A general Mobius inversion transform formula for hcp lattices and its application
李泌; 李一山
2002-01-01
In this paper, we present a general Mobius inversion transform formula for hcp lattices. This formula can be applied to hcp lattices with a non-ideal c/a value and to obtain the pair potential between atoms in these lattices from the cohesive energy. Also, the three-body interaction among atoms in the lattices can be taken into account in the method. This method gives a useful means to obtain interatomic interactions in the interatomic force model. The method has been applied to zinc, and the pair potential obtained is used to calculate the phonon dispersion relations for some high-symmetry directions. It is found that, by properly considering a three-body interaction, one can acquire satisfactory results.
Ab initio lattice stability of fcc and hcp Fe-Mn random alloys.
Gebhardt, T; Music, D; Hallstedt, B; Ekholm, M; Abrikosov, I A; Vitos, L; Schneider, J M
2010-07-28
We have studied the lattice stability of face centred cubic (fcc) versus hexagonal close packed (hcp) Fe-Mn random alloys using ab initio calculations. In the calculations we considered the antiferromagnetic order of local moments, which for fcc alloys models the magnetic configuration of this phase at room temperature (below its Néel temperature) as well as their complete disorder, corresponding to paramagnetic fcc and hcp alloys. For both cases, the results are consistent with our thermodynamic calculations, obtained within the Calphad approach. For the room temperature magnetic configuration, the cross-over of the total energies of the hcp phase and the fcc phase of Fe-Mn alloys is at the expected Mn content, whereas for the magnetic configuration above the fcc Néel temperature, the hcp lattice is more stable within the whole composition range studied. The increase of the total energy difference between hcp and antiferromagnetic fcc due to additions of Mn as well as the stabilizing effect of antiferromagnetic ordering on the fcc phase are well displayed. These results are of relevance for understanding the deformation mechanisms of these random alloys.
Yao, Yancai; He, Dong Sheng; Lin, Yue; Feng, Xiaoqian; Wang, Xin; Yin, Peiqun; Hong, Xun; Zhou, Gang; Wu, Yuen; Li, Yadong
2016-04-25
Herein, we report an epitaxial-growth-mediated method to grow face-centered cubic (fcc) Ru, which is thermodynamically unfavorable in the bulk form, on the surface of Pd-Cu alloy. Induced by the galvanic replacement between Ru and Pd-Cu alloy, a shape transformation from a Pd-Cu@Ru core-shell to a yolk-shell structure was observed during the epitaxial growth. The successful coating of the unconventional crystallographic structure is critically dependent on the moderate lattice mismatch between the fcc Ru overlayer and PdCu3 alloy substrate. Further, both fcc and hexagonal close packed (hcp) Ru can be selectively grown through varying the lattice spacing of the Pd-Cu substrate. The presented findings provide a new synthetic pathway to control the crystallographic structure of metal nanomaterials.
The influence of additions of Al and Si on the lattice stability of fcc and hcp Fe-Mn random alloys.
Gebhardt, T; Music, D; Ekholm, M; Abrikosov, I A; Vitos, L; Dick, A; Hickel, T; Neugebauer, J; Schneider, J M
2011-06-22
We have studied the influence of additions of Al and Si on the lattice stability of face-centred-cubic (fcc) versus hexagonal-closed-packed (hcp) Fe-Mn random alloys, considering the influence of magnetism below and above the fcc Néel temperature. Employing two different ab initio approaches with respect to basis sets and treatment of magnetic and chemical disorder, we are able to quantify the predictive power of the ab initio methods. We find that the addition of Al strongly stabilizes the fcc lattice independent of the regarded magnetic states. For Si a much stronger dependence on magnetism is observed. Compared to Al, almost no volume change is observed as Si is added to Fe-Mn, indicating that the electronic contributions are responsible for stabilization/destabilization of the fcc phase.
Study on lattice stability in first principles of hcp-,fcc-and bcc-Sc%hcp-,fcc-和bcc-Sc晶格稳定性的第一原理研究
陶辉锦; 刘玲; 陈伟民; 文杰斌; 杨巧然
2009-01-01
分别采用第一原理总能赝势平面波的局域密度近似LDA(Local density approximation)和广义梯度近似GGA(Generalized gradient approximation)两种近似方法计算hcp-,fcc-和bcc-Sc的晶格常数、总能和态密度,并将实验值与以上两种方法以及CALPHAD方法的计算结果进行对比研究,发现采用LDA和GGA的计算结果均为△Gbcc-hcp>△Gfcc-hcp>0,与CALPHAD方法外推的结果△Gfcc-hcp>△Gbcc-hcp>0不一致.用LDA方法计算的hcp-,fcc-和bcc-Sc的晶格常数和原子体积较GGA方法的计算结果小,但总能绝对值偏大.LDA方法与GGA方法的态密度曲线形状基本一致,但LDA得到的s和p态电子占据数比GGA方法的偏小.
Properties of Zr – 12.5 % Nb and Zr – 25 % Nb Alloys with hcp and bcc Lattices: ab-initio Modeling
V.O. Kharchenko
2012-06-01
Full Text Available Ab-initio calculations of the electronic structure for Zr – 12.5 % Nb and Zr – 25 % Nb alloys are done using density functional theory, method of linearized augmented plane-wave approximation and generalized gradient approximation. The structural and energetic properties, such as the electron densities, densities of states, energetically and X-ray spectra in the case of the hcp and bcc lattices are calculated. Optimal values for the lattice constants are found. The most favorable structure for each studied alloy is defined.
Angular distortive matrices of phase transitions in the fcc-bcc-hcp system
Cayron, Cyril
2016-01-01
This work generalizes the one-step model previously developed on fcc-bcc martensitic transformations to the larger family of phase transitions in the fcc-bcc-hcp system. The angular distortive matrices are calculated for the bcc-fcc, bcc-hcp and fcc-hcp transitions, and for fcc-fcc mechanical twinning. The analytical expressions of the continuous atomic displacements, lattice distortion and lattice correspondence matrices result directly from the orientation relationships; the unique assumpti...
Formation of Hexagonal-Close Packed (HCP) Rhodium as a Size Effect.
Huang, Jing Lu; Li, Zhi; Duan, Hao Hong; Cheng, Zhi Ying; Li, Ya Dong; Zhu, Jing; Yu, Rong
2017-01-18
Previous studies on the structural and functional properties of rhodium are based on the face-centered-cubic (fcc) structure in the bulk form. Here we report the first discovery of the hexagonal-close packed (hcp) rhodium in the nanoparticle form. The hcp Rh can be directly synthesized by solvothermal reaction or by electron-beam induced decomposition of Rh monolayers. The hcp Rh nanoparticles are stable under electron beam irradiation. Compared with the fcc structure, the hcp Rh nanoparticles show a large lattice expansion (6% larger atomic volume). The first-principles calculations suggest that the lower surface energy of hcp Rh leads to the size effect in the crystal structure.
The hcp to fcc transformation path of scandium trihydride under high pressure.
Pakornchote, T; Pinsook, U; Bovornratanaraks, T
2014-01-15
We used density functional theory to calculate the phase stability of the hcp (hexagonal close packed) and the fcc (face centered cubic) structures of ScH3. The hcp form is stable up to 22 GPa according to the generalized gradient approximation calculation. Then the fcc form becomes energetically more stable. In order to provide insight into the phase transition mechanism, we modeled the hcp to fcc transition by sliding the hcp basal planes, i.e. (001)h planes, in such a way that the ABABAB sequence of the hcp form is altered into the ABCABC sequence of the fcc form. This sliding was suggested by the experiment. The configurations of these sliding steps are our proposed intermediate configurations, whose symmetry group is the Cm group. By using the Cm crystallography, we can match the d-spacings from the lattice planes of the hcp and fcc forms and the intermediate planes measured from the experiment. We also calculated the enthalpy per step, from which the energy barrier between the two phases at various pressures was derived. The barrier at 35 GPa is 0.370 eV per formula or 0.093 eV/atom. The movements of the hydrogen atoms during the hcp to intermediate phase transition are consistent with the result from the Raman spectra.
Anatoly D. Plotnikov
2001-01-01
Full Text Available For an arbitrary undirected graph G, we are designing a logical model for the Hamiltonian Cycle Problem (HCP, using tools of Boolean algebra only. The obtained model is a logic formulation of the conditions for the existence of the Hamiltonian cycle, and uses m Boolean variables, where m is the number of the edges of a graph. This Boolean expression is true if and only if an initial graph is Hamiltonian. In general, the obtained Boolean expression may have an exponential length (the number of Boolean literals and may be used for construction of the solution algorithm.
Elasticity of hcp cobalt at high pressure and temperature: a quasi-harmonic case
Antonangeli, D; Krisch, M; Farber, D L; Ruddle, D G; Fiquet, G
2007-11-30
We performed high-resolution inelastic x-ray scattering measurements on a single crystal of hcp cobalt at simultaneous high pressure and high temperature, deriving 4 of the 5 independent elements of the elastic tensor. Our experiments indicate that the elasticity of hcp-Co is well described within the frame of a quasi-harmonic approximation and that anharmonic high-temperature effects on the elastic moduli, sound velocities and elastic anisotropy are minimal at constant density. These results support the validity of the Birch's law and represent an important benchmark for ab initio thermal lattice dynamics and molecular-dynamics simulations.
Thermodynamic properties of binary hcp solution phases from special quasirandom structures
Shin, Dongwon; Arróyave, Raymundo; Liu, Zi-Kui; van de Walle, Axel
2006-07-01
Three different special quasirandom structures (SQS’s) of the substitutional hcp A1-xBx binary random solutions ( x=0.25 , 0.5, and 0.75) are presented. These structures are able to mimic the most important pair and multi-site correlation functions corresponding to perfectly random hcp solutions at those compositions. Due to the relatively small size of the generated structures, they can be used to calculate the properties of random hcp alloys via first-principles methods. The structures are relaxed in order to find their lowest energy configurations at each composition. In some cases, it was found that full relaxation resulted in complete loss of their parental symmetry as hcp so geometry optimizations in which no local relaxations are allowed were also performed. In general, the first-principles results for the seven binary systems (Cd-Mg, Mg-Zr, Al-Mg, Mo-Ru, Hf-Ti, Hf-Zr, and Ti-Zr) show good agreement with both formation enthalpy and lattice parameters measurements from experiments. It is concluded that the SQS’s presented in this work can be widely used to study the behavior of random hcp solutions.
Analysis list: hcp-6 [Chip-atlas[Archive
Full Text Available hcp-6 Embryo + ce10 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/hcp-6.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/hcp-6.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/hcp...-6.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/hcp-6.Embryo.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/Embryo.gml ...
Analysis list: hcp-4 [Chip-atlas[Archive
Full Text Available hcp-4 Embryo + ce10 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/hcp-4.1....tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/hcp-4.5.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/target/hcp...-4.10.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/hcp-4.Embryo.tsv http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/colo/Embryo.gml ...
A metastable HCP intermetallic phase in Cu-Al bilayer films
Cha, Limei
2006-07-01
For the present study, three kinds of layered Cu/Al films have been fabricated. The first kind of samples were multilayered Cu/Al films deposited by sputtering on (001)Si. The individual layer thicknesses were 100 nm, 200 nm and 400 nm, while the total film thickness of 800 nm was kept constant, thus leading to multilayer systems with 8, 4 and 2 layers, respectively. The second type of samples were Cu/Al bilayer films grown on (0001) sapphire by sputtering, with individual layer thicknesses of 400 nm. The third type of samples were bilayer films (100 nm Cu and 100 nm Al) deposited on (0001)sapphire by MBE at room temperature. Applying conventional transmission electron microscopy and X-ray diffraction, different epitaxial growth behaviors were found in these films. All multilayer films from the first type were polycrystalline. The second type of films show a (111) FCC texture and possess intermetallic phases at the interfaces. HRTEM investigations displayed that along [111]FCC, the atomic structure of the interlayer has an ABAB stacking sequence, which is identical with a hexagonal close-packed (HCP) structure in [0001] direction, but not with the ABCABC stacking sequence of Cu and Al in [111]FCC. The lattice parameters of the HCP structure at the interlayer were determined from a model which gave the best agreement between the experimental and simulated images. The parameters are: a=b=0.256 nm, c=0.419 nm, ?=120 , with the space group of P6m2. Furthermore, lattice distortion analysis revealed that the lattice parameters of the HCP phase are increasing from the near-Cu-side to the near-Al-side. The chemical composition of the interlayer was investigated by energy dispersive X-ray spectroscopy (EDS). EDS linescans were performed from pure Al to pure Cu layers. In order to examine the stability of this HCP phase, in-situ heating experiments were performed in the HRTEM at {proportional_to}600 C. Ex-situ heating experiments were performed at different temperatures to
The axial ratio of hcp iron at the conditions of the Earth's inner core
Gannarelli, C M S; Gillian, M J
2004-01-01
We present ab initio calculations of the high-temperature axial c/a ratio of hexagonal-close-packed (hcp) iron at Earth's core pressures, in order to help interpret the observed seismic anisotropy of the inner core. The calculations are based on density functional theory, which is known to predict the properties of high-pressure iron with good accuracy. The temperature dependence of c/a is determined by minimising the Helmholtz free energy at fixed volume and temperature, with thermal contributions due to lattice vibrations calculated using harmonic theory. Anharmonic corrections to the harmonic predictions are estimated from calculations of the thermal average stress obtained from ab initio molecular dynamics simulations of hcp iron at the conditions of the inner core. We find a very gradual increase of axial ratio with temperature. This increase is much smaller than found in earlier calculations, but is in reasonable agreement with recent high-pressure, high-temperature diffraction measurements. This result...
Hashimoto, Atsushi [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Saito, Shin [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Itagaki, Norikazu [Department of Electronic Engineering, Tohoku University, 6-6-05 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan); Takahashi, Migaku [New Industry Creation Hatchery Center, Tohoku University, 6-6-10 Aoba, Aramaki, Aoba-ku, Sendai 980-8579 (Japan)
2008-01-07
Materials with the hexagonal close-packed structure (hcp) and the face-centred-cubic structure with stacking faults (pseudo-hcp) are examined for the nonmagnetic intermediate layer (NMIL) in order to suppress variant growth of magnetic grains for granular-type perpendicular recording media. Judging from the analysis of the epitaxial growth of Co-based magnetic grains, it has been found that a lattice misfit between NMIL and magnetic grain of less than 6% and a spreading coefficient of wettability of magnetic grain on NMIL of greater than 0.3 J m{sup -3} are required for the recording layer to have high perpendicular magnetic anisotropy energy. (fast track communication)
Electronic structure of hcp transition metals
Jepsen, O.; Andersen, O. Krogh; Mackintosh, A. R.
1975-01-01
Using the linear muffin-tin-orbital method described in the previous paper, we have calculated the electronic structures of the hcp transition metals, Zr, Hf, Ru, and Os. We show how the band structures of these metals may be synthesized from the sp and d bands, and illustrate the effects...... mRy. Very small pieces of Fermi surface, which have not yet been observed experimentally, are predicted for Os. The limited amount of experimental information available for Zr can be fairly satisfactorily interpreted if the calculated d bands are raised by about 10-20 mRy relative to the sp bands...
Song, Chulho; Sakata, Osami; Kumara, Loku Singgappulige Rosantha; Kohara, Shinji; Yang, Anli; Kusada, Kohei; Kobayashi, Hirokazu; Kitagawa, Hiroshi
2016-08-10
To reveal the origin of the CO oxidation activity of Ruthenium nanoparticles (Ru NPs), we structurally characterized Ru NPs through Rietveld refinement analysis of high-energy X-ray diffraction data. For hexagonal close-packed (hcp) Ru NPs, the CO oxidation activity decreased with decreasing domain surface area. However, for face-centered cubic (fcc) Ru NPs, the CO oxidation activity became stronger with decreasing domain surface area. In comparing fcc Ru NPs with hcp Ru NPs, we found that the hcp Ru NPs of approximately 2 nm, which had a smaller domain surface area and smaller atomic displacement, showed a higher catalytic activity than that of fcc Ru NPs of the same size. In contrast, fcc Ru NPs larger than 3.5 nm, which had a larger domain surface area, lattice distortion, and larger atomic displacement, exhibited higher catalytic activity than that of hcp Ru NPs of the same size. In addition, the fcc Ru NPs had larger atomic displacements than hcp Ru NPs for diameters ranging from 2.2 to 5.4 nm. Enhancement of the CO oxidation activity in fcc Ru NPs may be caused by an increase in imperfections due to lattice distortions of close-packed planes and static atomic displacements.
Shaped Ni nanoparticles with an unconventional hcp crystalline structure.
Kim, Chanyeon; Kim, Cheonghee; Lee, Kangtaek; Lee, Hyunjoo
2014-06-18
Hourglass-shaped Ni nanoparticles were synthesized with a hexagonal close packed (hcp) structure. The unconventional crystalline structure could be stabilized by intensive utilization of hexadecylamine. The dense organic layer on the surface protected the meta-stable crystalline structure.
Core reserve expansion requirement/Long-term SKR HCP
US Fish and Wildlife Service, Department of the Interior — This letter is regarding the Stephens Kangaroo Rat Habitat Conservation Plan (SKR HCP) which requires that the Riverside County Habitat Conservation Agency establish...
File list: Oth.Emb.10.hcp-6.AllCell [Chip-atlas[Archive
Full Text Available Oth.Emb.10.hcp-6.AllCell ce10 TFs and others hcp-6 Embryo SRX257668,SRX257667,SRX25...7666,SRX257665,SRX257670,SRX257669 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.10.hcp-6.AllCell.bed ...
File list: Oth.ALL.05.hcp-6.AllCell [Chip-atlas[Archive
Full Text Available Oth.ALL.05.hcp-6.AllCell ce10 TFs and others hcp-6 All cell types SRX257668,SRX2576...67,SRX257666,SRX257665,SRX257670,SRX257669 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.05.hcp-6.AllCell.bed ...
File list: Oth.Emb.50.hcp-6.AllCell [Chip-atlas[Archive
Full Text Available Oth.Emb.50.hcp-6.AllCell ce10 TFs and others hcp-6 Embryo SRX257668,SRX257667,SRX25...7666,SRX257665,SRX257670,SRX257669 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.Emb.50.hcp-6.AllCell.bed ...
File list: Oth.ALL.10.hcp-6.AllCell [Chip-atlas[Archive
Full Text Available Oth.ALL.10.hcp-6.AllCell ce10 TFs and others hcp-6 All cell types SRX257668,SRX2576...67,SRX257666,SRX257665,SRX257670,SRX257669 http://dbarchive.biosciencedbc.jp/kyushu-u/ce10/assembled/Oth.ALL.10.hcp-6.AllCell.bed ...
Tsuchiya, T.; Kawai, K.; Kuwayama, Y.; Ohsumi, M.; Ishii, M.
2015-12-01
Earth's inner core (329~364 GPa and 5000~6000 K) is thought to be composed of hexagonal closed pack (hcp) structured solid Fe-Ni alloy (e.g., Mao et al., 1998; Kuwayama et al., 2008; Sha & Cohen, 2010). Thermoelasticity of hcp (ɛ) iron is therefore a key to interpreting seismological information of the inner core: density, seismic wave velocities, and their anisotropy. However, several studies reported that hcp iron has a shear modulus distinctly larger than that of the inner core (e.g., Mao et al., 1998; Vocadlo et al., 2009). This large Poisson ratio of the inner core is one of the remaining inexplicable features of the deep Earth, and it suggests the presence of mechanisms to lower the S-wave velocity in the inner core, such as a low-velocity component (Prescher et al., 2015), pre-melting effect (Martorell et al., 2013), anelasticity, and so on. In this study, we perform ab initio molecular dynamics simulations employing a supercell larger than in previous calculations (Vocadlo et al., 2009; Martorell et al., 2013). Also computations are conducted in a wide P,T range including, but not limited to, the inner core conditions to clarify the P,T effects on the elasticity of the hcp iron more comprehensively, and to provide an internally-consistent thermoelastic model. In addition to checking the validity of the Birch's law, the obtained Poisson ratio and aggregate anisotropy, with and without the pre-melting effect, are compared against seismological constraints to reinvestigate the viability of hcp iron in the inner core. Research supported by KAKENHI (JSPS) and the X-ray Free Electron Laser Priority Strategy Program (MEXT).
Thermoelasticity of hcp-Fe up to 171 GPa
Murphy, C. A.; Jackson, J. M.; Sturhahn, W.; Chen, B.
2012-12-01
Iron is thought to be the main constituent in Earth's core, along with ~5 to 10 wt% nickel and some light elements. The poorly constrained light element component in the core is due, in part, to uncertainties in the high-pressure thermoelastic and thermodynamic properties of both pure iron and iron-alloys. Therefore, it is important to firmly establish the properties of the end-member composition of pure iron at core conditions, which will serve as an important baseline against which to compare the properties of iron-alloys and those inferred for Earth's core. To further our understanding of hexagonal close-packed iron (hcp-Fe) at core pressures, we directly probed its total phonon density of states (DOS) up to 171 GPa and at 300 K, using nuclear resonant inelastic x-ray scattering (NRIXS) and in situ x-ray diffraction (XRD) experiments performed at Sector 3-ID-B of the Advanced Photon Source at Argonne National Laboratory (1, 2). Our use of a hydrostatic pressure medium for select measurements and determination of sample volume with in situ XRD at each of our eleven compression points distinguish our study from previous similar works. In addition, long data collection times resulted in a high statistical quality dataset that, in turn, allowed for our unique analyses of hcp-Fe's thermoelastic and vibrational thermodynamic properties. For example, we determined the Debye sound velocity of hcp-Fe at each compression point from our measured densities and a parabolic fit of the low-energy region of the phonon DOS. In addition, we obtained the vibrational entropy from the integrated total phonon DOS, and used its volume dependence to determine the thermal expansion coefficient of hcp-Fe at 300 K and up to 171 GPa (3). This parameter provides a means for converting between reported values for the isothermal bulk modulus (4) and the adiabatic bulk modulus, the latter of which we used with our measured Debye sound velocities to determine a new tight constraint on the
On the origin of radiation growth of hcp crystals
Golubov, Stanislav I [ORNL; Barashev, Aleksandr [University of Liverpool; Stoller, Roger E [ORNL
2012-03-01
The aim of the present work is to study theoretically the radiation growth (RG) of hcp-type materials with a particular focus on the effect of one-dimensionally (1-D) migrating clusters of self-interstitial atoms (SIAs), which are steadily produced in displacement cascades under neutron or heavy-ion irradiation. A reaction-diffusion model is developed for the description of RG in single hcp-type metallic crystals. The model reproduces all RG stages observed in neutron-irradiated annealed samples of pure Zr and Zr alloys, such as high strain rate at low, strain saturation at intermediate and breakaway growth at relatively high irradiation doses. In addition, it accounts for the striking observations of negative strains in prismatic directions and coexistence of vacancy- and SIA-type prismatic loops. The role of cold work in RG behavior and alignment of the vacancy-type loops along basal planes are revealed and the maximum strain rate is estimated.
Micromechanical modeling of the deformation of HCP metals
Graff, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung
2008-12-04
Nowadays, intense research is conducted to understand the relation between microstructural features and mechanical properties of hexagonal close-packed (hcp) metals. Due to their hexagonal structure, hcp metals exhibit mechanical properties such as strong anisotropy, which is more pronounced than for construction metals with cubic crystal structure, and tension/compression asymmetry. Deformation mechanisms in hcp metals, dislocation motion on specific slip systems and activation of twinning, are not yet completely understood. The purpose of this work is to link the physical mechanisms developing during deformation of magnesium (Mg) on the microscale with the macroscopic yielding properties of texture Mg samples. It will be shown that the mechanical behavior of hcp metals may be understood and reproduced with the help of a visco-plastic model for crystal plasticity and a phenomenological yield criterion with appropriate hardening behavior. The study of single crystal specimens subjected to channel die compression tests reveals the active slip systems and twinning systems of the material considered. The material anisotropy at mesoscale is reproduced by using adequate critical resolved shear stresses (CRSS) for the considered deformation mechanisms. In order to describe the macroscopic behavior, texture is incorporated into polycrystalline Representative Volume Elements (RVEs) and various mechanical properties of extruded bars and rolled plates can be predicted. For RVEs exhibiting the texture of rolled plates the numerical results reveal the plate's anisotropic yielding and hardening behavior on a mesoscale. In order to extend the modeling possibilities to process simulations and to allow for time-saving simulations of structural behavior, a phenomenological yield surface accounting for anisotropy and tension/compression asymmetry has been established and implemented in a finite element code. Its numerous model parameters are calibrated by an optimization
Hajeri, Vinita A; Stewart, Anil M; Moore, Landon L; Padilla, Pamela A
2008-02-04
The spindle checkpoint delays the onset of anaphase until all sister chromatids are aligned properly at the metaphase plate. To investigate the role san-1, the MAD3 homologue, has in Caenorhabditis elegans embryos we used RNA interference (RNAi) to identify genes synthetic lethal with the viable san-1(ok1580) deletion mutant. The san-1(ok1580) animal has low penetrating phenotypes including an increased incidence of males, larvae arrest, slow growth, protruding vulva, and defects in vulva morphogenesis. We found that the viability of san-1(ok1580) embryos is significantly reduced when HCP-1 (CENP-F homologue), MDF-1 (MAD-1 homologue), MDF-2 (MAD-2 homologue) or BUB-3 (predicted BUB-3 homologue) are reduced by RNAi. Interestingly, the viability of san-1(ok1580) embryos is not significantly reduced when the paralog of HCP-1, HCP-2, is reduced. The phenotype of san-1(ok1580);hcp-1(RNAi) embryos includes embryonic and larval lethality, abnormal organ development, and an increase in abnormal chromosome segregation (aberrant mitotic nuclei, anaphase bridging). Several of the san-1(ok1580);hcp-1(RNAi) animals displayed abnormal kinetochore (detected by MPM-2) and microtubule structure. The survival of mdf-2(RNAi);hcp-1(RNAi) embryos but not bub-3(RNAi);hcp-1(RNAi) embryos was also compromised. Finally, we found that san-1(ok1580) and bub-3(RNAi), but not hcp-1(RNAi) embryos, were sensitive to anoxia, suggesting that like SAN-1, BUB-3 has a functional role as a spindle checkpoint protein. Together, these data suggest that in the C. elegans embryo, HCP-1 interacts with a subset of the spindle checkpoint pathway. Furthermore, the fact that san-1(ok1580);hcp-1(RNAi) animals had a severe viability defect whereas in the san-1(ok1580);hcp-2(RNAi) and san-1(ok1580);hcp-2(ok1757) animals the viability defect was not as severe suggesting that hcp-1 and hcp-2 are not completely redundant.
Moore Landon L
2008-02-01
Full Text Available Abstract Background The spindle checkpoint delays the onset of anaphase until all sister chromatids are aligned properly at the metaphase plate. To investigate the role san-1, the MAD3 homologue, has in Caenorhabditis elegans embryos we used RNA interference (RNAi to identify genes synthetic lethal with the viable san-1(ok1580 deletion mutant. Results The san-1(ok1580 animal has low penetrating phenotypes including an increased incidence of males, larvae arrest, slow growth, protruding vulva, and defects in vulva morphogenesis. We found that the viability of san-1(ok1580 embryos is significantly reduced when HCP-1 (CENP-F homologue, MDF-1 (MAD-1 homologue, MDF-2 (MAD-2 homologue or BUB-3 (predicted BUB-3 homologue are reduced by RNAi. Interestingly, the viability of san-1(ok1580 embryos is not significantly reduced when the paralog of HCP-1, HCP-2, is reduced. The phenotype of san-1(ok1580;hcp-1(RNAi embryos includes embryonic and larval lethality, abnormal organ development, and an increase in abnormal chromosome segregation (aberrant mitotic nuclei, anaphase bridging. Several of the san-1(ok1580;hcp-1(RNAi animals displayed abnormal kinetochore (detected by MPM-2 and microtubule structure. The survival of mdf-2(RNAi;hcp-1(RNAi embryos but not bub-3(RNAi;hcp-1(RNAi embryos was also compromised. Finally, we found that san-1(ok1580 and bub-3(RNAi, but not hcp-1(RNAi embryos, were sensitive to anoxia, suggesting that like SAN-1, BUB-3 has a functional role as a spindle checkpoint protein. Conclusion Together, these data suggest that in the C. elegans embryo, HCP-1 interacts with a subset of the spindle checkpoint pathway. Furthermore, the fact that san-1(ok1580;hcp-1(RNAi animals had a severe viability defect whereas in the san-1(ok1580;hcp-2(RNAi and san-1(ok1580;hcp-2(ok1757 animals the viability defect was not as severe suggesting that hcp-1 and hcp-2 are not completely redundant.
Smolic, E; Hagn, E; Zech, E; Seewald, G
2002-01-01
The aim of the experiments is the measurement of $\\,$i) nuclear magnetic moments and electric quadrupole moments of neutron-deficient isotopes in the region Os-Ir-Pt-Au with the methods of quadrupole-interaction-resolved NMR on oriented nuclei " QI-NMR-ON " and modulated adiabatic passage on oriented nuclei " MAPON " and $\\,$ii) the magnetic hyperfine field, electric field gradient (EFG), and spin-lattice relaxation of 5d elements in ferromagnetic Fe, Ni, fcc-Co and hcp-Co.\\\\ The measurements on Au isotopes have been finished successfully. The quadrupole moments of $^{186}$Au, $^{193m}$Au, $^{195}$Au, $^{195m}$Au, $^{197m}$Au, $^{198}$Au and $^{199}$Au were determined with high precision.\\\\ For neutron-deficient Ir isotopes QI-NMR-ON measurements were performed after implantation of Hg precursors. The EFG of Ir in hcp-Co has been calibrated. Thus precise values for the spectroscopic quadrupole mo...
Hilbert's Second Problems and Uncertainty Computing, from HCP Logic's Point of View
James Kuodo Huang
2006-01-01
Hilbert's complete perfect (HCP) logic is introduced. The G(o)del's incompleteness theorem discloses the limit of logic. Huang's universal consistent theorem and relative consistent theorem extends the limit of logic. The proofs of these theorems are in 2-valued logic but the completeness can be extended in the three-valued HCP logic.The author proposes HCP logic for the foundation of uncertainty computing as well.
Martensitic transformation fcc(γ)→hcp(ε)
徐祖耀
1997-01-01
Criteria of the thermoelastic martensitic transformation are suggested, on the basis of which the martensitic transformation fcc(γ)→hcp(ε) in Fe-Mn-Si based alloys is classified as a semi-thermoelastic transformation In contrast with the martensitic transformation fcc(γ)→bct(bcc)α’ in iron-based alloys, the thermoelastic transformation in Cu-based alloys and the t→m transformation in ceramics containing ZrO2, in γ→ε of Fe-Mn-Si, the strengthening and grain size of the parent phase will not markedly affecl the Ms and the internal friction peak indicating the martensitic Transformation does not correspond to a significant lowering of the elastic modulus, implying that the nucleation of ε-martensite may occur directly through the stacking fault and may not strongly depend on soft mode. A comparison between the thermal and stress induced ε martensites is made and a brief discussion is given.
Chakrabarti, J; Bagchi, B; Chakrabarti, Jayprokas; Basu, Asis; Bagchi, Bijon
2000-01-01
Fermions on the lattice have bosonic excitations generated from the underlying periodic background. These, the lattice bosons, arise near the empty band or when the bands are nearly full. They do not depend on the nature of the interactions and exist for any fermion-fermion coupling. We discuss these lattice boson solutions for the Dirac Hamiltonian.
Hwang, Junga; Yoon, Kyoung-Won; Jo, Gyeongbok; Noh, Sung-Jun
2016-12-01
The space radiation dose over air routes including polar routes should be carefully considered, especially when space weather shows sudden disturbances such as coronal mass ejections (CMEs), flares, and accompanying solar energetic particle events. We recently established a heliocentric potential (HCP) prediction model for real-time operation of the CARI-6 and CARI-6M programs. Specifically, the HCP value is used as a critical input value in the CARI-6/6M programs, which estimate the aviation route dose based on the effective dose rate. The CARI-6/6M approach is the most widely used technique, and the programs can be obtained from the U.S. Federal Aviation Administration (FAA). However, HCP values are given at a one month delay on the FAA official webpage, which makes it difficult to obtain real-time information on the aviation route dose. In order to overcome this critical limitation regarding the time delay for space weather customers, we developed a HCP prediction model based on sunspot number variations (Hwang et al. 2015). In this paper, we focus on improvements to our HCP prediction model and update it with neutron monitoring data. We found that the most accurate method to derive the HCP value involves (1) real-time daily sunspot assessments, (2) predictions of the daily HCP by our prediction algorithm, and (3) calculations of the resultant daily effective dose rate. Additionally, we also derived the HCP prediction algorithm in this paper by using ground neutron counts. With the compensation stemming from the use of ground neutron count data, the newly developed HCP prediction model was improved.
Junga Hwang
2016-12-01
Full Text Available The space radiation dose over air routes including polar routes should be carefully considered, especially when space weather shows sudden disturbances such as coronal mass ejections (CMEs, flares, and accompanying solar energetic particle events. We recently established a heliocentric potential (HCP prediction model for real-time operation of the CARI-6 and CARI-6M programs. Specifically, the HCP value is used as a critical input value in the CARI-6/6M programs, which estimate the aviation route dose based on the effective dose rate. The CARI-6/6M approach is the most widely used technique, and the programs can be obtained from the U.S. Federal Aviation Administration (FAA. However, HCP values are given at a one month delay on the FAA official webpage, which makes it difficult to obtain real-time information on the aviation route dose. In order to overcome this critical limitation regarding the time delay for space weather customers, we developed a HCP prediction model based on sunspot number variations (Hwang et al. 2015. In this paper, we focus on improvements to our HCP prediction model and update it with neutron monitoring data. We found that the most accurate method to derive the HCP value involves (1 real-time daily sunspot assessments, (2 predictions of the daily HCP by our prediction algorithm, and (3 calculations of the resultant daily effective dose rate. Additionally, we also derived the HCP prediction algorithm in this paper by using ground neutron counts. With the compensation stemming from the use of ground neutron count data, the newly developed HCP prediction model was improved.
N. K. Mahale
2014-01-01
Full Text Available We report the synthesis and structural transformation of fcc to hcp in Ni-graphene (Ni-Gr composite by simple chemical route via sonication. The syntheses of Ni-Gr composite by simultaneous reduction method, and the effect of different composition ratio on morphology and crystal structure were examined in our present study. The results indicated that the graphene ratio played an important role in crystal structure and d-spacing in nickel crystals. Different compositions have shown different behavior. The nanonickel clusters of various shapes with coated graphene and decorated as nickel on graphene sheets are observed. The synthesized composites were characterized using X-ray diffraction (XRD, field emission scanning electron microscopy (FE-SEM, and transmission electron microscope (TEM. The XRD patterns indicated crystal lattice modifications in some composites while composites with a higher graphene ratio produced very small crystals with uniform lattice parameter and d-spacing. FE-SEM images indicated the growth of Datura fruit like shapes of nickel clusters in higher composition of nickel while the composites with least concentration of nickel were composed of cubical nanoparticles grown on graphene sheets. TEM analysis revealed many Ni nanoparticles surrounding the smooth petals like surface of graphene, with average diameters of spiky nickel nanoparticles being about 50 nm and 124 nm, respectively, on 200 nm of scale.
Scaling Laws and Critical Properties for fcc and hcp Metals.
Desgranges, Caroline; Widhalm, Leanna; Delhommelle, Jerome
2016-06-16
The determination of the critical parameters of metals has remained particularly challenging both experimentally, because of the very large temperatures involved, and theoretically, because of the many-body interactions that take place in metals. Moreover, experiments have shown that these systems exhibit an unusually strong asymmetry of their binodal. Recent theoretical work has led to new similarity laws, based on the calculation of the Zeno line and of the underlying Boyle parameters, which provided results for the critical properties of atomic and molecular systems in excellent agreement with experiments. Using the recently developed expanded Wang-Landau (EWL) simulation method, we evaluate the grand-canonical partition function, over a wide range of conditions, for 11 fcc and hcp metals (Ag, Al, Au, Be, Cu, Ir, Ni, Pb, Pd, Pt, and Rh), modeled with a many-body interaction potential. This allows us to calculate the binodal, Zeno line, and Boyle parameters and, in turn, obtain the critical properties for these systems. We also propose two scaling laws for the enthalpy and entropy of vaporization, and identify critical exponents of 0.4 and 1.22 for these two laws, respectively.
Seismic parameters of hcp-Fe alloyed with Ni and Si in the Earth's inner core
Liu, Jin; Lin, Jung-Fu; Alatas, Ahmet; Hu, Michael Y.; Zhao, Jiyong; Dubrovinsky, Leonid
2016-02-01
Iron alloyed with Ni and Si has been suggested to be a major component of the Earth's inner core. High-pressure results on the combined alloying effects of Ni and Si on seismic parameters of iron are thus essential for establishing satisfactory geophysical and geochemical models of the region. Here we have investigated the compressional (VP) and shear (Vs) wave velocity-density (ρ) relations, Poisson's ratio (ν), and seismic heterogeneity ratios (dlnρ/dlnVP, dlnρ/dlnVS, and dlnVP/dlnVS) of hcp-Fe and hcp-Fe86.8Ni8.6Si4.6 alloy up to 206 GPa and 136 GPa, respectively, using multiple complementary techniques. Compared with the literature velocity values for hcp-Fe and Fe-Ni-Si alloys, our results show that the combined addition of 9.0 wt % Ni and 2.3 wt % Si slightly increases the VP but significantly decreases the VS of hcp-Fe at a given density relevant to the inner core. Such distinct alloying effects on velocities of hcp-Fe produce a high ν of about 0.40 for the alloy at inner core densities, which is approximately 20% higher than that for hcp-Fe. Analysis of the literature high P-T results on VP and VS of Fe alloyed with light elements shows that high temperature can further enhance the ν of hcp-Fe alloyed with Ni and Si. Most significantly, the derived seismic heterogeneity ratios of this hcp alloy present a better match with global seismic observations. Our results provide a multifactored geophysical constraint on the compositional model of the inner core which is consistent with silicon being a major light element alloyed with Fe and 5 wt % Ni.
COMPUTER SIMULATION OF THE STRUCTURE OF bcc/hcp AND bcc/9R MARTENSITE INTERFACES
Barcelo, G.; Crocker, A.
1982-01-01
The structures of two interfaces of martensitic transformations in Cu Zn based alloys have been investigated using computer simulation techniques. A new interatomic potential has been developed which is assumed to represent all interactions between atoms in the parent bcc phase and the product hcp and 9R phases. Stable relaxed structures of bcc/hcp and bcc/9R interfaces have been found. In both cases the interface migrates into the bcc phase during the relaxation process. The boundary in the ...
Wang, Da-Wei; Zhu, Shi-Yao; Scully, Marlan O
2014-01-01
We show that the timed Dicke states of a collection of three-level atoms can form a tight-binding lattice in the momentum space. This lattice, coined the superradiance lattice (SL), can be constructed based on an electromagnetically induced transparency (EIT) system. For a one-dimensional SL, we need the coupling field of the EIT system to be a standing wave. The detuning between the two components of the standing wave introduces an effective electric field. The quantum behaviours of electrons in lattices, such as Bloch oscillations, Wannier-Stark ladders, Bloch band collapsing and dynamic localization can be observed in the SL. The SL can be extended to two, three and even higher dimensions where no analogous real space lattices exist and new physics are waiting to be explored.
Saheed Olalekan Sanni; Omoruyi Gold Idemudia
2015-01-01
CuO dispersed on dealuminated clinoptilolite (CuO/HCP) and further doped with polymeric graphitic carbon nitride (CuO/HCP-g-C3N4) was synthesized through 2 facile routes: precipitation method for CuO/HCP and impregnation through ultrasonication method for the hybrid composite material. The hybrid composite material crystalline phase, surface morphology, and structural and thermal properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-r...
Olson, Adam C; Carter, Clay J
2016-01-01
The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4) was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4) followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.
Adam C Olson
Full Text Available The unicellular green algae Chlamydomonas reinhardtii has long been studied for its unique fermentation pathways and has been evaluated as a candidate organism for biofuel production. Fermentation in C. reinhardtii is facilitated by a network of three predominant pathways producing four major byproducts: formate, ethanol, acetate and hydrogen. Previous microarray studies identified many genes as being highly up-regulated during anaerobiosis. For example, hybrid cluster protein 4 (HCP4 was found to be one of the most highly up-regulated genes under anoxic conditions. Hybrid cluster proteins have long been studied for their unique spectroscopic properties, yet their biological functions remain largely unclear. To probe its role during anaerobiosis, HCP4 was silenced using artificial microRNAs (ami-hcp4 followed by extensive phenotypic analyses of cells grown under anoxic conditions. Both the expression of key fermentative enzymes and their respective metabolites were significantly altered in ami-hcp4, with nitrogen uptake from the media also being significantly different than wild-type cells. The results strongly suggest a role for HCP4 in regulating key fermentative and nitrogen utilization pathways.
Cheng, Bao-Hui; Chan, Judy Yuet-Wa; Chan, Ben Chung-Lap; Lin, Huang-Quan; Han, Xiao-Qiang; Zhou, Xuelin; Wan, David Chi-Cheong; Wang, Yi-Fen; Leung, Ping-Chung; Fung, Kwok-Pui; Lau, Clara Bik-San
2014-03-15
Immunomodulation of natural polysaccharides has been the hot topic of research in recent years. In order to explore the immunomodulatory effect of Houttuynia cordata Thunb., the water extract was studied and a polysaccharide HCP-2 with molecular weight of 60,000 Da was isolated by chromatography using DEAE Sepharose CL-6B and Sephacryl S-500 [corrected] HR columns. The structure characterization of HCP-2 was performed by Fourier transform infrared spectroscopy (FTIR), acidic hydrolysis, PMP derivation, HPLC analysis and nuclear magnetic resonance spectra (NMR). HCP-2 was elucidated as a pectic polysaccharide with a linear chain of 1,4-linked α-D-galacturonic acid residues in which part of the 6-carboxyl groups were methyl esterified and part of 2-hydroxyl groups were acetylated. The bioactivity assays showed that HCP-2 could increase the secretions of interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), macrophage inhibitory protein-1α (MIP-1α), macrophage inhibitory protein-1β (MIP-1β), and RANTES (regulated on activation, normal T cell expressed and secreted) in human peripheral blood mononuclear cells (PBMCs), which play critical roles in the innate immune system and shape the adaptive immunity. Our results implied that HCP-2 could be an immune enhancer.
Symmetries of 2-lattices and second order accuracy of the Cauchy--Born Model
Van Koten, Brian
2012-01-01
We show that the Cauchy--Born model of a single-species 2-lattice is second order if the atomistic and continuum kinematics are connected in a novel way. Our proof uses a generalization to 2-lattices of the point symmetry of Bravais lattices. Moreover, by identifying similar symmetries in multi-species pair interaction models, we construct a new stored energy density, using shift-gradients but not strain gradients, that is also second order accurate. These results can be used to develop highly accurate continuum models and atomistic/continuum coupling methods for materials such as graphene, hcp metals, and shape memory alloys.
Crystallographic dependence of CO activation on cobalt catalysts: HCP versus FCC.
Liu, Jin-Xun; Su, Hai-Yan; Sun, Da-Peng; Zhang, Bing-Yan; Li, Wei-Xue
2013-11-06
Identifying the structure sensitivity of catalysts in reactions, such as Fischer-Tropsch synthesis from CO and H2 over cobalt catalysts, is an important yet challenging issue in heterogeneous catalysis. Based on a first-principles kinetic study, we find for the first time that CO activation on hexagonal close-packed (HCP) Co not only has much higher intrinsic activity than that of face centered-cubic (FCC) Co but also prefers a different reaction route, i.e., direct dissociation with HCP Co but H-assisted dissociation on the FCC Co. The origin is identified from the formation of various denser yet favorable active sites on HCP Co not available for FCC Co, due to their distinct crystallographic structure and morphology. The great dependence of the activity on the crystallographic structure and morphology of the catalysts revealed here may open a new avenue for better, stable catalysts with maximum mass-specific reactivity.
Relative stability of the FCC and HCP polymorphs with interacting polymers.
Mahynski, Nathan A; Kumar, Sanat K; Panagiotopoulos, Athanassios Z
2015-01-14
Recent work [Mahynski et al., Nat. Commun., 2014, 5, 4472] has demonstrated that the addition of long linear homopolymers thermodynamically biases crystallizing hard-sphere colloids to produce the hexagonal close-packed (HCP) polymorph over the closely related face-centered cubic (FCC) structure when the polymers and colloids are purely repulsive. In this report, we investigate the effects of thermal interactions on each crystal polymorph to explore the possibility of stabilizing the FCC crystal structure over the HCP. We find that the HCP polymorph remains at least as stable as its FCC counterpart across the entire range of interactions we explored, where interactions were quantified by the reduced second virial coefficient, -1.50 0, its tetrahedral voids produce a similar effect when B FCC crystals are elusive in these binary mixtures.
