WorldWideScience

Sample records for hcn channels identifies

  1. Gabapentin Modulates HCN4 Channel Voltage-Dependence

    Directory of Open Access Journals (Sweden)

    Han-Shen Tae

    2017-08-01

    Full Text Available Gabapentin (GBP is widely used to treat epilepsy and neuropathic pain. There is evidence that GBP can act on hyperpolarization-activated cation (HCN channel-mediated Ih in brain slice experiments. However, evidence showing that GBP directly modulates HCN channels is lacking. The effect of GBP was tested using two-electrode voltage clamp recordings from human HCN1, HCN2, and HCN4 channels expressed in Xenopus oocytes. Whole-cell recordings were also made from mouse spinal cord slices targeting either parvalbumin positive (PV+ or calretinin positive (CR+ inhibitory neurons. The effect of GBP on Ih was measured in each inhibitory neuron population. HCN4 expression was assessed in the spinal cord using immunohistochemistry. When applied to HCN4 channels, GBP (100 μM caused a hyperpolarizing shift in the voltage of half activation (V1/2 thereby reducing the currents. Gabapentin had no impact on the V1/2 of HCN1 or HCN2 channels. There was a robust increase in the time to half activation for HCN4 channels with only a small increase noted for HCN1 channels. Gabapentin also caused a hyperpolarizing shift in the V1/2 of Ih measured from HCN4-expressing PV+ inhibitory neurons in the spinal dorsal horn. Gabapentin had minimal effect on Ih recorded from CR+ neurons. Consistent with this, immunohistochemical analysis revealed that the majority of CR+ inhibitory neurons do not express somatic HCN4 channels. In conclusion, GBP reduces HCN4 channel-mediated currents through a hyperpolarized shift in the V1/2. The HCN channel subtype selectivity of GBP provides a unique tool for investigating HCN4 channel function in the central nervous system. The HCN4 channel is a candidate molecular target for the acute analgesic and anticonvulsant actions of GBP.

  2. Flavonoid Regulation of HCN2 Channels*

    Science.gov (United States)

    Carlson, Anne E.; Rosenbaum, Joel C.; Brelidze, Tinatin I.; Klevit, Rachel E.; Zagotta, William N.

    2013-01-01

    The hyperpolarization-activated cyclic nucleotide-modulated (HCN) channels are pacemaker channels whose currents contribute to rhythmic activity in the heart and brain. HCN channels open in response to hyperpolarizing voltages, and the binding of cAMP to their cyclic nucleotide-binding domain (CNBD) facilitates channel opening. Here, we report that, like cAMP, the flavonoid fisetin potentiates HCN2 channel gating. Fisetin sped HCN2 activation and shifted the conductance-voltage relationship to more depolarizing potentials with a half-maximal effective concentration (EC50) of 1.8 μm. When applied together, fisetin and cAMP regulated HCN2 gating in a nonadditive fashion. Fisetin did not potentiate HCN2 channels lacking their CNBD, and two independent fluorescence-based binding assays reported that fisetin bound to the purified CNBD. These data suggest that the CNBD mediates the fisetin potentiation of HCN2 channels. Moreover, binding assays suggest that fisetin and cAMP partially compete for binding to the CNBD. NMR experiments demonstrated that fisetin binds within the cAMP-binding pocket, interacting with some of the same residues as cAMP. Together, these data indicate that fisetin is a partial agonist for HCN2 channels. PMID:24085296

  3. Dysfunctional HCN ion channels in neurological diseases

    Directory of Open Access Journals (Sweden)

    Jacopo C. DiFrancesco

    2015-03-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are expressed as four different isoforms (HCN1-4 in the heart and in the central and peripheral nervous systems. HCN channels are activated by membrane hyperpolarization at voltages close to resting membrane potentials and carry the hyperpolarization-activated current, dubbed If (funny current in heart and Ih in neurons. HCN channels contribute in several ways to neuronal activity and are responsible for many important cellular functions, including cellular excitability, generation and modulation of rhythmic activity, dendritic integration, transmission of synaptic potentials and plasticity phenomena. Because of their role, defective HCN channels are natural candidates in the search for potential causes of neurological disorders in humans. Several data, including growing evidence that some forms of epilepsy are associated with HCN mutations, support the notion of an involvement of dysfunctional HCN channels in different experimental models of the disease. Additionally, some anti-epileptic drugs are known to modify the activity of the Ih current. HCN channels are widely expressed in the peripheral nervous system and recent evidence has highlighted the importance of the HCN2 isoform in the transmission of pain. HCN channels are also present in the midbrain system, where they finely regulate the activity of dopaminergic neurons, and a potential role of these channels in the pathogenesis of Parkinson’s disease has recently emerged. The function of HCN channels is regulated by specific accessory proteins, which control the correct expression and modulation of the neuronal Ih current. Alteration of these proteins can severely interfere with the physiological channel function, potentially predisposing to pathological conditions. In this review we address the present knowledge of the association between HCN dysfunctions and neurological diseases, including clinical, genetic and

  4. HCN Channels Modulators: The Need for Selectivity

    Science.gov (United States)

    Romanelli, Maria Novella; Sartiani, Laura; Masi, Alessio; Mannaioni, Guido; Manetti, Dina; Mugelli, Alessandro; Cerbai, Elisabetta

    2016-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels, the molecular correlate of the hyperpolarization-activated current (If/Ih), are membrane proteins which play an important role in several physiological processes and various pathological conditions. In the Sino Atrial Node (SAN) HCN4 is the target of ivabradine, a bradycardic agent that is, at the moment, the only drug which specifically blocks If. Nevertheless, several other pharmacological agents have been shown to modulate HCN channels, a property that may contribute to their therapeutic activity and/or to their side effects. HCN channels are considered potential targets for developing drugs to treat several important pathologies, but a major issue in this field is the discovery of isoform-selective compounds, owing to the wide distribution of these proteins into the central and peripheral nervous systems, heart and other peripheral tissues. This survey is focused on the compounds that have been shown, or have been designed, to interact with HCN channels and on their binding sites, with the aim to summarize current knowledge and possibly to unveil useful information to design new potent and selective modulators. PMID:26975509

  5. HCN channels are not required for mechanotransduction in sensory hair cells of the mouse inner ear.

    Directory of Open Access Journals (Sweden)

    Geoffrey C Horwitz

    Full Text Available The molecular composition of the hair cell transduction channel has not been identified. Here we explore the novel hypothesis that hair cell transduction channels include HCN subunits. The HCN family of ion channels includes four members, HCN1-4. They were originally identified as the molecular correlates of the hyperpolarization-activated, cyclic nucleotide gated ion channels that carry currents known as If, IQ or Ih. However, based on recent evidence it has been suggested that HCN subunits may also be components of the elusive hair cell transduction channel. To investigate this hypothesis we examined expression of mRNA that encodes HCN1-4 in sensory epithelia of the mouse inner ear, immunolocalization of HCN subunits 1, 2 and 4, uptake of the transduction channel permeable dye, FM1-43 and electrophysiological measurement of mechanotransduction current. Dye uptake and transduction current were assayed in cochlear and vestibular hair cells of wildtype mice exposed to HCN channel blockers or a dominant-negative form of HCN2 that contained a pore mutation and in mutant mice that lacked HCN1, HCN2 or both. We found robust expression of HCNs 1, 2 and 4 but little evidence that localized HCN subunits in hair bundles, the site of mechanotransduction. Although high concentrations of the HCN antagonist, ZD7288, blocked 50-70% of the transduction current, we found no reduction of transduction current in either cochlear or vestibular hair cells of HCN1- or HCN2- deficient mice relative to wild-type mice. Furthermore, mice that lacked both HCN1 and HCN2 also had normal transduction currents. Lastly, we found that mice exposed to the dominant-negative mutant form of HCN2 had normal transduction currents as well. Taken together, the evidence suggests that HCN subunits are not required for mechanotransduction in hair cells of the mouse inner ear.

  6. Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice

    Directory of Open Access Journals (Sweden)

    Marc S. Stieglitz

    2018-01-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/− mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure.

  7. Disturbed Processing of Contextual Information in HCN3 Channel Deficient Mice

    Science.gov (United States)

    Stieglitz, Marc S.; Fenske, Stefanie; Hammelmann, Verena; Becirovic, Elvir; Schöttle, Verena; Delorme, James E.; Schöll-Weidinger, Martha; Mader, Robert; Deussing, Jan; Wolfer, David P.; Seeliger, Mathias W.; Albrecht, Urs; Wotjak, Carsten T.; Biel, Martin; Michalakis, Stylianos; Wahl-Schott, Christian

    2018-01-01

    Hyperpolarization-activated cyclic nucleotide-gated channels (HCNs) in the nervous system are implicated in a variety of neuronal functions including learning and memory, regulation of vigilance states and pain. Dysfunctions or genetic loss of these channels have been shown to cause human diseases such as epilepsy, depression, schizophrenia, and Parkinson's disease. The physiological functions of HCN1 and HCN2 channels in the nervous system have been analyzed using genetic knockout mouse models. By contrast, there are no such genetic studies for HCN3 channels so far. Here, we use a HCN3-deficient (HCN3−/−) mouse line, which has been previously generated in our group to examine the expression and function of this channel in the CNS. Specifically, we investigate the role of HCN3 channels for the regulation of circadian rhythm and for the determination of behavior. Contrary to previous suggestions we find that HCN3−/− mice show normal visual, photic, and non-photic circadian function. In addition, HCN3−/− mice are impaired in processing contextual information, which is characterized by attenuated long-term extinction of contextual fear and increased fear to a neutral context upon repeated exposure. PMID:29375299

  8. An N-Terminal ER Export Signal Facilitates the Plasma Membrane Targeting of HCN1 Channels in Photoreceptors.

    Science.gov (United States)

    Pan, Yuan; Laird, Joseph G; Yamaguchi, David M; Baker, Sheila A

    2015-06-01

    Hyperpolarization-activated cyclic nucleotide-gated 1 (HCN1) channels are widely expressed in the retina. In photoreceptors, the hyperpolarization-activated current (Ih) carried by HCN1 is important for shaping the light response. It has been shown in multiple systems that trafficking HCN1 channels to specific compartments is key to their function. The localization of HCN1 in photoreceptors is concentrated in the plasma membrane of the inner segment (IS). The mechanisms controlling this localization are not understood. We previously identified a di-arginine endoplasmic reticulum (ER) retention motif that negatively regulates the surface targeting of HCN1. In this study, we sought to identify a forward trafficking signal that could counter the function of the ER retention signal. We studied trafficking of HCN1 and several mutants by imaging their subcellular localization in transgenic X. laevis photoreceptors. Velocity sedimentation was used to assay the assembly state of HCN1 channels. We found the HCN1 N-terminus can redirect a membrane reporter from outer segments (OS) to the plasma membrane of the IS. The sequence necessary for this behavior was mapped to a 20 amino acid region containing a leucine-based ER export motif. The ER export signal is necessary for forward trafficking but not channel oligomerization. Moreover, this ER export signal alone counteracted the di-arginine ER retention signal. We identified an ER export signal in HCN1 that functions with the ER retention signal to maintain equilibrium of HCN1 between the endomembrane system and the plasma membrane.

  9. Inferior Olive HCN1 Channels Coordinate Synaptic Integration and Complex Spike Timing

    Directory of Open Access Journals (Sweden)

    Derek L.F. Garden

    2018-02-01

    Full Text Available Cerebellar climbing-fiber-mediated complex spikes originate from neurons in the inferior olive (IO, are critical for motor coordination, and are central to theories of cerebellar learning. Hyperpolarization-activated cyclic-nucleotide-gated (HCN channels expressed by IO neurons have been considered as pacemaker currents important for oscillatory and resonant dynamics. Here, we demonstrate that in vitro, network actions of HCN1 channels enable bidirectional glutamatergic synaptic responses, while local actions of HCN1 channels determine the timing and waveform of synaptically driven action potentials. These roles are distinct from, and may complement, proposed pacemaker functions of HCN channels. We find that in behaving animals HCN1 channels reduce variability in the timing of cerebellar complex spikes, which serve as a readout of IO spiking. Our results suggest that spatially distributed actions of HCN1 channels enable the IO to implement network-wide rules for synaptic integration that modulate the timing of cerebellar climbing fiber signals.

  10. Targeted deletion of Kcne2 impairs HCN channel function in mouse thalamocortical circuits.

    Directory of Open Access Journals (Sweden)

    Shui-Wang Ying

    Full Text Available Hyperpolarization-activated, cyclic nucleotide-gated (HCN channels generate the pacemaking current, I(h, which regulates neuronal excitability, burst firing activity, rhythmogenesis, and synaptic integration. The physiological consequence of HCN activation depends on regulation of channel gating by endogenous modulators and stabilization of the channel complex formed by principal and ancillary subunits. KCNE2 is a voltage-gated potassium channel ancillary subunit that also regulates heterologously expressed HCN channels; whether KCNE2 regulates neuronal HCN channel function is unknown.We investigated the effects of Kcne2 gene deletion on I(h properties and excitability in ventrobasal (VB and cortical layer 6 pyramidal neurons using brain slices prepared from Kcne2(+/+ and Kcne2(-/- mice. Kcne2 deletion shifted the voltage-dependence of I(h activation to more hyperpolarized potentials, slowed gating kinetics, and decreased I(h density. Kcne2 deletion was associated with a reduction in whole-brain expression of both HCN1 and HCN2 (but not HCN4, although co-immunoprecipitation from whole-brain lysates failed to detect interaction of KCNE2 with HCN1 or 2. Kcne2 deletion also increased input resistance and temporal summation of subthreshold voltage responses; this increased intrinsic excitability enhanced burst firing in response to 4-aminopyridine. Burst duration increased in corticothalamic, but not thalamocortical, neurons, suggesting enhanced cortical excitatory input to the thalamus; such augmented excitability did not result from changes in glutamate release machinery since miniature EPSC frequency was unaltered in Kcne2(-/- neurons.Loss of KCNE2 leads to downregulation of HCN channel function associated with increased excitability in neurons in the cortico-thalamo-cortical loop. Such findings further our understanding of the normal physiology of brain circuitry critically involved in cognition and have implications for our understanding of

  11. Hypoosmotic cell swelling as a novel mechanism for modulation of cloned HCN2 channels

    DEFF Research Database (Denmark)

    Calloe, Kirstine; Elmedyb, Pernille; Olesen, Søren-Peter

    2005-01-01

    This work demonstrates cell swelling as a new regulatory mechanism for the cloned hyperpolarization-activated, cyclic nucleotide-gated channel 2 (HCN2). HCN2 channels were coexpressed with aquaporin1 in Xenopus laevis oocytes and currents were monitored using a two-electrode voltage-clamp. HCN2...... channels were activated by hyperpolarization to -100 mV and the currents were measured before and during hypoosmotic cell swelling. Cell swelling increased HCN2 currents by 30% without changing the kinetics of the currents. Injection of 50 nl intracellular solution resulted in a current increase of 20......%, indicating that an increase in cell volume also under isoosmotic conditions may lead to activation of HCN2. In the absence of aquaporin1 only negligible changes in oocyte cell volume occur during exposure to hypoosmotic media and no significant change in HCN2 channel activity was observed during perfusion...

  12. Contribution of presynaptic HCN channels to excitatory inputs of spinal substantia gelatinosa neurons.

    Science.gov (United States)

    Peng, S-C; Wu, J; Zhang, D-Y; Jiang, C-Y; Xie, C-N; Liu, T

    2017-09-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are pathological pain-associated voltage-gated ion channels. They are widely expressed in central nervous system including spinal lamina II (also named the substantia gelatinosa, SG). Here, we examined the distribution of HCN channels in glutamatergic synaptic terminals as well as their role in the modulation of synaptic transmission in SG neurons from SD rats and glutamic acid decarboxylase-67 (GAD67)-GFP mice. We found that the expression of the HCN channel isoforms was varied in SG. The HCN4 isoform showed the highest level of co-localization with VGLUT2 (23±3%). In 53% (n=21/40 neurons) of the SG neurons examined in SD rats, application of HCN channel blocker, ZD7288 (10μM), decreased the frequency of spontaneous (s) and miniature (m) excitatory postsynaptic currents (EPSCs) by 37±4% and 33±4%, respectively. Consistently, forskolin (FSK) (an activator of adenylate cyclase) significantly increased the frequency of mEPSCs by 225±34%, which could be partially inhibited by ZD7288. Interestingly, the effects of ZD7288 and FSK on sEPSC frequency were replicated in non-GFP-expressing neurons, but not in GFP-expressing GABAergic SG neurons, in GAD67-GFP transgenic C57/BL6 mice. In summary, our results represent a previously unknown cellular mechanism by which presynaptic HCN channels, especially HCN4, regulate the glutamate release from presynaptic terminals that target excitatory, but not inhibitory SG interneurons. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Distribution and function of HCN channels in the apical dendritic tuft of neocortical pyramidal neurons.

    Science.gov (United States)

    Harnett, Mark T; Magee, Jeffrey C; Williams, Stephen R

    2015-01-21

    The apical tuft is the most remote area of the dendritic tree of neocortical pyramidal neurons. Despite its distal location, the apical dendritic tuft of layer 5 pyramidal neurons receives substantial excitatory synaptic drive and actively processes corticocortical input during behavior. The properties of the voltage-activated ion channels that regulate synaptic integration in tuft dendrites have, however, not been thoroughly investigated. Here, we use electrophysiological and optical approaches to examine the subcellular distribution and function of hyperpolarization-activated cyclic nucleotide-gated nonselective cation (HCN) channels in rat layer 5B pyramidal neurons. Outside-out patch recordings demonstrated that the amplitude and properties of ensemble HCN channel activity were uniform in patches excised from distal apical dendritic trunk and tuft sites. Simultaneous apical dendritic tuft and trunk whole-cell current-clamp recordings revealed that the pharmacological blockade of HCN channels decreased voltage compartmentalization and enhanced the generation and spread of apical dendritic tuft and trunk regenerative activity. Furthermore, multisite two-photon glutamate uncaging demonstrated that HCN channels control the amplitude and duration of synaptically evoked regenerative activity in the distal apical dendritic tuft. In contrast, at proximal apical dendritic trunk and somatic recording sites, the blockade of HCN channels decreased excitability. Dynamic-clamp experiments revealed that these compartment-specific actions of HCN channels were heavily influenced by the local and distributed impact of the high density of HCN channels in the distal apical dendritic arbor. The properties and subcellular distribution pattern of HCN channels are therefore tuned to regulate the interaction between integration compartments in layer 5B pyramidal neurons. Copyright © 2015 the authors 0270-6474/15/351024-14$15.00/0.

  14. Novel insights into the distribution of cardiac HCN channels: an expression study in the mouse heart.

    Science.gov (United States)

    Herrmann, Stefan; Layh, Beate; Ludwig, Andreas

    2011-12-01

    HCN pacemaker channels (I(f) channels) are believed to contribute to important functions in the heart; thus these channels became an attractive target for generating transgenic mouse mutants to elucidate their role in physiological and pathophysiological cardiac conditions. A full understanding of cardiac I(f) and the interpretation of studies using HCN mouse mutants require detailed information about the expression profile of the individual HCN subunits. Here we investigate the cardiac expression pattern of the HCN isoforms at the mRNA as well as at the protein level. The specificity of antibodies used was strictly confirmed by the use of HCN1, HCN2 and HCN4 knockout animals. We find a low, but highly differential HCN expression profile outside the cardiac conduction pathway including left and right atria and ventricles. Additionally HCN distribution was investigated in tissue slices of the sinoatrial node, the atrioventricular node, the bundle of His and the bundle branches. The conduction system was marked by acetylcholine esterase staining. HCN4 was confirmed as the predominant isoform of the primary pacemaker followed by a distinct expression of HCN1. In contrast HCN2 shows only a confined expression to individual pacemaker cells. Immunolabeling of the AV-node reveals also a pronounced specificity for HCN1 and HCN4. Compared to the SN and AVN we found a low but selective expression of HCN4 as the only isoform in the atrioventricular bundle. However in the bundle branches HCN1, HCN4 and also HCN2 show a prominent and selective expression pattern. Our results display a characteristic distribution of individual HCN isoforms in several cardiac compartments and reveal that beside HCN4, HCN1 represents the isoform which is selectively expressed in most parts of the conduction system suggesting a substantial contribution of HCN1 to pacemaking. 2011 Elsevier Ltd. All rights reserved.

  15. Genetic variation in Hyperpolarization-activated cyclic nucleotide-gated (HCN channels and its relationship with neuroticism, cognition and risk of depression

    Directory of Open Access Journals (Sweden)

    Andrew Mark Mcintosh

    2012-07-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are encoded by four genes (HCN1-4 and, through activation by cyclic AMP (cAMP, represent a point of convergence for several psychosis risk genes. On the basis of positive preliminary data, we sought to test whether genetic variation in HCN1-4 conferred risk of depression or cognitive impairment in the Generation Scotland: Scottish Family Health Study. HCN1, HCN2, HCN3 and HCN4 were genotyped for 43 haplotype-tagging SNPs and tested for association with DSM-IV depression, neuroticism and a battery of cognitive tests assessing cognitive ability, memory, verbal fluency and psychomotor performance. No association was found between any HCN channel gene SNP and risk of depression, neuroticism or on any cognitive measure. The current study does not support a genetic role for HCN channels in conferring risk of depression or cognitive impairment in human subjects within the Scottish population.

  16. Simple Organics and Biomonomers Identified in HCN Polymers: An Overview

    Directory of Open Access Journals (Sweden)

    Susana Osuna-Esteban

    2013-07-01

    Full Text Available Hydrogen cyanide (HCN is a ubiquitous molecule in the Universe. It is a compound that is easily produced in significant yields in prebiotic simulation experiments using a reducing atmosphere. HCN can spontaneously polymerise under a wide set of experimental conditions. It has even been proposed that HCN polymers could be present in objects such as asteroids, moons, planets and, in particular, comets. Moreover, it has been suggested that these polymers could play an important role in the origin of life. In this review, the simple organics and biomonomers that have been detected in HCN polymers, the analytical techniques and procedures that have been used to detect and characterise these molecules and an exhaustive classification of the experimental/environmental conditions that favour the formation of HCN polymers are summarised. Nucleobases, amino acids, carboxylic acids, cofactor derivatives and other compounds have been identified in HCN polymers. The great molecular diversity found in HCN polymers encourages their placement at the central core of a plausible protobiological system.

  17. HCN4 ion channel function is required for early events that regulate anatomical left-right patterning in a nodal and lefty asymmetric gene expression-independent manner.

    Science.gov (United States)

    Pai, Vaibhav P; Willocq, Valerie; Pitcairn, Emily J; Lemire, Joan M; Paré, Jean-François; Shi, Nian-Qing; McLaughlin, Kelly A; Levin, Michael

    2017-10-15

    Laterality is a basic characteristic of all life forms, from single cell organisms to complex plants and animals. For many metazoans, consistent left-right asymmetric patterning is essential for the correct anatomy of internal organs, such as the heart, gut, and brain; disruption of left-right asymmetry patterning leads to an important class of birth defects in human patients. Laterality functions across multiple scales, where early embryonic, subcellular and chiral cytoskeletal events are coupled with asymmetric amplification mechanisms and gene regulatory networks leading to asymmetric physical forces that ultimately result in distinct left and right anatomical organ patterning. Recent studies have suggested the existence of multiple parallel pathways regulating organ asymmetry. Here, we show that an isoform of the hyperpolarization-activated cyclic nucleotide-gated (HCN) family of ion channels (hyperpolarization-activated cyclic nucleotide-gated channel 4, HCN4) is important for correct left-right patterning. HCN4 channels are present very early in Xenopus embryos. Blocking HCN channels ( I h currents) with pharmacological inhibitors leads to errors in organ situs. This effect is only seen when HCN4 channels are blocked early (pre-stage 10) and not by a later block (post-stage 10). Injections of HCN4-DN (dominant-negative) mRNA induce left-right defects only when injected in both blastomeres no later than the 2-cell stage. Analysis of key asymmetric genes' expression showed that the sidedness of Nodal , Lefty , and Pitx2 expression is largely unchanged by HCN4 blockade, despite the randomization of subsequent organ situs, although the area of Pitx2 expression was significantly reduced. Together these data identify a novel, developmental role for HCN4 channels and reveal a new Nodal-Lefty-Pitx2 asymmetric gene expression-independent mechanism upstream of organ positioning during embryonic left-right patterning. © 2017. Published by The Company of Biologists Ltd.

  18. De novo mutations in HCN1 cause early infantile epileptic encephalopathy.

    Science.gov (United States)

    Nava, Caroline; Dalle, Carine; Rastetter, Agnès; Striano, Pasquale; de Kovel, Carolien G F; Nabbout, Rima; Cancès, Claude; Ville, Dorothée; Brilstra, Eva H; Gobbi, Giuseppe; Raffo, Emmanuel; Bouteiller, Delphine; Marie, Yannick; Trouillard, Oriane; Robbiano, Angela; Keren, Boris; Agher, Dahbia; Roze, Emmanuel; Lesage, Suzanne; Nicolas, Aude; Brice, Alexis; Baulac, Michel; Vogt, Cornelia; El Hajj, Nady; Schneider, Eberhard; Suls, Arvid; Weckhuysen, Sarah; Gormley, Padhraig; Lehesjoki, Anna-Elina; De Jonghe, Peter; Helbig, Ingo; Baulac, Stéphanie; Zara, Federico; Koeleman, Bobby P C; Haaf, Thomas; LeGuern, Eric; Depienne, Christel

    2014-06-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.

  19. HCN channels segregate stimulation‐evoked movement responses in neocortex and allow for coordinated forelimb movements in rodents

    Science.gov (United States)

    Farrell, Jordan S.; Palmer, Laura A.; Singleton, Anna C.; Pittman, Quentin J.; Teskey, G. Campbell

    2016-01-01

    Key points The present study tested whether HCN channels contribute to the organization of motor cortex and to skilled motor behaviour during a forelimb reaching task.Experimental reductions in HCN channel signalling increase the representation of complex multiple forelimb movements in motor cortex as assessed by intracortical microstimulation.Global HCN1KO mice exhibit reduced reaching accuracy and atypical movements during a single‐pellet reaching task relative to wild‐type controls.Acute pharmacological inhibition of HCN channels in forelimb motor cortex decreases reaching accuracy and increases atypical movements during forelimb reaching. Abstract The mechanisms by which distinct movements of a forelimb are generated from the same area of motor cortex have remained elusive. Here we examined a role for HCN channels, given their ability to alter synaptic integration, in the expression of forelimb movement responses during intracortical microstimulation (ICMS) and movements of the forelimb on a skilled reaching task. We used short‐duration high‐resolution ICMS to evoke forelimb movements following pharmacological (ZD7288), experimental (electrically induced cortical seizures) or genetic approaches that we confirmed with whole‐cell patch clamp to substantially reduce I h current. We observed significant increases in the number of multiple movement responses evoked at single sites in motor maps to all three experimental manipulations in rats or mice. Global HCN1 knockout mice were less successful and exhibited atypical movements on a skilled‐motor learning task relative to wild‐type controls. Furthermore, in reaching‐proficient rats, reaching accuracy was reduced and forelimb movements were altered during infusion of ZD7288 within motor cortex. Thus, HCN channels play a critical role in the separation of overlapping movement responses and allow for successful reaching behaviours. These data provide a novel mechanism for the encoding of multiple

  20. HCN Channels—Modulators of Cardiac and Neuronal Excitability

    Directory of Open Access Journals (Sweden)

    Stefan Herrmann

    2015-01-01

    Full Text Available Hyperpolarization-activated cyclic nucleotide-gated (HCN channels comprise a family of cation channels activated by hyperpolarized membrane potentials and stimulated by intracellular cyclic nucleotides. The four members of this family, HCN1–4, show distinct biophysical properties which are most evident in the kinetics of activation and deactivation, the sensitivity towards cyclic nucleotides and the modulation by tyrosine phosphorylation. The four isoforms are differentially expressed in various excitable tissues. This review will mainly focus on recent insights into the functional role of the channels apart from their classic role as pacemakers. The importance of HCN channels in the cardiac ventricle and ventricular hypertrophy will be discussed. In addition, their functional significance in the peripheral nervous system and nociception will be examined. The data, which are mainly derived from studies using transgenic mice, suggest that HCN channels contribute significantly to cellular excitability in these tissues. Remarkably, the impact of the channels is clearly more pronounced in pathophysiological states including ventricular hypertrophy as well as neural inflammation and neuropathy suggesting that HCN channels may constitute promising drug targets in the treatment of these conditions. This perspective as well as the current therapeutic use of HCN blockers will also be addressed.

  1. Small functional If current in sinoatrial pacemaker cells of the brown trout (Salmo trutta fario) heart despite strong expression of HCN channel transcripts.

    Science.gov (United States)

    Hassinen, Minna; Haverinen, Jaakko; Vornanen, Matti

    2017-12-01

    Funny current ( I f ), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout ( Salmo trutta fario ) sinoatrial (SA) pacemaker cells and their putative role in heart rate ( f H ) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small I f with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for I f activity. I f was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) β-subunit in CHO cells generated large I f currents. In contrast, HCN3 (+MiRP1) failed to produce I f in the same expression system. Cs + (2 mM), which blocked 84 ± 12% of the native I f , reversibly reduced f H 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min ( P brown trout heart is largely independent on I f . Copyright © 2017 the American Physiological Society.

  2. Modulation of thalamocortical oscillations by TRIP8b, an auxiliary subunit for HCN channels

    NARCIS (Netherlands)

    Zobeiri, M.; Chaudhary, R.; Datunashvili, M.; Heuermann, R.J.; Lüttjohann, A.; Narayanan, V.; Balfanz, S.; Meuth, P.; Chetkovich, D.M.; Pape, H.C.; Baumann, A.; Luijtelaar, E.L.J.M. van; Budde, T.

    2018-01-01

    Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels have important functions in controlling neuronal excitability and generating rhythmic oscillatory activity. The role of tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) in regulation of

  3. Niflumic acid alters gating of HCN2 pacemaker channels by interaction with the outer region of S4 voltage sensing domains.

    Science.gov (United States)

    Cheng, Lan; Sanguinetti, Michael C

    2009-05-01

    Niflumic acid, 2-[[3-(trifluoromethyl)phenyl]amino]pyridine-3-carboxylic acid (NFA), is a nonsteroidal anti-inflammatory drug that also blocks or modifies the gating of many ion channels. Here, we investigated the effects of NFA on hyperpolarization-activated cyclic nucleotide-gated cation (HCN) pacemaker channels expressed in X. laevis oocytes using site-directed mutagenesis and the two-electrode voltage-clamp technique. Extracellular NFA acted rapidly and caused a slowing of activation and deactivation and a hyperpolarizing shift in the voltage dependence of HCN2 channel activation (-24.5 +/- 1.2 mV at 1 mM). Slowed channel gating and reduction of current magnitude was marked in oocytes treated with NFA, while clamped at 0 mV but minimal in oocytes clamped at -100 mV, indicating the drug preferentially interacts with channels in the closed state. NFA at 0.1 to 3 mM shifted the half-point for channel activation in a concentration-dependent manner, with an EC(50) of 0.54 +/- 0.068 mM and a predicted maximum shift of -38 mV. NFA at 1 mM also reduced maximum HCN2 conductance by approximately 20%, presumably by direct block of the pore. The rapid onset and state-dependence of NFA-induced changes in channel gating suggests an interaction with the extracellular region of the S4 transmembrane helix, the primary voltage-sensing domain of HCN2. Neutralization (by mutation to Gln) of any three of the outer four basic charged residues in S4, but not single mutations, abrogated the NFA-induced shift in channel activation. We conclude that NFA alters HCN2 gating by interacting with the extracellular end of the S4 voltage sensor domains.

  4. Competition between abstraction and exchange channels in H + HCN reaction: Full-dimensional quantum dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Bin; Guo, Hua, E-mail: hguo@unm.edu [Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131 (United States)

    2013-12-14

    Dynamics of the title reaction is investigated on an ab initio based potential energy surface using a full-dimensional quantum wave packet method within the centrifugal sudden approximation. It is shown that the reaction between H and HCN leads to both the hydrogen exchange and hydrogen abstraction channels. The exchange channel has a lower threshold and larger cross section than the abstraction channel. It also has more oscillations due apparently to quantum resonances. Both channels are affected by long-lived resonances supported by potential wells. Comparison with experimental cross sections indicates underestimation of the abstraction barrier height.

  5. Noise-induced plasticity of KCNQ2/3 and HCN channels underlies vulnerability and resilience to tinnitus

    Science.gov (United States)

    Li, Shuang; Kalappa, Bopanna I; Tzounopoulos, Thanos

    2015-01-01

    Vulnerability to noise-induced tinnitus is associated with increased spontaneous firing rate in dorsal cochlear nucleus principal neurons, fusiform cells. This hyperactivity is caused, at least in part, by decreased Kv7.2/3 (KCNQ2/3) potassium currents. However, the biophysical mechanisms underlying resilience to tinnitus, which is observed in noise-exposed mice that do not develop tinnitus (non-tinnitus mice), remain unknown. Our results show that noise exposure induces, on average, a reduction in KCNQ2/3 channel activity in fusiform cells in noise-exposed mice by 4 days after exposure. Tinnitus is developed in mice that do not compensate for this reduction within the next 3 days. Resilience to tinnitus is developed in mice that show a re-emergence of KCNQ2/3 channel activity and a reduction in HCN channel activity. Our results highlight KCNQ2/3 and HCN channels as potential targets for designing novel therapeutics that may promote resilience to tinnitus. DOI: http://dx.doi.org/10.7554/eLife.07242.001 PMID:26312501

  6. cAMP control of HCN2 channel Mg2+ block reveals loose coupling between the cyclic nucleotide-gating ring and the pore.

    Directory of Open Access Journals (Sweden)

    Alex K Lyashchenko

    Full Text Available Hyperpolarization-activated cyclic nucleotide-regulated HCN channels underlie the Na+-K+ permeable IH pacemaker current. As with other voltage-gated members of the 6-transmembrane KV channel superfamily, opening of HCN channels involves dilation of a helical bundle formed by the intracellular ends of S6 albeit this is promoted by inward, not outward, displacement of S4. Direct agonist binding to a ring of cyclic nucleotide-binding sites, one of which lies immediately distal to each S6 helix, imparts cAMP sensitivity to HCN channel opening. At depolarized potentials, HCN channels are further modulated by intracellular Mg2+ which blocks the open channel pore and blunts the inhibitory effect of outward K+ flux. Here, we show that cAMP binding to the gating ring enhances not only channel opening but also the kinetics of Mg2+ block. A combination of experimental and simulation studies demonstrates that agonist acceleration of block is mediated via acceleration of the blocking reaction itself rather than as a secondary consequence of the cAMP enhancement of channel opening. These results suggest that the activation status of the gating ring and the open state of the pore are not coupled in an obligate manner (as required by the often invoked Monod-Wyman-Changeux allosteric model but couple more loosely (as envisioned in a modular model of protein activation. Importantly, the emergence of second messenger sensitivity of open channel rectification suggests that loose coupling may have an unexpected consequence: it may endow these erstwhile "slow" channels with an ability to exert voltage and ligand-modulated control over cellular excitability on the fastest of physiologically relevant time scales.

  7. Sick sinus syndrome in HCN1-deficient mice.

    Science.gov (United States)

    Fenske, Stefanie; Krause, Stefanie C; Hassan, Sami I H; Becirovic, Elvir; Auer, Franziska; Bernard, Rebekka; Kupatt, Christian; Lange, Philipp; Ziegler, Tilman; Wotjak, Carsten T; Zhang, Henggui; Hammelmann, Verena; Paparizos, Christos; Biel, Martin; Wahl-Schott, Christian A

    2013-12-17

    Sinus node dysfunction (SND) is a major clinically relevant disease that is associated with sudden cardiac death and requires surgical implantation of electric pacemaker devices. Frequently, SND occurs in heart failure and hypertension, conditions that lead to electric instability of the heart. Although the pathologies of acquired SND have been studied extensively, little is known about the molecular and cellular mechanisms that cause congenital SND. Here, we show that the HCN1 protein is highly expressed in the sinoatrial node and is colocalized with HCN4, the main sinoatrial pacemaker channel isoform. To characterize the cardiac phenotype of HCN1-deficient mice, a detailed functional characterization of pacemaker mechanisms in single isolated sinoatrial node cells, explanted beating sinoatrial node preparation, telemetric in vivo electrocardiography, echocardiography, and in vivo electrophysiology was performed. On the basis of these experiments we demonstrate that mice lacking the pacemaker channel HCN1 display congenital SND characterized by bradycardia, sinus dysrhythmia, prolonged sinoatrial node recovery time, increased sinoatrial conduction time, and recurrent sinus pauses. As a consequence of SND, HCN1-deficient mice display a severely reduced cardiac output. We propose that HCN1 stabilizes the leading pacemaker region within the sinoatrial node and hence is crucial for stable heart rate and regular beat-to-beat variation. Furthermore, we suggest that HCN1-deficient mice may be a valuable genetic disease model for human SND.

  8. Inhibition of GluR Current in Microvilli of Sensory Neurons via Na+-Microdomain Coupling Among GluR, HCN Channel, and Na+/K+ Pump

    Directory of Open Access Journals (Sweden)

    Yasuhiro Kawasaki

    2018-04-01

    Full Text Available Glutamatergic dendritic EPSPs evoked in cortical pyramidal neurons are depressed by activation of hyperpolarization-activated cyclic nucleotide-gated (HCN channels expressed in dendritic spines. This depression has been attributed to shunting effects of HCN current (Ih on input resistance or Ih deactivation. Primary sensory neurons in the rat mesencephalic trigeminal nucleus (MTN have the somata covered by spine-like microvilli that express HCN channels. In rat MTN neurons, we demonstrated that Ih enhancement apparently diminished the glutamate receptor (GluR current (IGluR evoked by puff application of glutamate/AMPA and enhanced a transient outward current following IGluR (OT-IGluR. This suggests that some outward current opposes inward IGluR. The IGluR inhibition displayed a U-shaped voltage-dependence with a minimal inhibition around the resting membrane potential, suggesting that simple shunting effects or deactivation of Ih cannot explain the U-shaped voltage-dependence. Confocal imaging of Na+ revealed that GluR activation caused an accumulation of Na+ in the microvilli, which can cause a negative shift of the reversal potential for Ih (Eh. Taken together, it was suggested that IGluR evoked in MTN neurons is opposed by a transient decrease or increase in standing inward or outward Ih, respectively, both of which can be caused by negative shifts of Eh, as consistent with the U-shaped voltage-dependence of the IGluR inhibition and the OT-IGluR generation. An electron-microscopic immunohistochemical study revealed the colocalization of HCN channels and glutamatergic synapses in microvilli of MTN neurons, which would provide a morphological basis for the functional interaction between HCN and GluR channels. Mathematical modeling eliminated the possibilities of the involvements of Ih deactivation and/or shunting effect and supported the negative shift of Eh which causes the U-shaped voltage-dependent inhibition of IGluR.

  9. De novo mutations in HCN1 cause early infantile epileptic encephalopathy

    DEFF Research Database (Denmark)

    Nava, Caroline; Dalle, Carine; Rastetter, Agnès

    2014-01-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in ...

  10. Modulation of thalamocortical oscillations by TRIP8b, an auxiliary subunit for HCN channels.

    Science.gov (United States)

    Zobeiri, Mehrnoush; Chaudhary, Rahul; Datunashvili, Maia; Heuermann, Robert J; Lüttjohann, Annika; Narayanan, Venu; Balfanz, Sabine; Meuth, Patrick; Chetkovich, Dane M; Pape, Hans-Christian; Baumann, Arnd; van Luijtelaar, Gilles; Budde, Thomas

    2018-04-01

    Hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channels have important functions in controlling neuronal excitability and generating rhythmic oscillatory activity. The role of tetratricopeptide repeat-containing Rab8b-interacting protein (TRIP8b) in regulation of hyperpolarization-activated inward current, I h , in the thalamocortical system and its functional relevance for the physiological thalamocortical oscillations were investigated. A significant decrease in I h current density, in both thalamocortical relay (TC) and cortical pyramidal neurons was found in TRIP8b-deficient mice (TRIP8b -/- ). In addition basal cAMP levels in the brain were found to be decreased while the availability of the fast transient A-type K + current, I A , in TC neurons was increased. These changes were associated with alterations in intrinsic properties and firing patterns of TC neurons, as well as intrathalamic and thalamocortical network oscillations, revealing a significant increase in slow oscillations in the delta frequency range (0.5-4 Hz) during episodes of active-wakefulness. In addition, absence of TRIP8b suppresses the normal desynchronization response of the EEG during the switch from slow-wave sleep to wakefulness. It is concluded that TRIP8b is necessary for the modulation of physiological thalamocortical oscillations due to its direct effect on HCN channel expression in thalamus and cortex and that mechanisms related to reduced cAMP signaling may contribute to the present findings.

  11. Increased expression of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in reactive astrocytes following ischemia

    Czech Academy of Sciences Publication Activity Database

    Honsa, Pavel; Pivoňková, Helena; Harantová, Lenka; Butenko, Olena; Kriška, Ján; Džamba, Dávid; Rusňáková, Vendula; Valihrach, Lukáš; Kubista, Mikael; Anděrová, Miroslava

    2014-01-01

    Roč. 62, č. 12 (2014), s. 2004-2021 ISSN 0894-1491 R&D Projects: GA ČR GA13-02154S; GA ČR(CZ) GBP304/12/G069; GA MŠk(CZ) ED1.1.00/02.0109 Grant - others:GA MŠk(CZ) CZ.1.07/2.3.00/30.0045 Institutional support: RVO:68378041 ; RVO:86652036 Keywords : Astrocytes * focal and global cerebral ischemia * HCN channels Subject RIV: FH - Neurology Impact factor: 6.031, year: 2014

  12. Biomolecules from HCN

    Science.gov (United States)

    Ferris, J. P.; Wos, J. D.; Ryan, T. J.; Lobo, A. P.; Donner, D. B.

    1974-01-01

    It has been suggested by Sanchez et al. (1967) that HCN might have been one of the more important precursors of biological molecules on the primitive earth. Studies were conducted to determine the mechanisms involved in HCN oligomerizations in dilute aqueous solutions and to identify the compounds which are produced in these oligomerization mixtures. Indirect evidence for the formation of cyanate was obtained along with direct evidence for the formation of citrulline, aspartic acid, and orotic acid.

  13. Gain-of-function HCN2 variants in genetic epilepsy.

    Science.gov (United States)

    Li, Melody; Maljevic, Snezana; Phillips, A Marie; Petrovski, Slave; Hildebrand, Michael S; Burgess, Rosemary; Mount, Therese; Zara, Federico; Striano, Pasquale; Schubert, Julian; Thiele, Holger; Nürnberg, Peter; Wong, Michael; Weisenberg, Judith L; Thio, Liu Lin; Lerche, Holger; Scheffer, Ingrid E; Berkovic, Samuel F; Petrou, Steven; Reid, Christopher A

    2018-02-01

    Genetic generalized epilepsy (GGE) is a common epilepsy syndrome that encompasses seizure disorders characterized by spike-and-wave discharges (SWDs). Pacemaker hyperpolarization-activated cyclic nucleotide-gated channels (HCN) are considered integral to SWD genesis, making them an ideal gene candidate for GGE. We identified HCN2 missense variants from a large cohort of 585 GGE patients, recruited by the Epilepsy Phenome-Genome Project (EPGP), and performed functional analysis using two-electrode voltage clamp recordings from Xenopus oocytes. The p.S632W variant was identified in a patient with idiopathic photosensitive occipital epilepsy and segregated in the family. This variant was also independently identified in an unrelated patient with childhood absence seizures from a European cohort of 238 familial GGE cases. The p.V246M variant was identified in a patient with photo-sensitive GGE and his father diagnosed with juvenile myoclonic epilepsy. Functional studies revealed that both p.S632W and p.V246M had an identical functional impact including a depolarizing shift in the voltage dependence of activation that is consistent with a gain-of-function. In contrast, no biophysical changes resulted from the introduction of common population variants, p.E280K and p.A705T, and the p.R756C variant from EPGP that did not segregate with disease. Our data suggest that HCN2 variants can confer susceptibility to GGE via a gain-of-function mechanism. © 2017 Wiley Periodicals, Inc.

  14. Search after new agents for hyperpolarization-activated and cyclic nucleotide-gated ion channels; Suche nach neuen Wirkstoffen fuer Hyperpolarisationsaktivierte und zyklisch Nukleotid-gesteuerte Ionenkanaele

    Energy Technology Data Exchange (ETDEWEB)

    Struenker, T.

    2005-12-01

    Rhythmic activity of single cells or cellular networks is a common feature of most organisms. Cellular rhythms govern the beating of the heart, cycles of sleep and wakefulness, breathing, and the release of hormones. The endogenous rhythmic activity of many neurons and cardiac relies on a complex interplay between several distinct ion channels. In particular, one type of ion channel plays a prominent role in the control of rhythmic electrical activity because it determines the frequency of the oscillations. The activity of the channels is thus setting the ''pace'' of the activity; therefore, these channels are often referred to as ''pacemaker'' channels. Despite their obvious physiological importance it hasn't been until a few years ago that the genes encoding pacemaker channels have been identified. Because both hyperpolarization and cyclic nucleotides are key elements that control their activity, pacemaker channels have now been designated hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels. From a scientific as well as medical point of view, HCN channels are interesting drug targets. Only a few substances are known that specifically affect HCN channels. In the present study, a microtiter plate-based high throughput screening assay for HCN1 and HCN4 channels was developed. With this assay, known drugs for HCN channels were characterized. Subsequently, venoms of snails, spiders, scorpions, and snakes were screened for toxins affecting HCN channel activity. A few venoms were identified that possibly contain drugs that act on HCN channels. (orig.)

  15. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes—A model

    Science.gov (United States)

    Kanani, S.; Pumir, A.; Krinsky, V.

    2008-01-01

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler Reuter model, as well as with the elaborate dynamic Luo Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I channels is low enough. At too high an expression level of I channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I channels observed in ventricular myocytes, both in the Beeler Reuter and in the dynamic Luo Rudy models are too high to allow to observe oscillations. With expression levels below ˜1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  16. Long-lasting spatial learning and memory impairments caused by chronic cerebral hypoperfusion associate with a dynamic change of HCN1/HCN2 expression in hippocampal CA1 region.

    Science.gov (United States)

    Luo, Pan; Lu, Yun; Li, Changjun; Zhou, Mei; Chen, Cheng; Lu, Qing; Xu, Xulin; He, Zhi; Guo, Lianjun

    2015-09-01

    Chronic cerebral hypoperfusion (CCH) causes learning and memory impairments and increases the risk of Alzheimer disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the mechanisms underlying the disease process remained unclear particularly in a temporal manner. We performed permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO) to induce CCH. To determine whether hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are altered at different stages of cognitive impairment caused by CCH, adult male SD rats were randomly distributed into sham-operated 4, 8 and 12weeks group, 2VO 4, 8 and 12weeks group. Learning and memory performance were evaluated with Morris water maze (MWM) and long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Expression of NeuN, HCN1 and HCN2 in hippocampal CA1, DG and CA3 areas was quantified by immunohistochemistry and western blotting. Our data showed that CCH induced a remarkable spatial learning and memory deficits in rats of 2VO 4, 8, and 12weeks group although neuronal loss only occurred after 4weeks of 2VO surgery in CA1. In addition, a significant reduction of HCN1 surface expression in CA1 was observed in the group that suffered 4weeks ischemia but neither 8 nor 12weeks. However, HCN2 surface expression in CA1 increased throughout the ischemia time-scales (4, 8 and 12w). Our findings indicate spatial learning and memory deficits in the CCH model are associated with disturbed HCN1 and HCN2 surface expression in hippocampal CA1. The altered patterns of both HCN1 and HCN2 surface expression may be implicated in the early stage (4w) of spatial learning and memory impairments; and the stable and long-lasting impairments of spatial learning and memory may partially attribute to the up-regulated HCN2 surface expression. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Qualification of a Multi-Channel Infrared Laser Absorption Spectrometer for Monitoring CO, HCl, HCN, HF, and CO2 Aboard Manned Spacecraft

    Science.gov (United States)

    Briggs, Ryan M.; Frez, Clifford; Forouhar, Siamak; May, Randy D.; Meyer, Marit E.; Kulis, Michael J.; Berger, Gordon M.

    2015-01-01

    Monitoring of specific combustion products can provide early-warning detection of accidental fires aboard manned spacecraft and also identify the source and severity of combustion events. Furthermore, quantitative in situ measurements are important for gauging levels of exposure to hazardous gases, particularly on long-duration missions where analysis of returned samples becomes impractical. Absorption spectroscopy using tunable laser sources in the 2 to 5 micrometer wavelength range enables accurate, unambiguous detection of CO, HCl, HCN, HF, and CO2, which are produced in varying amounts through the heating of electrical components and packaging materials commonly used aboard spacecraft. Here, we report on calibration and testing of a five-channel laser absorption spectrometer designed to accurately monitor ambient gas-phase concentrations of these five compounds, with low-level detection limits based on the Spacecraft Maximum Allowable Concentrations. The instrument employs a two-pass absorption cell with a total optical pathlength of 50 cm and a dedicated infrared semiconductor laser source for each target gas. We present results from testing the five-channel sensor in the presence of trace concentrations of the target compounds that were introduced using both gas sources and oxidative pyrolysis (non-flaming combustion) of solid material mixtures.

  18. Genetically engineered cardiac pacemaker: Stem cells transfected with HCN2 gene and myocytes-A model

    Energy Technology Data Exchange (ETDEWEB)

    Kanani, S. [Institut Genomique Fonctionelle, 141 Rue de la Cardonille, 34396 Montpellier (France); Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Pumir, A. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France); Laboratoire J.A. Dieudonne, CNRS and Universite de Nice, Parc Valrose, 06108 Nice (France)], E-mail: alain.pumir@unice.fr; Krinsky, V. [Institut Non Lineaire de Nice, CNRS and Universite de Nice, 1361 route des Lucioles, 06560 Valbonne (France)

    2008-01-07

    One of the successfully tested methods to design genetically engineered cardiac pacemaker cells consists in transfecting a human mesenchymal stem cell (hMSC) with a HCN2 gene and connecting it to a myocyte. We develop and study a mathematical model, describing a myocyte connected to a hMSC transfected with a HCN2 gene. The cardiac action potential is described both with the simple Beeler-Reuter model, as well as with the elaborate dynamic Luo-Rudy model. The HCN2 channel is described by fitting electrophysiological records, in the spirit of Hodgkin-Huxley. The model shows that oscillations can occur in a pair myocyte-stem cell, that was not observed in the experiments yet. The model predicted that: (1) HCN pacemaker channels can induce oscillations only if the number of expressed I{sub K1} channels is low enough. At too high an expression level of I{sub K1} channels, oscillations cannot be induced, no matter how many pacemaker channels are expressed. (2) At low expression levels of I{sub K1} channels, a large domain of values in the parameter space (n, N) exists, where oscillations should be observed. We denote N the number of expressed pacemaker channels in the stem cell, and n the number of gap junction channels coupling the stem cell and the myocyte. (3) The expression levels of I{sub K1} channels observed in ventricular myocytes, both in the Beeler-Reuter and in the dynamic Luo-Rudy models are too high to allow to observe oscillations. With expression levels below {approx}1/4 of the original value, oscillations can be observed. The main consequence of this work is that in order to obtain oscillations in an experiment with a myocyte-stem cell pair, increasing the values of n, N is unlikely to be helpful, unless the expression level of I{sub K1} has been reduced enough. The model also allows us to explore levels of gene expression not yet achieved in experiments, and could be useful to plan new experiments, aimed at improving the robustness of the oscillations.

  19. Peripheral hyperpolarization-activated cyclic nucleotide-gated channels contribute to inflammation-induced hypersensitivity of the rat temporomandibular joint.

    Science.gov (United States)

    Hatch, R J; Jennings, E A; Ivanusic, J J

    2013-08-01

    Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels conduct an inward cation current (Ih ) that contributes to the maintenance of neuronal membrane potential and have been implicated in a number of animal models of neuropathic and inflammatory pain. In the current study, we investigated HCN channel involvement in inflammatory pain of the temporomandibular joint (TMJ). The contribution of HCN channels to inflammation (complete Freund's adjuvant; CFA)-induced mechanical hypersensitivity of the rat TMJ was tested with injections of the HCN channel blocker ZD7288. Retrograde labelling and immunohistochemistry was used to explore HCN channel expression in sensory neurons that innervate the TMJ. Injection of CFA into the TMJ (n = 7) resulted in a significantly increased mechanical sensitivity relative to vehicle injection (n = 7) (p blocked by co-injection of ZD7288 with the CFA (n = 7). Retrograde labelling and immunohistochemistry experiments revealed expression predominantly of HCN1 and HCN2 channel subunits in trigeminal ganglion neurons that innervate the TMJ (n = 3). No change in the proportion or intensity of HCN channel expression was found in inflamed (n = 6) versus control (n = 5) animals at the time point tested. Our findings suggest a role for peripheral HCN channels in inflammation-induced pain of the TMJ. Peripheral application of a HCN channel blocker could provide therapeutic benefit for inflammatory TMJ pain and avoid side effects associated with activation of HCN channels in the central nervous system. © 2012 European Federation of International Association for the Study of Pain Chapters.

  20. I h and HCN channels in murine spiral ganglion neurons: tonotopic variation, local heterogeneity, and kinetic model.

    Science.gov (United States)

    Liu, Qing; Manis, Paul B; Davis, Robin L

    2014-08-01

    One of the major contributors to the response profile of neurons in the auditory pathways is the I h current. Its properties such as magnitude, activation, and kinetics not only vary among different types of neurons (Banks et al., J Neurophysiol 70:1420-1432, 1993; Fu et al., J Neurophysiol 78:2235-2245, 1997; Bal and Oertel, J Neurophysiol 84:806-817, 2000; Cao and Oertel, J Neurophysiol 94:821-832, 2005; Rodrigues and Oertel, J Neurophysiol 95:76-87, 2006; Yi et al., J Neurophysiol 103:2532-2543, 2010), but they also display notable diversity in a single population of spiral ganglion neurons (Mo and Davis, J Neurophysiol 78:3019-3027, 1997), the first neural element in the auditory periphery. In this study, we found from somatic recordings that part of the heterogeneity can be attributed to variation along the tonotopic axis because I h in the apical neurons have more positive half-activation voltage levels than basal neurons. Even within a single cochlear region, however, I h current properties are not uniform. To account for this heterogeneity, we provide immunocytochemical evidence for variance in the intracellular density of the hyperpolarization-activated cyclic nucleotide-gated channel α-subunit 1 (HCN1), which mediates I h current. We also observed different combinations of HCN1 and HCN4 α-subunits from cell to cell. Lastly, based on the physiological data, we performed kinetic analysis for the I h current and generated a mathematical model to better understand varied I h on spiral ganglion function. Regardless of whether I h currents are recorded at the nerve terminals (Yi et al., J Neurophysiol 103:2532-2543, 2010) or at the somata of spiral ganglion neurons, they have comparable mean half-activation voltage and induce similar resting membrane potential changes, and thus our model may also provide insights into the impact of I h on synaptic physiology.

  1. Response of Si- and Al-doped graphenes toward HCN: A computational study

    International Nuclear Information System (INIS)

    Rastegar, Somayeh F.; Peyghan, Ali Ahmadi; Hadipour, Nasser L.

    2013-01-01

    Highlights: ► Sensitivity of Si- and Al-doped graphene (SiG and AlG) toward HCN is investigated. ► The electronic properties of AlG are significantly changed in the presence of HCN. ► It is established that AlG can be a good sensor for HCN molecule. - Abstract: Sensitivity of Si- and Al-doped graphenes (SiG and AlG) toward toxic HCN has been investigated using density functional theory (DFT) in terms of energetic, geometric and electronic properties. Optimized configurations corresponding to physisorption and, subsequently, chemisorption of HCN on each surface have been identified. It is found that HCN molecule can be adsorbed on impurity atoms with adsorption energies about −27.20 and −38.75 kcal/mol on the SiG and the AlG, respectively. By comparing to HCN adsorption on SiG, it can be inferred that molecular HCN adsorbed on AlG can induce significant change in AlG conductivity. On the basis of calculated changes in the HOMO/LUMO energy gap it is found that electronic properties of AlG are sensitive toward adsorption of HCN and the reverse is correct for SiG, suggesting that the AlG may be a promising sensor for HCN.

  2. Dysfunctional Hyperpolarization-Activated Cyclic Nucleotide-gated Ion Channels in Cardiac Diseases

    Directory of Open Access Journals (Sweden)

    Xiaoqi Zhao

    Full Text Available Abstract Hyperpolarization-activated cyclic nucleotide-gated (HCN channels are reverse voltage-dependent, and their activation depends on the hyperpolarization of the membrane and may be directly or indirectly regulated by the cyclic adenosine monophosphate (cAMP or other signal-transduction cascades. The distribution, quantity and activation states of HCN channels differ in tissues throughout the body. Evidence exhibits that HCN channels play critical roles in the generation and conduction of the electrical impulse and the physiopathological process of some cardiac diseases. They may constitute promising drug targets in the treatment of these cardiac diseases. Pharmacological treatment targeting HCN channels is of benefit to these cardiac conditions.

  3. Enhancement of Spontaneous Activity by HCN4 Overexpression in Mouse Embryonic Stem Cell-Derived Cardiomyocytes - A Possible Biological Pacemaker.

    Directory of Open Access Journals (Sweden)

    Yukihiro Saito

    Full Text Available Establishment of a biological pacemaker is expected to solve the persisting problems of a mechanical pacemaker including the problems of battery life and electromagnetic interference. Enhancement of the funny current (If flowing through hyperpolarization-activated cyclic nucleotide-gated (HCN channels and attenuation of the inward rectifier K+ current (IK1 flowing through inward rectifier potassium (Kir channels are essential for generation of a biological pacemaker. Therefore, we generated HCN4-overexpressing mouse embryonic stem cells (mESCs and induced cardiomyocytes that originally show poor IK1 currents, and we investigated whether the HCN4-overexpressing mESC-derived cardiomyocytes (mESC-CMs function as a biological pacemaker in vitro.The rabbit Hcn4 gene was transfected into mESCs, and stable clones were selected. mESC-CMs were generated via embryoid bodies and purified under serum/glucose-free and lactate-supplemented conditions. Approximately 90% of the purified cells were troponin I-positive by immunostaining. In mESC-CMs, expression level of the Kcnj2 gene encoding Kir2.1, which is essential for generation of IK1 currents that are responsible for stabilizing the resting membrane potential, was lower than that in an adult mouse ventricle. HCN4-overexpressing mESC-CMs expressed about a 3-times higher level of the Hcn4 gene than did non-overexpressing mESC-CMs. Expression of the Cacna1h gene, which encodes T-type calcium channel and generates diastolic depolarization in the sinoatrial node, was also confirmed. Additionally, genes required for impulse conduction including Connexin40, Connexin43, and Connexin45 genes, which encode connexins forming gap junctions, and the Scn5a gene, which encodes sodium channels, are expressed in the cells. HCN4-overexpressing mESC-CMs showed significantly larger If currents and more rapid spontaneous beating than did non-overexpressing mESC-CMs. The beating rate of HCN4-overexpressing mESC-CMs responded

  4. Effect of Non-specific HCN1 Blocker CsCl on Spatial Learning and Memory in Mouse

    Institute of Scientific and Technical Information of China (English)

    YU Xin; GUO Lianjun; YIN Guangfu; ZONG Xiangang; AI Yongxun

    2006-01-01

    It has been suggested that HCN1 is primarily expressed in hippocampus, however little is known about its effects on spatial learning and memory. In the present study, we investigated the effects of non-specific HCN1 blocker CsCl on spatial learning and memory by using Morris water maze and in situ hybridization in mice. The results showed CsCl 160 mg/kg ip for 4 days, and the mean escape latency was 34 s longer than that of normal control (P<0.01). In hippocampal tissues, staining for the HCN1 mRNA was stronger in the DG and CA1 region of the hippocampus (P <0.05, P<0.05, when CsCl-administration group was compared with normal group). Our results suggested that CsCl could significantly affect the spatial learning and memory in mice, and HCN channel is involved in the process of learning and memory.

  5. Is Photolytic Production a Viable Source of HCN and HNC in Astrophysical Environments? A Laboratory-based Feasibility Study of Methyl Cyanoformate

    Science.gov (United States)

    Wilhelm, Michael J.; Martínez-Núñez, Emilio; González-Vázquez, Jesús; Vázquez, Saulo A.; Smith, Jonathan M.; Dai, Hai-Lung

    2017-11-01

    Motivated by the possibility that cyano-containing hydrocarbons may act as photolytic sources for HCN and HNC in astrophysical environments, we conducted a combined experimental and theoretical investigation of the 193 nm photolysis of the cyano-ester, methyl cyanoformate (MCF). Experimentally, nanosecond time-resolved infrared emission spectroscopy was used to detect the emission from nascent products generated in the photolysis reaction. The time-resolved spectra were analyzed using a recently developed spectral reconstruction analysis, which revealed spectral bands assignable to HCN and HNC. Fitting of the emission band shape and intensity allowed determination of the photolysis quantum yields of HCN, HNC, and {CN}({A}2{{{\\Pi }}}1) and an HNC/HCN ratio of ˜0.076 ± 0.059. Additionally, multiconfiguration self-consistent field calculations were used to characterize photoexcitation-induced reactions in the ground and four lowest singlet excited states of MCF. At 193 nm excitation, dissociation is predicted to occur predominantly on the repulsive S 2 state, with minor pathways via internal conversion from S 2 to highly excited ground state. An automated transition-state search algorithm was employed to identify the corresponding ground-state dissociation channels, and Rice-Ramsperger-Kassel-Marcus and Kinetic Monte Carlo simulations were used to calculate the associated branching ratios. The proposed mechanisms were validated using the experimentally measured and quasi-classical trajectory-deduced nascent internal energy distributions of HCN and HNC. This work, along with previous studies, illustrates the propensity for cyano-containing hydrocarbons to act as photolytic sources for astrophysical HCN and HNC and may help explain the observed overabundance of HNC in astrophysical environments.

  6. Kir2.1 channels set two levels of resting membrane potential with inward rectification.

    Science.gov (United States)

    Chen, Kuihao; Zuo, Dongchuan; Liu, Zheng; Chen, Haijun

    2018-04-01

    Strong inward rectifier K + channels (Kir2.1) mediate background K + currents primarily responsible for maintenance of resting membrane potential. Multiple types of cells exhibit two levels of resting membrane potential. Kir2.1 and K2P1 currents counterbalance, partially accounting for the phenomenon of human cardiomyocytes in subphysiological extracellular K + concentrations or pathological hypokalemic conditions. The mechanism of how Kir2.1 channels contribute to the two levels of resting membrane potential in different types of cells is not well understood. Here we test the hypothesis that Kir2.1 channels set two levels of resting membrane potential with inward rectification. Under hypokalemic conditions, Kir2.1 currents counterbalance HCN2 or HCN4 cation currents in CHO cells that heterologously express both channels, generating N-shaped current-voltage relationships that cross the voltage axis three times and reconstituting two levels of resting membrane potential. Blockade of HCN channels eliminated the phenomenon in K2P1-deficient Kir2.1-expressing human cardiomyocytes derived from induced pluripotent stem cells or CHO cells expressing both Kir2.1 and HCN2 channels. Weakly inward rectifier Kir4.1 or inward rectification-deficient Kir2.1•E224G mutant channels do not set such two levels of resting membrane potential when co-expressed with HCN2 channels in CHO cells or when overexpressed in human cardiomyocytes derived from induced pluripotent stem cells. These findings demonstrate a common mechanism that Kir2.1 channels set two levels of resting membrane potential with inward rectification by balancing inward currents through different cation channels such as hyperpolarization-activated HCN channels or hypokalemia-induced K2P1 leak channels.

  7. Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber).

    Science.gov (United States)

    Gessele, Nikodemus; Garcia-Pino, Elisabet; Omerbašić, Damir; Park, Thomas J; Koch, Ursula

    2016-01-01

    Naked mole-rats (Heterocephalus glaber) live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.

  8. Structural Changes and Lack of HCN1 Channels in the Binaural Auditory Brainstem of the Naked Mole-Rat (Heterocephalus glaber.

    Directory of Open Access Journals (Sweden)

    Nikodemus Gessele

    Full Text Available Naked mole-rats (Heterocephalus glaber live in large eu-social, underground colonies in narrow burrows and are exposed to a large repertoire of communication signals but negligible binaural sound localization cues, such as interaural time and intensity differences. We therefore asked whether monaural and binaural auditory brainstem nuclei in the naked mole-rat are differentially adjusted to this acoustic environment. Using antibody stainings against excitatory and inhibitory presynaptic structures, namely the vesicular glutamate transporter VGluT1 and the glycine transporter GlyT2 we identified all major auditory brainstem nuclei except the superior paraolivary nucleus in these animals. Naked mole-rats possess a well structured medial superior olive, with a similar synaptic arrangement to interaural-time-difference encoding animals. The neighboring lateral superior olive, which analyzes interaural intensity differences, is large and elongated, whereas the medial nucleus of the trapezoid body, which provides the contralateral inhibitory input to these binaural nuclei, is reduced in size. In contrast, the cochlear nucleus, the nuclei of the lateral lemniscus and the inferior colliculus are not considerably different when compared to other rodent species. Most interestingly, binaural auditory brainstem nuclei lack the membrane-bound hyperpolarization-activated channel HCN1, a voltage-gated ion channel that greatly contributes to the fast integration times in binaural nuclei of the superior olivary complex in other species. This suggests substantially lengthened membrane time constants and thus prolonged temporal integration of inputs in binaural auditory brainstem neurons and might be linked to the severely degenerated sound localization abilities in these animals.

  9. Characterization of a right atrial subsidiary pacemaker and acceleration of the pacing rate by HCN over-expression.

    Science.gov (United States)

    Morris, Gwilym M; D'Souza, Alicia; Dobrzynski, Halina; Lei, Ming; Choudhury, Moinuddin; Billeter, Rudi; Kryukova, Yelena; Robinson, Richard B; Kingston, Paul A; Boyett, Mark R

    2013-10-01

    Although the right atrium (RA contains subsidiary atrial pacemaker (SAP) tissue that can take over from the sinoatrial node (SAN) in sick sinus syndrome (SSS), SAP tissue is bradycardic. Little is known about SAP tissue and one aim of the study was to characterize ion channel expression to obtain insight into SAP pacemaker mechanisms. A second aim was to determine whether HCN over-expression (a 'biopacemaker'-like strategy) can accelerate the pacemaker rate producing a pacemaker that is similar in nature to the SAN. SAP tissue was isolated from the rat and the leading pacemaker site was characterized. Cell size at the leading pacemaker site in the SAP was smaller than in the RA and comparable to that in the SAN. mRNA levels showed the SAP to be similar to, but distinct from, the SAN. For example, in the SAN and SAP, expression of Tbx3 and HCN1 was higher and Nav1.5 and Cx43 lower than in the RA. Organ-cultured SAP tissue beat spontaneously, but at a slower rate than the SAN. Adenovirus-mediated gene transfer of HCN2 and the chimeric protein HCN212 significantly increased the pacemaker rate of the SAP close to that of the native SAN, but HCN4 was ineffective. SAP tissue near the inferior vena cava is bradycardic, but shares characteristics with the SAN. Pacing can be accelerated by the over-expression of HCN2 or HCN212. This provides proof of concept for the use of SAP tissue as a substrate for biopacemaking in the treatment of SSS.

  10. Health Code Number (HCN) Development Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Petrocchi, Rocky; Craig, Douglas K.; Bond, Jayne-Anne; Trott, Donna M.; Yu, Xiao-Ying

    2013-09-01

    This report provides the detailed description of health code numbers (HCNs) and the procedure of how each HCN is assigned. It contains many guidelines and rationales of HCNs. HCNs are used in the chemical mixture methodology (CMM), a method recommended by the department of energy (DOE) for assessing health effects as a result of exposures to airborne aerosols in an emergency. The procedure is a useful tool for proficient HCN code developers. Intense training and quality assurance with qualified HCN developers are required before an individual comprehends the procedure to develop HCNs for DOE.

  11. The HNC/HCN ratio in star-forming regions

    International Nuclear Information System (INIS)

    Graninger, Dawn M.; Öberg, Karin I.; Herbst, Eric; Vasyunin, Anton I.

    2014-01-01

    HNC and HCN, typically used as dense gas tracers in molecular clouds, are a pair of isomers that have great potential as a temperature probe because of temperature dependent, isomer-specific formation and destruction pathways. Previous observations of the HNC/HCN abundance ratio show that the ratio decreases with increasing temperature, something that standard astrochemical models cannot reproduce. We have undertaken a detailed parameter study on which environmental characteristics and chemical reactions affect the HNC/HCN ratio and can thus contribute to the observed dependence. Using existing gas and gas-grain models updated with new reactions and reaction barriers, we find that in static models the H + HNC gas-phase reaction regulates the HNC/HCN ratio under all conditions, except for very early times. We quantitatively constrain the combinations of H abundance and H + HNC reaction barrier that can explain the observed HNC/HCN temperature dependence and discuss the implications in light of new quantum chemical calculations. In warm-up models, gas-grain chemistry contributes significantly to the predicted HNC/HCN ratio and understanding the dynamics of star formation is therefore key to model the HNC/HCN system.

  12. The Photodissociation of HCN and HNC: Effects on the HNC/HCN Abundance Ratio in the Interstellar Medium

    Energy Technology Data Exchange (ETDEWEB)

    Aguado, Alfredo [Departamento de Química Física Aplicada (UAM), Unidad Asociada a IFF-CSIC, Facultad de Ciencias Módulo 14, Universidad Autónoma de Madrid, E-28049, Madrid (Spain); Roncero, Octavio; Zanchet, Alexandre [Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, E-28006 Madrid (Spain); Agúndez, Marcelino; Cernicharo, José, E-mail: octavio.roncero@csic.es [Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, Cantoblanco E-28049 (Spain)

    2017-03-20

    The impact of the photodissociation of HCN and HNC isomers is analyzed in different astrophysical environments. For this purpose, the individual photodissociation cross sections of HCN and HNC isomers have been calculated in the 7–13.6 eV photon energy range for a temperature of 10 K. These calculations are based on the ab initio calculation of three-dimensional adiabatic potential energy surfaces of the 21 lower electronic states. The cross sections are then obtained using a quantum wave packet calculation of the rotational transitions needed to simulate a rotational temperature of 10 K. The cross section calculated for HCN shows significant differences with respect to the experimental one, and this is attributed to the need to consider non-adiabatic transitions. Ratios between the photodissociation rates of HCN and HNC under different ultraviolet radiation fields have been computed by renormalizing the rates to the experimental value. It is found that HNC is photodissociated faster than HCN by a factor of 2.2 for the local interstellar radiation field and 9.2 for the solar radiation field, at 1 au. We conclude that to properly describe the HNC/HCN abundance ratio in astronomical environments illuminated by an intense ultraviolet radiation field, it is necessary to use different photodissociation rates for each of the two isomers, which are obtained by integrating the product of the photodissociation cross sections and ultraviolet radiation field over the relevant wavelength range.

  13. Synthesis of HCN and HNC in Ion-Irradiated N2-Rich Ices

    Science.gov (United States)

    Moore, M. H.; Hudson, R. L.; Ferrante, R. F.

    2002-11-01

    Near-IR observations reveal that nitrogen-rich ice containing small amounts of methane, CH4, and carbon monoxide, CO, is abundant on the surfaces of Triton, a moon of Neptune, and Pluto (Cruikshank et al.. 1993; Owen et al., 1993). N2-rich apolar ices are also possible in some interstellar environments (Ehrenfreund et al., 1998). To investigate the radiation chemical behavior of N2-dominated ices we performed a systematic IR study of ion-irradiated N2-rich ices containing CH4 and CO. Experiments at 18 K, showed that HCN, HNC, and the reactive molecule diazomethane, CH2N2, formed along with several radicals. NH3 was also identified in irradiated N2 + CH4. Comparing results from similarly photolyzed ices (Bohn et al., 1994) shows that the significant difference between radiolysis and photolysis of these N2-dominated ices is that photolyzed ices do not form detectable HCN and HNC. Our experiments examined different N2/CH4 ratios, the half-life of CH4, possible HCN and HNC formation routes, and competing pathways in the presence of CO. Intrinsic band strengths (A(HCN) and A(HNC)) were measured and used to calculate nearly equal values of HCN and HNC yields in N2+CH4 irradiated ices. Low temperature results apply to interstellar ices. Reaction products that appear at 30-35 K are also expected to form and survive on the surfaces of Triton and Pluto and interstellar grains. We examined the evolution of ice features as species undergo acid-base (acids such as HCN, HNC, HNCO and a base NH3) reactions triggered by warming from 18 K to 30-35 K. We identified anions (OCN-, CN- and N3-) attributed to relatively stable salts in ices where NH4+ is the likely cation. These results also have an astrobiology implication since many of these products (HCN, HNC, HNCO, NH3, NH4OCN, and NH4CN) are reactants used in synthesis studies of bio- molecules such as amino acids and peptides.

  14. Dual Regulation of Voltage-Sensitive Ion Channels by PIP2

    Directory of Open Access Journals (Sweden)

    Aldo A Rodríguez Menchaca

    2012-09-01

    Full Text Available Over the past 16 years, there has been an impressive number of ion channels shown to be sensitive to the major phosphoinositide in the plasma membrane, phosphatidilinositol 4,5-bisphosphate (PIP2. Among them are voltage-gated channels, which are crucial for both neuronal and cardiac excitability. Voltage-gated calcium (Cav channels were shown to be regulated bidirectionally by PIP2. On one hand, PIP2 stabilized their activity by reducing current rundown but on the other hand it produced a voltage-dependent inhibition by shifting the activation curve to more positive voltages. For voltage-gated potassium (Kv channels PIP2 was first shown to prevent N-type inactivation. Careful examination of the effects of PIP2 on the activation mechanism of Kv1.2 has shown a similar bidirectional regulation as in the Cav channels. The two effects could be distinguished kinetically, in terms of their sensitivities to PIP2 and by distinct molecular determinants. The rightward shift of the Kv1.2 voltage dependence implicated basic residues in the S4-S5 linker and was consistent with stabilization of the inactive state of the voltage sensor. A third type of a voltage-gated ion channel modulated by PIP2 is the hyperpolarization-activated cyclic nucleotide-gated (HCN channel. PIP2 has been shown to enhance the opening of HCN channels by shifting their voltage-dependent activation toward depolarized potentials. The sea urchin HCN channel, SpIH, showed again a PIP2-mediated bidirectional effect but in reverse order than the depolarization-activated Cav and Kv channels: a voltage-dependent potentiation, like the mammalian HCN channels, but also an inhibition of the cGMP-induced current activation. Just like the Kv1.2 channels, distinct molecular determinants underlied the PIP2 dual effects on SpIH channels. The dual regulation of these very different ion channels, all of which are voltage dependent, points to conserved mechanisms of regulation of these channels by PIP2.

