WorldWideScience

Sample records for hcci combustion characteristics

  1. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    OpenAIRE

    S. Sendilvelan; S.Mohanamurugan

    2011-01-01

    Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA) in a Homogeneous Charge Compression Ignition (HCCI) engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combus...

  2. EMISSION AND COMBUSTION CHARACTERISTICS OF DIFFERENT FUELS IN A HCCI ENGINE

    Directory of Open Access Journals (Sweden)

    S. Sendilvelan

    2011-06-01

    Full Text Available Different intake valve timings and fuel injection amounts were tested in order to identify their effects on exhaust emissions and combustion characteristics using variable valve actuation (VVA in a Homogeneous Charge Compression Ignition (HCCI engine. The HCCI engine is a promising concept for future automobile engines and stationary power plants. The two-stage ignition process in a HCCI engine creates advanced ignition and stratified combustion, which makes the ignition timing and combustion rate controllable. Meanwhile, the periphery of the fuel-rich zone leads to fierce burning, which results in slightly high NOx emissions. The experiments were conducted in a modified single cylinder water-cooled diesel engine. In this experiment we use diesel, bio-diesel (Jatropha and gasoline as the fuel at different mixing ratios. HCCI has advantages in high thermal efficiency and low emissions and could possibly become a promising combustion method in internal combustion engines.

  3. Establishment of Combustion Model for Isooctane HCCI Marine Diesel Engine and Research on the Combustion Characteristic

    Directory of Open Access Journals (Sweden)

    Li Biao

    2016-01-01

    Full Text Available The homogeneous charge compression ignition (HCCI combustion mode applied in marine diesel engine is expected to be one of alternative technologies to decrease nitrogen oxide (NOX emission and improve energy utilization rate. Applying the chemical-looping combustion (CLC mechanism inside the cylinder, a numerical study on the HCCI combustion process is performed taking a marine diesel engine as application object. The characteristic feature of combustion process is displayed. On this basis, the formation and emission of NOX are analyzed and discussed. The results indicate that the HCCI combustion mode always exhibit two combustion releasing heats: low-temperature reaction and high-temperature reaction. The combustion phase is divided into low-temperature reaction zone, high-temperature reaction zone and negative temperature coefficient (NTC zone. The operating conditions of the high compression ratio, high intake air temperature, low inlet pressure and small excess air coefficient would cause the high in-cylinder pressure which often leads engine detonation. The low compression ratio, low intake air temperature and big excess air coefficient would cause the low combustor temperature which is conducive to reduce NOX emissions. These technological means and operating conditions are expected to meet the NOX emissions limits in MARPOL73/78 Convention-Annex VI Amendment.

  4. Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208 016 (India)

    2011-04-15

    The homogeneous charge compression ignition (HCCI) is an alternative combustion concept for in reciprocating engines. The HCCI combustion engine offers significant benefits in terms of its high efficiency and ultra low emissions. In this investigation, port injection technique is used for preparing homogeneous charge. The combustion and emission characteristics of a HCCI engine fuelled with ethanol were investigated on a modified two-cylinder, four-stroke engine. The experiment is conducted with varying intake air temperature (120-150 C) and at different air-fuel ratios, for which stable HCCI combustion is achieved. In-cylinder pressure, heat release analysis and exhaust emission measurements were employed for combustion diagnostics. In this study, effect of intake air temperature on combustion parameters, thermal efficiency, combustion efficiency and emissions in HCCI combustion engine is analyzed and discussed in detail. The experimental results indicate that the air-fuel ratio and intake air temperature have significant effect on the maximum in-cylinder pressure and its position, gas exchange efficiency, thermal efficiency, combustion efficiency, maximum rate of pressure rise and the heat release rate. Results show that for all stable operation points, NO{sub x} emissions are lower than 10 ppm however HC and CO emissions are higher. (author)

  5. Comparison of combustion characteristics of n-butanol/ethanol–gasoline blends in a HCCI engine

    International Nuclear Information System (INIS)

    He, Bang-Quan; Liu, Mao-Bin; Zhao, Hua

    2015-01-01

    Highlights: • The blends with alcohol autoignite early in the conditions highly diluted by exhaust. • n-Butanol is more reactive than ethanol in the blend with the same alcohol content. • Autoignition timing delays with retarding IVO timing for all alcohol–gasoline blends. • Advanced autoignition for the blends with alcohol leads to lower thermal efficiency. - Abstract: As a sustainable biofuel, n-butanol can be used in conventional spark ignition (SI) and compression ignition (CI) engines in order to reduce the dependence on fossil fuel. Homogeneous charge compression ignition (HCCI) is a novel combustion to improve the thermal efficiency of conventional SI engines at part loads. To understand the effect of alcohol structure on HCCI combustion under stoichiometric conditions highly diluted by exhaust gases, the combustion characteristics of n-butanol, ethanol and their blends with gasoline were investigated on a single cylinder port fuel injection gasoline engine with fixed intake/exhaust valve lifts at the same operating conditions in this study. The results show that autoignition timing for alcohol–gasoline blends is dependent on alcohol types and its concentration in the blend, engine speed and intake valve opening (IVO)/exhaust valve closing (EVC) timing. In the operating conditions with the residual gases more than 38% by mass in the mixture, alcohol–gasoline blends autoignite more easily than gasoline. Autoignition timing for n-butanol–gasoline blend is earlier than that for ethanol–gasoline blend with the same alcohol volume fraction at 1500 rpm in most cases while the autoignition timings for the blends with alcohol are relatively close at 2000 rpm at the same IVO/EVC timing. Combustion stability is improved with advanced EVC timing at a fixed IVO timing, which is benefit for the improvement in the thermal efficiency in the case of alcohol–gasoline blends. In addition, n-butanol–gasoline blends autoignite earlier than their ethanol

  6. An experimental investigation into combustion and performance characteristics of an HCCI gasoline engine fueled with n-heptane, isopropanol and n-butanol fuel blends at different inlet air temperatures

    International Nuclear Information System (INIS)

    Uyumaz, Ahmet

    2015-01-01

    Highlights: • Combustion was retarded with the increase of the amount of isopropanol and n-butanol in the test fuels. • Combustion was advanced with the increase of air inlet temperature on HCCI combustion. • Isopropanol seems more suitable fuel due to controlling the HCCI combustion and preventing knocking. • Almost zero NO emissions were measured when alcohol used except for n-heptane and B20 test fuels. - Abstract: An experimental study was conducted in a single cylinder, four stroke port injection Ricardo Hydra test engine in order to determine the effects of pure n-heptane, the blends of n-heptane and n-butanol fuels B20, B30, B40 (including 20%, 30%, 40% n-butanol and 80%, 70%, 60% n-heptane by vol. respectively) and the blends of n-heptane and isopropanol fuels P20, P30, P40 (including 20%, 30%, 40% isopropanol and 80%, 70%, 60% n-heptane by vol. respectively) on HCCI combustion. Combustion and performance characteristics of n-heptane, n-butanol and isopropanol were investigated at constant engine speed of 1500 rpm and λ = 2 in a HCCI engine. The effects of inlet air temperature were also examined on HCCI combustion. The test results showed that the start of combustion was advanced with the increasing of inlet air temperature for all test fuels. Start of combustion delayed with increasing percentage of n-butanol and isopropanol in the test fuels. Knocking combustion was seen with B20 and n-heptane test fuels. Minimum combustion duration was observed in case of using B40. Almost zero NO emissions were measured with test fuels apart from n-heptane and B20. The test results also showed that CO and HC emissions decreased with the increase of inlet air temperature for all test fuels. Isopropanol showed stronger resistance for knocking compared to n-butanol in HCCI combustion due to its higher octane number. It was determined that n-butanol was more advantageous according to isopropanol as thermal efficiency. As a result it was found that the HCCI

  7. Universal autoignition models for designer fuels in HCCI combustion

    Energy Technology Data Exchange (ETDEWEB)

    Vandersickel, A.; Boulouchos, K.; Wright, Y.M. [LAV - Aerothermochemistry and Combustion Systems Laboratory - Institute of Energy Technology, ETH Zurich (Switzerland)], email: vandersickel@lav.mavt.ethz.ch

    2010-07-01

    In the energy sector, stringent regulations have been implemented on combustion emissions in order to address health and environmental concerns and help improve air quality. A novel combustion mode, homogeneous charge compression ignition (HCCI), can improve the emissions performance of an engine in terms of NOx and soot release over that of diesel while maintaining the same efficiencies. However, problems of ignition timing control arise with HCCI. The aim of this paper is to determine how fuel properties impact the HCCI ignition process and operating range. This study was carried out as part of a collaboration among several universities and automotive companies and 10 fuels were investigated experimentally and numerically using Arrhenius' model and a lumped reaction model. The two ignition models were successfully adapted to describe the behavior of the studied fuels; atomizer engine experiments validated their results. Further work will be conducted to optimize the reaction mechanism for the remaining process fuels.

  8. Optical Study of Flow and Combustion in an HCCI Engine with Negative Valve Overlap

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, Trevor S [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Xu Hongming [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Richardson, Steve [Jaguar Cars Ltd., Whitley Engineering Centre, Coventry. CV3 4LF (United Kingdom); Wyszynski, Miroslaw L [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom); Megaritis, Thanos [University of Birmingham, Edgbaston, Birmingham. B15 2TT (United Kingdom)

    2006-07-15

    One of the most widely used methods to enable Homogeneous Charge Compression Ignition (HCCI) combustion is using negative valve overlapping to trap a sufficient quantity of hot residual gas. The characteristics of air motion with specially designed valve events having reduced valve lift and durations associated with HCCI engines and their effect on subsequent combustion are not yet fully understood. In addition, the ignition process and combustion development in such engines are very different from those in conventional spark-ignition or diesel compression ignition engines. Very little data has been reported concerning optical diagnostics of the flow and combustion in the engine using negative valve overlapping. This paper presents an experimental investigation into the in-cylinder flow characteristics and combustion development in an optical engine operating in HCCI combustion mode. PIV measurements have been taken under motored engine conditions to provide a quantitative flow characterisation of negative valve overlap in-cylinder flows. The ignition and combustion process was imaged using a high resolution charge coupled device (CCD) camera and the combustion imaging data was supplemented by simultaneously recorded in-cylinder pressure data which assisted the analysis of the images. It is found that the flow characteristics with negative valve overlapping are less stable and more valve event driven than typical spark ignition in-cylinder flows, while the combustion initiation locations are not uniformly distributed.

  9. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg; Bedoya, Ivá n D.

    2013-01-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  10. Fundamental phenomena affecting low temperature combustion and HCCI engines, high load limits and strategies for extending these limits

    KAUST Repository

    Saxena, Samveg

    2013-10-01

    Low temperature combustion (LTC) engines are an emerging engine technology that offers an alternative to spark-ignited and diesel engines. One type of LTC engine, the homogeneous charge compression ignition (HCCI) engine, uses a well-mixed fuel–air charge like spark-ignited engines and relies on compression ignition like diesel engines. Similar to diesel engines, the use of high compression ratios and removal of the throttling valve in HCCI allow for high efficiency operation, thereby allowing lower CO2 emissions per unit of work delivered by the engine. The use of a highly diluted well-mixed fuel–air charge allows for low emissions of nitrogen oxides, soot and particulate matters, and the use of oxidation catalysts can allow low emissions of unburned hydrocarbons and carbon monoxide. As a result, HCCI offers the ability to achieve high efficiencies comparable with diesel while also allowing clean emissions while using relatively inexpensive aftertreatment technologies. HCCI is not, however, without its challenges. Traditionally, two important problems prohibiting market penetration of HCCI are 1) inability to achieve high load, and 2) difficulty in controlling combustion timing. Recent research has significantly mitigated these challenges, and thus HCCI has a promising future for automotive and power generation applications. This article begins by providing a comprehensive review of the physical phenomena governing HCCI operation, with particular emphasis on high load conditions. Emissions characteristics are then discussed, with suggestions on how to inexpensively enable low emissions of all regulated emissions. The operating limits that govern the high load conditions are discussed in detail, and finally a review of recent research which expands the high load limits of HCCI is discussed. Although this article focuses on the fundamental phenomena governing HCCI operation, it is also useful for understanding the fundamental phenomena in reactivity controlled

  11. Maximizing Power Output in Homogeneous Charge Compression Ignition (HCCI) Engines and Enabling Effective Control of Combustion Timing

    Science.gov (United States)

    Saxena, Samveg

    Homogeneous Charge Compression Ignition (HCCI) engines are one of the most promising engine technologies for the future of energy conversion from clean, efficient combustion. HCCI engines allow high efficiency and lower CO2 emission through the use of high compression ratios and the removal of intake throttle valves (like Diesel), and allow very low levels of urban pollutants like nitric oxide and soot (like Otto). These engines, however, are not without their challenges, such as low power density compared with other engine technologies, and a difficulty in controlling combustion timing. This dissertation first addresses the power output limits. The particular strategies for enabling high power output investigated in this dissertation focus on avoiding five critical limits that either damage an engine, drastically reduce efficiency, or drastically increase emissions: (1) ringing limits, (2) peak in-cylinder pressure limits, (3) misfire limits, (4) low intake temperature limits, and (5) excessive emissions limits. The research shows that the key factors that enable high power output, sufficient for passenger vehicles, while simultaneously avoiding the five limits defined above are the use of: (1) high intake air pressures allowing improved power output, (2) highly delayed combustion timing to avoid ringing limits, and (3) using the highest possible equivalence ratio before encountering ringing limits. These results are revealed by conducting extensive experiments spanning a wide range of operating conditions on a multi-cylinder HCCI engine. Second, this dissertation discusses strategies for effectively sensing combustion characteristics on a HCCI engine. For effective feedback control of HCCI combustion timing, a sensor is required to quantify when combustion occurs. Many laboratory engines use in-cylinder pressure sensors but these sensors are currently prohibitively expensive for wide-scale commercialization. Instead, ion sensors made from inexpensive sparkplugs

  12. Effects of cetane number on HCCI combustion efficiency and emissions

    Energy Technology Data Exchange (ETDEWEB)

    Hosseini, V.; Neill, W.S.; Guo, H.; Chippior, W.L. [National Research Council of Canada, Ottawa, ON (Canada); Fairbridge, C. [Natural Resources Canada, Ottawa, ON (Canada); Mitchell, K. [Shell Canada Ltd., Calgary, AB (Canada)

    2009-07-01

    Homogeneous charge compression ignition (HCCI) is a form of internal combustion in which well-mixed fuel and oxidizer are compressed to the point of auto-ignition. This exothermic reaction releases chemical energy into a sensible form that can be transformed in an engine into work and heat. The effects of cetane number on HCCI combustion efficiency and emissions were examined in this presentation. The presentation discussed the experimental setup, fuels, experimental procedures, and results. The setup included an enhanced fuel injector/vaporizer consisting of an OEM gasoline port fuel injector, air blast for improved atomization, and heated section to improved vaporization. A minimally processed and low cetane number fuel derived from oil sands was used as the base fuel in the study. Two sets of experiments were devised and described to evaluate each test fuel. One set used controlled input conditions exhaust gas recirculation (EGR)-air-fuel ratio (AFR) while the other set employed controlled engine outputs (such as speed and load). Results were presented for hydroprocessing; cetane improver addition; blending with supercetane renewable diesel; and a comparison of fuels with similar cetane numbers. It was concluded that increasing the fuel cetane number shifted the AFR-EGR operating window for HCCI combustion towards higher AFT (leaner mixtures) and reduced the cyclic variations. tabs., figs.

  13. Gasoline Engine HCCI Combustion - Extending the high load limit

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Daniel

    2012-07-01

    There is an increasing global focus on reducing emissions of greenhouse gases. For the automotive industry this means reducing CO2 emissions of the vehicles manufactured, which is synonymous with reducing their fuel consumption or adapting them for using renewable fuels. This thesis is based on a project aimed at improving the efficiency of gasoline engines in the lower load/speed region. The focus was mainly on a combustion strategy called homogeneous charge compression ignition (HCCI), but also on homogeneous lean and stratified lean spark-ignited combustion. In contrast to traditional stoichiometric spark-ignited combustion, HCCI can operate with diluted mixtures, which leads to better cycle efficiency, smaller pumping losses and smaller heat losses. However, at relatively high loads, HCCI combustion becomes excessively rapid, generating in-cylinder pressure oscillations (ringing), which are perceived as noise by the human ear. The main objective of the project was to identify ways to avoid this ringing behaviour in order to increase the upper load limit of HCCI. This is vital to avoid the need for mode switches to spark-ignited combustion at higher loads and to operate the engine as much as possible in the more effective HCCI mode. The strategy for reducing ringing investigated most extensively in the project was charge stratification, achieved by injecting part of the fuel late in the compression stroke. Available literature on effects of this strategy gave conflicting indications, both positive and negative effects have been reported, depending on the type of fuel and engine used. It was soon found that the strategy is effective for reducing ringing, but with resulting increases of NOX emissions. Further, in order for the strategy to be effective, global air/fuel ratios must not be much leaner than stoichiometric. The increases in NOX emissions were countered by shifting the ratio towards stoichiometric using exhaust gas recirculation (EGR), allowing a three

  14. Review of homogeneous charge compression ignition (HCCI) combustion engines and exhaust gas recirculation (EGR) effects on HCCI

    Science.gov (United States)

    Akma Tuan Kamaruddin, Tengku Nordayana; Wahid, Mazlan Abdul; Sies, Mohsin Mohd

    2012-06-01

    This paper describes the development in ICE which leads to the new advanced combustion mode named Homogeneous Charge Compression Ignition (HCCI). It explains regarding the theory and working principle of HCCI plus the difference of the process in gasoline and diesel fuelled engines. Many of pioneer and recent research works are discussed to get the current state of art about HCCI. It gives a better indication on the potential of this method in improving the fuel efficiency and emission produced by the vehicles' engine. Apart from the advantages, the challenges and future trend of this technology are also included. HCCI is applying few types of control strategy in producing the optimum performance. This paper looks into Exhaust Gas Recirculation (EGR) as one of the control strategies.

  15. GM's HCCI. In-vehicle experience with a future combustion system; GM's HCCI. Erfahrungen mit einem zukuenftigen Verbrennungssystem im Fahrzeugeinsatz

    Energy Technology Data Exchange (ETDEWEB)

    Pritze, Stefan; Koenigstein, Achim [Adam Opel GmbH, Ruesselsheim (Germany); Rayl, Allen; Chang, Chen-Fang; Najt, Paul; Grebe, Uwe D. [General Motors LLC, Warren/Ponitac, MI (United States)

    2010-07-01

    Homogeneous Charge Compression Ignition (HCCI) stands at General Motors (GM) for the auto-ignition of a homogeneous air-fuel mixture in a gasoline engine. HCCI enables unthrottle operation under part load conditions with the high potential for fuel consumption reduction at lowest NO{sub x} emission levels even with lean mixtures. It is capable to use worldwide available fuel qualities with conventional exhaust aftertreatment. Important requirements for the application in a vehicle are the realization of a large usable steady state map covering lowest engine loads including idle operation and an outstanding transient combustion performance in terms of robustness and responsiveness. The prerequisites to achieve this were set based on a spray-guided gasoline direct injection with a strategy to control the residuals by trapping and recompressing them in the combustion chamber and sensing of individual cylinder pressure. The main characteristics of the combustion system will be discussed. The application in a vehicle sets new targets in terms of engine controller requirements and the complexity of the control algorithms. Considering only indirect control of combustion being very sensitive against extraneous impacts, it becomes extremely challenging to realize robust transitions among the various operation modes. The results achieved with the integration of the presented HCCI combustion system in prototype vehicles of the midsize segment support the chosen development path. Further improvements can be expected considering the latest achievements of the combustion system development. (orig.)

  16. Fuel and Additive Characterization for HCCI Combustion

    International Nuclear Information System (INIS)

    Aceves, S M; Flowers, D; Martinez-Frias, J; Espinosa-Loza, F; Pitz, W J; Dibble, R

    2003-01-01

    This paper shows a numerical evaluation of fuels and additives for HCCl combustion. First, a long list of candidate HCCl fuels is selected. For all the fuels in the list, operating conditions (compression ratio, equivalence ratio and intake temperature) are determined that result in optimum performance under typical operation for a heavy-duty engine. Fuels are also characterized by presenting Log(p)-Log(T) maps for multiple fuels under HCCl conditions. Log(p)-Log(T) maps illustrate important processes during HCCl engine operation, including compression, low temperature heat release and ignition. Log(p)-Log(T) diagrams can be used for visualizing these processes and can be used as a tool for detailed analysis of HCCl combustion. The paper also includes a ranking of many potential additives. Experiments and analyses have indicated that small amounts (a few parts per million) of secondary fuels (additives) may considerably affect HCCl combustion and may play a significant role in controlling HCCl combustion. Additives are ranked according to their capability to advance HCCl ignition. The best additives are listed and an explanation of their effect on HCCl combustion is included

  17. Reduction of HCCI combustion noise through piston crown design

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2010-01-01

    . The largest and most consistent reduction in noise level was however achieved with a diesel bowl type piston. The increased surface area as well as the larger crevice volumes of the experimental piston crowns generally resulted in lower IMEP than the flat piston. While the crevice volumes can be reduced...... away from the engine. The experiments were conducted in a diesel engine that was run in HCCI combustion mode with a fixed quantity of DME as fuel. The results show that combustion knock is effectively suppressed by limiting the size of the volume in which the combustion occurs. Splitting...... the compression volume into four smaller volumes placed between the perimeter of the piston and the cylinder liner increased the noise to a higher level than that generated with a flat piston crown. This was due to resonance between the four volumes. Using eight volumes instead decreased the noise. The noise...

  18. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    International Nuclear Information System (INIS)

    Wang Zhi; He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo

    2010-01-01

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO x emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  19. Combustion visualization and experimental study on spark induced compression ignition (SICI) in gasoline HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Wang Zhi, E-mail: wangzhi@tsinghua.edu.c [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China); He Xu; Wang Jianxin; Shuai Shijin; Xu Fan; Yang Dongbo [State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084 (China)

    2010-05-15

    Spark induced compression ignition (SICI) is a relatively new combustion control technology and a promising combustion mode in gasoline engines with high efficiency. SICI can be divided into two categories, SACI and SI-CI. This paper investigated the SICI combustion process using combustion visualization and engine experiment respectively. Ignition process of SICI was captured by high speed photography in an optical engine with different compression ratios. The results show that SICI is a combustion mode combined with partly flame propagation and main auto-ignition. The spark ignites the local mixture near spark electrodes and the flame propagation occurs before the homogeneous mixture is auto-ignited. The heat release from central burned zone due to the flame propagation increases the in-cylinder pressure and temperature, resulting in the unburned mixture auto-ignition. The SICI combustion process can be divided into three stages of the spark induced stage, the flame propagation stage and the compression ignition stage. The SICI combustion mode is different from the spark ignition (SI) knocking in terms of the combustion and emission characteristics. Furthermore, three typical combustion modes including HCCI, SICI, SI, were compared on a gasoline direct injection engine with higher compression ratio and switchable cam-profiles. The results show that SICI has an obvious combustion characteristic with two-stage heat release and lower pressure rise rate. The SICI combustion mode can be controlled by spark timings and EGR rates and utilized as an effective method for high load extension on the gasoline HCCI engine. The maximum IMEP of 0.82 MPa can be achieved with relatively low NO{sub x} emission and high thermal efficiency. The SICI combustion mode can be applied in medium-high load region for high efficiency gasoline engines.

  20. Mixture preparation and combustion in an optically-accessible HCCI, diesel engine; La preparation du melange et de la combustion dans un moteur Diesel, HCCI a acces optique

    Energy Technology Data Exchange (ETDEWEB)

    Kashdan, J.; Bruneaux, G. [Institut Francais du Petrole, 92 - Rueil-Malmaison (France)

    2006-07-01

    Planar laser-induced fluorescence (LIF) imaging techniques have been applied in order to study the mixture preparation and combustion process in a single cylinder, optically-accessible homogeneous charge, compression ignition (HCCI) engine. In particular, the influence of piston bowl geometry on the in-cylinder mixture distribution and subsequent combustion process has been investigated. A new optically-accessible piston design enabled the application of LIF diagnostics directly within the combustion chamber bowl. Firstly, laser-induced exciplex fluorescence (LIEF) was exploited in order to characterise the in-cylinder fuel spray and vapour distribution. Subsequently a detailed study of the two-stage HCCI combustion process was conducted by a combination of direct chemiluminescence imaging, laser-induced fluorescence (LIF) of the intermediate species formaldehyde (CH{sub 2}O) which is present during the cool flame and LIF of the OH radical which is subsequently present in the reaction and burned gas zones at higher temperature. Finally, spectrometry measurements were performed with the objective of determining the origin of the emitting species of the chemiluminescence signal. The experiments were performed on a single cylinder optical engine equipped with a direct-injection, common rail injection system and narrow angle injector. The experimental results presented reveal the significant role of the combustion chamber geometry on the mixture preparation and combustion characteristics for late HCCI injection strategies particularly in such cases where liquid impingement is unavoidable. Planar LIF 355 imaging revealed the presence of the intermediate species formaldehyde allowing the temporal and spatial detection of auto-ignition precursors prior to the signal observed by chemiluminescence in the early stages of the cool flame. Formaldehyde was then rapidly consumed at the start of main combustion which was marked not only by the increase in the main heat release

  1. A parametric investigation of hydrogen hcci combustion using a multi-zone model approach

    International Nuclear Information System (INIS)

    Komninos, N.P.; Hountalas, D.T.; Rakopoulos, C.D.

    2007-01-01

    The purpose of the present study is to examine the effect of various operating variables of a homogeneous charge compression ignition (HCCI) engine fueled with hydrogen, using a multi-zone model developed by the authors. The multi-zone model consists of zones, which are allotted spatial locations within the combustion chamber. The model takes into account heat transfer between the zones and the combustion chamber walls, providing a spatial temperature distribution during the closed part of the engine cycle, i.e. compression, combustion and expansion. Mass transfer between zones is also accounted for, based on the geometric configuration of the zones, and includes the flow of mass in and out of the crevice regions, represented by the crevice zone. Combustion is incorporated using chemical kinetics based on a chemical reaction mechanism for the oxidation of hydrogen. This chemical reaction mechanism also includes the reactions for nitrogen oxides formation. Using the multi-zone model a parametric investigation is conducted, in order to determine the effect of engine speed, equivalence ratio, compression ratio, inlet pressure and inlet temperature, on the performance, combustion characteristics and emissions of an HCCI engine fueled with hydrogen

  2. Modeling and controller design architecture for cycle-by-cycle combustion control of homogeneous charge compression ignition (HCCI) engines – A comprehensive review

    International Nuclear Information System (INIS)

    Fathi, Morteza; Jahanian, Omid; Shahbakhti, Mahdi

    2017-01-01

    Highlights: • Addressing accuracy-speed compromise of HCCI representation is very important. • Phasing, load, exhaust temperature and emissions are the most important outputs. • Separability between the effects of the inputs on the outputs is of great interest. • Existing actuation systems combining inputs are favorable. • An HCCI controller should be a fast and robust one to become a viable solution. - Abstract: Homogeneous charge compression ignition (HCCI) combustion engines are advantageous in terms of good fuel economy and low levels of soot-nitrogen oxides (NOx) emissions. However, they are accompanied with some intrinsic challenges, the most important of which is the lack of any direct control method for ignition trigger. Thus, implementation of HCCI combustion is in fact a control problem, and an optimized control structure is required for attaining the inherent benefits of HCCI. The control structure consists of a proper representation of engine processes; a suitable selection of state variables; useful and applicable set of inputs, outputs and observers; appropriate fixed or variable set-points for controlled parameters; instrumentations including sensors and actuators; and an applicable control law implemented in a controller. The present paper aims at addressing these issues altogether by introducing HCCI engine control structure in progress and presenting highlights from literature. Research should result in appropriately controlled HCCI engines which can provide desired load at rated speed with acceptable performance and emissions characteristics.

  3. Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine

    International Nuclear Information System (INIS)

    Ghazimirsaied, Ahmad; Koch, Charles Robert

    2012-01-01

    Highlights: ► Misfire reduction in a combustion engine based on chaotic theory methods. ► Chaotic theory analysis of cyclic variation of a HCCI engine near misfire. ► Symbol sequence approach is used to predict ignition timing one cycle-ahead. ► Prediction is combined with feedback control to lower HCCI combustion variation. ► Feedback control extends the HCCI operating range into the misfire region. -- Abstract: Cyclic variation of a Homogeneous Charge Compression Ignition (HCCI) engine near misfire is analyzed using chaotic theory methods and feedback control is used to stabilize high cyclic variations. Variation of consecutive cycles of θ Pmax (the crank angle of maximum cylinder pressure over an engine cycle) for a Primary Reference Fuel engine is analyzed near misfire operation for five test points with similar conditions but different octane numbers. The return map of the time series of θ Pmax at each combustion cycle reveals the deterministic and random portions of the dynamics near misfire for this HCCI engine. A symbol-statistic approach is used to predict θ Pmax one cycle-ahead. Predicted θ Pmax has similar dynamical behavior to the experimental measurements. Based on this cycle ahead prediction, and using fuel octane as the input, feedback control is used to stabilize the instability of θ Pmax variations at this engine condition near misfire.

  4. Reaction Mechanisms and HCCI Combustion Processes of Mixtures of n-Heptane and the Butanols

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-03-01

    Full Text Available A reduced primary reference fuel (PRF-Alcohol-Di-tert-butyl Peroxide (DTBP mechanism with 108 species and 435 reactions, including sub-mechanisms of PRF, methanol, ethanol, DTBP and the four butanol isomers, is proposed for homogeneous charge compression ignition (HCCI engine combustion simulations of butanol isomers/n-heptane mixtures. HCCI experiments fuelled with butanol isomer/n-heptane mixtures on two different engines are conducted for the validation of proposed mechanism. The mechanism has been validated against shock tube ignition delays, laminar flame speeds, species profiles in premixed flames and engine HCCI combustion data, and good agreements with experimental results are demonstrated under various validation conditions. It is found that although the reactivity of neat tert-butanol is the lowest, mixtures of tert-butanol/n-heptane exhibit the highest reactivity among the butanol isomer/n-heptane mixtures if the n-heptane blending ratio exceeds 20% (mole. Kinetic analysis shows that the highest C-H bond energy in the tert-butanol molecule is partially responsible for this phenomenon. It is also found that the reaction tC4H9OH+CH3O2 =tC4H9O+CH3O2H plays important role and eventually produces the OH radical to promote the ignition and combustion. The proposed mechanism is able to capture HCCI combustion processes of the butanol/n-heptane mixtures under different operating conditions. In addition, the trend that tert-butanol /n-heptane has the highest reactivity is also captured in HCCI combustion simulations. The results indicate that the current mechanism can be used for HCCI engine predictions of PRF and alcohol fuels.

  5. Combustion Homogeneity and Emission Analysis during the Transition from CI to HCCI for FACE I Gasoline

    KAUST Repository

    Vedharaj, S.

    2017-10-10

    Low temperature combustion concepts are studied recently to simultaneously reduce NOX and soot emissions. Optical studies are performed to study gasoline PPC in CI engines to investigate in-cylinder combustion and stratification. It is imperative to perform emission measurements and interpret the results with combustion images. In this work, we attempt to investigate this during the transition from CI to HCCI mode for FACE I gasoline (RON = 70) and its surrogate, PRF70. The experiments are performed in a single cylinder optical engine that runs at a speed of 1200 rpm. Considering the safety of engine, testing was done at lower IMEP (3 bar) and combustion is visualized using a high-speed camera through a window in the bottom of the bowl. From the engine experiments, it is clear that intake air temperature requirement is different at various combustion modes to maintain the same combustion phasing. While a fixed intake air temperature is required at HCCI condition, it varies at PPC and CI conditions between FACE I gasoline and PRF70. Three zones are identified 1) SOI = -180 to -80 CAD (aTDC) is HCCI zone 2) SOI = -40 to -20 CAD (aTDC) is PPC zone 3) After SOI = -15 CAD (aTDC) is CI zone. Combustion duration, ignition delay, start of combustion and CA90 (crank angle at which 90% of fuel burnt) are comparable between FACE I gasoline and PRF70. The combustion images show a prominent soot flame at CI condition, while only blue coloured premixed flames are visible at PPC condition for both the fuels. PRF70 seems to have a pronounced premixed effect when compared to FACE I gasoline at early injections, showing a decreased level of stratification. NOX emission and soot concentration decreases from CI condition and attains a constant zero value at HCCI condition for both FACE I gasoline and PRF70. CO and CO2 emissions matches between FACE I gasoline and PRF70 at PPC and CI condition, while CO emission is lower for PRF70 at HCCI condition.

  6. Combustion Homogeneity and Emission Analysis during the Transition from CI to HCCI for FACE I Gasoline

    KAUST Repository

    Vedharaj, S.; Vallinayagam, R; An, Yanzhao; Izadi Najafabadi, Mohammad; Somers, Bart; Chang, Junseok; Johansson, Bengt

    2017-01-01

    Low temperature combustion concepts are studied recently to simultaneously reduce NOX and soot emissions. Optical studies are performed to study gasoline PPC in CI engines to investigate in-cylinder combustion and stratification. It is imperative to perform emission measurements and interpret the results with combustion images. In this work, we attempt to investigate this during the transition from CI to HCCI mode for FACE I gasoline (RON = 70) and its surrogate, PRF70. The experiments are performed in a single cylinder optical engine that runs at a speed of 1200 rpm. Considering the safety of engine, testing was done at lower IMEP (3 bar) and combustion is visualized using a high-speed camera through a window in the bottom of the bowl. From the engine experiments, it is clear that intake air temperature requirement is different at various combustion modes to maintain the same combustion phasing. While a fixed intake air temperature is required at HCCI condition, it varies at PPC and CI conditions between FACE I gasoline and PRF70. Three zones are identified 1) SOI = -180 to -80 CAD (aTDC) is HCCI zone 2) SOI = -40 to -20 CAD (aTDC) is PPC zone 3) After SOI = -15 CAD (aTDC) is CI zone. Combustion duration, ignition delay, start of combustion and CA90 (crank angle at which 90% of fuel burnt) are comparable between FACE I gasoline and PRF70. The combustion images show a prominent soot flame at CI condition, while only blue coloured premixed flames are visible at PPC condition for both the fuels. PRF70 seems to have a pronounced premixed effect when compared to FACE I gasoline at early injections, showing a decreased level of stratification. NOX emission and soot concentration decreases from CI condition and attains a constant zero value at HCCI condition for both FACE I gasoline and PRF70. CO and CO2 emissions matches between FACE I gasoline and PRF70 at PPC and CI condition, while CO emission is lower for PRF70 at HCCI condition.

  7. Naphtha vs. dieseline – The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI

    KAUST Repository

    Vallinayagam, R.

    2018-03-20

    The scope of this research study pertains to compare the combustion and emission behavior between naphtha and dieseline at different combustion modes. In this study, US dieseline (50% US diesel + 50% RON 91 gasoline) and EU dieseline (45% EU diesel + 55% RON 97 gasoline) with derived cetane number (DCN) of 36 are selected for experimentation in an optical engine. Besides naphtha and dieseline, PRF60 is also tested as a surrogate fuel for naphtha. For the reported fuel with same RON = 60, the effect of physical properties on combustion homogeneity when moving from homogenized charge compression ignition (HCCI) to compression ignition (CI) combustion is studied.The combustion phasing of naphtha at an intake air temperature of 95 °C is taken as the baseline data. The engine experimental results show that higher and lower intake air temperature is required for dieseline mixtures to have same combustion phasing as that of naphtha at HCCI and CI conditions due to the difference in the physical properties. Especially at HCCI mode, due to wider distillation range of dieseline, the evaporation of the fuel is affected so that the gas phase mixture becomes too lean to auto-ignite. However, at partially premixed combustion (PPC) conditions, all test fuels required almost same intake air temperature to match up with the combustion phasing of baseline naphtha. From the rate of heat release and combustion images, it was found that naphtha and PRF60 showed improved premixed combustion when compared dieseline mixtures. The stratification analysis shows that combustion is more stratified for dieseline whereas it is premixed for naphtha and PRF60. The level of stratification linked with soot emission showed that soot concentration is higher at stratified CI combustion whereas near zero soot emissions were noted at PPC mode.

  8. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 2: Parametric study of performance and emissions characteristics using new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Newly developed reduced ethanol mechanism (47 species and 272 reactions) used. • Engine maps over wide range are developed for performance and emissions parameters. • HCCI operating range increases with compression ratio & decreases with engine speed. • Maximum combustion efficiency up to 99% and thermal efficiency up to 50% is achieved. • Maximum N_2O emission found up to 2.7 ppm and lower load have higher N_2O emission. - Abstract: Ethanol fuelled homogenous charge compression ignition engine offers a better alternative to tackle the problems of achieving higher engine efficiency and lower emissions using renewable fuel. Present study computationally investigates the HCCI operating range of ethanol at different compression ratios by varying inlet air temperature and engine speed using stochastic reactor model. A newly developed reduced ethanol oxidation mechanism with NO_x having 47 species and 272 reactions is used for simulation. HCCI operating range for compression ratios 17, 19 and 21 are investigated and found to be increasing with compression ratio. Simulations are conducted for engine speeds ranging from 1000 to 3000 rpm at different intake temperatures (range 365–465 K). Parametric study of combustion and emission characteristics is conducted and engine maps are developed at most efficient inlet temperatures. HCCI operating range is defined using combustion efficiency (>85%) and maximum pressure rise rate (<5 MPa/ms). In HCCI operating range, higher efficiency is found at higher engine loads and lower engine speeds. Emission characteristics of species (NO_x, N_2O, CO, CH_4, C_2H_4, C_2H_6, CH_3CHO, and HCHO) found in significant amount is also analysed for ethanol fulled HCCI engine. Emission maps for different species are presented and discussed for wide range of speed and load conditions. Some of unregulated species such as aldehydes are emitted in significantly higher quantities from ethanol fuelled HCCI engine at higher load

  9. Numerical Investigation Into Effect of Fuel Injection Timing on CAI/HCCI Combustion in a Four-Stroke GDI Engine

    Science.gov (United States)

    Cao, Li; Zhao, Hua; Jiang, Xi; Kalian, Navin

    2006-02-01

    The Controlled Auto-Ignition (CAI) combustion, also known as Homogeneous Charge Compression Ignition (HCCI), was achieved by trapping residuals with early exhaust valve closure in conjunction with direct injection. Multi-cycle 3D engine simulations have been carried out for parametric study on four different injection timings in order to better understand the effects of injection timings on in-cylinder mixing and CAI combustion. The full engine cycle simulation including complete gas exchange and combustion processes was carried out over several cycles in order to obtain the stable cycle for analysis. The combustion models used in the present study are the Shell auto-ignition model and the characteristic-time combustion model, which were modified to take the high level of EGR into consideration. A liquid sheet breakup spray model was used for the droplet breakup processes. The analyses show that the injection timing plays an important role in affecting the in-cylinder air/fuel mixing and mixture temperature, which in turn affects the CAI combustion and engine performance.

  10. Combustion optimization and HCCI modeling for ultra low emission

    Energy Technology Data Exchange (ETDEWEB)

    Koten, Hasan; Yilmaz, Mustafa; Zafer Gul, M. [Marmara University Mechanical Engineering Department (Turkey)], E-mail: hasan.koten@marmara.edu.tr

    2011-07-01

    With the coming shortage of fossil fuels and the rising concerns over the environment it is important to develop new technologies both to reduce energy consumption and pollution at the same time. In the transportation sector, new combustion processes are under development to provide clean diesel combustion with no particulate or NOx emissions. However, these processes have issues such as limited power output, high levels of unburned hydrocarbons, and carbon monoxide emissions. The aim of this paper is to present a methodology for optimizing combustion performance. The methodology consists of the use of a multi-objective genetic algorithm optimization tool; homogeneous charge compression ignition engine cases were studied with the ECFM-3Z combustion model. Results showed that injected fuel mass led to a decrease in power output, a finding which is in keeping with previous research. This paper presented on optimization tool which can be useful in improving the combustion process.

  11. Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, Rakesh Kumar; Agarwal, Avinash Kumar [Engine Research Laboratory, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2011-04-15

    Combustion in HCCI engines is a controlled auto ignition of well-mixed fuel, air and residual gas. Since onset of HCCI combustion depends on the auto ignition of fuel/air mixture, there is no direct control on the start of combustion process. Therefore, HCCI combustion becomes unstable rather easily, especially at lower and higher engine loads. In this study, cycle-to-cycle variations of a HCCI combustion engine fuelled with ethanol were investigated on a modified two-cylinder engine. Port injection technique is used for preparing homogeneous charge for HCCI combustion. The experiments were conducted at varying intake air temperatures and air-fuel ratios at constant engine speed of 1500 rpm and P-{theta} diagram of 100 consecutive combustion cycles for each test conditions at steady state operation were recorded. Consequently, cycle-to-cycle variations of the main combustion parameters and performance parameters were analyzed. To evaluate the cycle-to-cycle variations of HCCI combustion parameters, coefficient of variation (COV) of every parameter were calculated for every engine operating condition. The critical optimum parameters that can be used to define HCCI operating ranges are 'maximum rate of pressure rise' and 'COV of indicated mean effective pressure (IMEP)'. (author)

  12. The effect of the composition of hydrocarbon streams on physical properties and HCCI combustion performance

    Energy Technology Data Exchange (ETDEWEB)

    Gieleciak, R. [National Centre for Upgrading Technology, Devon, AB (Canada); Natural Resources Canada, Devon, AB (Canada). CanmetENERGY

    2009-07-01

    Advanced combustion engines have been developed in tandem with evolving fuels and combustion strategies. Advanced analytical methods such as NMR and two dimensional gas chromatography (2D-GC) are also becoming both more powerful and easier to use. Statistical analysis can be used to link the very complex fuel analysis data sets from these methods to fuel chemistry, fuel properties and engine performance. This poster highlighted a study that applied an advanced statistical analysis technique to 2D-GC data for 17 oil sands derived fuels and correlated results to measured fuel chemical/physical properties, and then to HCCI engine performance. In the HCCI mode, ignition occurs by compression of the homogeneous fuel/air mixture. Advanced combustion strategies must satisfy the need for high efficiency, low emissions, and drivability. The 2D-GC was shown to be an emerging analytical technique which separates compounds in fuels to enable the identification of individual compounds and group compounds by chemistry and boiling points. The Q(2d)RPR technique allows correlations to be developed between the 2D-GC data and fuel chemical / physical properties and engine performance data. tabs., figs.

  13. An optimized chemical kinetic mechanism for HCCI combustion of PRFs using multi-zone model and genetic algorithm

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2015-01-01

    Highlights: • A new chemical kinetic mechanism for PRFs HCCI combustion is developed. • New mechanism optimization is performed using genetic algorithm and multi-zone model. • Engine-related combustion and performance parameters are predicted accurately. • Engine unburned HC and CO emissions are predicted by the model properly. - Abstract: Development of comprehensive chemical kinetic mechanisms is required for HCCI combustion and emissions prediction to be used in engine development. The main purpose of this study is development of a new chemical kinetic mechanism for primary reference fuels (PRFs) HCCI combustion, which can be applied to combustion models to predict in-cylinder pressure and exhaust CO and UHC emissions, accurately. Hence, a multi-zone model is developed for HCCI engine simulation. Two semi-detailed chemical kinetic mechanisms those are suitable for premixed combustion are used for n-heptane and iso-octane HCCI combustion simulation. The iso-octane mechanism contains 84 species and 484 reactions and the n-heptane mechanism contains 57 species and 296 reactions. A simple interaction between iso-octane and n-heptane is considered in new mechanism. The multi-zone model is validated using experimental data for pure n-heptane and iso-octane. A new mechanism is prepared by combination of these two mechanisms for n-heptane and iso-octane blended fuel, which includes 101 species and 594 reactions. New mechanism optimization is performed using genetic algorithm and multi-zone model. Mechanism contains low temperature heat release region, which decreases with increasing octane number. The results showed that the optimized chemical kinetic mechanism is capable of predicting engine-related combustion and performance parameters. Also after implementing the optimized mechanism, engine unburned HC and CO emissions predicted by the model are in good agreement with the corresponding experimental data

  14. Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode

    KAUST Repository

    Waqas, Muhammad Umer

    2017-09-04

    The blending of ethanol with PRF (Primary reference fuel) 84 was investigated and compared with FACE (Fuels for Advanced Combustion Engines) A gasoline surrogate which has a RON of 83.9. Previously, experiments were performed at four HCCI conditions but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry in CHEMKIN PRO. Ethanol was used as an octane booster for the above two base fuels in volume concentration of 0%, 2%, 5% and 10%. The geometrical data and the intake valve closure conditions were used to match the simulated combustion phasing with the experiments. Low temperature heat release (LTHR) was detected by performing heat release analysis. LTHR formation depended on the base fuel type and the engine operating conditions suggesting that the base fuel composition has an important role in the formation of LTHR. The effect of ethanol on LTHR was explained by low temperature chemistry reactions and OH/HO evolution. A strong correlation of low temperature oxidation reactions of base fuels with ethanol was found to be responsible for the observed blending effects.

  15. Development of a new reduced hydrogen combustion mechanism with NO_x and parametric study of hydrogen HCCI combustion using stochastic reactor model

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2017-01-01

    Highlights: • PDF based stochastic reactor model used for study of hydrogen HCCI engine. • New reduced hydrogen combustion mechanism with NOx developed (30 species and 253 reactions). • Mechanism predicts cylinder pressure and captures NO_x emission trend with sufficient accuracy. • Parametric study of hydrogen HCCI engine over wide range of speed and load conditions. • Hydrogen HCCI operating range increases with compression ratio & decreases with engine speed. - Abstract: Hydrogen is a potential alternative and renewable fuel for homogenous charge compression ignition (HCCI) engine to achieve higher efficiency and zero emissions of CO, unburned hydrocarbons as well as other greenhouse gases such as CO_2 and CH_4. In this study, a detailed hydrogen oxidation mechanism with NO_x was developed by incorporating additional species and NO_x reactions to the existing hydrogen combustion mechanism (10 species and 40 reactions). The detailed hydrogen combustion mechanism used in this study consists of 39 species and 311 reactions. A reduced mechanism consisting 30 species and 253 reactions was also developed by using directed relation graph (DRG) method from detailed mechanism. Developed mechanisms were validated with experimental data by HCCI engine simulation using stochastic reactor model. Sensitivity analysis was performed to identify the most important reactions in hydrogen combustion and NO_x formation in HCCI engine. Pathway analysis was also performed to analyze the important reaction pathways at different temperatures. Results revealed that H2 + HO2 [=] H + H2O2 and O2 + NNH [=] N2 + HO2 are the most significant reactions in the hydrogen HCCI combustion and NO_x formation respectively. Detailed parametric study of HCCI combustion was conducted using developed chemical kinetic model. Numerical simulations are performed at different engine operating condition by varying engine speed (1000–3000 rpm), intake air temperature (380–460 K), and compression

  16. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio was...

  17. Effect of oxygen content on n-heptane auto-ignition characteristics in a HCCI engine

    International Nuclear Information System (INIS)

    Wu, Zhijun; Kang, Zhe; Deng, Jun; Hu, Zongjie; Li, Liguang

    2016-01-01

    Highlights: • n-Heptane HCCI combustion under air and oxygen intake was compared. • n-Heptane auto-ignition postponed due to higher specific heat capacity as oxygen increase. • The increment of heat release fraction during low temperature reaction is studied. • Oxygen enrichment lead to suppressed negative temperature coefficient. • The mechanism of low temperature reaction enhancement as oxygen increase is investigated. - Abstract: To take maximum advantage of the high efficiency of homogeneous charge compression ignition combustion mode and internal combustion Rankine cycle concept, in this study, the n-heptane auto-ignition characteristics have been investigated using a compression ignition internal combustion Rankine cycle engine test bench and a zero-dimensional thermodynamic model coupled with a detailed kinetic model. The n-heptane auto-ignition process shows that under both air and oxygen intake, a typical two-stage combustion in which oxygen enrichment has very minor effects on the n-heptane high temperature reaction. The higher specific heat capacity of oxygen compared with nitrogen leads to an overall increased specific heat capacity, which lowers the in-cylinder temperature during compression stroke, thereby delaying the low temperature reaction initial timing. The higher oxygen content also improves the H-atom abstraction, first O_2 addition, second O_2 addition and peroxyalkylhydroperoxide isomerization, thereby improving the overall reaction rate and the heat release fraction of low temperature reaction. As a result, the in-cylinder temperature at the end of low temperature reaction also increases, thereby shortening significantly the negative temperature coefficient duration compared with a combustion cycle using air as oxidizer.

  18. Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    KAUST Repository

    Waqas, Muhammad Umer

    2018-04-03

    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock quality of a fuel through blending of high-octane fuel with a low octane fuel. Previous studies on Octane-on-Demand highlighted efficiency benefits depending on the combination of low octane fuel with high octane booster. The author recently published works with ethanol and methanol as high-octane fuels. The results of this work showed that the composition and octane number of the low octane fuel is significant for the blending octane number of both ethanol and methanol. This work focuses on toluene as the high octane fuel (RON 120). Aromatics offers anti-knock quality and with high octane number than alcohols, this work will address if toluene can provide higher octane enhancement. Our aim is to investigate the impact of three gasoline-like fuels and two Primary Reference Fuels (PRFs). More specifically, fuels are FACE (Fuels for Advanced Combustion Engines) I, FACE J, FACE A, PRF 70 and PRF 84. A CFR engine was used to conduct the experiments in HCCI mode. For this combustion mode, the engine operated at four specific conditions based on RON and MON conditions. The octane numbers corresponding to four HCCI numbers were obtained for toluene concentration of 0, 2, 5, 10, 15 and 20%. Results show that the blending octane number of toluene varies non-linearly and linearly with the increase in toluene concentration depending on the base fuel, experimental conditions and the concentration of toluene. As a result, the blending octane number can range from close to 150 with a small fraction of toluene to a number closer to that of toluene, 120, with larger fractions.

  19. A numerical study of HCCI combustion of PRF mixtures compared with PCCI experiments

    Energy Technology Data Exchange (ETDEWEB)

    Van Wijngaarden, B.

    2008-09-15

    For automotive applications engines that produce less soot and NOx are desired. For that reason the Homogeneous Charge Compression Ignition (HCCI) principle is investigated all over the world, including the technical universities of Berlin (TUB) and Eindhoven. HCCI combines a homogeneous charge, as in an Otto engine with the autoignition principle of a Diesel engine. Auto-ignition and almost instantaneous combustion of a homogeneous charge leads to almost zero soot emissions, lower temperatures and thereby much lower NOx emissions. Auto-ignition timing however, depends on the fuel and its chemistry, which is very sensitive to the applied conditions, being pressure, temperature, equivalence ratio ({phi}), dilution with EGR and engine speed. To study this systematically a 0D model with PRF fuels is used (Primary Reference Fuels are n-heptane, iso-octane and mixtures). A 0D model is chosen because it excludes complex fluid dynamics and thereby allows the use of detailed combustion mechanisms, describing the (PRF) chemistry. Furthermore the model has a multi zone possibility to evaluate in-homogeneities of the charge. PRF fuels are used because n-heptane (CN=55) auto-ignites like a diesel and iso-octane (ON=100) approaches gasoline. For the PRF chemistry three combustion mechanisms were selected, of which two were validated showing a great difference in predicted ignition delay and sensitivity to changes. Furthermore the model was validated with a PCCI (Premixed Charge Compression Ignition) experiment. Extensive comparisons with PCCI experiments from the TUB showed that when the moment of injection was used to launch the chemistry in the model, only the Soyhan mechanism predicted the ignition close to the experimental ignition moment. Furthermore a 7 zone model was able to approach the experimental CO and NOX emissions. Finally none of the mechanisms was able to predict a pressure profile similar to the experiments. More zones and or a better mechanism could improve

  20. Effects of premixed diethyl ether (DEE) on combustion and exhaust emissions in a HCCI-DI diesel engine

    International Nuclear Information System (INIS)

    Cinar, Can; Can, Ozer; Sahin, Fatih; Yucesu, H. Serdar

    2010-01-01

    In this study, the effects of premixed ratio of diethyl ether (DEE) on the combustion and exhaust emissions of a single-cylinder, HCCI-DI engine were investigated. The experiments were performed at the engine speed of 2200 rpm and 19 N m operating conditions. The amount of the premixed DEE was controlled by a programmable electronic control unit (ECU) and the DEE injection was conducted into the intake air charge using low pressure injector. The premixed fuel ratio (PFR) of DEE was changed from 0% to 40% and results were compared to neat diesel operation. The percentages of premixed fuel were calculated from the energy ratio of premixed DEE fuel to total energy rate of the fuels. The experimental results show that single stage ignition was found with the addition of premixed DEE fuel. Increasing and phasing in-cylinder pressure and heat release were observed in the premixed stage of the combustion. Lower diffusion combustion was also occurred. Cycle-to cycle variations were very small with diesel fuel and 10% DEE premixed fuel ratio. Audible knocking occurred with 40% DEE premixed fuel ratio. NO x -soot trade-off characteristics were changed and improvements were found simultaneously. NO x and soot emissions decreased up to 19.4% and 76.1%, respectively, while exhaust gas temperature decreased by 23.8%. On the other hand, CO and HC emissions increased.

