, Azizah; Ahmad, Ishak

    2018-04-01

    The main objective of this research is to study the effects of chemical modification on the mechanical properties of treated Sansevieria trifasciata fiber/natural rubber/high density polyethylene (TSTF/NR/HDPE) composites. Processing of STF/NR/HDPE composites was done by using an internal mixer. The processing parameters used were 135°C for temperature and a mixing rotor speed of 55 rpm for 15 minutes. Filler loading was varied from 10% to 40% of STF and the fiber size used was 125 µm. The composite blends obtained then were pressed with a hot press machine to get test samples of 1 mm and 3 mm of thickness. Samples were evaluated via tensile tests, Izod impact test and scanning electron microscopy (SEM). Results showed that tensile strength and strain value decreased while tensile modulus increased when filler loading increased. Impact strength increased when filler loading increased and began to decrease after 10% of filler amount for treated composites. For untreated composites, impact strength began to decrease after 20% of filler loading. Chemical modification by using silane coupling agent has improved certain mechanical properties of the composites such as tensile strength, strain value and tensile modulus. Adding more amount of filler will also increase the viscosity and the stiffness of the materials.

  2. Corrosion of metal and polymer containers for use in PCM cold storage

    International Nuclear Information System (INIS)

    Oró, Eduard; Miró, Laia; Barreneche, Camila; Martorell, Ingrid; Farid, Mohammed M.; Cabeza, Luisa F.

    2013-01-01

    Highlights: ► The corrosion of materials in contact with some low temperature PCM is studied. ► Copper and carbon steel must be avoided when using the PCM tested. ► Aluminium is not recommended with the tested PCM. ► Stainless steel 316 is recommended when in contact with the tested PCM. ► PP, PS, PET, and HDPE are not affected by a process of degradation by the tested PCM. - Abstract: Transport and storage of low temperature sensitive products is an issue worldwide due to changes of the lifestyle and population increase. In the recent years, thermal energy storage (TES) using phase change materials (PCMs) is being highly studied and developed for cold storage applications. Furthermore, the PCM are normally encapsulated in containers and added in the available systems, usually in food processes. Therefore safety constraints as the compatibility of the PCM with other materials have to take into account. Hence the main goal of the paper is to study the corrosion effect of different metals and polymer materials in contact with some PCM used in low temperature applications. Results show that copper and carbon steel must be avoided as PCM containers, and aluminium is not recommended; stainless steel 316 is recommended when in contact with the tested PCM. Moreover, PP, PS, PET, and HDPE are not affected by a process of degradation and are also compatible with the PCM studied

  3. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor intensity as observed in data. Final......-good producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all...... increasing when intermediate-input or final-goods trade is liberalised and when the fixed cost of vertical integration is reduced. At the same time, one observes firms that shift away from either vertical integration, offshoring, or exporting. Further, we provide guidance for testing the open...

  4. Liquid fuel obtain from polypropylene (PP-5) and high density polyethylene (HDPE-2) waste plastics mixture

    Energy Technology Data Exchange (ETDEWEB)

    Sarker, Moinuddin; Rashid, Mohammad Mamunor; Rahman, Md. Sadikur; Molla, Mohammed [Department of Research and Development, Natural State Research Inc, Stamford, (United States)

    2011-07-01

    Plastics are made by combination of small based molecules to form monomers. The monomers are then joined together by chemical polymerization mechanism to form polymers also known as plastics. These plastics contain various elements such as carbon, hydrogen, oxygen, nitrogen, chlorine and sul fur. The use of plastics is vastly expanded and it is being used in every sector of the world. However, using plastics does have a negative aspect, after use they end up in our landfill as waste causing numerous health and environmental problems. Landfill waste plastics release harmful gases due to the presence of carbon, chlorine and sul fur in them into the atmosphere causing climates to change drastically, equivalent to the effects of greenhouse gases (GHG) emission. To overcome these environmental issues, scientists have already developed many methods to converting these waste plastics into energy and fuel . We developed one new methods thermal cracking conversion to convert these waste plastics into usable liquid fuel . Thermal cracking conversion is a process to shorten the long chain hydrocarbons to produce liquid fuel in the absence of a catalyst. The thermal degradation process of the waste plastics long chain hydrocarbon to makes short chain hydrocarbon fuel. The fuel produced has been analyzed and tested according to standard methods. Key words: fuel , hydrocarbon, waste plastic, thermal degradation, conversion, GC/MS.

  5. LDPE/HDPE/Clay Nanocomposites: Effects of Compatibilizer on the Structure and Dielectric Response

    Directory of Open Access Journals (Sweden)

    B. Zazoum

    2013-01-01

    Full Text Available PE/clay nanocomposites were prepared by mixing a commercially available premixed polyethylene/O-MMT masterbatch into a polyethylene blend matrix containing 80 wt% low-density polyethylene and 20 wt% high-density polyethylene with and without anhydride modified polyethylene (PE-MA as the compatibilizer using a corotating twin-screw extruder. In this study, the effect of nanoclay and compatibilizer on the structure and dielectric response of PE/clay nanocomposites has been investigated. The microstructure of PE/clay nanocomposites was characterized using wide-angle X-ray diffraction (WAXD and a scanning electron microscope (SEM. Thermal properties were examined using differential scanning calorimetry (DSC. The dielectric response of neat PE was compared with that of PE/clay nanocomposite with and without the compatibilizer. The XRD and SEM results showed that the PE/O-MMT nanocomposite with the PE-MA compatibilizer was better dispersed. In the nanocomposite materials, two relaxation modes are detected in the dielectric losses. The first relaxation is due to a Maxwell-Wagner-Sillars interfacial polarization, and the second relaxation can be related to dipolar polarization. A relationship between the degree of dispersion and the relaxation rate fmax of Maxwell-Wagner-Sillars was found and discussed.

  6. Liquid fuel obtain from polypropylene (PP-5) and high density polyethylene (HDPE-2) waste plastics mixture

    International Nuclear Information System (INIS)

    Sarker, Moinuddin; Rashid, Mohammad Mamunor; Rahman, Md. Sadikur; Molla, Mohammed

    2011-01-01

    Plastics are made by combination of small based molecules to form monomers. The monomers are then joined together by chemical polymerization mechanism to form polymers also known as plastics. These plastics contain various elements such as carbon, hydrogen, oxygen, nitrogen, chlorine and sul fur. The use of plastics is vastly expanded and it is being used in every sector of the world. However, using plastics does have a negative aspect, after use they end up in our landfill as waste causing numerous health and environmental problems. Landfill waste plastics release harmful gases due to the presence of carbon, chlorine and sul fur in them into the atmosphere causing climates to change drastically, equivalent to the effects of greenhouse gases (GHG) emission. To overcome these environmental issues, scientists have already developed many methods to converting these waste plastics into energy and fuel . We developed one new methods thermal cracking conversion to convert these waste plastics into usable liquid fuel . Thermal cracking conversion is a process to shorten the long chain hydrocarbons to produce liquid fuel in the absence of a catalyst. The thermal degradation process of the waste plastics long chain hydrocarbon to makes short chain hydrocarbon fuel. The fuel produced has been analyzed and tested according to standard methods. Key words: fuel , hydrocarbon, waste plastic, thermal degradation, conversion, GC/MS

  7. LDPE/HDPE/Clay Nano composites: Effects of Compatibilizer on the Structure and Dielectric Response

    International Nuclear Information System (INIS)

    David, Z.E.; Ngo, A.D.

    2013-01-01

    PE/clay nano composites were prepared by mixing a commercially available premixed polyethylene/O-MMT master batch into a polyethylene blend matrix containing 80 wt% low-density polyethylene and 20 wt% high-density polyethylene with and without anhydride modified polyethylene (PE-MA) as the compatibilizer using a corotating twin-screw extruder. In this study, the effect of nano clay and compatibilizer on the structure and dielectric response of PE/clay nano composites has been investigated. The microstructure of PE/clay nano composites was characterized using wide-angle X-ray diffraction (WAXD) and a scanning electron microscope (SEM). Thermal properties were examined using differential scanning calorimetry (DSC). The dielectric response of neat PE was compared with that of PE/clay nano composite with and without the compatibilizer. The XRD and SEM results showed that the PE/O-MMT nano composite with the PE-MA compatibilizer was better dispersed. In the nano composite materials, two relaxation modes are detected in the dielectric losses. The first relaxation is due to a Maxwell-Wagner-Sillars interfacial polarization, and the second relaxation can be related to dipolar polarization. A relationship between the degree of dispersion and the relaxation rate f m ax of Maxwell-Wagner-Sillars was found and discussed.

  8. Containment vessel stability analysis

    International Nuclear Information System (INIS)

    Harstead, G.A.; Morris, N.F.; Unsal, A.I.

    1983-01-01

    The stability analysis for a steel containment shell is presented herein. The containment is a freestanding shell consisting of a vertical cylinder with a hemispherical dome. It is stiffened by large ring stiffeners and relatively small longitudinal stiffeners. The containment vessel is subjected to both static and dynamic loads which can cause buckling. These loads must be combined prior to their use in a stability analysis. The buckling loads were computed with the aid of the ASME Code case N-284 used in conjunction with general purpose computer codes and in-house programs. The equations contained in the Code case were used to compute the knockdown factors due to shell imperfections. After these knockdown factors were applied to the critical stress states determined by freezing the maximum dynamic stresses and combining them with other static stresses, a linear bifurcation analysis was carried out with the aid of the BOSOR4 program. Since the containment shell contained large penetrations, the Code case had to be supplemented by a local buckling analysis of the shell area surrounding the largest penetration. This analysis was carried out with the aid of the NASTRAN program. Although the factor of safety against buckling obtained in this analysis was satisfactory, it is claimed that the use of the Code case knockdown factors are unduly conservative when applied to the analysis of buckling around penetrations. (orig.)

  9. Reactor container

    International Nuclear Information System (INIS)

    Naruse, Yoshihiro.

    1990-01-01

    The thickness of steel shell plates in a reactor container embedded in sand cussions is monitored to recognize the corrosion of the steel shell plates. That is, the reactor pressure vessel is contained in a reactor container shell and the sand cussions are disposed on the lower outside of the reactor container shell to elastically support the shell. A pit is disposed at a position opposing to the sand cussions for measuring the thickness of the reactor container shell plates. The pit is usually closed by a closing member. In the reactor container thus constituted, the closing member can be removed upon periodical inspection to measure the thickness of the shell plates. Accordingly, the corrosion of the steel shell plates can be recognized by the change of the plate thickness. (I.S.)

  10. A container

    DEFF Research Database (Denmark)

    2012-01-01

    A container assembly for the containment of fluids or solids under a pressure different from the ambient pressure comprising a container (2) comprising an opening and an annular sealing, a lid (3) comprising a central portion (5) and engagement means (7) for engaging the annular flange, and sealing...... means (10) wherein the engagement means (7) is adapted, via the sealing means, to seal the opening when the pressure of the container assembly differs from the ambient pressure in such a way that the central portion (5) flexes in the axial direction which leads to a radial tightening of the engagement...... means (7) to the container, wherein the container further comprises locking means (12) that can be positioned so that the central portion is hindered from flexing in at least one direction....

  11. A hierarchical classification approach for recognition of low-density (LDPE) and high-density polyethylene (HDPE) in mixed plastic waste based on short-wave infrared (SWIR) hyperspectral imaging

    Science.gov (United States)

    Bonifazi, Giuseppe; Capobianco, Giuseppe; Serranti, Silvia

    2018-06-01

    The aim of this work was to recognize different polymer flakes from mixed plastic waste through an innovative hierarchical classification strategy based on hyperspectral imaging, with particular reference to low density polyethylene (LDPE) and high-density polyethylene (HDPE). A plastic waste composition assessment, including also LDPE and HDPE identification, may help to define optimal recycling strategies for product quality control. Correct handling of plastic waste is essential for its further "sustainable" recovery, maximizing the sorting performance in particular for plastics with similar characteristics as LDPE and HDPE. Five different plastic waste samples were chosen for the investigation: polypropylene (PP), LDPE, HDPE, polystyrene (PS) and polyvinyl chloride (PVC). A calibration dataset was realized utilizing the corresponding virgin polymers. Hyperspectral imaging in the short-wave infrared range (1000-2500 nm) was thus applied to evaluate the different plastic spectral attributes finalized to perform their recognition/classification. After exploring polymer spectral differences by principal component analysis (PCA), a hierarchical partial least squares discriminant analysis (PLS-DA) model was built allowing the five different polymers to be recognized. The proposed methodology, based on hierarchical classification, is very powerful and fast, allowing to recognize the five different polymers in a single step.

  12. Analytical protocol to study the food safety of (multiple-)recycled high-density polyethylene (HDPE) and polypropylene (PP) crates: Influence of recycling on the migration and formation of degradation products

    NARCIS (Netherlands)

    Coulier, L.; Orbons, H.G.M.; Rijk, R.

    2007-01-01

    An analytical protocol was set up and successfully applied to study the food safety of recycled HDPE and PP crates. A worst-case scenario was applied that focused not only on overall migration and specific migration of accepted starting materials but also on migratable degradation products of

  13. Shielded container

    International Nuclear Information System (INIS)

    Fries, B.A.

    1978-01-01

    A shielded container for transportation of radioactive materials is disclosed in which leakage from the container is minimized due to constructional features including, inter alia, forming the container of a series of telescoping members having sliding fits between adjacent side walls and having at least two of the members including machine sealed lids and at least two of the elements including hand-tightenable caps

  14. Reactor container

    International Nuclear Information System (INIS)

    Fukazawa, Masanori.

    1991-01-01

    A system for controlling combustible gases, it has been constituted at present such that the combustible gases are controlled by exhausting them to the wet well of a reactor container. In this system, however, there has been a problem, in a reactor container having plenums in addition to the wet well and the dry well, that the combustible gases in such plenums can not be controlled. In view of the above, in the present invention, suction ports or exhaust ports of the combustible gas control system are disposed to the wet well, the dry well and the plenums to control the combustible gases in the reactor container. Since this can control the combustible gases in the entire reactor container, the integrity of the reactor container can be ensured. (T.M.)

  15. Inservice testing of vertical pumps

    International Nuclear Information System (INIS)

    Cornman, R.E. Jr.; Schumann, K.E.

    1994-01-01

    This paper focuses on the problems that may occur with vertical pumps while inservice tests are conducted in accordance with existing American Society of Mechanical Engineers Code, Section XI, standards. The vertical pump types discussed include single stage, multistage, free surface, and canned mixed flow pumps. Primary emphasis is placed on the hydraulic performance of the pump and the internal and external factors to the pump that impact hydraulic performance. In addition, the paper considers the mechanical design features that can affect the mechanical performance of vertical pumps. The conclusion shows how two recommended changes in the Code standards may increase the quality of the pump's operational readiness assessment during its service life

  16. Nuclear steam system containment

    International Nuclear Information System (INIS)

    Jabsen, F.

    1980-01-01

    An improved containment used for radiation shielding and pressure suppression comprising a dry well includes a pressure vessel, a plurality of concentric wall means, said plurality of concentric wall means defining at least three annular regions about said dry well. A first annular region provides the containment used for radiation shielding, a second annular region is substantially dry, a third annular region provides a wet well for relieving fluid pressure released from the pressure vessel into the dry well. Pipe connection means extend in the wet well from the dry well, a pool of liquid is disposed to partially fill said third annular region, the upper end portion of the second and third annular regions having an enclosure, and a plurality of baffle plates extending vertically downward from said enclosure in said third annular region into said pool of liquid so as to circumferentially divide the upper portion of said third annular region into a plurality of circumferential upper portions

  17. Reactor containment

    International Nuclear Information System (INIS)

    Kawabe, Ryuhei; Yamaki, Rika.

    1990-01-01

    A water vessel is disposed and the gas phase portion of the water vessel is connected to a reactor container by a pipeline having a valve disposed at the midway thereof. A pipe in communication with external air is extended upwardly from the liquid phase portion to a considerable height so as to resist against the back pressure by a waterhead in the pipeline. Accordingly, when the pressure in the container is reduced to a negative level, air passes through the pipeline and uprises through the liquid phase portion in the water vessel in the form of bubbles and then flows into the reactor container. When the pressure inside of the reactor goes higher, since the liquid surface in the water vessel is forced down, water is pushed up into the pipeline. Since the waterhead pressure of a column of water in the pipeline and the pressure of the reactor container are well-balanced, gases in the reactor container are not leaked to the outside. Further, in a case if a great positive pressure is formed in the reactor container, the inner pressure overcomes the waterhead of the column of water, so that the gases containing radioactive aerosol uprise in the pipeline. Since water and the gases flow being in contact with each other, this can provide the effect of removing aerosol. (T.M.)

  18. Sharps container

    Science.gov (United States)

    Lee, Angelene M. (Inventor)

    1992-01-01

    This invention relates to a system for use in disposing of potentially hazardous items and more particularly a Sharps receptacle for used hypodermic needles and the like. A Sharps container is constructed from lightweight alodined nonmagnetic metal material with a cup member having an elongated tapered shape and length greater than its transverse dimensions. A magnet in the cup member provides for metal retention in the container. A nonmagnetic lid member has an opening and spring biased closure flap member. The flap member is constructed from stainless steel. A Velcro patch on the container permits selective attachment at desired locations.

  19. Vertical axis wind turbine airfoil

    Science.gov (United States)

    Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

    2012-12-18

    A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

  20. Trade Liberalisation and Vertical Integration

    DEFF Research Database (Denmark)

    Bache, Peter Arendorf; Laugesen, Anders Rosenstand

    We build a three-country model of international trade in final goods and intermediate inputs and study the relation between four different types of trade liberalisation and vertical integration. Firms are heterogeneous with respect to both productivity and factor (headquarter) intensity. Final......-good producers face decisions on exporting, vertical integration of intermediate-input production, and whether the intermediate-input production should be offshored to a low-wage country. We find that the fractions of final-good producers that pursue either vertical integration, offshoring, or exporting are all...... increasing when intermediate-input trade or final-goods trade is liberalised. Finally, we provide guidance for testing the open-economy property rights theory of the firm using firm-level data and surprisingly show that the relationship between factor (headquarter) intensity and the likelihood of vertical...