  15. Detection of interstellar vibrationally excited HCN

    International Nuclear Information System (INIS)

    Ziurys, L.M.; Turner, B.E.

    1986-01-01

    Vibrationally excited HCN has been observed for the first time in the interstellar medium. The J = 3-2 rotational transitions of the l-doubled (0,1/sup 1d/,1c, 0) bending mode of HCN have been detected toward Orion-KL and IRC +10216. In Orion, the overall column density in the (0,1,0) mode, which exclusively samples the ''hot core,'' is 1.7-10 16 cm -2 and can be understood in terms of the ''doughnut'' model for Orion. The ground-state HCN column density implied by the excited-state observations is 2.3 x 10 18 cm -2 in the hot core, at least one order of magnitude greater than the column densities derived for HCN in its spike and plateau/doughnut components. Radiative excitation by 14 μm flux from IRc2 accounts for the (0,1,0) population provided the hot core is approx.6-7 x 10 16 cm distant from IRc2, in agreement with the ''cavity'' model for KL. Toward IRC +10216 we have detected J = 3-2 transitions of both (0,1/sup 1c/,/sup 1d/,0) and (0,2 0 ,0) excited states. The spectral profiles have been modeled to yield abundances and excitation conditions throughout the expanding envelope

  16. ORIGINS OF SCATTER IN THE RELATIONSHIP BETWEEN HCN 1-0 AND DENSE GAS MASS IN THE GALACTIC CENTER

    Energy Technology Data Exchange (ETDEWEB)

    Mills, Elisabeth A. C. [San Jose State University, 1 Washington Square, San Jose, CA 95192 (United States); Battersby, Cara, E-mail: elisabeth.mills@sjsu.edu [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-01-20

    We investigate the correlation of HCN 1-0 with gas mass in the central 300 pc of the Galaxy. We find that on the ∼10 pc size scale of individual cloud cores, HCN 1-0 is well correlated with dense gas mass when plotted as a log–log relationship. There is ∼0.75 dex of scatter in this relationship from clouds like Sgr B2, which has an integrated HCN 1-0 intensity of a cloud less than half its mass, and others that have HCN 1-0 enhanced by a factor of 2–3 relative to clouds of comparable mass. We identify the two primary sources of scatter to be self-absorption and variations in HCN abundance. We also find that the extended HCN 1-0 emission is more intense per unit mass than in individual cloud cores. In fact the majority (80%) of HCN 1-0 emission comes from extended gas with column densities below 7 × 10{sup 22} cm{sup −2}, accounting for 68% of the total mass. We find variations in the brightness of HCN 1-0 would only yield a ∼10% error in the dense gas mass inferred from this line in the Galactic center. However, the observed order of magnitude HCN abundance variations, and the systematic nature of these variations, warn of potential biases in the use of HCN as dense gas mass tracer in more extreme environments such as an active galactic nucleus and shock-dominated regions. We also investigate other 3 mm tracers, finding that HNCO is better correlated with mass than HCN, and might be a better tracer of cloud mass in this environment.

  17. CN and HCN in the infrared spectrum of IRC + 10216

    Science.gov (United States)

    Wiedemann, G. R.; Deming, D.; Jennings, D. E.; Hinkle, Kenneth H.; Keady, John J.

    1991-01-01

    The abundance of HCN in the inner circumstellar shell of IRC + 10216 has been remeasured using the 12-micron nu2 band. The 12-micron lines are less saturated than HCN 3-micron lines previously detected in the spectrum of IRC + 10216. The observed 12-micron HCN line is formed in the circumstellar shell from about 4 to 12 R sub * in accord with a photospheric origin for HCN. The derived HCN abundance in the 4 to 12 R sub* region is 4 x 10 exp-5 and the column density is 7 x 10 exp 18/sq cm. The 5-micron CN vibration-rotation fundamental band was detected for the first time in an astronomical source. Using four CN lines, the CN column density was determined to be 2.6 x 10 exp 15/sq cm and the rotational temperature to be 8 +/-2 K. The peal radial abundance is 1 x 10 exp -5. The values for the temperature and abundance are in good agreement with microwave results and with the formation of CN from the photolysis of HCN.

  18. CO and HCN observations of carbon stars

    NARCIS (Netherlands)

    Baas, F; deJong, T; Loup, C

    We present CO and HCN observations of carbon stars. They consist of partly new detections in the (CO)-C-12 J = (1-0), (2-1) and HCN(1-0) lines obtained with the SEST and the IRAM telescope, and of (CO)-C-12 and (CO)-C-13 J = (1-0), (2-1) and (3-2) observations with IRAM and the JCMT of some of the

  19. Targeting miR-423-5p Reverses Exercise Training-Induced HCN4 Channel Remodeling and Sinus Bradycardia

    DEFF Research Database (Denmark)

    D'Souza, Alicia; Pearman, Charles M.; Wang, Yanwen

    2017-01-01

    -generation sequencing and quantitative real-time reverse transcription polymerase chain reaction showed remodeling of miRs in the sinus node of swim-trained mice. Computational predictions highlighted a prominent role for miR-423-5p. Interaction between miR-423-5p and HCN4 was confirmed by a dose-dependent reduction...

  20. An Ab Initio MP2 Study of HCN-HX Hydrogen Bonded Complexes

    Directory of Open Access Journals (Sweden)

    Araújo Regiane C.M.U.

    1998-01-01

    Full Text Available An ab initio MP2/6-311++G** study has been performed to obtain geometries, binding energies and vibrational properties of HCN-HX H-bonded complexes with X = F, Cl, NC, CN and CCH. These MP2/6-311++G** results have revealed that: (i the calculated H-bond lengths are in very good agreement with the experimental ones; (ii the H-bond strength is associated with the intermolecular charge transfer and follows the order: HCN-HNC ~ HCN-HF > HCN-HCl ~ HCN-HCN > HCN-HCCH; (iii BSSE correction introduces an average reduction of 2.4 kJ/mol on the MP2/6-311++G** binding energies, i.e. 11% of the uncorrected binding energy; (iv the calculated zero-point energies reduce the stability of these complexes and show a good agreement with the available experimental values; (v the H-X stretching frequency is shifted downward upon H-bond formation. This displacement is associated with the H-bond length; (vi The more pronounced effect on the infrared intensities occurs with the H-X stretching intensity. It is much enhanced after complexation due to the charge-flux term; (vii the calculated intermolecular stretching frequencies are in very good agreement with the experimental ones; and, finally, (viii the results obtained for the HCN-HX complexes follow the same profile as those found for the acetylene-HX series but, in the latter case, the effects on the properties of the free molecules due to complexation are less pronounced than those in HCN-HX.

  1. Characterization of solvated electrons in hydrogen cyanide clusters: (HCN)n- (n=3, 4)

    Science.gov (United States)

    Wu, Di; Li, Ying; Li, Zhuo; Chen, Wei; Li, Zhi-Ru; Sun, Chia-Chung

    2006-02-01

    Theoretical studies of the solvated electrons (HCN)n- (n =3, 4) reveal a variety of electron trapping possibilities in the (HCN)n (n =3, 4) clusters. Two isomers for (HCN)3- and four isomers for (HCN)4- are obtained at the MP2/aug -cc-pVDZ+dBF (diffusive bond functions) level of theory. In view of vertical electron detachment energies (VDEs) at the CCSD(T) level, the excess electron always "prefers" locating in the center of the system, i.e., the isomer with higher coordination number shows larger VDE value. However, the most stable isomers of the solvated electron state (HCN)3- and (HCN)4- are found to be the linear C∞ν and D∞h structures, respectively, but not the fullyl symmetric structures which have the largest VDE values.

  2. Electric discharge synthesis of HCN in simulated Jovian atmospheres

    Science.gov (United States)

    Stribling, Roscoe; Miller, Stanley L.

    1987-01-01

    Corona discharge is presently considered as a possible source of the HCN detected in the Jovian atmosphere at 2.2 x 10 to the -7th moles/sq cm column density, for the cases of gas mixtures containing H2, CH4, and NH3, with H2/CH4 ratios from 4.4 to 1585. A 3:1 ratio of corona discharge to lightning energy similar to that of the earth is applied to Jupiter. Depending on the lightning energy available on Jupiter and the eddy diffusion coefficients in the synthesis region, HCN column densities generated by corona discharge could account for about 10 percent of the HCN observed.

  3. SPATIALLY RESOLVED HCN ABSORPTION FEATURES IN THE CIRCUMNUCLEAR REGION OF NGC 1052

    Energy Technology Data Exchange (ETDEWEB)

    Sawada-Satoh, Satoko [Mizusawa VLBI Observatory, National Astronomical Observatory of Japan, 2-12 Hoshigaoka-cho, Mizusawa-ku, Oshu, Iwate 023-0861 (Japan); Roh, Duk-Gyoo; Oh, Se-Jin; Lee, Sang-Sung; Byun, Do-Young; Yeom, Jae-Hwan; Jung, Dong-Kyu; Kim, Hyo-Ryoung; Hwang, Ju-Yeon [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong, Daejeon 34055 (Korea, Republic of); Kameno, Seiji, E-mail: satoko.ss@nao.ac.jp, E-mail: sss@mx.ibaraki.ac.jp [Joint ALMA Observatory, Alonso de Cordova 3107 Vitacura, Santiago 763 0355 (Chile)

    2016-10-10

    We present the first VLBI detection of HCN molecular absorption in the nearby active galactic nucleus NGC 1052. Utilizing the 1 mas resolution achieved by the Korean VLBI Network, we have spatially resolved the HCN absorption against a double-sided nuclear jet structure. Two velocity features of HCN absorption are detected significantly at the radial velocity of 1656 and 1719 km s{sup −1}, redshifted by 149 and 212 km s{sup −1} with respect to the systemic velocity of the galaxy. The column density of the HCN molecule is estimated to be 10{sup 15}–10{sup 16} cm{sup −2}, assuming an excitation temperature of 100–230 K. The absorption features show high optical depth localized on the receding jet side, where the free–free absorption occurred due to the circumnuclear torus. The size of the foreground absorbing molecular gas is estimated to be on approximately one-parsec scales, which agrees well with the approximate size of the circumnuclear torus. HCN absorbing gas is likely to be several clumps smaller than 0.1 pc inside the circumnuclear torus. The redshifted velocities of the HCN absorption features imply that HCN absorbing gas traces ongoing infall motion inside the circumnuclear torus onto the central engine.

  4. WARM HCN IN THE PLANET FORMATION ZONE OF GV TAU N

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, Asuncion [Observatorio Astronomico Nacional (OAN,IGN), Apdo 112, E-28803 Alcala de Henares (Spain); Cernicharo, Jose; Agundez, Marcelino, E-mail: a.fuente@oan.es [Centro de Astrobiologia (CSIC/INTA), Laboratory of Molecular Astrophysics, Ctra. Ajalvir km. 4, E-28850 Torrejon de Ardoz (Spain)

    2012-07-20

    The Plateau de Bure Interferometer has been used to map the continuum emission at 3.4 mm and 1.1 mm together with the J = 1{yields}0 and J = 3{yields}2 lines of HCN and HCO{sup +} toward the binary star GV Tau. The 3.4 mm observations did not resolve the binary components, and the HCN J = 1{yields}0 and HCO{sup +} J 1{yields}0 line emissions trace the circumbinary disk and the flattened envelope. However, the 1.1 mm observations resolved the individual disks of GV Tau N and GV Tau S and allowed us to study their chemistry. We detected the HCN 3{yields}2 line only toward the individual disk of GV Tau N, and the emission of the HCO{sup +} 3{yields}2 line toward GV Tau S. Simple calculations indicate that the 3{yields}2 line of HCN is formed in the inner R < 12 AU of the disk around GV Tau N where the HCN/HCO{sup +} abundance ratio is >300. On the contrary, this ratio is <1.6 in the disk around GV Tau S. The high HCN abundance measured in GV Tau N is well explained by photochemical processes in the warm (>400 K) and dense (n > 10{sup 7} cm{sup -3}) disk surface.

  5. THE NITROGEN ISOTOPIC COMPOSITION OF METEORITIC HCN

    Energy Technology Data Exchange (ETDEWEB)

    Pizzarello, Sandra, E-mail: pizzar@asu.edu [Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85018-1604 (United States)

    2014-12-01

    HCN is ubiquitous in extraterrestrial environments and is central to current theories on the origin of early solar system organic compounds such as amino acids. These compounds, observed in carbonaceous meteorites, were likely important in the origin and/or evolution of early life. As part of our attempts to understand the origin(s) of meteoritic CN{sup –}, we have analyzed the {sup 15}N/{sup 14}N isotopic composition of HCN gas released from water extracts of the Murchison meteorite and found its value to be near those of the terrestrial atmosphere. The findings, when evaluated viz-a-viz molecular abundances and isotopic data of meteoritic organic compounds, suggest that HCN formation could have occurred during the protracted water alteration processes known to have affected the mineralogy of many asteroidal bodies during their solar residence. This was an active synthetic stage, which likely involved simple gasses, organic molecules, their presolar precursors, as well as mineral catalysts and would have lead to the formation of molecules of differing isotopic composition, including some with solar values.

  6. Rotational excitation of HCN by para- and ortho-H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Vera, Mario Hernández, E-mail: marhvera@gmail.com [LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76 063 Le Havre cedex (France); InSTEC, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Kalugina, Yulia [LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76 063 Le Havre cedex (France); Tomsk State University, 36 Lenin av., Tomsk 634050 (Russian Federation); Denis-Alpizar, Otoniel [Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex (France); Departamento de Física, Universidad de Matanzas, Matanzas 40100 (Cuba); Stoecklin, Thierry [Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex (France); Lique, François, E-mail: francois.lique@univ-lehavre.fr [LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 1123, 76 063 Le Havre cedex (France)

    2014-06-14

    Rotational excitation of the hydrogen cyanide (HCN) molecule by collisions with para-H{sub 2}( j = 0, 2) and ortho-H{sub 2}( j = 1) is investigated at low temperatures using a quantum time independent approach. Both molecules are treated as rigid rotors. The scattering calculations are based on a highly correlated ab initio 4-dimensional (4D) potential energy surface recently published. Rotationally inelastic cross sections among the 13 first rotational levels of HCN were obtained using a pure quantum close coupling approach for total energies up to 1200 cm{sup −1}. The corresponding thermal rate coefficients were computed for temperatures ranging from 5 to 100 K. The HCN rate coefficients are strongly dependent on the rotational level of the H{sub 2} molecule. In particular, the rate coefficients for collisions with para-H{sub 2}( j = 0) are significantly lower than those for collisions with ortho-H{sub 2}( j = 1) and para-H{sub 2}( j = 2). Propensity rules in favor of even Δj transitions were found for HCN in collisions with para-H{sub 2}( j = 0) whereas propensity rules in favor of odd Δj transitions were found for HCN in collisions with H{sub 2}( j ⩾ 1). The new rate coefficients were compared with previously published HCN-para-H{sub 2}( j = 0) rate coefficients. Significant differences were found due the inclusion of the H{sub 2} rotational structure in the scattering calculations. These new rate coefficients will be crucial to improve the estimation of the HCN abundance in the interstellar medium.

  7. RESOLVING THE BRIGHT HCN(1–0) EMISSION TOWARD THE SEYFERT 2 NUCLEUS OF M51: SHOCK ENHANCEMENT BY RADIO JETS AND WEAK MASING BY INFRARED PUMPING?

    International Nuclear Information System (INIS)

    Matsushita, Satoki; Trung, Dinh-V-; Boone, Frédéric; Krips, Melanie; Lim, Jeremy; Muller, Sebastien

    2015-01-01

    We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture

  8. RESOLVING THE BRIGHT HCN(1–0) EMISSION TOWARD THE SEYFERT 2 NUCLEUS OF M51: SHOCK ENHANCEMENT BY RADIO JETS AND WEAK MASING BY INFRARED PUMPING?

    Energy Technology Data Exchange (ETDEWEB)

    Matsushita, Satoki [Academia Sinica Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Trung, Dinh-V- [Institute of Physics, Vietnamese Academy of Science and Technology, 10, Daotan, BaDinh, Hanoi (Viet Nam); Boone, Frédéric [Université de Toulouse, UPS-OMP, IRAP, F-31400 Toulouse (France); Krips, Melanie [Institute de Radio Astronomie Millimétrique, 300 Rue de la Piscine, F-38406 Saint Martin d' Hères (France); Lim, Jeremy [Department of Physics, University of Hong Kong, Pokfulam Road (Hong Kong); Muller, Sebastien [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Space Observatory, SE-43992 Onsala (Sweden)

    2015-01-20

    We present high angular resolution observations of the HCN(1-0) emission (at ∼1'' or ∼34 pc), together with CO J = 1-0, 2-1, and 3-2 observations, toward the Seyfert 2 nucleus of M51 (NGC 5194). The overall HCN(1-0) distribution and kinematics are very similar to that of the CO lines, which have been indicated as the jet-entrained molecular gas in our past observations. In addition, high HCN(1-0)/CO(1-0) brightness temperature ratio of about unity is observed along the jets, similar to that observed at the shocked molecular gas in our Galaxy. These results strongly indicate that both diffuse and dense gases are entrained by the jets and outflowing from the active galactic nucleus. The channel map of HCN(1-0) at the systemic velocity shows a strong emission right at the nucleus, where no obvious emission has been detected in the CO lines. The HCN(1-0)/CO(1-0) brightness temperature ratio at this region reaches >2, a value that cannot be explained considering standard physical/chemical conditions. Based on our calculations, we suggest infrared pumping and possibly weak HCN masing, but still requiring an enhanced HCN abundance for the cause of this high ratio. This suggests the presence of a compact dense obscuring molecular gas in front of the nucleus of M51, which remains unresolved at our ∼1'' (∼34 pc) resolution, and consistent with the Seyfert 2 classification picture.

  9. HCN Producing Bacteria Enable Sensing Of Non-Bioavailable Hg Species by the Whole Cell Biosensor

    Science.gov (United States)

    Horvat, M.; Rijavec, T.; Koron, N.; Lapanje, A.

    2015-12-01

    Bacteria play an important role in Hg transformation reactions. The production of cyanide (HCN) and other secondary metabolites seems to be key elements involved in these transformations. Current hypotheses link the role of HCN production to growth inhibition of nonHCN producing competitor organisms (role of an antimicrobial agent). Our past investigations showed that HCN production did not correlate with antimicrobial activity and since pK value of HCN is very high (pK = 9,21), it can be expected that most of the produced HCN is removed from the microenvironment. This way, the expected inhibitory concentrations can hardly be reached. Accordingly, we proposed a new concept, where the ability of complexation of transient metals by HCN served as a regulation process for the accessibility of micro-elements. In our study, we focused on the presence of HCN producing bacteria and carried it out in the Hg contaminated environment connected to the Idrija Mercury Mine, Slovenia. We characterised the isolates according to the presence of Hg resistance (HgR), level of HCN production and genetic similarities. In laboratory setups, using our merR whole cell based biosensor, we determined the transformation of low bioavailable Hg0 and HgS forms into bioavailable Hg by these HCN producing bacteria. We observed that HgR strains producing HCN had the highest impact on increased Hg bioavailability. In the proposed ecological strategy HgR HCN producing bacteria increase their competitive edge over non-HgR competitors through the increase of Hg toxicity. Due to their activity, Hg is made available to other organisms as well and thus enters into the ecosystem. Finally, using some of the characteristics of bacteria (e.g. Hg resistance genetic elements), we developed a fully automated sensing approach, combining biosensorics and mechatronics, to measure the bioavailability of Hg in situ.

  10. ALMA OBSERVATIONS OF HCN AND ITS ISOTOPOLOGUES ON TITAN

    Energy Technology Data Exchange (ETDEWEB)

    Molter, Edward M.; Nixon, C. A.; Cordiner, M. A.; Charnley, S. B.; Lindberg, J. E. [NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, MD 20771 (United States); Serigano, J. [Department of Earth and Planetary Sciences, Johns Hopkins University, Baltimore, MD 21218 (United States); Irwin, P. G. J. [Atmospheric, Oceanic, and Planetary Physics, Clarendon Laboratory, University of Oxford, Parks Road, Oxford, OX1 3PU (United Kingdom); Teanby, N. A., E-mail: edward.m.molter@nasa.gov [School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol, BS8 1RJ (United Kingdom)

    2016-08-01

    We present sub-millimeter spectra of HCN isotopologues on Titan, derived from publicly available ALMA flux calibration observations of Titan taken in early 2014. We report the detection of a new HCN isotopologue on Titan, H{sup 13}C{sup 15}N, and confirm an earlier report of detection of DCN. We model high signal-to-noise observations of HCN, H{sup 13}CN, HC{sup 15}N, DCN, and H{sup 13}C{sup 15}N to derive abundances and infer the following isotopic ratios: {sup 12}C/{sup 13}C = 89.8 ± 2.8, {sup 14}N/{sup 15}N = 72.3 ± 2.2, D/H = (2.5 ± 0.2) × 10{sup −4}, and HCN/H{sup 13}C{sup 15}N = 5800 ± 270 (1 σ errors). The carbon and nitrogen ratios are consistent with and improve on the precision of previous results, confirming a factor of ∼2.3 elevation in {sup 14}N/{sup 15}N in HCN compared to N{sub 2} and a lack of fractionation in {sup 12}C/{sup 13}C from the protosolar value. This is the first published measurement of D/H in a nitrile species on Titan, and we find evidence for a factor of ∼2 deuterium enrichment in hydrogen cyanide compared to methane. The isotopic ratios we derive may be used as constraints for future models to better understand the fractionation processes occurring in Titan’s atmosphere.

  11. HCN Production via Impact Ejecta Reentry During the Late Heavy Bombardment

    Science.gov (United States)

    Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. Jay

    2018-04-01

    Major impact events have shaped the Earth as we know it. The Late Heavy Bombardment is of particular interest because it immediately precedes the first evidence of life. The reentry of impact ejecta creates numerous chemical by-products, including biotic precursors such as HCN. This work examines the production of HCN during the Late Heavy Bombardment in more detail. We stochastically simulate the range of impacts on the early Earth and use models developed from existing studies to predict the corresponding ejecta properties. Using multiphase flow methods and finite-rate equilibrium chemistry, we then find the HCN production due to the resulting atmospheric heating. We use Direct Simulation Monte Carlo to develop a correction factor to account for increased yields due to thermochemical nonequilibrium. We then model 1-D atmospheric turbulent diffusion to find the time accurate transport of HCN to lower altitudes and ultimately surface water. Existing works estimate the necessary HCN molarity threshold to promote polymerization that is 0.01 M. For a mixing depth of 100 m, we find that the Late Heavy Bombardment will produce at least one impact event above this threshold with probability 24.1% for an oxidized atmosphere and 56.3% for a partially reduced atmosphere. For a mixing depth of 10 m, the probability is 79.5% for an oxidized atmosphere and 96.9% for a partially reduced atmosphere. Therefore, Late Heavy Bombardment impact ejecta is likely an HCN source sufficient for polymerization in shallow bodies of water, particularly if the atmosphere were in a partially reduced state.

  12. First-principle study of structural, electronic, vibrational and magnetic properties of HCN adsorbed graphene doped with Cr, Mn and Fe

    International Nuclear Information System (INIS)

    Shi, Li Bin; Wang, Yong Ping; Dong, Hai Kuan

    2015-01-01

    Graphical abstract: - Highlights: • Cr, Mn and Fe doped graphene is more active to adsorb HCN molecule than pristine graphene. • The conductivity of Fe and Mn doped graphene hardly changes after adsorption HCN molecule. • The conductivity of Cr doped graphene can be affected significantly due to HCN adsorption. • The Cr, Mn and Fe may destroy the long range order in graphene. • Phonon density of states suggests that Cr doped graphene is stable. - Abstract: The adsorption energy, electronic structure, lattice vibration and magnetic properties of Cr, Mn and Fe doped graphene with and without HCN adsorption are investigated by the first principles based on density functional theory. The physisorption and chemisorption have been identified. In the paper, Cr-NG, Mn-NG and Fe-NG denote HCN adsorption on Cr, Mn and Fe doped graphene with N atom toward the adsorption site. It is found that the adsorption energy is −1.36 eV for Fe-NG, −0.60 eV for Mn-NG and −0.86 eV for Cr-NG. The Cr-NG will convert from half-metallic behavior to semiconductor after adsorbing HCN molecule, which indicates that the conductivity changes significantly. Phonon density of states (PDOS) shows that the long range order in graphene can be destroyed by doping Fe, Mn and Cr. The imaginary frequency mode in PDOS suggests that Fe and Mn doped graphene is unstable, while Cr doped graphene is stable. The electronic properties are sensitive toward adsorbing HCN, indicating that Cr doped graphene is a promising sensor for detecting HCN molecule. This study provides a useful basis for understanding of a wide variety of physical properties on graphene

  13. The role of an ancestral hyperpolarization-activated cyclic nucleotide-gated K+ channel in branchial acid-base regulation in the green crab, Carcinus maenas.

    Science.gov (United States)

    Fehsenfeld, Sandra; Weihrauch, Dirk

    2016-03-01

    Numerous electrophysiological studies on branchial K(+) transport in brachyuran crabs have established an important role for potassium channels in osmoregulatory ion uptake and ammonia excretion in the gill epithelium of decapod crustaceans. However, hardly anything is known of the actual nature of these channels in crustaceans. In the present study, the identification of a hyperpolarization-activated cyclic nucleotide-gated potassium channel (HCN) in the transcriptome of the green crab Carcinus maenas and subsequent performance of quantitative real-time PCR revealed the ubiquitous expression of this channel in this species. Even though mRNA expression levels in the cerebral ganglion were found to be approximately 10 times higher compared with all other tissues, posterior gills still expressed significant levels of HCN, indicating an important role for this transporter in branchial ion regulation. The relatively unspecific K(+)-channel inhibitor Ba(2+), as well as the HCN-specific blocker ZD7288, as applied in gill perfusion experiments and electrophysiological studies employing the split gill lamellae revealed the presence of at least two different K(+)/NH4(+)-transporting structures in the branchial epithelium of C. maenas. Furthermore, HCN mRNA levels in posterior gill 7 decreased significantly in response to the respiratory or metabolic acidosis that was induced by acclimation of green crabs to high environmental PCO2 and ammonia, respectively. Consequently, the present study provides first evidence that HCN-promoted NH4(+) epithelial transport is involved in both branchial acid-base and ammonia regulation in an invertebrate. © 2016. Published by The Company of Biologists Ltd.

  14. HCN Polymers: Toward Structure Comprehension Using High Resolution Mass Spectrometry

    Science.gov (United States)

    Bonnet, Jean-Yves; Thissen, Roland; Frisari, Ma; Vuitton, Veronique; Quirico, Eric; Le Roy, Léna; Fray, Nicolas; Cottin, Hervé; Horst, Sarah; Yelle, Roger

    A lot of solar system materials, including cometary ices and Titan aerosols, contain dark matter that can be interpreted as complex nitrogen bearing organic matter [1]. In laboratory experi-ments, HCN polymers are thus analogs of great interest. In fact they may be present in Titan atmosphere and in comet nuclei and then reprocessed as a CN distributed source [2], when ices began to sublimate and ejects from the nucleus organic matter grains [3]. The presence of HCN polymers is suggested because HCN molecule has been directly observed in 1P/Halley comet [4] and others. HCN polymers are also of prebiotic interest [5] as it can form amino acid under hydrolysis conditions. Even if they have been studied during the last decades, their chemical composition and structure are still poorly understood, and a great analytical effort has to be continued. In this way we present a high resolution mass spectrometry (HRMS) and a high resolution tandem mass spectrometry (MS/HRMS) analysis of HCN polymers. It was shown [6] that this is a suitable technique to elucidate composition and structure of the soluble part of tholins analogs of Titan's atmosphere aerosols. HCN polymers have never been studied by HRMS, thus we used a LTQ-Orbitrap XL high resolution mass spectrometer to analyse the HCN polymers. These are produced at LISA by direct polymerisation of pure liquid HCN, catalyzed by ammonia. HCN polymers have been completely dissolved in methanol and then injected in the mass spectrometer by ElectroSpray Ionization (ESI). This atmospheric pressure ionization process produces protonated or deprotonated ions, but it does not fragment molecules. Thus HRMS, allows a direct access to the stoechiometry of all the ionizable molecules present in the samples. Fragmentation analyses (MS/MS) of selected ions have also been performed. Thess analysis provide information about the different chemical fonctionnalities present in HCN poly-mers and also about their structure. Thus we are able to

  15. The Puzzle of HCN in Comets: Is it both a Product and a Primary Species?

    Science.gov (United States)

    Mumma, Michael J.; Bonev, Boncho P.; Charnley, Steven B.; Cordiner, Martin A.; DiSanti, Michael A.; Gibb, Erika L.; Magee-Sauer, Karen; Paganini, Lucas; Villanueva, Geronimo L.

    2014-11-01

    Hydrogen cyanide has long been regarded as a primary volatile in comets, stemming from its presence in dense molecular cloud cores and its supposed storage in the cometary nucleus. Here, we examine the observational evidence for and against that hypothesis, and argue that HCN may also result from near-nucleus chemical reactions in the coma. The distinction (product vs. primary species) is important for multiple reasons: 1. HCN is often used as a proxy for water when the dominant species (H2O) is not available for simultaneous measurement, as at radio wavelengths. 2. HCN is one of the few volatile carriers of nitrogen accessible to remote sensing. If HCN is mainly a product species, its precursor becomes the more important metric for compiling a taxonomic classification based on nitrogen chemistry. 3. The stereoisomer HNC is now confirmed as a product species. Could reaction of a primary precursor (X-CN) with a hydrocarbon co-produce both HNC and HCN? 4. The production rate for CN greatly exceeds that of HCN in some comets, demonstrating the presence of another (more important) precursor of CN. Several puzzling lines of evidence raise issues about the origin of HCN: a. The production rates of HCN measured through rotational (radio) and vibrational (infrared) spectroscopy agree in some comets - in others the infrared rate exceeds the radio rate substantially. b. With its strong dipole moment and H-bonding character, HCN should be linked more strongly in the nuclear ice to other molecules with similar properties (H2O, CH3OH), but instead its spatial release in some comets seems strongly coupled to volatiles that lack a dipole moment and thus do not form H-bonds (methane, ethane). c. The nucleus-centered rotational temperatures measured for H2O and other species (C2H6, CH3OH) usually agree within error, but those for HCN are often slightly smaller. d. In comet ISON, ALMA maps of HCN and the dust continuum show a slight displacement 80 km) in the centroids. We will

  16. Development of a high power HCN waveguide laser for plasma diagnostic

    International Nuclear Information System (INIS)

    Deng Zhongchao; Zhou Yan; Tang Yiwu; Yi Jiang; Gao Bingyi; Tian Chongli

    2007-06-01

    Both design and development of a high power cw HCN waveguide laser is described for multichannel FIR laser interferometer on the HL-2A divertor tokamak. The geometry parameters of stracture of the HCN laser are calculated according to scaling laws for cw 337 μm HCN waveguide laser offered by P. Belland et al. The designed value of output power of the laser that is more than 400 mW with discharge length of 5.6 m and 6.3 cm inner diameter of tube have been chosen in case of external loss of the cavity of 2%. At the same time, in order to get a laser system of stable output both of configuration and operating condition is discussed. In developed laser a hot LaB 6 cathode is employed to en- sure a stable discharge, the cavity mirrors are spaced using four invar rod of φ25 mm in diameter and an structure of adjusting machine for axially movable flat mirror in cavity has been also designed, and that it can be taken down many times without badly destroying alignment of the cavity etc.. A suit of pipes sys- tem of cw HCN laser is schemed out so that some experiments of operating parameter optimization can be done. The results of primary test of operating waveguide HCN laser are briefly showed. (authors)

  17. Photochemistry of methane and the formation of hydrocyanic acid (HCN) in the earth's early atmosphere

    Science.gov (United States)

    Zahnle, K. J.

    1986-01-01

    A one-dimensional photochemical model is used to analyze the photochemistries of CH4 and HCN in the primitive terrestrial atmosphere. CH4, N2, and HCN photolysis are examined. The background atmosphere and boundary conditions applied in the analysis are described. The formation of HCN as a by-product of N2 and CH4 photolysis is investigated; the effects of photodissociation and rainfall on HCN is discussed. The low and high CH4 mixing ratios and radical densities are studied.

  18. New CO and HCN sources associated with IRAS carbon stars

    Science.gov (United States)

    NGUYEN-Q-RIEU; Epchtein, N.; TRUONG-BACH; Cohen, M.

    1987-01-01

    Emission of CO and HCN was detected in 22 out of a sample of 53 IRAS sources classified as unidentified carbon-rich objects. The sample was selected according to the presence of the silicon carbide feature as revealed by low-resolution spectra. The molecular line widths indicate that the CO and HCN emission arises from the circumstellar envelopes of very highly evolved stars undergoing mass loss. The visible stars tend to be deficient in CO as compared with unidentified sources. Most the detected CO and HCN IRAS stars are distinct and thick-shelled objects, but their infrared and CO luminosities are similar to those of IRC + 102156 AFGL and IRC-CO evolved stars. The 12 micron flux seems to be a good indicator of the distance, hence a guide for molecular searches.

  19. WARM HCN IN THE PLANET FORMATION ZONE OF GV TAU N

    International Nuclear Information System (INIS)

    Fuente, Asunción; Cernicharo, José; Agúndez, Marcelino

    2012-01-01

    The Plateau de Bure Interferometer has been used to map the continuum emission at 3.4 mm and 1.1 mm together with the J = 1→0 and J = 3→2 lines of HCN and HCO + toward the binary star GV Tau. The 3.4 mm observations did not resolve the binary components, and the HCN J = 1→0 and HCO + J 1→0 line emissions trace the circumbinary disk and the flattened envelope. However, the 1.1 mm observations resolved the individual disks of GV Tau N and GV Tau S and allowed us to study their chemistry. We detected the HCN 3→2 line only toward the individual disk of GV Tau N, and the emission of the HCO + 3→2 line toward GV Tau S. Simple calculations indicate that the 3→2 line of HCN is formed in the inner R + abundance ratio is >300. On the contrary, this ratio is 400 K) and dense (n > 10 7 cm –3 ) disk surface.

  20. Ab initio study of low-energy electrons interacting with HCN molecules

    International Nuclear Information System (INIS)

    Jain, A.; Norcross, D.W.

    1984-01-01

    Our earlier study of low-energy electron scattering with HCN molecules is further improved by treating exchange exactly (in a separable exchange approximation 2 ) in Σ, π and Δ symmetries: the 3.8 eV π resonance is shifted towards lower energy (2.56 eV, the experimental position is around 2.26 eV 3 ), while in Σ and the Δ symmetries the difference is within 15%. We also study possible negative ion states of HCN by calculating potential energy curves with respect to C-H and C-N stretches. For example, there is evidence of an avoiding crossing between a 1Σ + and a 2Σ + state (C-H stretch) of HCN -

  1. A 1D coordination polymer of UF{sub 5} with HCN as a ligand

    Energy Technology Data Exchange (ETDEWEB)

    Scheibe, Benjamin; Rudel, Stefan S.; Buchner, Magnus R.; Kraus, Florian [Fachbereich Chemie, Philipps-Universitaet Marburg (Germany); Karttunen, Antti J. [Department of Chemistry, Aalto University (Finland)

    2017-01-05

    β-Uranium(V) fluoride was reacted with liquid anhydrous hydrogen cyanide to obtain a 1D coordination polymer with the composition {sup 1}{sub ∞}[UF{sub 5}(HCN){sub 2}], {sup 1}{sub ∞}[UF{sub 4/1}F{sub 2/2}-(HCN){sub 2/1}], revealed by single-crystal X-ray structure determination. The reaction system was furthermore studied by means of vibrational and NMR spectroscopy, as well as by quantum chemical calculations. The compound presents the first described polymeric HCN Lewis adduct and the first HCN adduct of a uranium fluoride. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Probing highly obscured, self-absorbed galaxy nuclei with vibrationally excited HCN

    Science.gov (United States)

    Aalto, S.; Martín, S.; Costagliola, F.; González-Alfonso, E.; Muller, S.; Sakamoto, K.; Fuller, G. A.; García-Burillo, S.; van der Werf, P.; Neri, R.; Spaans, M.; Combes, F.; Viti, S.; Mühle, S.; Armus, L.; Evans, A.; Sturm, E.; Cernicharo, J.; Henkel, C.; Greve, T. R.

    2015-12-01

    We present high resolution (0.̋4) IRAM PdBI and ALMA mm and submm observations of the (ultra) luminous infrared galaxies ((U)LIRGs) IRAS 17208-0014, Arp220, IC 860 and Zw049.057 that reveal intense line emission from vibrationally excited (ν2 = 1) J = 3-2 and 4-3 HCN. The emission is emerging from buried, compact (r 5 × 1013 L⊙ kpc-2. These nuclei are likely powered by accreting supermassive black holes (SMBHs) and/or hot (>200 K) extreme starbursts. Vibrational, ν2 = 1, lines of HCN are excited by intense 14 μm mid-infrared emission and are excellent probes of the dynamics, masses, and physical conditions of (U)LIRG nuclei when H2 column densities exceed 1024 cm-2. It is clear that these lines open up a new interesting avenue to gain access to the most obscured AGNs and starbursts. Vibrationally excited HCN acts as a proxy for the absorbed mid-infrared emission from the embedded nuclei, which allows for reconstruction of the intrinsic, hotter dust SED. In contrast, we show strong evidence that the ground vibrational state (ν = 0), J = 3-2and 4-3 rotational lines of HCN and HCO+ fail to probe the highly enshrouded, compact nuclear regions owing to strong self- and continuum absorption. The HCN and HCO+ line profiles are double-peaked because of the absorption and show evidence of non-circular motions - possibly in the form of in- or outflows. Detections of vibrationally excited HCN in external galaxies are so far limited to ULIRGs and early-type spiral LIRGs, and we discuss possible causes for this. We tentatively suggest that the peak of vibrationally excited HCN emission is connected to a rapid stage of nuclear growth, before the phase of strong feedback. Based on observations carried out with the IRAM Plateau de Bure and ALMA Interferometers. IRAM is supported by INSU/CNRS (France), MPG (Germany), and IGN (Spain). ALMA is a partnership of ESO (representing its member states), NSF (USA), and NINS (Japan), together with NRC (Canada) and NSC and ASIAA

  3. HCN(1-0) enhancement in the bar of NGC 2903

    Science.gov (United States)

    Leon, S.; Jeyakumar, S.; Pérez-Ramírez, D.; Verdes-Montenegro, L.; Lee, S. W.; Ocaña Flaquer, B.

    2008-12-01

    We have mapped the HCN(1-0) emission from two spiral galaxies, NGC 2903 and NGC 3504 to study the gas properties in the bars. The HCN(1-0) emission is detected in the center and along the bar of NGC 2903. The line ratio HCN(1-0)/ 12CO(1-0) ranges from 0.07 to 0.12 with the lowest value in the center. The enhancement of HCN(1-0) emission along the bar indicates a higher fraction of dense molecular gas in the bar than at the center. The mass of dense molecular gas in the center (2.2 × 107 M⊙) is about 6 times lower than that in the bar (1.2 × 108 M⊙). The total star formation rate (SFR) is estimated to be 1.4 M⊙ yr-1, where the SFR at the center is 1.9 times higher than that in the bar. The time scale of consumption of the dense molecular gas in the center is about ~ 3 × 107 yr which is much shorter than that in the bar of about 2 to 10 × 108 yr. The dynamical time scale of inflow of the gas from the bar to the center is shorter than the consumption time scale in the bar, which suggests that the star formation (SF) activity at the center is not deprived of fuel. In the bar, the fraction of dense molecular gas mass relative to the total molecular gas mass is twice as high along the leading edge than along the central axis of the bar. The HCN(1-0) emission has a large velocity dispersion in the bar, which can be attributed partially to the streaming motions indicative of shocks along the bar. In NGC 3504, the HCN(1-0) emission is detected only at the center. The fraction of dense molecular gas mass in the center is about 15%. Comparison of the SFR with the predictions from numerical simulations suggest that NGC 2903 harbors a young type B bar with a strong inflow of gas toward the center whereas NGC 3504 has an older bar and has already passed the phase of inflow of gas toward the center.

  4. ALMA HCN AND HCO{sup +} J  = 3 − 2 OBSERVATIONS OF OPTICAL SEYFERT AND LUMINOUS INFRARED GALAXIES: CONFIRMATION OF ELEVATED HCN-TO-HCO{sup +} FLUX RATIOS IN AGNS

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi; Nakanishi, Kouichiro [National Astronomical Observatory of Japan, National Institutes of Natural Sciences (NINS), 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-12-01

    We present the results of our ALMA observations of three active galactic nucleus (AGN)-dominated nuclei in optical Seyfert 1 galaxies (NGC 7469, I Zw 1, and IC 4329 A) and eleven luminous infrared galaxies (LIRGs) with various levels of infrared estimated energetic contributions by AGNs at the HCN and HCO{sup +} J  = 3 − 2 emission lines. The HCN and HCO{sup +} J  = 3 − 2 emission lines are clearly detected at the main nuclei of all sources, except for IC 4329 A. The vibrationally excited ( v {sub 2} = 1f) HCN J  = 3 − 2 and HCO{sup +} J  = 3 − 2 emission lines are simultaneously covered, and HCN v {sub 2} = 1f J  = 3 − 2 emission line signatures are seen in the main nuclei of two LIRGs, IRAS 12112+0305 and IRAS 22491–1808, neither of which shows clear buried AGN signatures in the infrared. If the vibrational excitation is dominated by infrared radiative pumping, through the absorption of infrared 14 μ m photons, primarily originating from AGN-heated hot dust emission, then these two LIRGs may contain infrared-elusive, but (sub)millimeter-detectable, extremely deeply buried AGNs. These vibrationally excited emission lines are not detected in the three AGN-dominated optical Seyfert 1 nuclei. However, the observed HCN v {sub 2} = 1f to v  = 0 flux ratios in these optical Seyferts are still consistent with the intrinsic flux ratios in LIRGs with detectable HCN v {sub 2} = 1f emission lines. The observed HCN-to-HCO{sup +} J  = 3 − 2 flux ratios tend to be higher in galactic nuclei with luminous AGN signatures compared with starburst-dominated regions, as previously seen at J  = 1 − 0 and J  = 4 − 3.

  5. MEG3, HCN3 and linc01105 influence the proliferation and apoptosis of neuroblastoma cells via the HIF-1α and p53 pathways.

    Science.gov (United States)

    Tang, Weitao; Dong, Kuiran; Li, Kai; Dong, Rui; Zheng, Shan

    2016-11-08

    The purpose of this study was to investigate the differential expression and functional roles of long non-coding RNAs (lncRNAs) in neuroblastoma tissue. LncRNA microarrays were used to identify differentially expressed lncRNAs between tumor and para-tumor tissues. In total, in tumor tissues, 3,098 and 1,704 lncRNAs were upregulated and downregulated, respectively. HCN3 and linc01105 exhibited the higher expression (P INSS) stage were -0.48, -0.58 and -0.55, respectively. In conclusion, we have identified lncRNAs that are differentially expressed in neuroblastoma tissues. The lncRNAs HCN3, linc01105, and MEG3 may be important in biological behaviors of neuroblastoma through mechanisms involving p53 pathway members such as HIF-1α, Noxa, and Bid. The expressions of MEG3, HCN3 and linc01105 are all negatively correlated with the INSS stage.

  6. Chemical evolution. XXI - The amino acids released on hydrolysis of HCN oligomers

    Science.gov (United States)

    Ferris, J. P.; Wos, J. D.; Nooner, D. W.; Oro, J.

    1974-01-01

    Major amino acids released by hydrolysis of acidic and basic HCN oligomers are identified by chromatography as Gly, Asp, and diaminosuccinic acid. Smaller amounts of Ala, Ile and alpha-aminoisobutyric acid are also detected. The amino acids released did not change appreciably when the hydrolysis medium was changed from neutral to acidic or basic. The presence of both meso and d, l-diaminosuccinic acids was established by paper chromatography and on an amino acid analyzer.

  7. Retrieving molecular structural information and tracking HNC/HCN isomerization process with high harmonic generation by ultrashort laser pulses

    International Nuclear Information System (INIS)

    Nguyen Ngoc Ty; Le Van Hoang; Vu Ngoc Tuoc; Le Anh Thu

    2010-01-01

    We investigate the possibility of applying the iterative method, suggested in our previous work, for HCN molecule and its HNC isomer. We found that the high-order harmonic generation (HHG) spectra are quite insensitive to the change of H-C (or H-N) bond length so that only the inter-nuclear C-N distance can be retrieved from the high-order harmonic spectra using ultrashort intense lasers. Furthermore, by analyzing the HHG spectra emitted by HCN during the chemical reaction path of isomerization we identify the intensity peaks nearby the stable, metastable and transition states. this finding can be useful for tracking the HNC/HNC isomerization process. (author)

  8. The excitation of HCN and HCO{sup +} in the galactic center circumnuclear disk

    Energy Technology Data Exchange (ETDEWEB)

    Mills, E. A. C. [National Radio Astronomy Observatory, P.O. Box O 1009, Lopezville Drive, Socorro, NM 87801 (United States); Güsten, R.; Requena-Torres, M. A. [Max Planck Institut für Radioastronomie, Auf Dem Huegel 69, D-53121 Bonn (Germany); Morris, M. R., E-mail: millsb@astro.ucla.edu [Department of Physics and Astronomy, University of California, Physics and Astronomy Building, 430 Portola Plaza, Box 951547 Los Angeles, CA 90095-1547 (United States)

    2013-12-10

    We present new observations of HCN and HCO{sup +} in the circumnuclear disk (CND) of the Galaxy, which we obtained with the Atacama Pathfinder Experiment telescope. We mapped emission in rotational lines of HCN J = 3-2, 4-3, and 8-7, as well as of HCO{sup +} J = 3-2, 4-3, and 9-8. We also present spectra of H{sup 13}CN J = 3-2 and 4-3 as well as H{sup 13}CO{sup +} J = 3-2 and 4-3 toward four positions in the CND. Using the intensities of all of these lines, we present an excitation analysis for each molecule using the non-LTE radiative transfer code RADEX. The HCN line intensities toward the northern emission peak of the CND yield log densities (cm{sup –3}) of 5.6{sub −0.6}{sup +0.6}, consistent with those measured with HCO{sup +} as well as with densities recently reported for this region from an excitation analysis of highly excited lines of CO. These densities are too low for the gas to be tidally stable. The HCN line intensities toward the CND's southern emission peak yield log densities of 6.5{sub −0.7}{sup +0.5}, higher than densities determined for this part of the CND with CO (although the densities measured with HCO{sup +}, log [n] = 5.6{sub −0.2}{sup +0.2}, are more consistent with the CO-derived densities). We investigate whether the higher densities we infer from HCN are affected by midinfrared radiative excitation of this molecule through its 14 μm rovibrational transitions. We find that radiative excitation is important for at least one clump in the CND, where we additionally detect the J = 4-3, v {sub 2} = 1 vibrationally excited transition of HCN, which is excited by dust temperatures of ≳125-150 K. If this hot dust is present elsewhere in the CND, it could lower our inferred densities, potentially bringing the HCN-derived densities for the southern part of the CND into agreement with those measured using HCO{sup +} and CO. Additional sensitive, high-resolution submillimeter observations, as well as midinfrared observations, would be

  9. THE VARIABILITY OF HCN IN TITAN’S UPPER ATMOSPHERE AS IMPLIED BY THE CASSINI ION-NEUTRAL MASS SPECTROMETER MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Cui, J.; Cao, Y.-T. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Lavvas, P. P. [Groupe de Spectroscopie Moleculaire et Atmospherique, Universite de Reims, Champagne-Ardenne, CNRS UMR F-7331 (France); Koskinen, T. T. [Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721 (United States)

    2016-07-20

    HCN is an important constituent in Titan’s upper atmosphere, serving as the main coolant in the local energy budget. In this study, we derive the HCN abundance at the altitude range of 960–1400 km, combining the Ion-Neutral Mass Spectrometer data acquired during a large number of Cassini flybys with Titan. Typically, the HCN abundance declines modestly with increasing altitude and flattens to a near constant level above 1200 km. The data reveal a tendency for dayside depletion of HCN, which is clearly visible below 1000 km but weakens with increasing altitude. Despite the absence of convincing anti-correlation between HCN volume mixing ratio and neutral temperature, we argue that the variability in HCN abundance makes an important contribution to the large temperature variability observed in Titan’s upper atmosphere.

  10. Adsorption of HCN molecules on Ni, Pd and Pt-doped (7, 0) boron nitride nanotube: a DFT study

    Science.gov (United States)

    Habibi-Yangjeh, Aziz; Basharnavaz, Hadi

    2018-05-01

    We studied affinity of pure and Ni, Pd and Pt-doped (7, 0) boron nitride nanotubes (BNNTs) to toxic HCN molecules using density functional theory calculations. The results indicated that the pure (7, 0) BNNTs can weakly adsorb HCN molecules with adsorption energy of -0.2474 eV. Upon adsorption of HCN molecules on this nanotube, the band gap energy was decreased from 3.320 to 2.960 eV. The more negative adsorption energy between these transition metal-doped (7, 0) BNNTs and HCN molecules indicated that doping of (7, 0) BNNTs with Ni, Pd and Pt elements can significantly improve the affinity of BNNTs toward this gas. Additionally, it was found that the interaction energy between HCN molecules and Pt-doped BNNTs is more negative than those of the Ni and Pd-doped BNNTs. These observations suggested that the Pt-doped (7, 0) BNNTs are strongly sensitive to HCN molecules and therefore it may be used in gas sensor devices for detecting this toxic gas.

  11. Modulation of rod photoreceptor output by HCN1 channels is essential for regular mesopic cone vision.

    Science.gov (United States)

    Seeliger, Mathias W; Brombas, Arne; Weiler, Reto; Humphries, Peter; Knop, Gabriel; Tanimoto, Naoyuki; Müller, Frank

    2011-11-08

    Retinal photoreceptors permit visual perception over a wide range of lighting conditions. Rods work best in dim, and cones in bright environments, with considerable functional overlap at intermediate (mesopic) light levels. At many sites in the outer and inner retina where rod and cone signals interact, gap junctions, particularly those containing Connexin36, have been identified. However, little is known about the dynamic processes associated with the convergence of rod and cone system signals into ON- and OFF-pathways. Here we show that proper cone vision under mesopic conditions requires rapid adaptational feedback modulation of rod output via hyperpolarization-activated and cyclic nucleotide-gated channels 1. When these channels are absent, sustained rod responses following bright light exposure saturate the retinal network, resulting in a loss of downstream cone signalling. By specific genetic and pharmacological ablation of key signal processing components, regular cone signalling can be restored, thereby identifying the sites involved in functional rod-cone interactions.

  12. Detection of HCN and C2H2 in ISO Spectra of Oxygen-Rich AGB Stars

    Science.gov (United States)

    Carbon, Duane F.; Chiar, Jean; Goorvitch, David; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Cool oxygen-rich AGB stars were not expected to have organic molecules like HCN in either their photospheres or circumstellar envelopes (CSEs). The discovery of HCN and CS microwave emission from the shallowest CSE layers of these stars was a considerable surprise and much theoretical effort has been expended in explaining the presence of such organics. To further explore this problem, we have undertaken a systematic search of oxygen-rich AGB stellar spectra in the Infrared Space Observatory (ISO) data archive. Our purposes are to find evidence regarding critical molecular species that could be of value in choosing among the proposed theoretical models, to locate spectral features which might give clues to conditions deeper in the CSEs, and to lay the groundwork for future SIRTF (Space Infrared Telescope Facility) and SOFIA (Stratospheric Observatory for Infrared Astronomy) observations. Using carefully reduced observations, we have detected weak absorption features arising from HCN and possibly C2H2 in a small number of oxygen-rich AGB stars. The most compelling case is NML Cyg which shows both HCN (14 microns) and CO2 (15 microns). VY CMa, a similar star, shows evidence for HCN, but not CO2. Two S-type stars show evidence for the C-H bending transitions: W Aql at 14 microns (HCN) and both W Aql and S Cas at 13.7 microns (C2H2). Both W Aql and S Cas as well as S Lyr, a SC-type star, show 3 micron absorption which may arise from the C-H stretch of HCN and C2H2. In the case of NML Cyg, we show that the HCN and CO2 spectral features are formed in the CSE at temperatures well above those of the outermost CSE layers and derive approximate column densities. In the case of the S-stars, we discuss the evidence for the organic features and their photospheric origin.

  13. Seismic stochastic inversion identify river channel sand body

    Science.gov (United States)

    He, Z.

    2015-12-01

    The technology of seismic inversion is regarded as one of the most important part of geophysics. By using the technology of seismic inversion and the theory of stochastic simulation, the concept of seismic stochastic inversion is proposed.Seismic stochastic inversion can play an significant role in the identifying river channel sand body. Accurate sand body description is a crucial parameter to measure oilfield development and oilfield stimulation during the middle and later periods. Besides, rational well spacing density is an essential condition for efficient production. Based on the geological knowledge of a certain oilfield, in line with the use of seismic stochastic inversion, the river channel sand body in the work area is identified. In this paper, firstly, the single river channel body from the composite river channel body is subdivided. Secondly, the distribution of river channel body is ascertained in order to ascertain the direction of rivers. Morever, the superimposed relationship among the sand body is analyzed, especially among the inter-well sand body. The last but not at the least, via the analysis of inversion results of first vacuating the wells and continuous infilling later, it is meeted the most needs well spacing density that can obtain the optimal inversion result. It would serve effective guidance for oilfield stimulation.

  14. Experimental conditions affecting the kinetics of aqueous HCN polymerization as revealed by UV-vis spectroscopy.

    Science.gov (United States)

    Marín-Yaseli, Margarita R; Moreno, Miguel; de la Fuente, José L; Briones, Carlos; Ruiz-Bermejo, Marta

    2018-02-15

    HCN polymerization is one of the most important and fascinating reactions in prebiotic chemistry, and interest in HCN polymers in the field of materials science is growing. However, little is known about the kinetics of the HCN polymerization process. In the present study, a first approach to the kinetics of two sets of aqueous HCN polymerizations, from NH 4 CN and NaCN, at middle temperatures between 4 and 38°C, has been carried out. For each series, the presence of air and salts in the reaction medium has been systematically explored. A previous kinetic analysis was conducted during the conversion of the insoluble black HCN polymers obtained as gel fractions in these precipitation polymerizations for a reaction of one month, where a limit conversion was achieved at the highest polymerization temperature. The kinetic description of the gravimetric data for this complex system shows a clear change in the linear dependence with the polymerization temperature for the reaction from NH 4 CN, besides a relevant catalytic effect of ammonium, in comparison with those data obtained from the NaCN series. These results also demonstrated the notable influence of air, oxygen, and the saline medium in HCN polymer formation. Similar conclusions were reached when the sol fractions were monitored by UV-vis spectroscopy, and a Hill type correlation was used to describe the polymerization profiles obtained. This technique was chosen because it provides an easy, prompt and fast method to follow the evolution of the liquid or continuous phase of the process under study. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. A TENTATIVE IDENTIFICATION OF HCN ICE ON TRITON

    International Nuclear Information System (INIS)

    Burgdorf, M.; Cruikshank, D. P.; Dalle Ore, C. M.; Sekiguchi, T.; Nakamura, R.; Orton, G.; Quirico, E.; Schmitt, B.

    2010-01-01

    Spectra of Triton between 1.8 and 5.5 μm, obtained in 2007 May and 2009 November, have been analyzed to determine the global surface composition. The spectra were acquired with the grism and the prism of the Infrared Camera on board AKARI with spectral resolutions of 135 and 22, respectively. The data from 4 to 5 μm are shown in this Letter and compared to the spectra of N 2 , CO, and CO 2 , i.e., all the known ices on this moon that have distinct bands in this previously unexplored wavelength range. We report the detection of a 4σ absorption band at 4.76 μm (2101 cm -1 ), which we attribute tentatively to the presence of solid HCN. This is the sixth ice to be identified on Triton and an expected component of its surface because it is a precipitating photochemical product of Triton's thin N 2 and CH 4 atmosphere. It is also formed directly by irradiation of mixtures of N 2 and CH 4 ices. Here we consider only pure HCN, although it might be dissolved in N 2 on the surface of Triton because of the evaporation and recondensation of N 2 over its seasonal cycle. The AKARI spectrum of Triton also covers the wavelengths of the fundamental (1-0) band of β-phase N 2 ice (4.296 μm, 2328 cm -1 ), which has never been detected in an astronomical body before, and whose presence is consistent with the overtone (2-0) band previously reported. Fundamental bands of CO and CO 2 ices are also present.

  16. In situ measurements of HCN and CH3CN over the Pacific Ocean: Sources, sinks, and budgets

    Science.gov (United States)

    Singh, H. B.; Salas, L.; Herlth, D.; Kolyer, R.; Czech, E.; Viezee, W.; Li, Q.; Jacob, D. J.; Blake, D.; Sachse, G.; Harward, C. N.; Fuelberg, H.; Kiley, C. M.; Zhao, Y.; Kondo, Y.

    2003-10-01

    We report the first in situ measurements of hydrogen cyanide (HCN) and methyl cyanide (CH3CN, acetonitrile) from the Pacific troposphere (0-12 km) obtained during the NASA Transport and Chemical Evolution over the Pacific (TRACE-P) airborne mission (February-April 2001). Mean HCN and CH3CN mixing ratios of 243 ± 118 (median 218) ppt and 149 ± 56 (median 138) ppt, respectively, were measured. These in situ observations correspond to a mean tropospheric HCN column of 4.2 × 1015 molecules cm-2 and a CH3CN column of 2.5 × 1015 molecules cm-2. This is in good agreement with the 0-12 km HCN column of 4.4 (±0.6) × 1015 molecules cm-2 derived from infrared solar spectroscopic observations over Japan. Mixing ratios of HCN and CH3CN were greatly enhanced in pollution outflow from Asia and were well correlated with each other as well as with known tracers of biomass combustion (e.g., CH3Cl, CO). Volumetric enhancement (or emission) ratios (ERs) relative to CO in free tropospheric plumes, likely originating from fires, were 0.34% for HCN and 0.17% for CH3CN. ERs with respect to CH3Cl and CO in selected biomass burning (BB) plumes in the free troposphere and in boundary layer pollution episodes are used to estimate a global BB source of 0.8 ± 0.4 Tg (N) yr-1 for HCN and 0.4 ± 0.1 Tg (N) yr-1 for CH3CN. In comparison, emissions from industry and fossil fuel combustion are quite small (atmospheric residence time of 5.0 months for HCN and 6.6 months for CH3CN is calculated. A global budget analysis shows that the sources and sinks of HCN and CH3CN are roughly in balance but large uncertainties remain in part due to a lack of observational data from the atmosphere and the oceans. Pathways leading to the oceanic (and soil) degradation of these cyanides are poorly known but are expected to be biological in nature.

  17. DFT coupled with NEGF study of ultra-sensitive HCN and HNC gases detection and distinct I-V response based on phosphorene.

    Science.gov (United States)

    Pang, Jiu; Yang, Qun; Ma, Xiaosong; Wang, Liming; Tan, Chunjian; Xiong, Daxi; Ye, Huaiyu; Chen, Xianping

    2017-11-22

    The sensing performances of pristine and X-doped phosphorene substrates (X = Al, Si, and S atoms) toward the adsorption of the toxic gases HCN and HNC were systematically investigated by first-principles simulations. The numerical results show that the pristine phosphorene is sensitive to HCN and HNC molecules with moderate adsorption energy, excellent charge transfer, high sensitivity and selectivity, implying its potential applications as excellent HCN and HNC sensors. In addition, the Al-doped phosphorene exhibits extremely high reactive activity toward HCN and HNC gases; thus, it has potential for use as a metal-free catalyst for activating or catalyzing HCN or HNC adsorbates. Moreover, the transport properties, i.e., current-voltage (I-V) characteristics, were calculated by the non-equilibrium Green's function (NEGF) method within the framework of the density functional theory (DFT). The obtained results reveal that the adsorbed HCN or HNC gas molecules have a remarkable impact on the electronic conductivity of phosphorene, and the zigzag direction of phosphorene is more sensitive to gas molecules than the armchair direction. The combination of the high sensitivity, superior selectivity, and moderate adsorption energy of pristine phosphorene toward HCN or HNC gas molecules adsorption, makes phosphorene an excellent candidate for HCN and HNC sensors.

  18. Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy.

    Science.gov (United States)

    Collauto, Alberto; DeBerg, Hannah A; Kaufmann, Royi; Zagotta, William N; Stoll, Stefan; Goldfarb, Daniella

    2017-06-14

    Ligand binding can induce significant conformational changes in proteins. The mechanism of this process couples equilibria associated with the ligand binding event and the conformational change. Here we show that by combining the application of W-band double electron-electron resonance (DEER) spectroscopy with microfluidic rapid freeze quench (μRFQ) it is possible to resolve these processes and obtain both equilibrium constants and reaction rates. We studied the conformational transition of the nitroxide labeled, isolated carboxy-terminal cyclic-nucleotide binding domain (CNBD) of the HCN2 ion channel upon binding of the ligand 3',5'-cyclic adenosine monophosphate (cAMP). Using model-based global analysis, the time-resolved data of the μRFQ DEER experiments directly provide fractional populations of the open and closed conformations as a function of time. We modeled the ligand-induced conformational change in the protein using a four-state model: apo/open (AO), apo/closed (AC), bound/open (BO), bound/closed (BC). These species interconvert according to AC + L ⇌ AO + L ⇌ BO ⇌ BC. By analyzing the concentration dependence of the relative contributions of the closed and open conformations at equilibrium, we estimated the equilibrium constants for the two conformational equilibria and the open-state ligand dissociation constant. Analysis of the time-resolved μRFQ DEER data gave estimates for the intrinsic rates of ligand binding and unbinding as well as the rates of the conformational change. This demonstrates that DEER can quantitatively resolve both the thermodynamics and the kinetics of ligand binding and the associated conformational change.

  19. ALMA INVESTIGATION OF VIBRATIONALLY EXCITED HCN/HCO{sup +}/HNC EMISSION LINES IN THE AGN-HOSTING ULTRALUMINOUS INFRARED GALAXY IRAS 20551−4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A’ohoku Place, Hilo, HI 96720 (United States); Nakanishi, Kouichiro [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Izumi, Takuma, E-mail: masa.imanishi@nao.ac.jp [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan)

    2016-07-01

    We present the results of ALMA Cycle 2 observations of the ultraluminous infrared galaxy IRAS 20551−4250 at HCN/HCO{sup +}/HNC J = 3–2 lines at both vibrational ground ( v = 0) and vibrationally excited ( v {sub 2} = 1) levels. This galaxy contains a luminous buried active galactic nucleus (AGN), in addition to starburst activity, and our ALMA Cycle 0 data revealed a tentatively detected vibrationally excited HCN v {sub 2} = 1f J = 4–3 emission line. In our ALMA Cycle 2 data, the HCN/HCO{sup +}/HNC J = 3–2 emission lines at v = 0 are clearly detected. The HCN and HNC v {sub 2} = 1f J = 3–2 emission lines are also detected, but the HCO{sup +} v {sub 2} = 1f J = 3–2 emission line is not. Given the high energy level of v {sub 2} = 1 and the resulting difficulty of collisional excitation, we compared these results with those of the calculation of infrared radiative pumping, using the available infrared 5–35 μ m spectrum. We found that all of the observational results were reproduced if the HCN abundance was significantly higher than that of HCO{sup +} and HNC. The flux ratio and excitation temperature between v {sub 2} = 1f and v = 0, after correction for possible line opacity, suggests that infrared radiative pumping affects rotational ( J -level) excitation at v = 0 at least for HCN and HNC. The HCN-to-HCO{sup +} v = 0 flux ratio is higher than those of starburst-dominated regions, and will increase even more when the derived high HCN opacity is corrected. The enhanced HCN-to-HCO{sup +} flux ratio in this AGN-hosting galaxy can be explained by the high HCN-to-HCO{sup +} abundance ratio and sufficient HCN excitation at up to J = 4, rather than the significantly higher efficiency of infrared radiative pumping for HCN than HCO{sup +}.

  20. THE HCN/HNC ABUNDANCE RATIO TOWARD DIFFERENT EVOLUTIONARY PHASES OF MASSIVE STAR FORMATION

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Mihwa; Lee, Jeong-Eun [School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of); Kim, Kee-Tae, E-mail: mihwajin.sf@gmail.com, E-mail: jeongeun.lee@khu.ac.kr, E-mail: ktkim@kasi.re.kr [Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348 (Korea, Republic of)

    2015-07-20

    Using the H{sup 13}CN and HN{sup 13}C J = 1–0 line observations, the abundance ratio of HCN/HNC has been estimated for different evolutionary stages of massive star formation: infrared dark clouds (IRDCs), high-mass protostellar objects (HMPOs), and ultracompact H ii regions (UCH iis). IRDCs were divided into “quiescent IRDC cores (qIRDCc)” and “active IRDC cores (aIRDCc),” depending on star formation activity. The HCN/HNC ratio is known to be higher at active and high temperature regions related to ongoing star formation, compared to cold and quiescent regions. Our observations toward 8 qIRDCc, 16 aIRDCc, 23 HMPOs, and 31 UCH iis show consistent results; the ratio is 0.97 (±0.10), 2.65 (±0.88), 4.17 (±1.03), and 8.96 (±3.32) in these respective evolutionary stages, increasing from qIRDCc to UCH iis. The change of the HCN/HNC abundance ratio, therefore, seems directly associated with the evolutionary stages of star formation, which have different temperatures. One suggested explanation for this trend is the conversion of HNC to HCN, which occurs effectively at higher temperatures. To test the explanation, we performed a simple chemical model calculation. In order to fit the observed results, the energy barrier of the conversion must be much lower than the value provided by theoretical calculations.

  1. A search for the millimetre lines of HCN in Comets Wilson 1987 VII and Machholz 1988 XV

    Science.gov (United States)

    Crouvisier, J.; Despois, D.; Bockelee-Morvan, D.; Gerard, E.; Paubert, G.; Johansson, L. E. B.; Ekelund, L.; Winnberg, A.; Ge, W.; Irvine, W. M.; Kinzel, W. M.; Schloerb, F. P.

    1990-08-01

    The J(1-0) lines of HCN at 89 GHz were searched for in Comet Wilson 1987 VII, with the FCRAO, the SEST and the IRAM radio telescopes between February and June 1987. There was no firm detection, but significant upper limits were obtained, which put severe constraints on the HCN production rate in that comet. A direct comparison with the observations of P/Halley suggests that the HCN abundance relative to water might be smaller in Comet Wilson by at least a factor of two. The J(1-0) and J(3-2) lines of HCN at 89 and 266 GHz were searched for in Comet Machholz 1988 XV when it was close to perihelion at 0.17 AU from the sun. There was no detection. At that moment, the comet was probably no longer active.

  2. Structural Insight into the Gene Expression Profiling of the hcn Operon in Pseudomonas aeruginosa.

    Science.gov (United States)

    Chowdhury, Nilkanta; Bagchi, Angshuman

    2017-07-01

    Pseudomonas aeruginosa is a common opportunistic human pathogen. It generally attacks immunosuppressed patients like AIDS, cancer, cystic fibrosis, etc. The virulence of P. aeruginosa is mediated by various virulence factors. One of such potential virulence factors is HCN synthesized by HCN synthase enzyme, which is encoded by the hcnABC operon. The expressions of the genes of this operon are regulated by three transcriptional regulators, viz., LasR, ANR, and RhlR. In our previous work, we analyzed the molecular details of the functionalities of LasR. In this work, we focused on ANR. ANR is a regulatory protein which belongs to the FNR family and works in anaerobic condition. ANR binds to the promoter DNA, named ANR box, as a dimer. The dimerization of this ANR protein is regulated by Fe 4 S 4 , an iron-sulfur cluster. This dimer of ANR (ANR-Fe 4 S 4 /ANR-Fe 4 S 4 ) recognizes and binds the promoter DNA sequence and regulates the transcription of this hcnABC operon. Till date, the biomolecular details of the interactions of ANR dimer with the promoter DNA are not fully understood. Thus, we built the molecular model of ANR-Fe 4 S 4 /ANR-Fe 4 S 4 . We docked the complex with the corresponding promoter DNA region. We analyzed the mode of interactions with the promoter DNA under different conditions. Thus, we tried to analyze the functionality of the ANR protein during the expressions of the genes of the hcnABC operon. So far, this is the first report to detail the molecular mechanism of the gene expression in P. aeruginosa.

  3. Photodissociation of HCN and HNC isomers in the 7-10 eV energy range

    Energy Technology Data Exchange (ETDEWEB)

    Chenel, Aurelie; Roncero, Octavio, E-mail: octavio.roncero@csic.es [Instituto de Física Fundamental (IFF-CSIC), C.S.I.C., Serrano 123, 28006 Madrid (Spain); Aguado, Alfredo [Departamento de Química Física Aplicada (UAM), Unidad Asociada a IFF-CSIC, Facultad de Ciencias Módulo 14, Universidad Autónoma de Madrid, 28049 Madrid (Spain); Agúndez, Marcelino; Cernicharo, José [Instituto de Ciencia de Materiales de Madrid, CSIC, C/ Sor Juana Inés de la Cruz 3, 28049 Cantoblanco (Spain)

    2016-04-14

    The ultraviolet photoabsorption spectra of the HCN and HNC isomers have been simulated in the 7-10 eV photon energy range. For this purpose, the three-dimensional adiabatic potential energy surfaces of the 7 lowest electronic states, and the corresponding transition dipole moments, have been calculated, at multireference configuration interaction level. The spectra are calculated with a quantum wave packet method on these adiabatic potential energy surfaces. The spectra for the 3 lower excited states, the dissociative electronic states, correspond essentially to predissociation peaks, most of them through tunneling on the same adiabatic state. The 3 higher electronic states are bound, hereafter electronic bound states, and their spectra consist of delta lines, in the adiabatic approximation. The radiative lifetime towards the ground electronic states of these bound states has been calculated, being longer than 10 ns in all cases, much longer that the characteristic predissociation lifetimes. The spectra of HCN is compared with the available experimental and previous theoretical simulations, while in the case of HNC there are no previous studies to our knowledge. The spectrum for HNC is considerably more intense than that of HCN in the 7-10 eV photon energy range, which points to a higher photodissociation rate for HNC, compared to HCN, in astrophysical environments illuminated by ultraviolet radiation.

  4. The correlation between HCN/H2O flux ratios and disk mass: evidence for protoplanet formation

    Science.gov (United States)

    Rose, Caitlin; Salyk, Colette

    2017-01-01

    We analyze hydrogen cyanide (HCN) and water vapor flux ratios in protoplanetary disks as a way to trace planet formation. Analyzing only disks in the Taurus molecular cloud, Najita et al. (2013) found a tentative correlation between protoplanetary disk mass and the HCN/H2O line flux ratio in Spitzer-IRS emission spectra. They interpret this correlation to be a consequence of more massive disks forming planetesimals more efficiently than smaller disks, as the formation of large planetesimals may lock up water ice in the cool outer disk region and prevent it from migrating, drying out the inner disk. The sequestering of water (and therefore oxygen) in the outer disk may also increase the carbon-to- oxygen ratio in the inner disk, leading to enhanced organic molecule (e.g. HCN) emission. To confirm this trend, we expand the Najita et al. sample by calculating HCN/H2O line flux ratios for 8 more sources with known disk masses from clusters besides Taurus. We find agreement with the Najita et al. trend, suggesting that this is a widespread phenomenon. In addition, we find HCN/H2O line flux ratios for 17 more sources that await disk mass measurements, which should become commonplace in the ALMA era. Finally, we investigate linear fits and outliers to this trend, and discuss possible causes.

  5. Large-scale upper tropospheric pollution observed by MIPAS HCN and C2H6 global distributions

    Science.gov (United States)

    Glatthor, N.; von Clarmann, T.; Stiller, G. P.; Funke, B.; Koukouli, M. E.; Fischer, H.; Grabowski, U.; Höpfner, M.; Kellmann, S.; Linden, A.