  1. The effects of key parameters on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine

    International Nuclear Information System (INIS)

    Hung, Nguyen Ba; Lim, Ocktaeck; Iida, Norimasa

    2015-01-01

    Highlights: • A free piston engine is modeled and simulated by three mathematical models. • The models include dynamic model, linear alternator model and thermodynamic model. • The SI-HCCI transition is successful if the key parameters are adjusted suitably. • Spring stiffness has a strong influence on reducing peak temperature in HCCI mode. • Adjusting spark timing helps the SI-HCCI transition to be more convenient. - Abstract: An investigation was conducted to examine the effects of key parameters such as intake temperature, equivalence ratio, engine load, intake pressure, spark timing and spring stiffness on the transition from SI combustion to HCCI combustion in a two-stroke free piston linear engine. Operation of the free piston engine was simulated based on the combination of three mathematical models including a dynamic model, a linear alternator model and a thermodynamic model. These mathematical models were combined and solved by a program written in Fortran. To validate the mathematical models, the simulation results were compared with experimental data in the SI mode. For the transition from SI combustion to HCCI combustion, the simulation results show that if the equivalence ratio is decreased, the intake temperature and engine load should be increased to get a successful SI-HCCI transition. However, the simulation results also show that the in-cylinder pressure is decreased, while the peak in-cylinder temperature in HCCI mode is increased significantly if the intake temperature is increased so much. Beside the successful SI-HCCI transition, the increase of intake pressure from P in = 1.1 bar to P in = 1.6 bar is one of solutions to reduce peak in-cylinder temperature in HCCI mode. However, the simulation results also indicate that if the intake pressure is increased so much (P in = 1.6 bar), the engine knocking problem is occurred. Adjusting spring stiffness from k = 2.9 N/mm to k = 14.7 N/mm is also considered one of useful solutions for

  2. Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

    KAUST Repository

    Waqas, Muhammad Umer; Morganti, Kai; Masurier, Jean-Baptiste; Johansson, Bengt

    2017-01-01

    The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions. In keeping with previous studies, the degree of this non-linearity is shown to be a function of the base fuel composition and octane number. By contrast, the molar blending approach is shown to behave differently depending on the chosen combustion mode, with some non-linearity observed under HCCI operating conditions (i.e. BON RON or MON of pure ethanol). This suggests that the well-established blending rules for SI operating conditions may not always be relevant to other combustion modes that operate with globally lean or diluted air-fuel mixtures. This has implications for the design of future fuel specifications.

  3. Blending Octane Number of Ethanol on a Volume and Molar Basis in SI and HCCI Combustion Modes

    KAUST Repository

    Waqas, Muhammad Umer

    2017-10-08

    The blending behavior of ethanol in five different hydrocarbon base fuels with octane numbers of approximately 70 and 84 was examined under Spark-Ignited (SI) and Homogeneous Charge Compression Ignited (HCCI) operating conditions. The Blending octane number (BON) was used to characterize the blending behavior on both a volume and molar basis. Previous studies have shown that the blending behavior of ethanol generally follows several well-established rules. In particular, non-linear blending effects are generally observed on a volume basis (i.e. BON > RON or MON of pure ethanol; 108 and 89, respectively), while linear blending effects are generally observed on a molar basis (i.e. BON = RON or MON of pure ethanol). This work firstly demonstrates that the non-linear volumetric blending effects traditionally observed under SI operating conditions are also observed under HCCI operating conditions. In keeping with previous studies, the degree of this non-linearity is shown to be a function of the base fuel composition and octane number. By contrast, the molar blending approach is shown to behave differently depending on the chosen combustion mode, with some non-linearity observed under HCCI operating conditions (i.e. BON RON or MON of pure ethanol). This suggests that the well-established blending rules for SI operating conditions may not always be relevant to other combustion modes that operate with globally lean or diluted air-fuel mixtures. This has implications for the design of future fuel specifications.

  4. A Study on the Effects of Compression Ratio, Engine Speed and Equivalence Ratio on HCCI Combustion of DME

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper

    2007-01-01

    An experimental study has been carried out on the homogeneous charge compression ignition (HCCI) combustion of Dimethyl Ether (DME). The study was performed as a parameter variation of engine speed and compression ratio on excess air ratios of approximately 2.5, 3 and 4. The compression ratio...... was adjusted in steps to find suitable regions of operation, and the effect of engine speed was studied at 1000, 2000 and 3000 RPM. It was found that leaner excess air ratios require higher compression ratios to achieve satisfactory combustion. Engine speed also affects operation significantly....

  5. Use of catalytic reforming to aid natural gas HCCI combustion in engines: experimental and modelling results of open-loop fuel reforming

    Energy Technology Data Exchange (ETDEWEB)

    Peucheret, S.; Wyszynski, M.L.; Lehrle, R.S. [Future Power Systems Group, Mechanical Engineering, The University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Golunski, S. [Johnson Matthey, Technology Centre, Blount' s Court, Sonning Common, Reading RG4 9NH (United Kingdom); Xu, H. [Jaguar Land Rover Research, Jaguar Land Rover W/2/021, Abbey Road, Coventry CV3 4LF (United Kingdom)

    2005-12-01

    The potential of the homogeneous charge compression ignition (HCCI) combustion process to deliver drastically reduced emissions of NO{sub x} and improved fuel economy from internal combustion engines is well known. The process is, however, difficult to initiate and control, especially when methane or natural gas are used as fuel. To aid the HCCI combustion of natural gas, hydrogen addition has been successfully used in this study. This hydrogen can be obtained from on-line reforming of natural gas. Methane reforming is achieved here by reaction with engine exhaust gas and air in a small scale monolith catalytic reactor. The benchmark quantity of H{sub 2} required to enhance the feasibility and engine load range of HCCI combustion is 10%. For low temperature engine exhaust gas, typical for HCCI engine operating conditions, experiments show that additional air is needed to produce this quantity. Experimental results from an open-loop fuel exhaust gas reforming system are compared with two different models of basic thermodynamic equilibria calculations. At the low reactor inlet temperatures needed for the HCCI application (approx. 400 deg C) the simplified three-reaction thermodynamic equilibrium model is in broad agreement with experimental results, while for medium (550-650 deg C) inlet temperature reforming with extra air added, the high hydrogen yields predicted from the multi-component equilibrium model are difficult to achieve in a practical reformer. (author)

  6. Experimental and numerical investigation of hetero-/homogeneous combustion-based HCCI of methane–air mixtures in free-piston micro-engines

    International Nuclear Information System (INIS)

    Chen, Junjie; Liu, Baofang; Gao, Xuhui; Xu, Deguang

    2016-01-01

    Highlights: • Single-shot experiments and a transient model of micro-engine were presented. • Coupled combustion can significantly improve in-cylinder temperatures. • Coupled combustion can reduce mass losses and compression ratios. • Heterogeneous reactions cause earlier ignition. • Heat losses result in higher mass losses. - Abstract: The hetero-/homogenous combustion-based HCCI (homogeneous charge compression ignition) of fuel–lean methane–air mixtures over alumina-supported platinum catalysts was investigated experimentally and numerically in free-piston micro-engines without ignition sources. Single-shot experiments were carried out in the purely homogeneous and coupled hetero-/homogeneous combustion modes, involved temperature measurements, capturing the visible combustion image sequences, exhaust gas analysis, and the physicochemical characterization of catalysts. Simulations were performed with a two-dimensional transient model that includes detailed hetero-/homogeneous chemistry and transport, leakage, and free-piston motion to gain physical insight and to explore the hetero-/homogeneous combustion characteristics. The micro-engine performance concerning combustion efficiency, mass loss, energy density, and free-piston dynamics was investigated. The results reveal that both purely homogeneous and coupled hetero-/homogeneous combustion of methane–air mixtures in a narrow cylinder with a diameter of 3 mm and a height of approximately 0.3 mm are possible. The coupled hetero-/homogeneous mode can not only significantly improve the combustion efficiency, in-cylinder temperature and pressure, output power and energy density, but also reduce the mass loss because of its lower compression ratio and less time spent around TDC (top dead center) and during the expansion stroke, indicating that this coupled mode is a promising combustion scheme for micro-engine. Heat losses result in higher mass losses. Heterogeneous reactions cause earlier ignition

  7. Modeling and Simulation of a Free-Piston Engine with Electrical Generator Using HCCI Combustion

    Science.gov (United States)

    Alrbai, Mohammad

    governing equations represent a single zone perfectly stirred reactor (PSR) which contain a perfect mixing ideal gas mixture. The chemical kinetics approach is applied using Cantera/ MATLABRTM toolbox, which presents the combustion process. In this research, a homogenous charge compression ignition (HCCI) at different operational conditions is used. HCCI engines have high efficiencies and low emissions and can work within a wide range of fuels. The results have been presented in a multi-cycle simulation and a parametric study forms. In the case of the multi-cycle simulation, a 100 cycles of the engine operation have been simulated. The overall work that is delivered to the electrical generator presents 47% of the total fuel energy. The model indicates an average frequency of 125 Hz along the operational cycles. In order to eliminate the cyclic variations and ensure a continuous operation, a proportional derivative (PD) controller has been employed. The controller adjusts the generator load in order to minimize the difference between the bottom dead center (BDC) locations along the operation cycles. The PD controller shows weakness in achieving the full steady state operation, for this purpose; a proportional integral (PI) controller has been implemented. The PI controller seeks to achieve a specific compression ratio. The results show that; the PI controller indicates unique behavior after 15 cycles of operation where the model ended to fluctuate between two compression ratios only. The complex relation between the thermodynamics and the dynamics of the engine is the greatest challenge in examining the effectiveness of the PI controller. In the parametric investigations, EGR examinations show that NOx emission is reduced to less than the half, as 30 % of EGR is used; this occurs due to the EGR thermal and dilution effects, which cause significant drop in the peak bulk temperature and CO emissions as well. Under the applied conditions, EGR has the ability to raise the work

  8. Blending Behavior of Ethanol with PRF 84 and FACE A Gasoline in HCCI Combustion Mmode

    KAUST Repository

    Waqas, Muhammad Umer; Atef, Nour; Singh, Eshan; Masurier, Jean-Baptiste; Sarathy, Mani; Johansson, Bengt

    2017-01-01

    but the chemical effect responsible for the non-linear blending behavior of ethanol with PRF 84 and FACE A was not understood. Hence, in this study the experimental measurements were simulated using zero-dimensional HCCI engine model with detailed chemistry

  9. HCCI Combustion Engines Final Report CRADA No. TC02032.0

    Energy Technology Data Exchange (ETDEWEB)

    Aceves, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Lyford-Pike, E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-08

    This was a collaborative effort between Lawrence Livermore National Security, LLC (formerly The Regents of the University of California)/Lawrence Livermore National Laboratory (LLNL) and Cummins Engine Company (Cwnmins), to advance the state of the art on HomogeneousCharge Compression-Ignition (HCCI) engines, resulting in a clean, high-efficiency alternative to diesel engines.

  10. Investigation the performance of 0-D and 3-d combustion simulation softwares for modelling HCCI engine with high air excess ratios

    Directory of Open Access Journals (Sweden)

    Gökhan Coşkun

    2017-10-01

    Full Text Available In this study, performance of zero and three dimensional simulations codes that used for simulate a homogenous charge compression ignition (HCCI engine fueled with Primary Reference Fuel PRF (85% iso-octane and 15% n-heptane were investigated. 0-D code, called as SRM Suite (Stochastic Reactor Model which can simulate engine combustion by using stochastic reactor model technique were used. Ansys-Fluent which can simulate computational fluid dynamics (CFD was used for 3-D engine combustion simulations. Simulations were evaluated for both commercial codes in terms of combustion, heat transfer and emissions in a HCCI engine. Chemical kinetic mechanisms which developed by Tsurushima including 33 species and 38 reactions for surrogate PRF fuel were used for combustion simulations. Analysis showed that both codes have advantages over each other.

  11. Experimental study of biogas combustion in an HCCI engine for power generation with high indicated efficiency and ultra-low NOx emissions

    International Nuclear Information System (INIS)

    Bedoya, Iván D.; Saxena, Samveg; Cadavid, Francisco J.; Dibble, Robert W.; Wissink, Martin

    2012-01-01

    Highlights: ► In this paper, we study biogas combustion in an HCCI engine operating at 1800 rpm. ► At low loads, slight changes in inlet conditions strongly affect cyclic variations. ► At high loads, slight changes in inlet conditions strongly affect ringing intensity. ► Indicated efficiency at high loads is close to 45% and IMEP g is close to 7.5 bar. ► NO x emissions are below the US-2010 limit of 0.27 g/kW h. - Abstract: Combustion parameters and the main exhaust emissions from a biogas fueled HCCI engine are investigated in this study. The study was conducted on a 4-cylinder, 1.9L Volkswagen TDI Diesel engine, which was modified to run in HCCI mode with biogas by means of inlet charge temperature control, boosted intake pressure, and a sonic flow device upstream of the inlet manifold to control biogas composition and the equivalence ratio. For simulating typical power generation conditions, the engine was coupled to an AC motor generator operating at 1800 rpm. In the startup process, gasoline was used in HCCI mode for all cylinders. During the tests, biogas was used in cylinders 2 and 3, and gasoline was used in cylinders 1 and 4 to allow for more stable engine coolant and oil temperatures. The tests were performed through an experimental factorial design to evaluate the effect of inlet charge temperature, boost pressures, and the equivalence ratio of the biogas–air mixture on HCCI combustion parameters and emissions. For biogas at lower equivalence ratios, slight increases in inlet charge temperature and boost pressures enhanced combustion parameters and reduced CO and HC emissions. For biogas at higher equivalence ratios, the effects of inlet charge conditions on HCCI combustion and CO and HC emissions were attenuated; however, ringing intensities and NO x emissions were increased with higher inlet charge temperature and higher boosted pressures. The maximum gross indicated mean effective pressure was 7.4 bar, the maximum gross indicated

  12. A turbulent time scale based k–ε model for probability density function modeling of turbulence/chemistry interactions: Application to HCCI combustion

    International Nuclear Information System (INIS)

    Maroteaux, Fadila; Pommier, Pierre-Lin

    2013-01-01

    Highlights: ► Turbulent time evolution is introduced in stochastic modeling approach. ► The particles number is optimized trough a restricted initial distribution. ► The initial distribution amplitude is modeled by magnitude of turbulence field. -- Abstract: Homogenous Charge Compression Ignition (HCCI) engine technology is known as an alternative to reduce NO x and particulate matter (PM) emissions. As shown by several experimental studies published in the literature, the ideally homogeneous mixture charge becomes stratified in composition and temperature, and turbulent mixing is found to play an important role in controlling the combustion progress. In a previous study, an IEM model (Interaction by Exchange with the Mean) has been used to describe the micromixing in a stochastic reactor model that simulates the HCCI process. The IEM model is a deterministic model, based on the principle that the scalar value approaches the mean value over the entire volume with a characteristic mixing time. In this previous model, the turbulent time scale was treated as a fixed parameter. The present study focuses on the development of a micro-mixing time model, in order to take into account the physical phenomena it stands for. For that purpose, a (k–ε) model is used to express this micro-mixing time model. The turbulence model used here is based on zero dimensional energy cascade applied during the compression and the expansion cycle; mean kinetic energy is converted to turbulent kinetic energy. Turbulent kinetic energy is converted to heat through viscous dissipation. Besides, in this study a relation to calculate the initial heterogeneities amplitude is proposed. The comparison of simulation results against experimental data shows overall satisfactory agreement at variable turbulent time scale

  13. Experimental and numerical investigation of ion signals in boosted HCCI combustion using cesium and potassium acetate additives

    International Nuclear Information System (INIS)

    Mack, J. Hunter; Butt, Ryan H.; Chen, Yulin; Chen, Jyh-Yuan; Dibble, Robert W.

    2016-01-01

    Highlights: • HCCI engine experiments show that CsOAc and KOAc additives increased the ion SNR. • The ion signal is more apparent at higher equivalence ratios. • An increase in intake pressure produces a decrease in the ion signal. • Use of metal acetates as additives yielded reductions in IMEP g and maximum ROHR. • A numerical model predicted peak ion signal, CA50, and p intake dependence. - Abstract: A sparkplug ion sensor can be used to measure the ion current in a homogeneous charge compression ignition (HCCI) engine, providing insight into the ion chemistry inside the cylinders during combustion. HCCI engines typically operate at lean equivalence ratios (ϕ) at which the ion current becomes increasingly indistinguishable from background noise. This paper investigates the effect of fuel additives on the ion signal at low equivalence ratios, determines side effects of metal acetate addition, and validates numerical model for ionization chemistry. Cesium acetate (CsOAc) and potassium acetate (KOAc) were used as additives to ethanol as the primary fuel. Concentration levels of 100, 200, and 400 mg/L of metal acetate-in-ethanol are investigated at equivalence ratios of 0.08, 0.20, and 0.30. The engine experiments were conducted at a boosted intake pressure of 1.8 bar absolute and compared to naturally aspirated results. Combustion timing was maintained at 2.5° after top-dead-center (ATDC), as defined by the crank angle degree (CAD) where 50% of the cumulative heat release occurs (CA50). CsOAc consistently produced the strongest ion signals at all conditions when compared to KOAc. The ion signal was found to decrease with increased intake pressure; an increase in the additive concentration increased the ion signal for all cases. However, the addition of the metal acetates decreased the gross indicated mean effective pressure (IMEP g ), maximum rate of heat release (ROHR), and peak cylinder pressure. Experimental results were used to validate ion chemistry

  14. Flex Fuel Optimized SI and HCCI Engine

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guoming [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Schock, Harold [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Yang, Xiaojian [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Huisjen, Andrew [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Stuecken, Tom [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Moran, Kevin [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Zhen, Ren [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Zhang, Shupeng [Michigan State Univ., East Lansing, MI (United States). Mechanical Engineering; Opra, John [Chrysler Corporation, Auburn Hill, MI (United States); Reese, Ron [Chrysler Corporation, Auburn Hill, MI (United States)

    2013-12-20

    The central objective of the proposed work is to demonstrate an HCCI (homogeneous charge compression ignition) capable SI (spark ignited) engine that is capable of fast and smooth mode transition between SI and HCCI combustion modes. The model-based control technique was used to develop and validate the proposed control strategy for the fast and smooth combustion mode transition based upon the developed control-oriented engine; and an HCCI capable SI engine was designed and constructed using production ready two-step valve-train with electrical variable valve timing actuating system. Finally, smooth combustion mode transition was demonstrated on a metal engine within eight engine cycles. The Chrysler turbocharged 2.0L I4 direct injection engine was selected as the base engine for the project and the engine was modified to fit the two-step valve with electrical variable valve timing actuating system. To develop the model-based control strategy for stable HCCI combustion and smooth combustion mode transition between SI and HCCI combustion, a control-oriented real-time engine model was developed and implemented into the MSU HIL (hardware-in-the-loop) simulation environment. The developed model was used to study the engine actuating system requirement for the smooth and fast combustion mode transition and to develop the proposed mode transition control strategy. Finally, a single cylinder optical engine was designed and fabricated for studying the HCCI combustion characteristics. Optical engine combustion tests were conducted in both SI and HCCI combustion modes and the test results were used to calibrate the developed control-oriented engine model. Intensive GT-Power simulations were conducted to determine the optimal valve lift (high and low) and the cam phasing range. Delphi was selected to be the supplier for the two-step valve-train and Denso to be the electrical variable valve timing system supplier. A test bench was constructed to develop control strategies for

  15. Chemistry Impacts in Gasoline HCCI

    Energy Technology Data Exchange (ETDEWEB)

    Szybist, James P [ORNL; Bunting, Bruce G [ORNL

    2006-09-01

    The use of homogeneous charge compression ignition (HCCI) combustion in internal combustion engines is of interest because it has the potential to produce low oxides of nitrogen (NOx) and particulate matter (PM) emissions while providing diesel-like efficiency. In HCCI combustion, a premixed charge of fuel and air auto-ignites at multiple points in the cylinder near top dead center (TDC), resulting in rapid combustion with very little flame propagation. In order to prevent excessive knocking during HCCI combustion, it must take place in a dilute environment, resulting from either operating fuel lean or providing high levels of either internal or external exhaust gas recirculation (EGR). Operating the engine in a dilute environment can substantially reduce the pumping losses, thus providing the main efficiency advantage compared to spark-ignition (SI) engines. Low NOx and PM emissions have been reported by virtually all researchers for operation under HCCI conditions. The precise emissions can vary depending on how well mixed the intake charge is, the fuel used, and the phasing of the HCCI combustion event; but it is common for there to be no measurable PM emissions and NOx emissions <10 ppm. Much of the early HCCI work was done on 2-stroke engines, and in these studies the CO and hydrocarbon emissions were reported to decrease [1]. However, in modern 4-stroke engines, the CO and hydrocarbon emissions from HCCI usually represent a marked increase compared with conventional SI combustion. This literature review does not report on HCCI emissions because the trends mentioned above are well established in the literature. The main focus of this literature review is the auto-ignition performance of gasoline-type fuels. It follows that this discussion relies heavily on the extensive information available about gasoline auto-ignition from studying knock in SI engines. Section 2 discusses hydrocarbon auto-ignition, the octane number scale, the chemistry behind it, its

  16. Fuels for homogeneous charge compression ignition (HCCI) engines. Automotive fuels survey. Part 6

    Energy Technology Data Exchange (ETDEWEB)

    Van Walwijk, M.

    2001-01-01

    . - So far, HCCI operation is only possible at light engine loads. - Engine-out emissions of HC and CO are not low. A low-temperature exhaust catalyst is required. Because it is possible to operate HCCI engines using a wide range of fuels, the conventional fuel specifications are not appropriate for HCCI engines. A fuel characteristic like cetane number for example, which is important for fuels in conventional diesel engines, has lost its significance for HCCI engines. Fuels like gasoline and natural gas, for which no cetane number is defined, can be used in HCCI engines. Research to establish the fuel requirements for HCCI engines has commenced. The first results indicate that the auto-ignition temperature of the fuel is important, because it has to be below the temperature that is reached in the combustion chamber after compression. The auto-ignition temperature is not specified for conventional fuel applications. Also fuel characteristics that affect the formation of a homogeneous air/fuel mixture are important, because inhomogeneities in the mixture lead to increased emission of NOx and particulates from HCCI engines. Consequently, volatility of the fuel and also boiling point may be considered important. Volatility of diesel fuel is low for example. To obtain a homogeneous air/fuel mixture with diesel, the inlet charge must be heated. A low sulphur content of the fuel is important in order to obtain high exhaust gas aftertreatment conversion efficiency. HCCI operation of internal combustion engines if possible with the fuels that are currently considered for automotive use. There are minor operational differences between the fuels, but no fundamental barriers seem to exist. This means that the conventional fuels from crude oil can be used in HCCI engines. Because the infrastructure to produce and distribute these fuels already exists, this is a plus for market introduction of HCCI engines. Fuel specifications for conventional fuels are becoming more and more

  17. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2016-10-17

    The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated. The aromatic composition in the base fuel, effects blending octane number of the mixture, for fuels with higher aromatic content lower blending octane numbers were observed for ethanol concentration.

  18. Blending Octane Number of Ethanol in HCCI, SI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Morganti, Kai; Al-Qurashi, Khalid; Johansson, Bengt

    2016-01-01

    The effect of ethanol blended with three FACE (Fuels for Advanced Combustion Engines) gasolines, I, J and A corresponding to RON 70.3, 71.8 and 83.5, respectively, were compared to PRF70 and PRF84 with the same ethanol concentrations, these being 2%, 5%, 10%, 15% and 20% by volume. A Cooperative Fuel Research (CFR) engine was used to understand the blending effect of ethanol with FACE gasolines and PRFs in spark-ignited and homogeneous charge compression ignited mode. Blending octane numbers (BON) were obtained for both the modes. All the fuels were also tested in an ignition quality tester to obtain Blending Derived Cetane numbers (BDCN). It is shown that fuel composition and octane number are important characteristics of all the base fuels that have a significant impact on octane increase with ethanol. The dependency of octane number for the base fuel on the blending octane number depended on the combustion mode operated. The aromatic composition in the base fuel, effects blending octane number of the mixture, for fuels with higher aromatic content lower blending octane numbers were observed for ethanol concentration.

  19. Direct numerical simulations of ignition of a lean n-heptane/air mixture with temperature and composition inhomogeneities relevant to HCCI and SCCI combustion

    KAUST Repository

    Luong, Minh Bau

    2015-12-01

    The effects of temperature and composition stratifications on the ignition of a lean n-heptane/air mixture at three initial mean temperatures under elevated pressure are investigated using direct numerical simulations (DNSs) with a 58-species reduced mechanism. Two-dimensional DNSs are performed by varying several key parameters: initial mean temperature, T0, and the variance of temperature and equivalence ratio (T\\' and φ\\') with different T-φcorrelations. It is found that for cases with φ\\' only, the overall combustion occurs more quickly and the mean heat release rate (HRR) increases more slowly with increasing φ\\' regardless of T0. For cases with T\\' only, however, the overall combustion is retarded/advanced in time with increasing T\\' for low/high T0 relative to the negative-temperature coefficient (NTC) regime resulting from a longer/shorter overall ignition delay of the mixture. For cases with uncorrelated T-φfields, the mean HRR is more distributed over time compared to the corresponding cases with T\\' or φ\\' only. For negatively-correlated cases, however, the temporal evolution of the overall combustion exhibits quite non-monotonic behavior with increasing T\\' and φ\\' depending on T0. All of these characteristics are found to be primarily related to the 0-D ignition delays of initial mixtures, the relative timescales between 0-D ignition delay and turbulence, and the dominance of the deflagration mode during the ignition. These results suggest that an appropriate combination of T\\' and φ\\' together with a well-prepared T-φdistribution can alleviate an excessive pressure-rise rate (PRR) and control ignition-timing in homogeneous charge compression-ignition (HCCI) combustion. In addition, critical species and reactions for the ignition of n-heptane/air mixture through the whole ignition process are estimated by comparing the temporal evolution of the mean mass fractions of important species with the overall reaction pathways of n

  20. Controlling the heat release in HCCI combustion of DME with methanol and EGR

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr; Schramm, Jesper; Yanai, Tadanori

    2010-01-01

    quantity required was determined. The added methanol increased the BMEP by increasing the total heat release and retarding the combustion to after TDC. Engine knock was reduced with increasing quantities of methanol. The highest BMEP was achieved when the equivalence ratio of methanol was around 0.......12 at 1000 RPM, and around 0.76 at 1800 RPM. EGR was also used to retarding the timing. With a moderate amount of EGR the effect on the combustion was not notable, but as the equivalence ratio approached unity the combustion was increasingly delayed and the rate of reaction reduced. Engine knock seized...

  1. Blending Octane Number of Toluene with Gasoline-like and PRF Fuels in HCCI Combustion Mode

    KAUST Repository

    Waqas, Muhammad Umer; Masurier, Jean-Baptiste; Sarathy, Mani; Johansson, Bengt

    2018-01-01

    Future internal combustion engines demand higher efficiency but progression towards this is limited by the phenomenon called knock. A possible solution for reaching high efficiency is Octane-on-Demand (OoD), which allows to customize the antiknock

  2. Naphtha vs. dieseline – The effect of fuel properties on combustion homogeneity in transition from CI combustion towards HCCI

    KAUST Repository

    Vallinayagam, R.; An, Yanzhao; S.Vedharaj; Sim, Jaeheon; Chang, Junseok; Johansson, Bengt

    2018-01-01

    The scope of this research study pertains to compare the combustion and emission behavior between naphtha and dieseline at different combustion modes. In this study, US dieseline (50% US diesel + 50% RON 91 gasoline) and EU dieseline (45% EU diesel

  3. Evaluation of heat transfer correlations for HCCI engine modeling

    NARCIS (Netherlands)

    Soyhan, H.S.; Yasar, H.; Walmsley, H.; Head, B.; Kalghatgi, G.T.; Sorusbay, C.

    2009-01-01

    Combustion in HCCI engines is a controlled auto-ignition of well-mixed fuel, air and residual gas. The thermal conditions of the combustion chamber are governed by chemical kinetics strongly coupled with heat transfer from the hot gas to the walls. The heat losses have a critical effect on HCCI

  4. Analysis of benefits of using internal exhaust gas recirculation in biogas-fueled HCCI engines

    International Nuclear Information System (INIS)

    Kozarac, Darko; Vuilleumier, David; Saxena, Samveg; Dibble, Robert W.

    2014-01-01

    Highlights: • The influence of EGR on combustion of biogas fueled HCCI was investigated. • The aim was to reduce intake temperature requirement by internal EGR. • Combustion products caused the delay of combustion in similar conditions. • Internal EGR enabled by negative valve overlap increased cylinder temperature. • This increase was not enough to significantly reduce the intake temperature. - Abstract: This paper describes a numerical study that analyzed the influence of combustion products (CP) concentration on the combustion characteristics (combustion timing and combustion duration) of a biogas fueled homogeneous charge compression ignition (HCCI) engine and the possibility of reducing the high intake temperature requirement necessary for igniting biogas in a HCCI engine by using internal exhaust gas recirculation (EGR) enabled by negative valve overlap (NVO). An engine model created in AVL Boost, and validated against experimental engine data, was used in this study. The results show, somewhat counter-intuitively, that when CP concentrations are increased the required intake temperature for maintaining the same combustion timing must be increased. When greater NVO is used to increase the in-cylinder CP concentration, the in-cylinder temperature does increase, but the chemical dilution influence of CP almost entirely counteracts this thermal effect. Additionally, it has been observed that with larger fractions of CP some instability of combustion in the calculation was obtained which indicates that the increase of internal EGR might produce some combustion instability

  5. Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation

    KAUST Repository

    Park, Sungwoo

    2015-10-27

    C5 alcohols are considered alternative fuels because they emit less greenhouse gases and fewer harmful pollutants. In this study, the combustion characteristics of 2-methylbutanol (2-methyl-1-butanol) and isopentanol (3-methyl-1-butanol) and their mixtures with primary reference fuels (PRFs) were studied using a detailed chemical kinetic model obtained from merging previously published mechanisms. Ignition delay times of the C5 alcohol/air mixtures were compared to PRFs at 20 and 40 atm. Reaction path analyses were conducted at intermediate and high temperatures to identify the most influential reactions controlling ignition of C5 alcohols. The direct relation graph with expert knowledge methodology was used to eliminate unimportant species and reactions in the detailed mechanism, and the resulting skeletal mechanism was tested at various homogeneous charge compression ignition (HCCI) engine combustion conditions. These simulations were used to investigate the heat release characteristics of the methyl-substituted C5 alcohols, and the results show relatively strong reactions at intermediate temperatures prior to hot ignition. C5 alcohol blending in PRF75 in HCCI combustion leads to a significant decrease of low-temperature heat release (LTHR) and a delay of the main combustion. The heat release features demonstrated by C5 alcohols can be used to improve the design and operation of advanced engine technologies.

  6. Homogeneous Charge Compression Ignition Combustion of Dimethyl Ether

    DEFF Research Database (Denmark)

    Pedersen, Troels Dyhr

    This thesis is based on experimental and numerical studies on the use of dimethyl ether (DME) in the homogeneous charge compression ignition (HCCI) combustion process. The first paper in this thesis was published in 2007 and describes HCCI combustion of pure DME in a small diesel engine. The tests...... were designed to investigate the effect of engine speed, compression ratio and equivalence ratio on the combustion timing and the engine performance. It was found that the required compression ratio depended on the equivalence ratio used. A lower equivalence ratio requires a higher compression ratio...... before the fuel is burned completely, due to lower in-cylinder temperatures and lower reaction rates. The study provided some insight in the importance of operating at the correct compression ratio, as well as the operational limitations and emission characteristics of HCCI combustion. HCCI combustion...

  7. HCCI engine control and optimization

    OpenAIRE

    Killingsworth, Nicholas J.

    2007-01-01

    Homogeneous charge compression ignition (HCCI) engines have the benefit of high efficiency with low emissions of nitrogen oxides and particulates. These benefits are due to the autoignition process of the dilute mixture of fuel and air during compression. However, because there is no direct ignition trigger, control of ignition is inherently more difficult than in standard internal combustion engines. This difficulty necessitates that a feedback controller be used to keep the engine at a desi...

  8. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    John Pratapas; Daniel Mather; Anton Kozlovsky

    2007-03-31

    analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: (1) Substantially lower intake temperature needed for stable HCCI combustion; (2) Inconclusive impact on engine BMEP and power produced; (3) Small reduction in the thermal efficiency of the engine; (4) Moderate reduction in the unburned hydrocarbons in the exhaust; (5) Slight increase in NOx emissions in the exhaust; (6) Slight reduction in CO2 in the exhaust; and (7) Increased knocking at rich stoichiometry. The major accomplishments and findings from the project can be summarized as follows: (1) A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. (2) A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen. (3) The benefits of using hydrogen to extend, up to a limit, the stable operating window for HCCI combustion of natural gas at higher intake pressures, leaner air to fuel ratios or lower inlet temperatures was documented.

  9. Exergoeconomic analysis and multi-objective optimization of an ejector refrigeration cycle powered by an internal combustion (HCCI) engine

    International Nuclear Information System (INIS)

    Sadeghi, Mohsen; Mahmoudi, S.M.S.; Khoshbakhti Saray, R.

    2015-01-01

    Highlights: • Ejector refrigeration systems powered by HCCI engine is proposed. • A new two-dimensional model is developed for the ejector. • Multi-objective optimization is performed for the proposed system. • Pareto frontier is plotted for multi-objective optimization. - Abstract: Ejector refrigeration systems powered by low-grade heat sources have been an attractive research subject for a lot of researchers. In the present work the waste heat from exhaust gases of a HCCI (homogeneous charge compression ignition) engine is utilized to drive the ejector refrigeration system. Considering the frictional effects on the ejector wall, a new two-dimensional model is developed for the ejector. Energy, exergy and exergoeconomic analysis performed for the proposed system using the MATLAB software. In addition, considering the exergy efficiency and the product unit cost of the system as objective functions, a multi-objective optimization is performed for the system to find the optimum design variables including the generator, condenser and evaporator temperatures. The product unit cost is minimized while the exergy efficiency is maximized using the genetic algorithm. The optimization results are obtained as a set of optimal points and the Pareto frontier is plotted for multi-objective optimization. The results of the optimization show that ejector refrigeration cycle is operating at optimum state based on exergy efficiency and product unit cost when generator, condenser and evaporator work at 94.54 °C, 33.44 °C and 0.03 °C, respectively

  10. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad

    2017-03-28

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  11. Auto-Ignition of Iso-Stoichiometric Blends of Gasoline-Ethanol-Methanol (GEM) in SI, HCCI and CI Combustion Modes

    KAUST Repository

    Waqas, Muhammad; Naser, Nimal; Sarathy, Mani; Feijs, Jeroen; Morganti, Kai; Nyrenstedt, Gustav; Johansson, Bengt

    2017-01-01

    Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol. A constant RON/HCCI fuel number/derived Research octane number property was observed in all three combustion modes for high RON fuels, but for low RON fuels, the iso-stoichiometric blending rule for constant octane number did not appear to be valid. The chemical composition and octane number of the base fuel also influenced the behavior of the GEM blends under different conditions.

  12. Effect of different heat transfer models on HCCI engine simulation

    International Nuclear Information System (INIS)

    Neshat, Elaheh; Saray, Rahim Khoshbakhti

    2014-01-01

    Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply

  13. Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

    KAUST Repository

    Li, Changle

    2017-10-10

    Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic gasoline. The results directed particular attention to the relationship between intake temperature and combustion phasing which reflected the changing of stratification level with the injection timing. To confirm its applicability with the use of different fuels, and to investigate the effect of fuel properties on stratification formation, primary reference fuels (PRF) were tested using the same method: a start of injection sweep from -180° to -20° after top dead center with constant combustion phasing by tuning the intake temperature. The present results are further developed compared with those of our previous work, which were based on generic gasoline. In the present work, a three-stage fuel-air stratification development process was observed during the transition from HCCI to PPC. Moreover, a transition stage was observed between the HCCI and PPC stages. Within this transition stage, both the combustion and emission characteristics deteriorated. The allocation of this transition area was mainly determined by the geometric design of the fuel injector and combustion chamber. Some differences in charge stratification were observed between the PRF and gasoline. The NO emissions of the PRF were comparable to those of gasoline. However, the NO emissions surged during the transition stage, indicating that the PRF combustion was probably more stratified. The soot emissions from PRF and gasoline were both much higher in the PPC than the HCCI mode, though the PRF produced much less soot than did gasoline in the PPC mode.

  14. HCCI Engine Optimization and Control

    Energy Technology Data Exchange (ETDEWEB)

    Rolf D. Reitz

    2005-09-30

    The goal of this project was to develop methods to optimize and control Homogeneous-Charge Compression Ignition (HCCI) engines, with emphasis on diesel-fueled engines. HCCI offers the potential of nearly eliminating IC engine NOx and particulate emissions at reduced cost over Compression Ignition Direct Injection engines (CIDI) by controlling pollutant emissions in-cylinder. The project was initiated in January, 2002, and the present report is the final report for work conducted on the project through December 31, 2004. Periodic progress has also been reported at bi-annual working group meetings held at USCAR, Detroit, MI, and at the Sandia National Laboratories. Copies of these presentation materials are available on CD-ROM, as distributed by the Sandia National Labs. In addition, progress has been documented in DOE Advanced Combustion Engine R&D Annual Progress Reports for FY 2002, 2003 and 2004. These reports are included as the Appendices in this Final report.

  15. Evaluation of Technical Feasibility of Homogeneous Charge Compression Ignition (HCCI) Engine Fueled with Hydrogen, Natural Gas, and DME

    Energy Technology Data Exchange (ETDEWEB)

    Pratapas, John; Mather, Daniel; Kozlovsky, Anton

    2013-03-31

    analysis of test results indicates that hydrogen enhanced natural gas HCCI (versus neat natural gas HCCI at comparable stoichiometry) had the following characteristics: • Substantially lower intake temperature needed for stable HCCI combustion • Inconclusive impact on engine BMEP and power produced, • Small reduction in the thermal efficiency of the engine, • Moderate reduction in the unburned hydrocarbons in the exhaust, • Slight increase in NOx emissions in the exhaust, • Slight reduction in CO2 in the exhaust. • Increased knocking at rich stoichiometry The major accomplishments and findings from the project can be summarized as follows: 1. A model was calibrated for accurately predicting heat release rate and peak pressures for HCCI combustion when operating on hydrogen and natural gas blends. 2. A single cylinder research engine was thoroughly mapped to compare performance and emissions for micro-pilot natural gas compression ignition, and HCCI combustion for neat natural gas versus blends of natural gas and hydrogen.

  16. Direct numerical simulations of exhaust gas recirculation effect on multistage autoignition in the negative temperature combustion regime for stratified HCCI flow conditions by using H2O2 addition

    Science.gov (United States)

    El-Asrag, Hossam A.; Ju, Yiguang

    2013-04-01

    Direct numerical simulations (DNSs) of a stratified flow in a homogeneous compression charge ignition (HCCI) engine are performed to investigate the exhaust gas recirculation (EGR) and temperature/mixture stratification effects on the autoignition of synthetic dimethyl ether (DME) in the negative temperature combustion region. Detailed chemistry for a DME/air mixture is employed and solved by a hybrid multi-time scale (HMTS) algorithm to reduce the computational cost. The effect of ? to mimic the EGR effect on autoignition are studied. The results show that adding ? enhances autoignition by rapid OH radical pool formation (34-46% reduction in ignition delay time) and changes the ignition heat release rates at different ignition stages. Sensitivity analysis is performed and the important reactions pathways affecting the autoignition are specified. The DNS results show that the scales introduced by thermal and mixture stratifications have a strong effect after the low temperature chemistry (LTC) ignition especially at the locations of high scalar dissipation rates. Compared to homogenous ignition, stratified ignitions show similar first autoignition delay times, but 18% reduction in the second and third ignition delay times. The results also show that molecular transport plays an important role in stratified low temperature ignition, and that the scalar mixing time scale is strongly affected by local ignition in the stratified flow. Two ignition-kernel propagation modes are observed: a wave-like, low-speed, deflagrative mode and a spontaneous, high-speed, ignition mode. Three criteria are introduced to distinguish these modes by different characteristic time scales and Damkhöler numbers using a progress variable conditioned by an ignition kernel indicator. The low scalar dissipation rate flame front is characterized by high displacement speeds and high mixing Damkhöler number. The proposed criteria are applied successfully at the different ignition stages and

  17. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    OpenAIRE

    Hanafi H.; Hasan M.M; Rahman M.M; Noor M.M; Kadirgama K.; Ramasamy D.

    2016-01-01

    This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend). A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI) engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5) and 10% ethanol (E10) (in vo...

  18. Analysis on reduced chemical kinetic model of N-heptane for HCCI combustion. Paper no. IGEC-1-072

    International Nuclear Information System (INIS)

    Yao, M.; Zheng, Z.

    2005-01-01

    Because of high complexity coupled with multidimensional fluid dynamics, it is difficult to apply detailed chemical kinetic model to simulate practical engines. A reduced model of n-heptane has been developed on the basic of detailed mechanism by sensitivity analysis and reaction path analysis of every stage of combustion. The new reduced mechanism consists of 35 species and 41 reactions, and it is effective in engine condition. The results show that it gives predictions similar to the detailed model in ignition timing, in-cylinder temperature and pressure. Furthermore, the reduced mechanism can be used to simulate boundary condition of partial combustion in good agreement with the detailed mechanism. (author)

  19. Comparison of Gasoline and Primary Reference Fuel in the Transition from HCCI to PPC

    KAUST Repository

    Li, Changle; Tunestal, Per; Tuner, Martin; Johansson, Bengt

    2017-01-01

    Our previous research investigated the sensitivity of combustion phasing to intake temperature and injection timing during the transition from homogeneous charge compression ignition (HCCI) to partially premixed combustion (PPC) fuelled with generic

  20. Numerical simulation and validation of SI-CAI hybrid combustion in a CAI/HCCI gasoline engine

    Science.gov (United States)

    Wang, Xinyan; Xie, Hui; Xie, Liyan; Zhang, Lianfang; Li, Le; Chen, Tao; Zhao, Hua

    2013-02-01

    SI-CAI hybrid combustion, also known as spark-assisted compression ignition (SACI), is a promising concept to extend the operating range of CAI (Controlled Auto-Ignition) and achieve the smooth transition between spark ignition (SI) and CAI in the gasoline engine. In this study, a SI-CAI hybrid combustion model (HCM) has been constructed on the basis of the 3-Zones Extended Coherent Flame Model (ECFM3Z). An ignition model is included to initiate the ECFM3Z calculation and induce the flame propagation. In order to precisely depict the subsequent auto-ignition process of the unburned fuel and air mixture independently after the initiation of flame propagation, the tabulated chemistry concept is adopted to describe the auto-ignition chemistry. The methodology for extracting tabulated parameters from the chemical kinetics calculations is developed so that both cool flame reactions and main auto-ignition combustion can be well captured under a wider range of thermodynamic conditions. The SI-CAI hybrid combustion model (HCM) is then applied in the three-dimensional computational fluid dynamics (3-D CFD) engine simulation. The simulation results are compared with the experimental data obtained from a single cylinder VVA engine. The detailed analysis of the simulations demonstrates that the SI-CAI hybrid combustion process is characterised with the early flame propagation and subsequent multi-site auto-ignition around the main flame front, which is consistent with the optical results reported by other researchers. Besides, the systematic study of the in-cylinder condition reveals the influence mechanism of the early flame propagation on the subsequent auto-ignition.

  1. Validation of a reduced chemical mechanism coupled to CFD model in a 2-stroke HCCI engine

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Somers, B.; Nuraini, A.

    2015-01-01

    Homogeneous Charge Compression Ignition (HCCI) combustion technology has demonstrated a profound potential to decrease both emissions and fuel consumption. In this way, the significance of the 2-stroke HCCI engine has been underestimated as it can provide more power stroke in comparison to a

  2. Pulsating combustion - Combustion characteristics and reduction of emissions

    Energy Technology Data Exchange (ETDEWEB)

    Lindholm, Annika

    1999-11-01

    In the search for high efficiency combustion systems pulsating combustion has been identified as one of the technologies that potentially can meet the objectives of clean combustion and good fuel economy. Pulsating combustion offers low emissions of pollutants, high heat transfer and efficient combustion. Although it is an old technology, the interest in pulsating combustion has been renewed in recent years, due to its unique features. Various applications of pulsating combustion can be found, mainly as drying and heating devices, of which the latter also have had commercial success. It is, however, in the design process of a pulse combustor, difficult to predict the operating frequency, the heat release etc., due to the lack of a well founded theory of the phenomenon. Research concerning control over the combustion process is essential for developing high efficiency pulse combustors with low emissions. Natural gas fired Helmholtz type pulse combustors have been the experimental objects of this study. In order to investigate the interaction between the fluid dynamics and the chemistry in pulse combustors, laser based measuring techniques as well as other conventional measuring techniques have been used. The experimental results shows the possibilities to control the combustion characteristics of pulsating combustion. It is shown that the time scales in the large vortices created at the inlet to the combustion chamber are very important for the operation of the pulse combustor. By increasing/decreasing the time scale for the large scale mixing the timing of the heat release is changed and the operating characteristics of the pulse combustor changes. Three different means for NO{sub x} reduction in Helmholtz type pulse combustors have been investigated. These include exhaust gas recirculation, alteration of air/fuel ratio and changed inlet geometry in the combustion chamber. All used methods achieved less than 10 ppm NO{sub x} emitted (referred to stoichiometric

  3. Quasi-Dimensional Modelling and Parametric Studies of a Heavy-Duty HCCI Engine

    Directory of Open Access Journals (Sweden)

    Sunil Kumar Pandey

    2011-01-01

    Full Text Available A quasi-dimensional modelling study is conducted for the first time for a heavy duty, diesel-fuelled, multicylinder engine operating in HCCI mode. This quasidimensional approach involves a zero-dimensional single-zone homogeneous charge compression ignition (HCCI combustion model along with a one-dimensional treatment of the intake and exhaust systems. A skeletal chemical kinetic scheme for n-heptane was used in the simulations. Exhaust gas recirculation (EGR and compression ratio (CR were the two parameters that were altered in order to deal with the challenges of combustion phasing control and operating load range extension. Results from the HCCI mode simulations show good potential when compared to conventional diesel performance with respect to important performance parameters such as peak firing pressure, specific fuel consumption, peak pressure rise, and combustion noise. This study shows that HCCI combustion mode can be employed at part load of 25% varying the EGR rates between 0 and 60%.

  4. Miniature free-piston homogeneous charge compression ignition engine-compressor concept - Part II: modeling HCCI combustion in small scales with detailed homogeneous gas phase chemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Aichlmayr, H.T.; Kittelson, D.B.; Zachariah, M.R. [The University of Minnesota, Minneapolis (United States). Departments of Mechanical Engineering and Chemistry

    2002-10-01

    Operational maps for crankshaft-equipped miniature homogeneous charge compression ignition engines are established using performance estimation, detailed chemical kinetics, and diffusion models for heat transfer and radical loss. In this study, radical loss was found to be insignificant. In contrast, heat transfer was found to be increasingly significant for 10, 1, and 0.1 W engines, respectively. Also, temperature-pressure trajectories and ignition delay time maps are used to explore relationships between engine operational parameters and HCCI. Lastly, effects of engine operating conditions and design on the indicated fuel conversion efficiency are investigated. (author)

  5. Characteristic of combustion of Colombian gases

    International Nuclear Information System (INIS)

    Gil B, Edison; Maya, Ruben; Andres, Amel A.

    1996-01-01

    The variety of gas locations in the country, makes that the gas that will be distributed by the net of present gas pipeline a very different composition, what bears to that these they behave in a different way during its use. In this work the main characteristics of the combustion are calculated for the Colombian gases, basically the properties of the combustion and the characteristics of the smoke, as basic information for the design and operation of the gas teams and their certification. These properties were calculated with the special help software for combustion developed by the authors

  6. THE COMBUSTION CHARACTERISTICS OF LIGNITE BLENDS

    Institute of Scientific and Technical Information of China (English)

    Cheng Jun; Zhou Junhu; Cao Xinyu; Cen Kefa

    2000-01-01

    The combustion characteristics of lignite blends were studied with a thermogravimetric analyzer (t.g.a.), at constant heating rate.The characteristic temperatures were determined from the burning profiles.It was found that the characteristic times of combustion reaction moved forward, the ignition temperature dropped and the burnout efficiency slightly changed when blending lignites.The characteristic parameters of blends could not be predicted as a linear function of the average values of the individual lignites.when blending with less reactive coal, the ignition and burnout characteristics of lignite turned worse.

  7. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-03-28

    Partially Premixed Combustion (PPC) is a promising combustion concept ,based on judicious tuning of the charge stratification, to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delays of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NO emissions. Moreover, a proper injection timing and strategy for PPC can improve the combustion stability as a result of a higher level of fuel stratification in comparison with the Homogeneous Charge Compression Ignition (HCCI) concept. Injection timing is the major parameter with which to affect the level of fuel and combustion stratification and to control the combustion phasing and the heat release behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow characteristics, including the flow fields, mean velocity and cycle-resolved turbulence, inside the piston bowl as well as the squish region with a temporal resolution of 1 crank angle degree at 800 rpm. Two injectors, having 5 and 7 holes, were compared to see their effects on fluid flow and heat release behavior for different injection timings. Reactive and non-reactive measurements were performed to distinguish injection-driven and combustion-driven turbulence. Formation of vortices and higher turbulence levels enhance the air/fuel interaction, changing the level of fuel stratification and combustion duration. Results demonstrate clearly how turbulence level correlates with heat release behavior, and provide a quantitative dataset for validation of numerical simulations.

  8. Combustion characteristics of the mustard methyl esters

    International Nuclear Information System (INIS)

    Bannikov, M.G.; Vasilev, I.P.

    2011-01-01

    Mustard Methyl Esters (further bio diesel) and regular diesel fuel were tested in direct injection diesel engine. Analysis of experimental data was supported by an analysis of fuel injection and combustion characteristics. Engine fuelled with bio diesel had increased brake specific fuel consumption, reduced nitrogen oxides emission and smoke opacity, moderate increase in carbon monoxide emission with essentially unchanged unburned hydrocarbons emission. Increase in fuel consumption was attributed to lesser heating value of bio diesel and partially to decreased fuel conversion efficiency. Analysis of combustion characteristics revealed earlier start of injection and shorter ignition delay period of bio diesel. Resulting decrease in maximum rate of heat release and cylinder pressure was the most probable reason for reduced emission of nitrogen oxides. Analysis of combustion characteristics also showed that cetane index determined by ASTM Method D976 is not a proper measure of ignition quality of bio diesel. Conclusion was made on applicability of mustard oil as a source for commercial production of bio diesel in Pakistan. Potentialities of on improving combustion and emissions characteristics of diesel engine by reformulating bio diesel were discussed. (author)

  9. Identification of the dynamic operating envelope of HCCI engines using class imbalance learning.

    Science.gov (United States)

    Janakiraman, Vijay Manikandan; Nguyen, XuanLong; Sterniak, Jeff; Assanis, Dennis

    2015-01-01

    Homogeneous charge compression ignition (HCCI) is a futuristic automotive engine technology that can significantly improve fuel economy and reduce emissions. HCCI engine operation is constrained by combustion instabilities, such as knock, ringing, misfires, high-variability combustion, and so on, and it becomes important to identify the operating envelope defined by these constraints for use in engine diagnostics and controller design. HCCI combustion is dominated by complex nonlinear dynamics, and a first-principle-based dynamic modeling of the operating envelope becomes intractable. In this paper, a machine learning approach is presented to identify the stable operating envelope of HCCI combustion, by learning directly from the experimental data. Stability is defined using thresholds on combustion features obtained from engine in-cylinder pressure measurements. This paper considers instabilities arising from engine misfire and high-variability combustion. A gasoline HCCI engine is used for generating stable and unstable data observations. Owing to an imbalance in class proportions in the data set, the models are developed both based on resampling the data set (by undersampling and oversampling) and based on a cost-sensitive learning method (by overweighting the minority class relative to the majority class observations). Support vector machines (SVMs) and recently developed extreme learning machines (ELM) are utilized for developing dynamic classifiers. The results compared against linear classification methods show that cost-sensitive nonlinear ELM and SVM classification algorithms are well suited for the problem. However, the SVM envelope model requires about 80% more parameters for an accuracy improvement of 3% compared with the ELM envelope model indicating that ELM models may be computationally suitable for the engine application. The proposed modeling approach shows that HCCI engine misfires and high-variability combustion can be predicted ahead of time

  10. Method and device for diagnosing and controlling combustion instabilities in internal combustion engines operating in or transitioning to homogeneous charge combustion ignition mode

    Science.gov (United States)

    Wagner, Robert M [Knoxville, TN; Daw, Charles S [Knoxville, TN; Green, Johney B [Knoxville, TN; Edwards, Kevin D [Knoxville, TN

    2008-10-07

    This invention is a method of achieving stable, optimal mixtures of HCCI and SI in practical gasoline internal combustion engines comprising the steps of: characterizing the combustion process based on combustion process measurements, determining the ratio of conventional and HCCI combustion, determining the trajectory (sequence) of states for consecutive combustion processes, and determining subsequent combustion process modifications using said information to steer the engine combustion toward desired behavior.

  11. Burning characteristics of microcellular combustible objects

    Directory of Open Access Journals (Sweden)

    Wei-tao Yang

    2014-06-01

    Full Text Available Microcellular combustible objects for application of combustible case, caseless ammunition or combustible detonator-holding tubes are fabricated through one-step foaming process, in which supercritical CO2 is used as foaming agent. The formulations consist of inert polymer binder and ultra fine RDX. For the inner porous structures of microcellular combustible objects, the cell sizes present a unimodal or bimodal distribution by adjusting the foaming conditions. Closed bomb test is to investigate the influence of both porous structure style and RDX content on burning behavior. The sample with bimodal distribution of cell sizes burns faster than that with unimodal distribution, and the concentration of RDX can influence the burning characteristics in a positive manner. In addition, the translation of laminar burning to convective burning is determined by burning rate versus pressure curves of samples at two different loading densities, and the resulting transition pressure is 30 MPa. Moreover, the samples with bigger sample size present higher burning rate, resulting in providing deeper convective depth. Dynamic vivacity of samples is also studied. The results show that the vivacity increases with RDX content and varies with inner structure.

  12. Review of Heavy-Duty Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Robert W. Carling; Gurpreet Singh

    2000-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression-ignition (HCCI) engine facility is under development. Recent experimental results to be discussed are: the effects of injection timing and diluent addition on late-combustion soot burnout, diesel-spray ignition and premixed-burn behavior, a comparison of the combustion characteristics of M85 (a mixture of 85% methanol and 15% gasoline) and DF2 (No.2 diesel reference fuel), and a description of our HCCI experimental program and modeling work

  13. Combustion characteristics of biodried sewage sludge.

    Science.gov (United States)

    Hao, Zongdi; Yang, Benqin; Jahng, Deokjin

    2018-02-01

    In this study, effects of biodrying on the characteristics of sewage sludge and the subsequent combustion behavior were investigated. 7-Day of biodrying removed 49.78% of water and 23.17% of VS initially contained in the sewage sludge and increased lower heating value (LHV) by 37.87%. Meanwhile, mass contents of C and N decreased from 36.25% and 6.12% to 32.06% and 4.82%, respectively. Surface of the biodried sewage sludge (BDSS) appeared granulated and multi-porous, which was thought to facilitate air transfer during combustion. According to thermogravimetric (TG) analysis coupled with mass spectrometer (MS) with a heating rate of 10 °C/min from 35 °C to 1000 °C, thermally-dried sewage sludge (TDSS) and BDSS lost 74.39% and 67.04% of the initial mass, respectively. In addition, combustibility index (S) of BDSS (8.67 × 10 -8  min -2  K -3 ) was higher than TDSS. TG-MS analyses also showed that less nitrogenous gases were generated from BDSS than TDSS. It was again showed that the average CO and NO concentrations in exit gas from isothermal combustion of BDSS were lower than those from TDSS, especially at low temperatures (≤800 °C). Based on these results, it was concluded that biodrying of sewage sludge was an energy-efficient water-removal method with less emission of air pollutants when BDSS was combusted. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Investigating co-combustion characteristics of bamboo and wood.