  1. The TEXT upgrade vertical interferometer

    International Nuclear Information System (INIS)

    Hallock, G.A.; Gartman, M.L.; Li, W.; Chiang, K.; Shin, S.; Castles, R.L.; Chatterjee, R.; Rahman, A.S.

    1992-01-01

    A far-infrared interferometer has been installed on TEXT upgrade to obtain electron density profiles. The primary system views the plasma vertically through a set of large (60-cm radialx7.62-cm toroidal) diagnostic ports. A 1-cm channel spacing (59 channels total) and fast electronic time response is used, to provide high resolution for radial profiles and perturbation experiments. Initial operation of the vertical system was obtained late in 1991, with six operating channels

  2. Reactor container

    International Nuclear Information System (INIS)

    Kojima, Yoshihiro; Hosomi, Kenji; Otonari, Jun-ichiro.

    1997-01-01

    In the present invention, a catalyst for oxidizing hydrogen to be disposed in a reactor container upon rupture of pipelines of a reactor primary coolant system is prevented from deposition of water droplets formed from a reactor container spray to suppress elevation of hydrogen concentration in the reactor container. Namely, a catalytic combustion gas concentration control system comprises a catalyst for oxidizing hydrogen and a support thereof. In addition, there is also disposed a water droplet deposition-preventing means for preventing deposition of water droplets in a reactor pressure vessel on the catalyst. Then, the effect of the catalyst upon catalytic oxidation reaction of hydrogen can be kept high. The local elevation of hydrogen concentration can be prevented even upon occurrence of such a phenomenon that various kinds of mobile forces in the container such as dry well cooling system are lost. (I.S.)

  3. A two-region simulation model of vertical U-tube ground heat exchanger and its experimental verification

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Weibo; Liu, Guangyuan [School of Energy and Power Engineering, Yangzhou University, Yangzhou City (China); Shi, Mingheng; Chen, Zhenqian [School of Energy and Environment, Southeast University, Nanjing City (China)

    2009-10-15

    Heat transfer around vertical ground heat exchanger (GHE) is a common problem for the design and simulation of ground coupled heat pump (GCHP). In this paper, an updated two-region vertical U-tube GHE analytical model, which is fit for system dynamic simulation of GCHP, is proposed and developed. It divides the heat transfer region of GHE into two parts at the boundary of borehole wall, and the two regions are coupled by the temperature of borehole wall. Both steady and transient heat transfer method are used to analyze the heat transfer process inside and outside borehole, respectively. The transient borehole wall temperature is calculated for the soil region outside borehole by use of a variable heat flux cylindrical source model. As for the region inside borehole, considering the variation of fluid temperature along the borehole length and the heat interference between two adjacent legs of U-tube, a quasi-three dimensional steady-state heat transfer analytical model for the borehole is developed based on the element energy conservation. The implement process of the model used in the dynamic simulation of GCHPs is illuminated in detail and the application calculation example for it is also presented. The experimental validation on the model is performed in a solar-geothermal multifunctional heat pump experiment system with two vertical boreholes and each with a 30 m vertical 1 1/4 in nominal diameter HDPE single U-tube GHE, the results indicate that the calculated fluid outlet temperatures of GHE by the model are agreed well with the corresponding test data and the guess relative error is less than 6%. (author)

  4. Thermally stimulated depolarization currents and dielectric properties of Mg0.95Ca0.05TiO3 filled HDPE composites

    Science.gov (United States)

    Shi, Yunzhou; Zhang, Li; Zhang, Jie; Yue, Zhenxing

    2017-12-01

    Mg0.95Ca0.05TiO3 (MCT) filled high density polyethylene (HDPE) composites were prepared by twin-screw extrusion followed by hot pressing technique. The thermally stimulated depolarization current (TSDC) measurement was performed to analyze the contribution of charge distribution and interfacial characteristics to the dielectric loss. TSDC spectra under different polarization conditions show that the introduction of ceramic fillers engenders shallow traps in the vicinity of ceramic-polymer interface, which hinders the injection of space charge from the electrode into the polymer matrix. In the composite materials applied to an external field, charges tend to be captured by these traps. The temperature dependence of relative permittivity and dielectric loss of the composites was measured, and a strong reliance of dielectric loss on temperature was observed. In the heating process, the release of charges accumulating at interfacial region is considered to contribute to the rise in dielectric loss with the increase of temperature.

  5. Development of a Geant4 application to characterise a prototype neutron detector based on three orthogonal 3He tubes inside an HDPE sphere.

    Science.gov (United States)

    Gracanin, V; Guatelli, S; Prokopovich, D; Rosenfeld, A B; Berry, A

    2017-01-01

    The Bonner Sphere Spectrometer (BSS) system is a well-established technique for neutron dosimetry that involves detection of thermal neutrons within a range of hydrogenous moderators. BSS detectors are often used to perform neutron field surveys in order to determine the ambient dose equivalent H*(10) and estimate health risk to personnel. There is a potential limitation of existing neutron survey techniques, since some detectors do not consider the direction of the neutron field, which can result in overly conservative estimates of dose in neutron fields. This paper shows the development of a Geant4 simulation application to characterise a prototype neutron detector based on three orthogonal 3 He tubes inside a single HDPE sphere built at the Australian Nuclear Science and Technology Organisation (ANSTO). The Geant4 simulation has been validated with respect to experimental measurements performed with an Am-Be source. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  6. Vertical distribution of pelagic photosynthesis

    DEFF Research Database (Denmark)

    Lyngsgaard, Maren Moltke

    chlorophyll maxima (DCM) to be a general feature in the ocean. Today, it is generally accepted that DCMs occur in most of our oceans still, despite this empirical knowledge, subsurface primary production is still largely ignored in marine science. The work included in this PhD examines the vertical...... each of the three regions combined with 15 years of survey data for the Baltic Sea transition zone. Overall, the results of this PhD work show that the vertical distribution of phytoplankton and their activity is important for the understanding, dynamics and functioning of pelagic ecosystems. It, thus......, emphasizes that future research and modelling exercises aimed at improving understanding of pelagic ecosystems and their role in the global ocean should include a consideration of the vertical heterogeneity in phytoplankton distributions and activity....

  7. Neglected locked vertical patellar dislocation

    Science.gov (United States)

    Gupta, Rakesh Kumar; Gupta, Vinay; Sangwan, Sukhbir Singh; Kamboj, Pradeep

    2012-01-01

    Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge. PMID:23162154

  8. Neglected locked vertical patellar dislocation

    Directory of Open Access Journals (Sweden)

    Rakesh Kumar Gupta

    2012-01-01

    Full Text Available Patellar dislocations occurring about the vertical and horizontal axis are rare and irreducible. The neglected patellar dislocation is still rarer. We describe the clinical presentation and management of a case of neglected vertical patellar dislocation in a 6 year-old boy who sustained an external rotational strain with a laterally directed force to his knee. Initially the diagnosis was missed and 2 months later open reduction was done. The increased tension generated by the rotation of the lateral extensor retinaculum kept the patella locked in the lateral gutter even with the knee in full extension. Traumatic patellar dislocation with rotation around a vertical axis has been described earlier, but no such neglected case has been reported to the best of our knowledge.

  9. Building a progressive vertical integration

    International Nuclear Information System (INIS)

    Charette, D.

    2008-01-01

    AAER Inc. is a Quebec-based company that manufactures turbines using proven European designs. This presentation discussed the company's business model. The company places an emphasis on identifying strategic and key components currently available for its turbines. Market analyses are performed in order to determine ideal suppliers and define business strategies and needs. The company invests in long-term relationships with its suppliers. Business partners for AAER are of a similar size and have a mutual understanding and respect for the company's business practices. Long-term agreements with suppliers are signed in order to ensure reliability and control over costs. Progressive vertical integration has been achieved by progressively manufacturing key components and integrating a North American supply chain. The company's secure supply chain and progressive vertical integration has significantly reduced financial costs and provided better quality control. It was concluded that vertical integration has also allowed AAER to provide better customer service and reduce transportation costs. tabs., figs

  10. Hybrid Vertical-Cavity Laser

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention provides a light source (2) for light circuits on a silicon platform (3). A vertical laser cavity is formed by a gain region (101) arranged between a top mirror (4) and a bottom grating-mirror (12) in a grating region (11) in a silicon layer (10) on a substrate. A waveguide...... (18, 19) for receiving light from the grating region (11) is formed within or to be connected to the grating region, and functions as an 5 output coupler for the VCL. Thereby, vertical lasing modes (16) are coupled to lateral in-plane modes (17, 20) of the in-plane waveguide formed in the silicon...

  11. Reactor container

    International Nuclear Information System (INIS)

    Furukawa, Hideyasu; Oyamada, Osamu; Uozumi, Hiroto.

    1976-01-01

    Purpose: To provide a container for a reactor provided with a pressure suppressing chamber pool which can prevent bubble vibrating load, particularly negative pressure generated at the time of starting to release exhaust from a main steam escape-safety valve from being transmitted to a lower liner plate of the container. Constitution: This arrangement is characterized in that a safety valve exhaust pool for main steam escape, in which a pressure suppressing chamber pool is separated and intercepted from pool water in the pressure suppressing chamber pool, a safety valve exhaust pipe is open into said safety valve exhaust pool, and an isolator member, which isolates the bottom liner plate in the pressure suppressing chamber pool from the pool water, is disposed on the bottom of the safety valve exhaust pool. (Nakamura, S.)

  12. CONTAIN calculations

    International Nuclear Information System (INIS)

    Scholtyssek, W.

    1995-01-01

    In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident 'medium-sized leak in the cold leg', especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)

  13. Reactor container

    International Nuclear Information System (INIS)

    Kato, Masami; Nishio, Masahide.

    1987-01-01

    Purpose: To prevent the rupture of the dry well even when the melted reactor core drops into a reactor pedestal cavity. Constitution: In a reactor container in which a dry well disposed above the reactor pedestal cavity for containing the reactor pressure vessel and a torus type suppression chamber for containing pressure suppression water are connected with each other, the pedestal cavity and the suppression chamber are disposed such that the flow level of the pedestal cavity is lower than the level of the pressure suppression water. Further, a pressure suppression water introduction pipeway for introducing the pressure suppression water into the reactor pedestal cavity is disposed by way of an ON-OFF valve. In case if the melted reactor core should fall into the pedestal cavity, the ON-OFF valve for the pressure suppression water introduction pipeway is opened to introduce the pressure suppression water in the suppression chamber into the pedestal cavity to cool the melted reactor core. (Ikeda, J.)

  14. Plasma container

    International Nuclear Information System (INIS)

    Ebisawa, Katsuyuki.

    1985-01-01

    Purpose: To enable to easily detect that the thickness of material to be abraded is reduced to an allowable limit from the outerside of the plasma container even during usual operation in a plasma vessel for a thermonuclear device. Constitution: A labelled material is disposed to the inside or rear face of constituent members of a plasma container undergoing the irradiation of plasma particles. A limiter plate to be abraded in the plasma container is composed of an armour member and heat removing plate, in which the armour member is made of graphite and heat-removing plate is made of copper. If the armour member is continuously abraded under the effect of sputtering due to plasma particles, silicon nitride embedded so far in the graphite at last appears on the surface of the limiter plate to undergo the impact shocks of the plasma particles. Accordingly, abrasion of the limiter material can be detected by a detector comprising gas chromatography and it can easily be detected from the outside of the plasma content even during normal operation. (Horiuchi, T.)

  15. Reactor container

    International Nuclear Information System (INIS)

    Shibata, Satoru; Kawashima, Hiroaki

    1984-01-01

    Purpose: To optimize the temperature distribution of the reactor container so as to moderate the thermal stress distribution on the reactor wall of LMFBR type reactor. Constitution: A good heat conductor (made of Al or Cu) is appended on the outer side of the reactor container wall from below the liquid level to the lower face of a deck plate. Further, heat insulators are disposed to the outside of the good heat conductor. Furthermore, a gas-cooling duct is circumferentially disposed at the contact portion between the good heat conductor and the deck plate around the reactor container. This enables to flow the cold heat from the liquid metal rapidly through the good heat conductor to the cooling duct and allows to maintain the temperature distribution on the reactor wall substantially linear even with the abrupt temperature change in the liquid metal. Further, by appending the good heat conductor covered with inactive metals not only on the outer side but also on the inside of the reactor wall to introduce the heat near the liquid level to the upper portion and escape the same to the cooling layer below the roof slab, the effect can be improved further. (Ikeda, J.)

  16. Containment structure tendon investigation

    International Nuclear Information System (INIS)

    Fulton, J.F.; Murray, K.H.

    1983-01-01

    The paper describes an investigation into the possible causes of lower-than-predicted tendon forces which were measured during past tendon surveillances for a concrete containment. The containment is post tensioned by vertical tendons which are anchored into a rock foundation. The tendons were originally stressed in 1969, and lift-off tests were performed on six occasions subsequent to this date over a period of 11 years. The tendon forces measured in these tests were generally lower than predicted, and by 1979 the prestress level in the containment was only marginally above the design requirement. The tendons were retensioned in 1980, and by this time an investigation into the possible causes was underway. Potential causes investigated include the rock anchors and surrounding rock, elastomeric pad creep, wire stresses, thermal effects, stressing equipment and lift-off procedures, and wire stress relaxation. The investigation activities included stress relaxation testing of wires pulled from actual tendons. The stress relaxation test program included wire specimens at several different temperature and initial stress levels and the effect of a varying temperature history on the stress relaxation property of the wires. For purpose of future force predictions of the retensioned tendons, the test program included tests to determine the effect on stress relaxation due to restressing the wires after they had relaxed for 1000 hours and 10,000 hours. (orig./GL)

  17. Vertical reactor coolant pump instabilities

    International Nuclear Information System (INIS)

    Jones, R.M.

    1985-01-01

    The investigation conducted at the Tennessee Valley Authority's Sequoyah Nuclear Power Plant to determine and correct increasing vibrations in the vertical reactor coolant pumps is described. Diagnostic procedures to determine the vibration causes and evaluate the corractive measures taken are also described

  18. CONTAIN calculations; CONTAIN-Rechnungen

    Energy Technology Data Exchange (ETDEWEB)

    Scholtyssek, W.

    1995-08-01

    In the first phase of a benchmark comparison, the CONTAIN code was used to calculate an assumed EPR accident `medium-sized leak in the cold leg`, especially for the first two days after initiation of the accident. The results for global characteristics compare well with those of FIPLOC, MELCOR and WAVCO calculations, if the same materials data are used as input. However, significant differences show up for local quantities such as flows through leakages. (orig.)

  19. Nanocompósitos de blendas HDPE/LLDPE e OMMT - Parte II: avaliação das propriedades térmica, óticas e de transporte a gases

    Directory of Open Access Journals (Sweden)

    Fabio R. Passador

    2013-01-01

    Full Text Available Nanocompósitos de blendas de polietileno de alta densidade (HDPE com polietileno linear de baixa densidade (LLDPE e OMMT (montmorilonita organofílica foram preparados sob fusão em extrusora de dupla-rosca, utilizando HDPE-g-MA como agente compatibilizante. Os nanocompósitos foram caracterizados através das propriedades térmicas, óticas e de transporte de gases. A blenda HDPE/LLDPE e os nanocompósitos das blendas HDPE/LLDPE como esperado comportam-se como barreira ao vapor de água e são permeáveis ao CO2 e O2. A adição de nanoargila modificou o grau de cristalinidade da matriz polimérica dos nanocompósitos e a diminuição do coeficiente de permeabilidade foi atribuída ao aumento do grau de cristalinidade e do aumento ao caminho difusional para as moléculas do gás passarem pelo filme polimérico. O caminho difusional mais longo devido ao aumento da tortuosidade está relacionado a uma boa dispersão da carga inorgânica, boa molhabilidade desta pela matriz e forte interações na interface. Modelos teóricos de permeabilidade propostos por Nielsen e Bharadwaj foram utilizados para estimar a razão de aspecto da nanoargila nos nanocompósitos e forneceram resultados que se correlacionam bem com as morfologias observadas por microscopia eletrônica de transmissão.

  20. Effect of liquid epoxidized natural rubber (LENR) on mechanical properties and morphology of natural rubber/high density polyethylene/mengkuang fiber (NR/HDPE/MK) bio-composite

    Science.gov (United States)

    Piah, Mohd Razi Mat; Baharum, Azizah

    2016-11-01

    The use of mengkuang fiber (MK) fibers in NR/HDPE (40/60) blend was studied via surface modification of fiber. The MK fiber was pre-washed with 5%wt/v sodium hydroxide solution prior to treatment with liquid epoxidized natural rubber (LENR). The concentration of LENR were varied from 5%-20%wt in toluene. The effects of LENR concentrations were studied in terms of mechanical properties and morphology formed. Melt-blending was performed using an internal mixer (Haake Rheomix 600). The processing parameters identified were 135°C temperature, 45 rpm rotor speed, 12 minutes processing time and at 20%wt MK fiber loading. The optimum LENR treatment concentration was obtained at 5%wt with tensile strength, tensile modulus, and impact strength of 10.3 MPa, 414.2 MPa and 14.4 kJ/m2 respectively. The tensile modulus of LENR-treated MK fiber filled NR/HDPE bio-composite has shown enhancement up to 16.7% higher than untreated MK fiber. The tensile and impact strength were decreased with increasing LENR concentration due to the broken of MK fibers to smaller particles and adhered to each other. FESEM micrographs confirmed the formation of fiber-fiber agglomeration in NR/HDPE blends. The optical microscope analysis shows MK fibers is shorter than original fiber lengths after NaOH-LENR surface modification. The internal bonding forces of MK fiber seems to be weaker than external force exerted on it, therefore, the MK fiber has broken to smaller particles and reduced the mechanical properties of NR/HDPE/MK(20%) bio-composite.

  1. Reactor container

    International Nuclear Information System (INIS)

    Hidaka, Masataka; Hatamiya, Shigeo; Kawasaki, Terufumi; Fukui, Toru; Suzuki, Hiroaki; Kataoka, Yoshiyuki; Kawabe, Ryuhei; Murase, Michio; Naito, Masanori.