    2009-12-01

    We present global upper tropospheric HCN and C2H6 amounts derived from MIPAS/ENVISAT limb emission spectra. HCN and C2H6 are retrieved in the spectral regions 715.5-782.7 cm-1 and 811.5-835.7 cm-1, respectively. The datasets consist of 54 days between September 2003 and March 2004. This period covers the peak and decline of the southern hemispheric biomass burning period and some months thereafter. HCN is a nearly unambiguous tracer of biomass burning with an assumed tropospheric lifetime of several months. Indeed, the most significant feature in the MIPAS HCN dataset is an upper tropospheric plume of enhanced values caused by southern hemispheric biomass burning, which in September and October 2003 extended from tropical South America over Africa, Australia to the Southern Pacific. The spatial extent of this plume agrees well with the MOPITT CO distribution of September 2003. Further there is good agreement with the shapes and mixing ratios of the southern hemispheric HCN and C2H6 fields measured by the ACE experiment between September and November 2005. The MIPAS HCN plume extended from the lowermost observation height of 8 km up to about 16 km altitude, with maximum values of 500-600 pptv in October 2003. It was still clearly visible in December 2003, but had strongly decreased by March 2004, confirming the assumed tropospheric lifetime. The main sources of C2H6 are production and transmission of fossil fuels, followed by biofuel use and biomass burning. The C2H6 distribution also clearly reflected the southern hemispheric biomass burning plume and its seasonal variation, with maximum amounts of 600-700 pptv. Generally there was good spatial overlap between the southern hemispheric distributions of both pollution tracers, except for the region between Peru and the mid-Pacific. Here C2H6was considerably enhanced, whereas the HCN amounts were low. Backward trajectory calculations suggested that industrial pollution was responsible for the elevated C2H6

  6. Large-scale upper tropospheric pollution observed by MIPAS HCN and C2H6 global distributions

    Directory of Open Access Journals (Sweden)

    A. Linden

    2009-12-01

    Full Text Available We present global upper tropospheric HCN and C2H6 amounts derived from MIPAS/ENVISAT limb emission spectra. HCN and C2H6 are retrieved in the spectral regions 715.5–782.7 cm−1 and 811.5–835.7 cm−1, respectively. The datasets consist of 54 days between September 2003 and March 2004. This period covers the peak and decline of the southern hemispheric biomass burning period and some months thereafter. HCN is a nearly unambiguous tracer of biomass burning with an assumed tropospheric lifetime of several months. Indeed, the most significant feature in the MIPAS HCN dataset is an upper tropospheric plume of enhanced values caused by southern hemispheric biomass burning, which in September and October 2003 extended from tropical South America over Africa, Australia to the Southern Pacific. The spatial extent of this plume agrees well with the MOPITT CO distribution of September 2003. Further there is good agreement with the shapes and mixing ratios of the southern hemispheric HCN and C2H6 fields measured by the ACE experiment between September and November 2005. The MIPAS HCN plume extended from the lowermost observation height of 8 km up to about 16 km altitude, with maximum values of 500–600 pptv in October 2003. It was still clearly visible in December 2003, but had strongly decreased by March 2004, confirming the assumed tropospheric lifetime. The main sources of C2H6 are production and transmission of fossil fuels, followed by biofuel use and biomass burning. The C2H6 distribution also clearly reflected the southern hemispheric biomass burning plume and its seasonal variation, with maximum amounts of 600–700 pptv. Generally there was good spatial overlap between the southern hemispheric distributions of both pollution tracers, except for the region between Peru and the mid-Pacific. Here C2H6was considerably enhanced, whereas the HCN amounts were low. Backward trajectory calculations suggested that industrial pollution was responsible

  7. Catalytic and Gas-Solid Reactions Involving HCN over Limestone

    DEFF Research Database (Denmark)

    Jensen, Anker; Johnsson, Jan Erik; Dam-Johansen, Kim

    1997-01-01

    In coal-fired combustion systems solid calcium species may be present as ash components or limestone added to the combustion chamber. In this study heterogeneous reactions involving HCN over seven different limestones were investigated in a laboratory fixed-bed quartz reactor at 873-1,173 K...

  8. EXTENDED HCN AND HCO{sup +} EMISSION IN THE STARBURST GALAXY M82

    Energy Technology Data Exchange (ETDEWEB)

    Salas, P.; Galaz, G. [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, Av. Vicua Mackenna 4860, 782-0436 Macul, Santiago (Chile); Salter, D.; Herrera-Camus, R.; Bolatto, A. D. [Department of Astronomy and Laboratory for Millimeter-Wave Astronomy, University of Maryland, College Park, MD 20742 (United States); Kepley, A. [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903-2475 (United States)

    2014-12-20

    We mapped 3 mm continuum and line emission from the starburst galaxy M82 using the Combined Array for Research in Millimeter-wave Astronomy. We targeted the HCN, HCO{sup +}, HNC, CS, and HC{sub 3}N lines, but here we focus on the HCN and HCO{sup +} emission. The map covers a field of 1.'2 with an ≈5'' resolution. The HCN and HCO{sup +} observations are short spacings corrected. The molecular gas in M82 had been previously found to be distributed in a molecular disk, coincident with the central starburst, and a galactic scale outflow which originates in the central starburst. With the new short spacings-corrected maps we derive some of the properties of the dense molecular gas in the base of the outflow. From the HCN and HCO{sup +} J = (1-0) line emission, and under the assumptions of the gas being optically thin and in local thermodynamic equilibrium, we place lower limits on the amount of dense molecular gas in the base of the outflow. The lower limits are 7 × 10{sup 6} M {sub ☉} and 21 × 10{sup 6} M {sub ☉}, or ≳ 2% of the total molecular mass in the outflow. The kinematics and spatial distribution of the dense gas outside the central starburst suggests that it is being expelled through chimneys. Assuming a constant outflow velocity, the derived outflow rate of dense molecular gas is ≥0.3 M {sub ☉} yr{sup –1}, which would lower the starburst lifetime by ≥5%. The energy required to expel this mass of dense gas is (1-10) × 10{sup 52} erg.

  9. First-principles insights into interaction of CO, NO, and HCN with Ag{sub 8}

    Energy Technology Data Exchange (ETDEWEB)

    Torbatian, Zahra; Hashemifar, S. Javad, E-mail: hashemifar@cc.iut.ac.ir; Akbarzadeh, Hadi [Department of Physics, Isfahan University of Technology, 84156-83111 Isfahan (Iran, Islamic Republic of)

    2014-02-28

    We use static as well as time-dependent first-principles computations to study interaction of the CO, NO, and HCN molecules with the Ag{sub 8} nanocluster. The many-body based GW correction is applied for accurate description of the highest occupied (HOMO) and the lowest unoccupied (LUMO) molecular orbital levels. It is argued that the adsorption of these molecules changes the stable structure of Ag{sub 8} from Td to the more chemically active D{sub 2d} symmetry. We discuss that the CO, NO, and HCN molecules prefer to adsorb on the atom of the cluster with significant contribution to both HOMO and LUMO, for the accomplishment of the required charge transfers in the systems. The charge back donation is found to leave an excess energy of about 110 meV on the NO molecular bond, evidencing potential application of silver clusters for NO reduction. It is argued that CO and specially NO exhibit strong physical interaction with the silver cluster and hence significantly modify the electronic and optical properties of the system, while HCN makes very week physical bonds with the cluster. The optical absorption spectra of the Ag{sub 8} cluster before and after molecule adsorption are computed and a nontrivial red shift is observed in the NO and HCN adsorbed clusters.

  10. MLS/Aura L2 Hydrogen Cyanide (HCN) Mixing Ratio V003

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HCN is the EOS Aura Microwave Limb Sounder (MLS) standard product for hydrogen cyanide derived from radiances measured primarily by the 190 GHz radiometer. The...

  11. MLS/Aura L2 Hydrogen Cyanide (HCN) Mixing Ratio V002

    Data.gov (United States)

    National Aeronautics and Space Administration — ML2HCN is the EOS Aura Microwave Limb Sounder (MLS) standard product for hydrogen cyanide derived from radiances measured primarily by the 190 GHz radiometer. The...

  12. Widespread HCN maser emission in carbon-rich evolved stars

    Science.gov (United States)

    Menten, K. M.; Wyrowski, F.; Keller, D.; Kamiński, T.

    2018-05-01

    Context. HCN is a major constituent of the circumstellar envelopes of carbon-rich evolved stars, and rotational lines from within its vibrationally excited states probe parts of these regions closest to the stellar surface. A number of such lines are known to show maser action. Historically, in one of them, the 177 GHz J = 2 → 1 line in the l-doubled bending mode has been found to show relatively strong maser action, with results only published for a single object, the archetypical high-mass loss asymptotic giant branch (AGB) star IRC+10216. Aims: To examine how common 177 GHz HCN maser emission is, we conducted an exploratory survey for this line toward a select sample of carbon-rich asymptotic giant branch stars that are observable from the southern hemisphere. Methods: We used the Atacama Pathfinder Experiment 12 meter submillimeter Telescope (APEX) equipped with a new receiver to simultaneously observe three J = 2 → 1 HCN rotational transitions, the (0, 11c, 0) and (0, 11d, 0) l-doublet components, and the line from the (0,0,0) ground state. Results: The (0, 11c, 0) maser line is detected toward 11 of 13 observed sources, which all show emission in the (0,0,0) transition. In most of the sources, the peak intensity of the (0, 11c, 0) line rivals that of the (0,0,0) line; in two sources, it is even stronger. Except for the object with the highest mass-loss rate, IRC+10216, the (0, 11c, 0) line covers a smaller velocity range than the (0,0,0) line. The (0, 11d, 0) line, which is detected in four of the sources, is much weaker than the other two lines and covers a velocity range that is smaller yet, again except for IRC+10216. Compared to its first detection in 1989, the profile of the (0, 11c, 0) line observed toward IRC+10216 looks very different, and we also appear to see variability in the (0,0,0) line profile (at a much lower degree). Our limited information on temporal variabilitydisfavors a strong correlation of maser and stellar continuum flux

  13. Product channels in the 193-nm photodissociation of HCNO (fulminic acid)

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Wenhui; Hershberger, John F., E-mail: john.hershberger@ndsu.edu

    2016-06-15

    IR diode laser spectroscopy was used to detect the products of HCNO (fulminic acid) photolysis at 193 nm. Six product channels are energetically possible at this photolysis wavelength: O + HCN, H + NCO/CNO, CN + OH, CO + NH, NO + CH and HNCO. In some experiments, isotopically labeled {sup 15}N{sup 18}O, C{sub 2}D{sub 6} or C{sub 6}H{sub 12} reagents were included into the photolysis mixture in order to suppress and/or redirect possible secondary reactions. HCN, OC{sup 18}O, {sup 15}N{sup 15}NO, CO, DCN and HNCO molecules were detected upon laser photolysis of HCNO/reagents/buffer gas mixtures. Analysis of the yields of product molecules leads to the following photolysis quantum yields: ϕ{sub 1a} (O + HCN) = 0.38 ± 0.04, ϕ{sub 1b} (H + (NCO)) = 0.07 ± 0.02, ϕ{sub 1c} (CN + OH) = 0.24 ± 0.03, ϕ{sub 1d} (CO + NH(a{sup 1}Δ)) < 0.22 ± 0.1, ϕ{sub 1e} (HNCO) = 0.02 ± 0.01 and ϕ{sub 1f} (CH + NO) = 0.21 ± 0.1, respectively.

  14. Lamellar γ-AlOOH architectures: Synthesis and application for the removal of HCN

    International Nuclear Information System (INIS)

    Hou Hongwei; Zhu You; Tang Gangling; Hu Qingyuan

    2012-01-01

    Using hexadecyl trimethyl ammonium bromide (CTAB) as a structure-directing agent and precipitator, the complete synthesis of lamellar γ-AlOOH architectures was successfully accomplished via a hydrothermal route. Different product structures were obtained by varying the molar ratio of aluminum nitrate and CTAB. Several techniques, including X-ray powder diffraction, Fourier transform infrared spectroscopy, field-emission scanning electron microscopy, transmission electron microscopy, and differential scanning calorimetry thermal analysis, were used to characterize the products. The effects of CTAB concentration, reaction temperature and time, and the molar ratio of Al 3+ /CTAB on the product morphologies were investigated. The nitrogen adsorption and desorption measurements indicated that the γ-AlOOH architectures possess a Brunauer–Emmett–Teller surface area of approximately 75.02 m 2 /g. It was also demonstrated that 10 mg γ-AlOOH architectures can remove 45.3% of the HCN (1.68 μg/mL) from model wastewater. When 0.03 mg/cig γ-AlOOH architectures were combined with cigarette paper, 8.12% of the present HCN was adsorbed. These results indicate that lamellar γ-AlOOH architectures may be a potential adsorbent for removing HCN from highly toxic pollutant solutions and harmful cigarette smoke. Highlights: ► Hexadecyl trimethyl ammonium bromide (CTAB) was used as a structure-directing agent and precipitator. ► Hydrothermal treatment enables growth of lamellar γ-AlOOH architectures. ► Lamellar γ-AlOOH architectures were demonstrated to exhibit high BET surface area and excellent adsorptive capacity. ► HCN in contaminated water and cigarette smoke can be effectively removed by the prepared lamellar γ-AlOOH superstructures.

  15. United States Historical Climatology Network (US HCN) monthly temperature and precipitation data

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, R.C. [ed.] [Univ. of Tennessee, Knoxville, TN (United States). Energy, Environment and Resources Center; Boden, T.A. [ed.] [Oak Ridge National Lab., TN (United States); Easterling, D.R.; Karl, T.R.; Mason, E.H.; Hughes, P.Y.; Bowman, D.P. [National Climatic Data Center, Asheville, NC (United States)

    1996-01-11

    This document describes a database containing monthly temperature and precipitation data for 1221 stations in the contiguous United States. This network of stations, known as the United States Historical Climatology Network (US HCN), and the resulting database were compiled by the National Climatic Data Center, Asheville, North Carolina. These data represent the best available data from the United States for analyzing long-term climate trends on a regional scale. The data for most stations extend through December 31, 1994, and a majority of the station records are serially complete for at least 80 years. Unlike many data sets that have been used in past climate studies, these data have been adjusted to remove biases introduced by station moves, instrument changes, time-of-observation differences, and urbanization effects. These monthly data are available free of charge as a numeric data package (NDP) from the Carbon Dioxide Information Analysis Center. The NDP includes this document and 27 machine-readable data files consisting of supporting data files, a descriptive file, and computer access codes. This document describes how the stations in the US HCN were selected and how the data were processed, defines limitations and restrictions of the data, describes the format and contents of the magnetic media, and provides reprints of literature that discuss the editing and adjustment techniques used in the US HCN.

  16. Retinal Cyclic Nucleotide-Gated Channels: From Pathophysiology to Therapy

    Directory of Open Access Journals (Sweden)

    Stylianos Michalakis

    2018-03-01

    Full Text Available The first step in vision is the absorption of photons by the photopigments in cone and rod photoreceptors. After initial amplification within the phototransduction cascade the signal is translated into an electrical signal by the action of cyclic nucleotide-gated (CNG channels. CNG channels are ligand-gated ion channels that are activated by the binding of cyclic guanosine monophosphate (cGMP or cyclic adenosine monophosphate (cAMP. Retinal CNG channels transduce changes in intracellular concentrations of cGMP into changes of the membrane potential and the Ca2+ concentration. Structurally, the CNG channels belong to the superfamily of pore-loop cation channels and share a common gross structure with hyperpolarization-activated cyclic nucleotide-gated (HCN channels and voltage-gated potassium channels (KCN. In this review, we provide an overview on the molecular properties of CNG channels and describe their physiological role in the phototransduction pathways. We also discuss insights into the pathophysiological role of CNG channel proteins that have emerged from the analysis of CNG channel-deficient animal models and human CNG channelopathies. Finally, we summarize recent gene therapy activities and provide an outlook for future clinical application.

  17. A widely tunable, near-infrared laser-based trace gas sensor for hydrogen cyanide (HCN) detection in exhaled breath

    Science.gov (United States)

    Azhar, M.; Mandon, J.; Neerincx, A. H.; Liu, Z.; Mink, J.; Merkus, P. J. F. M.; Cristescu, S. M.; Harren, F. J. M.

    2017-11-01

    A compact, cost-effective sensor is developed for detection of hydrogen cyanide (HCN) in exhaled breath within seconds. For this, an off-axis integrated cavity output spectroscopy setup is combined with a widely tunable compact near-infrared laser (tunability 1527-1564 nm). For HCN a detection sensitivity has been obtained of 8 ppbv in nitrogen (within 1 s), equal to a noise equivalent absorption sensitivity of 1.9 × 10-9 cm-1 Hz-1/2. With this sensor we demonstrated the presence of HCN in exhaled breath; its detection could be a good indicator for bacterial lung infection. Due to its compact, cost-effective and user-friendly design, this laser-based sensor has the potential to be implemented in future clinical applications.

  18. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F

    2010-04-01

    The goal of this study was to evaluate the ability of a threshold measure, made with a restricted electrode configuration, to identify channels exhibiting relatively poor spatial selectivity. With a restricted electrode configuration, channel-to-channel variability in threshold may reflect variations in the interface between the electrodes and auditory neurons (i.e., nerve survival, electrode placement, and tissue impedance). These variations in the electrode-neuron interface should also be reflected in psychophysical tuning curve (PTC) measurements. Specifically, it is hypothesized that high single-channel thresholds obtained with the spatially focused partial tripolar (pTP) electrode configuration are predictive of wide or tip-shifted PTCs. Data were collected from five cochlear implant listeners implanted with the HiRes90k cochlear implant (Advanced Bionics Corp., Sylmar, CA). Single-channel thresholds and most comfortable listening levels were obtained for stimuli that varied in presumed electrical field size by using the pTP configuration for which a fraction of current (sigma) from a center-active electrode returns through two neighboring electrodes and the remainder through a distant indifferent electrode. Forward-masked PTCs were obtained for channels with the highest, lowest, and median tripolar (sigma = 1 or 0.9) thresholds. The probe channel and level were fixed and presented with either the monopolar (sigma = 0) or a more focused pTP (sigma > or = 0.55) configuration. The masker channel and level were varied, whereas the configuration was fixed to sigma = 0.5. A standard, three-interval, two-alternative forced choice procedure was used for thresholds and masked levels. Single-channel threshold and variability in threshold across channels systematically increased as the compensating current, sigma, increased and the presumed electrical field became more focused. Across subjects, channels with the highest single-channel thresholds, when measured with a

  19. ALMA DETECTION OF THE VIBRATIONALLY EXCITED HCN J = 4-3 EMISSION LINE IN THE AGN-HOSTING LUMINOUS INFRARED GALAXY IRAS 20551–4250

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, Masatoshi [Subaru Telescope, 650 North A' ohoku Place, Hilo, Hawaii, 96720 (United States); Nakanishi, Kouichiro, E-mail: masa.imanishi@nao.ac.jp [Joint ALMA Observatory, Alonso de Córdova 3107, Vitacura 763-0355, Santiago de Chile (Chile)

    2013-10-01

    We present results from our ALMA Cycle 0 observations, at the frequencies around the HCN, HCO{sup +}, and HNC J = 4-3 transition lines, of the luminous infrared galaxy IRAS 20551–4250 at z = 0.043, which is known to host an energetically important obscured active galactic nucleus (AGN). In addition to the targeted HCN, HCO{sup +}, and HNC J = 4-3 emission lines, two additional strong emission lines are seen, which we attribute to H{sub 2}S and CH{sub 3}CN(+CCH). The HCN-to-HCO{sup +} J = 4-3 flux ratio (∼0.7) is higher than in the other starburst-dominated galaxy (∼0.2) observed in our ALMA Cycle 0 program. We tentatively (∼5σ) detected the vibrationally excited (v {sub 2} = 1) HCN J = 4-3 (l = 1f) emission line, which is important for testing an infrared radiative pumping scenario for HCN. This is the second detection of this molecular transition in external galaxies. The most likely reason for this detection is not only the high flux of this emission line, but also the small molecular line widths observed in this galaxy, suggesting that vibrational excitation of HCN may be relatively common in AGN-hosting galaxies.

  20. Investigating the Spatial Structure of HCN Emission in Comet C/2012 F6 (Lemmon)

    Science.gov (United States)

    Booth, Shawn; Burkhardt, Andrew; Corby, Joanna; Dollhopf, Niklaus; Rawlings, Mark; Remijan, Anthony

    2015-11-01

    Comets are of particular interest in the field of Astrochemistry as they can be used as a direct probe of formation chemistry of the Solar System. Originating in the Oort Cloud reservoir, these long period objects experience relatively limited solar influence. The majority of cometary material (water, methane and ammonia ices) has remained in the same state as when it formed. These ices are precursors to more complex molecules which have been shown to form amino acids that are crucial for the development of life. HCN, or hydrogen cyanide, is of particular interest because it can form the nucleobase adenine (C5H5N5). The goals of this project are to map the HCN distribution of Comet C/2012 F6 (Lemmon) and to show the simultaneous observation capabilities of the Atacama Large Millimeter/Submillimeter Array (ALMA), which allows the extraction of 7-m array, 12-m array and single dish observation data. On UT 2013 May 11, Comet Lemmon was observed using ALMA. The Cycle 1 configuration was used with the Band 6 receivers, with a 1.5 GHz range centered on the HCN transition at 265.86 GHz, which gave a spectral resolution of 0.07 km/s. We show that Comet Lemmon has both a compact HCN region (found with the 12-m array) and also an extended component, forming a tail-like structure in the anti-motion direction (found with the 7-m array). We were also able to extract the autocorrelation data (single dish) and show that it is viable. This project was supported and funded by NRAO in conjunction with the National Science Foundation (NSF), with special thanks to the Astronomy Department at University of Virginia.

  1. Dormancy alleviation by NO or HCN leading to decline of protein carbonylation levels in apple (Malus domestica Borkh.) embryos.

    Science.gov (United States)

    Krasuska, Urszula; Ciacka, Katarzyna; Dębska, Karolina; Bogatek, Renata; Gniazdowska, Agnieszka

    2014-08-15

    Deep dormancy of apple (Malus domestica Borkh.) embryos can be overcome by short-term pre-treatment with nitric oxide (NO) or hydrogen cyanide (HCN). Dormancy alleviation of embryos modulated by NO or HCN and the first step of germination depend on temporary increased production of reactive oxygen species (ROS). Direct oxidative attack on some amino acid residues or secondary reactions via reactive carbohydrates and lipids can lead to the formation of protein carbonyl derivatives. Protein carbonylation is a widely accepted covalent and irreversible modification resulting in inhibition or alteration of enzyme/protein activities. It also increases the susceptibility of proteins to proteolytic degradation. The aim of this work was to investigate protein carbonylation in germinating apple embryos, the dormancy of which was removed by pre-treatment with NO or HCN donors. It was performed using a quantitative spectrophotometric method, while patterns of carbonylated protein in embryo axes were analyzed by immunochemical techniques. The highest concentration of protein carbonyl groups was observed in dormant embryos. It declined in germinating embryos pre-treated with NO or HCN, suggesting elevated degradation of modified proteins during seedling formation. A decrease in the concentration of carbonylated proteins was accompanied by modification in proteolytic activity in germinating apple embryos. A strict correlation between the level of protein carbonyl groups and cotyledon growth and greening was detected. Moreover, direct in vitro carbonylation of BSA treated with NO or HCN donors was analyzed, showing action of both signaling molecules as protein oxidation agents. Copyright © 2014 Elsevier GmbH. All rights reserved.

  2. Substitutional HCN- molecular ions in KCN crystal: a paramagnetic probe in a ferroelastic material

    International Nuclear Information System (INIS)

    Weid, J.P. von der; Carmo, L.C.S. do; Ribeiro, S.C.

    1978-01-01

    The HCN - molecular ion was produced in single crystals of KCN: 10 -2 OH - irradiated by UV light at 77 K. The spin Hamiltonian parameters were measured at 60 K and the temperature dependence of the spectrum was investigated between 60 K and 170 K. This temperature dependence is explained by the rapid motion of the molecule with the increasing temperature and the elastic interaction of the molecule with the surrounding ions. Using the similarity between the paramagnetic HCN - molecule and the CN - ions of the host lattice a qualitative picture of the local phenomena occuring in the ferroelastic phase of KCN could be made and the energy of the elastic interaction between CN - was estimated of the order of 7 meV [pt

  3. PENGARUH LAMA PERENDAMAN KORO BENGU (Mucuna pruriens DALAM AIR KAPUR (Ca(OH2 TERHADAP KADAR ASAM SIANIDA (HCN

    Directory of Open Access Journals (Sweden)

    Arif Nurmawan Toro

    2014-03-01

    Full Text Available Latar belakang: Masyarakat Indonesia masih menitikberatkan pada komoditas kacang kedelai sebagai sumber utama protein, sedangkan pemanfaatan komoditas lain seperti koro benguk masih sangat minim. Minimnya pemanfaatan koro benguk ini karena di dalamnya terkandung senyawa alami berupa glokusida sianogenik yang dapat mengalami hidrolisis enzimatis menjadi asam sianida (HCN yang bersifat racun. Karena asam sianida bersifat asam yang sangat mudah larut dalam air, maka dilakukan perendaman menggunakan air kapur (Ca(OH2 bersifat basa yang dirasa cukup efektif menetralkan HCN dalam koro benguk.   Tujuan Penelitian: Mengetahui pengaruh lama perendaman koro benguk dalam air kapur terhadap kadar asam sianida dan mengetahui apakah air kapur lebih efektif dibandingkan air biasa dalam menetralkan HCN koro benguk.   Metode Penelitian: Penelitian dengan desain post test with control group. Obyek penelitian ini adalah koro benguk varietas benguk putih berumur 4-6 bulan yang diperoleh di Dusun Nogosari, Desa Purwosari, Kecamatan Girimulyo, Kabupaten Kulon Progo, DIY yang dilakukan perendaman dalam air sebagai kelompok kontrol dan air kapur 100 mg/L sebagai kelompok perlakuan selama 12, 24 dan 36 jam kemudian dilakukan destilasi. Destilat direaksikan dengan asam pikrat 1% kemudia diukur kadar HCN secara spektrofotometri.   Hasil: Kadar HCN  koro benguk pada perendaman dalam air selama 12 jam adalah 20,736 mg/kg, selama 24 jam adalah 19,348 mg/kg dan selama 36 jam adalah 16,786 mg/kg. Sedangkan kadar HCN pada perendaman air kapur 100 mg/L selama 12 jam adalah 19,020 mg/kg, selama 24 jam adalah 1,635 mg/kg dan selama 36 jam adalah 9,307 mg/kg. Hasil Uji ANOVA satu jalan pada kelompok perlakuan didapatkan nilai signifikansi 0.000 (p< 0.05.   Kesimpulan: Ada pengaruh bermakna lama perendaman koro benguk dalam air kapur terhadap kadar asam sianida. Perendaman dalam air kapur terbukti lebih efektif menetralkan asam sianida koro benguk dibandingkan perendaman dalam

  4. Coupling catalytic hydrolysis and oxidation on Mn/TiO2-Al2O3 for HCN removal

    Science.gov (United States)

    Wang, Langlang; Wang, Xueqian; Cheng, Jinhuan; Ning, Ping; Lin, Yilong

    2018-05-01

    The manganese-modified titania-alumina (Mn/TiO2-Al2O3) catalyst synthesized by sol-gol method was used to remove hydrogen cyanide (HCN) from simulated flue gas. Further, effects of the mass ratios of Ti/Al, Mn loading, calcination temperature, and relative humidity on HCN conversion efficiency and catalytic activity were systematically investigated. The results indicated that the Mn/TiO2-Al2O3 catalyst exhibited significantly enhanced HCN removal efficiency, and the maximum yield of N2 increased to 68.02% without the participation of water vapor. When water vapor was added into the flue gas, the yield of N2 decreased and the formation of NOx was also inhibited. The XRD and XPS results indicated that Mn was mainly present in the form of Mn2+, Mn3+, and Mn4+ on the surface of catalyst and chemisorbed oxygen played a major role in the HCN catalytic oxidation process. The results of DSC-TGA analysis and H2-TPR indicated that the catalyst also exhibited a good thermal and chemical stability. NH3-TPD and CO2-TPD indicated that the surface of the catalyst mainly contained acidic sites. During the reaction, part of NH3 was adsorbed by Brönsted and Lewis acid sites. NH3 adsorbed on Lewis acid sites participated in NH3-SCR, which reduced the amount of NOx produced and resulted in a high N2 yield.

  5. The HCN-Water Ratio in the Planet Formation Region of Disks

    NARCIS (Netherlands)

    Najita, J.; Carr, J.; Pontoppidan, K.; Salyk, C.; Dishoeck, van E.F.; Blake, G.

    2013-01-01

    We find a trend between the mid-infrared HCN/H$_{2}$O flux ratio and submillimeter disk mass among T Tauri stars in Taurus. While it may seem puzzling that the molecular emission properties of the inner disk ({lt}few AU) are related to the properties of the outer disk (beyond ~{}20 AU) probed by the

  6. Millimeterwave spectroscopy of active laser plasmas; the excited vibrational states of HCN

    International Nuclear Information System (INIS)

    De Lucia, F.C.; Helminger, P.A.

    1977-01-01

    Millimeter and submillimeter microwave techniques have been used for the spectroscopic study of an HCN laser plasma. Forty-seven rotational transitions in 12 excited vibrational states have been observed. Numerous rotational, vibrational, and perturbation parameters have been calculated from these data. A discussion of experimental techniques is included

  7. Free-energy relationships in ion channels activated by voltage and ligand

    Science.gov (United States)

    Chowdhury, Sandipan

    2013-01-01

    Many ion channels are modulated by multiple stimuli, which allow them to integrate a variety of cellular signals and precisely respond to physiological needs. Understanding how these different signaling pathways interact has been a challenge in part because of the complexity of underlying models. In this study, we analyzed the energetic relationships in polymodal ion channels using linkage principles. We first show that in proteins dually modulated by voltage and ligand, the net free-energy change can be obtained by measuring the charge-voltage (Q-V) relationship in zero ligand condition and the ligand binding curve at highly depolarizing membrane voltages. Next, we show that the voltage-dependent changes in ligand occupancy of the protein can be directly obtained by measuring the Q-V curves at multiple ligand concentrations. When a single reference ligand binding curve is available, this relationship allows us to reconstruct ligand binding curves at different voltages. More significantly, we establish that the shift of the Q-V curve between zero and saturating ligand concentration is a direct estimate of the interaction energy between the ligand- and voltage-dependent pathway. These free-energy relationships were tested by numerical simulations of a detailed gating model of the BK channel. Furthermore, as a proof of principle, we estimate the interaction energy between the ligand binding and voltage-dependent pathways for HCN2 channels whose ligand binding curves at various voltages are available. These emerging principles will be useful for high-throughput mutagenesis studies aimed at identifying interaction pathways between various regulatory domains in a polymodal ion channel. PMID:23250866

  8. Plasma density calculation based on the HCN waveform data

    International Nuclear Information System (INIS)

    Chen Liaoyuan; Pan Li; Luo Cuiwen; Zhou Yan; Deng Zhongchao

    2004-01-01

    A method to improve the plasma density calculation is introduced using the base voltage and the phase zero points obtained from the HCN interference waveform data. The method includes making the signal quality higher by putting the signal control device and the analog-to-digit converters in the same location and charging them by the same power, and excluding the noise's effect according to the possible changing rate of the signal's phase, and to make the base voltage more accurate by dynamical data processing. (authors)

  9. Chemical content of the circumstellar envelope of the oxygen-rich AGB star R Doradus. Non-LTE abundance analysis of CO, SiO, and HCN

    Science.gov (United States)

    Van de Sande, M.; Decin, L.; Lombaert, R.; Khouri, T.; de Koter, A.; Wyrowski, F.; De Nutte, R.; Homan, W.

    2018-01-01

    starts at the stellar surface and has an e-folding radius re of 1.85 ± 0.05 × 1015 cm or 74 ± 2 R∗. Conclusions: We cannot unambiguously identify the mechanism by which SiO is destroyed at 60 ± 10 R∗. The initial abundances found are higher than previously determined (except for one previous study on SiO), which might be due to the inclusion of higher-J transitions. The difference in abundance for SiO and HCN compared to high mass-loss rate Mira star IK Tau might be due to different pulsation characteristics of the central star and/or a difference in dust condensation physics.

  10. A molecular toolbox for rapid generation of viral vectors to up- or down-regulate in vivo neuronal gene expression

    Directory of Open Access Journals (Sweden)

    Melanie D. White

    2011-07-01

    Full Text Available We introduce a molecular toolbox for manipulation of neuronal gene expression in vivo. The toolbox includes promoters, ion channels, optogenetic tools, fluorescent proteins and intronic artificial microRNAs. The components are easily assembled into adeno-associated virus (AAV or lentivirus vectors using recombination cloning. We demonstrate assembly of toolbox components into lentivirus and AAV vectors and use these vectors for in vivo expression of inwardly rectifying potassium channels (Kir2.1, Kir3.1 and Kir3.2 and an artificial microRNA targeted against the ion channel HCN1 (HCN1 miR. We show that AAV assembled to express HCN1 miR produces efficacious and specific in vivo knockdown of HCN1 channels. Comparison of in vivo viral transduction using HCN1 miR with mice containing a germ line deletion of HCN1 reveals similar physiological phenotypes in cerebellar Purkinje cells. The easy assembly and re-usability of the toolbox components, together with the ability to up- or down-regulate neuronal gene expression in vivo, may be useful for applications in many areas of neuroscience.

  11. Fluoxetine ameliorates cognitive impairments induced by chronic cerebral hypoperfusion via down-regulation of HCN2 surface expression in the hippocampal CA1 area in rats.

    Science.gov (United States)

    Luo, Pan; Zhang, Xiaoxue; Lu, Yun; Chen, Cheng; Li, Changjun; Zhou, Mei; Lu, Qing; Xu, Xulin; Shen, Guanxin; Guo, Lianjun

    2016-01-01

    Chronic cerebral hypoperfusion (CCH) causes cognitive impairments and increases the risk of Alzheimer's disease (AD) and vascular dementia (VD) through several biologically plausible pathways, yet the underlying neurobiological mechanisms are still poorly understood. In this study, we investigated whether fluoxetine, a selective serotonin reuptake inhibitor (SSRI), could play a neuroprotective role against chronic cerebral hypoperfusion injury and to clarify underlying mechanisms of its efficacy. Rats were subjected to permanent bilateral occlusion of the common carotid arteries (two-vessel occlusion, 2VO). Two weeks later, rats were treated with 30 mg/kg fluoxetine (intragastric injection, i.g.) for 6 weeks. Cognitive function was evaluated by Morris water maze (MWM) and novel objects recognition (NOR) test. Long-term potentiation (LTP) was used to address the underlying synaptic mechanisms. Western blotting was used to quantify the protein levels. Our results showed that fluoxetine treatment significantly improved the cognitive impairments caused by 2VO, accompanied with a reversion of 2VO-induced inhibitory of LTP. Furthermore, 2VO caused an up-regulation of hyperpolarization-activated cyclic nucleotide-gated channel 2 (HCN2) surface expressions in the hippocampal CA1 area and fluoxetine also effectively recovered the disorder of HCN2 surface expressions, which may be a possible mechanism that fluoxetine treatment ameliorates cognitive impairments in rats with CCH. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Ab initio calculation of a global potential, vibrational energies, and wave functions for HCN/HNC, and a simulation of the (A-tilde)-(X-tilde) emission spectrum

    Science.gov (United States)

    Bowman, Joel M.; Gazdy, Bela; Bentley, Joseph A.; Lee, Timothy J.; Dateo, Christopher E.

    1993-01-01

    A potential energy surface for the HCN/HNC system which is a fit to extensive, high-quality ab initio, coupled-cluster calculations is presented. All HCN and HNC states with energies below the energy of the first delocalized state are reported and characterized. Vibrational transition energies are compared with all available experimental data on HCN and HNC, including high CH-overtone states up to 23,063/cm. A simulation of the (A-tilde)-(X-tilde) stimulated emission pumping (SEP) spectrum is also reported, and the results are compared to experiment. Franck-Condon factors are reported for odd bending states of HCN, with one quantum of vibrational angular momentum, in order to compare with the recent assignment by Jonas et al. (1992), on the basis of axis-switching arguments of a number of previously unassigned states in the SEP spectrum.

  13. Signal detection circuit design of HCN measurement system based on TDLAS

    Science.gov (United States)

    He, Chungui; Zhang, Yujun; Chen, Chen; Lu, Yibing; Liu, Guohua; Gao, Yanwei; You, Kun; He, Ying; Zhang, Kai; Liu, Wenqing

    2016-10-01

    Hydrogen cyanide gas leakage may exist in the petrochemical industry, smelting plant, and other industrial processes, causing serious harm to the environment, and even threatening the safety of personnel. So the continuous detection of HCN gas plays an important role in the prevention of risk in production process and storage environment that existing hydrogen cyanide gas. The Tunable Diode Laser Technology (TDLAS) has advantages of non-contact, high sensitivity, high selectivity, and fast response time, etc., which is one of the ideal method of gas detection technologies and can be used to measure the hydrogen cyanide concentration. This paper studies the HCN detection system based on TDLAS technology, selects the absorption lines of hydrogen cyanide in 6539.12cm-1, and utilizes the center wavelength of 1.529μm distributed feedback (DFB) laser as a light source. It is discussed in detail on technical requirements of a high frequency modulated laser signal detection circuit, including noise level, gain, and bandwidth. Based on the above theory, the high frequency modulation preamplifier circuit and main amplifier circuit are designed for InGaAs photoelectric detector. The designed circuits are calculation analyzed with corresponding formula and simulation analyzed based on the Multisim software.

  14. Airborne measurements of CO2, CH4 and HCN in boreal biomass burning plumes

    Science.gov (United States)

    O'Shea, Sebastian J.; Bauguitte, Stephane; Muller, Jennifer B. A.; Le Breton, Michael; Archibald, Alex; Gallagher, Martin W.; Allen, Grant; Percival, Carl J.

    2013-04-01

    Biomass burning plays an important role in the budgets of a variety of atmospheric trace gases and particles. For example, fires in boreal Russia have been linked with large growths in the global concentrations of trace gases such as CO2, CH4 and CO (Langenfelds et al., 2002; Simpson et al., 2006). High resolution airborne measurements of CO2, CH4 and HCN were made over Eastern Canada onboard the UK Atmospheric Research Aircraft FAAM BAe-146 from 12 July to 4 August 2011. These observations were made as part of the BORTAS project (Quantifying the impact of BOReal forest fires on Tropospheric oxidants over the Atlantic using Aircraft and Satellites). Flights were aimed at transecting and sampling the outflow from the commonly occurring North American boreal forest fires during the summer months and to investigate and identify the chemical composition and evolution of these plumes. CO2 and CH4 dry air mole fractions were determined using an adapted system based on a Fast Greenhouse Gas Analyser (FGGA, Model RMT-200) from Los Gatos Research Inc, which uses the cavity enhanced absorption spectroscopy technique. In-flight calibrations revealed a mean accuracy of 0.57 ppmv and 2.31 ppbv for 1 Hz observations of CO2 and CH4, respectively, during the BORTAS project. During these flights a number of fresh and photochemically-aged plumes were identified using simultaneous HCN measurements. HCN is a distinctive and useful marker for forest fire emissions and it was detected using chemical ionisation mass spectrometry (CIMS). In the freshest plumes, strong relationships were found between CH4, CO2 and other tracers for biomass burning. From this we were able to estimate that 8.5 ± 0.9 g of CH4 and 1512 ± 185 g of CO2 were released into the atmosphere per kg of dry matter burnt. These emission factors are in good agreement with estimates from previous studies and can be used to calculate budgets for the region. However for aged plumes the correlations between CH4 and other

  15. Molecular Line Emission as a Tool for Galaxy Observations (LEGO). I. HCN as a tracer of moderate gas densities in molecular clouds and galaxies

    Science.gov (United States)

    Kauffmann, Jens; Goldsmith, Paul F.; Melnick, Gary; Tolls, Volker; Guzman, Andres; Menten, Karl M.

    2017-09-01

    Trends observed in galaxies, such as the Gao & Solomon relation, suggest a linear relationship between the star formation rate and the mass of dense gas available for star formation. Validation of such trends requires the establishment of reliable methods to trace the dense gas in galaxies. One frequent assumption is that the HCN (J = 1-0) transition is unambiguously associated with gas at H2 densities ≫ 104 cm-3. If so, the mass of gas at densities ≫ 104 cm-3 could be inferred from the luminosity of this emission line, LHCN (1-0). Here we use observations of the Orion A molecular cloud to show that the HCN (J = 1-0) line traces much lower densities 103 cm-3 in cold sections of this molecular cloud, corresponding to visual extinctions AV ≈ 6 mag. We also find that cold and dense gas in a cloud like Orion produces too little HCN emission to explain LHCN (1-0) in star forming galaxies, suggesting that galaxies might contain a hitherto unknown source of HCN emission. In our sample of molecules observed at frequencies near 100 GHz (also including 12CO, 13CO, C18O, CN, and CCH), N2H+ is the only species clearly associated with relatively dense gas.

  16. Space-Time Coded MC-CDMA: Blind Channel Estimation, Identifiability, and Receiver Design

    Directory of Open Access Journals (Sweden)

    Li Hongbin

    2002-01-01

    Full Text Available Integrating the strengths of multicarrier (MC modulation and code division multiple access (CDMA, MC-CDMA systems are of great interest for future broadband transmissions. This paper considers the problem of channel identification and signal combining/detection schemes for MC-CDMA systems equipped with multiple transmit antennas and space-time (ST coding. In particular, a subspace based blind channel identification algorithm is presented. Identifiability conditions are examined and specified which guarantee unique and perfect (up to a scalar channel estimation when knowledge of the noise subspace is available. Several popular single-user based signal combining schemes, namely the maximum ratio combining (MRC and the equal gain combining (EGC, which are often utilized in conventional single-transmit-antenna based MC-CDMA systems, are extended to the current ST-coded MC-CDMA (STC-MC-CDMA system to perform joint combining and decoding. In addition, a linear multiuser minimum mean-squared error (MMSE detection scheme is also presented, which is shown to outperform the MRC and EGC at some increased computational complexity. Numerical examples are presented to evaluate and compare the proposed channel identification and signal detection/combining techniques.

  17. Reduced Hyperpolarization-Activated Current Contributes to Enhanced Intrinsic Excitability in Cultured Hippocampal Neurons from PrP(-/-) Mice.

    Science.gov (United States)

    Fan, Jing; Stemkowski, Patrick L; Gandini, Maria A; Black, Stefanie A; Zhang, Zizhen; Souza, Ivana A; Chen, Lina; Zamponi, Gerald W

    2016-01-01

    Genetic ablation of cellular prion protein (PrP(C)) has been linked to increased neuronal excitability and synaptic activity in the hippocampus. We have previously shown that synaptic activity in hippocampi of PrP-null mice is increased due to enhanced N-methyl-D-aspartate receptor (NMDAR) function. Here, we focused on the effect of PRNP gene knock-out (KO) on intrinsic neuronal excitability, and in particular, the underlying ionic mechanism in hippocampal neurons cultured from P0 mouse pups. We found that the absence of PrP(C) profoundly affected the firing properties of cultured hippocampal neurons in the presence of synaptic blockers. The membrane impedance was greater in PrP-null neurons, and this difference was abolished by the hyperpolarization-activated cyclic nucleotide-gated (HCN) channel blocker ZD7288 (100 μM). HCN channel activity appeared to be functionally regulated by PrP(C). The amplitude of voltage sag, a characteristic of activating HCN channel current (I h), was decreased in null mice. Moreover, I h peak current was reduced, along with a hyperpolarizing shift in activation gating and slower kinetics. However, neither HCN1 nor HCN2 formed a biochemical complex with PrP(C). These results suggest that the absence of PrP downregulates the activity of HCN channels through activation of a cell signaling pathway rather than through direct interactions. This in turn contributes to an increase in membrane impedance to potentiate neuronal excitability.

  18. Opposite effects of the S4-S5 linker and PIP2 on voltage-gated channel function: KCNQ1/KCNE1 and other channels

    Directory of Open Access Journals (Sweden)

    Frank S Choveau

    2012-07-01

    Full Text Available Voltage-gated potassium (Kv channels are tetramers, each subunit presenting six transmembrane segments (S1-S6, with each S1-S4 segments forming a voltage-sensing domain (VSD and the four S5-S6 forming both the conduction pathway and its gate. S4 segments control the opening of the intracellular activation gate in response to changes in membrane potential. Crystal structures of several voltage-gated ion channels in combination with biophysical and mutagenesis studies highlighted the critical role of the S4-S5 linker (S4S5L and of the S6 C-terminal part (S6T in the coupling between the VSD and the activation gate. Several mechanisms have been proposed to describe the coupling at a molecular scale. This review summarizes the mechanisms suggested for various voltage-gated ion channels, including a mechanism that we described for KCNQ1, in which S4S5L is acting like a ligand binding to S6T to stabilize the channel in a closed state. As discussed in this review, this mechanism may explain the reverse response to depolarization in HCN-like channels. As opposed to S4S5L, the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2, stabilizes KCNQ1 channel in an open state. Many other ion channels (not only voltage-gated require PIP2 to function properly, confirming its crucial importance as an ion channel co-factor. This is highlighted in cases in which an altered regulation of ion channels by PIP2 leads to channelopathies, as observed for KCNQ1. This review summarizes the state of the art on the two regulatory mechanisms that are critical for KCNQ1 and other voltage-gated channels function (PIP2 and S4-S5L, and assesses their potential physiological and pathophysiological roles.

  19. Sugar-to-base correlation in nucleic acids with a 5D APSY-HCNCH or two 3D APSY-HCN experiments

    Energy Technology Data Exchange (ETDEWEB)

    Kraehenbuehl, Barbara; Hofmann, Daniela; Maris, Christophe; Wider, Gerhard, E-mail: gsw@mol.biol.ethz.ch [Institute of Molecular Biology and Biophysics (Switzerland)

    2012-02-15

    A five-dimensional (5D) APSY (automated projection spectroscopy) HCNCH experiment is presented, which allows unambiguous correlation of sugar to base nuclei in nucleic acids. The pulse sequence uses multiple quantum (MQ) evolution which enables long constant-time evolution periods in all dimensions, an improvement that can also benefit non-APSY applications. Applied with an RNA with 23 nucleotides the 5D APSY-HCNCH experiment produced a complete and highly precise 5D chemical shift list within 1.5 h. Alternatively, and for molecules where the out-and-stay 5D experiment sensitivity is not sufficient, a set of out-and-back 3D APSY-HCN experiments is proposed: an intra-base (3D APSY-b-HCN) experiment in an MQ or in a TROSY version, and an MQ sugar-to-base (3D APSY-s-HCN) experiment. The two 3D peak lists require subsequent matching via the N1/9 chemical shift values to one 5D peak list. Optimization of the 3D APSY experiments for maximal precision in the N1/9 dimension allowed matching of all {sup 15}N chemical shift values contained in both 3D peak lists. The precise 5D chemical shift correlation lists resulting from the 5D experiment or a pair of 3D experiments also provide a valuable basis for subsequent connection to chemical shifts derived with other experiments.

  20. Sugar-to-base correlation in nucleic acids with a 5D APSY-HCNCH or two 3D APSY-HCN experiments

    International Nuclear Information System (INIS)

    Krähenbühl, Barbara; Hofmann, Daniela; Maris, Christophe; Wider, Gerhard

    2012-01-01

    A five-dimensional (5D) APSY (automated projection spectroscopy) HCNCH experiment is presented, which allows unambiguous correlation of sugar to base nuclei in nucleic acids. The pulse sequence uses multiple quantum (MQ) evolution which enables long constant-time evolution periods in all dimensions, an improvement that can also benefit non-APSY applications. Applied with an RNA with 23 nucleotides the 5D APSY-HCNCH experiment produced a complete and highly precise 5D chemical shift list within 1.5 h. Alternatively, and for molecules where the out-and-stay 5D experiment sensitivity is not sufficient, a set of out-and-back 3D APSY-HCN experiments is proposed: an intra-base (3D APSY-b-HCN) experiment in an MQ or in a TROSY version, and an MQ sugar-to-base (3D APSY-s-HCN) experiment. The two 3D peak lists require subsequent matching via the N1/9 chemical shift values to one 5D peak list. Optimization of the 3D APSY experiments for maximal precision in the N1/9 dimension allowed matching of all 15 N chemical shift values contained in both 3D peak lists. The precise 5D chemical shift correlation lists resulting from the 5D experiment or a pair of 3D experiments also provide a valuable basis for subsequent connection to chemical shifts derived with other experiments.

  1. SUBMILLIMETER-HCN DIAGRAM FOR ENERGY DIAGNOSTICS IN THE CENTERS OF GALAXIES

    Energy Technology Data Exchange (ETDEWEB)

    Izumi, Takuma; Kohno, Kotaro [Institute of Astronomy, School of Science, The University of Tokyo, 2-21-1 Osawa, Mitaka, Tokyo 181-0015 (Japan); Aalto, Susanne [Department of Earth and Space Sciences, Chalmers University of Technology, Onsala Observatory, SE-439 94 Onsala (Sweden); Espada, Daniel; Martín, Sergio; Nakanishi, Kouichiro [Joint ALMA Observatory, Alonso de Córdova, 3107, Vitacura, Santiago 763-0355 (Chile); Fathi, Kambiz [Stockholm Observatory, Department of Astronomy, Stockholm University, AlbaNova Centre, SE-106 91 Stockholm (Sweden); Harada, Nanase; Hsieh, Pei-Ying; Matsushita, Satoki [Academia Sinica, Institute of Astronomy and Astrophysics, P.O. Box 23-141, Taipei 10617, Taiwan (China); Hatsukade, Bunyo; Imanishi, Masatoshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Krips, Melanie [Institut de Radio Astronomie Millimétrique, 300 rue de la Piscine, Domaine Universitaire, F-38406 St. Martin d’Hères (France); Meier, David S. [Department of Physics, New Mexico Institute of Mining and Technology, 801 Leroy Place, Soccoro, NM 87801 (United States); Nakai, Naomasa [Department of Physics, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Ten-nodai, Tsukuba, Ibaraki 305-8571 (Japan); Schinnerer, Eva [Max Planck Institute for Astronomy, Königstuhl 17, Heidelberg D-69117 (Germany); Sheth, Kartik [NASA, 300 E Street SW, Washington, DC 20546 (United States); Terashima, Yuichi [Department of Physics, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577 (Japan); Turner, Jean L., E-mail: takumaizumi@ioa.s.u-tokyo.ac.jp [Department of Physics and Astronomy, UCLA, 430 Portola Plaza, Los Angeles, CA 90095-1547 (United States)

    2016-02-10

    Compiling data from literature and the Atacama Large Millimeter/submillimeter Array archive, we show enhanced HCN(4–3)/HCO{sup +}(4–3) and/or HCN(4–3)/CS(7–6) integrated intensity ratios in circumnuclear molecular gas around active galactic nuclei (AGNs) compared to those in starburst (SB) galaxies (submillimeter HCN enhancement). The number of sample galaxies is significantly increased from our previous work. We expect that this feature could potentially be an extinction-free energy diagnostic tool of nuclear regions of galaxies. Non-LTE radiative transfer modelings of the above molecular emission lines involving both collisional and radiative excitation, as well as a photon trapping effect, were conducted to investigate the cause of the high line ratios in AGNs. As a result, we found that enhanced abundance ratios of HCN to HCO{sup +} and HCN to CS in AGNs as compared to SB galaxies by a factor of a few to even ≳10 are a plausible explanation for the submillimeter HCN enhancement. However, a counterargument of a systematically higher gas density in AGNs than in SB galaxies can also be a plausible scenario. Although we cannot fully distinguish these two scenarios at this moment owing to an insufficient amount of multi-transition, multi-species data, the former scenario is indicative of abnormal chemical composition in AGNs. Regarding the actual mechanism to realize the composition, we suggest that it is difficult with conventional gas-phase X-ray-dominated region ionization models to reproduce the observed high line ratios. We might have to take into account other mechanisms such as neutral–neutral reactions that are efficiently activated in high-temperature environments and/or mechanically heated regions to further understand the high line ratios in AGNs.

  2. Electron density profile reconstruction by maximum entropy method with multichannel HCN laser interferometer system on SPAC VII

    International Nuclear Information System (INIS)

    Kubo, S.; Narihara, K.; Tomita, Y.; Hasegawa, M.; Tsuzuki, T.; Mohri, A.

    1988-01-01

    A multichannel HCN laser interferometer system has been developed to investigate the plasma electron confinement properties in SPAC VII device. Maximum entropy method is applied to reconstruct the electron density profile from measured line integrated data. Particle diffusion coefficient in the peripheral region of the REB ring core spherator was obtained from the evolution of the density profile. (author)

  3. Hyperfine anomalies of HCN in cold dark clouds

    International Nuclear Information System (INIS)

    Walmsley, C.M.; Churchwell, E.; Nash, A.; Fitzpatrick, E.; and Physics Department, University of Illinois at Urbana-Champaign)

    1982-01-01

    We report observations of the J = 1→0 line of HCN measured toward six positions in nearby low-temperature dark clouds. The measured relative intensities of the hyperfine components of the J = 1→0 line are anomalous in that the F = 0→1 transition is stronger than would be expected if all three components (F = 2→1, F = 1→1, F = 0→1) had equal excitation temperatures. Differences of approximately 20% in the populations per sublevel of J = 1 could account for the observations. The results are in contrast to the situation observed in warmer molecular clouds associated with H II regions where the F = 1→1 line is anomalously weak. The apparent overpopulation of J = 1, F = 0 in dark clouds may be related to the phenomenon observed in the J = 1→0 transitions of HCO + and HNC in the same objects where 13 C substituted version of these species is found to be stronger than the 12 C species

  4. ALMA IMAGING OF HCN, CS, AND DUST IN ARP 220 AND NGC 6240

    Energy Technology Data Exchange (ETDEWEB)

    Scoville, Nick; Manohar, Swarnima; Murchikova, Lena [California Institute of Technology, MC 249-17, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Sheth, Kartik [North American ALMA Science Center, National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Walter, Fabian; Zschaechner, Laura [Max-Planck-Institut fur Astronomie, Konigstuhl 17, D-69117 Heidelberg (Germany); Yun, Min [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Koda, Jin [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794 (United States); Sanders, David; Barnes, Joshua [Institute for Astronomy, 2680 Woodlawn Drive, University of Hawaii, Honolulu, Hawaii, HI 96822 (United States); Thompson, Todd [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Robertson, Brant; Tacconi, Linda; Narayanan, Desika [Department of Astronomy and Steward Observatory, University of Arizona, Tucson AZ 85721 (United States); Genzel, Reinhard; Davies, Richard [Max-Planck-Institut fur extraterrestrische Physik (MPE), Giessenbachstrasse, D-85748 Garching (Germany); Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Brown, Robert [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22901 (United States); Hayward, Christopher C. [TAPIR 350-17, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Kartaltepe, Jeyhan [National Optical Astronomy Observatory, 950 North Cherry Avenue, Tucson, AZ 85719 (United States); and others

    2015-02-10

    We report ALMA Band 7 (350 GHz) imaging at 0.''4-0.''6 resolution and Band 9 (696 GHz) at ∼0.''25 resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate interstellar medium masses for Arp 220 east and west and NGC 6240 of 1.9, 4.2, and 1.6 × 10{sup 9} M {sub ☉}within radii of 69, 65, and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220 estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are n{sub H{sub 2}}∼10{sup 5} cm{sup –3} at R <50 pc. We develop an analytic treatment for the molecular excitation (including photon trapping), yielding volume densities for both the HCN and CS emission with n {sub H2} ∼ 2 × 10{sup 5} cm{sup –3}. The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e., it is not cloudy or like swiss cheese.

  5. ALMA IMAGING OF HCN, CS, AND DUST IN ARP 220 AND NGC 6240

    International Nuclear Information System (INIS)

    Scoville, Nick; Manohar, Swarnima; Murchikova, Lena; Sheth, Kartik; Walter, Fabian; Zschaechner, Laura; Yun, Min; Koda, Jin; Sanders, David; Barnes, Joshua; Thompson, Todd; Robertson, Brant; Tacconi, Linda; Narayanan, Desika; Genzel, Reinhard; Davies, Richard; Hernquist, Lars; Brown, Robert; Hayward, Christopher C.; Kartaltepe, Jeyhan

    2015-01-01

    We report ALMA Band 7 (350 GHz) imaging at 0.''4-0.''6 resolution and Band 9 (696 GHz) at ∼0.''25 resolution of the luminous IR galaxies Arp 220 and NGC 6240. The long wavelength dust continuum is used to estimate interstellar medium masses for Arp 220 east and west and NGC 6240 of 1.9, 4.2, and 1.6 × 10 9 M ☉ within radii of 69, 65, and 190 pc. The HCN emission was modeled to derive the emissivity distribution as a function of radius and the kinematics of each nuclear disk, yielding dynamical masses consistent with the masses and sizes derived from the dust emission. In Arp 220, the major dust and gas concentrations are at radii less than 50 pc in both counter-rotating nuclear disks. The thickness of the disks in Arp 220 estimated from the velocity dispersion and rotation velocities are 10-20 pc and the mean gas densities are n H 2 ∼10 5  cm –3 at R <50 pc. We develop an analytic treatment for the molecular excitation (including photon trapping), yielding volume densities for both the HCN and CS emission with n H2 ∼ 2 × 10 5  cm –3 . The agreement of the mean density from the total mass and size with that required for excitation suggests that the volume is essentially filled with dense gas, i.e., it is not cloudy or like swiss cheese

  6. Rate Coefficients for Reactions of Ethynyl Radical (C2H) With HCN and CH3CN: Implications for the Formation of Comples Nitriles on Titan

    Science.gov (United States)

    Hoobler, Ray J.; Leone, Stephen R.

    1997-01-01

    Rate coefficients for the reactions of C2H + HCN yields products and C2H + CH3CN yields products have been measured over the temperature range 262-360 K. These experiments represent an ongoing effort to accurately measure reaction rate coefficients of the ethynyl radical, C2H, relevant to planetary atmospheres such as those of Jupiter and Saturn and its satellite Titan. Laser photolysis of C2H2 is used to produce C2H, and transient infrared laser absorption is employed to measure the decay of C2H to obtain the subsequent reaction rates in a transverse flow cell. Rate constants for the reaction C2H + HCN yields products are found to increase significantly with increasing temperature and are measured to be (3.9-6.2) x 10(exp 13) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 297-360 K. The rate constants for the reaction C2H + CH3CN yields products are also found to increase substantially with increasing temperature and are measured to be (1.0-2.1) x 10(exp -12) cm(exp 3) molecules(exp -1) s(exp -1) over the temperature range of 262-360 K. For the reaction C2H + HCN yields products, ab initio calculations of transition state structures are used to infer that the major products form via an addition/elimination pathway. The measured rate constants for the reaction of C2H + HCN yields products are significantly smaller than values currently employed in photochemical models of Titan, which will affect the HC3N distribution.

  7. Hydrogen constituents of the mesosphere inferred from positive ions - H2O, CH4, H2CO, H2O2, and HCN

    Science.gov (United States)

    Kopp, E.

    1990-01-01

    The concentrations in the mesosphere of H2O, CH4, H2CO, H2O2, and HCN were inferred from data on positive ion compositions, obtained from one mid-latitude and four high-latitude rocket flights. The inferred concentrations were found to agree only partially with the ground-based microwave measurements and/or model prediction by Garcia and Solomon (1985). The CH4 concentration was found to vary between 70 and 4 ppb in daytime and 900 and 100 ppbv at night, respectively. Unexpectedly high H2CO concentrations were obtained, with H2CO/H2O ratios between 0.0006 and 0.1, and a mean HCN volume mixing ratio of 6 x 10 to the -10th was inferred.

  8. Using Remote Sensing and High-Resolution Digital Elevation Models to Identify Potential Erosional Hotspots Along River Channels During High Discharge Storm Events

    Science.gov (United States)

    Orland, E. D.; Amidon, W. H.

    2017-12-01

    As global warming intensifies, large precipitation events and associated floods are becoming increasingly common. Channel adjustments during floods can occur by both erosion and deposition of sediment, often damaging infrastructure in the process. There is thus a need for predictive models that can help managers identify river reaches that are most prone to adjustment during storms. Because rivers in post-glacial landscapes often flow over a mixture of bedrock and alluvial substrates, the identification of bedrock vs. alluvial channel reaches is an important first step in predicting vulnerability to channel adjustment during flood events, especially because bedrock channels are unlikely to adjust significantly, even during floods. This study develops a semi-automated approach to predicting channel substrate using a high-resolution LiDAR-derived digital elevation model (DEM). The study area is the Middlebury River in Middlebury, VT-a well-studied watershed with a wide variety of channel substrates, including reaches with documented channel adjustments during recent flooding events. Multiple metrics were considered for reference—such as channel width and drainage area—but the study utilized channel slope as a key parameter for identifying morphological variations within the Middlebury River. Using data extracted from the DEM, a power law was fit to selected slope and drainage area values for each branch in order to model idealized slope-drainage area relationships, which were then compared with measured slope-drainage area relationships. Differences in measured slope minus predicted slope (called delta-slope) are shown to help predict river channel substrate. Compared with field observations, higher delta-slope values correlate with more stable, boulder rich channels or bedrock gorges; conversely the lowest delta-slope values correlate with flat, sediment rich alluvial channels. The delta-slope metric thus serves as a reliable first-order predictor of channel

  9. Multimode Interference: Identifying Channels and Ridges in Quantum Probability Distributions

    OpenAIRE

    O'Connell, Ross C.; Loinaz, Will

    2004-01-01

    The multimode interference technique is a simple way to study the interference patterns found in many quantum probability distributions. We demonstrate that this analysis not only explains the existence of so-called "quantum carpets," but can explain the spatial distribution of channels and ridges in the carpets. With an understanding of the factors that govern these channels and ridges we have a limited ability to produce a particular pattern of channels and ridges by carefully choosing the ...

  10. Ammonothermal synthesis of alkali-alkaline earth metal and alkali-rare earth metal carbodiimides. K{sub 5-x}M{sub x}(CN{sub 2}){sub 2+x}(HCN{sub 2}){sub 1-x} (M = Sr, Eu) and Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}

    Energy Technology Data Exchange (ETDEWEB)

    Mallmann, Mathias; Haeusler, Jonas; Cordes, Niklas; Schnick, Wolfgang [Department of Chemistry, University of Munich (LMU) (Germany)

    2017-12-13

    Alkali-alkaline earth metal and alkali-rare earth metal carbodiimides, namely K{sub 5-x}M{sub x}(CN{sub 2}){sub 2+x}(HCN{sub 2}){sub 1-x} (x = 0 - 1) (M = Sr, Eu) and Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}, were synthesized under ammonothermal conditions in high-pressure autoclaves. The structures of the three compounds can be derived from homeotypic K{sub 5}H(CN{sub 2}){sub 3} and Na{sub 5}H(CN{sub 2}){sub 3} by partial substitution of K{sup +} or Na{sup +}by Sr{sup 2+} or Eu{sup 2+}. The reactions were carried out in two step syntheses (T{sub 1} = 673 K, T{sub 2} = 823 K) starting from sodium or potassium azide, dicyandiamide and strontium or Eu(NH{sub 2}){sub 2}, respectively. The crystal structures were solved and refined from single-crystal X-ray diffraction data [K{sub 4.16}Sr{sub 0.84}(CN{sub 2}){sub 2.84}(HCN{sub 2}){sub 0.16}: space group Im3m (no. 229), a = 7.8304(5) Aa, Z = 2, R{sub 1} = 0.024, wR{sub 2} = 0.052; K{sub 4.40}Eu{sub 0.60}(CN{sub 2}){sub 2.60}(HCN{sub 2}){sub 0.40}: space group Im anti 3m (no. 229), a = 7.8502(6) Aa, Z = 2, R{sub 1} = 0.022, wR{sub 2} = 0.049]. In contrast to the potassium carbodiimides, the sodium-strontium carbodiimide was only synthesized as microcrystalline powder. The crystal structure was determined by powder X-ray diffraction and refined by the Rietveld method [Na{sub 4.32}Sr{sub 0.68}(CN{sub 2}){sub 2.68}(HCN{sub 2}){sub 0.32}: space group Im3m (no. 229), a = 7.2412(1) Aa, Z = 2, R{sub wp} = 0.050]. The presence of hydrogencyanamide units ([HNCN]{sup -}) next to carbodiimide units ([CN{sub 2}]{sup 2-}) in all compounds was confirmed by FT-IR spectroscopy. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Biological pacemakers in canines exhibit positive chronotropic response to emotional arousal

    NARCIS (Netherlands)

    Shlapakova, Iryna N.; Nearing, Bruce D.; Lau, David H.; Boink, Gerard J. J.; Danilo, Peter; Kryukova, Yelena; Robinson, Richard B.; Cohen, Ira S.; Rosen, Michael R.; Verrier, Richard L.

    2010-01-01

    Biological pacemakers based on the HCN2 channel isoform respond to beta-adrenergic and muscarinic stimulation, suggesting a capacity to respond to autonomic input. The purpose of this study was to investigate autonomic response to emotional arousal in canines implanted with murine HCN2-based

  12. Voltage-gated sodium channels in taste bud cells

    Directory of Open Access Journals (Sweden)

    Williams Mark E

    2009-03-01

    Full Text Available Abstract Background Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. Results We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. Conclusion SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  13. Voltage-gated sodium channels in taste bud cells.

    Science.gov (United States)

    Gao, Na; Lu, Min; Echeverri, Fernando; Laita, Bianca; Kalabat, Dalia; Williams, Mark E; Hevezi, Peter; Zlotnik, Albert; Moyer, Bryan D

    2009-03-12

    Taste bud cells transmit information regarding the contents of food from taste receptors embedded in apical microvilli to gustatory nerve fibers innervating basolateral membranes. In particular, taste cells depolarize, activate voltage-gated sodium channels, and fire action potentials in response to tastants. Initial cell depolarization is attributable to sodium influx through TRPM5 in sweet, bitter, and umami cells and an undetermined cation influx through an ion channel in sour cells expressing PKD2L1, a candidate sour taste receptor. The molecular identity of the voltage-gated sodium channels that sense depolarizing signals and subsequently initiate action potentials coding taste information to gustatory nerve fibers is unknown. We describe the molecular and histological expression profiles of cation channels involved in electrical signal transmission from apical to basolateral membrane domains. TRPM5 was positioned immediately beneath tight junctions to receive calcium signals originating from sweet, bitter, and umami receptor activation, while PKD2L1 was positioned at the taste pore. Using mouse taste bud and lingual epithelial cells collected by laser capture microdissection, SCN2A, SCN3A, and SCN9A voltage-gated sodium channel transcripts were expressed in taste tissue. SCN2A, SCN3A, and SCN9A were expressed beneath tight junctions in subsets of taste cells. SCN3A and SCN9A were expressed in TRPM5 cells, while SCN2A was expressed in TRPM5 and PKD2L1 cells. HCN4, a gene previously implicated in sour taste, was expressed in PKD2L1 cells and localized to cell processes beneath the taste pore. SCN2A, SCN3A and SCN9A voltage-gated sodium channels are positioned to sense initial depolarizing signals stemming from taste receptor activation and initiate taste cell action potentials. SCN2A, SCN3A and SCN9A gene products likely account for the tetrodotoxin-sensitive sodium currents in taste receptor cells.

  14. Path lumping: An efficient algorithm to identify metastable path channels for conformational dynamics of multi-body systems

    Science.gov (United States)

    Meng, Luming; Sheong, Fu Kit; Zeng, Xiangze; Zhu, Lizhe; Huang, Xuhui

    2017-07-01

    Constructing Markov state models from large-scale molecular dynamics simulation trajectories is a promising approach to dissect the kinetic mechanisms of complex chemical and biological processes. Combined with transition path theory, Markov state models can be applied to identify all pathways connecting any conformational states of interest. However, the identified pathways can be too complex to comprehend, especially for multi-body processes where numerous parallel pathways with comparable flux probability often coexist. Here, we have developed a path lumping method to group these parallel pathways into metastable path channels for analysis. We define the similarity between two pathways as the intercrossing flux between them and then apply the spectral clustering algorithm to lump these pathways into groups. We demonstrate the power of our method by applying it to two systems: a 2D-potential consisting of four metastable energy channels and the hydrophobic collapse process of two hydrophobic molecules. In both cases, our algorithm successfully reveals the metastable path channels. We expect this path lumping algorithm to be a promising tool for revealing unprecedented insights into the kinetic mechanisms of complex multi-body processes.

  15. Congestive Heart Failure Leads to Prolongation of the PR Interval and Atrioventricular Junction Enlargement and Ion Channel Remodelling in the Rabbit

    Science.gov (United States)

    Nikolaidou, Theodora; Cai, Xue J.; Stephenson, Robert S.; Yanni, Joseph; Lowe, Tristan; Atkinson, Andrew J.; Jones, Caroline B.; Sardar, Rida; Corno, Antonio F.; Dobrzynski, Halina; Withers, Philip J.; Jarvis, Jonathan C.; Hart, George; Boyett, Mark R.

    2015-01-01

    Heart failure is a major killer worldwide. Atrioventricular conduction block is common in heart failure; it is associated with worse outcomes and can lead to syncope and bradycardic death. We examine the effect of heart failure on anatomical and ion channel remodelling in the rabbit atrioventricular junction (AVJ). Heart failure was induced in New Zealand rabbits by disruption of the aortic valve and banding of the abdominal aorta resulting in volume and pressure overload. Laser micro-dissection and real-time polymerase chain reaction (RT-PCR) were employed to investigate the effects of heart failure on ion channel remodelling in four regions of the rabbit AVJ and in septal tissues. Investigation of the AVJ anatomy was performed using micro-computed tomography (micro-CT). Heart failure animals developed first degree heart block. Heart failure caused ventricular myocardial volume increase with a 35% elongation of the AVJ. There was downregulation of HCN1 and Cx43 mRNA transcripts across all regions and downregulation of Cav1.3 in the transitional tissue. Cx40 mRNA was significantly downregulated in the atrial septum and AVJ tissues but not in the ventricular septum. mRNA abundance for ANP, CLCN2 and Navβ1 was increased with heart failure; Nav1.1 was increased in the inferior nodal extension/compact node area. Heart failure in the rabbit leads to prolongation of the PR interval and this is accompanied by downregulation of HCN1, Cav1.3, Cx40 and Cx43 mRNAs and anatomical enlargement of the entire heart and AVJ. PMID:26509807

  16. Congestive Heart Failure Leads to Prolongation of the PR Interval and Atrioventricular Junction Enlargement and Ion Channel Remodelling in the Rabbit.

    Directory of Open Access Journals (Sweden)

    Theodora Nikolaidou

    Full Text Available Heart failure is a major killer worldwide. Atrioventricular conduction block is common in heart failure; it is associated with worse outcomes and can lead to syncope and bradycardic death. We examine the effect of heart failure on anatomical and ion channel remodelling in the rabbit atrioventricular junction (AVJ. Heart failure was induced in New Zealand rabbits by disruption of the aortic valve and banding of the abdominal aorta resulting in volume and pressure overload. Laser micro-dissection and real-time polymerase chain reaction (RT-PCR were employed to investigate the effects of heart failure on ion channel remodelling in four regions of the rabbit AVJ and in septal tissues. Investigation of the AVJ anatomy was performed using micro-computed tomography (micro-CT. Heart failure animals developed first degree heart block. Heart failure caused ventricular myocardial volume increase with a 35% elongation of the AVJ. There was downregulation of HCN1 and Cx43 mRNA transcripts across all regions and downregulation of Cav1.3 in the transitional tissue. Cx40 mRNA was significantly downregulated in the atrial septum and AVJ tissues but not in the ventricular septum. mRNA abundance for ANP, CLCN2 and Navβ1 was increased with heart failure; Nav1.1 was increased in the inferior nodal extension/compact node area. Heart failure in the rabbit leads to prolongation of the PR interval and this is accompanied by downregulation of HCN1, Cav1.3, Cx40 and Cx43 mRNAs and anatomical enlargement of the entire heart and AVJ.

  17. Genetic Perturbations Suggest a Role of the Resting Potential in Regulating the Expression of the Ion Channels of the KCNA and HCN families in Octopus Cells of the Ventral Cochlear Nucleus

    Science.gov (United States)

    Cao, Xiao-Jie; Oertel, Donata

    2017-01-01

    Low-voltage-activated K+ (gKL) and hyperpolarization-activated mixed cation conductances (gh) mediate currents, IKL and Ih, through channels of the Kv1 (KCNA) and HCN families respectively and give auditory neurons the temporal precision required for signaling information about the onset, fine structure, and time of arrival of sounds. Being partially activated at rest, gKL and gh contribute to the resting potential and shape responses to even small subthreshold synaptic currents. Resting gKL and gh also affect the coupling of somatic depolarization with the generation of action potentials. To learn how these important conductances are regulated we have investigated how genetic perturbations affect their expression in octopus cells of the ventral cochlear nucleus (VCN). We report five new findings: First, the magnitude of gh and gKL varied over more than two-fold between wild type strains of mice. Second, average resting potentials are not different in different strains of mice even in the face of large differences in average gKL and gh. Third, IKL has two components, one being α-dendrotoxin (α-DTX)-sensitive and partially inactivating and the other being α-DTX-insensitive, tetraethylammonium (TEA)-sensitive, and non-inactivating. Fourth, the loss of Kv1.1 results in diminution of the α-DTX-sensitive IKL, and compensatory increased expression of an α-DTX-insensitive, tetraethylammonium (TEA)-sensitive IKL. Fifth, Ih and IKL are balanced at the resting potential in all wild type and mutant octopus cells even when resting potentials vary in individual cells over nearly 10 mV, indicating that the resting potential influences the expression of gh and gKL. The independence of resting potentials on gKL and gh shows that gKL and gh do not, over days or weeks, determine the resting potential but rather that the resting potential plays a role in regulating the magnitude of either or both gKL and gh. PMID:28065805

  18. Differential distribution of voltage-gated channels in myelinated and unmyelinated baroreceptor afferents.

    Science.gov (United States)

    Schild, John H; Kunze, Diana L

    2012-12-24

    Voltage gated ion channels (VGC) make possible the frequency coding of arterial pressure and the neurotransmission of this information along myelinated and unmyelinated fiber pathways. Although many of the same VGC isoforms are expressed in both fiber types, it is the relative expression of each that defines the unique discharge properties of myelinated A-type and unmyelinated C-type baroreceptors. For example, the fast inward Na⁺ current is a major determinant of the action potential threshold and the regenerative transmembrane current needed to sustain repetitive discharge. In A-type baroreceptors the TTX-sensitive Na(v)1.7 VGC contributes to the whole cell Na⁺ current. Na(v)1.7 is expressed at a lower density in C-type neurons and in conjunction with TTX-insensitive Na(v)1.8 and Na(v)1.9 VGC. As a result, action potentials of A-type neurons have firing thresholds that are 15-20 mV more negative and upstroke velocities that are 5-10 times faster than unmyelinated C-type neurons. A more depolarized threshold in conjunction with a broader complement of non-inactivating K(V) VGC subtypes produces C-type action potentials that are 3-4 times longer in duration than A-type neurons and at markedly lower levels of cell excitability. Unmyelinated baroreceptors also express KCa1.1 which provides approximately 25% of the total outward K⁺ current. KCa1.1 plays a critically important role in shaping the action potential profile of C-type neurons and strongly impacts neuronal excitability. A-type neurons do not functionally express the KCa1.1 channel despite having a whole cell Ca(V) current quite similar to that of C-type neurons. As a result, A-type neurons do not have the frequency-dependent braking forces of KCa1.1. Lack of a KCa current and only a limited complement of non-inactivating K(V) VGC in addition to a hyperpolarization activated HCN1 current that is nearly 10 times larger than in C-type neurons leads to elevated levels of discharge in A-type neurons, a

  19. Lewis acid-base interactions in weakly bound formaldehyde complexes with CO2, HCN, and FCN: considerations on the cooperative H-bonding effects.