    Science.gov (United States)

    Liang, Fang; Wang, Ruijuan; Jiang, Changle; Yang, Xiaomeng; Zhang, Tao; Hu, Wanhe; Mi, Bingbing; Liu, Zhijia

    2017-11-01

    To investigate co-combustion characteristics of bamboo and wood, moso bamboo and masson pine were torrefied and mixed with different blend ratios. The combustion process was examined by thermogravimetric analyzer (TGA). The results showed the combustion process of samples included volatile emission and oxidation combustion as well as char combustion. The main mass loss of biomass blends occurred at volatile emission and oxidation combustion stage, while that of torrefied biomass occurred at char combustion stage. With the increase of bamboo content, characteristic temperatures decreased. Compared with untreated biomass, torrefied biomass had a higher initial and burnout temperature. With the increase of heating rates, combustion process of samples shifted to higher temperatures. Compared with non-isothermal models, activation energy obtained from isothermal model was lower. The result is helpful to promote development of co-combustion of bamboo and masson pine wastes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Dual-fuel HCCI operation with DME/LPG/gasoline/hydrogen

    International Nuclear Information System (INIS)

    Bae, C.

    2009-01-01

    The advantages of homogeneous charge compression ignition (HCCI) engines include usage of the different type of fuels, ultra low nitrogen oxide and particulate matter emissions and improved fuel economy. Disadvantages include an excessive combustion rate, engine noise, and hydrocarbon and carbon emissions. An experiment on dual-fuel HCCI operation with dimethyl ether (DME)/liquefied petroleum gas (LPG)/gasoline/hydrogen was presented. The advantages and disadvantages were first presented and the dual-fuel HCCI combustion engine was illustrated through an experimental apparatus. The experimental conditions were also presented in terms of engine speed, DME injection quantity, LPC injection quantity, and LPC composition. Experimental results were discussed for output performance and indicated mean effective pressure (IMEP). It was concluded that the effect of LPG composition in a DME-LPG dual-fueled HCCI engine at various injection quantity and injective timing were observed. Specifically, it was found that propane was a more effective way to increase IMEP in this study, and that in a DME HCCI engine, higher load limit was extended by using LPG as an ignition inhibitor. tabs., figs.

  16. Research on cylinder processes of gasoline homogenous charge compression ignition (HCCI) engine

    Science.gov (United States)

    Cofaru, Corneliu

    2017-10-01

    This paper is designed to develop a HCCI engine starting from a spark ignition engine platform. The engine test was a single cylinder, four strokes provided with carburetor. The results of experimental research on this version were used as a baseline for the next phase of the work. After that, the engine was modified for a HCCI configuration, the carburetor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass. To ensure that the air - fuel mixture auto ignite, the compression ratio was increased from 9.7 to 11.5. The combustion process in HCCI regime is governed by chemical kinetics of mixture of air-fuel, rein ducted or trapped exhaust gases and fresh charge. To modify the quantities of trapped burnt gases, the exchange gas system was changed from fixed timing to variable valve timing. To analyze the processes taking place in the HCCI engine and synthesizing a control system, a model of the system which takes into account the engine configuration and operational parameters are needed. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.

  17. Numerical analysis of knock during HCCI in a high compression ratio methanol engine based on LES with detailed chemical kinetics

    International Nuclear Information System (INIS)

    Zhen, Xudong; Wang, Yang

    2015-01-01

    Highlights: • Knock during HCCI in a high compression ratio methanol engine was modeled. • A detailed methanol mechanism was used to simulate the knocking combustion. • Compared with the SI engines, the HCCI knocking combustion burnt faster. • The reaction rate of HCO had two obvious peaks, one was positive, and another was negative. • Compared with the SI engines, the values of the reaction rates of CH 2 O, H 2 O 2 , and HO 2 were higher, and it had negative peaks. - Abstract: In this study, knock during HCCI (homogeneous charge compression ignition) was studied based on LES (large eddy simulation) with methanol chemical kinetics (84-reaction, 21-species) in a high compression ratio methanol engine. The non-knocking and knocking combustion of SI (spark ignition) and HCCI engines were compared. The results showed that the auto-ignition spots were initially occurred near the combustion chamber wall. The knocking combustion burnt faster during HCCI than SI methanol engine. The HCO reaction rate was different from SI engine, it had two obvious peaks, one was positive peak, and another was negative peak. Compared with the SI methanol engine, in addition to the concentration of HCO, the concentrations of the other intermediate products and species such as CO, OH, CH 2 O, H 2 O 2 , HO 2 were increased significantly; the reaction rates of CH 2 O, H 2 O 2 , and HO 2 had negative peaks, and whose values were several times higher than SI methanol engine

  18. Experimental investigation of homogeneous charge compression ignition combustion of biodiesel fuel with external mixture formation in a CI engine.

    Science.gov (United States)

    Ganesh, D; Nagarajan, G; Ganesan, S

    2014-01-01

    In parallel to the interest in renewable fuels, there has also been increased interest in homogeneous charge compression ignition (HCCI) combustion. HCCI engines are being actively developed because they have the potential to be highly efficient and to produce low emissions. Even though HCCI has been researched extensively, few challenges still exist. These include controlling the combustion at higher loads and the formation of a homogeneous mixture. To obtain better homogeneity, in the present investigation external mixture formation method was adopted, in which the fuel vaporiser was used to achieve excellent HCCI combustion in a single cylinder air-cooled direct injection diesel engine. In continuation of our previous works, in the current study a vaporised jatropha methyl ester (JME) was mixed with air to form a homogeneous mixture and inducted into the cylinder during the intake stroke to analyze the combustion, emission and performance characteristics. To control the early ignition of JME vapor-air mixture, cooled (30 °C) Exhaust gas recirculation (EGR) technique was adopted. The experimental result shows 81% reduction in NOx and 72% reduction in smoke emission.

  19. Combustion

    CERN Document Server

    Glassman, Irvin

    1987-01-01

    Combustion, Second Edition focuses on the underlying principles of combustion and covers topics ranging from chemical thermodynamics and flame temperatures to chemical kinetics, detonation, ignition, and oxidation characteristics of fuels. Diffusion flames, flame phenomena in premixed combustible gases, and combustion of nonvolatile fuels are also discussed. This book consists of nine chapters and begins by introducing the reader to heats of reaction and formation, free energy and the equilibrium constants, and flame temperature calculations. The next chapter explores the rates of reactio

  20. Study of Combustion Characteristics of Hydrocarbon Nanofuel Droplets

    Science.gov (United States)

    2017-08-23

    NUMBER (Include area code) 23 August 2017 Briefing Charts 01 August 2017 - 31 August 2017 Study of Combustion Characteristics of Hydrocarbon...Douglas Talley N/A 1 Study of Combustion Characteristics of Hydrocarbon Nanofuel Droplets DISTRIBUTION STATEMENT A. Approved for public release...Angeles ϯAir Force Research Laboratory, Aerospace Systems Directorate, Combustion Devices Group, Edwards AFB, CA ONR/ARO/AFOSR Meeting, 23 Aug., 2017

  1. Mechanisms and characteristics of silicon combustion in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Mukasian, A.S.; Martynenko, V.M.; Merzhanov, A.G.; Borovinskaia, I.P.; Blinov, M.IU.

    1986-10-01

    An experimental study is made of the principal characteristics of combustion in the system silicon-nitrogen associated with phase transitions of the first kind (silicon melting and silicon nitride dissociation). Concepts of the combustion mechanism are developed on the basis of elementary models of combustion of the second kind and filtering combustion theory. In particular, it is shown that, in the pressure range studied (10-20 MPa), filtering does not limit the combustion process. Details of the experimental procedure and results are presented. 22 references.

  2. Method for reduction of the NOX emissions in marine auxiliary diesel engine using the fuel mixtures containing biodiesel using HCCI combustion.

    Science.gov (United States)

    Puškár, Michal; Kopas, Melichar; Puškár, Dušan; Lumnitzer, Ján; Faltinová, Eva

    2018-02-01

    The marine auxiliary diesel engines installed in the large transoceanic ships are used in order to generate the electricity but at the same time these engines are able to produce a significant amount of the harmful exhaust gas emissions. Therefore the International Maritime Organisation (IMO) concluded an agreement, which has to control generating of gaseous emissions in maritime transport. From this reason started to be used some of the alternative fuels in this branch. There was performed a study, which investigated emissions of the auxiliary marine diesel engine during application of the experimental fuels. The different testing fuels were created using the ratios 0%, 50%, 80% and 100% between the biodiesel and the ULSDF (Ultra Low Sulphur Diesel Fuel). The experimental measurements were performed at the different engine loading levels and various engine speeds in order to investigate an influence of the mixed fuels on the engine operational characteristics. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. A Comprehensive Numerical Study on Effects of Natural Gas Composition on the Operation of an HCCI Engine Une étude numérique complète sur les effets de la composition du gaz naturel carburant sur le réglage d’un moteur HCCI

    Directory of Open Access Journals (Sweden)

    Jahanian O.

    2011-11-01

    Full Text Available Homogeneous Charge Compression Ignition (HCCI engine is a promising idea to reduce fuel consumption and engine emissions. Natural Gas (NG, usually referred as clean fuel, is an appropriate choice for HCCI engines due to its suitable capability of making homogenous mixture with air. However, varying composition of Natural Gas strongly affects the auto-ignition characteristics of in-cylinder mixture and the performance of the HCCI engine. This paper has focused on the influence of Natural Gas composition on engine operation in HCCI mode. Six different compositions of Natural Gas (including pure methane have been considered to study the engine performance via a thermo-kinetic zero-dimensional model. The simulation code covers the detailed chemical kinetics of Natural Gas combustion, which includes Zeldovich extended mechanism to evaluate NOx emission. Validations have been made using experimental data from other works to ensure the accuracy needed for comparison study. The equivalence ratio and the compression ratio are held constant but the engine speed and mixture initial temperature are changed for comparison study. Results show that the peak value of pressure/temperature of in-cylinder mixture is dependent of fuel Wobbe number. Furthermore, engine gross indicated power is linearly related to fuel Wobbe number. Gross indicated work, gross mean effective pressure, and NOx are the other parameters utilized to compare the performance of engine using different fuel compositions. Le moteur HCCI (Homogeneous Charge Compression Ignition, ou à allumage par compression d’une charge homogène est une idée prometteuse pour réduire la consommation de carburant et les émissions polluantes. Le gaz naturel, considéré généralement comme un carburant propre, est un choix approprié pour les moteurs HCCI en raison de sa capacité à former avec l’air un mélange homogène. Cependant, la composition du gaz naturel influe fortement sur les caract

  4. Ignition and combustion characteristics of metallized propellants

    Science.gov (United States)

    Turns, Stephen R.; Mueller, D. C.

    1993-01-01

    Experimental and analytical investigations focusing on secondary atomization and ignition characteristics of aluminum/liquid hydrocarbon slurry propellants were conducted. Experimental efforts included the application of a laser-based, two-color, forward-scatter technique to simultaneously measure free-flying slurry droplet diameters and velocities for droplet diameters in the range of 10-200 microns. A multi-diffusion flame burner was used to create a high-temperature environment into which a dilute stream of slurry droplets could be introduced. Narrowband measurements of radiant emission were used to determine if ignition of the aluminum in the slurry droplet had occurred. Models of slurry droplet shell formation were applied to aluminum/liquid hydrocarbon propellants and used to ascertain the effects of solids loading and ultimate particle size on the minimum droplet diameter that will permit secondary atomization. For a 60 weight-percent Al slurry, the limiting critical diameter was predicted to be 34.7 microns which is somewhat greater than the 20-25 micron limiting diameters determined in the experiments. A previously developed model of aluminum ignition in a slurry droplet was applied to the present experiments and found to predict ignition times in reasonable agreement with experimental measurements. A model was also developed that predicts the mechanical stress in the droplet shell and a parametric study was conducted. A one-dimensional model of a slurry-fueled rocket combustion chamber was developed. This model includes the processes of liquid hydrocarbon burnout, secondary atomization, aluminum ignition, and aluminum combustion. Also included is a model for radiant heat transfer from the hot aluminum oxide particles to the chamber walls. Exercising this model shows that only a modest amount of secondary atomization is required to reduce residence times for aluminum burnout, and thereby maintain relatively short chamber lengths. The model also predicts

  5. DETAILED CHEMICAL KINETIC MODELING OF ISO-OCTANE SI-HCCI TRANSITION

    Energy Technology Data Exchange (ETDEWEB)

    Havstad, M A; Aceves, S M; McNenly, M J; Piggott, W T; Edwards, K D; Wagner, R M; Daw, C S; Finney, C A

    2009-10-12

    The authors describe a CHEMKIN-based multi-zone model that simulates the expected combustion variations in a single-cylinder engine fueled with iso-octane as the engine transitions from spark-ignited (ST) combustion to homogeneous charge compression ignition (HCCI) combustion. The model includes a 63-species reaction mechanism and mass and energy balances for the cylinder and the exhaust flow. For this study they assumed that the SI-to-HCCI transition is implemented by means of increasing the internal exhaust gas recirculation (EGR) at constant engine speed. This transition scneario is consistent with that implemented in previously reported experimental measurements on an experimental engine equipped with variable valve actuation. They find that the model captures many of the important experimental trends, including stable SI combustion at low EGR ({approx} 0.10), a transition to highly unstable combustion at intermediate EGR, and finally stable HCCI combustion at very high EGR ({approx} 0.75). Remaining differences between the predicted and experimental instability patterns indicate that there is further room for model improvement.

  6. Flammability characteristics of combustible gases and vapors

    Energy Technology Data Exchange (ETDEWEB)

    Zabetakis, M. G. [Bureau of Mines, Pittsburgh, PA (United States)

    1964-05-01

    This is a summary of the available limit of flammability, autoignition and burning-rate data for more than 200 combustible gases and vapors in air and other oxidants, as well as of empirical rules and graphs that can be used to predict similar data for thousands of other combustibles under a variety of environmental conditions. Spec$c data are presented on the paraffinic, unsaturated, aromatic, and alicyclic hydrocarbons, alcohols, ethers, aldehydes, ketones, and sulfur compounds, and an assortment of fuels, fuel blends, hydraulic fluids, engine oils, and miscellaneous combustible gases and vapors.

  7. AN EXPERIMENTAL NOX REDUCTION POTENTIAL INVESTIGATION OF THE PARTIAL HCCI APPLICATION, ON A HIGH PRESSURE FUEL INJECTION EQUIPPED DIESEL ENGINE BY IMPLEMENTING FUMIGATION OF GASOLINE PORT INJECTION

    OpenAIRE

    ERGENÇ, Alp Tekin; YÜKSEK, Levent; ÖZENER, Orkun; IŞIN, Övün

    2016-01-01

    This work investigates the effects of partial HCCI (Homogeneous charge compression ignition) application on today's modern diesel engine tail pipe NOx emissions. Gasoline fumigation is supplied via a port fuel injection system located in the intake port of DI(Direct injection) diesel engine to maintain partial HCCI conditions and also diesel fuel injected directly into the combustion chamber before TDC(Top dead center). A single cylinder direct injection diesel research engine equipped w...

  8. Experimental study on combustion and slagging characteristics of tannery sludge

    International Nuclear Information System (INIS)

    Li, Chunyu; Jiang, Xuguang; Fei, Zhenwei; Chi, Yong; Yan, Jianhua

    2010-01-01

    Incineration is the most reasonable technique for tannery sludge disposal. The combustion and gaseous products emission characteristics of tannery sludge were investigated in this study. Tendency of slagging for combustion residue was also investigated based on the composition and microscopic scanning analysis. The high content of volatile matters and ash in tannery sludge was discovered. It was shown that the thermal decomposition and combustion of tannery sludge mainly occurs in a temperature frame between 150 degree Celsius and 780 degree Celsius. Organic acid was determined as the most important gaseous pollutant at low temperature combustion. The combustion residue from a specially designed furnace was analyzed by X-ray diffractometer (XRD) and energy dispersion spectroscopy (EDS) microprobe coupled in a scanning electron micro-scope (SEM). There is large amount of Ca in the combustion residue, and CaO was the main inorganic composition in these residues. The tannery sludge studied in this paper has a strong tendency of slagging, and the fusion of the residue began at 900 degree Celsius in combustion. It was further discovered that almost all the zinc (Zn) in tannery sludge is volatilized at 900 degree Celsius. The degree of volatilization for heavy metals at 900 degree Celsius followed the order of Zn > Cd >Cu > Mn > Pb > Cr. Most of Cr in tannery sludge is enriched in the residue during combustion. The present study reveals that it is critical to control the combustion temperature for optimal combustion efficiency and minimization of pollutants emission. (author)

  9. Thermodynamic analysis of an HCCI engine based system running on natural gas

    International Nuclear Information System (INIS)

    Djermouni, Mohamed; Ouadha, Ahmed

    2014-01-01

    Highlights: • A thermodynamic analysis of an HCCI based system has been carried out. • A thermodynamic model has been developed taking into account the gas composition resulting from the combustion process. • The specific heat of the working fluid is temperature dependent. - Abstract: This paper attempts to carry out a thermodynamic analysis of a system composed of a turbocharged HCCI engine, a mixer, a regenerator and a catalytic converter within the meaning of the first and the second law of thermodynamics. For this purpose, a thermodynamic model has been developed taking into account the gas composition resulting from the combustion process and the specific heat temperature dependency of the working fluid. The analysis aims in particular to examine the influence of the compressor pressure ratio, ambient temperature, equivalence ratio, engine speed and the compressor isentropic efficiency on the performance of the HCCI engine. Results show that thermal and exergetic efficiencies increase with increasing the compressor pressure ratio. However, the increase of the ambient temperature involves a decrease of the engine efficiencies. Furthermore, the variation of the equivalence ratio improves considerably both thermal and exergetic efficiencies. As expected, the increase of the engine speed enhances the engine performances. Finally, an exergy losses mapping of the system show that the maximum exergy losses occurs in the HCCI engine

  10. MODELING OF FUEL SPRAY CHARACTERISTICS AND DIESEL COMBUSTION CHAMBER PARAMETERS

    Directory of Open Access Journals (Sweden)

    G. M. Kukharonak

    2011-01-01

    Full Text Available The computer model for coordination of fuel spray characteristics with diesel combustion chamber parameters has been created in the paper.  The model allows to observe fuel sprays  develоpment in diesel cylinder at any moment of injection, to calculate characteristics of fuel sprays with due account of a shape and dimensions of a combustion chamber, timely to change fuel injection characteristics and supercharging parameters, shape and dimensions of a combustion chamber. Moreover the computer model permits to determine parameters of holes in an injector nozzle that provides the required fuel sprays characteristics at the stage of designing a diesel engine. Combustion chamber parameters for 4ЧН11/12.5 diesel engine have been determined in the paper.

  11. Combustion stratification for naphtha from CI combustion to PPC

    NARCIS (Netherlands)

    Vallinayagam, R.; Vedharaj, S.; An, Y.; Dawood, A.; Izadi Najafabadi, M.; Somers, L.M.T.; Johansson, B.H.

    2017-01-01

    This study demonstrated the change in combustion homogeneity from conventional diesel combustion via partially premixed combustion towards HCCI. Experiments are performed in an optical diesel engine at a speed of 1200 rpm with diesel fuel. Single injection strategy is employed and the fuel is

  12. Combustion characteristics of crude jatropha oil droplets using rhodium liquid as a homogeneous combustion catalyst

    Science.gov (United States)

    Nanlohy, Hendry Y.; Wardana, I. N. G.; Hamidi, N.; Yuliati, L.

    2018-01-01

    Combustion characteristics of crude jatropha oil droplet at room temperature with and without catalyst have been studied experimentally. Its combustion characteristics have been observed by igniting the oil droplet on a junction of a thermocouple, and the combustion characteristics of oil droplets are observed using a high-speed camera. The results show that the uniqueness of crude jatropha oil as alternative fuel is evidenced by the different stages of combustion caused by thermal cracking in burning droplets. The results also show that the role of the catalyst is not only an accelerator agent, but there are other unique functions and roles as a stabilizer. Moreover, the results also found that the catalyst was able to shorten the ignition timing and burnout time. This phenomenon proves that the presence of catalysts alters and weakens the structure of the triglyceride geometry so that the viscosity and flash point is reduced, the fuel absorbs heat well and flammable.

  13. Update on Engine Combustion Research at Sandia National Laboratories

    International Nuclear Information System (INIS)

    Jay Keller; Gurpreet Singh

    2001-01-01

    The objectives of this paper are to describe the research efforts in diesel engine combustion at Sandia National Laboratories' Combustion Research Facility and to provide recent experimental results. We have four diesel engine experiments supported by the Department of Energy, Office of Heavy Vehicle Technologies: a one-cylinder version of a Cummins heavy-duty engine, a diesel simulation facility, a one-cylinder Caterpillar engine to evaluate combustion of alternative fuels, and a homogeneous-charge, compression ignition (HCCI) engine. Recent experimental results of diesel combustion research will be discussed and a description will be given of our HCCI experimental program and of our HCCI modeling work

  14. Study on the knock tendency and cyclical variations of a HCCI engine fueled with n-butanol/n-heptane blends

    International Nuclear Information System (INIS)

    Li, Gang; Zhang, Chunhua; Zhou, Jiawang

    2017-01-01

    Highlights: • The HCCI combustion was achieved on an engine fueled by n-butanol/n-heptane blends. • The knock tendency and cyclical variation of the HCCI combustion were studied. • The knock tendency can be weakened by increasing the blending ratio of n-butanol. • The knock tendency and cyclical variation are sensitive to the combustion phasing. • Cyclical variation always shows an opposite trend with the knock tendency. - Abstract: The homogeneous charge compression ignition (HCCI) combustion operation is conducted in the 2nd cylinder of a natural-aspirated four-stroke diesel engine. In the HCCI combustion mode, the n-butanol, n-heptane and their blends are injected into the intake port to form a lean homogeneous air-fuel mixture, which is consumed by the autoignition after compression. The objective of this study is to investigate the knock tendency and the cyclical variations of the HCCI engine. Experimental results show that the volume fraction of n-butanol affects the knock tendency greatly, which obviously decreases as the n-butanol volume fraction increases. The knocking combustion in the HCCI combustion is characterized by the high heat release rate (HRR). Both elevating the engine speed and raising the intake temperature contributes to an obvious increase in HRR and the knock tendency. But the HRR and knock tendency may slightly decrease when the engine speed reaches to 1400 rev/min and intake temperature reaches to 160 °C. Furthermore, the knock tendency can be weakened by increasing the excess air-fuel ratio. Cyclical variations of the HCCI engine are quantified by the coefficient of variation for the peak pressure (COV_P_m_a_x) and it exhibits an almost opposite trend to the knock tendency. The COV_P_m_a_x may considerably increase along with either increasing the blending ratio of n-butanol or increasing the excess air-fuel ratio. Moreover, it is reveled that the COV_P_m_a_x is sensitive to the relative position of peak HRR. The cyclical

  15. Numerical Analysis on Combustion Characteristic of Leaf Spring Rotary Engine

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2015-08-01

    Full Text Available The purpose of this paper is to investigate combustion characteristics for rotary engine via numerical studies. A 3D numerical model was developed to study the influence of several operative parameters on combustion characteristics. A novel rotary engine called, “Leaf Spring Rotary Engine”, was used to illustrate the structure and principle of the engine. The aims are to (1 improve the understanding of combustion process, and (2 quantify the influence of rotational speed, excess air ratio, initial pressure and temperature on combustion characteristics. The chamber space changed with crankshaft rotation. Due to the complexity of chamber volume, an equivalent modeling method was presented to simulate the chamber space variation. The numerical simulations were performed by solving the incompressible, multiphase Unsteady Reynolds-Averaged Navier–Stokes Equations via the commercial code FLUENT using a transport equation-based combustion model; a realizable  turbulence model and finite-rate/eddy-dissipation model were used to account for the effect of local factors on the combustion characteristics.

  16. Homogeneous Charge Compression Ignition Combustion: Challenges and Proposed Solutions

    Directory of Open Access Journals (Sweden)

    Mohammad Izadi Najafabadi

    2013-01-01

    Full Text Available Engine and car manufacturers are experiencing the demand concerning fuel efficiency and low emissions from both consumers and governments. Homogeneous charge compression ignition (HCCI is an alternative combustion technology that is cleaner and more efficient than the other types of combustion. Although the thermal efficiency and NOx emission of HCCI engine are greater in comparison with traditional engines, HCCI combustion has several main difficulties such as controlling of ignition timing, limited power output, and weak cold-start capability. In this study a literature review on HCCI engine has been performed and HCCI challenges and proposed solutions have been investigated from the point view of Ignition Timing that is the main problem of this engine. HCCI challenges are investigated by many IC engine researchers during the last decade, but practical solutions have not been presented for a fully HCCI engine. Some of the solutions are slow response time and some of them are technically difficult to implement. So it seems that fully HCCI engine needs more investigation to meet its mass-production and the future research and application should be considered as part of an effort to achieve low-temperature combustion in a wide range of operating conditions in an IC engine.

  17. A new technology to overcome the limits of HCCI engine through fuel modification

    International Nuclear Information System (INIS)

    Bahng, GunWoong; Jang, Dongsoon; Kim, Youngtae; Shin, Misoo

    2016-01-01

    Highlights: • Problems of HCCI engine can be overcome by adopting fuel modification. • Gasoline vapor with HHO gas showed drastic improvement of fuel efficiency. • Performance of single cylinder engine shows fuel efficiency more than double. - Abstract: The energy efficiency of internal combustion engine reached to about 30% only recently. To increase the efficiency, homogeneous charge compression ignition (HCCI) has been proposed, however, there is no available commercial engine yet. The main problem lies in the delayed heating rate in spite of fast reaction of homogeneous charged state of HCCI with excess air. To overcome this difficulty, a modification of fuel by vaporization of liquid gasoline with water electrolysis gas and air was adopted in order to warrant the fast and high temperature rise. Experiments were carried out with single cylinder engines supplied from the four different manufacturers. Experimental results show that fuel consumption was decreased by more than 50% compared to the case of supplying liquid fuel. It is believed it was due to the combined effects of the high and fast heating potential of water electrolysis gas together with the efficient turbulence mixing effect of vaporized fuel with excess air. By this method, the drawbacks caused by lean burn in the HCCI engine such as small power range can be overcome.

  18. Improvement of Combustion Characteristics in Fluidized Bed

    International Nuclear Information System (INIS)

    Mohamed, H.S.; El Sourougy, M.R.; Faik, M.

    2009-01-01

    The present investigation is directed towards the experimental study of the effect of a new design of the bed temperature on the overall thermal efficiency and heat transfer by conduction, convection and radiation in gaseous fuel-fluidized bed combustion system. The experiments are performed on a water-cooled fluidized bed model furnace with cylindrical cross-section of 0.25 m diameter and its height is 0.60 m. the fluidising medium used is sand particles with average diameter 1.5 mm. The bed temperature is varied between 700 degree C and 1100 degree C. Measurements f carbon dioxide, carbon monoxide and oxygen concentrations are carried out by using water-cooled sampling probe, and infrared and paramagnetic analyzers. The results obtained show that the bed temperature, the total heat transfer to the wall and the bed combustion efficiency increase with the decrease of the air-fuel ratio. It is also found that 91% of the total heat transfer is in the fluidising part of the bed and most of this heat is transferred by convection from hot sand particles to the wall. Two empirical formulae for the calculation of the wall heat transfer coefficient and the particle convective heat transfer coefficient are proposed. A verification of the proposed empirical formulae is made by comparing the calculated values with the experimental results.

  19. An experimental study for the effects of boost pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa Canakci [Kocaeli University, Izmit (Turkey). Department of Mechanical Education

    2008-07-15

    As an alternative combustion mode, the HCCI combustion has some benefits compared to conventional SI and CI engines, such as low NOx emission and high thermal efficiency. However, this combustion mode can produce higher UHC and CO emissions than those of conventional engines. In the naturally aspirated HCCI engines, the low engine output power limits its use in the current engine technologies. Intake air pressure boosting is a common way to improve the engine output power which is widely used in high performance SI and CI engine applications. Therefore, in this study, the effect of inlet air pressure on the performance and exhaust emissions of a DI-HCCI gasoline engine has been investigated after converting a heavy-duty diesel engine to a HCCI direct-injection gasoline engine. The experiments were performed at three different inlet air pressures while operating the engine at the same equivalence ratio and intake air temperature as in normally aspirated HCCI engine condition at different engine speeds. The SOI timing was set dependently to achieve the maximum engine torque at each test condition. The effects of inlet air pressure both on the emissions such as CO, UHC and NOx and on the performance parameters such as BSFC, torque, thermal and combustion efficiencies have been discussed. The relationships between the emissions are also provided. 34 refs., 19 figs., 4 tabs.

  20. Experimental study on oxidation and combustion characteristics of sodium droplets

    International Nuclear Information System (INIS)

    Zhang Zhigang; Sun Shubin; Liu Chongchong; Tang Yexin

    2015-01-01

    In the operation of the sodium-cooled fast reactor, the accident caused by the leakage and combustion of liquid sodium is common and frequent. In this paper, the oxidation and combustion characteristics of sodium droplets were studied by carrying out the experiments of the oxidation and combustion under different conditions of initial temperatures (140-370℃) of the sodium droplets and oxygen concentrations (4%-21%). The oxidation and combustion behaviors were visualized by a set of combustion apparatus of sodium droplet and a high speed camera. The experiment results show that the columnar oxides grow longer as the initial temperature of sodium droplet and oxygen concentration become lower. Under the same oxygen concentration condition, the sodium droplet with the higher initial temperature is easier to ignite and burn. When the initial temperature of sodium droplet is below 200℃, it is very difficult to ignite. If there is a turbulence damaging the oxide layer on the surface, the sodium droplet will also burn gradually. When the initial temperature ranges from 140℃ to 370℃ and the oxygen fraction is equal to or higher than 12%, the sodium droplet could burn completely and the maximum combustion temperature could roughly reach 600-800℃. When the oxygen concentration is below 12%, the sodium droplet could not burn completely and the highest combustion temperature is below 600℃. The results are helpful to the research on the columnar flow and spray sodium fire. (authors)

  1. Thermodynamic control-oriented modeling of cycle-to-cycle exhaust gas temperature in an HCCI engine

    International Nuclear Information System (INIS)

    Dehghani Firoozabadi, M.; Shahbakhti, M.; Koch, C.R.; Jazayeri, S.A.

    2013-01-01

    Highlights: • First thermodynamic model in the literature to predict exhaust temperature in HCCI engines. • The model can be used for integrated control of HCCI combustion and exhaust temperature. • The model is experimentally validated at over 300 steady state and transient conditions. • Results show a good agreement between predicted and measured exhaust temperatures. • Sensitivity of exhaust gas temperature to variation of engine variables is shown. - Abstract: Model-based control of Homogenous Charge Compression Ignition (HCCI) engine exhaust temperature is a viable solution to optimize efficiency of both engine and the exhaust aftertreatment system. Low exhaust temperature in HCCI engines can limit the abatement of hydrocarbon (HC) and carbon monoxide (CO) emissions in an exhaust aftertreatment system. A physical–empirical model is described for control of exhaust temperature in HCCI engines. This model captures cycle-to-cycle dynamics affecting exhaust temperature and is based on thermodynamic relations and semi-empirical correlations. It incorporates intake and exhaust gas flow dynamics, residual gas mixing, and fuel burn rate and is validated with experimental data from a single cylinder engine at over 300 steady state and transient conditions. The validation results indicate a good agreement between predicted and measured exhaust gas temperature

  2. Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol

    KAUST Repository

    Singh, Eshan

    2017-03-28

    The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends. The simulations used the actual engine geometry and estimated intake valve closure conditions to replicate the experimentally measured start of combustion (SOC) for various PRF mixtures. The simulated HCCI heat release profiles were shown to reproduce the experimentally observed trends, specifically on the effectiveness of ethanol as a low temperature chemistry inhibitor at various concentrations. Detailed analysis of simulated heat release profiles and the evolution of important radical intermediates (e.g., OH and HO) were used to show the effect of ethanol blending on controlling reactivity. A strong coupling between the low temperature oxidation reactions of ethanol and those of n-heptane and iso-octane is shown to be responsible for the observed blending effects of ethanol/PRF mixtures.

  3. Simulating HCCI Blending Octane Number of Primary Reference Fuel with Ethanol

    KAUST Repository

    Singh, Eshan; Waqas, Muhammad; Johansson, Bengt; Sarathy, Mani

    2017-01-01

    The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends. The simulations used the actual engine geometry and estimated intake valve closure conditions to replicate the experimentally measured start of combustion (SOC) for various PRF mixtures. The simulated HCCI heat release profiles were shown to reproduce the experimentally observed trends, specifically on the effectiveness of ethanol as a low temperature chemistry inhibitor at various concentrations. Detailed analysis of simulated heat release profiles and the evolution of important radical intermediates (e.g., OH and HO) were used to show the effect of ethanol blending on controlling reactivity. A strong coupling between the low temperature oxidation reactions of ethanol and those of n-heptane and iso-octane is shown to be responsible for the observed blending effects of ethanol/PRF mixtures.

  4. Investigation of combustion characteristics of methane-hydrogen fuels

    Science.gov (United States)

    Vetkin, A. V.; Suris, A. L.; Litvinova, O. A.

    2015-01-01

    Numerical investigations of combustion characteristics of methane-hydrogen fuel used at present in tube furnaces of some petroleum refineries are carried out and possible problems related to change-over of existing furnaces from natural gas to methane-hydrogen fuel are analyzed. The effect of the composition of the blended fuel, associated temperature and emissivity of combustion products, temperature of combustion chamber walls, mean beam length, and heat release on variation in the radiation heat flux is investigated. The methane concentration varied from 0 to 100%. The investigations were carried out both at arbitrary given gas temperatures and at effective temperatures determined based on solving a set of equations at various heat-release rates of the combustion chamber and depended on the adiabatic combustion temperature and the temperature at the chamber output. The approximation dependence for estimation of the radiation heat exchange rate in the radiant chamber of the furnace at change-over to fuel with a greater hydrogen content is obtained. Hottel data were applied in the present work in connection with the impossibility to use approximated formulas recommended by the normative method for heat calculation of boilers to determine the gas emissivity, which are limited by the relationship of partial pressures of water steam and carbon dioxide in combustion products . The effect of the methane-hydrogen fuel on the equilibrium concentration of nitrogen oxides is also investigated.

  5. Fuel and combustion stratification study of Partially Premixed Combustion

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a

  6. On Cyclic Variability in a Residual Effected HCCI Engine with Direct Gasoline Injection during Negative Valve Overlap

    Directory of Open Access Journals (Sweden)

    Jacek Hunicz

    2014-01-01

    Full Text Available This study contributes towards describing the nature of cycle-by-cycle variability in homogeneous charge compression ignition (HCCI engines. Experimental measurements were performed using a single cylinder research engine operated in the negative valve overlap (NVO mode and fuelled with direct gasoline injection. Both stoichiometric and lean mixtures were applied in order to distinguish between different exhaust-fuel reactions during the NVO period and their propagation into the main event combustion. The experimental results show that the mode of cycle-by-cycle variability depends on the NVO phenomena. Under stoichiometric mixture conditions, neither variability in the main event indicated mean effective pressure (IMEP nor the combustion timing was affected by the NVO phenomena; however, long period oscillations in IMEP were observed. In contrast, for lean mixture, where fuel oxidation during the NVO period took place, distinctive correlations between NVO phenomena and the main event combustion parameters were observed. A wavelet analysis revealed the presence of both long-term and short-term oscillations in IMEP, in accordance with the extent of NVO phenomena. Characteristic patterns in IMEP were recognized using an in-house algorithm.

  7. Experimental study on the influence of oxygen content in the combustion air on the combustion characteristics

    International Nuclear Information System (INIS)

    Bělohradský, Petr; Skryja, Pavel; Hudák, Igor

    2014-01-01

    This study was focused on the experimental investigation of the very promising combustion technology called as the oxygen-enhanced combustion (OEC), which uses the oxidant containing higher proportion of oxygen than in the atmospheric air, i.e. more than 21%. The work investigated and compared the characteristics of two OEC methods, namely the premix enrichment and air-oxy/fuel combustion, when the overall oxygen concentration was varied from 21% to 46%. The combustion tests were performed with the experimental two-gas-staged burner of low-NO x type at the burner thermal input of 750 kW for two combustion regimes – one-staged and two-staged combustion. The oxygen concentration in the flue gas was maintained in the neighborhood of 3% vol. (on dry basis). The aim of tests was to assess the impact of the oxidant composition, type of OEC method and fuel-staging on the characteristic combustion parameters in detail. The investigated parameters included the concentration of nitrogen oxides (NO x ) in the flue gas, flue gas temperature, heat flux to the combustion chamber wall, and lastly the stability, shape and dimensions of flame. It was observed that NO x emission is significantly lower when the air-oxy/fuel method is used compared to the premix enrichment method. Moreover, when the fuel was staged, NO x emission was below 120 mg/Nm 3 at all investigated oxygen flow rates. Increasing oxygen concentration resulted in higher heating intensity due to higher concentrations of CO 2 and H 2 O. The available heat at 46% O 2 was higher by 20% compared with that at 21% O 2 . - Highlights: • Premix-enrichment and air-oxy/fuel combustion methods were experimentally studied. • NO x increased sharply as oxygen concentration increased during PE tests. • NO x was below 120 mg/Nm 3 for all investigated oxygen flow rates in AO tests. • Radiative heat transfer was enhanced ca. 20% as O 2 concentration was increased. • OEC flames were observed stable, more luminous and

  8. Development of HCCI Engines for Dimethyl Ether

    DEFF Research Database (Denmark)

    Hansen, Kim Rene; Pedersen, Troels Dyhr; Schramm, Jesper

    This report has been prepared for the Danish Energy Agency. It summarizes the results of the project entitled: “Development of HCCI engines for DME”. The project has been financed by “EFP 06”. The chapters about theoretical and experimental studies have been written using the language and termino......This report has been prepared for the Danish Energy Agency. It summarizes the results of the project entitled: “Development of HCCI engines for DME”. The project has been financed by “EFP 06”. The chapters about theoretical and experimental studies have been written using the language...

  9. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-08-17

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  10. Fuels and Combustion

    KAUST Repository

    Johansson, Bengt

    2016-01-01

    This chapter discusses the combustion processes and the link to the fuel properties that are suitable for them. It describes the basic three concepts, including spark ignition (SI) and compression ignition (CI), and homogeneous charge compression ignition (HCCI). The fuel used in a CI engine is vastly different from that in an SI engine. In an SI engine, the fuel should sustain high pressure and temperature without autoignition. Apart from the dominating SI and CI engines, it is also possible to operate with a type of combustion: autoignition. With HCCI, the fuel and air are fully premixed before combustion as in the SI engine, but combustion is started by the increased pressure and temperature during the compression stroke. Apart from the three combustion processes, there are also a few combined or intermediate concepts, such as Spark-Assisted Compression Ignition (SACI). Those concepts are discussed in terms of the requirements of fuel properties.

  11. [Quantitative spectrum analysis of characteristic gases of spontaneous combustion coal].

    Science.gov (United States)

    Liang, Yun-Tao; Tang, Xiao-Jun; Luo, Hai-Zhu; Sun, Yong

    2011-09-01

    Aimed at the characteristics of spontaneous combustion gas such as a variety of gases, lou limit of detection, and critical requirement of safety, Fourier transform infrared (FTIR) spectral analysis is presented to analyze characteristic gases of spontaneous combustion In this paper, analysis method is introduced at first by combing characteristics of absorption spectra of analyte and analysis requirement. Parameter setting method, sample preparation, feature variable abstract and analysis model building are taken into consideration. The methods of sample preparation, feature abstraction and analysis model are introduced in detail. And then, eleven kinds of gases were tested with Tensor 27 spectrometer. CH4, C2H6, C3H8, iC4H10, nC4H10, C2 H4, C3 H6, C3 H2, SF6, CO and CO2 were included. The optical path length was 10 cm while the spectra resolution was set as 1 cm(-1). The testing results show that the detection limit of all analytes is less than 2 x 10(-6). All the detection limits fit the measurement requirement of spontaneous combustion gas, which means that FTIR may be an ideal instrument and the analysis method used in this paper is competent for spontaneous combustion gas measurement on line.

  12. Characteristics of combustion products: a review of the literature

    Energy Technology Data Exchange (ETDEWEB)

    Chan, M.K.W.; Mishima, J.

    1983-07-01

    To determine the effects of fires in nuclear-fuel-cycle facilities, Pacific Northwest Laboratory (PNL) has surveyed the literature to gather data on the characteristics of combustion products. This report discusses the theories of the origin of combustion with an emphasis on the behavior of the combustible materials commonly found in nuclear-fuel-cycle facilities. Data that can be used to calculate particulate generation rate, size, distribution, and concentration are included. Examples are given to illustrate the application of this data to quantitatively predict both the mass and heat generated from fires. As the final result of this review, information gaps are identified that should be filled for fire-accident analyses in fuel-cycle facilities. 29 figures, 32 tables.

  13. Characteristics of combustion products: a review of the literature

    International Nuclear Information System (INIS)

    Chan, M.K.W.; Mishima, J.

    1983-07-01

    To determine the effects of fires in nuclear-fuel-cycle facilities, Pacific Northwest Laboratory (PNL) has surveyed the literature to gather data on the characteristics of combustion products. This report discusses the theories of the origin of combustion with an emphasis on the behavior of the combustible materials commonly found in nuclear-fuel-cycle facilities. Data that can be used to calculate particulate generation rate, size, distribution, and concentration are included. Examples are given to illustrate the application of this data to quantitatively predict both the mass and heat generated from fires. As the final result of this review, information gaps are identified that should be filled for fire-accident analyses in fuel-cycle facilities. 29 figures, 32 tables

  14. Fuel and combustion stratification study of Partially Premixed Combustion

    OpenAIRE

    Izadi Najafabadi, M.; Dam, N.; Somers, B.; Johansson, B.

    2016-01-01

    Relatively high levels of stratification is one of the main advantages of Partially Premixed Combustion (PPC) over the Homogeneous Charge Compression Ignition (HCCI) concept. Fuel stratification smoothens heat release and improves controllability of this kind of combustion. However, the lack of a clear definition of “fuel and combustion stratifications” is obvious in literature. Hence, it is difficult to compare stratification levels of different PPC strategies or other combustion concepts. T...

  15. Numerical simulation of catalysis combustion inside micro free-piston engine

    International Nuclear Information System (INIS)

    Wang, Qian; Zhang, Di; Bai, Jin; He, Zhixia

    2016-01-01

    Highlights: • A modeling study is applied on methane HCCI process of micro power device. • Mathematical formulas are established to predict the combustion characteristics. • Impacts of catalysis on the combustion characteristics are analyzed respectively. • The catalyst can improve the work steadily and reliability of micro power device. - Abstract: In order to investigate the catalytic combustion characteristics concerning homogeneous charge compression ignition (HCCI) in micro power device, numerical simulations with a 3D computation model that coupled motion of free piston and fluid dynamics of methane–air mixture flow were carried out and detailed gas-phase and surface catalytic reaction mechanisms of methane–air mixture were applied to the catalytic reactions model, a series of mathematical formula are established to predict the characteristics of compression ignition condition, impacts of catalysis on temperature, pressure, work capacity and other factors were analyzed respectively. Simulation results reveal that catalytic combustion facilitates the improvement of energy conversion efficiency and extends the ignition limit of methane–air mixture obviously, the ignition timing is brought forward as well, while compression ratio decreases and ignition delay period shrinks significantly. Numerical results demonstrate that the existence of catalytic wall helped to restrain the peak combustion pressure and maximum rate of pressure rise contributing to the steadily and reliability of operation inside micro free-piston power device.

  16. Emission characteristics of premixed lean diesel combustion. Effects of injection nozzle and combustion chamber shape on combustion and emission characteristics; Kihaku yokongo diesel nensho no haishutsubutsu tokusei. Funmu keijo oyobi nenshoshitsu keijo ga haishutsu gas tokusei ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Harada, A; Sasaki, S; Miyamoto, T; Akagawa, H; Tsujimura, K

    1997-10-01

    Many articles about low NOx emission combustion are reported. A mixture formation is necessary to success low NOx emission combustion. But, there is few reports about the effect of nozzle and combustion shape on emissions which give influence on mixture. In this paper, the effects on characteristic of combustion and emissions of some land of injection nozzle and combustion chamber shape were investigated. As a result, it was cleared that the influence of combustion chamber shape on characteristic of combustion and emissions was varied by spray shape, and pintle type injection nozzle was suitable for PREDIC. 7 refs., 10 figs., 1 tab.

  17. Chemical Kinetic Models for Advanced Engine Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Pitz, William J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Mehl, Marco [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Westbrook, Charles K. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-10-22

    The objectives for this project are as follows: Develop detailed chemical kinetic models for fuel components used in surrogate fuels for compression ignition (CI), homogeneous charge compression ignition (HCCI) and reactivity-controlled compression-ignition (RCCI) engines; and Combine component models into surrogate fuel models to represent real transportation fuels. Use them to model low-temperature combustion strategies in HCCI, RCCI, and CI engines that lead to low emissions and high efficiency.

  18. Fundamental combustion characteristics of lean hydrogen mixtures; Suiso kihaku kongoki no kisoteki nensho tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Barat, D; Kido, H; Nakahara, M; Hashimoto, J [Kyushu University, Fukuoka (Japan)

    1997-10-01

    One of the excellent combustion characteristics of hydrogen-air mixture is that its emission is free of CO2, but the problem of NOx remains, mainly caused by the high combustion temperature. Using leaner mixture and carrying out EGR are supposed to be effective methods to reduce NOx. In this study, to examine the effectiveness of the two methods, fundamental combustion characteristics of nitrogen added lean hydrogen mixtures were investigated by chemical equilibrium calculations and measurements of turbulent combustion characteristics. It is suggested that nitrogen added mixtures can achieve lower NOx combustion than lean mixtures, taking the combustion efficiency into consideration. 7 refs., 7 figs., 1 tab.

  19. Utilization of waste heat from a HCCI (homogeneous charge compression ignition) engine in a tri-generation system

    International Nuclear Information System (INIS)

    Sarabchi, N.; Khoshbakhti Saray, R.; Mahmoudi, S.M.S.

    2013-01-01

    The waste heat from exhaust gases and cooling water of Homogeneous charge compression ignition engines (HCCI) are utilized to drive an ammonia-water cogeneration cycle (AWCC) and some heating processes, respectively. The AWCC is a combination of the Rankine cycle and an absorption refrigeration cycle. Considering the chemical kinetic calculations, a single zone combustion model is developed to simulate the natural gas fueled HCCI engine. Also, the performance of AWCC is simulated using the Engineering Equation Solver software (EES). Through combining these two codes, a detailed thermodynamic analysis is performed for the proposed tri-generation system and the effects of some main parameters on the performances of both the AWCC and the tri-generation system are investigated in detail. The cycle performance is then optimized for the fuel energy saving ratio (FESR). The enhancement in the FESR could be up to 28.56%. Under optimized condition, the second law efficiency of proposed system is 5.19% higher than that of the HCCI engine while the reduction in CO 2 emission is 4.067% as compared with the conventional separate thermodynamic systems. Moreover, the results indicate that the engine, in the tri-generation system and the absorber, in the bottoming cycle has the most contribution in exergy destruction. - Highlights: • A new thermodynamic tri-generation system is proposed for waste heat recovery of HCCI engine. • A single zone combustion model is developed to simulate the natural gas fueled HCCI engine. • The proposed tri-generation cycle is analyzed from the view points of both first and second laws of thermodynamics. • In the considered cycle, enhancements of 28.56% in fuel energy saving ratio and 5.19% in exergy efficiency are achieved

  20. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    Science.gov (United States)

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Experimental Studies on Combustion Characteristics of Mixed Municipal Solid Waste

    Institute of Scientific and Technical Information of China (English)

    Fan Jiang; Zhonggang Pan; Shi Liu; Haigang Wang

    2003-01-01

    In our country, municipal solid wastes (MSW) are always burnt in their original forms and only a few pretreatments are taken. Therefore it is vital to study the combustion characteristics of mixed waste. In this paper,thermogravimetric analysis and a lab scale fluidized bed facility were used as experimental means. The data in two different experimental systems were introduced and compared. It took MSW 3~3.5 rain to burn out in FB, but in thermogravimetric analyzer, the time is 20~25 min. It can be concluded that, in general, the behavior of a mixture of waste in TGA can be expressed by simple combination of individual components of the waste mixtures.Only minor deviations from the rule were observed. Yet, in Fluidized Bed, it was found that, for some mixtures,there was interference among the components during fluidized bed combustion.

  2. Injector tip for an internal combustion engine

    Science.gov (United States)

    Shyu, Tsu Pin; Ye, Wen

    2003-05-20

    This invention relates to a the tip structure of a fuel injector as used in a internal combustion engine. Internal combustion engines using Homogeneous Charge Compression Ignition (HCCI) technology require a tip structure that directs fuel spray in a downward direction. This requirement necessitates a tip design that is capable of withstanding mechanical stresses associated with the design.

  3. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    International Nuclear Information System (INIS)

    Mahrous, A-F.M.; Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P.

    2009-01-01

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing

  4. A modelling study into the effects of variable valve timing on the gas exchange process and performance of a 4-valve DI homogeneous charge compression ignition (HCCI) engine

    Energy Technology Data Exchange (ETDEWEB)

    Mahrous, A-F.M. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Lecturer at the Department of Mechanical Power Engineering, Faculty of Engineering (Shebin El-Kom), Menoufiya University, Shebin El-Kom (Egypt); Potrzebowski, A.; Wyszynski, M.L.; Xu, H.M.; Tsolakis, A.; Luszcz, P. [School of Mechanical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom)

    2009-02-15

    Homogeneous charge compression ignition (HCCI) combustion mode is a relatively new combustion technology that can be achieved by using specially designed cams with reduced lift and duration. The auto-ignition in HCCI engine can be facilitated by adjusting the timing of the exhaust-valve-closing and, to some extent, the timing of the intake-valve-opening so as to capture a proportion of the hot exhaust gases in the engine cylinder during the gas exchange process. The effects of variable valve timing strategy on the gas exchange process and performance of a 4-valve direct injection HCCI engine were computationally investigated using a 1D fluid-dynamic engine cycle simulation code. A non-typical intake valve strategy was examined; whereby the intake valves were assumed to be independently actuated with the same valve-lift profile but at different timings. Using such an intake valves strategy, the obtained results showed that the operating range of the exhaust-valve-timing within which the HCCI combustion can be facilitated and maintained becomes much wider than that of the typical intake-valve-timing case. Also it was found that the engine parameters such as load and volumetric efficiency are significantly modified with the use of the non-typical intake-valve-timing. Additionally, the results demonstrated the potential of the non-typical intake-valve strategy in achieving and maintaining the HCCI combustion at much lower loads within a wide range of valve timings. Minimizing the pumping work penalty, and consequently improving the fuel economy, was shown as an advantage of using the non-typical intake-valve-timing with the timing of the early intake valve coupled with a symmetric degree of exhaust-valve-closing timing. (author)

  5. Effect of combustion characteristics on wall radiative heat flux in a 100 MWe oxy-coal combustion plant

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.; Ryu, C. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Chae, T.Y. [Sungkyunkwan Univ., Suwon (Korea, Republic of). School of Mechanical Engineering; Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Yang, W. [Korea Institute of Industrial Technology, Cheonan (Korea, Republic of). Energy System R and D Group; Kim, Y.; Lee, S.; Seo, S. [Korea Electric Power Research Institute (KEPRI), Daejeon (Korea, Republic of). Power Generation Lab.

    2013-07-01

    Oxy-coal combustion exhibits different reaction, flow and heat transfer characteristics from air-coal combustion due to different properties of oxidizer and flue gas composition. This study investigated the wall radiative heat flux (WRHF) of air- and oxy-coal combustion in a simple hexahedral furnace and in a 100 MWe single-wall-fired boiler using computational modeling. The hexahedral furnace had similar operation conditions with the boiler, but the coal combustion was ignored by prescribing the gas properties after complete combustion at the inlet. The concentrations of O{sub 2} in the oxidizers ranging between 26 and 30% and different flue gas recirculation (FGR) methods were considered in the furnace. In the hexahedral furnace, the oxy-coal case with 28% of O{sub 2} and wet FGR had a similar value of T{sub af} with the air-coal combustion case, but its WRHF was 12% higher. The mixed FGR case with about 27% O{sub 2} in the oxidizer exhibited the WRHF similar to the air-coal case. During the actual combustion in the 100 MWe boiler using mixed FGR, the reduced volumetric flow rates in the oxy-coal cases lowered the swirl strength of the burners. This stretched the flames and moved the high temperature region farther to the downstream. Due to this reason, the case with 30% O{sub 2} in the oxidizers achieved a WRHF close to that of air-coal combustion, although its adiabatic flame temperature (T{sub af}) and WHRF predicted in the simplified hexahedral furnace was 103 K and 10% higher, respectively. Therefore, the combustion characteristics and temperature distribution significantly influences the WRHF, which should be assessed to determine the ideal operating conditions of oxy- coal combustion. The choice of the weighted sum of gray gases model (WSGGM) was not critical in the large coal-fired boiler.