On the relative stability of orthorhombic and hcp phases of beryllium at high pressures
Palanivel, B.; Rao, R.S.; Godwal, B.K.; Sikka, S.K. [High Pressure Physics Division, Bhabha Atomic Research Center, Mumbai (India)
2000-10-16
High-pressure electronic properties of Be have been investigated theoretically by means of ab initio electronic structure calculations. The calculations have been carried out by the semi-relativistic full-potential, linear muffin-tin orbital (FPLMTO) method, within the local density approximation. The crystal structure stability among the hcp, bcc and orthorhombic (distorted hcp) phases has been studied as a function of compression. The bcc structure is found to be energetically stable at pressures above 180 GPa. From the results of our calculations, the orthorhombic phase cannot occur as an intermediate phase between the ambient pressure hcp phase and the high-pressure bcc structure. Our work thus suggests the need for more accurate high-pressure x-ray data. (author)
Effect of Crystal Quality on HCP-BCC Phase Transition in Solid 4He
Mikhin, N; Rudavskii, E; Vekhov, Y; Mikhin, Nikolay; Polev, Andrey; Rudavskii, Eduard; Vekhov, Yegor
2006-01-01
The kinetics of HCP-BCC structure phase transition is studied by precise pressure measurement technique in 4He crystals of different quality. An anomalous pressure behavior in bad quality crystals under constant volume conditions is detected just after HCP-BCC structure phase transition. A sharp pressure drop of 0.2 bar was observed at constant temperature. The subsequent pressure kinetics is a non-monotonic temperature function. The effect observed can be explained if we suppose that microscopic liquid droplets appear on the HCP-BCC interphase region in bad quality crystals. After the interphase region disappearance, these droplets are crystallized with pressure reduction. It is shown that this effect is absent in high quality thermal-treated crystals.
Mechanism and energetics of dislocation cross-slip in hcp metals
Wu, Zhaoxuan; Curtin, W. A.
2016-10-01
Hexagonal close-packed (hcp) metals such as Mg, Ti, and Zr are lightweight and/or durable metals with critical structural applications in the automotive (Mg), aerospace (Ti), and nuclear (Zr) industries. The hcp structure, however, brings significant complications in the mechanisms of plastic deformation, strengthening, and ductility, and these complications pose significant challenges in advancing the science and engineering of these metals. In hcp metals, generalized plasticity requires the activation of slip on pyramidal planes, but the structure, motion, and cross-slip of the associated dislocations are not well established even though they determine ductility and influence strengthening. Here, atomistic simulations in Mg reveal the unusual mechanism of dislocation cross-slip between pyramidal I and II planes, which occurs by cross-slip of the individual partial dislocations. The energy barrier is controlled by a fundamental step/jog energy and the near-core energy difference between pyramidal dislocations. The near-core energy difference can be changed by nonglide stresses, leading to tension-compression asymmetry and even a switch in absolute stability from one glide plane to the other, both features observed experimentally in Mg, Ti, and their alloys. The unique cross-slip mechanism is governed by common features of the generalized stacking fault energy surfaces of hcp pyramidal planes and is thus expected to be generic to all hcp metals. An analytical model is developed to predict the cross-slip barrier as a function of the near-core energy difference and applied stresses and quantifies the controlling features of cross-slip and pyramidal I/II stability across the family of hcp metals.
Donnellan, Thomas; Maxwell, E A; Plumpton, C
1968-01-01
Lattice Theory presents an elementary account of a significant branch of contemporary mathematics concerning lattice theory. This book discusses the unusual features, which include the presentation and exploitation of partitions of a finite set. Organized into six chapters, this book begins with an overview of the concept of several topics, including sets in general, the relations and operations, the relation of equivalence, and the relation of congruence. This text then defines the relation of partial order and then partially ordered sets, including chains. Other chapters examine the properti
H-NS蛋白对副溶血弧菌hcp1的转录调控%Transcriptional regulation of hcp1 by H-NS in Vibrio parahaemolyticus
王洁; 董新波; 高丽晓; 周冬生; 殷喆; 张义全
2016-01-01
[目的]研究调控子H-NS对副溶血弧菌T6SS1结构蛋白基因hcp1的转录调控机制.[方法]利用Western blot检测Hcp1蛋白在野生株(WT)和hns基因敲除株(△hns)中表达水平的差异.提取WT和△hns的总RNA,采用实时定量RT-PCR的方法验证H-NS对hcp1的转录调控关系.进而采用引物延伸实验研究hcp1的转录起始位点,并根据产物的丰度判断H-NS对hcp1的调控关系.PCR扩增hcp1的整个启动子区DNA序列,并纯化His-H-NS蛋白,通过凝胶阻滞实验(EMSA)验证His-H-NS对hcp1启动子区是否具有直接的结合作用.[结果]Western blot和实时定量RT-PCR结果显示H-NS能抑制hcp1的表达;引物延伸结果显示hcp1只有一个转录起始位点T(-62)(翻译起始位点为+1),且其转录活性是H-NS和σ54依赖性的;EMSA实验表明H-NS对hcp1的启动子区具有直接的结合作用.[结论]H-NS能直接结合到hcp1启动子区而抑制其转录表达.
Pressure-induced fcc to hcp phase transition in Ni-based high entropy solid solution alloys
Zhang, F. X.; Zhao, Shijun; Jin, Ke; Bei, H.; Popov, D.; Park, Changyong; Neuefeind, J. C.; Weber, W. J.; Zhang, Yanwen [Tennessee-K; (ORNL); (CIW)
2017-01-04
A pressure-induced phase transition from the fcc to a hexagonal close-packed (hcp) structure was found in NiCoCrFe solid solution alloy starting at 13.5 GPa. The phase transition is very sluggish and the transition did not complete at ~40 GPa. The hcp structure is quenchable to ambient pressure. Only a very small amount (<5%) of hcp phase was found in the isostructural NiCoCr ternary alloy up to the pressure of 45 GPa and no obvious hcp phase was found in NiCoCrFePd system till to 74 GPa. Ab initio Gibbs free energy calculations indicated the energy differences between the fcc and the hcp phases for the three alloys are very small, but they are sensitive to temperature. The critical transition pressure in NiCoCrFe varies from ~1 GPa at room temperature to ~6 GPa at 500 K.
FCC-HCP coexistence in dense thermo-responsive microgel crystals
Karthickeyan, D.; Joshi, R. G.; Tata, B. V. R.
2017-06-01
Analogous to hard-sphere suspensions, monodisperse thermo-responsive poly (N-isopropyl acrylamide) (PNIPAM) microgel particles beyond a volume fraction (ϕ) of 0.5 freeze into face centered cubic (FCC)-hexagonal close packed (HCP) coexistence under as prepared conditions and into an FCC structure upon annealing. We report here FCC-HCP coexistence to be stable in dense PNIPAM microgel crystals (ϕ > 0.74) with particles in their deswollen state (referred to as osmotically compressed microgel crystals) and the FCC structure with particles in their swollen state by performing annealing studies with different cooling rates. The structure of PNIPAM microgel crystals is characterized using static light scattering technique and UV-Visible spectroscopy and dynamics by dynamic light scattering (DLS). DLS studies reveal that the particle motion is diffusive at short times in crystals with ϕ 0.74. The observed sub-diffusive behavior at short times is due to the overlap (interpenetration) of the dangling polymer chains between the shells of neighbouring PNIPAM microgel particles. Overlap is found to disappear upon heating the crystals well above their melting temperature, Tm due to reduction in the particle size. Annealing studies confirm that the overlap of dangling polymer chains between the shells of neighbouring PNIPAM spheres is responsible for the stability of FCC-HCP coexistence observed in osmotically compressed PNIPAM microgel crystals. Results are discussed in the light of recent reports of stabilizing the HCP structure in hard sphere crystals by adding interacting polymer chains.
Wang, B T; Shao, J L; Zhang, G C; Li, W D; Zhang, P
2010-11-03
By classical molecular dynamics simulations employing an embedded atom method potential, we have simulated the bcc to hcp/fcc structural transition in single-crystal iron under uniform compression. Results showed that the transition pressure is different from uniaxial compression and shock loading. The transformation occurs on a picosecond timescale and the transition time decreases along with the increase of pressure. The nucleation and growth of the hcp and fcc phases under constant pressure and temperature are analyzed in detail. The nucleation planes, all belonging to the {110}(bcc) family and parallel to the three compression directions [100], [010], and [001], have been observed. About 20% bcc atoms have transformed to fcc phase under pressure just over the critical point, and under higher pressure the fraction of the fcc phase increases steadily to exceed that of the hcp phase. We have investigated the transition mechanism of iron from initial bcc to hcp/fcc and found that the transition mainly consists of compression, rotation, and shuffle.
Interface effect of magnetic properties in Ni nanoparticles with a hcp core and fcc shell structure.
Choo, Seongmin; Lee, Kyujoon; Jo, Younghun; Yoon, Seon-Mi; Choi, Jae-Young; Kim, Jea-Young; Park, Jea-Hoon; Lee, Kyung-Jin; Lee, Jong-Heun; Jung, Myung-Hwa
2011-07-01
We have fabricated hexagonal close-packed (hcp) Ni nanoparticles covered by a face-centered cubic (fcc) Ni surface layer by polyol method. The magnetic properties have been investigated as a function of temperature and applied magnetic field. The magnetic behavior reveals that the system should be divided magnetically into three distinct phases with different origins. The fcc Ni phase on the shell contributes to the superparamagnetism through a wide temperature range up to 360 K. The hcp Ni phase at the core is associated with antiferromagnetic nature below 12 K. These observations are in good agreement with the X-ray absorption spectroscopy and magnetic circular dichroism measurements. In our particular case, the unique hcp core and fcc shell structure gives rise to an additional anomaly at 20 K in the zero-field-cooled magnetization curve. Its position is barely affected by the magnetic field but its structure disappears above 30 kOe, showing a metamagnetic transition in the magnetization versus magnetic field curve. This new phase originates from the magnetic exchange at the interface between the hcp and fcc Ni sublattices.
Van Bohemen, S.M.C.; Sietsma, J.; Van der Zwaag, S.
2006-01-01
The formation mechanisms of two hcp α phase morphologies in Ti-4.5Fe-6.8Mo-1.5Al have been investigated by optical microscopy (OM), atomic force microscopy (AFM), electron probe microanalysis (EPMA) and dilatometry. At relatively high temperatures primary α forms predominantly on prior bcc β grain
Large difference in the elastic properties of fcc and hcp hard-sphere crystals
Pronk, S.; Frenkel, D.
2003-01-01
We report a numerical calculation of the elastic constants of the fcc and hcp crystal phases of monodisperse hard-sphere colloids. Surprisingly, some of these elastic constants are very different (up to 20%), even though the free-energy, pressure, and bulk compressibility of the two crystal structur
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
Acoustic anisotropy of hcp metals at high pressure: the example of cobalt
Antonangeli, D.; Occelli, F.; Aracne, C.; Farber, D.; Guyot, F.; Requardt, H.; Fiquet, G.; Krisch, M.
2003-04-01
Beyond studies of the bulk properties of the Earth's core, seismological studies show that the inner core is elastically anisotropic (e.g. Woodhouse et al., Geophys. Res. Lett. 13, 1549, 1986). with an axial symmetry and an amplitude of about 3%, with the fast direction oriented parallel to the Earth's rotation axis. Several hypotheses have been proposed to explain this feature, however the anisotropy of hcp iron at very high pressure is not quantitatively known. Indeed, theoretical results predict a rather low intrinsic anisotropy, almost requiring a perfect alignment of iron hcp crystals in order to account for the observed seismic anisotropy (Stixrude and Cohen, Science, 267, 1972, 1995). On the other hand, texture x-ray diffraction measurements of iron at very high-pressure (Mao et al., Nature 399, 280, 1999; Wenk et al., Nature 405, 1044, 2000) indicate a large compressional-wave anisotropy which relieves the "perfect alignment" textural constraint. The anisotropy proposed by texture measurements, when compared to calculations, is not only different in magnitude, but as well in direction. In order to settle these discrepancies among the various indirect experimental techniques and theory, a direct experimental determination of the elastic constants of hcp iron and their evolution with pressure and temperature is needed. However, obtaining single crystals of hcp-Fe at high pressure is currently not possible. To address the issue of elastic anisotropy, we present results obtained on cobalt. Unlike iron, hcp cobalt is stable at room temperature and ambient pressure to at least 79 GPa (Fujihisa and Takemura, Phys. Rev. B 54, 5, 1996). Cobalt is located next to iron in the 3d transition metals classification and exhibits similar thermo-elastic behaviour in its highly compact hcp-structure, which should make of cobalt a good proxy for iron at high-pressure. The five independent elastic constants (C11, C33, C44, C12, C13) and their pressure dependence have been
Alabd Alhafez, Iyad; Ruestes, Carlos J.; Gao, Yu; Urbassek, Herbert M.
2016-01-01
Using molecular dynamics simulation, we study the nanoindentation of three hcp metals: Mg, Ti, and Zr. Both the basal and two prismatic surface planes are considered. We focus on the characterization of the plasticity generated in the crystal. The similarities to, and the differences from, the behavior of the more commonly investigated fcc and bcc metals are highlighted. We find that hcp metals show a larger variety than the fcc and bcc metals studied up until now. The prolific emission of prismatic loops can lead to extended plastic zones. The size of the plastic zone is quantified by the ratio f of the plastic zone radius to the radius of the contact area. We find values of between 1.6 (an almost collapsed zone) and >5 in the latter case, complex dislocation networks build up which are extended in the direction of easy glide.
Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System.
Ruiz, Federico M; Santillana, Elena; Spínola-Amilibia, Mercedes; Torreira, Eva; Culebras, Esther; Romero, Antonio
2015-01-01
The type VI secretion system (T6SS) is a bacterial macromolecular machine widely distributed in Gram-negative bacteria, which transports effector proteins into eukaryotic host cells or other bacteria. Membrane complexes and a central tubular structure, which resembles the tail of contractile bacteriophages, compose the T6SS. One of the proteins forming this tube is the hemolysin co-regulated protein (Hcp), which acts as virulence factor, as transporter of effectors and as a chaperone. In this study, we present the structure of Hcp from Acinetobacter baumannii, together with functional and oligomerization studies. The structure of this protein exhibits a tight β barrel formed by two β sheets and flanked at one side by a short α-helix. Six Hcp molecules associate to form a donut-shaped hexamer, as observed in both the crystal structure and solution. These results emphasize the importance of this oligomerization state in this family of proteins, despite the low similarity of sequence among them. The structure presented in this study is the first one for a protein forming part of a functional T6SS from A. baumannii. These results will help us to understand the mechanism and function of this secretion system in this opportunistic nosocomial pathogen.
Crystal Structure of Hcp from Acinetobacter baumannii: A Component of the Type VI Secretion System.
Federico M Ruiz
Full Text Available The type VI secretion system (T6SS is a bacterial macromolecular machine widely distributed in Gram-negative bacteria, which transports effector proteins into eukaryotic host cells or other bacteria. Membrane complexes and a central tubular structure, which resembles the tail of contractile bacteriophages, compose the T6SS. One of the proteins forming this tube is the hemolysin co-regulated protein (Hcp, which acts as virulence factor, as transporter of effectors and as a chaperone. In this study, we present the structure of Hcp from Acinetobacter baumannii, together with functional and oligomerization studies. The structure of this protein exhibits a tight β barrel formed by two β sheets and flanked at one side by a short α-helix. Six Hcp molecules associate to form a donut-shaped hexamer, as observed in both the crystal structure and solution. These results emphasize the importance of this oligomerization state in this family of proteins, despite the low similarity of sequence among them. The structure presented in this study is the first one for a protein forming part of a functional T6SS from A. baumannii. These results will help us to understand the mechanism and function of this secretion system in this opportunistic nosocomial pathogen.
Sakamaki, Tatsuya; Ohtani, Eiji; Fukui, Hiroshi; Kamada, Seiji; Takahashi, Suguru; Sakairi, Takanori; Takahata, Akihiro; Sakai, Takeshi; Tsutsui, Satoshi; Ishikawa, Daisuke; Shiraishi, Rei; Seto, Yusuke; Tsuchiya, Taku; Baron, Alfred Q R
2016-02-01
Hexagonal close-packed iron (hcp-Fe) is a main component of Earth's inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density-sound velocity data of Earth's core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (V P) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch's law for hcp-Fe, which gives us the V P of pure hcp-Fe up to core conditions. We find that Earth's inner core has a 4 to 5% smaller density and a 4 to 10% smaller V P than hcp-Fe. Our results demonstrate that components other than Fe in Earth's core are required to explain Earth's core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth's core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect.
Huang, Xiao; Li, Shaozhou; Wu, Shixin; Huang, Yizhong; Boey, Freddy; Gan, Chee Lip; Zhang, Hua
2012-02-14
Ultrathin Au nanowires (AuNWs) and tadpole-shaped nanowires are synthesized on graphene oxide (GO) sheet templates. For the first time, 1.6 nm-diameter AuNWs are shown to contain hexagonal close-packed (hcp) crystal domains, and the tadpole-shaped nanowires exhibit alternating sets of hcp and face-centered cubic (fcc) structures, associated with variation in wire thickness.
Dual Lattice of ℤ-module Lattice
Futa Yuichi
2017-07-01
Full Text Available In this article, we formalize in Mizar [5] the definition of dual lattice and their properties. We formally prove that a set of all dual vectors in a rational lattice has the construction of a lattice. We show that a dual basis can be calculated by elements of an inverse of the Gram Matrix. We also formalize a summation of inner products and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL(Lenstra, Lenstra and Lovász base reduction algorithm and cryptographic systems with lattice [20], [10] and [19].
Saheed Olalekan Sanni
2015-01-01
Full Text Available CuO dispersed on dealuminated clinoptilolite (CuO/HCP and further doped with polymeric graphitic carbon nitride (CuO/HCP-g-C3N4 was synthesized through 2 facile routes: precipitation method for CuO/HCP and impregnation through ultrasonication method for the hybrid composite material. The hybrid composite material crystalline phase, surface morphology, and structural and thermal properties were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy-dispersive X-ray analysis (EDAX, Fourier transform infrared spectroscopy (FTIR, and thermal analysis. The formation of the hybrid composite material was confirmed by XRD showing crystalline phase of CuO and g-C3N4 present on the surface of dealuminated clinoptilolite (HCP. SEM images analysis depicts no aggregation of the mixed metal oxide semiconductor nanoparticles at the center of HCP. The hybrid composite material, CuO/HCP-g-C3N4, with a good homogeneously dispersed metal oxide conductor having excellent catalytic activities has been synthesized.
The elastic properties of hcp-Fe1 - xSix at Earth's inner-core conditions
Martorell, Benjamí; Wood, Ian G.; Brodholt, John; Vočadlo, Lidunka
2016-10-01
The density of the Earth's inner core is less than that of pure iron and the P-wave velocities and, particularly, the S-wave velocities in the inner core observed from seismology are lower than those generally obtained from mineral physics. On the basis of measurements of compressional sound velocities to ∼100 GPa in diamond-anvil cells, extrapolated to inner-core pressures, it has been suggested that both the inner-core density and P-wave velocity can be matched simultaneously by the properties of a hexagonal-close-packed (hcp) Fe-Si or Fe-Ni-Si alloy. In this paper we present the results of ab initio molecular dynamics simulations of hcp-Fe-Si alloys at 360 GPa and at temperatures up to melting. We find that although the inner-core density can be readily matched by an Fe-Si alloy, the same is not true for the wave velocities. At inner-core temperatures, the P-wave velocity in hcp-Fe-Si remains equal to, or slightly above, that of hcp-Fe and shows little change with silicon content. The S-wave velocity is reduced with respect to that of pure hcp-iron, except for temperatures immediately prior to melting, where the velocities are almost equal; this is a consequence of the fact that the strong temperature dependence of the shear modulus that was seen in similar simulations of hcp-Fe just prior to melting was not found in hcp-Fe-Si, and so in this temperature range the reduced S-wave velocity of pure iron closely matches that of the alloy. Our results show that for an hcp-Fe-Si alloy matching the inner-core density, both the P-wave and the S-wave velocities will be higher than those observed by seismology and we conclude, therefore, that our calculations indicate that inner core velocities cannot be explained by an hcp-Fe-Si alloy. The opposite conclusion, obtained previously from experimental data measured at lower pressures, is a consequence of: (i) the necessarily large extrapolation in pressure and temperature required to extend the experimental results to
Deformed lattice states in a Zn{sub 0.9}V{sub 0.1}Se cubic crystal
Maksimov, V. I., E-mail: kokailo@rambler.ru; Dubinin, S. F.; Surkova, T. P.; Parkhomenko, V. D. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)
2016-01-15
Neutron scattering patterns have been recorded for a bulk Zn{sub 0.9}V{sub 0.1}Se cubic crystal at room temperature; they are indicative of macroscopic deformation in the material and its significant inhomogeneity. Specific features of the previously found state, preceding the fcc ↔ hcp structural transformation of the sphalerite lattice upon strong destabilization induced by vanadium ions in the doped ZnSe matrix, are discussed taking into account the data obtained.
陶辉锦; 谢佑卿; 彭红建; 余方新; 刘锐锋; 李晓波
2006-01-01
结合纯金属单原子(OA)理论和Debye-Grüneisen模型,采用CALPHAD方法确定的晶格稳定参数,研究了SGTE纯单质数据库中fcc-,hcp-和bcc-Cu的原子状态及物理性质(原子势能、原子动能、原子体积、体弹性模量和热膨胀系数等)随温度的变化关系.结果表明:电子结构计算结果与第一原理方法非常接近.3种晶体结构的电子结构差别不大,单键半径非常接近.原子体积顺序为:Va(bcc)＞Va(hcp)＞Va(fcc);共价电子浓度顺序为:nc(fcc)＞nc(hcp)＞nc(bcc);原子势能大小顺序为:εp(fcc)＜εp(hcp)＜εp(bcc);晶格稳定性顺序为:△G(fcc)＞△G(hcp)＞△G(bcc).原子动能随温度的增加幅度约为势能的3-4倍.
Fei, Yingwei [Geophysical Laboratory, Carnegie Institution of Washington, Washington District of Columbia USA; Murphy, Caitlin [Geophysical Laboratory, Carnegie Institution of Washington, Washington District of Columbia USA; Shibazaki, Yuki [Geophysical Laboratory, Carnegie Institution of Washington, Washington District of Columbia USA; Now at Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai Japan; Shahar, Anat [Geophysical Laboratory, Carnegie Institution of Washington, Washington District of Columbia USA; Huang, Haijun [School of Sciences, Wuhan University of Technology, Wuhan China
2016-07-04
We conducted high-pressure experiments on hexagonal close packed iron (hcp-Fe) in MgO, NaCl, and Ne pressure-transmitting media and found general agreement among the experimental data at 300 K that yield the best fitted values of the bulk modulus K_{0} = 172.7(±1.4) GPa and its pressure derivative K_{0}'= 4.79(±0.05) for hcp-Fe, using the third-order Birch-Murnaghan equation of state. Using the derived thermal pressures for hcp-Fe up to 100 GPa and 1800 K and previous shockwave Hugoniot data, we developed a thermal equation of state of hcp-Fe. The thermal equation of state of hcp-Fe is further used to calculate the densities of iron along adiabatic geotherms to define the density deficit of the inner core, which serves as the basis for developing quantitative composition models of the Earth's inner core. We determine the density deficit at the inner core boundary to be 3.6%, assuming an inner core boundary temperature of 6000 K.
Santocanale, Luigi
2002-01-01
A μ-lattice is a lattice with the property that every unary polynomial has both a least and a greatest fix-point. In this paper we define the quasivariety of μ-lattices and, for a given partially ordered set P, we construct a μ-lattice JP whose elements are equivalence classes of games in a preor...
Pasianot, Roberto C.
2016-12-01
We study the structure of several standard and non-standard self-interstitial configurations in a series of hcp metals, by using Density Functional Theory as embodied in the computer codes SIESTA and WIEN2k. The considered metals include Be, Mg, Ti, Zr, Co, Zn, and Cd, thus spanning the whole range of experimental c/a ratios, different kinds of bonding, and even magnetism (Co). The results show the importance of low symmetry configurations, closely related to the non-basal crowdion, in order to rationalize the experimental data on self-interstitial structure and migration.
First-principles appraisal of solute ultra-fast diffusion in hcp Zr and Ti
Pasianot, R.C., E-mail: pasianot@cnea.gov.ar [Gerencia Materiales, CAC, CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina); CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Instituto Sabato, UNSAM/CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina); Pérez, R.A. [Gerencia Materiales, CAC, CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina); CONICET, Avda. Rivadavia 1917, 1033 Buenos Aires (Argentina); Instituto Sabato, UNSAM/CNEA, Avda. Gral. Paz 1499, 1650 San Martín (Argentina)
2013-03-15
We revisit the ultra-fast diffusion characteristics of Fe, Co, Ni, and Cu solutes, in the hcp hosts Ti and Zr, by using Density Functional Theory. The energetics of several point defect configurations, deemed relevant for solute diffusion, is evaluated. The results support the long standing beliefs that the diffusing species is interstitial in nature, and that some kind of complexing is involved at low temperatures. Though quantitative agreement with experiment is difficult to assess, we show that a rather simple dissociative model is able to rationalize the observed trends, in particular, why the Arrhenius graphs are straight for Ti whereas, generally, they are curved downwards for Zr.
First-principles calculation of the electric-field gradient in hcp metals
Blaha, P.; Schwarz, K.; Dederichs, P. H.
1988-02-01
The electric-field gradient (EFG) for all hcp metals from Be to Cd is obtained from energy-band calculations using the full-potential linearized-augmented-plane-wave (LAPW) method. Our first-principles method, which does not rely on any Sternheimer antishielding factor, yields EFG's in good agreement with experiment and predicts also the sign of the EFG's. The EFG was found to be determined mainly by the nonspherical distribution of the valence-electron density close to the nucleus. In general, contributions to the EFG originating from p states dominate. This is the case even for transition metals, where the d anisotropy is large.
Franca, Fernando
1995-12-31
In this work we investigate the local magnetic properties and the electronic structure of HCP Fe, as well introducing transition metals atoms 3d (Cs, Ti, Cr, Mn, Co, Ni, Cu, Zn) in HCP iron matrix. We employed the discrete variational method (DVM), which is an orbital molecular method which incorporate the Hartree-Fock-Slater theory and the linear combination of atomic orbitals (LCAO), in the self-consistent charge approximation and the local density approximation of Von Barth and Hedin to the exchange-correlation potential. We used the embedded cluster model to investigate the electronic structure and the local magnetic properties for the central atom of a cluster of 27 atoms immersed in the microcrystal representing the HCP Fe. (author) 32 refs., 19 figs., 2 tabs.
Wang, B T; Shao, J L; Zhang, G C; Li, W D; Zhang, P
2009-12-02
Molecular dynamics simulations have been performed to study the structural transition in bcc iron under uniaxial strain loading. We found that the transition pressures are less dependent on the crystal orientations, ∼14 GPa for [001], [011], and [111] loadings. However, the pressure interval of a mixed phase for [011] loading is much shorter than loading along other orientations. In addition, the temperature increased amplitude for [001] loading is evidently lower than other orientations. The nucleation and growth of the hcp/fcc phases, and their crystal orientation dependence, were analyzed in detail, where the atom structure was presented by the topological medium-range-order analysis. For [001] compression, the hcp structure occurs first and grows into a laminar morphology in the (011)(bcc) plane with some fcc atoms as an intermediate structure. For loading along [011] and [111] directions, both hcp and fcc structure nucleation and growth along the {110}(bcc) planes are observed; their morphology is also discussed.
Saheed Olalekan Sanni
2014-01-01
Full Text Available Visible-light-responsive material based on Rhodium doped on titanium dispersed on dealuminated clinoptilolite (TiO2/HCP was synthesized via a combination of the sol-gel method and photoreductive deposition technique. The photocatalyst surface characterization, structural and optical properties were investigated by X-ray diffraction (XRD, scanning electron microscopy (SEM, energy-dispersive X-ray analysis (EDAX, Fourier transform infrared spectroscopy (FTIR, thermal gravimetric analysis (TGA, and UV-visible spectra (UV-VIS. Doping TiO2/HCP with Rh imparts a red shifting of the absorption band into the visible light region according to UV-VIS. The prepared composite materials were evaluated for their photocatalytic activities on pentachlorophenol (PCP degradation under sunlight irradiation. The Rhodium doped TiO2/HCP exhibited enhanced photocatalytic activity and can be considered as a potential photocatalyst in wastewater treatment.
Wang, Aixing; Fang, Chao; Liu, Yibao
2016-08-22
The dynamic potentials of highly excited vibrational states of deuterated phosphaethyne (DCP) in the D-C and C-P stretching coordinates with anharmonicity and Fermi coupling are studied in this article and the results show that the D-C-P bending vibration mode has weak effects on D-C and C-P stretching modes under different Polyad numbers (P number). Furthermore, the dynamic potentials and the corresponding phase space trajectories of DCP are given, as an example, in the case of P = 30. In the end, a comparative study between deuterated phosphaethyne (DCP) and phosphaethyne (HCP) with dynamic potential is done, and it is elucidated that the uncoupled mode makes the original horizontal reversed symmetry breaking between the dynamic potential of HCP ( q 3 ) and DCP ( q 1 ), but has little effect on the vertical reversed symmetry, between the dynamic potential of HCP ( q 2 ) and DCP ( q 3 ).
Songjun, Hou; Sunchao, Huang; Zhi, Zeng
2015-01-01
First principles calculations were performed to study the structural, elastic, and bonding properties of hcp ZrxTi1-x binary alloy. The special quasi- random structure (SQS) method is employed to mimic the random hcp ZrxTi1-x alloy. It is found that Bulk modulus, B, Young's modulus, E, and shear modulus, G, exhibit decreasing trends as increasing the amount of Zr. A ductile behavior ZrxTi1-x is predicted in the whole composition range. In terms of Mulliken charge analisis, we found that the element Ti behaves much more electronegative than Zr in hcp ZrxTi1-x alloy, and the charge transfer of an atom is approximately linear to the amount of other element atom surrounding it.
Role of interface in forming non-equilibrium hcp phase by ion mixing in an immiscible Au-Co system
Yan, H F; Liu, B X
2003-01-01
In an equilibrium immiscible Au-Co system characterized by a positive heat of formation of +11 kJ mol sup - sup 1 , a non-equilibrium Au-Co phase of hcp structure was formed by 200 keV xenon ion mixing at 77 K in the Au sub 5 sub 0 Co sub 5 sub 0 multilayered films. Based on the free energy calculation, the excess interfacial free energy stored in the Au-Co multilayered films could provide adequate thermodynamic driving force for alloying between Au and Co and forming the non-equilibrium Au-Co hcp phase. Besides, the average magnetic moment per Co atom in the newly formed hcp structure was reduced by 22% of its equilibrium value, within a measuring error of 8%.
Modeling the effect of neighboring grains on twin growth in HCP polycrystals
Kumar, M. Arul; Beyerlein, I. J.; Lebensohn, R. A.; Tomé, C. N.
2017-09-01
In this paper, we study the dependence of neighboring grain orientation on the local stress state around a deformation twin in a hexagonal close packed (HCP) crystal and its effects on the resistance against twin thickening. We use a recently developed, full-field elasto-visco-plastic formulation based on fast Fourier transforms that account for the twinning shear transformation imposed by the twin lamella. The study is applied to Mg, Zr and Ti, since these HCP metals tend to deform by activation of different types of slip modes. The analysis shows that the local stress along the twin boundary are strongly controlled by the relative orientation of the easiest deformation modes in the neighboring grain with respect to the twin lamella in the parent grain. A geometric expression that captures this parent-neighbor relationship is proposed and incorporated into a larger scale, mean-field visco-plastic self-consistent model to simulate the role of neighboring grain orientation on twin thickening. We demonstrate that the approach improves the prediction of twin area fraction distribution when compared with experimental observations.
Nucleation barrier of fcc(γ)→hcp(ε) martensitic transformation in Fe-based alloys
HUANG Xing; CHEN Shipu
2004-01-01
Based on the dislocation theory and Olson's stacking fault model, a model describing the nucleation of an hcp(ε) martensite embryo at low-angle grain boundary is proposed with the influence of external stress field taken into account. The dependences of temperature (T), shear stress (τ) and dislocation density at grain boundary on the martensite nucleation in FeMnSi based alloy, as an example, are numerically simulated. It has been shown that there exist the subcritical and critical embryos during the course of ε-phase nucleation. The free energy difference between them is just the energy barrier of embryo growth. Depending on T and τ, the characteristic embryo sizes may vary in wide ranges and decrease with increasing σ and decreasing T. The energy condition of martensitic transformation at Ms and critical shear stress (τc) is discussed from the viewpoint of kinetics and thus the TEM observed result that stacking fault energy is not zero at Ms temperature is reasonably explained. Besides, it is predicted that the high dislocation density at grain boundary can promote the nucleation of fcc→hcp transformation in Fe-based alloys.
Kim, Won Hwa; Kim, Hyunwoo J; Adluru, Nagesh; Singh, Vikas
2016-06-01
A major goal of imaging studies such as the (ongoing) Human Connectome Project (HCP) is to characterize the structural network map of the human brain and identify its associations with covariates such as genotype, risk factors, and so on that correspond to an individual. But the set of image derived measures and the set of covariates are both large, so we must first estimate a 'parsimonious' set of relations between the measurements. For instance, a Gaussian graphical model will show conditional independences between the random variables, which can then be used to setup specific downstream analyses. But most such data involve a large list of 'latent' variables that remain unobserved, yet affect the 'observed' variables sustantially. Accounting for such latent variables is not directly addressed by standard precision matrix estimation, and is tackled via highly specialized optimization methods. This paper offers a unique harmonic analysis view of this problem. By casting the estimation of the precision matrix in terms of a composition of low-frequency latent variables and high-frequency sparse terms, we show how the problem can be formulated using a new wavelet-type expansion in non-Euclidean spaces. Our formulation poses the estimation problem in the frequency space and shows how it can be solved by a simple sub-gradient scheme. We provide a set of scientific results on ~500 scans from the recently released HCP data where our algorithm recovers highly interpretable and sparse conditional dependencies between brain connectivity pathways and well-known covariates.
Li, Yang; Li, JiaHao; Liu, BaiXin
2015-02-14
Applying the constructed Ti-Nb potentials, molecular dynamics simulations were conducted to investigate the martensitic transformation of Ti100-xNbx alloys (x = 5, 10…25) from the α' phase (hcp) to the β phase (bcc). It is found that the transformation involved four phases, i.e. α', α'', fco (face-centered orthorhombic), and β phases. The structures of the obtained phases exhibit consistency with experimental data, verifying the validity of atomic simulations. The simulations not only revealed the processes of atomic displacements during the transformation, but also elucidated the underlying mechanism of the martensitic transformation at the atomic level. The martensitic transformation incorporates three types of coinstantaneous deformations i.e. slide, shear as well as extension, and the subsequent lattice constant relaxation. Furthermore, according to the proposed mechanism, the crystallographic correlation between the initial α' phase and the final β phase has been deduced. The simulation results provide a clear landscape on the martensitic transformation mechanism, facilitating our comprehensive understanding on the phase transition in the Ti-Nb system.
Campos, R G; Campos, Rafael G.; Tututi, Eduardo S.
2002-01-01
It is shown that the nonlocal Dirac operator yielded by a lattice model that preserves chiral symmetry and uniqueness of fields, approaches to an ultralocal and invariant under translations operator when the size of the lattice tends to zero.
New integrable lattice hierarchies
Pickering, Andrew [Area de Matematica Aplicada, ESCET, Universidad Rey Juan Carlos, c/ Tulipan s/n, 28933 Mostoles, Madrid (Spain); Zhu Zuonong [Departamento de Matematicas, Universidad de Salamanca, Plaza de la Merced 1, 37008 Salamanca (Spain) and Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200030 (China)]. E-mail: znzhu2@yahoo.com.cn
2006-01-23
In this Letter we give a new integrable four-field lattice hierarchy, associated to a new discrete spectral problem. We obtain our hierarchy as the compatibility condition of this spectral problem and an associated equation, constructed herein, for the time-evolution of eigenfunctions. We consider reductions of our hierarchy, which also of course admit discrete zero curvature representations, in detail. We find that our hierarchy includes many well-known integrable hierarchies as special cases, including the Toda lattice hierarchy, the modified Toda lattice hierarchy, the relativistic Toda lattice hierarchy, and the Volterra lattice hierarchy. We also obtain here a new integrable two-field lattice hierarchy, to which we give the name of Suris lattice hierarchy, since the first equation of this hierarchy has previously been given by Suris. The Hamiltonian structure of the Suris lattice hierarchy is obtained by means of a trace identity formula.
Lizhi Ma
2012-01-01
Full Text Available The type VI secretion system (T6SS is bacterial protein injection machinery with roles in virulence, symbiosis, interbacterial interaction, antipathogenesis, and environmental stress responses. There are two T6SS loci, T6SS1 and T6SS2, in the two chromosomes of Vibrio parahaemolyticus, respectively. This work disclosed that the master quorum sensing (QS regulator OpaR repressed the transcription of hcp1 encoding the structural component Hcp1 of T6SS1 in V. parahaemolyticus, indicating that QS had a negative regulatory action on T6SS1. A single σ54-dependent promoter was transcribed for hcp1 in V. parahaemolyticus, and its activity was repressed by the OpaR regulator. Since the OpaR protein could not bind to the upstream region of hcp1, OpaR would repress the transcription of hcp1 in an indirect manner.
Sober Topological Molecular Lattices
张德学; 李永明
2003-01-01
A topological molecular lattice (TML) is a pair (L, T), where L is a completely distributive lattice and r is a subframe of L. There is an obvious forgetful functor from the category TML of TML's to the category Loc of locales. In this note,it is showed that this forgetful functor has a right adjoint. Then, by this adjunction,a special kind of topological molecular lattices called sober topological molecular lattices is introduced and investigated.
Atkinson, D; van Steenwijk, F.J.
The resistance between two arbitrary nodes in an infinite square lattice of:identical resistors is calculated, The method is generalized to infinite triangular and hexagonal lattices in two dimensions, and also to infinite cubic and hypercubic lattices in three and more dimensions. (C) 1999 American
Lattice Regularization and Symmetries
Hasenfratz, Peter; Von Allmen, R; Allmen, Reto von; Hasenfratz, Peter; Niedermayer, Ferenc
2006-01-01
Finding the relation between the symmetry transformations in the continuum and on the lattice might be a nontrivial task as illustrated by the history of chiral symmetry. Lattice actions induced by a renormalization group procedure inherit all symmetries of the continuum theory. We give a general procedure which gives the corresponding symmetry transformations on the lattice.
Dependency of deformation twinning on grain orientation in an FCC and a HCP metal
YANG Ping
2007-01-01
Twinning plays important roles in HCP metals and those FCC metals with low stacking fault energy.The structural difierence of two types of metals makes quite different contributions of twinning to plasticity The variety of grain orientation in polycrystalline metals causes the inhomogeneous occurrence of twinning and further distinct transformation kinetics of twinning as strain increases and texture develops.This changes finally the work hardening behavior and mechanical properties.This Paper reveals the dependency of twinning on grain orientation in an FCC TWIP(twinning induced plasticity)steel with high Mn content and in a magnesium alloy using electron-backscatter-difiraction(EBSD) technique,and analyzes the characteristies of twinning in the two types of metals by Schmid factor calculation.In addition,the relation of twinning and shear banding, as well as their influence on properties are discussed.
Electronic structure and superconductivity of hcp-bcc binary systems based on titanium and rhenium
Prekul, A.F.; Volkenshtein, N.V.
1978-12-01
The similarity of hcp--bcc binary systems of transition metals of groups IV--V and VI--VII is shown on the basis of a joint analysis of the kinetic, superconducting, and structural properties. Under the assumption that there is a singularity (a pseudo-gap) in the electronic structure of hardened alloys, a model is proposed for the change in the critical temperature of superconductivity with alloy concentration. According to the model, the two peaks in the functions T/sub c/(x) are due to the partial dielectrization of the electron spectrum and do not belong to the equilibrium solid solutions based on the initial metals, as had earlier been assumed.
Xia, Zhimei; Jin, Shengming; Liu, Kun
2016-10-01
Ultrafine nickel powders containing hexagonal close-packed nickel (hcp-Ni) nanocrystallites were prepared using liquid-phase reduction with NiC2O4, NaOH, polyvinylpyrrolidone (PVP), and ethylene glycol (EG). The nickel powders were characterized by XRD and SEM. TG analysis was used to determine the thermal stability of ultrafine nickel powders. The results showed that nickel powders with 45.1 pct of hcp-Ni nanocrystallites were synthesized under the following conditions: a reflux time of 3 hours, an NiC2O4-to-EG molar ratio of 0.01, 5 g/L PVP, and 85 g/L NaOH. SEM results illustrated that spherical particles of size 500 nm were obtained. The results of thermal stability showed that the antioxidant property at high temperature was improved with the increase of hcp-Ni content. The oxidation rate of nickel powders with 43.3 pct hcp-Ni was less than 50 pct even if the temperature was up to 873 K (600 °C).
Impact of polymorphisms in the HCP5 and HLA-C, and ZNRD1 genes on HIV viral load
Thørner, Lise Wegner; Erikstrup, Christian; Harritshøj, Lene Holm
2016-01-01
AIMS: Single nucleotide polymorphisms (SNPs) in the human leucocyte antigen (HLA) complex P5 (HCP5), HLA-C, and near the zinc ribbon domain containing 1 (ZNRD1) have been shown to influence viral load (VL) set point in HIV-infected individuals with a known seroconversion onset. We aimed...
Association of HLA-C and HCP5 gene regions with the clinical course of HIV-1 infection
D. van Manen; N.A. Kootstra; B. Boeser-Nunnink; M.A. Handulle; A.B. van 't Wout; H. Schuitemaker
2009-01-01
Background: Recently, a genome-wide association analysis revealed single-nucleotide polymorphisms (SNPs) in the gene regions of HLA-C and HCP5 to be associated with viral load at set point and SNPs in the RNF39/ZNRD1 gene region to be associated with HIV-1 disease course. Methods: We Studied whether
Sushko, N; van der Schoot, P
2005-01-01
As is well known, hard-sphere crystals of the fcc and hcp type differ very little in their thermodynamic properties. Nonetheless, recent computer simulations by Pronk and Frenkel indicate that the elastic response to mechanical deformation of these two types of crystal are quite different [S. Pronk
Barry, Aliou Hamady [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France); Laboratoire Chimie des Matériaux, Département de Chimie, Faculté des Sciences et Technique, Université de Nouakchott (Mauritania, Islamic Republic of); Dirras, Guy, E-mail: dirras@unv-paris13.fr [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France); Schoenstein, Frederic; Tétard, Florent; Jouini, Noureddine [Université Paris 13, Sorbonne Paris Cité, LSPM CNRS UPR 3407, 93430 Villetaneuse (France)
2014-05-01
Nanostructured cobalt powders with an average particle size of 50 nm were synthesized using a polyol method and subsequently consolidated by spark plasma sintering (SPS). SPS experiments performed at 650 °C with sintering times ranging from 5 to 45 min under a pressure of 100 MPa, yielded to dense bulk nanostructured cobalt (relative density greater than 97%). X-ray diffraction patterns of the as-prepared powders showed only a face centered cubic (fcc) crystalline phase, whereas the consolidated samples exhibited a mixture of both fcc and hexagonal close packed (hcp) phases. Transmission electron microscopy observations revealed a lamellar substructure with a high density of nanotwins and stacking faults in every grain of the sintered samples. Room temperature compression tests, carried out at a strain rate of 10{sup −3} s{sup −1}, yielded to highest strain to fracture values of up to 5% for sample of holding time of 15 min, which exhibited a yield strength of 1440 MPa, an ultimate strength as high as 1740 MPa and a Young's modulus of 205 GPa. The modulus of elasticity obtained from the nanoindentation tests, ranges from 181 to 218 GPa. The lowest modulus value of 181 GPa was obtained for the sample with the highest sintering time (45 min), which could be related to mass density loss as a consequence of trapped gases releasing. - Highlights: • Co nanopowder (50 nm) was prepared by reduction in polyol medium. • SPS was used to process bulk nanostructured Co specimens. • Microstructures were made of intricate fcc/hcp, along with nanotwins and SFs. • High strengths and moderate compressive ductility were obtained. • Deformation mechanisms related to complex interplay of different length scales.
V.M. Chernov
2016-12-01
Full Text Available The state of a low-temperature embrittlement (cold brittleness and dislocation mechanisms for formation of the temperature of a ductile-brittle transition and brittle fracture of metals (mono- and polycrystals with various crystal lattices (BCC, FCC, HCP are considered. The conditions for their formation connected with a stress-deformed state and strength (low temperature yield strength as well as the fracture breaking stress and mobility of dislocations in the top of a crack of the fractured metal are determined. These conditions can be met for BCC and some HCP metals in the initial state (without irradiation and after a low-temperature damaging (neutron irradiation. These conditions are not met for FCC and many HCP metals. In the process of the damaging (neutron irradiation such conditions are not met also and the state of low-temperature embrittlement of metals is absent (suppressed due to arising various radiation dynamic processes, which increase the mobility of dislocations and worsen the strength characteristics.