    Science.gov (United States)

    Rivelino, Roberto

    2008-01-17

    Ab initio quantum chemistry calculations reveal that HCN and mainly FCN can form Lewis acid-base complexes with formaldehyde associated with cooperative H bonds, as first noticed by Wallen et al. (Blatchford, M. A.; Raveendran, P.; Wallen, S. L. J. Am. Chem. Soc. 2002, 124, 14818-14819) for CO2-philic materials under supercritical conditions. The present results, obtained with MP2(Full)/aug-cc-pVDZ calculations, show that the degeneracy of the nu(2) mode in free HCN or FCN is removed upon complexation in the same fashion as that of CO2. The splitting of these bands along with the electron structure analysis provides substantial evidence of the interaction of electron lone pairs of the carbonyl oxygen with the electron-deficient carbon atom of the cyanides. Also, this work investigates the role of H bonds acting as additional stabilizing interactions in the complexes by performing the energetic and geometric characterization.

  20. The influence of zinc hydroxystannate on reducing toxic gases (CO, NO{sub x} and HCN) generation and fire hazards of thermoplastic polyurethane composites

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Bibo; Sheng, Haibo [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Shi, Yongqian [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Jiangsu, Suzhou 215123 (China); Song, Lei [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Zhang, Yan [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Jiangsu, Suzhou 215123 (China); Hu, Yuan, E-mail: yuanhu@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China); Suzhou Key Laboratory of Urban Public Safety, Suzhou Institute for Advanced Study, University of Science and Technology of China, Jiangsu, Suzhou 215123 (China); Hu, Weizhao, E-mail: hwz1988@ustc.edu.cn [State Key Laboratory of Fire Science, University of Science and Technology of China, Anhui 230026 (China)

    2016-08-15

    Highlights: • The ZnHS could significantly enhance the mechanical properties of the TPU composites. • ZnHS has excellent smoke suppression and reduction the HRR for TPU composites. • ZnHS shows significant decrease in CO, HCN, NO{sub x} for TPU composites. • These improvements are due to charring and catalytic degradation the toxic gases. - Abstract: A uniform zinc hydroxystannate (ZnHS) microcube was synthesized to reduce toxicity and fire hazards of thermoplastic polyurethane (TPU) composites using ammonium polyphosphate as a flame retardant agent. The structure, morphology and thermal properties of ZnHS were characterized by X-ray diffraction, transmission electron microscopy and thermogravimetric analysis, respectively. Smoke suppression properties and synergistic flame retardant effect of ZnHS on flame retardant TPU composites were intensively investigated by smoke density test, cone calorimeter test, and thermalgravimetric analysis. Thermogravimetric analysis/infrared spectrometry and tube furnace were employed to evaluate the toxic gases (CO, NO{sub x} and HCN) of TPU composites. The incorporation of ZnHS into TPU matrix effectively improved the fire safety and restrained the smoke density, which is attributed to that the char residue catalyzed by ZnHS enhanced barrier effect that reduced peak heat release rate, total heat release, smoke particles and organic volatiles during combustion. Furthermore, the ZnHS synergist demonstrated high efficiency in catalytic degradation of the toxic gases, which obviously decreased total volatiled product and toxic volatiles evolved, such as the CO, HCN and NO{sub x}, indicating suppressed toxicity of the TPU composites.

  1. A size upper limit and position for the HCN maser in CIT 6

    International Nuclear Information System (INIS)

    Carlstrom, J.E.; Welch, W.J.; Goldsmith, P.F.; Lis, D.C.

    1990-01-01

    A size upper limit and position for the HCN maser in CIT 6 were determined from interferometric observations with the Hat Creek millimeter array. The maser is located at alpha(1950) = 10 h 13 m 10.942 + or - 0.012 s and delta(1950) = + 30 deg 49 arcmin 16.75 arcsec + or - 0.15, coincident with the optical image taken from the Palomar plates, within the 3 arcsec uncertainty of the latter. The size of the maser emission region is less than 0.45 arcsec, approximately 180 AU at the distance estimated for CIT 6. The small size and strong emission (40 Jy) set a lower limit to the brightness temperature of 44,000 K, further strengthening the maser interpretation. 14 refs

  2. Exome Sequencing Identifies a Novel LMNA Splice-Site Mutation and Multigenic Heterozygosity of Potential Modifiers in a Family with Sick Sinus Syndrome, Dilated Cardiomyopathy, and Sudden Cardiac Death.

    Directory of Open Access Journals (Sweden)

    Michael V Zaragoza

    Full Text Available The goals are to understand the primary genetic mechanisms that cause Sick Sinus Syndrome and to identify potential modifiers that may result in intrafamilial variability within a multigenerational family. The proband is a 63-year-old male with a family history of individuals (>10 with sinus node dysfunction, ventricular arrhythmia, cardiomyopathy, heart failure, and sudden death. We used exome sequencing of a single individual to identify a novel LMNA mutation and demonstrated the importance of Sanger validation and family studies when evaluating candidates. After initial single-gene studies were negative, we conducted exome sequencing for the proband which produced 9 gigabases of sequencing data. Bioinformatics analysis showed 94% of the reads mapped to the reference and identified 128,563 unique variants with 108,795 (85% located in 16,319 genes of 19,056 target genes. We discovered multiple variants in known arrhythmia, cardiomyopathy, or ion channel associated genes that may serve as potential modifiers in disease expression. To identify candidate mutations, we focused on ~2,000 variants located in 237 genes of 283 known arrhythmia, cardiomyopathy, or ion channel associated genes. We filtered the candidates to 41 variants in 33 genes using zygosity, protein impact, database searches, and clinical association. Only 21 of 41 (51% variants were validated by Sanger sequencing. We selected nine confirmed variants with minor allele frequencies G, a novel heterozygous splice-site mutation as the primary mutation with rare or novel variants in HCN4, MYBPC3, PKP4, TMPO, TTN, DMPK and KCNJ10 as potential modifiers and a mechanism consistent with haploinsufficiency.

  3. High-pass filtering of input signals by the Ih current in a non-spiking neuron, the retinal rod bipolar cell.

    Directory of Open Access Journals (Sweden)

    Lorenzo Cangiano

    Full Text Available Hyperpolarization-activated cyclic nucleotide-sensitive (HCN channels mediate the I(f current in heart and I(h throughout the nervous system. In spiking neurons I(h participates primarily in different forms of rhythmic activity. Little is known, however, about its role in neurons operating with graded potentials as in the retina, where all four channel isoforms are expressed. Intriguing evidence for an involvement of I(h in early visual processing are the side effects reported, in dim light or darkness, by cardiac patients treated with HCN inhibitors. Moreover, electroretinographic recordings indicate that these drugs affect temporal processing in the outer retina. Here we analyzed the functional role of HCN channels in rod bipolar cells (RBCs of the mouse. Perforated-patch recordings in the dark-adapted slice found that RBCs exhibit I(h, and that this is sensitive to the specific blocker ZD7288. RBC input impedance, explored by sinusoidal frequency-modulated current stimuli (0.1-30 Hz, displays band-pass behavior in the range of I(h activation. Theoretical modeling and pharmacological blockade demonstrate that high-pass filtering of input signals by I(h, in combination with low-pass filtering by passive properties, fully accounts for this frequency-tuning. Correcting for the depolarization introduced by shunting through the pipette-membrane seal, leads to predict that in darkness I(h is tonically active in RBCs and quickens their responses to dim light stimuli. Immunohistochemistry targeting candidate subunit isoforms HCN1-2, in combination with markers of RBCs (PKC and rod-RBC synaptic contacts (bassoon, mGluR6, Kv1.3, suggests that RBCs express HCN2 on the tip of their dendrites. The functional properties conferred by I(h onto RBCs may contribute to shape the retina's light response and explain the visual side effects of HCN inhibitors.

  4. Selection of Inhibitor-Resistant Viral Potassium Channels Identifies a Selectivity Filter Site that Affects Barium and Amantadine Block

    Science.gov (United States)

    Fujiwara, Yuichiro; Arrigoni, Cristina; Domigan, Courtney; Ferrara, Giuseppina; Pantoja, Carlos; Thiel, Gerhard; Moroni, Anna; Minor, Daniel L.

    2009-01-01

    Background Understanding the interactions between ion channels and blockers remains an important goal that has implications for delineating the basic mechanisms of ion channel function and for the discovery and development of ion channel directed drugs. Methodology/Principal Findings We used genetic selection methods to probe the interaction of two ion channel blockers, barium and amantadine, with the miniature viral potassium channel Kcv. Selection for Kcv mutants that were resistant to either blocker identified a mutant bearing multiple changes that was resistant to both. Implementation of a PCR shuffling and backcrossing procedure uncovered that the blocker resistance could be attributed to a single change, T63S, at a position that is likely to form the binding site for the inner ion in the selectivity filter (site 4). A combination of electrophysiological and biochemical assays revealed a distinct difference in the ability of the mutant channel to interact with the blockers. Studies of the analogous mutation in the mammalian inward rectifier Kir2.1 show that the T→S mutation affects barium block as well as the stability of the conductive state. Comparison of the effects of similar barium resistant mutations in Kcv and Kir2.1 shows that neighboring amino acids in the Kcv selectivity filter affect blocker binding. Conclusions/Significance The data support the idea that permeant ions have an integral role in stabilizing potassium channel structure, suggest that both barium and amantadine act at a similar site, and demonstrate how genetic selections can be used to map blocker binding sites and reveal mechanistic features. PMID:19834614

  5. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis.

    Science.gov (United States)

    Holm, Nils G; Neubeck, Anna

    2009-10-22

    Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  6. Reduction of nitrogen compounds in oceanic basement and its implications for HCN formation and abiotic organic synthesis

    Directory of Open Access Journals (Sweden)

    Neubeck Anna

    2009-10-01

    Full Text Available Abstract Hydrogen cyanide is an excellent organic reagent and is central to most of the reaction pathways leading to abiotic formation of simple organic compounds containing nitrogen, such as amino acids, purines and pyrimidines. Reduced carbon and nitrogen precursor compounds for the synthesis of HCN may be formed under off-axis hydrothermal conditions in oceanic lithosphere in the presence of native Fe and Ni and are adsorbed on authigenic layer silicates and zeolites. The native metals as well as the molecular hydrogen reducing CO2 to CO/CH4 and NO3-/NO2- to NH3/NH4+ are a result of serpentinization of mafic rocks. Oceanic plates are conveyor belts of reduced carbon and nitrogen compounds from the off-axis hydrothermal environments to the subduction zones, where compaction, dehydration, desiccation and diagenetic reactions affect the organic precursors. CO/CH4 and NH3/NH4+ in fluids distilled out of layer silicates and zeolites in the subducting plate at an early stage of subduction will react upon heating and form HCN, which is then available for further organic reactions to, for instance, carbohydrates, nucleosides or even nucleotides, under alkaline conditions in hydrated mantle rocks of the overriding plate. Convergent margins in the initial phase of subduction must, therefore, be considered the most potent sites for prebiotic reactions on Earth. This means that origin of life processes are, perhaps, only possible on planets where some kind of plate tectonics occur.

  7. Diagnostics of a stationary MPD-type plasma jet with a HCN laser interferometer

    International Nuclear Information System (INIS)

    Graser, W.; Hoffmann, P.

    1975-01-01

    A HCN laser interferometer of the Ashby-Jephcott type operating at a wavelength of 337 μm was used to measure spatially resolved electron densities in a stationary MPD-type plasma jet with non-LTE behavior. Experiments were performed with and without superimposed magnetic fields up to 0.1 T at the exit of the plasma accelerator. Electron densities were obtained within the limits of 5times10 12 and 10 15 cm -3 with an accuracy better than 10%. Within the axially symmetric expanding plasma of about 15-cm average diameter and 50-cm length the radial resolving power came to less than 1 cm. So this technique has proved to be suitable to fill a gap in the diagnostics of stationary magnetized plasmas in the mean range of electron densities. (auth)

  8. IRRADIATION OF ETHYLENE DILUTED IN SOLID NITROGEN WITH VACUUM ULTRAVIOLET LIGHT AND ELECTRONS: ITS IMPLICATIONS FOR THE FORMATION OF HCN AND HNC

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui-Fen [Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100, Shih-Chuan 1st Road, Kaohsiung 80708, Taiwan (China); Liu, Meng-Chen; Chen, Sian-Cong; Huang, Tzu-Ping; Wu, Yu-Jong, E-mail: yjwu@nsrrc.org.tw [National Synchrotron Radiation Research Center, No. 101, Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

    2015-05-01

    Chemical reactions of C{sub 2}H{sub 4} dispersed in solid nitrogen at 10 K that occur upon irradiation with Lyα light at a wavelength of 121.6 nm and 500 eV electrons were investigated by measuring the infrared absorption spectra. Photolysis of the matrix samples with 121.6 nm light yielded products, including C{sub 2}H{sub 2}, CN, and isomers of C{sub 2}N{sub 2}, as well as a pair of HCN and HNC. In contrast, electron bombardment of similar matrix samples mainly resulted in the generation of N{sub 3}, C{sub 2}H{sub 2}, C{sub 2}H{sub 3}, C{sub 3}H{sub 2}, and C{sub 3}N{sup −}. Mechanisms of the reactions that occur during the photolysis and electron-radiation of the matrix samples are discussed. The results of the study provide insights into the formation of HNC and HCN, as well as nitriles, in N{sub 2}-rich ice samples containing a small proportion of C{sub 2}H{sub 4}.

  9. CO, CS, and HCN in a clustering of reflection nebulae in Monoceros

    International Nuclear Information System (INIS)

    Kutner, M.L.; Tucker, K.D.

    1975-01-01

    Carbon monoxide line emission at lambda=2.6 mm has been observed over an area of approx.3 1/2degreetimes3 1/2degree in L1646, a diffuse dust cloud containing a grouping of reflection nebulae. The H 2 mass is estimated from the CO observations to be >3.2times10 4 M/sub sun/. Five CO emission peaks are observed, each apparently associated with at least one reflection nebula, with the strongest peak at α (1950) =6)05)20), delta (1950) =-6degree22'30''. Around this position, extended (10'times10') emission is observed from HCN and CS, suggesting a core with H 2 density approximately-less-than8times10 4 cm -3 . This core appears to be rotating with Ωgreater than or equal to7.4times10 -14 s -1 . There is also evidence for self-absorption in the CO line in this direction, suggestive of a collapsing cloud. (auth)

  10. Identifying transition rates of ionic channels via observations at a single state

    CERN Document Server

    Deng Ying Chun; Qian Min Ping; Feng Jian Feng

    2003-01-01

    We consider how to determine all transition rates of an ion channel when it can be described by a birth-death chain or a Markov chain on a star-graph with continuous time. It is found that all transition rates are uniquely determined by the distribution of its lifetime and death-time histograms at a single state. An algorithm to calculate the transition rates exactly, based on the statistics of the lifetime and death-time of the Markov chain at the state, is provided. Examples to illustrate how an ion channel activity is fully determined by the observation of a single state of the ion channel are included.

  11. Identifying transition rates of ionic channels via observations at a single state

    International Nuclear Information System (INIS)

    Deng Yingchun; Peng Shenglun; Qian Minping; Feng Jianfeng

    2003-01-01

    We consider how to determine all transition rates of an ion channel when it can be described by a birth-death chain or a Markov chain on a star-graph with continuous time. It is found that all transition rates are uniquely determined by the distribution of its lifetime and death-time histograms at a single state. An algorithm to calculate the transition rates exactly, based on the statistics of the lifetime and death-time of the Markov chain at the state, is provided. Examples to illustrate how an ion channel activity is fully determined by the observation of a single state of the ion channel are included

  12. Identifying transition rates of ionic channels via observations at a single state

    Energy Technology Data Exchange (ETDEWEB)

    Deng Yingchun [School of Mathematics, Peking University, Beijing (China); Peng Shenglun [School of Mathematics, Peking University, Beijing (China); Qian Minping [School of Mathematics, Peking University, Beijing (China); Feng Jianfeng [COGS, Sussex University, Brighton (United Kingdom)

    2003-02-07

    We consider how to determine all transition rates of an ion channel when it can be described by a birth-death chain or a Markov chain on a star-graph with continuous time. It is found that all transition rates are uniquely determined by the distribution of its lifetime and death-time histograms at a single state. An algorithm to calculate the transition rates exactly, based on the statistics of the lifetime and death-time of the Markov chain at the state, is provided. Examples to illustrate how an ion channel activity is fully determined by the observation of a single state of the ion channel are included.

  13. Searching for Faint Traces of CO(2-1) and HCN(4-3) Gas In Debris Disks

    Science.gov (United States)

    Stafford Lambros, Zachary; Hughes, A. Meredith

    2018-01-01

    The surprising presence of molecular gas in the debris disks around main sequence stars provides an opportunity to study the dissipation of primordial gas and, potentially, the composition of gas in other solar systems. Molecular gas is not expected to survive beyond the pre-main sequence phase, and it is not yet clear whether the gas is a remnant of the primordial protoplanetary material or whether the gas, like the dust, is second-generation material produced by collisional or photodesorption from planetesimals, exocomets, or the icy mantles of dust grains. Here we present two related efforts to characterize the prevalence and properties of gas in debris disks. First, we place the lowest limits to date on the CO emission from an M star debris disk, using 0.3" resolution observations of CO(2-1) emission from the AU Mic system with the Atacama Large Millimeter/submillimeter Array (ALMA). We place a 3-sigma upper limit on the integrated flux of 0.39 Jy km/s, corresponding to a maximum CO mass of 5e10-6 (Earth Masses) if the gas is in LTE. We also present the results of an ALMA search for HCN(4-3) emission from the prototypical gas-rich debris disk around 49 Ceti at a spatial resolution of 0.3". Despite hosting one of the brightest CO-rich debris disks yet discovered, our observations of 49 Ceti also yield a low upper limit of 0.057 Jy km/s in the HCN line, leaving CO as the only molecule clearly detected in emission from a debris disk. We employ several methods of detecting faint line emission from debris disks, including a model based on Keplerian kinematics as well as a spectral shifting method previously used to detect faint CO emission from the Fomalhaut debris disk, and compare our results.

  14. A new ab initio potential energy surface for the collisional excitation of HCN by para- and ortho-H{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Denis-Alpizar, Otoniel, E-mail: otonieldenisalpizar@gmail.com [Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex (France); Departamento de Física, Universidad de Matanzas, Matanzas 40100 (Cuba); Kalugina, Yulia [LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre (France); Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin av., Tomsk 634050 (Russian Federation); Stoecklin, Thierry [Université de Bordeaux, ISM, CNRS UMR 5255, 33405 Talence Cedex (France); Vera, Mario Hernández [LOMC - UMR 6294, CNRS-Université du Havre, 25 rue Philippe Lebon, BP 540, 76058, Le Havre (France); Instituto Superior de Tecnologías y Ciencias Aplicadas, Quinta de Los Molinos, Plaza, La Habana 10600 (Cuba); Lique, François, E-mail: francois.lique@univ-lehavre.fr [Departamento de Física, Universidad de Matanzas, Matanzas 40100 (Cuba)

    2013-12-14

    We present a new four-dimensional potential energy surface for the collisional excitation of HCN by H{sub 2}. Ab initio calculations of the HCN–H{sub 2} van der Waals complex, considering both molecules as rigid rotors, were carried out at the explicitly correlated coupled cluster with single, double, and perturbative triple excitations [CCSD(T)-F12a] level of theory using an augmented correlation-consistent triple zeta (aVTZ) basis set. The equilibrium structure is linear HCN–H{sub 2} with the nitrogen pointing towards H{sub 2} at an intermolecular separation of 7.20 a{sub 0}. The corresponding well depth is −195.20 cm{sup −1}. A secondary minimum of −183.59 cm{sup −1} was found for a T-shape configuration with the H of HCN pointing to the center of mass of H{sub 2}. We also determine the rovibrational energy levels of the HCN–para-H{sub 2} and HCN–ortho-H{sub 2} complexes. The calculated dissociation energies for the para and ortho complexes are 37.79 cm{sup −1} and 60.26 cm{sup −1}, respectively. The calculated ro-vibrational transitions in the HCN–H{sub 2} complex are found to agree by more than 0.5% with the available experimental data, confirming the accuracy of the potential energy surface.

  15. Improved density measurement by FIR laser interferometer on EAST tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Jie, E-mail: shenjie1988@ipp.ac.cn; Jie, Yinxian; Liu, Haiqing; Wei, Xuechao; Wang, Zhengxing; Gao, Xiang

    2013-11-15

    Highlights: • In 2012, the water-cooling Mo wall was installed in EAST. • A schottky barrier diode detector is designed and used on EAST for the first time. • The three-channel far-infrared laser interferometer can measure the electron density. • The improved measurement and latest experiment results are reported. • The signal we get in this experiment campaign is much better than we got in 2010. -- Abstract: A three-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer is in operation since 2010 to measure the line averaged electron density on experimental advanced superconducting tokamak (EAST). The HCN laser signal is improved by means of a new schottky barrier diode (SBD) detector. The improved measurement and latest experiment results of the three-channel FIR laser interferometer on EAST tokamak are reported.

  16. Improved density measurement by FIR laser interferometer on EAST tokamak

    International Nuclear Information System (INIS)

    Shen, Jie; Jie, Yinxian; Liu, Haiqing; Wei, Xuechao; Wang, Zhengxing; Gao, Xiang

    2013-01-01

    Highlights: • In 2012, the water-cooling Mo wall was installed in EAST. • A schottky barrier diode detector is designed and used on EAST for the first time. • The three-channel far-infrared laser interferometer can measure the electron density. • The improved measurement and latest experiment results are reported. • The signal we get in this experiment campaign is much better than we got in 2010. -- Abstract: A three-channel far-infrared (FIR) hydrogen cyanide (HCN) laser interferometer is in operation since 2010 to measure the line averaged electron density on experimental advanced superconducting tokamak (EAST). The HCN laser signal is improved by means of a new schottky barrier diode (SBD) detector. The improved measurement and latest experiment results of the three-channel FIR laser interferometer on EAST tokamak are reported

  17. Ion channels in plants.

    Science.gov (United States)

    Hedrich, Rainer

    2012-10-01

    Since the first recordings of single potassium channel activities in the plasma membrane of guard cells more than 25 years ago, patch-clamp studies discovered a variety of ion channels in all cell types and plant species under inspection. Their properties differed in a cell type- and cell membrane-dependent manner. Guard cells, for which the existence of plant potassium channels was initially documented, advanced to a versatile model system for studying plant ion channel structure, function, and physiology. Interestingly, one of the first identified potassium-channel genes encoding the Shaker-type channel KAT1 was shown to be highly expressed in guard cells. KAT1-type channels from Arabidopsis thaliana and its homologs from other species were found to encode the K(+)-selective inward rectifiers that had already been recorded in early patch-clamp studies with guard cells. Within the genome era, additional Arabidopsis Shaker-type channels appeared. All nine members of the Arabidopsis Shaker family are localized at the plasma membrane, where they either operate as inward rectifiers, outward rectifiers, weak voltage-dependent channels, or electrically silent, but modulatory subunits. The vacuole membrane, in contrast, harbors a set of two-pore K(+) channels. Just very recently, two plant anion channel families of the SLAC/SLAH and ALMT/QUAC type were identified. SLAC1/SLAH3 and QUAC1 are expressed in guard cells and mediate Slow- and Rapid-type anion currents, respectively, that are involved in volume and turgor regulation. Anion channels in guard cells and other plant cells are key targets within often complex signaling networks. Here, the present knowledge is reviewed for the plant ion channel biology. Special emphasis is drawn to the molecular mechanisms of channel regulation, in the context of model systems and in the light of evolution.

  18. Photodissociation of acrylonitrile at 193 nm: A photofragment translational spectroscopy study using synchrotron radiation for product photoionization

    International Nuclear Information System (INIS)

    Blank, D.A.; Suits, A.G.; Lee, Y.T.; North, S.W.; Hall, G.E.

    1998-01-01

    We have investigated the photodissociation of acrylonitrile (H 2 CCHCN) at 193 nm using the technique of photofragment translational spectroscopy. The experiments were performed at the Chemical Dynamics Beamline at the Advanced Light Source and used tunable vacuum ultraviolet synchrotron radiation for product photoionization. We have identified four primary dissociation channels including atomic and molecular hydrogen elimination, HCN elimination, and CN elimination. There is significant evidence that all of the dissociation channels occur on the ground electronic surface following internal conversion from the initially optically prepared state. The product translational energy distributions reflect near statistical simple bond rupture for the radical dissociation channels, while substantial recombination barriers mediate the translational energy release for the two molecular elimination channels. Photoionization onsets have provided additional insight into the chemical identities of the products and their internal energy content. copyright 1998 American Institute of Physics

  19. Potassium channels in brain mitochondria.

    Science.gov (United States)

    Bednarczyk, Piotr

    2009-01-01

    Potassium channels are the most widely distributed class of ion channels. These channels are transmembrane proteins known to play important roles in both normal and pathophysiological functions in all cell types. Various potassium channels are recognised as potential therapeutic targets in the treatment of Parkinson's disease, Alzheimer's disease, brain/spinal cord ischaemia and sepsis. In addition to their importance as therapeutic targets, certain potassium channels are known for their beneficial roles in anaesthesia, cardioprotection and neuroprotection. Some types of potassium channels present in the plasma membrane of various cells have been found in the inner mitochondrial membrane as well. Potassium channels have been proposed to regulate mitochondrial membrane potential, respiration, matrix volume and Ca(+) ion homeostasis. It has been proposed that mitochondrial potassium channels mediate ischaemic preconditioning in various tissues. However, the specificity of a pharmacological agents and the mechanisms underlying their effects on ischaemic preconditioning remain controversial. The following potassium channels from various tissues have been identified in the inner mitochondrial membrane: ATP-regulated (mitoK(ATP)) channel, large conductance Ca(2+)-regulated (mitoBK(Ca)) channel, intermediate conductance Ca(2+)-regulated (mitoIK(Ca)) channel, voltage-gated (mitoKv1.3 type) channel, and twin-pore domain (mitoTASK-3) channel. It has been shown that increased potassium flux into brain mitochondria induced by either the mitoK(ATP) channel or mitoBK(Ca) channel affects the beneficial effects on neuronal cell survival under pathological conditions. Recently, differential distribution of mitoBK(Ca) channels has been observed in neuronal mitochondria. These findings may suggest a neuroprotective role for the mitoBK(Ca) channel in specific brain structures. This minireview summarises current data on brain mitochondrial potassium channels and the efforts to identify

  20. Submillimeter Monitoring of the HCN Molecule in Fragment C of the Split Comet 73P/Schwassmann-Wachmann 3

    Science.gov (United States)

    Drahus, Michal; Kueppers, M.; Jarchow, C.; Paganini, L.; Hartogh, P.; Villanueva, G. L.

    2007-10-01

    Comet 73P/Schwassmann-Wachmann 3 is a member of the Jupiter family which broke up into several fragments in 1995. After the unfavourable return in 2000/2001, the comet passed very close to the Earth in 2006, with the perigee distance below 0.1 AU. Simultaneously, it was well situated on the sky, which resulted in several observing campaigns. We observed this comet using the SMT facility at the Mt. Graham International Observatory in Arizona. In particular, on 5 nights between 10 and 22 May 2006 the HCN molecule in fragment C was spectroscopically monitored, through the J(3-2) and J(4-3) transitions. Using a simplified model, we found the expansion velocity of the HCN coma to be equal to 0.8 ± 0.1 km/s, what is a typical value for a comet at heliocentric distance r = 1 AU. We also reconstructed the production rates Q of this molecule, finding Q(r=1AU) = 2.7 ± 0.1 × 1025 molec/s. Our result is consistent with most of the other estimates, including the CN production rate. Furthermore, taking advantage of the fairly small beam sizes during our campaign (ranging from 600 km to 1200 km in radius), we detected short-term variability of the production rate, presumably stimulated by the nucleus rotation. Although our analysis did not yield a unique rotation period, we found a limited number of possible solutions. We will discuss them in detail along with a comparison with other period claims, and propose a possible scenario that links most of the periodicities reported so far for this comet. The SMT is operated by the Arizona Radio Observatory (ARO), Steward Observatory, University of Arizona.

  1. Infrared Solar Spectroscopic Measurements of Free Tropospheric CO, C2H6, and HCN above Mauna Loa, Hawaii: Seasonal Variations and Evidence for Enhanced Emissions from the Southeast Asian Tropical Fires of 1997-1998

    Science.gov (United States)

    Rinsland, C. P.; Goldman, A.; Murcray, F. J.; Stephen, T. M.; Pougatchev, N. S.; Fishman, J.; David, S. J.; Blatherwick, R. D.; Novelli, P. C.; Jones, N. B.

    1999-01-01

    High spectral resolution (0.003 per cm) infrared solar absorption measurements of CO, C2H6, and HCN have been recorded at the Network for the Detection of Stratospheric Change station on Mauna Loa, Hawaii, (19.5N, 155.6W, altitude 3.4 km). The observations were obtained on over 250 days between August 1995 and February 1998. Column measurements are reported for the 3.4-16 km altitude region, which corresponds approximately to the free troposphere above the station. Average CO mixing ratios computed for this layer have been compared with flask sampling CO measurements obtained in situ at the station during the same time period. Both show asymmetrical seasonal cycles superimposed on significant variability. The first 2 years of observations exhibit a broad January-April maximum and a sharper CO minimum during late summer. The C2H6 and CO 3.4-16 km columns were highly correlated throughout the observing period with the C2H6/CO slope intermediate between higher and lower values derived from similar infrared spectroscopic measurements at 32'N and 45'S latitude, respectively. Variable enhancements in CO, C2H6, and particularly HCN were observed beginning in about September 1997. The maximum HCN free tropospheric monthly mean column observed in November 1997 corresponds to an average 3.4-16 km mixing ratio of 0.7 ppbv (1 ppbv = 10(exp -9) per unit volume), more than a factor of 3 above the background level. The HCN enhancements continued through the end of the observational series. Back-trajectory calculations suggest that the emissions originated at low northern latitudes in southeast Asia. Surface CO mixing ratios and the C2H6 tropospheric columns measured during the same time also showed anomalous autumn 1997 maxima. The intense and widespread tropical wild fires that burned during the strong El Nino warm phase of 1997- 1998 are the likely source of the elevated emission products.

  2. Identifying cochlear implant channels with poor electrode-neuron interface: electrically-evoked auditory brainstem responses measured with the partial tripolar configuration

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F.; Tremblay, Kelly L.

    2011-01-01

    obtained with both the monopolar and partial tripolar configurations. The Wave V amplitude growth functions with increasing stimulus level showed the predicted effect of shallower growth for the partial tripolar than for the monopolar configuration, but this was observed only for the low threshold channel. In contrast, high-threshold channels showed the opposite effect; steeper growth functions were seen for the partial tripolar configuration. Conclusions These results suggest that behavioral thresholds or EABRs measured with a restricted stimulus can be used to identify potentially impaired cochlear implant channels. Channels having high thresholds and steep growth functions would likely not activate the appropriate spatially restricted region of the cochlea, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception. PMID:21178633

  3. Pharmacological modulation of SK3 channels

    DEFF Research Database (Denmark)

    Grunnet, M; Jespersen, Thomas; Angelo, K

    2001-01-01

    Small-conductance, calcium-activated K+ channels (SK channels) are voltage-insensitive channels that have been identified molecularly within the last few years. As SK channels play a fundamental role in most excitable cells and participate in afterhyperpolarization (AHP) and spike-frequency adapt...... at concentrations of 3 microM and above. Amitriptyline, a tricyclic antidepressive widely used clinically, inhibits SK3 channels with an IC50 of 39.1 +/- 10 microM (n=6)....

  4. Mechanosensitive Channels: In Touch with Piezo

    OpenAIRE

    Xiao, Rui; Xu, X.Z. Shawn

    2010-01-01

    Mechanosensory transduction underlies touch, hearing and proprioception and requires mechanosensitive channels that are directly gated by forces; however, the molecular identities of these channels remain largely elusive. A new study has identified Piezo1 and Piezo2 as a novel class of mechanosensitive channels.

  5. FTIR time-series of biomass burning products (HCN, C2H6, C2H2, CH3OH, and HCOOH at Reunion Island (21° S, 55° E and comparisons with model data

    Directory of Open Access Journals (Sweden)

    D. B. A. Jones

    2012-11-01

    Full Text Available Reunion Island (21° S, 55° E, situated in the Indian Ocean at about 800 km east of Madagascar, is appropriately located to monitor the outflow of biomass burning pollution from Southern Africa and Madagascar, in the case of short-lived compounds, and from other Southern Hemispheric landmasses such as South America, in the case of longer-lived species. Ground-based Fourier transform infrared (FTIR solar absorption observations are sensitive to a large number of biomass burning products. We present in this work the FTIR retrieval strategies, suitable for very humid sites such as Reunion Island, for hydrogen cyanide (HCN, ethane (C2H6, acetylene (C2H2, methanol (CH3OH, and formic acid (HCOOH. We provide their total columns time-series obtained from the measurements during August–October 2004, May–October 2007, and May 2009–December 2010. We show that biomass burning explains a large part of the observed seasonal and interannual variability of the chemical species. The correlations between the daily mean total columns of each of the species and those of CO, also measured with our FTIR spectrometer at Reunion Island, are very good from August to November (R ≥ 0.86. This allows us to derive, for that period, the following enhancement ratios with respect to CO: 0.0047, 0.0078, 0.0020, 0.012, and 0.0046 for HCN, C2H6, C2H2, CH3OH, and HCOOH, respectively. The HCN ground-based data are compared to the chemical transport model GEOS-Chem, while the data for the other species are compared to the IMAGESv2 model. We show that using the HCN/CO ratio derived from our measurements (0.0047 in GEOS-Chem reduces the underestimation of the modeled HCN columns compared with the FTIR measurements. The comparisons between IMAGESv2 and the long-lived species C2H6 and C2H2 indicate that the biomass burning emissions used in the model (from the GFED3 inventory are probably underestimated in the late September–October period for all years of measurements, and

  6. Ih current is necessary to maintain normal dopamine fluctuations and sleep consolidation in Drosophila.

    Directory of Open Access Journals (Sweden)

    Alicia Gonzalo-Gomez

    Full Text Available HCN channels are becoming pharmacological targets mainly in cardiac diseases. But apart from their well-known role in heart pacemaking, these channels are widely expressed in the nervous system where they contribute to the neuron firing pattern. Consequently, abolishing Ih current might have detrimental consequences in a big repertoire of behavioral traits. Several studies in mammals have identified the Ih current as an important determinant of the firing activity of dopaminergic neurons, and recent evidences link alterations in this current to various dopamine-related disorders. We used the model organism Drosophila melanogaster to investigate how lack of Ih current affects dopamine levels and the behavioral consequences in the sleep:activity pattern. Unlike mammals, in Drosophila there is only one gene encoding HCN channels. We generated a deficiency of the DmIh core gene region and measured, by HPLC, levels of dopamine. Our data demonstrate daily variations of dopamine in wild-type fly heads. Lack of Ih current dramatically alters dopamine pattern, but different mechanisms seem to operate during light and dark conditions. Behaviorally, DmIh mutant flies display alterations in the rest:activity pattern, and altered circadian rhythms. Our data strongly suggest that Ih current is necessary to prevent dopamine overproduction at dark, while light input allows cycling of dopamine in an Ih current dependent manner. Moreover, lack of Ih current results in behavioral defects that are consistent with altered dopamine levels.

  7. Compact portable QEPAS multi-gas sensor

    Science.gov (United States)

    Dong, Lei; Kosterev, Anatoliy A.; Thomazy, David; Tittel, Frank K.

    2011-01-01

    A quartz-enhanced photoacoustic spectroscopy (QEPAS) based multi-gas sensor was developed to quantify concentrations of carbon monoxide (CO), hydrogen cyanide (HCN), hydrogen chloride (HCl), and carbon dioxide (CO2) in ambient air. The sensor consists of a compact package of dimensions 25cm x 25cm x 10cm and was designed to operate at atmospheric pressure. The HCN, CO2, and HCl measurement channels are based on cw, C-band telecommunication-style packaged, fiber-coupled diode lasers, while the CO channel uses a TO can-packaged Sb diode laser as an excitation source. Moreover, the sensor incorporates rechargeable batteries and can operate on batteries for at least 8 hours. It can also operate autonomously or interact with another device (such as a computer) via a RS232 serial port. Trace gas detection limits of 7.74ppm at 4288.29cm-1 for CO, 450ppb at 6539.11 cm-1 for HCN, 1.48ppm at 5739.26 cm-1 for HCl and 97ppm at 6361.25 cm-1 for CO2 for a 1sec average time, were demonstrated.

  8. Channel identification machines.

    Science.gov (United States)

    Lazar, Aurel A; Slutskiy, Yevgeniy B

    2012-01-01

    We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s) onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS) with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  9. Channel Identification Machines

    Directory of Open Access Journals (Sweden)

    Aurel A. Lazar

    2012-01-01

    Full Text Available We present a formal methodology for identifying a channel in a system consisting of a communication channel in cascade with an asynchronous sampler. The channel is modeled as a multidimensional filter, while models of asynchronous samplers are taken from neuroscience and communications and include integrate-and-fire neurons, asynchronous sigma/delta modulators and general oscillators in cascade with zero-crossing detectors. We devise channel identification algorithms that recover a projection of the filter(s onto a space of input signals loss-free for both scalar and vector-valued test signals. The test signals are modeled as elements of a reproducing kernel Hilbert space (RKHS with a Dirichlet kernel. Under appropriate limiting conditions on the bandwidth and the order of the test signal space, the filter projection converges to the impulse response of the filter. We show that our results hold for a wide class of RKHSs, including the space of finite-energy bandlimited signals. We also extend our channel identification results to noisy circuits.

  10. Quantum incompatibility of channels with general outcome operator algebras

    Science.gov (United States)

    Kuramochi, Yui

    2018-04-01

    A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.

  11. Identifying cochlear implant channels with poor electrode-neuron interfaces: electrically evoked auditory brain stem responses measured with the partial tripolar configuration.

    Science.gov (United States)

    Bierer, Julie Arenberg; Faulkner, Kathleen F; Tremblay, Kelly L

    2011-01-01

    tripolar configurations. The Wave V amplitude growth functions with increasing stimulus level showed the predicted effect of shallower growth for the partial tripolar than for the monopolar configuration, but this was observed only for the low-threshold channels. In contrast, high-threshold channels showed the opposite effect; steeper growth functions were seen for the partial tripolar configuration. These results suggest that behavioral thresholds or EABRs measured with a restricted stimulus can be used to identify potentially impaired cochlear implant channels. Channels having high thresholds and steep growth functions would likely not activate the appropriate spatially restricted region of the cochlea, leading to suboptimal perception. As a clinical tool, quick identification of impaired channels could lead to patient-specific mapping strategies and result in improved speech and music perception.

  12. Electrophysiological characterisation of KCNQ channel modulators

    DEFF Research Database (Denmark)

    Schrøder, R.L

    Potassium (K+) ion channels are ubiquitously expressed in mammalian cells, and each channel serves a precise physiological role due to its specific biophysical characteristics and expression pattern. A few K+ channels are targets for certain drugs, and in this thesis it is suggested that the KCNQ K......+ channels may be targets for neuroprotective, anti-epileptic and anti-nociceptive compounds. The importance of these channels is underscored by the fact that four out of five KCNQ channel subtypes are involved in severe human diseases. However, the pharmacology of the KCNQ channels is yet poorly understood...... as these channels were identified only recently. Therefore, there is a need for understanding the biophysical behavior and pharmacology of these ion channels. KCNQ channels belong to the group of voltage-activated K+ channels. The subfamily consists of KCNQ1-5, which is primarily expressed in the CNS, heart, ear...

  13. Investigation of HNCO isomer formation in ice mantles by UV and thermal processing: An experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Jiménez-Escobar, A.; Giuliano, B. M.; Caro, G. M. Muñoz; Cernicharo, J. [Centro de Astrobiología, INTA-CSIC, Carretera de Ajalvir, km 4, Torrejón de Ardoz, E-28850 Madrid (Spain); Marcelino, N., E-mail: bgiuliano@cab.inta-csic.es [National Radio Astronomy Observatory, 520 Edgemont Road, Charlottesville, VA 22903 (United States)

    2014-06-10

    Current gas-phase models do not account for the abundances of HNCO isomers detected in various environments, suggesting their formation in icy grain mantles. We attempted to study a formation channel of HNCO and its possible isomers by vacuum-UV photoprocessing of interstellar ice analogs containing H{sub 2}O, NH{sub 3}, CO, HCN, CH{sub 3}OH, CH{sub 4}, and N{sub 2} followed by warm-up under astrophysically relevant conditions. Only the H{sub 2}O:NH{sub 3}:CO and H{sub 2}O:HCN ice mixtures led to the production of HNCO species. The possible isomerization of HNCO to its higher energy tautomers following irradiation or due to ice warm-up has been scrutinized. The photochemistry and thermal chemistry of H{sub 2}O:NH{sub 3}:CO and H{sub 2}O:HCN ices were simulated using the Interstellar Astrochemistry Chamber, a state-of-the-art ultra-high-vacuum setup. The ice was monitored in situ by Fourier transform mid-infrared spectroscopy in transmittance. A quadrupole mass spectrometer detected the desorption of the molecules in the gas phase. UV photoprocessing of H{sub 2}O:NH{sub 3}:CO and H{sub 2}O:HCN ices lead to the formation of OCN{sup –} as a main product in the solid state and a minor amount of HNCO. The second isomer HOCN has been tentatively identified. Despite its low efficiency, the formation of HNCO and the HOCN isomers by UV photoprocessing of realistic simulated ice mantles might explain the observed abundances of these species in photodissociation regions, hot cores, and dark clouds.

  14. Cl- channels in apoptosis

    DEFF Research Database (Denmark)

    Wanitchakool, Podchanart; Ousingsawat, Jiraporn; Sirianant, Lalida

    2016-01-01

    A remarkable feature of apoptosis is the initial massive cell shrinkage, which requires opening of ion channels to allow release of K(+), Cl(-), and organic osmolytes to drive osmotic water movement and cell shrinkage. This article focuses on the role of the Cl(-) channels LRRC8, TMEM16/anoctamin......, and cystic fibrosis transmembrane conductance regulator (CFTR) in cellular apoptosis. LRRC8A-E has been identified as a volume-regulated anion channel expressed in many cell types. It was shown to be required for regulatory and apoptotic volume decrease (RVD, AVD) in cultured cell lines. Its presence also......(-) channels or as regulators of other apoptotic Cl(-) channels, such as LRRC8. CFTR has been known for its proapoptotic effects for some time, and this effect may be based on glutathione release from the cell and increase in cytosolic reactive oxygen species (ROS). Although we find that CFTR is activated...

  15. Ca2+-dependent K+ Channels in Exocrine Salivary Glands

    Science.gov (United States)

    Catalán, Marcelo A.; Peña-Munzenmayer, Gaspar; Melvin, James E.

    2014-01-01

    In the last 15 years, remarkable progress has been realized in identifying the genes that encode the ion-transporting proteins involved in exocrine gland function, including salivary glands. Among these proteins, Ca2+-dependent K+ channels take part in key functions including membrane potential regulation, fluid movement and K+ secretion in exocrine glands. Two K+ channels have been identified in exocrine salivary glands: 1) a Ca2+-activated K+ channel of intermediate single channel conductance encoded by the KCNN4 gene; and, 2) a voltage- and Ca2+-dependent K+ channel of large single channel conductance encoded by the KCNMA1 gene. This review focuses on the physiological roles of Ca2+-dependent K+ channels in exocrine salivary glands. We also discuss interesting recent findings on the regulation of Ca2+-dependent K+ channels by protein-protein interactions that may significantly impact exocrine gland physiology. PMID:24559652

  16. Distinctive fingerprints of erosional regimes in terrestrial channel networks

    Science.gov (United States)

    Grau Galofre, A.; Jellinek, M.

    2017-12-01

    Satellite imagery and digital elevation maps capture the large scale morphology of channel networks attributed to long term erosional processes, such as fluvial, glacial, groundwater sapping and subglacial erosion. Characteristic morphologies associated with each of these styles of erosion have been studied in detail, but there exists a knowledge gap related to their parameterization and quantification. This knowledge gap prevents a rigorous analysis of the dominant processes that shaped a particular landscape, and a comparison across styles of erosion. To address this gap, we use previous morphological descriptions of glaciers, rivers, sapping valleys and tunnel valleys to identify and measure quantitative metrics diagnostic of these distinctive styles of erosion. From digital elevation models, we identify four geometric metrics: The minimum channel width, channel aspect ratio (longest length to channel width at the outlet), presence of undulating longitudinal profiles, and tributary junction angle. We also parameterize channel network complexity in terms of its stream order and fractal dimension. We then perform a statistical classification of the channel networks using a Principal Component Analysis on measurements of these six metrics on a dataset of 70 channelized systems. We show that rivers, glaciers, groundwater seepage and subglacial meltwater erode the landscape in rigorously distinguishable ways. Our methodology can more generally be applied to identify the contributions of different processes involved in carving a channel network. In particular, we are able to identify transitions from fluvial to glaciated landscapes or vice-versa.

  17. Channel Bottom Morphology in the Deltaic Reach of the Song Hau (mekong) River Channel in Vietnam

    Science.gov (United States)

    Allison, M. A.; Weathers, H. D., III; Meselhe, E. A.

    2016-02-01

    Boat-based, channel bathymetry and bankline elevation studies were conducted in the tidal and estuarine Mekong River channel using multibeam bathymetry and LIDAR corrected for elevation by RTK satellite positioning. Two mapping campaigns, one at high discharge in October 2014 and one at low discharge in March 2015, were conducted in the lower 100 km reach of the Song Hau distributary channel to (1) examine bottom morphology and its relationship to sediment transport, and (2) to provide information to setup the grid for a multi-dimensional and reduced complexity models of channel hydrodynamics and sediment dynamics. Sand fields were identified in multibeam data by the presence of dunes that were as large as 2-4 m high and 40-80 m wavelength and by clean sands in bottom grabs. Extensive areas of sand at the head and toe of mid-channel islands displayed 10-25 m diameter circular pits that could be correlated with bucket dredge, sand mining activities observed at some of the sites. Large areas of the channel floor were relict (containing little or no modern sediment) in the high discharge campaign, identifiable by the presence of along channel erosional furrows and terraced outcrops along the channel floor and margins. Laterally extensive flat areas were also observed in the channel thalweg. Both these and the relict areas were sampled by bottom grab as stiff silty clays. Complex cross-channel combinations of these morphologies were observed in some transects, suggesting strong bottom steering of tidal and riverine currents. Relative to high discharge, transects above and below the salt penetration limit showed evidence of shallowing in the thalweg and adjacent sloping areas at low discharge in March 2015. This shallowing, combined with the reduced extent of sand fields and furrowed areas, and soft muds in grabs, suggests seasonal trapping of fine grained sediment is occurring by estuarine and tidal circulation.

  18. Plant ion channels: gene families, physiology, and functional genomics analyses.

    Science.gov (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  19. Data processing with PC-9801 micro-computer for HCN laser scattering experiments

    International Nuclear Information System (INIS)

    Iwasaki, T.; Okajima, S.; Kawahata, K.; Tetsuka, T.; Fujita, J.

    1986-09-01

    In order to process the data of HCN laser scattering experiments, a micro-computer software has been developed and applied to the measurements of density fluctuations in the JIPP T-IIU tokamak plasma. The data processing system consists of a spectrum analyzer, SM-2100A Signal Analyzer (IWATSU ELECTRIC CO., LTD.), PC-9801m3 micro-computer, a CRT-display and a dot-printer. The output signals from the spectrum analyzer are A/D converted, and stored on a mini-floppy-disk equipped to the signal analyzer. The software to process the data is composed of system-programs and several user-programs. The real time data processing is carried out for every shot of plasma at 4 minutes interval by the micro-computer connected with the signal analyzer through a GP-IB interface. The time evolutions of the frequency spectrum of the density fluctuations are displayed on the CRT attached to the micro-computer and printed out on a printer-sheet. In the case of the data processing after experiments, the data stored on the floppy-disk of the signal analyzer are read out by using a floppy-disk unit attached to the micro-computer. After computation with the user-programs, the results, such as monitored signal, frequency spectra, wave number spectra and the time evolutions of the spectrum, are displayed and printed out. In this technical report, the system, the software and the directions for use are described. (author)

  20. Chemical Selectivity and Sensitivity of a 16-Channel Electronic Nose for Trace Vapour Detection

    Directory of Open Access Journals (Sweden)

    Drago Strle

    2017-12-01

    Full Text Available Good chemical selectivity of sensors for detecting vapour traces of targeted molecules is vital to reliable detection systems for explosives and other harmful materials. We present the design, construction and measurements of the electronic response of a 16 channel electronic nose based on 16 differential microcapacitors, which were surface-functionalized by different silanes. The e-nose detects less than 1 molecule of TNT out of 10+12 N2 molecules in a carrier gas in 1 s. Differently silanized sensors give different responses to different molecules. Electronic responses are presented for TNT, RDX, DNT, H2S, HCN, FeS, NH3, propane, methanol, acetone, ethanol, methane, toluene and water. We consider the number density of these molecules and find that silane surfaces show extreme affinity for attracting molecules of TNT, DNT and RDX. The probability to bind these molecules and form a surface-adsorbate is typically 10+7 times larger than the probability to bind water molecules, for example. We present a matrix of responses of differently functionalized microcapacitors and we propose that chemical selectivity of multichannel e-nose could be enhanced by using artificial intelligence deep learning methods.

  1. Post-Translational Modifications of TRP Channels

    Directory of Open Access Journals (Sweden)

    Olaf Voolstra

    2014-04-01

    Full Text Available Transient receptor potential (TRP channels constitute an ancient family of cation channels that have been found in many eukaryotic organisms from yeast to human. TRP channels exert a multitude of physiological functions ranging from Ca2+ homeostasis in the kidney to pain reception and vision. These channels are activated by a wide range of stimuli and undergo covalent post-translational modifications that affect and modulate their subcellular targeting, their biophysical properties, or channel gating. These modifications include N-linked glycosylation, protein phosphorylation, and covalent attachment of chemicals that reversibly bind to specific cysteine residues. The latter modification represents an unusual activation mechanism of ligand-gated ion channels that is in contrast to the lock-and-key paradigm of receptor activation by its agonists. In this review, we summarize the post-translational modifications identified on TRP channels and, when available, explain their physiological role.

  2. Anion channels: master switches of stress responses.

    Science.gov (United States)

    Roelfsema, M Rob G; Hedrich, Rainer; Geiger, Dietmar

    2012-04-01

    During stress, plant cells activate anion channels and trigger the release of anions across the plasma membrane. Recently, two new gene families have been identified that encode major groups of anion channels. The SLAC/SLAH channels are characterized by slow voltage-dependent activation (S-type), whereas ALMT genes encode rapid-activating channels (R-type). Both S- and R-type channels are stimulated in guard cells by the stress hormone ABA, which leads to stomatal closure. Besides their role in ABA-dependent stomatal movement, anion channels are also activated by biotic stress factors such as microbe-associated molecular patterns (MAMPs). Given that anion channels occur throughout the plant kingdom, they are likely to serve a general function as master switches of stress responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  3. Quantum privacy and Schur product channels

    Science.gov (United States)

    Levick, Jeremy; Kribs, David W.; Pereira, Rajesh

    2017-12-01

    We investigate the quantum privacy properties of an important class of quantum channels, by making use of a connection with Schur product matrix operations and associated correlation matrix structures. For channels implemented by mutually commuting unitaries, which cannot privatise qubits encoded directly into subspaces, we nevertheless identify private algebras and subsystems that can be privatised by the channels. We also obtain further results by combining our analysis with tools from the theory of quasi-orthogonal operator algebras and graph theory.

  4. Molecular analysis of a thylakoid K+channel

    International Nuclear Information System (INIS)

    1999-01-01

    The work undertaken sought to use a novel probe to identify and clone plant ion (K) channels. It was also proposed that in vitro biochemical studies of cation transport across purified preparations of thylakoid membrane be employed to characterize a putative K channel in this membrane system. Over the last several years, an enormous data base of partially-sequenced mRNAs and numerous genomes (including those of plants) has evolved and provides a powerful alternative to this brute-force approach to identify and clone cDNAs encoding physiologically important membrane proteins such as channels. The utility of searching genetic databases for relevant sequences, in addition to the difficulty of working with membrane proteins, led to changes in research focus during the granting period. During the course of the funding period, work was finished up which documented the presence of a K channel in the thylakoid membrane and demonstrated that K fluxes through this channel were required for optimal photosynthetic activity, likely due to the requirement for charge balancing of proton flux

  5. Molecular analysis of a thylakoid K+channel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-09-10

    The work undertaken sought to use a novel probe to identify and clone plant ion (K) channels. It was also proposed that in vitro biochemical studies of cation transport across purified preparations of thylakoid membrane be employed to characterize a putative K channel in this membrane system. Over the last several years, an enormous data base of partially-sequenced mRNAs and numerous genomes (including those of plants) has evolved and provides a powerful alternative to this brute-force approach to identify and clone cDNAs encoding physiologically important membrane proteins such as channels. The utility of searching genetic databases for relevant sequences, in addition to the difficulty of working with membrane proteins, led to changes in research focus during the granting period. During the course of the funding period, work was finished up which documented the presence of a K channel in the thylakoid membrane and demonstrated that K fluxes through this channel were required for optimal photosynthetic activity, likely due to the requirement for charge balancing of proton flux.

  6. Voltage-gated calcium channels of Paramecium cilia.

    Science.gov (United States)

    Lodh, Sukanya; Yano, Junji; Valentine, Megan S; Van Houten, Judith L

    2016-10-01

    Paramecium cells swim by beating their cilia, and make turns by transiently reversing their power stroke. Reversal is caused by Ca 2+ entering the cilium through voltage-gated Ca 2+ (Ca V ) channels that are found exclusively in the cilia. As ciliary Ca 2+ levels return to normal, the cell pivots and swims forward in a new direction. Thus, the activation of the Ca V channels causes cells to make a turn in their swimming paths. For 45 years, the physiological characteristics of the Paramecium ciliary Ca V channels have been known, but the proteins were not identified until recently, when the P. tetraurelia ciliary membrane proteome was determined. Three Ca V α1 subunits that were identified among the proteins were cloned and confirmed to be expressed in the cilia. We demonstrate using RNA interference that these channels function as the ciliary Ca V channels that are responsible for the reversal of ciliary beating. Furthermore, we show that Pawn (pw) mutants of Paramecium that cannot swim backward for lack of Ca V channel activity do not express any of the three Ca V 1 channels in their ciliary membrane, until they are rescued from the mutant phenotype by expression of the wild-type PW gene. These results reinforce the correlation of the three Ca V channels with backward swimming through ciliary reversal. The PwB protein, found in endoplasmic reticulum fractions, co-immunoprecipitates with the Ca V 1c channel and perhaps functions in trafficking. The PwA protein does not appear to have an interaction with the channel proteins but affects their appearance in the cilia. © 2016. Published by The Company of Biologists Ltd.

  7. Channel Planform Dynamics Monitoring and Channel Stability Assessment in Two Sediment-Rich Rivers in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Wei Kuo

    2017-01-01

    Full Text Available Recurrent flood events induced by typhoons are powerful agents to modify channel morphology in Taiwan’s rivers. Frequent channel migrations reflect highly sensitive valley floors and increase the risk to infrastructure and residents along rivers. Therefore, monitoring channel planforms is essential for analyzing channel stability as well as improving river management. This study analyzed annual channel changes along two sediment-rich rivers, the Zhuoshui River and the Gaoping River, from 2008 to 2015 based on satellite images of FORMOSAT-2. Channel areas were digitized from mid-catchment to river mouth (~90 km. Channel stability for reaches was assessed through analyzing the changes of river indices including braid index, active channel width, and channel activity. In general, the valley width plays a key role in braided degree, active channel width, and channel activity. These indices increase as the valley width expands whereas the braid index decreases slightly close to the river mouth due to the change of river types. This downstream pattern in the Zhuoshui River was interrupted by hydraulic construction which resulted in limited changes downstream from the weir, due to the lack of water and sediment supply. A 200-year flood, Typhoon Morakot in 2009, induced significant changes in the two rivers. The highly active landscape in Taiwan results in very sensitive channels compared to other regions. An integrated Sensitivity Index was proposed for identifying unstable reaches, which could be a useful reference for river authorities when making priorities in river regulation strategy. This study shows that satellite image monitoring coupled with river indices analysis could be an effective tool to evaluate spatial and temporal changes in channel stability in highly dynamic river systems.

  8. Regional bankfull-channel dimensions of non-urban wadeable streams in Indiana

    Science.gov (United States)

    Robinson, Bret A.

    2013-01-01

    During floods, damage to properties and community infrastructure may result from inundation and the processes of erosion. The damages imparted by erosion are collectively termed the fluvial erosion hazard (FEH), and the Indiana Silver Jackets Multi-agency Hazard Mitigation Taskforce is supporting a program to build tools that will assist Indiana property owners and communities with FEH-mitigation efforts. As part of that program, regional channel-dimension relations are identified for non-urban wadeable streams in Indiana. With a site-selection process that targeted the three largest physiographic regions of the state, field work was completed to measure channel-dimension and channel-geometry characteristics across Indiana. In total, 82 sites were identified for data collection; 25 in the Northern Moraine and Lake region, 31 in the Central Till Plain region, and 26 in the Southern Hills and Lowlands region. Following well established methods, for each data-collection site, effort was applied to identify bankfull stage, determine bankfull-channel dimensions, and document channel-geometry characteristics that allowed for determinations of channel classification. In this report, regional bankfull-channel dimension results are presented as a combination of plots and regression equations that identify the relations between drainage area and the bankfull-channel dimensions of width, mean depth, and cross-sectional area. This investigation found that the channel-dimension data support independent relations for each of the three physiographic regions noted above. Furthermore, these relations show that, for any given drainage area, northern Indiana channels have the smallest predicted dimensions, southern Indiana channels have the largest predicted dimensions, and central Indiana channels are intermediate in their predicted dimensions. When considering the suite of variables that influence bankfull-channel dimensions, it appears that contrasting runoff characteristics

  9. Channel Power in Multi-Channel Environments

    NARCIS (Netherlands)

    M.G. Dekimpe (Marnik); B. Skiera (Bernd)

    2004-01-01

    textabstractIn the literature, little attention has been paid to instances where companies add an Internet channel to their direct channel portfolio. However, actively managing multiple sales channels requires knowing the customers’ channel preferences and the resulting channel power. Two key

  10. Channelized Streams in Iowa

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This draft dataset consists of all ditches or channelized pieces of stream that could be identified using three input datasets; namely the1:24,000 National...

  11. Molecular analysis of a thylakoid K+ channel

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-05-01

    The work undertaken during the prior granting period sought to use a novel probe to identify and clone plant ion (K) channels. It was also proposed that in vitro biochemical studies of cation transport across purified preparations of thylakoid membrane be employed to characterize a putative K channel in this membrane system. Over the last several years (including those of the previous grant period), an enormous data base of partially-sequenced mRNAs and numerous genomes (including those of plants) has evolved and provides a powerful alternative to this brute-force approach to identify and clone cDNAs ending physiologically important membrane proteins such as channels. The utility of searching genetic databases for relevant sequences, in addition to the difficulty of working with membrane proteins, led to changes in research focus during the prior granting period, and has resulted in the identification of a new class of plant ion channels, which will be the focus of research during the proposed new granting period.

  12. A Novel KCNJ2 Mutation Identified in an Autistic Proband Affects the Single Channel Properties of Kir2.1

    Directory of Open Access Journals (Sweden)

    Anna Binda

    2018-03-01

    Full Text Available Inwardly rectifying potassium channels (Kir have been historically associated to several cardiovascular disorders. In particular, loss-of-function mutations in the Kir2.1 channel have been reported in cases affected by Andersen-Tawil syndrome while gain-of-function mutations in the same channel cause the short QT3 syndrome. Recently, a missense mutation in Kir2.1, as well as mutations in the Kir4.1, were reported to be involved in autism spectrum disorders (ASDs suggesting a role of potassium channels in these diseases and introducing the idea of the existence of K+ channel ASDs. Here, we report the identification in an Italian affected family of a novel missense mutation (p.Phe58Ser in the KCNJ2 gene detected in heterozygosity in a proband affected by autism and borderline for short QT syndrome type 3. The mutation is located in the N-terminal region of the gene coding for the Kir2.1 channel and in particular in a very conserved domain. In vitro assays demonstrated that this mutation results in an increase of the channel conductance and in its open probability. This gain-of-function of the protein is consistent with the autistic phenotype, which is normally associated to an altered neuronal excitability.

  13. Applying alpha-channeling to mirror machines

    Energy Technology Data Exchange (ETDEWEB)

    Zhmoginov, A. I.; Fisch, N. J. [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)

    2012-05-15

    The {alpha}-channeling effect entails the use of radio-frequency waves to expel and cool high-energetic {alpha} particles born in a fusion reactor; the device reactivity can then be increased even further by redirecting the extracted energy to fuel ions. Originally proposed for tokamaks, this technique has also been shown to benefit open-ended fusion devices. Here, the fundamental theory and practical aspects of {alpha} channeling in mirror machines are reviewed, including the influence of magnetic field inhomogeneity and the effect of a finite wave region on the {alpha}-channeling mechanism. For practical implementation of the {alpha}-channeling effect in mirror geometry, suitable contained weakly damped modes are identified. In addition, the parameter space of candidate waves for implementing the {alpha}-channeling effect can be significantly extended through the introduction of a suitable minority ion species that has the catalytic effect of moderating the transfer of power from the {alpha}-channeling wave to the fuel ions.

  14. Downregulation of Kv7.4 channel activity in primary and secondary hypertension

    DEFF Research Database (Denmark)

    Jepps, Thomas Andrew; Chadha, Preet S; Davis, Alison J

    2011-01-01

    Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of...... structurally different activators of Kv7.2 through Kv7.5 channels (BMS-204352, S-1, and retigabine) on blood vessels from normotensive and hypertensive animals.......Voltage-gated potassium (K(+)) channels encoded by KCNQ genes (Kv7 channels) have been identified in various rodent and human blood vessels as key regulators of vascular tone; however, nothing is known about the functional impact of these channels in vascular disease. We ascertained the effect of 3...

  15. An aberrant vascular channel in the petrous bone: persistent lateral capital vein?

    International Nuclear Information System (INIS)

    Hermans, Robert; Rensburg, Leon J. van

    2009-01-01

    An aberrant channel was identified on CT in the petrous bone in four patients presenting with unrelated otological symptoms. These channels occurred unilaterally in each case. In two patients, the channel was seen to run between the sigmoid sinus sulcus and the superior petrosal sinus sulcus; in one of these patients, a vascular structure was identified within this channel on MRI, connecting the sigmoid sinus and the superior petrosal sinus. In the two other patients, an aberrant channel was seen between the superior petrosal sinus sulcus and the posterior genu of the facial nerve canal. There were no symptoms that could be attributed to the presence of these channels. We postulate that these aberrant vascular channels correspond to a persistent embryological vein, the lateral capital vein. (orig.)

  16. An aberrant vascular channel in the petrous bone: persistent lateral capital vein?

    Energy Technology Data Exchange (ETDEWEB)

    Hermans, Robert [University Hospitals Leuven, Department of Radiology, Leuven (Belgium); Rensburg, Leon J. van [University of the Western Cape, Department of Radiology and Diagnostics, Tygerberg (South Africa)

    2009-12-15

    An aberrant channel was identified on CT in the petrous bone in four patients presenting with unrelated otological symptoms. These channels occurred unilaterally in each case. In two patients, the channel was seen to run between the sigmoid sinus sulcus and the superior petrosal sinus sulcus; in one of these patients, a vascular structure was identified within this channel on MRI, connecting the sigmoid sinus and the superior petrosal sinus. In the two other patients, an aberrant channel was seen between the superior petrosal sinus sulcus and the posterior genu of the facial nerve canal. There were no symptoms that could be attributed to the presence of these channels. We postulate that these aberrant vascular channels correspond to a persistent embryological vein, the lateral capital vein. (orig.)

  17. Control channels in the brain and their influence on brain executive functions

    Science.gov (United States)

    Meng, Qinglei; Choa, Fow-Sen; Hong, Elliot; Wang, Zhiguang; Islam, Mohammad

    2014-05-01

    In a computer network there are distinct data channels and control channels where massive amount of visual information are transported through data channels but the information streams are routed and controlled by intelligent algorithm through "control channels". Recent studies on cognition and consciousness have shown that the brain control channels are closely related to the brainwave beta (14-40 Hz) and alpha (7-13 Hz) oscillations. The high-beta wave is used by brain to synchronize local neural activities and the alpha oscillation is for desynchronization. When two sensory inputs are simultaneously presented to a person, the high-beta is used to select one of the inputs and the alpha is used to deselect the other so that only one input will get the attention. In this work we demonstrated that we can scan a person's brain using binaural beats technique and identify the individual's preferred control channels. The identified control channels can then be used to influence the subject's brain executive functions. In the experiment, an EEG measurement system was used to record and identify a subject's control channels. After these channels were identified, the subject was asked to do Stroop tests. Binaural beats was again used to produce these control-channel frequencies on the subject's brain when we recorded the completion time of each test. We found that the high-beta signal indeed speeded up the subject's executive function performance and reduced the time to complete incongruent tests, while the alpha signal didn't seem to be able to slow down the executive function performance.

  18. VKCDB: Voltage-gated potassium channel database

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2004-01-01

    Full Text Available Abstract Background The family of voltage-gated potassium channels comprises a functionally diverse group of membrane proteins. They help maintain and regulate the potassium ion-based component of the membrane potential and are thus central to many critical physiological processes. VKCDB (Voltage-gated potassium [K] Channel DataBase is a database of structural and functional data on these channels. It is designed as a resource for research on the molecular basis of voltage-gated potassium channel function. Description Voltage-gated potassium channel sequences were identified by using BLASTP to search GENBANK and SWISSPROT. Annotations for all voltage-gated potassium channels were selectively parsed and integrated into VKCDB. Electrophysiological and pharmacological data for the channels were collected from published journal articles. Transmembrane domain predictions by TMHMM and PHD are included for each VKCDB entry. Multiple sequence alignments of conserved domains of channels of the four Kv families and the KCNQ family are also included. Currently VKCDB contains 346 channel entries. It can be browsed and searched using a set of functionally relevant categories. Protein sequences can also be searched using a local BLAST engine. Conclusions VKCDB is a resource for comparative studies of voltage-gated potassium channels. The methods used to construct VKCDB are general; they can be used to create specialized databases for other protein families. VKCDB is accessible at http://vkcdb.biology.ualberta.ca.

  19. Acoustic Imaging of a Turbidity Current Flowing along a Channel

    Science.gov (United States)

    Hughes Clarke, J. E.; Hiroji, A.; Cahill, L.; Fedele, J. J.

    2017-12-01

    As part of a 3 month sequence of repetitive surveys and ADCP monitoring, more than 30 turbidity currents have been identified modifying a lobe channel in 130 to 190m of water on the Squamish prodelta. For a 6 day period, daily surveys at low tide tried to capture the change resulting from a single flow. On the 8thof June three flows occurred within a half hour. Along channel multibeam images of the seabed and water column were obtained from a moving vessel immediately before, during and after the passage of the third flow. In this manner the spatial extent of the in-channel and overbank flow could be constrained. By following the flow, the spatial pattern of scattering from the flow upper surface could be examined over a 2 km length of the channel. Along channel bands of high scattering appear related to enhanced release of gas along the channel flanks. Notably, no signature of the underlying across-channel bedform modulations were evident, suggesting that the upper surface of the flow does not feel the influence of the channel floor. Overbank spillage of the flow could be detected by perturbation of a plankton scattering layer just above the seabed. Additionally, evidence of enhanced overbank deposition due to flow stripping on the outer corner of a bend was identified from backscatter changes. The specific seabed alteration due to this flow could be identified and compared with the cumulative change over three months in the channel and adjacent channel-lobe transition zone. As the flow passed under the ADCP, it had a peak velocity of over 2 m/s, a thickness of 4-5m and duration of 35 minutes. Based on the timing of the flow head when in view of the surface vessel, it was decelerating as it exited the mouth of the channel.

  20. A cement channel-detection technique using the pulsed-neutron log

    International Nuclear Information System (INIS)

    Myers, G.D.

    1991-01-01

    A channel-detection technique has been developed using boron solutions and pulsed-neutron logging (PNL) tools. This technique relies on the extremely high-neutron-absorption cross section that boron exhibits relative to other common elements, including chlorine. The PNL tool is used to detect movement of a boron solution in a log-inject-log procedure. The technique has identified channels in such difficult applications as logging through two strings of pipe and in highly deviated wellbores. Logging procedures are simple and cement channels can be readily identified. The boron solutions are relatively inexpensive, safe to handle, and nonradioactive. Additional PNL information for reservoir performance evaluation is collected simultaneously during channel-detection logging. This paper describes the theory, development, field application, and limitations of this channel-detection logging technique

  1. Development of selective catalytic oxidation (SCO) for NH{sub 3} and HCN removal from gasification gas; Selektiivisen katalyyttisen hapetusprosessin (SCO) kehittaeminen kaasutuskaasun NH{sub 3}:n ja HCN:n poistoon

    Energy Technology Data Exchange (ETDEWEB)

    Leppaelahti, J.; Koljonen, T.; Heiskanen, K. [VTT Energy, Espoo (Finland)

    1997-10-01

    In gasification, reactive nitrogen compounds (mainly NH{sub 3} and HCN) are formed from fuel nitrogen. If the gas containing NH{sub 3} is burned, a high NO{sub x} emission may be formed. The content of nitrogen compounds of the hot gasification gas could be reduced in Selective Catalytic Oxidation (SCO) process. In this process small amounts of reactive oxidisers are injected into the gas in order to convert NH{sub 3} to N{sub 2}. The utilization of SCO process together with low NO{sub x} burners in advanced gasification power stations might offer an alternative for flue gas treatment technologies like SCR (Selective Catalytic Reduction). In the earlier research, conditions were found, where oxidizers reacted selectively with ammonia in the gasification gas. Highest ammonia reduction took place in the aluminium oxide bed in the presence of NO and O{sub 2}. The aim of this study is to examine the reaction mechanism in order to be able to further evaluate the development possibilities of this kind process. The effect of composition and the amount of added oxidizer, the content of combustible gas components, space velocity, pressure and temperature will be studied. The experiments are carried out with the laboratory scale high pressure flow reactor of VTT Energy. Kinetic modelling of the experimental results is carried out in co-operation with the combustion chemistry group of Aabo Akademi. The aim of the modelling work is to bring insight to the gas-phase reactions that are important for the SCO-process. (orig.)

  2. Contribution of large-sized primary sensory neuronal sensitization to mechanical allodynia by upregulation of hyperpolarization-activated cyclic nucleotide gated channels via cyclooxygenase 1 cascade.

    Science.gov (United States)

    Sun, Wei; Yang, Fei; Wang, Yan; Fu, Han; Yang, Yan; Li, Chun-Li; Wang, Xiao-Liang; Lin, Qing; Chen, Jun

    2017-02-01

    Under physiological state, small- and medium-sized dorsal root ganglia (DRG) neurons are believed to mediate nociceptive behavioral responses to painful stimuli. However, recently it has been found that a number of large-sized neurons are also involved in nociceptive transmission under neuropathic conditions. Nonetheless, the underlying mechanisms that large-sized DRG neurons mediate nociception are poorly understood. In the present study, the role of large-sized neurons in bee venom (BV)-induced mechanical allodynia and the underlying mechanisms were investigated. Behaviorally, it was found that mechanical allodynia was still evoked by BV injection in rats in which the transient receptor potential vanilloid 1-positive DRG neurons were chemically deleted. Electrophysiologically, in vitro patch clamp recordings of large-sized neurons showed hyperexcitability in these neurons. Interestingly, the firing pattern of these neurons was changed from phasic to tonic under BV-inflamed state. It has been suggested that hyperpolarization-activated cyclic nucleotide gated channels (HCN) expressed in large-sized DRG neurons contribute importantly to repeatedly firing. So we examined the roles of HCNs in BV-induced mechanical allodynia. Consistent with the overexpression of HCN1/2 detected by immunofluorescence, HCNs-mediated hyperpolarization activated cation current (I h ) was significantly increased in the BV treated samples. Pharmacological experiments demonstrated that the hyperexcitability and upregulation of I h in large-sized neurons were mediated by cyclooxygenase-1 (COX-1)-prostaglandin E2 pathway. This is evident by the fact that the COX-1 inhibitor significantly attenuated the BV-induced mechanical allodynia. These results suggest that BV can excite the large-sized DRG neurons at least in part by increasing I h through activation of COX-1. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Het cyanophore karakter van witte klaver (Trifolium repens L.)

    NARCIS (Netherlands)

    Waal, de D.