  6. Combustion Characteristics Of Agricultural Waste-Coal Char Blends

    International Nuclear Information System (INIS)

    Akpabio, I. O; Danbature W

    2002-01-01

    Shortage of petroleum products, depletion of huge forest reserves for fuel purposes with its attendant erosion problems and other environmental considerations have necessitated investigations into other sources of fuel. In this wise. a set of seven types of briquettes were prepared from agricultural wastes such as rice husk, maize husk and saw-dust and blends of carbonized coal char. Strong and well-formed briquettes with good combustion characteristics were obtained. The results obtained from water boiling tests show that 2 litres of water could be boiled just under 23 minutes. Moisture contents and strengths of these briquettes were also determined and are discussed. The results show that wastes could be converted into useful fuel

  7. Study on the combustion characteristics of a premixed combustion system with exhaust gas recirculation

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    The boiler of a premixed combustion system with EGR (exhaust gas recirculation) is investigated to explore the potential for increasing thermal efficiency and lowering pollutant emissions. To achieve this purpose, a thermodynamic analysis is performed to predict the effect of EGR on the thermodynamic efficiency for various equivalence ratios. Experiments of a preheated air condensing boiler with EGR were conducted to measure the changes in the thermal efficiency and the characteristics of the pollutant emission. Finally, a 1-D premixed code was calculated to understand the effect of the EGR method on the NO reduction mechanism. The results of the thermodynamic analysis show that the thermodynamic efficiency is not changed because the temperature and the amount of the exhaust gas are unchanged, even though the EGR method is implemented in the system. However, when the EGR method is used with an equivalence ratio near 1.00, it is experimentally verified that the thermal efficiency increases and the NO x concentration decreases. Based on the results from numerical calculations, it is shown that the NO production rates of N + O 2 ↔ NO + O and N + OH ↔ NO + H are remarkably changed due to the decrease in the flame temperature and the NO mole fraction is decreased. - Highlights: • Premixed combustion system with EGR is studied for a high efficiency and low NO x . • All research is performed with various EGR and equivalence ratios. • It verified that efficiency increases and the NO x emission decreases with EGR method. • NO production rates are remarkably changed by N + O 2 ↔ NO + O and N + OH ↔ NO + H with EGR

  8. Combustion

    CERN Document Server

    Glassman, Irvin

    2008-01-01

    Combustion Engineering, a topic generally taught at the upper undergraduate and graduate level in most mechanical engineering programs, and many chemical engineering programs, is the study of rapid energy and mass transfer usually through the common physical phenomena of flame oxidation. It covers the physics and chemistry of this process and the engineering applications-from the generation of power such as the internal combustion automobile engine to the gas turbine engine. Renewed concerns about energy efficiency and fuel costs, along with continued concerns over toxic and particulate emissions have kept the interest in this vital area of engineering high and brought about new developments in both fundamental knowledge of flame and combustion physics as well as new technologies for flame and fuel control. *New chapter on new combustion concepts and technologies, including discussion on nanotechnology as related to combustion, as well as microgravity combustion, microcombustion, and catalytic combustion-all ...

  9. Combustion characteristics of nanoaluminum, liquid water, and hydrogen peroxide mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Sabourin, J.L.; Yetter, R.A. [The Pennsylvania State University, Department of Mechanical and Nuclear Engineering, University Park, PA 16801 (United States); Risha, G.A. [The Pennsylvania State University, Division of Business and Engineering, Altoona, PA 16601 (United States); Son, S.F. [Purdue University, School of Mechanical Engineering, West Lafayette, IN 47907 (United States); Tappan, B.C. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2008-08-15

    An experimental investigation of the combustion characteristics of nanoaluminum (nAl), liquid water (H{sub 2}O{sub (l)}), and hydrogen peroxide (H{sub 2}O{sub 2}) mixtures has been conducted. Linear and mass-burning rates as functions of pressure, equivalence ratio ({phi}), and concentration of H{sub 2}O{sub 2} in H{sub 2}O{sub (l)} oxidizing solution are reported. Steady-state burning rates were obtained at room temperature using a windowed pressure vessel over an initial pressure range of 0.24 to 12.4 MPa in argon, using average nAl particle diameters of 38 nm, {phi} from 0.5 to 1.3, and H{sub 2}O{sub 2} concentrations between 0 and 32% by mass. At a nominal pressure of 3.65 MPa, under stoichiometric conditions, mass-burning rates per unit area ranged between 6.93 g/cm{sup 2} s (0% H{sub 2}O{sub 2}) and 37.04 g/cm{sup 2} s (32% H{sub 2}O{sub 2}), which corresponded to linear burning rates of 9.58 and 58.2 cm/s, respectively. Burning rate pressure exponents of 0.44 and 0.38 were found for stoichiometric mixtures at room temperature containing 10 and 25% H{sub 2}O{sub 2}, respectively, up to 5 MPa. Burning rates are reduced above {proportional_to}5 MPa due to the pressurization of interstitial spaces of the packed reactant mixture with argon gas, diluting the fuel and oxidizer mixture. Mass burning rates were not measured above {proportional_to}32% H{sub 2}O{sub 2} due to an anomalous burning phenomena, which caused overpressurization within the quartz sample holder, leading to tube rupture. High-speed imaging displayed fingering or jetting ahead of the normal flame front. Localized pressure measurements were taken along the sample length, determining that the combustion process proceeded as a normal deflagration prior to tube rupture, without significant pressure buildup within the tube. In addition to burning rates, chemical efficiencies of the combustion reaction were determined to be within approximately 10% of the theoretical maximum under all conditions

  10. Numerical analysis on the combustion and emission characteristics of forced swirl combustion system for DI diesel engines

    International Nuclear Information System (INIS)

    Su, LiWang; Li, XiangRong; Zhang, Zheng; Liu, FuShui

    2014-01-01

    Highlights: • A new combustion system named FSCS for DI diesel engines was proposed. • Fuel/air mixture formation was improved for the application of FSCS. • The FSCS showed a good performance on emission characteristics. - Abstract: To optimize the fuel/air mixture formation and improve the environmental effect of direct injection (DI) diesel engines, a new forced swirl combustion system (FSCS) was proposed concerned on unique design of the geometric shape of the combustion chamber. Numerical simulation was conducted to verify the combustion and emission characteristics of the engines with FSCS. The fuel/air diffusion, in-cylinder velocity distribution, turbulent kinetic energy and in-cylinder temperature distribution were analyzed and the results shown that the FSCS can increase the area of fuel/air diffusion and improve the combustion. The diesel engine with FSCS also shown excellent performance on emission. At full load condition, the soot emission was significantly reduced for the improved fuel/air mixture formation. There are slightly difference for the soot and NO emission between the FSCS and the traditional omega combustion system at lower load for the short penetration of the fuel spray

  11. Combustion characteristics of SMX and SMX based propellants

    Science.gov (United States)

    Reese, David A.

    This work investigates the combustion of the new solid nitrate ester 2,3-hydroxymethyl-2,3-dinitro-1,4-butanediol tetranitrate (SMX, C6H 8N6O16). SMX was synthesized for the first time in 2008. It has a melting point of 85 °C and oxygen balance of 0% to CO 2, allowing it to be used as an energetic additive or oxidizer in solid propellants. In addition to its neat combustion characteristics, this work also explores the use of SMX as a potential replacement for nitroglycerin (NG) in double base gun propellants and as a replacement for ammonium perchlorate in composite rocket propellants. The physical properties, sensitivity characteristics, and combustion behaviors of neat SMX were investigated. Its combustion is stable at pressures of up to at least 27.5 MPa (n = 0.81). The observed flame structure is nearly identical to that of other double base propellant ingredients, with a primary flame attached at the surface, a thick isothermal dark zone, and a luminous secondary flame wherein final recombination reactions occur. As a result, the burning rate and primary flame structure can be modeled using existing one-dimensional steady state techniques. A zero gas-phase activation energy approximation results in a good fit between modeled and observed behavior. Additionally, SMX was considered as a replacement for nitroglycerin in a double base propellant. Thermochemical calculations indicate improved performance when compared with the common double base propellant JA2 at SMX loadings above 40 wt-%. Also, since SMX is a room temperature solid, migration may be avoided. Like other nitrate esters, SMX is susceptible to decomposition over long-term storage due to the presence of excess acid in the crystals; the addition of stabilizers (e.g., derivatives of urea) during synthesis should be sufficient to prevent this. the addition of Both unplasticized and plasticized propellants were formulated. Thermal analysis of unplasticized propellant showed a distinct melt

  12. Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine

    KAUST Repository

    Kozarac, Darko; Taritas, Ivan; Vuilleumier, David; Saxena, Samveg; Dibble, Robert W.

    2016-01-01

    The use of highly reactive fuel as an ignition promoter enables operation of biogas fueled homogeneous charge compression ignition (HCCI) engine at low intake temperatures with practical control of combustion phasing. In order to gain some insight into this operation mode the influence of addition of n-heptane on combustion, performance, emissions and control of combustion phasing of a biogas fueled HCCI engine is experimentally researched and presented in this paper. Additionally, the performance analysis of the practical engine solution for such operation is estimated by using the numerical simulation of entire engine. The results showed that the introduction of highly reactive fuel results with a significant change in operating conditions and with a change in optimum combustion phasing. The addition of n-heptane resulted in lower nitrogen oxides and increased carbon monoxide emissions, while the unburned hydrocarbons emissions were strongly influenced by combustion phasing and at optimal conditions are lowered compared to pure biogas operation. The results also showed a practical operation range for strategies that use equivalence ratio as a control of load. Simulation results showed that the difference in performance between pure biogas and n-heptane/biogas operation is even greater when the practical engine solution is taken into account.

  13. Experimental and numerical analysis of the performance and exhaust gas emissions of a biogas/n-heptane fueled HCCI engine

    KAUST Repository

    Kozarac, Darko

    2016-09-12

    The use of highly reactive fuel as an ignition promoter enables operation of biogas fueled homogeneous charge compression ignition (HCCI) engine at low intake temperatures with practical control of combustion phasing. In order to gain some insight into this operation mode the influence of addition of n-heptane on combustion, performance, emissions and control of combustion phasing of a biogas fueled HCCI engine is experimentally researched and presented in this paper. Additionally, the performance analysis of the practical engine solution for such operation is estimated by using the numerical simulation of entire engine. The results showed that the introduction of highly reactive fuel results with a significant change in operating conditions and with a change in optimum combustion phasing. The addition of n-heptane resulted in lower nitrogen oxides and increased carbon monoxide emissions, while the unburned hydrocarbons emissions were strongly influenced by combustion phasing and at optimal conditions are lowered compared to pure biogas operation. The results also showed a practical operation range for strategies that use equivalence ratio as a control of load. Simulation results showed that the difference in performance between pure biogas and n-heptane/biogas operation is even greater when the practical engine solution is taken into account.

  14. Combustion

    CERN Document Server

    Glassman, Irvin

    1997-01-01

    This Third Edition of Glassman's classic text clearly defines the role of chemistry, physics, and fluid mechanics as applied to the complex topic of combustion. Glassman's insightful introductory text emphasizes underlying physical and chemical principles, and encompasses engine technology, fire safety, materials synthesis, detonation phenomena, hydrocarbon fuel oxidation mechanisms, and environmental considerations. Combustion has been rewritten to integrate the text, figures, and appendixes, detailing available combustion codes, making it not only an excellent introductory text but also an important reference source for professionals in the field. Key Features * Explains complex combustion phenomena with physical insight rather than extensive mathematics * Clarifies postulates in the text using extensive computational results in figures * Lists modern combustion programs indicating usage and availability * Relates combustion concepts to practical applications.

  15. Using biofuel tracers to study alternative combustion regimes

    International Nuclear Information System (INIS)

    Mack, J.H.; Flowers, D.L.; Buchholz, B.A.; Dibble, R.W.

    2007-01-01

    Interest in the use of alternative fuels and engines is increasing as the price of petroleum climbs. The inherently higher efficiency of Diesel engines has led to increased adoption of Diesels in Europe, capturing approximately 40% of the new passenger car market. Unfortunately, lower CO 2 emissions are countered with higher nitrogen oxides (NO x ) and particulate matter (PM) emissions and higher noise. Adding oxygenated compounds to the fuel helps reduce PM emissions. However, relying on fuel alone to reduce PM is unrealistic due to economic constraints and difficult due to the emerging PM standards. Keeping peak combustion temperature below 1700 K inhibits NO x formation. Altering the combustion regime to burn at temperatures below the NO x threshold and accept a wide variety of fuels seems like a promising alternative for future engines. Homogeneous charge compression ignition (HCCI) is a possible solution. Fuel and air are well mixed prior to intake into a cylinder (homogeneous charge) and ignition occurs by compression of the fuel-air mixture by the piston. HCCI is rapid and relatively cool, producing little NO x and PM. Unfortunately, it is hard to control since HCCI is initiated by temperature and pressure instead of a spark or direct fuel injection. We investigate biofuel HCCI combustion, and use intrinsically labeled biofuels as tracers of HCCI combustion. Data from tracer experiments are used to improve our combustion modeling

  16. Investigation of spray characteristics from a low-pressure common rail injector for use in a homogeneous charge compression ignition engine

    Science.gov (United States)

    Lee, Kihyung; Reitz, Rolf D.

    2004-03-01

    Homogeneous charge compression ignition (HCCI) combustion provides extremely low levels of pollutant emissions, and thus is an attractive alternative for future IC engines. In order to achieve a uniform mixture distribution within the engine cylinder, the characteristics of the fuel spray play an important role in the HCCI engine concept. It is well known that high-pressure common rail injection systems, mainly used in diesel engines, achieve poor mixture formation because of the possibility of direct fuel impingement on the combustion chamber surfaces. This paper describes spray characteristics of a low-pressure common rail injector which is intended for use in an HCCI engine. Optical diagnostics including laser diffraction and phase Doppler methods, and high-speed camera photography, were applied to measure the spray drop diameter and to investigate the spray development process. The drop sizing results of the laser diffraction method were compared with those of a phase Doppler particle analyser (PDPA) to validate the accuracy of the experiments. In addition, the effect of fuel properties on the spray characteristics was investigated using n-heptane, Stoddard solvent (gasoline surrogate) and diesel fuel because HCCI combustion is sensitive to the fuel composition. The results show that the injector forms a hollow-cone sheet spray rather than a liquid jet, and the atomization efficiency is high (small droplets are produced). The droplet SMD ranged from 15 to 30 µm. The spray break-up characteristics were found to depend on the fuel properties. The break-up time for n-heptane is shorter and the drop SMD is smaller than that of Stoddard solvent and diesel fuel.

  17. Study on Combustion Characteristics and Propelling Projectile Motion Process of Bulk-Loaded Liquid Propellant

    Science.gov (United States)

    Xue, Xiaochun; Yu, Yonggang; Mang, Shanshan

    2017-07-01

    Data are presented showing that the problem of gas-liquid interaction instability is an important subject in the combustion and the propellant projectile motion process of a bulk-loaded liquid propellant gun (BLPG). The instabilities themselves arise from the sources, including fluid motion, to form a combustion gas cavity called Taylor cavity, fluid turbulence and breakup caused by liquid motion relative to the combustion chamber walls, and liquid surface breakup arising from a velocity mismatch on the gas-liquid interface. Typically, small disturbances that arise early in the BLPG combustion interior ballistic cycle can become amplified in the absence of burn rate limiting characteristics. Herein, significant attention has been given to developing and emphasizing the need for better combustion repeatability in the BLPG. Based on this goal, the concept of using different geometries of the combustion chamber is introduced and the concept of using a stepped-wall structure on the combustion chamber itself as a useful means of exerting boundary control on the combustion evolution to thus restrain the combustion instability has been verified experimentally in this work. Moreover, based on this background, the numerical simulation is devoted to a special combustion issue under transient high-pressure and high-temperature conditions, namely, studying the combustion mechanism in a stepped-wall combustion chamber with full monopropellant on one end that is stationary and the other end can move at high speed. The numerical results also show that the burning surface of the liquid propellant can be defined geometrically and combustion is well behaved as ignition and combustion progressivity are in a suitable range during each stage in this combustion chamber with a stepped-wall structure.

  18. The Low Load Limit of Gasoline Partially Premixed Combustion (PPC) - Experiments in a Light Duty Diesel Engine

    OpenAIRE

    Borgqvist, Patrick

    2013-01-01

    The decreasing oil supply, more stringent pollutant legislations and strong focus on decreasing carbon dioxide emissions drives the research of more efficient and clean combustion engines. One such combustion engine concept is Homogeneous Charge Compression Ignition (HCCI) which potentially achieves high efficiency and low NOx and soot emissions. One practical realization of HCCI in SI engines is to use a variable valve train to trap hot residual gases in order to increase the temperature of ...

  19. Combustion characteristics of lemongrass (Cymbopogon flexuosus) oil in a partial premixed charge compression ignition engine

    OpenAIRE

    Avinash Alagumalai

    2015-01-01

    Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17....

  20. Effects of exhaust gas recirculation on the thermal efficiency and combustion characteristics for premixed combustion system

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Kum, Sung-Min; Lee, Chang-Eon; Lee, Seungro

    2013-01-01

    In this research, a boiler in a premixed combustion system used to achieve exhaust gas recirculation was investigated as a way to achieve high thermal efficiencies and low pollutant emissions. The effects of various exhaust gas recirculation (EGR) ratios, equivalence ratios and boiler capacities on thermal efficiency, NO x and CO emissions and the flame behavior on the burner surface were examined both experimentally and numerically. The results of the experiments showed that when EGR was used, the NO x and CO concentrations decreased and the thermal efficiency increased. In the case of a 15% EGR ratio at an equivalence ratio of 0.90, NO x concentrations were found to be smaller than for the current operating condition of the boiler, and the thermal efficiency was approximately 4.7% higher. However, unlike NO x concentrations, although the EGR ratio was increased to 20% at an equivalence ratio of 0.90, the CO concentration was higher than in the current operating condition of the boiler. From the viewpoint of burner safety, the red glow on the burner surface was noticeably reduced when EGR was used. These results confirmed that the EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety. -- Highlights: ► The premixed boiler system applied EGR was investigated to achieve high thermal efficiencies and low pollutant emissions. ► Thermal efficiency and emission characteristics were examined with EGR ratios, equivalence ratios and boiler capacities. ► EGR method is advantageous from the standpoint of reducing emission concentrations and ensuring burner safety.

  1. DNS Study of the Ignition of n-Heptane Fuel Spray under HCCI Conditions

    Science.gov (United States)

    Wang, Yunliang; Rutland, Christopher J.

    2004-11-01

    Direct numerical simulations are carried out to investigate the mixing and auto-ignition processes of n-heptane fuel spray in a turbulent field using a skeletal chemistry mechanism with 44 species and 112 reactions. For the solution of the carrier gas fluid, we use the Eulerian method, while for the fuel spray, the Lagrangian method is used. We use an eighth-order finite difference scheme to calculate spacial derivatives and a fourth-order Runge-Kutta scheme for the time integration. The initial gas temperature is 926 K and the initial gas pressure is 30 atmospheres. The initial global equivalence ratio based on the fuel concentration is around 0.4. The initial droplet diameter is 60 macrons and the droplet temperature is 300 K. Evolutions of averaged temperature, species mass fraction, heat release and reaction rate are presented. Contours of temperature and species mass fractions are presented. The objective is to understand the mechanism of ignition under Homogeneous Charged Compression Ignition (HCCI) conditions, aiming at providing some useful information of HCCI combustion, which is one of the critical issues to be resolved.

  2. Experimental Investigation into the Combustion Characteristics of Propane Hydrates in Porous Media

    Directory of Open Access Journals (Sweden)

    Xiang-Ru Chen

    2015-02-01

    Full Text Available The combustion characteristics of both pure propane hydrates and the mixtures of hydrates and quartz sands were investigated by combustion experiments. The flame propagation, flame appearance, burning time and temperature in different hydrate layers were studied. For pure propane hydrate combustion, the initial flame falls in the “premixed” category. The flame propagates very rapidly, mainly as a result of burnt gas expansion. The flame finally self-extinguishes with some proportion of hydrates remaining unburned. For the hydrate-sand mixture combustion, the flame takes the form of many tiny discontinuous flames appearing and disappearing at different locations. The burn lasts for a much shorter amount of time than pure hydrate combustion. High porosity and high hydrate saturation is beneficial to the combustion. The hydrate combustion is the combustion of propane gas resulting from the dissociation of the hydrates. In both combustion test scenarios, the hydrate-dissociated water plays a key role in the fire extinction, because it is the main resistance that restrains the heat transfer from the flame to the hydrates and that prevents the hydrate-dissociated gas from releasing into the combustion zone.

  3. Study on Characteristics of Co-firing Ammonia/Methane Fuels under Oxygen Enriched Combustion Conditions

    Science.gov (United States)

    Xiao, Hua; Wang, Zhaolin; Valera-Medina, Agustin; Bowen, Philip J.

    2018-06-01

    Having a background of utilising ammonia as an alternative fuel for power generation, exploring the feasibility of co-firing ammonia with methane is proposed to use ammonia to substitute conventional natural gas. However, improvement of the combustion of such fuels can be achieved using conditions that enable an increase of oxygenation, thus fomenting the combustion process of a slower reactive molecule as ammonia. Therefore, the present study looks at oxygen enriched combustion technologies, a proposed concept to improve the performance of ammonia/methane combustion. To investigate the characteristics of ammonia/methane combustion under oxygen enriched conditions, adiabatic burning velocity and burner stabilized laminar flame emissions were studied. Simulation results show that the oxygen enriched method can help to significantly enhance the propagation of ammonia/methane combustion without changing the emission level, which would be quite promising for the design of systems using this fuel for practical applications. Furthermore, to produce low computational-cost flame chemistry for detailed numerical analyses for future combustion studies, three reduced combustion mechanisms of the well-known Konnov's mechanism were compared in ammonia/methane flame simulations under practical gas turbine combustor conditions. Results show that the reduced reaction mechanisms can provide good results for further analyses of oxygen enriched combustion of ammonia/methane. The results obtained in this study also allow gas turbine designers and modellers to choose the most suitable mechanism for further combustion studies and development.

  4. Combustion and exhaust emission characteristics of a dual fuel compression ignition engine operated with pilot Diesel fuel and natural gas

    International Nuclear Information System (INIS)

    Papagiannakis, R.G.; Hountalas, D.T.

    2004-01-01

    Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines, i.e. they use conventional Diesel fuel and a gaseous fuel as well. This technology is currently reintroduced, associated with efforts to overcome various difficulties of HCCI engines, using various fuels. The use of natural gas as an alternative fuel is a promising solution. The potential benefits of using natural gas in Diesel engines are both economical and environmental. The high autoignition temperature of natural gas is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under dual fuel conditions. The primary amount of fuel is the gaseous one, which is ignited by a pilot Diesel liquid injection. Comparative results are given for various engine speeds and loads for conventional Diesel and dual fuel operation, revealing the effect of dual fuel combustion on engine performance and exhaust emissions

  5. Thermogravimetric investigation on characteristic of biomass combustion under the effect of organic calcium compounds.

    Science.gov (United States)

    Zhang, Lihui; Duan, Feng; Huang, Yaji

    2015-01-01

    Experiments were conducted in a thermogravimetric analyzer to investigate thermal behavior of different organic calcium compounds (OCCs) and its blended fuels with three kinds of biomass. The effectiveness of synthesized method for OCC was assessed by the pyrolysis test. Effect of the mole ratio of calcium to sulfur on co-combustion characteristics was studied. Results indicated that preparation method of modified calcium acetate (MCA) had high precision and accuracy. Co-combustion characteristic of OCCs blended with biomass was controlled by OCCs' additive amount and the content of volatile matter which is mainly composed of small hydrocarbon molecules. Combustion performance indexes for peanut shell and wheat straw impregnated by OCCs were improved, however, an inverse trend was found for rice husk because of lower additive amount of OCCs. The blended fuel show higher combustion performance indexes compared with combustion of individual biomass, and these indexes decrease with increases of Ca/S ratio. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. NOx emissions and combustibility characteristics of coal blends

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Arias, B.; Pis, J.J. [CSIC, Instituto Nacional del Carbon, Oviedo (Spain). Dept. of Energy and Environment

    2001-07-01

    In this work, a series of coals with different origin and rank were blended and several aspects of the resultant blends were studied. This included determination of the grindability of individual coals and blends by means of the Hardgrove Grindability Index (HGI), and temperature programmed combustion test, which were carried out in a thermogravimetric analyser (TG) coupled to a quadruple mass spectrometer (MS) for evolved gas analysis. Special attention was paid to the combustibility parameters and the NO emissions during blends combustion. It was found that while some coal blends present interaction between the individual coals, others do not. This behaviour was assumed to be due to the differences in coal structure and functional groups composition. 18 refs., 11 figs., 2 tabs.

  7. Numerical study of influence of biofuels on the combustion characteristics and performance of aircraft engine system

    International Nuclear Information System (INIS)

    Zhou, Li; Liu, Zeng-wen; Wang, Zhan-xue

    2015-01-01

    The atomization and combustion flowfield of the combustion chamber with swirl-nozzle were simulated using different biofuels; the thermodynamic cycle of the aircraft engine system were also analyzed, influences of biofuels on the combustion characteristics and performance of aircraft engine system were explored. Results show that viscosity and caloric value are key factors affecting the atomization and combustion characteristics of biofuels, and then dominate the distribution of the temperature and NO concentration. Due to the characteristic of low viscosity and low caloric value for biofuels adopted, the biofuels accumulate near the head of combustion chamber, and the corresponding NO emission is lower than that it has for conventional kerosene. When biofuels with low caloric value are used under the operation condition which is same as the condition for the conventional kerosene, lower turbine inlet temperature, lower thrust and higher specific fuel consumption would be achieved for the aircraft engine. - Highlights: • Influences of biofuels properties on combustion characteristic are explored. • Effects of biofuels on cycle parameters of aircraft engine are discussed. • Viscosity and caloric value are key factors affecting combustion of biofuels. • NO emission becomes lower when biofuels with low caloric value is adopted. • The performance of aircraft engine becomes worse for biofuels with low caloric value.

  8. Comprehensive investigation of process characteristics for oxy-steam combustion power plants

    International Nuclear Information System (INIS)

    Jin, Bo; Zhao, Haibo; Zou, Chun; Zheng, Chuguang

    2015-01-01

    Highlights: • Oxy-steam combustion exhibits better performance than oxy-CO 2 combustion. • Cost of electricity in oxy-steam combustion is 6.62% less than oxy-CO 2 combustion. • The increase of oxygen concentration in oxidant can improve its system performance. • The decrease of excess oxygen coefficient can be helpful for its system performance. • Integration with solar technology can enhance its thermodynamic performance. - Abstract: Oxy-steam combustion, as an alternative option of oxy-fuel combustion technology, is considered as a promising CO 2 capture technology for restraining CO 2 emissions from power plants. To attain its comprehensive process characteristics, process simulation, thermodynamic assessment, and sensitivity analysis for oxy-steam combustion pulverized-coal-fired power plants are investigated whilst its corresponding CO 2 /O 2 recycled combustion (oxy-CO 2 combustion) power plant is served as the base case for comparison. Techno-economic evaluation and integration with solar parabolic trough collectors are also discussed to justify its economic feasibility and improve its thermodynamic performance further, respectively. It is found that oxy-steam combustion exhibits better performance than oxy-CO 2 combustion on both thermodynamic and economic aspects, in which the cost of electricity decreases about 6.62% whilst the net efficiency and exergy efficiency increase about 0.90 and 1.01 percentage points, respectively. The increment of oxygen concentration in oxidant (20–45 mol.%) and decrease of excess oxygen coefficient (1.01–1.09) in a certain range are favorable for improving oxy-steam combustion system performance. Moreover, its thermodynamic performance can be improved when considering solar parabolic trough collectors for heating recycled water, even though its cost of electricity increases about 2 $/(MW h)

  9. Combustion and operating characteristics of spark-ignition engines

    Science.gov (United States)

    Heywood, J. B.; Keck, J. C.; Beretta, G. P.; Watts, P. A.

    1980-01-01

    The spark-ignition engine turbulent flame propagation process was investigated. Then, using a spark-ignition engine cycle simulation and combustion model, the impact of turbocharging and heat transfer variations or engine power, efficiency, and NO sub x emissions was examined.

  10. Thermodynamic energy and exergy analysis of three different engine combustion regimes

    International Nuclear Information System (INIS)

    Li, Yaopeng; Jia, Ming; Chang, Yachao; Kokjohn, Sage L.; Reitz, Rolf D.

    2016-01-01

    Highlights: • Energy and exergy distributions of three different combustion regimes are studied. • CDC demonstrates the highest utilization efficiency of heat transfer and exhaust. • HCCI achieves the highest energy and exergy efficiencies over CDC and RCCI. • HCCI and RCCI demonstrate lower exergy destruction than CDC. • Combustion temperature, rate, duration and regime affect exergy destruction. - Abstract: Multi-dimensional models were coupled with a detailed chemical mechanism to investigate the energy and exergy distributions of three different combustion regimes in internal combustion engines. The results indicate that the 50% heat release point (CA50) considerably affects fuel efficiency and ringing intensity (RI), in which RI is used to quantify the knock level. Moreover, the burn duration from the 10% heat release point (CA10) to CA50 dominates RI, and the position of 90% heat release point (CA90) affects fuel efficiency. The heat transfer losses of conventional diesel combustion (CDC) strongly depend on the local temperature gradient, while it is closely related to the heat transfer area for homogeneous charge compression ignition (HCCI) and reactivity controlled compression ignition (RCCI). Among the three combustion regimes, CDC has the largest utilization efficiency for heat transfer and exhaust energy due to its higher temperature in the heat transfer layer and higher exhaust pressure and temperature. The utilization efficiency of heat transfer and exhaust in RCCI is less affected by the variation of CA50 compared to those in CDC and HCCI. Exergy destruction is closely related to the homogeneity of in-cylinder temperature and equivalence ratio during combustion process, the combustion temperature, the chemical reaction rate, and the combustion duration. Under the combined effect, HCCI and RCCI demonstrate lower exergy destruction than CDC at the same load. Overall, the variations of the exergy distribution for the three combustion regimes

  11. Influence of the microwave irradiation dewatering on the combustion characteristics of Chinese brown coals

    Science.gov (United States)

    Ge, Lichao; Feng, Hongcui; Xu, Chang; Zhang, Yanwei; Wang, Zhihua

    2018-02-01

    This study investigates the influence of microwave irradiation on coal composition, pore structure, coal rank, and combustion characteristics of typical brown coals in China. Results show that the upgrading process significantly decreased the inherent moisture, and increased calorific value and fixed carbon content. After upgrading, pore distribution extended to micropore region, oxygen functional groups were reduced and destroyed, and the apparent aromaticity increased suggesting an improvement in the coal rank. Based on thermogravimetric analysis, the combustion processes of upgraded coals were delayed toward the high temperature region, and the temperatures of ignition, peak and burnout increased. Based on the average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and a high rank coal. In ignition and burnout segments, the activation energy increased but exhibited a decrease in the combustion stage.

  12. The pyrolysis and combustion characteristics of five typical biomass from Tibet

    Energy Technology Data Exchange (ETDEWEB)

    Dong, C.Q.; Shan, L.; Yang, Y.P.; Zhang, J.J. [Ministry of Education, Beijing (China). Key Laboratory of Condition Monitoring and Control for Power Plant Equipment; North China Electric Power Univ., Beijing (China). Key Laboratory of Security and Clean Energy Technology

    2008-07-01

    Thermogravimetric (TG) and differential thermal gravimetric (DTG) methods were used to conduct pyrolysis and combustion tests of winter wheat, highland barley, sawdust, cattle manure, and sheep manure from Tibet. The aim of the study was to determine the combustion characteristics of biomass grown in regions with lower levels of atmospheric oxygen. A reaction kinetic model was used to determine kinetic parameters of the biomass samples. The study showed that oxygen concentrations did not influence activation energy. Combustion efficiency was influenced by the nitrogen dilute effect located in Tibet. The sawdust combustion analysis demonstrated that heat losses from flue gases were approximately 5 per cent higher when oxygen levels were 11 per cent, than when oxygen levels were 21 per cent. It was concluded that chemical looping processes can be used to improve efficiency and reduce the environmental impacts associated with biomass combustion in Tibet. 17 refs., 3 tabs., 6 figs.

  13. Development of High Efficiency Clean Combustion Engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines

    Energy Technology Data Exchange (ETDEWEB)

    Marriott, Craig; Gonzalez, Manual; Russell, Durrett

    2011-06-30

    This report summarizes activities related to the revised STATEMENT OF PROJECT OBJECTIVES (SOPO) dated June 2010 for the Development of High-Efficiency Clean Combustion engine Designs for Spark-Ignition and Compression-Ignition Internal Combustion Engines (COOPERATIVE AGREEMENT NUMBER DE-FC26-05NT42415) project. In both the spark- (SI) and compression-ignition (CI) development activities covered in this program, the goal was to develop potential production-viable internal combustion engine system technologies that both reduce fuel consumption and simultaneously met exhaust emission targets. To be production-viable, engine technologies were also evaluated to determine if they would meet customer expectations of refinement in terms of noise, vibration, performance, driveability, etc. in addition to having an attractive business case and value. Prior to this activity, only proprietary theoretical / laboratory knowledge existed on the combustion technologies explored The research reported here expands and develops this knowledge to determine series-production viability. Significant SI and CI engine development occurred during this program within General Motors, LLC over more than five years. In the SI program, several engines were designed and developed that used both a relatively simple multi-lift valve train system and a Fully Flexible Valve Actuation (FFVA) system to enable a Homogeneous Charge Compression Ignition (HCCI) combustion process. Many technical challenges, which were unknown at the start of this program, were identified and systematically resolved through analysis, test and development. This report documents the challenges and solutions for each SOPO deliverable. As a result of the project activities, the production viability of the developed clean combustion technologies has been determined. At this time, HCCI combustion for SI engines is not considered production-viable for several reasons. HCCI combustion is excessively sensitive to control variables

  14. NO emission characteristics of superfine pulverized coal combustion in the O2/CO2 atmosphere

    International Nuclear Information System (INIS)

    Liu, Jiaxun; Gao, Shan; Jiang, Xiumin; Shen, Jun; Zhang, Hai

    2014-01-01

    Highlights: • Superfine pulverized coal combustion in O 2 /CO 2 atmosphere is a new promising technology. • NO emissions of superfine pulverized coal combustion in O 2 /CO 2 mixture were focused. • Coal particle sizes have significant effects on NO emissions in O 2 /CO 2 combustion. - Abstract: The combination of O 2 /CO 2 combustion and superfine pulverized coal combustion technology can make full use of their respective merits, and solve certain inherent disadvantages of each technology. The technology of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere is easy and feasible to be retrofitted with few reconstructions on the existing devices. It will become a useful and promising method in the future. In this paper, a one-dimensional drop-tube furnace system was adopted to study the NO emission characteristics of superfine pulverized coal combustion in the O 2 /CO 2 atmosphere. The effects of coal particle size, coal quality, furnace temperature, stoichiometric ratio, etc. were analyzed. It is important to note that coal particle sizes have significant influence on NO emissions in the O 2 /CO 2 combustion. For the homogeneous NO reduction, smaller coal particles can inhibit the homogeneous NO formations under fuel-rich combustion conditions, while it becomes disadvantageous for fuel-lean combustion. However, under any conditions, heterogeneous reduction is always more significant for smaller coal particle sizes, which have smoother pore surfaces and simpler pore structures. The results from this fundamental research will provide technical support for better understanding and developing this new combustion process

  15. Mechanism of influence water vapor on combustion characteristics of propane-air mixture

    Science.gov (United States)

    Larionov, V. M.; Mitrofanov, G. A.; Sachovskii, A. V.; Kozar, N. K.

    2016-01-01

    The article discusses the results of an experimental study of the effect of water vapor at the flame temperature. Propane-butane mixture with air is burning on a modified Bunsen burner. Steam temperature was varied from 180 to 260 degrees. Combustion parameters changed by steam temperature and its proportion in the mixture with the fuel. The fuel-air mixture is burned in the excess air ratio of 0.1. It has been established that the injection of steam changes the characteristics of combustion fuel-air mixture and increase the combustion temperature. The concentration of CO in the combustion products is substantially reduced. Raising the temperature in the combustion zone is associated with increased enthalpy of the fuel by the added steam enthalpy. Reducing the concentration of CO is caused by decrease in the average temperature in the combustion zone by applying steam. Concentration of active hydrogen radicals and oxygen increases in the combustion zone. That has a positive effect on the process of combustion.

  16. Characteristics of fundamental combustion and NOx emission using various rank coals.

    Science.gov (United States)

    Kim, Sung Su; Kang, Youn Suk; Lee, Hyun Dong; Kim, Jae-Kwan; Hong, Sung Chang

    2011-03-01

    Eight types of coals of different rank were selected and their fundamental combustion characteristics were examined along with the conversion of volatile nitrogen (N) to nitrogen oxides (NOx)/fuel N to NOx. The activation energy, onset temperature, and burnout temperature were obtained from the differential thermogravimetry curve and Arrhenius plot, which were derived through thermo-gravimetric analysis. In addition, to derive the combustion of volatile N to NOx/fuel N to NOx, the coal sample, which was pretreated at various temperatures, was burned, and the results were compared with previously derived fundamental combustion characteristics. The authors' experimental results confirmed that coal rank was highly correlated with the combustion of volatile N to NOx/fuel N to NOx.

  17. Combustion characteristics and influential factors of isooctane active-thermal atmosphere combustion assisted by two-stage reaction of n-heptane

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Xingcai; Ji, Libin; Ma, Junjun; Zhou, Xiaoxin; Huang, Zhen [Key Lab. for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, 200240 Shanghai (China)

    2011-02-15

    This paper presents an experimental study on the isooctane active-thermal atmosphere combustion (ATAC) which is assisted by two-stage reaction of n-heptane. The active-thermal atmosphere is created by low- and high-temperature reactions of n-heptane which is injected at intake port, and isooctane is directly injected into combustion chamber near the top dead center. The effects of isooctane injection timing, active-thermal atmosphere intensity, overall equivalence ratio, and premixed ratio on combustion characteristics and emissions are investigated. The experimental results reveal that, the isooctane ignition and combustion can be classified to thermal atmosphere combustion, active atmosphere combustion, and active-thermal atmosphere combustion respectively according to the extent of n-heptane oxidation as well as effects of isooctane quenching and charge cooling. n-Heptane equivalence ratio, isooctane equivalence ratio and isooctane delivery advance angle are major control parameters. In one combustion cycle, the isooctane ignited and burned after those of n-heptane, and then this combustion phenomenon can also be named as dual-fuel sequential combustion (DFSC). The ignition timing of the overall combustion event is mainly determined by n-heptane equivalence ratio and can be controlled in flexibility by simultaneously adjusting isooctane equivalence ratio. The isooctane ignition regime, overall thermal efficiency, and NO{sub x} emissions show strong sensitivity to the fuel delivery advance angle between 20 CA BTDC and 25 CA BTDC. (author)

  18. Unified approach to the study of solid fuel combustion characteristics at high airflow speeds

    Science.gov (United States)

    Vnuchkov, D. A.; Lukashevich, S. V.; Nalivaychenko, D. G.; Zvegintsev, V. I.

    2017-10-01

    The main objective of the research is the development of guidelines for a unified approach to testing the combustion of different solid fuels in gaseous oxidant high-speed flow, so that research outcomes could be presented in a standardized and cohesive form. All the experiments were performed on a special experimental installation designed for quantification of the burning characteristics of different fuels in a wide range of the airflow parameters at the same geometry of the combustion chamber.

  19. Physical properties, evaporation and combustion characteristics of nanofluid-type fuels

    OpenAIRE

    Tanvir, Saad

    2016-01-01

    Nanofluids are liquids with stable suspension of nanoparticles. Limited studies in the past have shown that both energetic and catalytic nanoparticles once mixed with traditional liquid fuels can be advantageous in combustion applications, e.g., increased energy density and shortened ignition delay. Contradictions in existing literature, scarcity of experimental data and lack of understanding on how the added nanoparticles affect the physical properties as well as combustion characteristics o...

  20. Numerical modeling on homogeneous charge compression ignition combustion engine fueled by diesel-ethanol blends

    Directory of Open Access Journals (Sweden)

    Hanafi H.

    2016-01-01

    Full Text Available This paper investigates the performance and emission characteristics of HCCI engines fueled with oxygenated fuels (ethanol blend. A modeling study was conducted to investigate the impact of ethanol addition on the performance, combustion and emission characteristics of a Homogeneous Charge Compression Ignition (HCCI engine fueled by diesel. One dimensional simulation was conducted using the renowned commercial software for diesel and its blend fuels with 5% (E5 and 10% ethanol (E10 (in vol. under full load condition at variable engine speed ranging from 1000 to 2750 rpm with 250 rpm increment. The model was then validated with other researcher’s experimental result. Model consists of intake and exhaust systems, cylinder, head, valves and port geometries. Performance tests were conducted for volumetric efficiency, brake engine torque, brake power, brake mean effective pressure, brake specific fuel consumption, and brake thermal efficiency, while exhaust emissions were analyzed for carbon monoxide (CO and unburned hydrocarbons (HC. The results showed that blending diesel with ethanol increases the volumetric efficiency, brake specific fuel consumption and brake thermal efficiency, while it decreases brake engine torque, brake power and brake mean effective pressure. In term of emission characteristics, the CO emissions concentrations in the engine exhaust decrease significantly with ethanol as additive. But for HC emission, its concentration increase when apply in high engine speed. In conclusion, using Ethanol as fuel additive blend with Diesel operating in HCCI shows a good result in term of performance and emission in low speed but not recommended to use in high speed engine. Ethanol-diesel blends need to researched more to make it commercially useable.

  1. Effects of catalysts on combustion characteristics and kinetics of coal-char blends

    Science.gov (United States)

    Hu, Yingjie; Wang, Zhiqiang; Cheng, Xingxing; Liu, Ming; Ma, Chunyuan

    2018-04-01

    The effects of Fe2O3, CaO, and MnO2 on the combustion characteristics and kinetics of coal-char blends were investigated using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results indicated that catalysts exhibited positive effects on the combustion characteristics of coal-char blends, especially in the initial period of coal-char blends combustion. With catalysts addition (mass 1.5%), it could improves volatile matter release, and reduces ignition point, promotes char to begin burning under lower temperature. The ignition index (C) was increased, respectively, by 27% for Fe2O3, 6% for CaO, 11.3% for MnO2, and the combustion characteristic index ( S ) was increased respectively, by 29% for Fe2O3, 5% for CaO, 8.3% for MnO2. In addition, two kinetic models (R2 and F1) were adopted to calculate the kinetic parameters in different stage of combustion processes. The results showed that with Fe2O3 or CaO addition, the activation energy at second stage decreases from 86.0 KJ/mol to 76.92 KJ/mol and 75.12 KJ/mol, respectively. There are no obvious decreases at the third stage of samples combustion process.

  2. The thermodynamic characteristics of high efficiency, internal-combustion engines

    International Nuclear Information System (INIS)

    Caton, Jerald A.

    2012-01-01

    Highlights: ► The thermodynamics of an automotive engine are determined using a cycle simulation. ► The net indicated thermal efficiency increased from 37.0% to 53.9%. ► High compression ratio, lean mixtures and high EGR were the important features. ► Efficiency increased due to lower heat losses, and increased work conversion. ► The nitric oxides were essentially zero due to the low combustion temperatures. - Abstract: Recent advancements have demonstrated new combustion modes for internal combustion engines that exhibit low nitric oxide emissions and high thermal efficiencies. These new combustion modes involve various combinations of stratification, lean mixtures, high levels of EGR, multiple injections, variable valve timings, two fuels, and other such features. Although the exact combination of these features that provides the best design is not yet clear, the results (low emissions with high efficiencies) are of major interest. The current work is directed at determining some of the fundamental thermodynamic reasons for the relatively high efficiencies and to quantify these factors. Both the first and second laws are used in this assessment. An automotive engine (5.7 l) which included some of the features mentioned above (e.g., high compression ratios, lean mixtures, and high EGR) was evaluated using a thermodynamic cycle simulation. These features were examined for a moderate load (bmep = 900 kPa), moderate speed (2000 rpm) condition. By the use of lean operation, high EGR levels, high compression ratio and other features, the net indicated thermal efficiency increased from 37.0% to 53.9%. These increases are explained in a step-by-step fashion. The major reasons for these improvements include the higher compression ratio and the dilute charge (lean mixture, high EGR). The dilute charge resulted in lower temperatures which in turn resulted in lower heat loss. In addition, the lower temperatures resulted in higher ratios of the specific heats which

  3. Fuel spray and combustion characteristics of butanol blends in a constant volume combustion chamber

    International Nuclear Information System (INIS)

    Liu, Yu; Li, Jun; Jin, Chao

    2015-01-01

    Highlights: • A sudden drop is observed in spray penetration for B10S10D80 fuel at 800 and 900 K. • With increasing of temperature, auto-ignition timings of fuels become unperceivable. • Low n-butanol addition has little effect on autoignition timings from 800 to 1200 K. • n-Butanol additive can reduce soot emissions at the near-wall regions. • Larger soot reduction is seen at higher ambient temperatures for n-butanol addition. - Abstract: The processes of spray penetrations, flame propagation and soot formation and oxidation fueling n-butanol/biodiesel/diesel blends were experimentally investigated in a constant volume combustion chamber with an optical access. B0S20D80 (0% n-butanol, 20% soybean biodiesel, and 80% diesel in volume) was prepared as the base fuel. n-Butanol was added into the base fuel by volumetric percent of 5% and 10%, denoted as B5S15D80 (5% n-butanol/15% soybean biodiesel/80% diesel) and B10S10D80 (10% n-butanol/10% soybean biodiesel/80% diesel). The ambient temperatures at the time of fuel injection were set to 800 K, 900 K, 1000 K, and 1200 K. Results indicate that the penetration length reduces with the increase of n-butanol volumes in blending fuels and ambient temperatures. The spray penetration presents a sudden drop as fueling B10S10D80 at 800 K and 900 K, which might be caused by micro-explosion. A larger premixed combustion process is observed at low ambient temperatures, while the heat release rate of high ambient temperatures presents mixing controlled diffusion combustion. With a lower ambient temperature, the auto-ignition delay becomes longer with increasing of n-butanol volume in blends. However, with increasing of ambient temperatures, the auto-ignition timing between three fuels becomes unperceivable. Generally, low n-butanol addition has a limited or no effect on the auto-ignition timing in the current conditions. Compared with the base fuel of B0S20D80, n-butanol additive with 5% or 10% in volume can reduce soot

  4. Analysis the ECFM-3Z Combustion Model for Simulating the Combustion Process and Emission Characteristics in a HSDI Diesel Engine

    Directory of Open Access Journals (Sweden)

    Raouf Mobasheri

    2015-12-01

    Full Text Available An advanced CFD simulation has been performed to analyze the ECFM-3Z (Extended Coherent Flame Model-3Z combustion model for simulating the combustion process and emission characteristics in a high speed direct injection (HSDI diesel engine. A four cylinders, HSDI diesel engine based on a Ford production engine with a 2nd generation Delphi common rail fuel injection system has been modeled in this research. 3D CFD simulation was carried out from intake valve closing (IVC to exhaust valve opening (EVO. A good agreement of calculated and measured in-cylinder pressure trace as well as pollutant formation trends could be observed for all investigated operating points. Based on the confidence gained from validation, the study is extended to evaluate the effect of fuel injection timing on engine performance and emissions. For this purpose, a comprehensive study of the effect of injection timing with respect to performance and emissions has been considered. Three main injection timing, (1 2.65 BTDC, (2 0.65 BTDC and (3 1.35 ATDC, all with 30 crank angle pilot separations has been used to investigate the effect of the injection timing. The results show that the current methodology can be applied as a beneficial tool for analyzing the parameters of the diesel combustion under HSDI operating condition.

  5. Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study

    KAUST Repository

    Vuilleumier, David

    2014-03-01

    This study examines intermediate temperature heat release (ITHR) in homogeneous charge compression ignition (HCCI) engines using blends of ethanol and n-heptane. Experiments were performed over the range of 0-50% n-heptane liquid volume fractions, at equivalence ratios 0.4 and 0.5, and intake pressures from 1.4bar to 2.2bar. ITHR was induced in the mixtures containing predominantly ethanol through the addition of small amounts of n-heptane. After a critical threshold, additional n-heptane content yielded low temperature heat release (LTHR). A method for quantifying the amount of heat released during ITHR was developed by examining the second derivative of heat release, and this method was then used to identify trends in the engine data. The combustion process inside the engine was modeled using a single-zone HCCI model, and good qualitative agreement of pre-ignition pressure rise and heat release rate was found between experimental and modeling results using a detailed n-heptane/ethanol chemical kinetic model. The simulation results were used to identify the dominant reaction pathways contributing to ITHR, as well as to verify the chemical basis behind the quantification of the amount of ITHR in the experimental analysis. The dominant reaction pathways contributing to ITHR were found to be H-atom abstraction from n-heptane by OH and the addition of fuel radicals to O2. © 2013 The Combustion Institute.

  6. Intermediate temperature heat release in an HCCI engine fueled by ethanol/n-heptane mixtures: An experimental and modeling study

    KAUST Repository

    Vuilleumier, David; Kozarac, Darko; Mehl, Marco; Saxena, Samveg; Pitz, William J.; Dibble, Robert W.; Chen, Jyhyuan; Sarathy, Mani

    2014-01-01

    This study examines intermediate temperature heat release (ITHR) in homogeneous charge compression ignition (HCCI) engines using blends of ethanol and n-heptane. Experiments were performed over the range of 0-50% n-heptane liquid volume fractions, at equivalence ratios 0.4 and 0.5, and intake pressures from 1.4bar to 2.2bar. ITHR was induced in the mixtures containing predominantly ethanol through the addition of small amounts of n-heptane. After a critical threshold, additional n-heptane content yielded low temperature heat release (LTHR). A method for quantifying the amount of heat released during ITHR was developed by examining the second derivative of heat release, and this method was then used to identify trends in the engine data. The combustion process inside the engine was modeled using a single-zone HCCI model, and good qualitative agreement of pre-ignition pressure rise and heat release rate was found between experimental and modeling results using a detailed n-heptane/ethanol chemical kinetic model. The simulation results were used to identify the dominant reaction pathways contributing to ITHR, as well as to verify the chemical basis behind the quantification of the amount of ITHR in the experimental analysis. The dominant reaction pathways contributing to ITHR were found to be H-atom abstraction from n-heptane by OH and the addition of fuel radicals to O2. © 2013 The Combustion Institute.

  7. An Experimental Investigation on the Combustion and Heat Release Characteristics of an Opposed-Piston Folded-Cranktrain Diesel Engine

    Directory of Open Access Journals (Sweden)

    Fukang Ma

    2015-06-01

    Full Text Available In opposed-piston folded-cranktrain diesel engines, the relative movement rules of opposed-pistons, combustion chamber components and injector position are different from those of conventional diesel engines. The combustion and heat release characteristics of an opposed-piston folded-cranktrain diesel engine under different operating conditions were investigated. Four phases: ignition delay, premixed combustion, diffusion combustion and after combustion are used to describe the heat release process of the engine. Load changing has a small effect on premixed combustion duration while it influences diffusion combustion duration significantly. The heat release process has more significant isochoric and isobaric combustion which differs from the conventional diesel engine situation, except at high exhaust pressure and temperature, due to its two-stroke and uniflow scavenging characteristics. Meanwhile, a relatively high-quality exhaust heat energy is produced in opposed-piston folded-cranktrain diesel engines.

  8. Low temperature oxidation and spontaneous combustion characteristics of upgraded low rank coal

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.K.; Kim, S.D.; Yoo, J.H.; Chun, D.H.; Rhim, Y.J.; Lee, S.H. [Korea Institute of Energy Research, Daejeon (Korea, Republic of)

    2013-07-01

    The low temperature oxidation and spontaneous combustion characteristics of dried coal produced from low rank coal using the upgraded brown coal (UBC) process were investigated. To this end, proximate properties, crossing-point temperature (CPT), and isothermal oxidation characteristics of the coal were analyzed. The isothermal oxidation characteristics were estimated by considering the formation rates of CO and CO{sub 2} at low temperatures. The upgraded low rank coal had higher heating values than the raw coal. It also had less susceptibility to low temperature oxidation and spontaneous combustion. This seemed to result from the coating of the asphalt on the surface of the coal, which suppressed the active functional groups from reacting with oxygen in the air. The increasing upgrading pressure negatively affected the low temperature oxidation and spontaneous combustion.

  9. Emission and combustion characteristics of multiple stage diesel combustion; Nidan nensho ni yoru diesel kikan no nensho to haishutsubutsu tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Hashizume, T; Miyamoto, T; Tsujimura, K [New A.C.E. Institute Co. Ltd., Tokyo (Japan); Kobayashi, S; Shimizu, K [Japan Automobile Research Institute, Tsukuba (Japan)

    1997-10-01

    A new concept of multiple stage diesel combustion was studied by means of engine test, combustion observation and numerical simulation, in order to reduce NOx emissions at high load conditions. With this concept, the premixed combustion occurs under the fuel lean conditions and the diffusion combustion occurs under the high temperature conditions. As seen in the result of combustion observation, a first stage combustion occurs with no luminous flame. A second stage combustion occurs with a luminous flame after very short ignition delay period. However the luminous flame is disappeared immediately. Because cylinder temperature is high, and hence soot oxidizes immediately. 5 refs., 11 figs., 1 tab.

  10. Combustion characteristics of the LO2/GCH4 fuel-rich preburners for staged combustion cycle rocket engines

    Science.gov (United States)

    Ono, Fumiei; Tamura, Hiroshi; Sakamoto, Hiroshi; Sasaki, Masaki

    1991-09-01

    The combustion characteristics of Liquid Oxygen (LO2)/Gaseous Methane (GCH4) fuel rich preburners were experimentally studied using subscale hardware. Three types of preburners with coaxial type propellant injection elements were designed and fabricated, and were used for hot fire testing. LO2 was used as oxidizer, and GCH4 at room temperature was used as fuel. The tests were conducted at chamber pressures ranging from 6.7 to 11.9 M Pa, and oxidizer to fuel ratios ranged from 0.16 to 0.42. The test results, which include combustion gas temperature T(sub c), characteristic velocity C(sup *) and soot adhesion data, are presented. The T(sub c) efficiency and the C(sup *) efficiency were found to be a function of oxidizer to fuel ratio and chamber pressure. These efficiencies are correlated by an empirical correlation parameter which accounts for the effects of oxidizer to fuel ratio and chamber pressure. The exhaust plumes were colorless and transparent under all tests conditions. There was some soot adhesion to the chamber wall, but no soot adhesion was observed on the main injector simulator orifices. Higher temperature igniter gas was required to ignite the main propellants of the preburner compared with that of the LO2/Gaseous Hydrogen (GH2) propellants combination.