Maria A Ledesma
Full Text Available BACKGROUND: Enterohemorrhagic Escherichia coli (EHEC O157:H7, the causative agent of hemorrhagic colitis and the hemolytic uremic syndrome (HUS, produces long bundles of type IV pili (TFP called hemorrhagic coli pili (HCP. HCP are capable of mediating several phenomena associated with pathogenicity: i adherence to human and bovine epithelial cells; ii invasion of epithelial cells; iii hemagglutination of rabbit erythrocytes; iv biofilm formation; v twitching motility; and vi specific binding to laminin and fibronectin. HCP are composed of a 19 kDa pilin subunit (HcpA encoded by the hcpA chromosomal gene (called prepilin peptidase-dependent gene [ppdD] in E. coli K-12. METHODOLOGY/PRINCIPAL FINDINGS: In this study we investigated the potential role of HCP of E. coli O157:H7 strain EDL933 in activating the release of pro- and anti-inflammatory cytokines from a variety of host epithelial cells. We found that purified HCP and a recombinant HcpA protein induced significant release of IL-8 and TNF-alpha, from cultured polarized intestinal cells (T84 and HT-29 cells and non-intestinal HeLa cells. Levels of proinflammatory IL-8 and TNF-alpha, but not IL-2, IL6, or IL-10 cytokines, were increased in the presence of HCP and recombinant HcpA after 6 h of incubation with >or=50 ng/ml of protein, suggesting that stimulation of IL-8 and TNF-alpha are dose and time-dependent. In addition, we also demonstrated that flagella are potent inducers of cytokine production. Furthermore, MAPK activation kinetics studies showed that EHEC induces p38 phosphorylation under HCP-producing conditions, and ERK1/2 and JNK activation was detectable after 3 h of EHEC infection. HT-29 cells were stimulated with epidermal growth factor stimulation of HT-29 cells for 30 min leading to activation of three MAPKs. CONCLUSIONS/SIGNIFICANCE: The HcpA pilin monomer of the HCP produced by EHEC O157:H7 is a potent inducer of IL-8 and TNF-alpha release, an event which could play a
Ledesma, Maria A; Ochoa, Sara A; Cruz, Ariadnna; Rocha-Ramírez, Luz M; Mas-Oliva, Jaime; Eslava, Carlos A; Girón, Jorge A; Xicohtencatl-Cortes, Juan
2010-08-12
Enterohemorrhagic Escherichia coli (EHEC) O157:H7, the causative agent of hemorrhagic colitis and the hemolytic uremic syndrome (HUS), produces long bundles of type IV pili (TFP) called hemorrhagic coli pili (HCP). HCP are capable of mediating several phenomena associated with pathogenicity: i) adherence to human and bovine epithelial cells; ii) invasion of epithelial cells; iii) hemagglutination of rabbit erythrocytes; iv) biofilm formation; v) twitching motility; and vi) specific binding to laminin and fibronectin. HCP are composed of a 19 kDa pilin subunit (HcpA) encoded by the hcpA chromosomal gene (called prepilin peptidase-dependent gene [ppdD] in E. coli K-12). In this study we investigated the potential role of HCP of E. coli O157:H7 strain EDL933 in activating the release of pro- and anti-inflammatory cytokines from a variety of host epithelial cells. We found that purified HCP and a recombinant HcpA protein induced significant release of IL-8 and TNF-alpha, from cultured polarized intestinal cells (T84 and HT-29 cells) and non-intestinal HeLa cells. Levels of proinflammatory IL-8 and TNF-alpha, but not IL-2, IL6, or IL-10 cytokines, were increased in the presence of HCP and recombinant HcpA after 6 h of incubation with >or=50 ng/ml of protein, suggesting that stimulation of IL-8 and TNF-alpha are dose and time-dependent. In addition, we also demonstrated that flagella are potent inducers of cytokine production. Furthermore, MAPK activation kinetics studies showed that EHEC induces p38 phosphorylation under HCP-producing conditions, and ERK1/2 and JNK activation was detectable after 3 h of EHEC infection. HT-29 cells were stimulated with epidermal growth factor stimulation of HT-29 cells for 30 min leading to activation of three MAPKs. The HcpA pilin monomer of the HCP produced by EHEC O157:H7 is a potent inducer of IL-8 and TNF-alpha release, an event which could play a significant role in the pathogenesis of hemorrhagic colitis caused by this pathogen.
First-principles study on the lattice stability of elemental Co, Rh, and Ir in the ⅧB group
TAO Huijin; YIN Jian; YIN Zhimin; ZHANG Chuangfu; LI Jie; HUANG Boyun
2009-01-01
Lattice constants, total energies, and densities of state of transition metals Co, Rh, and Ir in the VIIIB group with different crystalline structures were calculated via generalized gradient approximation (GGA) of the total energy plane wave pseudopotentiai method in first-principles. The lattice stabilities of Rh and Ir are △Gbcc-hcp △Gfcc-hcp 0, agreeing well with those of the projector augmented wave method in first-principles and the CALPHAD method in spite of elemental Co. Analyses of the electronic smlctures to lattice stability show that crystalline Rh and Ir with fcc structures have the obvious characteristic of a stable phase, agreeing with the results of total energy calculations. Analyses of atomic populations show that the transition rate of electrons from the s state to the p or d state for hop, fcc, and bcc crystals of Co and Rh increases with the elemental period number to form a stronger cohesion, a higher cohesive energy, or a more stable lattice between atoms in heavier metals.
Jammed lattice sphere packings
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-01-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a...
On Traveling Waves in Lattices: The Case of Riccati Lattices
Dimitrova, Zlatinka
2012-09-01
The method of simplest equation is applied for analysis of a class of lattices described by differential-difference equations that admit traveling-wave solutions constructed on the basis of the solution of the Riccati equation. We denote such lattices as Riccati lattices. We search for Riccati lattices within two classes of lattices: generalized Lotka-Volterra lattices and generalized Holling lattices. We show that from the class of generalized Lotka-Volterra lattices only the Wadati lattice belongs to the class of Riccati lattices. Opposite to this many lattices from the Holling class are Riccati lattices. We construct exact traveling wave solutions on the basis of the solution of Riccati equation for three members of the class of generalized Holling lattices.
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
García-Coiradas, Leticia; Angulo-Cubillán, Francisco; Valladares, Basilio; Martínez, Enrique; de la Fuente, Concepción; Alunda, José María; Cuquerella, Montserrat
2010-01-01
Haemonchosis, caused by the abomasal nematode Haemonchus contortus, is a common parasitic disease of sheep. Our previous results showed that a soluble fraction from adult stages of the nematode (p26/23) induced partial protection against challenge. Recombinant DNA technology was applied to obtain a synthetic protein (rHcp26/23). Immunological assays (ELISA, Western blotting, and immunolocalization), using sera from lambs immunized with p26/23, confirmed the identity of the recombinant protein and demonstrated that the synthetic protein is equivalent to the purified protein employed in the previous immunoprophylaxis studies. Vaccination of lambs with 300 μg of rHcp26/23 and Freund's adjuvant elicited a notable specific antibody response. Immunization did not induce any significant protection after challenge with 16000 infective larvae of H. contortus, and comparable values for parasite faecal egg output, packed cell volume, and abomasal parasite burdens were found in vaccinated and control animals. PMID:20631899
Leticia García-Coiradas
2010-01-01
Full Text Available Haemonchosis, caused by the abomasal nematode Haemonchus contortus, is a common parasitic disease of sheep. Our previous results showed that a soluble fraction from adult stages of the nematode (p26/23 induced partial protection against challenge. Recombinant DNA technology was applied to obtain a synthetic protein (rHcp26/23. Immunological assays (ELISA, Western blotting, and immunolocalization, using sera from lambs immunized with p26/23, confirmed the identity of the recombinant protein and demonstrated that the synthetic protein is equivalent to the purified protein employed in the previous immunoprophylaxis studies. Vaccination of lambs with 300 μg of rHcp26/23 and Freund's adjuvant elicited a notable specific antibody response. Immunization did not induce any significant protection after challenge with 16000 infective larvae of H. contortus, and comparable values for parasite faecal egg output, packed cell volume, and abomasal parasite burdens were found in vaccinated and control animals.
Shulenburger, Luke; Desjarlais, M P
2015-01-01
Motivated by the disagreement between recent diffusion Monte Carlo calculations and experiments on the phase transition pressure between the ambient and beta-Sn phases of silicon, we present a study of the HCP to BCC phase transition in beryllium. This lighter element provides an oppor- tunity for directly testing many of the approximations required for calculations on silicon and may suggest a path towards increasing the practical accuracy of diffusion Monte Carlo calculations of solids in general. We demonstrate that the single largest approximation in these calculations is the pseudopotential approximation. After removing this we find excellent agreement with experiment for the ambient HCP phase and results similar to careful calculations using density functional theory for the phase transition pressure.
Observation of quasi-fast diffusion process in sup 3 He- sup 4 He solid solutions near BCC-HCP
Mikhin, N P; Rudavskij, E Y
2001-01-01
By means of pulsed NMR one investigated into diffusion processes i sup 3 He dilute solid solution in sup 4 He at the BCC-HCP phase equilibrium line and in a melting-point curve. The applied techniques of the spin echo enabled to separate contributions made by all co-existing phases. It is determined that alongside with the contributions relevant to the equilibrium phases a secondary diffusion process characterized by anomalously high value of the diffusion coefficient manifests itself. It is shown to be close to the value of diffusion coefficient for liquid helium while diffusion is a spatially restricted one. One assumes that the observed effect may be associated with occurrence of liquid drops in the BCC-HCP transition process
Multiscale model of global inner-core anisotropy induced by hcp-alloy plasticity
Lincot, A; Deguen, R; Merkel, Sébastien
2016-01-01
$\\bullet$ Multiscale model of inner-core anisotropy produced by hcp alloy deformation$\\bullet$ 5 to 20% single-crystal elastic anisotropy and plastic deformation by pyramidal slip $\\bullet$ Low-degree inner-core formation model with faster crystallization at the equatorThe Earth's solid inner-core exhibits a global seismic anisotropy of several percents. It results from a coherent alignment of anisotropic Fe-alloy crystals through the inner-core history that can be sampled by present-day seismic observations. By combining self-consistent polycrystal plasticity, inner-core formation models, Monte-Carlo search for elastic moduli, and simulations of seismic measurements, we introduce a multiscale model that can reproduce a global seismic anisotropy of several percents aligned with the Earth's rotation axis. Conditions for a successful model are an hexagonal-close-packed structure for the inner-core Fe-alloy, plastic deformation by pyramidal \\textless{}c+a\\textgreater{} slip, and large-scale flow induced by a low...
Strength and strain rate sensitivity for hcp and fcc nanopolycrystal metals
P Rodriguez; R W Armstrong
2006-12-01
While there is overwhelming evidence that strengthening from grain size refinement persists into the nanocrystalline grain size regime consistent with extrapolation of classical Hall–Petch (H–P) behaviour, there are indications of a transition to an inverse H–P dependence, i.e. grain boundary weakening behaviour, occurring below a grain size of ∼ 10–20 nm. When Hall–Petch strengthening predominates, and the stress intensity, i.e. H–P slope value, , is thermally-activated (as is the case for pure fcc and the easy basal slip hcp metals), the strain rate sensitivity, defined as [/ ln(d/d], also is predicted to follow an H–P type dependence, thus, increasing with decrease in grain size. As a consequence, the activation volume that is inversely proportional to the strain rate sensitivity, is found to decrease by an order of magnitude, from around 1000 b3 in conventional grain size fcc Cu and Ni materials to 10–100 b3, for nanomaterials. At the smallest grain sizes, the transition to an inverse H–P dependence has been proposed to occur because of onset of effective high temperature grain boundary weakening behaviour that is well known in limiting creep property descriptions. If the inverse H–P effect (grain boundary weakening) is genuine, we predict that the strain rate sensitivity and corresponding inverse activation volume dependence on grain size should also have to show a reversal.
Orientation and temperature dependence of the anomalous Hall effect in hcp cobalt
Souza, Ivo; Roman, Eric; Mokrousov, Yuriy
2009-03-01
We calculate from first-principles the evolution of the intrinsic anomalous Hall conductivity vector â of hcp Co as the spin magnetization direction M is tilted away from the c-axis. We find that â varies smoothly with the tilt angle θ, and that its magnitude is strongly reduced, by a factor of about four, between θ=0 and θ=π/2, in good agreement with the measured anisotropy ratio of about three.ootnotetextN. V. Volkenshtein et al., Fiz. Metal. Metalloved. 11, 152 (1961). In addition to the anisotropic linear magnetization dependence (âz/Mz=âx/Mx) expected for any uniaxial crystal, there is a considerable nonlinearity in the dependence of σx^a on Mx=Mθ, while the relation between σz^a and Mz=Mθ is essentially linear, as in Mn5Ge3.ootnotetextC. Zeng et al., Phys. Rev. Lett. 96, 037204 (2006). The overall angular dependence of â is well-described by an expansion in terms of l=1 and l=3 spherical harmonics. From Zener's model for the influence of thermal fluctuations of M(r) on the temperature dependence of magnetic anisotropies,ootnotetextC. Zener, Phys. Rev. 96, 1335 (1954). we predict that the l=3 terms give rise to an appreciable increase with temperature of the anisotropy ratio.
ANALYSIS OF THE ANISOTROPY OF POINT DEFECT DIFFUSION IN HCP Zr
Samolyuk, German D [ORNL; Barashev, Alexander V [ORNL; Golubov, Stanislav I [ORNL; Osetskiy, Yury N [ORNL; Stoller, Roger E [ORNL
2014-01-01
A combination of density functional theory (DFT), kinetic Monte Carlo and mean-field rate theory is applied to analyze point defect migration and its effect on the observed growth of hcp Zr under 1 MeV electron irradiation. DFT is used to study stability of various configurations of vacancies and self-interstitial atoms (SIAs) and migration barriers. The data are used in kinetic Monte Carlo modelling of defect diffusion at different temperatures. It is found that both defects exhibit anisotropic diffusion, predominantly parallel to the basal planes. The ratio of diffusion coefficients parallel and perpendicular to the basal planes is found to be higher for vacancies as compared to SIAs at temperatures below ~600K. This raises doubts that the observed radiation growth in Zr irradiated with 1 MeV electrons, namely positive strains in prismatic and negative strains in basal directions, and void alignment along basal planes, can be accounted for by the anisotropy of point defect diffusion, which predicts opposite strain signs. It is speculated that formation of small SIA clusters with higher diffusion anisotropy may be responsible for the experimental observations.
Allelein, H.-J., E-mail: h.j.allelein@fz-juelich.de [Forschungszentrum Jülich, 52425 Jülich (Germany); Institute for Reactor Safety and Reactor Technology, RWTH Aachen University, 52064 Aachen (Germany); Kasselmann, S.; Xhonneux, A.; Tantillo, F.; Trabadela, A.; Lambertz, D. [Forschungszentrum Jülich, 52425 Jülich (Germany)
2016-09-15
To simulate the different aspects of High Temperature Reactor (HTR) cores, a variety of specialized computer codes have been developed at Forschungszentrum Jülich (IEK-6) and Aachen University (LRST) in the last decades. In order to preserve knowledge, to overcome present limitations and to make these codes applicable to modern computer clusters, these individual programs are being integrated into a consistent code package. The so-called HTR code package (HCP) couples the related and recently applied physics models in a highly integrated manner and therefore allows to simulate phenomena with higher precision in space and time while at the same time applying state-of-the-art programming techniques and standards. This paper provides an overview of the status of the HCP and reports about first benchmark results for an HCP prototype which couples the fluid dynamics and time dependent neutronics code MGT-3D, the burn up code TNT and the fission product release code STACY. Due to the coupling of MGT-3D and TNT, a first step towards a new reactor operation and accident simulation code was made, where nuclide concentrations calculated by TNT lead to new cross sections, which are fed back into MGT-3D. Selected operation scenarios of the HTR-Module 200 concept plant and the HTTR were chosen to be simulated with the HCP prototype. The fission product release during normal operation conditions will be calculated with STACY based on a core status derived from SERPENT and MGT-3D. Comparisons will be shown against data generated by SERPENT and the legacy codes VSOP99/11, NAKURE and FRESCO-II.
Saheed Olalekan Sanni; Omoruyi Gold Idemudia
2014-01-01
Visible-light-responsive material based on Rhodium doped on titanium dispersed on dealuminated clinoptilolite (TiO2/HCP) was synthesized via a combination of the sol-gel method and photoreductive deposition technique. The photocatalyst surface characterization, structural and optical properties were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (...
Epelbaum E.
2010-04-01
Full Text Available We review recent progress on nuclear lattice simulations using chiral eﬀective ﬁeld theory. We discuss lattice results for dilute neutron matter at next-to-leading order, three-body forces at next-to-next-toleading order, isospin-breaking and Coulomb eﬀects, and the binding energy of light nuclei.
Kapaklis, Vassilios; Pappas, Spiridon D; Poulopoulos, Panagiotis; Trachylis, Dimitrios; Schweiss, Peter; Politis, Constantin
2010-09-01
We report on the growth of thin Ni films by radio frequency magnetron sputtering in Ar-plasma. The growth temperature was about 350 K and the films were deposited on various substrates such as glass, silicon, sapphire and alumina. The thickness of the thinnest films was estimated by the appearance of Kiessig fringes up to about 2theta = 8 degrees in the small-angle X-ray diffraction pattern, as expected for high-quality atomically-flat thin films. With the help of this, a quartz balance system was calibrated and used for measuring the thickness of thicker samples with an accuracy of better than 5%. Structural characterization via X-ray diffraction and high resolution transmission electron microscopy revealed an Ar-gas pressure window, where single phase hcp Ni films may be grown. The magnetic response of the Ni films was checked at room temperature via a newly established and fully automatic polar magneto-optic Kerr effect magnetometer. The hcp films show no magnetic response. Interestingly, the magnetic saturation field of fcc films deposited at low Ar pressure is comparable to the one of bulk Ni, while the one of fcc films deposited at high Ar pressures is decreased, revealing the presence of residual strain in the films. Finally, it is shown that it is possible to form films which contain magnetic Ni fcc nanoparticles in a non-magnetic hcp matrix, i.e., a system interesting for technological applications demanding a single Ni target for its production.
Wang Jie, E-mail: wjzamb@gmail.com [Department of Basic Courses, Ordnance Engineering College, Shijiazhuang 050003 (China); Qi Jianying; Zhou Xian [Department of Basic Courses, Ordnance Engineering College, Shijiazhuang 050003 (China)
2012-02-01
Highlights: Black-Right-Pointing-Pointer Ideal strengths of hcp metals Re, Ru, and Os were reported for the first time. Black-Right-Pointing-Pointer An hcp {yields} fct {yields} fcc phase transformation was found generally by [112{sup Macron }0] tension. Black-Right-Pointing-Pointer The ideal shear strength is shown to be a good predictor of hardness. Black-Right-Pointing-Pointer Variation in electronic structure accommodates yielding at the critical strain. - Abstract: The intrinsic mechanical properties, deformation-induced transformation, and electronic deformation mechanisms of hexagonal close-packed metals Re, Ru, and Os were systematically studied by density functional theory. The ideal strength, elastic moduli, and toughness parameter were fully presented. Os has the largest ideal strengths and moduli over Re and Ru. Although Re has larger moduli than Ru, its strength is smaller. Thus larger modulus does not mean larger strength. The toughness was predicted to be Re > Ru > Os, reversing brittleness. The ideal shear strength of the easiest slip direction is proposed to qualitatively predict the hardness. A hcp {yields} fct {yields} fcc phase transformation was achieved during [112{sup Macron }0] uniaxial tension. The corresponding energy barriers are 0.29, 0.32, and 0.42 eV/atom for Re, Ru, and Os, respectively. The electronic mechanism underlying yielding was clarified to be bond breaking accompanying disappearance of 'pseudo-gap'. The flow of electron accumulation between charge depletion accommodates the structural transition.
Sakamaki, Tatsuya; Ohtani, Eiji; Fukui, Hiroshi; Kamada, Seiji; Takahashi, Suguru; Sakairi, Takanori; Takahata, Akihiro; Sakai, Takeshi; Tsutsui, Satoshi; Ishikawa, Daisuke; Shiraishi, Rei; Seto, Yusuke; Tsuchiya, Taku; Baron, Alfred Q. R.
2016-01-01
Hexagonal close-packed iron (hcp-Fe) is a main component of Earth’s inner core. The difference in density between hcp-Fe and the inner core in the Preliminary Reference Earth Model (PREM) shows a density deficit, which implies an existence of light elements in the core. Sound velocities then provide an important constraint on the amount and kind of light elements in the core. Although seismological observations provide density–sound velocity data of Earth’s core, there are few measurements in controlled laboratory conditions for comparison. We report the compressional sound velocity (VP) of hcp-Fe up to 163 GPa and 3000 K using inelastic x-ray scattering from a laser-heated sample in a diamond anvil cell. We propose a new high-temperature Birch’s law for hcp-Fe, which gives us the VP of pure hcp-Fe up to core conditions. We find that Earth’s inner core has a 4 to 5% smaller density and a 4 to 10% smaller VP than hcp-Fe. Our results demonstrate that components other than Fe in Earth’s core are required to explain Earth’s core density and velocity deficits compared to hcp-Fe. Assuming that the temperature effects on iron alloys are the same as those on hcp-Fe, we narrow down light elements in the inner core in terms of the velocity deficit. Hydrogen is a good candidate; thus, Earth’s core may be a hidden hydrogen reservoir. Silicon and sulfur are also possible candidates and could show good agreement with PREM if we consider the presence of some melt in the inner core, anelasticity, and/or a premelting effect. PMID:26933678
Time-resolved lattice measurements of shock-induced phase transitions in polycrystalline materials
Milathianaki, Despina
The response of materials under extreme temperature and pressure conditions is a topic of great significance because of its relevance in astrophysics, geophysics, and inertial confinement fusion. In recent years, environments exceeding several hundred gigapascals in pressure have been produced in the laboratory via laser-based dynamic loading techniques. Shock-loading is of particular interest as the shock provides a fiducial for measuring time-dependent processes in the lattice such as phase transitions. Time-resolved x-ray diffraction is the only technique that offers an insight into these shock-induced processes at the relevant spatial (atomic) and temporal scales. In this study, nanosecond resolution x-ray diffraction techniques were developed and implemented towards the study of shock-induced phase transitions in polycrystalline materials. More specifically, the capability of a focusing x-ray diffraction geometry in high-resolution in situ lattice measurements was demonstrated by probing shock-compressed Cu and amorphous metallic glass samples. In addition, simultaneous lattice and free surface velocity measurements of shock-compressed Mg in the ambient hexagonal close packed (hcp) and shock-induced body centered cubic (bcc) phases between 12 and 45 GPa were performed. These measurements revealed x-ray diffraction signals consistent with a compressed bcc lattice above a shock pressure of 26.2+/-1.3 GPa, thus capturing for the first time direct lattice evidence of a shock-induced hcp to bcc phase transition in Mg. Our measurement of the hcp-bcc phase boundary in Mg was found to be consistent with the calculated boundary from generalized pseudopotential theory in the pressure and temperature region intersected by the principal shock Hugoniot. Furthermore, the subnanosecond timescale of the phase transition implied by the shock-loading conditions was in agreement with the kinetics of a martensitic transformation. In conclusion, we report on the progress and
Von Smekal, L; Sternbeck, A; Williams, A G
2007-01-01
We propose a modified lattice Landau gauge based on stereographically projecting the link variables on the circle S^1 -> R for compact U(1) or the 3-sphere S^3 -> R^3 for SU(2) before imposing the Landau gauge condition. This can reduce the number of Gribov copies exponentially and solves the Gribov problem in compact U(1) where it is a lattice artifact. Applied to the maximal Abelian subgroup this might be just enough to avoid the perfect cancellation amongst the Gribov copies in a lattice BRST formulation for SU(N), and thus to avoid the Neuberger 0/0 problem. The continuum limit of the Landau gauge remains unchanged.
Jammed lattice sphere packings.
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Jammed lattice sphere packings
Kallus, Yoav; Marcotte, Étienne; Torquato, Salvatore
2013-12-01
We generate and study an ensemble of isostatic jammed hard-sphere lattices. These lattices are obtained by compression of a periodic system with an adaptive unit cell containing a single sphere until the point of mechanical stability. We present detailed numerical data about the densities, pair correlations, force distributions, and structure factors of such lattices. We show that this model retains many of the crucial structural features of the classical hard-sphere model and propose it as a model for the jamming and glass transitions that enables exploration of much higher dimensions than are usually accessible.
Lipstein, Arthur E
2014-01-01
We formulate the theory of a 2-form gauge field on a Euclidean spacetime lattice. In this approach, the fundamental degrees of freedom live on the faces of the lattice, and the action can be constructed from the sum over Wilson surfaces associated with each fundamental cube of the lattice. If we take the gauge group to be $U(1)$, the theory reduces to the well-known abelian gerbe theory in the continuum limit. We also propose a very simple and natural non-abelian generalization with gauge group $U(N) \\times U(N)$, which gives rise to $U(N)$ Yang-Mills theory upon dimensional reduction. Formulating the theory on a lattice has several other advantages. In particular, it is possible to compute many observables, such as the expectation value of Wilson surfaces, analytically at strong coupling and numerically for any value of the coupling.
Root lattices and quasicrystals
Baake, M.; Joseph, D.; Kramer, P.; Schlottmann, M.
1990-10-01
It is shown that root lattices and their reciprocals might serve as the right pool for the construction of quasicrystalline structure models. All noncrystallographic symmetries observed so far are covered in minimal embedding with maximal symmetry.
ORGINOS,K.
2003-01-07
I review the current status of hadronic structure computations on the lattice. I describe the basic lattice techniques and difficulties and present some of the latest lattice results; in particular recent results of the RBC group using domain wall fermions are also discussed. In conclusion, lattice computations can play an important role in understanding the hadronic structure and the fundamental properties of Quantum Chromodynamics (QCD). Although some difficulties still exist, several significant steps have been made. Advances in computer technology are expected to play a significant role in pushing these computations closer to the chiral limit and in including dynamical fermions. RBC has already begun preliminary dynamical domain wall fermion computations [49] which we expect to be pushed forward with the arrival of QCD0C. In the near future, we also expect to complete the non-perturbative renormalization of the relevant derivative operators in quenched QCD.
Superalloy Lattice Block Structures
Nathal, M. V.; Whittenberger, J. D.; Hebsur, M. G.; Kantzos, P. T.; Krause, D. L.
2004-01-01
Initial investigations of investment cast superalloy lattice block suggest that this technology will yield a low cost approach to utilize the high temperature strength and environmental resistance of superalloys in lightweight, damage tolerant structural configurations. Work to date has demonstrated that relatively large superalloy lattice block panels can be successfully investment cast from both IN-718 and Mar-M247. These castings exhibited mechanical properties consistent with the strength of the same superalloys measured from more conventional castings. The lattice block structure also accommodates significant deformation without failure, and is defect tolerant in fatigue. The potential of lattice block structures opens new opportunities for the use of superalloys in future generations of aircraft applications that demand strength and environmental resistance at elevated temperatures along with low weight.
Vector Lattice Vortex Solitons
WANG Jian-Dong; YE Fang-Wei; DONG Liang-Wei; LI Yong-Ping
2005-01-01
@@ Two-dimensional vector vortex solitons in harmonic optical lattices are investigated. The stability properties of such solitons are closely connected to the lattice depth Vo. For small Vo, vector vortex solitons with the total zero-angular momentum are more stable than those with the total nonzero-angular momentum, while for large Vo, this case is inversed. If Vo is large enough, both the types of such solitons are stable.
Pica, C; Lucini, B; Patella, A; Rago, A
2009-01-01
Technicolor theories provide an elegant mechanism for dynamical electroweak symmetry breaking. We will discuss the use of lattice simulations to study the strongly-interacting dynamics of some of the candidate theories, with matter fields in representations other than the fundamental. To be viable candidates for phenomenology, such theories need to be different from a scaled-up version of QCD, which were ruled out by LEP precision measurements, and represent a challenge for modern lattice computations.
Automated Lattice Perturbation Theory
Monahan, Christopher
2014-11-01
I review recent developments in automated lattice perturbation theory. Starting with an overview of lattice perturbation theory, I focus on the three automation packages currently "on the market": HiPPy/HPsrc, Pastor and PhySyCAl. I highlight some recent applications of these methods, particularly in B physics. In the final section I briefly discuss the related, but distinct, approach of numerical stochastic perturbation theory.
Kiefel, Martin; Jampani, Varun; Gehler, Peter V.
2014-01-01
This paper presents a convolutional layer that is able to process sparse input features. As an example, for image recognition problems this allows an efficient filtering of signals that do not lie on a dense grid (like pixel position), but of more general features (such as color values). The presented algorithm makes use of the permutohedral lattice data structure. The permutohedral lattice was introduced to efficiently implement a bilateral filter, a commonly used image processing operation....
Solitons in spiraling Vogel lattices
Kartashov, Yaroslav V; Torner, Lluis
2012-01-01
We address light propagation in Vogel optical lattices and show that such lattices support a variety of stable soliton solutions in both self-focusing and self-defocusing media, whose propagation constants belong to domains resembling gaps in the spectrum of a truly periodic lattice. The azimuthally-rich structure of Vogel lattices allows generation of spiraling soliton motion.
Andreev, Andrey S; d'Espinose de Lacaillerie, Jean-Baptiste; Lapina, Olga B; Gerashenko, Alexander
2015-06-14
Despite the fact that cobalt based catalysts are used at the industrial scale for Fischer-Tropsch synthesis, it is not yet clear which cobalt metallic phase is actually at work under operando conditions and what is its state of dispersion. As it turns out, the different phases of metallic cobalt, fcc and hcp, give rise to distinct ferromagnetic nuclear magnetic resonance. Furthermore, within one Co metal particle, the occurrence of several ferromagnetic domains of limited sizes can be evidenced by the specific resonance of Co in multi-domain particles. Consequently, by ferromagnetic NMR, one can follow quantitatively the sintering and phase transitions of dispersed Co metal particles in supported catalysts under near operando conditions. The minimal size probed by ferromagnetic Co NMR is not precisely known but is considered to be in the order of 10 nm for supported Co particles at room temperature and increases to about 35 nm at 850 K. Here, in Co metal Fischer-Tropsch synthesis catalysts supported on β-SiC, the resonances of the fcc multi-domain, fcc single-domain and hcp Co were clearly distinguished. A careful rationalization of their frequency and width dependence on temperature allowed a quantitative analysis of the spectra in the temperature range of interest, thus reflecting the state of the catalysts under near operando conditions that is without the uncertainty associated with prior quenching. The allotropic transition temperature was found to start at 600-650 K, which is about 50 K below the bulk transition temperature. The phase transition was fully reversible and a significant part of the hcp phase was found to be stable up to 850 K. This anomalous behavior that was observed without quenching might prove to be crucial to understand and model active species not only in catalysts but also in battery materials.
Role Of Impurities On Deformation Of HCP Crystal: A Multi-Scale Approach
Bhatia, Mehul Anoopkumar
in the presence and absence of the solute/impurity and thus reveal the effect of impurity/solute on the softening/hardening behavior in alpha-Ti. Finally, to study the interaction of the dislocation core with other planar defects such as grain boundaries (GB), we develop an automated method to theoretically generate GBs in HCP type materials.
LU Yong-Fang; SHI Li-Qun; DING Wei; LONG Xing-Gui
2012-01-01
We present a first-principles study of the effects of hydrogen on helium behavior in hcp titanium.The calculation indicates that the dissolved H atoms in hcp Ti change the formation energy of the interstitial He atom,but they do not change the energetically favorable occupying site of the He atom,i.e.,the tetrahedral site is more favorable than the octahedral site.The impacts of H on the formation of interstitial He defects are directly related to the atomic environment around H atoms and their positions relative to interstitial He atoms as well.For He diffusion,a tetrahedral interstitial He atom can more easily migrate along the indirect tetrahedron-octahedron-tetrahedron path than the direct path of tetrahedron-tetrahedron.When a H atom exists in the first neighbor octahedral site from the He,the activation energy for He atom diffusion is 0.46eV,which is higher than that of the He atom diffusion in perfect crystal,0.41 eV.Increasing the number of H atoms to two,He diffusion needs much higher activation energy.This suggests that the H atoms around interstitial He may impede the migration of interstitial He atom in hcp Ti.%We present a first-principles study of the effects of hydrogen on helium behavior in hep titanium. The calculation indicates that the dissolved H atoms in hcp Ti change the formation energy of the interstitial He atom, but they do not change the energetically favorable occupying site of the He atom, I.e., the tetrahedral site is more favorable than the octahedral site. The impacts of H on the formation of interstitial He defects are directly related to the atomic environment around H atoms and their positions relative to interstitial He atoms as well. For He diffusion, a tetrahedral interstitial He atom can more easily migrate along the indirect tetrahedron-octahedron-tetrahedron path than the direct path of tetrahedron-tetrahedron. When a H atom exists in the first neighbor octahedral site from the He, the activation energy for He atom diffusion
Lester, Jeffrey; Kichler, Sari; Oickle, Brandon; Fairweather, Spencer; Oberc, Alexander; Chahal, Jaspreet; Ratnayake, Dinath; Creuzenet, Carole
2015-04-01
Helicobacter pylori is a human gastric pathogen that colonizes ∼ 50% of the world's population. It can cause gastritis, gastric or duodenal ulcers and also gastric cancer. The numerous side effects of available treatments and the emergence of antibiotic resistant strains are severe concerns that justify further research into H. pylori's pathogenic mechanisms. H. pylori produces secreted proteins that may play a role in virulence, including the Helicobacter cysteine-rich protein HcpE (aka HP0235). We demonstrate herein that HcpE is secreted in the culture supernatant both as a soluble protein and in association with outer membrane vesicles. We show that the structure of HcpE comprises an organized array of disulfide bonds. We identify DsbK (aka HP0231) as a folding factor necessary for HcpE production and secretion in H. pylori and show that recombinant DsbK can interact with and refold unprocessed, reduced HcpE in vitro. These experiments highlight the first biologically relevant substrate for DsbK. Furthermore, we show that DsbK has disulfide bond (Dsb) forming activity on reduced lysozyme and demonstrate a DsbA-type of activity for DsbK upon expression in E. coli, despite its similarity with DsbG. Finally, we show a role of DsbK in maintaining redox homeostasis in H. pylori.
A Bijection between Lattice-Valued Filters and Lattice-Valued Congruences in Residuated Lattices
Wei Wei
2013-01-01
Full Text Available The aim of this paper is to study relations between lattice-valued filters and lattice-valued congruences in residuated lattices. We introduce a new definition of congruences which just depends on the meet ∧ and the residuum →. Then it is shown that each of these congruences is automatically a universal-algebra-congruence. Also, lattice-valued filters and lattice-valued congruences are studied, and it is shown that there is a one-to-one correspondence between the set of all (lattice-valued filters and the set of all (lattice-valued congruences.
Knuth, Kevin H.
2009-12-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well introduce a general notion of product. To illustrate the generic utility of this novel lattice-theoretic foundation of measure, the sum and product rules are applied to number theory. Further application of these concepts to understand the foundation of quantum mechanics is described in a joint paper in this proceedings.
Lattice Boltzmann Stokesian dynamics.
Ding, E J
2015-11-01
Lattice Boltzmann Stokesian dynamics (LBSD) is presented for simulation of particle suspension in Stokes flows. This method is developed from Stokesian dynamics (SD) with resistance and mobility matrices calculated using the time-independent lattice Boltzmann algorithm (TILBA). TILBA is distinguished from the traditional lattice Boltzmann method (LBM) in that a background matrix is generated prior to the calculation. The background matrix, once generated, can be reused for calculations for different scenarios, thus the computational cost for each such subsequent calculation is significantly reduced. The LBSD inherits the merits of the SD where both near- and far-field interactions are considered. It also inherits the merits of the LBM that the computational cost is almost independent of the particle shape.
Weisz, Peter; Majumdar, Pushan
2012-03-01
Lattice gauge theory is a formulation of quantum field theory with gauge symmetries on a space-time lattice. This formulation is particularly suitable for describing hadronic phenomena. In this article we review the present status of lattice QCD. We outline some of the computational methods, discuss some phenomenological applications and a variety of non-perturbative topics. The list of references is severely incomplete, the ones we have included are text books or reviews and a few subjectively selected papers. Kronfeld and Quigg (2010) supply a reasonably comprehensive set of QCD references. We apologize for the fact that have not covered many important topics such as QCD at finite density and heavy quark effective theory adequately, and mention some of them only in the last section "In Brief". These topics should be considered in further Scholarpedia articles.
Improved Lattice Radial Quantization
Brower, Richard C; Fleming, George T
2014-01-01
Lattice radial quantization was proposed in a recent paper by Brower, Fleming and Neuberger[1] as a nonperturbative method especially suited to numerically solve Euclidean conformal field theories. The lessons learned from the lattice radial quantization of the 3D Ising model on a longitudinal cylinder with 2D Icosahedral cross-section suggested the need for an improved discretization. We consider here the use of the Finite Element Methods(FEM) to descretize the universally-equivalent $\\phi^4$ Lagrangian on $\\mathbb R \\times \\mathbb S^2$. It is argued that this lattice regularization will approach the exact conformal theory at the Wilson-Fisher fixed point in the continuum. Numerical tests are underway to support this conjecture.
Graphene antidot lattice waveguides
Pedersen, Jesper Goor; Gunst, Tue; Markussen, Troels
2012-01-01
We introduce graphene antidot lattice waveguides: nanostructured graphene where a region of pristine graphene is sandwiched between regions of graphene antidot lattices. The band gaps in the surrounding antidot lattices enable localized states to emerge in the central waveguide region. We model...... the waveguides via a position-dependent mass term in the Dirac approximation of graphene and arrive at analytical results for the dispersion relation and spinor eigenstates of the localized waveguide modes. To include atomistic details we also use a tight-binding model, which is in excellent agreement...... with the analytical results. The waveguides resemble graphene nanoribbons, but without the particular properties of ribbons that emerge due to the details of the edge. We show that electrons can be guided through kinks without additional resistance and that transport through the waveguides is robust against...
Digital lattice gauge theories
Zohar, Erez; Reznik, Benni; Cirac, J Ignacio
2016-01-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with $2+1$ dimensions and higher, are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through pertubative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a $\\mathbb{Z}_{3}$ lattice gauge theory with dynamical fermionic matter in $2+1$ dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms...
Oates, Chris
2012-06-01
Since they were first proposed in 2003 [1], optical lattice clocks have become one of the leading technologies for the next generation of atomic clocks, which will be used for advanced timing applications and in tests of fundamental physics [2]. These clocks are based on stabilized lasers whose frequency is ultimately referenced to an ultra-narrow neutral atom transition (natural linewidths magic'' value so as to yield a vanishing net AC Stark shift for the clock transition. As a result lattice clocks have demonstrated the capability of generating high stability clock signals with small absolute uncertainties (˜ 1 part in 10^16). In this presentation I will first give an overview of the field, which now includes three different atomic species. I will then use experiments with Yb performed in our laboratory to illustrate the key features of a lattice clock. Our research has included the development of state-of-the-art optical cavities enabling ultra-high-resolution optical spectroscopy (1 Hz linewidth). Together with the large atom number in the optical lattice, we are able to achieve very low clock instability (< 0.3 Hz in 1 s) [3]. Furthermore, I will show results from some of our recent investigations of key shifts for the Yb lattice clock, including high precision measurements of ultracold atom-atom interactions in the lattice and the dc Stark effect for the Yb clock transition (necessary for the evaluation of blackbody radiation shifts). [4pt] [1] H. Katori, M. Takamoto, V. G. Pal'chikov, and V. D. Ovsiannikov, Phys. Rev. Lett. 91, 173005 (2003). [0pt] [2] Andrei Derevianko and Hidetoshi Katori, Rev. Mod. Phys. 83, 331 (2011). [0pt] [3] Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, Nature Photonics 5, 158 (2011).
Catterall, Simon; Kaplan, David B.; Unsal, Mithat
2009-03-31
We provide an introduction to recent lattice formulations of supersymmetric theories which are invariant under one or more real supersymmetries at nonzero lattice spacing. These include the especially interesting case of N = 4 SYM in four dimensions. We discuss approaches based both on twisted supersymmetry and orbifold-deconstruction techniques and show their equivalence in the case of gauge theories. The presence of an exact supersymmetry reduces and in some cases eliminates the need for fine tuning to achieve a continuum limit invariant under the full supersymmetry of the target theory. We discuss open problems.
Grabisch, Michel
2008-01-01
We extend the notion of belief function to the case where the underlying structure is no more the Boolean lattice of subsets of some universal set, but any lattice, which we will endow with a minimal set of properties according to our needs. We show that all classical constructions and definitions (e.g., mass allocation, commonality function, plausibility functions, necessity measures with nested focal elements, possibility distributions, Dempster rule of combination, decomposition w.r.t. simple support functions, etc.) remain valid in this general setting. Moreover, our proof of decomposition of belief functions into simple support functions is much simpler and general than the original one by Shafer.
Adidharma, Hertanto; Tan, Sugata P
2016-07-07
Canonical Monte Carlo simulations on face-centered cubic (FCC) and hexagonal closed packed (HCP) Lennard-Jones (LJ) solids are conducted at very low temperatures (0.10 ≤ T(∗) ≤ 1.20) and high densities (0.96 ≤ ρ(∗) ≤ 1.30). A simple and robust method is introduced to determine whether or not the cutoff distance used in the simulation is large enough to provide accurate thermodynamic properties, which enables us to distinguish the properties of FCC from that of HCP LJ solids with confidence, despite their close similarities. Free-energy expressions derived from the simulation results are also proposed, not only to describe the properties of those individual structures but also the FCC-liquid, FCC-vapor, and FCC-HCP solid phase equilibria.
Chen, Y.S. [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China); Sun, An-Cheng, E-mail: acsun@saturn.yzu.edu.tw [Department of Chemical Engineering and Materials Science, Yuan-Ze University, Chung-Li 32003, Taiwan (China); Lee, H.Y. [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300, Taiwan (China); Department of Applied Science, National Hsinchu University of Education, Hsinchu 300, Taiwan (China); Lu, Hsi-Chuan; Wang, Sea-Fue [Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan (China); Sharma, Puneet [School of Physics and Materials Science, Thapar University, Patiala (India)
2015-10-01
High coercivity (H{sub c}) Co-rich type Co–Pt alloy thin films with a columnar grain structure were deposited at room temperature (RT) by magnetron sputtering. Films with a thickness (t) of up to 10 nm had a FCC structure and exhibited soft magnetic properties. When t>25 nm, the magnetic anisotropy changed from in-plane to isotropic. H{sub c} was also enhanced with increasing t and found to be maximum at t=50 nm. The in-plane and out-of-plane H{sub c} of the film was 2.2 and 2.7 kOe, respectively. Further increasing t led to a slight decrease in H{sub c}. Microstructure and phase structure studies revealed columnar Co–Pt grains with a uniform lateral size grown on a 7 nm initial layer. Films with t>25 nm showed a HCP phase, due to the internal stress and volume effect. The microstructural details responsible for the enhanced RT magnetic properties of the HCP Co–Pt alloy thin films were investigated by TEM. - Highlights: • Deposited Co–Pt alloy thin films on glass substrate at room temperature. • High out-of-plane coercivity of Co-rich type Co–Pt thin film at thinner thickness. • Columnar structure contributed out-of-plane coercivity.
Chen, Y. S.; Sun, An-Cheng; Lee, H. Y.; Lu, Hsi-Chuan; Wang, Sea-Fue; Sharma, Puneet
2015-10-01
High coercivity (Hc) Co-rich type Co-Pt alloy thin films with a columnar grain structure were deposited at room temperature (RT) by magnetron sputtering. Films with a thickness (t) of up to 10 nm had a FCC structure and exhibited soft magnetic properties. When t>25 nm, the magnetic anisotropy changed from in-plane to isotropic. Hc was also enhanced with increasing t and found to be maximum at t=50 nm. The in-plane and out-of-plane Hc of the film was 2.2 and 2.7 kOe, respectively. Further increasing t led to a slight decrease in Hc. Microstructure and phase structure studies revealed columnar Co-Pt grains with a uniform lateral size grown on a 7 nm initial layer. Films with t>25 nm showed a HCP phase, due to the internal stress and volume effect. The microstructural details responsible for the enhanced RT magnetic properties of the HCP Co-Pt alloy thin films were investigated by TEM.