    1942-01-01

    The positive correlation found in New Zealand between quality of white clover and its hydrocyanic acid content, could not be confirmed for Dutch white clover in the Netherlands. HCN occurred bound to an incompletely identified glucoside. As Weevers and Treub et al. found the glucoside and HCN

  4. An evolutionarily conserved gene family encodes proton-selective ion channels.

    Science.gov (United States)

    Tu, Yu-Hsiang; Cooper, Alexander J; Teng, Bochuan; Chang, Rui B; Artiga, Daniel J; Turner, Heather N; Mulhall, Eric M; Ye, Wenlei; Smith, Andrew D; Liman, Emily R

    2018-03-02

    Ion channels form the basis for cellular electrical signaling. Despite the scores of genetically identified ion channels selective for other monatomic ions, only one type of proton-selective ion channel has been found in eukaryotic cells. By comparative transcriptome analysis of mouse taste receptor cells, we identified Otopetrin1 (OTOP1), a protein required for development of gravity-sensing otoconia in the vestibular system, as forming a proton-selective ion channel. We found that murine OTOP1 is enriched in acid-detecting taste receptor cells and is required for their zinc-sensitive proton conductance. Two related murine genes, Otop2 and Otop3 , and a Drosophila ortholog also encode proton channels. Evolutionary conservation of the gene family and its widespread tissue distribution suggest a broad role for proton channels in physiology and pathophysiology. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  5. Ca²⁺-dependent K⁺ channels in exocrine salivary glands.

    Science.gov (United States)

    Catalán, Marcelo A; Peña-Munzenmayer, Gaspar; Melvin, James E

    2014-06-01

    In the last 15 years, remarkable progress has been realized in identifying the genes that encode the ion-transporting proteins involved in exocrine gland function, including salivary glands. Among these proteins, Ca(2+)-dependent K(+) channels take part in key functions including membrane potential regulation, fluid movement and K(+) secretion in exocrine glands. Two K(+) channels have been identified in exocrine salivary glands: (1) a Ca(2+)-activated K(+) channel of intermediate single channel conductance encoded by the KCNN4 gene, and (2) a voltage- and Ca(2+)-dependent K(+) channel of large single channel conductance encoded by the KCNMA1 gene. This review focuses on the physiological roles of Ca(2+)-dependent K(+) channels in exocrine salivary glands. We also discuss interesting recent findings on the regulation of Ca(2+)-dependent K(+) channels by protein-protein interactions that may significantly impact exocrine gland physiology. Published by Elsevier Ltd.

  6. Three-dimensional (3-D) video systems: bi-channel or single-channel optics?

    Science.gov (United States)

    van Bergen, P; Kunert, W; Buess, G F

    1999-11-01

    This paper presents the results of a comparison between two different three-dimensional (3-D) video systems, one with single-channel optics, the other with bi-channel optics. The latter integrates two lens systems, each transferring one half of the stereoscopic image; the former uses only one lens system, similar to a two-dimensional (2-D) endoscope, which transfers the complete stereoscopic picture. In our training centre for minimally invasive surgery, surgeons were involved in basic and advanced laparoscopic courses using both a 2-D system and the two 3-D video systems. They completed analog scale questionnaires in order to record a subjective impression of the relative convenience of operating in 2-D and 3-D vision, and to identify perceived deficiencies in the 3-D system. As an objective test, different experimental tasks were developed, in order to measure performance times and to count pre-defined errors made while using the two 3-D video systems and the 2-D system. Using the bi-channel optical system, the surgeon has a heightened spatial perception, and can work faster and more safely than with a single-channel system. However, single-channel optics allow the use of an angulated endoscope, and the free rotation of the optics relative to the camera, which is necessary for some operative applications.

  7. Sub-nanometre channels embedded in two-dimensional materials

    KAUST Repository

    Han, Yimo; Li, Ming-yang; Jung, Gang-Seob; Marsalis, Mark A.; Qin, Zhao; Buehler, Markus J.; Li, Lain-Jong; Muller, David A.

    2017-01-01

    with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Using molecular dynamics simulations, we have identified other combinations of 2D materials where 1D channels can also be formed. The electronic

  8. Computational Investigations in Rectangular Convergent and Divergent Ribbed Channels

    Science.gov (United States)

    Sivakumar, Karthikeyan; Kulasekharan, N.; Natarajan, E.

    2018-05-01

    Computational investigations on the rib turbulated flow inside a convergent and divergent rectangular channel with square ribs of different rib heights and different Reynolds numbers (Re=20,000, 40,000 and 60,000). The ribs were arranged in a staggered fashion between the upper and lower surfaces of the test section. Computational investigations are carried out using computational fluid dynamic software ANSYS Fluent 14.0. Suitable solver settings like turbulence models were identified from the literature and the boundary conditions for the simulations on a solution of independent grid. Computations were carried out for both convergent and divergent channels with 0 (smooth duct), 1.5, 3, 6, 9 and 12 mm rib heights, to identify the ribbed channel with optimal performance, assessed using a thermo hydraulic performance parameter. The convergent and divergent rectangular channels show higher Nu values than the standard correlation values.

  9. Functional Properties of a Newly Identified C-terminal Splice Variant of Cav1.3 L-type Ca2+ Channels*

    Science.gov (United States)

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E.; Sinnegger-Brauns, Martina J.; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-01-01

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Cav1.3 L-type Ca2+ channels (Cav1.3L) is a major determinant of their voltage- and Ca2+-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Cav1.342A channels that activate at a more negative voltage range and exhibit more pronounced Ca2+-dependent inactivation. Here we describe the discovery of a novel short splice variant (Cav1.343S) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Cav1.342A, still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Cav1.343S also activated at more negative voltages like Cav1.342A but Ca2+-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Cav1.3L. The presence of the proximal C terminus in Cav1.343S channels preserved their modulation by distal C terminus-containing Cav1.3- and Cav1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca2+ influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Cav1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca2+ channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca2+ accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca2+-induced neurodegenerative processes. PMID:21998310

  10. Mechanosensitive Piezo Channels in the Gastrointestinal Tract.

    Science.gov (United States)

    Alcaino, C; Farrugia, G; Beyder, A

    2017-01-01

    Sensation of mechanical forces is critical for normal function of the gastrointestinal (GI) tract and abnormalities in mechanosensation are linked to GI pathologies. In the GI tract there are several mechanosensitive cell types-epithelial enterochromaffin cells, intrinsic and extrinsic enteric neurons, smooth muscle cells and interstitial cells of Cajal. These cells use mechanosensitive ion channels that respond to mechanical forces by altering transmembrane ionic currents in a process called mechanoelectrical coupling. Several mechanosensitive ionic conductances have been identified in the mechanosensory GI cells, ranging from mechanosensitive voltage-gated sodium and calcium channels to the mechanogated ion channels, such as the two-pore domain potassium channels K2P (TREK-1) and nonselective cation channels from the transient receptor potential family. The recently discovered Piezo channels are increasingly recognized as significant contributors to cellular mechanosensitivity. Piezo1 and Piezo2 are nonselective cationic ion channels that are directly activated by mechanical forces and have well-defined biophysical and pharmacologic properties. The role of Piezo channels in the GI epithelium is currently under investigation and their role in the smooth muscle syncytium and enteric neurons is still not known. In this review, we outline the current state of knowledge on mechanosensitive ion channels in the GI tract, with a focus on the known and potential functions of the Piezo channels. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Spectrophotometry and organic matter on Iapetus. 1: Composition models

    Science.gov (United States)

    Wilson, Peter D.; Sagan, Carl

    1995-01-01

    Iapetus shows a greater hemispheric albedo asymmetry than any other body in the solar system. Hapke scattering theory and optical constants measured in the laboratory are used to identify possible compositions for the dark material on the leading hemisphere of Iapetus. The materials considered are poly-HCN, kerogen, Murchison organic residue, Titan tholin, ice tholin, and water ice. Three-component mixtures of these materials are modeled in intraparticle mixture of 25% poly-HCN, 10% Murchison residue, and 65% water ice is found to best fit the spectrum, albedo, and phase behavior of the dark material. The Murchison residue and/or water ice can be replaced by kerogen and ice tholin, respectively, and still produce very good fits. Areal and particle mixtures of poly-HCN, Titan tholin, and either ice tholin or Murchison residue are also possible models. Poly-HCN is a necessary component in almost all good models. The presence of poly-HCN can be further tested by high-resolution observations near 4.5 micrometers.

  12. Optical Communications Channel Combiner

    Science.gov (United States)

    Quirk, Kevin J.; Quirk, Kevin J.; Nguyen, Danh H.; Nguyen, Huy

    2012-01-01

    NASA has identified deep-space optical communications links as an integral part of a unified space communication network in order to provide data rates in excess of 100 Mb/s. The distances and limited power inherent in a deep-space optical downlink necessitate the use of photon-counting detectors and a power-efficient modulation such as pulse position modulation (PPM). For the output of each photodetector, whether from a separate telescope or a portion of the detection area, a communication receiver estimates a log-likelihood ratio for each PPM slot. To realize the full effective aperture of these receivers, their outputs must be combined prior to information decoding. A channel combiner was developed to synchronize the log-likelihood ratio (LLR) sequences of multiple receivers, and then combines these into a single LLR sequence for information decoding. The channel combiner synchronizes the LLR sequences of up to three receivers and then combines these into a single LLR sequence for output. The channel combiner has three channel inputs, each of which takes as input a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The cross-correlation between the channels LLR time series are calculated and used to synchronize the sequences prior to combining. The output of the channel combiner is a sequence of four-bit LLRs for each PPM slot in a codeword via a XAUI 10 Gb/s quad optical fiber interface. The unit is controlled through a 1 Gb/s Ethernet UDP/IP interface. A deep-space optical communication link has not yet been demonstrated. This ground-station channel combiner was developed to demonstrate this capability and is unique in its ability to process such a signal.

  13. A novel potassium channel in photosynthetic cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Manuela Zanetti

    Full Text Available Elucidation of the structure-function relationship of a small number of prokaryotic ion channels characterized so far greatly contributed to our knowledge on basic mechanisms of ion conduction. We identified a new potassium channel (SynK in the genome of the cyanobacterium Synechocystis sp. PCC6803, a photosynthetic model organism. SynK, when expressed in a K(+-uptake-system deficient E. coli strain, was able to recover growth of these organisms. The protein functions as a potassium selective ion channel when expressed in Chinese hamster ovary cells. The location of SynK in cyanobacteria in both thylakoid and plasmamembranes was revealed by immunogold electron microscopy and Western blotting of isolated membrane fractions. SynK seems to be conserved during evolution, giving rise to a TPK (two-pore K(+ channel family member which is shown here to be located in the thylakoid membrane of Arabidopsis. Our work characterizes a novel cyanobacterial potassium channel and indicates the molecular nature of the first higher plant thylakoid cation channel, opening the way to functional studies.

  14. Functional properties of a newly identified C-terminal splice variant of Cav1.3 L-type Ca2+ channels.

    Science.gov (United States)

    Bock, Gabriella; Gebhart, Mathias; Scharinger, Anja; Jangsangthong, Wanchana; Busquet, Perrine; Poggiani, Chiara; Sartori, Simone; Mangoni, Matteo E; Sinnegger-Brauns, Martina J; Herzig, Stefan; Striessnig, Jörg; Koschak, Alexandra

    2011-12-09

    An intramolecular interaction between a distal (DCRD) and a proximal regulatory domain (PCRD) within the C terminus of long Ca(v)1.3 L-type Ca(2+) channels (Ca(v)1.3(L)) is a major determinant of their voltage- and Ca(2+)-dependent gating kinetics. Removal of these regulatory domains by alternative splicing generates Ca(v)1.3(42A) channels that activate at a more negative voltage range and exhibit more pronounced Ca(2+)-dependent inactivation. Here we describe the discovery of a novel short splice variant (Ca(v)1.3(43S)) that is expressed at high levels in the brain but not in the heart. It lacks the DCRD but, in contrast to Ca(v)1.3(42A), still contains PCRD. When expressed together with α2δ1 and β3 subunits in tsA-201 cells, Ca(v)1.3(43S) also activated at more negative voltages like Ca(v)1.3(42A) but Ca(2+)-dependent inactivation was less pronounced. Single channel recordings revealed much higher channel open probabilities for both short splice variants as compared with Ca(v)1.3(L). The presence of the proximal C terminus in Ca(v)1.3(43S) channels preserved their modulation by distal C terminus-containing Ca(v)1.3- and Ca(v)1.2-derived C-terminal peptides. Removal of the C-terminal modulation by alternative splicing also induced a faster decay of Ca(2+) influx during electrical activities mimicking trains of neuronal action potentials. Our findings extend the spectrum of functionally diverse Ca(v)1.3 L-type channels produced by tissue-specific alternative splicing. This diversity may help to fine tune Ca(2+) channel signaling and, in the case of short variants lacking a functional C-terminal modulation, prevent excessive Ca(2+) accumulation during burst firing in neurons. This may be especially important in neurons that are affected by Ca(2+)-induced neurodegenerative processes.

  15. Activation of TRPM7 channels by small molecules under physiological conditions.

    Science.gov (United States)

    Hofmann, T; Schäfer, S; Linseisen, M; Sytik, L; Gudermann, T; Chubanov, V

    2014-12-01

    Transient receptor potential cation channel, subfamily M, member 7 (TRPM7) is a cation channel covalently linked to a protein kinase domain. TRPM7 is ubiquitously expressed and regulates key cellular processes such as Mg(2+) homeostasis, motility, and proliferation. TRPM7 is involved in anoxic neuronal death, cardiac fibrosis, and tumor growth. The goal of this work was to identify small molecule activators of the TRPM7 channel and investigate their mechanism of action. We used an aequorin bioluminescence-based assay to screen for activators of the TRPM7 channel. Valid candidates were further characterized using patch clamp electrophysiology. We identified 20 drug-like compounds with various structural backbones that can activate the TRPM7 channel. Among them, the δ opioid antagonist naltriben was studied in greater detail. Naltriben's action was selective among the TRP channels tested. Naltriben activates TRPM7 currents without prior depletion of intracellular Mg(2+) even under conditions of low PIP2. Moreover, naltriben interfered with the effect of the TRPM7 inhibitor NS8593. Finally, our experiments with TRPM7 variants carrying mutations in the pore, TRP, and kinase domains indicate that the site of TRPM7 activation by this small-molecule ligand is most likely located in or near the TRP domain. In conclusion, we identified the first organic small-molecule activators of TRPM7 channels, thus providing new experimental tools to study TRPM7 function in native cellular environments.

  16. ASIC3 channels in multimodal sensory perception.

    Science.gov (United States)

    Li, Wei-Guang; Xu, Tian-Le

    2011-01-19

    Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.

  17. Major Channels Involved In Neuropsychiatric Disorders And Therapeutic Perspectives

    Directory of Open Access Journals (Sweden)

    Paola eImbrici

    2013-05-01

    Full Text Available Voltage-gated ion channels are important mediators of physiological functions in the central nervous system. The cyclic activation of these channels influences neurotransmitter release, neuron excitability, gene transcription and plasticity, providing distinct brain areas with unique physiological and pharmacological response. A growing body of data has implicated ion channels in the susceptibility or pathogenesis of psychiatric diseases. Indeed, population studies support the association of polymorphisms in calcium and potassium channels with the genetic risk for bipolar disorders or schizophrenia. Moreover, point mutations in calcium, sodium and potassium channel genes have been identified in some childhood developmental disorders. Finally, antibodies against potassium channel complexes occur in a series of autoimmune psychiatric diseases. Here we report recent studies assessing the role of calcium, sodium and potassium channels in bipolar disorder, schizophrenia and autism spectrum disorders, and briefly summarize promising pharmacological strategies targeted on ion channels for the therapy of mental illness and related genetic tests.

  18. Kv7 channels can function without constitutive calmodulin tethering.

    Directory of Open Access Journals (Sweden)

    Juan Camilo Gómez-Posada

    Full Text Available M-channels are voltage-gated potassium channels composed of Kv7.2-7.5 subunits that serve as important regulators of neuronal excitability. Calmodulin binding is required for Kv7 channel function and mutations in Kv7.2 that disrupt calmodulin binding cause Benign Familial Neonatal Convulsions (BFNC, a dominantly inherited human epilepsy. On the basis that Kv7.2 mutants deficient in calmodulin binding are not functional, calmodulin has been defined as an auxiliary subunit of Kv7 channels. However, we have identified a presumably phosphomimetic mutation S511D that permits calmodulin-independent function. Thus, our data reveal that constitutive tethering of calmodulin is not required for Kv7 channel function.

  19. Waves for Alpha-Channeling in Mirror Machines

    International Nuclear Information System (INIS)

    Zhmoginov, A.I.; Fisch, N.J.

    2009-01-01

    Alpha-channeling can, in principle, be implemented in mirror machines via exciting weaklydamped modes in the ion cyclotron frequency range with perpendicular wavelengths smaller than the alpha particle gyroradius. Assuming quasi-longitudinal or quasi-transverse wave propagation, we search systematically for suitable modes in mirror plasmas. Considering two device designs, a proof-of-principle facility and a fusion rector prototype, we in fact identify candidate modes suitable for alpha-channeling.

  20. Kinetic and mechanisms of methanimine reactions with singlet and triplet molecular oxygen: Substituent and catalyst effects

    Science.gov (United States)

    Asgharzadeh, Somaie; Vahedpour, Morteza

    2018-06-01

    Methanimine reaction with O2 on singlet and triplet potential energy surfaces are investigated using B3PW91, M06-2X, MP2 and CCSD(T) methods. Thermodynamic and kinetic parameters are calculated at M06-2X method. The most favorable channel involves H-abstraction of CH2NH+O2 to the formation of HCN + H2O2 products via low level energy barrier. The catalytic effect of water molecule on HCN + H2O2 products pathway are investigated. Result shows that contribution of water molecule using complex formation with methanimine can decreases barrier energy of transition state and the reaction rate increases. Also, substituent effect of fluorine atom as deactivating group are investigated on the main reaction pathway.

  1. Ion channels in the central regulation of energy and glucose homeostasis

    OpenAIRE

    Sohn, Jong-Woo

    2013-01-01

    Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles fo...

  2. Evaluation of portable near infrared spectrophotometer to stage maturity in channel catfish

    Science.gov (United States)

    Gonadal maturity of channel catfish varies within the same cohort of fish. Female channel catfish with superior maturity need to be identified and staged for higher success to induce spawn wit ovulating hormones to produce channel x blue hybrid catfish fry in hatcheries. Maturation is not synchron...

  3. Channelling and electromagnetic radiation of channelling particles

    International Nuclear Information System (INIS)

    Kalashnikov, N.

    1983-01-01

    A brief description is presented of the channelling of charged particles between atoms in the crystal lattice. The specificities are discussed of the transverse motion of channelling particles as are the origin and properties of quasi-characteristic radiation of channelling particles which accompany transfers from one band of permissible energies of the transverse motion of channelling particles to the other. (B.S.)

  4. Calcium homeostasis modulator (CALHM) ion channels.

    Science.gov (United States)

    Ma, Zhongming; Tanis, Jessica E; Taruno, Akiyuki; Foskett, J Kevin

    2016-03-01

    Calcium homeostasis modulator 1 (CALHM1), formerly known as FAM26C, was recently identified as a physiologically important plasma membrane ion channel. CALHM1 and its Caenorhabditis elegans homolog, CLHM-1, are regulated by membrane voltage and extracellular Ca(2+) concentration ([Ca(2+)]o). In the presence of physiological [Ca(2+)]o (∼1.5 mM), CALHM1 and CLHM-1 are closed at resting membrane potentials but can be opened by strong depolarizations. Reducing [Ca(2+)]o increases channel open probability, enabling channel activation at negative membrane potentials. Together, voltage and Ca(2+) o allosterically regulate CALHM channel gating. Through convergent evolution, CALHM has structural features that are reminiscent of connexins and pannexins/innexins/LRRC8 (volume-regulated anion channel (VRAC)) gene families, including four transmembrane helices with cytoplasmic amino and carboxyl termini. A CALHM1 channel is a hexamer of CALHM1 monomers with a functional pore diameter of ∼14 Å. CALHM channels discriminate poorly among cations and anions, with signaling molecules including Ca(2+) and ATP able to permeate through its pore. CALHM1 is expressed in the brain where it plays an important role in cortical neuron excitability induced by low [Ca(2+)]o and in type II taste bud cells in the tongue that sense sweet, bitter, and umami tastes where it functions as an essential ATP release channel to mediate nonsynaptic neurotransmitter release. CLHM-1 is expressed in C. elegans sensory neurons and body wall muscles, and its genetic deletion causes locomotion defects. Thus, CALHM is a voltage- and Ca(2+) o-gated ion channel, permeable to large cations and anions, that plays important roles in physiology.

  5. Ion channels in the central regulation of energy and glucose homeostasis

    Directory of Open Access Journals (Sweden)

    Jong-Woo eSohn

    2013-05-01

    Full Text Available Ion channels are critical regulators of neuronal excitability and synaptic function in the brain. Recent evidence suggests that ion channels expressed by neurons within the brain are responsible for regulating energy and glucose homeostasis. In addition, the central effects of neurotransmitters and hormones are at least in part achieved by modifications of ion channel activity. This review focuses on ion channels and their neuronal functions followed by a discussion of the identified roles for specific ion channels in the central pathways regulating food intake, energy expenditure, and glucose balance.

  6. Improving the service life and performance of CANDU fuel channels

    International Nuclear Information System (INIS)

    Causey, A.R.; Cheadle, B.A.; Coleman, C.E.; Price, E.G.

    1997-01-01

    The development objective for CANDU fuel channels is to produce a design that can operate for 40 years at 90% capacity. Steady progress toward this objective is being made. The factors that determine the life of the channel are reviewed and the processes necessary to achieve the objectives identified. Performance of future fuel channels will be enhanced by reduced operating costs, increased safety margins to postulated accident conditions, and reduced retubing costs compared to current channels. The approaches to these issues are discussed briefly in the paper. (author)

  7. Improving the service life and performance of CANDU fuel channels

    International Nuclear Information System (INIS)

    Coleman, C.E.; Cheadle, B.A.; Causey, A.R.; Doubt, G.L.; Fong, R.W.L.; Venkatapathi, S.

    1996-03-01

    The development objective for CANDU fuel channels is to produce a design that can operate for 40 years at 90% capacity. Steady progress toward this objective is being made. The factors that determine the life of a CANDU fuel channel are reviewed and the processes necessary to achieve the objectives are identified. Performance of future fuel channels will be enhanced by reduced operating costs and increased safety margins to postulated accident conditions compared with those for current channels. The approaches to these issues are discussed briefly in this report. (author)

  8. Liquid Water Transport in the Reactant Channels of Proton Exchange Membrane Fuel Cells

    Science.gov (United States)

    Banerjee, Rupak

    Water management has been identified as a critical issue in the development of PEM fuel cells for automotive applications. Water is present inside the PEM fuel cell in three phases, i.e. liquid phase, vapor phase and mist phase. Liquid water in the reactant channels causes flooding of the cell and blocks the transport of reactants to the reaction sites at the catalyst layer. Understanding the behavior of liquid water in the reactant channels would allow us to devise improved strategies for removing liquid water from the reactant channels. In situ fuel cell tests have been performed to identify and diagnose operating conditions which result in the flooding of the fuel cell. A relationship has been identified between the liquid water present in the reactant channels and the cell performance. A novel diagnostic technique has been established which utilizes the pressure drop multiplier in the reactant channels to predict the flooding of the cell or the drying-out of the membrane. An ex-situ study has been undertaken to quantify the liquid water present in the reactant channels. A new parameter, the Area Coverage Ratio (ACR), has been defined to identify the interfacial area of the reactant channel which is blocked for reactant transport by the presence of liquid water. A parametric study has been conducted to study the effect of changing temperature and the inlet relative humidity on the ACR. The ACR decreases with increase in current density as the gas flow rates increase, removing water more efficiently. With increase in temperature, the ACR decreases rapidly, such that by 60°C, there is no significant ACR to be reported. Inlet relative humidity of the gases does change the saturation of the gases in the channel, but did not show any significant effect on the ACR. Automotive powertrains, which is the target for this work, are continuously faced with transient changes. Water management under transient operating conditions is significantly more challenging and has not

  9. Deep Learning for Distribution Channels' Management

    Directory of Open Access Journals (Sweden)

    Sabina-Cristiana NECULA

    2017-01-01

    Full Text Available This paper presents an experiment of using deep learning models for distribution channel management. We present an approach that combines self-organizing maps with artificial neural network with multiple hidden layers in order to identify the potential sales that might be addressed for channel distribution change/ management. Our study aims to highlight the evolution of techniques from simple features/learners to more complex learners and feature engineering or sampling techniques. This paper will allow researchers to choose best suited techniques and features to prepare their churn prediction models.

  10. Key intermediates in nitrogen transformation during microwave pyrolysis of sewage sludge: a protein model compound study.

    Science.gov (United States)

    Zhang, Jun; Tian, Yu; Cui, Yanni; Zuo, Wei; Tan, Tao

    2013-03-01

    The nitrogen transformations with attention to NH3 and HCN were investigated at temperatures of 300-800°C during microwave pyrolysis of a protein model compound. The evolution of nitrogenated compounds in the char, tar and gas products were conducted. The amine-N, heterocyclic-N and nitrile-N compounds were identified as three important intermediates during the pyrolysis. NH3 and HCN were formed with comparable activation energies competed to consume the same reactive substances at temperatures of 300-800°C. The deamination and dehydrogenation of amine-N compounds from protein cracking contributed to the formation of NH3 (about 8.9% of Soy-N) and HCN (6.6%) from 300 to 500°C. The cracking of nitrile-N and heterocyclic-N compounds from the dehydrogenation and polymerization of amine-N generated HCN (13.4%) and NH3 (31.3%) between 500 and 800°C. It might be able to reduce the HCN and NH3 emissions through controlling the intermediates production at temperatures of 500-800°C. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. Side-gated ultrathin-channel nanopore FET sensors

    International Nuclear Information System (INIS)

    Yanagi, Itaru; Haga, Takanobu; Ando, Masahiko; Yamamoto, Jiro; Mine, Toshiyuki; Ishida, Takeshi; Hatano, Toshiyuki; Akahori, Rena; Yokoi, Takahide; Anazawa, Takashi; Oura, Takeshi

    2016-01-01

    A side-gated, ultrathin-channel nanopore FET (SGNAFET) is proposed for fast and label-free DNA sequencing. The concept of the SGNAFET comprises the detection of changes in the channel current during DNA translocation through a nanopore and identifying the four types of nucleotides as a result of these changes. To achieve this goal, both p- and n-type SGNAFETs with a channel thicknesses of 2 or 4 nm were fabricated, and the stable transistor operation of both SGNAFETs in air, water, and a KCl buffer solution were confirmed. In addition, synchronized current changes were observed between the ionic current through the nanopore and the SGNAFET’s drain current during DNA translocation through the nanopore. (paper)

  12. Feasibility Studies of Alpha-Channeling in Mirror Machines

    International Nuclear Information System (INIS)

    Zhmoginov, A.I.; Fisch, N.J.

    2010-01-01

    The linear magnetic trap is an attractive concept both for fusion reactors and for other plasma applications due to its relative engineering simplicity and high-beta operation. Applying the α-channeling technique to linear traps, such as mirror machines, can benefit this concept by efficiently redirecting α particle energy to fuel ion heating or by otherwise sustaining plasma confinement, thus increasing the effective fusion reactivity. To identify waves suitable for α-channeling a rough optimization of the energy extraction rate with respect to the wave parameters is performed. After the optimal regime is identified, a systematic search for modes with similar parameters in mirror plasmas is performed, assuming quasi-longitudinal or quasi-transverse wave propagation. Several modes suitable for α particle energy extraction are identified for both reactor designs and for proof- of-principle experiments.

  13. An Effective Channel Allocation Scheme to Reduce Co-Channel and Adjacent Channel Interference for WMN Backhaul

    International Nuclear Information System (INIS)

    Abbasi, S.; Ismaili, I.A.; Khuhawar, F.Y.

    2016-01-01

    Two folded work presents channel allocation scheme sustaining channel orthogonality and channel spacing to reduce CCI (Co-Channel Interference) and ACI (Adjacent Channel Interference) for inter flow of an intra-flow link. Proposed scheme as a part of radio resource allocation is applied on infrastructure based backhaul of wireless mesh network using directional antennas. The proposed approach is applied separately on 2.4 and 5GHz bands. Interference of connectivity graph is modelled by strongly connected directed graph and greedy algorithms are used for channel allocation. We have used OPNET Modeller suite to simulate network models for this research. The proposed arrangement reduces the channel interference and increases system throughput. In this research, the influence of channel is computed in terms of network throughput and delay. (author)

  14. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Li; Hong, Xue-Ren, E-mail: hxr_nwnu@163.com; Sun, Jian-An, E-mail: sunja@nwnu.edu.cn; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-07-12

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.

  15. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    International Nuclear Information System (INIS)

    Wang, Li; Hong, Xue-Ren; Sun, Jian-An; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-01-01

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam. - Highlights: • Some behaviors for Gaussian laser are also found for q-Gaussian one. • The parameter regions corresponding to different laser behaviors are given. • Influence of q on the laser propagation behavior is obvious. • The q-Gaussian laser beam is easier to focus than the Gaussian one.

  16. Improving the service life and performance of CANDU fuel channels

    International Nuclear Information System (INIS)

    Causey, A.R.; Cheadle, B.A.; Coleman, C.E.; Price, E.G.

    1996-02-01

    The development objective for CANDU fuel channels is to produce a design that can operate for 40 years at 90% capacity. Steady progress toward this objective is being made. The factors that determine the life of a CANDU fuel channel are reviewed and the processes necessary to achieve the objectives identified. Performance of future fuel channels will be enhanced by reduced operating costs, increased safety margins to postulated accident conditions, and reduced retubing costs compared with those for current channels. The approaches to these issues are discussed briefly in this report. (author). 14 refs., 1 tab., 8 figs

  17. Use of color-coded sleeve shutters accelerates oscillograph channel selection

    Science.gov (United States)

    Bouchlas, T.; Bowden, F. W.

    1967-01-01

    Sleeve-type shutters mechanically adjust individual galvanometer light beams onto or away from selected channels on oscillograph papers. In complex test setups, the sleeve-type shutters are color coded to separately identify each oscillograph channel. This technique could be used on any equipment using tubular galvanometer light sources.

  18. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    NARCIS (Netherlands)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    Mitochondrial calcium ([Ca(2+)]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner

  19. Voltage-gated proton channel is expressed on phagosomes

    International Nuclear Information System (INIS)

    Okochi, Yoshifumi; Sasaki, Mari; Iwasaki, Hirohide; Okamura, Yasushi

    2009-01-01

    Voltage-gated proton channel has been suggested to help NADPH oxidase activity during respiratory burst of phagocytes through its activities of compensating charge imbalance and regulation of pH. In phagocytes, robust production of reactive oxygen species occurs in closed membrane compartments, which are called phagosomes. However, direct evidence for the presence of voltage-gated proton channels in phagosome has been lacking. In this study, the expression of voltage-gated proton channels was studied by Western blot with the antibody specific to the voltage-sensor domain protein, VSOP/Hv1, that has recently been identified as the molecular correlate for the voltage-gated proton channel. Phagosomal membranes of neutrophils contain VSOP/Hv1 in accordance with subunits of NADPH oxidases, gp91, p22, p47 and p67. Superoxide anion production upon PMA activation was significantly reduced in neutrophils from VSOP/Hv1 knockout mice. These are consistent with the idea that voltage-gated proton channels help NADPH oxidase in phagocytes to produce reactive oxygen species.

  20. A MHD channel study for the ETF conceptual design

    Science.gov (United States)

    Wang, S. Y.; Staiger, P. J.; Smith, J. M.

    1981-01-01

    The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.

  1. IT IN COMMERCE: E-COMMERCE AND OMNI-CHANNEL SALES IN RUSSIA

    OpenAIRE

    PHILIPP A. ANTIPIN

    2017-01-01

    The article discusses the use of information technologies and possibilities provided by the Internet in commerce. The global and European experience of omni-channel sales is discussed. The prospects and conditions of the development of e-commerce and omni-channel sales are identified.

  2. Dopamine negatively modulates the NCA ion channels in C. elegans.

    Science.gov (United States)

    Topalidou, Irini; Cooper, Kirsten; Pereira, Laura; Ailion, Michael

    2017-10-01

    The NALCN/NCA ion channel is a cation channel related to voltage-gated sodium and calcium channels. NALCN has been reported to be a sodium leak channel with a conserved role in establishing neuronal resting membrane potential, but its precise cellular role and regulation are unclear. The Caenorhabditis elegans orthologs of NALCN, NCA-1 and NCA-2, act in premotor interneurons to regulate motor circuit activity that sustains locomotion. Recently we found that NCA-1 and NCA-2 are activated by a signal transduction pathway acting downstream of the heterotrimeric G protein Gq and the small GTPase Rho. Through a forward genetic screen, here we identify the GPCR kinase GRK-2 as a new player affecting signaling through the Gq-Rho-NCA pathway. Using structure-function analysis, we find that the GPCR phosphorylation and membrane association domains of GRK-2 are required for its function. Genetic epistasis experiments suggest that GRK-2 acts on the D2-like dopamine receptor DOP-3 to inhibit Go signaling and positively modulate NCA-1 and NCA-2 activity. Through cell-specific rescuing experiments, we find that GRK-2 and DOP-3 act in premotor interneurons to modulate NCA channel function. Finally, we demonstrate that dopamine, through DOP-3, negatively regulates NCA activity. Thus, this study identifies a pathway by which dopamine modulates the activity of the NCA channels.

  3. Evolutionary and Structural Perspectives of Plant Cyclic Nucleotide Gated Cation Channels

    Directory of Open Access Journals (Sweden)

    Alice Kira Zelman

    2012-05-01

    Full Text Available Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs. CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide binding domain (CNBD and a calmodulin binding domain (CaMBD as well as a 6 transmembrane/1 pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments.

  4. Evolutionary and structural perspectives of plant cyclic nucleotide-gated cation channels

    KAUST Repository

    Zelman, Alice K.

    2012-05-29

    Ligand-gated cation channels are a frequent component of signaling cascades in eukaryotes. Eukaryotes contain numerous diverse gene families encoding ion channels, some of which are shared and some of which are unique to particular kingdoms. Among the many different types are cyclic nucleotide-gated channels (CNGCs). CNGCs are cation channels with varying degrees of ion conduction selectivity. They are implicated in numerous signaling pathways and permit diffusion of divalent and monovalent cations, including Ca2+ and K+. CNGCs are present in both plant and animal cells, typically in the plasma membrane; recent studies have also documented their presence in prokaryotes. All eukaryote CNGC polypeptides have a cyclic nucleotide-binding domain and a calmodulin binding domain as well as a six transmembrane/one pore tertiary structure. This review summarizes existing knowledge about the functional domains present in these cation-conducting channels, and considers the evidence indicating that plant and animal CNGCs evolved separately. Additionally, an amino acid motif that is only found in the phosphate binding cassette and hinge regions of plant CNGCs, and is present in all experimentally confirmed CNGCs but no other channels was identified. This CNGC-specific amino acid motif provides an additional diagnostic tool to identify plant CNGCs, and can increase confidence in the annotation of open reading frames in newly sequenced genomes as putative CNGCs. Conversely, the absence of the motif in some plant sequences currently identified as probable CNGCs may suggest that they are misannotated or protein fragments. 2012 Zelman, Dawe, Gehring and Berkowitz.

  5. Immunolocalization and expression of small-conductance calcium-activated potassium channels in human myometrium

    DEFF Research Database (Denmark)

    Rosenbaum, Sofia T; Svalø, Julie; Nielsen, Karsten

    2012-01-01

    Small-conductance calcium-activated potassium (SK3) channels have been detected in human myometrium and we have previously shown a functional role of SK channels in human myometrium in vitro. The aims of this study were to identify the precise localization of SK3 channels and to quantify SK3 m....... This is the first report to provide evidence for a possible role of SK3 channels in human uterine telocytes....

  6. Role of TRP Channels in Dinoflagellate Mechanotransduction.

    Science.gov (United States)

    Lindström, J B; Pierce, N T; Latz, M I

    2017-10-01

    Transient receptor potential (TRP) ion channels are common components of mechanosensing pathways, mainly described in mammals and other multicellular organisms. To gain insight into the evolutionary origins of eukaryotic mechanosensory proteins, we investigated the involvement of TRP channels in mechanosensing in a unicellular eukaryotic protist, the dinoflagellate Lingulodinium polyedra. BLASTP analysis of the protein sequences predicted from the L. polyedra transcriptome revealed six sequences with high similarity to human TRPM2, TRPM8, TRPML2, TRPP1, and TRPP2; and characteristic TRP domains were identified in all sequences. In a phylogenetic tree including all mammalian TRP subfamilies and TRP channel sequences from unicellular and multicellular organisms, the L. polyedra sequences grouped with the TRPM, TPPML, and TRPP clades. In pharmacological experiments, we used the intrinsic bioluminescence of L. polyedra as a reporter of mechanoresponsivity. Capsaicin and RN1734, agonists of mammalian TRPV, and arachidonic acid, an agonist of mammalian TRPV, TRPA, TRPM, and Drosophila TRP, all stimulated bioluminescence in L. polyedra. Mechanical stimulation of bioluminescence, but not capsaicin-stimulated bioluminescence, was inhibited by gadolinium (Gd 3+ ), a general inhibitor of mechanosensitive ion channels, and the phospholipase C (PLC) inhibitor U73122. These pharmacological results are consistent with the involvement of TRP-like channels in mechanosensing by L. polyedra. The TRP channels do not appear to be mechanoreceptors but rather are components of the mechanotransduction signaling pathway and may be activated via a PLC-dependent mechanism. The presence and function of TRP channels in a dinoflagellate emphasize the evolutionary conservation of both the channel structures and their functions.

  7. Multi-channel imaging cytometry with a single detector

    Science.gov (United States)

    Locknar, Sarah; Barton, John; Entwistle, Mark; Carver, Gary; Johnson, Robert

    2018-02-01

    Multi-channel microscopy and multi-channel flow cytometry generate high bit data streams. Multiple channels (both spectral and spatial) are important in diagnosing diseased tissue and identifying individual cells. Omega Optical has developed techniques for mapping multiple channels into the time domain for detection by a single high gain, high bandwidth detector. This approach is based on pulsed laser excitation and a serial array of optical fibers coated with spectral reflectors such that up to 15 wavelength bins are sequentially detected by a single-element detector within 2.5 μs. Our multichannel microscopy system uses firmware running on dedicated DSP and FPGA chips to synchronize the laser, scanning mirrors, and sampling clock. The signals are digitized by an NI board into 14 bits at 60MHz - allowing for 232 by 174 pixel fields in up to 15 channels with 10x over sampling. Our multi-channel imaging cytometry design adds channels for forward scattering and back scattering to the fluorescence spectral channels. All channels are detected within the 2.5 μs - which is compatible with fast cytometry. Going forward, we plan to digitize at 16 bits with an A-toD chip attached to a custom board. Processing these digital signals in custom firmware would allow an on-board graphics processing unit to display imaging flow cytometry data over configurable scanning line lengths. The scatter channels can be used to trigger data buffering when a cell is present in the beam. This approach enables a low cost mechanically robust imaging cytometer.

  8. Citizens and service channels: channel choice and channel management implications

    NARCIS (Netherlands)

    Pieterson, Willem Jan

    2010-01-01

    The arrival of electronic channels in the 1990s has had a huge impact on governmental service delivery. The new channels have led to many new opportunities to improve public service delivery, not only in terms of citizen satisfaction, but also in cost reduction for governmental agencies. However,

  9. A computational design approach for virtual screening of peptide interactions across K+ channel families

    Directory of Open Access Journals (Sweden)

    Craig A. Doupnik

    2015-01-01

    Full Text Available Ion channels represent a large family of membrane proteins with many being well established targets in pharmacotherapy. The ‘druggability’ of heteromeric channels comprised of different subunits remains obscure, due largely to a lack of channel-specific probes necessary to delineate their therapeutic potential in vivo. Our initial studies reported here, investigated the family of inwardly rectifying potassium (Kir channels given the availability of high resolution crystal structures for the eukaryotic constitutively active Kir2.2 channel. We describe a ‘limited’ homology modeling approach that can yield chimeric Kir channels having an outer vestibule structure representing nearly any known vertebrate or invertebrate channel. These computationally-derived channel structures were tested in silico for ‘docking’ to NMR structures of tertiapin (TPN, a 21 amino acid peptide found in bee venom. TPN is a highly selective and potent blocker for the epithelial rat Kir1.1 channel, but does not block human or zebrafish Kir1.1 channel isoforms. Our Kir1.1 channel-TPN docking experiments recapitulated published in vitro findings for TPN-sensitive and TPN-insensitive channels. Additionally, in silico site-directed mutagenesis identified ‘hot spots’ within the channel outer vestibule that mediate energetically favorable docking scores and correlate with sites previously identified with in vitro thermodynamic mutant-cycle analysis. These ‘proof-of-principle’ results establish a framework for virtual screening of re-engineered peptide toxins for interactions with computationally derived Kir channels that currently lack channel-specific blockers. When coupled with electrophysiological validation, this virtual screening approach may accelerate the drug discovery process, and can be readily applied to other ion channels families where high resolution structures are available.

  10. Single-channel kinetics of BK (Slo1 channels

    Directory of Open Access Journals (Sweden)

    Yanyan eGeng

    2015-01-01

    Full Text Available Single-channel kinetics has proven a powerful tool to reveal information about the gating mechanisms that control the opening and closing of ion channels. This introductory review focuses on the gating of large conductance Ca2+- and voltage-activated K+ (BK or Slo1 channels at the single-channel level. It starts with single-channel current records and progresses to presentation and analysis of single-channel data and the development of gating mechanisms in terms of discrete state Markov (DSM models. The DSM models are formulated in terms of the tetrameric modular structure of BK channels, consisting of a central transmembrane pore-gate domain (PGD attached to four surrounding transmembrane voltage sensing domains (VSD and a large intracellular cytosolic domain (CTD, also referred to as the gating ring. The modular structure and data analysis shows that the Ca2+ and voltage dependent gating considered separately can each be approximated by 10-state two-tiered models with 5 closed states on the upper tier and 5 open states on the lower tier. The modular structure and joint Ca2+ and voltage dependent gating are consistent with a 50 state two-tiered model with 25 closed states on the upper tier and 25 open states on the lower tier. Adding an additional tier of brief closed (flicker states to the 10-state or 50-state models improved the description of the gating. For fixed experimental conditions a channel would gate in only a subset of the potential number of states. The detected number of states and the correlations between adjacent interval durations are consistent with the tiered models. The examined models can account for the single-channel kinetics and the bursting behavior of gating. Ca2+ and voltage activate BK channels by predominantly increasing the effective opening rate of the channel with a smaller decrease in the effective closing rate. Ca2+ and depolarization thus activate by mainly destabilizing the closed states.

  11. Sedimentary Facies Mapping Based on Tidal Channel Network and Topographic Features

    Science.gov (United States)

    Ryu, J. H.; Lee, Y. K.; Kim, K.; Kim, B.

    2015-12-01

    Tidal flats on the west coast of Korea suffer intensive changes in their surface sedimentary facies as a result of the influence of natural and artificial changes. Spatial relationships between surface sedimentary facies distribution and benthic environments were estimated for the open-type Ganghwa tidal flat and semi closed-type Hwangdo tidal flat, Korea. In this study, we standardized the surface sedimentary facies and tidal channel index of the channel density, distance, thickness and order. To extract tidal channel information, we used remotely sensed data, such as those from the Korea Multi-Purpose Satellite (KOMPSAT)-2, KOMPSAT-3, and aerial photographs. Surface sedimentary facies maps were generated based on field data using an interpolation method.The tidal channels in each sediment facies had relatively constant meandering patterns, but the density and complexity were distinguishable. The second fractal dimension was 1.7-1.8 in the mud flat, about 1.4 in the mixed flat, and about 1.3 in the sand flat. The channel density was 0.03-0.06 m/m2 in the mud flat and less than 0.02 m/m2 in the mixed and sand flat areas of the two test areas. Low values of the tidal channel index, which indicated a simple pattern of tidal channel distribution, were identified at areas having low elevation and coarse-grained sediments. By contrast, high values of the tidal channel index, which indicated a dendritic pattern of tidal channel distribution, were identified at areas having high elevation and fine-grained sediments. Surface sediment classification based on remotely sensed data must circumspectly consider an effective critical grain size, water content, local topography, and intertidal structures.

  12. Identification of Distribution Channels to Create Sustainable Vegetable Prices

    Directory of Open Access Journals (Sweden)

    Aflit Nuryulia Praswati

    2017-12-01

    Full Text Available The price of vegetables has a role as a contributor to the rate of inflation. Currently the number of vegetable production in Boyolali region can no longer meet the needs of local communities. The limited amount of vegetable production and the inhibition of the vegetable distribution channel creates a scarcity of vegetables that result in price increases. This study aims to identify the distribution channel and the formation of vegetable prices derived from Boyolali area. The method used in this research is quantitative and qualitative. Respondents from this study consisted of farmers, wholesalers, small trader and end consumers. The type of distribution channel prevailing in Boyolali area are traditional and modern distribution channels. Intermediate distribution channels play a greater role in determining vegetable prices. If farmers want to improve their economic condition, it needs innovation and creativity in the process of planting, harvesting, packaging and marketing vegetable products.

  13. Identification of cyclic nucleotide gated channels using regular expressions

    KAUST Repository

    Zelman, Alice K.

    2013-09-03

    Cyclic nucleotide-gated channels (CNGCs) are nonselective cation channels found in plants, animals, and some bacteria. They have a six-transmembrane/one- pore structure, a cytosolic cyclic nucleotide-binding domain, and a cytosolic calmodulin-binding domain. Despite their functional similarities, the plant CNGC family members appear to have different conserved amino acid motifs within corresponding functional domains than animal and bacterial CNGCs do. Here we describe the development and application of methods employing plant CNGC-specific sequence motifs as diagnostic tools to identify novel candidate channels in different plants. These methods are used to evaluate the validity of annotations of putative orthologs of CNGCs from plant genomes. The methods detail how to employ regular expressions of conserved amino acids in functional domains of annotated CNGCs and together with Web tools such as PHI-BLAST and ScanProsite to identify novel candidate CNGCs in species including Physcomitrella patens. © Springer Science+Business Media New York 2013.

  14. Strategies for sustainable channel relations in mobile telecom sector

    Directory of Open Access Journals (Sweden)

    Githa Heggde

    2011-01-01

    Full Text Available The telecom sector in India largely comprises of wireless connections for phones. As of today, there are approximately 21 network providers in the country with about 7 per each circle, each offering competitive pricing to the consumers. The main objective of the study is to provide an accurate role for the company executive in developing channel relations. Further to this, the study explores the strategies which can sustain a good working relationship between the company and its channel members in the mobile telecom sector. The constructs identified for developing sustainable relationships were Setting distribution objectives, Channel design, Logistics, Image Building, Inventory management, Channel management, Payment & credit, Promotional assistance, Setting targets, Coverage frequency , Motivating channel members to perform. The sample selected contained distributors from the Mobile telecom sector and company executives/channel managers of leading telecom companies. Factor analysis and Friedman’s test was applied. The findings revealed a correlation in attitude between distributors and the executives. Motivating distributors was rated as the most important strategy by the company. The distributors felt that all channel partners needed to have positive attitude towards the channel while company executives felt that aggression made channel members perform effectively. Such findings will be of use to mobile telecom companies who are new entrants to the Indian market and to existing companies who plan to expand their coverage.

  15. Marine Toxins That Target Voltage-gated Sodium Channels

    Directory of Open Access Journals (Sweden)

    Robert J. French

    2006-04-01

    Full Text Available Abstract: Eukaryotic, voltage-gated sodium (NaV channels are large membrane proteins which underlie generation and propagation of rapid electrical signals in nerve, muscle and heart. Nine different NaV receptor sites, for natural ligands and/or drugs, have been identified, based on functional analyses and site-directed mutagenesis. In the marine ecosystem, numerous toxins have evolved to disrupt NaV channel function, either by inhibition of current flow through the channels, or by modifying the activation and inactivation gating processes by which the channels open and close. These toxins function in their native environment as offensive or defensive weapons in prey capture or deterrence of predators. In composition, they range from organic molecules of varying size and complexity to peptides consisting of ~10-70 amino acids. We review the variety of known NaV-targeted marine toxins, outlining, where known, their sites of interaction with the channel protein and their functional effects. In a number of cases, these natural ligands have the potential applications as drugs in clinical settings, or as models for drug development.

  16. Molecular Evolution of Slow and Quick Anion Channels (SLACs and QUACs/ALMTs).

    Science.gov (United States)

    Dreyer, Ingo; Gomez-Porras, Judith Lucia; Riaño-Pachón, Diego Mauricio; Hedrich, Rainer; Geiger, Dietmar

    2012-01-01

    Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant) SLAC-like and 422 (402 non-redundant) ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general.

  17. Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs

    Directory of Open Access Journals (Sweden)

    Ingo eDreyer

    2012-11-01

    Full Text Available Electrophysiological analyses conducted about 25 years ago detected two types of anion channels in the plasma membrane of guard cells. One type of channel responds slowly to changes in membrane voltage while the other responds quickly. Consequently, they were named SLAC, for SLow Anion Channel, and QUAC, for QUick Anion Channel. Recently, genes SLAC1 and QUAC1/ALMT12, underlying the two different anion current components, could be identified in the model plant Arabidopsis thaliana. Expression of the gene products in Xenopus oocytes confirmed the quick and slow current kinetics. In this study we provide an overview on our current knowledge on slow and quick anion channels in plants and analyze the molecular evolution of ALMT/QUAC-like and SLAC-like channels. We discovered fingerprints that allow screening databases for these channel types and were able to identify 192 (177 non-redundant SLAC-like and 422 (402 non-redundant ALMT/QUAC-like proteins in the fully sequenced genomes of 32 plant species. Phylogenetic analyses provided new insights into the molecular evolution of these channel types. We also combined sequence alignment and clustering with predictions of protein features, leading to the identification of known conserved phosphorylation sites in SLAC1-like channels along with potential sites that have not been yet experimentally confirmed. Using a similar strategy to analyze the hydropathicity of ALMT/QUAC-like channels, we propose a modified topology with additional transmembrane regions that integrates structure and function of these membrane proteins. Our results suggest that cross-referencing phylogenetic analyses with position-specific protein properties and functional data could be a very powerful tool for genome research approaches in general.

  18. Note: Optical receiver system for 152-channel magnetoencephalography

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin-Mok; Kwon, Hyukchan; Yu, Kwon-kyu; Lee, Yong-Ho; Kim, Kiwoong [Center for Biosignals, Korea Research Institute of Standards and Science, Daejeon 305-600 (Korea, Republic of)

    2014-11-15

    An optical receiver system composing 13 serial data restore/synchronizer modules and a single module combiner converted optical 32-bit serial data into 32-bit synchronous parallel data for a computer to acquire 152-channel magnetoencephalography (MEG) signals. A serial data restore/synchronizer module identified 32-bit channel-voltage bits from 48-bit streaming serial data, and then consecutively reproduced 13 times of 32-bit serial data, acting in a synchronous clock. After selecting a single among 13 reproduced data in each module, a module combiner converted it into 32-bit parallel data, which were carried to 32-port digital input board in a computer. When the receiver system together with optical transmitters were applied to 152-channel superconducting quantum interference device sensors, this MEG system maintained a field noise level of 3 fT/√Hz @ 100 Hz at a sample rate of 1 kSample/s per channel.

  19. Mechanically Gated Ion Channels in Mammalian Hair Cells

    Directory of Open Access Journals (Sweden)

    Xufeng Qiu

    2018-04-01

    Full Text Available Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress. The mechanoelectrical transduction (MET channel near the tips of stereociliary in hair cells, which is responsible for sensory transduction, has been studied most extensively. Several components of the sensory mechanotransduction machinery in stereocilia have been identified, including the multi-transmembrane proteins tetraspan membrane protein in hair cell stereocilia (TMHS/LHFPL5, transmembrane inner ear (TMIE and transmembrane channel-like proteins 1 and 2 (TMC1/2. However, there remains considerable uncertainty regarding the molecules that form the channel pore. In addition to the sensory MET channel, hair cells express the mechanically gated ion channel PIEZO2, which is localized near the base of stereocilia and not essential for sensory transduction. The function of PIEZO2 in hair cells is not entirely clear but it might have a role in damage sensing and repair processes. Additional stretch-activated channels of unknown molecular identity and function have been found to localize at the basolateral membrane of hair cells. Here, we review current knowledge regarding the different mechanically gated ion channels in hair cells and discuss open questions concerning their molecular composition and function.

  20. [Synopsis about the hypothesis of "information channel" of channel-collateral system].

    Science.gov (United States)

    Chang, Xi-Lang

    2008-10-01

    The author of the present paper founded a theorem about the "incompleteness of single channel structure" (nerve, blood vessel, lymphatic, interspace, aperture, etc.) through quantitative and qualitative analysis about the economic information channel in the human body, which eliminates the probability of single channel structure in the information channel of channel (meridian)-collateral system. After comprehensive analysis on the current researches, the author puts forward a neodoxy, i.e., the body "information channel" structure of the channel-collateral system, mainly follows the distribution regularity of systemic statistics, and is not a single specific entity; various layers of the information channel in the main stems of the channel-collaterals are composed of optimized structure tissues. Hence, the structure of this information channel of channel-collateral system is an overall-optimized, sequential and compatible systemic structure. From this neodoxy, the author brings forward a working principle of channel-collaterals, which is supported theoretically by bio-auxology. The longitudinal distribution of the main stems of meridian-collaterals is considered to result from that in the process of the animal evolution, in the animals moving forward, the microscopic complicated movement of intracorporeal information and energy molecules is related to the forward macroscopic and non-uniform movement of organism in trans-measure. Its impulse and kinetic momentum forms a main vector in the longitudinal direction of the body (the direction of the main stem of channel-collaterals). In order to adapt to and utilize natural regularities, the main stems of the channel-collaterals gradually differentiate and evolve in the living organism, forming a whole system. The "hypothesis of biological origin of channel-collateral system" and "that of information channel of the channel-collaterals in the body" constitute a relatively complete theoretical system framework.

  1. LDPC-based iterative joint source-channel decoding for JPEG2000.

    Science.gov (United States)

    Pu, Lingling; Wu, Zhenyu; Bilgin, Ali; Marcellin, Michael W; Vasic, Bane

    2007-02-01

    A framework is proposed for iterative joint source-channel decoding of JPEG2000 codestreams. At the encoder, JPEG2000 is used to perform source coding with certain error-resilience (ER) modes, and LDPC codes are used to perform channel coding. During decoding, the source decoder uses the ER modes to identify corrupt sections of the codestream and provides this information to the channel decoder. Decoding is carried out jointly in an iterative fashion. Experimental results indicate that the proposed method requires fewer iterations and improves overall system performance.

  2. Channel box

    International Nuclear Information System (INIS)

    Tanabe, Akira.

    1993-01-01

    In a channel box of a BWR type reactor, protruding pads are disposed in axial position on the lateral side of a channel box opposing to a control rod and facing the outer side portion of the control rod in a reactor core loaded state. In the initial loading stage of fuel assemblies, channel fasteners and spacer pads are abutted against each other in the upper portion between the channel boxes sandwiching the control rod therebetween. Further, in the lower portion, a gap as a channel for the movement of the control rod is ensured by the support of fuel support metals. If the channel box is bent toward the control rod along with reactor operation, the pads are abutted against each other to always ensure the gap through which the control rod can move easily. Further, when the pads are brought into contact with each other, the bending deformation of the channel box is corrected by urging to each other. Thus, the control rod can always be moved smoothly to attain reactor safety operation. (N.H.)

  3. Ion Permeation and Mechanotransduction Mechanisms of Mechanosensitive Piezo Channels.

    Science.gov (United States)

    Zhao, Qiancheng; Wu, Kun; Geng, Jie; Chi, Shaopeng; Wang, Yanfeng; Zhi, Peng; Zhang, Mingmin; Xiao, Bailong

    2016-03-16

    Piezo proteins have been proposed as the long-sought-after mechanosensitive cation channels in mammals that play critical roles in various mechanotransduction processes. However, the molecular bases that underlie their ion permeation and mechanotransduction have remained functionally undefined. Here we report our finding of the miniature pore-forming module of Piezo1 that resembles the pore architecture of other trimeric channels and encodes the essential pore properties. We further identified specific residues within the pore module that determine unitary conductance, pore blockage and ion selectivity for divalent and monovalent cations and anions. The non-pore-containing region of Piezo1 confers mechanosensitivity to mechano-insensitive trimeric acid-sensing ion channels, demonstrating that Piezo1 channels possess intrinsic mechanotransduction modules separate from their pore modules. In conclusion, this is the first report on the bona fide pore module and mechanotransduction components of Piezo channels, which define their ion-conducting properties and gating by mechanical stimuli, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Tourism and information technologies distribution channels: a panorama of the brazilian reality

    Directory of Open Access Journals (Sweden)

    Elisete Santos da Silva Zagheni

    2011-05-01

    Full Text Available Technological evolution has made it possible that the same service may be delivered by means of multiple channels, including in the tourism sector.  The present study proposes to present a bibliographic summary of the distribution channels in tourism and the impact of information technologies (IT in these channels.  Based on exploratory research, 24 scientific papers were analyzed with the intention of identifying a research structure concerning the channels of Brazilian tourism and IT.  We observed that in Brazil, there is a lack of work concerning distribution channels in tourism, highlighting the management of these channels under the view of supply chains.  Beyond this, these papers concentrate on two elements of the channels: means of lodging and hospitality, and travel agencies.  These elements have used direct channels based on IT in order to support service activities and the commercialization of the tourist product.

  5. Ion channeling

    International Nuclear Information System (INIS)

    Erramli, H.; Blondiaux, G.

    1994-01-01

    Channeling phenomenon was predicted, many years ago, by stark. The first channeling experiments were performed in 1963 by Davies and his coworkers. Parallely Robinson and Oen have investigated this process by simulating trajectories of ions in monocrystals. This technique has been combined with many methods like Rutherford Backscattering Spectrometry (R.B.S.), Particles Induced X-rays Emission (P.I.X.E) and online Nuclear Reaction (N.R.A.) to localize trace elements in the crystal or to determine crystalline quality. To use channeling for material characterization we need data about the stopping power of the incident particle in the channeled direction. The ratios of channeled to random stopping powers of silicon for irradiation in the direction have been investigated and compared to the available theoretical results. We describe few applications of ion channeling in the field of materials characterization. Special attention is given to ion channeling combined with Charged Particle Activation Analysis (C.P.A.A.) for studying the behaviour of oxygen atoms in Czochralski silicon lattices under the influence of internal gettering and in different gaseous atmospheres. Association between ion channeling and C.P.A.A was also utilised for studying the influence of the growing conditions on concentration and position of carbon atoms at trace levels in the MOVPE Ga sub (1-x) Al sub x lattice. 6 figs., 1 tab., 32 refs. (author)

  6. Channel characteristics and coordination in three-echelon dual-channel supply chain

    Science.gov (United States)

    Saha, Subrata

    2016-02-01

    We explore the impact of channel structure on the manufacturer, the distributer, the retailer and the entire supply chain by considering three different channel structures in radiance of with and without coordination. These structures include a traditional retail channel and two manufacturer direct channels with and without consistent pricing. By comparing the performance of the manufacturer, the distributer and the retailer, and the entire supply chain in three different supply chain structures, it is established analytically that, under some conditions, a dual channel can outperform a single retail channel; as a consequence, a coordination mechanism is developed that not only coordinates the dual channel but also outperforms the non-cooperative single retail channel. All the analytical results are further analysed through numerical examples.

  7. Synergistic Malaria Parasite Killing by Two Types of Plasmodial Surface Anion Channel Inhibitors.

    Directory of Open Access Journals (Sweden)

    Margaret Pain

    Full Text Available Malaria parasites increase their host erythrocyte's permeability to a broad range of ions and organic solutes. The plasmodial surface anion channel (PSAC mediates this uptake and is an established drug target. Development of therapies targeting this channel is limited by several problems including interactions between known inhibitors and permeating solutes that lead to incomplete channel block. Here, we designed and executed a high-throughput screen to identify a novel class of PSAC inhibitors that overcome this solute-inhibitor interaction. These new inhibitors differ from existing blockers and have distinct effects on channel-mediated transport, supporting a model of two separate routes for solute permeation though PSAC. Combinations of inhibitors specific for the two routes had strong synergistic action against in vitro parasite propagation, whereas combinations acting on a single route produced only additive effects. The magnitude of synergism depended on external nutrient concentrations, consistent with an essential role of the channel in parasite nutrient acquisition. The identified inhibitors will enable a better understanding of the channel's structure-function and may be starting points for novel combination therapies that produce synergistic parasite killing.

  8. Planar Superconducting Millimeter-Wave/Terahertz Channelizing Filter

    Science.gov (United States)

    Ehsan, Negar; U-yen, Kongpop; Brown, Ari; Hsieh, Wen-Ting; Wollack, Edward; Moseley, Samuel

    2013-01-01

    This innovation is a compact, superconducting, channelizing bandpass filter on a single-crystal (0.45 m thick) silicon substrate, which operates from 300 to 600 GHz. This device consists of four channels with center frequencies of 310, 380, 460, and 550 GHz, with approximately 50-GHz bandwidth per channel. The filter concept is inspired by the mammalian cochlea, which is a channelizing filter that covers three decades of bandwidth and 3,000 channels in a very small physical space. By using a simplified physical cochlear model, and its electrical analog of a channelizing filter covering multiple octaves bandwidth, a large number of output channels with high inter-channel isolation and high-order upper stopband response can be designed. A channelizing filter is a critical component used in spectrometer instruments that measure the intensity of light at various frequencies. This embodiment was designed for MicroSpec in order to increase the resolution of the instrument (with four channels, the resolution will be increased by a factor of four). MicroSpec is a revolutionary wafer-scale spectrometer that is intended for the SPICA (Space Infrared Telescope for Cosmology and Astrophysics) Mission. In addition to being a vital component of MicroSpec, the channelizing filter itself is a low-resolution spectrometer when integrated with only an antenna at its input, and a detector at each channel s output. During the design process for this filter, the available characteristic impedances, possible lumped element ranges, and fabrication tolerances were identified for design on a very thin silicon substrate. Iterations between full-wave and lumped-element circuit simulations were performed. Each channel s circuit was designed based on the availability of characteristic impedances and lumped element ranges. This design was based on a tabular type bandpass filter with no spurious harmonic response. Extensive electromagnetic modeling for each channel was performed. Four channels

  9. TASK Channels on Basal Forebrain Cholinergic Neurons Modulate Electrocortical Signatures of Arousal by Histamine.

    Science.gov (United States)

    Vu, Michael T; Du, Guizhi; Bayliss, Douglas A; Horner, Richard L

    2015-10-07

    Basal forebrain cholinergic neurons are the main source of cortical acetylcholine, and their activation by histamine elicits cortical arousal. TWIK-like acid-sensitive K(+) (TASK) channels modulate neuronal excitability and are expressed on basal forebrain cholinergic neurons, but the role of TASK channels in the histamine-basal forebrain cholinergic arousal circuit is unknown. We first expressed TASK channel subunits and histamine Type 1 receptors in HEK cells. Application of histamine in vitro inhibited the acid-sensitive K(+) current, indicating a functionally coupled signaling mechanism. We then studied the role of TASK channels in modulating electrocortical activity in vivo using freely behaving wild-type (n = 12) and ChAT-Cre:TASK(f/f) mice (n = 12), the latter lacking TASK-1/3 channels on cholinergic neurons. TASK channel deletion on cholinergic neurons significantly altered endogenous electroencephalogram oscillations in multiple frequency bands. We then identified the effect of TASK channel deletion during microperfusion of histamine into the basal forebrain. In non-rapid eye movement sleep, TASK channel deletion on cholinergic neurons significantly attenuated the histamine-induced increase in 30-50 Hz activity, consistent with TASK channels contributing to histamine action on basal forebrain cholinergic neurons. In contrast, during active wakefulness, histamine significantly increased 30-50 Hz activity in ChAT-Cre:TASK(f/f) mice but not wild-type mice, showing that the histamine response depended upon the prevailing cortical arousal state. In summary, we identify TASK channel modulation in response to histamine receptor activation in vitro, as well as a role of TASK channels on cholinergic neurons in modulating endogenous oscillations in the electroencephalogram and the electrocortical response to histamine at the basal forebrain in vivo. Attentive states and cognitive function are associated with the generation of γ EEG activity. Basal forebrain

  10. The least channel capacity for chaos synchronization.

    Science.gov (United States)

    Wang, Mogei; Wang, Xingyuan; Liu, Zhenzhen; Zhang, Huaguang

    2011-03-01

    Recently researchers have found that a channel with capacity exceeding the Kolmogorov-Sinai entropy of the drive system (h(KS)) is theoretically necessary and sufficient to sustain the unidirectional synchronization to arbitrarily high precision. In this study, we use symbolic dynamics and the automaton reset sequence to distinguish the information that is required in identifying the current drive word and obtaining the synchronization. Then, we show that the least channel capacity that is sufficient to transmit the distinguished information and attain the synchronization of arbitrarily high precision is h(KS). Numerical simulations provide support for our conclusions.

  11. Molecular Basis of Paraltyic Neurotoxin Action on Voltage-Sensitive Sodium Channels

    Science.gov (United States)

    1985-10-14

    of 9,700 daltons isolated from the coral Goni2oora gy. (1). The toxin enhances neurally mediated contraction of blood vessels and taenia coli of the...sites on the solium channel and to identify the site of GPT action within the structure of the sodium channel protein. 2. Site of Action of Brvyetoxin

  12. A negative charge in transmembrane segment 1 of domain II of the cockroach sodium channel is critical for channel gating and action of pyrethroid insecticides

    International Nuclear Information System (INIS)

    Du Yuzhe; Song Weizhong; Groome, James R.; Nomura, Yoshiko; Luo Ningguang; Dong Ke

    2010-01-01

    Voltage-gated sodium channels are the primary target of pyrethroids, an important class of synthetic insecticides. Pyrethroids bind to a distinct receptor site on sodium channels and prolong the open state by inhibiting channel deactivation and inactivation. Recent studies have begun to reveal sodium channel residues important for pyrethroid binding. However, how pyrethroid binding leads to inhibition of sodium channel deactivation and inactivation remains elusive. In this study, we show that a negatively charged aspartic acid residue at position 802 (D802) located in the extracellular end of transmembrane segment 1 of domain II (IIS1) is critical for both the action of pyrethroids and the voltage dependence of channel activation. Charge-reversing or -neutralizing substitutions (K, G, or A) of D802 shifted the voltage dependence of activation in the depolarizing direction and reduced channel sensitivity to deltamethrin, a pyrethroid insecticide. The charge-reversing mutation D802K also accelerated open-state deactivation, which may have counteracted the inhibition of sodium channel deactivation by deltamethrin. In contrast, the D802G substitution slowed open-state deactivation, suggesting an additional mechanism for neutralizing the action of deltamethrin. Importantly, Schild analysis showed that D802 is not involved in pyrethroid binding. Thus, we have identified a sodium channel residue that is critical for regulating the action of pyrethroids on the sodium channel without affecting the receptor site of pyrethroids.

  13. Channel stability of Turkey Creek, Nebraska

    Science.gov (United States)

    Rus, David L.; Soenksen, Philip J.

    1998-01-01

    Channelization on Turkey Creek and its receiving stream, the South Fork Big Nemaha River, has disturbed the equilibrium of Turkey Creek and has led to channel-stability problems, such as degradation and channel widening, which pose a threat to bridges and land adjacent to the stream. As part of a multiagency study, the U.S. Geological Survey assessed channel stability at two bridge sites on upper and middle portions of Turkey Creek by analyzing streambed-elevation data for gradation changes, comparing recent cross-section surveys and historic accounts, identifying bank-failure blocks, and analyzing tree-ring samples. These results were compared to gradation data and trend results for a U.S. Geological Survey streamflow-gaging station near the mouth of Turkey Creek from a previous study. Examination of data on streambed elevations reveals that degradation has occurred. The streambed elevation declined 0.5 m at the upper site from 1967-97. The streambed elevation declined by 3.2 m at the middle site from 1948-97 and exposed 2 m of the pilings of the Nebraska Highway 8 bridge. Channel widening could not be verified at the two sites from 1967-97, but a historic account indicates widening at the middle site to be two to three times that of the 1949 channel width. Small bank failures were evident at the upper site and a 4-m-wide bank failure occurred at the middle site in 1987 according to tree ring analyses. Examination of streambed-elevation data from a previous study at the lower site reveals a statistically significant aggrading trend from 1958-93. Further examination of these data suggests minor degradation occurred until 1975, followed by aggradation.

  14. FMRFamide-gated sodium channel and ASIC channels: a new class of ionotropic receptors for FMRFamide and related peptides.

    Science.gov (United States)

    Lingueglia, Eric; Deval, Emmanuel; Lazdunski, Michel

    2006-05-01

    FMRFamide and related peptides typically exert their action through G-protein coupled receptors. However, two ionotropic receptors for these peptides have recently been identified. They are both members of the epithelial amiloride-sensitive Na+ channel and degenerin (ENaC/DEG) family of ion channels. The invertebrate FMRFamide-gated Na+ channel (FaNaC) is a neuronal Na+-selective channel which is directly gated by micromolar concentrations of FMRFamide and related tetrapeptides. Its response is fast and partially desensitizing, and FaNaC has been proposed to participate in peptidergic neurotransmission. On the other hand, mammalian acid-sensing ion channels (ASICs) are not gated but are directly modulated by FMRFamide and related mammalian peptides like NPFF and NPSF. ASICs are activated by external protons and are therefore extracellular pH sensors. They are expressed both in the central and peripheral nervous system and appear to be involved in many physiological and pathophysiological processes such as hippocampal long-term potentiation and defects in learning and memory, acquired fear-related behavior, retinal function, brain ischemia, pain sensation in ischemia and inflammation, taste perception, hearing functions, and mechanoperception. The potentiation of ASIC activity by endogenous RFamide neuropeptides probably participates in the response to noxious acidosis in sensory and central neurons. Available data also raises the possibility of the existence of still unknown FMRFamide related endogenous peptides acting as direct agonists for ASICs.

  15. MONETARY TRANSMISSION CHANNELS IN ROMANIA – THE CREDIT CHANNEL

    Directory of Open Access Journals (Sweden)

    Magdalena RĂDULESCU

    2009-12-01

    Full Text Available The theoretical – intuitive analysis applied to the segment of monetary transmission evidences the fact that forming the traditional monetary impulses transmission channels are in a starting phase due to the long financial non – intermediary process which Romanian economy had known. In these conditions, the exchange rate channel, and also NBR currency purchases was, for a long time, an important way through which monetary authorities actions influenced macro economical behaviors. But starting with 2000, it is observed a credit channel reactivation and, especially, interest rate channel. Anyhow, the credit channel continues to be undermined by the existence of liquidity surplus within the system, by the phenomena of substitution of national currency credit with currency credits, and also moral hazardous displays. Albeit some of these phenomena also affect the interest rate channel, its role in sending monetary policy impulses is in a continuous progress. Apparently, it acts by way of nominal interest rates, their real level seeming less relevant. Once with remaking the two traditional channels, the companies and households balance is configured and consolidated, which shall potentate in the future the efficiency of the monetary policy. This paper analyses the credit channel in Romania, through an unrestricted VAR analysis.. It shows the responses of exchange rate, inflation rate, GDP, interest rate, imports and exports to a shock on non-governmental credit

  16. ZnO-channel thin-film transistors: Channel mobility

    International Nuclear Information System (INIS)

    Hoffman, R.L.

    2004-01-01

    ZnO-channel thin-film transistor (TFT) test structures are fabricated using a bottom-gate structure on thermally oxidized Si; ZnO is deposited via RF sputtering from an oxide target, with an unheated substrate. Electrical characteristics are evaluated, with particular attention given to the extraction and interpretation of transistor channel mobility. ZnO-channel TFT mobility exhibits severe deviation from that assumed by ideal TFT models; mobility extraction methodology must accordingly be recast so as to provide useful insight into device operation. Two mobility metrics, μ avg and μ inc , are developed and proposed as relevant tools in the characterization of nonideal TFTs. These mobility metrics are employed to characterize the ZnO-channel TFTs reported herein; values for μ inc as high as 25 cm2/V s are measured, comprising a substantial increase in ZnO-channel TFT mobility as compared to previously reported performance for such devices

  17. Landuse Types within Channel Corridor and River Channel Morphology of River Ona, Ibadan, Nigeria

    Directory of Open Access Journals (Sweden)

    Olutoyin Fashae

    2017-12-01

    Full Text Available The importance of river a corridor warrants a well thought out and balanced management approach because it helps in improving or maintaining water quality, protecting wetlands, etc. Hence, this study seeks to identify major landuse types within the River Ona Corridor; examine the impact of these landuse types within the River Ona corridor on its channel morphology and understand the risk being posed by these landuse types. The study is designed by selecting two reaches of six times the average width from each of the four major landuse types that exist along the river corridor. This study revealed that along the downstream section of Eleyele Dam of River Ona, natural forest stabilizes river channel banks, thereby presenting a narrow and shallow width and depth respectively but the widest of all is found at the agricultural zones.

  18. Disguising quantum channels by mixing and channel distance trade-off

    International Nuclear Information System (INIS)

    Fung, Chi-Hang Fred; Chau, H F

    2014-01-01

    We consider the reverse problem of the distinguishability of two quantum channels, which we call the disguising problem. Given two quantum channels, the goal here is to make the two channels identical by mixing with some other channels with minimal mixing probabilities. This quantifies how much one channel can disguise as the other. In addition, the possibility to trade-off between the two mixing probabilities allows one channel to be more preserved (less mixed) at the expense of the other. We derive lower- and upper-bounds of the trade-off curve and apply them to a few example channels. Optimal trade-off is obtained in one example. We relate the disguising problem and the distinguishability problem by showing that the former can lower and upper bound the diamond norm. We also show that the disguising problem gives an upper-bound on the key generation rate in quantum cryptography. (paper)

  19. Hydrogen Cyanide In Protoplanetary Disks

    Science.gov (United States)

    Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore

    2018-01-01

    The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.