  11. Experimental study on the combustion characteristics of liquid fuel in the straight tubes

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Fei; Li, JunWei; Zhou, ZhaoQiu; Zhang, Xin; Wang, NingFei [Beijing Institute of Technology, Beijing (China). School of Aerospace Engineering

    2013-07-01

    This study investigates combustion characteristics of liquid hydrocarbon fuel (n-heptane, c7h16) under different operating conditions. In the paper we designed a burner consisting of a stainless steel capillary which is used to dump the fuel and a larger stainless steel tube (or quartz tube) used as a combustion chamber. The inner diameter (ID) of the capillary is 0.24 mm, the inner and external diameter of the larger tube is 4 and 6 mm, respectively. According to the experimental results, the combustion process reaches a stable status after about 100 s. Wall temperature distribution and combustion products are analyzed under conditions with different equivalence ratios, gas flow velocities and materials. As equivalence ratio (ER) whose range is in 0.56-1.08 increases, the wall temperature declines, and wall temperature gradient increases slightly. The range of gas flow velocity is in 0.6-1 m/s, the overall trend of wall temperature distribution is the second point from left boundary as a line, the wall temperature distribution of the four points in the right side increases with the flow velocity increasing, but the left point is rapidly declining. When the burner made of stainless steel, the wall temperature distribution varies slightly due to the larger thermal conductivity of stainless steel than that of quartz, which makes the heat transfer in stainless steel faster and the temperature distribution is more uniform. The thermodynamic calculation software is also used to study the compositions of combustion products. In a word, this structure of the burner shows poor combustion characteristics, we should change the structure and the experimental conditions to achieve better combustion characteristics in the future.

  12. Ignition and combustion characteristics of metallized propellants, phase 2

    Science.gov (United States)

    Mueller, D. C.; Turns, S. R.

    1994-01-01

    Experimental and analytical investigations focusing on aluminum/hydrocarbon gel droplet secondary atomization and its effects on gel-fueled rocket engine performance are being conducted. A single laser sheet sizing/velocimetry diagnostic technique, which should eliminate sizing bias in the data collection process, has been designed and constructed to overcome limitations of the two-color forward-scatter technique used in previous work. Calibration of this system is in progress and the data acquisition/validation code is being written. Narrow-band measurements of radiant emission, discussed in previous reports, will be used to determine if aluminum ignition has occurred in a gel droplet. A one-dimensional model of a gel-fueled rocket combustion chamber, described in earlier reports, has been exercised in conjunction with a two-dimensional, two-phase nozzle code to predict the performance of an aluminum/hydrocarbon fueled engine. Estimated secondary atomization effects on propellant burnout distance, condensed particle radiation losses to the chamber walls, and nozzle two phase flow losses are also investigated. Calculations indicate that only modest secondary atomization is required to significantly reduce propellant burnout distances, aluminum oxide residual size, and radiation heat losses. Radiation losses equal to approximately 2-13 percent of the energy released during combustion were estimated, depending on secondary atomization intensity. A two-dimensional, two-phase nozzle code was employed to estimate radiation and nozzle two phase flow effects on overall engine performance. Radiation losses yielded a one percent decrease in engine Isp. Results also indicate that secondary atomization may have less effect on two-phase losses than it does on propellant burnout distance and no effect if oxide particle coagulation and shear induced droplet breakup govern oxide particle size. Engine Isp was found to decrease from 337.4 to 293.7 seconds as gel aluminum mass

  13. Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation

    Directory of Open Access Journals (Sweden)

    K. F. Mustafa

    2015-01-01

    Full Text Available The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.

  14. In-Situ Characteristics of Particle Emissions from Biomass Combustion

    International Nuclear Information System (INIS)

    Pagels, Joakum; Wierzbicka, Aneta; Bohgard, Mats; Strand, Michael; Lillieblad, Lena; Sanati, Mehri; Swietlicki, Erik

    2005-01-01

    In this work we used a Scanning Mobility Particle Sizer and an Electrical Low-pressure Impactor to: a) Derive information of the particle morphology through air-borne analysis and b) Identify time and size variations of particle phase components from incomplete combustion and ash-components. The results presented here covers measurements in two moving grate boilers (12 MW operating on moist forest residue and 1.5 MW operating on wood pellets). We have previously shown that PM1 estimated from Electrical Low-Pressure Impactor (ELPI)-measurements consisted of a rather constant background with peaks correlating with CO and OGC peaks. In the 1.5 MW boiler EC contributed to 34% of PM1, while in the 12 MW boiler EC was below 0.5%. Figure 2 shows time variations in the 1.5 MW boiler as the current in three stages of the ELPI-impactor. Note that time-variations increase strongly with particle size. The fraction of the gravimetric mass detected as water-soluble ions (IC) decreased from ∼ 70% for dae= 78 and 133 nm to ∼ 25% for 322 and 510 nm particles and increased to around 50% for particles larger than 1 μm. In the 12 MW boiler time variations were as low as for 128 nm particles and IC recovery was high for all studied particle sizes. Based on these data we conclude that PM consisting of ash-components are formed with small time variations mainly in mobility-sizes below 250 nm, while Elemental Carbon is emitted at high concentrations during peaks on the time-scale 10-30 s, mainly in particle sizes larger than 150 nm. However, the detailed mixing status of these two particle types/materials is still not known

  15. Combustion characteristics of porous media burners under various back pressures: An experimental study

    Directory of Open Access Journals (Sweden)

    Xuemei Zhang

    2017-07-01

    Full Text Available The porous media combustion technology is an effective solution to stable combustion and clean utilization of low heating value gas. For observing the combustion characteristics of porous media burners under various back pressures, investigating flame stability and figuring out the distribution laws of combustion gas flow and resistance loss, so as to achieve an optimized design and efficient operation of the devices, a bench of foamed ceramics porous media combustion devices was thus set up to test the cold-state resistance and hot-state combustion characteristic of burners in working conditions without back pressures and with two different back pressures. The following results are achieved from this experimental study. (1 The strong thermal reflux of porous media can preheat the premixed air effectively, so the flame can be kept stable easily, the combustion equivalent ratio of porous media burners is lower than that of traditional burners, and its pollutant content of flue gas is much lower than the national standard value. (2 The friction coefficient of foamed ceramics decreases with the increase of air flow rate, and its decreasing rate slows down gradually. (3 When the flow rate of air is low, viscosity is the dominant flow resistance, and the friction coefficient is in an inverse relation with the flow rate. (4 As the flow rate of air increases, inertia is the dominant flow resistance, and the friction coefficient is mainly influenced by the roughness and cracks of foamed ceramics. (5 After the introduction of secondary air, the minimum equivalent ratio of porous media burners gets much lower and its range of equivalent ratio is much larger than that of traditional burners.

  16. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals

    International Nuclear Information System (INIS)

    Ge, Lichao; Zhang, Yanwei; Xu, Chang; Wang, Zhihua; Zhou, Junhu; Cen, Kefa

    2015-01-01

    This study investigates the influence of hydrothermal dewatering performed at different temperatures on the combustion characteristics of Chinese low-rank coals with different coalification maturities. It was found that the upgrading process significantly decreased the inherent moisture and oxygen content, increased the calorific value and fixed carbon content, and promoted the damage of the hydrophilic oxygen functional groups. The results of oxygen/carbon atomic ratio indicated that the upgrading process converted the low-rank coals near to high-rank coals which can also be gained using the Fourier transform infrared spectroscopy. The thermogravimetric analysis showed that the combustion processes of upgraded coals were delayed toward the high temperature region, and the upgraded coals had higher ignition and burnout temperature. On the other hand, based on the higher average combustion rate and comprehensive combustion parameter, the upgraded coals performed better compared with raw brown coals and the Da Tong bituminous coal. In ignition segment, the activation energy increased after treatment but decreased in the combustion stage. The changes in coal compositions, microstructure, rank, and combustion characteristics were more notable as the temperature in hydrothermal dewatering increased from 250 to 300 °C or coals of lower ranks were used. - Highlights: • Typical Chinese lignites with various ranks are upgraded by hydrothermal dewatering. • Upgraded coals exhibit chemical compositions comparable with that of bituminous coal. • FTIR show the change of microstructure and improvement in coal rank after upgrading. • Upgraded coals exhibit difficulty in ignition but combust easily. • More evident effects are obtained for raw brown coal with relative lower rank.

  17. Combustion characteristics and kinetic analysis of pulverized coal under different pressure grades

    Directory of Open Access Journals (Sweden)

    Qiwei ZUO

    2016-02-01

    Full Text Available By using thermo gravimetric balance, experimental research on combustion characteristics and dynamics parameters of the typical coal injection from some domestic steelworks are conducted with non-isothermal method. The combustion characteristic parameters of the sample pulverized coal such as ignition temperature, peak temperature at maximum weight loss rate, burnout temperature, general burn exponent(S, and maximum combustion rate are studied under pressure grades of 0.1, 1.1, 2.1, 3.1 and 4.1 MPa, the activation energy (E and pre-exponential factor in the combustion process are calculated. The results show that when the pressure increases from 0.1 to 4.1 MPa, ignition temperature decreases by 85.7 K at most, peak temperature at maximum weight loss rate decreases by 249.3 K at most, burnout temperature decreases by 375 K at most, maximum weight loss rate increases by 10 times, and S increases by 33.6 times at most. It is also shown that there exists a kinetic complementation between E and ln A from the view point of dynamics, and the critical pressure of pulverized coal reaction control requirement and combustion mode transform is 3.1 MPa for the pulverized coal.

  18. Research on the Combustion Characteristics and Kinetic Analysis of the Recycling Dust for a COREX Furnace

    Directory of Open Access Journals (Sweden)

    Haiyang Wang

    2017-02-01

    Full Text Available Thermogravimetric analysis of recycling dust (RD from the melter gasifier of COREX, coke1 (C-1, coke2 (C-2 and coal char (CC under 70% oxygen atmosphere was carried out using thermal balance. The chemical composition and physical structure of the samples were investigated. The characteristic temperatures and comprehensive combustion characteristic indexes were calculated and kinetic parameters during the combustion process were calculated as well using a distributed activation energy model (DAEM. The results show that the carbon in the recycling dust originates from unconsumed CC and coke fines, and the average stacking height of carbon in RD is larger than that of C-1, C-2 and CC. The conversion curves of RD are different from those of C-1, C-2 and CC, and there are two peaks in the RD conversion rate curves. The combustion profiles of RD moves to a higher temperature zone with increasing heating rates. The average activation energies of their combustion process for RD, C-1, C-2 and CC range from 191.84 kJ/mol to 128.31 kJ/mol. The activation energy for recycling dust increases as the fractional conversion increases, but the value for C-1, C-2 and CC decreases with increasing conversion, indicating different combustion mechanisms.

  19. Evaporation and Ignition Characteristics of Water Emulsified Diesel under Conventional and Low Temperature Combustion Conditions

    Directory of Open Access Journals (Sweden)

    Zhaowen Wang

    2017-07-01

    Full Text Available The combination of emulsified diesel and low temperature combustion (LTC technology has great potential in reducing engine emissions. A visualization study on the spray and combustion characteristics of water emulsified diesel was conducted experimentally in a constant volume chamber under conventional and LTC conditions. The effects of ambient temperature on the evaporation, ignition and combustion characteristics of water emulsified diesel were studied under cold, evaporating and combustion conditions. Experimental results showed that the ambient temperature had little effect on the spray structures, in terms of the liquid core length, the spray shape and the spray area. However, higher ambient temperature slightly reduced the Sauter Mean Diameter (SMD of the spray droplets. The auto-ignition delay time increased significantly with the decrease of the ambient temperature. The ignition process always occurred at the entrainment region near the front periphery of the liquid core. This entrainment region was evolved from the early injected fuel droplets which were heated and mixed by the continuous entrainment until the local temperature and equivalence ratio reached the ignition condition. The maximum value of integrated natural flame luminosity (INFL reduced by 60% when the ambient temperature dropped from 1000 to 800 K, indicating a significant decrease of the soot emissions could be achieved by LTC combustion mode than the conventional diesel engines.

  20. Combustion, cofiring and emissions characteristics of torrefied biomass in a drop tube reactor

    International Nuclear Information System (INIS)

    Ndibe, Collins; Maier, Jörg; Scheffknecht, Günter

    2015-01-01

    The study investigates cofiring characteristics of torrefied biomass fuels at 50% thermal shares with coals and 100% combustion cases. Experiments were carried out in a 20 kW, electrically heated, drop-tube reactor. Fuels used include a range of torrefied biomass fuels, non-thermally treated white wood pellets, a high volatile bituminous coal and a lignite coal. The reactor was maintained at 1200 °C while the overall stoichiometric ratio was kept constant at 1.15 for all combustion cases. Measurements were performed to evaluate combustion reactivity, emissions and burn-out. Torrefied biomass fuels in comparison to non-thermally treated wood contain a lower amount of volatiles. For the tests performed at a similar particle size distribution, the reduced volatile content did not impact combustion reactivity significantly. Delay in combustion was only observed for test fuel with a lower amount of fine particles. The particle size distribution of the pulverised grinds therefore impacts combustion reactivity more. Sulphur and nitrogen contents of woody biomass fuels are low. Blending woody biomass with coal lowers the emissions of SO 2 mainly as a result of dilution. NO X emissions have a more complex dependency on the nitrogen content. Factors such as volatile content of the fuels, fuel type, furnace and burner configurations also impact the final NO X emissions. In comparison to unstaged combustion, the nitrogen conversion to NO X declined from 34% to 9% for air-staged co-combustion of torrefied biomass and hard coal. For the air-staged mono-combustion cases, nitrogen conversion to NO X declined from between 42% and 48% to about 10%–14%. - Highlights: • Impact of torrefaction on cofiring was studied at high heating rates in a drop tube. • Cofiring of torrefied biomasses at high thermal shares (50% and higher) is feasible. • Particle size impacts biomass combustion reactivity more than torrefaction. • In a drop tube reactor, torrefaction has no negative

  1. Influence of limestone fillers on combustion characteristics of asphalt mortar for pavements

    DEFF Research Database (Denmark)

    Ke, Wu; Kai, Zhu; Wu, Hao

    2014-01-01

    Asphalt materials will be ignited and release significant toxic fumes within tunnel fires. Thus, combustion characteristics of asphalt materials used in road tunnel should be studied in order to limit such an adverse effect. In the present work we study the influence of limestone fillers on combu...

  2. Advancing the Limits of Dual Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Koenigsson, Fredrik

    2012-07-01

    There is a growing interest in alternative transport fuels. There are two underlying reasons for this interest; the desire to decrease the environmental impact of transports and the need to compensate for the declining availability of petroleum. In the light of both these factors the Diesel Dual Fuel, DDF, engine is an attractive concept. The primary fuel of the DDF engine is methane, which can be derived both from renewables and from fossil sources. Methane from organic waste; commonly referred to as biomethane, can provide a reduction in greenhouse gases unmatched by any other fuel. The DDF engine is from a combustion point of view a hybrid between the diesel and the otto engine and it shares characteristics with both. This work identifies the main challenges of DDF operation and suggests methods to overcome them. Injector tip temperature and pre-ignitions have been found to limit performance in addition to the restrictions known from literature such as knock and emissions of NO{sub x} and HC. HC emissions are especially challenging at light load where throttling is required to promote flame propagation. For this reason it is desired to increase the lean limit in the light load range in order to reduce pumping losses and increase efficiency. It is shown that the best results in this area are achieved by using early diesel injection to achieve HCCI/RCCI combustion where combustion phasing is controlled by the ratio between diesel and methane. However, even without committing to HCCI/RCCI combustion and the difficult control issues associated with it, substantial gains are accomplished by splitting the diesel injection into two and allocating most of the diesel fuel to the early injection. HCCI/RCCI and PPCI combustion can be used with great effect to reduce the emissions of unburned hydrocarbons at light load. At high load, the challenges that need to be overcome are mostly related to heat. Injector tip temperatures need to be observed since the cooling effect of

  3. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used

  4. Numerical investigation of ethanol fuelled HCCI engine using stochastic reactor model. Part 1: Development of a new reduced ethanol oxidation mechanism

    International Nuclear Information System (INIS)

    Maurya, Rakesh Kumar; Akhil, Nekkanti

    2016-01-01

    Highlights: • Stochastic reactor model used for numerical study of HCCI engine. • New reduced oxidation mechanism with NOx developed (47 species and 272 reactions). • Mechanism predicts cylinder pressure and heat release with sufficient accuracy. • Mechanism was able to capture the trend in NO x emission with sufficient accuracy. - Abstract: Ethanol is considered a potential biofuel for internal combustion engines. In this study, homogeneous charge compression ignition (HCCI) simulations of ethanol engine experiments were performed using stochastic reactor model (SRM). Detailed ethanol oxidation mechanism is developed by including NO x reaction in existing detailed oxidation mechanism with 57 species and 383 reactions. Detailed ethanol mechanism with NO x used in this study contains 76 species and 495 reactions. This mechanism was reduced by direct relation graph (DRG) method, which was validated with the experimental results. Existing Lu’s 40-species skeletal mechanism with NO formation were also compared with detailed and reduced mechanisms for predicting maximum cylinder pressure, maximum heat release rate and crank angle position of maximum cylinder pressure in HCCI engine. Reduced mechanism developed in this study exhibited the best resemblance with the experimental data. This reduced mechanism was also validated by measured engine cylinder pressure curves and measured ignition delays in constant volume reactors. The results showed that reduced mechanism is capable of predicting HCCI engine performance parameters with sufficient accuracy. Sensitivity analysis was conducted to determine the influential reactions in ethanol oxidation. Results also show that detailed and reduced mechanism was able to predict NO x emission in good agreement with the corresponding experimental data.

  5. Impact of the Flameholder Heat Conductivity on Combustion Instability Characteristics

    KAUST Repository

    Hong, Seunghyuck

    2012-06-11

    In this paper, we investigate the impact of heat transfer between the flame and the flame-holder on the dynamic stability characteristics in a 50-kW backward facing step combustor. We conducted tests where we use a backward step block made of two different materials: ceramic and stainless steel whose thermal conductivities are 1.06 and 12 W/m/K, respectively. A set of experiments was conducted using a propane/air mixture at Re = 6500 for the inlet temperature of 300 - 500 K at atmospheric pressure. We measure the dynamic pressure and flame chemiluminescence to examine distinct stability characteristics using each flame-holder material over a range of operating conditions. We find that for tests with a flame-holder made of ceramic, the onset of instability is significantly delayed in time and, for certain operating conditions, disappears altogether. Stated differently, for certain operating conditions, the combustor can be stabilized by reducing the thermal conductivity of the flame-holder. As the thermal conductivity of the flame-holder increases, the combustor becomes increasingly unstable over a range of operating conditions. These results imply that the dynamic stability characteristics depend strongly on the heat transfer between the flame and the combustor wall near the flame anchoring region. Copyright © 2012 by ASME.

  6. A reduced mechanism for predicting the ignition timing of a fuel blend of natural-gas and n-heptane in HCCI engine

    International Nuclear Information System (INIS)

    Bahlouli, Keyvan; Atikol, Ugur; Khoshbakhti Saray, R.; Mohammadi, Vahid

    2014-01-01

    Highlights: • A two-stage reduction process is used to produce two reduced mechanisms. • The mechanisms are combined to develop a reaction mechanism for a fuel blend. • The genetic algorithm is used for optimization of reaction constants. • The developed reduced mechanism can be used to predict the ignition timing in HCCI engine for a fuel blend. - Abstract: One of the main challenges associated with homogeneous charge compression ignition (HCCI) combustion engine application is the lack of direct control on ignition timing. One of the solutions to this problem is mixing two fuels with various properties at a variety of ratios on a cycle-by-cycle basis. In the current study, a reduced mechanism for a fuel blend of natural-gas and n-heptane is proposed. The approach is validated for the prediction of ignition timing in the HCCI combustion engine. A single-zone combustion model is used to simulate the HCCI engine. A two-stage reduction process is used to produce two reduced mechanisms of existing semi-detailed GRI-Mech. 3.0 mechanism that contains 53 species and 325 reactions and Golovichev’s mechanism consisting of 57 species and 290 reactions for natural gas and n-heptane fuels, respectively. Firstly, the unimportant species and related reactions are identified by employing the directed relation graph with error propagation (DRGEP) reduction method and then, to extend reduction, the principal component analysis (PCA) method is utilized. To evaluate the validity of the reduced mechanism, representative engine combustion parameters such as peak pressure, maximum heat release, and CA50 are used. The reduced mechanism of GRI-Mech. 3.0 mechanism, containing 19 species and 39 reactions, and the reduced mechanism of Golovichev’s mechanism, consisting of 40 species and 95 reactions, provide good prediction for the mentioned parameters in comparison with those of detailed mechanisms. The combination of the generated reduced mechanisms is used to develop a

  7. Pyrolysis and oxy-fuel combustion characteristics and kinetics of petrochemical wastewater sludge using thermogravimetric analysis.

    Science.gov (United States)

    Chen, Jianbiao; Mu, Lin; Cai, Jingcheng; Yao, Pikai; Song, Xigeng; Yin, Hongchao; Li, Aimin

    2015-12-01

    The pyrolysis and oxy-fuel combustion characteristics of petrochemical wastewater sludge (PS) were studied in air (O2/N2) and oxy-fuel (O2/CO2) atmospheres using non-isothermal thermogravimetric analysis (TGA). Pyrolysis experiments showed that the weight loss profiles were almost similar up to 1050K in both N2 and CO2 atmospheres, while further weight loss took place in CO2 atmosphere at higher temperatures due to char-CO2 gasification. Compared with 20%O2/80%N2, the drying and devolatilization stage of PS were delayed in 20%O2/80%CO2 due to the differences in properties of the diluting gases. In oxy-fuel combustion experiments, with O2 concentration increasing, characteristic temperatures decreased, while characteristic combustion rates and combustion performance indexes increased. Kinetic analysis of PS decomposition under various atmospheres was performed using Coats-Redfern approach. The results indicated that, with O2 concentration increasing, the activation energies of Step 1 almost kept constant, while the values of subsequent three steps increased. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Research on EHN additive on the diesel engine combustion characteristics in plateau environment

    Science.gov (United States)

    Sun, Zhixin; Li, Ruoting; Wang, Xiancheng; Hu, Chuan

    2017-03-01

    Aiming at the combustion deterioration problem of diesel engine in plateau environment, a bench test was carried out for the effects of EHN additive on combustion characteristics of the diesel engine with intake pressure of 0.68 kPa. Test results showed that with the full load working condition of 1 400 r/min: Cylinder pressure and pressure uprising rate decreased with EHN additive added in, mechanical load on the engine could be relieved; peak value of the heat release rate decreased and its occurrence advanced, ignition delay and combustion duration were shortened; cylinder temperature and exhaust gas temperature declined, thermal load on the engine could be relieved, output torque increased while specific oil consumption decreased, and effective thermal efficiency of diesel engine increased.

  9. The Characteristics of Methane Combustion Suppression by Water Mist and Its Engineering Applications

    Directory of Open Access Journals (Sweden)

    Rongkun Pan

    2017-10-01

    Full Text Available To safely mine coal, engineers must prevent gas combustion and explosions, as well as seek feasible and reasonable techniques to control for these types of incidents. This paper analyzes the causes and characteristics of methane combustion and explosions. Water mist is proposed to prevent and control methane combustion in an underground confined space. We constructed an experiment platform to investigate the suppression of methane combustion using water mist for different conditions. The experimental results showed that water mist is highly effective for methane flame inhibition. The flame was extinguished with water mist endothermic cooling. However, the annular regions of water vapor around the fire played a vital role in flame extinction. Water from the evaporating mist replaces the oxygen available to the fuel. Additionally, the time required for fuel ignition is prolonged. For these reasons, the water particle action to flame surface is reinforced and the fuel’s reaction with air is delayed. As a result, flame stretching and disturbances occur, which serve to extinguish the flame. Engineering application tests were carried out in the goaf, drill hole and upper-corner to investigate the prevention and control of methane gas combustion, with the results showing a good application effect.

  10. Characteristics of Flameless Combustion in 3D Highly Porous Reactors under Diesel Injection Conditions

    Directory of Open Access Journals (Sweden)

    M. Weclas

    2013-01-01

    Full Text Available The heat release process in a free volume combustion chamber and in porous reactors has been analyzed under Diesel engine-like conditions. The process has been investigated in a wide range of initial pressures and temperatures simulating engine conditions at the moment when fuel injection starts. The resulting pressure history in both porous reactors and in free volumes significantly depends on the initial pressure and temperature. At lower initial temperatures, the process in porous reactors is accelerated. Combustion in a porous reactor is characterized by heat accumulation in the solid phase of the porous structure and results in reduced pressure peaks and lowered combustion temperature. This depends on reactor heat capacity, pore density, specific surface area, pore structure, and heat transport properties. Characteristic modes of a heat release process in a two-dimensional field of initial pressure and temperature have been selected. There are three characteristic regions represented by a single- and multistep oxidation process (with two or three slopes in the reaction curve and characteristic delay time distribution has been selected in five characteristic ranges. There is a clear qualitative similarity of characteristic modes of the heat release process in a free volume and in porous reactors. A quantitative influence of porous reactor features (heat capacity, pore density, pore structure, specific surface area, and fuel distribution in the reactor volume has been clearly indicated.

  11. Effects of air jet duration and timing on the combustion characteristics of high-pressure air jet controlled compression ignition combustion mode in a hybrid pneumatic engine

    International Nuclear Information System (INIS)

    Long, Wuqiang; Meng, Xiangyu; Tian, Jiangping; Tian, Hua; Cui, Jingchen; Feng, Liyan

    2016-01-01

    Highlights: • A 3-D CFD model of the power cylinder in HPE was developed. • High-pressure air JCCI combustion mode includes two-stage high-temperature reaction. • The combustion phasing of the pre-mixture is controllable via the SOJ timing. • There exists an optimum SOJ timing for obtaining the highest combustion efficiency and shortest burning duration. - Abstract: The high-pressure air jet controlled compression ignition (JCCI) combustion mode was employed to control the premixed diesel compression ignition combustion phasing by using the compound thermodynamic cycle under all operating conditions, which is accomplished in a hybrid pneumatic engine (HPE). A three-dimensional computational fluid dynamics (CFD) numerical simulation coupled with reduced n-heptane chemical kinetics mechanism has been applied to investigate the effects of high-pressure air jet duration and the start of jet (SOJ) timing on the combustion characteristics in the power cylinder of HPE. By sweeping the high-pressure air jet durations from 6 to 14 °CA and SOJ timings from −12 °CA ATDC to the top dead center (TDC) under the air jet temperatures of 400 and 500 K, respectively, the low- and high-temperature reactions, combustion efficiency, as well as the combustion phasing and burning duration have been analyzed in detail. The results illustrated that a longer air jet duration results in a higher peak in the first-stage high-temperature reaction, and the short air jet duration of 6 °CA can lead to a higher combustion efficiency. The SOJ timing sweep results showed that there exists an optimum timing for obtaining the highest combustion efficiency and shortest burning duration.

  12. Dynamic-Stability Characteristics of Premixed Methane Oxy-Combustion

    KAUST Repository

    Shroll, Andrew P.

    2012-01-01

    This work explores the dynamic stability characteristics of premixed CH 4/O 2/CO 2 mixtures in a 50 kW swirl stabilized combustor. In all cases, the methane-oxygen mixture is stoichiometric, with different dilution levels of carbon dioxide used to control the flame temperature (T ad). For the highest T ad\\'s, the combustor is unstable at the first harmonic of the combustor\\'s natural frequency. As the temperature is reduced, the combustor jumps to fundamental mode and then to a low-frequency mode whose value is well below the combustor\\'s natural frequency, before eventually reaching blowoff. Similar to the case of CH 4/air mixtures, the transition from one mode to another is predominantly a function of the T ad of the reactive mixture, despite significant differences in laminar burning velocity and/or strained flame consumption speed between air and oxy-fuel mixtures for a given T ad. High speed images support this finding by revealing similar vortex breakdown modes and thus similar turbulent flame geometries that change as a function of flame temperature. Copyright © 2012 American Society of Mechanical Engineers.

  13. Combustion Mode Design with High Efficiency and Low Emissions Controlled by Mixtures Stratification and Fuel Reactivity

    Directory of Open Access Journals (Sweden)

    Hu eWang

    2015-08-01

    Full Text Available This paper presents a review on the combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixture stratification that have been conducted in the authors’ group, including the charge reactivity controlled homogeneous charge compression ignition (HCCI combustion, stratification controlled premixed charge compression ignition (PCCI combustion, and dual-fuel combustion concepts controlled by both fuel reactivity and mixture stratification. The review starts with the charge reactivity controlled HCCI combustion, and the works on HCCI fuelled with both high cetane number fuels, such as DME and n-heptane, and high octane number fuels, such as methanol, natural gas, gasoline and mixtures of gasoline/alcohols, are reviewed and discussed. Since single fuel cannot meet the reactivity requirements under different loads to control the combustion process, the studies related to concentration stratification and dual-fuel charge reactivity controlled HCCI combustion are then presented, which have been shown to have the potential to achieve effective combustion control. The efforts of using both mixture and thermal stratifications to achieve the auto-ignition and combustion control are also discussed. Thereafter, both charge reactivity and mixture stratification are then applied to control the combustion process. The potential and capability of thermal-atmosphere controlled compound combustion mode and dual-fuel reactivity controlled compression ignition (RCCI/highly premixed charge combustion (HPCC mode to achieve clean and high efficiency combustion are then presented and discussed. Based on these results and discussions, combustion mode design with high efficiency and low emissions controlled by fuel reactivity and mixtures stratification in the whole operating range is proposed.

  14. Proceedings of IEA combustion 2009 : IEA 31. task leaders meeting on energy conservation and emissions reduction in combustion

    International Nuclear Information System (INIS)

    2009-01-01

    The International Energy Agency (IEA) supports research and development in energy technology. This meeting provided a forum to discuss combustion processes, which is fundamental to achieving further improvements in fuel use efficiency, reducing the production of pollutants such as nitrogen oxides, and facilitating the transition to alternative fuels. The presentations demonstrated recent studies in improving the efficiency and fuel flexibility of automotive engines; improving the performance of industrial furnaces; emissions formation and control mechanisms; and fuel injection and fuel/air mixing. The conference also highlighted studies involving hydrogen combustion, alternative fuels, particulate diagnostics, fuel sprays, gas turbines, and advanced combustion processes such as homogeneous charge compression ignition (HCCI). The sessions were entitled: HCCI fuels; sprays; nanoparticle diagnostics; alternative fuels; hydrogen internal combustion engines; turbines; energy security; and collaborative task planning. All 45 presentations from the conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  15. Combustion characteristics of compressed natural gas/diesel dual-fuel turbocharged compressed ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Shenghua, L.; Longbao, Z.; Ziyan, W.; Jiang, R. [Xi' an Jiaotong Univ. (China). Dept. of Automotive Engineering

    2003-09-01

    The combustion characteristics of a turbocharged natural gas and diesel dual-fuelled compression ignition (CI) engine are investigated. With the measured cylinder pressures of the engine operated on pure diesel and dual fuel, the ignition delay, effects of pilot diesel and engine load on combustion characteristics are analysed. Emissions of HC, CO, NO{sub x} and smoke are measured and studied too. The results show that the quantity of pilot diesel has important effects on the performance and emissions of a dual-fuel engine at low-load operating conditions. Ignition delay varies with the concentration of natural gas. Smoke is much lower for the developed dual-fuel engine under all the operating conditions. (Author)

  16. Sensors Based Measurement Techniques of Fuel Injection and Ignition Characteristics of Diesel Sprays in DI Combustion System

    Directory of Open Access Journals (Sweden)

    S. Rehman

    2016-09-01

    Full Text Available Innovative sensor based measurement techniques like needle lift sensor, photo (optical sensor and piezoresistive pressure transmitter are introduced and used to measure the injection and combustion characteristics in direct injection combustion system. Present experimental study is carried out in the constant volume combustion chamber to study the ignition, combustion and injection characteristics of the solid cone diesel fuel sprays impinging on the hot surface. Hot surface ignition approach has been used to create variety of advanced combustion systems. In the present study, the hot surface temperatures were varied from 623 K to 723 K. The cylinder air pressures were 20, 30 and 40 bar and fuel injection pressures were 100, 200 and 300 bar. It is found that ignition delay of fuel sprays get reduced with the rise in injection pressure. The ignition characteristics of sprays much less affected at high fuel injection pressures and high surface temperatures. The fuel injection duration reduces with the increase in fuel injection pressures. The rate of heat release becomes high at high injection pressures and it decreases with the increase in injection duration. It is found that duration of burn/combustion decrease with the increase in injection pressure. The use of various sensors is quite effective, reliable and accurate in measuring the various fuel injection and combustion characteristics. The study simulates the effect of fuel injection system parameters on combustion performance in large heavy duty engines.

  17. MTU series 1600 HCCI engine with extremely low exhaust emissions over the entire engine map; HCCI-Motor der MTU Baureihe 1600 mit extrem niedrigen Abgasemissionen im gesamten Motorkennfeld

    Energy Technology Data Exchange (ETDEWEB)

    Teetz, Christoph; Bergmann, Dirk; Sauer, Christina; Schneemann, Arne [MTU, Friedrichshafen (Germany); Eichmeier, Johannes; Spicher, Ulrich [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). IFKM

    2012-11-01

    The main challenge when developing off-highway engines is to keep emissions within the limits to apply in the future while maintaining low fuel consumption and low CO{sub 2} output. In the USA in particular, diesel engines in the 130 - 560 kW power range are to be subject from 2014 to EPA Tier 4 legislation, which imposes limits of 0.4 g/kWh for NO{sub x} and 0.02 g/kWh for particulate matter. Diesel units can only satisfy those requirements using a combination of in-engine measures and exhaust aftertreatment systems (SCR, particulate filters), which makes them a good deal more complex and expensive. In the face of CO{sub 2} emissions regulations and the growing demand for diesel fuel, greater emphasis is now being placed on alternative fuels. Homogeneous Charge Compression Ignition or 'HCCI' provides an alternative to complex exhaust aftertreatment systems which generates virtually no soot or nitrous oxide emissions. It does, however, present new challenges with respect to combustion control and engine load. Up to the present, it has not been possible to exploit the full potential of this combustion process over the entire engine map, since the high ignition performance of diesel fuel at high loads results in excessively early combustion and inadmissible pressure gradients. The pre-development department of MTU Friedrichshafen worked with the Institute of Internal Combustion Engines at the Karlsruhe Institute of Technology (KIT) to devise a research prototype for an industrial application which would allow semi-homogenous combustion with controlled self-ignition over the full engine map. The engine is based on a 6-cylinder version of the MTU Series 1600 unit and has a rated output of 300 kW. The fuels - gasoline or ethanol and diesel - are mixed in such a way as to avoid the disadvantages associated with most HCCI processes. Since the use of ethanol also enhances combustion efficiency, it has a two-fold positive effect on the CO{sub 2} situation. With

  18. Combustion characteristics of lemongrass (Cymbopogon flexuosus oil in a partial premixed charge compression ignition engine

    Directory of Open Access Journals (Sweden)

    Avinash Alagumalai

    2015-09-01

    Full Text Available Indeed, the development of alternate fuels for use in internal combustion engines has traditionally been an evolutionary process in which fuel-related problems are met and critical fuel properties are identified and their specific limits defined to resolve the problem. In this regard, this research outlines a vision of lemongrass oil combustion characteristics. In a nut-shell, the combustion phenomena of lemongrass oil were investigated at engine speed of 1500 rpm and compression ratio of 17.5 in a 4-stroke cycle compression ignition engine. Furthermore, the engine tests were conducted with partial premixed charge compression ignition-direct injection (PCCI-DI dual fuel system to profoundly address the combustion phenomena. Analysis of cylinder pressure data and heat-release analysis of neat and premixed lemongrass oil were demonstrated in-detail and compared with conventional diesel. The experimental outcomes disclosed that successful ignition and energy release trends can be obtained from a compression ignition engine fueled with lemongrass oil.

  19. [Study on expert system of infrared spectral characteristic of combustible smoke agent].

    Science.gov (United States)

    Song, Dong-ming; Guan, Hua; Hou, Wei; Pan, Gong-pei

    2009-05-01

    The present paper studied the application of expert system in prediction of infrared spectral characteristic of combustible anti-infrared smoke agent. The construction of the expert system was founded, based on the theory of minimum free energy and infrared spectral addition. After the direction of smoke agent was input, the expert system could figure out the final combustion products. Then infrared spectrogram of smoke could also be simulated by adding the spectra of all of the combustion products. Meanwhile, the screening index of smoke was provided in the wave bands of 3-5 im and 8-14 microm. FTIR spectroscope was used to investigate the performance of one kind of HC smoke. The combustion products calculated by the expert system were coincident with the actual data, and the simulant infrared spectrum was also similar to the real one of the smoke. The screening index given by the system was consistent with the known facts. It was showed that a new approach was offered for the fast discrimination of varieties of directions of smoke agent.

  20. Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

    KAUST Repository

    An, Yanzhao; Vallinayagam, R; Vedharaj, S; Masurier, Jean-Baptiste; Dawood, Alaaeldin; Izadi Najafabadi, Mohammad; Somers, Bart; Johansson, Bengt

    2017-01-01

    In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NO) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release. Soot mass concentration was measured and linked with the combustion stratification and the integrated red channel intensity of the high-speed images for the soot emissions. The nucleation nanoscale particle number and the particle size distribution were sampled to understand the effect of combustion mode switch.

  1. Analysis of Transition from HCCI to CI via PPC with Low Octane Gasoline Fuels Using Optical Diagnostics and Soot Particle Analysis

    KAUST Repository

    An, Yanzhao

    2017-10-10

    In-cylinder visualization, combustion stratification, and engine-out particulate matter (PM) emissions were investigated in an optical engine fueled with Haltermann straight-run naphtha fuel and corresponding surrogate fuel. The combustion mode was transited from homogeneous charge compression ignition (HCCI) to conventional compression ignition (CI) via partially premixed combustion (PPC). Single injection strategy with the change of start of injection (SOI) from early to late injections was employed. The high-speed color camera was used to capture the in-cylinder combustion images. The combustion stratification was analyzed based on the natural luminosity of the combustion images. The regulated emission of unburned hydrocarbon (UHC), carbon monoxide (CO) and nitrogen oxides (NO) were measured to evaluate the combustion efficiency together with the in-cylinder rate of heat release. Soot mass concentration was measured and linked with the combustion stratification and the integrated red channel intensity of the high-speed images for the soot emissions. The nucleation nanoscale particle number and the particle size distribution were sampled to understand the effect of combustion mode switch.

  2. Combustion, emission and engine performance characteristics of used cooking oil biodiesel - A review

    Energy Technology Data Exchange (ETDEWEB)

    Enweremadu, C.C. [Department of Mechanical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa); Rutto, H.L. [Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, Vanderbijlpark 1900 (South Africa)

    2010-12-15

    As the environment degrades at an alarming rate, there have been steady calls by most governments following international energy policies for the use of biofuels. One of the biofuels whose use is rapidly expanding is biodiesel. One of the economical sources for biodiesel production which doubles in the reduction of liquid waste and the subsequent burden of sewage treatment is used cooking oil (UCO). However, the products formed during frying, such as free fatty acid and some polymerized triglycerides, can affect the transesterification reaction and the biodiesel properties. This paper attempts to collect and analyze published works mainly in scientific journals about the engine performance, combustion and emissions characteristics of UCO biodiesel on diesel engine. Overall, the engine performance of the UCO biodiesel and its blends was only marginally poorer compared to diesel. From the standpoint of emissions, NOx emissions were slightly higher while un-burnt hydrocarbon (UBHC) emissions were lower for UCO biodiesel when compares to diesel fuel. There were no noticeable differences between UCO biodiesel and fresh oil biodiesel as their engine performances, combustion and emissions characteristics bear a close resemblance. This is probably more closely related to the oxygenated nature of biodiesel which is almost constant for every biodiesel (biodiesel has some level of oxygen bound to its chemical structure) and also to its higher viscosity and lower calorific value, which have a major bearing on spray formation and initial combustion. (author)

  3. Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine

    International Nuclear Information System (INIS)

    Yin, Juan; Su, Shi; Yu, Xin Xiang; Weng, Yiwu

    2010-01-01

    Low concentration methane, emitted from coal mines, landfill, animal waste, etc. into the atmosphere, is not only a greenhouse gas, but also a waste energy source if not utilised. Methane is 23 times more potent than CO 2 in terms of trapping heat in the atmosphere over a timeframe of 100 years. This paper studies a novel lean burn catalytic combustion gas turbine, which can be powered with about 1% methane (volume) in air. When this technology is successfully developed, it can be used not only to mitigate the methane for greenhouse gas reduction, but also to utilise such methane as a clean energy source. This paper presents our study results on the thermodynamic characteristics of this new lean burn catalytic combustion gas turbine system by conducting thermal performance analysis of the turbine cycle. The thermodynamic data including thermal efficiencies and exergy loss of main components of the turbine system are presented under different pressure ratios, turbine inlet temperatures and methane concentrations.

  4. Compositional Simulation of In-Situ Combustion EOR: A Study of Process Characteristics

    DEFF Research Database (Denmark)

    Jain, Priyanka; Stenby, Erling Halfdan; von Solms, Nicolas

    2010-01-01

    In order to facilitate the study of the influence of reservoir process characteristics in In-Situ combustion modeling and advance the work of Kristensen et al. in this domain; a fully compositional In-situ combustion (ISC) model of Virtual Kinetic Cell (VKC; single-cell model) for laboratory scale....... This incorporates fourteen pseudo components and fourteen reactions (distributed amongst thermal cracking, low temperature oxidation and high temperature oxidation). The paper presents a set of derivative plots indicating that reservoir process characterization in terms of thermal behavior of oil can be well...... construed in terms of thermo-oxidative sensitivity of SARA fractions. It can be interpreted from the results that operating parameters like air injection rate, oxygen feed concentration and activation energy have significant influence on oil recovery; an increase in air injection rate can lead to cooling...

  5. Numerical investigation for combustion characteristics of vacuum residue (VR) in a test furnace

    International Nuclear Information System (INIS)

    Sreedhara, S.; Huh, Kang Y.; Park, Hoyoung

    2007-01-01

    It has become inevitable to search for alternative fuels due to current worldwide energy crisis. In this paper combustion characteristics of vacuum residue (VR) is investigated numerically against experimental data in typical operating conditions of a furnace. Heat release reaction is modeled as sequential steps of devolatilization, simplified gas phase reaction and char oxidation as for pulverized coal. Thermal and fuel NO are predicted by the conditional moment closure (CMC) method for estimation of elementary reaction rates. It turns out that Sauter mean diameter (SMD) of VR droplets is a crucial parameter for better combustion efficiency and lower NO. Reasonable agreement is achieved for spatial distributions of major species, temperature and NO for all test cases with different fuel and steam flow rates

  6. Calculation for Primary Combustion Characteristics of Boron-Based Fuel-Rich Propellant Based on BP Neural Network

    OpenAIRE

    Wan'e, Wu; Zuoming, Zhu

    2012-01-01

    A practical scheme for selecting characterization parameters of boron-based fuel-rich propellant formulation was put forward; a calculation model for primary combustion characteristics of boron-based fuel-rich propellant based on backpropagation neural network was established, validated, and then was used to predict primary combustion characteristics of boron-based fuel-rich propellant. The results show that the calculation error of burning rate is less than ± 7 . 3 %; in the formulation rang...

  7. Investigation on Flame Characteristics and Burner Operability Issues of Oxy-Fuel Combustion

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. Of Texas, El Paso, TX (United States)

    2013-09-30

    Oxy-fuel combustion has been used previously in a wide range of industrial applications. Oxy- combustion is carried out by burning a hydrocarbon fuel with oxygen instead of air. Flames burning in this configuration achieve higher flame temperatures which present opportunities for significant efficiency improvements and direct capture of CO2 from the exhaust stream. In an effort to better understand and characterize the fundamental flame characteristics of oxy-fuel combustion this research presents the experimental measurements of flame stability of various oxyfuel flames. Effects of H2 concentration, fuel composition, exhaust gas recirculation ratio, firing inputs, and burner diameters on the flame stability of these fuels are discussed. Effects of exhaust gas recirculation i.e. CO2 and H2O (steam) acting as diluents on burner operability are also presented. The roles of firing input on flame stability are then analyzed. For this study it was observed that many oxy-flames did not stabilize without exhaust gas recirculation due to their higher burning velocities. In addition, the stability regime of all compositions was observed to decrease as the burner diameter increased. A flashback model is also presented, using the critical velocity gradient gF) values for CH4-O2-CO2 flames. The second part of the study focuses on the experimental measurements of the flow field characteristics of premixed CH4/21%O2/79%N2 and CH4/38%O2/72%CO2 mixtures at constant firing input of 7.5 kW, constant, equivalence ratio of 0.8, constant swirl number of 0.92 and constant Reynolds Numbers. These measurements were taken in a swirl stabilized combustor at atmospheric pressure. The flow field visualization using Particle Imaging Velocimetry (PIV) technique is implemented to make a better understanding of the turbulence characteristics of

  8. Advanced Start of Combustion Sensor Phases I and II-A: Feasibility Demonstration, Design and Optimization

    Energy Technology Data Exchange (ETDEWEB)

    Chad Smutzer

    2010-01-31

    Homogeneous Compressed Charge Ignition (HCCI) has elevated the need for Start of Combustion (SOC) sensors. HCCI engines have been the exciting focus of engine research recently, primarily because HCCI offers higher thermal efficiency than the conventional Spark Ignition (SI) engines and significantly lower NOx and soot emissions than conventional Compression Ignition (CI) engines, and could be fuel neutral. HCCI has the potential to unify all the internal combustion engine technology to achieve the high-efficiency, low-emission goal. However, these advantages do not come easy. It is well known that the problems encountered with HCCI combustion center on the difficulty of controlling the Start of Combustion. TIAX has an SOC sensor under development which has shown promise. In previous work, including a DOE-sponsored SBIR project, TIAX has developed an accelerometer-based method which was able to determine SOC within a few degrees crank angle for a range of operating conditions. A signal processing protocol allows reconstruction of the combustion pressure event signal imbedded in the background engine vibration recorded by the accelerometer. From this reconstructed pressure trace, an algorithm locates the SOC. This SOC sensor approach is nonintrusive, rugged, and is particularly robust when the pressure event is strong relative to background engine vibration (at medium to high engine load). Phase I of this project refined the previously developed technology with an engine-generic and robust algorithm. The objective of the Phase I research was to answer two fundamental questions: Can the accelerometer-based SOC sensor provide adequate SOC event capture to control an HCCI engine in a feedback loop? And, will the sensor system meet cost, durability, and software efficiency (speed) targets? Based upon the results, the answer to both questions was 'YES'. The objective of Phase II-A was to complete the parameter optimization of the SOC sensor prototype in order

  9. Characteristic Study of Shenmu Bituminous Coal Combustion with Online TG-MS-FTIR

    Science.gov (United States)

    Pan, Guanfu

    2018-01-01

    The combustion characteristics of Shenmu bituminous pulverized coal (SBC) were comprehensively investigated with a combined TG-MS-FTIR system by considering the effect of particle size, heating rate and total flowrate. The combustion products were accurately quantified by normalization and numerical analysis of MS results. The results indicate that the decrease of the particle size, heating rate and total flowrate result in lower ignition and burnout temperatures. The activation energy tends to be lower with smaller particle size, lower heating rate and total flowrate. The MS and FTIR results demonstrate that lower concentrations of different products, such as NO, NO2, HCN, CH4 and SO2 were produced with smaller particle size, slower heating rate and lower total flowrate. The decrease of particle size would lead to more contact area with oxygen and slower heating rate could provide more sufficient time for the diffusion. High total flowrate would reduce the oxygen adsorbability on the coal particle surface and shorten the residence time of oxygen, which makes the ignition difficult to occur. This work will guide to understand the combustion kinetics of pulverized coals and be beneficial to control the formation of pollutants.

  10. New black liquor combustion characteristics II; Mustalipeaen uudet poltto-ominaisuudet II

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Backman, R.; Bostroem, S.; Forssen, M.; Uusikartano, T. [Aabo Akademi, Turku (Finland)

    1996-12-01

    In an earlier study (LIEKKI 2, Y 17), the combustion characteristics of 17 liquors of different origin were studied by four laboratory tests. These tests were (1) single droplet burning, (2) single droplet pyrolysis, (3) pressurized gasification, and (4) calculation of melting properties of inorganic carryover particles. The study showed that there are big differences between liquors of different origin. These differences strongly affect the combustion properties, i.e. pyrolysis and burning times, swelling, and fouling tendency of heat transfer surfaces. The objective for the present research project was to investigate the reasons why some properties affect the combustion behavior more than others. The project is partly complementary to the previous study, partly a more detailed study of some of the phenomena observed earlier. The work constitutes of the following studies: (1) further study of several more liquors by the same methods, (2) pyrolysis swelling in inert gas (N{sub 2}) at two temperatures, 700 deg C and 900 deg C, (3) effect of heat treatment black liquors, (4) effect of addition of sodium compounds to a virgin black liquor, (5) data treatment and correlations, (6) nitrogen oxide formation tendency. (author)

  11. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants.

    Science.gov (United States)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-03-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500°C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Characteristics of carbonized sludge for co-combustion in pulverized coal power plants

    International Nuclear Information System (INIS)

    Park, Sang-Woo; Jang, Cheol-Hyeon

    2011-01-01

    Co-combustion of sewage sludge can destabilize its combustion profile due to high volatility, which results in unstable flame. We carried out fuel reforming for sewage sludge by way of carbonization at pyrolysis temperature of 300-500 deg. C. Fuel characteristics of carbonized sludge at each temperature were analyzed. As carbonization temperature increased, fuel ratio increased, volatile content reduced, and atomic ratio relation of H/C and O/C was similar to that of lignite. The analysis result of FT-IR showed the decrease of aliphatic C-H bond and O-C bond in carbonization. In the analysis result of TG-DTG, the thermogravimetry reduction temperature of carbonized sludge (CS400) was proven to be higher than that of dried sludge, but lower than that of sub-bituminous coal. Hardgrove grindability index increased in proportion to fuel ratio increase, where the carbonized sludge value of 43-110 was similar or higher than the coal value of 49-63. As for ash deposits, slagging and fouling index were higher than that of coal. When carbonized sludge (CS400) and coal were co-combusted in 1-10% according to calorific value, slagging tendency was low in all conditions, and fouling tendency was medium or high according to the compositions of coal.

  13. Combustion Characteristics of Chlorine-Free Solid Fuel Produced from Municipal Solid Waste by Hydrothermal Processing

    Directory of Open Access Journals (Sweden)

    Kunio Yoshikawa

    2012-11-01

    Full Text Available An experimental study on converting municipal solid waste (MSW into chlorine-free solid fuel using a combination of hydrothermal processing and water-washing has been performed. After the product was extracted from the reactor, water-washing experiments were then conducted to obtain chlorine-free products with less than 3000 ppm total chlorine content. A series of combustion experiments were then performed for the products before and after the washing process to determine the chlorine content in the exhaust gas and those left in the ash after the combustion process at a certain temperature. A series of thermogravimetric analyses were also conducted to compare the combustion characteristics of the products before and after the washing process. Due to the loss of ash and some volatile matter after washing process, there were increases in the fixed carbon content and the heating value of the product. Considering the possible chlorine emission, the washing process after the hydrothermal treatment should be necessary only if the furnace temperature is more than 800 °C.

  14. Performance and combustion characteristics of direct-injection stratified-charge rotary engines

    Science.gov (United States)

    Nguyen, Hung Lee

    1987-01-01

    Computer simulations of the direct-injection stratified-charge (DISC) Wankel engine have been used to calculate heat release rates and performance and efficiency characteristics of the 1007R engine. Engine pressure data have been used in a heat release analysis to study the effects of heat transfer, leakage, and crevice flows. Predicted engine performance data are compared with experimental test data over a range of engine speeds and loads. An examination of methods to improve the performance of the Wankel engine with faster combustion, reduced leakage, higher compression ratio, and turbocharging is presented.

  15. Effect of organic calcium compounds on combustion characteristics of rice husk, sewage sludge, and bituminous coal: thermogravimetric investigation.

    Science.gov (United States)

    Zhang, Lihui; Duan, Feng; Huang, Yaji

    2015-04-01

    Experiments were conducted in a thermogravimetric analyzer to assess the enhancement of combustion characteristics of different solid fuels blended with organic calcium compounds (OCCs). Rice husk, sewage sludge, and bituminous coal, and two OCC were used in this study. Effect of different mole ratios of calcium to sulfur (Ca/S ratio) on the combustion characteristics were also investigated. Results indicated that combustion performance indexes for bituminous coal impregnated by OCC were improved, however, an inverse trend was found for sewage sludge because sewage sludge has lower ignition temperature and higher volatile matter content compared to those of OCC. For rice husk, effect of added OCC on the combustion characteristics is not obvious. Different solid fuels show different combustion characteristics with increases of Ca/S ratio. The maximum combustion performance indexes appear at Ca/S ratios of 1:1, 2:1, and 3:1 for OCC blended with Shenhua coal, rice husk, and sewage sludge, respectively. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Emission Characteristics for a Homogeneous Charged Compression Ignition Diesel Engine with Exhaust Gas Recirculation Using Split Injection Methodology

    Directory of Open Access Journals (Sweden)

    Changhee Lee

    2017-12-01

    Full Text Available Due to the serious issues caused by air pollution and global warming, emission regulations are becoming stricter. New technologies that reduce NOx and PM emissions are needed. To cope with these social exhaust gas regulation demands, many advanced countries are striving to develop eco-friendly vehicles in order to respond to stricter emissions regulations. The homogeneous charged compression ignition engine (HCCI incorporates a multi-stage combustion engine with multiple combustion modes, catalyst, direct fuel injection and partial mixing combustion. In this study, the HCCI combustion was applied to analyze and review the results of engines applying HCCI combustion without altering the conventional engine specifications. The optimization of exhaust gas recirculation (EGR and compression ratio changes provides an optimal fuel economy. In this study, potential for optimum economy within the range of IMEP 0.8 MPa has been evaluated.

  17. Combustion Characteristics in a Non-Premixed Cool-Flame Regime of n-Heptane in Microgravity

    Science.gov (United States)

    Takahashi, Fumiaki; Katta, Viswanath R.; Hicks, Michael C.