Fan, Yue; Yip, Sidney; Yildiz, Bilge
2014-09-01
This paper presents an extension of the autonomous basin climbing (ABC) method, an atomistic activation-relaxation technique for sampling transition-state pathways. The extended algorithm (ABC-E) allows the sampling of multiple transition pathways from a given minimum, with the additional feature of identifying the pathways in the order of increasing activation barriers, thereby prioritizing them according to their importance in the kinetics. Combined with on-the-fly kinetic Monte Carlo calculations, the method is applied to simulate the anisotropic diffusion of point defects in hcp Zr. Multiple migration mechanisms are identified for both the interstitials and vacancies, and benchmarked against results from other methods in the literature. The self-interstitial atom (SIA) diffusion kinetics shows a maximum anisotropy at intermediate temperatures (400~700 K), a non-monotonic behavior that we explain to originate from the stabilities and migration mechanisms associated with different SIA sites. The accuracy of the ABC-E calculations is validated, in part, by the existing results in the literature for point defect diffusion in hcp Zr, and by benchmarking against analytical results on a hypothetical rough-energy landscape. Lastly, sampling prioritization and computational efficiency are demonstrated through a direct comparison between the ABC-E and the activation relaxation technique.
Krivosheina, Marina; Kobenko, Sergey; Tuch, Elena; Kozlova, Maria
2016-11-01
This paper investigates elastic and plastic waves in HCP single crystals through the numerical simulation of strain processes in anisotropic materials based on a zinc single crystal. Velocity profiles for compression waves in the back surfaces of single-crystal zinc plates with impact loading oriented in 0001 and 10 1 ¯0 are presented in this work as a part of results obtained in numerical simulations. The mathematical model implemented in this study reflects the following characteristics of the mechanical properties inherent in anisotropic (transtropic) materials: varying degree of anisotropy of elastic and plastic properties, which includes reverse anisotropy, dependence of distribution of all types of waves on the velocity orientation, and the anisotropy of compressibility. Another feature of elastic and plastic waves in HCP single crystals is that the shock wave does not split into an elastic precursor and "plastic" compression shock wave, which is inherent in zinc single crystals with loading oriented in 0001. The study compares numerical results obtained in a three-dimensional formulation with the results of velocity profiles from the back surfaces of target plates obtained in real experiments. These results demonstrate that the mathematical model is capable of describing the properties of the above-mentioned anisotropic (transtropic) materials.
Futa Yuichi
2016-03-01
Full Text Available In this article, we formalize the definition of lattice of ℤ-module and its properties in the Mizar system [5].We formally prove that scalar products in lattices are bilinear forms over the field of real numbers ℝ. We also formalize the definitions of positive definite and integral lattices and their properties. Lattice of ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász base reduction algorithm [14], and cryptographic systems with lattices [15] and coding theory [9].
Thermodynamics and Long-Range Order of Interstitials in an h.c.p. Lattice : Nitrogen in ε-Fe2N1-z
Somers, M.A.J.; Kooi, B.J.; Maldzinski, L.; Mittemeijer, E.J.; Kraan, A.M. van der; van der Pers, N.M.
1997-01-01
The thermodynamics of nitrogen in the ε-Fe2N1-z phase were evaluated. To this end absorption isotherms for nitrogen in ε-Fe2N1-z, depicting the dependence of the nitrogen content on the applied chemical potential of nitrogen, were determined in the temperature range 673-823 K by equilibrating iron f
An Algorithm on Generating Lattice Based on Layered Concept Lattice
Zhang Chang-sheng
2013-08-01
Full Text Available Concept lattice is an effective tool for data analysis and rule extraction, a bottleneck factor on impacting the applications of concept lattice is how to generate lattice efficiently. In this paper, an algorithm LCLG on generating lattice in batch processing based on layered concept lattice is developed, this algorithm is based on layered concept lattice, the lattice is generated downward layer by layer through concept nodes and provisional nodes in current layer; the concept nodes are found parent-child relationships upward layer by layer, then the Hasse diagram of inter-layer connection is generated; in the generated process of the lattice nodes in each layer, we do the pruning operations dynamically according to relevant properties, and delete some unnecessary nodes, such that the generating speed is improved greatly; the experimental results demonstrate that the proposed algorithm has good performance.
Shigaki, Kenta; Noda, Fumiaki; Yamamoto, Kazami; Machida, Shinji; Molodojentsev, Alexander; Ishi, Yoshihiro
2002-12-01
The JKJ high-intensity proton accelerator facility consists of a 400-MeV linac, a 3-GeV 1-MW rapid-cycling synchrotron and a 50-GeV 0.75-MW synchrotron. The lattice and beam dynamics design of the two synchrotrons are reported.
de Raedt, Hans; von der Linden, W.; Binder, K
1995-01-01
In this chapter we review methods currently used to perform Monte Carlo calculations for quantum lattice models. A detailed exposition is given of the formalism underlying the construction of the simulation algorithms. We discuss the fundamental and technical difficulties that are encountered and gi
Knuth, Kevin H
2009-01-01
Previous derivations of the sum and product rules of probability theory relied on the algebraic properties of Boolean logic. Here they are derived within a more general framework based on lattice theory. The result is a new foundation of probability theory that encompasses and generalizes both the Cox and Kolmogorov formulations. In this picture probability is a bi-valuation defined on a lattice of statements that quantifies the degree to which one statement implies another. The sum rule is a constraint equation that ensures that valuations are assigned so as to not violate associativity of the lattice join and meet. The product rule is much more interesting in that there are actually two product rules: one is a constraint equation arises from associativity of the direct products of lattices, and the other a constraint equation derived from associativity of changes of context. The generality of this formalism enables one to derive the traditionally assumed condition of additivity in measure theory, as well in...
Williamson, S. Gill
2010-01-01
Will the cosmological multiverse, when described mathematically, have easily stated properties that are impossible to prove or disprove using mathematical physics? We explore this question by constructing lattice multiverses which exhibit such behavior even though they are much simpler mathematically than any likely cosmological multiverse.
Phenomenology from lattice QCD
Lellouch, L P
2003-01-01
After a short presentation of lattice QCD and some of its current practical limitations, I review recent progress in applications to phenomenology. Emphasis is placed on heavy-quark masses and on hadronic weak matrix elements relevant for constraining the CKM unitarity triangle. The main numerical results are highlighted in boxes.
Noetherian and Artinian Lattices
Derya Keskin Tütüncü
2012-01-01
Full Text Available It is proved that if L is a complete modular lattice which is compactly generated, then Rad(L/0 is Artinian if, and only if for every small element a of L, the sublattice a/0 is Artinian if, and only if L satisfies DCC on small elements.
Basis reduction for layered lattices
Torreão Dassen, Erwin
2011-01-01
We develop the theory of layered Euclidean spaces and layered lattices. We present algorithms to compute both Gram-Schmidt and reduced bases in this generalized setting. A layered lattice can be seen as lattices where certain directions have infinite weight. It can also be interpre
Spin qubits in antidot lattices
Pedersen, Jesper Goor; Flindt, Christian; Mortensen, Niels Asger;
2008-01-01
and density of states for a periodic potential modulation, referred to as an antidot lattice, and find that localized states appear, when designed defects are introduced in the lattice. Such defect states may form the building blocks for quantum computing in a large antidot lattice, allowing for coherent...
Antonangeli, D.; Occelli, F.; Badro, J.; Requardt, H.; Fiquet, G.; Krisch, M.
2003-12-01
Seismological studies show that the Earth's inner core is elastically anisotropic. The anisotropy has an axial symmetry and an amplitude of about 3-4%, with the fast direction oriented parallel to the Earth's rotation axis. Several hypotheses have been proposed to explain this feature, but the lack of evidence from mineral physics does not allow to address them. Indeed, the experimental determination of sound velocity anisotropy in hcp-iron, the main constituent of the inner core, is of primary importance. Studies include first-principle calculations [1-5] and x-ray radial diffraction measurements [6], but the results show general disagreement, not only in magnitude, but in direction as well. We will report new inelastic x-ray scattering (IXS) data on polycrystalline hcp-iron as a function of pressure, complementing and extending previous IXS data [7]. The derived longitudinal and transverse sound velocities will be compared with the calculations and the experimental results present in literature. Furthermore, the issue of elastic anisotropy will be addressed. Taking advantage of the texturing developed by uniaxially compressed hcp-metals [8], and making use of a properly designed diamond anvil cell characterized by an angular aperture of more than \\begin{math} 90^{o} , we measured the sound velocity at 22 and 112 GPa in two different geometries with respect to the compression axis, probing the longitudinal sound propagation at \\begin{math} 50^{o} and \\begin{math} 90^{o} with respect to it. A difference in acoustic sound velocity of about 5% has been detected at the highest pressure. This effective anisotropy on a textured polycrystalline sample is comparable with the one observed in the Earth, further relaxing the requirement of a nearly perfect alignment of iron crystal grains sustained by previous theoretical investigations [1,4]. [1] L. Stixrude, R.E. Cohen, Science 267, 1972 (1995). [2] P. Soderlind et al., Phys. Rev. B 53, 14063 (1996). [3] R. E. Cohen et
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
Lattice Quantum Chromodynamics
Sachrajda, C. T.
2016-10-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
Lattices of dielectric resonators
Trubin, Alexander
2016-01-01
This book provides the analytical theory of complex systems composed of a large number of high-Q dielectric resonators. Spherical and cylindrical dielectric resonators with inferior and also whispering gallery oscillations allocated in various lattices are considered. A new approach to S-matrix parameter calculations based on perturbation theory of Maxwell equations, developed for a number of high-Q dielectric bodies, is introduced. All physical relationships are obtained in analytical form and are suitable for further computations. Essential attention is given to a new unified formalism of the description of scattering processes. The general scattering task for coupled eigen oscillations of the whole system of dielectric resonators is described. The equations for the expansion coefficients are explained in an applicable way. The temporal Green functions for the dielectric resonator are presented. The scattering process of short pulses in dielectric filter structures, dielectric antennas and lattices of d...
Fractional lattice charge transport
Flach, Sergej; Khomeriki, Ramaz
2017-01-01
We consider the dynamics of noninteracting quantum particles on a square lattice in the presence of a magnetic flux α and a dc electric field E oriented along the lattice diagonal. In general, the adiabatic dynamics will be characterized by Bloch oscillations in the electrical field direction and dispersive ballistic transport in the perpendicular direction. For rational values of α and a corresponding discrete set of values of E(α) vanishing gaps in the spectrum induce a fractionalization of the charge in the perpendicular direction - while left movers are still performing dispersive ballistic transport, the complementary fraction of right movers is propagating in a dispersionless relativistic manner in the opposite direction. Generalizations and the possible probing of the effect with atomic Bose-Einstein condensates and photonic networks are discussed. Zak phase of respective band associated with gap closing regime has been computed and it is found converging to π/2 value. PMID:28102302
Borsanyi, Sz; Kampert, K H; Katz, S D; Kawanai, T; Kovacs, T G; Mages, S W; Pasztor, A; Pittler, F; Redondo, J; Ringwald, A; Szabo, K K
2016-01-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to several tens of MeV we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (chi) up to the few GeV temperature region. These two results, EoS and chi, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
Solitons in nonlinear lattices
Kartashov, Yaroslav V; Torner, Lluis
2010-01-01
This article offers a comprehensive survey of results obtained for solitons and complex nonlinear wave patterns supported by purely nonlinear lattices (NLs), which represent a spatially periodic modulation of the local strength and sign of the nonlinearity, and their combinations with linear lattices. A majority of the results obtained, thus far, in this field and reviewed in this article are theoretical. Nevertheless, relevant experimental settings are surveyed too, with emphasis on perspectives for implementation of the theoretical predictions in the experiment. Physical systems discussed in the review belong to the realms of nonlinear optics (including artificial optical media, such as photonic crystals, and plasmonics) and Bose-Einstein condensation (BEC). The solitons are considered in one, two, and three dimensions (1D, 2D, and 3D). Basic properties of the solitons presented in the review are their existence, stability, and mobility. Although the field is still far from completion, general conclusions c...
Parametric lattice Boltzmann method
Shim, Jae Wan
2017-06-01
The discretized equilibrium distributions of the lattice Boltzmann method are presented by using the coefficients of the Lagrange interpolating polynomials that pass through the points related to discrete velocities and using moments of the Maxwell-Boltzmann distribution. The ranges of flow velocity and temperature providing positive valued distributions vary with regulating discrete velocities as parameters. New isothermal and thermal compressible models are proposed for flows of the level of the isothermal and thermal compressible Navier-Stokes equations. Thermal compressible shock tube flows are simulated by only five on-lattice discrete velocities. Two-dimensional isothermal and thermal vortices provoked by the Kelvin-Helmholtz instability are simulated by the parametric models.
Jipsen, Peter
1992-01-01
The study of lattice varieties is a field that has experienced rapid growth in the last 30 years, but many of the interesting and deep results discovered in that period have so far only appeared in research papers. The aim of this monograph is to present the main results about modular and nonmodular varieties, equational bases and the amalgamation property in a uniform way. The first chapter covers preliminaries that make the material accessible to anyone who has had an introductory course in universal algebra. Each subsequent chapter begins with a short historical introduction which sites the original references and then presents the results with complete proofs (in nearly all cases). Numerous diagrams illustrate the beauty of lattice theory and aid in the visualization of many proofs. An extensive index and bibliography also make the monograph a useful reference work.
Lattice Quantum Chromodynamics
Sachrajda, C T
2016-01-01
I review the the application of the lattice formulation of QCD and large-scale numerical simulations to the evaluation of non-perturbative hadronic effects in Standard Model Phenomenology. I present an introduction to the elements of the calculations and discuss the limitations both in the range of quantities which can be studied and in the precision of the results. I focus particularly on the extraction of the QCD parameters, i.e. the quark masses and the strong coupling constant, and on important quantities in flavour physics. Lattice QCD is playing a central role in quantifying the hadronic effects necessary for the development of precision flavour physics and its use in exploring the limits of the Standard Model and in searches for inconsistencies which would signal the presence of new physics.
A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals.
Wilson, S R; Mendelev, M I
2016-04-14
We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).
A unified relation for the solid-liquid interface free energy of pure FCC, BCC, and HCP metals
Wilson, S. R.; Mendelev, M. I.
2016-04-01
We study correlations between the solid-liquid interface (SLI) free energy and bulk material properties (melting temperature, latent heat, and liquid structure) through the determination of SLI free energies for bcc and hcp metals from molecular dynamics (MD) simulation. Values obtained for the bcc metals in this study were compared to values predicted by the Turnbull, Laird, and Ewing relations on the basis of previously published MD simulation data. We found that of these three empirical relations, the Ewing relation better describes the MD simulation data. Moreover, whereas the original Ewing relation contains two constants for a particular crystal structure, we found that the first coefficient in the Ewing relation does not depend on crystal structure, taking a common value for all three phases, at least for the class of the systems described by embedded-atom method potentials (which are considered to provide a reasonable approximation for metals).
Jinichiro Nakano
2013-01-01
Full Text Available The thermodynamic properties of the Fe–Mn–C system were investigated by using an analytical model constructed by a CALPHAD approach. The stacking fault energy (SFE of the fcc structure with respect to the hcp phase was always constant at T0, independent of the composition and temperature when other related parameters were assumed to be constant. Experimental limits for the thermal hcp formation and the mechanical (deformation-induced hcp formation were separated by the SFE at T0. The driving force for the fcc to hcp transition, defined as a dimensionless value –dGm/(RT, was determined in the presence of Fe-rich and Mn-rich composition sets in each phase. Carbon tended to partition to the Mn-rich phase rather than to the Fe-rich phase for the compositions studied. The results obtained revealed a thermo-mechanical correlation with empirical yield strength, maximum true stress and maximum true strain. The proportionality between thermodynamics and mechanical properties is discussed.
Nakano, Jinichiro
2013-02-01
The thermodynamic properties of the Fe-Mn-C system were investigated by using an analytical model constructed by a CALPHAD approach. The stacking fault energy (SFE) of the fcc structure with respect to the hcp phase was always constant at T0, independent of the composition and temperature when other related parameters were assumed to be constant. Experimental limits for the thermal hcp formation and the mechanical (deformation-induced) hcp formation were separated by the SFE at T0. The driving force for the fcc to hcp transition, defined as a dimensionless value -dGm/(RT), was determined in the presence of Fe-rich and Mn-rich composition sets in each phase. Carbon tended to partition to the Mn-rich phase rather than to the Fe-rich phase for the compositions studied. The results obtained revealed a thermo-mechanical correlation with empirical yield strength, maximum true stress and maximum true strain. The proportionality between thermodynamics and mechanical properties is discussed.
International Lattice Data Grid
Davies, C T H; Kenway, R D; Maynard, C M
2002-01-01
We propose the co-ordination of lattice QCD grid developments in different countries to allow transparent exchange of gauge configurations in future, should participants wish to do so. We describe briefly UKQCD's XML schema for labelling and cataloguing the data. A meeting to further develop these ideas will be held in Edinburgh on 19/20 December 2002, and will be available over AccessGrid.
Weakly deformed soliton lattices
Dubrovin, B. (Moskovskij Gosudarstvennyj Univ., Moscow (USSR). Dept. of Mechanics and Mathematics)
1990-12-01
In this lecture the author discusses periodic and quasiperiodic solutions of nonlinear evolution equations of phi{sub t}=K (phi, phi{sub x},..., phi{sup (n)}), the so-called soliton lattices. After introducing the theory of integrable systems of hydrodynamic type he discusses their Hamiltonian formalism, i.e. the theory of Poisson brackets of hydrodynamic type. Then he describes the application of algebraic geometry to the effective integration of such equations. (HSI).
Crystallographic Lattice Boltzmann Method
Namburi, Manjusha; Krithivasan, Siddharth; Ansumali, Santosh
2016-01-01
Current approaches to Direct Numerical Simulation (DNS) are computationally quite expensive for most realistic scientific and engineering applications of Fluid Dynamics such as automobiles or atmospheric flows. The Lattice Boltzmann Method (LBM), with its simplified kinetic descriptions, has emerged as an important tool for simulating hydrodynamics. In a heterogeneous computing environment, it is often preferred due to its flexibility and better parallel scaling. However, direct simulation of realistic applications, without the use of turbulence models, remains a distant dream even with highly efficient methods such as LBM. In LBM, a fictitious lattice with suitable isotropy in the velocity space is considered to recover Navier-Stokes hydrodynamics in macroscopic limit. The same lattice is mapped onto a cartesian grid for spatial discretization of the kinetic equation. In this paper, we present an inverted argument of the LBM, by making spatial discretization as the central theme. We argue that the optimal spatial discretization for LBM is a Body Centered Cubic (BCC) arrangement of grid points. We illustrate an order-of-magnitude gain in efficiency for LBM and thus a significant progress towards feasibility of DNS for realistic flows. PMID:27251098
Bietenholz, W; Pepe, M; Wiese, U -J
2010-01-01
We consider lattice field theories with topological actions, which are invariant against small deformations of the fields. Some of these actions have infinite barriers separating different topological sectors. Topological actions do not have the correct classical continuum limit and they cannot be treated using perturbation theory, but they still yield the correct quantum continuum limit. To show this, we present analytic studies of the 1-d O(2) and O(3) model, as well as Monte Carlo simulations of the 2-d O(3) model using topological lattice actions. Some topological actions obey and others violate a lattice Schwarz inequality between the action and the topological charge $Q$. Irrespective of this, in the 2-d O(3) model the topological susceptibility $\\chi_t = \\l/V$ is logarithmically divergent in the continuum limit. Still, at non-zero distance the correlator of the topological charge density has a finite continuum limit which is consistent with analytic predictions. Our study shows explicitly that some cla...
Adamatzky, Andrew
2015-01-01
The book gives a comprehensive overview of the state-of-the-art research and engineering in theory and application of Lattice Automata in design and control of autonomous Robots. Automata and robots share the same notional meaning. Automata (originated from the latinization of the Greek word “αυτόματον”) as self-operating autonomous machines invented from ancient years can be easily considered the first steps of robotic-like efforts. Automata are mathematical models of Robots and also they are integral parts of robotic control systems. A Lattice Automaton is a regular array or a collective of finite state machines, or automata. The Automata update their states by the same rules depending on states of their immediate neighbours. In the context of this book, Lattice Automata are used in developing modular reconfigurable robotic systems, path planning and map exploration for robots, as robot controllers, synchronisation of robot collectives, robot vision, parallel robotic actuators. All chapters are...
Hadroquarkonium from lattice QCD
Alberti, Maurizio; Bali, Gunnar S.; Collins, Sara; Knechtli, Francesco; Moir, Graham; Söldner, Wolfgang
2017-04-01
The hadroquarkonium picture [S. Dubynskiy and M. B. Voloshin, Phys. Lett. B 666, 344 (2008), 10.1016/j.physletb.2008.07.086] provides one possible interpretation for the pentaquark candidates with hidden charm, recently reported by the LHCb Collaboration, as well as for some of the charmoniumlike "X , Y , Z " states. In this picture, a heavy quarkonium core resides within a light hadron giving rise to four- or five-quark/antiquark bound states. We test this scenario in the heavy quark limit by investigating the modification of the potential between a static quark-antiquark pair induced by the presence of a hadron. Our lattice QCD simulations are performed on a Coordinated Lattice Simulations (CLS) ensemble with Nf=2 +1 flavors of nonperturbatively improved Wilson quarks at a pion mass of about 223 MeV and a lattice spacing of about a =0.0854 fm . We study the static potential in the presence of a variety of light mesons as well as of octet and decuplet baryons. In all these cases, the resulting configurations are favored energetically. The associated binding energies between the quarkonium in the heavy quark limit and the light hadron are found to be smaller than a few MeV, similar in strength to deuterium binding. It needs to be seen if the small attraction survives in the infinite volume limit and supports bound states or resonances.
Digital lattice gauge theories
Zohar, Erez; Farace, Alessandro; Reznik, Benni; Cirac, J. Ignacio
2017-02-01
We propose a general scheme for a digital construction of lattice gauge theories with dynamical fermions. In this method, the four-body interactions arising in models with 2 +1 dimensions and higher are obtained stroboscopically, through a sequence of two-body interactions with ancillary degrees of freedom. This yields stronger interactions than the ones obtained through perturbative methods, as typically done in previous proposals, and removes an important bottleneck in the road towards experimental realizations. The scheme applies to generic gauge theories with Lie or finite symmetry groups, both Abelian and non-Abelian. As a concrete example, we present the construction of a digital quantum simulator for a Z3 lattice gauge theory with dynamical fermionic matter in 2 +1 dimensions, using ultracold atoms in optical lattices, involving three atomic species, representing the matter, gauge, and auxiliary degrees of freedom, that are separated in three different layers. By moving the ancilla atoms with a proper sequence of steps, we show how we can obtain the desired evolution in a clean, controlled way.
A Mechanical Lattice Aid for Crystallography Teaching.
Amezcua-Lopez, J.; Cordero-Borboa, A. E.
1988-01-01
Introduces a 3-dimensional mechanical lattice with adjustable telescoping mechanisms. Discusses the crystalline state, the 14 Bravais lattices, operational principles of the mechanical lattice, construction methods, and demonstrations in classroom. Provides lattice diagrams, schemes of the lattice, and various pictures of the lattice. (YP)
Kenneth Wilson and lattice QCD
Ukawa, Akira
2015-01-01
We discuss the physics and computation of lattice QCD, a space-time lattice formulation of quantum chromodynamics, and Kenneth Wilson's seminal role in its development. We start with the fundamental issue of confinement of quarks in the theory of the strong interactions, and discuss how lattice QCD provides a framework for understanding this phenomenon. A conceptual issue with lattice QCD is a conflict of space-time lattice with chiral symmetry of quarks. We discuss how this problem is resolved. Since lattice QCD is a non-linear quantum dynamical system with infinite degrees of freedom, quantities which are analytically calculable are limited. On the other hand, it provides an ideal case of massively parallel numerical computations. We review the long and distinguished history of parallel-architecture supercomputers designed and built for lattice QCD. We discuss algorithmic developments, in particular the difficulties posed by the fermionic nature of quarks, and their resolution. The triad of efforts toward b...
Lattice softening in body-centered-cubic lithium-magnesium alloys
Winter, I. S.; Tsuru, T.; Chrzan, D. C.
2017-08-01
A first-principles investigation of the influence of lattice softening on lithium-magnesium alloys near the body-centered-cubic (bcc)/hexagonal close-packed (hcp) transition composition is presented. Results show that lithium-magnesium alloys display a softening of the shear modulus C11-C12 , and an acoustic phonon branch between the Γ and N high symmetry points, as the composition approaches the stability limit for the bcc phase. This softening is accompanied by an increase in the size of the dislocation core region. Ideal tensile strength calculations predict that ordered phases of lithium-magnesium alloys are intrinsically brittle. Methods to make the alloys more ductile are discussed, and the propensity for these alloys to display gum-metal-like behavior is assessed.
Embedded-atom-method interatomic potentials from lattice inversion.
Yuan, Xiao-Jian; Chen, Nan-Xian; Shen, Jiang; Hu, Wangyu
2010-09-22
The present work develops a physically reliable procedure for building the embedded-atom-method (EAM) interatomic potentials for the metals with fcc, bcc and hcp structures. This is mainly based on Chen-Möbius lattice inversion (Chen et al 1997 Phys. Rev. E 55 R5) and first-principles calculations. Following Baskes (Baskes et al 2007 Phys. Rev. B 75 094113), this new version of the EAM eliminates all of the prior arbitrary choices in the determination of the atomic electron density and pair potential functions. Parameterizing the universal form deduced from the calculations within the density-functional scheme for homogeneous electron gas as the embedding function, the new-type EAM potentials for Cu, Fe and Ti metals have successfully been constructed by considering interatomic interactions up to the fifth neighbor, the third neighbor and the seventh neighbor, respectively. The predictions of elastic constants, structural energy difference, vacancy formation energy and migration energy, activation energy of vacancy diffusion, latent heat of melting and relative volume change on melting all satisfactorily agree with the experimental results available or first-principles calculations. The predicted surface energies for low-index crystal faces and the melting point are in agreement with the experimental data to the same extent as those calculated by other EAM-type potentials such as the FBD-EAM, 2NN MEAM and MS-EAM. In addition, the order among the predicted low-index surface energies is also consistent with the experimental information.
Lattice topology dictates photon statistics.
Kondakci, H Esat; Abouraddy, Ayman F; Saleh, Bahaa E A
2017-08-21
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice is endowed with chiral symmetry. In such lattices, eigenmode pairs come in skew-symmetric pairs with oppositely signed eigenvalues. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity while the same quantities are insensitive to the parity of a linear lattice. For a ring lattice, adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a lattice exhibiting chiral symmetry, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice thereby producing super-thermal photon statistics, while an odd-sited lattice is incommensurate with such an arrangement and the statistics become sub-thermal.
Three-Dimensional Lattice Structure Formed in a Binary System with DNA Nanoparticles
Kawasaki, Keno; Katsuno, Hiroyasu; Sato, Masahide
2017-06-01
Keeping the formation of lattice structures by nanoparticles covered with DNA in mind, we carry out Brownian dynamics simulations and study three-dimensional lattice structures formed by two species of particles. In our previous study [H. Katsuno, Y. Maegawa, and M. Sato, https://doi.org/10.7566/JPSJ.85.074605" xlink:type="simple">J. Phys. Soc. Jpn. 85, 074605 (2016)], we used the Lennard-Jones potential and studied two-dimensional structures formed in a binary system. When the interaction length between the different species, σ', is shorter than that between the same species, σ, the lattice structure changes with the ratio σ'/σ. In this paper, we use the same potential and study the formation of three-dimensional structures. With decreasing ratio σ'/σ, the mixture of the face-centered-cubic (fcc) structure and hexagonal-close-packed (hcp) structure is changed to the body-centered-cubic (bcc) structure and the NaCl structure.
Drashkovicheva, Kh; Igoshin, V I; Katrinyak, T; Kolibiar, M
1989-01-01
This book is another publication in the recent surveys of ordered sets and lattices. The papers, which might be characterized as "reviews of reviews," are based on articles reviewed in the Referativnyibreve Zhurnal: Matematika from 1978 to 1982. For the sake of completeness, the authors also attempted to integrate information from other relevant articles from that period. The bibliography of each paper provides references to the reviews in RZhMat and Mathematical Reviews where one can seek more detailed information. Specifically excluded from consideration in this volume were such topics as al
Lattice Vibrations in Chlorobenzenes:
Reynolds, P. A.; Kjems, Jørgen; White, J. W.
1974-01-01
Lattice vibrational dispersion curves for the ``intermolecular'' modes in the triclinic, one molecule per unit cell β phase of p‐C6D4Cl2 and p‐C6H4Cl2 have been obtained by inelastic neutron scattering. The deuterated sample was investigated at 295 and at 90°K and a linear extrapolation to 0°K...... by consideration of electrostatic forces or by further anisotropy in the dispersion forces not described in the atom‐atom model. Anharmonic effects are shown to be large, but the dominant features in the temperature variation of frequencies are describable by a quasiharmonic model....
Lattice harmonics expansion revisited
Kontrym-Sznajd, G.; Holas, A.
2017-04-01
The main subject of the work is to provide the most effective way of determining the expansion of some quantities into orthogonal polynomials, when these quantities are known only along some limited number of sampling directions. By comparing the commonly used Houston method with the method based on the orthogonality relation, some relationships, which define the applicability and correctness of these methods, are demonstrated. They are verified for various sets of sampling directions applicable for expanding quantities having the full symmetry of the Brillouin zone of cubic and non-cubic lattices. All results clearly show that the Houston method is always better than the orthogonality-relation one. For the cubic symmetry we present a few sets of special directions (SDs) showing how their construction and, next, a proper application depend on the choice of various sets of lattice harmonics. SDs are important mainly for experimentalists who want to reconstruct anisotropic quantities from their measurements, performed at a limited number of sampling directions.
Extreme lattices: symmetries and decorrelation
Andreanov, A.; Scardicchio, A.; Torquato, S.
2016-11-01
We study statistical and structural properties of extreme lattices, which are the local minima in the density landscape of lattice sphere packings in d-dimensional Euclidean space {{{R}}d} . Specifically, we ascertain statistics of the densities and kissing numbers as well as the numbers of distinct symmetries of the packings for dimensions 8 through 13 using the stochastic Voronoi algorithm. The extreme lattices in a fixed dimension of space d (d≥slant 8 ) are dominated by typical lattices that have similar packing properties, such as packing densities and kissing numbers, while the best and the worst packers are in the long tails of the distribution of the extreme lattices. We also study the validity of the recently proposed decorrelation principle, which has important implications for sphere packings in general. The degree to which extreme-lattice packings decorrelate as well as how decorrelation is related to the packing density and symmetry of the lattices as the space dimension increases is also investigated. We find that the extreme lattices decorrelate with increasing dimension, while the least symmetric lattices decorrelate faster.
Przystupa, Marek A.
2007-12-13
Harper-Dorn (H-D) creep is observed in metals and geological materials exposed to very low stresses at temperatures close to the melting point. It is one of several types of creep processes wherein the steady-state strain rate is proportional to the applied stress, Nabarro-Herring creep and Coble creep being two other important processes. H-D creep can be somewhat insidious because the creep rates are much larger than those expected for Nabarro-Herring or Coble creep. Since the working conditions of structural components of power plants and propulsion systems, as well as the motion of the earth’s mantle all involve very low stresses, an understanding of the factors controlling H-D creep is critical in preventing failures associated with those higher-than-expected creep rates. The purpose of this investigation was to obtain missing microstructural information on the evolution of the dislocation structures during static annealing of materials with fcc, bcc and hcp structure and use obtained results to test predictive capabilities of the dislocation network theory of H-D creep. In our view the evolutionary processes during static annealing and during Harper-Dorn creep are intimately related. The materials used in this study were fcc aluminum, hcp zinc and bcc tin. All characterizations of dislocation structures, densities and dislocation link length distributions were carried out using the etch pit method. To obtain quantitative information on the evolution of the dislocation networks during annealing the pure fcc aluminum samples were pre-deformed by creep at 913 and 620 K and then annealed. The higher deformation temperature was selected to generate starting dislocation networks similar to those forming during Harper-Dorn creep and the lower, to obtain higher dislocation densities suitable for reliable estimates of the parameters of the network growth law. The measured experimental link length distribution were, after scaling, (1) the same for all annealing
Thermoelasticity of hcp-iron up to 1.7 Mbar from the phonon density of states
Murphy, C. A.; Jackson, J. M.; Sturhahn, W.; Chen, B.
2011-12-01
Iron is an important component of minerals throughout the Earth, and it is thought to be the main constituent in the Earth's core. Therefore, studying iron at the appropriate pressure- and temperature-conditions is essential in order to fully understand seismological observations of the deep Earth, and to produce accurate geodynamic models of this region. To further our understanding of iron at core pressures, we directly probed its total phonon density of states (DOS) at 300 K and up to 1.7 Mbar using nuclear resonant inelastic X-ray scattering (NRIXS) and in situ X-ray diffraction (XRD) experiments, performed at beamline 3-ID-B of the Advanced Photon Source at Argonne National Laboratory. Similar NRIXS experiments have previously been performed on hcp-Fe up to 153 GPa (1-5). However, our unique analysis and in situ determination of sample volume with XRD distinguishes this study from previous similar works. In addition, we collected between 8 and 21 NRIXS scans at each of our eleven compression points-a subset of which were conducted with a neon pressure medium-making our high-pressure phonon DOS the most accurate measured to date to 1.7 Mbar. From the phonon DOS, we determined a number of high-pressure thermoelastic parameters for iron. Using the volume-dependence of the phonon DOS, we determined hcp-Fe's vibrational Grüneisen parameter (γvib), which relates thermal pressure to thermal energy per unit volume and is often used to extrapolate available melting data to the inner-core boundary. In addition, we determined the Debye sound velocity from the low-energy region of the phonon DOS, and used its volume dependence to determine the Debye Grüneisen parameter, an approximate form of γvib (7). Finally, we obtained the vibrational free energy and mean-square displacement per 57Fe atom from the integrated phonon DOS (8), and used these parameters to determine hcp-Fe's vibrational thermal pressure and melting behavior to outer-core pressures (9). Combining our
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Lattice Boltzmann Model for Compressible Fluid on a Square Lattice
SUN Cheng-Hai
2000-01-01
A two-level four-direction lattice Boltzmann model is formulated on a square lattice to simulate compressible flows with a high Mach number. The particle velocities are adaptive to the mean velocity and internal energy. Therefore, the mean flow can have a high Mach number. Due to the simple form of the equilibrium distribution, the 4th order velocity tensors are not involved in the calculations. Unlike the standard lattice Boltzmann model, o special treatment is need for the homogeneity of 4th order velocity tensors on square lattices. The Navier-Stokes equations were derived by the Chapman-Enskog method from the BGK Boltzmann equation. The model can be easily extended to three-dimensional cubic lattices. Two-dimensional shock-wave propagation was simulated
Entangling gates in even Euclidean lattices such as Leech lattice
Planat, Michel
2010-01-01
We point out a organic relationship between real entangling n-qubit gates of quantum computation and the group of automorphisms of even Euclidean lattices of the corresponding dimension 2n. The type of entanglement that is found in the gates/generators of Aut() depends on the lattice. In particular, we investigate Zn lattices, Barnes-Wall lattices D4, E8, 16 (associated to n = 2, 3 and 4 qubits), and the Leech lattices h24 and 24 (associated to a 3-qubit/qutrit system). Balanced tripartite entanglement is found to be a basic feature of Aut(), a nding that bears out our recent work related to the Weyl group of E8 [1, 2].
郑会; 陈资; 戎咏华
2007-01-01
为了修正石玮等的模型在计算马氏体相变切变角时的局限性,给出对浮凸角的修正,从而得到正确的相变切变角.以Fe-25Mn-6Si-5Cr合金为例,用原子力显微镜测量了该合金应力诱发γ(fcc)→ε(hcp)马氏体相变的浮凸角,并在Thompson四面体和几何模型基础上,进一步结合Ber-geon等关于浮凸角和切变方向位置关系模型,建立了一种更加普遍、有效的方法,由此修正了石玮等的局限性.用改进后的模型和计算方法得到的3个马氏体变体相变切变角计算结果,分别为20.80°、19.67°和19.73°,与相变切变角理论值19.47°符合得很好.
Introduction to lattice gauge theory
Gupta, R.
The lattice formulation of Quantum Field Theory (QFT) can be exploited in many ways. We can derive the lattice Feynman rules and carry out weak coupling perturbation expansions. The lattice then serves as a manifestly gauge invariant regularization scheme, albeit one that is more complicated than standard continuum schemes. Strong coupling expansions: these give us useful qualitative information, but unfortunately no hard numbers. The lattice theory is amenable to numerical simulations by which one calculates the long distance properties of a strongly interacting theory from first principles. The observables are measured as a function of the bare coupling g and a gauge invariant cut-off approx. = 1/alpha, where alpha is the lattice spacing. The continuum (physical) behavior is recovered in the limit alpha yields 0, at which point the lattice artifacts go to zero. This is the more powerful use of lattice formulation, so in these lectures the author focuses on setting up the theory for the purpose of numerical simulations to get hard numbers. The numerical techniques used in Lattice Gauge Theories have their roots in statistical mechanics, so it is important to develop an intuition for the interconnection between quantum mechanics and statistical mechanics.
Lewis, Randy
2014-01-01
Several collaborations have recently performed lattice calculations aimed specifically at dark matter, including work with SU(2), SU(3), SU(4) and SO(4) gauge theories to represent the dark sector. Highlights of these studies are presented here, after a reminder of how lattice calculations in QCD itself are helping with the hunt for dark matter.
Fast simulation of lattice systems
Bohr, H.; Kaznelson, E.; Hansen, Frank;
1983-01-01
A new computer system with an entirely new processor design is described and demonstrated on a very small trial lattice. The new computer simulates systems of differential equations of the order of 104 times faster than present day computers and we describe how the machine can be applied to lattice...
Branes and integrable lattice models
Yagi, Junya
2016-01-01
This is a brief review of my work on the correspondence between four-dimensional $\\mathcal{N} = 1$ supersymmetric field theories realized by brane tilings and two-dimensional integrable lattice models. I explain how to construct integrable lattice models from extended operators in partially topological quantum field theories, and elucidate the correspondence as an application of this construction.
Charmed baryons on the lattice
Padmanath, M
2015-01-01
We discuss the significance of charm baryon spectroscopy in hadron physics and review the recent developments of the spectra of charmed baryons in lattice calculations. Special emphasis is given on the recent studies of highly excited charm baryon states. Recent precision lattice measurements of the low lying charm and bottom baryons are also reviewed.
Quantum phases in optical lattices
Dickerscheid, Dennis Brian Martin
2006-01-01
An important new development in the field of ultracold atomic gases is the study of the properties of these gases in a so-called optical lattice. An optical lattice is a periodic trapping potential for the atoms that is formed by the interference pattern of a few laser beams. A reason for the
Marinelli, P.; Fernandez Guillermet, A.; Sade, M
2004-05-25
Extending a recent calorimetric study of the Fe-Mn system the enthalpy change associated with the fcc{yields}hcp martensitic transformation in the Fe-Mn-Co system has been determined in alloys with 13{<=}at.% Mn{<=}30 and up to 9 at.% Co. The heat effect has been measured by differential scanning calorimetry, whereas the fraction of material that transformed martensitically was determined by combining a dilatometric technique with the known molar volume versus composition relations. A detailed description of the various experimental and data processing procedures is reported. The enthalpy change is discussed as a function of composition and of the number of thermal cycles of transformation and retransformation. The picture of the energetics of the fcc{yields}hcp martensitic transformation emerging from the present study should be useful in future attempts to model the thermodynamics and phase stability relations in the Fe-Mn-Co system.
L. A. García-Cerda
2011-01-01
Full Text Available The preparation and characterization of hcp and fcc Ni and Ni/NiO nanoparticles is reported. Ni and Ni/NiO nanoparticles were obtained starting from a precursor material prepared using a citric assisted Pechini-type method and, then, followed by a calcination of the precursor in air at either 400 or 600°C for different times. The precursor was analyzed using thermogravimetric and differential thermal methods (TGA-DTA, and the resulting nanoparticles were characterized by X-ray diffraction (XRD, high-resolution transmission electron microscopy (HRTEM, and vibrational sample magnetometry. Nanoparticles showed a phase transformation for Ni from hcp to fcc and/or to fcc NiO structure as the calcination time increased. The influence of the phase transition and the formation of NiO on the magnetic properties of the samples are discussed.
Lattice Induced Transparency in Metasurfaces
Manjappa, Manukumara; Singh, Ranjan
2016-01-01
Lattice modes are intrinsic to the periodic structures and their occurrence can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report the first experimental observation of a lattice induced transparency (LIT) by coupling the first order lattice mode (FOLM) to the structural resonance of a metamaterial resonator at terahertz frequencies. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM mediated dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes large change in its bandwidth and resonance position. Besides controlling the transparency behaviour, LIT also shows a huge enhancement in the Q-factor and record high group delay of 28 ps, which could be pivotal in ultrasensitive sensing and slow light device applications.
Lattice models of ionic systems
Kobelev, Vladimir; Kolomeisky, Anatoly B.; Fisher, Michael E.
2002-05-01
A theoretical analysis of Coulomb systems on lattices in general dimensions is presented. The thermodynamics is developed using Debye-Hückel theory with ion-pairing and dipole-ion solvation, specific calculations being performed for three-dimensional lattices. As for continuum electrolytes, low-density results for simple cubic (sc), body-centered cubic (bcc), and face-centered cubic (fcc) lattices indicate the existence of gas-liquid phase separation. The predicted critical densities have values comparable to those of continuum ionic systems, while the critical temperatures are 60%-70% higher. However, when the possibility of sublattice ordering as well as Debye screening is taken into account systematically, order-disorder transitions and a tricritical point are found on sc and bcc lattices, and gas-liquid coexistence is suppressed. Our results agree with recent Monte Carlo simulations of lattice electrolytes.
Lattice quantum chromodynamics practical essentials
Knechtli, Francesco; Peardon, Michael
2017-01-01
This book provides an overview of the techniques central to lattice quantum chromodynamics, including modern developments. The book has four chapters. The first chapter explains the formulation of quarks and gluons on a Euclidean lattice. The second chapter introduces Monte Carlo methods and details the numerical algorithms to simulate lattice gauge fields. Chapter three explains the mathematical and numerical techniques needed to study quark fields and the computation of quark propagators. The fourth chapter is devoted to the physical observables constructed from lattice fields and explains how to measure them in simulations. The book is aimed at enabling graduate students who are new to the field to carry out explicitly the first steps and prepare them for research in lattice QCD.
Zhou, Wei; Tian, Jiting; Zheng, Jian; Xue, Jianming; Peng, Shuming
2016-02-12
Large defects are the main factor leading to the degradation of material properties under irradiation environments. It is commonly assumed that the large defects are mainly formed through cluster growth under continuous irradiations. Besides this mechanism, recent experiments and simulations show that sometimes an individual ion can also directly create a large defect. Here we report a novel mechanism for the formation of the large defects, as discovered by our Molecular Dynamics (MD) simulations of the collision cascades in hcp Zirconium (Zr): a pre-existing edge dislocation (ED) can significantly promote the nucleation of the vacancy clusters, and even facilitate the direct formation of an experimental-scale large vacancy loop (about 3 nm) in only one single displacement cascade. This dislocation-related mechanism may be the key for understanding the experimental results in the low-dose irradiated Zr where the high-density large dislocation loops are observed but difficult to be explained by the two mechanisms mentioned above. Considering that intrinsic dislocations exist in nearly all crystalline materials, our results provide a significant concept: pre-existing dislocations have a strong influence on the primary damage production, and taking them into account is indispensable for assessing and improving the material's irradiation-resistance.
Morrow, B.M., E-mail: morrow@lanl.gov; Cerreta, E.K.; McCabe, R.J.; Tomé, C.N.
2014-09-08
The mechanical properties of hexagonal close-packed (hcp) metals depend heavily on both slip and twinning, and interactions between twins have important implications on hardening behavior. Electron backscatter diffraction (EBSD), as well as conventional, in situ straining, and high resolution (HR) transmission electron microscopy (TEM) are used to study these interactions. HRTEM is used to observe the twin boundary structure. Twin boundaries that deviate from the characteristic {101"¯2} twin planes at the macroscale are revealed to be a combination of perfect {101"¯2} boundaries and characteristic facets at the nanoscale. Faceting for tensile {101"¯2} twins adopts basal-prismatic (B-P) character, where basal planes in the matrix very nearly align with prism planes in the twin, or similarly, prism planes in the matrix align with basal planes in the twin. Such features play a significant role in twin boundaries, where faceting accommodates the large changes to boundary shape observed. in situ straining is used to study twin–twin interactions as they occur, and also detwinning behavior upon load reversal. During the initial interaction, considerable changes to the shape of the twin boundaries are observed, consistent with post-mortem analyses. On load reversal, detwinning is observed, and the interacting twins disengage from one another, however a change in boundary structure due to the interaction is retained.
Phase transition of 2×2 adsorbates on FCC(1 1 1) and HCP(0 0 0 1) surfaces
Sakamoto, Yoshifumi
2003-04-01
Order-disorder transition of adsorbates at metal surfaces is discussed based on Monte Carlo calculations for a lattice gas model on a triangular net. Repulsive interactions up to second neighbour sites and fixed concentration 1/4 of particles of lattice gas, are assumed for the 2×2 ordered structure. Calculated phase diagram and the critical exponent for susceptibility are presented. Stress is put on cases other than the second-order transition belonging to the four-state Potts universality class.