  20. A Tour de Force: The Discovery, Properties, and Function of Piezo Channels.

    Science.gov (United States)

    Gottlieb, P A

    2017-01-01

    Mechanical transducers appear throughout cell biology and are used to convert mechanical stress into chemical or electrical signals that allow the cell to respond to environmental changes. In the past six years, a eukaryotic mechanical channel family with two members, Piezo1 and Piezo2, has been identified. Piezo1 was shown to be a cation-selective channel that does not require ancillary proteins for activity. Mouse Piezo1 is large, with over 2500 amino acids, and is not homologous to other ion channels. Both piezo channels have rapid voltage-dependent inactivation with a reversal potential near 0mV. The CryoEm structure of Piezo1 at 4.8Å shows trimer stoichiometry. Since the discovery of the piezo channels, their roles in the physiological response of cells have started to emerge. Significant progress has been made in understanding the intrinsic properties of the channels and how these properties are modulated by cytoskeletal elements. Specific diseases, such as hereditary xerocytosis affecting red blood cells, have mutations in Piezo1 that alter the cell's response to force, typically slowing inactivation and introducing a latency for activation. A number of physiological functions for piezo channels have been identified. These range from sensing the stiffness of surrounding substrate, to the response to light touch, to serotonin release from the gut. This review provides a general overview of the properties and roles of Piezo1 and Piezo2 in eukaryotic mechanotransduction. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Verification of otolith identity used by fisheries scientists for aging channel catfish

    Science.gov (United States)

    Long, James M.; Stewart, David R.

    2010-01-01

    Previously published studies of the age estimation of channel catfish Ictalurus punctatus based on otoliths have reported using the sagittae, whereas it is likely they were actually using the lapilli. This confusion may have resulted because in catfishes (ostariophyseans) the lapilli are the largest of the three otoliths, whereas in nonostariophysean fish the sagittae are the largest. Based on (1) scanning electron microscope microphotographs of channel catfish otoliths, (2) X-ray computed tomography scans of a channel catfish head, (3) descriptions of techniques used to removed otoliths from channel catfish reported in the literature, and (4) a sample of channel catfish otoliths received from fisheries biologists from around the country, it is clear that lapilli are most often used for channel catfish aging studies, not sagittae, as has been previously reported. Fisheries scientists who obtain otoliths from channel catfish can use the information in this paper to correctly identify otolith age.

  2. Decreased expression of Kv7 channels in Hirchsprung's disease.

    Science.gov (United States)

    O'Donnell, Anne-Marie; Coyle, David; Puri, Prem

    2017-07-01

    Voltage-dependent K + channels (Kv channels) participate in electrical rhythmicity and smooth muscle responses and are regulated by excitatory and inhibitory neurotransmitters. Kv channels also participate in the interstitial cell of Cajal (ICC) and smooth muscle cell (SMC) responses to neural inputs. The Kv family consists of 12 subfamilies, Kv1-Kv12, with five members of the Kv7 family identified to date: Kv7.1-Kv7.5. A recent study identified the potassium channel Kv7.5 as having a role in the excitability of ICC-IM in the mouse colon. We therefore designed this study to test the hypothesis that Kv7 channels are present in the normal human colon and are reduced in Hirschprung's disease (HSCR). HSCR tissue specimens were collected at the time of pull-through surgery (n=10), while normal control tissue specimens were obtained at the time of colostomy closure in patients with imperforate anus (n=10). Kv7.3-Kv7.5 immunohistochemistry was performed and visualized using confocal microscopy to assess their distribution. Western blot analysis was undertaken to determine Kv7.3-Kv7.5 protein quantification. Kv7.3 and Kv7.4-immunoreactivity was co-localized with neuron and ICC markers, while Kv7.5 was found to be expressed on both ICCs and SMCs. Western blot analysis revealed similar levels of Kv7.3 and Kv7.5 expression in the normal colon and HSCR colon, while Kv7.4 proteins were found to be markedly decreased in ganglionic specimens and decreased further in aganglionic specimens. A deficiency of Kv7.4 channels in the ganglionic and aganglionic bowel may place a role in colonic dysmotility in HSCR. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Multi-channel service concept design and prototyping

    NARCIS (Netherlands)

    Sperling, C.P.; Simons, L.P.A.; Bouwman, W.A.G.A.

    2007-01-01

    Designing e-services which have to function in a multi-channel context has proved to be challenging for organizations. Previous research has shown that structured design methods are useful to structure the design process. In this paper we proceed from an existing method (which identifies

  4. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Kramer Gerhard

    2009-01-01

    Full Text Available Abstract This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom ( are derived for the degraded case with one receiver. Schemes to achieve the for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable is given for the general case.

  5. ATP Release Channels

    Directory of Open Access Journals (Sweden)

    Akiyuki Taruno

    2018-03-01

    Full Text Available Adenosine triphosphate (ATP has been well established as an important extracellular ligand of autocrine signaling, intercellular communication, and neurotransmission with numerous physiological and pathophysiological roles. In addition to the classical exocytosis, non-vesicular mechanisms of cellular ATP release have been demonstrated in many cell types. Although large and negatively charged ATP molecules cannot diffuse across the lipid bilayer of the plasma membrane, conductive ATP release from the cytosol into the extracellular space is possible through ATP-permeable channels. Such channels must possess two minimum qualifications for ATP permeation: anion permeability and a large ion-conducting pore. Currently, five groups of channels are acknowledged as ATP-release channels: connexin hemichannels, pannexin 1, calcium homeostasis modulator 1 (CALHM1, volume-regulated anion channels (VRACs, also known as volume-sensitive outwardly rectifying (VSOR anion channels, and maxi-anion channels (MACs. Recently, major breakthroughs have been made in the field by molecular identification of CALHM1 as the action potential-dependent ATP-release channel in taste bud cells, LRRC8s as components of VRACs, and SLCO2A1 as a core subunit of MACs. Here, the function and physiological roles of these five groups of ATP-release channels are summarized, along with a discussion on the future implications of understanding these channels.

  6. Functional characterization of a prokaryotic Kir channel.

    Science.gov (United States)

    Enkvetchakul, Decha; Bhattacharyya, Jaya; Jeliazkova, Iana; Groesbeck, Darcy K; Cukras, Catherine A; Nichols, Colin G

    2004-11-05

    The Kir gene family encodes inward rectifying K+ (Kir) channels that are widespread and critical regulators of excitability in eukaryotic cells. A related gene family (KirBac) has recently been identified in prokaryotes. While a crystal structure of one member, Kir-Bac1.1, has been solved, there has been no functional characterization of any KirBac gene products. Here we present functional characterization of KirBac1.1 reconstituted in liposomes. Utilizing a 86Rb+ uptake assay, we demonstrate that KirBac1.1 generates a K+ -selective permeation path that is inhibited by extraliposomal Ba2+ and Ca2+ ions. In contrast to KcsA (an acid-activated bacterial potassium channel), KirBac1.1 is inhibited by extraliposomal acid (pKa approximately 6). This characterization of KirBac1.1 activity now paves the way for further correlation of structure and function in this model Kir channel.

  7. Spark Channels

    Energy Technology Data Exchange (ETDEWEB)

    Haydon, S. C. [Department of Physics, University of New England, Armidale, NSW (Australia)

    1968-04-15

    A brief summary is given of the principal methods used for initiating spark channels and the various highly time-resolved techniques developed recently for studies with nanosecond resolution. The importance of the percentage overvoltage in determining the early history and subsequent development of the various phases of the growth of the spark channel is discussed. An account is then given of the recent photographic, oscillographic and spectroscopic investigations of spark channels initiated by co-axial cable discharges of spark gaps at low [{approx} 1%] overvoltages. The phenomena observed in the development of the immediate post-breakdown phase, the diffuse glow structure, the growth of the luminous filament and the final formation of the spark channel in hydrogen are described. A brief account is also given of the salient features emerging from corresponding studies of highly overvolted spark gaps in which the spark channel develops from single avalanche conditions. The essential differences between the two types of channel formation are summarized and possible explanations of the general features are indicated. (author)

  8. Adaptive evolution of the vertebrate skeletal muscle sodium channel

    Directory of Open Access Journals (Sweden)

    Jian Lu

    2011-01-01

    Full Text Available Tetrodotoxin (TTX is a highly potent neurotoxin that blocks the action potential by selectively binding to voltage-gated sodium channels (Na v. The skeletal muscle Na v (Na v1.4 channels in most pufferfish species and certain North American garter snakes are resistant to TTX, whereas in most mammals they are TTX-sensitive. It still remains unclear as to whether the difference in this sensitivity among the various vertebrate species can be associated with adaptive evolution. In this study, we investigated the adaptive evolution of the vertebrate Na v1.4 channels. By means of the CODEML program of the PAML 4.3 package, the lineages of both garter snakes and pufferfishes were denoted to be under positive selection. The positively selected sites identified in the p-loop regions indicated their involvement in Na v1.4 channel sensitivity to TTX. Most of these sites were located in the intracellular regions of the Na v1.4 channel, thereby implying the possible association of these regions with the regulation of voltage-sensor movement.

  9. Joint source/channel coding of scalable video over noisy channels

    Energy Technology Data Exchange (ETDEWEB)

    Cheung, G.; Zakhor, A. [Department of Electrical Engineering and Computer Sciences University of California Berkeley, California94720 (United States)

    1997-01-01

    We propose an optimal bit allocation strategy for a joint source/channel video codec over noisy channel when the channel state is assumed to be known. Our approach is to partition source and channel coding bits in such a way that the expected distortion is minimized. The particular source coding algorithm we use is rate scalable and is based on 3D subband coding with multi-rate quantization. We show that using this strategy, transmission of video over very noisy channels still renders acceptable visual quality, and outperforms schemes that use equal error protection only. The flexibility of the algorithm also permits the bit allocation to be selected optimally when the channel state is in the form of a probability distribution instead of a deterministic state. {copyright} {ital 1997 American Institute of Physics.}

  10. Nonverbal channel use in communication of emotion: how may depend on why.

    Science.gov (United States)

    App, Betsy; McIntosh, Daniel N; Reed, Catherine L; Hertenstein, Matthew J

    2011-06-01

    This study investigated the hypothesis that different emotions are most effectively conveyed through specific, nonverbal channels of communication: body, face, and touch. Experiment 1 assessed the production of emotion displays. Participants generated nonverbal displays of 11 emotions, with and without channel restrictions. For both actual production and stated preferences, participants favored the body for embarrassment, guilt, pride, and shame; the face for anger, disgust, fear, happiness, and sadness; and touch for love and sympathy. When restricted to a single channel, participants were most confident about their communication when production was limited to the emotion's preferred channel. Experiment 2 examined the reception or identification of emotion displays. Participants viewed videos of emotions communicated in unrestricted and restricted conditions and identified the communicated emotions. Emotion identification in restricted conditions was most accurate when participants viewed emotions displayed via the emotion's preferred channel. This study provides converging evidence that some emotions are communicated predominantly through different nonverbal channels. Further analysis of these channel-emotion correspondences suggests that the social function of an emotion predicts its primary channel: The body channel promotes social-status emotions, the face channel supports survival emotions, and touch supports intimate emotions.

  11. Tuning the ion selectivity of two-pore channels

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Jiangtao; Zeng, Weizhong; Jiang, Youxing (UTSMC)

    2017-01-17

    Organellar two-pore channels (TPCs) contain two copies of a Shaker-like six-transmembrane (6-TM) domain in each subunit and are ubiquitously expressed in plants and animals. Interestingly, plant and animal TPCs share high sequence similarity in the filter region, yet exhibit drastically different ion selectivity. Plant TPC1 functions as a nonselective cation channel on the vacuole membrane, whereas mammalian TPC channels have been shown to be endo/lysosomal Na+-selective or Ca2+-release channels. In this study, we performed systematic characterization of the ion selectivity of TPC1 from Arabidopsis thaliana (AtTPC1) and compared its selectivity with the selectivity of human TPC2 (HsTPC2). We demonstrate that AtTPC1 is selective for Ca2+ over Na+, but nonselective among monovalent cations (Li+, Na+, and K+). Our results also confirm that HsTPC2 is a Na+-selective channel activated by phosphatidylinositol 3,5-bisphosphate. Guided by our recent structure of AtTPC1, we converted AtTPC1 to a Na+-selective channel by mimicking the selectivity filter of HsTPC2 and identified key residues in the TPC filters that differentiate the selectivity between AtTPC1 and HsTPC2. Furthermore, the structure of the Na+-selective AtTPC1 mutant elucidates the structural basis for Na+ selectivity in mammalian TPCs.

  12. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    Science.gov (United States)

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  13. ZAP: a distributed channel assignment algorithm for cognitive radio networks

    OpenAIRE

    Junior , Paulo Roberto ,; Fonseca , Mauro; Munaretto , Anelise; Viana , Aline ,; Ziviani , Artur

    2011-01-01

    Abstract We propose ZAP, an algorithm for the distributed channel assignment in cognitive radio (CR) networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing their reuse by secondary users without interfering with primary users. In this context, efficient channel assignment is challenging as ideally it must be simple, incur acceptable communication overhead, provide timely response, and be adaptive to accommodate frequent changes in the network. Another ...

  14. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels

    OpenAIRE

    Zhang, Tingxin; Chi, Shaopeng; Jiang, Fan; Zhao, Qiancheng; Xiao, Bailong

    2017-01-01

    Piezo proteins are bona fide mammalian mechanotransduction channels for various cell types including endothelial cells. The mouse Piezo1 of 2547 residues forms a three-bladed, propeller-like homo-trimer comprising a central pore-module and three propeller-structures that might serve as mechanotransduction-modules. However, the mechanogating and regulation of Piezo channels remain unclear. Here we identify the sarcoplasmic /endoplasmic-reticulum Ca2+ ATPase (SERCA), including the widely expres...

  15. Compound Wiretap Channels

    Directory of Open Access Journals (Sweden)

    Shlomo Shamai (Shitz

    2009-01-01

    Full Text Available This paper considers the compound wiretap channel, which generalizes Wyner's wiretap model to allow the channels to the (legitimate receiver and to the eavesdropper to take a number of possible states. No matter which states occur, the transmitter guarantees that the receiver decodes its message and that the eavesdropper is kept in full ignorance about the message. The compound wiretap channel can also be viewed as a multicast channel with multiple eavesdroppers, in which the transmitter sends information to all receivers and keeps the information secret from all eavesdroppers. For the discrete memoryless channel, lower and upper bounds on the secrecy capacity are derived. The secrecy capacity is established for the degraded channel and the semideterministic channel with one receiver. The parallel Gaussian channel is further studied. The secrecy capacity and the secrecy degree of freedom (s.d.o.f. are derived for the degraded case with one receiver. Schemes to achieve the s.d.o.f. for the case with two receivers and two eavesdroppers are constructed to demonstrate the necessity of a prefix channel in encoder design. Finally, the multi-antenna (i.e., MIMO compound wiretap channel is studied. The secrecy capacity is established for the degraded case and an achievable s.d.o.f. is given for the general case.

  16. New Trends in Cancer Therapy: Targeting Ion Channels and Transporters

    Directory of Open Access Journals (Sweden)

    Annarosa Arcangeli

    2010-04-01

    Full Text Available The expression and activity of different channel types mark and regulate specific stages of cancer establishment and progression. Blocking channel activity impairs the growth of some tumors, both in vitro and in vivo, which opens a new field for pharmaceutical research. However, ion channel blockers may produce serious side effects, such as cardiac arrhythmias. For instance, Kv11.1 (hERG1 channels are aberrantly expressed in several human cancers, in which they control different aspects of the neoplastic cell behaviour. hERG1 blockers tend to inhibit cancer growth. However they also retard the cardiac repolarization, thus lengthening the electrocardiographic QT interval, which can lead to life-threatening ventricular arrhythmias. Several possibilities exist to produce less harmful compounds, such as developing specific drugs that bind hERG1 channels in the open state or disassemble the ion channel/integrin complex which appears to be crucial in certain stages of neoplastic progression. The potential approaches to improve the efficacy and safety of ion channel targeting in oncology include: (1 targeting specific conformational channel states; (2 finding ever more specific inhibitors, including peptide toxins, for channel subtypes mainly expressed in well-identified tumors; (3 using specific ligands to convey traceable or cytotoxic compounds; (4 developing channel blocking antibodies; (5 designing new molecular tools to decrease channel expression in selected cancer types. Similar concepts apply to ion transporters such as the Na+/K+ pump and the Na+/H+ exchanger. Pharmacological targeting of these transporters is also currently being considered in anti-neoplastic therapy.

  17. Global versus local mechanisms of temperature sensing in ion channels.

    Science.gov (United States)

    Arrigoni, Cristina; Minor, Daniel L

    2018-05-01

    Ion channels turn diverse types of inputs, ranging from neurotransmitters to physical forces, into electrical signals. Channel responses to ligands generally rely on binding to discrete sensor domains that are coupled to the portion of the channel responsible for ion permeation. By contrast, sensing physical cues such as voltage, pressure, and temperature arises from more varied mechanisms. Voltage is commonly sensed by a local, domain-based strategy, whereas the predominant paradigm for pressure sensing employs a global response in channel structure to membrane tension changes. Temperature sensing has been the most challenging response to understand and whether discrete sensor domains exist for pressure and temperature has been the subject of much investigation and debate. Recent exciting advances have uncovered discrete sensor modules for pressure and temperature in force-sensitive and thermal-sensitive ion channels, respectively. In particular, characterization of bacterial voltage-gated sodium channel (BacNa V ) thermal responses has identified a coiled-coil thermosensor that controls channel function through a temperature-dependent unfolding event. This coiled-coil thermosensor blueprint recurs in other temperature sensitive ion channels and thermosensitive proteins. Together with the identification of ion channel pressure sensing domains, these examples demonstrate that "local" domain-based solutions for sensing force and temperature exist and highlight the diversity of both global and local strategies that channels use to sense physical inputs. The modular nature of these newly discovered physical signal sensors provides opportunities to engineer novel pressure-sensitive and thermosensitive proteins and raises new questions about how such modular sensors may have evolved and empowered ion channel pores with new sensibilities.

  18. Touch, Tension, and Transduction - The Function and Regulation of Piezo Ion Channels.

    Science.gov (United States)

    Wu, Jason; Lewis, Amanda H; Grandl, Jörg

    2017-01-01

    In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought molecular carriers of an excitatory mechanically activated current found in many cells. This discovery has opened the floodgates for studying a vast number of mechanotransduction processes. Over the past 6 years, groundbreaking research has identified Piezos as ion channels that sense light touch, proprioception, and vascular blood flow, ruled out roles for Piezos in several other mechanotransduction processes, and revealed the basic structural and functional properties of the channel. Here, we review these findings and discuss the many aspects of Piezo function that remain mysterious, including how Piezos convert a variety of mechanical stimuli into channel activation and subsequent inactivation, and what molecules and mechanisms modulate Piezo function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Promotion through Marketing Channels : The Case of Kosovo

    Directory of Open Access Journals (Sweden)

    MSc. Hidajet Karaxha

    2016-01-01

    Full Text Available In order for a product to be put in the hands of the customer, requires a mechanism which is called distribution channel and which enables the connection between the consumer and producer. One of the many strategies applied by Kosovar companies for the involvement of the members of the channel is also the promotion through distribution channels. Therefore, the strategies which involve the members of the channel have a higher probability to be positively accepted by the members of the channel, when they are part of a general program of supporting the needs of the producers. The process of realizing a marketing strategy of a company does not concise only of achieving specific goals of production during the realization of the promotion phase, but it also requires identifying the target market and achieving it. The purpose of this paper is to review the promotion strategy of distribution channels, which emphasize the support by the members of the channel, initiated by the producers through cooperative advertisements, promotional salaries, slotting taxes, incentives, promotions in markets and also special promotional agreements. The theoretical and practical side of the study are very important, especially regarding to new theoretical and practical views in the study context. Besides the theoretical contribution that will be offered by this paper, there will also be interesting findings in the practical aspect where through this paper, the owners, managers, firms will be able to understand the role and importance of promotion through distribution channels. Knowing that there are only few studies offered in this field, this paper offers help for everyone interested in this field. This paper contains empirical data collected by questionnaires and interviews.

  20. PIP2 mediates functional coupling and pharmacology of neuronal KCNQ channels

    DEFF Research Database (Denmark)

    Kim, Robin Y; Pless, Stephan A; Kurata, Harley T

    2017-01-01

    Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation. To elucid......Retigabine (RTG) is a first-in-class antiepileptic drug that suppresses neuronal excitability through the activation of voltage-gated KCNQ2-5 potassium channels. Retigabine binds to the pore-forming domain, causing a hyperpolarizing shift in the voltage dependence of channel activation....... These findings reveal an important role for PIP2 in coupling retigabine binding to altered VSD function. We identify a polybasic motif in the proximal C terminus of retigabine-sensitive KCNQ channels that contributes to VSD-pore coupling via PIP2, and thereby influences the unique gating effects of retigabine....

  1. Zirconium ignition in exposed fuel channel

    Energy Technology Data Exchange (ETDEWEB)

    Elias, E., E-mail: merezra@technion.ac.il; Hasan, D.; Nekhamkin, Y.

    2015-05-15

    Highlights: • We demonstrate the idea of runaway zirconium–steam reactions in severe accidents in today's LWRs. • We predict the thermal-hydraulics conditions relevant to cladding oxidation in an exposed fuel channel of a partially uncovered core. • The Semenov theory of metal combustion is extended to define a criterion for runaway oxidation reaction in fuel cladding. - Abstract: A theoretical model based on simultaneous solution of the heat and mass transfer equations is developed for predicting the rate of thermo-chemical reaction between zirconium cladding and a hot steam environment. Ignition conditions relevant to cladding oxidation in an exposed fuel channel of a partially uncovered core are predicted based on the theory of metal combustion. A range of decay power, convective heat transfer coefficients, and initial temperatures leading to uncontrolled runaway cladding oxidation is identified. The model could be readily integrated as part of a fuel channel analysis code for predicting possible outcomes of different accident mitigation procedures in light water nuclear reactors under LOCA conditions.

  2. A Bayesian matching pursuit based scheduling algorithm for feedback reduction in MIMO broadcast channels

    KAUST Repository

    Shibli, Hussain J.

    2013-06-01

    Opportunistic schedulers rely on the feedback of all users in order to schedule a set of users with favorable channel conditions. While the downlink channels can be easily estimated at all user terminals via a single broadcast, several key challenges are faced during uplink transmission. First of all, the statistics of the noisy and fading feedback channels are unknown at the base station (BS) and channel training is usually required from all users. Secondly, the amount of network resources (air-time) required for feedback transmission grows linearly with the number of users. In this paper, we tackle the above challenges and propose a Bayesian based scheduling algorithm that 1) reduces the air-time required to identify the strong users, and 2) is agnostic to the statistics of the feedback channels and utilizes the a priori statistics of the additive noise to identify the strong users. Numerical results show that the proposed algorithm reduces the feedback air-time while improving detection in the presence of fading and noisy channels when compared to recent compressed sensing based algorithms. Furthermore, the proposed algorithm achieves a sum-rate throughput close to that obtained by noiseless dedicated feedback systems. © 2013 IEEE.

  3. Quantum Channels With Memory

    International Nuclear Information System (INIS)

    Rybar, T.

    2012-01-01

    Quantum memory channels represent a very general, yet simple and comprehensible model for causal processes. As such they have attracted considerable research interest, mostly aimed on their transfer capabilities and structure properties. Most notably it was shown that memory channels can be implemented via physically naturally motivated collision models. We also define the concept of repeatable channels and show that only unital channels can be implemented repeat ably with pure memory channels. In the special case of qubit channels we also show that every unital qubit channel has a repeatable implementation. We also briefly explore the possibilities of stroboscopical simulation of channels and show that all random unitary channels can be stroboscopically simulated. Particularly in qubit case, all indivisible qubit channels are also random unitary, hence for qubit all indivisible channels can be stroboscopically simulated. Memory channels also naturally capture the framework of correlated experiments. We develop methods to gather and interpret data obtained in such setting and in detail examine the two qubit case. We also show that for control unitary interactions the measured data will never contradict a simple unitary evolution. Thus no memory effects can be spotted then. (author)

  4. Touch, Tension, and Transduction – the Function and Regulation of Piezo Ion Channels

    Science.gov (United States)

    Wu, Jason; Lewis, Amanda; Grandl, Jörg

    2016-01-01

    In 2010, two proteins, Piezo1 and Piezo2, were identified as the long-sought molecular carriers of an excitatory mechanically activated current found in many cells. This discovery has opened the floodgates for studying a vast number of mechanotransduction processes. Over the past six years, groundbreaking research has identified Piezos as ion channels that sense light touch, proprioception, and vascular blood flow, ruled out roles for Piezos in several other mechanotransduction processes, and revealed the basic structural and functional properties of the channel. Here, we review these findings and discuss the many aspects of Piezo function that remain mysterious, including how Piezos convert a variety of mechanical stimuli into channel activation and subsequent inactivation, and what molecules and mechanisms modulate Piezo function. PMID:27743844

  5. Mimicking multi-channel scattering with single-channel approaches

    OpenAIRE

    Grishkevich, Sergey; Schneider, Philipp-Immanuel; Vanne, Yulian V.; Saenz, Alejandro

    2009-01-01

    The collision of two atoms is an intrinsic multi-channel (MC) problem as becomes especially obvious in the presence of Feshbach resonances. Due to its complexity, however, single-channel (SC) approximations, which reproduce the long-range behavior of the open channel, are often applied in calculations. In this work the complete MC problem is solved numerically for the magnetic Feshbach resonances (MFRs) in collisions between generic ultracold 6Li and 87Rb atoms in the ground state and in the ...

  6. Hyperechoic caudate nuclei: a potential mimic of germinal matrix hemorrhage

    International Nuclear Information System (INIS)

    Schlesinger, A.E.; Shackelford, G.D.; Adcock, L.M.

    1998-01-01

    Background. We have encountered bilateral hyperechoic foci in the region of the germinal matrix on cranial sonograms in neonates that have an appearance similar to germinal matrix hemorrhage (GMH), but are unusual either due to the age of the patient at presentation or to the evolution of the foci on follow-up. We believe that these findings represent hyperechoic caudate nuclei (HCN) rather than GMH. Objective. To demonstrate that bilateral HCN can be seen on cranial sonography in neonates and can mimic bilateral GMH. Materials and methods. The cranial sonograms were reviewed in nine neonates (three term and six premature) who had HCN identified on at least one sonographic examination. CT (two patients) and MR (one patient) studies were also reviewed, as well as the neuropathological examination in one patient who died and had an autopsy. The patients' medical records were reviewed to identify any clinical markers for significant risk of perinatal ischemia. Results. There was clinical evidence for risk of ischemia in five of the nine neonates. All nine patients had bilateral HCN on the initial or follow-up studies. Small cysts were seen sonographically in two patients. CT was normal in one patient and revealed a small unilateral focus of increased attenuation in one infant (very small compared to the bilateral HCN). MR was normal in one patient. Histopathological examination of the brain was normal in the one patient who died and had an autopsy. Conclusion. Hyperechoic caudate nuclei can occur in neonates either as a normal finding, or possibly related to ischemia, and should not always be attributed to GMH. (orig.)

  7. Fine Channel Networks

    Science.gov (United States)

    1997-01-01

    A color image of fine channel networks on Mars; north toward top. The scene shows heavily cratered highlands dissected by dendritic open channel networks that dissect steep slopes of impact crater walls. This image is a composite of Viking high-resolution images in black and white and low-resolution images in color. The image extends from latitude 9 degrees S. to 5 degrees S. and from longitude 312 degrees to 320 degrees; Mercator projection. The dendritic pattern of the fine channels and their location on steep slopes leads to the interpretation that these are runoff channels. The restriction of these types of channels to ancient highland rocks suggests that these channels are old and date from a time on Mars when conditions existed for precipitation to actively erode rocks. After the channels reach a low plain, they appear to end. Termination may have resulted from burial by younger deposits or perhaps the flows percolated into the surface materials and continued underground.

  8. Sub-nanometre channels embedded in two-dimensional materials

    KAUST Repository

    Han, Yimo

    2017-12-04

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically thin p–n junctions2,3,4,5,6,7,8, metal–semiconductor contacts9,10,11, and metal–insulator barriers12,13,14 have been demonstrated. Although 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions is also necessary. Here, we report the direct synthesis of sub-nanometre-wide one-dimensional (1D) MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalysed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Using molecular dynamics simulations, we have identified other combinations of 2D materials where 1D channels can also be formed. The electronic band structure of these 1D channels offers the promise of carrier confinement in a direct-gap material and the charge separation needed to access the ultimate length scales necessary for future electronic applications.

  9. Calibration through on-line monitoring of instruments channels

    International Nuclear Information System (INIS)

    James, R.W.

    1996-01-01

    Plant technical specifications require periodic calibration of instrument channels, and this has traditionally meant calibration at fixed time intervals for nearly all instruments. Experience has shown that unnecessarily frequent calibrations reduce channel availability and reliability, impact outage durations, and increase maintenance costs. An alternative approach to satisfying existing requirements for periodic calibration consists of on-line monitoring and quantitative comparison of instrument channels during operation to identify instrument degradation and failure. A Utility Working Group has been formed by EPRI to support the technical activities necessary to achieve generic NRC acceptance of on-line monitoring of redundant instrument channels as a basis for determining when to perform calibrations. A topical report proposing NRC acceptance of this approach was submitted in August 1995, and the Working Group is currently resolving NRC technical questions. This paper describes the proposed approach and the current status of the topical report with regard to NRC review. While these activities will not preclude utilities from continuing to use existing calibration approaches, successful acceptance of this performance-based approach will allow utilities to substantially reduce the number of calibrations which are performed. Concurrent benefits will include reduced I ampersand C impact on outage durations and improved sensitivity to instrument channel performance

  10. Assessment of long-term channel changes in the Mekong River using remote sensing and a channel-evolution model

    Science.gov (United States)

    Miyazawa, N.

    2011-12-01

    River-channel changes are a key factor affecting physical, ecological and management issues in the fluvial environment. In this study, long-term channel changes in the Mekong River were assessed using remote sensing and a channel-evolution model. A channel-evolution model for calculating long-term channel changes of a measndering river was developed using a previous fluid-dynamic model [Zolezzi and Seminara, 2001], and was applied in order to quantify channel changes of two meandering reaches in the Mekong River. Quite few attempts have been made so far to combine remote sensing observation of meandering planform change with the application of channel evolution models within relatively small-scale gravel-bed systems in humid temperate regions. The novel point of the present work is to link state-of-art meandering planform evolution model with observed morphological changes within large-scale sand-bed rivers with higher bank height in tropical monsoonal climate regions, which are the highly dynamic system, and assess the performance. Unstable extents of the reaches could be historically identified using remote-sensing technique. The instability caused i) bank erosion and accretion of meander bends and ii) movement or development of bars and changes in the flow around the bars. The remote sensing measurements indicate that maximum erosion occurred downstream of the maximum curvature of the river-center line in both reaches. The model simulations indicates that under the mean annual peak discharge the maximum of excess longitudinal velocity near the banks occurs downstream of the maximum curvature in both reaches. The channel migration coefficients of the reaches were calibrated by comparing remote-sensing measurements and model simulations. The diffrence in the migration coefficients between both reaches depends on the diffrence in bank height rather than the geotechnical properties of floodplain sediments. Possible eroded floodplain areas and accreted floodplain

  11. A methodology for delineating planning-level channel migration zones.

    Science.gov (United States)

    2014-07-01

    The Washington State administrative codes that implement the Shoreline Management Act (SMA) require communities to identify the general location of channel migration zones (CMZs), and regulate development within these areas on shoreline streams. Shor...

  12. Volume Regulated Channels

    DEFF Research Database (Denmark)

    Klausen, Thomas Kjær

    of volume perturbations evolution have developed system of channels and transporters to tightly control volume homeostasis. In the past decades evidence has been mounting, that the importance of these volume regulated channels and transporters are not restricted to the defense of cellular volume...... but are also essential for a number of physiological processes such as proliferation, controlled cell death, migration and endocrinology. The thesis have been focusing on two Channels, namely the swelling activated Cl- channel (ICl, swell) and the transient receptor potential Vanilloid (TRPV4) channel. I: Cl......- serves a multitude of functions in the mammalian cell, regulating the membrane potential (Em), cell volume, protein activity and the driving force for facilitated transporters giving Cl- and Cl- channels a major potential of regulating cellular function. These functions include control of the cell cycle...

  13. Extraction of Multithread Channel Networks With a Reduced-Complexity Flow Model

    Science.gov (United States)

    Limaye, Ajay B.

    2017-10-01

    Quantitative measures of channel network geometry inform diverse applications in hydrology, sediment transport, ecology, hazard assessment, and stratigraphic prediction. These uses require a clear, objectively defined channel network. Automated techniques for extracting channels from topography are well developed for convergent channel networks and identify flow paths based on land-surface gradients. These techniques—even when they allow multiple flow paths—do not consistently capture channel networks with frequent bifurcations (e.g., in rivers, deltas, and alluvial fans). This paper uses multithread rivers as a template to develop a new approach for channel extraction suitable for channel networks with divergences. Multithread channels are commonly mapped using observed inundation extent, and I generalize this approach using a depth-resolving, reduced-complexity flow model to map inundation patterns for fixed topography across an arbitrary range of discharge. A case study for the Platte River, Nebraska, reveals that (1) the number of bars exposed above the water surface, bar area, and the number of wetted channel threads (i.e., braiding index) peak at intermediate discharge; (2) the anisotropic scaling of bar dimensions occurs for a range of discharge; and (3) the maximum braiding index occurs at a corresponding reference discharge that provides an objective basis for comparing the planform geometry of multithread rivers. Mapping by flow depth overestimates braiding index by a factor of 2. The new approach extends channel network extraction from topography to the full spectrum of channel patterns, with the potential for comparing diverse channel patterns at scales from laboratory experiments to natural landscapes.

  14. Streambed adjustment and channel widening in eastern Nebraska

    Science.gov (United States)

    Rus, David L.; Dietsch, Benjamin J.; Simon, Andrew

    2003-01-01

    In eastern Nebraska, stream straightening and dredging efforts since the 1890s have disturbed the natural equilibrium of stream channels and have led to streambed adjustment by degradation and subsequent channel widening. This report describes a study to evaluate the effect these disturbances have had on stream channels in eastern Nebraska. Two sets of survey data were collected approximately 2 years apart during 1996-99 at 151 primary sites. Additionally, historical streambed-elevation data (dating back to the 1890s) were compiled from several sources for the primary sites and 45 supplemental sites, and relevant disturbances were identified for each of eight basin groupings. Streambed-elevation data sets were used to estimate the amount of change to the streambed at the sites over the time period of the data. Recent channel widening was documented for 73 of the primary sites by comparing the two survey sets. The majority of observed streambed-gradation responses appear to be related to the various straightening efforts and to the effects of grade-control structures in the study area. Channel responses were complicated by the presence of multiple disturbances. However, in many cases, the streambed-elevation data sets provide a reliable representation of the past streambed gradation, with some sites showing 6 to 7 meters of degradation since they were straightened. Many sites that had been straightened showed considerable degradation following the disturbance. This indicates that eastern Nebraska stream channels can regain equilibrium mainly through the slope adjustment process of head-ward-progressing degradation. Bank failures were documented at sites in all eight of the basin groupings analyzed, and widening rates were computed at 64 of 73 sites. Observed bank widening in the Big Blue River Basin, a relatively unstraightened basin, indicates that other disturbances besides stream-channel straightening may be causing channel responses in the basin and possibly in

  15. Evolutionary conservation and changes in insect TRP channels.

    Science.gov (United States)

    Matsuura, Hironori; Sokabe, Takaaki; Kohno, Keigo; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2009-09-10

    TRP (Transient Receptor Potential) channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA). NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP family members. As shown for mammalian TRP channels, this

  16. Evolutionary conservation and changes in insect TRP channels

    Directory of Open Access Journals (Sweden)

    Tominaga Makoto

    2009-09-01

    Full Text Available Abstract Background TRP (Transient Receptor Potential channels respond to diverse stimuli and thus function as the primary integrators of varied sensory information. They are also activated by various compounds and secondary messengers to mediate cell-cell interactions as well as to detect changes in the local environment. Their physiological roles have been primarily characterized only in mice and fruit flies, and evolutionary studies are limited. To understand the evolution of insect TRP channels and the mechanisms of integrating sensory inputs in insects, we have identified and compared TRP channel genes in Drosophila melanogaster, Bombyx mori, Tribolium castaneum, Apis mellifera, Nasonia vitripennis, and Pediculus humanus genomes as part of genome sequencing efforts. Results All the insects examined have 2 TRPV, 1 TRPN, 1 TRPM, 3 TRPC, and 1 TRPML subfamily members, demonstrating that these channels have the ancient origins in insects. The common pattern also suggests that the mechanisms for detecting mechanical and visual stimuli and maintaining lysosomal functions may be evolutionarily well conserved in insects. However, a TRPP channel, the most ancient TRP channel, is missing in B. mori, A. mellifera, and N. vitripennis. Although P. humanus and D. melanogaster contain 4 TRPA subfamily members, the other insects have 5 TRPA subfamily members. T. castaneum, A. mellifera, and N. vitripennis contain TRPA5 channels, which have been specifically retained or gained in Coleoptera and Hymenoptera. Furthermore, TRPA1, which functions for thermotaxis in Drosophila, is missing in A. mellifera and N. vitripennis; however, they have other Hymenoptera-specific TRPA channels (AmHsTRPA and NvHsTRPA. NvHsTRPA expressed in HEK293 cells is activated by temperature increase, demonstrating that HsTRPAs function as novel thermal sensors in Hymenoptera. Conclusion The total number of insect TRP family members is 13-14, approximately half that of mammalian TRP

  17. JADSPE, Multi-Channel Gamma Spectra Unfolding Program

    International Nuclear Information System (INIS)

    Rikovska, J.; Stejskalova, E.

    2005-01-01

    1 - Description of program or function: JADSPE is a package of eight programs to process multi-channel gamma-ray spectra. The programs can be used to: - locate automatically spectral peaks and calculate their positions, areas, and full widths at half maximum (FWHM); - plot the spectra on a CALCOMP plotter, TEKTRONIX terminal or a line printer; - add or subtract several spectra with the possibility of adjusting either their start and end channels or the maxima of the chosen corresponding peaks. The JADSPE package comprises the following programs: - SPECTF: automatic location of peaks and calculation of their positions, areas and FWHMS. The standard deviations of peak parameters are also determined, and each evaluated region is plotted on the line printer. - SPECT1: The areas and FWHMs are calculated for peaks whose positions are known beforehand. The standard deviations of calculated parameters are also determined, and each evaluated region is plotted on the line printer. - PLOCHA: The peak net area is calculated by summing the channel contents in specified regions and by subtracting a linear background. - GRAPH: Spectrum plotting on the line printer. - PLTNEW: Spectrum plotting on CALCOMP plotter or on TEKTRONIX terminal. - SUMDIF: The channel contents of several gamma-ray spectra are added or subtracted. - SSPFP: The channel contents of several gamma-ray spectra are added with adjustment of the maxima of specified peaks. - SOUCET: The channel contents of several gamma-ray spectra are added with the adjustment of start and end channels of the spectra. 2 - Method of solution: Non-linear least-square fit. 3 - Restrictions on the complexity of the problem: The full energy peaks are approximated by a symmetrical Gaussian function and the underlying background is approximated by a first-order polynomial. A fixed spectrum length of 4096 channels is assumed. Maxima of: - number of peaks in one multiplet: 9; - number of peaks identified by the automatic search procedure

  18. Slack sodium-activated potassium channel membrane expression requires p38 mitogen-activated protein kinase phosphorylation.

    Science.gov (United States)

    Gururaj, Sushmitha; Fleites, John; Bhattacharjee, Arin

    2016-04-01

    p38 MAPK has long been understood as an inducible kinase under conditions of cellular stress, but there is now increasing evidence to support its role in the regulation of neuronal function. Several phosphorylation targets have been identified, an appreciable number of which are ion channels, implicating the possible involvement of p38 MAPK in neuronal excitability. The KNa channel Slack is an important protein to be studied as it is highly and ubiquitously expressed in DRG neurons and is important in the maintenance of their firing accommodation. We sought to examine if the Slack channel could be a substrate of p38 MAPK activity. First, we found that the Slack C-terminus contains two putative p38 MAPK phosphorylation sites that are highly conserved across species. Second, we show via electrophysiology experiments that KNa currents and further, Slack currents, are subject to tonic modulation by p38 MAPK. Third, biochemical approaches revealed that Slack channel regulation by p38 MAPK occurs through direct phosphorylation at the two putative sites of interaction, and mutating both sites prevented surface expression of Slack channels. Based on these results, we conclude that p38 MAPK is an obligate regulator of Slack channel function via the trafficking of channels into the membrane. The present study identifies Slack KNa channels as p38 MAPK substrates. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Nociceptive TRP Channels: Sensory Detectors and Transducers in Multiple Pain Pathologies

    Directory of Open Access Journals (Sweden)

    Aaron D. Mickle

    2016-11-01

    Full Text Available Specialized receptors belonging to the transient receptor potential (TRP family of ligand-gated ion channels constitute the critical detectors and transducers of pain-causing stimuli. Nociceptive TRP channels are predominantly expressed by distinct subsets of sensory neurons of the peripheral nervous system. Several of these TRP channels are also expressed in neurons of the central nervous system, and in non-neuronal cells that communicate with sensory nerves. Nociceptive TRPs are activated by specific physico-chemical stimuli to provide the excitatory trigger in neurons. In addition, decades of research has identified a large number of immune and neuromodulators as mediators of nociceptive TRP channel activation during injury, inflammatory and other pathological conditions. These findings have led to aggressive targeting of TRP channels for the development of new-generation analgesics. This review summarizes the complex activation and/or modulation of nociceptive TRP channels under pathophysiological conditions, and how these changes underlie acute and chronic pain conditions. Furthermore, development of small-molecule antagonists for several TRP channels as analgesics, and the positive and negative outcomes of these drugs in clinical trials are discussed. Understanding the diverse functional and modulatory properties of nociceptive TRP channels is critical to function-based drug targeting for the development of evidence-based and efficacious new generation analgesics.

  20. The Nav1.2 channel is regulated by GSK3

    Science.gov (United States)

    James, Thomas F.; Nenov, Miroslav N.; Wildburger, Norelle C.; Lichti, Cheryl; Luisi, Jonathan; Vergara, Fernanda; Panova-Electronova, Neli I.; Nilsson, Carol L.; Rudra, Jai; Green, Thomas A.; Labate, Demetrio; Laezza, Fernanda

    2015-01-01

    Background Phosphorylation plays an essential role in regulating the voltage-gated sodium (Nav) channels and excitability. Yet, a surprisingly limited number of kinases have been identified as regulators of Nav channels. Herein, we posited that glycogen synthase kinase 3 (GSK3), a critical kinase found associated with numerous brain disorders, might directly regulate neuronal Nav channels. Methods We used patch-clamp electrophysiology to record sodium currents from Nav1.2 channels stably expressed in HEK-293 cells. mRNA and protein levels were quantified with RT-PCR, Western blot, or confocal microscopy, and in vitro phosphorylation and mass spectrometry to identify phosphorylated residues. Results We found that exposure of cells to GSK3 inhibitor XIII significantly potentiates the peak current density of Nav1.2, a phenotype reproduced by silencing GSK3 with siRNA. Contrarily, overexpression of GSK3β suppressed Nav1.2-encoded currents. Neither mRNA nor total protein expression were changed upon GSK3 inhibition. Cell surface labeling of CD4-chimeric constructs expressing intracellular domains of the Nav1.2 channel indicates that cell surface expression of CD4-Nav1.2-Ctail was up-regulated upon pharmacological inhibition of GSK3, resulting in an increase of surface puncta at the plasma membrane. Finally, using in vitro phosphorylation in combination with high resolution mass spectrometry, we further demonstrate that GSK3β phosphorylates T1966 at the C-terminal tail of Nav1.2. Conclusion These findings provide evidence for a new mechanism by which GSK3 modulate Nav channel function via its C-terminal tail. General Significance These findings provide fundamental knowledge in understanding signaling dysfunction common in several neuropsychiatric disorders. PMID:25615535

  1. Biased and flow driven Brownian motion in periodic channels

    Science.gov (United States)

    Martens, S.; Straube, A.; Schmid, G.; Schimansky-Geier, L.; Hänggi, P.

    2012-02-01

    In this talk we will present an expansion of the common Fick-Jacobs approximation to hydrodynamically as well as by external forces driven Brownian transport in two-dimensional channels exhibiting smoothly varying periodic cross-section. We employ an asymptotic analysis to the components of the flow field and to stationary probability density for finding the particles within the channel in a geometric parameter. We demonstrate that the problem of biased Brownian dynamics in a confined 2D geometry can be replaced by Brownian motion in an effective periodic one-dimensional potential ψ(x) which takes the external bias, the change of the local channel width, and the flow velocity component in longitudinal direction into account. In addition, we study the influence of the external force magnitude, respectively, the pressure drop of the fluid on the particle transport quantities like the averaged velocity and the effective diffusion coefficient. The critical ratio between the external force and pressure drop where the average velocity equals zero is identified and the dependence of the latter on the channel geometry is derived. Analytic findings are confirmed by numerical simulations of the particle dynamics in a reflection symmetric sinusoidal channel.

  2. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels.

    Science.gov (United States)

    Zhang, Tingxin; Chi, Shaopeng; Jiang, Fan; Zhao, Qiancheng; Xiao, Bailong

    2017-11-27

    Piezo proteins are bona fide mammalian mechanotransduction channels for various cell types including endothelial cells. The mouse Piezo1 of 2547 residues forms a three-bladed, propeller-like homo-trimer comprising a central pore-module and three propeller-structures that might serve as mechanotransduction-modules. However, the mechanogating and regulation of Piezo channels remain unclear. Here we identify the sarcoplasmic /endoplasmic-reticulum Ca 2+ ATPase (SERCA), including the widely expressed SERCA2, as Piezo interacting proteins. SERCA2 strategically suppresses Piezo1 via acting on a 14-residue-constituted intracellular linker connecting the pore-module and mechanotransduction-module. Mutating the linker impairs mechanogating and SERCA2-mediated modulation of Piezo1. Furthermore, the synthetic linker-peptide disrupts the modulatory effects of SERCA2, demonstrating the key role of the linker in mechanogating and regulation. Importantly, the SERCA2-mediated regulation affects Piezo1-dependent migration of endothelial cells. Collectively, we identify SERCA-mediated regulation of Piezos and the functional significance of the linker, providing important insights into the mechanogating and regulation mechanisms of Piezo channels.

  3. The Breakdown: Hillslope Sources of Channel Blocks in Bedrock Landscapes

    Science.gov (United States)

    Selander, B.; Anderson, S. P.; Rossi, M.

    2017-12-01

    Block delivery from hillslopes is a poorly understood process that influences bedrock channel incision rates and shapes steep terrain. Previous studies demonstrate that hillslope sediment delivery rate and grain size increases with channel downcutting rate or fracture density (Attal et al., 2015, ESurf). However, blocks that exceed the competence of the channel can inhibit incision. In Boulder Creek, a bedrock channel in the Colorado Front Range, large boulders (>1 m diameter) are most numerous in the steepest channel reaches; their distribution seems to reflect autogenic channel-hillslope feedback between incision rate and block delivery (Shobe et al., 2016, GRL). It is clear that the processes, rates of production, and delivery of large blocks from hillslopes into channels are critical to our understanding of steep terrain evolution. Fundamental questions are 1) whether block production or block delivery is rate limiting, 2) what mechanisms release blocks, and 3) how block production and transport affect slope morphology. As a first step, we map rock outcrops on the granodiorite hillslopes lining Boulder Creek within Boulder Canyon using a high resolution DEM. Our algorithm uses high ranges of curvature values in conjunction with slopes steeper than the angle of repose to quickly identify rock outcrops. We field verified mapped outcrop and sediment-mantled locations on hillslopes above and below the channel knickzone. We find a greater abundance of exposed rock outcrops on steeper hillslopes in Boulder Canyon. Additionally, we find that channel reaches with large in-channel blocks are located at the base of hillslopes with large areas of exposed bedrock, while reaches lacking large in-channel blocks tend to be at the base of predominately soil mantled and forested hillslopes. These observations support the model of block delivery and channel incision of Shobe et al. (2016, GRL). Moreover, these results highlight the conundrum of how rapid channel incision is

  4. A Gate Hinge Controls the Epithelial Calcium Channel TRPV5

    OpenAIRE

    van der Wijst, Jenny; Leunissen, Elizabeth H.; Blanchard, Maxime G.; Venselaar, Hanka; Verkaart, Sjoerd; Paulsen, Candice E.; Bindels, Ren? J.; Hoenderop, Joost G.

    2017-01-01

    TRPV5 is unique within the large TRP channel family for displaying a high Ca2+ selectivity together with Ca2+-dependent inactivation. Our study aims to uncover novel insights into channel gating through in-depth structure-function analysis. We identify an exceptional tryptophan (W583) at the terminus of the intracellular pore that is unique for TRPV5 (and TRPV6). A combination of site-directed mutagenesis, biochemical and electrophysiological analysis, together with homology modeling, demonst...

  5. Molecular cloning of a K+ channel from the malaria parasite Plasmodium falciparum

    DEFF Research Database (Denmark)

    Ellekvist, Peter; Ricke, Christina Høier; Litman, Thomas

    2004-01-01

    In most living cells, K(+) channels are important for the generation of the membrane potential and for volume regulation. The parasite Plasmodium falciparum, which causes malignant malaria, must be able to deal with large variations in the ambient K(+) concentration: it is exposed to high...... concentrations of K(+) when inside the erythrocyte and low concentrations when in plasma. In the recently published genome of P. falciparum, we have identified a gene, pfkch1, encoding a potential K(+) channel, which to some extent resembles the big-conductance (BK) K(+) channel. We have cloned the approximately...

  6. β1 subunit stabilises sodium channel Nav1.7 against mechanical stress.

    Science.gov (United States)

    Körner, Jannis; Meents, Jannis; Machtens, Jan-Philipp; Lampert, Angelika

    2018-06-01

    The voltage-gated sodium channel Nav1.7 is a key player in neuronal excitability and pain signalling. In addition to voltage sensing, the channel is also modulated by mechanical stress. Using whole-cell patch-clamp experiments, we discovered that the sodium channel subunit β1 is able to prevent the impact of mechanical stress on Nav1.7. An intramolecular disulfide bond of β1 was identified to be essential for stabilisation of inactivation, but not activation, against mechanical stress using molecular dynamics simulations, homology modelling and site-directed mutagenesis. Our results highlight the role of segment 6 of domain IV in fast inactivation. We present a candidate mechanism for sodium channel stabilisation against mechanical stress, ensuring reliable channel functionality in living systems. Voltage-gated sodium channels are key players in neuronal excitability and pain signalling. Precise gating of these channels is crucial as even small functional alterations can lead to pathological phenotypes such as pain or heart failure. Mechanical stress has been shown to affect sodium channel activation and inactivation. This suggests that stabilising components are necessary to ensure precise channel gating in living organisms. Here, we show that mechanical shear stress affects voltage dependence of activation and fast inactivation of the Nav1.7 channel. Co-expression of the β1 subunit, however, protects both gating modes of Nav1.7 against mechanical shear stress. Using molecular dynamics simulation, homology modelling and site-directed mutagenesis, we identify an intramolecular disulfide bond of β1 (Cys21-Cys43) which is partially involved in this process: the β1-C43A mutant prevents mechanical modulation of voltage dependence of activation, but not of fast inactivation. Our data emphasise the unique role of segment 6 of domain IV for sodium channel fast inactivation and confirm previous reports that the intracellular process of fast inactivation can be

  7. Water removal characteristics of parallel serpentine channels

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, K.; Zhou, B.; Quan, P. [Windsor Univ., ON (Canada). Dept. of Mechanical, Automotive and Materials Engineering

    2005-07-01

    A study was conducted in which the liquid water behaviours in parallel serpentine channels with manifolds on the cathode side of a proton exchange membrane (PEM) fuel cell stack were examined. A 3-dimensional, unsteady two-phase flow model within the commercial computational fluid dynamics software package FLUENT was used. Membrane electrode assemblies (MEA) were placed on different sides in the numerical analysis. Several water management issues were identified for this type of fuel cell stack by examining the flow behaviours of liquid water and airflow velocity fields. It was shown that water in the outflow manifold could be blocked by air streams from the gas flow channels, with water flowing continuously into the outflow manifold. It was also shown that the pressure drop along all the unit cells can never increase or decrease at the same pace. Water which adheres to the end wall of both the inlet and outlet manifolds is difficult to remove. It was suggested that faster water drainage can be achieved by keeping the MEA side of the gas flow channels close to the outlet of the outflow manifold. It was also suggested that the collecting and separating effect at the serpentine gas flow channels could improve the water drainage. 8 refs., 10 figs.

  8. A channel profile analyser

    International Nuclear Information System (INIS)

    Gobbur, S.G.

    1983-01-01

    It is well understood that due to the wide band noise present in a nuclear analog-to-digital converter, events at the boundaries of adjacent channels are shared. It is a difficult and laborious process to exactly find out the shape of the channels at the boundaries. A simple scheme has been developed for the direct display of channel shape of any type of ADC on a cathode ray oscilliscope display. This has been accomplished by sequentially incrementing the reference voltage of a precision pulse generator by a fraction of a channel and storing ADC data in alternative memory locations of a multichannel pulse height analyser. Alternative channels are needed due to the sharing at the boundaries of channels. In the flat region of the profile alternate memory locations are channels with zero counts and channels with the full scale counts. At the boundaries all memory locations will have counts. The shape of this is a direct display of the channel boundaries. (orig.)

  9. Insight into DEG/ENaC channel gating from genetics and structure.

    Science.gov (United States)

    Eastwood, Amy L; Goodman, Miriam B

    2012-10-01

    The founding members of the superfamily of DEG/ENaC ion channel proteins are C. elegans proteins that form mechanosensitive channels in touch and pain receptors. For more than a decade, the research community has used mutagenesis to identify motifs that regulate gating. This review integrates insight derived from unbiased in vivo mutagenesis screens with recent crystal structures to develop new models for activation of mechanically gated DEGs.

  10. Learning in the machine: The symmetries of the deep learning channel.

    Science.gov (United States)

    Baldi, Pierre; Sadowski, Peter; Lu, Zhiqin

    2017-11-01

    In a physical neural system, learning rules must be local both in space and time. In order for learning to occur, non-local information must be communicated to the deep synapses through a communication channel, the deep learning channel. We identify several possible architectures for this learning channel (Bidirectional, Conjoined, Twin, Distinct) and six symmetry challenges: (1) symmetry of architectures; (2) symmetry of weights; (3) symmetry of neurons; (4) symmetry of derivatives; (5) symmetry of processing; and (6) symmetry of learning rules. Random backpropagation (RBP) addresses the second and third symmetry, and some of its variations, such as skipped RBP (SRBP) address the first and the fourth symmetry. Here we address the last two desirable symmetries showing through simulations that they can be achieved and that the learning channel is particularly robust to symmetry variations. Specifically, random backpropagation and its variations can be performed with the same non-linear neurons used in the main input-output forward channel, and the connections in the learning channel can be adapted using the same algorithm used in the forward channel, removing the need for any specialized hardware in the learning channel. Finally, we provide mathematical results in simple cases showing that the learning equations in the forward and backward channels converge to fixed points, for almost any initial conditions. In symmetric architectures, if the weights in both channels are small at initialization, adaptation in both channels leads to weights that are essentially symmetric during and after learning. Biological connections are discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Automatic detection and classification of artifacts in single-channel EEG

    DEFF Research Database (Denmark)

    Olund, Thomas; Duun-Henriksen, Jonas; Kjaer, Troels W.

    2014-01-01

    Ambulatory EEG monitoring can provide medical doctors important diagnostic information, without hospitalizing the patient. These recordings are however more exposed to noise and artifacts compared to clinically recorded EEG. An automatic artifact detection and classification algorithm for single......-channel EEG is proposed to help identifying these artifacts. Features are extracted from the EEG signal and wavelet subbands. Subsequently a selection algorithm is applied in order to identify the best discriminating features. A non-linear support vector machine is used to discriminate among different...... artifact classes using the selected features. Single-channel (Fp1-F7) EEG recordings are obtained from experiments with 12 healthy subjects performing artifact inducing movements. The dataset was used to construct and validate the model. Both subject-specific and generic implementation, are investigated...

  12. Sub-micrometer fluidic channel for measuring photon emitting entities

    Science.gov (United States)

    Stavis, Samuel M; Edel, Joshua B; Samiee, Kevan T; Craighead, Harold G

    2014-11-18

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  13. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M.; Edel, Joshua B.; Samiee, Kevan T.; Craighead, Harold G.

    2010-04-13

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  14. Quantum dot conjugates in a sub-micrometer fluidic channel

    Science.gov (United States)

    Stavis, Samuel M [Ithaca, NY; Edel, Joshua B [Brookline, MA; Samiee, Kevan T [Ithaca, NY; Craighead, Harold G [Ithaca, NY

    2008-07-29

    A nanofluidic channel fabricated in fused silica with an approximately 500 nm square cross section was used to isolate, detect and identify individual quantum dot conjugates. The channel enables the rapid detection of every fluorescent entity in solution. A laser of selected wavelength was used to excite multiple species of quantum dots and organic molecules, and the emission spectra were resolved without significant signal rejection. Quantum dots were then conjugated with organic molecules and detected to demonstrate efficient multicolor detection. PCH was used to analyze coincident detection and to characterize the degree of binding. The use of a small fluidic channel to detect quantum dots as fluorescent labels was shown to be an efficient technique for multiplexed single molecule studies. Detection of single molecule binding events has a variety of applications including high throughput immunoassays.

  15. Voltage-dependent gating in a "voltage sensor-less" ion channel.

    Directory of Open Access Journals (Sweden)

    Harley T Kurata

    2010-02-01

    Full Text Available The voltage sensitivity of voltage-gated cation channels is primarily attributed to conformational changes of a four transmembrane segment voltage-sensing domain, conserved across many levels of biological complexity. We have identified a remarkable point mutation that confers significant voltage dependence to Kir6.2, a ligand-gated channel that lacks any canonical voltage-sensing domain. Similar to voltage-dependent Kv channels, the Kir6.2[L157E] mutant exhibits time-dependent activation upon membrane depolarization, resulting in an outwardly rectifying current-voltage relationship. This voltage dependence is convergent with the intrinsic ligand-dependent gating mechanisms of Kir6.2, since increasing the membrane PIP2 content saturates Po and eliminates voltage dependence, whereas voltage activation is more dramatic when channel Po is reduced by application of ATP or poly-lysine. These experiments thus demonstrate an inherent voltage dependence of gating in a "ligand-gated" K+ channel, and thereby provide a new view of voltage-dependent gating mechanisms in ion channels. Most interestingly, the voltage- and ligand-dependent gating of Kir6.2[L157E] is highly sensitive to intracellular [K+], indicating an interaction between ion permeation and gating. While these two key features of channel function are classically dealt with separately, the results provide a framework for understanding their interaction, which is likely to be a general, if latent, feature of the superfamily of cation channels.

  16. Identification of potential novel interaction partners of the sodium-activated potassium channels Slick and Slack in mouse brain.

    Science.gov (United States)

    Rizzi, Sandra; Schwarzer, Christoph; Kremser, Leopold; Lindner, Herbert H; Knaus, Hans-Günther

    2015-12-01

    The sodium-activated potassium channels Slick (Slo2.1, KCNT2) and Slack (Slo2.2, KCNT1) are paralogous channels of the Slo family of high-conductance potassium channels. Slick and Slack channels are widely distributed in the mammalian CNS and they play a role in slow afterhyperpolarization, generation of depolarizing afterpotentials and in setting and stabilizing the resting potential. In the present study we used a combined approach of (co)-immunoprecipitation studies, Western blot analysis, double immunofluorescence and mass spectrometric sequencing in order to investigate protein-protein interactions of the Slick and Slack channels. The data strongly suggest that Slick and Slack channels co-assemble into identical cellular complexes. Double immunofluorescence experiments revealed that Slick and Slack channels co-localize in distinct mouse brain regions. Moreover, we identified the small cytoplasmic protein beta-synuclein and the transmembrane protein 263 (TMEM 263) as novel interaction partners of both, native Slick and Slack channels. In addition, the inactive dipeptidyl-peptidase (DPP 10) and the synapse associated protein 102 (SAP 102) were identified as constituents of the native Slick and Slack channel complexes in the mouse brain. This study presents new insights into protein-protein interactions of native Slick and Slack channels in the mouse brain.

  17. Purification and subunit structure of a putative K+-channel protein identified by its binding properties for dendrotoxin I

    International Nuclear Information System (INIS)

    Rehm, H.; Lazdunski, M.

    1988-01-01

    The binding protein for the K + -channel toxin dendrotoxin I was purified from a detergent extract of rat brain membranes. The purification procedure utilized chromatography on DEAE-Trisacryl, affinity chromatography on a dendrotoxin-I-Aca 22 column, and wheat germ agglutinin-Affigel 10 with a final 3,800- to 4,600-fold enrichment and a recovery of 8-16%. The high affinity (K d , 40-100 pM) and specificity of the binding site are retained throughout the purification procedure. Analysis of the purified material on silver-stained NaDodSO 4 /polyacrylamide gel revealed three bands of M r 76,000-80,000, 38,000 and 35,000. Interestingly, the binding site for 125 I-labeled mast cell degranulating peptide, another putative K + -channel ligand from bee venom, which induces long-term potentiation in hippocampus, seems to reside on the same protein complex, as both binding sites copurify through the entire purification protocol

  18. Pannexin-1 channels show distinct morphology and no gap junction characteristics in mammalian cells.

    Science.gov (United States)

    Beckmann, Anja; Grissmer, Alexander; Krause, Elmar; Tschernig, Thomas; Meier, Carola

    2016-03-01

    Pannexins (Panx) are proteins with a similar membrane topology to connexins, the integral membrane protein of gap junctions. Panx1 channels are generally of major importance in a large number of system and cellular processes and their function has been thoroughly characterized. In contrast, little is known about channel structure and subcellular distribution. We therefore determine the subcellular localization of Panx1 channels in cultured cells and aim at the identification of channel morphology in vitro. Using freeze-fracture replica immunolabeling on EYFP-Panx1-overexpressing HEK 293 cells, large particles were identified in plasma membranes, which were immunogold-labeled using either GFP or Panx1 antibodies. There was no labeling or particles in the nuclear membranes of these cells, pointing to plasma membrane localization of Panx1-EYFP channels. The assembly of particles was irregular, this being in contrast to the regular pattern of gap junctions. The fact that no counterparts were identified on apposing cells, which would have been indicative of intercellular signaling, supported the idea of Panx1 channels within one membrane. Control cells (transfected with EYFP only, non-transfected) were devoid of both particles and immunogold labeling. Altogether, this study provides the first demonstration of Panx1 channel morphology and assembly in intact cells. The identification of Panx1 channels as large particles within the plasma membrane provides the knowledge required to enable recognition of Panx1 channels in tissues in future studies. Thus, these results open up new avenues for the detailed analysis of the subcellular localization of Panx1 and of its nearest neighbors such as purinergic receptors in vivo.

  19. Channel and Timeslot Co-Scheduling with Minimal Channel Switching for Data Aggregation in MWSNs

    Directory of Open Access Journals (Sweden)

    Sanggil Yeoum

    2017-05-01

    Full Text Available Collision-free transmission and efficient data transfer between nodes can be achieved through a set of channels in multichannel wireless sensor networks (MWSNs. While using multiple channels, we have to carefully consider channel interference, channel and time slot (resources optimization, channel switching delay, and energy consumption. Since sensor nodes operate on low battery power, the energy consumed in channel switching becomes an important challenge. In this paper, we propose channel and time slot scheduling for minimal channel switching in MWSNs, while achieving efficient and collision-free transmission between nodes. The proposed scheme constructs a duty-cycled tree while reducing the amount of channel switching. As a next step, collision-free time slots are assigned to every node based on the minimal data collection delay. The experimental results demonstrate that the validity of our scheme reduces the amount of channel switching by 17.5%, reduces energy consumption for channel switching by 28%, and reduces the schedule length by 46%, as compared to the existing schemes.

  20. The structure of a conserved Piezo channel domain reveals a novel beta sandwich fold

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens; Lee, Jonas; Reid, Michelle; Rees, Douglas C.

    2014-01-01

    Summary Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a novel beta sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in Dehydrated Hereditary Stomatocytosis (DHS) patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. PMID:25242456

  1. Surface channeling

    International Nuclear Information System (INIS)

    Sizmann, R.; Varelas, C.

    1976-01-01

    There is experimental evidence that swift light ions incident at small angles towards single crystalline surfaces can lose an appreciable fraction of their kinetic energy during reflection. It is shown that these projectiles penetrate into the bulk surface region of the crystal. They can travel as channeled particles along long paths through the solid (surface channeling). The angular distribution and the depth history of the re-emerged projectiles are investigated by computer simulations. A considerable fraction of the penetrating projectiles re-emerges from the crystal with constant transverse energy if the angle of incidence is smaller than the critical angle for axial channeling. Analytical formulae are derived based on a diffusion model for surface channeling. A comparison with experimental data exhibits the relevance of the analytical solutions. (Auth.)

  2. Even distribution/dividing of single-phase fluids by symmetric bifurcation of flow channels

    International Nuclear Information System (INIS)

    Liu, Hong; Li, Peiwen

    2013-01-01

    Highlights: ► We addressed an issue of distributing a flow to a number of flow channels uniformly. ► The flow distribution is accomplished through bifurcation of channels. ► Some key parameters to the flow distribution uniformity have been identified. ► Flow uniformity was studied for several versions of flow distributor designs. ► A novel fluid packaging device of high efficiency was provided. -- Abstract: This study addresses a fundamental issue of distributing a single-phase fluid flow into a number of flow channels uniformly. A basic mechanism of flow distribution is accomplished through bifurcation of channels that symmetrically split one flow channel into two downstream channels. Applying the basic mechanism, cascades flow distributions are designed to split one flow into a large number of downstream flows uniformly. Some key parameters decisive to the flow distribution uniformity in such a system have been identified, and the flow distribution uniformity of air was studied for several versions of flow distributor designs using CFD analysis. The effect of the key parameters of the flow channel designs to the flow distribution uniformity was investigated. As an example of industrial application, a novel fluid packaging device of high efficiency was proposed and some CFD analysis results for the device were provided. The optimized flow distributor makes a very good uniform flow distribution which will significantly improve the efficiency of fluid packaging. The technology is expected to be of great significance to many industrial devices that require high uniformity of flow distribution

  3. Expression and distribution of voltage-gated ion channels in ferret sinoatrial node.

    Science.gov (United States)

    Brahmajothi, Mulugu V; Morales, Michael J; Campbell, Donald L; Steenbergen, Charles; Strauss, Harold C

    2010-10-01

    Spontaneous diastolic depolarization in the sinoatrial (SA) node enables it to serve as pacemaker of the heart. The variable cell morphology within the SA node predicts that ion channel expression would be heterogeneous and different from that in the atrium. To evaluate ion channel heterogeneity within the SA node, we used fluorescent in situ hybridization to examine ion channel expression in the ferret SA node region and atrial appendage. SA nodal cells were distinguished from surrounding cardiac myocytes by expression of the slow (SA node) and cardiac (surrounding tissue) forms of troponin I. Nerve cells in the sections were identified by detection of GAP-43 and cytoskeletal middle neurofilament. Transcript expression was characterized for the 4 hyperpolarization-activated cation channels, 6 voltage-gated Na(+) channels, 3 voltage-gated Ca(2+) channels, 24 voltage-gated K(+) channel α-subunits, and 3 ancillary subunits. To ensure that transcript expression was representative of protein expression, immunofluorescence was used to verify localization patterns of voltage-dependent K(+) channels. Colocalizations were performed to observe any preferential patterns. Some overlapping and nonoverlapping binding patterns were observed. Measurement of different cation channel transcripts showed heterogeneous expression with many different patterns of expression, attesting to the complexity of electrical activity in the SA node. This study provides insight into the possible role ion channel heterogeneity plays in SA node pacemaker activity.

  4. Sub-Nanometer Channels Embedded in Two-Dimensional Materials

    KAUST Repository

    Han, Yimo

    2017-07-31

    Two-dimensional (2D) materials are among the most promising candidates for next-generation electronics due to their atomic thinness, allowing for flexible transparent electronics and ultimate length scaling1. Thus far, atomically-thin p-n junctions2-7, metal-semiconductor contacts8-10, and metal-insulator barriers11-13 have been demonstrated. While 2D materials achieve the thinnest possible devices, precise nanoscale control over the lateral dimensions are also necessary. Although external one-dimensional (1D) carbon nanotubes14 can be used to locally gate 2D materials, this adds a non-trivial third dimension, complicating device integration and flexibility. Here, we report the direct synthesis of sub-nanometer 1D MoS2 channels embedded within WSe2 monolayers, using a dislocation-catalyzed approach. The 1D channels have edges free of misfit dislocations and dangling bonds, forming a coherent interface with the embedding 2D matrix. Periodic dislocation arrays produce 2D superlattices of coherent MoS2 1D channels in WSe2. Molecular dynamics (MD) simulations have identified other combinations of 2D materials that could form 1D channels. Density function theory (DFT) calculation predicts these 1D channels display type II band alignment needed for carrier confinement and charge separation to access the ultimate length scales necessary for future electronic applications.

  5. Beyond voltage-gated ion channels: Voltage-operated membrane proteins and cellular processes.

    Science.gov (United States)

    Zhang, Jianping; Chen, Xingjuan; Xue, Yucong; Gamper, Nikita; Zhang, Xuan

    2018-04-18

    Voltage-gated ion channels were believed to be the only voltage-sensitive proteins in excitable (and some non-excitable) cells for a long time. Emerging evidence indicates that the voltage-operated model is shared by some other transmembrane proteins expressed in both excitable and non-excitable cells. In this review, we summarize current knowledge about voltage-operated proteins, which are not classic voltage-gated ion channels as well as the voltage-dependent processes in cells for which single voltage-sensitive proteins have yet to be identified. Particularly, we will focus on the following. (1) Voltage-sensitive phosphoinositide phosphatases (VSP) with four transmembrane segments homologous to the voltage sensor domain (VSD) of voltage-gated ion channels; VSPs are the first family of proteins, other than the voltage-gated ion channels, for which there is sufficient evidence for the existence of the VSD domain; (2) Voltage-gated proton channels comprising of a single voltage-sensing domain and lacking an identified pore domain; (3) G protein coupled receptors (GPCRs) that mediate the depolarization-evoked potentiation of Ca 2+ mobilization; (4) Plasma membrane (PM) depolarization-induced but Ca 2+ -independent exocytosis in neurons. (5) Voltage-dependent metabolism of phosphatidylinositol 4,5-bisphosphate (PtdIns[4,5]P 2 , PIP 2 ) in the PM. These recent discoveries expand our understanding of voltage-operated processes within cellular membranes. © 2018 Wiley Periodicals, Inc.

  6. LRRK2 regulates voltage-gated calcium channel function.

    Directory of Open Access Journals (Sweden)

    Cade eBedford

    2016-05-01

    Full Text Available Voltage-gated Ca2+ (CaV channels enable Ca2+ influx in response to membrane depolarization. CaV2.1 channels are localized to the presynaptic membrane of many types of neurons where they are involved in triggering neurotransmitter release. Several signaling proteins have been identified as important CaV2.1 regulators including protein kinases, G-proteins and Ca2+ binding proteins. Recently, we discovered that leucine rich repeat kinase 2 (LRRK2, a protein associated with inherited Parkinson’s disease, interacts with specific synaptic proteins and influences synaptic transmission. Since synaptic proteins functionally interact with CaV2.1 channels and synaptic transmission is triggered by Ca2+ entry via CaV2.1, we investigated whether LRRK2 could impact CaV2.1 channel function. CaV2.1 channel properties were measured using whole cell patch clamp electrophysiology in HEK293 cells transfected with CaV2.1 subunits and various LRRK2 constructs. Our results demonstrate that both wild type LRRK2 and the G2019S LRRK2 mutant caused a significant increase in whole cell Ca2+ current density compared to cells expressing only the CaV2.1 channel complex. In addition, LRRK2 expression caused a significant hyperpolarizing shift in voltage-dependent activation while having no significant effect on inactivation properties. These functional changes in CaV2.1 activity are likely due to a direct action of LRRK2 as we detected a physical interaction between LRRK2 and the β3 CaV channel subunit via coimmunoprecipitation. Furthermore, effects on CaV2.1 channel function are dependent on LRRK2 kinase activity as these could be reversed via treatment with a LRRK2 inhibitor. Interestingly, LRRK2 also augmented endogenous voltage-gated Ca2+ channel function in PC12 cells suggesting other CaV channels could also be regulated by LRRK2. Overall, our findings support a novel physiological role for LRRK2 in regulating CaV2.1 function that could have implications for how

  7. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels

    Directory of Open Access Journals (Sweden)

    Weiyun Huang

    2017-02-01

    Full Text Available ABSTRACT Voltage-gated sodium (Nav channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Nav channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Nav channels, with Nav1.1 and Nav1.5 each harboring more than 400 mutations. Nav channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Nav channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Cav channel Cav1.1 provides a template for homology-based structural modeling of the evolutionarily related Nav channels. In this Resource article, we summarized all the reported disease-related mutations in human Nav channels, generated a homologous model of human Nav1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Nav channels, the analysis presented here serves as the base framework for mechanistic investigation of Nav channelopathies and for potential structure-based drug discovery.

  8. Structure-based assessment of disease-related mutations in human voltage-gated sodium channels.

    Science.gov (United States)

    Huang, Weiyun; Liu, Minhao; Yan, S Frank; Yan, Nieng

    2017-06-01

    Voltage-gated sodium (Na v ) channels are essential for the rapid upstroke of action potentials and the propagation of electrical signals in nerves and muscles. Defects of Na v channels are associated with a variety of channelopathies. More than 1000 disease-related mutations have been identified in Na v channels, with Na v 1.1 and Na v 1.5 each harboring more than 400 mutations. Na v channels represent major targets for a wide array of neurotoxins and drugs. Atomic structures of Na v channels are required to understand their function and disease mechanisms. The recently determined atomic structure of the rabbit voltage-gated calcium (Ca v ) channel Ca v 1.1 provides a template for homology-based structural modeling of the evolutionarily related Na v channels. In this Resource article, we summarized all the reported disease-related mutations in human Na v channels, generated a homologous model of human Na v 1.7, and structurally mapped disease-associated mutations. Before the determination of structures of human Na v channels, the analysis presented here serves as the base framework for mechanistic investigation of Na v channelopathies and for potential structure-based drug discovery.