    1990-01-01

    In order to suppress the pressure elevation in a reactor container due to high temperature and high pressure steams jetted out upon pipeway rupture accidents in the reactor container, the steams are introduced to a pressure suppression chamber for condensating them in stored coolants. However, the ability for suppressing the pressure elevation and steam coagulation are deteriorated due to the presence of inactive incondensible gases. Then, there are disposed a vent channel for introducing the steams in a dry well to a pressure suppression chamber in the reactor pressure vessel, a closed space disposed at the position lower than a usual liquid level, a first channel having an inlet in the pressure suppression chamber and an exit in the closed space and a second means connected by way of a backflow checking means for preventing the flow directing to the closed space. The first paths are present by plurality, a portion of which constitutes a syphon. The incondensible gases and the steams are discharged to the dry well at high pressure by using the difference of the water head for a long cooling time after the pipeway rupture accident. Then, safety can be improved without using dynamic equipments as driving source. (N.H.)

  2. CONDENSATION OF WATER VAPOR IN A VERTICAL TUBE CONDENSER

    Directory of Open Access Journals (Sweden)

    Jan Havlík

    2015-10-01

    Full Text Available This paper presents an analysis of heat transfer in the process of condensation of water vapor in a vertical shell-and-tube condenser. We analyze the use of the Nusselt model for calculating the condensation heat transfer coefficient (HTC inside a vertical tube and the Kern, Bell-Delaware and Stream-flow analysis methods for calculating the shell-side HTC from tubes to cooling water. These methods are experimentally verified for a specific condenser of waste process vapor containing air. The operating conditions of the condenser may be different from the assumptions adopted in the basic Nusselt theory. Modifications to the Nusselt condensation model are theoretically analyzed.

  3. Fusion reactor horizontal versus vertical maintenance approach

    International Nuclear Information System (INIS)

    Charruyer, Ph.; Djerassi, H.; Leger, D.; Maupou, M.; Rouillard, J.; Salpietro, E.; Holloway, C.; Suppan, A.

    1987-01-01

    This paper concerns the comparison of horizontal versus vertical maintenance options of internal components (blanket and segment) of fusion reactors NET (Next European Torus) and INTOR Design. The described mechanical options are taken to ensure the handling of internals with the required precision, taking into account the problems raised by the safety and confinement requirements. Handling is obviously performed remotely. The option comparisons are performed according to the criteria of feasibility, building size, duration of maintenance operations, safety, flexibility, availability and cost. The first conclusions point on that the vertical handling option offers advantages, as regards the ease of handling and confinement possibilities. From the building size point of view, the two solutions are almost equivalent, while other criteria do not provide a basis for choice. It is emphasized that the confinement option C.T.U. (Containment Transfer Unit) or T.I.C. (Tight Intermediate Confinement) should be the major factor in determining the best options. In additions, a cost comparative analysis emphasizes the best cost/benefit ratio for the different options studied

  4. Economic alternatives for containment barriers

    International Nuclear Information System (INIS)

    Nicholson, P.J.; Jasperse, B.H.; Fisher, M.J.

    1997-01-01

    Fixation, barriers, and containment of existing landfills and other disposal areas are often performed by insitu auger type soil mixing and jet grouting. Cement or other chemical reagents are mixed with soil to form both vertical and horizontal barriers. Immobilization of contaminants can be economically achieved by mixing soil and the contaminants with reagents that solidify or stabilize the contaminated area. Developed in Japan, and relatively new to the United States, the first large scale application was for a vertical barrier at the Jackson Lake Dam project in 1986. This technology has grown in both the civil and environmental field since. The paper describes current United States practice for Deep Soil Mixing (over 12 meters in depth), and Shallow Soil Mixing for vertical barriers and stabilization/solidification, and Jet Grouting for horizontal and vertical barriers. Creating very low permeability barriers at depth with minimal surface return often makes these techniques economical when compared to slurry trenches. The paper will discuss equipment, materials, soil and strength parameters, and quality control

  5. Reactor container

    International Nuclear Information System (INIS)

    Oyamada, Osamu; Furukawa, Hideyasu; Uozumi, Hiroto.

    1979-01-01

    Purpose: To lower the position of an intermediate slab within a reactor container and fitting a heat insulating material to the inner wall of said intermediate slab, whereby a space for a control rod exchanging device and thermal stresses of the inner peripheral wall are lowered. Constitution: In the pedestal at the lower part of a reactor pressure vessel there is formed an intermediate slab at a position lower than diaphragm floor slab of the outer periphery of the pedestal thereby to secure a space for providing automatic exchanging device of a control rod driving device. Futhermore, a heat insulating material is fitted to the inner peripheral wall at the upper side of the intermediate slab part, and the temperature gradient in the wall thickness direction at the time of a piping rupture trouble is made gentle, and thermal stresses at the inner peripheral wall are lowered. (Sekiya, K.)

  6. Containment vessel

    International Nuclear Information System (INIS)

    Zbirohowski-Koscia, K.F.; Roberts, A.C.

    1980-01-01

    A concrete containment vessel for nuclear reactors is disclosed that is spherical and that has prestressing tendons disposed in first, second and third sets, the tendons of each set being all substantially concentric and centred around a respective one of the three orthogonal axes of the sphere; the tendons of the first set being anchored at each end at a first anchor rib running around a circumference of the vessel, the tendons of the second set being anchored at each end at a second anchor rib running around a circumference of the sphere and disposed at 90 0 to the first rib, and the tendons of the third set being anchored some to the first rib and the remainder to the second rib. (author)

  7. Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters

    International Nuclear Information System (INIS)

    Becker, Kurt M.; Hernborg, Gunnar; Bode, Manfred; Eriksson, O.

    1965-01-01

    The present report contains the tables of the burnout data obtained for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Sweden. The data covers measurements in round ducts, annuli, 3-rod and 7-rod clusters

  8. Burnout data for flow of boiling water in vertical round ducts, annuli and rod clusters

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Kurt M; Hernborg, Gunnar; Bode, Manfred; Eriksson, O

    1965-07-01

    The present report contains the tables of the burnout data obtained for flow in vertical channels at the Heat Engineering Laboratory of AB Atomenergi in Sweden. The data covers measurements in round ducts, annuli, 3-rod and 7-rod clusters.

  9. Coexistence of Strategic Vertical Separation and Integration

    DEFF Research Database (Denmark)

    Jansen, Jos

    2003-01-01

    This paper gives conditions under which vertical separation is chosen by some upstream firms, while vertical integration is chosen by others in the equilibrium of a symmetric model. A vertically separating firm trades off fixed contracting costs against the strategic benefit of writing a (two......-part tariff, exclusive dealing) contract with its retailer. Coexistence emerges when more than two vertical Cournot oligopolists supply close substitutes. When vertical integration and separation coexist, welfare could be improved by reducing the number of vertically separating firms. The scope...

  10. Vertical and lateral heterogeneous integration

    Science.gov (United States)

    Geske, Jon; Okuno, Yae L.; Bowers, John E.; Jayaraman, Vijay

    2001-09-01

    A technique for achieving large-scale monolithic integration of lattice-mismatched materials in the vertical direction and the lateral integration of dissimilar lattice-matched structures has been developed. The technique uses a single nonplanar direct-wafer-bond step to transform vertically integrated epitaxial structures into lateral epitaxial variation across the surface of a wafer. Nonplanar wafer bonding is demonstrated by integrating four different unstrained multi-quantum-well active regions lattice matched to InP on a GaAs wafer surface. Microscopy is used to verify the quality of the bonded interface, and photoluminescence is used to verify that the bonding process does not degrade the optical quality of the laterally integrated wells. The authors propose this technique as a means to achieve greater levels of wafer-scale integration in optical, electrical, and micromechanical devices.

  11. Kinematic Fitting of Detached Vertices

    Energy Technology Data Exchange (ETDEWEB)

    Mattione, Paul [Rice Univ., Houston, TX (United States)

    2007-05-01

    The eg3 experiment at the Jefferson Lab CLAS detector aims to determine the existence of the $\\Xi_{5}$ pentaquarks and investigate the excited $\\Xi$ states. Specifically, the exotic $\\Xi_{5}^{--}$ pentaquark will be sought by first reconstructing the $\\Xi^{-}$ particle through its weak decays, $\\Xi^{-}\\to\\pi^{-}\\Lambda$ and $\\Lambda\\to\\pi^{-}$. A kinematic fitting routine was developed to reconstruct the detached vertices of these decays, where confidence level cuts on the fits are used to remove background events. Prior to fitting these decays, the exclusive reaction $\\gamma D\\rightarrow pp\\pi^{-}$ was studied in order to correct the track measurements and covariance matrices of the charged particles. The $\\Lambda\\rightarrow p\\pi^{-}$ and $\\Xi^{-}\\to\\pi^{-}\\Lambda$ decays were then investigated to demonstrate that the kinematic fitting routine reconstructs the decaying particles and their detached vertices correctly.

  12. Interference Lithography for Vertical Photovoltaics

    Science.gov (United States)

    Balls, Amy; Pei, Lei; Kvavle, Joshua; Sieler, Andrew; Schultz, Stephen; Linford, Matthew; Vanfleet, Richard; Davis, Robert

    2009-10-01

    We are exploring low cost approaches for fabricating three dimensional nanoscale structures. These vertical structures could significantly improve the efficiency of devices made from low cost photovoltaic materials. The nanoscale vertical structure provides a way to increase optical absorption in thin photovoltaic films without increasing the electronic carrier separation distance. The target structure is a high temperature transparent template with a dense array of holes on a 400 - 600 nm pitch fabricated by a combination of interference lithography and nanoembossing. First a master was fabricated using ultraviolet light interference lithography and the pattern was transferred into a silicon wafer master by silicon reactive ion etching. Embossing studies were performed with the master on several high temperature polymers.

  13. Vertically Integrated Circuits at Fermilab

    International Nuclear Information System (INIS)

    Deptuch, Grzegorz; Demarteau, Marcel; Hoff, James; Lipton, Ronald; Shenai, Alpana; Trimpl, Marcel; Yarema, Raymond; Zimmerman, Tom

    2009-01-01

    The exploration of the vertically integrated circuits, also commonly known as 3D-IC technology, for applications in radiation detection started at Fermilab in 2006. This paper examines the opportunities that vertical integration offers by looking at various 3D designs that have been completed by Fermilab. The emphasis is on opportunities that are presented by through silicon vias (TSV), wafer and circuit thinning and finally fusion bonding techniques to replace conventional bump bonding. Early work by Fermilab has led to an international consortium for the development of 3D-IC circuits for High Energy Physics. The consortium has submitted over 25 different designs for the Fermilab organized MPW run organized for the first time.

  14. Vertical Launch System Loadout Planner

    Science.gov (United States)

    2015-03-01

    United States Navy USS United States’ Ship VBA Visual Basic for Applications VLP VLS Loadout Planner VLS Vertical Launch System...with 32 gigabytes of random access memory and eight processors, General Algebraic Modeling System (GAMS) CPLEX version 24 (GAMS, 2015) solves this...problem in ten minutes to an integer tolerance of 10%. The GAMS interpreter and CPLEX solver require 75 Megabytes of random access memory for this

  15. NASA-Ames vertical gun

    Science.gov (United States)

    Schultz, P. H.

    1984-01-01

    A national facility, the NASA-Ames vertical gun range (AVGR) has an excellent reputation for revealing fundamental aspects of impact cratering that provide important constraints for planetary processes. The current logistics in accessing the AVGR, some of the past and ongoing experimental programs and their relevance, and the future role of this facility in planetary studies are reviewed. Publications resulting from experiments with the gun (1979 to 1984) are listed as well as the researchers and subjects studied.

  16. Strategic Inventories in Vertical Contracts

    OpenAIRE

    Krishnan Anand; Ravi Anupindi; Yehuda Bassok

    2008-01-01

    Classical reasons for carrying inventory include fixed (nonlinear) production or procurement costs, lead times, nonstationary or uncertain supply/demand, and capacity constraints. The last decade has seen active research in supply chain coordination focusing on the role of incentive contracts to achieve first-best levels of inventory. An extensive literature in industrial organization that studies incentives for vertical controls largely ignores the effect of inventories. Does the ability to ...

  17. Assessment of nanoscopic dynamic mechanical properties and B-C-N triad effect on MWCNT/h-BNNP nanofillers reinforced HDPE hybrid composite using oscillatory nanoindentation: An insight into medical applications.

    Science.gov (United States)

    Badgayan, Nitesh Dhar; Sahu, Santosh Kumar; Samanta, Sutanu; Rama Sreekanth, P S

    2018-04-01

    A thrust on improvement of different properties of polymer has taken a contemporary route with advent of nanofillers. Although several nanofillers are existent; MultiWalled Carbon Nanotubes- (MWCNTs) and h-Boron Nitride nanoplatelets-(h-BNNPs) unique combination of 1D and 2D dimensional geometry aids an advantage of B-C-N triad elemental effects on properties of tested samples. The current study aims to investigate the effects of MWCNT and h-BNNP reinforcement in High Density Polyethylene (HDPE) for high load bearing areas of medical applications requiring both elastic and viscous behavior. The results were analyzed keeping a view of its application in areas like HDPE based fracture fixation plates, acetabular cups and others. The composite and hybrid samples with different loadings were prepared after surface modification of nanofillers by mechanical mixing and molding technique. The dynamic nano-mechanical properties like storage modulus, loss modulus and tan delta were assessed for each sample during frequency swept from 10 to 220 Hz. The viscoelastic properties like h c /h m , H/E, elastic-plastic deformation were investigated and evaluated. At a frequency of 10 Hz, the storage and loss modulus of 0.1 CNT increased by 37.56% and decreased by 23.52% respectively on comparison with pure HDPE. This infers a good elastic as well as viscous behavior. Overall elastic behavior of 0.1 CNT was confirmed from tan delta evaluation. The interaction between B-C-N elemental triad had significant effect on creep strength, visco-damping property (h c /h m and H/E), elastic plastic displacement and pile-up and sink-in behavior. Highest creep strength and visco-damping property was exhibited by 0.25 CNT/0.15 BNNP hybrid. The elastic-plastic displacement of hybrid composite was noted as least, which decreased by 30% on comparison with pure HDPE. It can be inferred that presence of 1D-MWCNT and 2D-h-BNNP had significant effect on important dynamic viscoelastic and creep

  18. Lift-based up-ender and methods using same to manipulate a shipping container containing unirradiated nuclear fuel

    Science.gov (United States)

    Nilles, Michael J.

    2017-08-01

    A shipping container containing an unirradiated nuclear fuel assembly is lifted off the ground by operating a crane to raise a lifting tool comprising a winch. The lifting tool is connected with the shipping container by a rigging line connecting with the shipping container at a lifting point located on the shipping container between the top and bottom of the shipping container, and by winch cabling connecting with the shipping container at the top of the shipping container. The shipping container is reoriented by operating the winch to adjust the length of the winch cabling so as to rotate the shipping container about the lifting point. Shortening the winch cabling rotates the shipping container about the lifting point from a horizontal orientation to a vertical orientation, while lengthening the winch cabling rotates the shipping container about the lifting point from the vertical orientation to the horizontal orientation.

  19. DoD Standard Design for Vertical ASTs

    Science.gov (United States)

    2015-04-27

    Roofs May-2012 33 56 13.15 Undertank Interstitial Space May-2012 33 56 63 Fuel Impermeable Liner System Apr-2006 32 13 15.20 Concrete Pavement ... Flexible Membrane Liner (FML) or  60 Mil HDPE Liner • NOT Concrete Surface • NOT Clay / Bentonite  Non-Woven Geotextile (Protective Layer...Required Flexible Membrane Liner 30  Non-Reinforced 60 mil High Density Polyethylene  Susceptible to Thermal Expansion and Degradation from

  20. [Vertical fractures: apropos of 2 clinical cases].

    Science.gov (United States)

    Félix Mañes Ferrer, J; Micò Muñoz, P; Sánchez Cortés, J L; Paricio Martín, J J; Miñana Laliga, R

    1991-01-01

    The aim of the study is to present a clinical review of the vertical root fractures. Two clinical cases are presented to demonstrates the criteria for obtaining a correct diagnosis of vertical root fractures.

  1. Vertical melting of a stack of membranes

    Science.gov (United States)

    Borelli, M. E. S.; Kleinert, H.; Schakel, A. M. J.

    2001-02-01

    A stack of tensionless membranes with nonlinear curvature energy and vertical harmonic interaction is studied. At low temperatures, the system forms a lamellar phase. At a critical temperature, the stack disorders vertically in a melting-like transition.

  2. VERTICAL ACTIVITY ESTIMATION USING 2D RADAR

    African Journals Online (AJOL)

    hennie

    estimates on aircraft vertical behaviour from a single 2D radar track. ... Fortunately, the problem of detecting relative vertical motion using a single 2D ..... awareness tools in scenarios where aerial activity sensing is typically limited to 2D.

  3. Vertical structures in vibrated wormlike micellar solutions

    Science.gov (United States)

    Epstein, Tamir; Deegan, Robert

    2008-11-01

    Vertically vibrated shear thickening particulate suspensions can support a free-standing interfaces oriented parallel to gravity. We find that shear thickening worm-like micellar solutions also support such vertical interfaces. Above a threshold in acceleration, the solution spontaneously accumulates into a labyrinthine pattern characterized by a well-defined vertical edge. The formation of vertical structures is of interest because they are unique to shear-thickening fluids, and they indicate the existence of an unknown stress bearing mechanism.

  4. Vertical sounding balloons for stratospheric photochemistry

    Science.gov (United States)

    Pommereau, J. P.

    The use of vertical sounding balloons for stratospheric photochemistry studies is illustrated by the use of a vertical piloted gas balloon for the search of NO2 diurnal variations. It is shown that the use of montgolfieres (hot air balloons) can enhance the vertical sounding technique. Particular attention is given to a sun-heated montgolfiere and to the more sophisticated infrared montgolfiere that is able to perform three to four vertical excursions per day and to remain aloft for weeks or months.