Irreversible stochastic processes on lattices
Nord, R.S.
1986-01-01
Models for irreversible random or cooperative filling of lattices are required to describe many processes in chemistry and physics. Since the filling is assumed to be irreversible, even the stationary, saturation state is not in equilibrium. The kinetics and statistics of these processes are described by recasting the master equations in infinite hierarchical form. Solutions can be obtained by implementing various techniques: refinements in these solution techniques are presented. Programs considered include random dimer, trimer, and tetramer filling of 2D lattices, random dimer filling of a cubic lattice, competitive filling of two or more species, and the effect of a random distribution of inactive sites on the filling. Also considered is monomer filling of a linear lattice with nearest neighbor cooperative effects and solve for the exact cluster-size distribution for cluster sizes up to the asymptotic regime. Additionally, a technique is developed to directly determine the asymptotic properties of the cluster size distribution. Finally cluster growth is considered via irreversible aggregation involving random walkers. In particular, explicit results are provided for the large-lattice-size asymptotic behavior of trapping probabilities and average walk lengths for a single walker on a lattice with multiple traps. Procedures for exact calculation of these quantities on finite lattices are also developed.
Lattice topology dictates photon statistics
Kondakci, H Esat; Saleh, Bahaa E A
2016-01-01
Propagation of coherent light through a disordered network is accompanied by randomization and possible conversion into thermal light. Here, we show that network topology plays a decisive role in determining the statistics of the emerging field if the underlying lattice satisfies chiral symmetry. By examining one-dimensional arrays of randomly coupled waveguides arranged on linear and ring topologies, we are led to a remarkable prediction: the field circularity and the photon statistics in ring lattices are dictated by its parity -- whether the number of sites is even or odd, while the same quantities are insensitive to the parity of a linear lattice. Adding or subtracting a single lattice site can switch the photon statistics from super-thermal to sub-thermal, or vice versa. This behavior is understood by examining the real and imaginary fields on a chiral-symmetric lattice, which form two strands that interleave along the lattice sites. These strands can be fully braided around an even-sited ring lattice th...
Lattice Boltzmann model for nanofluids
Xuan Yimin; Yao Zhengping [Nanjing University of Science and Technology, School of Power Engineering, Nanjing (China)
2005-01-01
A nanofluid is a particle suspension that consists of base liquids and nanoparticles and has great potential for heat transfer enhancement. By accounting for the external and internal forces acting on the suspended nanoparticles and interactions among the nanoparticles and fluid particles, a lattice Boltzmann model is proposed for simulating flow and energy transport processes inside the nanofluids. First, we briefly introduce the conventional lattice Boltzmann model for multicomponent systems. Then, we discuss the irregular motion of the nanoparticles and inherent dynamic behavior of nanofluids and describe a lattice Boltzmann model for simulating nanofluids. Finally, we conduct some calculations for the distribution of the suspended nanoparticles. (orig.)
Localized structures in Kagome lattices
Saxena, Avadh B [Los Alamos National Laboratory; Bishop, Alan R [Los Alamos National Laboratory; Law, K J H [UNIV OF MASSACHUSETTS; Kevrekidis, P G [UNIV OF MASSACHUSETTS
2009-01-01
We investigate the existence and stability of gap vortices and multi-pole gap solitons in a Kagome lattice with a defocusing nonlinearity both in a discrete case and in a continuum one with periodic external modulation. In particular, predictions are made based on expansion around a simple and analytically tractable anti-continuum (zero coupling) limit. These predictions are then confirmed for a continuum model of an optically-induced Kagome lattice in a photorefractive crystal obtained by a continuous transformation of a honeycomb lattice.
Borwein, J M; McPhedran, R C
2013-01-01
The study of lattice sums began when early investigators wanted to go from mechanical properties of crystals to the properties of the atoms and ions from which they were built (the literature of Madelung's constant). A parallel literature was built around the optical properties of regular lattices of atoms (initiated by Lord Rayleigh, Lorentz and Lorenz). For over a century many famous scientists and mathematicians have delved into the properties of lattices, sometimes unwittingly duplicating the work of their predecessors. Here, at last, is a comprehensive overview of the substantial body of
Brian Jefferies
2014-01-01
Full Text Available A bounded linear operator T on a Hilbert space ℋ is trace class if its singular values are summable. The trace class operators on ℋ form an operator ideal and in the case that ℋ is finite-dimensional, the trace tr(T of T is given by ∑jajj for any matrix representation {aij} of T. In applications of trace class operators to scattering theory and representation theory, the subject is complicated by the fact that if k is an integral kernel of the operator T on the Hilbert space L2(μ with μ a σ-finite measure, then k(x,x may not be defined, because the diagonal {(x,x} may be a set of (μ⊗μ-measure zero. The present note describes a class of linear operators acting on a Banach function space X which forms a lattice ideal of operators on X, rather than an operator ideal, but coincides with the collection of hermitian positive trace class operators in the case of X=L2(μ.
Michael V. Glazoff; Jeong-Whan Yoon
2013-08-01
In this report (prepared in collaboration with Prof. Jeong Whan Yoon, Deakin University, Melbourne, Australia) a research effort was made to develop a non associated flow rule for zirconium. Since Zr is a hexagonally close packed (hcp) material, it is impossible to describe its plastic response under arbitrary loading conditions with any associated flow rule (e.g. von Mises). As a result of strong tension compression asymmetry of the yield stress and anisotropy, zirconium displays plastic behavior that requires a more sophisticated approach. Consequently, a new general asymmetric yield function has been developed which accommodates mathematically the four directional anisotropies along 0 degrees, 45 degrees, 90 degrees, and biaxial, under tension and compression. Stress anisotropy has been completely decoupled from the r value by using non associated flow plasticity, where yield function and plastic potential have been treated separately to take care of stress and r value directionalities, respectively. This theoretical development has been verified using Zr alloys at room temperature as an example as these materials have very strong SD (Strength Differential) effect. The proposed yield function reasonably well models the evolution of yield surfaces for a zirconium clock rolled plate during in plane and through thickness compression. It has been found that this function can predict both tension and compression asymmetry mathematically without any numerical tolerance and shows the significant improvement compared to any reported functions. Finally, in the end of the report, a program of further research is outlined aimed at constructing tensorial relationships for the temperature and fluence dependent creep surfaces for Zr, Zircaloy 2, and Zircaloy 4.
Lattice radial quantization by cubature
Neuberger, Herbert
2014-01-01
Basic aspects of a program to put field theories quantized in radial coordinates on the lattice are presented. Only scalar fields are discussed. Simple examples are solved to illustrate the strategy when applied to the 3D Ising model.
Wilby, Brian
1974-01-01
As an alternative to the usual method of counting squares to find the area of a plane shape, a method of counting lattice points (determined by vertices of a unit square) is proposed. Activities using this method are suggested. (DT)
De Soto, F; Carbonell, J; Leroy, J P; Pène, O; Roiesnel, C; Boucaud, Ph.
2007-01-01
We present the first results of a quantum field approach to nuclear models obtained by lattice techniques. Renormalization effects for fermion mass and coupling constant in case of scalar and pseudoscalar interaction lagrangian densities are discussed.
Przystupa, Marek A.
2007-12-13
Harper-Dorn (H-D) creep is observed in metals and geological materials exposed to very low stresses at temperatures close to the melting point. It is one of several types of creep processes wherein the steady-state strain rate is proportional to the applied stress, Nabarro-Herring creep and Coble creep being two other important processes. H-D creep can be somewhat insidious because the creep rates are much larger than those expected for Nabarro-Herring or Coble creep. Since the working conditions of structural components of power plants and propulsion systems, as well as the motion of the earth’s mantle all involve very low stresses, an understanding of the factors controlling H-D creep is critical in preventing failures associated with those higher-than-expected creep rates. The purpose of this investigation was to obtain missing microstructural information on the evolution of the dislocation structures during static annealing of materials with fcc, bcc and hcp structure and use obtained results to test predictive capabilities of the dislocation network theory of H-D creep. In our view the evolutionary processes during static annealing and during Harper-Dorn creep are intimately related. The materials used in this study were fcc aluminum, hcp zinc and bcc tin. All characterizations of dislocation structures, densities and dislocation link length distributions were carried out using the etch pit method. To obtain quantitative information on the evolution of the dislocation networks during annealing the pure fcc aluminum samples were pre-deformed by creep at 913 and 620 K and then annealed. The higher deformation temperature was selected to generate starting dislocation networks similar to those forming during Harper-Dorn creep and the lower, to obtain higher dislocation densities suitable for reliable estimates of the parameters of the network growth law. The measured experimental link length distribution were, after scaling, (1) the same for all annealing
Baryon spectroscopy in lattice QCD
Derek B. Leinweber; Wolodymyr Melnitchouk; David Richards; Anthony G. Williams; James Zanotti
2004-04-01
We review recent developments in the study of excited baryon spectroscopy in lattice QCD. After introducing the basic methods used to extract masses from correlation functions, we discuss various interpolating fields and lattice actions commonly used in the literature. We present a survey of results of recent calculations of excited baryons in quenched QCD, and outline possible future directions in the study of baryon spectra.
Lattice QCD: A Brief Introduction
Meyer, H. B.
A general introduction to lattice QCD is given. The reader is assumed to have some basic familiarity with the path integral representation of quantum field theory. Emphasis is placed on showing that the lattice regularization provides a robust conceptual and computational framework within quantum field theory. The goal is to provide a useful overview, with many references pointing to the following chapters and to freely available lecture series for more in-depth treatments of specifics topics.
Yamamoto, Arata
2016-01-01
We propose the lattice QCD calculation of the Berry phase which is defined by the ground state of a single fermion. We perform the ground-state projection of a single-fermion propagator, construct the Berry link variable on a momentum-space lattice, and calculate the Berry phase. As the first application, the first Chern number of the (2+1)-dimensional Wilson fermion is calculated by the Monte Carlo simulation.
Transport in Sawtooth photonic lattices
Weimann, Steffen; Real, Bastián; Cantillano, Camilo; Szameit, Alexander; Vicencio, Rodrigo A
2016-01-01
We investigate, theoretically and experimentally, a photonic realization of a Sawtooth lattice. This special lattice exhibits two spectral bands, with one of them experiencing a complete collapse to a highly degenerate flat band for a special set of inter-site coupling constants. We report the ob- servation of different transport regimes, including strong transport inhibition due to the appearance of the non-diffractive flat band. Moreover, we excite localized Shockley surfaces states, residing in the gap between the two linear bands.
Lattice Studies of Hyperon Spectroscopy
Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
Multifractal behaviour of -simplex lattic
Sanjay Kumar; Debaprasad Giri; Sujata Krishna
2000-06-01
We study the asymptotic behaviour of resistance scaling and ﬂuctuation of resistance that give rise to ﬂicker noise in an -simplex lattice. We propose a simple method to calculate the resistance scaling and give a closed-form formula to calculate the exponent, , associated with resistance scaling, for any . Using current cumulant method we calculate the exact noise exponent for -simplex lattices.
Optimal lattice-structured materials
Messner, Mark C.
2016-11-01
This work describes a method for optimizing the mesostructure of lattice-structured materials. These materials are periodic arrays of slender members resembling efficient, lightweight macroscale structures like bridges and frame buildings. Current additive manufacturing technologies can assemble lattice structures with length scales ranging from nanometers to millimeters. Previous work demonstrates that lattice materials have excellent stiffness- and strength-to-weight scaling, outperforming natural materials. However, there are currently no methods for producing optimal mesostructures that consider the full space of possible 3D lattice topologies. The inverse homogenization approach for optimizing the periodic structure of lattice materials requires a parameterized, homogenized material model describing the response of an arbitrary structure. This work develops such a model, starting with a method for describing the long-wavelength, macroscale deformation of an arbitrary lattice. The work combines the homogenized model with a parameterized description of the total design space to generate a parameterized model. Finally, the work describes an optimization method capable of producing optimal mesostructures. Several examples demonstrate the optimization method. One of these examples produces an elastically isotropic, maximally stiff structure, here called the isotruss, that arguably outperforms the anisotropic octet truss topology.
Advances in Lattice Quantum Chromodynamics
McGlynn, Greg
In this thesis we make four contributions to the state of the art in numerical lattice simulations of quantum chromodynamics (QCD). First, we present the most detailed investigation yet of the autocorrelations of topological observations in hybrid Monte Carlo simulations of QCD and of the effects of the boundary conditions on these autocorrelations. This results in a numerical criterion for deciding when open boundary conditions are useful for reducing these autocorrelations, which are a major barrier to reliable calculations at fine lattice spacings. Second, we develop a dislocation-enhancing determinant, and demonstrate that it reduces the autocorrelation time of the topological charge. This alleviates problems with slow topological tunneling at fine lattice spacings, enabling simulations on fine lattices to be completed with much less computational effort. Third, we show how to apply the recently developed zMobius technique to hybrid Monte Carlo evolutions with domain wall fermions, achieving nearly a factor of two speedup in the light quark determinant, the single most expensive part of the calculation. The dislocation-enhancing determinant and the zMobius technique have enabled us to begin simulations of fine ensembles with four flavors of dynamical domain wall quarks. Finally, we show how to include the previously-neglected G1 operator in nonperturbative renormalization of the DeltaS = 1 effective weak Hamiltonian on the lattice. This removes an important systematic error in lattice calculations of weak matrix elements, in particular the important K → pipi decay.
Lattice dynamics and phase diagram of aluminum at high temperatures
Kudasov, Yu. B., E-mail: yu_kudasov@yahoo.com; Surdin, O. M.; Korshunov, A. S.; Pavlov, V. N. [National Research Nuclear University ' MEPhI,' , Sarov State Institute of Physics and Technology (Russian Federation); Frolova, N. V.; Kuzin, R. S. [Russian Federal Nuclear Center-All-Russian Research Institute of Experimental Physics (Russian Federation)
2013-10-15
The dispersion of phonons in the fcc, hcp, and bcc phases of aluminum is calculated at ultrahigh pressures by the method of small displacements in a supercell. The stability of the phonon subsystem is studied. The thermodynamic characteristics are calculated in the quasi-harmonic approximation, and a phase diagram of aluminum is plotted. As compared to the Debye model, the use of a phonon spectrum calculated in the quasi-harmonic approximation significantly broadens the hcp phase field and strongly shifts the phase boundary between the fcc and bcc phases. The normal isentrope is calculated at megabar pressures. It is shown to intersect the fcc-hcp and hcp-bcc phase boundaries. The sound velocity along the normal isentrope is calculated. It is shown to have a nonmonotonic character.
A lexicographic shellability characterization of geometric lattices
Davidson, Ruth
2011-01-01
Geometric lattices are characterized as those finite, atomic lattices such that every atom ordering induces a lexicographic shelling given by an edge labeling known as a minimal labeling. This new characterization fits into a similar paradigm as McNamara's characterization of supersolvable lattices as those lattices admitting a different type of lexicographic shelling, namely one in which each maximal chain is labeled with a permutation of {1,...,n}. Geometric lattices arise as the intersection lattices of central hyperplane arrangements and more generally as the lattices of flats for matroids.
Embedded Lattice and Properties of Gram Matrix
Futa Yuichi
2017-03-01
Full Text Available In this article, we formalize in Mizar [14] the definition of embedding of lattice and its properties. We formally define an inner product on an embedded module. We also formalize properties of Gram matrix. We formally prove that an inverse of Gram matrix for a rational lattice exists. Lattice of Z-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lov´asz base reduction algorithm [16] and cryptographic systems with lattice [17].
Lattice dislocation in Si nanowires
Omar, M.S., E-mail: dr_m_s_omar@yahoo.co [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq); Taha, H.T. [Department of Physics, College of Science, University of Salahaddin, Arbil, Iraqi Kurdistan (Iraq)
2009-12-15
Modified formulas were used to calculate lattice thermal expansion, specific heat and Bulk modulus for Si nanowires with diameters of 115, 56, 37 and 22 nm. From these values and Gruneisen parameter taken from reference, mean lattice volumes were found to be as 20.03 A{sup 3} for the bulk and 23.63, 29.91, 34.69 and 40.46 A{sup 3} for Si nanowire diameters mentioned above, respectively. Their mean bonding length was calculated to be as 0.235 nm for the bulk and 0.248, 0.269, 0.282 and 0.297 nm for the nanowires diameter mentioned above, respectively. By dividing the nanowires diameter on the mean bonding length, number of layers per each nanowire size was found to be as 230, 104, 65 and 37 for the diameters mentioned above, respectively. Lattice dislocations in 22 nm diameter wire were found to be from 0.00324 nm for the 1st central lattice to 0.2579 nm for the last surface lattice. Such dislocation was smaller for larger wire diameters. Dislocation concentration found to change in Si nanowires according to the proportionalities of surface thickness to nanowire radius ratios.
Hamiltonian tomography of photonic lattices
Ma, Ruichao; Owens, Clai; LaChapelle, Aman; Schuster, David I.; Simon, Jonathan
2017-06-01
In this paper we introduce an approach to Hamiltonian tomography of noninteracting tight-binding photonic lattices. To begin with, we prove that the matrix element of the low-energy effective Hamiltonian between sites α and β may be obtained directly from Sα β(ω ) , the (suitably normalized) two-port measurement between sites α and β at frequency ω . This general result enables complete characterization of both on-site energies and tunneling matrix elements in arbitrary lattice networks by spectroscopy, and suggests that coupling between lattice sites is a topological property of the two-port spectrum. We further provide extensions of this technique for measurement of band projectors in finite, disordered systems with good band flatness ratios, and apply the tool to direct real-space measurement of the Chern number. Our approach demonstrates the extraordinary potential of microwave quantum circuits for exploration of exotic synthetic materials, providing a clear path to characterization and control of single-particle properties of Jaynes-Cummings-Hubbard lattices. More broadly, we provide a robust, unified method of spectroscopic characterization of linear networks from photonic crystals to microwave lattices and everything in between.
Hydrodynamic behaviour of Lattice Boltzmann and Lattice BGK models
Behrend, O; Warren, P
1993-01-01
Abstract: We present a numerical analysis of the validity of classical and generalized hydrodynamics for Lattice Boltzmann Equation (LBE) and Lattice BGK methods in two and three dimensions, as a function of the collision parameters of these models. Our analysis is based on the wave-number dependence of the evolution operator. Good ranges of validity are found for BGK models as long as the relaxation time is chosen smaller than or equal to unity. The additional freedom in the choice of collision parameters for LBE models does not seem to give significant improvement.
HUMAN CONNECTOME PROJECT (HCP)
Shashank Shekhar Tiwari*, Shivani Joshi, Tanvi Mittal, Shruti Jain
2016-01-01
This project deals with the nervous system and its function in brain. Here connectome means the microscopic neural connectivity and its mapping between all the neurons present in the brain which further represents their graphical representation on the visual screen also which will further help us to zoom into a region to explore the cells and the functions depending on it and taking this one step ahead the memory implementation in human brain so it will be used as a memory unit except the fac...
Tatarenko, V.A. [G.V. Kurdyumov Inst. for Metal Physics, Kyyiv (Ukraine). Dept. of Soilid State Theory
2001-05-01
A microscopic model for the strain-controlled atomic ordering of interstitial impurity atoms and for the strain-induced decomposition reaction in their solid solutions based on host crystals with a polyatomic basis is used. It takes into account the 'blocking' and static-displacements' effects in interactions between impurity atoms arranged on different-type interstices, in order to explain the salient features of distribution of the diffuse-scattering intensity in reciprocal space for such interstitial solid solutions based on some hexagonal close-packed (h.c.p.) transition and rare-earth metals. (Author)
无
2002-01-01
The density functional theory (DFT) provides us an effective way to calculate large cluster systems with moderate computational demands. We calculate potential energy surfaces (PES) with several different approaches of DFT. The PES in the ground electronic state are related to HCP's isomerization process. The calculated PES are compared with the “experimental” PES obtained by fitting from the experimental vibrational spectra and that given by the “accurate” quantum chemistry calculation with more expensive computations. The comparisons show that the potential surfaces calculated with DFT methods can reach the accuracy of less than 0.1 eV.
Nuclear Reactions from Lattice QCD
Briceño, Raúl A; Luu, Thomas C
2014-01-01
One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, Quantum Chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three- nucleon (and higher) interactions in a consistent manner. Currently, lattice QCD provides the only reliable option for performing calculations of some of the low- energy hadronic observables. With the aim of bridging the gap between lattice QCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from Lattice QCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path ...
Quantum Gravity on the Lattice
Hamber, Herbert W
2009-01-01
I review the lattice approach to quantum gravity, and how it relates to the non-trivial ultraviolet fixed point scenario of the continuum theory. After a brief introduction covering the general problem of ultraviolet divergences in gravity and other non-renormalizable theories, I cover the general methods and goals of the lattice approach. An underlying theme is an attempt at establishing connections between the continuum renormalization group results, which are mainly based on diagrammatic perturbation theory, and the recent lattice results, which should apply to the strong gravity regime and are inherently non-perturbative. A second theme in this review is the ever-present natural correspondence between infrared methods of strongly coupled non-abelian gauge theories on the one hand, and the low energy approach to quantum gravity based on the renormalization group and universality of critical behavior on the other. Towards the end of the review I discuss possible observational consequences of path integral q...
Algebraic Lattices in QFT Renormalization
Borinsky, Michael
2016-07-01
The structure of overlapping subdivergences, which appear in the perturbative expansions of quantum field theory, is analyzed using algebraic lattice theory. It is shown that for specific QFTs the sets of subdivergences of Feynman diagrams form algebraic lattices. This class of QFTs includes the standard model. In kinematic renormalization schemes, in which tadpole diagrams vanish, these lattices are semimodular. This implies that the Hopf algebra of Feynman diagrams is graded by the coradical degree or equivalently that every maximal forest has the same length in the scope of BPHZ renormalization. As an application of this framework, a formula for the counter terms in zero-dimensional QFT is given together with some examples of the enumeration of primitive or skeleton diagrams.
Lattice Structures For Aerospace Applications
Del Olmo, E.; Grande, E.; Samartin, C. R.; Bezdenejnykh, M.; Torres, J.; Blanco, N.; Frovel, M.; Canas, J.
2012-07-01
The way of mass reduction improving performances in the aerospace structures is a constant and relevant challenge in the space business. The designs, materials and manufacturing processes are permanently in evolution to explore and get mass optimization solutions at low cost. In the framework of ICARO project, EADS CASA ESPACIO (ECE) has designed, manufactured and tested a technology demonstrator which shows that lattice type of grid structures is a promising weight saving solution for replacing some traditional metallic and composite structures for space applications. A virtual testing methodology was used in order to support the design of a high modulus CFRP cylindrical lattice technology demonstrator. The manufacturing process, based on composite Automatic Fiber Placement (AFP) technology developed by ECE, allows obtaining high quality low weight lattice structures potentially applicable to a wide range of aerospace structures. Launcher payload adaptors, satellite platforms, antenna towers or instrument supports are some promising candidates.
Kaon fluctuations from lattice QCD
Noronha-Hostler, Jacquelyn; Gunther, Jana; Parotto, Paolo; Pasztor, Attila; Vazquez, Israel Portillo; Ratti, Claudia
2016-01-01
We show that it is possible to isolate a set of kaon fluctuations in lattice QCD. By means of the Hadron Resonance Gas (HRG) model, we calculate the actual kaon second-to-first fluctuation ratio, which receives contribution from primordial kaons and resonance decays, and show that it is very close to the one obtained for primordial kaons in the Boltzmann approximation. The latter only involves the strangeness and electric charge chemical potentials, which are functions of $T$ and $\\mu_B$ due to the experimental constraint on strangeness and electric charge, and can therefore be calculated on the lattice. This provides an unambiguous method to extract the kaon freeze-out temperature, by comparing the lattice results to the experimental values for the corresponding fluctuations.
Hadron Structure on the Lattice
Can, K. U.; Kusno, A.; Mastropas, E. V.; Zanotti, J. M.
The aim of these lectures will be to provide an introduction to some of the concepts needed to study the structure of hadrons on the lattice. Topics covered include the electromagnetic form factors of the nucleon and pion, the nucleon's axial charge and moments of parton and generalised parton distribution functions. These are placed in a phenomenological context by describing how they can lead to insights into the distribution of charge, spin and momentum amongst a hadron's partonic constituents. We discuss the techniques required for extracting the relevant matrix elements from lattice simulations and draw attention to potential sources of systematic error. Examples of recent lattice results are presented and are compared with results from both experiment and theoretical models.
Flavor Physics and Lattice QCD
Bouchard, C M
2013-01-01
Our ability to resolve new physics effects is, largely, limited by the precision with which we calculate. The calculation of observables in the Standard (or a new physics) Model requires knowledge of associated hadronic contributions. The precision of such calculations, and therefore our ability to leverage experiment, is typically limited by hadronic uncertainties. The only first-principles method for calculating the nonperturbative, hadronic contributions is lattice QCD. Modern lattice calculations have controlled errors, are systematically improvable, and in some cases, are pushing the sub-percent level of precision. I outline the role played by, highlight state of the art efforts in, and discuss possible future directions of lattice calculations in flavor physics.
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
Nucleon structure from lattice QCD
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
Nuclear Physics from Lattice QCD
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Chiral Fermions on the Lattice
Bietenholz, Wolfgang
2010-01-01
In the last century the non-perturbative regularization of chiral fermions was a long-standing problem. We review how this problem was finally overcome by the formulation of a modified but exact form of chiral symmetry on the lattice. This also provides a sound definition of the topological charge of lattice gauge configurations. We illustrate a variety of applications to QCD in the p-, the epsilon- and the delta-regime, where simulation results can now be related to Random Matrix Theory and Chiral Perturbation Theory. The latter contains Low Energy Constants as free parameters, and we comment on their evaluation from first principles of QCD.
Lattices, graphs, and Conway mutation
Greene, Joshua Evan
2011-01-01
The d-invariant of an integral, positive definite lattice L records the minimal norm of a characteristic covector in each equivalence class mod 2L. We prove that the 2-isomorphism type of a connected graph is determined by the d-invariant of its lattice of integral cuts (or flows). As an application, we prove that a reduced, alternating link diagram is determined up to mutation by the Heegaard Floer homology of the link's branched double-cover. Thus, alternating links with homeomorphic branched double-covers are mutants.
Graphene on graphene antidot lattices
Gregersen, Søren Schou; Pedersen, Jesper Goor; Power, Stephen
2015-01-01
Graphene bilayer systems are known to exhibit a band gap when the layer symmetry is broken by applying a perpendicular electric field. The resulting band structure resembles that of a conventional semiconductor with a parabolic dispersion. Here, we introduce a bilayer graphene heterostructure......, where single-layer graphene is placed on top of another layer of graphene with a regular lattice of antidots. We dub this class of graphene systems GOAL: graphene on graphene antidot lattice. By varying the structure geometry, band-structure engineering can be performed to obtain linearly dispersing...
Unconventional superconductivity in honeycomb lattice
P Sahebsara
2013-03-01
Full Text Available The possibility of symmetrical s-wave superconductivity in the honeycomb lattice is studied within a strongly correlated regime, using the Hubbard model. The superconducting order parameter is defined by introducing the Green function, which is obtained by calculating the density of the electrons . In this study showed that the superconducting order parameter appears in doping interval between 0 and 0.5, and x=0.25 is the optimum doping for the s-wave superconductivity in honeycomb lattice.
Hamiltonian monodromy as lattice defect
Zhilinskii, B.
2003-01-01
The analogy between monodromy in dynamical (Hamiltonian) systems and defects in crystal lattices is used in order to formulate some general conjectures about possible types of qualitative features of quantum systems which can be interpreted as a manifestation of classical monodromy in quantum finite particle (molecular) problems.
Triangles in a Lattice Parabola.
Sastry, K. R. S.
1991-01-01
Discussed are properties possessed by polygons inscribed in the lattice parabola y=x, including the area of a triangle, triangles of minimum area, conditions for right triangles, triangles whose area is the cube of an integer, and implications of Pick's Theorem. Further directions to pursue are suggested. (MDH)
Nucleon structure using lattice QCD
Alexandrou, C.; Kallidonis, C. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Constantinou, M.; Hatziyiannakou, K. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Drach, V. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Jansen, K. [DESY Zeuthen (Germany). John von Neumann-Institut fuer Computing NIC; Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Koutsou, G.; Vaquero, A. [The Cyprus Institute, Nicosia (Cyprus). Computational-Based Science and technology Research Center; Leontiou, T. [Frederick Univ, Nicosia (Cyprus). General Dept.
2013-03-15
A review of recent nucleon structure calculations within lattice QCD is presented. The nucleon excited states, the axial charge, the isovector momentum fraction and helicity distribution are discussed, assessing the methods applied for their study, including approaches to evaluate the disconnected contributions. Results on the spin carried by the quarks in the nucleon are also presented.
Anisotropic dissipation in lattice metamaterials
Dimitri Krattiger
2016-12-01
Full Text Available Plane wave propagation in an elastic lattice material follows regular patterns as dictated by the nature of the lattice symmetry and the mechanical configuration of the unit cell. A unique feature pertains to the loss of elastodynamic isotropy at frequencies where the wavelength is on the order of the lattice spacing or shorter. Anisotropy may also be realized at lower frequencies with the inclusion of local resonators, especially when designed to exhibit directionally non-uniform connectivity and/or cross-sectional geometry. In this paper, we consider free and driven waves within a plate-like lattice−with and without local resonators−and examine the effects of damping on the isofrequency dispersion curves. We also examine, for free waves, the effects of damping on the frequency-dependent anisotropy of dissipation. Furthermore, we investigate the possibility of engineering the dissipation anisotropy by tuning the directional properties of the prescribed damping. The results demonstrate that uniformly applied damping tends to reduce the intensity of anisotropy in the isofrequency dispersion curves. On the other hand, lattice crystals and metamaterials are shown to provide an excellent platform for direction-dependent dissipation engineering which may be realized by simple changes in the spatial distribution of the damping elements.
Triangles in a Lattice Parabola.
Sastry, K. R. S.
1991-01-01
Discussed are properties possessed by polygons inscribed in the lattice parabola y=x, including the area of a triangle, triangles of minimum area, conditions for right triangles, triangles whose area is the cube of an integer, and implications of Pick's Theorem. Further directions to pursue are suggested. (MDH)
Lattice investigation of tetraquark candidates
Berlin, Joshua; Wagner, Marc [Goethe-Universitaet Frankfurt am Main, Institut fuer Theoretische Physik (Germany); Abdel-Rehim, Abdou; Alexandrou, Constantia; Gravina, Mario; Koutsou, Giannis [Department of Physics, University of Cyprus, Nicosia (Cyprus); Computation-based Science and Technology Research Center, Cyprus Institute, Nicosia (Cyprus); Dalla Brida, Mattia [School of Mathematics, Trinity College Dublin (Ireland)
2014-07-01
We present the status of an ongoing long-term lattice QCD project concerned with the study of light and heavy tetraquark candidates, using a variety of different creation operators. The computation of disconnected diagrams, which is technically challenging, is discussed in detail.
Decompressive craniectomy with lattice duraplasty.
Mitchell, P; Tseng, M; Mendelow, A D
2004-02-01
A method of opening dura for decompressive craniectomies is described. Numerous cuts intersecting in a lattice pattern allow the dura to expand in a gradual and controlled manner minimising the chances of cortical laceration or venous kinking on the craniectomy edge.
From lattice gases to polymers
Frenkel, D.
1990-01-01
The modification of a technique that was developed to study time correlations in lattice-gas cellular automata to facilitate the numerical simulation of chain molecules is described. As an example, the calculation of the excess chemical potential of an ideal polymer in a dense colloidal
Subwavelength vortical plasmonic lattice solitons.
Ye, Fangwei; Mihalache, Dumitru; Hu, Bambi; Panoiu, Nicolae C
2011-04-01
We present a theoretical study of vortical plasmonic lattice solitons, which form in two-dimensional arrays of metallic nanowires embedded into nonlinear media with both focusing and defocusing Kerr nonlinearities. Their existence, stability, and subwavelength spatial confinement are investigated in detail.
Beane, Silas
2009-01-01
Recent studies by the NPLQCD collaboration of hadronic interactions using lattice QCD are reviewed, with an emphasis on a recent calculation of meson-baryon scattering lengths. Ongoing high-statistics calculations of baryon interactions are also reviewed. In particular, new insights into the signal/noise problems that plague correlation functions involving baryons are discussed.
Hybrid Charmonium from Lattice QCD
Luo, X Q
2006-01-01
We review our recent results on the JPC = 0¡¡ exotic hybrid charmonium mass and JPC = 0¡+, 1¡¡ and 1++ nonexotic hybrid charmonium spectrum from anisotropic improved lattice QCD and discuss the relevance to the recent discovery of the Y(4260) state and future experimental search for other states.
Chiral fermions on the lattice
Jahn, O; Jahn, Oliver; Pawlowski, Jan M.
2002-01-01
We discuss topological obstructions to putting chiral fermions on an even dimensional lattice. The setting includes Ginsparg-Wilson fermions, but is more general. We prove a theorem which relates the total chirality to the difference of generalised winding numbers of chiral projection operators. For an odd number of Weyl fermions this implies that particles and anti-particles live in topologically different spaces.
High-pressure high-temperature stability of hcp-Ir_{x}Os_{1-x} (x = 0.50 and 0.55) alloys
Yusenko, Kirill V.; Bykova, Elena; Bykov, Maxim; Gromilov, Sergey A.; Kurnosov, Alexander V.; Prescher, Clemens; Prakapenka, Vitali B.; Crichton, Wilson A.; Hanfland, Michael; Margadonna, Serena; Dubrovinsky, Leonid S.
2016-12-23
Hcp-Ir_{0.55}Os_{0.45} and hcp-Ir_{0.50}Os_{0.50} alloys were synthesised by thermal decomposition of single-source precursors in hydrogen atmosphere. Both alloys correspond to a miscibility gap in the Ir–Os binary phase diagram and therefore are metastable at ambient conditions. An in situ powder X-ray diffraction has been used for a monitoring a formation of hcp-Ir0.55Os0.45 alloy from (NH_{4})_{2}[Ir_{0.55}Os_{0.45}Cl_{6}] precursor. A crystalline intermediate compound and nanodimentional metallic particles with a large concentration of defects has been found as key intermediates in the thermal decomposition process in hydrogen flow. High-temperature stability of titled hcp-structured alloys has been investigated upon compression up to 11 GPa using a multi-anvil press and up to 80 GPa using laser-heated diamond-anvil cells to obtain a phase separation into fcc + hcp mixture. Compressibility curves at room temperature as well as thermal expansion at ambient pressure and under compression up to 80 GPa were collected to obtain thermal expansion coefficients and bulk moduli. hcp-Ir_{0.55}Os_{0.45} alloy shows bulk moduli B0 = 395 GPa. Thermal expansion coefficients were estimated as α = 1.6·10^{-5} K^{-1} at ambient pressure and α = 0.3·10^{-5} K^{-1} at 80 GPa. Obtained high-pressure high-temperature data allowed us to construct the first model for pressure-dependent Ir–Os phase diagram.
De Maayer, Pieter; Venter, Stephanus N; Kamber, Tim; Duffy, Brion; Coutinho, Teresa A; Smits, Theo H M
2011-11-24
The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS) loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2) are well conserved among the various strains, the third (T6SS-3) locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.
2011-01-01
Background The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS) loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Results Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2) are well conserved among the various strains, the third (T6SS-3) locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Conclusions Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins. PMID:22115407
De Maayer Pieter
2011-11-01
Full Text Available Abstract Background The Type VI secretion apparatus is assembled by a conserved set of proteins encoded within a distinct locus. The putative effector proteins Hcp and VgrG are also encoded within these loci. We have identified numerous distinct Type VI secretion system (T6SS loci in the genomes of several ecologically diverse Pantoea and Erwinia species and detected the presence of putative effector islands associated with the hcp and vgrG genes. Results Between two and four T6SS loci occur among the Pantoea and Erwinia species. While two of the loci (T6SS-1 and T6SS-2 are well conserved among the various strains, the third (T6SS-3 locus is not universally distributed. Additional orthologous loci are present in Pantoea sp. aB-valens and Erwinia billingiae Eb661. Comparative analysis of the T6SS-1 and T6SS-3 loci showed non-conserved islands associated with the vgrG and hcp, and vgrG genes, respectively. These regions had a G+C content far lower than the conserved portions of the loci. Many of the proteins encoded within the hcp and vgrG islands carry conserved domains, which suggests they may serve as effector proteins for the T6SS. A number of the proteins also show homology to the C-terminal extensions of evolved VgrG proteins. Conclusions Extensive diversity was observed in the number and content of the T6SS loci among the Pantoea and Erwinia species. Genomic islands could be observed within some of T6SS loci, which are associated with the hcp and vgrG proteins and carry putative effector domain proteins. We propose new hypotheses concerning a role for these islands in the acquisition of T6SS effectors and the development of novel evolved VgrG and Hcp proteins.
Orbital optical lattices with bosons
Kock, T.; Hippler, C.; Ewerbeck, A.; Hemmerich, A.
2016-02-01
This article provides a synopsis of our recent experimental work exploring Bose-Einstein condensation in metastable higher Bloch bands of optical lattices. Bipartite lattice geometries have allowed us to implement appropriate band structures, which meet three basic requirements: the existence of metastable excited states sufficiently protected from collisional band relaxation, a mechanism to excite the atoms initially prepared in the lowest band with moderate entropy increase, and the possibility of cross-dimensional tunneling dynamics, necessary to establish coherence along all lattice axes. A variety of bands can be selectively populated and a subsequent thermalization process leads to the formation of a condensate in the lowest energy state of the chosen band. As examples the 2nd, 4th and 7th bands in a bipartite square lattice are discussed. The geometry of the 2nd and 7th bands can be tuned such that two inequivalent energetically degenerate energy minima arise at the X ±-points at the edge of the 1st Brillouin zone. In this case even a small interaction energy is sufficient to lock the phase between the two condensation points such that a complex-valued chiral superfluid order parameter can emerge, which breaks time reversal symmetry. In the 4th band a condensate can be formed at the Γ-point in the center of the 1st Brillouin zone, which can be used to explore topologically protected band touching points. The new techniques to access orbital degrees of freedom in higher bands greatly extend the class of many-body scenarios that can be explored with bosons in optical lattices.
Hadron Structure and Spectrum from the Lattice
Lang, C B
2015-01-01
Lattice calculations for hadrons are now entering the domain of resonances and scattering, necessitating a better understanding of the observed discrete energy spectrum. This is a reviewing survey about recent lattice QCD results, with some emphasis on spectrum and scattering.
Gauge Fixing on the Lattice without Ambiguity
Vink, Jeroen C; 10.1016/0370-2693(92)91372-G
2009-01-01
A new gauge fixing condition is discussed, which is (lattice) rotation invariant, has the `smoothness' properties of the Landau gauge but can be efficiently computed and is unambiguous for almost all lattice gauge field configurations.
Turbo Lattices: Construction and Performance Analysis
Sakzad, Amin; Panario, Daniel
2011-01-01
In this paper a new class of lattices called turbo lattices is introduced and established. We use the lattice Construction $D$ to produce turbo lattices. This method needs a set of nested linear codes as its underlying structure. We benefit from turbo codes as our basis codes. Therefore, a set of nested turbo codes based on nested interleavers and nested convolutional codes is built. To this end, we employ both tail-biting and zero-tail convolutional codes. Using these codes, along with construction $D$, turbo lattices are created. Several properties of Construction $D$ lattices and fundamental characteristics of turbo lattices including the minimum distance, coding gain, kissing number and an upper bound on the probability of error under a maximum likelihood decoder over AWGN channel are investigated. Furthermore, a multi-stage turbo lattice decoding algorithm based on iterative turbo decoding algorithm is given. Finally, simulation experiments provide strong agreement with our theoretical results. More prec...
Chiral Four-Dimensional Heterotic Covariant Lattices
Beye, Florian
2014-01-01
In the covariant lattice formalism, chiral four-dimensional heterotic string vacua are obtained from certain even self-dual lattices which completely decompose into a left-mover and a right-mover lattice. The main purpose of this work is to classify all right-mover lattices that can appear in such a chiral model, and to study the corresponding left-mover lattices using the theory of lattice genera. In particular, the Smith-Minkowski-Siegel mass formula is employed to calculate a lower bound on the number of left-mover lattices. Also, the known relationship between asymmetric orbifolds and covariant lattices is considered in the context of our classification.
Distributive lattice orderings and Priestley duality
Krebs, Michel
2007-01-01
The ordering relation of a bounded distributive lattice L is a (distributive) (0, 1)-sublattice of L \\times L. This construction gives rise to a functor \\Phi from the category of bounded distributive lattices to itself. We examine the interaction of \\Phi with Priestley duality and characterise those bounded distributive lattices L such that there is a bounded distributive lattice K such that \\Phi(K) is (isomorphic to) L.
Rough Class on a Completely Distributive Lattice
陈德刚; 张文修; 宋士吉
2003-01-01
This paper generalizes the Pawlak rough set method to a completely distributive lattice. Theconcept of a rough set has many applications in data mining. The approximation operators on a completelydistributive lattice are studied, the rough class on a completely distributive lattice is defined and theexpressional theorems of the rough class are proven. These expressional theorems are used to prove that thecollection of all rough classes is an atomic completely distributive lattice.
Modified $U(1)$ lattice gauge theory towards realistic lattice QED
Bornyakov, V G; Müller-Preussker, M
1992-01-01
We study properties of the compact $~4D~$ $U(1)$ lattice gauge theory with monopoles {\\it removed}. Employing Monte Carlo simulations we calculate correlators of scalar, vector and tensor operators at zero and nonzero momenta $~\\vec{p}~$. We confirm that the theory without monopoles has no phase transition, at least, in the interval $~0 < \\beta \\leq 2~$. There the photon becomes massless and fits the lattice free field theory dispersion relation very well. The energies of the $~0^{++}~$, $~1^{+-}~$ and $~2^{++}~$ states show a rather weak dependence on the coupling in the interval of $~\\beta~$ investigated, and their ratios are practically constant. We show also a further modification of the theory suppressing the negative plaquettes to improve drastically the overlap with the lowest states (at least, for $~J=1$).
The Developement of A Lattice Structured Database
Bruun, Hans
to a given set of inserted terms, that is the smallest lattice where the inserted terms preserve their value compared to the value in the initial algebra/lattice. The database is the dual representation of this most disjoint lattice. We develop algorithms to construct and make queries to the database....
Lattice Boltzmann solver of Rossler equation
GuangwuYAN; LiRUAN
2000-01-01
We proposed a lattice Boltzmann model for the Rossler equation. Using a method of multiscales in the lattice Boltzmann model, we get the diffusion reaction as a special case. If the diffusion effect disappeared, we can obtain the lattice Boltzmann solution of the Rossler equation on the mesescopic scale. The numerical results show the method can be used to simulate Rossler equation.
Clar sextets in square graphene antidot lattices
Petersen, Rene; Pedersen, Thomas Garm; Jauho, Antti-Pekka
2011-01-01
A periodic array of holes transforms graphene from a semimetal into a semiconductor with a band gap tuneable by varying the parameters of the lattice. In earlier work only hexagonal lattices have been treated. Using atomistic models we here investigate the size of the band gap of a square lattice...
Modal analysis of kagome-lattice structures
Perez, H.; Blakley, S.; Zheltikov, A. M.
2015-05-01
The first few lowest order circularly symmetric electromagnetic eigenmodes of a full kagome lattice are compared to those of a kagome lattice with a hexagonal defect. This analysis offers important insights into the physics behind the waveguiding properties of hollow-core fibers with a kagome-lattice cladding.
Perfect and Quasi-Perfect Lattice Actions
Bietenholz, W
1998-01-01
Perfect lattice actions are exiting with several respects: they provide new insight into conceptual questions of the lattice regularization, and quasi-perfect actions could enable a great leap forward in the non-perturbative solution of QCD. We try to transmit a flavor of them, also beyond the lattice community.
Fajstrup, Lisbeth
The set of d-structures on a topological space form a lattice and in fact a locale. There is a Galois connection between the lattice of subsets of the space and the lattice of d-structures. Variation of the d-structures induces change in the spaces of directed paths. Hence variation of d...
SIMPLE LATTICE BOLTZMANN MODEL FOR TRAFFIC FLOWS
Yan Guangwu; Hu Shouxin
2000-01-01
A lattice Boltzmann model with 5-bit lattice for traffic flows is proposed.Using the Chapman-Enskog expansion and multi-scale technique,we obtain the higher-order moments of equilibrium distribution function.A simple traffic light problem is simulated by using the present lattice Boltzmann model,and the result agrees well with analytical solution.
Exact Chiral Symmetry on the Lattice
Neuberger, H
2001-01-01
Developments during the last eight years have refuted the folklore that chiral symmetries cannot be preserved on the lattice. The mechanism that permits chiral symmetry to coexist with the lattice is quite general and may work in Nature as well. The reconciliation between chiral symmetry and the lattice is likely to revolutionize the field of numerical QCD.
Mayet-Godowski Hilbert Lattice Equations
Megill, Norman D.; Pavicic, Mladen
2006-01-01
Several new results in the field of Hilbert lattice equations based on states defined on the lattice as well as novel techniques used to arrive at these results are presented. An open problem of Mayet concerning Hilbert lattice equations based on Hilbert-space-valued states is answered.