  9. Channels of health communications used among Korean and Asian Indian older adults.

    Science.gov (United States)

    Lee, Ji Seon

    2010-01-01

    According to Healthy People 2010, health communication is an important tool to reduce health disparities. Communication channels in which people prefer to receive health information may differ by race/ethnicity. One of the main challenges in designing an effective health communication program is to identify the most trusted and most often used channels of health information by Asian older adults. The aim of this study is to determine which health communication channels can be used to promote healthy lifestyles among older adults. A non-probability, convenience-sampling technique was used to recruit Korean (n = 9) and Asian Indian (n = 9) older adults from two senior centers in New York City. The findings from the two focus groups identified three distinct channels used by Asian older adults when obtaining health information: interpersonal (i.e., health care providers, word of mouth), mass media (i.e., ethnic mass media sources), and community specific (i.e., religious organizations, community centers). Health communication is an important area for prevention. Increased efforts are needed to develop culturally appropriate health messages and equally important to deliver these messages in the context in which Asian older adults trust and use the most.

  10. An information-guided channel-hopping scheme for block-fading channels with estimation errors

    KAUST Repository

    Yang, Yuli

    2010-12-01

    Information-guided channel-hopping technique employing multiple transmit antennas was previously proposed for supporting high data rate transmission over fading channels. This scheme achieves higher data rates than some mature schemes, such as the well-known cyclic transmit antenna selection and space-time block coding, by exploiting the independence character of multiple channels, which effectively results in having an additional information transmitting channel. Moreover, maximum likelihood decoding may be performed by simply decoupling the signals conveyed by the different mapping methods. In this paper, we investigate the achievable spectral efficiency of this scheme in the case of having channel estimation errors, with optimum pilot overhead for minimum meansquare error channel estimation, when transmitting over blockfading channels. Our numerical results further substantiate the robustness of the presented scheme, even with imperfect channel state information. ©2010 IEEE.

  11. ASIC3 Channels Integrate Agmatine and Multiple Inflammatory Signals through the Nonproton Ligand Sensing Domain

    Directory of Open Access Journals (Sweden)

    Cao Hui

    2010-12-01

    Full Text Available Abstract Background Acid-sensing ion channels (ASICs have long been known to sense extracellular protons and contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ, to identify a novel nonproton sensing domain in the ASIC3 channel, and proposed that, based on its structural similarity with GMQ, the arginine metabolite agmatine (AGM may be an endogenous nonproton ligand for ASIC3 channels. Results Here, we present further evidence for the physiological correlation between AGM and ASIC3. Among arginine metabolites, only AGM and its analog arcaine (ARC activated ASIC3 channels at neutral pH in a sustained manner similar to GMQ. In addition to the homomeric ASIC3 channels, AGM also activated heteromeric ASIC3 plus ASIC1b channels, extending its potential physiological relevance. Importantly, the process of activation by AGM was highly sensitive to mild acidosis, hyperosmolarity, arachidonic acid (AA, lactic acid and reduced extracellular Ca2+. AGM-induced ASIC3 channel activation was not through the chelation of extracellular Ca2+ as occurs with increased lactate, but rather through a direct interaction with the newly identified nonproton ligand sensing domain. Finally, AGM cooperated with the multiple inflammatory signals to cause pain-related behaviors in an ASIC3-dependent manner. Conclusions Nonproton ligand sensing domain might represent a novel mechanism for activation or sensitization of ASIC3 channels underlying inflammatory pain-sensing under in vivo conditions.

  12. Hand Motion Classification Using a Multi-Channel Surface Electromyography Sensor

    Directory of Open Access Journals (Sweden)

    Dong Sun

    2012-01-01

    Full Text Available The human hand has multiple degrees of freedom (DOF for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  13. Hand motion classification using a multi-channel surface electromyography sensor.

    Science.gov (United States)

    Tang, Xueyan; Liu, Yunhui; Lv, Congyi; Sun, Dong

    2012-01-01

    The human hand has multiple degrees of freedom (DOF) for achieving high-dexterity motions. Identifying and replicating human hand motions are necessary to perform precise and delicate operations in many applications, such as haptic applications. Surface electromyography (sEMG) sensors are a low-cost method for identifying hand motions, in addition to the conventional methods that use data gloves and vision detection. The identification of multiple hand motions is challenging because the error rate typically increases significantly with the addition of more hand motions. Thus, the current study proposes two new methods for feature extraction to solve the problem above. The first method is the extraction of the energy ratio features in the time-domain, which are robust and invariant to motion forces and speeds for the same gesture. The second method is the extraction of the concordance correlation features that describe the relationship between every two channels of the multi-channel sEMG sensor system. The concordance correlation features of a multi-channel sEMG sensor system were shown to provide a vast amount of useful information for identification. Furthermore, a new cascaded-structure classifier is also proposed, in which 11 types of hand gestures can be identified accurately using the newly defined features. Experimental results show that the success rate for the identification of the 11 gestures is significantly high.

  14. Distribution and function of voltage-gated sodium channels in the nervous system.

    Science.gov (United States)

    Wang, Jun; Ou, Shao-Wu; Wang, Yun-Jie

    2017-11-02

    Voltage-gated sodium channels (VGSCs) are the basic ion channels for neuronal excitability, which are crucial for the resting potential and the generation and propagation of action potentials in neurons. To date, at least nine distinct sodium channel isoforms have been detected in the nervous system. Recent studies have identified that voltage-gated sodium channels not only play an essential role in the normal electrophysiological activities of neurons but also have a close relationship with neurological diseases. In this study, the latest research findings regarding the structure, type, distribution, and function of VGSCs in the nervous system and their relationship to neurological diseases, such as epilepsy, neuropathic pain, brain tumors, neural trauma, and multiple sclerosis, are reviewed in detail.

  15. Charged and Neutral Particles Channeling Phenomena Channeling 2008

    Science.gov (United States)

    Dabagov, Sultan B.; Palumbo, Luigi

    2010-04-01

    On the discovery of coherent Bremsstrahlung in a single crystal at the Frascati National Laboratories / C. Barbiellini, G. P. Murtas and S. B. Dabagov -- Advances in coherent Bremsstrahlung and LPM-effect studies (to the lOOth anniversary from the birth of L. D. Landau) / N. F. Shul'ga -- Spectra of radiation and created particles at intermediate energy in oriented crystal taking into account energy loss / V. N. Baier and V. M. Katkov -- The coherent Bremsstrahlung beam at MAX-lab facility / K. Fissum ... [et al.] -- Radiation from thin, structured targets (CERN NA63) / A. Dizdar -- Hard incoherent radiation in thick crystals / N. F. Shul'ga, V. V. Syshchenko and A. I. Tarnovsky -- Coherent Bremsstrahlung in periodically deformed crystals with a complex base / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Induction of coherent x-ray Bremsstrahlung in crystals under the influence of acoustic waves / A. R. Mkrtchyan and V. V. Parazian -- Coherent processes in bent single crystals / V. A. Maisheev -- Experimental and theoretical investigation of complete transfer phenomenon for media with various heat exchange coefficients / A. R. Mkrtchyan, A. E. Movsisyan and V. R. Kocharyan -- Coherent pair production in crystals / A. R. Mkrtchyan, A. A. Saharian and V. V. Parazian -- Negative particle planar and axial channeling and channeling collimation / R. A. Carrigan, Jr. -- CERN crystal-based collimation in modern hadron colliders / W. Scandale -- Studies and application of bent crystals for beam steering at 70 GeV IHEP accelerator / A. G. Afonin ... [et al.] -- Crystal collimation studies at the Tevatron (T-980) / N. V. Mokhov ... [et al.] -- Fabrication of crystals for channeling of particles in accellerators / A. Mazzolari ... [et al.] -- New possibilities to facilitate collimation of both positively and negatively charged particle beams by crystals / V. Guidi, A. Mazzolari and V. V. Tikhomirov -- Increase of probability of particle capture into the channeling

  16. Importance of the Hydrogen Isocyanide Isomer in Modeling Hydrogen Cyanide Oxidation in Combustion

    DEFF Research Database (Denmark)

    Glarborg, Peter; Marshall, Paul

    2017-01-01

    Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast alterna...... HNCO is the major consumption path for HCN. Under lean conditions, HNC is shown to be less important than indicated by the early work by Lin and co-workers, but it acts to accelerate HCN oxidation and promotes the formation of HNCO.......Hydrogen isocyanide (HNC) has been proposed as an important intermediate in oxidation of hydrogen cyanide (HCN) in combustion, but details of its chemistry are still in discussion. At higher temperatures, HCN and HNC equilibrate rapidly, and being more reactive than HCN, HNC offers a fast...

  17. ATP-sensitive K(+-channels in muscle cells: features and physiological role

    Directory of Open Access Journals (Sweden)

    O. B. Vadzyuk

    2014-08-01

    Full Text Available ATP-sensitive K+-channels of plasma membranes belong to the inward rectifier potassium channels type. They are involved in coupling of electrical activity of muscle cell with its metabolic­ state. These channels are heterooctameric and consist of two types of subunits: four poreforming (Kir 6.х and four regulatory (SUR, sulfonylurea receptor. The Kir subunits contain highly selective K+ filter and provide for high-velocity K+ currents. The SUR subunits contain binding sites for activators and blockers and have metabolic sensor, which enables channel activation under conditions of metabolic stress. ATP blocks K+ currents through the ATP-sensitive K+-channels in the most types of muscle cells. However, functional activity of these channels does not depend on absolute concentration of ATP but on the АТР/ADP ratio and presence of Mg2+. Physiologically active substances, such as phosphatidylinositol bisphosphate and fatty acid esters can regulate the activity of these structures in muscle cells. Activation of these channels under ischemic conditions underlies their cytoprotective action, which results in prevention of Ca2+ overload in cytosol. In contrast to ATP-sensitive K+-channels of plasma membranes, the data regarding the structure and function of ATP-sensitive K+-channels of mitochondrial membrane are contradictory. Pore-forming subunits of this channel have not been firmly identified yet. ATP-sensitive K+ transport through the mitochondrial­ membrane is easily tested by different methods, which are briefly reviewed in this paper. Interaction of mitoKATP with physiological and pharmacological ligands is discussed as well.

  18. Crystal structure of the epithelial calcium channel TRPV6.

    Science.gov (United States)

    Saotome, Kei; Singh, Appu K; Yelshanskaya, Maria V; Sobolevsky, Alexander I

    2016-06-23

    Precise regulation of calcium homeostasis is essential for many physiological functions. The Ca(2+)-selective transient receptor potential (TRP) channels TRPV5 and TRPV6 play vital roles in calcium homeostasis as Ca(2+) uptake channels in epithelial tissues. Detailed structural bases for their assembly and Ca(2+) permeation remain obscure. Here we report the crystal structure of rat TRPV6 at 3.25 Å resolution. The overall architecture of TRPV6 reveals shared and unique features compared with other TRP channels. Intracellular domains engage in extensive interactions to form an intracellular 'skirt' involved in allosteric modulation. In the K(+) channel-like transmembrane domain, Ca(2+) selectivity is determined by direct coordination of Ca(2+) by a ring of aspartate side chains in the selectivity filter. On the basis of crystallographically identified cation-binding sites at the pore axis and extracellular vestibule, we propose a Ca(2+) permeation mechanism. Our results provide a structural foundation for understanding the regulation of epithelial Ca(2+) uptake and its role in pathophysiology.

  19. Channel allocation and rate adaptation for relayed transmission over correlated fading channels

    KAUST Repository

    Hwang, Kyusung

    2009-09-01

    We consider, in this paper, channel allocation and rate adaptation scheme for relayed transmission over correlated fading channels via cross-layer design. Specifically, jointly considering the data link layer buffer occupancy and channel quality at both the source and relay nodes, we develop an optimal channel allocation and rate adaptation policy for a dual-hop relayed transmission. As such the overall transmit power for the relayed system is minimized while a target packet dropping rate (PDR) due to buffer over flows is guaranteed. In order to find such an optimal policy, the channel allocation and rate adaptation transmission framework is formulated as a constraint Markov decision process (CMDP). The PDR performance of the optimal policy is compared with that of two conventional suboptimal schemes, namely the channel quality based and the buffer occupancy based channel allocation schemes. Numerical results show that for a given power budget, the optimal scheme requires significantly less power than the conventional schemes in order to maintain a target PDR. ©2009 IEEE.

  20. Analysis of two-phase flow and boiling heat transfer in inclined channel of core-catcher

    International Nuclear Information System (INIS)

    Tahara, M.; Suzuki, Y.; Abe, N.; Kurita, T.; Hamazaki, R.; Kojima, Y.

    2008-01-01

    Passive Corium Cooling System (CCS) provides a function of ex-vessel debris cooling and molten core stabilization during a severe accident. CCS features inclined cooling channels arranged axi-symmetrically below the core-catcher basin. In order to estimate the coolability of the inclined cooling channel, it is indispensable to identify the flow pattern of the two-phase flow in the cooling channel. Several former studies for the two-phase flow pattern in the inclined channel are referred. Taitel and Dukler (1976) developed a prediction method of the flow pattern transition in horizontal and near horizontal tubes. Barnea et al. (1980) showed the flow pattern map of upward flow with 10 degrees inclination. Sakaguti et al. (1996) observed the two-phase flow patterns in the horizontal pipe connected with slightly upward pipe, in which the flow pattern in the pipe with a bending part was expressed by the combination of a basic flow pattern and some auxiliary flow patterns. Then we investigated these studies In order to identify the flow patterns observed in the inclined cooling channel of CCS. Furthermore we experimentally observed the flow patterns in the inclined cooling channel with various inlet conditions. As a result of the investigation and observation, typical flow patterns in the inclined cooling channel were identified. Two typical flow patterns were observed depending on the steam flow rate, one of which is 'elongated bubble 'flow, and the other is 'churn with collapsing backward and upward slug 'flow The flow and heat transfer in the inclined channel of CCS is analyzed by using a two-phase analysis code employing two-fluid model in which the constitutive equations for the two-phase flow in inclined channels are incorporated. That is, drift flux parameter for each of the elongated bubble flow, and the churn with collapsing backward and upward slug flow are incorporated to the two-phase analysis code, which are based on the rising velocity of the long bubble in

  1. Detection of hydrogen cyanide from oral anaerobes by cavity ring down spectroscopy

    Science.gov (United States)

    Chen, Wen; Roslund, Kajsa; Fogarty, Christopher L.; Pussinen, Pirkko J.; Halonen, Lauri; Groop, Per-Henrik; Metsälä, Markus; Lehto, Markku

    2016-03-01

    Hydrogen cyanide (HCN) has been recognized as a potential biomarker for non-invasive diagnosis of Pseudomonas aeruginosa infection in the lung. However, the oral cavity is a dominant production site for exhaled HCN and this contribution can mask the HCN generated in the lung. It is thus important to understand the sources of HCN production in the oral cavity. By screening of oral anaerobes for HCN production, we observed that the genus of Porphyromonas, Prevotella and Fusobacterium generated low levels of HCN in vitro. This is the first study to show that oral anaerobes are capable of producing HCN in vitro. Further investigations were conducted on the species of P. gingivalis and we successfully detected HCN production (0.9-10.9 ppb) in the headspace of three P. gingivalis reference strains (ATCC 33277, W50 and OMG 434) and one clinical isolate. From P. gingivalis ATCC 33277 and W50, a strong correlation between HCN and CO2 concentrations (rs = 0.89, p < 0.001) was observed, indicating that the HCN production of P. gingivalis might be connected with the bacterial metabolic activity. These results indicate that our setup could be widely applied to the screening of in vitro HCN production by both aerobic and anaerobic bacteria.

  2. Intracellular trafficking pathways of Cx43 gap junction channels.

    Science.gov (United States)

    Epifantseva, Irina; Shaw, Robin M

    2018-01-01

    Gap Junction (GJ) channels, including the most common Connexin 43 (Cx43), have fundamental roles in excitable tissues by facilitating rapid transmission of action potentials between adjacent cells. For instance, synchronization during each heartbeat is regulated by these ion channels at the cardiomyocyte cell-cell border. Cx43 protein has a short half-life, and rapid synthesis and timely delivery of those proteins to particular subdomains are crucial for the cellular organization of gap junctions and maintenance of intracellular coupling. Impairment in gap junction trafficking contributes to dangerous complications in diseased hearts such as the arrhythmias of sudden cardiac death. Of recent interest are the protein-protein interactions with the Cx43 carboxy-terminus. These interactions have significant impact on the full length Cx43 lifecycle and also contribute to trafficking of Cx43 as well as possibly other functions. We are learning that many of the known non-canonical roles of Cx43 can be attributed to the recently identified six endogenous Cx43 truncated isoforms which are produced by internal translation. In general, alternative translation is a new leading edge for proteome expansion and therapeutic drug development. This review highlights recent mechanisms identified in the trafficking of gap junction channels, involvement of other proteins contributing to the delivery of channels to the cell-cell border, and understanding of possible roles of the newly discovered alternatively translated isoforms in Cx43 biology. This article is part of a Special Issue entitled: Gap Junction Proteins edited by Jean Claude Herve. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Identification and characterization of Ca2+-activated K+ channels in granulosa cells of the human ovary

    Directory of Open Access Journals (Sweden)

    Berg Ulrike

    2009-04-01

    Full Text Available Abstract Background Granulosa cells (GCs represent a major endocrine compartment of the ovary producing sex steroid hormones. Recently, we identified in human GCs a Ca2+-activated K+ channel (KCa of big conductance (BKCa, which is involved in steroidogenesis. This channel is activated by intraovarian signalling molecules (e.g. acetylcholine via raised intracellular Ca2+ levels. In this study, we aimed at characterizing 1. expression and functions of KCa channels (including BKCa beta-subunits, and 2. biophysical properties of BKCa channels. Methods GCs were obtained from in vitro-fertilization patients and cultured. Expression of mRNA was determined by standard RT-PCR and protein expression in human ovarian slices was detected by immunohistochemistry. Progesterone production was measured in cell culture supernatants using ELISAs. Single channels were recorded in the inside-out configuration of the patch-clamp technique. Results We identified two KCa types in human GCs, the intermediate- (IK and the small-conductance KCa (SK. Their functionality was concluded from attenuation of human chorionic gonadotropin-stimulated progesterone production by KCa blockers (TRAM-34, apamin. Functional IK channels were also demonstrated by electrophysiological recording of single KCa channels with distinctive features. Both, IK and BKCa channels were found to be simultaneously active in individual GCs. In agreement with functional data, we identified mRNAs encoding IK, SK1, SK2 and SK3 in human GCs and proteins of IK and SK2 in corresponding human ovarian cells. Molecular characterization of the BKCa channel revealed the presence of mRNAs encoding several BKCa beta-subunits (beta2, beta3, beta4 in human GCs. The multitude of beta-subunits detected might contribute to variations in Ca2+ dependence of individual BKCa channels which we observed in electrophysiological recordings. Conclusion Functional and molecular studies indicate the presence of active IK and SK

  4. Enhancing Electromagnetic Side-Channel Analysis in an Operational Environment

    Science.gov (United States)

    Montminy, David P.

    Side-channel attacks exploit the unintentional emissions from cryptographic devices to determine the secret encryption key. This research identifies methods to make attacks demonstrated in an academic environment more operationally relevant. Algebraic cryptanalysis is used to reconcile redundant information extracted from side-channel attacks on the AES key schedule. A novel thresholding technique is used to select key byte guesses for a satisfiability solver resulting in a 97.5% success rate despite failing for 100% of attacks using standard methods. Two techniques are developed to compensate for differences in emissions from training and test devices dramatically improving the effectiveness of cross device template attacks. Mean and variance normalization improves same part number attack success rates from 65.1% to 100%, and increases the number of locations an attack can be performed by 226%. When normalization is combined with a novel technique to identify and filter signals in collected traces not related to the encryption operation, the number of traces required to perform a successful attack is reduced by 85.8% on average. Finally, software-defined radios are shown to be an effective low-cost method for collecting side-channel emissions in real-time, eliminating the need to modify or profile the target encryption device to gain precise timing information.

  5. Ex situ generation of stoichiometric HCN and its application in the Pd-catalysed cyanation of aryl bromides: evidence for a transmetallation step between two oxidative addition Pd-complexes.

    Science.gov (United States)

    Kristensen, Steffan K; Eikeland, Espen Z; Taarning, Esben; Lindhardt, Anders T; Skrydstrup, Troels

    2017-12-01

    A protocol for the Pd-catalysed cyanation of aryl bromides using near stoichiometric and gaseous hydrogen cyanide is reported for the first time. A two-chamber reactor was adopted for the safe liberation of ex situ generated HCN in a closed environment, which proved highly efficient in the Ni-catalysed hydrocyanation as the test reaction. Subsequently, this setup was exploited for converting a range of aryl and heteroaryl bromides (28 examples) directly into the corresponding benzonitriles in high yields, without the need for cyanide salts. Cyanation was achieved employing the Pd(0) precatalyst, P( t Bu) 3 -Pd-G3 and a weak base, potassium acetate, in a dioxane-water solvent mixture. The methodology was also suitable for the synthesis of 13 C-labelled benzonitriles with ex situ generated 13 C-hydrogen cyanide. Stoichiometric studies with the metal complexes were undertaken to delineate the mechanism for this catalytic transformation. Treatment of Pd(P( t Bu) 3 ) 2 with H 13 CN in THF provided two Pd-hydride complexes, (P( t Bu) 3 ) 2 Pd(H)( 13 CN), and [(P( t Bu) 3 )Pd(H)] 2 Pd( 13 CN) 4 , both of which were isolated and characterised by NMR spectroscopy and X-ray crystal structure analysis. When the same reaction was performed in a THF : water mixture in the presence of KOAc, only (P( t Bu) 3 ) 2 Pd(H)( 13 CN) was formed. Subjection of this cyano hydride metal complex with the oxidative addition complex (P( t Bu) 3 )Pd(Ph)(Br) in a 1 : 1 ratio in THF led to a transmetallation step with the formation of (P( t Bu) 3 ) 2 Pd(H)(Br) and 13 C-benzonitrile from a reductive elimination step. These experiments suggest the possibility of a catalytic cycle involving initially the formation of two Pd(ii)-species from the oxidative addition of L n Pd(0) into HCN and an aryl bromide followed by a transmetallation step to L n Pd(Ar)(CN) and L n Pd(H)(Br), which both reductively eliminate, the latter in the presence of KOAc, to generate the benzonitrile and L n Pd(0).

  6. Joint Channel Assignment and Routing in Multiradio Multichannel Wireless Mesh Networks: Design Considerations and Approaches

    Directory of Open Access Journals (Sweden)

    Omar M. Zakaria

    2016-01-01

    Full Text Available Multiradio wireless mesh network is a promising architecture that improves the network capacity by exploiting multiple radio channels concurrently. Channel assignment and routing are underlying challenges in multiradio architectures since both determine the traffic distribution over links and channels. The interdependency between channel assignments and routing promotes toward the joint solutions for efficient configurations. This paper presents an in-depth review of the joint approaches of channel assignment and routing in multiradio wireless mesh networks. First, the key design issues, modeling, and approaches are identified and discussed. Second, existing algorithms for joint channel assignment and routing are presented and classified based on the channel assignment types. Furthermore, the set of reconfiguration algorithms to adapt the network traffic dynamics is also discussed. Finally, the paper presents some multiradio practical implementations and test-beds and points out the future research directions.

  7. Femtosecond laser direct generation of 3D-microfluidic channels inside bulk PMMA.

    Science.gov (United States)

    Roth, Gian-Luca; Esen, Cemal; Hellmann, Ralf

    2017-07-24

    We report on laser direct generation of 3D-microchannels for microfluidic applications inside PMMA bulk material by focused femtosecond pulses. Inner lying channels with cross sectional areas from 100 µm 2 to 4400 µm 2 are directly created in the volume of a PMMA substrate. Using the presented process, the channel length is fundamentally unlimited. Here we demonstrate a channel length of 6 meters inside a substrate with dimensions of 20 × 20 × 1.1 mm. The formation of the micro channels is based on nonlinear absorption around the focal volume that triggers a material modification. The modified volume can be selectively opened to form the channel by a subsequent annealing process. The cross section of the channel is strongly influenced by the energy distribution and illumination around the focal volume determined by the optical setup and process design. The 3D channel layout can easily be realized by moving the specimen using 3D motorized stage, allowing freely chosen complex shaped channel architectures. Within a comprehensive parameter study, varying laser power, number of multi-passes, writing speed and writing depths, we identify an optimized process in terms of attainable channel height, width and aspect ratio, as well as process stability and reproducibility. The proof of concept for an application in three dimensional microfluidic systems is provided by florescence microscopy using a dye rhodamine B solution in isopropanol.

  8. FORMATION OF N{sub 3}, CH{sub 3}, HCN, AND HNC FROM THE FAR-UV PHOTOLYSIS OF CH{sub 4} IN NITROGEN ICE

    Energy Technology Data Exchange (ETDEWEB)

    Lo, Jen-Iu; Chou, Sheng-Lung; Peng, Yu-Chain; Lin, Meng-Yeh; Lu, Hsiao-Chi; Cheng, Bing-Ming, E-mail: bmcheng@nsrrc.org.tw [National Synchrotron Radiation Research Center, No. 101, Hsin-Ann Road, Hsinchu Science Park, Hsinchu 30076, Taiwan (China)

    2015-11-15

    The irradiation of pure solid N{sub 2} at 3 K with far-ultraviolet light from a synchrotron produced infrared absorption lines at 1657.7, 1655.6, and 1652.4 cm{sup −1} and an ultraviolet absorption line at 272.0 nm, which are characteristic of the product N{sub 3}. The threshold wavelength at which N{sub 3} was generated was 145.6 ± 2.9 nm, corresponding to an energy of 8.52 ± 0.17 eV. The photolysis of isotopically labeled {sup 15}N{sub 2} at 3 K consistently led to the formation of {sup 15}N{sub 3} with the same threshold wavelength of 145.6 ± 2.9 nm for its formation. The photolysis of CH{sub 4} in nitrogen ice in low concentrations also led to the formation of N{sub 3}, together with CH{sub 3}, HCN, and HNC, with the same threshold wavelength of 145.6 ± 2.9 nm. These results indicate that N{sub 3} radicals may play an important role in the photochemistry of nitrogen ices in astronomical environments.

  9. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir; Alomair, Basel; Alouini, Mohamed-Slim

    2014-01-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter's estimate of the main channel. On the other hand, the eavesdropper's receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter's estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  10. A linearization of quantum channels

    Science.gov (United States)

    Crowder, Tanner

    2015-06-01

    Because the quantum channels form a compact, convex set, we can express any quantum channel as a convex combination of extremal channels. We give a Euclidean representation for the channels whose inverses are also valid channels; these are a subset of the extreme points. They form a compact, connected Lie group, and we calculate its Lie algebra. Lastly, we calculate a maximal torus for the group and provide a constructive approach to decomposing any invertible channel into a product of elementary channels.

  11. Channel Characteristics and Transmission Performance for Various Channel Configurations at 60 GHz

    Directory of Open Access Journals (Sweden)

    Yang Haibing

    2007-01-01

    Full Text Available Extensive measurements are conducted in room environments at 60 GHz to analyze the channel characteristics for various channel configurations. Channel parameters retrieved from measurements are presented and analyzed based on generic channel models. Particularly, a simple single-cluster model is applied for the parameter retrieval and performance evaluation. By this model, power delay profiles are simply described by a -factor, a root-mean-squared delay spread, and a shape parameter. The considered channels are configured with the combination of omnidirectional, fan-beam, and pencil-beam antennas at transmitter and receiver sides. Both line-of-sight (LOS and non-LOS (NLOS channels are considered. Further, to evaluate the transmission performance, we analyze the link budget in the considered environments, then design and simulate an OFDM system with a data rate of 2 Gbps to compare the bit-error-rate (BER performance by using the measured and modeled channels. Both coded and uncoded OFDM systems are simulated. It is observed that the BER performance agrees well for the measured and modeled channels. In addition, directive configurations can provide sufficient link margins and BER performance for high data rate communications. To increase the coverage and performance in the NLOS area, it is preferable to apply directive antennas.

  12. Channel Characteristics and Transmission Performance for Various Channel Configurations at 60 GHz

    Directory of Open Access Journals (Sweden)

    Haibing Yang

    2007-05-01

    Full Text Available Extensive measurements are conducted in room environments at 60 GHz to analyze the channel characteristics for various channel configurations. Channel parameters retrieved from measurements are presented and analyzed based on generic channel models. Particularly, a simple single-cluster model is applied for the parameter retrieval and performance evaluation. By this model, power delay profiles are simply described by a K-factor, a root-mean-squared delay spread, and a shape parameter. The considered channels are configured with the combination of omnidirectional, fan-beam, and pencil-beam antennas at transmitter and receiver sides. Both line-of-sight (LOS and non-LOS (NLOS channels are considered. Further, to evaluate the transmission performance, we analyze the link budget in the considered environments, then design and simulate an OFDM system with a data rate of 2 Gbps to compare the bit-error-rate (BER performance by using the measured and modeled channels. Both coded and uncoded OFDM systems are simulated. It is observed that the BER performance agrees well for the measured and modeled channels. In addition, directive configurations can provide sufficient link margins and BER performance for high data rate communications. To increase the coverage and performance in the NLOS area, it is preferable to apply directive antennas.

  13. Mechanisms of Gain Control by Voltage-Gated Channels in Intrinsically-Firing Neurons

    Science.gov (United States)

    Patel, Ameera X.; Burdakov, Denis

    2015-01-01

    Gain modulation is a key feature of neural information processing, but underlying mechanisms remain unclear. In single neurons, gain can be measured as the slope of the current-frequency (input-output) relationship over any given range of inputs. While much work has focused on the control of basal firing rates and spike rate adaptation, gain control has been relatively unstudied. Of the limited studies on gain control, some have examined the roles of synaptic noise and passive somatic currents, but the roles of voltage-gated channels present ubiquitously in neurons have been less explored. Here, we systematically examined the relationship between gain and voltage-gated ion channels in a conductance-based, tonically-active, model neuron. Changes in expression (conductance density) of voltage-gated channels increased (Ca2+ channel), reduced (K+ channels), or produced little effect (h-type channel) on gain. We found that the gain-controlling ability of channels increased exponentially with the steepness of their activation within the dynamic voltage window (voltage range associated with firing). For depolarization-activated channels, this produced a greater channel current per action potential at higher firing rates. This allowed these channels to modulate gain by contributing to firing preferentially at states of higher excitation. A finer analysis of the current-voltage relationship during tonic firing identified narrow voltage windows at which the gain-modulating channels exerted their effects. As a proof of concept, we show that h-type channels can be tuned to modulate gain by changing the steepness of their activation within the dynamic voltage window. These results show how the impact of an ion channel on gain can be predicted from the relationship between channel kinetics and the membrane potential during firing. This is potentially relevant to understanding input-output scaling in a wide class of neurons found throughout the brain and other nervous systems

  14. Localization and Molecular Determinants of the Hanatoxin Receptors on the Voltage-Sensing Domains of a K+ Channel

    Science.gov (United States)

    Li-Smerin, Yingying; Swartz, Kenton J.

    2000-01-01

    Hanatoxin inhibits voltage-gated K+ channels by modifying the energetics of activation. We studied the molecular determinants and physical location of the Hanatoxin receptors on the drk1 voltage-gated K+ channel. First, we made multiple substitutions at three previously identified positions in the COOH terminus of S3 to examine whether these residues interact intimately with the toxin. We also examined a region encompassing S1–S3 using alanine-scanning mutagenesis to identify additional determinants of the toxin receptors. Finally, guided by the structure of the KcsA K+ channel, we explored whether the toxin interacts with the peripheral extracellular surface of the pore domain in the drk1 K+ channel. Our results argue for an intimate interaction between the toxin and the COOH terminus of S3 and suggest that the Hanatoxin receptors are confined within the voltage-sensing domains of the channel, at least 20–25 Å away from the central pore axis. PMID:10828242

  15. Volume of the space of qubit-qubit channels and state transformations under random quantum channels

    OpenAIRE

    Lovas, Attila; Andai, Attila

    2017-01-01

    The simplest building blocks for quantum computations are the qubit-qubit quantum channels. In this paper, we analyze the structure of these channels via their Choi representation. The restriction of a quantum channel to the space of classical states (i.e. probability distributions) is called the underlying classical channel. The structure of quantum channels over a fixed classical channel is studied, the volume of general and unital qubit channels with respect to the Lebesgue measure is comp...

  16. The structure of a conserved piezo channel domain reveals a topologically distinct β sandwich fold.

    Science.gov (United States)

    Kamajaya, Aron; Kaiser, Jens T; Lee, Jonas; Reid, Michelle; Rees, Douglas C

    2014-10-07

    Piezo has recently been identified as a family of eukaryotic mechanosensitive channels composed of subunits containing over 2,000 amino acids, without recognizable sequence similarity to other channels. Here, we present the crystal structure of a large, conserved extramembrane domain located just before the last predicted transmembrane helix of C. elegans PIEZO, which adopts a topologically distinct β sandwich fold. The structure was also determined of a point mutation located on a conserved surface at the position equivalent to the human PIEZO1 mutation found in dehydrated hereditary stomatocytosis patients (M2225R). While the point mutation does not change the overall domain structure, it does alter the surface electrostatic potential that may perturb interactions with a yet-to-be-identified ligand or protein. The lack of structural similarity between this domain and any previously characterized fold, including those of eukaryotic and bacterial channels, highlights the distinctive nature of the Piezo family of eukaryotic mechanosensitive channels. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Beyond the Manual Channel

    DEFF Research Database (Denmark)

    , the main focus there is on spoken languages in their written and spoken forms. This series of workshops, however, offers a forum for researchers focussing on sign languages. For the fourth time, the workshop had sign language corpora as its main topic. This time, the focus was on any aspect beyond...... the manual channel. Not surprisingly, most papers deal with non-manuals on the face. Once again, the papers at this workshop clearly identify the potentials of even closer cooperation between sign linguists and sign language engineers, and we think it is events like this that contribute a lot to a better...

  18. Reactions of the CN Radical with Benzene and Toluene: Product Detection and Low-Temperature Kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Trevitt, Adam J.; Goulay, Fabien; Taatjes, Craig A.; Osborn, David L.; Leone, Stephen R.

    2009-12-23

    Low temperature rate coefficients are measured for the CN + benzene and CN + toluene reactions using the pulsed Laval nozzle expansion technique coupled with laser-induced fluorescence detection. The CN + benzene reaction rate coefficient at 105, 165 and 295 K is found to be relatively constant over this temperature range, 3.9 - 4.9 x 10-10 cm3 molecule-1 s-1. These rapid kinetics, along with the observed negligible temperature dependence, are consistent with a barrierless reaction entrance channel and reaction efficiencies approaching unity. The CN + toluene reaction is measured to have a slower rate coefficient of 1.3 x 10-10 cm3 molecule-1 s-1 at 105 K. At room temperature, non-exponential decay profiles are observed for this reaction that may suggest significant back-dissociation of intermediate complexes. In separate experiments, the products of these reactions are probed at room temperature using synchrotron VUV photoionization mass spectrometry. For CN + benzene, cyanobenzene (C6H5CN) is the only product recorded with no detectable evidence for a C6H5 + HCN product channel. In the case of CN + toluene, cyanotoluene (NCC6H4CH3) constitutes the only detected product. It is not possible to differentiate among the ortho, meta and para isomers of cyanotoluene because of their similar ionization energies and the ~;; 40 meV photon energy resolution of the experiment. There is no significant detection of benzyl radicals (C6H5CH2) that would suggest a H-abstraction or a HCN elimination channel is prominent at these conditions. As both reactions are measured to be rapid at 105 K, appearing to have barrierless entrance channels, it follows that they will proceed efficiently at the temperatures of Saturn?s moon Titan (~;;100 K) and are also likely to proceed at the temperature of interstellar clouds (10-20 K).

  19. Water removal characteristics of parallel serpentine channels. Paper no. IGEC-1-035

    International Nuclear Information System (INIS)

    Jiao, K.; Zhou, B.; Quan, P.

    2005-01-01

    Water management in a proton exchange membrane (PEM) fuel cell stack has been a challenging issue on the road to commercialization. This paper presents a numerical investigation of air-water flow in parallel serpentine channels on cathode side of a PEM fuel cell stack by use of the commercial Computational Fluid Dynamics (CFD) software package FLUENT. Different air-water flow behaviours inside the serpentine flow channels with inlet and outlet manifolds were discussed. The results showed that there were significant variations of water distribution and pressure drop in different cells at different times. The 'collecting-and-separating effect' due to the serpentine shape of the gas flow channels, the pressure drop change due to the water distribution inside the outlet manifold were observed. Several gas flow problems of this type of parallel serpentine channels were identified and useful suggestions were given through investigating the flow patterns inside the channels and manifolds. (author)

  20. Performance Analysis of Iterative Channel Estimation and Multiuser Detection in Multipath DS-CDMA Channels

    Science.gov (United States)

    Li, Husheng; Betz, Sharon M.; Poor, H. Vincent

    2007-05-01

    This paper examines the performance of decision feedback based iterative channel estimation and multiuser detection in channel coded aperiodic DS-CDMA systems operating over multipath fading channels. First, explicit expressions describing the performance of channel estimation and parallel interference cancellation based multiuser detection are developed. These results are then combined to characterize the evolution of the performance of a system that iterates among channel estimation, multiuser detection and channel decoding. Sufficient conditions for convergence of this system to a unique fixed point are developed.

  1. Multi-channel motor evoked potential monitoring during anterior cervical discectomy and fusion

    Directory of Open Access Journals (Sweden)

    Dong-Gun Kim

    Full Text Available Objectives: Anterior cervical discectomy and fusion (ACDF surgery is the most common surgical procedure for the cervical spine with low complication rate. Despite the potential prognostic benefit, intraoperative neurophysiological monitoring (IONM, a method for detecting impending neurological compromise, is not routinely used in ACDF surgery. The present study aimed to identify the potential benefits of monitoring multi-channel motor evoked potentials (MEPs during ACDF surgery. Methods: We retrospectively reviewed 200 consecutive patients who received IONM with multi-channel MEPs and somatosensory evoked potentials (SSEPs. On average, 9.2 muscles per patient were evaluated under MEP monitoring. Results: The rate of MEP change during surgery in the multi-level ACDF group was significantly higher than the single-level group. Two patients from the single-level ACDF group (1.7% and four patients from the multi-level ACDF group (4.9% experienced post-operative motor deficits. Multi-channel MEPs monitoring during single and multi-level ACDF surgery demonstrated higher sensitivity, specificity, positive predictive and negative predictive value than SSEP monitoring. Conclusions: Multi-channel MEP monitoring might be beneficial for the detection of segmental injury as well as long tract injury during single- and multi-level ACDF surgery. Significance: This is first large scale study to identify the usefulness of multi-channel MEPs in monitoring ACDF surgery. Keywords: Disc disease, Somatosensory evoked potentials, Intraoperative neurophysiological monitoring, Motor evoked potentials, Anterior cervical discectomy and fusion

  2. A novel hypothesis for the binding mode of HERG channel blockers

    International Nuclear Information System (INIS)

    Choe, Han; Nah, Kwang Hoon; Lee, Soo Nam; Lee, Han Sam; Lee, Hui Sun; Jo, Su Hyun; Leem, Chae Hun; Jang, Yeon Jin

    2006-01-01

    We present a new docking model for HERG channel blockade. Our new model suggests three key interactions such that (1) a protonated nitrogen of the channel blocker forms a hydrogen bond with the carbonyl oxygen of HERG residue T623; (2) an aromatic moiety of the channel blocker makes a π-π interaction with the aromatic ring of HERG residue Y652; and (3) a hydrophobic group of the channel blocker forms a hydrophobic interaction with the benzene ring of HERG residue F656. The previous model assumes two interactions such that (1) a protonated nitrogen of the channel blocker forms a cation-π interaction with the aromatic ring of HERG residue Y652; and (2) a hydrophobic group of the channel blocker forms a hydrophobic interaction with the benzene ring of HERG residue F656. To test these models, we classified 69 known HERG channel blockers into eight binding types based on their plausible binding modes, and further categorized them into two groups based on the number of interactions our model would predict with the HERG channel (two or three). We then compared the pIC 5 value distributions between these two groups. If the old hypothesis is correct, the distributions should not differ between the two groups (i.e., both groups show only two binding interactions). If our novel hypothesis is correct, the distributions should differ between Groups 1 and 2. Consistent with our hypothesis, the two groups differed with regard to pIC 5 , and the group having more predicted interactions with the HERG channel had a higher mean pIC 5 value. Although additional work will be required to further validate our hypothesis, this improved understanding of the HERG channel blocker binding mode may help promote the development of in silico predictions methods for identifying potential HERG channel blockers

  3. The Arabidopsis guard cell outward potassium channel GORK is regulated by CPK33.

    Science.gov (United States)

    Corratgé-Faillie, Claire; Ronzier, Elsa; Sanchez, Frédéric; Prado, Karine; Kim, Jeong-Hyeon; Lanciano, Sophie; Leonhardt, Nathalie; Lacombe, Benoît; Xiong, Tou Cheu

    2017-07-01

    A complex signaling network involving voltage-gated potassium channels from the Shaker family contributes to the regulation of stomatal aperture. Several kinases and phosphatases have been shown to be crucial for ABA-dependent regulation of the ion transporters. To date, the Ca 2+ -dependent regulation of Shaker channels by Ca 2+ -dependent protein kinases (CPKs) is still elusive. A functional screen in Xenopus oocytes was launched to identify such CPKs able to regulate the three main guard cell Shaker channels KAT1, KAT2, and GORK. Seven guard cell CPKs were tested and multiple CPK/Shaker couples were identified. Further work on CPK33 indicates that GORK activity is enhanced by CPK33 and unaffected by a nonfunctional CPK33 (CPK33-K102M). Furthermore, Ca 2+ -induced stomatal closure is impaired in two cpk33 mutant plants. © 2017 Federation of European Biochemical Societies.

  4. On the secrecy capacity of the MISO wiretap channel under imperfect channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-12-01

    We consider a wiretap channel consisting of a source with multiple antennas, a legitimate receiver and an eavesdropper with a single antenna each. The channels between the source and the receivers undergo fast fading. We assume that the transmitter, in addition to the statistics of both channels, is only aware of a noisy version of the CSI to the legitimate receiver referred to as main channel. The legitimate receiver is aware of both its instantaneous channel gain and the transmitter\\'s estimate of the main channel. On the other hand, the eavesdropper\\'s receiver, in addition to its instantaneous channel realization, is aware of the actual main CSI and the transmitter\\'s estimate as well. While the capacity of this channel is still open even with perfect CSI at the transmitter, we provide in this paper upper and lower bounds on the secrecy capacity. The upper bound is tighter than the one corresponding to perfect main CSI and the gap between the two upper bounds is characterized in function of the channel estimation error variance, at high-SNR. Furthermore, we show that our upper and lower bounds coincide in the case of no main CSI providing a trivial secrecy capacity.

  5. Identification of an HV 1 voltage-gated proton channel in insects.

    Science.gov (United States)

    Chaves, Gustavo; Derst, Christian; Franzen, Arne; Mashimo, Yuta; Machida, Ryuichiro; Musset, Boris

    2016-04-01

    The voltage-gated proton channel 1 (HV 1) is an important component of the cellular proton extrusion machinery and is essential for charge compensation during the respiratory burst of phagocytes. HV 1 has been identified in a wide range of eukaryotes throughout the animal kingdom, with the exception of insects. Therefore, it has been proposed that insects do not possess an HV 1 channel. In the present study, we report the existence of an HV 1-type proton channel in insects. We searched insect transcriptome shotgun assembly (TSA) sequence databases and found putative HV 1 orthologues in various polyneopteran insects. To confirm that these putative HV 1 orthologues were functional channels, we studied the HV 1 channel of Nicoletia phytophila (NpHV 1), an insect of the Zygentoma order, in more detail. NpHV 1 comprises 239 amino acids and is 33% identical to the human voltage-gated proton channel 1. Patch clamp measurements in a heterologous expression system showed proton selectivity, as well as pH- and voltage-dependent gating. Interestingly, NpHV 1 shows slightly enhanced pH-dependent gating compared to the human channel. Mutations in the first transmembrane segment at position 66 (Asp66), the presumed selectivity filter, lead to a loss of proton-selective conduction, confirming the importance of this aspartate residue in voltage-gated proton channels. Nucleotide sequence data have been deposited in the GenBank database under accession number KT780722. © 2016 Federation of European Biochemical Societies.

  6. Channel electron multipliers

    International Nuclear Information System (INIS)

    Seidman, A.; Avrahami, Z.; Sheinfux, B.; Grinberg, J.

    1976-01-01

    A channel electron multiplier is described having a tubular wall coated with a secondary-electron emitting material and including an electric field for accelerating the electrons, the electric field comprising a plurality of low-resistive conductive rings each alternating with a high-resistive insulating ring. The thickness of the low-resistive rings is many times larger than that of the high-resistive rings, being in the order of tens of microns for the low-resistive rings and at least one order of magnitude lower for the high-resistive rings; and the diameter of the channel tubular walls is also many times larger than the thickness of the high-resistive rings. Both single-channel and multiple-channel electron multipliers are described. A very important advantage, particularly in making multiple-channel multipliers, is the simplicity of the procedure that may be used in constructing such multipliers. Other operational advantages are described

  7. Slopes To Prevent Trapping of Bubbles in Microfluidic Channels

    Science.gov (United States)

    Greer, Harold E.; Lee, Michael C.; Smith, J. Anthony; Willis, Peter A.

    2010-01-01

    The idea of designing a microfluidic channel to slope upward along the direction of flow of the liquid in the channel has been conceived to help prevent trapping of gas bubbles in the channel. In the original application that gave rise to this idea, the microfluidic channels are parts of micro-capillary electrophoresis (microCE) devices undergoing development for use on Mars in detecting compounds indicative of life. It is necessary to prevent trapping of gas bubbles in these devices because uninterrupted liquid pathways are essential for sustaining the electrical conduction and flows that are essential for CE. The idea is also applicable to microfluidic devices that may be developed for similar terrestrial microCE biotechnological applications or other terrestrial applications in which trapping of bubbles in microfluidic channels cannot be tolerated. A typical microCE device in the original application includes, among other things, multiple layers of borosilicate float glass wafers. Microfluidic channels are formed in the wafers, typically by use of wet chemical etching. The figure presents a simplified cross section of part of such a device in which the CE channel is formed in the lowermost wafer (denoted the channel wafer) and, according to the present innovation, slopes upward into a via hole in another wafer (denoted the manifold wafer) lying immediately above the channel wafer. Another feature of the present innovation is that the via hole in the manifold wafer is made to taper to a wider opening at the top to further reduce the tendency to trap bubbles. At the time of reporting the information for this article, an effort to identify an optimum technique for forming the slope and the taper was in progress. Of the techniques considered thus far, the one considered to be most promising is precision milling by use of femtosecond laser pulses. Other similar techniques that may work equally well are precision milling using a focused ion beam, or a small diamond

  8. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli.

    Directory of Open Access Journals (Sweden)

    Piotr Koprowski

    Full Text Available Bacterial mechano-sensitive (MS channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics.

  9. Cytoplasmic Domain of MscS Interacts with Cell Division Protein FtsZ: A Possible Non-Channel Function of the Mechanosensitive Channel in Escherichia Coli.

    Science.gov (United States)

    Koprowski, Piotr; Grajkowski, Wojciech; Balcerzak, Marcin; Filipiuk, Iwona; Fabczak, Hanna; Kubalski, Andrzej

    2015-01-01

    Bacterial mechano-sensitive (MS) channels reside in the inner membrane and are considered to act as emergency valves whose role is to lower cell turgor when bacteria enter hypo-osmotic environments. However, there is emerging evidence that members of the Mechano-sensitive channel Small (MscS) family play additional roles in bacterial and plant cell physiology. MscS has a large cytoplasmic C-terminal region that changes its shape upon activation and inactivation of the channel. Our pull-down and co-sedimentation assays show that this domain interacts with FtsZ, a bacterial tubulin-like protein. We identify point mutations in the MscS C-terminal domain that reduce binding to FtsZ and show that bacteria expressing these mutants are compromised in growth on sublethal concentrations of β-lactam antibiotics. Our results suggest that interaction between MscS and FtsZ could occur upon inactivation and/or opening of the channel and could be important for the bacterial cell response against sustained stress upon stationary phase and in the presence of β-lactam antibiotics.

  10. Analysing Gas-Liquid Flow in PEM Electrolyser Micro-Channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2016-01-01

    and are fairly expensive. One means of increasing the hydrogen yield to cost ratio of such systems, is to increase the operating current density. However, at high current densities, management of heat and mass transfer in the anode current collector and channel becomes crucial. This entails that further...... understanding of the gas-liquid flow in both the porous media and the channel is necessary for insuring proper oxygen, water and heat management of the electrolysis cell. In this work, the patterns of vertical upward gas-liquid flow in a 5×1×94 mm micro-channel are experimentally analysed. A sheet of titanium...... felt is used as a permeable wall for permeation of air through a column of water similar to the phenomenon encountered at the anode. The transparent setup is operated ex-situ and the gas-liquid flow regimes are identified using a camera....

  11. Long-range forces affecting equilibrium inertial focusing behavior in straight high aspect ratio microfluidic channels

    Energy Technology Data Exchange (ETDEWEB)

    Reece, Amy E.; Oakey, John, E-mail: joakey@uwyo.edu [Department of Chemical Engineering, University of Wyoming, Laramie, Wyoming 82071 (United States)

    2016-04-15

    The controlled and directed focusing of particles within flowing fluids is a problem of fundamental and technological significance. Microfluidic inertial focusing provides passive and precise lateral and longitudinal alignment of small particles without the need for external actuation or sheath fluid. The benefits of inertial focusing have quickly enabled the development of miniaturized flow cytometers, size-selective sorting devices, and other high-throughput particle screening tools. Straight channel inertial focusing device design requires knowledge of fluid properties and particle-channel size ratio. Equilibrium behavior of inertially focused particles has been extensively characterized and the constitutive phenomena described by scaling relationships for straight channels of square and rectangular cross section. In concentrated particle suspensions, however, long-range hydrodynamic repulsions give rise to complex particle ordering that, while interesting and potentially useful, can also dramatically diminish the technique’s effectiveness for high-throughput particle handling applications. We have empirically investigated particle focusing behavior within channels of increasing aspect ratio and have identified three scaling regimes that produce varying degrees of geometrical ordering between focused particles. To explore the limits of inertial particle focusing and identify the origins of these long-range interparticle forces, we have explored equilibrium focusing behavior as a function of channel geometry and particle concentration. Experimental results for highly concentrated particle solutions identify equilibrium thresholds for focusing that scale weakly with concentration and strongly with channel geometry. Balancing geometry mediated inertial forces with estimates for interparticle repulsive forces now provide a complete picture of pattern formation among concentrated inertially focused particles and enhance our understanding of the fundamental limits

  12. Coherifying quantum channels

    Science.gov (United States)

    Korzekwa, Kamil; Czachórski, Stanisław; Puchała, Zbigniew; Życzkowski, Karol

    2018-04-01

    Is it always possible to explain random stochastic transitions between states of a finite-dimensional system as arising from the deterministic quantum evolution of the system? If not, then what is the minimal amount of randomness required by quantum theory to explain a given stochastic process? Here, we address this problem by studying possible coherifications of a quantum channel Φ, i.e., we look for channels {{{Φ }}}{ \\mathcal C } that induce the same classical transitions T, but are ‘more coherent’. To quantify the coherence of a channel Φ we measure the coherence of the corresponding Jamiołkowski state J Φ. We show that the classical transition matrix T can be coherified to reversible unitary dynamics if and only if T is unistochastic. Otherwise the Jamiołkowski state {J}{{Φ }}{ \\mathcal C } of the optimally coherified channel is mixed, and the dynamics must necessarily be irreversible. To assess the extent to which an optimal process {{{Φ }}}{ \\mathcal C } is indeterministic we find explicit bounds on the entropy and purity of {J}{{Φ }}{ \\mathcal C }, and relate the latter to the unitarity of {{{Φ }}}{ \\mathcal C }. We also find optimal coherifications for several classes of channels, including all one-qubit channels. Finally, we provide a non-optimal coherification procedure that works for an arbitrary channel Φ and reduces its rank (the minimal number of required Kraus operators) from {d}2 to d.

  13. A novel toxin from Haplopelma lividum selectively inhibits the NAV1.8 channel and possesses potent analgesic efficacy

    DEFF Research Database (Denmark)

    Meng, Ping; Huang, Honggang; Wang, Gan

    2017-01-01

    Spider venoms are a complex mixture of peptides with a large number of neurotoxins targeting ion channels. Although thousands of peptide toxins have been identified from venoms of numerous species of spiders, many unknown species urgently need to be investigated. In this study, a novel sodium...... channel inhibitor, μ-TRTX-Hl1a, was identified from the venom of Haplopelma lividum. It contained eight cysteines and formed a conserved cysteine pattern of ICK motif. μ-TRTX-Hl1a inhibited the TTX-resistant (TTX-r) sodium channel current rather than the TTX-sensitive (TTX-s) sodium channel current...

  14. C-terminus-mediated voltage gating of Arabidopsis guard cell anion channel QUAC1.

    Science.gov (United States)

    Mumm, Patrick; Imes, Dennis; Martinoia, Enrico; Al-Rasheid, Khaled A S; Geiger, Dietmar; Marten, Irene; Hedrich, Rainer

    2013-09-01

    Anion transporters in plants play a fundamental role in volume regulation and signaling. Currently, two plasma membrane-located anion channel families—SLAC/SLAH and ALMT—are known. Among the ALMT family, the root-expressed ALuminium-activated Malate Transporter 1 was identified by comparison of aluminum-tolerant and Al(3+)-sensitive wheat cultivars and was subsequently shown to mediate voltage-independent malate currents. In contrast, ALMT12/QUAC1 (QUickly activating Anion Channel1) is expressed in guard cells transporting malate in an Al(3+)-insensitive and highly voltage-dependent manner. So far, no information is available about the structure and mechanism of voltage-dependent gating with the QUAC1 channel protein. Here, we analyzed gating of QUAC1-type currents in the plasma membrane of guard cells and QUAC1-expressing oocytes revealing similar voltage dependencies and activation–deactivation kinetics. In the heterologous expression system, QUAC1 was electrophysiologically characterized at increasing extra- and intracellular malate concentrations. Thereby, malate additively stimulated the voltage-dependent QUAC1 activity. In search of structural determinants of the gating process, we could not identify transmembrane domains common for voltage-sensitive channels. However, site-directed mutations and deletions at the C-terminus of QUAC1 resulted in altered voltage-dependent channel activity. Interestingly, the replacement of a single glutamate residue, which is conserved in ALMT channels from different clades, by an alanine disrupted QUAC1 activity. Together with C- and N-terminal tagging, these results indicate that the cytosolic C-terminus is involved in the voltage-dependent gating mechanism of QUAC1.

  15. The Extended-Window Channel Estimator for Iterative Channel-and-Symbol Estimation

    Directory of Open Access Journals (Sweden)

    Barry John R

    2005-01-01

    Full Text Available The application of the expectation-maximization (EM algorithm to channel estimation results in a well-known iterative channel-and-symbol estimator (ICSE. The EM-ICSE iterates between a symbol estimator based on the forward-backward recursion (BCJR equalizer and a channel estimator, and may provide approximate maximum-likelihood blind or semiblind channel estimates. Nevertheless, the EM-ICSE has high complexity, and it is prone to misconvergence. In this paper, we propose the extended-window (EW estimator, a novel channel estimator for ICSE that can be used with any soft-output symbol estimator. Therefore, the symbol estimator may be chosen according to performance or complexity specifications. We show that the EW-ICSE, an ICSE that uses the EW estimator and the BCJR equalizer, is less complex and less susceptible to misconvergence than the EM-ICSE. Simulation results reveal that the EW-ICSE may converge faster than the EM-ICSE.

  16. CHANNEL ESTIMATION TECHNIQUE

    DEFF Research Database (Denmark)

    2015-01-01

    A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over the communicat......A method includes determining a sequence of first coefficient estimates of a communication channel based on a sequence of pilots arranged according to a known pilot pattern and based on a receive signal, wherein the receive signal is based on the sequence of pilots transmitted over...... the communication channel. The method further includes determining a sequence of second coefficient estimates of the communication channel based on a decomposition of the first coefficient estimates in a dictionary matrix and a sparse vector of the second coefficient estimates, the dictionary matrix including...... filter characteristics of at least one known transceiver filter arranged in the communication channel....

  17. Experimental investigation of aminoacetonitrile formation through the Strecker synthesis in astrophysical-like conditions: reactivity of methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN)

    Science.gov (United States)

    Danger, G.; Borget, F.; Chomat, M.; Duvernay, F.; Theulé, P.; Guillemin, J.-C.; Le Sergeant D'Hendecourt, L.; Chiavassa, T.

    2011-11-01

    Context. Studing chemical reactivity in astrophysical environments is an important means for improving our understanding of the origin of the organic matter in molecular clouds, in protoplanetary disks, and possibly, as a final destination, in our solar system. Laboratory simulations of the reactivity of ice analogs provide important insight into the reactivity in these environments. Here, we use these experimental simulations to investigate the Strecker synthesis leading to the formation of aminoacetonitrile in astrophysical-like conditions. The aminoacetonitrile is an interesting compound because it was detected in SgrB2, hence could be a precursor of the smallest amino acid molecule, glycine, in astrophysical environments. Aims: We present the first experimental investigation of the formation of aminoacetonitrile NH2CH2CN from the thermal processing of ices including methanimine (CH2NH), ammonia (NH3), and hydrogen cyanide (HCN) in interstellar-like conditions without VUV photons or particules. Methods: We use Fourier Transform InfraRed (FTIR) spectroscopy to monitor the ice evolution during its warming. Infrared spectroscopy and mass spectroscopy are then used to identify the aminoacetonitrile formation. Results: We demonstrate that methanimine can react with -CN during the warming of ice analogs containing at 20 K methanimine, ammonia, and [NH4+ -CN] salt. During the ice warming, this reaction leads to the formation of poly(methylene-imine) polymers. The polymer length depend on the initial ratio of mass contained in methanimine to that in the [NH4+ -CN] salt. In a methanimine excess, long polymers are formed. As the methanimine is progressively diluted in the [NH4+ -CN] salt, the polymer length decreases until the aminoacetonitrile formation at 135 K. Therefore, these results demonstrate that aminoacetonitrile can be formed through the second step of the Strecker synthesis in astrophysical-like conditions.

  18. Combining satellite photographs and raster lidar data for channel connectivity in tidal marshes.

    Science.gov (United States)

    Li, Zhi; Hodges, Ben

    2017-04-01

    High resolution airborne lidar is capable of providing topographic detail down to the 1 x 1 m scale or finer over large tidal marshes of a river delta. Such data sets can be challenging to develop and ground-truth due to the inherent complexities of the environment, the relatively small changes in elevation throughout a marsh, and practical difficulties in accessing the variety of flooded, dry, and muddy regions. Standard lidar point-cloud processing techniques (as typically applied in large lidar data collection program) have a tendency to mis-identify narrow channels and water connectivity in a marsh, which makes it difficult to directly use such data for modeling marsh flows. Unfortunately, it is not always practical, or even possible, to access the point cloud and re-analyze the raw lidar data when discrepancies have been found in a raster work product. Faced with this problem in preparing a model of the Trinity River delta (Texas, USA), we developed an approach to integrating analysis of a lidar-based raster with satellite images. Our primary goal was to identify the clear land/water boundaries needed to identify channelization in the available rasterized lidar data. The channel extraction method uses pixelized satellite photographs that are stretched/distorted with image-processing techniques to match identifiable control features in both lidar and photographic data sets. A kmeans clustering algorithm was applied cluster pixels based on their colors, which is effective in separating land and water in a satellite photograph. The clustered image was matched to the lidar data such that the combination shows the channel network. In effect, we are able to use the fact that the satellite photograph is higher resolution than the lidar data, and thus provides connectivity in the clustering at a finer scale. The principal limitation of the method is the where the satellite image and lidar suffer from similar problems For example, vegetation overhanging a narrow

  19. Research on Cost Information Sharing and Channel Choice in a Dual-Channel Supply Chain

    Directory of Open Access Journals (Sweden)

    Huihui Liu

    2016-01-01

    Full Text Available Many studies examine information sharing in an uncertain demand environment in a supply chain. However there is little literature on cost information sharing in a dual-channel structure consisting of a retail channel and a direct sales channel. Assuming that the retail sale cost and direct sale cost are random variables with a general distribution, the paper investigates the retailer’s choice on cost information sharing in a Bertrand competition model. Based on the equilibrium outcome of information sharing, the manufacturer’s channel choice is discussed in detail. Our paper provides several interesting conclusions. In both single- and dual-channel structures, the retailer has little motivation to share its private cost information which is verified to be valuable for the manufacturer. When the cost correlation between the two channels increases, our analyses show that the manufacturer’s profit improves. However, when channel choice is involved, the value of information could play a different role. The paper finds that a dual-channel structure can benefit the manufacturer only when the cost correlation is sufficiently low. In addition, if the cost correlation is weak, the cost fluctuation will bring out the advantage of a dual-channel structure and adding a new direct channel will help in risk pooling.

  20. Use of navigation channels by Lake Sturgeon: Does channelization increase vulnerability of fish to ship strikes?

    Directory of Open Access Journals (Sweden)

    Darryl W Hondorp

    Full Text Available Channelization for navigation and flood control has altered the hydrology and bathymetry of many large rivers with unknown consequences for fish species that undergo riverine migrations. In this study, we investigated whether altered flow distributions and bathymetry associated with channelization attracted migrating Lake Sturgeon (Acipenser fulvescens into commercial navigation channels, potentially increasing their exposure to ship strikes. To address this question, we quantified and compared Lake Sturgeon selection for navigation channels vs. alternative pathways in two multi-channel rivers differentially affected by channelization, but free of barriers to sturgeon movement. Acoustic telemetry was used to quantify Lake Sturgeon movements. Under the assumption that Lake Sturgeon navigate by following primary flow paths, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River were expected to choose navigation channels over alternative pathways and to exhibit greater selection for navigation channels than conspecifics in the less-channelized lower St. Clair River. Consistent with these predictions, acoustic-tagged Lake Sturgeon in the more-channelized lower Detroit River selected the higher-flow and deeper navigation channels over alternative migration pathways, whereas in the less-channelized lower St. Clair River, individuals primarily used pathways alternative to navigation channels. Lake Sturgeon selection for navigation channels as migratory pathways also was significantly higher in the more-channelized lower Detroit River than in the less-channelized lower St. Clair River. We speculated that use of navigation channels over alternative pathways would increase the spatial overlap of commercial vessels and migrating Lake Sturgeon, potentially enhancing their vulnerability to ship strikes. Results of our study thus demonstrated an association between channelization and the path use of migrating Lake Sturgeon that could prove

  1. Purification and subunit structure of a putative K sup + -channel protein identified by its binding properties for dendrotoxin I

    Energy Technology Data Exchange (ETDEWEB)

    Rehm, H.; Lazdunski, M. (Centre National de la Recherche Scientifique, Nice (France))

    1988-07-01

    The binding protein for the K{sup +}-channel toxin dendrotoxin I was purified from a detergent extract of rat brain membranes. The purification procedure utilized chromatography on DEAE-Trisacryl, affinity chromatography on a dendrotoxin-I-Aca 22 column, and wheat germ agglutinin-Affigel 10 with a final 3,800- to 4,600-fold enrichment and a recovery of 8-16%. The high affinity (K{sub d}, 40-100 pM) and specificity of the binding site are retained throughout the purification procedure. Analysis of the purified material on silver-stained NaDodSO{sub 4}/polyacrylamide gel revealed three bands of M{sub r} 76,000-80,000, 38,000 and 35,000. Interestingly, the binding site for {sup 125}I-labeled mast cell degranulating peptide, another putative K{sup +}-channel ligand from bee venom, which induces long-term potentiation in hippocampus, seems to reside on the same protein complex, as both binding sites copurify through the entire purification protocol.

  2. Assessing the Returns from Organic Marketing Channels

    OpenAIRE

    Park, Timothy A.

    2009-01-01

    Organic farmers face heightened pressure in developing a portfolio of different marketing channels and in bargaining competitively with increasingly sophisticated marketing participants in the supply chain for organic products. This research assists producers by identifying specific farm and demographic factors that enhance earnings given the choice of marketing outlet. The two significant selectivity coefficients confirm that organic earnings when marketing through a single outlet are biased...

  3. Dynamics of premixed hydrogen/air flames in mesoscale channels

    Energy Technology Data Exchange (ETDEWEB)

    Pizza, Gianmarco [Paul Scherrer Institute, Combustion Research, CH-5232, Villigen PSI (Switzerland); Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, CH-8092, Zurich (Switzerland); Frouzakis, Christos E.; Boulouchos, Konstantinos [Aerothermochemistry and Combustion Systems Laboratory, Swiss Federal Institute of Technology, CH-8092, Zurich (Switzerland); Mantzaras, John [Paul Scherrer Institute, Combustion Research, CH-5232, Villigen PSI (Switzerland); Tomboulides, Ananias G. [Department of Engineering and Management of Energy Resources, University of Western Macedonia, 50100 Kozani (Greece)

    2008-10-15

    Direct numerical simulation with detailed chemistry and transport is used to study the stabilization and dynamics of lean ({phi}=0.5) premixed hydrogen/air atmospheric pressure flames in mesoscale planar channels. Channel heights of h=2, 4, and 7 mm, and inflow velocities in the range 0.3{<=}U{sub IN}{<=}1100cm/ s are investigated. Six different burning modes are identified: mild combustion, ignition/extinction, closed steady symmetric flames, open steady symmetric flames, oscillating and, finally, asymmetric flames. Chaotic behavior of cellular flame structures is observed for certain values of U{sub IN}. Stability maps delineating the regions of the different flame types are finally constructed. (author)

  4. Voltage-Gated Calcium Channels

    Science.gov (United States)

    Zamponi, Gerald Werner

    Voltage Gated Calcium Channels is the first comprehensive book in the calcium channel field, encompassing over thirty years of progress towards our understanding of calcium channel structure, function, regulation, physiology, pharmacology, and genetics. This book balances contributions from many of the leading authorities in the calcium channel field with fresh perspectives from risings stars in the area, taking into account the most recent literature and concepts. This is the only all-encompassing calcium channel book currently available, and is an essential resource for academic researchers at all levels in the areas neuroscience, biophysics, and cardiovascular sciences, as well as to researchers in the drug discovery area.

  5. Incision of the Jezero Crater Outflow Channel by Fluvial Sediment Transport

    Science.gov (United States)

    Holo, S.; Kite, E. S.

    2017-12-01

    Jezero crater, the top candidate landing site for the Mars 2020 rover, once possessed a lake that over-spilled and eroded a large outflow channel into the Eastern rim. The Western deltaic sediments that would be the primary science target of the rover record a history of lake level, which is modulated by the inflow and outflow channels. While formative discharges for the Western delta exist ( 500 m3/s), little work has been done to see if these flows are the same responsible for outflow channel incision. Other models of the Jezero outflow channel incision assume that a single rapid flood (incision timescales of weeks), with unknown initial hydraulic head and no discharge into the lake (e.g. from the inflow channels or the subsurface), incised an open channel with discharge modulated by flow over a weir. We present an alternate model where, due to an instability at the threshold of sediment motion, the incision of the outflow channel occurs in concert with lake filling. In particular, we assume a simplified lake-channel-valley system geometry and that the channel is hydraulically connected to the filling/draining crater lake. Bed load sediment transport and water discharge through the channel are quantified using the Meyer-Peter and Mueller relation and Manning's law respectively. Mass is conserved for both water and sediment as the lake level rises/falls and the channel incises. This model does not resolve backwater effects or concavity in the alluvial system, but it does capture the non-linear feedbacks between lake draining, erosion rate, channel flow rate, and slope relaxation. We identify controls on incision of the outflow channel and estimate the time scale of outflow channel formation through a simple dynamical model. We find that the observed 300m of channel erosion can be reproduced in decades to centuries of progressive bed load as the delta forming flows fill the lake. This corresponds to time scales on the order of or smaller than the time scale

  6. Trafficking and intracellular regulation of Kv7.1 potassium channels in the heart

    DEFF Research Database (Denmark)

    Nielsen, Nathalie Hélix

    identified. About 100 of these mutations are located in the N- or the C-terminal parts of the channel. The aim of the present work was to gain a better understanding of the Kv7.1 channel protein function. In the first study we identified a Kv7.1 missense mutation in a German family with Long QT Syndrome......The electrical activity of the heart, measured by application of surface body electrodes and recorded as an electrocardiogram, is the result of a finely tuned balance of ion movement (K+, Na+, Ca2+). The ionic currents collectively constitute the cardiac action potential created in the cell...

  7. Emissions of hydrogen cyanide from on-road gasoline and diesel vehicles

    Science.gov (United States)

    Moussa, Samar G.; Leithead, Amy; Li, Shao-Meng; Chan, Tak W.; Wentzell, Jeremy J. B.; Stroud, Craig; Zhang, Junhua; Lee, Patrick; Lu, Gang; Brook, Jeffery R.; Hayden, Katherine; Narayan, Julie; Liggio, John

    2016-04-01

    Hydrogen cyanide (HCN) is considered a marker for biomass burning emissions and is a component of vehicle exhaust. Despite its potential health impacts, vehicular HCN emissions estimates and their contribution to regional budgets are highly uncertain. In the current study, Proton Transfer Reaction-Time of Flight-Mass Spectrometry (PTR-ToF-MS) was used to measure HCN emission factors from the exhaust of individual diesel, biodiesel and gasoline vehicles. Laboratory emissions data as a function of fuel type and driving mode were combined with ambient measurement data and model predictions. The results indicate that gasoline vehicles have the highest emissions of HCN (relative to diesel fuel) and that biodiesel fuel has the potential to significantly reduce HCN emissions even at realistic 5% blend levels. The data further demonstrate that gasoline direct injection (GDI) engines emit more HCN than their port fuel injection (PFI) counterparts, suggesting that the expected full transition of vehicle fleets to GDI will increase HCN emissions. Ambient measurements of HCN in a traffic dominated area of Toronto, Canada were strongly correlated to vehicle emission markers and consistent with regional air quality model predictions of ambient air HCN, indicating that vehicle emissions of HCN are the dominant source of exposure in urban areas. The results further indicate that additional work is required to quantify HCN emissions from the modern vehicle fleet, particularly in light of continuously changing engine, fuel and after-treatment technologies.

  8. Unconventional hydrogen bonding to organic ions in the gas phase: Stepwise association of hydrogen cyanide with the pyridine and pyrimidine radical cations and protonated pyridine

    Energy Technology Data Exchange (ETDEWEB)

    Hamid, Ahmed M.; El-Shall, M. Samy, E-mail: mselshal@vcu.edu [Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23284 (United States); Hilal, Rifaat; Elroby, Shaaban; Aziz, Saadullah G. [Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589 (Saudi Arabia)

    2014-08-07

    Equilibrium thermochemical measurements using the ion mobility drift cell technique have been utilized to investigate the binding energies and entropy changes for the stepwise association of HCN molecules with the pyridine and pyrimidine radical cations forming the C{sub 5}H{sub 5}N{sup +·}(HCN){sub n} and C{sub 4}H{sub 4}N{sub 2}{sup +·}(HCN){sub n} clusters, respectively, with n = 1–4. For comparison, the binding of 1–4 HCN molecules to the protonated pyridine C{sub 5}H{sub 5}NH{sup +}(HCN){sub n} has also been investigated. The binding energies of HCN to the pyridine and pyrimidine radical cations are nearly equal (11.4 and 12.0 kcal/mol, respectively) but weaker than the HCN binding to the protonated pyridine (14.0 kcal/mol). The pyridine and pyrimidine radical cations form unconventional carbon-based ionic hydrogen bonds with HCN (CH{sup δ+}⋯NCH). Protonated pyridine forms a stronger ionic hydrogen bond with HCN (NH{sup +}⋯NCH) which can be extended to a linear chain with the clustering of additional HCN molecules (NH{sup +}⋯NCH··NCH⋯NCH) leading to a rapid decrease in the bond strength as the length of the chain increases. The lowest energy structures of the pyridine and pyrimidine radical cation clusters containing 3-4 HCN molecules show a strong tendency for the internal solvation of the radical cation by the HCN molecules where bifurcated structures involving multiple hydrogen bonding sites with the ring hydrogen atoms are formed. The unconventional H-bonds (CH{sup δ+}⋯NCH) formed between the pyridine or the pyrimidine radical cations and HCN molecules (11–12 kcal/mol) are stronger than the similar (CH{sup δ+}⋯NCH) bonds formed between the benzene radical cation and HCN molecules (9 kcal/mol) indicating that the CH{sup δ+} centers in the pyridine and pyrimidine radical cations have more effective charges than in the benzene radical cation.

  9. Porous Materials to Support Bilayer Lipid Membranes for Ion Channel Biosensors

    Directory of Open Access Journals (Sweden)

    Thai Phung

    2011-01-01

    Full Text Available To identify materials suitable as membrane supports for ion channel biosensors, six filter materials of varying hydrophobicity, tortuosity, and thickness were examined for their ability to support bilayer lipid membranes as determined by electrical impedance spectroscopy. Bilayers supported by hydrophobic materials (PTFE, polycarbonate, nylon, and silanised silver had optimal resistance (14–19 GΩ and capacitance (0.8–1.6 μF values whereas those with low hydrophobicity did not form BLMs (PVDF or were short-lived (unsilanised silver. The ability of ion channels to function in BLMs was assessed using a method recently reported to improve the efficiency of proteoliposome incorporation into PTFE-supported bilayers. Voltage-gated sodium channel activation by veratridine and inhibition by saxitoxin showed activity for PTFE, nylon, and silanised silver, but not polycarbonate. Bilayers on thicker, more tortuous, and hydrophobic materials produced higher current levels. Bilayers that self-assembled on PTFE filters were the longest lived and produced the most channel activity using this method.