  5. Determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke from baryonic Λ{sub b} decays

    Energy Technology Data Exchange (ETDEWEB)

    Hsiao, Y.K. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Geng, C.Q. [Shanxi Normal University, School of Physics and Information Engineering, Linfen (China); National Tsing Hua University, Department of Physics, Hsinchu (China); Hunan Normal University, Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Changsha (China)

    2017-10-15

    We present the first attempt to extract vertical stroke V{sub cb} vertical stroke from the Λ{sub b} → Λ{sub c}{sup +}l anti ν{sub l} decay without relying on vertical stroke V{sub ub} vertical stroke inputs from the B meson decays. Meanwhile, the hadronic Λ{sub b} → Λ{sub c}M{sub (c)} decays with M = (π{sup -},K{sup -}) and M{sub c} =(D{sup -},D{sup -}{sub s}) measured with high precisions are involved in the extraction. Explicitly, we find that vertical stroke V{sub cb} vertical stroke =(44.6 ± 3.2) x 10{sup -3}, agreeing with the value of (42.11 ± 0.74) x 10{sup -3} from the inclusive B → X{sub c}l anti ν{sub l} decays. Furthermore, based on the most recent ratio of vertical stroke V{sub ub} vertical stroke / vertical stroke V{sub cb} vertical stroke from the exclusive modes, we obtain vertical stroke V{sub ub} vertical stroke = (4.3 ± 0.4) x 10{sup -3}, which is close to the value of (4.49 ± 0.24) x 10{sup -3} from the inclusive B → X{sub u}l anti ν{sub l} decays. We conclude that our determinations of vertical stroke V{sub cb} vertical stroke and vertical stroke V{sub ub} vertical stroke favor the corresponding inclusive extractions in the B decays. (orig.)

  6. Metal Oxide Vertical Graphene Hybrid Supercapacitors

    Science.gov (United States)

    Meyyappan, Meyya (Inventor)

    2018-01-01

    A metal oxide vertical graphene hybrid supercapacitor is provided. The supercapacitor includes a pair of collectors facing each other, and vertical graphene electrode material grown directly on each of the pair of collectors without catalyst or binders. A separator may separate the vertical graphene electrode materials.

  7. Influence of the impact assessment method on the conclusions of a LCA study. Application to the case of a part made with virgin and recycled HDPE.

    Science.gov (United States)

    Simões, Carla L; Xará, Susana M; Bernardo, C A

    2011-10-01

    Recent legislation has stressed the need to decide the best end-of-life (EoL) option for post-consumer products considering their full life-cycle and the corresponding overall environmental impacts. The life cycle assessment (LCA) technique has become a common tool to evaluate those impacts. The present study aimed to contribute to the better understanding of the application of this technique, by evaluating the influence of the selection of the life cycle impact assessment (LCIA) method in its results and conclusions. A specific case study was chosen, using previous information related to an anti-glare lamellae (AGL) for highway use, made with virgin and recycled high-density polyethylene (HDPE). Five distinct LCIA methods were used: Eco-indicator 99, CML 2 (2000), EPS 2000, Eco-indicator 95 and EDIP 97. Consistent results between these methods were obtained for the Climate change, Ozone layer depletion, Acidification and Eutrophication environmental indicators. Conversely, the Summer smog indicator showed large discrepancies between impact assessment methods. The work sheds light on the advantages inherent in using various LCIA methods when doing the LCA study of a specific product, thus evidencing complementary analysis perspectives.

  8. Secondary Containers and Service Containers for Pesticides

    Science.gov (United States)

    Secondary containers and service containers are used by pesticide applicators in the process of applying a pesticide. EPA does not require secondary containers or service containers to be labeled or to meet particular construction standards. Learn more.

  9. Crystalline beams: The vertical zigzag

    International Nuclear Information System (INIS)

    Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

    1994-01-01

    This note is the continuation of our comprehensive investigation of Crystalline Beams. After having determined the equations of motion and the conditions for the formation of the simplest configuration, i.e. the string, we study the possibility of storing an intense beam of charged particles in a storage ring where they form a vertical zigzag. We define the equilibrium configuration, and examine the confinement conditions. Subsequently, we derive the transfer matrix for motion through various elements of the storage ring. Finally we investigate the stability conditions for such a beam

  10. Vertically Integrated Edgeless Photon Imaging Camera

    Energy Technology Data Exchange (ETDEWEB)

    Fahim, Farah [Fermilab; Deptuch, Grzegorz [Fermilab; Shenai, Alpana [Fermilab; Maj, Piotr [AGH-UST, Cracow; Kmon, Piotr [AGH-UST, Cracow; Grybos, Pawel [AGH-UST, Cracow; Szczygiel, Robert [AGH-UST, Cracow; Siddons, D. Peter [Brookhaven; Rumaiz, Abdul [Brookhaven; Kuczewski, Anthony [Brookhaven; Mead, Joseph [Brookhaven; Bradford, Rebecca [Argonne; Weizeorick, John [Argonne

    2017-01-01

    The Vertically Integrated Photon Imaging Chip - Large, (VIPIC-L), is a large area, small pixel (65μm), 3D integrated, photon counting ASIC with zero-suppressed or full frame dead-time-less data readout. It features data throughput of 14.4 Gbps per chip with a full frame readout speed of 56kframes/s in the imaging mode. VIPIC-L contain 192 x 192 pixel array and the total size of the chip is 1.248cm x 1.248cm with only a 5μm periphery. It contains about 120M transistors. A 1.3M pixel camera module will be developed by arranging a 6 x 6 array of 3D VIPIC-L’s bonded to a large area silicon sensor on the analog side and to a readout board on the digital side. The readout board hosts a bank of FPGA’s, one per VIPIC-L to allow processing of up to 0.7 Tbps of raw data produced by the camera.

  11. Determination of the quark coupling strength vertical bar V-ub vertical bar using baryonic decays

    NARCIS (Netherlands)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Older, A. A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Onderwater, C. J. G.; Pellegrino, A.; Tolk, S.

    In the Standard Model of particle physics, the strength of the couplings of the b quark to the u and c quarks, vertical bar V-ub vertical bar and vertical bar V-ub vertical bar, are governed by the coupling of the quarks to the Higgs boson. Using data from the LHCb experiment at the Large Hadron

  12. Storage vessel for containing radiation contaminated material

    International Nuclear Information System (INIS)

    Ogawa, Kazuya.

    1995-01-01

    A container pipe and an outer pipe are coaxially assembled integrally in a state where securing spacers are disposed between the container pipe and the outer pipe, and an annular flow channel is formed around the container pipe. Radiation contaminated material-containing body (glass solidified package) is contained in the container pipe. The container pipe and the outer pipe in an integrated state are suspended from a ceiling plug of a cell chamber of a storage vessel, and supporting devices are assembled between the pipes and a support structure. A shear/lug mechanism is used for the supporting devices. The combination of the shear/lug allows radial and vertical movement but restrict horizontal movement of the outer tube. The supporting devices are assembled while visually recognizing the state of the shear/lug mechanism between the outer pipe and the support mechanism. Accordingly, operationability upon assembling the container pipe and the outer pipe is improved. (I.N.)

  13. Vertically stacked nanocellulose tactile sensor.

    Science.gov (United States)

    Jung, Minhyun; Kim, Kyungkwan; Kim, Bumjin; Lee, Kwang-Jae; Kang, Jae-Wook; Jeon, Sanghun

    2017-11-16

    Paper-based electronic devices are attracting considerable attention, because the paper platform has unique attributes such as flexibility and eco-friendliness. Here we report on what is claimed to be the firstly fully integrated vertically-stacked nanocellulose-based tactile sensor, which is capable of simultaneously sensing temperature and pressure. The pressure and temperature sensors are operated using different principles and are stacked vertically, thereby minimizing the interference effect. For the pressure sensor, which utilizes the piezoresistance principle under pressure, the conducting electrode was inkjet printed on the TEMPO-oxidized-nanocellulose patterned with micro-sized pyramids, and the counter electrode was placed on the nanocellulose film. The pressure sensor has a high sensitivity over a wide range (500 Pa-3 kPa) and a high durability of 10 4 loading/unloading cycles. The temperature sensor combines various materials such as poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS), silver nanoparticles (AgNPs) and carbon nanotubes (CNTs) to form a thermocouple on the upper nanocellulose layer. The thermoelectric-based temperature sensors generate a thermoelectric voltage output of 1.7 mV for a temperature difference of 125 K. Our 5 × 5 tactile sensor arrays show a fast response, negligible interference, and durable sensing performance.

  14. Rheological characterization of LDPE{sub Al} (low density polyethylene and aluminum) e HDPE (high density polyethylene); Caracterizacao das propriedades reologicas da mistura LDPE{sub Al} (polietileno de baixa densidade e aluminio) e HDPE (polietileno de alta densidade)

    Energy Technology Data Exchange (ETDEWEB)

    Santa Marinha, Ana Beatriz Abreu; Pacheco, Elen Beatriz Acordi Vasques; Monteiro, Elisabeth Ermel da Costa [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Inst. de Macromoleculas

    2008-07-01

    The long life packaging contains paper, polyethylene and aluminum for packaging of food. A few part of total amount produced is recycled and another is discharged in landfills in Brazil. The low density polyethylene and aluminum (LDPE{sub Al}) was obtained from recycling this packaging. The rheological properties of the blends were intermediate to ones of the pure polymers. In a general way, the rheological properties were not modified by the aluminum presence. (author)

  15. Modeling vertical loads in pools resulting from fluid injection

    International Nuclear Information System (INIS)

    Lai, W.; McCauley, E.W.

    1978-01-01

    Table-top model experiments were performed to investigate pressure suppression pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peachbottom Mark I boiling water reactor containment system. The results guided subsequent conduct of experiments in the 1 / 5 -scale facility and provided new insight into the vertical load function (VLF). Model experiments show an oscillatory VLF with the download typically double-spiked followed by a more gradual sinusoidal upload. The load function contains a high frequency oscillation superimposed on a low frequency one; evidence from measurements indicates that the oscillations are initiated by fluid dynamics phenomena

  16. Capillary holdup between vertical spheres

    Directory of Open Access Journals (Sweden)

    S. Zeinali Heris

    2009-12-01

    Full Text Available The maximum volume of liquid bridge left between two vertically mounted spherical particles has been theoretically determined and experimentally measured. As the gravitational effect has not been neglected in the theoretical model, the liquid interface profile is nonsymmetrical around the X-axis. Symmetry in the interface profile only occurs when either the particle size ratio or the gravitational force becomes zero. In this paper, some equations are derived as a function of the spheres' sizes, gap width, liquid density, surface tension and body force (gravity/centrifugal to estimate the maximum amount of liquid that can be held between the two solid spheres. Then a comparison is made between the result based on these equations and several experimental results.

  17. Estudo da influência de resíduos catalíticos na degradação de plásticos reciclados (Blenda HDPE/PP e PET provenientes de lixo urbano

    Directory of Open Access Journals (Sweden)

    Santos Amélia S. F.

    1999-01-01

    Full Text Available A degradação derivada do processamento, uso, descarte, lavagem e reprocessamento foram caracterizados neste estudo. Para o HDPE/PP pós-consumo, a degradação foi estudada em função da presença de garrafas de HDPE/LDPE reprocessadas (recicladas e da presença de tampas e rótulos de LDPE e PP. Esses materiais mostraram uma influência significativa na degradação total de HDPE/PP apenas quando presentes em conjunto. Os resíduos que apresentaram menor estabilidade termo-oxidativa foram os rótulos e tampas de LDPE e PP. As análises usadas na caracterização da influência destes resíduos foram espectroscopia do Infra-vermelho (IR e Calorimetria Diferencial Exploratória (tempo de indução oxidativa - OIT. Além disso, a degradação do PET foi estudada em função das condições de lavagem e da presença de resíduos de soda cáustica e adesivo. Foram usadas medidas de viscosidade intrínseca e de titulação para caracterizar estas variáveis. Foi observado que apesar do uso de altas temperaturas (80 ºC durante a lavagem, a extensão de tempo desta etapa (5 ou 15 min não afetou a degradação do PET, pelo menos não em níveis detectáveis pelas análises. No entanto, a remoção do resíduo de adesivo mostrou uma influência significativa na degradação catalítica do PET.

  18. Accumulation of MS2, GA, and Qβ phages on high density polyethylene (HDPE) and drinking water biofilms under flow/non-flow conditions.

    Science.gov (United States)

    Pelleïeux, Sandra; Bertrand, Isabelle; Skali-Lami, Salaheddine; Mathieu, Laurence; Francius, Grégory; Gantzer, Christophe

    2012-12-01

    Accumulation of enteric viruses on surfaces within a drinking water distribution system was investigated in a reactor using three F-specific RNA bacteriophages (MS2, GA, and Qβ) as models of human pathogenic viruses. The influence of hydrodynamic versus hydrostatic conditions and the effect of the colonization of HDPE surfaces with two-month-old biofilms were assessed for virus accumulation on surfaces. In order to work under controlled laminar conditions and to study various wall shear stresses at the same time, a new rotating disc reactor was designed. Among the wall shear rates applied in the reactor (450 to 1640 s(-1)) no significant differences were observed concerning both the total number of bacteria, which was found to be around 1.7 × 10(7) cells/cm(2) and the virus concentrations on surfaces were about 3 × 10(4), 5 × 10(5) and 3 × 10(5) eq PFU/cm(2) for MS2, GA and Qβ phages, respectively. Comparison between static versus dynamic conditions revealed that both Brownian diffusion and convective diffusion were involved in the transport of these soft colloidal particles and an increase reaching about 1 log in virus concentrations measured on surfaces appeared when hydrodynamic conditions where applied. Our results also showed the influence of the colonization by two-month-old drinking water biofilms which led to a change in the level of virus adhesion. The implication of the physico-chemical properties was also underlined since different adhesion profiles were obtained for the three bacteriophages and MS2 phage was found to be the less adherent one whatever the conditions applied. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Effects of a temporary HDPE cover on landfill gas emissions: multiyear evaluation with the static chamber approach at an Italian landfill.

    Science.gov (United States)

    Capaccioni, Bruno; Caramiello, Cristina; Tatàno, Fabio; Viscione, Alessandro

    2011-05-01

    According to the European Landfill Directive 1999/31/EC and the related Italian Legislation ("D. Lgs. No. 36/2003"), monitoring and control procedures of landfill gas emissions, migration and external dispersions are clearly requested. These procedures could be particularly interesting in the operational circumstance of implementing a temporary cover, as for instance permitted by the Italian legislation over worked-out landfill sections, awaiting the evaluation of expected waste settlements. A possible quantitative approach for field measurement and consequential evaluation of landfill CO(2), CH(4) emission rates in pairs consists of the static, non-stationary accumulation chamber technique. At the Italian level, a significant and recent situation of periodical landfill gas emission monitoring is represented by the sanitary landfill for non-hazardous waste of the "Fano" town district, where monitoring campaigns with the static chamber have been annually conducted during the last 5 years (2005-2009). For the entire multiyear monitoring period, the resulting CO(2), CH(4) emission rates varied on the whole up to about 13,100g CO(2) m(-2)d(-1) and 3800 g CH(4) m(-2)d(-1), respectively. The elaboration of these landfill gas emission data collected at the "Fano" case-study site during the monitoring campaigns, presented and discussed in the paper, gives rise to a certain scientific evidence of the possible negative effects derivable from the implementation of a temporary HDPE cover over a worked-out landfill section, notably: the lateral migration and concentration of landfill gas emissions through adjacent, active landfill sections when hydraulically connected; and consequently, the increase of landfill gas flux velocities throughout the reduced overall soil cover surface, giving rise to a flowing through of CH(4) emissions without a significant oxidation. Thus, these circumstances are expected to cause a certain increase of the overall GHG emissions from the given

  20. Vertical barriers with increased sorption capacities

    International Nuclear Information System (INIS)

    Bradl, H.B.

    1997-01-01

    Vertical barriers are commonly used for the containment of contaminated areas. Due to the very small permeability of the barrier material which is usually in the order of magnitude of 10-10 m/s or less the advective contaminant transport can be more or less neglected. Nevertheless, there will always be a diffusive contaminant transport through the barrier which is caused by the concentration gradient. Investigations have been made to increase the sorption capacity of the barrier material by adding substances such as organoclays, zeolites, inorganic oxides and fly ashes. The contaminants taken into account where heavy metals (Pb) and for organic contaminants Toluole and Phenantrene. The paper presents results of model calculations and experiments. As a result, barrier materials can be designed 'tailor-made' depending on the individual contaminant range of each site (e.g. landfills, gasworks etc.). The parameters relevant for construction such as rheological properties, compressive strength and permeability are not affected by the addition of the sorbents

  1. Vertical grid of retrieved atmospheric profiles

    International Nuclear Information System (INIS)

    Ceccherini, Simone; Carli, Bruno; Raspollini, Piera

    2016-01-01

    The choice of the vertical grid of atmospheric profiles retrieved from remote sensing observations is discussed considering the two cases of profiles used to represent the results of individual measurements and of profiles used for subsequent data fusion applications. An ozone measurement of the MIPAS instrument is used to assess, for different vertical grids, the quality of the retrieved profiles in terms of profile values, retrieval errors, vertical resolutions and number of degrees of freedom. In the case of individual retrievals no evident advantage is obtained with the use of a grid finer than the one with a reduced number of grid points, which are optimized according to the information content of the observations. Nevertheless, this instrument dependent vertical grid, which seems to extract all the available information, provides very poor results when used for data fusion applications. A loss of about a quarter of the degrees of freedom is observed when the data fusion is made using the instrument dependent vertical grid relative to the data fusion made using a vertical grid optimized for the data fusion product. This result is explained by the analysis of the eigenvalues of the Fisher information matrix and leads to the conclusion that different vertical grids must be adopted when data fusion is the expected application. - Highlights: • Data fusion application is taken into account for the choice of the vertical grid. • The study is performed using ozone profiles retrieved from MIPAS measurements. • A very fine vertical grid is not needed for the analysis of a single instrument. • The instrument dependent vertical grid is not the best choice for data fusion. • A data fusion dependent vertical grid must be used for profiles that will be fused.

  2. Vertical and horizontal access configurations

    International Nuclear Information System (INIS)

    Spampinato, P.T.