Lattice gaugefixing and other optics in lattice gauge theory
Yee, Ken
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Lattice gaugefixing and other optics in lattice gauge theory
Yee, Ken.
1992-06-01
We present results from four projects. In the first, quark and gluon propagators and effective masses and {Delta}I = 1/2 Rule operator matching coefficients are computed numerically in gaugefixed lattice QCD. In the second, the same quantities are evaluated analytically in the strong coupling, N {yields} {infinity} limit. In the third project, the Schwinger model is studied in covariant gauges, where we show that the effective electron mass varies with the gauge parameter and that longitudinal gaugefixing ambiguities affect operator product expansion coefficients (analogous to {Delta}I = 1/2 Rule matching coefficients) determined by matching gauge variant matrix elements. However, we find that matching coefficients even if shifted by the unphysical modes are {xi} invariant. In the fourth project, we show that the strong coupling parallelogram lattice Schwinger model as a different thermodynamic limit than the weak coupling continuum limit. As a function of lattice skewness angle these models span the {Delta} = {minus}1 critical line of 6-vertex models which, in turn, have been identified as c = 1 conformal field theories.
Innovations in Lattice QCD Algorithms
Konstantinos Orginos
2006-06-25
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.
Fractional random walk lattice dynamics
Michelitsch, Thomas; Riascos, Alejandro Perez; Nowakowski, Andrzeij; Nicolleau, Franck
2016-01-01
We analyze time-discrete and continuous `fractional' random walks on undirected regular networks with special focus on cubic periodic lattices in $n=1,2,3,..$ dimensions.The fractional random walk dynamics is governed by a master equation involving {\\it fractional powers of Laplacian matrices $L^{\\frac{\\alpha}{2}}$}where $\\alpha=2$ recovers the normal walk.First we demonstrate thatthe interval $0\\textless{}\\alpha\\leq 2$ is admissible for the fractional random walk. We derive analytical expressions for fractional transition matrix and closely related the average return probabilities. We further obtain thefundamental matrix $Z^{(\\alpha)}$, and the mean relaxation time (Kemeny constant) for the fractional random walk.The representation for the fundamental matrix $Z^{(\\alpha)}$ relates fractional random walks with normal random walks.We show that the fractional transition matrix elements exihibit for large cubic $n$-dimensional lattices a power law decay of an $n$-dimensional infinite spaceRiesz fractional deriva...
Fluctuating multicomponent lattice Boltzmann model.
Belardinelli, D; Sbragaglia, M; Biferale, L; Gross, M; Varnik, F
2015-02-01
Current implementations of fluctuating lattice Boltzmann equations (FLBEs) describe single component fluids. In this paper, a model based on the continuum kinetic Boltzmann equation for describing multicomponent fluids is extended to incorporate the effects of thermal fluctuations. The thus obtained fluctuating Boltzmann equation is first linearized to apply the theory of linear fluctuations, and expressions for the noise covariances are determined by invoking the fluctuation-dissipation theorem directly at the kinetic level. Crucial for our analysis is the projection of the Boltzmann equation onto the orthonormal Hermite basis. By integrating in space and time the fluctuating Boltzmann equation with a discrete number of velocities, the FLBE is obtained for both ideal and nonideal multicomponent fluids. Numerical simulations are specialized to the case where mean-field interactions are introduced on the lattice, indicating a proper thermalization of the system.
Lattice QCD on nonorientable manifolds
Mages, Simon; Tóth, Bálint C.; Borsányi, Szabolcs; Fodor, Zoltán; Katz, Sándor D.; Szabó, Kálmán K.
2017-05-01
A common problem in lattice QCD simulations on the torus is the extremely long autocorrelation time of the topological charge when one approaches the continuum limit. The reason is the suppressed tunneling between topological sectors. The problem can be circumvented by replacing the torus with a different manifold, so that the connectivity of the configuration space is changed. This can be achieved by using open boundary conditions on the fields, as proposed earlier. It has the side effect of breaking translational invariance strongly. Here we propose to use a nonorientable manifold and show how to define and simulate lattice QCD on it. We demonstrate in quenched simulations that this leads to a drastic reduction of the autocorrelation time. A feature of the new proposal is that translational invariance is preserved up to exponentially small corrections. A Dirac fermion on a nonorientable manifold poses a challenge to numerical simulations: the fermion determinant becomes complex. We propose two approaches to circumvent this problem.
Entanglement scaling in lattice systems
Audenaert, K M R [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Cramer, M [QOLS, Blackett Laboratory, Imperial College London, Prince Consort Road, London SW7 2BW (United Kingdom); Eisert, J [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom); Plenio, M B [Institute for Mathematical Sciences, Imperial College London, 53 Prince' s Gate, Exhibition Road, London SW7 2PG (United Kingdom)
2007-05-15
We review some recent rigorous results on scaling laws of entanglement properties in quantum many body systems. More specifically, we study the entanglement of a region with its surrounding and determine its scaling behaviour with its size for systems in the ground and thermal states of bosonic and fermionic lattice systems. A theorem connecting entanglement between a region and the rest of the lattice with the surface area of the boundary between the two regions is presented for non-critical systems in arbitrary spatial dimensions. The entanglement scaling in the field limit exhibits a peculiar difference between fermionic and bosonic systems. In one-spatial dimension a logarithmic divergence is recovered for both bosonic and fermionic systems. In two spatial dimensions in the setting of half-spaces however we observe strict area scaling for bosonic systems and a multiplicative logarithmic correction to such an area scaling in fermionic systems. Similar questions may be posed and answered in classical systems.
Fungal keratitis in Lattice dystrophy
Chatterjee Samrat
2010-01-01
Full Text Available We report a case of fungal keratitis occurring in a patient with lattice dystrophy. A 57-year-old farmer presented with a corneal ulcer following probable entry of paddy husk in the right eye, of one month duration. Corneal scraping revealed pigmented fungal filaments while culture grew Alternaria alternata. Treatment with 5% natamycin eye drops and 1% atropine healed the infection in four weeks. We would like to draw attention to the fact that the cornea in lattice dystrophy is prone to frequent erosions and is a compromised epithelial barrier to invasion by microorganisms. Patients must be made aware of this fact and should seek attention at the earliest following any trivial trauma. Management of minor corneal abrasions in them should be directed at healing the epithelium with adequate lubricants and preventing infection with topical antibiotic prophylaxis.
Screening in graphene antidot lattices
Schultz, Marco Haller; Jauho, A. P.; Pedersen, T. G.
2011-01-01
We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation); this r...... the plasmon dispersion law and find an approximate square-root dependence with a suppressed plasmon frequency as compared to doped graphene. The plasmon dispersion is nearly isotropic and the developed approximation schemes agree well with the full calculation.......We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation...
Shear Viscosity from Lattice QCD
Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán
2015-01-01
Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented
Lattice dynamics of lithium oxide
Prabhatasree Goel; N Choudhury; S L Chaplot
2004-08-01
Li2O finds several important technological applications, as it is used in solid-state batteries, can be used as a blanket breeding material in nuclear fusion reactors, etc. Li2O exhibits a fast ion phase, characterized by a thermally induced dynamic disorder in the anionic sub-lattice of Li+, at elevated temperatures around 1200 K. We have carried out lattice-dynamical calculations of Li2O using a shell model in the quasi-harmonic approximation. The calculated phonon frequencies are in excellent agreement with the reported inelastic neutron scattering data. Thermal expansion, specific heat, elastic constants and equation of state have also been calculated which are in good agreement with the available experimental data.
Lattice dynamics of strontium tungstate
Prabhatasree Goel; R Mittal; S L Chaplot; A K Tyagi
2008-11-01
We report here measurements of the phonon density of states and the lattice dynamics calculations of strontium tungstate (SrWO4). At ambient conditions this compound crystallizes to a body-centred tetragonal unit cell (space group I41/a) called scheelite structure. We have developed transferable interatomic potentials to study the lattice dynamics of this class of compounds. The model parameters have been fitted with respect to the experimentally available Raman and infra-red frequencies and the equilibrium unit cell parameters. Inelastic neutron scattering measurements have been carried out in the triple-axis spectrometer at Dhruva reactor. The measured phonon density of states is in good agreement with the theoretical calculations, thus validating the inter-atomic potential developed.
Breathers in strongly anharmonic lattices.
Rosenau, Philip; Pikovsky, Arkady
2014-02-01
We present and study a family of finite amplitude breathers on a genuinely anharmonic Klein-Gordon lattice embedded in a nonlinear site potential. The direct numerical simulations are supported by a quasilinear Schrodinger equation (QLS) derived by averaging out the fast oscillations assuming small, albeit finite, amplitude vibrations. The genuinely anharmonic interlattice forces induce breathers which are strongly localized with tails evanescing at a doubly exponential rate and are either close to a continuum, with discrete effects being suppressed, or close to an anticontinuum state, with discrete effects being enhanced. Whereas the D-QLS breathers appear to be always stable, in general there is a stability threshold which improves with spareness of the lattice.
Lattice splitting under intermittent flows
Schläpfer, Markus
2010-01-01
We study the splitting of regular square lattices subject to stochastic intermittent flows. By extensive Monte Carlo simulations we reveal how the time span until the occurence of a splitting depends on various flow patterns imposed on the lattices. Increasing the flow fluctuation frequencies shortens this time span which reaches a minimum before rising again due to inertia effects incorporated in the model. The size of the largest connected component after the splitting is rather independent of the flow fluctuations but sligthly decreases with the link capacities. Our results are relevant for assessing the robustness of real-life systems, such as electric power grids with a large share of renewable energy sources including wind turbines and photovoltaic systems.
Scattering in Quantum Lattice Gases
O'Hara, Andrew; Love, Peter
2009-03-01
Quantum Lattice Gas Automata (QLGA) are of interest for their use in simulating quantum mechanics on both classical and quantum computers. QLGAs are an extension of classical Lattice Gas Automata where the constraint of unitary evolution is added. In the late 1990s, David A. Meyer as well as Bruce Boghosian and Washington Taylor produced similar models of QLGAs. We start by presenting a unified version of these models and study them from the point of view of the physics of wave-packet scattering. We show that the Meyer and Boghosian-Taylor models are actually the same basic model with slightly different parameterizations and limits. We then implement these models computationally using the Python programming language and show that QLGAs are able to replicate the analytic results of quantum mechanics (for example reflected and transmitted amplitudes for step potentials and the Klein paradox).
Qcd Thermodynamics On A Lattice
Levkova, L A
2004-01-01
Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero- temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvemen...
Lattice Embedding of Heronian Simplices
Lunnon, W Fred
2012-01-01
A rational triangle has rational edge-lengths and area; a rational tetrahedron has rational faces and volume; either is Heronian when its edge-lengths are integer, and proper when its content is nonzero. A variant proof is given, via complex number GCD, of the previously known result that any Heronian triangle may be embedded in the Cartesian lattice Z^2; it is then shown that, for a proper triangle, such an embedding is unique modulo lattice isometry; finally the method is extended via quaternion GCD to tetrahedra in Z^3, where uniqueness no longer obtains, and embeddings also exist which are unobtainable by this construction. The requisite complex and quaternionic number theoretic background is summarised beforehand. Subsequent sections engage with subsidiary implementation issues: initial rational embedding, canonical reduction, exhaustive search for embeddings additional to those yielded via GCD; and illustrative numerical examples are provided. A counter-example shows that this approach must fail in high...
The Fermilab Lattice Information Repository
Ostiguy, Jean-Francois; McCusker-Whiting, Michele; Michelotti, Leo
2005-01-01
Fermilab is a large accelerator complex with six rings and sixteen transfer beamlines operating in various modes and configurations, subject to modifications, improvements and occasional major redesign. Over the years, it became increasingly obvious that a centralized lattice repository with the ability to track revisions would be of great value. To that end, we evaluated potentially suitable revision systems, either freely available or commercial, and decided that expecting infrequent users to become fully conversant with complex revision system software was neither realistic nor practical. In this paper, we discuss technical aspects of the recently introduced FNAL Accelerator Division's Lattice Repository, whose fully web-based interface hides the complexity of Subversion, a comprehensive open source revision system. In particular we emphasize how the architecture of Subversion was a key ingredient in the technical success of the repository's implementation.
Thermal Hydraulic Performance of Tight Lattice Bundle
Yamamoto, Yasushi; Akiba, Miyuki; Morooka, Shinichi; Shirakawa, Kenetsu; Abe, Nobuaki
Recently, the reduced moderation spectrum BWR has been studied. The fast neutron spectrum is obtained through triangular tight lattice fuel. However, there are few thermal hydraulic test data and thermal hydraulic correlation applicable to critical power prediction in such a tight lattice bundle. This study aims to enhance the database of the thermal hydraulic performance of the tight lattice bundle whose rod gap is about 1mm. Therefore, thermal hydraulic performance measurement tests of tight lattice bundles for the critical power, the pressure drop and the counter current flow limiting were performed. Moreover, the correlations to evaluate the thermal-hydraulic performance of the tight lattice bundle were developed.
Stable kagome lattices from group IV elements
Leenaerts, O.; Schoeters, B.; Partoens, B.
2015-03-01
A thorough investigation of three-dimensional kagome lattices of group IV elements is performed with first-principles calculations. The investigated kagome lattices of silicon and germanium are found to be of similar stability as the recently proposed carbon kagome lattice. Carbon and silicon kagome lattices are both direct-gap semiconductors but they have qualitatively different electronic band structures. While direct optical transitions between the valence and conduction bands are allowed in the carbon case, no such transitions can be observed for silicon. The kagome lattice of germanium exhibits semimetallic behavior but can be transformed into a semiconductor after compression.
A Lattice-Gas Model of Microemulsions
Boghosian, B M; Emerton, A N; Boghosian, Bruce M.; Coveney, Peter V.; Emerton, Andrew N.
1995-01-01
We develop a lattice gas model for the nonequilibrium dynamics of microemulsions. Our model is based on the immiscible lattice gas of Rothman and Keller, which we reformulate using a microscopic, particulate description so as to permit generalisation to more complicated interactions, and on the prescription of Chan and Liang for introducing such interparticle interactions into lattice gas dynamics. We present the results of simulations to demonstrate that our model exhibits the correct phenomenology, and we contrast it with both equilibrium lattice models of microemulsions, and to other lattice gas models.
Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2014-02-15
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Screening in graphene antidot lattices
Schultz, Marco Haller; Jauho, A. P.; Pedersen, T. G.
2011-01-01
We compute the dynamical polarization function for a graphene antidot lattice in the random-phase approximation. The computed polarization functions display a much more complicated structure than what is found for pristine graphene (even when evaluated beyond the Dirac-cone approximation...... the plasmon dispersion law and find an approximate square-root dependence with a suppressed plasmon frequency as compared to doped graphene. The plasmon dispersion is nearly isotropic and the developed approximation schemes agree well with the full calculation....
Supersaturation in the Boolean lattice
Dove, A.P.; Griggs, J.R.; Kang, Ross; Sereni, Jean-Sébastien
2014-01-01
We seek families of subsets of an n-set of given size that contain the fewest k-chains. We prove a “supersaturation-type” extension of both Sperner’s Theorem (1928) and its generalization by Erd˝os (1945). Erd˝os showed that a largest k-chain free family in the Boolean lattice is formed by taking
Hadron Physics from Lattice QCD
2016-01-01
We sketch the basic ideas of the lattice regularization in Quantum Field Theory, the corresponding Monte Carlo simulations, and applications to Quantum Chromodynamics (QCD). This approach enables the numerical measurement of observables at the non-perturbative level. We comment on selected results, with a focus on hadron masses and the link to Chiral Perturbation Theory. At last we address two outstanding issues: topological freezing and the sign problem.
Harmonic Lattice Dynamics of Germanium
Nelin, G.
1974-07-01
The phonon dispersion relations of the DELTA-, LAMBDA-, and SIGMA-directions of germanium at 80 K are analysed in terms of current harmonic lattice dynamical models. On the basis of this experience, a new model is proposed which gives a unified account of the strong points of the previous models. The principal elements of the presented theory are quasiparticle bond charges combined with a valence force field.
Integrated optical fiber lattice accumulators
Atherton, Adam F
1997-01-01
Approved for public release; distribution is unlimited. Sigma-delta modulators track a signal by accumulating the error between an input signal and a feedback signal. The accumulated energy is amplitude analyzed by a comparator. The comparator output signal is fed back and subtracted from the input signal. This thesis is primarily concerned with designing accumulators for inclusion in an optical sigma-delta modulator. Fiber lattice structures with optical amplifiers are used to perform the...
Lattice engineering technology and applications
Wang, Shumin
2012-01-01
This book contains comprehensive reviews of different technologies to harness lattice mismatch in semiconductor heterostructures and their applications in electronic and optoelectronic devices. While the book is a bit focused on metamorphic epitaxial growth, it also includes other methods like compliant substrate, selective area growth, wafer bonding and heterostructure nanowires etc. Basic knowledge on dislocations in semiconductors and innovative methods to eliminate threading dislocations are provided, and successful device applications are reviewed. It covers a variety of important semicon
Symplectic maps for accelerator lattices
Warnock, R.L.; Ruth, R.; Gabella, W.
1988-05-01
We describe a method for numerical construction of a symplectic map for particle propagation in a general accelerator lattice. The generating function of the map is obtained by integrating the Hamilton-Jacobi equation as an initial-value problem on a finite time interval. Given the generating function, the map is put in explicit form by means of a Fourier inversion technique. We give an example which suggests that the method has promise. 9 refs., 9 figs.
Improved Lattice Renormalization Group Techniques
Petropoulos, Gregory; Hasenfratz, Anna; Schaich, David
2013-01-01
We compute the bare step-scaling function $s_b$ for SU(3) lattice gauge theory with $N_f = 12$ massless fundamental fermions, using the non-perturbative Wilson-flow-optimized Monte Carlo Renormalization Group two-lattice matching technique. We use a short Wilson flow to approach the renormalized trajectory before beginning RG blocking steps. By optimizing the length of the Wilson flow, we are able to determine an $s_b$ corresponding to a unique discrete $\\beta$ function, after a few blocking steps. We carry out this study using new ensembles of 12-flavor gauge configurations generated with exactly massless fermions, using volumes up to $32^4$. The results are consistent with the existence of an infrared fixed point (IRFP) for all investigated lattice volumes and number of blocking steps. We also compare different renormalization schemes, each of which indicates an IRFP at a slightly different value of the bare coupling, as expected for an IR-conformal theory.
The Algebraic Properties of Concept Lattice
KaisheQu; JiyeLiang; JunhongWang; ZhongzhiShi
2004-01-01
Concept lattice is a powerful tool for data analysis. It has been applied widely to machine learning, knowledge discovery and software engineering and so on. Some aspects of concept lattice have been studied widely such as building lattice and rules extraction, as for its algebraic properties, there has not been discussed systematically. The paper suggests a binary operation between the elements for the set of all concepts in formal context. This turns the concept lattice in general significance into those with operators. We also proved that the concept lattice is a lattice in algebraic significance and studied its algebraic properties.These results provided theoretical foundation and a new method for further study of concept lattice.
Manipulation and control of a bichromatic lattice
Thomas, Claire; Barter, Thomas; Daiss, Severin; Leung, Zephy; Stamper-Kurn, Dan
2015-05-01
Recent experiments with ultracold atoms in optical lattices have had great success emulating the simple models of condensed matter systems. These experiments are typically performed with a single site per unit cell. We realize a lattice with up to four sites per unit cell by overlaying an attractive triangular lattice with a repulsive one at twice the wavelength. The relative displacement of the two lattices determines the particular structure. One available configuration is the kagome lattice, which has a flat energy band. In the flat band all kinetic energy states are degenerate, so we have the opportunity to explore a regime where interactions dominate. This bichromatic lattice requires careful stabilization, but offers an opportunity to manipulate the unit cell and band structure by perturbing the lattices relative to one another. I will discuss recent progress.
石玮; 郭正洪; 戎咏华; 陈世朴; 徐祖耀
2001-01-01
建立了一种测量γ(fcc)→ε(hcp)马氏体相变切变角的方法.运用Thompson四面体和几何模型推导出马氏体变体的迹线方向，通过计算求得相变浮凸角与真实切变角的对应关系.应用原子力显微镜(AFM)测量了Fe-30％Mn-6％Si合金应力诱发马氏体相变的浮凸角.文中两个实例计算结果分别为17.85°和21.10°，与理论值19.47°相比误差小于2°，表明该方法具有精度较高、操作简单的特点.%A modified method for the determination of γ(fcc)→ε(hcp) martensitic transformation shear angle was established. Thompson tetrahedron and geometry analysis were used to calculate the directions of variant traces on specimen surface, then the relationship between the transformation shear angle and surface relief angle was deduced. The surface relief angles caused by stress-induced γ(fcc)→e(hcp) transformation for two surface regions in an Fe-30％Mn-6％Si alloy were measured by AFM (Atomic Force Microscope) and the corresponding shear angles were calculated to be 17.85° and 21.10° respectively. The deviation compared to the theoretical value (19.47°) is reasonably small, suggesting that the method is reliable and quite simple.
Hahn, Steven [Iowa State Univ., Ames, IA (United States)
2012-01-01
Modern calculations are becoming an essential, complementary tool to inelastic x-ray scattering studies, where x-rays are scattered inelastically to resolve meV phonons. Calculations of the inelastic structure factor for any value of Q assist in both planning the experiment and analyzing the results. Moreover, differences between the measured data and theoretical calculations help identify important new physics driving the properties of novel correlated systems. We have used such calculations to better and more e ciently measure the phonon dispersion and elastic constants of several iron pnictide superconductors. This dissertation describes calculations and measurements at room temperature in the tetragonal phase of CaFe{sub 2}As{sub 2} and LaFeAsO. In both cases, spin-polarized calculations imposing the antiferromagnetic order present in the low-temperature orthorhombic phase dramatically improves the agreement between theory and experiment. This is discussed in terms of the strong antiferromagnetic correlations that are known to persist in the tetragonal phase. In addition, we discuss a relatively new approach called self-consistent ab initio lattice dynamics (SCAILD), which goes beyond the harmonic approximation to include phonon-phonon interactions and produce a temperature-dependent phonon dispersion. We used this technique to study the HCP to BCC transition in beryllium.
Gabriel Catano
Full Text Available A recent genome-wide association study (GWAS suggested that polymorphisms in or around the genes HCP5, HLA-C and ZNRD1 confer restriction against HIV-1 viral replication or disease progression. Here, we also find that these alleles are associated with different aspects of HIV disease, albeit mainly in European Americans. Additionally, we offer that because the GWAS cohort was a subset of HIV-positive individuals, selected based in part on having a low viral load, the observed associations for viral load are magnified compared with those we detect in a large well-characterized prospective natural history cohort of HIV-1-infected persons. We also find that because of linkage disequilibrium (LD patterns, the dominant viral load- and disease-influencing associations for the ZNRD1 or HLA-C and HCP5 alleles are apparent mainly when these alleles are present in HLA-A10- or HLA-B*57-containing haplotypes, respectively. ZNRD1 alleles lacking HLA-A10 did not confer disease protection whereas ZNRD1-A10 haplotypes did. When examined in isolation, the HCP5-G allele associates with a slow disease course and lower viral loads. However, in multivariate models, after partitioning out the protective effects of B*57, the HCP5-G allele associates with disease-acceleration and enhanced viral replication; these associations for HCP5-G are otherwise obscured because of the very strong LD between this allele and a subset of protective B*57 alleles. Furthermore, HCP5 and HLA-C alleles stratify B*57-containing genotypes into those that associate with either striking disease retardation or progressive disease, providing one explanation for the long-standing conundrum of why some HLA-B*57-carrying individuals are long-term non-progressors, whereas others exhibit progressive disease. Collectively, these data generally underscore the strong dependence of genotype-phenotype relationships upon cohort design, phenotype selection, LD patterns and populations studied. They
Critical driving force for martensitic transformation fcc (γ)→hcp(ε) in Fe-Mn-Si shape memory alloys
金学军; 徐祖耀; 李麟
1999-01-01
By the application of Chou’s new geometry model and the available data from binary Fe-Mn, Fe-Si and Mn-Si systems, as well as SGTE DATA for lattice stability parameters of three elements from Dinsdale, the Gibbs free energy as a function of temperature of the fcc（γ） and hep（ε） phases in the Fe-Mn-Si system is reevaluated. The relationship between the Neel temperature of the γ phase and concentration of constituents in mole fraction, is fitted and verified by the experimental results. The critical driving force for the martensitic transformation fcc （γ）→ hep （ε）, △ GCγ→ε, defined as the free energy difference between γ and ε phases at Ms of various alloys can also be obtained with a known Ms. It is found that the driving force varies with the composition of alloys, e. g. △ GCγ→ε = - 100.99 J/mol in Fe-27.0Mn-6.0Si and △ GCγ→ε = - 122.11 J/mol in Fe-26.9Mn-3.37Si. The compositional dependence of critical driving force accorded with the expression formulated by Hsu of the
Costanza, E. F.; Costanza, G.
2016-10-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a rectangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.
Hadron structure from lattice QCD
Green, Jeremy [Institut für Kernphysik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz (Germany)
2016-01-22
Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing resources, this situation is improving. Some calculations have produced agreement with experiment for key observables such as the axial charge and electromagnetic form factors, and the improved understanding of systematic errors will help to increase confidence in predictions of unmeasured quantities. The long-omitted disconnected contributions are now seeing considerable attention and some recent calculations of them will be discussed.
Hadron Structure from Lattice QCD
Green, Jeremy
2014-01-01
Recent progress in lattice QCD calculations of nucleon structure will be presented. Calculations of nucleon matrix elements and form factors have long been difficult to reconcile with experiment, but with advances in both methodology and computing resources, this situation is improving. Some calculations have produced agreement with experiment for key observables such as the axial charge and electromagnetic form factors, and the improved understanding of systematic errors will help to increase confidence in predictions of unmeasured quantities. The long-omitted disconnected contributions are now seeing considerable attention and some recent calculations of them will be discussed.
Lattice Stern-Gerlach experiment
Luschevskaya, E V; Teryaev, O V
2016-01-01
We investigate the dependence of ground state energies of charged vector $\\rho$ and $K^{*}$ mesons on the value of magnetic field in the $SU(3)$ lattice gauge theory. It has been shown that the energy of a vector particle strongly depends on its spin projection on the field axis, and the magnetic dypole polarizability and hyperpolarizabilities give a large contribution to the meson energy at large fields. We calculate the g-factor of $\\rho^{\\pm}$ and $K^{*\\pm}$ mesons. Tensor of the dypole magnetic polarizability of the charged $\\rho$ meson at rest has been found.
Fractal lattice of gelatin nanoglobules
Novikov, D. V.; Krasovskii, A. N.
2012-11-01
The globular structure of polymer coatings on a glass, which were obtained from micellar solutions of gelatin in the isooctane-water-sodium (bis-2-ethylhexyl) sulfosuccinate system, has been studied using electron microscopy. It has been shown that an increase in the average globule size is accompanied by the formation of a fractal lattice of nanoglobules and a periodic physical network of macromolecules in the coating. The stability of such system of the "liquid-in-a-solid" type is limited by the destruction of globules and the formation of a homogeneous network structure of the coating.
Tiling Lattices with Sublattices, II
Feldman, David; Robins, Sinai
2010-01-01
Our earlier article proved that if $n > 1$ translates of sublattices of $Z^d$ tile $Z^d$, and all the sublattices are Cartesian products of arithmetic progressions, then two of the tiles must be translates of each other. We re-prove this Theorem, this time using generating functions. We also show that for $d > 1$, not every finite tiling of $Z^d$ by lattices can be obtained from the trivial tiling by the process of repeatedly subdividing a tile into sub-tiles that are translates of one another.
Graphene antidot lattice transport measurements
Mackenzie, David; Cagliani, Alberto; Gammelgaard, Lene
2017-01-01
for antidot arrays devices. Graphene devices were fabricated using 100 keV electron beam lithography (EBL) for nanopatterning as well as for defining electrical contacts. Patterns with hole diameter and neck widths of order 30 nm were produced, which is the highest reported pattern density of antidot lattices...... in graphene reported defined by EBL. Electrical measurements showed that devices with one and five rows exhibited field effect mobility of ∼100 cm2/Vs, while a larger number of rows, around 40, led to a significant reduction of field effect mobility (
Triangle Lattice Green Functions for Vector Fields
Moritz, Brian; Schwalm, William
2000-03-01
The triangle lattice is convenient for modeling fields and fluid flows in two dimensions. Discrete vector field equations are defined through the analogy between differential forms and simplicial homology theory. The basic vector difference operators on the lattice correspond to the graph adjacency matricies of the triangle, honeycomb, and Kagomé lattices. The scalar Green functions for nearest neighbor interactions on the triangle lattice are known in closed form in terms of the complete elliptic integrals. Green functions for vector field operators are obtained explicitly in terms of the known scalar Green functions. The scalar Green functions for the Kagomé lattice are thus written in terms of the Green functions for the triangle lattice and ultimately in closed form. Thus, Green functions for a wide range of vector difference models are reduced to closed form in terms of the complete elliptic integrals.
Working Group Report: Lattice Field Theory
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
Computing iceberg concept lattices with Titanic
Stumme, Gerd; Taouil, Rafik; Bastide, Yves; Pasquier, Nicolas; Lakhal, Lotfi
2002-01-01
International audience; We introduce the notion of iceberg concept lattices and show their use in knowledge discovery in databases. Iceberg lattices are a conceptual clustering method, which is well suited for analyzing very large databases. They also serve as a condensed representation of frequent itemsets, as starting point for computing bases of association rules, and as a visualization method for association rules. Iceberg concept lattices are based on the theory of Formal Concept Analysi...
Quantum Entanglement in Optical Lattice Systems
2015-02-18
SECURITY CLASSIFICATION OF: Optical lattice systems provide an ideal platform for investigating entanglement because of their unprecedented level of...ABSTRACT Final report for ARO grant entitled "Quantum Entanglement in Optical Lattice Systems" Report Title Optical lattice systems provide an ideal ...2010): 0. doi: 10.1103/PhysRevA.82.063612 D. Blume, K. Daily. Breakdown of Universality for Unequal-Mass Fermi Gases with Infinite Scattering Length
Optical Lattice Simulations of Correlated Fermions
2013-10-04
simple-cubic optical lattice, , (06 2009): 0. doi: 09/20/2013 51.00 Tin-Lun Ho, Qi Zhou. Squeezing out the entropy of fermions in optical lattices...Convention and Exhibition Center, Hong Kong, May 12, 2009 "Reducing Entropy in Quantum Gases in optical lattices", Jason Ho, Aspen workshop on quantum...Sciences Randall Hulet: chosen as a 2010 Outstanding Referee of the Physical Review and Physical Review Letters Journals Randall Hulet: Willis E. Lamb
Improved Lattice Actions with Chemical Potential
Bietenholz, W
1998-01-01
We give a prescription how to include a chemical potential \\mu into a general lattice action. This inclusion does not cause any lattice artifacts. Hence its application to an improved - or even perfect - action at \\mu =0 yields an improved resp. perfect action at arbitrary \\mu. For short-ranged improved actions, a good scaling behavior holds over a wide region, and the upper bound for the baryon density - which is known for the standard lattice actions - can be exceeded.
Experimental generation of optical coherence lattices
Chen, Yahong; Cai, Yangjian, E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [College of Physics, Optoelectronics and Energy and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006 (China); Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province and Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006 (China); Ponomarenko, Sergey A., E-mail: serpo@dal.ca, E-mail: yangjiancai@suda.edu.cn [Department of Electrical and Computer Engineering, Dalhousie University, Halifax, Nova Scotia B3J 2X4 (Canada)
2016-08-08
We report experimental generation and measurement of recently introduced optical coherence lattices. The presented optical coherence lattice realization technique hinges on a superposition of mutually uncorrelated partially coherent Schell-model beams with tailored coherence properties. We show theoretically that information can be encoded into and, in principle, recovered from the lattice degree of coherence. Our results can find applications to image transmission and optical encryption.
Introduction to Vortex Lattice Theory
Santiago Pinzón
2015-10-01
Full Text Available Panel methods have been widely used in industry and are well established since the 1970s for aerodynamic analysis and computation. The Vortex Lattice Panel Method presented in this study comes across a sophisticated method that provides a quick solution time, allows rapid changes in geometry and suits well for aerodynamic analysis. The aerospace industry is highly competitive in design efficiency, and perhaps one of the most important factors on airplane design and engineering today is multidisciplinary optimization. Any cost reduction method in the design cycle of a product becomes vital in the success of its outcome. The subsequent sections of this article will further explain in depth the theory behind the vortex lattice method, and the reason behind its selection as the method for aerodynamic analysis during preliminary design work and computation within the aerospace industry. This article is analytic in nature, and its main objective is to present a mathematical summary of this widely used computational method in aerodynamics.
QCD thermodynamics on a lattice
Levkova, Ludmila A.
Numerical simulations of full QCD on anisotropic lattices provide a convenient way to study QCD thermodynamics with fixed physics scales and reduced lattice spacing errors. We report results from calculations with two flavors of dynamical staggered fermions, where all bare parameters and the renormalized anisotropy are kept constant and the temperature is changed in small steps by varying only the number of time slices. Including results from zero-temperature scale setting simulations, which determine the Karsch coefficients, allows for the calculation of the Equation of State at finite temperatures. We also report on studies of the chiral properties of dynamical domain-wall fermions combined with the DBW2 gauge action for different gauge couplings and fermion masses. For quenched theories, the DBW2 action gives a residual chiral symmetry breaking much smaller than what was found with more traditional choices for the gauge action. Our goal is to investigate the possibilities which this and further improvements provide for the study of QCD thermodynamics and other simulations at stronger couplings.
Biagini, M.E.; Raimondi, P.; /Frascati; Piminov, P.; Sinyatkin, S.; /Novosibirsk, IYF; Nosochkov, Y.; Wittmer, W.; /SLAC
2010-08-25
The SuperB asymmetric e{sup +}e{sup -} collider is designed for 10{sup 36} cm{sup -2} s{sup -1} luminosity and beam energies of 6.7 and 4.18 GeV for e{sup +} and e{sup -} respectively. The High and Low Energy Rings (HER and LER) have one Interaction Point (IP) with 66 mrad crossing angle. The 1258 m rings fit to the INFN-LNF site at Frascati. The ring emittance is minimized for the high luminosity. The Final Focus (FF) chromaticity correction is optimized for maximum transverse acceptance and energy bandwidth. Included Crab Waist sextupoles suppress betatron resonances induced in the collisions with a large Piwinski angle. The LER Spin Rotator sections provide longitudinally polarized electron beam at the IP. The lattice is flexible for tuning the machine parameters and compatible with reusing the PEP-II magnets, RF cavities and other components. Details of the lattice design are presented.
Holographic Lattices Give the Graviton a Mass
Blake, Mike; Vegh, David
2014-01-01
We discuss the DC conductivity of holographic theories with translational invariance broken by a background lattice. We show that the presence of the lattice induces an effective mass for the graviton via a gravitational version of the Higgs mechanism. This allows us to obtain, at leading order in the lattice strength, an analytic expression for the DC conductivity in terms of the size of the lattice at the horizon. In locally critical theories this leads to a power law resistivity that is in agreement with an earlier field theory analysis of Hartnoll and Hofman.
Costanza, E. F.; Costanza, G.
2016-12-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a triangular lattice. This example shows the general features that possess the procedure and extensions are also suggested in order to provide a wider insight in the present approach.
Cooperative Ordering in Lattices of Interacting Dipoles
Bettles, Robert J; Adams, Charles S
2014-01-01
Using classical electrodynamics simulations we investigate the cooperative behavior of regular monolayers of induced two-level dipoles, including their cooperative decays and shifts. For the particular case of the kagome lattice we observe behavior akin to EIT for lattice spacings less than the probe wavelength. Within this region the dipoles exhibit ferroelectric and anti-ferroelectric ordering. We also model how the cooperative response is manifested in the optical transmission through the kagome lattice, with sharp changes in transmission from 10% to 80% for small changes in lattice spacing.
On the lattice rotations accompanying slip
Wronski, M.; Wierzbanowski, K.; Leffers, Torben
2013-01-01
of the crystal lattices, and this texture may have a strong effect on the properties of the materials. The texture is introduced by lattice rotations in the individual grains during processing. The present critical assessment deals with the lattice rotations during rolling of face centred cubic (fcc) metals...... and alloys. Sixteen years ago, a modification of the traditional procedure for the calculation of these lattice rotations was suggested, a modification that would permit a realistic modelling of the development of the brass type texture, one of the two types of texture developed during rolling of fcc...
A Lattice Study of the Glueball Spectrum
LIU Chuan
2001-01-01
The glueball spectrum is studied using an improved gluonic action on asymmetric lattices in the pure SU(3) lattice gauge theory. The smallest spatial lattice spacing is about 0.08 fm which makes the extrapolation to the ontinuum limit more reliable. Converting our lattice results to physical units using the scale set by the static quark potential, we obtain the following results for the glueball masses: MG(0++) -＝ 1730(90) MeV for the scalarglueball and MG(2++) ＝ 2400(95) MeV for the tensor glueball.
Polarization response of RHIC electron lens lattices
V. H. Ranjbar
2016-10-01
Full Text Available Depolarization response for a system of two orthogonal snakes at irrational tunes is studied in depth using lattice independent spin integration. In particular we consider the effect of overlapping spin resonances in this system, to understand the impact of phase, tune, relative location and threshold strengths of the spin resonances. These results are benchmarked and compared to two dimensional direct tracking results for the RHIC e-lens lattice and the standard lattice. Finally we consider the effect of longitudinal motion via chromatic scans using direct six dimensional lattice tracking.
Transmission Electron Microscope Measures Lattice Parameters
Pike, William T.
1996-01-01
Convergent-beam microdiffraction (CBM) in thermionic-emission transmission electron microscope (TEM) is technique for measuring lattice parameters of nanometer-sized specimens of crystalline materials. Lattice parameters determined by use of CBM accurate to within few parts in thousand. Technique developed especially for use in quantifying lattice parameters, and thus strains, in epitaxial mismatched-crystal-lattice multilayer structures in multiple-quantum-well and other advanced semiconductor electronic devices. Ability to determine strains in indivdual layers contributes to understanding of novel electronic behaviors of devices.
Lattice theory special topics and applications
Wehrung, Friedrich
2014-01-01
George Grätzer's Lattice Theory: Foundation is his third book on lattice theory (General Lattice Theory, 1978, second edition, 1998). In 2009, Grätzer considered updating the second edition to reflect some exciting and deep developments. He soon realized that to lay the foundation, to survey the contemporary field, to pose research problems, would require more than one volume and more than one person. So Lattice Theory: Foundation provided the foundation. Now we complete this project with Lattice Theory: Special Topics and Applications, written by a distinguished group of experts, to cover some of the vast areas not in Foundation. This first volume is divided into three parts. Part I. Topology and Lattices includes two chapters by Klaus Keimel, Jimmie Lawson and Ales Pultr, Jiri Sichler. Part II. Special Classes of Finite Lattices comprises four chapters by Gabor Czedli, George Grätzer and Joseph P. S. Kung. Part III. Congruence Lattices of Infinite Lattices and Beyond includes four chapters by Friedrich W...
Potts and percolation models on bowtie lattices.
Ding, Chengxiang; Wang, Yancheng; Li, Yang
2012-08-01
We give the exact critical frontier of the Potts model on bowtie lattices. For the case of q = 1, the critical frontier yields the thresholds of bond percolation on these lattices, which are exactly consistent with the results given by Ziff et al. [J. Phys. A 39, 15083 (2006)]. For the q = 2 Potts model on a bowtie A lattice, the critical point is in agreement with that of the Ising model on this lattice, which has been exactly solved. Furthermore, we do extensive Monte Carlo simulations of the Potts model on a bowtie A lattice with noninteger q. Our numerical results, which are accurate up to seven significant digits, are consistent with the theoretical predictions. We also simulate the site percolation on a bowtie A lattice, and the threshold is s(c) = 0.5479148(7). In the simulations of bond percolation and site percolation, we find that the shape-dependent properties of the percolation model on a bowtie A lattice are somewhat different from those of an isotropic lattice, which may be caused by the anisotropy of the lattice.
Light propagation in optically induced Fibonacci lattices
Boguslawski, Martin; Timotijevic, Dejan V; Denz, Cornelia; Savic, Dragana M Jovic
2015-01-01
We report on the optical induction of Fibonacci lattices in photorefractive strontium barium niobate by use of Bessel beam waveguide-wise writing techniques. Fibonacci elements A and B are used as lattice periods. We further use the induced structures to execute probing experiments with variously focused Gaussian beams in order to observe light confinement owing to the quasiperiodic character of Fibonacci word sequences. Essentially, we show that Gaussian beam expansion is just slowed down in Fibonacci lattices, as compared with appropriate periodic lattices.
Costanza, E. F.; Costanza, G.
2017-02-01
Continuum partial differential equations are obtained from a set of discrete stochastic evolution equations of both non-Markovian and Markovian processes and applied to the diffusion within the context of the lattice gas model. A procedure allowing to construct one-dimensional lattices that are topologically equivalent to two-dimensional lattices is described in detail in the case of a hexagonal lattice which has the particular feature that need four types of dynamical variables. This example shows additional features to the general procedure and some extensions are also suggested in order to provide a wider insight in the present approach.
Fuzzy Ideals and Fuzzy Distributive Lattices%Fuzzy Ideals and Fuzzy Distributive Lattices*
S.H.Dhanani; Y. S. Pawar
2011-01-01
Our main objective is to study properties of a fuzzy ideals (fuzzy dual ideals). A study of special types of fuzzy ideals (fuzzy dual ideals) is also furnished. Some properties of a fuzzy ideals (fuzzy dual ideals) are furnished. Properties of a fuzzy lattice homomorphism are discussed. Fuzzy ideal lattice of a fuzzy lattice is defined and discussed. Some results in fuzzy distributive lattice are proved.
Vortex-lattice melting in a one-dimensional optical lattice
Snoek, M.; Stoof, H.T.C.
2006-01-01
We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the small number of particles in the pancake
Theory of vortex-lattice melting in a one-dimensional optical lattice
Snoek, M.; Stoof, H.T.C.
2006-01-01
We investigate quantum and temperature fluctuations of a vortex lattice in a one-dimensional optical lattice. We discuss in particular the Bloch bands of the Tkachenko modes and calculate the correlation function of the vortex positions along the direction of the optical lattice. Because of the
Vortex-lattice melting in a one-dimensional optical lattice
Snoek, M.; Stoof, H.T.C.
2006-01-01
We investigate quantum fluctuations of a vortex lattice in a one-dimensional optical lattice for realistic numbers of particles and vortices. Our method gives full access to all the modes of the vortex lattice and we discuss in particular the Bloch bands of the Tkachenko modes. Because of the
Hadron physics from lattice QCD
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Cold atoms in a rotating optical lattice
Foot, Christopher J.
2009-05-01
We have demonstrated a novel experimental arrangement which can rotate a two-dimensional optical lattice at frequencies up to several kilohertz. Our arrangement also allows the periodicity of the optical lattice to be varied dynamically, producing a 2D ``accordion lattice'' [1]. The angles of the laser beams are controlled by acousto-optic deflectors and this allows smooth changes with little heating of the trapped cold (rubidium) atoms. We have loaded a BEC into lattices with periodicities ranging from 1.8μm to 18μm, observing the collapse and revival of the diffraction orders of the condensate over a large range of lattice parameters as recently reported by a group in NIST [2]. We have also imaged atoms in situ in a 2D lattice over a range of lattice periodicities. Ultracold atoms in a rotating lattice can be used for the direct quantum simulation of strongly correlated systems under large effective magnetic fields, i.e. the Hamiltonian of the atoms in the rotating frame resembles that of a charged particle in a strong magnetic field. In the future, we plan to use this to investigate a range of phenomena such as the analogue of the fractional quantum Hall effect. [4pt] [1] R. A. Williams, J. D. Pillet, S. Al-Assam, B. Fletcher, M. Shotter, and C. J. Foot, ``Dynamic optical lattices: two-dimensional rotating and accordion lattices for ultracold atoms,'' Opt. Express 16, 16977-16983 (2008) [0pt] [2] J. H. Huckans, I. B. Spielman, B. Laburthe Tolra, W. D. Phillips, and J. V. Porto, Quantum and Classical Dynamics of a BEC in a Large-Period Optical Lattice, arXiv:0901.1386v1
Bimaterial lattices as thermal adapters and actuators
Toropova, Marina M.; Steeves, Craig A.