    2015-01-01

    A series of distinct phenomena have recently been observed in single-fuel-droplet combustion tests performed on the International Space Station (ISS). This study attempts to simulate the observed flame behavior numerically using a gaseous n-heptane fuel source in zero gravity and a time-dependent axisymmetric (2D) code, which includes a detailed reaction mechanism (127 species and 1130 reactions), diffusive transport, and a radiation model (for CH4, CO, CO2, H2O, and soot). The calculated combustion characteristics depend strongly on the air velocity around the fuel source. In a near-quiescent air environment (combustion experiments.

  18. Experimental study on combustion characteristics of sodium fire in a columnar flow

    International Nuclear Information System (INIS)

    Zhang Zhigang; Peng Kangwei; Guo Ming; Huo Yan

    2014-01-01

    In the operation of the sodium-cooled fast reactor, the accident caused by the leakage and combustion of liquid sodium is common and frequent in sodium-related facilities. This paper is based on an experimental study of sodium fire in a columnar flow, which was carried out to focus on the burning characteristics by analyzing the temperature fields in the burner. The injection of 200°C liquid sodium with the flux of 0.5 m 3 /h was poured into a 7.9 m 3 volume stainless steel cylindrical burner to shape a sodium fire, and the data of temperature fields in the burner have been collected by dozens of thermocouples which are laid in the combustion space and sodium collection plate. These results show that the sodium fire in a columnar flow is composed of the foregoing centered columnar fire, the subsequent spray fire caused by atomization and the pool fire on the collection plate. The temperature close to the burning sodium flow maximally reaches up to 950°C. The radial temperatures apart from the sodium flow are relatively low and generally about 200°C, and maximally just 300°C even when close to the sodium collection plate. The maximum temperature of the burning sodium dropping on the collection plate rises in the center of plate, about 528°C. This study is helpful to evaluate the combustion characteristics, formation process and composing forms of the sodium fire in the sodium-related facilities. (author)

  19. NOx reduction and NO2 emission characteristics in rich-lean combustion of hydrogen

    OpenAIRE

    Shudo, Toshio; Omori, Kento; Hiyama, Osamu

    2008-01-01

    Hydrogen is a clean alternative to conventional hydrocarbon fuels, but it is very important to reduce the nitrogen oxides (NOx) emissions generated by hydrogen combustion. The rich-lean combustion or staged combustion is known to reduce NOx emissions from continuous combustion burners such as gas turbines and boilers, and NOx reduction effects have been demonstrated for hydrocarbon fuels. The authors applied rich-lean combustion to a hydrogen gas turbine and showed its NOx reduction effect in...

  20. Comparison of Fuel-Nox Formation Characteristics in Conventional Air and Oxy fuel Combustion Conditions

    International Nuclear Information System (INIS)

    Woo, Mino; Park, Kweon Ha; Choi, Byung Chul

    2013-01-01

    Nitric oxide (NO x ) formation characteristics in non-premixed diffusion flames of methane fuels have been investigated experimentally and numerically by adding 10% ammonia to the fuel stream, according to the variation of the oxygen ratio in the oxidizer with oxygen/carbon dioxide and oxygen/nitrogen mixtures. In an experiment of co flow jet flames, in the case of an oxidizer with oxygen/carbon dioxide, the NO x emission increased slightly as the oxygen ratio increased. On the other hand, in case of an oxygen/nitrogen oxidizer, the NO x emission was the maximum at an oxygen ratio of 0.7, and it exhibited non-monotonic behavior according to the oxygen ratio. Consequently, the NO x emission in the condition of oxy fuel combustion was overestimated as compared to that in the condition of conventional air combustion. To elucidate the characteristics of NO x formation for various oxidizer compositions, 1a and 2a numerical simulations have been conducted by adopting one kinetic mechanism. The result of 2 simulation for an oxidizer with oxygen/nitrogen well predicted the trend of experimentally measured NO x emissions

  1. Combustion characteristics of a turbocharged DI compression ignition engine fueled wth petroleum diesel fuels and biodiesel

    Energy Technology Data Exchange (ETDEWEB)

    Canakci, M. [Kocaeli University, Izmit (Turkey). Department of Mechanical Education

    2007-04-15

    In this study, the combustion characteristics and emissions of two different petroleum diesel fuels (No. 1 and No. 2) and biodiesel from soybean oil were compared. The tests were performed at steady state conditions in a four-cylinder turbocharged DI diesel engine at full load at 1400-rpm engine speed. The experimental results compared with No. 2 diesel fuel showed that biodiesel provided significant reductions in PM, CO, and unburned HC, the NO{sub x} increased by 11.2%. Biodiesel had a 13.8% increase in brake-specific fuel consumption due to its lower heating value. However, using No. 1 diesel fuel gave better emission results, NO{sub x} and brake-specific fuel consumption reduced by 16.1% and 1.2%, respectively. The values of the principal combustion characteristics of the biodiesel were obtained between two petroleum diesel fuels. The results indicated that biodiesel may be blended with No. 1 diesel fuel to be used without any modification on the engine. (author)

  2. Combustion and fuel loading characteristics of Hanford Site transuranic solid waste

    International Nuclear Information System (INIS)

    Greenhalgh, W.O.

    1994-01-01

    The Waste Receiving and Processing (WRAP) Facility is being designed for construction in the north end of the Central Waste Complex. The WRAP Facility will receive, store, and process radioactive solid waste of both transuranic (TRU) and mixed waste (mixed radioactive-chemical waste) categories. Most of the waste is in 208-L (55-gal) steel drums. Other containers such as wood and steel boxes, and various sized drums will also be processed in the facility. The largest volume of waste and the type addressed in this report is TRU in 208-L (55-gal) drums that is scheduled to be processed in the Waste Receiving and Processing Facility Module 1 (WRAP 1). Half of the TRU waste processed by WRAP 1 is expected to be retrieved stored waste and the other half newly generated waste. Both the stored and new waste will be processed to certify it for permanent storage in the Waste Isolation Pilot Plant (WIPP) or disposal. The stored waste will go through a process of retrieval, examination, analysis, segregation, repackaging, relabeling, and documentation before certification and WIPP shipment. Newly generated waste should be much easier to process and certify. However, a substantial number of drums of both retrievable and newly generated waste will require temporary storage and handling in WRAP. Most of the TRU waste is combustible or has combustible components. Therefore, the presence of a substantial volume of drummed combustible waste raises concern about fire safety in WRAP and similar waste drum storage facilities. This report analyzes the fire related characteristics of the expected WRAP TRU waste stream

  3. Ozone applied to the homogeneous charge compression ignition engine to control alcohol fuels combustion

    International Nuclear Information System (INIS)

    Masurier, J.-B.; Foucher, F.; Dayma, G.; Dagaut, P.

    2015-01-01

    Highlights: • Ozone was useful to control combustion phasing of alcohol fuels in HCCI engine. • Ozone helps to improve the combustion and advance its phasing. • Butanol is more impacted by ozone than methanol and ethanol. • HCCI combustion parameters may be controlled by managing ozone concentration. • Kinetics demonstrates that alcohol fuels are initially oxidized by O-atoms. - Abstract: The present investigation examines the impact of seeding the intake of an HCCI engine with ozone, one of the most oxidizing chemical species, on the combustion of three alcohol fuels: methanol, ethanol and n-butanol. The research was performed through engine experiments and constant volume computations. The results showed that increasing the ozone concentration led to an improvement in combustion coupled with a combustion advance. It was also observed, by comparing the results for each fuel selected, that n-butanol is the most impacted by ozone seeding and methanol the least. Further analyses of the experimental results showed that the alcohol fuel combustion can be controlled with ozone, which presents an interesting potential. Finally, computation results confirmed the experimental results observed. They also showed that in presence of ozone, alcohol fuels are not initially oxidized by molecular oxygen but by O-atoms coming from the ozone decomposition.

  4. Combustion and emissions characteristics of diesel engine fueled by biodiesel at partial load conditions

    International Nuclear Information System (INIS)

    An, H.; Yang, W.M.; Chou, S.K.; Chua, K.J.

    2012-01-01

    Highlights: ► Impact of engine load on engine’s performance, combustion and emission characteristics. ► The brake specific fuel consumption (BSFC) increases significantly at partial load conditions. ► The brake thermal efficiency (BTE) drops at lower engine loads, and increases at higher loads. ► The partial load also influences the trend of CO emissions. -- Abstract: This paper investigated the performance, combustion and emission characteristics of diesel engine fueled by biodiesel at partial load conditions. Experiments were conducted on a common-rail fuel injection diesel engine using ultra low sulfur diesel, biodiesel (B100) and their blend fuels of 10%, 20%, 50% (denoted as B10, B20 and B50 respectively) under various loads. The results show that biodiesel/blend fuels have significant impacts on the engine’s brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) at partial load conditions. The increase in BSFC for B100 is faster than that of pure diesel with the decrease of engine load. A largest increase of 28.1% in BSFC is found at 10% load. Whereas for BTE, the results show that the use of biodiesel results in a reduced thermal efficiency at lower engine loads and improved thermal efficiency at higher engine loads. Furthermore, the characteristics of carbon monoxide (CO) emissions are also changed at partial load conditions. When running at lower engine loads, the CO emission increases with the increase of biodiesel blend ratio and the decrease of engine speed. However, at higher engine loads, an opposite trend is obtained.

  5. Investigation of a wet ethanol operated HCCI engine based on first and second law analyses

    International Nuclear Information System (INIS)

    Khaliq, Abdul; Trivedi, Shailesh K.; Dincer, Ibrahim

    2011-01-01

    In this paper, a conceptual wet ethanol operated homogeneous charge compression ignition (HCCI) engine is proposed to shift the energy balance in favor of ethanol. The investigated option, HCCI engine is a relatively new type of engine that has some fundamental differences with respect to other prime movers. Combined first and second law of thermodynamic approach is applied for a HCCI engine operating on wet ethanol and computational analysis is performed to investigate the effects of turbocharger compressor ratio, ambient temperature, and compressor adiabatic efficiency on first law efficiency, second law efficiency, and exergy destruction in each component. First law and second law efficiencies are found to be an increasing function of the turbocharger pressure ratio, while they are found to be a decreasing function of the ambient temperature. The effect of turbocharger pressure ratio on exergy destruction is found to be more significant than compressor efficiency and ambient temperature. Exergy analysis indicates that maximum exergy is destroyed in HCCI engine which represents about 90.09% of the total exergy destruction in the overall system. Around 4.39% exergy is destroyed by the process of heat transfer in fuel vaporizer and heat exchanger. Catalytic converter contributes about 4.08% of the total exergy destruction. This will provide some original information on the role of operating variables and will be quite useful in obtaining the optimum design of ethanol fuelled HCCI engines. - Highlights: → Direct utilization of wet ethanol in HCCI engines shift the energy balance in favor of ethanol. → First and second law efficiencies of wet ethanol operated HCCI engine increases with the increase in the turbocharger pressure ratio and its polytropic efficiency. → Second law analysis provides a suitable ranking among the components of the system in terms of exergy destruction. → Analysis of the results clearly showed that the highest irreversibility sources

  6. Combustion characteristics of Malaysian oil palm biomass, sub-bituminous coal and their respective blends via thermogravimetric analysis (TGA).

    Science.gov (United States)

    Idris, Siti Shawalliah; Rahman, Norazah Abd; Ismail, Khudzir

    2012-11-01

    The combustion characteristics of Malaysia oil palm biomass (palm kernel shell (PKS), palm mesocarp fibre (PMF) and empty fruit bunches (EFB)), sub-bituminous coal (Mukah Balingian) and coal/biomass blends via thermogravimetric analysis (TGA) were investigated. Six weight ratios of coal/biomass blends were prepared and oxidised under dynamic conditions from temperature 25 to 1100°C at four heating rates. The thermogravimetric analysis demonstrated that the EFB and PKS evolved additional peak besides drying, devolatilisation and char oxidation steps during combustion. Ignition and burn out temperatures of blends were improved in comparison to coal. No interactions were observed between the coal and biomass during combustion. The apparent activation energy during this process was evaluated using iso-conversional model free kinetics which resulted in highest activation energy during combustion of PKS followed by PMF, EFB and MB coal. Blending oil palm biomass with coal reduces the apparent activation energy value. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Experimental investigation on fluid flow and heat transfer characteristics of a submerged combustion vaporizer

    International Nuclear Information System (INIS)

    Han, Chang-Liang; Ren, Jing-Jie; Wang, Yan-Qing; Dong, Wen-Ping; Bi, Ming-Shu

    2017-01-01

    Highlights: • Thermal performance analysis of submerged combustion vaporizer (SCV) was performed experimentally. • Visualization study of shell-side flow field for SCV was carried out. • The effects of various operational parameters on the overall system performance were discussed. • Two new non-dimensional Nusselt correlations were proposed to predict the heat transfer performance of SCV. - Abstract: Submerged combustion vaporizer (SCV) occupies a decisive position in liquefied natural gas (LNG) industrial chain. In this paper, a visual experimental apparatus was established to have a comprehensive knowledge about fluid flow and heat transfer performance of SCV. Trans-critical liquid nitrogen (LN_2) was selected as alternative fluid to substitute LNG because of safety reason. Some unique experimental phenomena inside the SCV (local water bath freezes on the external surface of tube bundle) were revealed. Meanwhile the influences of static water height, superficial flue gas velocity, heat load, tube-side inlet pressure and tube-side mass flux on the system performance were systematically discussed. Finally, based on the obtained experimental results, two new empirical Nusselt number correlations were regressed to predict the shell-side and tube-side heat transfer characteristics of SCV. The maximum errors between predicted results and experimental data were respectively ±25% and ±20%. The outcomes of this paper were critical to the optimum design and economical operation of SCV.

  8. Laser-assisted ignition and combustion characteristics of consolidated aluminum nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Saceleanu, Florin; Wen, John Z., E-mail: john.wen@uwaterloo.ca [University of Waterloo, Department of Mechanical and Mechatronics Engineering (Canada); Idir, Mahmoud; Chaumeix, Nabiha [Institut de Combustion, Aérothermique, Réactivité et Environnement, UPR3021 du CNRS-INSIS (France)

    2016-11-15

    Aluminum (Al) nanoparticles have drawn much attention due to their high energy density and tunable ignition properties. In comparison with their micronscale counterpart, Al nanoparticles possess large specific surface area and low apparent activation energy of combustion, which reduce ignition delay significantly. In this paper, ignition and subsequently burning of consolidated Al nanoparticle pellets are performed via a continuous wave (CW) argon laser in a closed spherical chamber filled with oxygen. Pellets are fabricated using two types of nanoparticle sizes of 40–60 and 60–80 nm, respectively. A photodiode is used to measure the ignition delay, while a digital camera captures the location of the flame front. It is found that for the 40–60-nm nanoparticle pellets, ignition delay reduces with increasing the oxygen pressure or using the higher laser power. Analysis of the flame propagation rate suggests that oxygen diffusion is an important mechanism during burning of these porous nanoparticle pellets. The combustion characteristics of the Al pellets are compared to a simplified model of the diffusion-controlled oxidation mechanism. While experimental measurements of pellets of 40–60 nm Al particles agree with the computed diffusion-limiting mechanism, a shifted behavior is observed from the pellets of 60–80 nm Al particles, largely due to the inhomogeneity of their porous structures.

  9. Combustion characteristics of natural gas-hydrogen hybrid fuel turbulent diffusion flame

    Energy Technology Data Exchange (ETDEWEB)

    El-Ghafour, S.A.A.; El-dein, A.H.E.; Aref, A.A.R. [Mechanical Power Engineering Department, Faculty of Engineering, Suez Canal University, Port-Said (Egypt)

    2010-03-15

    Combustion characteristics of natural gas - hydrogen hybrid fuel were investigated experimentally in a free jet turbulent diffusion flame flowing into a slow co-flowing air stream. Experiments were carried out at a constant jet exit Reynolds number of 4000 and with a wide range of NG-H{sub 2} mixture concentrations, varied from 100%NG to 50%NG-50% H{sub 2} by volume. The effect of hydrogen addition on flame stability, flame length, flame structure, exhaust species concentration and pollutant emissions was conducted. Results showed that, hydrogen addition sustains a progressive improvement in flame stability and reduction in flame length, especially for relatively high hydrogen concentrations. Hydrogen-enriched flames found to have a higher combustion temperatures and reactivity than natural gas flame. Also, it was found that hydrogen addition to natural gas is an ineffective strategy for NO and CO reduction in the studied range, while a significant reduction in the %CO{sub 2} molar concentration by about 30% was achieved. (author)

  10. Characteristics modeling for supercritical circulating fluidized bed boiler working in oxy-combustion technology

    Directory of Open Access Journals (Sweden)

    Balicki Adrian

    2014-06-01

    Full Text Available Among the technologies which allow to reduce greenhouse gas emission, mainly carbon dioxide, special attention deserves the idea of ‘zeroemission’ technology based on boilers working in oxy-combustion technology. In the paper the results of analyses of the influence of changing two quantities, namely oxygen share in oxidant produced in the air separation unit, and oxygen share in oxidant supplied to the furnace chamber on the selected characteristics of a steam boiler including the degree of exhaust gas recirculation, boiler efficiency and adiabatic flame temperature, was examined. Due to the possibility of the integration of boiler model with carbon dioxide capture, separation and storage installation, the subject of the analysis was also to determine composition of the flue gas at the outlet of a moisture condensation installation. Required calculations were made using a model of a supercritical circulating fluidized bed boiler working in oxy-combustion technology, which was built in a commercial software and in-house codes.

  11. Optimum injection and combustion for gaseous fuel engine : characteristics of hydrogen auto-ignition phenomena

    Energy Technology Data Exchange (ETDEWEB)

    Tsujimura, T.; Mikami, S.; Senda, J.; Fujimoto, H. [Doshisha Univ. (Japan). Dept. of Mechanical Engineering; Nakatani, K. [Fuji Heavy Industries Ltd. (Japan); Tokunaga, Y. [Kawasaki Heavy Industries Ltd. (Japan)

    2002-07-01

    A study was conducted in which the auto-ignition characteristics of hydrogen were examined in order to determine which factors dominate auto-ignition delay of hydrogen jets. Experiments were performed in a rapid compression/expansion machine in order to study the effects of ambient gas density and oxygen concentration on the auto-ignition delays. The focus of research was on an inert gas circulation type cogeneration system to apply hydrogen to a medium-sized diesel engine. Freedom of fuel-oxidizer mixing, ignition and combustion in the system could be achieved for stable combustion, high thermal efficiency, and zero emission. The study also involved chemical analysis using a detailed hydrogen reaction model that could simulate auto-ignition delays under various temperature, pressures, equivalence ratio, and dilution. It is shown that auto-ignition delays of hydrogen jets are very dependent on the ambient gas temperature and less dependent on its density and oxygen concentration. Temperature and hydrogen concentrations have significant impacts on the production and consumption rates of H{sub 2}O{sub 2} and OH radicals. 21 refs., 1 tab., 10 figs.

  12. Thermogravimetric Analysis of Effects of High-Content Limstone Addition on Combustion Characteristics of Taixi Anthracite

    Institute of Scientific and Technical Information of China (English)

    ZHANG Hong; LI Mei; SUN Min; WEI Xian-yong

    2004-01-01

    Combustion characteristics of Taixi anthracite admixed with high content of limestone addition were investigated with thermogravimetric analysis. The results show that limestone addition has a little promoting effect on the ignition of raw coals as a whole. The addition of limestone is found to significantly accelerate the combustion and burnout of raw coals. The higher the sample mass is, the more significant the effect will be. The results also show that the change of limestone proportion between 45%-80% has little effect on ignition temperatures of coal in the blended samples. Increasing limestone content lowers the temperature corresponding to the maximum weight loss. Although higher maximum mass loss rates are observed with higher limestone content, the effect is found not ascribed to changing limestone addition, but to the decrease of absolute coal mass in the sample. The change of limestone proportion has little effect on its burnout temperature. Mechanism analysis indicates that these phenomena result mainly from improved heat conduction due to limestone addition.

  13. Effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled diesel engine

    International Nuclear Information System (INIS)

    E, Jiaqiang; Liu, Teng; Yang, W.M.; Li, Jing; Gong, Jinke; Deng, Yuanwang

    2016-01-01

    Highlights: • The effects of FAMEs proportion on combustion and emission were numerically studied. • The impact of the saturation level on combustion characteristic is not straightforward. • The NO_x emission is mainly related to the fuel kinetic viscosity. - Abstract: With the growing energy problems, scholars has focused on utilizing renewable biodiesel as a fossil fuel alternative. Four different typical biodiesels were employed to investigate the effects of fatty acid methyl esters proportion on combustion and emission characteristics of a biodiesel fueled diesel engine in terms of heat release rate, cylinder pressure, indicated power and formation of NO_x emission. The corresponding computational fluid dynamic modeling was performed by KIVA4 coupled CHEMKIN II code, and a special chemical kinetics mechanism consisting of 106 species and 263 reactions was developed to simulate the combustion process since it contained methyl linoleate, a majority component in most biodiesel, thereby improved the accuracy of simulation. The simulation results indicated that chemical ignition delay time and kinetic viscosity of biodiesel played very important roles in combustion process. Higher saturation level could shorten chemical ignition delay time, but the higher saturation contents like C16:0 and C18:0 together with C18:1 (a single double bond methyl ester) would increase the kinetic viscosity, resulting in poor fuel–air mixing and evaporation process. Lower kinetic viscosity methyl esters like C18:2 and C18:3 was favorable for better fuel–air mixing and subsequent combustion, however, a higher NO_x emission was discovered. Therefore, the relationship between saturation levels and combustion and emission characteristics of biodiesels is not simple and straightforward, the balance of five majority components is very important.

  14. COMBUSTION CHARACTERISTICS OF DIESEL ENGINE OPERATING ON JATROPHA OIL METHYL ESTER

    Directory of Open Access Journals (Sweden)

    Doddayaraganalu Amasegoda Dhananjaya

    2010-01-01

    Full Text Available Fuel crisis because of dramatic increase in vehicular population and environmental concerns have renewed interest of scientific community to look for alternative fuels of bio-origin such as vegetable oils. Vegetable oils can be produced from forests, vegetable oil crops, and oil bearing biomass materials. Non-edible vegetable oils such as jatropha oil, linseed oil, mahua oil, rice bran oil, karanji oil, etc., are potentially effective diesel substitute. Vegetable oils have reasonable energy content. Biodiesel can be used in its pure form or can be blended with diesel to form different blends. It can be used in diesel engines with very little or no engine modifications. This is because it has combustion characteristics similar to petroleum diesel. The current paper reports a study carried out to investigate the combustion, performance and emission characteristics of jatropha oil methyl ester and its blend B20 (80% petroleum diesel and 20% jatropha oil methyl ester and diesel fuel on a single-cylinder, four-stroke, direct injections, water cooled diesel engine. This study gives the comparative measures of brake thermal efficiency, brake specific energy consumption, smoke opacity, HC, NOx, ignition delay, cylinder peak pressure, and peak heat release rates. The engine performance in terms of higher thermal efficiency and lower emissions of blend B20 fuel operation was observed and compared with jatropha oil methyl ester and petroleum diesel fuel for injection timing of 20° bTDC, 23° bTDC and 26° bTDC at injection opening pressure of 220 bar.

  15. Low-Temperature Combustion of High Octane Fuels in a Gasoline Compression Ignition Engine

    Directory of Open Access Journals (Sweden)

    Khanh Duc Cung

    2017-12-01

    Full Text Available Gasoline compression ignition (GCI has been shown as one of the advanced combustion concepts that could potentially provide a pathway to achieve cleaner and more efficient combustion engines. Fuel and air in GCI are not fully premixed compared to homogeneous charge compression ignition (HCCI, which is a completely kinetic-controlled combustion system. Therefore, the combustion phasing can be controlled by the time of injection, usually postinjection in a multiple-injection scheme, to mitigate combustion noise. Gasoline usually has longer ignition delay than diesel. The autoignition quality of gasoline can be indicated by research octane number (RON. Fuels with high octane tend to have more resistance to autoignition, hence more time for fuel-air mixing. In this study, three fuels, namely, aromatic, alkylate, and E30, with similar RON value of 98 but different hydrocarbon compositions were tested in a multicylinder engine under GCI combustion mode. Considerations of exhaust gas recirculating (EGR, start of injection, and boost were investigated to study the sensitivity of dilution, local stratification, and reactivity of the charge, respectively, for each fuel. Combustion phasing (location of 50% of fuel mass burned was kept constant during the experiments. This provides similar thermodynamic conditions to study the effect of fuels on emissions. Emission characteristics at different levels of EGR and lambda were revealed for all fuels with E30 having the lowest filter smoke number and was also most sensitive to the change in dilution. Reasonably low combustion noise (<90 dB and stable combustion (coefficient of variance of indicated mean effective pressure <3% were maintained during the experiments. The second part of this article contains visualization of the combustion process obtained from endoscope imaging for each fuel at selected conditions. Soot radiation signal from GCI combustion were strong during late injection and also more intense

  16. Multidimensional modeling of the effect of Exhaust Gas Recirculation (EGR) on exergy terms in an HCCI engine fueled with a mixture of natural gas and diesel

    International Nuclear Information System (INIS)

    Jafarmadar, Samad; Nemati, Peyman; Khodaie, Rana

    2015-01-01

    Highlights: • The exergy efficiency decreases by 41.3%. • The irreversibility increases by 46.80%. • The cumulative heat loss exergy decreases by 68.10%. • The cumulative work exergy decreases by 63.4%. • The exhaust losses exergy increases by 28.79%. - Abstract: One of the most important issues in HCCI engines is auto-ignition timing control. EGR introduction into intake charge can be a method to control combustion phasing and its duration. In the current study, a FORTRAN-based code which includes 10 species (O_2, N_2, H_2O, CO_2, CO, H_2, OH, O, N, NO) associated with combustion products was employed to study the exergy analysis in a dual fuel (natural gas + diesel) HCCI engine at four EGR (exhaust gas recirculation) mass fractions (0%, 10%, 20%, and 30%) while the diesel fuel amount was held constant. In order to achieve this task, a 3-D CFD code was employed to model the energy balance during a closed cycle of running engine simulation. Moreover, an efficient Extend Coherent Flame Model-Three Zone model (ECFM-3Z) method was employed to analyze the combustion process. With crank positions at different EGR mass fractions, the exergy terms were identified and calculated separately. It was found that as EGR mass fraction increased from 0% to 30% (in 10% increment steps), exergy efficiency decreased from 48.9% to 28.7%. Furthermore, with the change in EGR mass fraction, the cumulative heat loss exergy decreased from 10.1% to 5.64% of mixture fuels chemical exergy.

  17. Characteristics of ash and particle emissions during bubbling fluidised bed combustion of three types of residual forest biomass.

    Science.gov (United States)

    Ribeiro, João Peres; Vicente, Estela Domingos; Alves, Célia; Querol, Xavier; Amato, Fulvio; Tarelho, Luís A C

    2017-04-01

    Combustion of residual forest biomass (RFB) derived from eucalypt (Eucalyptus globulus), pine (Pinus pinaster) and golden wattle (Acacia longifolia) was evaluated in a pilot-scale bubbling fluidised bed reactor (BFBR). During the combustion experiments, monitoring of temperature, pressure and exhaust gas composition has been made. Ash samples were collected at several locations along the furnace and flue gas treatment devices (cyclone and bag filter) after each combustion experiment and were analysed for their unburnt carbon content and chemical composition. Total suspended particles (TSP) in the combustion flue gas were evaluated at the inlet and outlet of cyclone and baghouse filter and further analysed for organic and elemental carbon, carbonates and 57 chemical elements. High particulate matter collection efficiencies in the range of 94-99% were observed for the baghouse, while removal rates of only 1.4-17% were registered for the cyclone. Due to the sand bed, Si was the major element in bottom ashes. Fly ashes, in particular those from eucalypt combustion, were especially rich in CaO, followed by relevant amounts of SiO 2 , MgO and K 2 O. Ash characteristics varied among experiments, showing that their inorganic composition strongly depends on both the biomass composition and combustion conditions. Inorganic constituents accounted for TSP mass fractions up to 40 wt%. Elemental carbon, organic matter and carbonates contributed to TSP mass fractions in the ranges 0.58-44%, 0.79-78% and 0.01-1.7%, respectively.

  18. The influence of charge stratification on the spectral signature of partially premixed combustion in a light-duty optical engine

    KAUST Repository

    Najafabadi, M. Izadi

    2017-03-25

    The origin of light emission during low-temperature combustion in a light-duty IC engine is investigated by high-speed spectroscopy in both HCCI and PPC regimes. Chemiluminescence and thermal radiation are expected to be the dominant sources of light emission during combustion. A method has been developed to distinguish chemiluminescence from thermal radiation, and different chemiluminescing species could be identified. Different combustion modes and global equivalence ratios are analyzed in this manner. The results indicate that the spectral signature (270–540 nm range) of the combustion is highly dependent on the stratification level. A significant broadband chemiluminescence signal is detected and superimposed on all spectra. This broadband chemiluminescence signal can reach up to 100 percent of the total signal in HCCI combustion, while it drops to around 80 percent for stratified combustion (PPC). We show that this broadband signal can be used as a measure for the heat release rate. The broadband chemiluminescence did also correlate with the equivalence ratio quite well in both HCCI and PPC regimes, suggesting that the total emission in the spectral region of 330–400 nm can serve as a proxy of equivalence ratio and the rate of heat release. Regarding C2* chemiluminescence, we see two different chemical mechanisms for formation of C2* in the PPC regime: first during the early stage of combustion by the breakup of bigger molecules and the second during the late stage of combustion when soot particles are forming.

  19. Performance, Emissions and Combustion Characteristics of a Single Cylinder Diesel Engine Fuelled with Blends of Jatropha Methyl Ester and Diesel

    Directory of Open Access Journals (Sweden)

    Debasish Padhee

    2014-05-01

    Full Text Available In order to meet the energy requirements, there has been growing interest in alternative fuels like biodiesels, ethyl alcohol, biogas, hydrogen and producer gas to provide a suitable diesel substitute for internal combustion engines. An experimental investigation was performed to study the performance, emissions and combustion characteristics of diesel engine fuelled with blends of Jatropha methyl ester and diesel. In the present work three different fuel blends of Jatropha methyl ester (B10, B20, B40 and B100 were used. The increments in load on the engine increase the brake thermal efficiency, exhaust gas temperature and lowered the brake specific fuel consumption. The biodiesel blends produce lower carbon monoxide & unburned hydrocarbon emission and higher carbon dioxide & oxides of nitrogen than neat diesel fuel. From the results it was observed that the ignition delays decreased with increase in concentration of biodiesel in biodiesel blends with diesel. The combustion characteristics of single-fuel for biodiesel and diesel have similar combustion pressure and HRR patterns at different engine loads but it was observed that the peak cylinder pressure and heat release rate were lower for biodiesel blends compared to those of diesel fuel combustion.

  20. Bed agglomeration characteristics of palm shell and corncob combustion in fluidized bed

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Sricharoon, Panchan; Tia, Suvit

    2011-01-01

    Bed particle agglomeration was studied experimentally in an atmospheric laboratory scale fluidized bed combustor using quartz sand as bed material. Palm shell and corncob were tested. The objectives of the study were (i) to describe the contributions of the biomass ash properties and the operating conditions on the bed agglomeration tendency in term of the bed defluidization time (t def ) and the extent of potassium accumulation in the bed (K/Bed) and (ii) to further elucidate the ash inorganic behaviors and the governing bed agglomeration mechanisms. Defluidization caused by the bed agglomeration was experienced in all experiments during combustion of these biomasses, as a consequence of the presence of potassium in biomass. The experimental results indicated that biomass ash characteristics were the significant influence on the bed agglomeration. The increasing bed temperature, bed particle size and static bed height and the decreasing fluidizing air velocity enhanced the bed agglomeration tendency. The SEM/EDS analyses on the agglomerates confirmed that the agglomeration was attributed to the formation of potassium silicate liquid enriched on the surface of quartz sand particles in conjunction with the high surface temperature of the burning biomass char particles. Thermodynamic examination based on the phase diagram analysis confirmed that the molten phase formation was responsible for the agglomeration. In this study, the high molten ash fraction resulting from the high potassium content in biomass promoted the agglomeration and thus defluidization. - Highlights: → Palm shell and corncob of Thailand are tested their bed agglomeration behaviors during fluidized bed combustion. → The increase of bed temperature, bed particle size and static bed height and the decrease of air velocity enhance bed agglomeration. → The formation of ash derived potassium silicate melts enriched on sand surface is the key process. → The collision between char and sand

  1. Effect of Metal Additives on the Combustion Characteristics of High-Energy Materials

    OpenAIRE

    Korotkikh, Aleksandr Gennadievich; Glotov, Oleg; Sorokin, Ivan

    2016-01-01

    Thermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB[2], Al\\Mg alloy, Fe, Ti and Zr) in HEMs composition leads to the reduce of the specific impulse and comb...

  2. A Review on Homogeneous Charge Compression Ignition and Low Temperature Combustion by Optical Diagnostics

    Directory of Open Access Journals (Sweden)

    Chao Jin

    2015-01-01

    Full Text Available Optical diagnostics is an effective method to understand the physical and chemical reaction processes in homogeneous charge compression ignition (HCCI and low temperature combustion (LTC modes. Based on optical diagnostics, the true process on mixing, combustion, and emissions can be seen directly. In this paper, the mixing process by port-injection and direct-injection are reviewed firstly. Then, the combustion chemical reaction mechanism is reviewed based on chemiluminescence, natural-luminosity, and laser diagnostics. After, the evolution of pollutant emissions measured by different laser diagnostic methods is reviewed and the measured species including NO, soot, UHC, and CO. Finally, a summary and the future directions on HCCI and LTC used optical diagnostics are presented.

  3. Influence of low-temperature combustion and dimethyl ether-diesel blends on performance, combustion, and emission characteristics of common rail diesel engine: a CFD study.

    Science.gov (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Narayanappa, Kumar Gottekere

    2017-06-01

    Due to presence of more oxygen, absence of carbon-carbon (C-C) bond in chemical structure, and high cetane number of dimethyl ether (DME), pollution from DME operated engine is less compared to diesel engine. Hence, the DME can be a promising alternative fuel for diesel engine. The present study emphasizes the effect of various exhaust gas recirculation (EGR) rates (0-20%) and DME/Diesel blends (0-20%) on combustion characteristics and exhaust emissions of common rail direct injection (CRDI) engine using three-dimensional computational fluid dynamics (CFD) simulation. Extended coherent flame model-3 zone (ECFM-3Z) is implemented to carry out combustion analysis, and k-ξ-f model is employed for turbulence modeling. Results show that in-cylinder pressure marginally decreases with employing EGR compared to without EGR case. As EGR rate increases, nitrogen oxide (NO) formation decreases, whereas soot increases marginally. Due to better combustion characteristics of DME, indicated thermal efficiency (ITE) increases with the increases in DME/diesel blend ratio. Adverse effect of EGR on efficiency for blends is less compared to neat diesel, because the anoxygenated region created due to EGR is compensated by extra oxygen present in DME. The trade-off among NO, soot, carbon monoxide (CO) formation, and efficiency is studied by normalizing the parameters. Optimum operating condition is found at 10% EGR rate and 20% DME/diesel blend. The maximum indicated thermal efficiency was observed for DME/diesel ratio of 20% in the present range of study. Obtained results are validated with published experimental data and found good agreement.

  4. Comparison of char structural characteristics and reactivity during conventional air and oxy-fuel combustion

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaowei; Xu, Minghou; Yao, Hong; Gu, Ying; Si, Junping; Xiong, Chao [Huazhong Univ. of Science and Technology, Wuhan (China). State Key Lab. of Coal Combustion

    2013-07-01

    The capture and sequestration of CO{sub 2} generated from large- scale stationary power plants is considered to be one of the leading technologies that could potentially have a significant impact on reducing greenhouse emissions. Among these emerging technologies, the oxy-fuel combustion is a near-zero emission technology that can be adapted to both new and existing pulverized coal-fired power stations. The goal of this work is to make a comparative study on char structural characteristics (including char yield, swelling ratio, BET surface area, pore distribution, morphology) and reactivity during conventional air and oxy-fuel combustion. Specific experimental designs include two series. One is carried out in pure N{sub 2} and CO{sub 2} (pyrolysis experiments), and another is prepared in N{sub 2} + 5%O{sub 2} and CO{sub 2} + 5%O{sub 2}. Coal samples included raw coal, low density fraction coal and medium density fraction coal in all experiments. The present study is a further effort to extend our knowledge about physical and chemical structural characteristics and reactivity of char in the presence of high concentration CO{sub 2}. Combustion and pyrolysis of a density fractionated China coal at drop tube furnace yielded the following conclusions. Compared to oxy-chars obtained under pure CO{sub 2} atmosphere, the swelling ratios of char obtained in pure N{sub 2} atmosphere are higher. When adding 5%O{sub 2}, experimental results are completely different with those of the pyrolysis experiment. In comparison with the oxy-chars obtained under CO{sub 2} + 5%O{sub 2} atmosphere, the swelling ratios of the char obtained in N{sub 2} + 5%O{sub 2} atmosphere are lower. In the pyrolysis experiment, the BET surfaces Area of the oxy-chars are about 10-20 times as much as chars. When adding 5%O{sub 2}, the BET surfaces Area of the oxy-chars are about two to four times as much as chars. During pyrolysis experiment, the total pore volumes of the oxy-chars obtained under pure CO

  5. Predicting auto-ignition characteristics of RCCI combustion using a multi-zone model

    NARCIS (Netherlands)

    Egüz, U.; Maes, N.C.J.; Leermakers, C.A.J.; Somers, L.M.T.; Goey, de L.P.H.

    2013-01-01

    The objective of new combustion concepts is to meet emission standards by improving fuel air mixing prior to ignition. Since there is no overlap between injection and ignition, combustion is governed mainly by chemical kinetics and it is challenging to control the phasing of ignition. Reactivity

  6. Theoretical modeling of combustion characteristics and performance parameters of biodiesel in DI diesel engine with variable compression ratio

    Energy Technology Data Exchange (ETDEWEB)

    Al-Dawody, Mohamed F.; Bhatti, S.K. [Department of Mechanical Engineering, Andhra University (India)

    2013-07-01

    Increasing of costly and depleting fossil fuels are prompting researchers to use edible as well as non-edible vegetable oils as a promising alternative to petro-diesel fuels. A comprehensive computer code using ''Quick basic'' language was developed for the diesel engine cycle to study the combustion and performance characteristics of a single cylinder, four stroke, direct injection diesel engine with variable compression ratio. The engine operates on diesel fuel and 20% (mass basis) of biodiesel (derived from soybean oil) blended with diesel. Combustion characteristics such as cylinder pressure, heat release fraction, heat transfer and performance characteristics such as brake power; and brake specific fuel consumption (BSFC) were analyzed. On the basis of the first law of thermodynamics the properties at each degree crank angle was calculated. Wiebe function is used to calculate the instantaneous heat release rate. The computed results are validated through the results obtained in the simulation Diesel-rk software.

  7. Effects of oxygen enriched combustion on pollution and performance characteristics of a diesel engine

    Directory of Open Access Journals (Sweden)

    P. Baskar

    2016-03-01

    Full Text Available Oxygen enriched combustion is one of the attractive combustion technologies to control pollution and improve combustion in diesel engines. An experimental test was conducted on a single cylinder direct injection diesel engine to study the impact of oxygen enrichment on pollution and performance parameters by increasing the oxygen concentration of intake air from 21 to 27% by volume. The tests results show that the combustion process was improved as there is an increase in thermal efficiency of 4 to 8 percent and decrease in brake specific fuel consumption of 5 to 12 percent. There is also a substantial decrease in unburned hydro carbon, carbon mono-oxide and smoke density levels to the maximum of 40, 55 and 60 percent respectively. However, there is a considerable increase in nitrogen oxide emissions due to increased combustion temperature and extra oxygen available which needs to be addressed.

  8. Numerical investigation of heat transfer characteristics in utility boilers of oxy-coal combustion

    International Nuclear Information System (INIS)

    Hu, Yukun; Li, Hailong; Yan, Jinyue

    2014-01-01

    Highlights: • Air-coal and oxy-coal combustion in an industrial scale PF boiler were simulated in ANSYS FLUENT. • The O 2 concentration of 33 vol% in the oxy-coal combustion case matches the air-coal combustion case most closely. • The moisture in the flue gas has little impact on flame temperature, but positive impact on surface incident radiation. - Abstract: Oxy-coal combustion has different flue gas composition from the conventional air-coal combustion. The different composition further results in different properties, such as the absorption coefficient, emissivity, and density, which can directly affect the heat transfer in both radiation and convection zones of utility boilers. This paper numerically studied a utility boiler of oxy-coal combustion and compares with air-coal combustion in terms of flame profile and heat transferred through boiler side walls in order to understand the effects of different operating conditions on oxy-coal boiler retrofitting and design. Based on the results, it was found that around 33 vol% of effective O 2 concentration ([O 2 ] effective ) the highest flame temperature and total heat transferred through boiler side walls in the oxy-coal combustion case match to those in the air-coal combustion case most; therefore, the 33 vol% of [O 2 ] effective could result in the minimal change for the oxy-coal combustion retrofitting of the existing boiler. In addition, the increase of the moisture content in the flue gas has little impact on the flame temperature, but results in a higher surface incident radiation on boiler side walls. The area of heat exchangers in the boiler was also investigated regarding retrofitting. If boiler operates under a higher [O 2 ] effective , to rebalance the load of each heat exchanger in the boiler, the feed water temperature after economizer can be reduced or part of superheating surfaces can be moved into the radiation zone to replace part of the evaporators

  9. Effect of biodiesel unsaturated fatty acid on combustion characteristics of a DI compression ignition engine

    Energy Technology Data Exchange (ETDEWEB)

    Puhan, Sukumar [Department of Mechanical Engineering, Veltech Engineering college, Avadi, Chennai (India); Saravanan, N. [ERC Engines, Tata Motors, Pimpri, Pune (India); Nagarajan, G. [Department of Mechanical Engineering, Anna University, Chennai (India); Vedaraman, N. [Chemical Engineering Division, Central Leather Research Institute, Adyar, Chennai (India)

    2010-08-15

    Several research works have been carried out on biodiesel combustion, performance and emissions till today. But very few studies have been made about the chemistry of biodiesel that affects the diesel engine operation. Biodiesel is derived from vegetable oil or animal fats, which comprises of several fatty acids with different chain length and bonding. The present work focuses on the effect of biodiesel molecular weight, structure (Cis and Trans), and the number of double bonds on the diesel engine operation characteristics. Three types of biodiesel with different molecular weight and number of double bond were selected for the experimental studies. The biodiesels were prepared and analyzed for fuel properties according to the standards. A constant speed diesel engine, which develops 4.4 kW of power, was run with biodiesels and its performance was compared with diesel fuel. The results show that Linseed oil methyl ester with high linolenic (unsaturated fatty acid ester) does not suit best for diesel engine due to high oxides of nitrogen emission and low thermal efficiency. (author)

  10. An Experimental Study of Emission and Combustion Characteristics of Marine Diesel Engine with Fuel Injector Malfunctions

    Directory of Open Access Journals (Sweden)

    Kowalski Jerzy

    2016-01-01

    Full Text Available The presented paper shows the results of the laboratory study on the relation between chosen malfunctions of a fuel injector and composition of exhaust gas from the marine engine. The object of research is a marine 3-cylinder, four-stroke, direct injection diesel engine with an intercooler system. The engine was loaded with a generator and supercharged. The generator was electrically connected to the water resistance. The engine operated with a load between 50 kW and 250 kW at a constant speed. The engine load and speed, parameters of the turbocharger, systems of cooling, fuelling, lubricating and air exchange, were measured. Fuel injection and combustion pressures in all cylinders of the engine were also recorded. Exhaust gas composition was recorded by using a electrochemical gas analyzer. Air pressure, temperature and humidity were also recorded. Emission characteristics of the engine were calculated according to ISO 8178 standard regulations. During the study the engine operated at the technical condition recognized as „working properly” and with simulated fuel injector malfunctions. Simulation of malfunctions consisted in the increasing and decreasing of fuel injector static opening pressure, decalibration of fuel injector holes and clogging 2 neighboring of 9 fuel injector holes on one of 3 engine cylinders.

  11. Biodiesel Production from Selected Microalgae Strains and Determination of its Properties and Combustion Specific Characteristics

    Directory of Open Access Journals (Sweden)

    N. Kokkinos

    2015-11-01

    Full Text Available Biofuels are gaining importance as significant substitutes for the depleting fossil fuels. Recent focus is on microalgae as the third generation feedstock. In the present research work, two indigenous fresh water and two marine Chlorophyte strains have been cultivated successfully under laboratory conditions using commercial fertilizer (Nutrileaf 30-10-10, initial concentration=70 g/m3 as nutrient source. Gas chromatographic analysis data showed that microalgae biodiesel obtained from Chlorophyte strains biomass were composed of fatty acid methyl esters. The produced microalgae biodiesel achieved a range of 2.2 - 10.6 % total lipid content and an unsaturated FAME content between 49 mol% and 59 mol%. The iodine value, the cetane number, the cold filter plugging point, the oxidative stability as well as combustion specific characteristics of the final biodiesels were determined based on the compositions of the four microalgae strains. The calculated biodiesel properties compared then with the corresponding properties of biodiesel from known vegetable oils, from other algae strains and with the specifications in the EU (EN 14214 and US (ASTM D6751 standards. The derived biodiesels from indigenous Chlorophyte algae were significantly comparable in quality with other biodiesels.

  12. Experimental study on combustion and suppression characteristics of sodium fire in a columnar flow using extinguishing powder

    International Nuclear Information System (INIS)

    Huo Yan; Zhang Zhigang; Li Jinke; Liu Zhongkun; Ma Yaolong

    2017-01-01

    In the operation of the sodium-cooled fast reactor, the leakage and fire accident of liquid sodium is common and it is frequent in sodium-related facilities. This study focuses on the combustion and suppression characteristics of sodium fire in a columnar flow. Liquid sodium (250°C) is injected into a 7.9 m"3 cylindrical chamber at a flow rate of about 1.0 m"3/h to create a columnar sodium fire, and 18.4 kg class D extinguishing powder is sprayed after the liquid sodium injection. The temperature in the chamber space and sodium collection plate and the heat release rate from sodium fire are measured and analyzed. Based on the temperature data the sodium fire under suppression could be divided into four phases of dropping sharply, continuously remaining lower, rising and declining mildly, and depressing. The sodium fire in the space could be suppressed and cooled down if the extinguishing agent could spray in the early period of the liquid sodium injection. The extinguishing agent could suppress the combustion and spreading of liquid sodium dropping on the collection plate, limit the pool combustion area and postpone the commencement of sodium pool burning in spite of its later re-ignition happening. This study promises to evaluate the combustion and suppression characteristics of sodium fire in the sodium-related facilities. (author)

  13. Safety characteristics. Vol. 1. Combustible liquids and gases; Sicherheitstechnische Kenngroessen. Bd. 1. Brennbare Fluessigkeiten und Gase

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, E.; Moeller, W. [Laboratorium ' Sicherheitstechnische Kenngroessen' , Braunschweig (Germany)

    2003-07-01

    This reference manual is based on the 2002 version of the CHEMSAFE database, which is produced since 1989 by the PTB (Physikalisch-Technische Bundesanstalt), the BAM (Bundesanstalt fuer Materialforschung und -pruefung) and the DECHEMA (Gesellschaft fuer Chemische Technik und Biotechnologie e.V.). About 1,900 combustible gases and vapours are listed, along with explosion protection characteristics like flame point, ignition temperature, explosion limits, minimum ignition energy, normal gap width, maximum explosion pressure, and maximum pressure increase over time. Important thermophysical data are presented as well, e.g. boiling temperature, vapour pressure as a function of temperature, melting temperature, and density. Definitions of the characteristics are presented. There are several indexis to facilitate acces (CAS number, sum formula, synonyms). [German] Anwender in Industrie, Handel, Handwerk und Behoerden benoetigen verlaessliche Daten, von Fachleuten bewertete Kenngroessen des Brand- und Explosionsschutzes, um Brand- und Explosionsgefahren beim Verarbeiten, Abfuellen, Lagern, Befoerdern und Entsorgen brennbarer Stoffe beurteilen und angemessene Schutzmassnahmen ergreifen zu koennen. Die 1989 gemeinsam mit der Bundesanstalt fuer Materialfoschung und -pruefung (BAM) und der Gesellschaft fuer Chemische Technik und Biotechnologie e.v (DECHEMA) erstellte Datenbank CHEMSAFE diente als Grundlage dieses Nachschlagewerkes. Die hier bei Drucklegung wiedergegebenen Kenngroessen entsprechen dem Update 2002 der Datenbank CHEMSAFE. Etwa 1.900 brennbare Gase und Daempfe, Kenngroessen des Explosionsschutzes wie Flammpunkt, Zuendtemperatur, Explosionsgrenzen, Mindestzuendenergie, Normspaltweite, maximaler Explosionsdruck und maximaler zeitlicher Druckanstieg sind ebenso aufgelistet wie auch einige wichtige thermophysikalische Groessen wie Siedetemperatur, Dampfdruck als Funktion der Temperatur, Schmelztemperatur und Dichte. Die Angaben werden eingeleitet durch Definitionen

  14. Physical properties, evaporation and combustion characteristics of nanofluid-type fuels

    Science.gov (United States)

    Tanvir, Saad

    Nanofluids are liquids with stable suspension of nanoparticles. Limited studies in the past have shown that both energetic and catalytic nanoparticles once mixed with traditional liquid fuels can be advantageous in combustion applications, e.g., increased energy density and shortened ignition delay. Contradictions in existing literature, scarcity of experimental data and lack of understanding on how the added nanoparticles affect the physical properties as well as combustion characteristics of the resulting fuel motivated us to launch a detailed experimental and theoretical investigation. The surface tension of ethanol and n-decane based nanofluid fuels containing suspended nanoparticles were measured using the pendant drop method by solving the Young-Laplace equation. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size. This is because the Van der Waals forces between particles at the liquid/gas interface increases surface free energy that overcomes any electrostatic repulsion between the particles and increases surface tension. This present work also reports experimental analysis of the latent heat of vaporization ( Hfg) of nanofluids. Results show that the addition of Ag and Fe nanoparticles in water results is a substantial reduction in Hfg. On the contrary Al addition slightly increases Hfg. Similar observations are made for ethanol based nanofluids. Molecular dynamics simulations showed that the strength of bonding between particles and the fluid molecules is the governing factor in the variation of Hfg upon particle addition. The thermal conductivity was measured using KD2-Pro from Decagon Devices based on the transient line heat source method. The rheological properties of the ethanol and ethanol/nanoparticles suspensions are measured using a StresstechRTM rotational rheometer. Both properties increased with increasing particle concentration. Trends are found to be consistent

  15. Effect of Metal Additives on the Combustion Characteristics of High-Energy Materials

    Directory of Open Access Journals (Sweden)

    Korotkikh Alexander

    2016-01-01

    Full Text Available Thermodynamic calculation of combustion parameters and equilibrium composition of HEMs combustion products showed, that at the increase of aluminum powder dispersity the specific impulse and combustion temperature of solid propellants are reduced due to the decrease of the mass fraction of active aluminum in particles. Partial or complete replacement of aluminum by metal powder (B, Mg, AlB2, Al\\Mg alloy, Fe, Ti and Zr in HEMs composition leads to the reduce of the specific impulse and combustion temperature. Replacement of aluminum powder by boron and magnesium in HEM reduces the mass fraction of condensed products in the combustion chamber of solid rocket motor. So, for compositions HEMs with boron and aluminum boride the mass fraction in chamber is reduced by 24 and 36 %, respectively, with respect to the composition HEMs with Al powder. But the mass fraction of CCPs in the nozzle exit increases by 13 % for HEMs with aluminum boride due to the formation of boron oxide in the condensed combustion products. Partial replacement of 2 wt. % aluminum powder by iron and copper additives in HEM leads to the reduce of CCPs mass fraction in chamber by 4–10 % depending on the aluminum powder dispersity duo to these metals are not formed condensed products at the HEMs combustion in chamber.

  16. Combustion characteristics of intensively cleaned coal fractions. Effect of mineral matter

    Energy Technology Data Exchange (ETDEWEB)

    Rubiera, F.; Arenillas, A.; Fuente, E.; Pis, J.J. [Inst. Nacional de Carbon, Oviedo (Spain); Ivatt, S. [ETSU, Harwell, Didcot (United Kingdom)

    1997-12-31

    The purpose of this work has been to assess the effect that intensive coal cleaning exerts on the combustion behaviour of different density-separated coal fractions. Samples with ash contents varying from 39% for the raw coal, to 2% for the cleanest fraction were obtained after density separation. Temperature-programmed combustion and isothermal gasification in air were used to measure the reactivities of the parent coal and the cleaned fractions. Coal and char reactivities increased with increasing ash content of the samples. Thermal analysis-mass spectrometry of the low-temperature ashes was also carried out in order to study the reactions of coal minerals under combustion conditions. (orig.)