    1987-01-01

    A number of configuration features and maintenance operations are influenced by the choice of whether a design is based on vertical or horizontal access for replacing reactor components. The features which are impacted most include the first wall/blanket segmentation, the poloidal field coil locations, the toroidal field coil number and size, access port size for in-vessel components, and facilities. Since either configuration can be made to work, the choice between the two is not clear cut because both have certain advantages. It is apparent that there are large cost benefits in the poloidal field coil system for ideal coil locations for high elongation plasmas and marginal savings for the INTOR case. If we assume that a new tokamak design will require a higher plasma elongation, the recommendation is to arrange the poloidal field coils in a cost-effective manner while providing reasonable midplane access for heating interfaces and test modules. If a new design study is not based on a high elongation plasma, it still appears prudent to consider this approach so that in-vessel maintenance can be accomplished without moving very massive structures such as the bulk shield. 10 refs., 29 figs., 3 tabs

  3. The Ames Vertical Gun Range

    Science.gov (United States)

    Karcz, J. S.; Bowling, D.; Cornelison, C.; Parrish, A.; Perez, A.; Raiche, G.; Wiens, J.-P.

    2016-01-01

    The Ames Vertical Gun Range (AVGR) is a national facility for conducting laboratory- scale investigations of high-speed impact processes. It provides a set of light-gas, powder, and compressed gas guns capable of accelerating projectiles to speeds up to 7 km s(exp -1). The AVGR has a unique capability to vary the angle between the projectile-launch and gravity vectors between 0 and 90 deg. The target resides in a large chamber (diameter approximately 2.5 m) that can be held at vacuum or filled with an experiment-specific atmosphere. The chamber provides a number of viewing ports and feed-throughs for data, power, and fluids. Impacts are observed via high-speed digital cameras along with investigation-specific instrumentation, such as spectrometers. Use of the range is available via grant proposals through any Planetary Science Research Program element of the NASA Research Opportunities in Space and Earth Sciences (ROSES) calls. Exploratory experiments (one to two days) are additionally possible in order to develop a new proposal.

  4. Flooding Mechanism in Vertical Flow

    International Nuclear Information System (INIS)

    Ronny-Dwi Agussulistyo; Indarto

    2000-01-01

    This research was carried out to investigate the mechanism of flooding ina vertical liquid-gas counter current flow, along two meter length of thetube. The tube use both circular and square tube, a cross section of squaretube was made the same as a cross section of circular tube with one inchdiameter tube. The liquid enters the tube, passes through a porous wall inletand a groove inlet in a distributor and it flows downwards through a liquidoutlet in a collector. The gas is being introduced at the bottom of the tube,it flows upwards through nozzle in the collector. The results of researchshowed that the flooding occurs earlier in the circular tube than in thesquare tube, either uses a porous wall inlet or a groove inlet. In the squaretube , onset of the flooding occurs at the top of the tube, in front ofliquid injection, it is related to the formation of a film wave, just belowthe liquid feed. Whereas in the circular tube, onset of the flooding occursfrom the bottom of the tube, at the liquid outlet, it is related to theexpand of the film wave. However, in the circular tube with the groove inlet,for the higher liquid flow rate, onset of the flooding from the top, like inthe square tube. (author)

  5. Wind tower with vertical rotors

    Energy Technology Data Exchange (ETDEWEB)

    Dietz, A

    1978-08-03

    The invention concerns a wind tower with vertical rotors. A characteristic is that the useful output of the rotors is increased by the wind pressure, which is guided to the rotors at the central opening and over the whole height of the structure by duct slots in the inner cells. These duct slots start behind the front nose of the inner cell and lead via the transverse axis of the pillar at an angle into the space between the inner cells and the cell body. This measure appreciably increases the useful output of the rotors, as the rotors do not have to provide any displacement work from their output, but receive additional thrust. The wind pressure pressing from inside the rotor and accelerating from the outside produces a better outflow of the wind from the power plant pillar with only small tendency to turbulence, which appreciably improves the effect of the adjustable turbulence smoothers, which are situated below the rotors over the whole height.

  6. Vertical mixing by Langmuir circulations

    International Nuclear Information System (INIS)

    McWilliams, James C.; Sullivan, Peter P.

    2001-01-01

    Wind and surface wave frequently induce Langmuir circulations (LC) in the upper ocean, and the LC contribute to mixing materials down from the surface. In this paper we analyze large-eddy simulation (LES) cases based on surface-wave-averaged, dynamical equations and show that the effect of the LC is a great increase in the vertical mixing efficiency for both material properties and momentum. We provide new confirmation that the previously proposed K-profile parameterization (KPP) model accurately characterizes the turbulent transport in a weakly convective, wind-driven boundary layer with stable interior stratification. We also propose a modest generalization of KPP for the regime of weakly convective Langmuir turbulence. This makes the KPP turbulent flux profiles match those in the LES case with LC present fairly well, especially so for material properties being transported downwards from the ocean surface. However, some open issues remain about how well the present LES and KPP formulations represent Langmuir turbulence, in part because wave-breaking effects are not yet included. (Author)

  7. Nuclear power plant with a containment

    International Nuclear Information System (INIS)

    Barthelmes, C.P.

    1982-01-01

    In nuclear power plants there is usually a containment incorporating components bearing activity. If in the cladding free hydrogen develops, controlled oxidation must be ensured by means of a recombination device, in order to prevent oxyhydrogen explosions. For this purpose, a permanent thoroughmixing of the gases in the containment is required. This can be achieved by vertical shafts reaching to at least half the height of the containment and provided with heating devices to initiate the gas circulation by the stack effect. These heating devices mainly serve as thermal recombinator. (orig.) [de

  8. The green building envelope : Vertical greening

    NARCIS (Netherlands)

    Ottelé, M.

    2011-01-01

    Planting on roofs and façades is one of the most innovative and fastest developing fields of green technologies with respect to the built environment and horticulture. This thesis is focused on vertical greening of structures and to the multi-scale benefits of vegetation. Vertical green can improve

  9. Safety Aspects for Vertical Wall Breakwaters

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Burcharth, H. F.; Christiani, E.

    1996-01-01

    In this appendix some safety aspects in relation to vertical wall breakwaters are discussed. Breakwater structures such as vertical wall breakwaters are used under quite different conditions. The expected lifetime can be from 5 years (interim structure) to 100 years (permanent structure) and the ...

  10. Updated Vertical Extent of Collision Damage

    DEFF Research Database (Denmark)

    Tagg, R.; Bartzis, P.; Papanikolaou, P.

    2002-01-01

    The probabilistic distribution of the vertical extent of collision damage is an important and somewhat controversial component of the proposed IMO harmonized damage stability regulations for cargo and passenger ships. The only pre-existing vertical distribution, currently used in the international...

  11. Plasmon Modes of Vertically Aligned Superlattices

    DEFF Research Database (Denmark)

    Filonenko, Konstantin; Duggen, Lars; Willatzen, Morten

    2017-01-01

    By using the Finite Element Method we visualize the modes of vertically aligned superlattice composed of gold and dielectric nanocylinders and investigate the emitter-plasmon interaction in approximation of weak coupling. We find that truncated vertically aligned superlattice can function...

  12. The strategic value of partial vertical integration

    OpenAIRE

    Fiocco, Raffaele

    2014-01-01

    We investigate the strategic incentives for partial vertical integration, namely, partial ownership agreements between manufacturers and retailers, when retailers privately know their costs and engage in differentiated good price competition. The partial misalignment between the profit objectives within a partially integrated manufacturer-retailer hierarchy entails a higher retail price than under full integration. This `information vertical effect' translates into an opposite ...

  13. Vertical integration increases opportunities for patient flow.

    Science.gov (United States)

    Radoccia, R A; Benvenuto, J A; Blancett, L

    1991-08-01

    New sources of patients will become more and more important in the next decade as hospitals continue to feel the squeeze of a competitive marketplace. Vertical integration, a distribution tool used in other industries, will be a significant tool for health care administrators. In the following article, the authors explain the vertical integration model that shows promise for other institutions.

  14. Vertical integration from the large Hilbert space

    Science.gov (United States)

    Erler, Theodore; Konopka, Sebastian

    2017-12-01

    We develop an alternative description of the procedure of vertical integration based on the observation that amplitudes can be written in BRST exact form in the large Hilbert space. We relate this approach to the description of vertical integration given by Sen and Witten.

  15. Vertical Integration, Monopoly, and the First Amendment.

    Science.gov (United States)

    Brennan, Timothy J.

    This paper addresses the relationship between the First Amendment, monopoly of transmission media, and vertical integration of transmission and content provision. A survey of some of the incentives a profit-maximizing transmission monopolist may have with respect to content is followed by a discussion of how vertical integration affects those…

  16. Moving vertices to make drawings plane

    NARCIS (Netherlands)

    Goaoc, X.; Kratochvil, J.; Okamoto, Y.; Shin, C.S.; Wolff, A.; Hong, S.K.; Nishizeki, T.; Quan, W.

    2008-01-01

    In John Tantalo’s on-line game Planarity the player is given a non-plane straight-line drawing of a planar graph. The aim is to make the drawing plane as quickly as possible by moving vertices. In this paper we investigate the related problem MinMovedVertices which asks for the minimum number of

  17. Comparative study of three different kinds of geo membranes (PVC-P, HDPE, EPDM) used in the waterproofing of reservoirs; Estudio comparativo de tres geomembranas de distinta naturaleza (PVC-P, PEAD, EPDM) empleadas en la impermeabilizacion de balsas

    Energy Technology Data Exchange (ETDEWEB)

    Blanco Fernandez, M.; Castillo Rubi, F.; Soriano Carrillo, J.; Noval Arango, A. M.; Touze-Foltz, N.; Pargada Iglesias, L.; Rico Arnaiz, G.; Aguilar gonzalez, E.

    2014-02-01

    This work describes the long-term behaviour of three kinds of geo membranes which are constituted by plasticised poly vinyl chloride (PVC-P), high density polyethylene (HDPE) and terpolymer rubber of ethylene-propylene-dienic monomer (EPDM) used as the waterproofing system of the reservoirs Los Llanos de Mesa, San Isidro and El Golfo, respectively. Characteristics of the three original geo membranes and their behaviour along time are presented. Thicknesses, content and nature of the plasticizers ( in PVC-P), tensile properties dynamic and static puncture, fold ability at low temperature, shore hardness, tear resistance and carbon black ( in HDPE), joint strength (shear and peeling test) and microscopy, both optical and electronic scanning tests were carried out. Results obtained conclude with a long-term durability of geo membranes, independently of their macromolecular nature. These characteristics were determined by advanced analytical techniques in PVC-P samples, such as fourier Transform Infrared Spectroscopy (FTIR), Gas Chromatography (GC) and Mass Spectrometry (MS). Spectrometry (MS). (Author)

  18. Waste container and method for containing waste

    International Nuclear Information System (INIS)

    Ono, Akira; Matsushita, Mitsuhiro; Doi, Makoto; Nakatani, Seiichi.

    1990-01-01

    In a waste container, water-proof membranes and rare earth element layers are formed on the inner surface of a steel plate concrete container in which steel plates are embedded. Further, rear earth element detectors are disposed each from the inner side of the steel plate concrete container by way of a pressure pipe to the outer side of the container. As a method for actually containing wastes, when a plurality of vessels in which wastes are fixed are collectively enhoused to the waste container, cussioning materials are attached to the inner surface of the container and wastes fixing containers are stacked successively in a plurality of rows in a bag made of elastic materials. Subsequently, fixing materials are filled and tightly sealed in the waste container. When the waste container thus constituted is buried underground, even if it should be deformed to cause intrusion of rain water to the inside of the container, the rare earth elements in the container dissolved in the rain water can be detected by the detectors, the containers are exchanged before the rain water intruding to the inner side is leached to the surrounding ground, to previously prevent the leakage of radioactive nuclides. (K.M.)

  19. Containment and recovery of a light non-aqueous phase liquid plume at a woodtreating facility

    International Nuclear Information System (INIS)

    Crouse, D.; Powell, G.; Hawthorn, S.; Weinstock, S.

    1997-01-01

    A woodtreating site in Montana used a formulation (product) of 5 percent pentachlorophenol and 95 percent diesel fuel as a carrier liquid to pressure treat lumber. Through years of operations approximately 378,500 liters of this light non-aqueous phase liquid (LNAPL) product spilled onto the ground and soaked into the groundwater. A plume of this LNAPL product flowed in a northerly direction toward a stream located approximately 410 meters from the pressure treatment building. A 271-meter long high density polyethylene (HDPE) containment cutoff barrier wall was installed 15 meters from the stream to capture, contain, and prevent the product from migrating off site. This barrier was extended to a depth of 3.7 meters below ground surface and allowed the groundwater to flow beneath it. Ten product recovery wells, each with a dual-phase pumping system, were installed within the plume, and a groundwater model was completed to indicate how the plume would be contained by generating a cone of influence at each recovery well. The model indicated that the recovery wells and cutoff barrier wall would contain the plume and prevent further migration. To date, nearly 3 1/2 year's later, approximately 106,000 liters of product have been recovered

  20. COMPUTING VERTICES OF INTEGER PARTITION POLYTOPES

    Directory of Open Access Journals (Sweden)

    A. S. Vroublevski

    2015-01-01

    Full Text Available The paper describes a method of generating vertices of the polytopes of integer partitions that was used by the authors to calculate all vertices and support vertices of the partition polytopes for all n ≤ 105 and all knapsack partitions of n ≤ 165. The method avoids generating all partitions of n. The vertices are determined with the help of sufficient and necessary conditions; in the hard cases, the well-known program Polymake is used. Some computational aspects are exposed in more detail. These are the algorithm for checking the criterion that characterizes partitions that are convex combinations of two other partitions; the way of using two combinatorial operations that transform the known vertices to the new ones; and employing the Polymake to recognize a limited number (for small n of partitions that need three or more other partitions for being convexly expressed. We discuss the computational results on the numbers of vertices and support vertices of the partition polytopes and some appealing problems these results give rise to.

  1. Container crane for sea freight containers

    NARCIS (Netherlands)

    Luttekes, E.; Rijsenbrij, J.C.

    2001-01-01

    The invention relates to a container crane for loading and unloading seaborne containers. The container crane comprises a bridge girder (7), a jib (8), at least two crabs (11, 12) which can travel along the said bridge girder and/or jib and are provided with hoist means for lifting and lowering the

  2. Vertical garden for treating greywater

    Science.gov (United States)

    McDonald, Arthur Phaoenchoke; Montoya, Alejandro; Alonso-Marroquin, Fernando

    2017-06-01

    Recent increasing concerns over the effects of climate change has prompted much debate into the issue of long term sustainability. An investigation was conducted into the feasibility of an off-grid housing unit, particularly in an Australian context. A pilot scale 3m × 2m off-grid housing unit was constructed. Forecasts for water requirements as well as an investigation into rainwater harvesting and greywater recycling was conducted. A multi-container plant and sand biological filter was constructed and filtration abilities investigated. The system met NSW government water reuse standards in terms of suspended solids and pH, achieving total suspended solid removal efficiency of up to 99%.

  3. Dynamic response of domes in CANDU 600 MWe containments

    International Nuclear Information System (INIS)

    Aziz, T.S.; Meng, V.; Alizadeh, A.

    1981-01-01

    CANDU reactors of the 600 MWe type are typically housed in a cylindrical prestressed concrete containment structure; rising from a flat slab and ending in a domed roof. The principal components of this structure are: (a) a circular base slab, (b) a vertical cylinder and (c) a spherical dome cap. A unique feature of a CANDU 600 MWe containment structure is the existence of an inner spherical concrete dome, located below the outer spherical dome, which serves as the bottom of a reservoir for the storage of 560,000 imperial gallons of douzing water. The thickness of the prestressed cylinder wall is approximately doubled between the two domes to create a ring beam. Inside the containment there exists an internal concrete structure which is independent of the containment structure except for support on the base slab. The containment boundary is a fully prestressed concrete structure. This paper deals with the seismic behaviour of the CANDU 600 MWe containment structure and the effect of its unique features; such as the lower dome and the douzing water on this behaviour. The objective of the study is to evaluate the interaction (coupling) effects between the different components of the structure. The approach taken is to study each component of the structure individually, then an assembly of the different components, and finally the total containment structure. This presentation is limited to the vertical response of the structure under a vertical earthquake only. Axisymmetric finite elements were used in all models. The vertical responses at selected points of the structure were obtained by the response spectrum method as well as the time-history method. It was observed that the response spectrum method over-estimates the vertical response of the domes and under-estimates the vertical responses of the ring girder and the containment cylinder compared to the time-history method. (orig./RW)

  4. Continuous containment monitoring with containment pressure fluctuation

    International Nuclear Information System (INIS)

    Dick, J.E.

    1996-01-01

    The monitoring of the integrity of containments particularly but not exclusively for nuclear plants is dealt with in this invention. While this application is primarily concerned with containment monitoring in the context of the single unit design, it is expected that the concepts presented will be universally applicable to any containment design, including containments for non-nuclear applications such as biological laboratories. The nuclear industry has long been interested in a means of monitoring containment integrity on a continuous basis, that is, while the reactor is operating normally. 12 refs., 2 figs

  5. Permeability of granular beds emplaced in vertical drill holes

    International Nuclear Information System (INIS)

    Griffiths, S.K.; Morrison, F.A. Jr.

    1979-01-01

    To determine the permeabilities of granular materials emplaced in vertical drill holes used for underground nuclear tests, an experiment at the USDOE Nevada Test Site (NTS) was conducted. As the hole is being filled, falling material increases pressure above and within the granular beds beneath. When the filling operation starts or stops, a transient pressure response occurs within the beds; measurements of this response in beds of various compositions were made. The permeabilities after emplacement were found by matching analytical predictions of the response to these data. This information is useful in assuring the containment of nuclear tests conducted in such drill holes

  6. Design of a vertical wiggler with superconducting coils

    International Nuclear Information System (INIS)

    Huke, K.; Yamakawa, T.

    1980-01-01

    A vertical wiggler has been designed, which will be installed in the 2.5 GeV electron storage ring under construction at KEK-PF. The wiggler magnet with superconducting coils produces magnetic fields of 6 T and wiggles electron beams in a vertical plane. Synchrotron radiation generated by the wiggler has a critical wavelength of 0.5 Angstroem and has an electric field-vector in the vertical direction, which is very important for precise experiments in various fields of the material sciences. The wiggler consists of three pairs of superconducting coils, an iron magnetic shield, a beam pipe and a liquid helium cryogenic system and is contained in a vacuum vessel which can move up and down together with the wiggler. During the injection time, the vessel is pushed up, so that electron beams with a large spatial spread go through the lower part of the beam pipe, where the aperture of the beam pipe is large enough. After the beam size becomes small due to radiation damping, the vessel is pushed down so that the electron beams go through the narrow gap of the wiggler magnet. Using the iron magnetic shield with iron pole pieces, the ratio between the magnetic field in the gap and the maximum field on the superconductor coils is reduced to 1.1. (orig.)