2016-11-01
The goal of this paper is to demonstrate how anisotropic biomaterial lattices can be used in thermal actuation. Compared to other lattices with tailored thermal expansion, the anisotropy of these bimaterial lattices makes them uniquely suitable for use as thermal actuators. Each individual cell, and hence lattices consisting of such cells, can be designed with widely different predetermined coefficients of thermal expansion (CTE) in different directions, enabling complex shape changes appropriate for actuation with either passive or active control. The lattices are composed of planar non-identical cells that each consist of a skewed hexagon surrounding an irregular triangle. The cells and all members of any cell are connected to each other by pins so that they have no rotational constraints and are able to expand or contract freely. In this case, the skew angles of the hexagon and the ratio of the CTEs of the two component materials determine the overall performance of the lattice. At its boundaries, the lattice is connected to substrates by pins and configured such that the CTE between two neighboring lattice vertices coincides with the CTE of the adjacent substrate. Provided the boundary behavior of the lattice is matched to the thermal properties of the substrates, temperature changes in the structure produce thermal strains without producing any corresponding stresses. Such lattices can be used in three different ways: as adaptive elements for stress-free connection of components with different CTEs; for fine tuning of structures; and as thermally driven actuators. In this paper, we demonstrate some concepts for lattice configurations that produce thermally-driven displacements that enable several actuators: a switch, a valve and tweezers.
GENERALIZATIONS AND CARTESIAN CLOSED SUBCATEGORIES OF SEMICONTINUOUS LATTICES
Li Qingguo; Wu Xiuhua
2009-01-01
In this article, the authors mainly study how to obtain new semicontinuous lattices from the given semicontinuous lattices and discuss the conditions under which the image of a semicontinuous projection operator is also semicontinuons. Moreover, the authors investigate the relation between semicontinuous lattices and completely distributive lattices. Finally, it is proved that the strongly sernicontinuons lattice category is a Cartesian closed category.
Gomi, Hitoshi; Hirose, Kei; Akai, Hisazumi; Fei, Yingwei
2016-10-01
The thermal conductivity of the Earth's core can be estimated from its electrical resistivity via the Wiedemann-Franz law. However, previously reported resistivity values are rather scattered, mainly due to the lack of knowledge with regard to resistivity saturation (violations of the Bloch-Grüneisen law and the Matthiessen's rule). Here we conducted high-pressure experiments and first-principles calculations in order to clarify the relationship between the resistivity saturation and the impurity resistivity of substitutional silicon in hexagonal-close-packed (hcp) iron. We measured the electrical resistivity of Fe-Si alloys (iron with 1, 2, 4, 6.5, and 9 wt.% silicon) using four-terminal method in a diamond-anvil cell up to 90 GPa at 300 K. We also computed the electronic band structure of substitutionally disordered hcp Fe-Si and Fe-Ni alloy systems by means of Korringa-Kohn-Rostoker method with coherent potential approximation (KKR-CPA). The electrical resistivity was then calculated from the Kubo-Greenwood formula. These experimental and theoretical results show excellent agreement with each other, and the first principles results show the saturation behavior at high silicon concentration. We further calculated the resistivity of Fe-Ni-Si ternary alloys and found the violation of the Matthiessen's rule as a consequence of the resistivity saturation. Such resistivity saturation has important implications for core dynamics. The saturation effect places the upper limit of the resistivity, resulting in that the total resistivity value has almost no temperature dependence. As a consequence, the core thermal conductivity has a lower bound and exhibits a linear temperature dependence. We predict the electrical resistivity at the top of the Earth's core to be 1.12 ×10-6 Ωm, which corresponds to the thermal conductivity of 87.1 W/m/K. Such high thermal conductivity suggests high isentropic heat flow, leading to young inner core age (<0.85 Gyr old) and high initial
Lattice mechanics of origami tessellations.
Evans, Arthur A; Silverberg, Jesse L; Santangelo, Christian D
2015-07-01
Origami-based design holds promise for developing materials whose mechanical properties are tuned by crease patterns introduced to thin sheets. Although there have been heuristic developments in constructing patterns with desirable qualities, the bridge between origami and physics has yet to be fully developed. To truly consider origami structures as a class of materials, methods akin to solid mechanics need to be developed to understand their long-wavelength behavior. We introduce here a lattice theory for examining the mechanics of origami tessellations in terms of the topology of their crease pattern and the relationship between the folds at each vertex. This formulation provides a general method for associating mechanical properties with periodic folded structures and allows for a concrete connection between more conventional materials and the mechanical metamaterials constructed using origami-based design.
Lattice Models of Quantum Gravity
Bittner, E R; Holm, C; Janke, W; Markum, H; Riedler, J
1998-01-01
Standard Regge Calculus provides an interesting method to explore quantum gravity in a non-perturbative fashion but turns out to be a CPU-time demanding enterprise. One therefore seeks for suitable approximations which retain most of its universal features. The $Z_2$-Regge model could be such a desired simplification. Here the quadratic edge lengths $q$ of the simplicial complexes are restricted to only two possible values $q=1+\\epsilon\\sigma$, with Ising model. To test whether this simpler model still contains the essential qualities of the standard Regge Calculus, we study both models in two dimensions and determine several observables on the same lattice size. In order to compare expectation values, e.g. of the average curvature or the Liouville field susceptibility, we employ in both models the same functional integration measure. The phase structure is under current investigation using mean field theory and numerical simulation.
Bruckmann, Falk; Giordano, Matteo; Katz, Sandor D; Kovacs, Tamas G; Pittler, Ferenc; Wellnhofer, Jacob
2016-01-01
The spectrum of the two-dimensional continuum Dirac operator in the presence of a uniform background magnetic field consists of Landau levels, which are degenerate and separated by gaps. On the lattice the Landau levels are spread out by discretization artefacts, but a remnant of their structure is clearly visible (Hofstadter butterfly). If one switches on a non-Abelian interaction, the butterfly structure will be smeared out, but the lowest Landau level (LLL) will still be separated by a gap from the rest of the spectrum. In this talk we discuss how one can define the LLL in QCD and check how well certain physical quantities are approximated by taking into account only the LLL.
Technicolor and Lattice Gauge Theory
Chivukula, R Sekhar
2010-01-01
Technicolor and other theories of dynamical electroweak symmetry breaking invoke chiral symmetry breaking triggered by strong gauge-dynamics, analogous to that found in QCD, to explain the observed W, Z, and fermion masses. In this talk we describe why a realistic theory of dynamical electroweak symmetry breaking must, relative to QCD, produce an enhanced fermion condensate. We quantify the degree to which the technicolor condensate must be enhanced in order to yield the observed quark masses, and still be consistent with phenomenological constraints on flavor-changing neutral-currents. Lattice studies of technicolor and related theories provide the only way to demonstrate that such enhancements are possible and, hopefully, to discover viable candidate models. We comment briefly on the current status of non-perturbative investigations of dynamical electroweak symmetry breaking, and provide a "wish-list" of phenomenologically-relevant properties that are important to calculate in these theories
Thermal cascaded lattice Boltzmann method
Fei, Linlin
2016-01-01
In this paper, a thermal cascaded lattice Boltzmann method (TCLBM) is developed in combination with the double-distribution-function (DDF) approach. A density distribution function relaxed by the cascaded scheme is employed to solve the flow field, and a total energy distribution function relaxed by the BGK scheme is used to solve temperature field, where two distribution functions are coupled naturally. The forcing terms are incorporated by means of central moments, which is consistent with the previous force scheme [Premnath \\emph{et al.}, Phys. Rev. E \\textbf{80}, 036702 (2009)] but the derivation is more intelligible and the evolution process is simpler. In the method, the viscous heat dissipation and compression work are taken into account, the Prandtl number and specific-heat ratio are adjustable, the external force is considered directly without the Boussinesq assumption, and the low-Mach number compressible flows can also be simulated. The forcing scheme is tested by simulating a steady Taylor-Green f...
Bukenov, A K; Polikarpov, M I; Polley, L; Wiese, U J
1992-01-01
We develop a formalism for the quantization of topologically stable excitations in the 4-dimensional abelian lattice gauge theory. The excitations are global and local (Abrikosov-Nielsen-Olesen) strings and monopoles. The operators of creation and annihilation of string states are constructed; the string Green functions are represented as a path integral over random surfaces. Topological excitations play an important role in the early universe. In the broken symmetry phase of the $U(1)$ spin model, closed global cosmic strings arise, while in the Higgs phase of the noncompact gauge-Higgs model, local cosmic strings are present. The compact gauge-Higgs model also involves monopoles. Then the strings can break if their ends are capped by monopoles. The topology of the Euclidean string world sheets are studied by numerical simulations.
FFAG lattice without opposite bends
Trbojevic, Dejan; Courant, Ernest D.; Garren, Al
2000-08-01
A future "neutrino factory" or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).
FFAG lattice without opposite bends
Trbojevic, D; Garren, A
2000-01-01
A future 'neutrino factory' or Muon Collider requires fast muon acceleration before the storage ring. Several alternatives for fast muon acceleration have previously been considered. One of them is the FFAG (Fixed Field Alternating Gradient) synchrotron. The FFAG concept was developed in 1952 by K. R. Symon (ref. 1). The advantages of this design are the fixed magnetic field, large range of particle energy, simple RF; power supplies are simple, and there is no transition energy. But a drawback is that reverse bending magnets are included in the configuration; this increases the size and cost of the ring. Recently some modified FFAG lattice designs have been described where the amount of opposite bending was significantly reduced (ref. 2, ref. 3).
Entropy of Open Lattice Systems
Derrida, B.; Lebowitz, J. L.; Speer, E. R.
2007-03-01
We investigate the behavior of the Gibbs-Shannon entropy of the stationary nonequilibrium measure describing a one-dimensional lattice gas, of L sites, with symmetric exclusion dynamics and in contact with particle reservoirs at different densities. In the hydrodynamic scaling limit, L → ∞, the leading order ( O( L)) behavior of this entropy has been shown by Bahadoran to be that of a product measure corresponding to strict local equilibrium; we compute the first correction, which is O(1). The computation uses a formal expansion of the entropy in terms of truncated correlation functions; for this system the k th such correlation is shown to be O( L - k+1). This entropy correction depends only on the scaled truncated pair correlation, which describes the covariance of the density field. It coincides, in the large L limit, with the corresponding correction obtained from a Gaussian measure with the same covariance.
Optical Lattices with Micromechanical Mirrors
Hammerer, K; Genes, C; Zoller, P; Treutlein, P; Camerer, S; Hunger, D; Haensch, T W
2010-01-01
We investigate a setup where a cloud of atoms is trapped in an optical lattice potential of a standing wave laser field which is created by retro-reflection on a micro-membrane. The membrane vibrations itself realize a quantum mechanical degree of freedom. We show that the center of mass mode of atoms can be coupled to the vibrational mode of the membrane in free space, and predict a significant sympathetic cooling effect of the membrane when atoms are laser cooled. The controllability of the dissipation rate of the atomic motion gives a considerable advantage over typical optomechanical systems enclosed in optical cavities, in that it allows a segregation between the cooling and coherent dynamics regimes. The membrane can thereby be kept in a cryogenic environment, and the atoms at a distance in a vacuum chamber.
Approximate common divisors via lattices
Cohn, Henry
2011-01-01
We analyze the multivariate generalization of Howgrave-Graham's algorithm for the approximate common divisor problem. In the m-variable case with modulus N and approximate common divisor of size N^beta, this improves the size of the error tolerated from N^(beta^2) to N^(beta^((m+1)/m)), under a commonly used heuristic assumption. This gives a more detailed analysis of the hardness assumption underlying the recent fully homomorphic cryptosystem of van Dijk, Gentry, Halevi, and Vaikuntanathan. While these results do not challenge the suggested parameters, a 2^sqrt(n) approximation algorithm for lattice basis reduction in n dimensions could be used to break these parameters. We have implemented our algorithm, and it performs better in practice than the theoretical analysis suggests. Our results fit into a broader context of analogies between cryptanalysis and coding theory. The multivariate approximate common divisor problem is the number-theoretic analogue of noisy multivariate polynomial interpolation, and we ...
Gluonic Transversity from Lattice QCD
Detmold, W
2016-01-01
We present an exploratory study of the gluonic structure of the $\\phi$ meson using lattice QCD (LQCD). This includes the first investigation of gluonic transversity via the leading moment of the twist-two double-helicity-flip gluonic structure function $\\Delta(x,Q^2)$. This structure function only exists for targets of spin $J\\ge1$ and does not mix with quark distributions at leading twist, thereby providing a particularly clean probe of gluonic degrees of freedom. We also explore the gluonic analogue of the Soffer bound which relates the helicity flip and non-flip gluonic distributions, finding it to be saturated at the level of 80%. This work sets the stage for more complex LQCD studies of gluonic structure in the nucleon and in light nuclei where $\\Delta(x,Q^2)$ is an 'exotic glue' observable probing gluons in a nucleus not associated with individual nucleons.
Surface solitons in trilete lattices
Stojanovic, M; Hadzievski, Lj; Malomed, B A
2011-01-01
Fundamental solitons pinned to the interface between three semi-infinite one-dimensional nonlinear dynamical chains, coupled at a single site, are investigated. The light propagation in the respective system with the self-attractive on-site cubic nonlinearity, which can be implemented as an array of nonlinear optical waveguides, is modeled by the system of three discrete nonlinear Schr\\"{o}dinger equations. The formation, stability and dynamics of symmetric and asymmetric fundamental solitons centered at the interface are investigated analytically by means of the variational approximation (VA) and in a numerical form. The VA predicts that two asymmetric and two antisymmetric branches exist in the entire parameter space, while four asymmetric modes and the symmetric one can be found below some critical value of the inter-lattice coupling parameter -- actually, past the symmetry-breaking bifurcation. At this bifurcation point, the symmetric branch is destabilized and two new asymmetric soliton branches appear, ...
Pion structure from lattice QCD
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Selective nanoscale growth of lattice mismatched materials
Lee, Seung-Chang; Brueck, Steven R. J.
2017-06-20
Exemplary embodiments provide materials and methods of forming high-quality semiconductor devices using lattice-mismatched materials. In one embodiment, a composite film including one or more substantially-single-particle-thick nanoparticle layers can be deposited over a substrate as a nanoscale selective growth mask for epitaxially growing lattice-mismatched materials over the substrate.
Lattice studies of hadrons with heavy flavors
Christopher Aubin
2009-07-01
I will discuss recent developments in lattice studies of hadrons composed of heavy quarks. I will mostly cover topics which are at a state of direct comparison with experiment, but will also discuss new ideas and promising techniques to aid future studies of lattice heavy quark physics.
Lattice dynamics of ferromagnetic superconductor UGe2
Satyam Shinde; Prafulla K Jha
2008-11-01
This paper reports the lattice dynamical study of the UGe2 using a lattice dynamical model theory based on pairwise interactions under the framework of the shell model. The calculated phonon dispersion curves and phonon density of states are in good agreement with the measured data.
Lattice Boltzmann equation for relativistic quantum mechanics.
Succi, Sauro
2002-03-15
Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation.
p-systems in local Noether lattices
E. W. Johnson
1994-01-01
Full Text Available In this paper we introduce the concept of a p-system in a local Noether lattice and obtain several characterizations of these elements. We first obtain a topological characterization and then a characterization in terms of the existence of a certain type of decreasing sequence of elements. In addition, p-systems are characterized in quotient lattices and completions.
Dark Solitons in FPU Lattice Chain
无
2007-01-01
Based on multiple scales method, we study the nonlinear properties of a new Fermi-Pasta-Ulam lattice model analytically. It is found that the lattice chain exhibits a novel nonlinear elementary excitation, i.e. a dark soliton.Moreover, the modulation depth of dark soliton is increasing as the anharmonic parameter increases.
An Application of Linear Algebra over Lattices
M. Hosseinyazdi
2008-03-01
Full Text Available In this paper, first we consider L n as a semimodule over a complete bounded distributive lattice L. Then we define the basic concepts of module theory for L n. After that, we proved many similar theorems in linear algebra for the space L n. An application of linear algebra over lattices for solving linear systems, was given
On Some Properties of PBZ*-Lattices
Giuntini, Roberto; Ledda, Antonio; Paoli, Francesco
2017-04-01
We continue the algebraic investigation of PBZ*-lattices, a notion introduced in Giuntini et al. (Stud. Logica 104, 1145-1177, 2016) in order to obtain insights into the structure of certain algebras of effects of a Hilbert space, lattice-ordered under the spectral ordering.
Lattice QCD simulations beyond the quenched approximation
Ukawa, A. (European Organization for Nuclear Research, Geneva (Switzerland). Theory Div.)
1989-07-01
Present status of lattice QCD simulations incorporating the effects of dynamical quarks is presented. After a brief review of the formalism of lattice QCD, the dynamical fermion algorithms in use today are described. Recent attempts at the hadron mass calculation are discussed in relation to the quenched results, and current understanding on the finite temperature behavior of QCD is summarized. (orig.).
Lattice Studies for hadron spectroscopy and interactions
Aoki, Sinya
2014-01-01
Recent progresses of lattice QCD studies for hadron spectroscopy and interactions are briefly reviewed. Some emphasis are given on a new proposal for a method, which enable us to calculate potentials between hadrons. As an example of the method, the extraction of nuclear potential in lattice QCD is discussed in detail.
Disorder solutions of lattice spin models
Batchelor, M. T.; van Leeuwen, J. M. J.
1989-01-01
It is shown that disorder solutions, which have been obtained by different methods, follow from a simple decimation method. The method is put in general form and new disorder solutions are constructed for the Blume-Emery-Griffiths model on a triangular lattice and for Potts and Ising models on square and fcc lattices.
Lattice Platonic Solids and their Ehrhart polynomial
Ionascu, Eugen J
2011-01-01
First, we calculate the Ehrhart polynomial associated to an arbitrary cube with integer coordinates for its vertices. Then, we use this result to derive relationships between the Ehrhart polynomials for regular lattice tetrahedrons and those for regular lattice octahedrons. These relations allow one to reduce the calculation of these polynomials to only one coefficient.
Resummation of Cactus Diagrams in Lattice QCD
Panagopoulos, H
1998-01-01
We show how to perform a resummation, to all orders in perturbation theory, of a certain class of gauge invariant diagrams in Lattice QCD. These diagrams are often largely responsible for lattice artifacts. Our resummation leads to an improved perturbative expansion. Applied to a number of cases of interest, this expansion yields results remarkably close to corresponding nonperturbative estimates.
Optical lattice clocks and frequency comparison
Katori, Hidetoshi; Takano, Tetsushi; Takamoto, Masao, E-mail: katori@amo.t.u-tokyo.ac.jp [Department of Applied Physics, University of Tokyo, Tokyo (Japan); CREST, Japan Science and Technology Agency, Saitama (Japan)
2011-01-10
We consider designs of optical lattice clocks in view of the quantum statistics, relevant atomic spins, and atom-lattice interactions. The first two issues lead to two optimal constructions for the clock: a one-dimensional (1D) optical lattice loaded with spin-polarized fermions and a 3D optical lattice loaded with bosons. By taking atomic multipolar interactions with the lattice fields into account, an 'atomic motion insensitive' wavelength is proposed to provide a precise definition of the 'magic wavelength'. We then present a frequency comparison of these two optical lattice clocks: spin-polarized fermionic {sup 87}Sr and bosonic {sup 88}Sr prepared in 1D and 3D optical lattices, respectively. Synchronous interrogations of these two optical lattice clocks by the same probe laser allowed canceling out its frequency noise as a common mode noise to achieve a relative stability of 3x10{sup -17} for an averaging time of {tau} = 350 s. The scheme, therefore, provides us with a powerful means to investigate intrinsic uncertainty of the clocks regardless of the probe laser stability. We discuss prospects of the synchronous operation of the clocks on the measurement of the geoid height difference and on the search of constancy of fundamental constants.
Marin, E.; Tomas, R.; /CERN; Bambade, P.; /Orsay, LAL; Okugi, T.; Tauchi, T.; Terunuma, N.; Urakawa, J.; /KEK, Tsukuba; Seryi, A.; /Oxford U., JAI; White, G.; Woodley, M.; /SLAC
2011-12-09
The current status for the ATF2 Nominal and Ultra-low {beta}* lattices are presented in this paper. New lattice designs have been obtained in order to minimise the impact of the last interpretation of multipole measurements that have been included into the model. However, the new ATF2 Ultra-low design is not able to recover the expected vertical beam size at the IP with the current magnet distribution. Therefore, different quadrupole sorting have been studied. A significant gain is evident for the ATF2 Ultra-low lattice when sorting the magnets according to the skew-sextupolar components. The ATF2 Nominal lattice is also expected to benefit from the new sorting. Tuning results of the new ATF2 Ultra-low lattice under realistic imperfections are also reported.
Crystalline Scaling Geometries from Vortex Lattices
Bao, Ning
2013-01-01
We study magnetic geometries with Lifshitz and/or hyperscaling violation exponents (both with a hard wall cutoff in the IR and a smooth black brane horizon) which have a complex scalar field which couples to the magnetic field. The complex scalar is unstable to the production of a vortex lattice in the IR. The lattice is a normalizable mode which is relevant (i.e. grows into the IR.) When one considers linearized backreaction of the lattice on the metric and gauge field, the metric forms a crystalline structure. We analyze the scaling of the free energy, thermodynamic entropy, and entanglement in the lattice phase and find that in the smeared limit, the leading order correction to thermodynamic properties due to the lattice has the scaling behavior of a theory with a hyperscaling violation exponent between 0 and 1, indicating a flow to an effectively lower-dimensional theory in the deep IR.
Effective Field Theories and Lattice QCD
Bernard, C
2015-01-01
I describe some of the many connections between lattice QCD and effective field theories, focusing in particular on chiral effective theory, and, to a lesser extent, Symanzik effective theory. I first discuss the ways in which effective theories have enabled and supported lattice QCD calculations. Particular attention is paid to the inclusion of discretization errors, for a variety of lattice QCD actions, into chiral effective theory. Several other examples of the usefulness of chiral perturbation theory, including the encoding of partial quenching and of twisted boundary conditions, are also described. In the second part of the talk, I turn to results from lattice QCD for the low energy constants of the two- and three-flavor chiral theories. I concentrate here on mesonic quantities, but the dependence of the nucleon mass on the pion mass is also discussed. Finally I describe some recent preliminary lattice QCD calculations by the MILC Collaboration relating to the three-flavor chiral limit.
Supersymmetry on a space-time lattice
Kaestner, Tobias
2008-10-28
In this thesis the WZ model in one and two dimensions has been thoroughly investigated. With the help of the Nicolai map it was possible to construct supersymmetrically improved lattice actions that preserve one of several supersymmetries. For the WZ model in one dimension SLAC fermions were utilized for the first time leading to a near-perfect elimination of lattice artifacts. In addition the lattice superpotential does not get modified which in two dimensions becomes important when further (discrete) symmetries of the continuum action are considered. For Wilson fermions two new improvements have been suggested and were shown to yield far better results than standard Wilson fermions concerning lattice artifacts. In the one-dimensional theory Ward Identities were studied.However, supersymmetry violations due to broken supersymmetry could only be detected at coarse lattices and very strong couplings. For the two-dimensional models a detailed analysis of supersymmetric improvement terms was given, both for Wilson and SLAC fermions. (orig.)
A lattice approach to spinorial quantum gravity
Renteln, Paul; Smolin, Lee
1989-01-01
A new lattice regularization of quantum general relativity based on Ashtekar's reformulation of Hamiltonian general relativity is presented. In this form, quantum states of the gravitational field are represented within the physical Hilbert space of a Kogut-Susskind lattice gauge theory. The gauge field of the theory is a complexified SU(2) connection which is the gravitational connection for left-handed spinor fields. The physical states of the gravitational field are those which are annihilated by additional constraints which correspond to the four constraints of general relativity. Lattice versions of these constraints are constructed. Those corresponding to the three-dimensional diffeomorphism generators move states associated with Wilson loops around on the lattice. The lattice Hamiltonian constraint has a simple form, and a correspondingly simple interpretation: it is an operator which cuts and joins Wilson loops at points of intersection.
A classification of 2-dim Lattice Theory
Kieburg, Mario; Zafeiropoulos, Savvas
2013-01-01
A unified classification and analysis is presented of two dimensional Dirac operators of QCD-like theories in the continuum as well as in a naive lattice discretization. Thereby we consider the quenched theory in the strong coupling limit. We do not only consider the case of a lattice which has an even number of lattice sites in both directions and is thus equivalent to the case of staggered fermions. We also study lattices with one or both directions with an odd parity to understand the general mechanism of changing the universality class via a discretization. Furthermore we identify the corresponding random matrix ensembles sharing the global symmetries of these QCD-like theories. Despite the Mermin-Wagner-Coleman theorem we find good agreement of lattice data with our random matrix predictions.
Lattice kinetic simulation of nonisothermal magnetohydrodynamics.
Chatterjee, Dipankar; Amiroudine, Sakir
2010-06-01
In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distribution functions through respective scalar kinetic equations and the magnetic field is governed by a vector distribution function through a vector kinetic equation. The distribution functions are only coupled via the macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice Boltzmann framework. A 9-bit two-dimensional (2D) lattice scheme is used for the numerical computation of the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation of Hartmann flow in a channel provides excellent agreement with corresponding analytical results.
Residuation Properties and Weakly Primary Elements in Lattice Modules
C. S. Manjarekar
2014-01-01
Full Text Available We obtain some elementary residuation properties in lattice modules and obtain a relation between a weakly primary element in a lattice module M and weakly prime element of a multiplicative lattice L.
On the Product and Factorization of Lattice Implication Algebras
秦克云; 宋振明; 等
1993-01-01
In this paper,the concepts of product and factorization of lattice implication algebra are proposed,the relation between lattice implication product algebra and its factors and some properties of lattice implication product algebras are discussed.
Manipulation and quantification of microtubule lattice integrity
Taylor A. Reid
2017-08-01
Full Text Available Microtubules are structural polymers that participate in a wide range of cellular functions. The addition and loss of tubulin subunits allows the microtubule to grow and shorten, as well as to develop and repair defects and gaps in its cylindrical lattice. These lattice defects act to modulate the interactions of microtubules with molecular motors and other microtubule-associated proteins. Therefore, tools to control and measure microtubule lattice structure will be invaluable for developing a quantitative understanding of how the structural state of the microtubule lattice may regulate its interactions with other proteins. In this work, we manipulated the lattice integrity of in vitro microtubules to create pools of microtubules with common nucleotide states, but with variations in structural states. We then developed a series of novel semi-automated analysis tools for both fluorescence and electron microscopy experiments to quantify the type and severity of alterations in microtubule lattice integrity. These techniques will enable new investigations that explore the role of microtubule lattice structure in interactions with microtubule-associated proteins.
On Decompositions of Matrices over Distributive Lattices
Yizhi Chen
2014-01-01
Full Text Available Let L be a distributive lattice and Mn,q (L(Mn(L, resp. the semigroup (semiring, resp. of n × q (n × n, resp. matrices over L. In this paper, we show that if there is a subdirect embedding from distributive lattice L to the direct product ∏i=1mLi of distributive lattices L1,L2, …,Lm, then there will be a corresponding subdirect embedding from the matrix semigroup Mn,q(L (semiring Mn(L, resp. to semigroup ∏i=1mMn,q(Li (semiring ∏i=1mMn(Li, resp.. Further, it is proved that a matrix over a distributive lattice can be decomposed into the sum of matrices over some of its special subchains. This generalizes and extends the decomposition theorems of matrices over finite distributive lattices, chain semirings, fuzzy semirings, and so forth. Finally, as some applications, we present a method to calculate the indices and periods of the matrices over a distributive lattice and characterize the structures of idempotent and nilpotent matrices over it. We translate the characterizations of idempotent and nilpotent matrices over a distributive lattice into the corresponding ones of the binary Boolean cases, which also generalize the corresponding structures of idempotent and nilpotent matrices over general Boolean algebras, chain semirings, fuzzy semirings, and so forth.
New Lattice Results for Parton Distributions
Alexandrou, Constantia; Constantinou, Martha; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian
2016-01-01
We provide a high statistics analysis of the $x$-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The $x$-dependence of the calculated PDFs resembles those of the phenomenological parameterizations, a feature that makes this approach promising despite the lack of a full renormalization program for them. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum.
Shock wave structure in a lattice gas
Broadwell, James E.; Han, Donghee
2007-05-01
The motion and structure of shock and expansion waves in a simple particle system, a lattice gas and cellular automaton, are determined in an exact computation. Shock wave solutions, also exact, of a continuum description, a model Boltzmann equation, are compared with the lattice results. The comparison demonstrates that, as proved by Caprino et al. ["A derivation of the Broadwell equation," Commun. Math. Phys. 135, 443 (1991)] only when the lattice processes are stochastic is the model Boltzmann description accurate. In the strongest shock wave, the velocity distribution function is the bimodal function proposed by Mott-Smith.
Multiphase lattice Boltzmann methods theory and application
Huang, Haibo; Lu, Xiyun
2015-01-01
Theory and Application of Multiphase Lattice Boltzmann Methods presents a comprehensive review of all popular multiphase Lattice Boltzmann Methods developed thus far and is aimed at researchers and practitioners within relevant Earth Science disciplines as well as Petroleum, Chemical, Mechanical and Geological Engineering. Clearly structured throughout, this book will be an invaluable reference on the current state of all popular multiphase Lattice Boltzmann Methods (LBMs). The advantages and disadvantages of each model are presented in an accessible manner to enable the reader to choose the
QCD Thermodynamics with an Improved Lattice Action
Bernard, C W; DeGrand, T A; Wingate, M; DeTar, C E; Gottlieb, S; Heller, U M; Rummukainen, K; Toussaint, D; Sugar, R L; Bernard, Claude; Hetrick, James E.; Grand, Thomas De; Wingate, Matthew; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Rummukainen, Kari; Toussaint, Doug; Sugar, Robert L.
1997-01-01
We have investigated QCD with two flavors of degenerate fermions using a Symanzik-improved lattice action for both the gauge and fermion actions. Our study focuses on the deconfinement transition on an $N_t=4$ lattice. Having located the thermal transition, we performed zero temperature simulations nearby in order to compute hadronic masses and the static quark potential. We find that the present action reduces lattice artifacts present in thermodynamics with the standard Wilson (gauge and fermion) actions. However, it does not bring studies with Wilson-type quarks to the same level as those using the Kogut--Susskind formulation.
Rare Kaon Decays on the Lattice
Isidori, Gino; Turchetti, P; Isidori, Gino; Martinelli, Guido; Turchetti, Paolo
2006-01-01
We show that long distance contributions to the rare decays K -> pi nu nu-bar and K -> pi l+ l- can be computed using lattice QCD. The proposed approach requires well established methods, successfully applied in the calculations of electromagnetic and semileptonic form factors. The extra power divergences, related to the use of weak four-fermion operators, can be eliminated using only the symmetries of the lattice action without ambiguities or complicated non-perturbative subtractions. We demonstrate that this is true even when a lattice action with explicit chiral symmetry breaking is employed. Our study opens the possibility of reducing the present uncertainty in the theoretical predictions for these decays.
A Lattice Study of the Glueball Spectrum
LIU Chuan
2001-01-01
Glueball spectrum is studied using an improved gluonic action on asymmetric lattices in the pure SU(3)gauge theory. The smallest spatial lattice spacing is about 0.08 fm which makes the extrapolation to the continuum limit more reliable. In particular, attention is paid to the scalar glueball mass which is known to have problems in the extrapolation. Converting our lattice results to physical units using the scale set by the static quark potential,we obtain the following results for the glueball masses: MG(0++) = 1730(90) MeV for the scalar glueball mass and MG(2++) = 2400(95) MeV for the tensor glueball.
Lattice gauge theories and Monte Carlo simulations
Rebbi, Claudio
1983-01-01
This volume is the most up-to-date review on Lattice Gauge Theories and Monte Carlo Simulations. It consists of two parts. Part one is an introductory lecture on the lattice gauge theories in general, Monte Carlo techniques and on the results to date. Part two consists of important original papers in this field. These selected reprints involve the following: Lattice Gauge Theories, General Formalism and Expansion Techniques, Monte Carlo Simulations. Phase Structures, Observables in Pure Gauge Theories, Systems with Bosonic Matter Fields, Simulation of Systems with Fermions.
Mining Complex Hydrobiological Data with Galois Lattices
Bertaux, Aurélie; Ber, Florence Le
2008-01-01
We have used Galois lattices for mining hydrobiological data. These data are about macrophytes, that are macroscopic plants living in water bodies. These plants are characterized by several biological traits, that own several modalities. Our aim is to cluster the plants according to their common traits and modalities and to find out the relations between traits. Galois lattices are efficient methods for such an aim, but apply on binary data. In this article, we detail a few approaches we used to transform complex hydrobiological data into binary data and compare the first results obtained thanks to Galois lattices.
Measurement Based Quantum Computation on Fractal Lattices
Michal Hajdušek
2010-06-01
Full Text Available In this article we extend on work which establishes an analology between one-way quantum computation and thermodynamics to see how the former can be performed on fractal lattices. We find fractals lattices of arbitrary dimension greater than one which do all act as good resources for one-way quantum computation, and sets of fractal lattices with dimension greater than one all of which do not. The difference is put down to other topological factors such as ramification and connectivity. This work adds confidence to the analogy and highlights new features to what we require for universal resources for one-way quantum computation.
Lattice distortion in disordered antiferromagnetic XY models
Li Peng-Fei; Cao Hai-Jing
2012-01-01
The behavior of lattice distortion in spin 1/2 antiferromagnetic XY models with random magnetic modulation is investigated with the consideration of spin-phonon coupling in the adiabatic limit.It is found that lattice distortion relies on the strength of the random modulation.For strong or weak enough spin-phonon couplings,the average lattice distortion may decrease or increase as the random modulation is strengthened.This may be the result of competition between the random magnetic modulation and the spin-phonon coupling.
How to Share a Lattice Trapdoor
Bendlin, Rikke; Peikert, Chris; Krehbiel, Sara
2013-01-01
delegation, which is used in lattice-based hierarchical IBE schemes. Our work therefore directly transfers all these systems to the threshold setting. Our protocols provide information-theoretic (i.e., statistical) security against adaptive corruptions in the UC framework, and they are robust against up to ℓ......We develop secure threshold protocols for two important operations in lattice cryptography, namely, generating a hard lattice Λ together with a "strong" trapdoor, and sampling from a discrete Gaussian distribution over a desired coset of Λ using the trapdoor. These are the central operations...
A Solvable Decorated Ising Lattice Model
无
2006-01-01
A decoratedlattice is suggested and the Ising model on it with three kinds of interactions K1, K2, and K3 is studied. Using an equivalent transformation, the square decorated Ising lattice is transformed into a regular square Ising lattice with nearest-neighbor, next-nearest-neighbor, and four-spin interactions, and the critical fixed point is found atK1 = 0.5769, K2 = -0.0671, and K3 = 0.3428, which determines the critical temperature of the system. It is also found that this system and the regular square Ising lattice, and the eight-vertex model belong to the same universality class.
Construction of Capacity Achieving Lattice Gaussian Codes
Alghamdi, Wael
2016-04-01
We propose a new approach to proving results regarding channel coding schemes based on construction-A lattices for the Additive White Gaussian Noise (AWGN) channel that yields new characterizations of the code construction parameters, i.e., the primes and dimensions of the codes, as functions of the block-length. The approach we take introduces an averaging argument that explicitly involves the considered parameters. This averaging argument is applied to a generalized Loeliger ensemble [1] to provide a more practical proof of the existence of AWGN-good lattices, and to characterize suitable parameters for the lattice Gaussian coding scheme proposed by Ling and Belfiore [3].
AN EQUIVALENT CONTINUUM METHOD OF LATTICE STRUCTURES
Fan Hualin; Yang Wei
2006-01-01
An equivalent continuum method is developed to analyze the effective stiffness of three-dimensional stretching dominated lattice materials. The strength and three-dimensional plastic yield surfaces are calculated for the equivalent continuum. A yielding model is formulated and compared with the results of other models. The bedding-in effect is considered to include the compliance of the lattice joints. The predicted stiffness and strength are in good agreement with the experimental data, validating the present model in the prediction of the mechanical properties of stretching dominated lattice structures.
Measures on coallocation and normal lattices
Jack-Kang Chan
1992-01-01
Full Text Available Let ℒ1 and ℒ2 be lattices of subsets of a nonempty set X. Suppose ℒ2 coallocates ℒ1 and ℒ1 is a subset of ℒ2. We show that any ℒ1-regular finitely additive measure on the algebra generated by ℒ1 can be uniquely extended to an ℒ2-regular measure on the algebra generated by ℒ2. The case when ℒ1 is not necessary contained in ℒ2, as well as the measure enlargement problem are considered. Furthermore, some discussions on normal lattices and separation of lattices are also given.
Investigating jet quenching on the lattice
Panero, Marco; Schäfer, Andreas
2014-01-01
Due to the dynamical, real-time, nature of the phenomenon, the study of jet quenching via lattice QCD simulations is not straightforward. In this contribution, however, we show how one can extract information about the momentum broadening of a hard parton moving in the quark-gluon plasma, from lattice calculations. After discussing the basic idea (originally proposed by Caron-Huot), we present a recent study, in which we estimated the jet quenching parameter non-perturbatively, from the lattice evaluation of a particular set of gauge-invariant operators.
Electronic properties of graphene antidot lattices
Fürst, Joachim Alexander; Pedersen, Jesper Goor; Flindt, C.
2009-01-01
Graphene antidot lattices constitute a novel class of nano-engineered graphene devices with controllable electronic and optical properties. An antidot lattice consists of a periodic array of holes that causes a band gap to open up around the Fermi level, turning graphene from a semimetal...... into a semiconductor. We calculate the electronic band structure of graphene antidot lattices using three numerical approaches with different levels of computational complexity, efficiency and accuracy. Fast finite-element solutions of the Dirac equation capture qualitative features of the band structure, while full...
The eta' meson from lattice QCD
Jansen, K; Dollan, Ralph
2008-01-01
We study the flavour singlet pseudoscalar mesons from first principles using lattice QCD. With N_f=2 flavours of light quark, this is the so-called eta_2 meson and we discuss the phenomenological status of this. Using maximally twisted-mass lattice QCD, we extract the mass of the eta_2 meson at two values of the lattice spacing for lighter quarks than previously discussed in the literature. We are able to estimate the mass value in the limit of light quarks with their physical masses.
Lattice surgery translation for quantum computation
Herr, Daniel; Nori, Franco; Devitt, Simon J.
2017-01-01
In this paper we outline a method for a compiler to translate any non fault tolerant quantum circuit to the geometric representation of the lattice surgery error-correcting code using inherent merge and split operations. Since the efficiency of state distillation procedures has not yet been investigated in the lattice surgery model, their translation is given as an example using the proposed method. The resource requirements seem comparable or better to the defect-based state distillation process, but modularity and eventual implementability allow the lattice surgery model to be an interesting alternative to braiding.
Spontaneous supersymmetry breaking on the lattice
Wenger, Urs [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2013-07-01
We discuss various strategies for regularising supersymmetric quantum field theories on a space-time lattice. In general, simulations of lattice models with spontaneously broken supersymmetry suffer from a fermion sign problem related to the vanishing of the Witten index. We discuss a novel approach which evades this problem in low dimensions by formulating the path integral on the lattice in terms of fermion loops. Then we present exact results on the spectrum and the Witten index for N=2 supersymmetric quantum mechanics and results from simulations of the spontaneously broken N=1 Wess-Zumino model.
Optical lattice on an atom chip
Gallego, D.; Hofferberth, S.; Schumm, Thorsten
2009-01-01
Optical dipole traps and atom chips are two very powerful tools for the quantum manipulation of neutral atoms. We demonstrate that both methods can be combined by creating an optical lattice potential on an atom chip. A red-detuned laser beam is retroreflected using the atom chip surface as a high......-quality mirror, generating a vertical array of purely optical oblate traps. We transfer thermal atoms from the chip into the lattice and observe cooling into the two-dimensional regime. Using a chip-generated Bose-Einstein condensate, we demonstrate coherent Bloch oscillations in the lattice....
Nuclear reactions from lattice QCD
Briceño, Raúl A.; Davoudi, Zohreh; Luu, Thomas C.
2015-02-01
One of the overarching goals of nuclear physics is to rigorously compute properties of hadronic systems directly from the fundamental theory of strong interactions, quantum chromodynamics (QCD). In particular, the hope is to perform reliable calculations of nuclear reactions which will impact our understanding of environments that occur during big bang nucleosynthesis, the evolution of stars and supernovae, and within nuclear reactors and high energy/density facilities. Such calculations, being truly ab initio, would include all two-nucleon and three-nucleon (and higher) interactions in a consistent manner. Currently, lattice quantum chromodynamics (LQCD) provides the only reliable option for performing calculations of some of the low-energy hadronic observables. With the aim of bridging the gap between LQCD and nuclear many-body physics, the Institute for Nuclear Theory held a workshop on Nuclear Reactions from LQCD on March 2013. In this review article, we report on the topics discussed in this workshop and the path planned to move forward in the upcoming years.
Stassis, C.; Zaretsky, J.; Misemer, D. K.;;
1983-01-01
to the propagation of elastic waves. The frequencies of the T1[ξξ0] branch for ξ between approximately 0.5 and 0.8 are slightly above the velocity-of-sound line determined from the low-frequency measurements. Since a similar effect has been observed in FCC Yb, it is natural to assume that the anomalous dispersion......A large single crystal of FCC Ca was grown and was used to study the lattice dynamics of this divalent metal by coherent inelastic neutron scattering. The phonon dispersion curves were measured, at room temperature, along the [ξ00], [ξξ0], [ξξξ], and [0ξ1] symmetry directions. The dispersion curves...... bear a striking resemblance to those of FCC Yb, which is also a divalent metal with an electronic band structure similar to that of Ca. In particular, the shear moduli c44 and (c11-c 12)/2 differ by a factor of 3.4, which implies that FCC Ca (like FCC Yb) is very anisotropic with regard...
Infinitesimal diffeomorfisms on the lattice
CERN. Geneva
2015-01-01
The energy-momentum tensor and local translation Ward identities constitute the essential toolkit to probe the response of a QFT to an infinitesimal change of geometry. This is relevant in a number of contexts. For instance in order to get the thermodynamical equation of state, one wants to study the response of a Euclidean QFT in a finite box to a change in the size of the box. The lattice formulation of QFTs is a prime tool to study their dynamics beyond perturbation theory. However Poincaré invariance is explicitly broken, and is supposed to be recovered only in the continuum limit. Approximate local Ward identities for translations can be defined, by they require some care for two reasons: 1) the energy-momentum tensor needs to be properly defined through a renormalization procedure; 2) the action of infinitesimal local translations (i.e. infinitesimal diffeomorfisms) is ill-defined on local observables. In this talk I will review the issues related to the renormalization of the energy-momentum tensor ...
Dynamical Gauge Fields on Optical Lattices: A Lattice Gauge Theorist Point of View
Meurice, Yannick
2011-01-01
Dynamical gauge fields are essential to capture the short and large distance behavior of gauge theories (confinement, mass gap, chiral symmetry breaking, asymptotic freedom). I propose two possible strategies to use optical lattices to mimic simulations performed in lattice gauge theory. I discuss how new developments in optical lattices could be used to generate local invariance and link composite operators with adjoint quantum numbers that could play a role similar to the link variables used in lattice gauge theory. This is a slightly expanded version of a poster presented at the KITP Conference: Frontiers of Ultracold Atoms and Molecules (Oct 11-15, 2010) that I plan to turn into a more comprehensive tutorial that could be used by members of the optical lattice and lattice gauge theory communities. Suggestions are welcome.
Analysis of quantum spin models on hyperbolic lattices and Bethe lattice
Daniška, Michal; Gendiar, Andrej
2016-04-01
The quantum XY, Heisenberg, and transverse field Ising models on hyperbolic lattices are studied by means of the tensor product variational formulation algorithm. The lattices are constructed by tessellation of congruent polygons with coordination number equal to four. The calculated ground-state energies of the XY and Heisenberg models and the phase transition magnetic field of the Ising model on the series of lattices are used to estimate the corresponding quantities of the respective models on the Bethe lattice. The hyperbolic lattice geometry induces mean-field-like behavior of the models. The ambition to obtain results on the non-Euclidean lattice geometries has been motivated by theoretical studies of the anti-de Sitter/conformal field theory correspondence.
Ultracold Quantum Gases and Lattice Systems: Quantum Simulation of Lattice Gauge Theories
Wiese, U -J
2013-01-01
Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, Abelian U(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev's toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is non-perturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should al...
Bach, Matthias; Pinke, Christopher; Schäfer, Christian; Zeidlewicz, Lars
2011-01-01
We report on our implementation of LatticeQCD applications using OpenCL. We focus on the general concept and on distributing different parts on hybrid systems, consisting of both CPUs (Central Processing Units) and GPUs (Graphic Processing Units).
Topological spin models in Rydberg lattices
Kiffner, Martin; Jaksch, Dieter
2016-01-01
We show that resonant dipole-dipole interactions between Rydberg atoms in a triangular lattice can give rise to artificial magnetic fields for spin excitations. We consider the coherent dipole-dipole coupling between $np$ and $ns$ Rydberg states and derive an effective spin-1/2 Hamiltonian for the $np$ excitations. By breaking time-reversal symmetry via external fields we engineer complex hopping amplitudes for transitions between two rectangular sub-lattices. The phase of these hopping amplitudes depends on the direction of the hop. This gives rise to a staggered, artificial magnetic field which induces non-trivial topological effects. We calculate the single-particle band structure and investigate its Chern numbers as a function of the lattice parameters and the detuning between the two sub-lattices. We identify extended parameter regimes where the Chern number of the lowest band is $C=1$ or $C=2$.