  10. Evaluation of coherence interference in optical wireless communication through multiscattering channels.

    Science.gov (United States)

    Kedar, Debbie; Arnon, Shlomi

    2006-05-10

    Optical wireless communication has been the subject of much research in recent years because of the increasing interest in laser satellite-ground links and urban optical wireless communication. The major sources of performance degradation have been identified as the spatial, angular, and temporal spread of the propagating beam when the propagation channel is multiscattering, resulting in reduced power reception and intersignal interference, as well as turbulence-induced scintillations and noise due to receiver circuitry and background illumination. However, coherence effects due to multipath interference caused by a scattering propagation channel do not appear to have been treated in detail in the scientific literature. We attempt a theoretical analysis of coherence interference in optical wireless communication through scattering channels and try to quantify the resultant performance degradation for different media. We conclude that coherence interference is discernible in optical wireless communication through scattering channels and is highly dependent on the microscopic nature of the propagation medium.

  11. TRPV6 channels.

    Science.gov (United States)

    Fecher-Trost, Claudia; Weissgerber, Petra; Wissenbach, Ulrich

    2014-01-01

    TRPV6 (former synonyms ECAC2, CaT1, CaT-like) displays several specific features which makes it unique among the members of the mammalian Trp gene family (1) TRPV6 (and its closest relative, TRPV5) are the only highly Ca(2+)-selective channels of the entire TRP superfamily (Peng et al. 1999; Wissenbach et al. 2001; Voets et al. 2004). (2) Translation of Trpv6 initiates at a non-AUG codon, at ACG, located upstream of the annotated AUG, which is not used for initiation (Fecher-Trost et al. 2013). The ACG codon is nevertheless decoded by methionine. Not only a very rare event in eukaryotic biology, the full-length TRPV6 protein existing in vivo comprises an amino terminus extended by 40 amino acid residues compared to the annotated truncated TRPV6 protein which has been used in most studies on TRPV6 channel activity so far. (In the following numbering occurs according to this full-length protein, with the numbers of the so far annotated truncated protein in brackets). (3) Only in humans a coupled polymorphism of Trpv6 exists causing three amino acid exchanges and resulting in an ancestral Trpv6 haplotype and a so-called derived Trpv6 haplotype (Wissenbach et al. 2001). The ancestral allele encodes the amino acid residues C197(157), M418(378) and M721(681) and the derived alleles R197(157), V418(378) and T721(681). The ancestral haplotype is found in all species, the derived Trpv6 haplotype has only been identified in humans, and its frequency increases with the distance to the African continent. Apparently the Trpv6 gene has been a strong target for selection in humans, and its derived variant is one of the few examples showing consistently differences to the orthologues genes of other primates (Akey et al. 2004, 2006; Stajich and Hahn 2005; Hughes et al. 2008). (4) The Trpv6 gene expression is significantly upregulated in several human malignancies including the most common cancers, prostate and breast cancer (Wissenbach et al. 2001; Zhuang et al. 2002; Fixemer et al

  12. Large conductance Ca2+-activated K+ (BK channel: Activation by Ca2+ and voltage

    Directory of Open Access Journals (Sweden)

    RAMÓN LATORRE

    2006-01-01

    Full Text Available Large conductance Ca2+-activated K+ (BK channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv channels characterized by having six (S1-S6 transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0 transmembrane domain that leads to an external NH2-terminus. The BK channel is activated by internal Ca2+, and using chimeric channels and mutagenesis, three distinct Ca2+-dependent regulatory mechanisms with different divalent cation selectivity have been identified in its large COOH-terminus. Two of these putative Ca2+-binding domains activate the BK channel when cytoplasmic Ca2+ reaches micromolar concentrations, and a low Ca2+ affinity mechanism may be involved in the physiological regulation by Mg2+. The presence in the BK channel of multiple Ca2+-binding sites explains the huge Ca2+ concentration range (0.1 μM-100 μM in which the divalent cation influences channel gating. BK channels are also voltage-dependent, and all the experimental evidence points toward the S4 domain as the domain in charge of sensing the voltage. Calcium can open BK channels when all the voltage sensors are in their resting configuration, and voltage is able to activate channels in the complete absence of Ca2+. Therefore, Ca2+ and voltage act independently to enhance channel opening, and this behavior can be explained using a two-tiered allosteric gating mechanism.

  13. Transmembrane helical interactions in the CFTR channel pore.

    Directory of Open Access Journals (Sweden)

    Jhuma Das

    2017-06-01

    Full Text Available Mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR gene affect CFTR protein biogenesis or its function as a chloride channel, resulting in dysregulation of epithelial fluid transport in the lung, pancreas and other organs in cystic fibrosis (CF. Development of pharmaceutical strategies to treat CF requires understanding of the mechanisms underlying channel function. However, incomplete 3D structural information on the unique ABC ion channel, CFTR, hinders elucidation of its functional mechanism and correction of cystic fibrosis causing mutants. Several CFTR homology models have been developed using bacterial ABC transporters as templates but these have low sequence similarity to CFTR and are not ion channels. Here, we refine an earlier model in an outward (OWF and develop an inward (IWF facing model employing an integrated experimental-molecular dynamics simulation (200 ns approach. Our IWF structure agrees well with a recently solved cryo-EM structure of a CFTR IWF state. We utilize cysteine cross-linking to verify positions and orientations of residues within trans-membrane helices (TMHs of the OWF conformation and to reconstruct a physiologically relevant pore structure. Comparison of pore profiles of the two conformations reveal a radius sufficient to permit passage of hydrated Cl- ions in the OWF but not the IWF model. To identify structural determinants that distinguish the two conformations and possible rearrangements of TMHs within them responsible for channel gating, we perform cross-linking by bifunctional reagents of multiple predicted pairs of cysteines in TMH 6 and 12 and 6 and 9. To determine whether the effects of cross-linking on gating observed are the result of switching of the channel from open to close state, we also treat the same residue pairs with monofunctional reagents in separate experiments. Both types of reagents prevent ion currents indicating that pore blockage is primarily responsible.

  14. Long-pore Electrostatics in Inward-rectifier Potassium Channels

    Science.gov (United States)

    Robertson, Janice L.; Palmer, Lawrence G.; Roux, Benoît

    2008-01-01

    Inward-rectifier potassium (Kir) channels differ from the canonical K+ channel structure in that they possess a long extended pore (∼85 Å) for ion conduction that reaches deeply into the cytoplasm. This unique structural feature is presumably involved in regulating functional properties specific to Kir channels, such as conductance, rectification block, and ligand-dependent gating. To elucidate the underpinnings of these functional roles, we examine the electrostatics of an ion along this extended pore. Homology models are constructed based on the open-state model of KirBac1.1 for four mammalian Kir channels: Kir1.1/ROMK, Kir2.1/IRK, Kir3.1/GIRK, and Kir6.2/KATP. By solving the Poisson-Boltzmann equation, the electrostatic free energy of a K+ ion is determined along each pore, revealing that mammalian Kir channels provide a favorable environment for cations and suggesting the existence of high-density regions in the cytoplasmic domain and cavity. The contribution from the reaction field (the self-energy arising from the dielectric polarization induced by the ion's charge in the complex geometry of the pore) is unfavorable inside the long pore. However, this is well compensated by the electrostatic interaction with the static field arising from the protein charges and shielded by the dielectric surrounding. Decomposition of the static field provides a list of residues that display remarkable correspondence with existing mutagenesis data identifying amino acids that affect conduction and rectification. Many of these residues demonstrate interactions with the ion over long distances, up to 40 Å, suggesting that mutations potentially affect ion or blocker energetics over the entire pore. These results provide a foundation for understanding ion interactions in Kir channels and extend to the study of ion permeation, block, and gating in long, cation-specific pores. PMID:19001143

  15. Evaluation channel performance in multichannel environments

    NARCIS (Netherlands)

    Gensler, S.; Dekimpe, M.; Skiera, B.

    2007-01-01

    Evaluating channel performance is crucial for actively managing multiple sales channels, and requires understanding the customers' channel preferences. Two key components of channel performance are (i) the existing customers' intrinsic loyalty to a particular channel and (ii) the channel's ability

  16. Maja Valles, Mars: A Multi-Source Fluvio-Volcanic Outflow Channel System

    Science.gov (United States)

    Keske, A.; Christensen, P. R.

    2017-12-01

    The resemblance of martian outflow channels to the channeled scablands of the Pacific Northwest has led to general consensus that they were eroded by large-scale flooding. However, the observation that many of these channels are coated in lava issuing from the same source as the water source has motivated the alternative hypothesis that the channels were carved by fluid, turbulent lava. Maja Valles is a circum-Chryse outflow channel whose origin was placed in the late Hesperian by Baker and Kochel (1979), with more recent studies of crater density variations suggesting that its formation history involved multiple resurfacing events (Chapman et al., 2003). In this study, we have found that while Maja Valles indeed host a suite of standard fluvial landforms, its northern portion is thinly coated with lava that has buried much of the older channel landforms and overprinted them with effusive flow features, such as polygons and bathtub rings. Adjacent to crater pedestals and streamlined islands are patches of dark, relatively pristine material pooled in local topographic lows that we have interpreted as ponds of lava remaining from one or more fluid lava flows that flooded the channel system and subsequently drained, leaving marks of the local lava high stand. Despite the presence of fluvial landforms throughout the valles, lava flow features exist in the northern reaches of the system alone, 500-1200 km from the channels' source. The flows can instead be traced to a collection of vents in Lunae Plaum, west of the valles. In previously studied fluvio-volcanic outflow systems, such as Athabasca Valles, the sources of the volcanic activity and fluvial activity have been indistinguishable. In contrast, Maja Valles features numerous fluvio-volcanic landforms bearing similarity to those identified in other channel systems, yet the source of its lava flows is distinct from the source of its channels. Furthermore, in the absence of any channels between the source of the lava

  17. Optimal complex exponentials BEM and channel estimation in doubly selective channel

    International Nuclear Information System (INIS)

    Song, Lijun; Lei, Xia; Yu, Feng; Jin, Maozhu

    2016-01-01

    Over doubly selective channel, the optimal complex exponentials BEM (CE-BEM) is required to characterize the transmission in transform domain in order to reducing the huge number of the estimated parameters during directly estimating the impulse response in time domain. This paper proposed an improved CE-BEM to alleviating the high frequency sampling error caused by conventional CE-BEM. On the one hand, exploiting the improved CE-BEM, we achieve the sampling point is in the Doppler spread spectrum and the maximum sampling frequency is equal to the maximum Doppler shift. On the other hand we optimize the function and dimension of basis in CE-BEM respectively ,and obtain the closed solution of the EM based channel estimation differential operator by exploiting the above optimal BEM. Finally, the numerical results and theoretic analysis show that the dimension of basis is mainly depend on the maximum Doppler shift and signal-to-noise ratio (SNR), and if fixing the number of the pilot symbol, the dimension of basis is higher, the modeling error is smaller, while the accuracy of the parameter estimation is reduced, which implies that we need to achieve a tradeoff between the modeling error and the accuracy of the parameter estimation and the basis function influences the accuracy of describing the Doppler spread spectrum after identifying the dimension of the basis.

  18. Vertical Differentiation of Cassava Marketing Channels in Africa

    Directory of Open Access Journals (Sweden)

    Enete, AA.

    2008-01-01

    Full Text Available Farming systems in sub-Saharan Africa are inherently risky because they are fundamentally dependent on vagaries of weather. Sub-Saharan Africa is also a region in crises; poverty, civil strife and HIV/AIDS. Attention must therefore be focused on improving the production and marketing of crops that could thrive under these circumstances. Because of its tolerance of extreme drought and low input use conditions, Cassava is perhaps the best candidate in this regard. And cassava is a basic food staple and a major source of farm income for the people of the region. Efficiency in cassava marketing is a very important determinant of both consumers' living cost and producers' income in Africa. Vertical differentiation of marketing channels improves marketing efficiency. Identified in this paper are factors that drive vertical differentiation of cassava marketing channels. The paper is based on primary data collected within the framework of the Collaborative Study of Cassava in Africa. High population density, good market access conditions, availability of mechanized cassava processing technology and cassava price information stimulate vertical differentiation of the marketing channels.

  19. Channel Choice: A Literature Review

    DEFF Research Database (Denmark)

    Østergaard Madsen, Christian; Kræmmergaard, Pernille

    2015-01-01

    The channel choice branch of e-government studies citizens’ and businesses’ choice of channels for interacting with government, and how government organizations can integrate channels and migrate users towards the most cost-efficient channels. In spite of the valuable contributions offered...

  20. Reconfigurable virtual electrowetting channels.

    Science.gov (United States)

    Banerjee, Ananda; Kreit, Eric; Liu, Yuguang; Heikenfeld, Jason; Papautsky, Ian

    2012-02-21

    Lab-on-a-chip systems rely on several microfluidic paradigms. The first uses a fixed layout of continuous microfluidic channels. Such lab-on-a-chip systems are almost always application specific and far from a true "laboratory." The second involves electrowetting droplet movement (digital microfluidics), and allows two-dimensional computer control of fluidic transport and mixing. The merging of the two paradigms in the form of programmable electrowetting channels takes advantage of both the "continuous" functionality of rigid channels based on which a large number of applications have been developed to date and the "programmable" functionality of digital microfluidics that permits electrical control of on-chip functions. In this work, we demonstrate for the first time programmable formation of virtual microfluidic channels and their continuous operation with pressure driven flows using an electrowetting platform. Experimental, theoretical, and numerical analyses of virtual channel formation with biologically relevant electrolyte solutions and electrically-programmable reconfiguration are presented. We demonstrate that the "wall-less" virtual channels can be formed reliably and rapidly, with propagation rates of 3.5-3.8 mm s(-1). Pressure driven transport in these virtual channels at flow rates up to 100 μL min(-1) is achievable without distortion of the channel shape. We further demonstrate that these virtual channels can be switched on-demand between multiple inputs and outputs. Ultimately, we envision a platform that would provide rapid prototyping of microfluidic concepts and would be capable of a vast library of functions and benefitting applications from clinical diagnostics in resource-limited environments to rapid system prototyping to high throughput pharmaceutical applications.

  1. Mapping of Residues Forming the Voltage Sensor of the Voltage-Dependent Anion-Selective Channel

    Science.gov (United States)

    Thomas, Lorie; Blachly-Dyson, Elizabeth; Colombini, Marco; Forte, Michael

    1993-06-01

    Voltage-gated ion-channel proteins contain "voltage-sensing" domains that drive the conformational transitions between open and closed states in response to changes in transmembrane voltage. We have used site-directed mutagenesis to identify residues affecting the voltage sensitivity of a mitochondrial channel, the voltage-dependent anion-selective channel (VDAC). Although charge changes at many sites had no effect, at other sites substitutions that increased positive charge also increased the steepness of voltage dependance and substitutions that decreased positive charge decreased voltage dependance by an appropriate amount. In contrast to the plasma membrane K^+ and Na^+ channels, these residues are distributed over large parts of the VDAC protein. These results have been used to define the conformational transitions that accompany voltage gating of an ion channel. This gating mechanism requires the movement of large portions of the VDAC protein through the membrane.

  2. TRP Channels as Therapeutic Targets in Diabetes and Obesity

    Directory of Open Access Journals (Sweden)

    Andrea Zsombok

    2016-08-01

    Full Text Available During the last three to four decades the prevalence of obesity and diabetes mellitus has greatly increased worldwide, including in the United States. Both the short- and long-term forecasts predict serious consequences for the near future, and encourage the development of solutions for the prevention and management of obesity and diabetes mellitus. Transient receptor potential (TRP channels were identified in tissues and organs important for the control of whole body metabolism. A variety of TRP channels has been shown to play a role in the regulation of hormone release, energy expenditure, pancreatic function, and neurotransmitter release in control, obese and/or diabetic conditions. Moreover, dietary supplementation of natural ligands of TRP channels has been shown to have potential beneficial effects in obese and diabetic conditions. These findings raised the interest and likelihood for potential drug development. In this mini-review, we discuss possibilities for better management of obesity and diabetes mellitus based on TRP-dependent mechanisms.

  3. A comprehensive search for calcium binding sites critical for TMEM16A calcium-activated chloride channel activity

    Science.gov (United States)

    Tien, Jason; Peters, Christian J; Wong, Xiu Ming; Cheng, Tong; Jan, Yuh Nung; Jan, Lily Yeh; Yang, Huanghe

    2014-01-01

    TMEM16A forms calcium-activated chloride channels (CaCCs) that regulate physiological processes such as the secretions of airway epithelia and exocrine glands, the contraction of smooth muscles, and the excitability of neurons. Notwithstanding intense interest in the mechanism behind TMEM16A-CaCC calcium-dependent gating, comprehensive surveys to identify and characterize potential calcium sensors of this channel are still lacking. By aligning distantly related calcium-activated ion channels in the TMEM16 family and conducting systematic mutagenesis of all conserved acidic residues thought to be exposed to the cytoplasm, we identify four acidic amino acids as putative calcium-binding residues. Alterations of the charge, polarity, and size of amino acid side chains at these sites alter the ability of different divalent cations to activate the channel. Furthermore, TMEM16A mutant channels containing double cysteine substitutions at these residues are sensitive to the redox potential of the internal solution, providing evidence for their physical proximity and solvent accessibility. DOI: http://dx.doi.org/10.7554/eLife.02772.001 PMID:24980701

  4. Charge Fractionalization in the Two-Channel Kondo Effect

    Science.gov (United States)

    Landau, L. Aviad; Cornfeld, Eyal; Sela, Eran

    2018-05-01

    The phenomenon of charge fractionalization describes the emergence of novel excitations with fractional quantum numbers, as predicted in strongly correlated systems such as spin liquids. We elucidate that precisely such an unusual effect may occur in the simplest possible non-Fermi liquid, the two-channel Kondo effect. To bring this concept down to experimental test, we study nonequilibrium transport through a device realizing the charge two-channel Kondo critical point in a recent experiment by Iftikhar et al. [Nature (London) 526, 233 (2015), 10.1038/nature15384]. The shot noise at low voltages is predicted to result in a universal Fano factor e*/e =1 /2 . This allows us to experimentally identify elementary transport processes of emergent fermions carrying half-integer charge.

  5. KV7 potassium channels

    DEFF Research Database (Denmark)

    Stott, Jennifer B; Jepps, Thomas Andrew; Greenwood, Iain A

    2014-01-01

    Potassium channels are key regulators of smooth muscle tone, with increases in activity resulting in hyperpolarisation of the cell membrane, which acts to oppose vasoconstriction. Several potassium channels exist within smooth muscle, but the KV7 family of voltage-gated potassium channels have been...

  6. Field Validation of the Host Country National Liaison Role

    DEFF Research Database (Denmark)

    van Bakel, Marian; Andersen, Torben; Vance, Charles

    resource for guiding the selection, training, and management of HCNL performance to ultimately benefit the local subsidiary. However, although the development of this local HCNL role model was based both on theoretical constructs and the authors’ international experience, it remains to be validated......Recent conceptual work by Vance et al. (2014) has explored various aspects of the important liaison role of HCN managers and other HCN support staff between the assigned expatriate and local employees as well as the surrounding host country work environment. They identified five different...... components for this important HCNL role, including cultural interpreter, communication manager, information resource broker, talent manager, and internal change agent. They further identified specific behavioral functions for each role component. This behavior-based model provides a potentially valuable...

  7. Outward Rectification of Voltage-Gated K+ Channels Evolved at Least Twice in Life History.

    Directory of Open Access Journals (Sweden)

    Janin Riedelsberger

    Full Text Available Voltage-gated potassium (K+ channels are present in all living systems. Despite high structural similarities in the transmembrane domains (TMD, this K+ channel type segregates into at least two main functional categories-hyperpolarization-activated, inward-rectifying (Kin and depolarization-activated, outward-rectifying (Kout channels. Voltage-gated K+ channels sense the membrane voltage via a voltage-sensing domain that is connected to the conduction pathway of the channel. It has been shown that the voltage-sensing mechanism is the same in Kin and Kout channels, but its performance results in opposite pore conformations. It is not known how the different coupling of voltage-sensor and pore is implemented. Here, we studied sequence and structural data of voltage-gated K+ channels from animals and plants with emphasis on the property of opposite rectification. We identified structural hotspots that alone allow already the distinction between Kin and Kout channels. Among them is a loop between TMD S5 and the pore that is very short in animal Kout, longer in plant and animal Kin and the longest in plant Kout channels. In combination with further structural and phylogenetic analyses this finding suggests that outward-rectification evolved twice and independently in the animal and plant kingdom.

  8. Preservation of meandering river channels in uniformly aggrading channel belts

    NARCIS (Netherlands)

    Lageweg, W.I. van de; Schuurman, F.; Cohen, K.M.; Dijk, W.M. van; Shimizu, Y.; Kleinhans, M.G.

    2016-01-01

    Channel belt deposits from meandering river systems commonly display an internal architecture of stacked depositional features with scoured basal contacts due to channel and bedform migration across a range of scales. Recognition and correct interpretation of these bounding surfaces is essential to

  9. Multi-channel service retailing: The effects of channel performance satisfaction on behavioral intentions.

    NARCIS (Netherlands)

    Birgelen, van M.; Jong, de A.; Ruyter, de J.C.

    2006-01-01

    Abstract The number of channels that retailers can use interchangeably to provide customer service has increased. We report on a study of clients of a large retail bank that investigates the channel performance satisfaction–behavioral intentions relationship when the traditional service channel

  10. CLC channel function and dysfunction in health and disease

    Directory of Open Access Journals (Sweden)

    Gabriel eStölting

    2014-10-01

    Full Text Available CLC channels and transporters are expressed in most tissues and fulfill diverse functions. There are four human CLC channels, ClC-1, ClC-2, ClC-Ka and ClC-Kb, and five CLC transporters, ClC-3 through -7. Some of the CLC channels additionally associate with accessory subunits. Whereas barttin is mandatory for the functional expression of CLC-K, GlialCam is a facultative subunit of ClC-2 which modifies gating and thus increases the functional variability within the CLC family. Isoform-specific ion conduction and gating properties optimize distinct CLC channels for their cellular tasks. ClC-1 preferentially conducts at negative voltages, and the resulting inward rectification provides a large resting chloride conductance without interference with the muscle action potential. Exclusive opening at voltages negative to the chloride reversal potential allows for ClC-2 to regulate intracellular chloride concentrations. ClC-Ka and ClC-Kb are equally suited for inward and outward currents to support transcellular chloride fluxes. Every human CLC channel gene has been linked to a genetic disease, and studying these mutations has provided much information about the physiological roles and the molecular basis of CLC channel function. Mutations in the gene encoding ClC-1 cause myotonia congenita, a disease characterized by sarcolemmal hyperexcitability and muscle stiffness. Loss-of-function of ClC-Kb/barttin channels in patients suffering from Bartter syndrome identified the determinants of chloride conductances in the limb of Henle. Mutations in CLCN2 were found in patients with CNS disorders but the functional role of this isoform is still not understood. Recent links between ClC-1 and epilepsy and ClC-Ka and heart failure suggested novel cellular functions of these proteins. This review aims to survey the knowledge about physiological and pathophysiological functions of human CLC channels in the light of recent discoveries from biophysical, physiological

  11. Conclusive identification of quantum channels via monogamy of quantum correlations

    International Nuclear Information System (INIS)

    Kumar, Asutosh; Singha Roy, Sudipto; Pal, Amit Kumar; Prabhu, R.; Sen, Aditi; Sen, Ujjwal

    2016-01-01

    We investigate the action of global noise and local channels, namely, amplitude-damping, phase-damping, and depolarizing channels, on monogamy of quantum correlations, such as negativity and quantum discord, in three-qubit systems. We discuss the monotonic and non-monotonic variation, and robustness of the monogamy scores. By using monogamy scores, we propose a two-step protocol to conclusively identify the noise applied to the quantum system, by using generalized Greenberger–Horne–Zeilinger and generalized W states as resource states. We discuss a possible generalization of the results to higher number of parties. - Highlights: • Monogamy score monotonically decays with noise for generalized GHZ state as input. • Non-monotonically decaying monogamy score with noise for generalized W state as input. • Characterizing the dynamics of monogamy score. • Dynamics terminal quantifying robustness of monogamy score against noise. • Conclusively identifying the type of noise using monogamy score.

  12. Conclusive identification of quantum channels via monogamy of quantum correlations

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Asutosh; Singha Roy, Sudipto; Pal, Amit Kumar [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Prabhu, R. [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Department of Physics, Indian Institute of Technology Patna, Bihta 801103, Bihar (India); Sen, Aditi, E-mail: aditi@hri.res.in [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India); Sen, Ujjwal [Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Allahabad 211019 (India); Homi Bhaba National Institute, Training School Complex, Anushaktinagar, Mumbai 400094 (India)

    2016-10-23

    We investigate the action of global noise and local channels, namely, amplitude-damping, phase-damping, and depolarizing channels, on monogamy of quantum correlations, such as negativity and quantum discord, in three-qubit systems. We discuss the monotonic and non-monotonic variation, and robustness of the monogamy scores. By using monogamy scores, we propose a two-step protocol to conclusively identify the noise applied to the quantum system, by using generalized Greenberger–Horne–Zeilinger and generalized W states as resource states. We discuss a possible generalization of the results to higher number of parties. - Highlights: • Monogamy score monotonically decays with noise for generalized GHZ state as input. • Non-monotonically decaying monogamy score with noise for generalized W state as input. • Characterizing the dynamics of monogamy score. • Dynamics terminal quantifying robustness of monogamy score against noise. • Conclusively identifying the type of noise using monogamy score.

  13. Trafficking of Kv2.1 Channels to the Axon Initial Segment by a Novel Nonconventional Secretory Pathway

    DEFF Research Database (Denmark)

    Jensen, Camilla Stampe; Watanabe, Shoji; Stas, Jeroen Ingrid

    2017-01-01

    the localization of Kv2.1 in these two different membrane compartments in cultured rat hippocampal neurons of mixed sex. Our data uncover a unique ability of Kv2.1 channels to use two molecularly distinct trafficking pathways to accomplish this. Somatodendritic Kv2.1 channels are targeted by the conventional...... secretory pathway, whereas axonal Kv2.1 channels are targeted by a nonconventional trafficking pathway independent of the Golgi apparatus. We further identified a new AIS trafficking motif in the C-terminus of Kv2.1, and show that putative phosphorylation sites in this region are critical for the restricted.......SIGNIFICANCE STATEMENT Our study uncovered a novel mechanism that targets the Kv2.1 voltage-gated potassium channel to two distinct trafficking pathways and two distinct subcellular destinations: the somatodendritic plasma membrane and that of the axon initial segment. We also identified a distinct motif, including...

  14. Channel heads in mountain catchments subject to human impact - The Skrzyczne range in Southern Poland

    Science.gov (United States)

    Wrońska-Wałach, Dominika; Żelazny, Mirosław; Małek, Stanisław; Krakowian, Katarzyna; Dąbek, Natalia

    2018-05-01

    Channel heads in mountain catchments are increasingly influenced by human activity. The disturbance of mountain headwater areas in moderate latitudes by the clearing of trees and the associated logging, road building and hydrotechnical constructions contribute to changes in the water cycle and consequently may induce a change in channel head development. Here we examine channel heads in the Beskid Śląski Mts., one of the areas most affected by ecological disaster in the Polish Flysch Carpathians. An ecological disaster associated with the decline of spruce trees in the 1980s and 1990s caused a substantial decrease (of about 50%) in the land area occupied by spruce forest in the Beskid Śląski Mts. As a result, headwater areas were subject to multidirectional changes in the environment. The purpose of this paper is to determine the detailed characteristics of channel heads currently developing in the analyzed headwater areas, as well as to identify independent factors that affect the evolution of channel heads. Geomorphological mapping was conducted in 2012 in the vicinity of springs in the study area. One-way ANOVA was used to determine the significance of differences between mean values calculated for groups identified based on: i) geomorphologic processes (hollows with rock veneer - h, spring niches - sn, gullies - g), ii) location vs. transformation of channel heads (forested areas vs., deforested areas with road constructions). Principal component analysis (PCA) was used to determine the structure and general patterns associated with relationships between the parameters of a channel head and its contribution area, as well as to identify and interpret new (orthogonal) spaces defined using distinct factors. As far as we know, this kind of approach has been never applied before. A total of 80 channel heads surrounding 104 springs were surveyed close to the main ridge in the study area. A total of 14 morphometric parameters were taken into account in this study

  15. Distribution Channels Conflict and Management

    OpenAIRE

    Kiran, Dr Vasanth; Majumdar, Dr Mousumi; Kishore, Dr Krishna

    2012-01-01

    Relationships in distribution channels tend to be long-term oriented and members of the channel rely on each other to jointly realize their goals by serving buyers. Despite the channels focus on serving buyers, conflicts often arise between channel members because of each members self-interest. When conflicts arise, the perceptions of a channel member based on normative, rational/instrumental, or emotional reasoning will influence relational norms like trust and commitment that characterize t...

  16. A remarkably stable TipE gene cluster: evolution of insect Para sodium channel auxiliary subunits

    Directory of Open Access Journals (Sweden)

    Li Jia

    2011-11-01

    Full Text Available Abstract Background First identified in fruit flies with temperature-sensitive paralysis phenotypes, the Drosophila melanogaster TipE locus encodes four voltage-gated sodium (NaV channel auxiliary subunits. This cluster of TipE-like genes on chromosome 3L, and a fifth family member on chromosome 3R, are important for the optional expression and functionality of the Para NaV channel but appear quite distinct from auxiliary subunits in vertebrates. Here, we exploited available arthropod genomic resources to trace the origin of TipE-like genes by mapping their evolutionary histories and examining their genomic architectures. Results We identified a remarkably conserved synteny block of TipE-like orthologues with well-maintained local gene arrangements from 21 insect species. Homologues in the water flea, Daphnia pulex, suggest an ancestral pancrustacean repertoire of four TipE-like genes; a subsequent gene duplication may have generated functional redundancy allowing gene losses in the silk moth and mosquitoes. Intronic nesting of the insect TipE gene cluster probably occurred following the divergence from crustaceans, but in the flour beetle and silk moth genomes the clusters apparently escaped from nesting. Across Pancrustacea, TipE gene family members have experienced intronic nesting, escape from nesting, retrotransposition, translocation, and gene loss events while generally maintaining their local gene neighbourhoods. D. melanogaster TipE-like genes exhibit coordinated spatial and temporal regulation of expression distinct from their host gene but well-correlated with their regulatory target, the Para NaV channel, suggesting that functional constraints may preserve the TipE gene cluster. We identified homology between TipE-like NaV channel regulators and vertebrate Slo-beta auxiliary subunits of big-conductance calcium-activated potassium (BKCa channels, which suggests that ion channel regulatory partners have evolved distinct lineage

  17. Quantum communication under channel uncertainty

    International Nuclear Information System (INIS)

    Noetzel, Janis Christian Gregor

    2012-01-01

    This work contains results concerning transmission of entanglement and subspaces as well as generation of entanglement in the limit of arbitrary many uses of compound- and arbitrarily varying quantum channels (CQC, AVQC). In both cases, the channel is described by a set of memoryless channels. Only forward communication between one sender and one receiver is allowed. A code is said to be ''good'' only, if it is ''good'' for every channel out of the set. Both settings describe a scenario, in which sender and receiver have only limited channel knowledge. For different amounts of information about the channel available to sender or receiver, coding theorems are proven for the CQC. For the AVQC, both deterministic and randomised coding schemes are considered. Coding theorems are proven, as well as a quantum analogue of the Ahlswede-dichotomy. The connection to zero-error capacities of stationary memoryless quantum channels is investigated. The notion of symmetrisability is defined and used for both classes of channels.

  18. A Reduced Reaction Scheme for Volatile Nitrogen Conversion in Coal Combustion

    DEFF Research Database (Denmark)

    Pedersen, Lars Saaby; Glarborg, Peter; Dam-Johansen, Kim

    1998-01-01

    In pulverised coal flames, the most important volatile nitrogen component forming NOx is HCN. To be able to model the nitrogen chemistry in coal flames it is necessary to have an adequate model for HCN oxidation. The present work was concerned with developing a model for HCN/NH3/NO conversion based...... that the CO/H-2 chemistry was described adequately, the reduced HCN/NH3/NO model compared very well with the detailed model over a wide range of stoichiometries. Decoupling of the HCN chemistry from the CO/H-2 chemistry resulted in over-prediction of the HCN oxidation rate under fuel rich conditions, but had...... negligible effect on the CO/H-2 chemistry. Comparison with simplified HCN models from the literature revealed significant differences, indicating that these models should be used cautiously in modelling volatile nitrogen conversion....

  19. Proton channel HVCN1 is required for effector functions of mouse eosinophils

    Science.gov (United States)

    2013-01-01

    Background Proton currents are required for optimal respiratory burst in phagocytes. Recently, HVCN1 was identified as the molecule required for the voltage-gated proton channel activity associated with the respiratory burst in neutrophils. Although there are similarities between eosinophils and neutrophils regarding their mechanism for respiratory burst, the role of proton channels in eosinophil functions has not been fully understood. Results In the present study, we first identified the expression of the proton channel HVCN1 in mouse eosinophils. Furthermore, using HVCN1-deficient eosinophils, we demonstrated important cell-specific effector functions for HVCN1. Similar to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils produced significantly less reactive oxygen species (ROS) upon phorbol myristate acetate (PMA) stimulation compared with WT eosinophils. In contrast to HVCN1-deficient neutrophils, HVCN1-deficient eosinophils did not show impaired calcium mobilization or migration ability compared with wild-type (WT) cells. Uniquely, HVCN1-deficient eosinophils underwent significantly increased cell death induced by PMA stimulation compared with WT eosinophils. The increased cell death was dependent on NADPH oxidase activation, and correlated with the failure of HVCN1-deficient cells to maintain membrane polarization and intracellular pH in the physiological range upon activation. Conclusions Eosinophils require proton channel HVCN1 for optimal ROS generation and prevention of activation-induced cell death. PMID:23705768

  20. 3D reconstruction of the source and scale of buried young flood channels on Mars.

    Science.gov (United States)

    Morgan, Gareth A; Campbell, Bruce A; Carter, Lynn M; Plaut, Jeffrey J; Phillips, Roger J

    2013-05-03

    Outflow channels on Mars are interpreted as the product of gigantic floods due to the catastrophic eruption of groundwater that may also have initiated episodes of climate change. Marte Vallis, the largest of the young martian outflow channels (Mars hydrologic activity during a period otherwise considered to be cold and dry. Using data from the Shallow Radar sounder on the Mars Reconnaissance Orbiter, we present a three-dimensional (3D) reconstruction of buried channels on Mars and provide estimates of paleohydrologic parameters. Our work shows that Cerberus Fossae provided the waters that carved Marte Vallis, and it extended an additional 180 kilometers to the east before the emplacement of the younger lava flows. We identified two stages of channel incision and determined that channel depths were more than twice those of previous estimates.

  1. Eight channel fast scalar

    Energy Technology Data Exchange (ETDEWEB)

    Waddoup, W D; Stubbs, R J [Durham Univ. (UK)

    1977-11-01

    An eight channel 64-bit scaler has been constructed with a static CMOS memory. Scaling frequencies are independently variable, at each channel, as are the number of bits/channel. The scaler, when used in conjunction with a multichannel charge to time converter results in a very flexible, gated multichannel ADC.

  2. Calcium-dependent expression of transient receptor potential canonical type 3 channels in patients with chronic kidney disease

    DEFF Research Database (Denmark)

    Liu, Ying; Krueger, Katharina; Hovsepian, Anahit

    2011-01-01

    patients with chronic kidney disease and 19 age- and sex-matched healthy control subjects. TRPC3 channels were identified by immunoblotting using specific antibodies and TRPC3 protein was further confirmed by mass spectrometry. We observed a significant increase of TRPC3 channel protein expression...

  3. Verification of Compliance of Channel and Bundle Power Limits Considering Ageing

    International Nuclear Information System (INIS)

    Kim, In Young; Choi, Yong Won; Lee, Un Chul

    2010-01-01

    In the process of resolving GAI 95G03(Compliance with Bundle and Channel Power Limits) and 01G01(Fuel Management and Surveillance Software Upgrade), Canadian nuclear industry and its regulators upgrade their software like reactor physics code to a level of at least similar to the Industry Standard Toolset (IST). As results, power coefficients of reactivity have large uncertainty had become obvious. If large allowances for uncertainties were needed, analysis must be carried out to ensure reactor safety. To analyze this large uncertainty in power coefficient, uncertainty factors of power coefficient should be identified. Thus in this paper, sensitivity analysis on aging elements is performed by ascertaining envelope of channel power and bundle power. And Compliance with bundle power and channel power limits (GAI 95G03) considering aging effect is verified

  4. Automatic pickup of arrival time of channel wave based on multi-channel constraints

    Science.gov (United States)

    Wang, Bao-Li

    2018-03-01

    Accurately detecting the arrival time of a channel wave in a coal seam is very important for in-seam seismic data processing. The arrival time greatly affects the accuracy of the channel wave inversion and the computed tomography (CT) result. However, because the signal-to-noise ratio of in-seam seismic data is reduced by the long wavelength and strong frequency dispersion, accurately timing the arrival of channel waves is extremely difficult. For this purpose, we propose a method that automatically picks up the arrival time of channel waves based on multi-channel constraints. We first estimate the Jaccard similarity coefficient of two ray paths, then apply it as a weight coefficient for stacking the multichannel dispersion spectra. The reasonableness and effectiveness of the proposed method is verified in an actual data application. Most importantly, the method increases the degree of automation and the pickup precision of the channel-wave arrival time.

  5. Functional modifications of acid-sensing ion channels by ligand-gated chloride channels.

    Directory of Open Access Journals (Sweden)

    Xuanmao Chen

    Full Text Available Together, acid-sensing ion channels (ASICs and epithelial sodium channels (ENaC constitute the majority of voltage-independent sodium channels in mammals. ENaC is regulated by a chloride channel, the cystic fibrosis transmembrane conductance regulator (CFTR. Here we show that ASICs were reversibly inhibited by activation of GABA(A receptors in murine hippocampal neurons. This inhibition of ASICs required opening of the chloride channels but occurred with both outward and inward GABA(A receptor-mediated currents. Moreover, activation of the GABA(A receptors modified the pharmacological features and kinetic properties of the ASIC currents, including the time course of activation, desensitization and deactivation. Modification of ASICs by open GABA(A receptors was also observed in both nucleated patches and outside-out patches excised from hippocampal neurons. Interestingly, ASICs and GABA(A receptors interacted to regulate synaptic plasticity in CA1 hippocampal slices. The activation of glycine receptors, which are similar to GABA(A receptors, also modified ASICs in spinal neurons. We conclude that GABA(A receptors and glycine receptors modify ASICs in neurons through mechanisms that require the opening of chloride channels.

  6. A 31-channel MR brain array coil compatible with positron emission tomography.

    Science.gov (United States)

    Sander, Christin Y; Keil, Boris; Chonde, Daniel B; Rosen, Bruce R; Catana, Ciprian; Wald, Lawrence L

    2015-06-01

    Simultaneous acquisition of MR and positron emission tomography (PET) images requires the placement of the MR detection coil inside the PET detector ring where it absorbs and scatters photons. This constraint is the principal barrier to achieving optimum sensitivity on each modality. Here, we present a 31-channel PET-compatible brain array coil with reduced attenuation but improved MR sensitivity. A series of component tests were performed to identify tradeoffs between PET and MR performance. Aspects studied include the remote positioning of preamplifiers, coax size, coil trace size/material, and plastic housing. We then maximized PET performance at minimal cost to MR sensitivity. The coil was evaluated for MR performance (signal to noise ratio [SNR], g-factor) and PET attenuation. The coil design showed an improvement in attenuation by 190% (average) compared with conventional 32-channel arrays, and no loss in MR SNR. Moreover, the 31-channel coil displayed an SNR improvement of 230% (cortical region of interest) compared with a PET-optimized 8-channel array with similar attenuation properties. Implementing attenuation correction of the 31-channel array successfully removed PET artifacts, which were comparable to those of the 8-channel array. The design of the 31-channel PET-compatible coil enables higher sensitivity for PET/MR imaging, paving the way for novel applications in this hybrid-imaging domain. © 2014 Wiley Periodicals, Inc.

  7. Coupling of SK channels, L-type Ca2+ channels, and ryanodine receptors in cardiomyocytes.

    Science.gov (United States)

    Zhang, Xiao-Dong; Coulibaly, Zana A; Chen, Wei Chun; Ledford, Hannah A; Lee, Jeong Han; Sirish, Padmini; Dai, Gu; Jian, Zhong; Chuang, Frank; Brust-Mascher, Ingrid; Yamoah, Ebenezer N; Chen-Izu, Ye; Izu, Leighton T; Chiamvimonvat, Nipavan

    2018-03-16

    Small-conductance Ca 2+ -activated K + (SK) channels regulate the excitability of cardiomyocytes by integrating intracellular Ca 2+ and membrane potentials on a beat-to-beat basis. The inextricable interplay between activation of SK channels and Ca 2+ dynamics suggests the pathology of one begets another. Yet, the exact mechanistic underpinning for the activation of cardiac SK channels remains unaddressed. Here, we investigated the intracellular Ca 2+ microdomains necessary for SK channel activation. SK currents coupled with Ca 2+ influx via L-type Ca 2+ channels (LTCCs) continued to be elicited after application of caffeine, ryanodine or thapsigargin to deplete SR Ca 2+ store, suggesting that LTCCs provide the immediate Ca 2+ microdomain for the activation of SK channels in cardiomyocytes. Super-resolution imaging of SK2, Ca v 1.2 Ca 2+ channel, and ryanodine receptor 2 (RyR2) was performed to quantify the nearest neighbor distances (NND) and localized the three molecules within hundreds of nanometers. The distribution of NND between SK2 and RyR2 as well as SK2 and Ca v 1.2 was bimodal, suggesting a spatial relationship between the channels. The activation mechanism revealed by our study paved the way for the understanding of the roles of SK channels on the feedback mechanism to regulate the activities of LTCCs and RyR2 to influence local and global Ca 2+ signaling.

  8. Activation of TRPV1 channels inhibits mechanosensitive Piezo channel activity by depleting membrane phosphoinositides

    Science.gov (United States)

    Borbiro, Istvan; Badheka, Doreen; Rohacs, Tibor

    2015-01-01

    Capsaicin is an activator of the heat-sensitive TRPV1 (transient receptor potential vanilloid 1) ion channels and has been used as a local analgesic. We found that activation of TRPV1 channels with capsaicin either in dorsal root ganglion neurons or in a heterologous expression system inhibited the mechanosensitive Piezo1 and Piezo2 channels by depleting phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] and its precursor PI(4)P from the plasma membrane through Ca2+-induced phospholipase Cδ (PLCδ) activation. Experiments with chemically inducible phosphoinositide phosphatases and receptor-induced activation of PLCβ indicated that inhibition of Piezo channels required depletion of both PI(4)P and PI(4,5)P2. The mechanically activated current amplitudes decreased substantially in the excised inside-out configuration, where the membrane patch containing Piezo1 channels is removed from the cell. PI(4,5)P2 and PI(4)P applied to these excised patches inhibited this decrease. Thus, we concluded that Piezo channel activity requires the presence of phosphoinositides, and the combined depletion of PI(4,5)P2 or PI(4)P reduces channel activity. In addition to revealing a role for distinct membrane lipids in mechanosensitive ion channel regulation, these data suggest that inhibition of Piezo2 channels may contribute to the analgesic effect of capsaicin. PMID:25670203

  9. Ionic channels underlying the ventricular action potential in zebrafish embryo.

    Science.gov (United States)

    Alday, Aintzane; Alonso, Hiart; Gallego, Monica; Urrutia, Janire; Letamendia, Ainhoa; Callol, Carles; Casis, Oscar

    2014-06-01

    Over the last years zebrafish has become a popular model in the study of cardiac physiology, pathology and pharmacology. Recently, the application of the 3Rs regulation and the characteristics of the embryo have reduced the use of adult zebrafish use in many studies. However, the zebrafish embryo cardiac physiology is poorly characterized since most works have used indirect techniques and direct recordings of cardiac action potential and ionic currents are scarce. In order to optimize the zebrafish embryo model, we used electrophysiological, pharmacological and immunofluorescence tools to identify the characteristics and the ionic channels involved in the ventricular action potentials of zebrafish embryos. The application of Na(+) or T-type Ca(+2) channel blockers eliminated the cardiac electrical activity, indicating that the action potential upstroke depends on Na(+) and T-type Ca(+2) currents. The plateau phase depends on L-type Ca(+2) channels since it is abolished by specific blockade. The direct channel blockade indicates that the action potential repolarization and diastolic potential depends on ERG K(+) channels. The presence in the embryonic heart of the Nav1.5, Cav1.2, Cav3.2 and ERG channels was also confirmed by immunofluorescence, while the absence of effect of specific blockers and immunostaining indicate that two K(+) repolarizing currents present in human heart, Ito and IKs, are absent in the embryonic zebrafish heart. Our results describe the ionic channels present and its role in the zebrafish embryo heart and support the use of zebrafish embryos to study human diseases and their use for drug testing. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. New Channels, New Possibilities

    DEFF Research Database (Denmark)

    Pieterson, Willem; Ebbers, Wolfgang; Østergaard Madsen, Christian

    2017-01-01

    In this contribution we discuss the characteristics of what we call the fourth generation of public sector service channels: social robots. Based on a review of relevant literature we discuss their characteristics and place into multi-channel models of service delivery. We argue that social robots......-channel models of service delivery. This is especially relevant given the current lack of evaluations of such models, the broad range of channels available, and their different stages of deployment at governments around the world. Nevertheless, social robots offer an potentially very relevant addition...

  11. Molecular and functional expression of high conductance Ca 2+ activated K+ channels in the eel intestinal epithelium

    DEFF Research Database (Denmark)

    Lionetto, Maria G; Rizzello, Antonia; Giordano, Maria E

    2008-01-01

    Several types of K(+) channels have been identified in epithelial cells. Among them high conductance Ca(2+)-activated K(+) channels (BK channels) are of relevant importance for their involvement in regulatory volume decrease (RVD) response following hypotonic stress. The aim of the present work...... was to investigate the functional and molecular expression of BK in the eel intestine, which is a useful experimental model for cell volume regulation research. In the present paper using rat BK channel-specific primer, a RT-PCR signal of 696 pb cDNA was detected in eel intestine, whole nucleotide sequence showed...... high similarity (83%) to the alpha subunit of BK channel family. BK channel protein expression was verified by immunoblotting and confocal microscopy, while the functional role of BK channels in epithelial ion transport mechanisms and cell volume regulation was examined by electrophysiological...

  12. Degree of anisotropy as an automated indicator of rip channels in high resolution bathymetric models

    Science.gov (United States)

    Trimble, S. M.; Houser, C.; Bishop, M. P.

    2017-12-01

    A rip current is a concentrated seaward flow of water that forms in the surf zone of a beach as a result of alongshore variations in wave breaking. Rips can carry swimmers swiftly into deep water, and they are responsible for hundreds of fatal drownings and thousands of rescues worldwide each year. These currents form regularly alongside hard structures like piers and jetties, and can also form along sandy coasts when there is a three dimensional bar morphology. This latter rip type tends to be variable in strength and location, making them arguably the most dangerous to swimmers and most difficult to identify. These currents form in characteristic rip channels in surf zone bathymetry, in which the primary axis of self-similarity is oriented shore-normal. This paper demonstrates a new method for automating identification of such rip channels in bathymetric digital surface models (DSMs) using bathymetric data collected by various remote sensing methods. Degree of anisotropy is used to detect rip channels and distinguishes between sandbars, rip channels, and other beach features. This has implications for coastal geomorphology theory and safety practices. As technological advances increase access and accuracy of topobathy mapping methods in the surf zone, frequent nearshore bathymetric DSMs could be more easily captured and processed, then analyzed with this method to result in localized, automated, and frequent detection of rip channels. This could ultimately reduce rip-related fatalities worldwide (i) in present mitigation, by identifying the present location of rip channels, (ii) in forecasting, by tracking the channel's evolution through multiple DSMs, and (iii) in rip education by improving local lifeguard knowledge of the rip hazard. Although this paper on applies analysis of degree of anisotropy to the identification of rip channels, this parameter can be applied to multiple facets of barrier island morphological analysis.

  13. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

    Science.gov (United States)

    Carrisoza-Gaytán, Rolando; Salvador, Carolina; Diaz-Bello, Beatriz; Escobar, Laura I

    2014-10-01

    Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.

  14. Ion channelling in diamond

    International Nuclear Information System (INIS)

    Derry, T.E.

    1978-06-01

    Diamond is one of the most extreme cases from a channelling point of view, having the smallest thermal vibration amplitude and the lowest atomic number of commonly-encountered crystals. These are the two parameters most important for determining channelling behaviour. It is of consiberable interest therefore to see how well the theories explaining and predicting the channeling properties of other substance, succeed with diamond. Natural diamond, although the best available form for these experiments, is rather variable in its physical properties. Part of the project was devoted to considering and solving the problem of obtaining reproducible results representative of the ideal crystal. Channelling studies were performed on several good crystals, using the Rutherford backscattering method. Critical angles for proton channelling were measured for incident energies from 0.6 to 4.5 MeV, in the three most open axes and three most open planes of the diamond structure, and for α-particle channelling at 0.7 and 1.0 MeV (He + ) in the same axes and planes. For 1.0 MeV protons, the crystal temperature was varied from 20 degrees Celsius to 700 degrees Celsius. The results are presented as curves of backscattered yield versus angle in the region of each axis or plane, and summarised in the form of tables and graphs. Generally the critical angles, axial minimum yields, and temperature dependence are well predicted by the accepted theories. The most valuable overall conclusion is that the mean thermal vibration amplitude of the atoms in a crytical determines the critical approach distance to the channel walls at which an ion can remain channelled, even when this distance is much smaller than the Thomas-Fermi screening distance of the atomic potential, as is the case in diamond. A brief study was made of the radiation damage caused by α-particle bombardment, via its effect on the channelling phenomenon. It was possible to hold damage down to negligible levels during the

  15. Ion Channel Trafficking: Control of Ion Channel Density as a Target for Arrhythmias?

    Directory of Open Access Journals (Sweden)

    Elise Balse

    2017-10-01

    Full Text Available The shape of the cardiac action potential (AP is determined by the contributions of numerous ion channels. Any dysfunction in the proper function or expression of these ion channels can result in a change in effective refractory period (ERP and lead to arrhythmia. The processes underlying the correct targeting of ion channels to the plasma membrane are complex, and have not been fully characterized in cardiac myocytes. Emerging evidence highlights ion channel trafficking as a potential causative factor in certain acquired and inherited arrhythmias, and therapies which target trafficking as opposed to pore block are starting to receive attention. In this review we present the current evidence for the mechanisms which underlie precise control of cardiac ion channel trafficking and targeting.

  16. Random mutagenesis screening indicates the absence of a separate H(+)-sensor in the pH-sensitive Kir channels.

    Science.gov (United States)

    Paynter, Jennifer J; Shang, Lijun; Bollepalli, Murali K; Baukrowitz, Thomas; Tucker, Stephen J

    2010-01-01

    Several inwardly-rectifying (Kir) potassium channels (Kir1.1, Kir4.1 and Kir4.2) are characterised by their sensitivity to inhibition by intracellular H(+) within the physiological range. The mechanism by which these channels are regulated by intracellular pH has been the subject of intense scrutiny for over a decade, yet the molecular identity of the titratable pH-sensor remains elusive. In this study we have taken advantage of the acidic intracellular environment of S. cerevisiae and used a K(+) -auxotrophic strain to screen for mutants of Kir1.1 with impaired pH-sensitivity. In addition to the previously identified K80M mutation, this unbiased screening approach identified a novel mutation (S172T) in the second transmembrane domain (TM2) that also produces a marked reduction in pH-sensitivity through destabilization of the closed-state. However, despite this extensive mutagenic approach, no mutations could be identified which removed channel pH-sensitivity or which were likely to act as a separate H(+) -sensor unique to the pH-sensitive Kir channels. In order to explain these results we propose a model in which the pH-sensing mechanism is part of an intrinsic gating mechanism common to all Kir channels, not just the pH-sensitive Kir channels. In this model, mutations which disrupt this pH-sensor would result in an increase, not reduction, in pH-sensitivity. This has major implications for any future studies of Kir channel pH-sensitivity and explains why formal identification of these pH-sensing residues still represents a major challenge.

  17. Flow Oriented Channel Assignment for Multi-radio Wireless Mesh Networks

    Directory of Open Access Journals (Sweden)

    Niu Zhisheng

    2010-01-01

    Full Text Available We investigate channel assignment for a multichannel wireless mesh network backbone, where each router is equipped with multiple interfaces. Of particular interest is the development of channel assignment heuristics for multiple flows. We present an optimization formulation and then propose two iterative flow oriented heuristics for the conflict-free and interference-aware cases, respectively. To maximize the aggregate useful end-to-end flow rates, both algorithms identify and resolve congestion at instantaneous bottleneck link in each iteration. Then the link rate is optimally allocated among contending flows that share this link by solving a linear programming (LP problem. A thorough performance evaluation is undertaken as a function of the number of channels and interfaces/node and the number of contending flows. The performance of our algorithm is shown to be significantly superior to best known algorithm in its class in multichannel limited radio scenarios.

  18. ZAP: a distributed channel assignment algorithm for cognitive radio networks

    Directory of Open Access Journals (Sweden)

    Munaretto Anelise

    2011-01-01

    Full Text Available Abstract We propose ZAP, an algorithm for the distributed channel assignment in cognitive radio (CR networks. CRs are capable of identifying underutilized licensed bands of the spectrum, allowing their reuse by secondary users without interfering with primary users. In this context, efficient channel assignment is challenging as ideally it must be simple, incur acceptable communication overhead, provide timely response, and be adaptive to accommodate frequent changes in the network. Another challenge is the optimization of network capacity through interference minimization. In contrast to related work, ZAP addresses these challenges with a fully distributed approach based only on local (neighborhood knowledge, while significantly reducing computational costs and the number of messages required for channel assignment. Simulations confirm the efficiency of ZAP in terms of (i the performance tradeoff between different metrics and (ii the fast achievement of a suitable assignment solution regardless of network size and density.

  19. Customer Responses to Channel Migration Strategies Toward the E-channel

    NARCIS (Netherlands)

    Trampe, Debra; Konus, Umut; Verhoef, Peter C.

    2014-01-01

    Many firms stimulate customers to use the E-channel for services, which provokes various consumer responses to such limits on their freedom of choice. In a study on bank customers, we examine the extent of customer reactance in response to various E-channel migration strategies, the potential of

  20. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly; Pettersson, Gustav M.; Kostina, Victoria; Hassibi, Babak

    2017-01-01

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  1. Multi-rate control over AWGN channels via analog joint source-channel coding

    KAUST Repository

    Khina, Anatoly

    2017-01-05

    We consider the problem of controlling an unstable plant over an additive white Gaussian noise (AWGN) channel with a transmit power constraint, where the signaling rate of communication is larger than the sampling rate (for generating observations and applying control inputs) of the underlying plant. Such a situation is quite common since sampling is done at a rate that captures the dynamics of the plant and which is often much lower than the rate that can be communicated. This setting offers the opportunity of improving the system performance by employing multiple channel uses to convey a single message (output plant observation or control input). Common ways of doing so are through either repeating the message, or by quantizing it to a number of bits and then transmitting a channel coded version of the bits whose length is commensurate with the number of channel uses per sampled message. We argue that such “separated source and channel coding” can be suboptimal and propose to perform joint source-channel coding. Since the block length is short we obviate the need to go to the digital domain altogether and instead consider analog joint source-channel coding. For the case where the communication signaling rate is twice the sampling rate, we employ the Archimedean bi-spiral-based Shannon-Kotel\\'nikov analog maps to show significant improvement in stability margins and linear-quadratic Gaussian (LQG) costs over simple schemes that employ repetition.

  2. Channel sialic acids limit hERG channel activity during the ventricular action potential.

    Science.gov (United States)

    Norring, Sarah A; Ednie, Andrew R; Schwetz, Tara A; Du, Dongping; Yang, Hui; Bennett, Eric S

    2013-02-01

    Activity of human ether-a-go-go-related gene (hERG) 1 voltage-gated K(+) channels is responsible for portions of phase 2 and phase 3 repolarization of the human ventricular action potential. Here, we questioned whether and how physiologically and pathophysiologically relevant changes in surface N-glycosylation modified hERG channel function. Voltage-dependent hERG channel gating and activity were evaluated as expressed in a set of Chinese hamster ovary (CHO) cell lines under conditions of full glycosylation, no sialylation, no complex N-glycans, and following enzymatic deglycosylation of surface N-glycans. For each condition of reduced glycosylation, hERG channel steady-state activation and inactivation relationships were shifted linearly by significant depolarizing ∼9 and ∼18 mV, respectively. The hERG window current increased significantly by 50-150%, and the peak shifted by a depolarizing ∼10 mV. There was no significant change in maximum hERG current density. Deglycosylated channels were significantly more active (20-80%) than glycosylated controls during phases 2 and 3 of action potential clamp protocols. Simulations of hERG current and ventricular action potentials corroborated experimental data and predicted reduced sialylation leads to a 50-70-ms decrease in action potential duration. The data describe a novel mechanism by which hERG channel gating is modulated through physiologically and pathophysiologically relevant changes in N-glycosylation; reduced channel sialylation increases hERG channel activity during the action potential, thereby increasing the rate of action potential repolarization.

  3. Course on Ionic Channels

    CERN Document Server

    1986-01-01

    This book is based on a series of lectures for a course on ionic channels held in Santiago, Chile, on November 17-20, 1984. It is intended as a tutorial guide on the properties, function, modulation, and reconstitution of ionic channels, and it should be accessible to graduate students taking their first steps in this field. In the presentation there has been a deliberate emphasis on the spe­ cific methodologies used toward the understanding of the workings and function of channels. Thus, in the first section, we learn to "read" single­ channel records: how to interpret them in the theoretical frame of kinetic models, which information can be extracted from gating currents in re­ lation to the closing and opening processes, and how ion transport through an open channel can be explained in terms of fluctuating energy barriers. The importance of assessing unequivocally the origin and purity of mem­ brane preparations and the use of membrane vesicles and optical tech­ niques in the stUGY of ionic channels a...

  4. Quantum communication under channel uncertainty

    Energy Technology Data Exchange (ETDEWEB)

    Noetzel, Janis Christian Gregor

    2012-09-06

    This work contains results concerning transmission of entanglement and subspaces as well as generation of entanglement in the limit of arbitrary many uses of compound- and arbitrarily varying quantum channels (CQC, AVQC). In both cases, the channel is described by a set of memoryless channels. Only forward communication between one sender and one receiver is allowed. A code is said to be ''good'' only, if it is ''good'' for every channel out of the set. Both settings describe a scenario, in which sender and receiver have only limited channel knowledge. For different amounts of information about the channel available to sender or receiver, coding theorems are proven for the CQC. For the AVQC, both deterministic and randomised coding schemes are considered. Coding theorems are proven, as well as a quantum analogue of the Ahlswede-dichotomy. The connection to zero-error capacities of stationary memoryless quantum channels is investigated. The notion of symmetrisability is defined and used for both classes of channels.

  5. Phosphatidylinositol-4,5-bisphosphate is required for KCNQ1/KCNE1 channel function but not anterograde trafficking.

    Directory of Open Access Journals (Sweden)

    Alice A Royal

    Full Text Available The slow delayed-rectifier potassium current (IKs is crucial for human cardiac action potential repolarization. The formation of IKs requires co-assembly of the KCNQ1 α-subunit and KCNE1 β-subunit, and mutations in either of these subunits can lead to hereditary long QT syndrome types 1 and 5, respectively. It is widely recognised that the KCNQ1/KCNE1 (Q1/E1 channel requires phosphatidylinositol-4,5-bisphosphate (PIP2 binding for function. We previously identified a cluster of basic residues in the proximal C-terminus of KCNQ1 that form a PIP2/phosphoinositide binding site. Upon charge neutralisation of these residues we found that the channel became more retained in the endoplasmic reticulum, which raised the possibility that channel-phosphoinositide interactions could play a role in channel trafficking. To explore this further we used a chemically induced dimerization (CID system to selectively deplete PIP2 and/or phosphatidylinositol-4-phosphate (PI(4P at the plasma membrane (PM or Golgi, and we subsequently monitored the effects on both channel trafficking and function. The depletion of PIP2 and/or PI(4P at either the PM or Golgi did not alter channel cell-surface expression levels. However, channel function was extremely sensitive to the depletion of PIP2 at the PM, which is in contrast to the response of other cardiac potassium channels tested (Kir2.1 and Kv11.1. Surprisingly, when using the CID system IKs was dramatically reduced even before dimerization was induced, highlighting limitations regarding the utility of this system when studying processes highly sensitive to PIP2 depletion. In conclusion, we identify that the Q1/E1 channel does not require PIP2 or PI(4P for anterograde trafficking, but is heavily reliant on PIP2 for channel function once at the PM.

  6. XPM-induced degradation of multilevel phase modulated channel caused by neighboring NRZ modulated channels

    DEFF Research Database (Denmark)

    Jensen, Jesper Bevensee; Schiellerup, G.; Peucheret, Christophe

    2008-01-01

    The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty.......The impact of XPM from NRZ modulated channels on an 8-level phase modulated channel in a WDM system was investigated. Requirements on launch power are found. 400 km transmission was achieved with negligible penalty....

  7. The impact of the multi-channel retail mix on online store choice: Does online experience matter?

    OpenAIRE

    Melis, Kristina; Campo, Katia; Breugelmans, Els; Lamey, Lien

    2015-01-01

    More and more grocery retailers are becoming multi-channel retailers, as they are opening an online alternative next to their traditional offline supermarkets. While the number of multi-channel grocery shoppers is also expanding at a fast growth rate, there are still large differences in online shopping frequency, and as a result, in the levels of experience with buying in the online grocery channel. This study wants to (i) identify the underlying drivers of online store choice and (ii) explo...

  8. Structural determinants of PIP(2) regulation of inward rectifier K(ATP) channels.

    Science.gov (United States)

    Shyng, S L; Cukras, C A; Harwood, J; Nichols, C G

    2000-11-01

    Phosphatidylinositol 4,5-bisphosphate (PIP(2)) activates K(ATP) and other inward rectifier (Kir) channels. To determine residues important for PIP(2) regulation, we have systematically mutated each positive charge in the COOH terminus of Kir6.2 to alanine. The effects of these mutations on channel function were examined using (86)Rb efflux assays on intact cells and inside-out patch-clamp methods. Both methods identify essentially the same basic residues in two narrow regions (176-222 and 301-314) in the COOH terminus that are important for the maintenance of channel function and interaction with PIP(2). Only one residue (R201A) simultaneously affected ATP and PIP(2) sensitivity, which is consistent with the notion that these ligands, while functionally competitive, are unlikely to bind to identical sites. Strikingly, none of 13 basic residues in the terminal portion (residues 315-390) of the COOH terminus affected channel function when neutralized. The data help to define the structural requirements for PIP(2) sensitivity of K(ATP) channels. Moreover, the regions and residues defined in this study parallel those uncovered in recent studies of PIP(2) sensitivity in other inward rectifier channels, indicating a common structural basis for PIP(2) regulation.

  9. Automated identification of stream-channel geomorphic features from high‑resolution digital elevation models in West Tennessee watersheds

    Science.gov (United States)

    Cartwright, Jennifer M.; Diehl, Timothy H.

    2017-01-17

    High-resolution digital elevation models (DEMs) derived from light detection and ranging (lidar) enable investigations of stream-channel geomorphology with much greater precision than previously possible. The U.S. Geological Survey has developed the DEM Geomorphology Toolbox, containing seven tools to automate the identification of sites of geomorphic instability that may represent sediment sources and sinks in stream-channel networks. These tools can be used to modify input DEMs on the basis of known locations of stormwater infrastructure, derive flow networks at user-specified resolutions, and identify possible sites of geomorphic instability including steep banks, abrupt changes in channel slope, or areas of rough terrain. Field verification of tool outputs identified several tool limitations but also demonstrated their overall usefulness in highlighting likely sediment sources and sinks within channel networks. In particular, spatial clusters of outputs from multiple tools can be used to prioritize field efforts to assess and restore eroding stream reaches.

  10. On the secrecy capacity of the wiretap channel with imperfect main channel estimation

    KAUST Repository

    Rezki, Zouheir

    2014-10-01

    We study the secrecy capacity of fast fading channels under imperfect main channel (between the transmitter and the legitimate receiver) estimation at the transmitter. Lower and upper bounds on the ergodic secrecy capacity are derived for a class of independent identically distributed (i.i.d.) fading channels. The achievable rate follows from a standard wiretap code in which a simple on-off power control is employed along with a Gaussian input. The upper bound is obtained using an appropriate correlation scheme of the main and eavesdropper channels and is the best known upper bound so far. The upper and lower bounds coincide with recently derived ones in case of perfect main CSI. Furthermore, the upper bound is tight in case of no main CSI, where the secrecy capacity is equal to zero. Asymptotic analysis at high and low signal-to-noise ratio (SNR) is also given. At high SNR, we show that the capacity is bounded by providing upper and lower bounds that depend on the channel estimation error. At low SNR, however, we prove that the secrecy capacity is asymptotically equal to the capacity of the main channel as if there were no secrecy constraint. Numerical results are provided for i.i.d. Rayleigh fading channels.

  11. Scorpion Toxins Specific for Potassium (K+ Channels: A Historical Overview of Peptide Bioengineering

    Directory of Open Access Journals (Sweden)

    Zachary L. Bergeron

    2012-11-01

    Full Text Available Scorpion toxins have been central to the investigation and understanding of the physiological role of potassium (K+ channels and their expansive function in membrane biophysics. As highly specific probes, toxins have revealed a great deal about channel structure and the correlation between mutations, altered regulation and a number of human pathologies. Radio- and fluorescently-labeled toxin isoforms have contributed to localization studies of channel subtypes in expressing cells, and have been further used in competitive displacement assays for the identification of additional novel ligands for use in research and medicine. Chimeric toxins have been designed from multiple peptide scaffolds to probe channel isoform specificity, while advanced epitope chimerization has aided in the development of novel molecular therapeutics. Peptide backbone cyclization has been utilized to enhance therapeutic efficiency by augmenting serum stability and toxin half-life in vivo as a number of K+-channel isoforms have been identified with essential roles in disease states ranging from HIV, T-cell mediated autoimmune disease and hypertension to various cardiac arrhythmias and Malaria. Bioengineered scorpion toxins have been monumental to the evolution of channel science, and are now serving as templates for the development of invaluable experimental molecular therapeutics.

  12. Risk Modelling for Passages in Approach Channel

    Directory of Open Access Journals (Sweden)

    Leszek Smolarek

    2013-01-01

    Full Text Available Methods of multivariate statistics, stochastic processes, and simulation methods are used to identify and assess the risk measures. This paper presents the use of generalized linear models and Markov models to study risks to ships along the approach channel. These models combined with simulation testing are used to determine the time required for continuous monitoring of endangered objects or period at which the level of risk should be verified.

  13. Comparative evaluation of three heat transfer enhancement strategies in a grooved channel

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C.; Kang, E. [Dept. of Mechanical Engineering, Johns Hopkins Univ., Baltimore, MD (United States)

    2001-09-01

    Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re = 200-6500, corresponding to flow velocities from 0.076 to 2.36 m/s. Flow oscillations were first observed between Re = 1050 and 1320 for the basic grooved channel, and around Re = 350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2-1.8 and 1.5-3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties

  14. Cardiac potassium channel subtypes

    DEFF Research Database (Denmark)

    Schmitt, Nicole; Grunnet, Morten; Olesen, Søren-Peter

    2014-01-01

    About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K(+) channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K(+) channels...... drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate...... that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K(+) channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure...

  15. Calcium-Activated Cl- Channel: Insights on the Molecular Identity in Epithelial Tissues.

    Science.gov (United States)

    Rottgen, Trey S; Nickerson, Andrew J; Rajendran, Vazhaikkurichi M

    2018-05-10

    Calcium-activated chloride secretion in epithelial tissues has been described for many years. However, the molecular identity of the channel responsible for the Ca 2+ -activated Cl − secretion in epithelial tissues has remained a mystery. More recently, TMEM16A has been identified as a new putative Ca 2+ -activated Cl − channel (CaCC). The primary goal of this article will be to review the characterization of TMEM16A, as it relates to the physical structure of the channel, as well as important residues that confer voltage and Ca 2+ -sensitivity of the channel. This review will also discuss the role of TMEM16A in epithelial physiology and potential associated-pathophysiology. This will include discussion of developed knockout models that have provided much needed insight on the functional localization of TMEM16A in several epithelial tissues. Finally, this review will examine the implications of the identification of TMEM16A as it pertains to potential novel therapies in several pathologies.

  16. Channel Estimation in DCT-Based OFDM

    Science.gov (United States)

    Wang, Yulin; Zhang, Gengxin; Xie, Zhidong; Hu, Jing

    2014-01-01

    This paper derives the channel estimation of a discrete cosine transform- (DCT-) based orthogonal frequency-division multiplexing (OFDM) system over a frequency-selective multipath fading channel. Channel estimation has been proved to improve system throughput and performance by allowing for coherent demodulation. Pilot-aided methods are traditionally used to learn the channel response. Least square (LS) and mean square error estimators (MMSE) are investigated. We also study a compressed sensing (CS) based channel estimation, which takes the sparse property of wireless channel into account. Simulation results have shown that the CS based channel estimation is expected to have better performance than LS. However MMSE can achieve optimal performance because of prior knowledge of the channel statistic. PMID:24757439

  17. Low-Complexity Interference-Free Downlink Channel Assignment with Improved Performance in Coordinated Small Cells

    KAUST Repository

    Radaydeh, Redha M.

    2015-05-01

    This paper proposes a low-complexity interference-free channel assignment scheme with improved desired downlink performance in coordinated multi-antenna small-coverage access points (APs) that employ the open-access control strategy. The adopted system treats the case when each user can be granted an access to one of the available channels at a time. Moreover, each receive terminal can suppress a limited number of resolvable interfering sources via its highly-correlated receive array. On the other hand, the operation of the deployed APs can be coordinated to serve active users, and the availability of multiple physical channels and the use of uncorrelated transmit antennas at each AP are exploited to improve the performance of supported users. The analysis provides new approaches to use the transmit antenna array at each AP, the multiple physical channels, the receive antenna array at each user in order to identify interference-free channels per each user, and then to select a downlink channel that provides the best possible improved performance. The event of concurrent interference-free channel identification by different users is also treated to further improve the desired link associated with the scheduled user. The analysis considers the practical scenario of imperfect identification of interference-free channel by an active user and/or the imperfectness in scheduling concurrent users requests on the same channel. The developed formulations can be used to study any performance metric and they are applicable for any statistical and geometric channel models. © 2015 IEEE.

  18. A new simple model for composite fading channels: Second order statistics and channel capacity

    KAUST Repository

    Yilmaz, Ferkan; Alouini, Mohamed-Slim

    2010-01-01

    In this paper, we introduce the most general composite fading distribution to model the envelope and the power of the received signal in such fading channels as millimeter wave (60 GHz or above) fading channels and free-space optical channels, which

  19. CANDU channel flow verification

    International Nuclear Information System (INIS)

    Mazalu, N.; Negut, Gh.

    1997-01-01

    The purpose of this evaluation was to obtain accurate information on each channel flow that enables us to assess precisely the level of reactor thermal power and, for reasons of safety, to establish which channel is boiling. In order to assess the channel flow parameters, computer simulations were done with the NUCIRC code and the results were checked by measurements. The complete channel flow measurements were made in the zero power cold condition. In hot conditions there were made flow measurements using the Shut Down System 1 (SDS 1) flow devices from 0.1 % F.P. up to 100 % F.P. The NUCIRC prediction for CANDU channel flows and the measurements by Ultrasonic Flow Meter at zero power cold conditions and SDS 1 flow channel measurements at different reactor power levels showed an acceptable agreement. The 100 % F.P. average errors for channel flow of R, shows that suitable NUCIRC flow assessment can be made. So, it can be done a fair prediction of the reactor power distribution. NUCIRC can predict accurately the onset of boiling and helps to warn at the possible power instabilities at high powers or it can detect the flow blockages. The thermal hydraulic analyst has in NUCIRC a suitable tool to do accurate predictions for the thermal hydraulic parameters for different steady state power levels which subsequently leads to an optimal CANDU reactor operation. (authors)

  20. Micromolar-Affinity Benzodiazepine Receptors Regulate Voltage-Sensitive Calcium Channels in Nerve Terminal Preparations

    Science.gov (United States)

    Taft, William C.; Delorenzo, Robert J.

    1984-05-01

    Benzodiazepines in micromolar concentrations significantly inhibit depolarization-sensitive Ca2+ uptake in intact nerve-terminal preparations. Benzodiazepine inhibition of Ca2+ uptake is concentration dependent and stereospecific. Micromolar-affinity benzodiazepine receptors have been identified and characterized in brain membrane and shown to be distinct from nanomolar-affinity benzodiazepine receptors. Evidence is presented that micromolar, and not nanomolar, benzodiazepine binding sites mediate benzodiazepine inhibition of Ca2+ uptake. Irreversible binding to micromolar benzodiazepine binding sites also irreversibly blocked depolarization-dependent Ca2+ uptake in synaptosomes, indicating that these compounds may represent a useful marker for identifying the molecular components of Ca2+ channels in brain. Characterization of benzodiazepine inhibition of Ca2+ uptake demonstrates that these drugs function as Ca2+ channel antagonists, because benzodiazepines effectively blocked voltage-sensitive Ca2+ uptake inhibited by Mn2+, Co2+, verapamil, nitrendipine, and nimodipine. These results indicate that micromolar benzodiazepine binding sites regulate voltage-sensitive Ca2+ channels in brain membrane and suggest that some of the neuronal stabilizing effects of micromolar benzodiazepine receptors may be mediated by the regulation of Ca2+ conductance.