  7. Vertical Motions of Oceanic Volcanoes

    Science.gov (United States)

    Clague, D. A.; Moore, J. G.

    2006-12-01

    lasting a few hundred thousand years as the island migrates over a broad flexural arch related to isostatic compensation of a nearby active volcano. The arch is located about 190±30 km away from the center of volcanic activity and is also related to the rejuvenated volcanic stage on the islands. Reefs on Oahu that are uplifted several tens of m above sea level are the primary evidence for uplift as the islands over-ride the flexural arch. At the other end of the movement spectrum, both in terms of magnitude and length of response, are the rapid uplift and subsidence that occurs as magma is accumulated within or erupted from active submarine volcanoes. These changes are measured in days to years and are of cm to m variation; they are measured using leveling surveys, tiltmeters, EDM and GPS above sea level and pressure gauges and tiltmeters below sea level. Other acoustic techniques to measure such vertical movement are under development. Elsewhere, evidence for subsidence of volcanoes is also widespread, ranging from shallow water carbonates on drowned Cretaceous guyots, to mapped shoreline features, to the presence of subaerially-erupted (degassed) lavas on now submerged volcanoes. Evidence for uplift is more limited, but includes makatea islands with uplifted coral reefs surrounding low volcanic islands. These are formed due to flexural uplift associated with isostatic loading of nearby islands or seamounts. In sum, oceanic volcanoes display a long history of subsidence, rapid at first and then slow, sometimes punctuated by brief periods of uplift due to lithospheric loading by subsequently formed nearby volcanoes.

  8. Measuring of vertical stroke Vub vertical stroke in the forthcoming decade

    International Nuclear Information System (INIS)

    Kim, C.S.

    1997-01-01

    I first introduce the importance of measuring V ub precisely. Then, from a theoretician's point of view, I review (a) past history, (b) present trials, and (c) possible future alternatives on measuring vertical stroke V ub vertical stroke and/or vertical stroke V ub /V cb vertical stroke. As of my main topic, I introduce a model-independent method, which predicts Γ(B→X u lν)/Γ(B→X c lν)≡(γ u /γ c ) x vertical stroke V ub /V cb vertical stroke 2 ≅(1.83±0.28) x vertical stroke V ub /V cb vertical stroke 2 and vertical stroke V ub /V cb vertical stroke ≡(γ c /γ u ) 1/2 x [B(B→X u lν)/B(B→ X c lν]) 1/2 ≅(0.74±0.06) x [B(B→X u lν/)B(B→X c lν)] 1/2 , based on the heavy quark effective theory I also explore the possible experimental options to separate B→X u lν from the dominant B→X c lν: the measurement of inclusive hadronic invariant mass distributions, and the 'D-π' (and 'K-π') separation conditions I also clarify the relevant experimental backgrounds. (orig.)

  9. determination of verticality of reservoir engineering structure

    African Journals Online (AJOL)

    user

    applications is 3D survey and management of oil and gas facilities and other engineering structures. This recent .... also affect ground water contamination. 2. VERTICALITY ...... The soil, water and concrete in a Reservoir at the foundation bed ...

  10. Vertical activity estimation using 2D radar

    CSIR Research Space (South Africa)

    Hakl, H

    2008-12-01

    Full Text Available Understanding airspace activity is essential for airspace control. Being able to detect vertical activity in aircraft allows prediction of aircraft intent, thereby allowing more accurate situation awareness and correspondingly more appropriate...

  11. HL-LHC vertical cryostat during construction

    CERN Multimedia

    Lanaro, Andrea

    2016-01-01

    7m high "Cluster D" vertical test cryostat during construction at contractor's premises, Alca Technology Srl, in Schio, Italy. The inner helium vessel with its heat exchanger are visible. To be installed in the D pit in SMA18.

  12. Prefabricated vertical drains, vol. I : engineering guidelines.

    Science.gov (United States)

    1986-09-01

    This volume presents procedures and guidelines applicable to the design and instal : tion of prefabricated vertical drains to accelerate consolidation of soils. The : contents represent the Consultant's interpretation of the state-of-the-art as of : ...

  13. Nuclear power plant containment construction

    International Nuclear Information System (INIS)

    Schabert, H.P.; Danisch, R.; Strickroth, E.

    1975-01-01

    The Nuclear Power Plant Containment Construction includes the spherical steel safety enclosure for the reactor and the equipment associated with the reactor and requiring this type of enclosure. This steel enclosure is externally structurally protected against accident by a concrete construction providing a foundation for the steel enclosure and having a cylindrical wall and a hemispherical dome, these parts being dimensioned to form an annular space surrounding the spherical steel enclosure, the latter and the concrete construction heretofore being concentrically arranged with respect to each other. In the disclosed construction the two parts are arranged with their vertical axis horizontally offset from each other so that opposite to the offsetting direction of the concrete construction a relatively large space is formed in the now asymmetrical annular space in which reactor auxiliary equipment not requiring enclosure by the steel containment vessel or safety enclosure, may be located outside of the steel containment vessel and inside of the concrete construction where it is structurally protected by the latter

  14. Electrically Pumped Vertical-Cavity Amplifiers

    DEFF Research Database (Denmark)

    Greibe, Tine

    2007-01-01

    In this work, the design of electrically pumped vertical cavity semiconductor optical amplifiers (eVCAs) for use in a mode-locked external-cavity laser has been developed, investigated and analysed. Four different eVCAs, one top-emitting and three bottom emitting structures, have been designed...... and discussed. The thesis concludes with recommendations for further work towards the realisation of compact electrically pumped mode-locked vertical externalcavity surface emitting lasers....

  15. Vertical Josephson Interferometer for Tunable Flux Qubit

    Energy Technology Data Exchange (ETDEWEB)

    Granata, C [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Vettoliere, A [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Lisitskiy, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Rombetto, S [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Russo, M [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Ruggiero, B [Istituto di Cibernetica ' E. Caianiello' del Consiglio Nazionale delle Ricerche, I- 80078, Pozzuoli (Italy); Corato, V [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Russo, R [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy); Silvestrini, P [Dipartimento di Ingegneria dell' Informazione, Seconda Universita di Napoli, I-8 1031, Aversa (Italy) and Istituto di Cibernetica ' E. Caianiello' del CNR, I-80078, Pozzuoli (Italy)

    2006-06-01

    We present a niobium-based Josephson device as prototype for quantum computation with flux qubits. The most interesting feature of this device is the use of a Josephson vertical interferometer to tune the flux qubit allowing the control of the off-diagonal Hamiltonian terms of the system. In the vertical interferometer, the Josephson current is precisely modulated from a maximum to zero with fine control by a small transversal magnetic field parallel to the rf superconducting loop plane.

  16. Vertical Scan-Conversion for Filling Purposes

    OpenAIRE

    Hersch, R. D.

    1988-01-01

    Conventional scan-conversion algorithms were developed independently of filling algorithms. They cause many problems, when used for filling purposes. However, today's raster printers and plotters require extended use of filling, especially for the generation of typographic characters and graphic line art. A new scan-conversion algorithm, called vertical scan-conversion has been specifically designed to meet the requirements of parity scan line fill algorithms. Vertical scan-conversion ensures...

  17. APR1400 Containment Simulation with CONTAIN code

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Moon Kyu; Chung, Bub Dong [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2010-05-15

    The more realistic containment pressure variation predicted by the CONTAIN code through the coupled analysis during a large break loss of coolant accident in the nuclear power plant is expected to provide more accurate prediction for the plant behavior than a standalone MARS-KS calculation. The input deck has been generated based on the already available ARP- 1400 input for CONTEMPT code. Similarly to the CONTEMPT input deck, a simple two-cell model was adopted to model the containment behavior, one cell for the containment inner volume and another cell for the environment condition. The developed input for the CONTAIN code is to be eventually applied for the coupled code calculation of MARS-KS/CONTAIN

  18. APR1400 Containment Simulation with CONTAIN code

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Chung, Bub Dong

    2010-01-01

    The more realistic containment pressure variation predicted by the CONTAIN code through the coupled analysis during a large break loss of coolant accident in the nuclear power plant is expected to provide more accurate prediction for the plant behavior than a standalone MARS-KS calculation. The input deck has been generated based on the already available ARP- 1400 input for CONTEMPT code. Similarly to the CONTEMPT input deck, a simple two-cell model was adopted to model the containment behavior, one cell for the containment inner volume and another cell for the environment condition. The developed input for the CONTAIN code is to be eventually applied for the coupled code calculation of MARS-KS/CONTAIN

  19. Effectiveness of containment sprays in containment management

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Perez, S.E.; Lehner, J.R.

    1993-05-01

    A limited study has been performed assessing the effectiveness of containment sprays-to mitigate particular challenges which may occur during a severe accident. Certain aspects of three specific topics related to using sprays under severe accident conditions were investigated. The first was the effectiveness of sprays connected to an alternate water supple and pumping source because the actual containment spray pumps are inoperable. This situation could occur during a station blackout. The second topic concerned the adverse as well as beneficial effects of using containment sprays during severe accident scenario where the containment atmosphere contains substantial quantities of hydrogen along with steam. The third topic was the feasibility of using containment sprays to moderate the consequences of DCH

  20. Slingram EMI prospection: Are vertical orientated devices a suitable solution in archaeological and pedological prospection?

    Science.gov (United States)

    Thiesson, Julien; Rousselle, Gabrielle; Simon, François Xavier; Tabbagh, Alain

    2011-12-01

    Electromagnetic induction (EMI) is one of the geophysical techniques widely used in soil studies, the slingram devices being held horizontally over the soil surface, i.e. with the coils located at the same height above the ground surface. Our study aims assessing the abilities of slingram devices when held vertically. 1D and 3D modelling have been achieved in order to compare the theoretical responses of vertical devices to the horizontal ones. Some comparative surveys were also undertaken in archaeological contexts to confirm the reliability of theoretical conclusions. Both approaches show that vertical slingram devices are suitable for survey and can constitute an alternative to the usual horizontal orientation. We give a table in Appendix A which contains the calibration coefficient allowing transforming of the values given by some of commercially available devices which would be advantageous to use in vertical orientation

  1. Development of high temperature resistant geomembranes for oil sands secondary containments

    Energy Technology Data Exchange (ETDEWEB)

    Mills, A. [Layfield Environmental Systems Ltd., Edmonton, AB (Canada); Martin, D. [Layfield Geosynthetics and Industrial Fabrics Ltd., Edmonton, AB (Canada)

    2008-07-01

    Plastic liner materials are often adversely impacted by chemicals at elevated temperatures. Heat accelerates the oxidation of the polymeric chains, which in turn accelerates the degradation of the plastic. This paper discussed geomembrane containment systems placed under heated petroleum storage tanks at an oil sands processing plant. Various high temperature-resistant geomembrane materials were tested. Compatibility testing procedures for the various fluids contained by the systems were outlined. Installation procedures for the membranes were also discussed. The membrane systems were designed for use with heavy gas oil; light gas oil; and naphtha. Temperatures in the ground below the tanks were approximately 79 degrees C. Testing was done using sealed containers held in an oil bath at temperatures of 105 degrees C. Heat applied to the chemicals during the tests pressurized the test vessels. Liner materials used in the initial tests included an ester-based thermoplastic polyurethane liner; high density polyethylene (HDPE); linear low-density polyethylene (LLDPE), polypropylene (PP) olefins; polyvinyl chloride (PVC); and polyvinylidene (PVDF) materials. A second set of tests was then conducted using alloy materials and PVC. Heat stability tests demonstrated that the blue 0.75 mm alloy showed a tensile strength ratio within the industry's 15 per cent pass criteria. The samples were then tested with diluted bitumen and diluents at 65, 85 and 100 degrees C. The developed liners were installed underneath petroleum tanks with leak detection chambers. It was concluded that the geomembrane liners prevented the hot liquids from leaking. 4 refs., 8 tabs.

  2. Rational approximation of vertical segments

    Science.gov (United States)

    Salazar Celis, Oliver; Cuyt, Annie; Verdonk, Brigitte

    2007-08-01

    In many applications, observations are prone to imprecise measurements. When constructing a model based on such data, an approximation rather than an interpolation approach is needed. Very often a least squares approximation is used. Here we follow a different approach. A natural way for dealing with uncertainty in the data is by means of an uncertainty interval. We assume that the uncertainty in the independent variables is negligible and that for each observation an uncertainty interval can be given which contains the (unknown) exact value. To approximate such data we look for functions which intersect all uncertainty intervals. In the past this problem has been studied for polynomials, or more generally for functions which are linear in the unknown coefficients. Here we study the problem for a particular class of functions which are nonlinear in the unknown coefficients, namely rational functions. We show how to reduce the problem to a quadratic programming problem with a strictly convex objective function, yielding a unique rational function which intersects all uncertainty intervals and satisfies some additional properties. Compared to rational least squares approximation which reduces to a nonlinear optimization problem where the objective function may have many local minima, this makes the new approach attractive.

  3. Empty Container Logistics

    Directory of Open Access Journals (Sweden)

    Jakov Karmelić

    2012-05-01

    Full Text Available Within the whole world container traffic, the largest share of containers is in the status of repositioning. Container repositioning results from the need for harmonization between the point of empty container accumulation and the point of demand, and waiting time for the availability of the first next transport of cargo. This status of containers on the container market is the consequence of imbalances in the worldwide trade distribution on most important shipping routes. The need for fast and effective reallocation of empty containers causes high costs and often represents an obstacle affecting the efficiency of port container terminals and inland carriers.In accordance with the above issue, this paper is mainly focused on the analysis of the data concerning global container capacities and the roots of container equipment imbalances, with the aim of determining the importance of empty container management and the need for empty container micro-logistic planning at the spread port area.

  4. Empty Container Logistics

    OpenAIRE

    Jakov Karmelić; Čedomir Dundović; Ines Kolanović

    2012-01-01

    Within the whole world container traffic, the largest share of containers is in the status of repositioning. Container repositioning results from the need for harmonization between the point of empty container accumulation and the point of demand, and waiting time for the availability of the first next transport of cargo. This status of containers on the container market is the consequence of imbalances in the worldwide trade distribution on most important shipping routes. The need for fast a...

  5. FAUST/CONTAIN; FAUST/CONTAIN

    Energy Technology Data Exchange (ETDEWEB)

    Cherdron, W.; Minges, J.; Sauter, H.; Schuetz, W.

    1995-08-01

    The FAUNA facility has been restructured after completion of the sodium fire experiments. It is now serving LWR research, cf. report II on program no. 32.21.02 concerning steam explosions. The CONTAIN code system for computing the thermodynamic, aerosol and radiological phenomena in a containment under severe accident conditions is being developed with a new to fission product release and transport. (orig.)

  6. Diverse strategies for vertical symbiont transmission among subsocial stinkbugs.

    Directory of Open Access Journals (Sweden)

    Takahiro Hosokawa

    Full Text Available Sociality may affect symbiosis and vice versa. Many plant-sucking stinkbugs harbor mutualistic bacterial symbionts in the midgut. In the superfamily Pentatomoidea, adult females excrete symbiont-containing materials from the anus, which their offspring ingest orally and establish vertical symbiont transmission. In many stinkbug families whose members are mostly non-social, females excrete symbiont-containing materials onto/beside eggs upon oviposition. However, exceptional cases have been reported from two subsocial species representing the closely related families Cydnidae and Parastrachiidae, wherein females remain nearby eggs for maternal care after oviposition, and provide their offspring with symbiont-containing secretions at later stages, either just before or after hatching. These observations suggested that sociality of the host stinkbugs may be correlated with their symbiont transmission strategies. However, we found that cydnid stinkbugs of the genus Adomerus, which are associated with gammaproteobacterial gut symbionts and exhibit elaborate maternal care over their offspring, smear symbiont-containing secretions onto eggs upon oviposition as many non-social stinkbugs do. Surface sterilization of the eggs resulted in aposymbiotic insects of slower growth, smaller size and abnormal body coloration, indicating vertical symbiont transmission via egg surface contamination and presumable beneficial nature of the symbiosis. The Adomerus symbionts exhibited AT-biased nucleotide compositions, accelerated molecular evolutionary rates and reduced genome size, while these degenerative genomic traits were less severe than those in the symbiont of a subsocial parastrachiid. These results suggest that not only sociality but also other ecological and evolutionary aspects of the host stinkbugs, including the host-symbiont co-evolutionary history, may have substantially affected their symbiont transmission strategies.

  7. Storage vessel for radiation contaminated container

    International Nuclear Information System (INIS)

    Sakatani, Tadatsugu.

    1996-01-01

    In a storage vessel of the present invention, a plurality of radiation contaminated material containing bodies are vertically stacked in a cell chamber. Then, the storage vessel comprises a containing tube for containing a plurality of the containing bodies, cooling coils wound around the containing tube, a cooling medium circulating system connected to the cooling coils and circulating cooling medium, and a heat exchanger interposed to the cooling medium circulating system for removing heat of the cooling medium. Heat of the radioactive material containing bodies is transferred to cooling air and cooling coils by way of the container tube, thereby cooling the containing bodies. By the operation of circulating pumps in a cooling medium circulation system, the cooling medium circulates through a circulation channel comprising a cooling medium transfer pipes, cooling medium branching tubes, cooling coils and the heat exchanger, then heat of the cooling medium is transferred to a heat utilizing system by way of the heat exchanger to attain effective utilization of the heat. In this case, heat can be taken out stably even when the storage amount fluctuates and heat releasing amount is reduced, and improvement of heat transfer promotes the cooling of the containing bodies, which enables minimization of the size of the storage vessel. (T.M.)

  8. Proposed design criteria for containments in Germany

    International Nuclear Information System (INIS)

    Schnellenbach, G.