Lattice contraction in photochromic yttrium hydride
Maehlen, Jan Petter, E-mail: jepe@ife.no; Mongstad, Trygve T.; You, Chang Chuan; Karazhanov, Smagul
2013-12-15
Highlights: •Photochromic yttrium hydride films (YH:O) were prepared by reactive sputtering. •Black and transparent YH:O films were studied by time-resolved synchrotron XRD. •Both YH:O samples showed a lattice contraction upon illumination. •Also exposure to the X-ray beam itself results in a lattice contraction. -- Abstract: A strong photochromic effect was recently discovered in thin films of oxygen-containing yttrium hydride taking place at room temperature and reacting to ultraviolet and visible light. In this paper, we report on a lattice contraction upon illumination observed for thin-film samples of photochromic yttrium hydride, recorded by time-resolved X-ray diffraction using synchrotron radiation. The time dependence of the lattice contraction is consistent with the observed photochromic response of the samples.
Colloquium: Physics of optical lattice clocks
Derevianko, Andrei
2010-01-01
Recently invented and demonstrated, optical lattice clocks hold great promise for improving the precision of modern timekeeping. These clocks aim at the 10^-18 fractional accuracy, which translates into a clock that would neither lose or gain a fraction of a second over an estimated age of the Universe. In these clocks, millions of atoms are trapped and interrogated simultaneously, dramatically improving clock stability. Here we discuss the principles of operation of these clocks and, in particular, a novel concept of "magic" trapping of atoms in optical lattices. We also highlight recently proposed microwave lattice clocks and several applications that employ the optical lattice clocks as a platform for precision measurements and quantum information processing.
Optical vortex array in spatially varying lattice
Kapoor, Amit; Senthilkumaran, P; Joseph, Joby
2015-01-01
We present an experimental method based on a modified multiple beam interference approach to generate an optical vortex array arranged in a spatially varying lattice. This method involves two steps which are: numerical synthesis of a consistent phase mask by using two-dimensional integrated phase gradient calculations and experimental implementation of produced phase mask by utilizing a phase only spatial light modulator in an optical 4f Fourier filtering setup. This method enables an independent variation of the orientation and period of the vortex lattice. As working examples, we provide the experimental demonstration of various spatially variant optical vortex lattices. We further confirm the existence of optical vortices by formation of fork fringes. Such lattices may find applications in size dependent trapping, sorting, manipulation and photonic crystals.
Quantum Finite Elements for Lattice Field Theory
Brower, Richard C; Gasbarro, Andrew; Raben, Timothy; Tan, Chung-I; Weinberg, Evan
2016-01-01
Viable non-perturbative methods for lattice quantum field theories on curved manifolds are difficult. By adapting features from the traditional finite element methods (FEM) and Regge Calculus, a new simplicial lattice Quantum Finite Element (QFE) Lagrangian is constructed for fields on a smooth Riemann manifold. To reach the continuum limit additional counter terms must be constructed to cancel the ultraviolet distortions. This is tested by the comparison of phi 4-th theory at the Wilson-Fisher fixed point with the exact Ising (c =1/2) CFT on a 2D Riemann sphere. The Dirac equation is also constructed on a simplicial lattice approximation to a Riemann manifold by introducing a lattice vierbein and spin connection on each link. Convergence of the QFE Dirac equation is tested against the exact solution for the 2D Riemann sphere. Future directions and applications to Conformal Field Theories are suggested.
Local gauge symmetry on optical lattices?
Liu, Yuzhi; Tsai, Shan-Wen
2012-01-01
The versatile technology of cold atoms confined in optical lattices allows the creation of a vast number of lattice geometries and interactions, providing a promising platform for emulating various lattice models. This opens the possibility of letting nature take care of sign problems and real time evolution in carefully prepared situations. Up to now, experimentalists have succeeded to implement several types of Hubbard models considered by condensed matter theorists. In this proceeding, we discuss the possibility of extending this effort to lattice gauge theory. We report recent efforts to establish the strong coupling equivalence between the Fermi Hubbard model and SU(2) pure gauge theory in 2+1 dimensions by standard determinantal methods developed by Robert Sugar and collaborators. We discuss the possibility of using dipolar molecules and external fields to build models where the equivalence holds beyond the leading order in the strong coupling expansion.
Topological phase transitions in superradiance lattices
Wang, Da-Wei; Yuan, Luqi; Liu, Ren-Bao; Zhu, Shi-Yao
2015-01-01
The discovery of the quantum Hall effect (QHE) reveals a new class of matter phases, topological insulators (TI's), which have been extensively studied in solid-state materials and recently in photonic structures, time-periodic systems and optical lattices of cold atoms. All these topological systems are lattices in real space. Our recent study shows that Scully's timed Dicke states (TDS) can form a superradiance lattice (SL) in momentum space. Here we report the discovery of topological phase transitions in a two-dimensional SL in electromagnetically induced transparency (EIT). By periodically modulating the three EIT coupling fields, we can create a Haldane model with in-situ tunable topological properties. The Chern numbers of the energy bands and hence the topological properties of the SL manifest themselves in the contrast between diffraction signals emitted by superradiant TDS. The topological superradiance lattices (TSL) provide a controllable platform for simulating exotic phenomena in condensed matte...
Breatherlike impurity modes in discrete nonlinear lattices
Hennig, D.; Rasmussen, Kim; Tsironis, G. P.
1995-01-01
We investigate the properties of a disordered generalized discrete nonlinear Schrodinger equation, containing both diagonal and nondiagonal nonlinear terms. The equation models a Linear host lattice doped with nonlinear impurities. We find different types of impurity states that form itinerant...
Relational Representations of Strongly Algebraic Lattices
XU Guang-hong; RAO San-ping
2012-01-01
In this paper,we introduce and investigate the strongly regular relation.Then we give the relational representations and an intrinsic characterization of strongly algebraic lattices via mapping relation and strongly regular relation.
Lattice Regenerative Cooling Methods (LRCM) Project
National Aeronautics and Space Administration — ORBITEC proposes to develop and demonstrate a novel cooling concept called Lattice Regenerative Cooling Methods (LRCM) for future high thrust in-space propulsion...
Topological Representations of Distributive Hypercontinuous Lattices
Xiaoquan XU; Jinbo YANG
2009-01-01
The concept of locally strong compactness on domains is generalized to general topological spaces.It is proved that for each distributive hypercontinuous lattice L,the space SpecL of nonunit prime elements endowed with the hull-kernel topology is locally strongly compact,and for each locally strongly compact space X,the complete lattice of all open sets (9(X) is distributive hypercontinuous.For the case of distributive hyperalgebraic lattices,the similar result is given.For a sober space X,it is shown that there is an order reversing isomorphism between the set of upper-open filters of the lattice (.9(X) of open subsets of X and the set of strongly compact saturated subsets of X,which is analogous to the well-known Hofmann-Mislove Theorem.
Isospin Breaking Effects on the Lattice
Tantalo, Nazario
2013-01-01
Isospin symmetry is not exact and the corrections to the isosymmetric limit are, in general, at the percent level. For gold plated quantities, such as pseudoscalar meson masses or the kaon leptonic and semileptonic decay rates, these effects are of the same order of magnitude of the errors quoted in nowadays lattice calculations and cannot be neglected any longer. In this talk I discuss the methods that have been developed in the last few years to calculate isospin breaking corrections by starting from first principles lattice simulations. In particular, I discuss how to perform a combined QCD+QED lattice simulation and a renormalization prescription to be used in order to separate QCD from QED isospin breaking effects. A brief review of recent lattice results of isospin breaking effects on the hadron spectrum is also included.
Understanding Parton Distributions from Lattice QCD
Renner, Dru B.
2005-01-01
I examine the past lattice QCD calculations of three representative observables, the transverse quark distribution, momentum fraction, and axial charge, and emphasize the prospects for not only quantitative comparison with experiment but also qualitative understanding of QCD.
Fractional Bloch oscillations in photonic lattices
Corrielli, Giacomo; Della Valle, Giuseppe; Longhi, Stefano; Osellame, Roberto; 10.1038/ncomms2578
2013-01-01
Bloch oscillations, the oscillatory motion of a quantum particle in a periodic potential, are one of the most fascinating effects of coherent quantum transport. Originally studied in the context of electrons in crystals, Bloch oscillations manifest the wave nature of matter and are found in a wide variety of different physical systems. Here we report on the first experimental observation of fractional Bloch oscillations, using a photonic lattice as a model system of a two-particle extended Bose-Hubbard Hamiltonian. In our photonic simulator, the dynamics of two correlated particles hopping on a one-dimensional lattice is mapped into the motion of a single particle in a two-dimensional lattice with engineered defects and mimicked by light transport in a square waveguide lattice with a bent axis.
Fractional Bloch oscillations in photonic lattices.
Corrielli, Giacomo; Crespi, Andrea; Della Valle, Giuseppe; Longhi, Stefano; Osellame, Roberto
2013-01-01
Bloch oscillations, the oscillatory motion of a quantum particle in a periodic potential, are one of the most fascinating effects of coherent quantum transport. Originally studied in the context of electrons in crystals, Bloch oscillations manifest the wave nature of matter and are found in a wide variety of different physical systems. Here we report on the first experimental observation of fractional Bloch oscillations, using a photonic lattice as a model system of a two-particle extended Bose-Hubbard Hamiltonian. In our photonic simulator, the dynamics of two correlated particles hopping on a one-dimensional lattice is mapped into the motion of a single particle in a two-dimensional lattice with engineered defects and mimicked by light transport in a square waveguide lattice with a bent axis.
Neutron scattering from vortex lattices in superconductors
Huxley, A. [CEA Centre d' Etudes de Grenoble, 38 (France). Dept. de Recherche Fondamentale sur la Matiere Condensee
2002-07-01
In this chapter we concentrate on the most directly observable quality of a flux-line lattice, namely its geometry and orientation, touching on other aspects only in so much as they are relevant to this discussion. (orig.)
Commensurability effects in holographic homogeneous lattices
Andrade, Tomas
2015-01-01
An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as "homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to correctly describe momentum relaxation and hence (finite) DC conductivities. However, it is not clear whether they are able to capture other lattice effects which are of interest in condensed matter. In this paper we investigate this question focusing our attention on the phenomenon of commensurability, which arises when the lattice scale is tuned to be equal to (an integer multiple of) another momentum scale in the system. We do so by studying the formation of spatially modulated phases in various models of homogeneous ...
Relational Lattice Foundation For Algebraic Logic
Tropashko, Vadim
2009-01-01
Relational Lattice is a succinct mathematical model for Relational Algebra. It reduces the set of six classic relational algebra operators to two: natural join and inner union. In this paper we push relational lattice theory in two directions. First, we uncover a pair of complementary lattice operators, and organize the model into a bilattice of four operations and four distinguished constants. We take a notice a peculiar way bilattice symmetry is broken. Then, we give axiomatic introduction of unary negation operation and prove several laws, including double negation and De Morgan. Next we reduce the model back to two basic binary operations and twelve axioms, and exhibit a convincing argument that the resulting system is complete in model-theoretic sense. The final part of the paper casts relational lattice perspective onto database dependency theory.
Eight light flavors on large lattice volumes
Schaich, David
2013-01-01
I present first results from large-scale lattice investigations of SU(3) gauge theory with eight light flavors in the fundamental representation. Using leadership computing resources at Argonne, we are generating gauge configurations with lattice volumes up to $64^3\\times128$ at relatively strong coupling, in an attempt to access the chiral regime. We use nHYP-improved staggered fermions, carefully monitoring finite-volume effects and other systematics. Here I focus on analyses of the light hadron spectrum and chiral condensate, measured on lattice volumes up to $48^3\\times96$ with fermion masses as light as m=0.004 in lattice units. We find no clear indication of spontaneous chiral symmetry breaking in these observables. I discuss the implications of these initial results, and prospects for further physics projects employing these ensembles of gauge configurations.
Lattice thermal conductivity evaluated using elastic properties
Jia, Tiantian; Chen, Gang; Zhang, Yongsheng
2017-04-01
Lattice thermal conductivity is one of the most important thermoelectric parameters in determining the energy conversion efficiency of thermoelectric materials. However, the lattice thermal conductivity evaluation requires time-consuming first-principles (quasi)phonon calculations, which limits seeking high-performance thermoelectric materials through high-throughput computations. Here, we establish a methodology to determine the Debye temperature Θ , Grüneisen parameter γ , and lattice thermal conductivity κ using computationally feasible elastic properties (the bulk and shear moduli). For 39 compounds with three different prototypes (the cubic isotropic rocksalt and zinc blende, and the noncubic anisotropic wurtzite), the theoretically calculated Θ ,γ , and κ are in reasonable agreement with those determined using (quasi)harmonic phonon calculations or experimental measurements. Our results show that the methodology is an efficient tool to predict the anharmonicity and the lattice thermal conductivity.
Ground-state phase diagram of the Kondo lattice model on triangular-to-kagome lattices
Akagi, Yutaka; Motome, Yukitoshi
2012-01-01
We investigate the ground-state phase diagram of the Kondo lattice model with classical localized spins on triangular-to-kagome lattices by using a variational calculation. We identify the parameter regions where a four-sublattice noncoplanar order is stable with a finite spin scalar chirality while changing the lattice structure from triangular to kagome continuously. Although the noncoplanar spin states appear in a wide range of parameters, the spin configurations on the kagome network beco...
Topological Charge of Lattice Abelian Gauge Theory
Fujiwara, T; Wu, K
2001-01-01
Configuration space of abelian gauge theory on a periodic lattice becomes topologically disconnected by excising exceptional gauge field configurations. It is possible to define a U(1) bundle from the nonexceptional link variables by a smooth interpolation of the transition functions. The lattice analogue of Chern character obtained by a cohomological technique based on the noncommutative differential calculus is shown to give a topological charge related to the topological winding number of the U(1) bundle.
New Noise Subtraction Methods in Lattice QCD
Baral, Suman; Morgan, Ronald B
2016-01-01
Noise subtraction techniques can help reduce the statistical uncertainty in the extraction of hard to detect signals. We describe new noise subtraction methods in Lattice QCD which apply to disconnected diagram evaluations. Some of the noise suppression techniques include polynomial quark matrix methods, eigenspectrum deflation methods, and combination methods. Our most promising technique combines polynomial and Hermitian deflation subtraction methods. The overall goal is to improve the efficiency of Lattice QCD noise method algorithms.
Lattice Radial Quantization: 3D Ising
Brower, Richard; Neuberger, Herbert
2012-01-01
Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using this method, we obtain the preliminary estimate eta=0.034(10).
Lattice Model for water-solute mixtures
Furlan, A. P.; Almarza, N. G.; M. C. Barbosa
2016-01-01
A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction solute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We have studied three set of parameters, resulting on, hydrophilic, inert and hydrophobic interactions. Extensive Monte Carlo simulations were carried out and the behavior of pure components and the excess proper...
Lattice isomorphisms of bisimple monogenic orthodox semigroups
Goberstein, Simon M
2011-01-01
Using the classification and description of the structure of bisimple monogenic orthodox semigroups obtained in \\cite{key10}, we prove that every bisimple orthodox semigroup generated by a pair of mutually inverse elements of infinite order is strongly determined by the lattice of its subsemigroups in the class of all semigroups. This theorem substantially extends an earlier result of \\cite{key25} stating that the bicyclic semigroup is strongly lattice determined.
Lattice Boltzmann approach for complex nonequilibrium flows.
Montessori, A; Prestininzi, P; La Rocca, M; Succi, S
2015-10-01
We present a lattice Boltzmann realization of Grad's extended hydrodynamic approach to nonequilibrium flows. This is achieved by using higher-order isotropic lattices coupled with a higher-order regularization procedure. The method is assessed for flow across parallel plates and three-dimensional flows in porous media, showing excellent agreement of the mass flow with analytical and numerical solutions of the Boltzmann equation across the full range of Knudsen numbers, from the hydrodynamic regime to ballistic motion.
The deconfinement transition on coarse lattices
Bliss, D W; Lepage, G P
1996-01-01
We compute the critical temperature T_c for the deconfinement transition of pure QCD on coarse lattices, with N_t = 2, 3, 4, and lattice spacings from .33 fm to .15 fm. We employ a perturbatively improved gluon action designed to remove order a^2 and \\alpha_s a^2 errors. We find that T_c in units of the charmonium 1P--1S splitting and the torelon mass is independent of a to within approximately 5\\%.
A Lattice Spanning-Tree Entropy Function
Glasser, ML; Lamb, George
2005-01-01
The function $$W(aq,b)=\\int\\int_0^{2\\pi}\\ln[1-a\\cos x-b\\cos y-(1-a-b)\\cos(x+y)]dxdy$$ which expresses the spanning-tree entropy for various two dimensional lattices, for example, is evaluated directly in terms of standard functions. It is applied to derive several limiting values of the triangular lattice Green function.
Commensurability effects in holographic homogeneous lattices
Andrade, Tomas; Krikun, Alexander
2016-01-01
An interesting application of the gauge/gravity duality to condensed matter physics is the description of a lattice via breaking translational invariance on the gravity side. By making use of global symmetries, it is possible to do so without scarifying homogeneity of the pertinent bulk solutions, which we thus term as "homogeneous holographic lattices." Due to their technical simplicity, these configurations have received a great deal of attention in the last few years and have been shown to...
Perfect Lattice Actions for Staggered Fermions
Bietenholz, W; Chandrasekharan, S; Wiese, U J
1996-01-01
We construct a perfect lattice action for staggered fermions by blocking from the continuum. The locality, spectrum and pressure of such perfect staggered fermions are discussed. We also derive a consistent fixed point action for free gauge fields and discuss its locality as well as the resulting static quark-antiquark potential. This provides a basis for the construction of (classically) perfect lattice actions for QCD using staggered fermions.
Bloch oscillations in optical dissipative lattices.
Efremidis, Nikolaos K; Christodoulides, Demetrios N
2004-11-01
We show that Bloch oscillations are possible in dissipative optical waveguide lattices with a linearly varying propagation constant. These oscillations occur in spite of the fact that the Bloch wave packet experiences coupling gain and (or) loss. Experimentally, this process can be observed in different settings, such as in laser arrays and lattices of semiconductor optical amplifiers. In addition, we demonstrate that these systems can suppress instabilities arising from preferential mode noise growth.
Lattice QCD and the Jefferson Laboratory Program
Jozef Dudek, Robert Edwards, David Richards, Konstantinos Orginos
2011-06-01
Lattice gauge theory provides our only means of performing \\textit{ab initio} calculations in the non-perturbative regime. It has thus become an increasing important component of the Jefferson Laboratory physics program. In this paper, we describe the contributions of lattice QCD to our understanding of hadronic and nuclear physics, focusing on the structure of hadrons, the calculation of the spectrum and properties of resonances, and finally on deriving an understanding of the QCD origin of nuclear forces.
The Optical Potential on the Lattice
Agadjanov, Dimitri; Mai, Maxim; Meißner, Ulf-G; Rusetsky, Akaki
2016-01-01
The extraction of hadron-hadron scattering parameters from lattice data by using the L\\"uscher approach becomes increasingly complicated in the presence of inelastic channels. We propose a method for the direct extraction of the complex hadron-hadron optical potential on the lattice, which does not require the use of the multi-channel L\\"uscher formalism. Moreover, this method is applicable without modifications if some inelastic channels contain three or more particles.
Landau gauge gluon vertices from Lattice QCD
Duarte, Anthony G; Silva, Paulo J
2016-01-01
In lattice QCD the computation of one-particle irreducible (1PI) Green's functions with a large number (> 2) of legs is a challenging task. Besides tuning the lattice spacing and volume to reduce finite size effects, the problems associated with the estimation of higher order moments via Monte Carlo methods and the extraction of 1PI from complete Green's functions are limitations of the method. Herein, we address these problems revisiting the calculation of the three gluon 1PI Green's function.
Concentration Transitions on the Crystalline Lattices
N.A. Gorenko
2014-07-01
Full Text Available Results of numerical modeling of dilute 2D and 3D crystalline lattices are presented. The percolation thresholds for face-centered cubic (fcc, body-centered cubic (bcc and the simple cubic (sc lattices for the first, second and third coordination spheres are obtained by means of Monte Carlo (MC method. It is shown, that the mean value of the percolation cluster density has a minimum value at the percolation threshold.
Lattice quantum chromodynamics with approximately chiral fermions
Hierl, Dieter
2008-05-15
In this work we present Lattice QCD results obtained by approximately chiral fermions. We use the CI fermions in the quenched approximation to investigate the excited baryon spectrum and to search for the {theta}{sup +} pentaquark on the lattice. Furthermore we developed an algorithm for dynamical simulations using the FP action. Using FP fermions we calculate some LECs of chiral perturbation theory applying the epsilon expansion. (orig.)
Legendre transformations on the triangular lattice
Adler, V E
1998-01-01
The main purpose of the paper is to demonstrate that condition of invariance with respect to the Legendre transformations allows effectively isolate the class of integrable difference equations on the triangular lattice, which can be considered as discrete analogues of relativistic Toda type lattices. Some of obtained equations are new, up to the author knowledge. As an example, one of them is studied in more details, in particular, its higher continuous symmetries and zero curvature representation are found.
Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice
Aoyama, Kazushi; Kawamura, Hikaru
2016-06-01
Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2 ,1/2 ,1/2 ) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.
FAN Hong-Yi; LIN Jing-Xian
2001-01-01
In dealing with the square lattice model,we replace the traditionally needed Born-Von Karmann periodic boundary condition with additional Hamiltonian terms to make up a ring lattice.In doing so,the lattice Green's function of an infinite square lattice in the second nearest-neighbour interaction approximation can be derived by means of the matrix Green's function method.It is shown that the density of states may change when the second nearest-neighbour interaction is turned on.``
Spin-Lattice-Coupled Order in Heisenberg Antiferromagnets on the Pyrochlore Lattice.
Aoyama, Kazushi; Kawamura, Hikaru
2016-06-24
Effects of local lattice distortions on the spin ordering are investigated for the antiferromagnetic classical Heisenberg model on the pyrochlore lattice. It is found by Monte Carlo simulations that the spin-lattice coupling (SLC) originating from site phonons induces a first-order transition into two different types of collinear magnetic ordered states. The state realized at the stronger SLC is cubic symmetric characterized by the magnetic (1/2,1/2,1/2) Bragg peaks, while that at the weaker SLC is tetragonal symmetric characterized by the (1,1,0) ones, each accompanied by the commensurate local lattice distortions. Experimental implications to chromium spinels are discussed.
Lattice calculation of nonleptonic charm decays
Simone, J.N.
1991-11-01
The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order G{sub f} in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D {yields} K{pi}, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin {1/2} channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation.
Lattice calculation of nonleptonic charm decays
Simone, James Nicholas [Univ. of California, Los Angeles, CA (United States)
1991-11-01
The decays of charmed mesons into two body nonleptonic final states are investigated. Weak interaction amplitudes of interest in these decays are extracted from lattice four-point correlation functions using a effective weak Hamiltonian including effects to order G_{f } in the weak interactions yet containing effects to all orders in the strong interactions. The lattice calculation allows a quantitative examination of non-spectator processes in charm decays helping to elucidate the role of effects such as color coherence, final state interactions and the importance of the so called weak annihilation process. For D → Kπ, we find that the non-spectator weak annihilation diagram is not small, and we interpret this as evidence for large final state interactions. Moreover, there is indications of a resonance in the isospin 1/2 channel to which the weak annihilation process contributes exclusively. Findings from the lattice calculation are compared to results from the continuum vacuum saturation approximation and amplitudes are examined within the framework of the 1/N expansion. Factorization and the vacuum saturation approximation are tested for lattice amplitudes by comparing amplitudes extracted from lattice four-point functions with the same amplitude extracted from products of two-point and three-point lattice correlation functions arising out of factorization and vacuum saturation.
Lattice Based Tools in Cryptanalysis for Public Key Cryptography
R.Santosh Kumar
2012-03-01
Full Text Available Lattice reduction is a powerful concept for solving diverse problems involving point lattices. Latticereduction has been successfully utilizing in Number Theory, Linear algebra and Cryptology. Not only the existence of lattice based cryptosystems of hard in nature, but also has vulnerabilities by lattice reduction techniques. In this survey paper, we are focusing on point lattices and then describing an introduction to the theoretical and practical aspects of lattice reduction. Finally, we describe the applications of lattice reduction in Number theory, Linear algebra
The Spectrum and Laplacian Spectrum of the Dice Lattice
Li, Shuli; Yan, Weigen; Tian, Tao
2016-07-01
The dice lattice is the dual lattice of kagomé lattice. Many physical properties on the dice lattice have been studied by physicists, such as Ising model, Glassy dynamics of Josephson arrays, and Lattice Green's function. In this paper, we derive the spectrum and Laplacian spectrum of the dice lattice with toroidal boundary condition. In addition, we apply our results to obtain the formulae of the number of spanning trees, the Kirchhoff index, and the energy of the dice lattice with toroidal boundary condition.
Hyper-lattice algebraic model for data warehousing
Sen, Soumya; Chaki, Nabendu
2016-01-01
This book presents Hyper-lattice, a new algebraic model for partially ordered sets, and an alternative to lattice. The authors analyze some of the shortcomings of conventional lattice structure and propose a novel algebraic structure in the form of Hyper-lattice to overcome problems with lattice. They establish how Hyper-lattice supports dynamic insertion of elements in a partial order set with a partial hierarchy between the set members. The authors present the characteristics and the different properties, showing how propositions and lemmas formalize Hyper-lattice as a new algebraic structure.
Matter-wave bright solitons in effective bichromatic lattice potentials
Golam Ali Sekh
2013-08-01
Matter-wave bright solitons in bichromatic lattice potentials are considered and their dynamics for different lattice environments are studied. Bichromatic potentials are created from superpositions of (i) two linear optical lattices and (ii) a linear and a nonlinear optical lattice. Effective potentials are found for the solitons in both bichromatic lattices and a comparative study is done on the dynamics of solitons with respect to the effective potentials. The effects of dispersion on solitons in bichromatic lattices are studied and it is found that the dispersive spreading can be minimized by appropriate combinations of lattice and interaction parameters. Stability of nondispersive matter-wave solitons is checked from phase portrait analysis.
Few quantum particles on one dimensional lattices
Valiente Cifuentes, Manuel
2010-06-18
There is currently a great interest in the physics of degenerate quantum gases and low-energy few-body scattering due to the recent experimental advances in manipulation of ultracold atoms by light. In particular, almost perfect periodic potentials, called optical lattices, can be generated. The lattice spacing is fixed by the wavelength of the laser field employed and the angle betwen the pair of laser beams; the lattice depth, defining the magnitude of the different band gaps, is tunable within a large interval of values. This flexibility permits the exploration of different regimes, ranging from the ''free-electron'' picture, modified by the effective mass for shallow optical lattices, to the tight-binding regime of a very deep periodic potential. In the latter case, effective single-band theories, widely used in condensed matter physics, can be implemented with unprecedent accuracy. The tunability of the lattice depth is nowadays complemented by the use of magnetic Feshbach resonances which, at very low temperatures, can vary the relevant atom-atom scattering properties at will. Moreover, optical lattices loaded with gases of effectively reduced dimensionality are experimentally accessible. This is especially important for one spatial dimension, since most of the exactly solvable models in many-body quantum mechanics deal with particles on a line; therefore, experiments with one-dimensional gases serve as a testing ground for many old and new theories which were regarded as purely academic not so long ago. The physics of few quantum particles on a one-dimensional lattice is the topic of this thesis. Most of the results are obtained in the tight-binding approximation, which is amenable to exact numerical or analytical treatment. For the two-body problem, theoretical methods for calculating the stationary scattering and bound states are developed. These are used to obtain, in closed form, the two-particle solutions of both the Hubbard and
Reconstructing Concept Lattices Usingnth-Order Context Kernels
SHEN Xiajiong; XU Bin; LIU Zongtian
2006-01-01
To be different from traditional algorithms for concept lattice constructing, a method based on nth-order context kernel is suggested in this paper.The context kernels support generating small lattices for sub-contexts split by a given context.The final concept lattice is reconstructed by combining these small lattices.All relevant algorithms are implemented in a system IsoFCA.Test shows that the method yields concept lattices in lower time complexity than Godin algorithm in practical case.
On normal lattices and separation and semi-separation of lattices
Robert W. Schutz
1992-01-01
Full Text Available This present paper is concerned with two main conditions, that of normality of a lattice, and separation and semi-separation of two lattices, both looked at using measure theoretic techniques. We look at each property using {0,1} two valued measures and associated {0,1} valued set functions.
Elcoro, Luis; Etxebarria, Jesus
2011-01-01
The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used…
Perfect Actions and Operators for Lattice QCD
Wiese, Uwe-Jens
1996-05-01
Wilson's renormalization group implies that lattice actions located on a renormalized trajectory emanating from a fixed point represent perfect discretizations of continuum physics. With a perfect action the spectrum of a lattice theory is identical with the one of the continuum theory even at finite lattice spacing. Similarly, perfect operators yield cut-off independent matrix elements. Hence, continuum QCD can in principle be reconstructed from a lattice with finite spacing. In practice it is difficult to construct perfect actions and perfect operators explicitly. Here perturbation theory is used to derive perfect actions for quarks and gluons by performing a block renormalization group transformation directly from the continuum. The renormalized trajectory for free massive quarks is identified and a parameter in the renormalization group transformation is tuned such that for 1-d configurations the perfect action reduces to the nearest neighbor Wilson fermion action. Then the 4-d perfect action turns out to be extremely local as well, which is vital for numerical simulations. The fixed point action for free gluons is also obtained by blocking from the continuum. For 2-d configurations it reduces to the standard plaquette action, and for 4-d configurations it is still very local. With interactions between quarks and gluons switched on the perfect quark-gluon and 3-gluon vertex functions are computed analytically. In particular, a perfect clover term can be extracted from the quark-gluon vertex. The perturbatively perfect action is directly applicable to heavy quark physics. The construction of a perfect QCD action for light quarks should include nonperturbative effects, which is possible using numerical methods. Classically perfect quark and gluon fields are constructed as well. They allow to interpolate the continuum fields from the lattice data. In this way one can obtain information about space-time regions between lattice points. The classically perfect fields
High Precision Calculations of the Lennard-Jones Lattice Constants for Five Lattices
Stein, Matthew
2017-01-01
The total potential energy of a crystal as described by the Lennard-Jones (L-J) potential depends in part upon the calculation of lattice constants. Knowing these constants to high precision is useful for prediction of the lattice type and simulation of crystals such as rare-gas solids or germanium detectors, but reaching higher precision is computationally costly and challenging. Presented here is the extension of the precision of the lattice constants, Lp, up to 32 decimal digits, and in some cases corrections from previous publication. The Lp terms are given for 4 cubic, face-centered cubic, body-centered cubic, hexagonal-close-pack, and diamond lattices. This precision was obtained through the use of careful parallelization technique, exploitation of the symmetries of each lattice, and the ``onionization'' of the simulated crystal. The results of this computation, along with the tools and algorithm strategies to make this computation possible, are explained in detail graphically.
Lattice Landau Gauge via Stereographic Projection
von Smekal, L.; Mehta, D.; Sternbeck, A.
alexander.jorkowski@student.adelaide.edu.au, dhagash.mehta@adelaide.edu.au, andre.sternbeck@adelaide.edu.au The complete cancellation of Gribov copies and the Neuberger 0/0 problem of lattice BRST can be avoided in modified lattice Landau gauge. In compact U(1), where the problem is a lattice artifact, there remain to be Gribov copies but their number is exponentially reduced. Moreover, there is no cancellation of copies there as the sign of the Faddeev-Popov determinant is posi- tive. Applied to the maximal Abelian subgroup this avoids the perfect cancellation amongst the remaining Gribov copies for SU(N) also. In addition, based on a definition of gauge fields on the lattice as stereographically-projected link variables, it provides a framework for gauge fixed Monte-Carlo simulations. This will include all Gribov copies in the spirit of BRST. Their average is not zero, as demonstrated explicitly in simple models. This might resolve present discrepancies between gauge-fixed lattice and continuum studies of QCD Green’s functions.
Hybrid lattice Boltzmann method on overlapping grids.
Di Ilio, G; Chiappini, D; Ubertini, S; Bella, G; Succi, S
2017-01-01
In this work, a hybrid lattice Boltzmann method (HLBM) is proposed, where the standard lattice Boltzmann implementation based on the Bhatnagar-Gross-Krook (LBGK) approximation is combined together with an unstructured finite-volume lattice Boltzmann model. The method is constructed on an overlapping grid system, which allows the coexistence of a uniform lattice nodes spacing and a coordinate-free lattice structure. The natural adaptivity of the hybrid grid system makes the method particularly suitable to handle problems involving complex geometries. Moreover, the provided scheme ensures a high-accuracy solution near walls, given the capability of the unstructured submodel of achieving the desired level of refinement in a very flexible way. For these reasons, the HLBM represents a prospective tool for solving multiscale problems. The proposed method is here applied to the benchmark problem of a two-dimensional flow past a circular cylinder for a wide range of Reynolds numbers and its numerical performances are measured and compared with the standard LBGK ones.
Techniques for transparent lattice measurement and correction
Cheng, Weixing; Li, Yongjun; Ha, Kiman
2017-07-01
A novel method has been successfully demonstrated at NSLS-II to characterize the lattice parameters with gated BPM turn-by-turn (TbT) capability. This method can be used at high current operation. Conventional lattice characterization and tuning are carried out at low current in dedicated machine studies which include beam-based measurement/correction of orbit, tune, dispersion, beta-beat, phase advance, coupling etc. At the NSLS-II storage ring, we observed lattice drifting during beam accumulation in user operation. Coupling and lifetime change while insertion device (ID) gaps are moved. With the new method, dynamical lattice correction is possible to achieve reliable and productive operations. A bunch-by-bunch feedback system excites a small fraction (∼1%) of bunches and gated BPMs are aligned to see those bunch motions. The gated TbT position data are used to characterize the lattice hence correction can be applied. As there are ∼1% of total charges disturbed for a short period of time (several ms), this method is transparent to general user operation. We demonstrated the effectiveness of these tools during high current user operation.
Lattice-induced transparency in planar metamaterials
Manjappa, Manukumara; Srivastava, Yogesh Kumar; Singh, Ranjan
2016-10-01
Lattice modes are intrinsic to periodic structures and they can be easily tuned and controlled by changing the lattice constant of the structural array. Previous studies have revealed the excitation of sharp absorption resonances due to lattice mode coupling with the plasmonic resonances. Here, we report an experimental observation of a lattice-induced transparency (LIT) by coupling the first-order lattice mode (FOLM) to the structural resonance of a terahertz asymmetric split ring resonator. The observed sharp transparency is a result of the destructive interference between the bright mode and the FOLM assisted dark mode. As the FOLM is swept across the metamaterial resonance, the transparency band undergoes a large change in its bandwidth and resonance position. We propose a three-oscillator model to explain the underlying coupling mechanism in LIT system that shows good agreement with the observed results. Besides controlling the transparency behavior, LIT also shows a huge enhancement in its Q factor and exhibits a high group delay of 28 ps with an enhanced group index of 4.5 ×104 , which could be pivotal in ultrasensitive sensing and slow-light device applications.
Full CKM matrix with lattice QCD
Okamoto, Masataka; /Fermilab
2004-12-01
The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.
大森俊洋
2005-01-01
It is known that pure Co undergoes martensitic transformation from γ phase (fcc) to ε phase (hcp) by the movement of a/6 Shockley partial dislocations at around 400 ℃, however, there have been few systematic works on the SM effect in Co and Co-based alloys. In this study, the fcc/hcp martensitic transformation and the SM effect were investigated in Co-Al binary alloys(mole fraction of Al=0～16%).The γ/ε martensitic transformation temperatures were found from the DSC measurements to decrease with increasing Al content, while the transformation temperature hystereses were observed to increase from 60 ℃ at x(Al)=0 to 150 ℃at x(Al)= 16%. The SM effect evaluated by a conventional bending test was enhanced by the addition of Al over 4%(mole fraction) and Co-Al alloys containing over 10%(mole fraction) exhibit a good SM effect associated with the hcp →fcc reverse transformation above 200 ℃. The SM effect was significantly improved by precipitation ofβ (B2) phase and the maximal shape recovery strain of 2. 2% was obtained, which can be explained by precipitation hardening. The crystallographic orientations between theβ, ε and γ phases were also determined. Finally, the magnetic properties were investigated and it was found that the Curie temperature and saturation magnetization of Co-14% Al(mole fraction) are 690 ℃and 120 emu/g, respectively. It is concluded that the Co-Al alloys hold promise as new high-temperature and ferromagnetic SM alloys.
Spectroscopy of charmed baryons from lattice QCD
Padmanath, M. [Univ. of Graz (Austria). Inst. of Physics; Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Institute of Fundamental Research, Bombay (India); Peardon, Michael [Trinity College, Dublin (Ireland)
2015-01-01
We present the ground and excited state spectra of singly, doubly and triply charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6) x O(3) symmetry. Various energy splittings between the extracted states, including splittings due to hyperfine as well as spin-orbit coupling, are considered and those are also compared against similar energy splittings at other quark masses.
Nuclear effective field theory on the lattice
Krebs, H; Epelbaum, E; Lee, D; ner, Ulf-G Mei\\ss
2008-01-01
In the low-energy region far below the chiral symmetry breaking scale (which is of the order of 1 GeV) chiral perturbation theory provides a model-independent approach for quantitative description of nuclear processes. In the two- and more-nucleon sector perturbation theory is applicable only at the level of an effective potential which serves as input in the corresponding dynamical equation. To deal with the resulting many-body problem we put chiral effective field theory (EFT) on the lattice. Here we present the results of our lattice EFT study up to next-to-next-to-leading order in the chiral expansion. Accurate description of two-nucleon phase-shifts and ground state energy ratio of dilute neutron matter up to corrections of higher orders shows that lattice EFT is a promising tool for a quantitative description of low-energy few- and many-body systems.
Lattice dynamics in Bosonic 7 Li
Chen, Huiyao Y.; Jung, Minwoo; Rabinowitz, Jacob; Madjarov, Ivaylo S.; Cheung, Hil F. H.; Patil, Yogesh Sharad; Vengalattore, Mukund
2016-05-01
The light mass and strong spin-dependent interactions in 7 Li make it an attractive candidate to study Bosonic quantum magnetism and lattice dynamics in regimes where rapid dynamics is favored, e.g. percolative transport and entropy segregation. Such studies require large ensembles of quantum degenerate 7 Li atoms which has proved to be a technical challenge. We describe our ongoing efforts to overcome this challenge using Raman sideband cooling (RSC). In addition to enabling the rapid production of large degenerate gases, RSC is also a very powerful means of local control of lattice gas dynamics. Extending this to a spinful 7 Li Bose gas will also enable studies of transport and defect dynamics in F=1 lattice gases. This work is supported by the ARO MURI on non-equilibrium dynamics.
Lattice radial quantization: 3D Ising
Brower, R.C., E-mail: brower@bu.edu [Department of Physics, Boston University, Boston, MA 02215 (United States); Fleming, G.T., E-mail: george.fleming@yale.edu [Department of Physics, Yale University, New Haven, CT 06520 (United States); Neuberger, H., E-mail: neuberg@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers University, Piscataway, NJ 08855 (United States)
2013-04-25
Lattice radial quantization is introduced as a nonperturbative method intended to numerically solve Euclidean conformal field theories that can be realized as fixed points of known Lagrangians. As an example, we employ a lattice shaped as a cylinder with a 2D Icosahedral cross-section to discretize dilatations in the 3D Ising model. Using the integer spacing of the anomalous dimensions of the first two descendants (l=1,2), we obtain an estimate for η=0.034(10). We also observed small deviations from integer spacing for the 3rd descendant, which suggests that a further improvement of our radial lattice action will be required to guarantee conformal symmetry at the Wilson–Fisher fixed point in the continuum limit.
Lattice Boltzmann Model for Numerical Relativity
Ilseven, E
2015-01-01
In the Bona-Masso formulation, Einstein equations are written as a set of flux conservative first order hyperbolic equations that resemble fluid dynamics equations. Based on this formulation, we construct a lattice Boltzmann model for Numerical Relativity. Our model is validated with well-established tests, showing good agreement with analytical solutions. Furthermore, we show that by increasing the relaxation time, we gain stability at the cost of losing accuracy, and by decreasing the lattice spacings while keeping a constant numerical diffusivity, the accuracy and stability of our simulations improves. Finally, in order to show the potential of our approach a linear scaling law for parallelisation with respect to number of CPU cores is demonstrated. Our model represents the first step in using lattice kinetic theory to solve gravitational problems.
Search for H dibaryon on the lattice
Luo, Zhi-Huan; Lin, Qiong-Gui; Liu, Yan
2011-01-01
We investigate the H-dibaryon, an $I(J^{P})=0(0^{+})$ with $s=-2$, in the chiral and continuum regimes on anisotropic lattices in quenched QCD. Simulations are performed on very coarse lattices with refined techniques to obtain results with high accuracy over a spatial lattice spacing in the range of $a_{s} \\sim 0.19 - 0.41$ fm. We present results for the energy difference between the ground state energy of the hexa-quark stranglet and the free two-baryon state from our ensembles. A negative binding energy observed in the chirally extrapolated results leads to the conclusion that the measured hexa-quark state is bound. This is further confirmed by the attractive interaction in the continuum limit with the observed H-dibaryon bound by $\\sim 60$ MeV.
Exploring hyperons and hypernuclei with lattice QCD
Beane, S.R.; Bedaque, P.F.; Parreno, A.; Savage, M.J.
2003-01-01
In this work we outline a program for lattice QCD that wouldprovide a first step toward understanding the strong and weakinteractions of strange baryons. The study of hypernuclear physics hasprovided a significant amount of information regarding the structure andweak decays of light nuclei containing one or two Lambda's, and Sigma's.From a theoretical standpoint, little is known about the hyperon-nucleoninteraction, which is required input for systematic calculations ofhypernuclear structure. Furthermore, the long-standing discrepancies inthe P-wave amplitudes for nonleptonic hyperon decays remain to beunderstood, and their resolution is central to a better understanding ofthe weak decays of hypernuclei. We present a framework that utilizesLuscher's finite-volume techniques in lattice QCD to extract thescattering length and effective range for Lambda-N scattering in both QCDand partially-quenched QCD. The effective theory describing thenonleptonic decays of hyperons using isospin symmetry alone, appropriatefor lattice calculations, is constructed.
Featureless quantum insulator on the honeycomb lattice
Kim, Panjin; Lee, Hyunyong; Jiang, Shenghan; Ware, Brayden; Jian, Chao-Ming; Zaletel, Michael; Han, Jung Hoon; Ran, Ying
2016-08-01
We show how to construct fully symmetric states without topological order on a honeycomb lattice for S =1/2 spins using the language of projected entangled pair states. An explicit example is given for the virtual bond dimension D =4 . Four distinct classes differing by lattice quantum numbers are found by applying the systematic classification scheme introduced by two of the authors [S. Jiang and Y. Ran, Phys. Rev. B 92, 104414 (2015), 10.1103/PhysRevB.92.104414]. Lack of topological degeneracy or other conventional forms of symmetry breaking in the proposed wave functions are checked by numerical calculations of the entanglement entropy and various correlation functions. Exponential decay of all correlation functions measured are strongly indicative of the energy gap for the putative parent Hamiltonian of the state. Our work provides the first explicit realization of a featureless quantum state for spin-1/2 particles on a honeycomb lattice.
Lattice Theories with Nonlinearly Realized Chiral Symmetry
Chandrasekharan, S; Steffen, F D; Wiese, U J
2003-01-01
We present the lattice formulation of effective Lagrangians in which chiral symmetry is realized nonlinearly on the fermion fields. In this framework both the Wilson term removing unphysical doubler fermions and the fermion mass term do not break chiral symmetry. Our lattice formulation allows us to address non-perturbative questions in effective theories of baryons interacting with pions and in models involving constitutent quarks interacting with pions and gluons. With the presented methods, a system containing a non-zero density of static baryons interacting with pions can be studied on the lattice without encountering a complex action problem. This might lead to new insights into the phase diagram of strongly interacting matter at non-zero chemical potential.
Mechanical Weyl Modes in Topological Maxwell Lattices
Rocklin, D. Zeb; Chen, Bryan Gin-ge; Falk, Martin; Vitelli, Vincenzo; Lubensky, T. C.
2016-04-01
We show that two-dimensional mechanical lattices can generically display topologically protected bulk zero-energy phonon modes at isolated points in the Brillouin zone, analogs of massless fermion modes of Weyl semimetals. We focus on deformed square lattices as the simplest Maxwell lattices, characterized by equal numbers of constraints and degrees of freedom, with this property. The Weyl points appear at the origin of the Brillouin zone along directions with vanishing sound speed and move away to the zone edge (or return to the origin) where they annihilate. Our results suggest a design strategy for topological metamaterials with bulk low-frequency acoustic modes and elastic instabilities at a particular, tunable finite wave vector.