  17. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization: Hydrochar fuel characteristics and combustion behavior

    International Nuclear Information System (INIS)

    He, Chao; Giannis, Apostolos; Wang, Jing-Yuan

    2013-01-01

    Highlights: • The hydrothermal carbonization of sewage sludge process is developed. • Hydrochars are solid fuels with less nitrogen and sulfur contents. • The first order combustion reaction of hydrochars is derived. • Main combustion decomposition of hydrochars is easier and more stable. • Formation pathways of hydrochars during hydrothermal carbonization are proposed. - Abstract: Conventional thermochemical treatment of sewage sludge (SS) is energy-intensive due to its high moisture content. To overcome this drawback, the hydrothermal carbonization (HTC) process was used to convert SS into clean solid fuel without prior drying. Different carbonization times were applied in order to produce hydrochars possessing better fuel properties. After the carbonization process, fuel characteristics and combustion behaviors of hydrochars were evaluated. Elemental analysis showed that 88% of carbon was recovered while 60% of nitrogen and sulfur was removed. Due to dehydration and decarboxylation reactions, hydrogen/carbon and oxygen/carbon atomic ratios reduced to 1.53 and 0.39, respectively. It was found that the fuel ratio increased to 0.18 by prolonging the carbonization process. Besides, longer carbonization time seemed to decrease oxygen containing functional groups while carbon aromaticity structure increased, thereby rendering hydrochars highly hydrophobic. The thermogravimetric analysis showed that the combustion decomposition was altered from a single stage for raw sludge to two stages for hydrochars. The combustion reaction was best fitted to the first order for both raw sludge and hydrochars. The combustion of hydrochars is expected to be easier and more stable than raw sludge because of lower activation energy and pre-exponential factor

  18. Combustion and emission characteristics of diesel engine fueled with diesel-like fuel from waste lubrication oil

    International Nuclear Information System (INIS)

    Wang, Xiangli; Ni, Peiyong

    2017-01-01

    Highlights: • 100% diesel-like fuel from waste lubricating oil was conducted in a diesel engine. • Good combustion and fuel economy are achieved without engine modifications. • Combustion duration of DLF is shorter than diesel. • NOx and smoke emissions with the DLF are slightly higher than pure diesel. - Abstract: Waste lubricant oil (WLO) is one of the most important types of the energy sources. WLO cannot be burned directly in diesel engines, but can be processed to be used as diesel-like fuel (DLF) to minimize its harmful effect and maximize its useful values. Moreover, there are some differences in physicochemical properties between WLO and diesel fuel. In order to identify the differences in combustion and emission performance of diesel engine fueled with the two fuels, a bench test of a single-cylinder direct injection diesel engine without any engine modification was investigated at four engine speeds and five engine loads. The effects of the fuels on fuel economic performance, combustion characteristics, and emissions of hydrocarbons (HC), carbon monoxide (CO), nitrogen oxides (NOx) and smoke were discussed. The DLF exhibits longer ignition delay period and shorter combustion duration than diesel fuel. The test results indicate that the higher distillation temperatures of the DLF attribute to the increase of combustion pressure, temperature and heat release rate. The brake specific fuel consumption (BSFC) of the DLF compared to diesel is reduced by about 3% at 3000 rpm under light and medium loads. The DLF produces slightly higher NOx emissions at middle and heavy loads, somewhat more smoke emissions at middle loads, and notably higher HC and CO emissions at most measured points than diesel fuel. It is concluded that the DLF can be used as potential available fuel in high-speed diesel engines without any problems.

  19. Study on the combustion and hydrocarbon emission characteristics of direct injection spark-ignition engines during the direct-start process

    International Nuclear Information System (INIS)

    Shi, Lei; Xiao, Maoyu; Deng, Kangyao

    2015-01-01

    Highlights: • Mixture concentration in first-combustion cylinder of direct start is measured. • Factors that affect direct start performances are investigated. • Combustion characteristics of first-combustion cylinder are analyzed. • Hydrocarbon emission is considered to determined control strategies of direct start. - Abstract: This study was conducted to investigate the combustion and emissions characteristics of the first-combustion cylinder in a direct-start process. The explosive energy of the first combustion is important for the success of a direct start, but this combustion was rarely addressed in recent research. For a 2.0 L direct-injection spark-ignition engine, the in-cylinder mixture concentration, cylinder pressure, engine speed and exhaust hydrocarbon concentration were detected to analyze the fuel evaporation, combustion, engine movement and engine emissions, respectively. In the first-combustion cylinder of the direct-start process, the injected fuel was often enriched to ensure that an appropriate mixture concentration was obtained for ignition without misfiring. Approximately one-third of the injected fuel would not participate in the combustion process and would therefore reduce the exhaust hydrocarbon emissions. The start position determined the amount of the total explosive energy in the first-combustion cylinder, and an optimal start position for a direct start was found to be at a 70–80° crank angle before the top dead center to obtain a better combustion performance and lower emissions. A lower coolant temperature increased the maximum explosion energy of the first combustion, but additional hydrocarbon emissions were generated. Because there was almost no problem in the direct-start capability with different coolant temperatures after an idling stop, it was necessary to maintain the coolant temperature when the engine was stopped

  20. Influence of the external heating type in the morphological and structural characteristics of alumina powder prepared by combustion reaction

    International Nuclear Information System (INIS)

    Cordeiro, V.V.; Freitas, N.L.; Viana, K.M.S.; Dias, G.; Costa, A.C.F.M.; Lira, H.L.

    2009-01-01

    The aim of this work is to evaluate the influence of the external heating in the morphological and structural characteristics of the alumina powder prepared by combustion reaction. It was evaluated different types of external heating: muffle oven, microwave oven and ceramic plate with electrical spiral resistance. The powders were prepared according to the propellants and explosives theory, using urea in the stoichiometric proportion (Φe = 1). During the synthesis parameters such as flame combustion time and temperature were measured. The structural and morphological characteristics of the powders were evaluate by XRD, particle size distribution, SEM and nitrogen adsorption (BET). The results showed the production of a-alumina as unique phase and formed by agglomerates with irregular plate shape of thin particles for all studied conditions. The powders prepared by electrical oven presented small particle size, with narrow agglomerates size distribution. (author)

  1. Calculation for Primary Combustion Characteristics of Boron-Based Fuel-Rich Propellant Based on BP Neural Network

    Directory of Open Access Journals (Sweden)

    Wu Wan'e

    2012-01-01

    Full Text Available A practical scheme for selecting characterization parameters of boron-based fuel-rich propellant formulation was put forward; a calculation model for primary combustion characteristics of boron-based fuel-rich propellant based on backpropagation neural network was established, validated, and then was used to predict primary combustion characteristics of boron-based fuel-rich propellant. The results show that the calculation error of burning rate is less than ±7.3%; in the formulation range (hydroxyl-terminated polybutadiene 28%–32%, ammonium perchlorate 30%–35%, magnalium alloy 4%–8%, catocene 0%–5%, and boron 30%, the variation of the calculation data is consistent with the experimental results.

  2. An experimental investigation of concentrated slop combustion characteristics in cyclone furnace

    Science.gov (United States)

    Panpokha, Suphaopich; Wongwuttanasatian, Tanakorn; Tangchaichit, Kiatfa

    2018-02-01

    Slop is a by-product in alcoholic industries requiring costly waste management. An idea of using slop as a fuel in a boiler for the industries was proposed. Due to high content of ash, a cyclone furnace was designed to combust the slop. This study aims to examine the concentrated slop combustion in a designed cyclone furnace, consisting of combustion temperature and exhaust gases. The tests were carried out under 4 different air-fuel ratios. Fuels injected into the furnace were 3 g/s of concentrated slop and 1 g/s of diesel. The air-fuel ratios were corresponding to 100, 120, 140 and 160 percent theoretical air. The results demonstrated that combustion of concentrated slop can gave temperature of 800-1000°C and a suitable theoretical air was 100%-120%, because the combustion temperature was higher than that of other cases. In cyclone combustion, excess air is not recommended because it affects a reduction in overall temperature inside the cyclone furnace. It is expected that utilization of the concentrated slop (by-product) will be beneficial in the development of green and zero waste factory.

  3. Effect of exhaust gas recirculation on some combustion characteristics of dual fuel engine

    Energy Technology Data Exchange (ETDEWEB)

    Selim, Mohamed Y.E. [United Arab Emirates Univ., Dept. of Mechanical Engineering, Al-Ain (United Arab Emirates)

    2003-03-01

    Combustion pressure rise rate and thermal efficiency data are measured and presented for a dual fuel engine running on a dual fuel of Diesel and compressed natural gas and utilizing exhaust gas recirculation (EGR). The maximum pressure rise rate during combustion is presented as a measure of combustion noise. The experimental investigation on the dual fuel engine revealed the noise generated from combustion and the thermal efficiency at different EGR ratios. A Ricardo E6 Diesel version engine is converted to run on a dual fuel of Diesel and compressed natural gas and having an exhaust gas recycling system is used throughout the work. The engine is fully computerized, and the cylinder pressure data and crank angle data are stored in a PC for offline analysis. The effects of EGR ratio, engine speeds, loads, temperature of recycled exhaust gases, intake charge pressure and engine compression ratio on combustion noise and thermal efficiency are examined for the dual fuel engine. The combustion noise and thermal efficiency of the dual fuel engine are found to be affected when EGR is used in the dual fuel engine. (Author)

  4. Examining Methods to Reduce Wall-Wetting under HCCI conditions

    Energy Technology Data Exchange (ETDEWEB)

    Van Erp, D.D.T.M.

    2009-01-15

    HCCI engines (Homogeneous Charge Compression Ignition) are very promising in the reduction of soot and NOx, but several problems must be tackled. Collision of the liquid fuel spray against the cylinder wall (Wall-wetting) is a major problem. Low gas temperatures and low gas densities (typical 600 - 800 K and 5 - 7.4 kg/m{sup 3}) at the moment of the fuel injection slow down the evaporation process of the liquid fuel in the spray and causes wall-wetting. This report investigates different promising measures that can reduce the penetration of the liquid fuel core, in order to prevent wall-wetting. From literature it turns out that the measures, listed below, are the most promising for liquid core length (LL) reduction without changing the design of the injector or the engine design: Increasing the fuel temperature, Changing the fuel pressure, Decrease of injector hole diameter, Multiple injections (first very short injections are examined). Each of the measures will be investigated by a liquid length prediction model (Siebers) and in an experimental setup, the EHPC (Eindhoven High Pressure Cell). A high pressure vessel with optical access makes it possible to visualize the liquid core and the vapor phase of the fuel spray by Mie and Schlieren, respectively. Changes to the setup are made to heat up the fuel up to 120C. Furthermore, changes to the fuel spray visualization techniques have been made. Where in previous experiments the Mie and Schlieren techniques were carried out separately from each other, in this work both visualization techniques are combined to save measurement time and to deal with the same experimental conditions. The combined recording of Mie and Schlieren works well for high gas temperatures and densities. But the combined technique fails for low gas temperatures and densities (below 700K and 7.4 kg/m3), due to the poor contrast between the liquid core and the vapor phase. In further examination of liquid length reducing measures, only the Mie

  5. Study on gasoline HCCI engine equipped with electromagnetic variable valve timing system; Untersuchung an einem HCCI Verbrennungsmotor mit elektromagnetisch variablem Ventiltriebsystem

    Energy Technology Data Exchange (ETDEWEB)

    Urata, Y.; Awasaka, M.; Takanashi, J.; Kimura, N. [Honda R and D Co., Ltd. (Japan)

    2004-07-01

    First, this paper describes a study on the technology behind the electromagnetic variable valve timing system. This system provides highly efficient and stable valve opening/closing control. At first, the main purposes of this mechanism were nonthrottling technology that is expected to a reduction in fuel consumption and improving the engine torque with optimal valve timing on stichomythic spark ignited engine. In resent years, increasing attention has been paid to a homogeneous charge compression ignition (HCCI). We also used this mechanism on HCCI study with controlling the amount of internal EGR and intake air. Schemes to extend the operational region of gasoline compression ignition were explored using single (optical) and 4-cylinder 4-stroke engines equipped with an electromagnetic variable valve timing system. This paper focuses mainly on the use of direct fuel injection devices (multi-hole and pintle types), exhaust gas recirculation (EGR) through valve timing, and their effects on the compression ignition operating ranges, and emissions. Also considered is charge boost HCCI using a mechanical supercharger. (orig.)

  6. Combustion and emission characteristics of a natural gas-fueled diesel engine with EGR

    International Nuclear Information System (INIS)

    Abdelaal, M.M.; Hegab, A.H.

    2012-01-01

    Highlights: ► An existed DI diesel engine has been modified to suit dual fuel operation with EGR. ► Comparative study has been conducted between different operating modes. ► Dual fuel mode exhibits better performance at high loads than diesel. ► Dual fuel mode exhibits lower NOx and higher HC emissions than diesel. ► EGR improves performance at part loads and emissions of dual fuel mode. - Abstract: The use of natural gas as a partial supplement for liquid diesel fuel is a very promising solution for reducing pollutant emissions, particularly nitrogen oxides (NOx) and particulate matters (PM), from conventional diesel engines. In most applications of this technique, natural gas is inducted or injected in the intake manifold to mix uniformly with air, and the homogenous natural gas–air mixture is then introduced to the cylinder as a result of the engine suction. This type of engines, referred to as dual-fuel engines, suffers from lower thermal efficiency and higher carbon monoxide (CO) and unburned hydrocarbon (HC) emissions; particularly at part load. The use of exhaust gas recirculation (EGR) is expected to partially resolve these problems and to provide further reduction in NOx emission as well. In the present experimental study, a single-cylinder direct injection (DI) diesel engine has been properly modified to run on dual-fuel mode with natural gas as a main fuel and diesel fuel as a pilot, with the ability to employ variable amounts of EGR. Comparative results are given for various operating modes; conventional diesel mode, dual-fuel mode without EGR, and dual-fuel mode with variable amounts of EGR, at different operating conditions; revealing the effect of utilization of EGR on combustion process and exhaust emission characteristics of a pilot ignited natural gas diesel engine.

  7. Investigation on the ignition, thermal acceleration and characteristic temperatures of coal char combustion

    International Nuclear Information System (INIS)

    Zhang, Bin; Fu, Peifang; Liu, Yang; Yue, Fang; Chen, Jing; Zhou, Huaichun; Zheng, Chuguang

    2017-01-01

    Highlights: • A new thermal model and measuring method for the ignition temperature are proposed. • Ignition occurs in a region but not a point with ambient conditions changing. • Ignition region is measured from the minimum to maximum ignition temperature. • T_i_g_,_m_a_x of coal char in TG-DSC is in line with the ignition temperature of EFR. - Abstract: Through using a new thermal analysis model and a method of coal/char combustion, the minimum ignition temperature and minimum ignition heat of three different ranks of pulverized coal char were measured by simultaneous Thermogravimetry and Differential Scanning Calorimetry (TG-DSC) experiments. The results show that the ignition of coal char occurs in the range between the minimum ignition temperature and the inflection-point temperature. The thermal acceleration and its gradient G_T increase with increasing heating rate and decrease with increasing coal char rank. The higher the G_T of the coal char, the more easily the ignition occurs and more rapidly the burning and burnout occur. The data show that the G_T of coal char of SLH lignite is 1.6 times more than that of coal char of ZCY bituminous and JWY anthracite in ignition zone, and 3.4 times in burning zone. The characteristic temperatures increase with increasing temperature of prepared char, heating rate and char rank. Moreover, the T_i_g_,_m_a_x calculated in DSC experiment is approximately in line with the ignition temperature obtained in the entrained flow reactor, which demonstrates the feasibility of the proposed theory.

  8. Combustion Stability Characteristics of the Project Morpheus Liquid Oxygen / Liquid Methane Main Engine

    Science.gov (United States)

    Melcher, John C.; Morehead, Robert L.

    2014-01-01

    The project Morpheus liquid oxygen (LOX) / liquid methane (LCH4) main engine is a Johnson Space Center (JSC) designed 5,000 lbf-thrust, 4:1 throttling, pressure-fed cryogenic engine using an impinging element injector design. The engine met or exceeded all performance requirements without experiencing any in- ight failures, but the engine exhibited acoustic-coupled combustion instabilities during sea-level ground-based testing. First tangential (1T), rst radial (1R), 1T1R, and higher order modes were triggered by conditions during the Morpheus vehicle derived low chamber pressure startup sequence. The instability was never observed to initiate during mainstage, even at low power levels. Ground-interaction acoustics aggravated the instability in vehicle tests. Analysis of more than 200 hot re tests on the Morpheus vehicle and Stennis Space Center (SSC) test stand showed a relationship between ignition stability and injector/chamber pressure. The instability had the distinct characteristic of initiating at high relative injection pressure drop at low chamber pressure during the start sequence. Data analysis suggests that the two-phase density during engine start results in a high injection velocity, possibly triggering the instabilities predicted by the Hewitt stability curves. Engine ignition instability was successfully mitigated via a higher-chamber pressure start sequence (e.g., 50% power level vs 30%) and operational propellant start temperature limits that maintained \\cold LOX" and \\warm methane" at the engine inlet. The main engine successfully demonstrated 4:1 throttling without chugging during mainstage, but chug instabilities were observed during some engine shutdown sequences at low injector pressure drop, especially during vehicle landing.

  9. Combustion Characteristics of Impregnated and Surface-treated Chestnut (Castanea sativa Mill. Wood Left Outdoors for One Year

    Directory of Open Access Journals (Sweden)

    Muhammed Said Fidan

    2016-01-01

    Full Text Available Treating wood with impregnating materials in order to improve resistance to burning is a commonly employed safety measure. In this study, chestnut (Castanea sativa Mill. wood samples were impregnated using either Tanalith-E or Wolmanit-CB according to ASTM-D 1413-76 and surface-treated using water-based or synthetic varnish according to ASTM-D 3023. These samples were used to investigate the combustion characteristics of samples left outdoors for one year as detailed in ASTM-E 160-50. The combustion temperatures of the samples left outdoors were similar upon impregnation with either Tanalith-E or Wolmanit-CB. However, the combustion temperature of the samples treated with synthetic varnish was lower than those that were treated with water-based varnish. The time to collapse and the total duration of combustion of the samples left outdoors were shorter for those impregnated with Wolmanit-CB. Weight loss of the samples left outdoors was higher for those that were impregnated with Tanalith-E and treated with water-based varnish. Gas analysis of the samples that were left outdoors indicated that the O2 content of flue gas from samples that were impregnated with Wolmanit-CB and treated with synthetic varnish was high and the CO content of flue gas from the same samples was low.

  10. Effect of coal blending on the leaching characteristics of arsenic and selenium in fly ash from fluidized bed coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, F.; Yamada, N.; Sato, A.; Ninomiya, Yoshihiko [Chubu Univ., Aichi (Japan). Dept. of Applied Chemistry; Zhang, L. [Monash Univ., Clayton, VIC (Australia). Dept. of Chemical Engineering

    2013-07-01

    The capture ability of fly ash to arsenic (As) and selenium (Se) was investigated through the combustion of two single bituminous coals A and B and their mixture (blending ratio of 1:1, wt/wt) in a lab-scale fluidized bed reactor. The leaching characteristics of As and Se in corresponding fly ash were also conducted according to Japanese Industrial Standard (JIS). Speciation of As and Se during fly ash leaching test were predicted from the perspective of thermodynamic equilibrium. The results indicate that, combustion of coal B, containing abundant calcium, possesses a higher capture ability of As and Se than that of coal A through possible chemical reaction between As/Se with CaO. Leaching behavior of As and Se from fly ash is strongly dependent on the pH of the leachate. Free calcium in fly ash generates an alkaline leachate during leaching test and subsequently reduces As and Se leaching, which cause the leaching ratio of As and Se in fly ash derived from the combustion of coal B was much lower, relative to that in coal A. Combustion of blending coal promotes the overall capture ability of the fly ash to As/Se and reduces their leaching from fly ash through the synergy of free CaO between this two kind of fly ash.

  11. Numerical investigation on the flow, combustion, and NOX emission characteristics in a 660 MWe tangential firing ultra-supercritical boiler

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2016-02-01

    Full Text Available A three-dimensional numerical simulation was carried out to study the pulverized-coal combustion process in a tangentially fired ultra-supercritical boiler. The realizable k-ε model for gas coupled with discrete phase model for coal particles, P-1 radiation model for radiation, two-competing-rates model for devolatilization, and kinetics/diffusion-limited model for combustion process are considered. The characteristics of the flow field, particle motion, temperature distribution, species components, and NOx emissions were numerically investigated. The good agreement of the measurements and predictions implies that the applied simulation models are appropriate for modeling commercial-scale coal boilers. It is found that an ideal turbulent flow and particle trajectory can be observed in this unconventional pulverized-coal furnace. With the application of over-fire air and additional air, lean-oxygen combustion takes place near the burner sets region and higher temperature at furnace exit is acquired for better heat transfer. Within the limits of secondary air, more steady combustion process is achieved as well as the reduction of NOx. Furthermore, the influences of the secondary air, over-fire air, and additional air on the NOx emissions are obtained. The numerical results reveal that NOx formation attenuates with the decrease in the secondary air ratio (γ2nd and the ratio of the additional air to the over-fire air (γAA/γOFA was within the limits.

  12. Research on the Combustion Characteristics of a Free-Piston Gasoline Engine Linear Generator during the Stable Generating Process

    Directory of Open Access Journals (Sweden)

    Yuxi Miao

    2016-08-01

    Full Text Available The free-piston gasoline engine linear generator (FPGLG is a new kind of power plant consisting of free-piston gasoline engines and a linear generator. Due to the elimination of the crankshaft mechanism, the piston motion process and the combustion heat release process affect each other significantly. In this paper, the combustion characteristics during the stable generating process of a FPGLG were presented using a numerical iteration method, which coupled a zero-dimensional piston dynamic model and a three-dimensional scavenging model with the combustion process simulation. The results indicated that, compared to the conventional engine (CE, the heat release process of the FPGLG lasted longer with a lower peak heat release rate. The indicated thermal efficiency of the engine was lower because less heat was released around the piston top dead centre (TDC. Very minimal difference was observed on the ignition delay duration between the FPGLG and the CE, while the post-combustion period of the FPGLG was significantly longer than that of the CE. Meanwhile, the FPGLG was found to operate more moderately due to lower peak in-cylinder gas pressure and a lower pressure rising rate. The potential advantage of the FPGLG in lower NOx emission was also proven with the simulation results presented in this paper.

  13. Experimental study of combustion characteristics of nanoscale metal and metal oxide additives in biofuel (ethanol

    Directory of Open Access Journals (Sweden)

    Peterson GP

    2011-01-01

    Full Text Available Abstract An experimental investigation of the combustion behavior of nano-aluminum (n-Al and nano-aluminum oxide (n-Al2O3 particles stably suspended in biofuel (ethanol as a secondary energy carrier was conducted. The heat of combustion (HoC was studied using a modified static bomb calorimeter system. Combustion element composition and surface morphology were evaluated using a SEM/EDS system. N-Al and n-Al2O3 particles of 50- and 36-nm diameters, respectively, were utilized in this investigation. Combustion experiments were performed with volume fractions of 1, 3, 5, 7, and 10% for n-Al, and 0.5, 1, 3, and 5% for n-Al2O3. The results indicate that the amount of heat released from ethanol combustion increases almost linearly with n-Al concentration. N-Al volume fractions of 1 and 3% did not show enhancement in the average volumetric HoC, but higher volume fractions of 5, 7, and 10% increased the volumetric HoC by 5.82, 8.65, and 15.31%, respectively. N-Al2O3 and heavily passivated n-Al additives did not participate in combustion reactively, and there was no contribution from Al2O3 to the HoC in the tests. A combustion model that utilized Chemical Equilibrium with Applications was conducted as well and was shown to be in good agreement with the experimental results.

  14. Variation of diesel soot characteristics by different types and blends of biodiesel in a laboratory combustion chamber

    Energy Technology Data Exchange (ETDEWEB)

    Omidvarborna, Hamid; Kumar, Ashok [Department of Civil Engineering, The University of Toledo, Toledo, OH (United States); Kim, Dong-Shik, E-mail: dong.kim@utoledo.edu [Department of Chemical and Environmental Engineering, The University of Toledo, Toledo, OH (United States)

    2016-02-15

    Very little information is available on the physical and chemical properties of soot particles produced in the combustion of different types and blends of biodiesel fuels. A variety of feedstock can be used to produce biodiesel, and it is necessary to better understand the effects of feedstock-specific characteristics on soot particle emissions. Characteristics of soot particles, collected from a laboratory combustion chamber, are investigated from the blends of ultra-low sulfur diesel (ULSD) and biodiesel with various proportions. Biodiesel samples were derived from three different feedstocks, soybean methyl ester (SME), tallow oil (TO), and waste cooking oil (WCO). Experimental results showed a significant reduction in soot particle emissions when using biodiesel compared with ULSD. For the pure biodiesel, no soot particles were observed from the combustion regardless of their feedstock origins. The overall morphology of soot particles showed that the average diameter of ULSD soot particles is greater than the average soot particles from the biodiesel blends. Transmission electron microscopy (TEM) images of oxidized soot particles are presented to investigate how the addition of biodiesel fuels may affect structures of soot particles. In addition, inductively coupled plasma mass spectrometry (ICP-MS), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA) were conducted for characterization of soot particles. Unsaturated methyl esters and high oxygen content of biodiesel are thought to be the major factors that help reduce the formation of soot particles in a laboratory combustion chamber. - Highlights: • The unsaturation of biodiesel fuel was correlated with soot characteristics. • Average diameters of biodiesel soot were smaller than that of ULSD. • Eight elements were detected as the marker metals in biodiesel soot particles. • As the degree of unsaturation increased, the oxygen content in FAMEs increased. • Biodiesel

  15. Oxy-fuel combustion characteristics and kinetics of microalgae Chlorella vulgaris by thermogravimetric analysis.

    Science.gov (United States)

    Chen, Chunxiang; Lu, Ziguang; Ma, Xiaoqian; Long, Jun; Peng, Yuning; Hu, Likun; Lu, Quan

    2013-09-01

    Oxy-fuel or O2/CO2 combustion technology was used to investigate the combustion of Chlorella vulgaris by thermogravimetric analysis (TGA). Oxy-fuel combustion occurs in an O2/CO2 atmosphere instead of an O2/N2 atmosphere and offers an alternative method of C. vulgaris preparation for biofuels processing. Our results show that three stages were observed during C. vulgaris combustion and the main combustion process occurred at the second stage. Compared with a 20%O2/80%N2 atmosphere, the mass loss rate at the DTG peaks (Rp) and the average reaction rate (Rv) in a 20%O2/80%CO2 atmosphere was lower, while the ignition temperature (TI) was higher. As oxygen concentration increases in an O2/CO2 atmosphere, Rp, Rv and the apparent activation energy (E) increases, while TI, the final temperature detected as mass stabilization (Tf) and the residue mass (Mr) decreases; As the heating rate (β) increases, TI, Tf and Rp increase, while Mr decreases. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  16. Characteristics of spray flames and the effect of group combustion on the morphology of flame-made nanoparticles

    Science.gov (United States)

    Eslamian, Morteza; Heine, Martin C.

    2008-01-01

    Characteristics of burning and non-burning sprays generated by a coaxial air-assist nozzle, previously used for the synthesis of ceramic nanoparticles by flame spray pyrolysis (FSP), are studied using phase Doppler anemometry. Also, the effect of droplet interaction on the overall combustion behavior of the spray (group combustion) and, consequently, on the characteristics of flame-made ceramic particles is investigated. A physical model is proposed which correlates the formation of inhomogeneous mixtures of micron-sized hollow particles and solid nanoparticles to the combustion mode: the precursor droplets which entirely evaporate in the hot flame are responsible for the formation of nanoparticles. The vapor species react, forming intermediate and product molecules and clusters that quickly grow to nanosized ceramic particles. On the other hand, under certain conditions, a small number of the droplets, particularly with large initial sizes, escape from the spray boundaries and become extinguished, producing large hollow ceramic particles. It is also possible that some of the large droplets, which lie within the spray core, do not entirely evaporate. These surviving droplets then form large particles which are usually hollow but can collapse to solid particles at sufficiently high temperatures. Also, a criterion for the formation of homogeneous ceramic nanoparticles is presented.

  17. Characteristics of spray flames and the effect of group combustion on the morphology of flame-made nanoparticles

    International Nuclear Information System (INIS)

    Eslamian, Morteza; Heine, Martin C

    2008-01-01

    Characteristics of burning and non-burning sprays generated by a coaxial air-assist nozzle, previously used for the synthesis of ceramic nanoparticles by flame spray pyrolysis (FSP), are studied using phase Doppler anemometry. Also, the effect of droplet interaction on the overall combustion behavior of the spray (group combustion) and, consequently, on the characteristics of flame-made ceramic particles is investigated. A physical model is proposed which correlates the formation of inhomogeneous mixtures of micron-sized hollow particles and solid nanoparticles to the combustion mode: the precursor droplets which entirely evaporate in the hot flame are responsible for the formation of nanoparticles. The vapor species react, forming intermediate and product molecules and clusters that quickly grow to nanosized ceramic particles. On the other hand, under certain conditions, a small number of the droplets, particularly with large initial sizes, escape from the spray boundaries and become extinguished, producing large hollow ceramic particles. It is also possible that some of the large droplets, which lie within the spray core, do not entirely evaporate. These surviving droplets then form large particles which are usually hollow but can collapse to solid particles at sufficiently high temperatures. Also, a criterion for the formation of homogeneous ceramic nanoparticles is presented

  18. Experimental studies on the combustion characteristics and performance of a direct injection engine fueled with biodiesel/diesel blends

    International Nuclear Information System (INIS)

    Qi, D.H.; Chen, H.; Geng, L.M.; Bian, Y. ZH.

    2010-01-01

    Biodiesel is an alternative diesel fuel that can be produced from different kinds of vegetable oils. It is an oxygenated, non-toxic, sulphur-free, biodegradable, and renewable fuel and can be used in diesel engines without significant modification. However, the performance, emissions and combustion characteristics will be different for the same biodiesel used in different types of engine. In this study, the biodiesel produced from soybean crude oil was prepared by a method of alkaline-catalyzed transesterification. The effects of biodiesel addition to diesel fuel on the performance, emissions and combustion characteristics of a naturally aspirated DI compression ignition engine were examined. Biodiesel has different properties from diesel fuel. A minor increase in brake specific fuel consumption (BSFC) and decrease in brake thermal efficiency (BTE) for biodiesel and its blends were observed compared with diesel fuel. The significant improvement in reduction of carbon monoxide (CO) and smoke were found for biodiesel and its blends at high engine loads. Hydrocarbon (HC) had no evident variation for all tested fuels. Nitrogen oxides (NOx) were slightly higher for biodiesel and its blends. Biodiesel and its blends exhibited similar combustion stages to diesel fuel. The use of transesterified soybean crude oil can be partially substituted for the diesel fuel at most operating conditions in terms of the performance parameters and emissions without any engine modification.

  19. Influence of Mn and Co on structural and morphological characteristics of ZnO synthesized by combustion reaction

    International Nuclear Information System (INIS)

    Torquato, R.A.; Costa, C.F.M.; Kiminami, R.H.A.

    2010-01-01

    This study aims to evaluate the effect of doping of 0.2 mol of Mn and Co on structural and morphological characteristics of ZnO synthesized by combustion reaction. During the synthesis was the measurement of temperature and time of the combustion flame. The samples were characterized by XRD, SEM, particle size distribution and nitrogen adsorption (BET). The maximum temperature the reactions were 428 deg C and 436 deg C, reaction time, and 115 and 0 seconds for the samples doped with Mn and Co, respectively. The XRD data showed that for both impurities were formed only ZnO phase. For Co were formed secondary phase CoO. The crystallite size and surface area were 18 nm and 22 nm, and 52 and 38 m2/g for ZnO doped with Mn and Co, respectively. (author)

  20. Fundamental electrochemiluminescence characteristics of fluorine-doped tin oxides synthesized by sol-gel combustion.

    Science.gov (United States)

    Moon, B H; Chaoumead, A; Sung, Y M

    2013-10-01

    Fluorine-doped tin oxide (FTO) materials synthesized by sol-gel combustion method were investigated for electrochemical luminescence (ECL) application. Effects of sol-gel combustion conditions on the structures and morphology of the porous FTO (p-FTO) materials were studied. ECL efficiency of p-FTO-based cell was about 251 cd/m2 at 4 V bias, which is higher than the sell using only FTO electrodes (102.8 cd/m2). The highest intensity of the emitting light was obtained at the wavelength of about 610 nm. The porous FTO layer was effective for increasing ECL intensities.

  1. [Forensic medical characteristic of the thermal injury caused by inflammation of combustible fluids].

    Science.gov (United States)

    Khushkadamov, Z K; Iskhizova, L N; Gornostaev, D V

    2012-01-01

    The diagnostics of thermal injuries caused by inflammation of combustible fluids should be based on the comprehensive assessment of the results of examination of the scene of the accident, autopsy studies, forensic chemical expertise, and analysis of the circumstances of the case and/or medical documentation. Special attention should be given to the choice of adequate methods for taking samples to be used in forensic chemical studies. The assessment of thermal injuries caused by inflammation of combustible fluids must take into consideration the time and conditions under which they were inflicted (e.g. closed or open space, vertical or horizontal position, etc.).

  2. Combustion Characteristics of CI Diesel Engine Fuelled With Blends of Jatropha Oil Biodiesel

    Science.gov (United States)

    Singh, Manpreet; Yunus Sheikh, Mohd.; Singh, Dharmendra; Nageswara rao, P.

    2018-03-01

    Jatropha Curcas oil is a non-edible oil which is used for Jatropha biodiesel (JBD) production. Jatropha biodiesel is produced using transesterification technique and it is used as an alternative fuel in CI diesel engine without any hardware modification. Jatropha biodiesel is used in CI diesel engine with various volumetric concentrations (blends) such as JBD5, JBD15, JBD25, JBD35 and JBD45. The combustion parameters such as in-cylinder pressure, rate of pressure rise, net heat release, cumulative heat release, mass fraction burned are analyzed and compared for all blends combustion data with mineral diesel fuel (D100).

  3. Experimental investigations of combustion and emission characteristics of rapeseed oil–diesel blends in a two cylinder agricultural diesel engine

    International Nuclear Information System (INIS)

    Qi, D.H.; Lee, C.F.; Jia, C.C.; Wang, P.P.; Wu, S.T.

    2014-01-01

    Highlights: • The main properties of rapeseed oil and diesel fuel were measure and analyzed. • The cylinder pressure of the rapeseed oil–diesel blends was measured and compared. • The heat release rate of the test fuels was calculated and the combustion process was analyzed. • The fuel consumption and emissions characteristics were measured and compared. - Abstract: The main objective of this paper was to study the performance, emissions and combustion characteristics of a diesel engine using rapeseed oil–diesel blends. The main fuel properties of rapeseed oil (RSO) were investigated and compared with that of diesel fuel. The experimental results showed that the viscosity and density of the blends were decreased and approached to that of diesel fuel when RSO volume fraction was less than 20%. At low engine loads, the start of combustion for the blends was almost similar to that for diesel fuel, but the peak cylinder pressure and heat release rate were higher. At high engine loads, the start of combustion for the blends was slightly earlier than that for diesel fuel, but the peak cylinder pressure and heat release rate were identical. For the blends, there was slightly higher brake specific fuel consumptions (BSFC) and brake specific energy consumptions (BSEC) at low engine loads. Smoke emission was higher at low engine loads, but lower at high engine loads. Nitrogen oxide (NO x ) emission was observed slightly lower at low engine loads and almost identical at high engine loads. Carbon monoxide (CO) and hydrocarbon (HC) emission were higher under all range of engine loads for the blends

  4. Performance and Combustion Characteristics Analysis of Multi-Cylinder CI Engine Using Essential Oil Blends

    Directory of Open Access Journals (Sweden)

    S. M. Ashrafur Rahman

    2018-03-01

    Full Text Available Essential oils are derived from not-fatty parts of plants and are mostly used in aromatherapy, as well as cosmetics and perfume production. The essential oils market is growing rapidly due to their claimed health benefits. However, because only therapeutic grade oil is required in the medicinal sector, there is a substantial low-value waste stream of essential oils that can be used in the transportation and agricultural sectors. This study investigated the influence of orange, eucalyptus, and tea tree oil on engine performance and combustion characteristics of a multi-cylinder compression ignition engine. Orange, eucalyptus, and tea tree oil were blended with diesel at 10% by volume. For benchmarking, neat diesel and 10% waste cooking biodiesel-diesel blend were also tested. The selected fuels were used to conduct engine test runs with a constant engine speed (1500 RPM (revolutions per minute at four loads. As the load increased, frictional power losses decreased for all of the fuel samples and thus mechanical efficiency increased. At higher loads (75% and 100%, only orange oil-diesel blends produced comparable power to diesel and waste cooking biodiesel-diesel blends. Fuel consumption (brake and indicated for the essential oil-diesel blends was higher when compared to base diesel and waste cooking biodiesel-diesel blends. Thermal efficiency for the essential oil-diesel blends was comparable to base diesel and waste cooking biodiesel-diesel blends. At higher loads, blow-by was lower for essential oil blends as compared to base diesel and waste cooking biodiesel-diesel blends. At 50% and 100% load, peak pressure was lower for all of the essential oil-diesel blends when compared to base diesel and waste cooking biodiesel-diesel blends. From the heat release rate curve, the essential oil-diesel blends ignition delay times were longer because the oils have lower cetane values. Overall, the low-value streams of these essential oils were found to be

  5. Influence of injection timing on performance, combustion and emission characteristics of Jatropha biodiesel engine

    International Nuclear Information System (INIS)

    Ganapathy, T.; Gakkhar, R.P.; Murugesan, K.

    2011-01-01

    Highlights: → The effect of injection timing, load and speed on BSFC, BTE, peak pressure, HRR, CO, HC, NO and smoke were investigated. → Advanced injection timing caused reduced BSFC, CO, HC, smoke and increased BTE, P max , HRR max and NO for Jatropha biodiesel. → At 15 N m, 1800 rpm and 340 CAD, reduction in BSFC, CO, HC and smoke were 5.1%, 2.5%, 1.2% and 1.5% for Jatropha biodiesel. → Increase in BTE, P max , HRR max and NO at 15 N m, 1800 rpm and 340 CAD were 5.3%, 1.8%, 26% and 20% for Jatropha biodiesel. → Optimal injection timing for Jatropha biodiesel with minimum BSFC, CO, HC, smoke and maximum BTE, P max , HRR is 340 CAD. -- Abstract: The study of effect of injection timing along with engine operating parameters in Jatropha biodiesel engine is important as they significantly affect its performance and emissions. The present paper focuses on the experimental investigation of the influence of injection timing, load torque and engine speed on the performance, combustion and emission characteristics of Jatropha biodiesel engine. For this purpose, the experiments were conducted using full factorial design consisting of (3 3 ) with 27 runs for each fuel, diesel and Jatropha biodiesel. The effect of variation of above three parameters on brake specific fuel consumption (BSFC), brake thermal efficiency (BTE), peak cylinder pressure (P max ), maximum heat release rate (HRR max ), CO, HC, NO emissions and smoke density were investigated. It has been observed that advance in injection timing from factory settings caused reduction in BSFC, CO, HC and smoke levels and increase in BTE, P max , HRR max and NO emission with Jatropha biodiesel operation. However, retarded injection timing caused effects in the other way. At 15 N m load torque, 1800 rpm engine speed and 340 crank angle degree (CAD) injection timing, the percentage reduction in BSFC, CO, HC and smoke levels were 5.1%, 2.5%, 1.2% and 1.5% respectively. Similarly the percentage increase in BTE, P

  6. Characteristic fly-ash particles from oil-shale combustion found in lake sediments

    International Nuclear Information System (INIS)

    Alliksaar, T.; Hoerstedt, P.; Renberg, I.

    1998-01-01

    Fly-ash particles accumulate in sediments and can be used to assess spatial distribution and temporal trends of atmospheric deposition of pollutants derived from high temperature combustion of fossil fuels. Previous work has concerned fly-ash derived from oil and coal. Oil-shale is the main fossil fuel used in Estonia and a major source of atmospheric pollution in the Baltic states. To assess if oil-shale power plants produce specific fly-ash particles scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDX) were used to compare fly-ash particles from oil-shale combustion with particles from oil and coal combustion. Two types were analysed, large black (10-30μm) and small glassy (< 5 μm) spheroidal particles. Although article morphology to some extent is indicative of the fuel burnt, morphological characters are not sufficient to differentiate between particles of different origin. However, the results indicate that with EDX analysis the fly-ash from oil-shale can be distinguished form oil and coal derived particles in environmental samples. Concentrations of large black and small glassy spheroidal fly-ash particles in a sediment core from an Estonian lake showed similar trends to oil-shale combustion statistics from Estonian power plants. 27 refs., 6 figs., 2 tabs

  7. Effect of pre-combustion characteristics in pulse detonation engine using shchelkin spiral

    Directory of Open Access Journals (Sweden)

    C. T. Dheeraj Kumar Singh

    2016-09-01

    Full Text Available Pulse detonation engines are the modern propulsive device which provides high thrust. They are unsteady propulsive devices which has multi cycle operations in it. In this multi cycle process for every cycle fuel and air are initiated and a shock wave is generated in combustion chamber in form of deflagration. Combustion chamber is maintained with high pressure and high temperature which leads to combustion of reactants. This deflagration transmits to detonation with high velocity and increasing Mach number. Deflagration propagates forward by taking all unburned species and products formed after combustion. Propagation of Deflagration – Detonation Transition (DDT shock wave studies is a pioneering research concept. In the present study, simulation of PDE with Shchelkin spiral geometry is considered with two mass flow inlets has been used in which one is for fuel inlet and other for oxidizer. Geometry and meshing has been done in Gambit. Fuel used is gaseous fuel hydrogen and oxidizer is air mixture of O2, N2 work has been performed for different mass flow rates of fuel and oxidizer. Energy equation, Species transport equation to be solved in Fluent. Comparison results of DDT in parameters of mach number, velocity, pressure and temperatures depending on different time steps have been observed

  8. Emission characteristics of kerosene-air spray combustion with plasma assistance

    Directory of Open Access Journals (Sweden)

    Xingjian Liu

    2015-09-01

    Full Text Available A plasma assisted combustion system for combustion of kerosene-air mixtures was developed to study emission levels of O2, CO2, CO, and NOx. The emission measurement was conducted by Testo 350-Pro Flue Gas Analyzer. The effect of duty ratio, feedstock gas flow rate and applied voltage on emission performance has been analyzed. The results show that O2 and CO emissions reduce with an increase of applied voltage, while CO2 and NOx emissions increase. Besides, when duty ratio or feedstock gas flow rate decreases, the same emission results would appear. The emission spectrum of the air plasma of plasma assisted combustion actuator was also registered to analyze the kinetic enhancement effect of plasma, and the generation of ozone was believed to be the main factor that plasma makes a difference in our experiment. These results are valuable for the future optimization of kerosene-fueled aircraft engine when using plasma assisted combustion devices to exert emission control.

  9. The effects of changing municipal solid waste characteristics on combustion fuel quality

    International Nuclear Information System (INIS)

    Artz, N.S.; Franklin, M.A.

    1991-01-01

    This paper discusses the quality of municipal solid waste (MSW) as a combustion fuel based on two aspects: heat of combustion and heavy metal content. Characterization of MSW by the material flows methodology now provides a historical data series on the composition of MSW for nearly 30 years (1960-1988). Over this period, there have been marked changes in MSW composition, with paper and plastics increasing in percentage while glass and metals have declined. This paper will illustrate the effects of this changing composition on heat of combustion. Using a computer model and standard heat of combustion values for the components of MSW, heating values of MSW (in Btu per pound) are calculated for the 30-year time period. Changes in heating values are highlighted and projections are made to year 2010. Recognizing the increasing importance of the recovery of materials from MSW for recycling, the paper illustrates the effects of removing varying quantities of recyclable materials (e.g., newspapers, corrugated boxes, plastic bottles, glass bottles, metals, yard wastes) on the heating value of the remaining MSW. The paper's final section summarizes recent studies performed for EPA and others on the presence of heavy metals (lead, cadmium, and mercury) in the products discarded in MSW. Again, time trends are used to demonstrate the changing presence of these metals

  10. Characteristics and synergistic effects of co-combustion of carbonaceous wastes with coal.

    Science.gov (United States)

    Onenc, Sermin; Retschitzegger, Stefan; Evic, Nikola; Kienzl, Norbert; Yanik, Jale

    2018-01-01

    This study presents combustion behavior and emission results obtained for different fuels: poultry litter (PL) and its char (PLC), scrap tires (ST) and its char (STC) and blends of char/lignite (PLC/LIG and STC/LIG). The combustion parameters and emissions were investigated via a non-isothermal thermogravimetric method and experiments in a lab-scale reactor. Fuel indexes were used for the prediction of high temperature corrosion risks and slagging potentials of the fuels used. The addition of chars to lignite caused a lowering of the combustion reactivity (anti-synergistic effect). There was a linear correlation between the NO x emissions and the N content of the fuel. The form of S and the concentrations of alkali metals in the fuel had a strong effect on the extent of SO 2 emissions. The use of PL and PLC in blends reduced SO 2 emissions and sulphur compounds in the fly ash. The 2S/Cl ratio in the fuel showed that only PLC and STC/PLC would show a risk of corrosion during combustion. The ratio of basic to acidic oxides in fuel indicated that ST, STC and STC/LIG have low slagging potential. The molar (Si+P+K)/(Ca+Mg) ratio, which was used for PL, PLC and PLC containing blends, showed that the ash melting temperatures of these fuels would be higher than 1000 °C. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Auto-ignition modelling: analysis of the dilution effects by the unburnt gases and of the interactions with turbulence for diesel homogeneous charge compression ignition (HCCI) engines; Modelisation de l'auto-inflammation: analyse des effets de la dilution par les gaz brules et des interactions avec la turbulence dediee aux moteurs Diesel a charge homogene

    Energy Technology Data Exchange (ETDEWEB)

    Subramanian, G.

    2005-09-15

    Homogeneous Charge Compression Ignition (HCCI) is an alternative engine combustion process that offers the potential for substantial reductions in both NO{sub x} and particulate matter still providing high Diesel-like efficiencies. Combustion in HCCI mode takes place essentially by auto-ignition. It is mainly controlled by the chemical kinetics. It is therefore necessary to introduce detailed chemistry effects in combustion CFD codes in order to properly model the HCCI combustion process. The objective of this work is to develop an auto-ignition model including detailed chemical kinetics and its interactions with turbulence. Also, a comprehensive study has been performed to analyze the chemical influence of CO and H{sub 2} residual species on auto-ignition, which can be present in the exhaust gases. A new auto-ignition model, TKI-PDF (Tabulated Kinetics for Ignition - with turbulent mixing interactions through a pdf approach) dedicated to RANS 3D engine combustion CFD calculations is proposed. The TKI-PDF model is formulated in order to accommodate the detailed chemical kinetics of auto-ignition coupled with turbulence/chemistry interactions. The complete model development and its validation against experimental results are presented in two parts. The first part of this work describes the detailed chemistry input to the model. The second part is dedicated to the turbulent mixing description. A method based on a progress variable reaction rate tabulation is used. A look-up table for the progress variable reaction rates has been built through constant volume complex chemistry simulations. Instantaneous local reaction rates inside the CFD computational cell are then calculated by linear interpolation inside the look-up table depending on the local thermodynamic conditions. In order to introduce the turbulent mixing effects on auto-ignition, a presumed pdf approach is used. The model has been validated in different levels. First, the detailed kinetic approach was

  12. New black liquor combustion characteristics III; Mustalipeaen uudet poltto-ominaisuudet III

    Energy Technology Data Exchange (ETDEWEB)

    Hupa, M.; Forssen, M.; Backman, R.; Enestam, S.; Lauren, T.; Skrifvars, B.J. [Aabo Akademi, Turku (Finland). Combustion Chemistry Research Group

    1997-10-01

    The main purposes in this work is to: 1. Compare black liquor combustion characterization results to recovery boiler experiences. 2. Study the mechanisms of sodium release in black liquor combustion In the first part results from black liquor combustion characterization tests developed by Aabo Akademi University will be compared to experiences at four Finnish kraft recovery boilers. When comparing the laboratory data to the compiled field data emphasis will be put on the behavior of the black liquor during burning, the release of sodium and potassium, the melting behavior of the deposits and the NO and SO{sub 2} emissions. The main purpose in the second part of the work is to study the release mechanisms of sodium from black liquor char during combustion. Sodium is mainly released from the char by the mechanism where the molten sodiumcarbonate reacts with the char carbon. The study is divided into four subtasks and is performed mainly by conducting experiments in laboratory scale devices: (1) Sodium release during char reactions is studied for different liquors by analyzing the amount of sodium remaining in char after different holding times in a hot inert atmosphere. (2) A DTA/TGA apparatus is used to study in isothermal conditions the char reactions on prepyrolyzed char. (3) The effect of the form of sodium on the sodium release during char reactions. Black liquors added with different sodium salts (Na{sub 2}CO{sub 3}, Na{sub 2}SO{sub 4}, Na{sub 2}S{sub 2}O{sub 2}, Na{sub 2}S sekae NaCl) are used in experiments as in subtask 1. (4) Sodium release during combustion (2-5 % O{sub 2}) of single black liquor particles

  13. Analysis of the performance, emission and combustion characteristics of a turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends using kernel-based extreme learning machine.

    Science.gov (United States)

    Silitonga, Arridina Susan; Hassan, Masjuki Haji; Ong, Hwai Chyuan; Kusumo, Fitranto

    2017-11-01

    The purpose of this study is to investigate the performance, emission and combustion characteristics of a four-cylinder common-rail turbocharged diesel engine fuelled with Jatropha curcas biodiesel-diesel blends. A kernel-based extreme learning machine (KELM) model is developed in this study using MATLAB software in order to predict the performance, combustion and emission characteristics of the engine. To acquire the data for training and testing the KELM model, the engine speed was selected as the input parameter, whereas the performance, exhaust emissions and combustion characteristics were chosen as the output parameters of the KELM model. The performance, emissions and combustion characteristics predicted by the KELM model were validated by comparing the predicted data with the experimental data. The results show that the coefficient of determination of the parameters is within a range of 0.9805-0.9991 for both the KELM model and the experimental data. The mean absolute percentage error is within a range of 0.1259-2.3838. This study shows that KELM modelling is a useful technique in biodiesel production since it facilitates scientists and researchers to predict the performance, exhaust emissions and combustion characteristics of internal combustion engines with high accuracy.

  14. Influence of cooled exhaust gas recirculation on performance, emissions and combustion characteristics of LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Pradeep Bhasker, J.; Alexander, Jim; Porpatham, E.

    2017-11-01

    On fuel perspective, Liquefied Petroleum Gas (LPG) provides cleaner emissions and also facilitates lean burn signifying less fuel consumption and emissions. Lean burn technology can attain better efficiencies and lesser combustion temperatures but this temperature is quite sufficient to facilitate formation of nitrogen oxide (NOx). Exhaust Gas Recirculation (EGR) for NOx reduction has been considered allover but extremely little literatures exist on the consequence of EGR on lean burn LPG fuelled spark ignition (SI) engine. The following research is carried out to find the optimal rate of EGR addition to reduce NOx emissions without settling on performance and combustion characteristics. A single cylinder diesel engine is altered to operate as LPG fuelled SI engine at a compression ratio of 10.5:1 and arrangements to provide different ratios of cooled EGR in the intake manifold. Investigations are done to arrive at optimum ratio of the EGR to reduce emissions without compromising on performance. Significant reductions in NOx emissions alongside HC and CO emissions were seen. Higher percentages of EGR further diluted the charge and lead to improper combustion and thus increased hydrocarbon emissions. Cooled EGR reduced the peak in-cylinder temperature which reduced NOx emissions but lead to misfire at lower lean limits.

  15. Effects of spark plug configuration on combustion and emission characteristics of a LPG fuelled lean burn SI engine

    Science.gov (United States)

    Ravi, K.; Khan, Manazir Ahmed; Pradeep Bhasker, J.; Porpatham, E.

    2017-11-01

    Introduction of technological innovation in automotive engines in reducing pollution and increasing efficiency have been under contemplation. Gaseous fuels have proved to be a promising way to reduce emissions in Spark Ignition (SI) engines. In particular, LPG settled to be a favourable fuel for SI engines because of their higher hydrogen to carbon ratio, octane rating and lower emissions. Wide ignition limits and efficient combustion characteristics make LPG suitable for lean burn operation. But lean combustion technology has certain drawbacks like poor flame propagation, cyclic variations etc. Based on copious research it was found that location, types and number of spark plug significantly influence in reducing cyclic variations. In this work the influence of single and dual spark plugs of conventional and surface discharge electrode type were analysed. Dual surface discharge electrode spark plug enhanced the brake thermal efficiency and greatly reduced the cyclic variations. The experimental results show that rate of heat release and pressure rise was more and combustion duration was shortened in this configuration. On the emissions front, the NOx emission has increased whereas HC and CO emissions were reduced under lean condition.

  16. Large eddy simulation of combustion characteristics in a kerosene fueled rocket-based combined-cycle engine combustor

    Science.gov (United States)

    Huang, Zhi-wei; He, Guo-qiang; Qin, Fei; Cao, Dong-gang; Wei, Xiang-geng; Shi, Lei

    2016-10-01

    This study reports combustion characteristics of a rocket-based combined-cycle engine combustor operating at ramjet mode numerically. Compressible large eddy simulation with liquid kerosene sprayed and vaporized is used to study the intrinsic unsteadiness of combustion in such a propulsion system. Results for the pressure oscillation amplitude and frequency in the combustor as well as the wall pressure distribution along the flow-path, are validated using experimental data, and they show acceptable agreement. Coupled with reduced chemical kinetics of kerosene, results are compared with the simultaneously obtained Reynolds-Averaged Navier-Stokes results, and show significant differences. A flow field analysis is also carried out for further study of the turbulent flame structures. Mixture fraction is used to determine the most probable flame location in the combustor at stoichiometric condition. Spatial distributions of the Takeno flame index, scalar dissipation rate, and heat release rate reveal that different combustion modes, such as premixed and non-premixed modes, coexisted at different sections of the combustor. The RBCC combustor is divided into different regions characterized by their non-uniform features. Flame stabilization mechanism, i.e., flame propagation or fuel auto-ignition, and their relative importance, is also determined at different regions in the combustor.

  17. Influence of test configuration on the combustion characteristics of polymers as ignition sources

    Science.gov (United States)

    Julien, Howard L.