    1976-01-01

    Till now all containments of German nuclear power plants have been fabricated in steel. However the nuclear power plants Gundremmingen II (KRB II) and Schmehausen II (HTR) will have prestressed concrete containments. The construction of these plants will probably start in 1975. Containments have to fulfill special tasks differing from those of pressure vessels. Because of this, design criteria for pressure vessels are not applicable to containments. On the other hand normal regulations for prestressed concrete structures are insufficient for containments. The containments KRB II and HTR are buildings of different types. KRB II is located in the interior of the reactor building of the SW-72-type. It is surrounded by a thick-walled concrete structure. HTR has the classical shape for concrete containments - vertical cylinder with spherical cap. It surrounds the reactor-building. The containment has to withstand aircraft impact forces. This influences its liner too. Design criteria have been developed for both containments, taking into consideration the special properties of these buildings. Design criteria are discussed for service-load conditions, test conditions, various forms of accident and for the ultimate load conditions. The influence of extreme external loads on the design is described. (author)

  9. Nuclear reactor container

    International Nuclear Information System (INIS)

    Ishiyama, Takenori.

    1989-01-01

    This invention concerns a nuclear reactor container in which heat is removed from a container by external water injection. Heat is removed from the container by immersing the lower portion of the container into water and scattering spary water from above. Thus, the container can be cooled by the spray water falling down along the outer wall of the container to condensate and cool vapors filled in the container upon occurrence of accidents. Further, since the inside of the container can be cooled also during usual operation, it can also serve as a dry well cooler. Accordingly, heat is removed from the reactor container upon occurrence of accidents by the automatic operation of a spray device corresponding to the change of the internal temperature and the pressure in the reactor container. Further, since all of these devices are disposed out of container, maintenance is also facilitated. (I.S.)

  10. Vertical integration in the nuclear fuel cycle

    International Nuclear Information System (INIS)

    Mommsen, J.T.

    1977-01-01

    Vertical integration in the nuclear fuel cycle and its contribution to market power of integrated fuel suppliers were studied. The industry subdivision analyzed is the uranium raw materials sector. The hypotheses demonstrated are that (1) this sector of the industry is trending toward vertical integration between production of uranium raw materials and the manufacture of nuclear fuel elements, and (2) this vertical integration confers upon integrated firms a significant market advantage over non-integrated fuel manufacturers. Under microeconomic concepts the rationale for vertical integration is the pursuit of efficiency, and it is beneficial because it increases physical output and decreases price. The Market Advantage Model developed is an arithmetical statement of the relative market power (in terms of price) between non-integrated nuclear fuel manufacturers and integrated raw material/fuel suppliers, based on the concept of the ''squeeze.'' In operation, the model compares net profit and return on sales of nuclear fuel elements between the competitors, under different price and cost circumstances. The model shows that, if integrated and non-integrated competitors sell their final product at identical prices, the non-integrated manufacturer returns a net profit only 17% of the integrated firm. Also, the integrated supplier can price his product 35% below the non-integrated producer's price and still return the same net profit. Vertical integration confers a definite market advantage to the integrated supplier, and the basic source of that advantage is the cost-price differential of the raw material, uranium

  11. Climatology of tropospheric vertical velocity spectra

    Science.gov (United States)

    Ecklund, W. L.; Gage, K. S.; Balsley, B. B.; Carter, D. A.

    1986-01-01

    Vertical velocity power spectra obtained from Poker Flat, Alaska; Platteville, Colorado; Rhone Delta, France; and Ponape, East Caroline Islands using 50-MHz clear-air radars with vertical beams are given. The spectra were obtained by analyzing the quietest periods from the one-minute-resolution time series for each site. The lengths of available vertical records ranged from as long as 6 months at Poker Flat to about 1 month at Platteville. The quiet-time vertical velocity spectra are shown. Spectral period ranging from 2 minutes to 4 hours is shown on the abscissa and power spectral density is given on the ordinate. The Brunt-Vaisala (B-V) periods (determined from nearby sounding balloons) are indicated. All spectra (except the one from Platteville) exhibit a peak at periods slightly longer than the B-V period, are flat at longer periods, and fall rapidly at periods less than the B-V period. This behavior is expected for a spectrum of internal waves and is very similar to what is observed in the ocean (Eriksen, 1978). The spectral amplitudes vary by only a factor of 2 or 3 about the mean, and show that under quiet conditions vertical velocity spectra from the troposphere are very similar at widely different locations.

  12. A Physician's Perspective On Vertical Integration.

    Science.gov (United States)

    Berenson, Robert A

    2017-09-01

    Vertical integration has been a central feature of health care delivery system change for more than two decades. Recent studies have demonstrated that vertically integrated health care systems raise prices and costs without observable improvements in quality, despite many theoretical reasons why cost control and improved quality might occur. Less well studied is how physicians view their newfound partnerships with hospitals. In this article I review literature findings and other observations on five aspects of vertical integration that affect physicians in their professional and personal lives: patients' access to physicians, physician compensation, autonomy versus system support, medical professionalism and culture, and lifestyle. I conclude that the movement toward physicians' alignment with and employment in vertically integrated systems seems inexorable but that policy should not promote such integration either intentionally or inadvertently. Instead, policy should address the flaws in current payment approaches that reward high prices and excessive service use-outcomes that vertical integration currently produces. Project HOPE—The People-to-People Health Foundation, Inc.

  13. Containment performance improvement program

    International Nuclear Information System (INIS)

    Beckner, W.; Mitchell, J.; Soffer, L.; Chow, E.; Lane, J.; Ridgely, J.

    1990-01-01

    The Containment Performance Improvement (CPI) program has been one of the main elements in the US Nuclear Regulatory Commission's (NRC's) integrated approach to closure of severe accident issues for US nuclear power plants. During the course of the program, results from various probabilistic risk assessment (PRA) studies and from severe accident research programs for the five US containment types have been examined to identify significant containment challenges and to evaluate potential improvements. The five containment types considered are: the boiling water reactor (BMR) Mark I containment, the BWR Mark II containment, the BWR Mark III containment, the pressurized water reactor (PWR) ice condenser containment, and the PWR dry containments (including both subatmospheric and large subtypes). The focus of the CPI program has been containment performance and accident mitigation, however, insights are also being obtained in the areas of accident prevention and accident management

  14. Crack-induced anisotropy and its effect on vertical seismic profiling

    NARCIS (Netherlands)

    Douma, J.

    1988-01-01

    Media containing aligned rotationally symmetrical inclusions show transverse isotropy with respect to elastic wave propagation. The characteristics of this type of anisotropy have been investigated in the first part of this thesis (chapters 2, 3, and 4) while its implications on Vertical Seismic

  15. Measurement of vertical stroke Vcb vertical stroke at the Z energy from B mesons exclusive decays

    International Nuclear Information System (INIS)

    Marinelli, N.

    1998-01-01

    Recent ALEPH, DELPHI and OPAL measurements of the form factors in the exclusive decay modes anti B 0 → D *+ l - anti ν l and anti B 0 →D + l - anti ν l are reviewed here. The values obtained allow an almost model-independent determination of vertical stroke V cb vertical stroke in the HQET framework. (orig.)

  16. Measurement of vertical stroke Vub vertical stroke using b hadron semileptonic decay

    International Nuclear Information System (INIS)

    Abbiendi, G.; Aakesson, P.F.

    2001-01-01

    The magnitude of the CKM matrix element vertical stroke V ub vertical stroke is determined by measuring the inclusive charmless semileptonic branching fraction of beauty hadrons at OPAL based on b → X u lν event topology and kinematics. This analysis uses OPAL data collected between 1991 and 1995, which correspond to about four million hadronic Z decays. We measure Br(b → X u lν) to be (1.63 ±0.53 +0.55 -0.62 ) x 10 -3 . The first uncertainty is the statistical error and the second is the systematic error. From this analysis, vertical stroke V ub vertical stroke is determined to be: vertical stroke V ub vertical stroke =(4.00±0.65(stat) +0.67 -0.76 (sys)±0.19(HQE)) x 10 -3 . The last error represents the theoretical uncertainties related to the extraction of vertical stroke V ub vertical stroke from Br(b→X u l ν) using the Heavy Quark Expansion. (orig.)

  17. A global vertical reference frame based on four regional vertical datums

    Czech Academy of Sciences Publication Activity Database

    Burša, Milan; Kenyon, S.; Kouba, J.; Šíma, Zdislav; Vatrt, V.; Vojtíšková, M.

    2004-01-01

    Roč. 48, č. 3 (2004), s. 493-502 ISSN 0039-3169 Institutional research plan: CEZ:AV0Z1003909 Keywords : geopotentinal * local vertical datums * global vertical reference frame Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 0.447, year: 2004

  18. On the vertical structure of wind gusts

    DEFF Research Database (Denmark)

    Suomi, I.; Gryning, Sven-Erik; Floors, Rogier Ralph

    2015-01-01

    The increasing size of wind turbines, their height and the area swept by their blades have revised the need for understanding the vertical structure of wind gusts. Information is needed for the whole profile. In this study, we analyzed turbulence measurements from a 100m high meteorological mast...... and the turbulence intensity, of which the turbulence intensity was found to dominate over the peak factor in determining the effects of stability and height above the surface on the gust factor. The peak factor only explained 15% or less of the vertical decrease of the gust factor, but determined the effect of gust...... duration on the gust factor. The statistical method to estimate the peak factor did not reproduce the observed vertical decrease in near-neutral and stable conditions and near-constant situation in unstable conditions. Despite this inconsistency, the theoretical method provides estimates for the peak...

  19. Vertical Footbridge Vibrations: The Response Spectrum Methodology

    DEFF Research Database (Denmark)

    Georgakis, Christos; Ingólfsson, Einar Thór

    2008-01-01

    In this paper, a novel, accurate and readily codifiable methodology for the prediction of vertical footbridge response is presented. The methodology is based on the well-established response spectrum approach used in the majority of the world’s current seismic design codes of practice. The concept...... of a universally applicable reference response spectrum is introduced, from which the pedestrian-induced vertical response of any footbridge may be determined, based on a defined “event” and the probability of occurrence of that event. A series of Monte Carlo simulations are undertaken for the development...... period is introduced and its implication on the calculation of footbridge response is discussed. Finally, a brief comparison is made between the theoretically predicted pedestrian-induced vertical response of an 80m long RC footbridge (as an example) and actual field measurements. The comparison shows...

  20. Certified standards and vertical coordination in aquaculture

    DEFF Research Database (Denmark)

    Trifkovic, Neda

    2014-01-01

    This paper explores the interaction between food standards and vertical coordination in the Vietnamese pangasius sector. For farmers and processors alike, the adoption of standards is motivated by a desire to improve market access by ensuring high quality supply. Instead of encouraging the applic......This paper explores the interaction between food standards and vertical coordination in the Vietnamese pangasius sector. For farmers and processors alike, the adoption of standards is motivated by a desire to improve market access by ensuring high quality supply. Instead of encouraging...... the application of standards and contract farming, processing companies prefer to vertically integrate primary production largely due to concerns over the stable supply of pangasius with satisfactory quality and safety attributes. These tendencies increase the market dominance of industrial farming and worsen...

  1. Vertical vibration analysis for elevator compensating sheave

    International Nuclear Information System (INIS)

    Watanabe, Seiji; Nakazawa, Daisuke; Fukui, Daiki; Okawa, Takeya

    2013-01-01

    Most elevators applied to tall buildings include compensating ropes to satisfy the balanced rope tension between the car and the counter weight. The compensating ropes receive tension by the compensating sheave, which is installed at the bottom space of the elevator shaft. The compensating sheave is only suspended by the compensating ropes, therefore, the sheave can move vertically while the car is traveling. This paper shows the elevator dynamic model to evaluate the vertical motion of the compensating sheave. Especially, behavior in emergency cases, such as brake activation and buffer strike, was investigated to evaluate the maximum upward motion of the sheave. The simulation results were validated by experiments and the most influenced factor for the sheave vertical motion was clarified

  2. Plasmonic Properties of Vertically Aligned Nanowire Arrays

    Directory of Open Access Journals (Sweden)

    Hua Qi

    2012-01-01

    Full Text Available Nanowires (NWs/Ag sheath composites were produced to investigate plasmonic coupling between vertically aligned NWs for surface-enhanced Raman scattering (SERS applications. In this investigation, two types of vertical NW arrays were studied; those of ZnO NWs grown on nanosphere lithography patterned sapphire substrate via vapor-liquid-solid (VLS mechanism and Si NW arrays produced by wet chemical etching. Both types of vertical NW arrays were coated with a thin layer of silver by electroless silver plating for SERS enhancement studies. The experimental results show extremely strong SERS signals due to plasmonic coupling between the NWs, which was verified by COMSOL electric field simulations. We also compared the SERS enhancement intensity of aligned and random ZnO NWs, indicating that the aligned NWs show much stronger and repeatable SERS signal than those grown in nonaligned geometries.

  3. Vertical gradients of sunspot magnetic fields

    Science.gov (United States)

    Hagyard, M. J.; Teuber, D.; West, E. A.; Tandberg-Hanssen, E.; Henze, W., Jr.; Beckers, J. M.; Bruner, M.; Hyder, C. L.; Woodgate, B. E.

    1983-01-01

    The results of a Solar Maximum Mission (SMM) guest investigation to determine the vertical gradients of sunspot magnetic fields for the first time from coordinated observations of photospheric and transition-region fields are described. Descriptions are given of both the photospheric vector field of a sunspot, derived from observations using the NASA Marshall Space Flight Center vector magnetograph, and of the line-of-sight component in the transition region, obtained from the SMM Ultraviolet Spectrometer and Polarimeter instrument. On the basis of these data, vertical gradients of the line-of-sight magnetic field component are calculated using three methods. It is found that the vertical gradient of Bz is lower than values from previous studies and that the transition-region field occurs at a height of approximately 4000-6000 km above the photosphere.

  4. Vertical vibration analysis for elevator compensating sheave

    Science.gov (United States)

    Watanabe, Seiji; Okawa, Takeya; Nakazawa, Daisuke; Fukui, Daiki

    2013-07-01

    Most elevators applied to tall buildings include compensating ropes to satisfy the balanced rope tension between the car and the counter weight. The compensating ropes receive tension by the compensating sheave, which is installed at the bottom space of the elevator shaft. The compensating sheave is only suspended by the compensating ropes, therefore, the sheave can move vertically while the car is traveling. This paper shows the elevator dynamic model to evaluate the vertical motion of the compensating sheave. Especially, behavior in emergency cases, such as brake activation and buffer strike, was investigated to evaluate the maximum upward motion of the sheave. The simulation results were validated by experiments and the most influenced factor for the sheave vertical motion was clarified.

  5. Study on characteristics of vertical strong motions

    International Nuclear Information System (INIS)

    Akao, Y.; Katukura, H.; Fukushima, S.; Mizutani, M.

    1993-01-01

    Statistic properties of vertical strong ground motions from near-field earthquakes are discussed in comparison with that of horizontal motions. It is a feature of this analysis that time history of each observed record is divided into direct P- and S-wave segments from a seismological viewpoint. Following results are obtained. Vertical motion energy excited by direct S-waves is about 0.6 times of horizontal ones at deep underground, and it approaches to 1.0 at shallow place. Horizontal motion energy excited by direct P-waves becomes 0.2 times (at deep) or more (at shallow) of vertical one. These results can be available in modeling of input motions for aseismic design. (author)

  6. Vertical stability, high elongation, and the consequences of loss of vertical control on DIII-D

    International Nuclear Information System (INIS)

    Kellman, A.G.; Ferron, J.R.; Jensen, T.H.; Lao, L.L.; Luxon, J.L.; Skinner, D.G.; Strait, E.J.; Reis, E.; Taylor, T.S.; Turnbull, A.D.; Lazarus, E.A.; Lister, J.B.

    1990-09-01

    Recent modifications to the vertical control system for DIII-D has enabled operation of discharges with vertical elongation κ, up to 2.5. When vertical stability is lost, a disruption follows and a large vertical force on the vacuum vessel is observed. The loss of plasma energy begins when the edge safety factor q is 2 but the current decay does not begin until q ∼1.3. Current flow on the open field lines in the plasma scrapeoff layer has been measured and the magnitude and distribution of these currents can explain the observed force on the vessel. Equilibrium calculations and simulation of this vertical displacement episode are presented. 7 refs., 4 figs

  7. The Revolutionary Vertical Lift Technology (RVLT) Project

    Science.gov (United States)

    Yamauchi, Gloria K.

    2018-01-01

    The Revolutionary Vertical Lift Technology (RVLT) Project is one of six projects in the Advanced Air Vehicles Program (AAVP) of the NASA Aeronautics Research Mission Directorate. The overarching goal of the RVLT Project is to develop and validate tools, technologies, and concepts to overcome key barriers for vertical lift vehicles. The project vision is to enable the next generation of vertical lift vehicles with aggressive goals for efficiency, noise, and emissions, to expand current capabilities and develop new commercial markets. The RVLT Project invests in technologies that support conventional, non-conventional, and emerging vertical-lift aircraft in the very light to heavy vehicle classes. Research areas include acoustic, aeromechanics, drive systems, engines, icing, hybrid-electric systems, impact dynamics, experimental techniques, computational methods, and conceptual design. The project research is executed at NASA Ames, Glenn, and Langley Research Centers; the research extensively leverages partnerships with the US Army, the Federal Aviation Administration, industry, and academia. The primary facilities used by the project for testing of vertical-lift technologies include the 14- by 22-Ft Wind Tunnel, Icing Research Tunnel, National Full-Scale Aerodynamics Complex, 7- by 10-Ft Wind Tunnel, Rotor Test Cell, Landing and Impact Research facility, Compressor Test Facility, Drive System Test Facilities, Transonic Turbine Blade Cascade Facility, Vertical Motion Simulator, Mobile Acoustic Facility, Exterior Effects Synthesis and Simulation Lab, and the NASA Advanced Supercomputing Complex. To learn more about the RVLT Project, please stop by booth #1004 or visit their website at https://www.nasa.gov/aeroresearch/programs/aavp/rvlt.

  8. Vertically Integrated Multinationals and Productivity Spillovers

    DEFF Research Database (Denmark)

    Clementi, Federico; Bergmann, Friedrich

    are not automatic. In this paper, we study how these externalities are affected by the strategy of vertical integration of foreign multinationals. Our analysis, based on firm-level data of European manufacturing companies, shows that local firms perceive weaker backward spillovers if client foreign affiliates...... are vertically integrated in their industry. The spillovers that arise from the activity of companies that do not invest in the domestic firms’ industry are 2.6 to 5 times stronger than the ones than come from affiliates of multinationals that invest in the industry of local firms....

  9. Thermal Stratification in Vertical Mantle Tanks

    DEFF Research Database (Denmark)

    Knudsen, Søren; Furbo, Simon

    2001-01-01

    It is well known that it is important to have a high degree of thermal stratification in the hot water storage tank to achieve a high thermal performance of SDHW systems. This study is concentrated on thermal stratification in vertical mantle tanks. Experiments based on typical operation conditions...... are carried out to investigate how the thermal stratification is affected by different placements of the mantle inlet. The heat transfer between the solar collector fluid in the mantle and the domestic water in the inner tank is analysed by CFD-simulations. Furthermore, the flow pattern in the vertical mantle...

  10. Breakwaters with Vertical and Inclined Concrete Walls

    DEFF Research Database (Denmark)

    Burcharth, Hans Falk

    Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects in the de......Following the PIANC PTC II working group on Analyses of Rubble Mound Breakwaters it was, in 1991, decided to form Working Group (WG) n° 28 on "Breakwaters with vertical and inclined concrete walls" The scope of the work was to achieve a better understanding of the overall safety aspects...

  11. Preserving the Modernist Vertical Urban Factory

    Directory of Open Access Journals (Sweden)

    Nina Rappaport

    2016-07-01

    Full Text Available This essay is adapted in part, from the section, “Modern Factory Architecture” case studies from Nina Rappaport’s book Vertical Urban Factory, published by Actar this spring. Vertical Urban Factory began as an architecture studio, and then an exhibition, which opened in New York in 2011 and traveled to Detroit and Toronto in 2012. Last year the show was displayed at Archizoom at EPFL in Lausanne; Industry City, Brooklyn; and the Charles Moore School of Architecture at Kean University, in New Jersey. The project continues as a think tank evaluating factory futures and urban industrial potential.

  12. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1999-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  13. Geophysical aspects of vertical streamer seismic data

    Energy Technology Data Exchange (ETDEWEB)

    Sognnes, Walter

    1998-12-31

    Vertical cable acquisition is performed by deploying a certain number of vertical hydrophone arrays in the water column, and subsequently shooting a source point on top of it. The advantage of this particular geometry is that gives a data set with all azimuths included. Therefore a more complete 3-D velocity model can be derived. In this paper there are presented some results from the Fuji survey in the Gulf of Mexico. Based on these results, improved geometries and review recommendations for future surveys are discussed. 7 figs.

  14. Measurement of the CKM matrix element vertical stroke Vts vertical stroke 2

    International Nuclear Information System (INIS)

    Unverdorben, Christopher Gerhard

    2015-03-01

    This is the first direct measurement of the CKM matrix element vertical stroke V ts vertical stroke, using data collected by the ATLAS detector in 2012 at √(s)= 8 TeV pp-collisions with a total integrated luminosity of 20.3 fb -1 . The analysis is based on 112 171 reconstructed t anti t candidate events in the lepton+jets channel, having a purity of 90.0 %. 183 t anti t→W + W - b anti s decays are expected (charge conjugation implied), which are available for the extraction of the CKM matrix element vertical stroke V ts vertical stroke 2 . To identify these rare decays, several observables are examined, such as the properties of jets, tracks and of b-quark identification algorithms. Furthermore, the s-quark hadrons K 0 s are considered, reconstructed by a kinematic fit. The best observables are combined in a multivariate analysis, called ''boosted decision trees''. The responses from Monte Carlo simulations are used as templates for a fit to data events yielding a significance value of 0.7σ for t→s+W decays. An upper limit of vertical stroke V ts vertical stroke 2 <1.74 % at 95 % confidence level is set, including all systematic and statistical uncertainties. So this analysis, using a direct measurement of the CKM matrix element vertical stroke V ts vertical stroke 2 , provides the best direct limit on vertical stroke V ts vertical stroke 2 up to now.

  15. 33 CFR 118.85 - Lights on vertical lift bridges.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Lights on vertical lift bridges... BRIDGES BRIDGE LIGHTING AND OTHER SIGNALS § 118.85 Lights on vertical lift bridges. (a) Lift span lights. The vertical lift span of every vertical lift bridge shall be lighted so that the center of the...

  16. A reliable technique for transfer of radioactivity filled vial from transport container to the processing station

    International Nuclear Information System (INIS)

    Kothalkar, Chetan; Dey, A.C.

    2005-01-01

    In Technetium Column Generator Production Facility (TCGPF project) of BRIT, a facility for unloading vial containing radioactive liquid sodium molybdate- 99 Mo solution from the transport cask into the processing station and unsealing the vial to transfer the liquid to a storage bottle has been developed. This is specifically conceptualized for safe handling of radioactivity and minimizing the radiation dose exposure to the personnel working at the time of transferring the radioactivity from the transport cask to a place for further processing. The facility, designed to handle around 1850 GBq activity, has two cells enclosed in 102mm thick lead wall and connected by a gravity actuated trolley conveyor. The first cell handles the transport cask carrying the vial-containing radioactivity, which houses two types of vial lifting gadgets assisted by manually operatable tongs. Gadgets use compressed air. In an experiment, it is found that the HDPE vial lifting gadget using suction cup continue to function up to 30-40 minutes after power failure. The experience shows that gadget using 3-point radial gripper to lift the glass vial will remain in grab position, even if the compressed air supply stops. In this facility the dose receivable, while handling radioactivity by the operator, is likely to be negligibly small (approx. 3.15 x 10 -4 mSv per year at the rate four glass vials/week and 2.25 x 10 -4 mSv per year considering at the rate 1 vial/week for HOPE vial transfer). (author)

  17. Independent CO2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels, Task 2.50.05

    International Nuclear Information System (INIS)

    Stojic, M.; Pavicevic, M.

    1964-01-01

    This report contains the following volumes V and VI of the Project 'Independent CO 2 loop for cooling the samples irradiated in RA reactor vertical experimental channels': Design project of the dosimetry control system in the independent CO 2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels, and Safety report for the Independent CO 2 loop for cooling the samples irradiated in the RA reactor vertical experimental channels [sr

  18. Study a possibility of saffron (Crocus sativus L. production in vertical culture

    Directory of Open Access Journals (Sweden)

    Lorin ali ahmad

    2017-06-01

    Full Text Available In recent years many research studies have been carried out to use a vertical planting system for production of some plants. Although saffron is one of the most expensive spices in the word, there is no investigation about saffron production in a vertical planting system. Therefore, the growth and production of saffron plant in two different systems (vertical and horizontal were studied in the agricultural research field of the Tarbiat Modares University during the 2013-2014 growing seasons. In the vertical system, saffron corms were planted in fabric bags containing potting soil. The fabric bags were hanged on a cube of metal with an area of each side of the cube being equal to 2.25 square meters. In the horizontal system, the corms were planted in three plots with the area of each plots being 2.25 square meters. The results showed that in the vertical planting system, the number of flowers, flower dry weight and dry weight of stigma per unit area of land (10 flower, 347.34 and 0.56 mg respectively were significantly higher than those obtained in the horizontal culture (They were almost three times higher .In contrast, the numbers and dry weight of lateral corms (2.4 corm and 0.36 g respectively and the dry weight of apical corm (0.88 g in the horizontal system were significantly greater than those obtained in the vertical system. Dry weight of leaf and root were significantly greater in the vertical system. The total number of buds and leaves were more in the horizontal culture. However, the maximum leaf length of the vertical planting system was higher than those of the horizontal system.

  19. Caution on the storage of waters and aqueous solutions in plastic containers for hydrogen and oxygen stable isotope analysis.

    Science.gov (United States)

    Spangenberg, Jorge E

    2012-11-30

    The choice of containers for storage of aqueous samples between their collection, transport and water hydrogen ((2)H) and oxygen ((18)O) stable isotope analysis is a topic of concern for a wide range of fields in environmental, geological, biomedical, food, and forensic sciences. The transport and separation of water molecules during water vapor or liquid uptake by sorption or solution and the diffusive transport of water molecules through organic polymer material by permeation or pervaporation may entail an isotopic fractionation. An experiment was conducted to evaluate the extent of such fractionation. Sixteen bottle-like containers of eleven different organic polymers, including low and high density polyethylene (LDPE and HDPE), polypropylene (PP), polycarbonate (PC), polyethylene terephthalate (PET), and perfluoroalkoxy-Teflon (PFA), of different wall thickness and size were completely filled with the same mineral water and stored for 659 days under the same conditions of temperature and humidity. Particular care was exercised to keep the bottles tightly closed and prevent loss of water vapor through the seals. Changes of up to +5‰ for δ(2)H values and +2.0‰ for δ(18)O values were measured for water after more than 1 year of storage within a plastic container, with the magnitude of change depending mainly on the type of organic polymer, wall thickness, and container size. The most important variations were measured for the PET and PC bottles. Waters stored in glass bottles with Polyseal™ cone-lined PP screw caps and thick-walled HDPE or PFA containers with linerless screw caps having an integrally molded inner sealing ring preserved their original δ(2)H and δ(18)O values. The carbon, hydrogen, and oxygen stable isotope compositions of the organic polymeric materials were also determined. The results of this study clearly show that for precise and accurate measurements of the water stable isotope composition in aqueous solutions, rigorous sampling and

  20. Vortex capturing vertical axis wind turbine

    International Nuclear Information System (INIS)

    Zannetti, L; Gallizio, F; Ottino, G

    2007-01-01

    An analytical-numerical study is presented for an innovative lift vertical axis turbine whose blades are designed with vortex trapping cavities that act as passive flow control devices. The unsteady flow field past one-bladed and two-bladed turbines is described by a combined analytical and numerical method based on conformal mapping and on a blob vortex method

  1. Digital Microfluidic System with Vertical Functionality

    Directory of Open Access Journals (Sweden)

    Brian F. Bender

    2015-11-01

    Full Text Available Digital (droplet microfluidics (DµF is a powerful platform for automated lab-on-a-chip procedures, ranging from quantitative bioassays such as RT-qPCR to complete mammalian cell culturing. The simple MEMS processing protocols typically employed to fabricate DµF devices limit their functionality to two dimensions, and hence constrain the applications for which these devices can be used. This paper describes the integration of vertical functionality into a DµF platform by stacking two planar digital microfluidic devices, altering the electrode fabrication process, and incorporating channels for reversibly translating droplets between layers. Vertical droplet movement was modeled to advance the device design, and three applications that were previously unachievable using a conventional format are demonstrated: (1 solutions of calcium dichloride and sodium alginate were vertically mixed to produce a hydrogel with a radially symmetric gradient in crosslink density; (2 a calcium alginate hydrogel was formed within the through-well to create a particle sieve for filtering suspensions passed from one layer to the next; and (3 a cell spheroid formed using an on-chip hanging-drop was retrieved for use in downstream processing. The general capability of vertically delivering droplets between multiple stacked levels represents a processing innovation that increases DµF functionality and has many potential applications.

  2. Vertical retorts for distilling, carbonizing, roasting, etc

    Energy Technology Data Exchange (ETDEWEB)

    Walker, H R.L.; Bates, W R

    1917-11-17

    In a continuously operated vertical retort for destructive distillation or roasting the combination of an annular internally and externally heated construction with an annular plunger adapted to compress and assist the travel of the charge and to aid in discharging material substantially is described.

  3. The Design Philosophy for a Vertical Breakwater

    DEFF Research Database (Denmark)

    Vrijling, J. K.; Burcharth, H. F.; Voortman, H. G.

    2000-01-01

    A consistent risk-based design philosophy for vertical breakwaters is proposed. The design philosophy consists of a two-step approach. The first step is the definition of the main function of the breakwater, which leads to a definition of failure. The second step is the choice of the acceptable...

  4. Determinants Of Vertical And Horizontal Export Diversification ...

    African Journals Online (AJOL)

    The study also reveals domestic investment plays an important role to enhance vertical as well as horizontal export diversification for East Asia, while it only ... resource-based industries and gradually shift production and exports from customary products to more dynamic ones by developing competitive advantage in the ...

  5. A Comparison of Methods of Vertical Equating.

    Science.gov (United States)

    Loyd, Brenda H.; Hoover, H. D.

    Rasch model vertical equating procedures were applied to three mathematics computation tests for grades six, seven, and eight. Each level of the test was composed of 45 items in three sets of 15 items, arranged in such a way that tests for adjacent grades had two sets (30 items) in common, and the sixth and eighth grades had 15 items in common. In…

  6. Vertical reflector for bifacial PV-panels

    DEFF Research Database (Denmark)

    Jakobsen, Michael Linde; Thorsteinsson, Sune; Poulsen, Peter Behrensdorff

    2016-01-01

    Bifacial solar modules offer an interesting price/performance ratio, and much work has been focused on directing the ground albedo to the back of the solar cells. In this work we design and develop a reflector for a vertical bifacial panel, with the objective to optimize the energy harvest...

  7. On production costs in vertical differentiation models

    OpenAIRE

    Dorothée Brécard

    2009-01-01

    In this paper, we analyse the effects of the introduction of a unit production cost beside a fixed cost of quality improvement in a duopoly model of vertical product differentiation. Thanks to an original methodology, we show that a low unit cost tends to reduce product differentiation and thus prices, whereas a high unit cost leads to widen product differentiation and to increase prices

  8. MHD stability of vertically asymmetric tokamak equilibria

    International Nuclear Information System (INIS)

    Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.

    1981-03-01

    The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation

  9. Optical anisotropy in vertically coupled quantum dots

    DEFF Research Database (Denmark)

    Yu, Ping; Langbein, Wolfgang Werner; Leosson, Kristjan

    1999-01-01

    We have studied the polarization of surface and edge-emitted photoluminescence (PL) from structures with vertically coupled In0.5Ga0.5As/GaAs quantum dots (QD's) grown by molecular beam epitaxy. The PL polarization is found to be strongly dependent on the number of stacked layers. While single...... number due to increasing dot size....

  10. Transient well flow in vertically heterogeneous aquifers.

    NARCIS (Netherlands)

    Hemker, C.J.

    1999-01-01

    A solution for the general problem of computing well flow in vertically heterogeneous aquifers is found by an integration of both analytical and numerical techniques. The radial component of flow is treated analytically; the drawdown is a continuous function of the distance to the well. The

  11. Proverbs : Probabilistic design tools for vertical breakwaters

    NARCIS (Netherlands)

    Oumeraci, H.; Allsop, N.W.H.; De Groot, M.B.; Crouch, R.S.; Vrijling, J.K.

    1999-01-01

    Final report and appendices of the European project Proverbs on tools for the design of vertical breakwaters (caisson type breakwaters) and similar hydraulic structures in the coastal zone. It includes the loads (waves) as well as the strength of the structure (geotechnial aspects, structural

  12. The capillary interaction between two vertical cylinders

    KAUST Repository

    Cooray, Himantha; Cicuta, Pietro; Vella, Dominic

    2012-01-01

    surface clusters. Here we present a numerical method for determining the three-dimensional meniscus around a pair of vertical circular cylinders. This involves the numerical solution of the fully nonlinear Laplace-Young equation using a mesh-free finite

  13. Manufacturing: the new case for vertical integration

    NARCIS (Netherlands)

    Kumpe, Ted; Bolwijn, Piet

    1988-01-01

    The article argues that the solid corporation will continue to view vertical integration as a critical part of manufacturing reform. Manufacturing reform and backward integration are related in insidious ways to the three stages of production over which the big manufacturers preside. Without

  14. Vertical integration as organizational strategy formation

    NARCIS (Netherlands)

    Romme, A.G.L.

    1990-01-01

    This paper contributes to research into the strategy—environment relationship, especially looking at the issue of vertical integration. It aims at a synthesis of process and content approaches to strategic change on the level of the organization’s dominant group. The key factor is uncertainty, which

  15. Vertical Integration: Teachers' Knowledge and Teachers' Voice.

    Science.gov (United States)

    Corrie, L.

    1995-01-01

    Traces the theoretical basis for vertical integration in early school years. Contrasts transmission-based pedagogy with a higher level of teacher control, and acquirer-based pedagogy with a higher level of student control. Suggests that early childhood pedagogy will be maintained when teachers are able to articulate their pedagogical knowledge and…

  16. Vertical integration of HRD policy within companies

    NARCIS (Netherlands)

    Wognum, Ida

    2001-01-01

    This study concerns HRD policy making in companies. More specifically, it explores whether so-called vertical integration of HRD policy at different organizational levels occurs within companies. The study involved forty-four large companies in the industrial and the financial and commercial

  17. A note on partial vertical integration

    NARCIS (Netherlands)

    G.W.J. Hendrikse (George); H.J.M. Peters (Hans)

    1989-01-01

    textabstractA simple model is constructed to show how partial vertical integration may emerge as an equilibrium market structure in a world characterized by rationing, differences in the reservation prices of buyers, and in the risk attitudes of buyers and sellers. The buyers with the high

  18. Vertical Integration Spurs American Health Care Revolution.

    Science.gov (United States)

    Phillips, Richard C.

    1986-01-01

    Under new "managed health care systems," the classical functional separation of risk taker, claims payor, and provider are vertically integrated into a common entity. This evolution should produce a competitive environment with medical care rendered to all Americans on a more cost-effective basis. (CJH)

  19. Oblique patterned etching of vertical silicon sidewalls

    Science.gov (United States)

    Bruce Burckel, D.; Finnegan, Patrick S.; David Henry, M.; Resnick, Paul J.; Jarecki, Robert L.

    2016-04-01

    A method for patterning on vertical silicon surfaces in high aspect ratio silicon topography is presented. A Faraday cage is used to direct energetic reactive ions obliquely through a patterned suspended membrane positioned over the topography. The technique is capable of forming high-fidelity pattern (100 nm) features, adding an additional fabrication capability to standard top-down fabrication approaches.

  20. Vertical Dynamic Stiffness of Offshore Foundations

    DEFF Research Database (Denmark)

    Latini, Chiara; Cisternino, Michele; Zania, Varvara

    2016-01-01

    Nowadays, pile and suction caisson foundations are widely used to support offshore structures which are subjected to vertical dynamic loads. The dynamic soil-structure interaction of floating foundations (foundations embedded in a soil layer whose height is greater than the foundation length) is ...