    1993-01-01

    The experimental evaluation of polymers as ignition sources for metals was accomplished at the NASA White Sands Test Facility (WSTF) using a standard promoted combustion test. These tests involve the transient burning of materials in high-pressure oxygen environments. They have provided data from which design decisions can be made; data include video recordings of ignition and non-ignition for specific combinations of metals and polymers. Other tests provide the measured compositions of combustion products for polymers at select burn times and an empirical basis for estimating burn rates. With the current test configuration, the detailed analysis of test results requires modeling a three-dimensional, transient convection process involving fluid motion, thermal conduction and convection, the diffusion of chemical species, and the erosion of sample surface. At the high pressure extremes, it even requires the analysis of turbulent, transient convection where the physics of the problem are not well known and the computation requirements are not practical at this time. An alternative test configuration that can be analyzed with a relatively-simple convection model was developed during the summer period. The principal change constitutes replacing a large-diameter polymer disk at the end of the metal test rod with coaxial polymer cylinders that have a diameter nearer to that of the metal rod. The experimental objective is to assess the importance of test geometries on the promotion of metal ignition by testing with different lengths of the polymer and, with an extended effort, to analyze the surface combustion in the redesigned promoted combustion tests through analytical modeling of the process. The analysis shall use the results of cone-calorimeter tests of the polymer material to model primary chemical reactions and, with proper design of the promoted combustion test, modeling of the convection process could be conveniently limited to a quasi-steady boundary layer

  18. A University Consortium on Low Temperature Combustion for High Efficiency, Ultra-Low Emission Engines

    Energy Technology Data Exchange (ETDEWEB)

    Assanis, Dennis N. [Univ. of Michigan, Ann Arbor, MI (United States); Atreya, Arvind [Univ. of Michigan, Ann Arbor, MI (United States); Chen, Jyh-Yuan [Univ. of California, Berkeley, CA (United States); Cheng, Wai K. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Dibble, Robert W. [Univ. of California, Berkeley, CA (United States); Edwards, Chris [Stanford Univ., CA (United States); Filipi, Zoran S. [Univ. of Michigan, Ann Arbor, MI (United States); Gerdes, Christian [Stanford Univ., CA (United States); Im, Hong [Univ. of Michigan, Ann Arbor, MI (United States); Lavoie, George A. [Univ. of Michigan, Ann Arbor, MI (United States); Wooldridge, Margaret S. [Univ. of Michigan, Ann Arbor, MI (United States)

    2009-12-31

    The objective of the University consortium was to investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines and develop methods to extend those boundaries to improve the fuel economy of these engines, while operating with ultra low emissions. This work involved studies of thermal effects, thermal transients and engine management, internal mixing and stratification, and direct injection strategies for affecting combustion stability. This work also examined spark-assisted Homogenous Charge Compression Ignition (HCCI) and exhaust after-treatment so as to extend the range and maximize the benefit of Homogenous Charge Compression Ignition (HCCI)/ Partially Premixed Compression Ignition (PPCI) operation. In summary the overall goals were; Investigate the fundamental processes that determine the practical boundaries of Low Temperature Combustion (LTC) engines; Develop methods to extend LTC boundaries to improve the fuel economy of HCCI engines fueled on gasoline and alternative blends, while operating with ultra low emissions; and Investigate alternate fuels, ignition and after-treatment for LTC and Partially Premixed compression Ignition (PPCI) engines.

  19. Carbon monoxide - hydrogen combustion characteristics in severe accident containment conditions. Final report

    International Nuclear Information System (INIS)

    2000-03-01

    Carbon monoxide can be produced in severe accidents from interaction of ex-vessel molten core with concrete. Depending on the particular core-melt scenario, the type of concrete and geometric factors affecting the interaction, the quantities of carbon monoxide produced can vary widely, up to several volume percent in the containment. Carbon monoxide is a combustible gas. The carbon monoxide thus produced is in addition to the hydrogen produced by metal-water reactions and by radiolysis, and represents a possibly significant contribution to the combustible gas inventory in the containment. Assessment of possible accident loads to containment thus requires knowledge of the combustion properties of both CO and H 2 in the containment atmosphere. Extensive studies have been carried out and are still continuing in the nuclear industry to assess the threat of hydrogen in a severe reactor accident. However the contribution of carbon monoxide to the combustion threat has received less attention. Assessment of scenarios involving ex-vessel interactions require additional attention to the potential contribution of carbon monoxide to combustion loads in containment, as well as the effectiveness of mitigation measures designed for hydrogen to effectively deal with particular aspects of carbon monoxide. The topic of core-concrete interactions has been extensively studied; for more complete background on the issue and on the physical/thermal-hydraulics phenomena involved, the reader is referred to Proceedings of CSNI Specialists Meetings (Ritzman, 1987; Alsmeyer, 1992) and a State-of-Art Report (European Commission, 1995). The exact amount of carbon monoxide present in a reactor pit or in various compartments (or rooms) in a containment building is specific to the type of concrete and the accident scenario considered. Generally, concrete containing limestone and sand have a high percentage of CaCO 3 . Appendix A provides an example of results of estimates of CO and CO 2

  20. The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine

    OpenAIRE

    Xiaochen Wang; Zhenbin Chen; Jimin Ni; Saiwu Liu; Haijie Zhou

    2015-01-01

    Comparative experiments were conducted on a port injection gasoline engine fueled with hydrous ethanol gasoline (E10W), ethanol gasoline (E10) and pure gasoline (E0). The effects of the engine loads and the additions of ethanol and water on combustion and emission characteristics were analyzed deeply. According to the experimental results, compared with E0, E10W showed higher peak in-cylinder pressure at high load. Increases in peak heat release rates were observed for E10W fuel at all the op...

  1. Magnetic Properties and Structural Characteristics of BaFe12O19 Hexaferrites Synthesized by the Zol-Gel Combustion

    Science.gov (United States)

    Zhuravlev, V. A.; Itin, V. I.; Minin, R. V.; Lopushnyak, Yu. M.; Velikanov, D. A.

    2018-03-01

    The phase structure, structural parameters, and basic magnetic characteristics of BaFe12O19 hexaferrites prepared by the zol-gel combustion method with subsequent annealing at a temperature of 850°C for 6 h are investigated. The influence of the organic fuel type on the properties of synthesized materials is analyzed. Values of the saturation magnetization and the anisotropy field are determined. It is established that they depend on the organic fuel type. It is shown that powders synthesized with citric acid used as a fuel have the largest particle sizes and the highest saturation magnetization.

  2. Measurement of trace emissions and combustion characteristics for a mass fire

    International Nuclear Information System (INIS)

    Susott, R.A.; Ward, D.E.; Babbitt, R.E.; Latham, D.J.

    1991-01-01

    Results are presented of a continuing study of research that was started in 1988. A new sampling system was designed to provide fire dynamics data from within the fire. This chapter describes the sampling system, the measurements it provided on one biomass fire, and some valuable parameters that can be calculated such as emission factors, combustion efficiency, and rate of fuel consumption. The large prescribed fire in Ontario, Canada, provided a practical test of this package that can be used to assess the application of the monitoring concept to a broad range of biomass fires. Measurements of wind vectors, temperature, and emissions of CO 2 , CO and particulates are reported for a 40-minute period from ignition through the critical period of maximum release of heat to the near extinction of the smoldering combustion phase

  3. COMBUSTION AND PERFORMANCE CHARACTERISTICS OF A SMALL SPARK IGNITION ENGINE FUELLED WITH HCNG

    OpenAIRE

    A. SONTHALIA; C. RAMESHKUMAR; U. SHARMA; A. PUNGANUR; S. ABBAS

    2015-01-01

    Due to environmental concerns and fossil fuel depletion, large scale researches were carried out involving the use of natural gas in internal combustion engines. Natural gas is a clean burning fuel that is available from large domestic natural reserve. When it is used as a fuel in SI engines, it reduces emissions to meet EURO-III norms with carburettors and EURO-IV norms with manifold injection. Countries like India with fewer natural fossil fuel reserves depend heavily on oil imported fro...

  4. Numerical Study on the Performance Characteristics of Hydrogen Fueled Port Injection Internal Combustion Engine

    OpenAIRE

    Rosli A. Bakar; Mohammed K. Mohammed; M. M. Rahman

    2009-01-01

    This study was focused on the engine performance of single cylinder hydrogen fueled port injection internal combustion engine. GT-Power was utilized to develop the model for port injection engine. One dimensional gas dynamics was represented the flow and heat transfer in the components of the engine model. The governing equations were introduced first, followed by the performance parameters and model description. Air-fuel ratio was varied from stoichiometric limit to a lean limit and the rota...

  5. The characteristics of bed agglomeration during fluidized bed combustion of eucalyptus bark

    International Nuclear Information System (INIS)

    Chaivatamaset, Pawin; Tia, Suvit

    2015-01-01

    The bed agglomeration behaviors were investigated experimentally when eucalyptus bark was burning tested in a laboratory scale fluidized bed reactor. The focuses of this work were the influences of operating conditions and bed materials on the bed agglomeration tendency and the elucidation in the behaviors of fuel inorganic elements and the governing mode of the agglomeration. It was found that the defluidization caused by the bed agglomeration was clearly detectable from the decrease in measured bed pressure. The growth of bed particle and accumulation of agglomerates during combustion provided the partial to complete defluidization. The defluidization was promoted by the increase of bed temperature and bed particle size, and the decrease of fluidizing air velocity. The SEM-EDS analyses revealed that the bed agglomeration was mainly attributed to the formation of potassium silicate compounds as liquid phase during the combustion. This was initiated by the chemical reaction between the bed particle and the released ash constituents. In this study, the inorganic migration from fuel particle to bed particle was likely dominated by the condensation/reaction. The thermodynamic examination by ternary phase diagram analysis corroborated that the liquid phase formation of the ash derived materials controlled the agglomeration. The alumina sand prevented the bed agglomeration since it was inactive in the formation of viscous molten substances during combustion at the observed temperatures. - Highlights: • The behaviors of bed agglomeration were studied during the fluidized bed combustion of eucalyptus bark. • The increase in bed temperature and sand size, and the decrease of air velocity promoted bed defluidization. • The formation of molten potassium silicate compounds conduced to the bed agglomeration. • Condensation/reaction was the dominant inorganic migration mechanism from fuel particle to bed particle. • The alumina sand prevented effectively the bed

  6. Combustion characteristics of water-insoluble elemental and organic carbon in size selected ambient aerosol particles

    Directory of Open Access Journals (Sweden)

    K. Wittmaack

    2005-01-01

    Full Text Available Combustion of elemental carbon (EC and organic carbon (OC contained in ambient aerosol matter was explored using scanning electron microscopy (SEM in combination with energy dispersive X-ray analysis (EDX. To ease identification of the particles of interest and to avoid or at least reduce interaction with simultaneously sampled inorganic oxides and salts, the approach used in this work differed in two ways from commonly applied procedures. First, rather than using a mixture of particles of vastly different sizes, as in PM10 or PM2.5, aerosol matter was collected in a 5-stage impactor. Second, the water soluble fraction of the collected matter was removed prior to analysis. Diesel soot particles, which appeared in the well-known form of chain-type aggregates, constituted the major fraction of EC. In contrast, OC containing particles were observed in a variety of shapes, including a sizable amount of bioaerosol matter appearing mostly in the size range above about 1 µm. During heating in ambient air for 1h, diesel soot particles were found to be stable up to 470°C, but complete combustion occurred in a narrow temperature interval between about 480 and 510°C. After diesel soot combustion, minute quantities of 'ash' were observed in the form of aggregated tiny particles with sizes less than 10 nm. These particles could be due to elemental or oxidic contaminants of diesel soot. Combustion of OC was observed over a wide range of temperatures, from well below 200°C to at least 500°C. Incompletely burnt bioaerosol matter was still found after heating to 600°C. The results imply that the EC fraction in aerosol matter can be overestimated significantly if the contribution of OC to a thermogram is not well separated.

  7. 3-DIMENSIONAL Numerical Modeling on the Combustion and Emission Characteristics of Biodiesel in Diesel Engines

    Science.gov (United States)

    Yang, Wenming; An, Hui; Amin, Maghbouli; Li, Jing

    2014-11-01

    A 3-dimensional computational fluid dynamics modeling is conducted on a direct injection diesel engine fueled by biodiesel using multi-dimensional software KIVA4 coupled with CHEMKIN. To accurately predict the oxidation of saturated and unsaturated agents of the biodiesel fuel, a multicomponent advanced combustion model consisting of 69 species and 204 reactions combined with detailed oxidation pathways of methyl decenoate (C11H22O2), methyl-9-decenoate (C11H20O2) and n-heptane (C7H16) is employed in this work. In order to better represent the real fuel properties, the detailed chemical and thermo-physical properties of biodiesel such as vapor pressure, latent heat of vaporization, liquid viscosity and surface tension were calculated and compiled into the KIVA4 fuel library. The nitrogen monoxide (NO) and carbon monoxide (CO) formation mechanisms were also embedded. After validating the numerical simulation model by comparing the in-cylinder pressure and heat release rate curves with experimental results, further studies have been carried out to investigate the effect of combustion chamber design on flow field, subsequently on the combustion process and performance of diesel engine fueled by biodiesel. Research has also been done to investigate the impact of fuel injector location on the performance and emissions formation of diesel engine.

  8. Combustion Characteristics for Turbulent Prevaporized Premixed Flame Using Commercial Light Diesel and Kerosene Fuels

    Directory of Open Access Journals (Sweden)

    Mohamed S. Shehata

    2014-01-01

    Full Text Available Experimental study has been carried out for investigating fuel type, fuel blends, equivalence ratio, Reynolds number, inlet mixture temperature, and holes diameter of perforated plate affecting combustion process for turbulent prevaporized premixed air flames for different operating conditions. CO2, CO, H2, N2, C3H8, C2H6, C2H4, flame temperature, and gas flow velocity are measured along flame axis for different operating conditions. Gas chromatographic (GC and CO/CO2 infrared gas analyzer are used for measuring different species. Temperature is measured using thermocouple technique. Gas flow velocity is measured using pitot tube technique. The effect of kerosene percentage on concentration, flame temperature, and gas flow velocity is not linearly dependent. Correlations for adiabatic flame temperature for diesel and kerosene-air flames are obtained as function of mixture strength, fuel type, and inlet mixture temperature. Effect of equivalence ratio on combustion process for light diesel-air flame is greater than for kerosene-air flame. Flame temperature increases with increased Reynolds number for different operating conditions. Effect of Reynolds number on combustion process for light diesel flame is greater than for kerosene flame and also for rich flame is greater than for lean flame. The present work contributes to design and development of lean prevaporized premixed (LPP gas turbine combustors.

  9. Combustion Characterization of Bio-derived Fuels and Additives

    DEFF Research Database (Denmark)

    Hashemi, Hamid

    Climate change has become a serious concern nowadays. The main reason is believed to be the high emission of greenhouse gases, namely CO2 which is mainly produced from the combustion of fossil fuels. At the same time, energy demand has increased exponentially while the energy supply mainly depends...... on fossil fuels, especially for transportation. The practical strategy to address such problems in medium term is to increase the efficiency of combustion-propelled energy-production systems, as well as to reduce the net release of CO2 and other harmful pollutants, likely by using nonconventional fuels....... Modern internal combustion engines such as Homogeneous Charge Compression Ignition (HCCI) engines are more efficient and fuel-flexible compared to the conventional engines, making opportunities to reduce the release of greenhouse and other polluting gases to the environment. Combustion temperature...

  10. Influence of engine speed and the course of the fuel injection characteristics on forming the average combustion temperature in the cylinder of turbo diesel engine

    Directory of Open Access Journals (Sweden)

    Piotr GUSTOF

    2007-01-01

    Full Text Available Average combustion temperatures inside a turbo diesel engine for the same load and the same total doze of fuel for two rotational speeds: 2004 [rpm] and 4250 [rpm] are presented in this paper. The aim of this work is also the evaluation of the influence of the temporary course of the fuel injection characteristics on forming temperature in theengine cylinder space for these temperatures. The calculations were carried out by means of two zone combustion model.

  11. INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH BUTHANOL – GASOLINE MIXTURE AND A HYDROGEN ENRICHED AIR

    OpenAIRE

    Alfredas Rimkus; Mindaugas Melaika; Jonas Matijošius; Šarūnas Mikaliūnas; Saugirdas Pukalskas

    2016-01-01

    In this study, spark ignition engine fuelled with buthanol-gasoline mixture and a hydrogen-enriched air was investigated. Engine performance, emissions and combustion characteristics were investigated with different buthanol (10% and 20% by volume) gasoline mixtures and additionally supplied oxygen and hydrogen (HHO) gas mixture (3.6 l/min) in the sucked air. Hydrogen, which is in the HHO gas, improves gasoline and gasoline-buthanol mixture combustion, increases indicated pressure during comb...

  12. Combustion and emission characteristics of Multiple Premixed Compression Ignition (MPCI) fuelled with naphtha and gasoline in wide load range

    International Nuclear Information System (INIS)

    Wang, Buyu; Wang, Zhi; Shuai, Shijin; Yang, Hongqiang; Wang, Jianxin

    2014-01-01

    Highlights: • Naphtha MPCI can operate stably in wide load range from 0.4 MPa to 1.4 MPa of IMEP. • Naphtha MPCI can achieve high thermal efficiency due to low exhaust loss. • Gasoline MPCI has low heat transfer loss than CDC and naphtha MPCI. • MPCI can produce low NO x emissions (<0.4 g/kW h) with the EGR ratio less than 30%. - Abstract: This paper investigates the effect of naphtha (RON = 65.6) and commercial gasoline (RON = 94.0) on Multiple Premixed Compression Ignition (MPCI) mode. The experiment is conducted on a single cylinder research diesel engine with compression ratio of 16.7. The engine is operated at an engine speed of 1600 rpm for the IMEP from 0.4 to 1.4 MPa. Commercial diesel (CN = 56.5) is also tested in Conventional Diesel Combustion (CDC) mode as a baseline. At each operating point, the injection strategy and intake conditions are adjusted to meet with the criteria (NO x < 0.4 g/kW h, soot < 0.06 m −1 , MPRR < 1 MPa/deg and CA50 < 20 CAD ATDC). The typical two-stage combustion characteristics of MPCI are obtained in both naphtha and gasoline. Stable combustion is achieved by naphtha in wide load range, while the engine fuelled with gasoline cannot operate stably at 0.4 MPa IMEP. The COV of IMEP of gasoline MPCI is higher than that of naphtha and diesel. However, gasoline has the low MPRR and the retarded CA50 at medium and high loads due to its longest ignition delay. As a result of low exhaust loss for naphtha and low heat transfer loss for gasoline, the thermal efficiencies are higher for both naphtha and gasoline in MPCI mode than diesel in CDC mode, even though diesel has the highest combustion efficiency. The separated combustion in MPCI leads to low cylinder temperature, and moderate EGR ratio (less than 30%) is needed to control NO x emissions under the limit of EURO VI

  13. Spray and Combustion Characteristics of a Novel Multi-circular Jet Plate in Air-assisted Atomizer

    Directory of Open Access Journals (Sweden)

    Hisham Amirnordin Shahrin

    2017-01-01

    Full Text Available Atomization of liquid fuel in air-assisted atomizer is highly dependent on air mixing, which can be enhanced using turbulent generators, such as multi-circular jet (MCJ plates and swirler. This study aims to determine the effects of novel MCJ plates on the spray and combustion characteristics of an air-assisted atomizer by evaluating spray and flame parameters, such as penetration length, cone angle, and cone area. MCJ 30 and MCJ 45, with inclined jets at 30° and 45°, respectively, were used in the experiment. A swirler was also used for comparison. The spray and flame images were recorded at different equivalence ratios through direct photography and analyzed using image J software. Flame temperature was determined using a thermal infrared camera, and burning chamber and flue gas temperatures were measured using thermocouples. The spray and flame characteristics of MCJ 30 exhibited performance comparable with those of the MCJ 45 and swirler. The integration of turbulence and swirling motion concept into the novel MCJ plates can enhance the mixing formation and thus improve the performance of burner combustion.

  14. Influence of Antioxidant Addition in Jatropha Biodiesel on the Performance, Combustion and Emission Characteristics of a DI Diesel Engine

    Science.gov (United States)

    Arockiasamy, Prabu; Ramachandran Bhagavathiammal, Anand

    2018-04-01

    An experimental investigation is conducted on a single-cylinder DI diesel engine, to evaluate the performance, combustion and emission characteristics of Jatropha biodiesel with the addition of antioxidants namely, Succinimide (C4H5NO2), N,N-Dimethyl p-phenylenediamine dihydrochloride (C8H14Cl2N2) and N-Phenyl- p-phenylenediamine (C6H5NHC6H4NH2) at 500, 1000 and 2000 ppm. The performance, combustion and emission characteristic tests are conducted at a constant speed of 1500 rpm, injection pressure of 215 bar, injection timing of 26° before top dead centre for the nine test fuels and the experimental results are compared with neat diesel and neat biodiesel as base fuels. The experimental results show that the addition of antioxidant in biodiesel suppresses the NO emission by quenching the OH radicals that are produced by the reaction of hydrocarbon radicals with molecular nitrogen. The maximum percentage reduction of NO emission by 5, 6 and 7% are observed for N-Phenyl- p-phenylenediamine, N,N-Dimethyl p-phenylenediamine dihydrochloride and Succinimide blended test fuels at 2000 ppm antioxidant addition with biodiesel.

  15. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters

    Energy Technology Data Exchange (ETDEWEB)

    Ozsezen, Ahmet Necati [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey); Canakci, Mustafa, E-mail: canakci@kocaeli.edu.t [Department of Automotive Engineering Technology, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2011-01-15

    In this study, the performance, combustion and injection characteristics of a direct injection diesel engine have been investigated experimentally when it was fueled with canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). In order to determine the performance and combustion characteristics, the experiments were conducted at constant engine speeds under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME instead of petroleum based diesel fuel (PBDF), the brake power reduced by 4-5%, while the brake specific fuel consumption increased by 9-10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59-67%, in unburned hydrocarbon (HC) by 17-26%, in carbon dioxide (CO{sub 2}) by 5-8%, and smoke opacity by 56-63%. However, both methyl esters produced more nitrogen oxides (NO{sub x}) emissions by 11-22% compared with those of the PBDF over the speed range.

  16. Determination of performance and combustion characteristics of a diesel engine fueled with canola and waste palm oil methyl esters

    International Nuclear Information System (INIS)

    Ozsezen, Ahmet Necati; Canakci, Mustafa

    2011-01-01

    In this study, the performance, combustion and injection characteristics of a direct injection diesel engine have been investigated experimentally when it was fueled with canola oil methyl ester (COME) and waste (frying) palm oil methyl ester (WPOME). In order to determine the performance and combustion characteristics, the experiments were conducted at constant engine speeds under the full load condition of the engine. The results indicated that when the test engine was fueled with WPOME or COME instead of petroleum based diesel fuel (PBDF), the brake power reduced by 4-5%, while the brake specific fuel consumption increased by 9-10%. On the other hand, methyl esters caused reductions in carbon monoxide (CO) by 59-67%, in unburned hydrocarbon (HC) by 17-26%, in carbon dioxide (CO 2 ) by 5-8%, and smoke opacity by 56-63%. However, both methyl esters produced more nitrogen oxides (NO x ) emissions by 11-22% compared with those of the PBDF over the speed range.

  17. COMBUSTION AND PERFORMANCE CHARACTERISTICS OF A SMALL SPARK IGNITION ENGINE FUELLED WITH HCNG

    Directory of Open Access Journals (Sweden)

    A. SONTHALIA

    2015-04-01

    Full Text Available Due to environmental concerns and fossil fuel depletion, large scale researches were carried out involving the use of natural gas in internal combustion engines. Natural gas is a clean burning fuel that is available from large domestic natural reserve. When it is used as a fuel in SI engines, it reduces emissions to meet EURO-III norms with carburettors and EURO-IV norms with manifold injection. Countries like India with fewer natural fossil fuel reserves depend heavily on oil imported from Middle East Asian countries and on the other hand combustion of fossil fuel has negative impact on air quality in urban areas. Use of CNG as a fuel in internal combustion engines can reduce the intensiveness of these pervasive problems. The performance of CNG can further be improved by addition of small percentages of hydrogen to it to overcome the drawbacks like lower energy density of the fuel, drop in engine power and engine out exhaust emissions. When hydrogen is added to CNG it is called as Hythane or Hydrogen enriched Compressed Natural Gas (HCNG. This can be considered as a first step towards promotion of hydrogen in automobiles. In this study, the effects of mixing hydrogen with CNG on a small air cooled four stroke SI engine’s performance, emissions and heat release rate was analyzed. A comparison of performance and emission by running engine separately on gasoline, hydrogen, CNG and HCNG was done. The results show a significant decrease in HC, CO and NOx emissions and marginal increase in specific energy consumption when fuelled with HCNG.

  18. Combustion characteristics and optimal factors determination with Taguchi method for diesel engines port-injecting hydrogen

    International Nuclear Information System (INIS)

    Wu, Horng-Wen; Wu, Zhan-Yi

    2012-01-01

    This study applies the L 9 orthogonal array of the Taguchi method to find out the best hydrogen injection timing, hydrogen-energy-share ratio, and the percentage of exhaust gas circulation (EGR) in a single DI diesel engine. The injection timing is controlled by an electronic control unit (ECU) and the quantity of hydrogen is controlled by hydrogen flow controller. For various engine loads, the authors determine the optimal operating factors for low BSFC (brake specific fuel consumption), NO X , and smoke. Moreover, net heat-release rate involving variable specific heat ratio is computed from the experimental in-cylinder pressure. In-cylinder pressure, net heat-release rate, A/F ratios, COV (coefficient of variations) of IMEP (indicated mean effective pressure), NO X , and smoke using the optimum condition factors are compared with those by original baseline diesel engine. The predictions made using Taguchi's parameter design technique agreed with the confirmation results on 95% confidence interval. At 45% and 60% loads the optimum factor combination compared with the original baseline diesel engine reduces 14.52% for BSFC, 60.5% for NO X and for 42.28% smoke and improves combustion performance such as peak in-cylinder pressure and net heat-release rate. Adding hydrogen and EGR would not generate unstable combustion due to lower COV of IMEP. -- Highlights: ► We use hydrogen injector controlled by ECU and cooled EGR system in a diesel engine. ► Optimal factors by Taguchi method are determined for low BSFC, NO X and smoke. ► The COV of IMEP is lower than 10% so it will not cause the unstable combustion. ► We improve A/F ratio, in-cylinder pressure, and heat-release at optimized engine. ► Decrease is 14.5% for BSFC, 60.5% for NO X , and 42.28% for smoke at optimized engine.

  19. Fueling an D.I. agricultural diesel engine with waste oil biodiesel: Effects over injection, combustion and engine characteristics

    International Nuclear Information System (INIS)

    Radu, Rosca; Petru, Carlescu; Edward, Rakosi; Gheorghe, Manolache

    2009-01-01

    The paper presents the results of a research concerning the use of a biodiesel type fuel in D.I. Diesel engine; the fuel injection system and the engine were tested. The results indicated that the injection characteristics are affected when a blend containing 50% methyl ester and 50% petrodiesel is used as fuel (injection duration, pressure wave propagation time, average injection rate, peak injection pressure). As a result, the engine characteristics are also affected, the use of the biodiesel blend leading to lower output power and torque; the lower autoignition delay and pressure wave propagation time led to changes of the cylinder pressure and heat release traces and to lower peak combustion pressures.

  20. An insight on the spray-A combustion characteristics by means of RANS and LES simulations using flamelet-based combustion models

    NARCIS (Netherlands)

    Akkurt, B.; Akargün, H.Y.; Somers, L.M.T.; Deen, N.G.; Novella, R.; Perez-Sanchez, E. J.

    2017-01-01

    Advanced Computational Fluid Dynamics (CFD) modeling of reacting sprays provides access to information not available even applying the most advanced experimental techniques. This is particularly evident if the combustion model handles detailed chemical kinetic models efficiently to describe the fuel

  1. Numerical study of radiation effect on the municipal solid waste combustion characteristics inside an incinerator

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jingfu, E-mail: jfwang@bjut.edu.cn; Xue, Yanqing; Zhang, Xinxin; Shu, Xinran

    2015-10-15

    Highlights: • A 3-D model for the MSW incinerator with preheated air was developed. • Gas radiative properties were obtained from a statistical narrow-band model. • Non-gray body radiation model can provide more accurate simulation results. - Abstract: Due to its advantages of high degree volume reduction, relatively stable residue, and energy reclamation, incineration becomes one of the best choices for Municipal Solid Waste (MSW) disposal. However, detailed measurements of temperature and gas species inside a furnace are difficulty by conventional experimental techniques. Therefore, numerical simulation of MSW incineration in the packed bed and gas flow field was applied. In this work, a three dimensional (3-D) model of incinerator system, including flow, heat transfer, detailed chemical mechanisms, and non-gray gas models, was developed. Radiation from the furnace wall and the flame formed above the bed is of importance for drying and igniting the waste. The preheated air with high temperature is used for the MSW combustion. Under the conditions of high temperature and high pressure, MSW combustion produces a variety of radiating gases. The wavelength-depend radiative properties of flame adopted in non-gray radiation model were obtained from a statistical narrow-band model. The influence of radiative heat transfer on temperature, flow field is researched by adiabatic model (without considering radiation), gray radiation model, and non-gray radiation model. The simulation results show that taking into account the non-gray radiation is essential.

  2. Experimental setup for combustion characteristics in a diesel engine using derivative fuel from biomass

    International Nuclear Information System (INIS)

    Andi Mulkan; Zainal, Z.A.

    2006-01-01

    Reciprocating engines are normally run on petroleum fuels or diesel fuels. Unfortunately, energy reserves such as gas and oil are decreasing. Today, with renewable energy technologies petroleum or diesel can be reduced and substituted fully or partly by alternative fuels in engine. The objective of this paper is to setup the experimental rig using producer gas from gasification system mix with diesel fuel and fed to a diesel engine. The Yanmar L60AE-DTM single cylinder diesel engine is used in the experiment. A 20 kW downdraft gasifier has been developed to produce gas using cut of furniture wood used as biomass source. Air inlet of the engine has been modified to include the producer gas. An AVL quartz Pressure Transducer P4420 was installed into the engine head to measure pressure inside the cylinder of the engine. Several test were carried out on the downdraft gasifier system and diesel engine. The heating value of the producer gas is about 4 MJ/m 3 and the specific biomass fuel consumption is about 1.5 kg/kWh. Waste cooking oil (WCO) and crude palm oil (CPO) were used as biomass fuel. The pressure versus crank angle diagram for using blend of diesel are presented and compared with using diesel alone. The result shows that the peak pressure is higher. The premixed combustion is lower but have higher mixing controlled combustion. The CO and NO x emission are higher for biomass fuel

  3. Combustion Dynamic Characteristics Identification in a 9-point LDI Combustor Under Choked Outlet Boundary Conditions

    Science.gov (United States)

    He, Zhuohui J.; Chang, Clarence T.

    2017-01-01

    Combustion dynamics data were collected at the NASA Glenn Research Center's CE-5 flame tube test facility under combustor outlet choked conditions. Two 9-point Swirl-Venturi Lean Direct Injection (SV-LDI) configurations were tested in a rectangular cuboid combustor geometry. Combustion dynamic data were measured at different engine operational conditions up to inlet air pressure and temperature of 24.13 bar and 828 K, respectively. In this study, the effects of acoustic cavity resonance, precessing vortex core (PVC), and non-uniform thermal expansion on the dynamic noise spectrum are identified by comparing the dynamic data that collected at various combustor inlet conditions along with combustor geometric calculations. The results show that the acoustic cavity resonance noises were seen in the counter-rotating pilot configuration but not in the co-rotating pilot configuration. Dynamic pressure noise band at around 0.9 kHz was only detected at the P'41 location (9.8 cm after fuel injector face) but not at the P'42 location (29 cm after the fuel injector face); the amplitude of this noise band depended on the thermal expansion ratio (T4/T3). The noise band at around 1.8 kHz was found to depend on the inlet air pressure or the air density inside the combustor. The PVC frequency was not observed in these two configurations.

  4. Experimental study of flame characteristics during the combustion of certain types of liquid hydrocarbon fuels

    Science.gov (United States)

    Loboda, E. L.; Anufriev, I. S.; Agafontsev, M. V.; Kop'yev, E. P.; Reyno, Vladimir

    2017-11-01

    The paper represents experimental studying the scales of turbulent vortices in diffusion flames by using the measurements of thermodynamic characteristics obtained by thermography and the aerodynamic characteristics obtained by the PIV method.

  5. Simulation Investigation on Combustion Characteristics in a Four-Point Lean Direct Injection Combustor with Hydrogen/Air

    Directory of Open Access Journals (Sweden)

    Jianzhong Li

    2017-06-01

    Full Text Available To investigate the combustion characteristics in multi-point lean direct injection (LDI combustors with hydrogen/air, two swirl–venturi 2 × 2 array four-point LDI combustors were designed. The four-point LDI combustor consists of injector assembly, swirl–venturi array and combustion chamber. The injector, swirler and venturi together govern the rapid mixing of hydrogen and air to form the mixture for combustion. Using clockwise swirlers and anticlockwise swirlers, the co-swirling and count-swirling swirler arrays LDI combustors were achieved. Using Reynolds-Averaged Navier–Stokes (RANS code for steady-state reacting flow computations, the four-point LDI combustors with hydrogen/air were simulated with an 11 species and 23 lumped reaction steps H2/Air reaction mechanism. The axial velocity, turbulence kinetic energy, total pressure drop coefficient, outlet temperature, mass fraction of OH and emission of pollutant NO of four-point LDI combustors, with different equivalence ratios, are here presented and discussed. As the equivalence ratios increased, the total pressure drop coefficient became higher because of increasing heat loss. Increasing equivalence ratios also corresponded with the rise in outlet temperature of the four-point LDI combustors, as well as an increase in the emission index of NO EINO in the four-point LDI combustors. Along the axial distance, the EINO always increased and was at maximum at the exit of the dump. Along the chamber, the EINO gradually increased, maximizing at the exit of chamber. The total temperature of four-point LDI combustors with different equivalence ratios was identical to the theoretical equilibrium temperature. The EINO was an exponential function of the equivalence ratio.

  6. Experimental and analytical investigation on the emission and combustion characteristics of CI engine fueled with tamanu oil methyl esters

    Directory of Open Access Journals (Sweden)

    Perumal Navaneetha Krishnan

    2016-01-01

    Full Text Available The emission and combustion characteristics of a four stroke multi fuel single cylinder variable compression ratio engine fueled with tamanu oil methyl ester and its blends 10%, 20%, 40%, and 60% with diesel (on volume basis are examined and compared with standard diesel. Biodiesel produced from tamanu oil by trans-esterification process has been used in this study. The experiment has been conducted at a constant engine speed of 1500 rpm with 50% load and at compression ratios of 16:1, 17:1, 18:1, 19:1, and 20:1. With different blend and for selected compression ratio the exhaust gas emissions such as CO, HC, NOx, CO2, and the combustion characteristics are measured. The variation of the emission parameters for different compression ratios and for different blends is given, and optimum compression ratio which gives best performance has been identified. The results indicate higher rate of pressure rise and minimum heat release rate at higher compression ratio for tamanu oil methyl ester when compared with standard diesel. The blend B40 for tamanu oil methyl ester is found to give minimum emission at 50% load. The blend when used as fuel results in reduction of polluting gases like HC, CO, and increase in NOx emissions. The previously mentioned emission parameters have been validated with the aid of artificial neural network. A separate model is developed for emission characteristics in which compression ratio, blend percentage and load percentage were used as the input parameter whereas CO, CO2, HC, and NOx were used as the output parameter. This study shows that there is a good correlation between the artificial neural network predicted values and the experimental data for different emission parameters.

  7. Effect of raw material particle-size distribution on combustion characteristics of stem wood pellets; Paaverkan av partikelfraktionsfoerdelningen paa utbraenningshastigheten hos traepellets vid nyttjande av olika soenderdelningsmetoder

    Energy Technology Data Exchange (ETDEWEB)

    Israelsson, Samuel; Henriksson, Gunnar; Boman, Christoffer; Oehman, Marcus

    2007-01-15

    The objective of the project was to determine the effect of raw material particle-size distribution on combustion characteristics of stem wood pellets. Several well defined pellet qualities were produced from raw materials (stem wood of pine and spruce) which had both different particle-size distributions and were produced with different milling equipments (hammer mill/refiner). The pellets were produced in a traditional (bench-scale) pellet mill and in a laboratory pellet mill/press. The combustion characteristics of the individual pellets were determined in a laboratory scale oven. Char yield, -shrinkage, -density and the micro pore volume of the produced char were also determined. Differences in total conversion times of approximately 5 % at experimental condition relevant for typical pellets equipment were determined for the different pellet qualities. The underlying reasons for the obtained differences in the combustion characteristics between the different pellet qualities are discussed in the report

  8. Experimental study of combustion characteristics of isolated pockets of hydrogen-air mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Manoubi, M.; LaFleche, M. [Univ. of Ottawa, Dept. of Mechanical Engineering, Ottawa, Ontario (Canada); Liang, Z., E-mail: zhe.liang@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Radulescu, M. [Univ. of Ottawa, Dept. of Mechanical Engineering, Ottawa, Ontario (Canada)

    2016-06-15

    This paper examines the dynamics of unconfined hydrogen-air flames and the criterion for flame propagation between neighbouring pockets of reactive gas separated by air using the soap bubble technique. The combustion events were visualized using high-speed schlieren or large-scale shadowgraph systems. It was revealed that for sufficiently lean hydrogen-air mixtures characterized by low flame speeds, buoyancy effects become important at small scales. The critical radius of hemispherical flame that will rise due to buoyancy is highly sensitive to the hydrogen concentration. The test results demonstrate that for transition of a flame between neighbouring pockets, the separation distance between the bubbles is mainly determined by the expansion ratio for near stoichiometric mixture, but it becomes much smaller for leaner mixtures because the flame kernel rises due to buoyant effects before the flame can reach the second bubble, thus the separation distance is no longer governed by the expansion ratio. (author)

  9. Combustion characteristics and retention-emission of selenium during co-firing of torrefied biomass and its blends with high ash coal.

    Science.gov (United States)

    Ullah, Habib; Liu, Guijian; Yousaf, Balal; Ali, Muhammad Ubaid; Abbas, Qumber; Zhou, Chuncai

    2017-12-01

    The combustion characteristics, kinetic analysis and selenium retention-emission behavior during co-combustion of high ash coal (HAC) with pine wood (PW) biomass and torrefied pine wood (TPW) were investigated through a combination of thermogravimetric analysis (TGA) and laboratory-based circulating fluidized bed combustion experiment. Improved ignition behavior and thermal reactivity of HAC were observed through the addition of a suitable proportion of biomass and torrefied. During combustion of blends, higher values of relative enrichment factors in fly ash revealed the maximum content of condensing volatile selenium on fly ash particles, and depleted level in bottom ash. Selenium emission in blends decreased by the increasing ratio of both PW and TPW. Higher reductions in the total Se volatilization were found for HAC/TPW than individual HAC sample, recommending that TPW have the best potential of selenium retention. The interaction amongst selenium and fly ash particles may cause the retention of selenium. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. PERFORMANCE, EMISSION, AND COMBUSTION CHARACTERISTICS OF A CI ENGINE USING LIQUID PETROLEUM GAS AND NEEM OIL IN DUAL FUEL MODE

    Directory of Open Access Journals (Sweden)

    Palanimuthu Vijayabalan

    2010-01-01

    Full Text Available Increased environmental awareness and depletion of resources are driving the industries to develop viable alternative fuels like vegetable oils, compresed natural gas, liquid petroleum gas, producer gas, and biogas in order to provide suitable substitute to diesel for compression ignition engine. In this investigation, a single cylinder, vertical, air-cooled diesel engine was modified to use liquid petroleum gas in dual fuel mode. The liquefied petroleum gas, was mixed with air and supplied through intake manifold. The liquid fuel neem oil or diesel was injected into the combustion chamber. The performance, emission, and combustion characteristics were studied and compared for neat fuel and dual fuel mode. The experimental results on dual fuel engine show a reduction in oxides of nitrogen up to 70% of the rated power and smoke in the entire power range. However the brake thermal efficiency was found decreased in low power range due to lower calorific value of liquid petroleum gas, and increase in higher power range due to the complete burning of liquid petroleum gas. Hydrocarbon and carbon monoxide emissions were increased significantly at lower power range and marginal variation in higher power range.

  11. Chemical, structural and combustion characteristics of carbonaceous products obtained by hydrothermal carbonization of palm empty fruit bunches.

    Science.gov (United States)

    Parshetti, Ganesh K; Kent Hoekman, S; Balasubramanian, Rajasekhar

    2013-05-01

    A carbon-rich solid product, denoted as hydrochar, was synthesized by hydrothermal carbonization (HTC) of palm oil empty fruit bunch (EFB), at different pre-treatment temperatures of 150, 250 and 350 °C. The conversion of the raw biomass to its hydrochar occurred via dehydration and decarboxylation processes. The hydrochar produced at 350 °C had the maximum energy-density (>27 MJ kg(-1)) with 68.52% of raw EFB energy retained in the char. To gain a detailed insight into the chemical and structural properties, carbonaceous hydrochar materials were characterized by FE-SEM, FT-IR, XRD and Brunauer-Emmett-Teller (BET) analyses. This work also investigated the influence of hydrothermally treated hydrochars on the co-combustion characteristics of low rank Indonesian coal. Conventional thermal gravimetric analysis (TGA) parameters, kinetics and activation energy of different hydrochar and coal blends were estimated. Our results show that solid hydrochars improve the combustion of low rank coals for energy generation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Experimental investigation on the knocking combustion characteristics of n-butanol gasoline blends in a DISI engine

    International Nuclear Information System (INIS)

    Wei, Haiqiao; Feng, Dengquan; Pan, Mingzhang; Pan, JiaYing; Rao, XiaoKang; Gao, Dongzhi

    2016-01-01

    Highlights: • N-butanol shows better knock resistance characterized by improved KLST. • Bu20 blend fuel slightly degrades the knock resistance compared with gasoline. • Knock oscillation frequency depends on combustion chamber resonance modes. • Probability distribution is applied to evaluate variation of knock intensity. - Abstract: n-Butanol is a very competitive alternative biofuel for spark ignition (SI) engines given its many advantages. Current researches are mainly concentrated on the overall combustion and emissions performance concerning the feasibility of n-butanol gasoline blends in SI engines. In this work, focus was given on the knocking combustion characteristics of operation with pure n-butanol as well as a blend fuel with 20% volume content of n-butanol (Bu20), which was investigated experimentally in a direct-injection spark ignition (DISI) single cylinder engine. Operation condition is fixed at a constant engine speed of 1500 r/min, using three throttle openings with stoichiometric air–fuel ratio. Spark timing was swept to achieve different knocking levels. The results of n-butanol and Bu20 were benchmarked against those obtained by the research octane number (RON) 92 commercial gasoline. Compared with the baseline fuel gasoline, neat n-butanol shows better anti-knock ability with more advanced knock limited spark timing, whereas slightly deteriorative knock resistance can be found for Bu20. It is hypothesized Bu20 has higher end gas temperature due to its higher brake mean effective pressure (BMEP) and faster burning rate compared with gasoline, which indicates the knock tendency depends not only on the fuel octane number, but also on the factors that affect the end gas thermodynamic state. The heavier knock propensity of Bu20 is furthermore confirmed by its more advanced knock onset and higher peak oscillation pressure. Results of fast fourier transform (FFT) indicate the knocking oscillation frequencies are mainly determined by the

  13. Chemical Kinetics of Hydrocarbon Ignition in Practical Combustion Systems

    International Nuclear Information System (INIS)

    Westbrook, C.K.

    2000-01-01

    Chemical kinetic factors of hydrocarbon oxidation are examined in a variety of ignition problems. Ignition is related to the presence of a dominant chain branching reaction mechanism that can drive a chemical system to completion in a very short period of time. Ignition in laboratory environments is studied for problems including shock tubes and rapid compression machines. Modeling of the laboratory systems are used to develop kinetic models that can be used to analyze ignition in practical systems. Two major chain branching regimes are identified, one consisting of high temperature ignition with a chain branching reaction mechanism based on the reaction between atomic hydrogen with molecular oxygen, and the second based on an intermediate temperature thermal decomposition of hydrogen peroxide. Kinetic models are then used to describe ignition in practical combustion environments, including detonations and pulse combustors for high temperature ignition, and engine knock and diesel ignition for intermediate temperature ignition. The final example of ignition in a practical environment is homogeneous charge, compression ignition (HCCI) which is shown to be a problem dominated by the kinetics intermediate temperature hydrocarbon ignition. Model results show why high hydrocarbon and CO emissions are inevitable in HCCI combustion. The conclusion of this study is that the kinetics of hydrocarbon ignition are actually quite simple, since only one or two elementary reactions are dominant. However, there are many combustion factors that can influence these two major reactions, and these are the features that vary from one practical system to another

  14. Session 4: On-board exhaust gas reforming for improved performance of natural gas HCCI engines

    Energy Technology Data Exchange (ETDEWEB)

    Amieiro, A.; Golunski, S.; James, D. [Johnson Matthey Technology Centre, Sonning Common, Reading (United Kingdom); Miroslaw, Wyszynski; Athanasios, Megaritis; Peucheret, S. [Birmingham Univ., School of Engineering, Future Power Systems Research Group (United Kingdom); Hongming, Xu [Jaguar Cars Ltd, W/2/021 Engineering Centre, Whitley, Coventry (United Kingdom)

    2004-07-01

    Although natural gas (NG) is a non-renewable energy source, it is still a very attractive alternative fuel for transportation - it is inexpensive, abundant, and easier to refine than petroleum. Unfortunately the minimum spark energy required for NG ignition is higher than for liquid fuels, and engine performance is reduced since the higher volume of NG limits the air breathing capacity of the cylinders. On the other hand, the flammability range of NG is wider than for other hydrocarbons, so the engine can operate under leaner conditions. Environmentally, the use of NG is particularly attractive since it has a low flame temperature (resulting in reduced NO{sub x} emissions) and a low carbon content compared to diesel or gasoline (resulting in less CO, CO{sub 2} and particulate). In addition, NG is easily made sulphur-free, and has a high octane rating (RON = 110-130) which makes it suitable for high compression engine applications. Exhaust gas recirculation (EGR) into an engine is known to reduce both flame temperature and speed, and therefore produce lower NO{sub x} emissions. In general, a given volume of exhaust gas has a greater effect on flame speed and NO{sub x} emissions than the same quantity of excess air, although there is a limit to the amount of exhaust gas recirculation that can be used without inhibiting combustion. However, hydrogen addition to exhaust gas recirculation has been proved to reduce emissions while increasing flame speed, so improving both the emissions and the thermal efficiency of the engine. On-board reforming of some of the fuel, by reaction with exhaust gas during EGR, is a novel way of adding hydrogen to an engine. We have carried out reforming tests on mixtures of natural gas and exhaust gas at relatively low temperatures (400-600 C), to mimic the low availability of external heat within the integrated system. The reforming catalyst is a nickel-free formulation, containing precious metals promoted by metal oxides. The roles of

  15. Effects of injection timing on fluid flow characteristics of partially premixed combustion based on high-speed particle image velocimetry

    NARCIS (Netherlands)

    Izadi Najafabadi, M.; Tanov, S.; Wang, H.; Somers, L.M.T.; Johansson, B.; Dam, N.J.

    2017-01-01

    Partially premixed combustion (PPC) is a promising combustion concept to meet the increasing demands of emission legislation and to improve fuel efficiency. Longer ignition delay of PPC in comparison with conventional diesel combustion provide better fuel/air mixture which decreases soot and NOx

  16. Analysis of fuel spray characteristics for premixed lean diesel combustion; Kihaku yokongo diesel kikan ni okeru nenryo funmu kaiseki

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S; Harada, a; Miyamoto, T; Akagawa, H; Tsujimura, K

    1997-10-01

    Premixed lean diesel combustion (PREDIC) makes it possible to achieve low NOx emission. It is an important factor to make the homogeneous spray formation for PREDIC. In this paper presents I the effect of the spray dispersion on emission characteristic were analyzed with the spray observation and engine test. Pintle type nozzle, which has different feature from orifice type nozzle, are used to form the hollow cone spray. As a result, the pintle type nozzle having grooves to generate the swirl flow, makes the reduced penetration in comparison with the hole nozzle under low ambient gas pressure. And it could improve THC, CO emissions at low NOx emission condition. 7 refs., 12 figs., 1 tab.

  17. Effectiveness of oxygen enriched hydrogen-HHO gas addition on DI diesel engine performance, emission and combustion characteristics

    Directory of Open Access Journals (Sweden)

    Premkartikkumar S.R.

    2014-01-01

    Full Text Available Nowadays, more researches focus on protecting the environment. Present investigation concern with the effectiveness of Oxygen Enriched hydrogen- HHO gas addition on performance, emission and combustion characteristics of a DI diesel engine. Here the Oxygen Enriched hydrogen-HHO gas was produced by the process of water electrolysis. When potential difference is applied across the anode and cathode electrodes of the electrolyzer, water is transmuted into Oxygen Enriched hydrogen-HHO gas. The produced gas was aspirated into the cylinder along with intake air at the flow rates of 1 lpm and 3.3 lpm. The results show that when Oxygen Enriched hydrogen-HHO gas was inducted, the brake thermal efficiency of the engine increased by 11.06%, Carbon monoxide decreased by 15.38%, Unburned hydrocarbon decreased by 18.18%, Carbon dioxide increased by 6.06%, however, the NOX emission increased by 11.19%.

  18. Fluorescence characteristics of the fuel tracers triethylamine and trimethylamine for the investigation of fuel distribution in internal combustion engines.

    Science.gov (United States)

    Lind, Susanne; Aßmann, Simon; Zigan, Lars; Will, Stefan

    2016-03-01

    Laser-induced fluorescence based on fuel tracers like amines is a suitable measurement technique for mixing studies in internal combustion (IC) engines. Triethylamine has often been used in gasoline IC engines; however, no detailed fluorescence characterization for excitation at 263 or 266 nm is available. Trimethylamine (TMA) exhibits high potential as a gaseous fuel tracer but little information about TMA fluorescence is currently available. A picosecond laser source combined with a streak camera equipped with a spectrograph was used to determine the spectral fluorescence emission and fluorescence decay time of both tracers. The tracers were investigated at various temperatures and pressures in a calibration cell with nitrogen as bath gas. The results provide an in-depth understanding of the fluorescence characteristics of both tracers and allow assessment of their application to the investigation of fuel distribution in IC engines.

  19. Real-time, adaptive machine learning for non-stationary, near chaotic gasoline engine combustion time series.

    Science.gov (United States)

    Vaughan, Adam; Bohac, Stanislav V

    2015-10-01

    Fuel efficient Homogeneous Charge Compression Ignition (HCCI) engine combustion timing predictions must contend with non-linear chemistry, non-linear physics, period doubling bifurcation(s), turbulent mixing, model parameters that can drift day-to-day, and air-fuel mixture state information that cannot typically be resolved on a cycle-to-cycle basis, especially during transients. In previous work, an abstract cycle-to-cycle mapping function coupled with ϵ-Support Vector Regression was shown to predict experimentally observed cycle-to-cycle combustion timing over a wide range of engine conditions, despite some of the aforementioned difficulties. The main limitation of the previous approach was that a partially acasual randomly sampled training dataset was used to train proof of concept offline predictions. The objective of this paper is to address this limitation by proposing a new online adaptive Extreme Learning Machine (ELM) extension named Weighted Ring-ELM. This extension enables fully causal combustion timing predictions at randomly chosen engine set points, and is shown to achieve results that are as good as or better than the previous offline method. The broader objective of this approach is to enable a new class of real-time model predictive control strategies for high variability HCCI and, ultimately, to bring HCCI's low engine-out NOx and reduced CO2 emissions to production engines. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Experimental Investigation into the Combustion Characteristics on the Co-firing of Biomass with Coal as a Function of Particle Size and Blending Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lkhagvadorj, Sh; Kim, Sang In; Lim, Ho; Kim, Seung Mo; Jeon, Chung Hwan [Pusan National Univ., Busan (Korea, Republic of); Lee, Byoung Hwa [Doosan Heavy Industries and Construction, Ltd., Changwon (Korea, Republic of)

    2016-01-15

    Co-firing of biomass with coal is a promising combustion technology in a coal-fired power plant. However, it still requires verifications to apply co-firing in an actual boiler. In this study, data from the Thermogravimetric analyzer(TGA) and Drop tube furnace(DTF) were used to obtain the combustion characteristics of biomass when co-firing with coal. The combustion characteristics were verified using experimental results including reactivity from the TGA and Unburned carbon(UBC) data from the DTF. The experiment also analyzed with the variation of the biomass blending ratio and biomass particle size. It was determined that increasing the biomass blending ratio resulted in incomplete chemical reactions due to insufficient oxygen levels because of the rapid initial combustion characteristics of the biomass. Thus, the optimum blending condition of the biomass based on the results of this study was found to be 5 while oxygen enrichment reduced the increase of UBC that occurred during combustion of blended biomass and coal.

  1. The analogy method for the description of external characteristic of inner combustion engines

    Directory of Open Access Journals (Sweden)

    A. Stonys

    2004-10-01

    Full Text Available The original data for the evaluation of vehicle motion dynamics is external characteristic of its engine, which consists of three parameters: torque, power and specific fuel consumption. It is very important to have the dependences of these characteristics on revs for various engine load cases, creating a vehicle model under real motion conditions. Load cases are defined by a load coefficient. Car-makers usually don’t declare full engine external characteristics, which overtake all load coefficient variation interval. The purpose of this article is to research, how to get full description of engine torque function without its full data. The analogy method, which is used in polymers and composites mechanics, was employed for the description of a torque function. The method is based on the creation of summarized characteristic, making horizontal and vertical shifts of torque dependences. From the curve it is possible to get a proper characteristic at a chosen load coefficient.

  2. Combustion and Emission Characteristics of Variable Compression Ignition Engine Fueled with Jatropha curcas Ethyl Ester Blends at Different Compression Ratio

    Directory of Open Access Journals (Sweden)

    Rajneesh Kumar

    2014-01-01

    Full Text Available Engine performance and emission characteristics of unmodified biodiesel fueled diesel engines are highly influenced by their ignition and combustion behavior. In this study, emission and combustion characteristics were studied when the engine operated using the different blends (B10, B20, B30, and B40 and normal diesel fuel (B0 as well as when varying the compression ratio from 16.5 : 1 to 17.5 : 1 to 18.5 : 1. The change of compression ratio from 16.5 : 1 to 18.5 : 1 resulted in 27.1%, 27.29%, 26.38%, 28.48%, and 34.68% increase in cylinder pressure for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions. Higher peak heat release rate increased by 23.19%, 14.03%, 26.32%, 21.87%, and 25.53% for the blends B0, B10, B20, B30, and B40, respectively, at 75% of rated load conditions, when compression ratio was increased from16.5 : 1 to 18.5 : 1. The delay period decreased by 21.26%, CO emission reduced by 14.28%, and NOx emission increased by 22.84% for B40 blends at 75% of rated load conditions, when compression ratio was increased from 16.5 : 1 to 18.5 : 1. It is concluded that Jatropha oil ester can be used as fuel in diesel engine by blending it with diesel fuel.

  3. Performance, emission, and combustion characteristics of twin-cylinder common rail diesel engine fuelled with butanol-diesel blends.

    Science.gov (United States)

    Lamani, Venkatesh Tavareppa; Yadav, Ajay Kumar; Gottekere, Kumar Narayanappa

    2017-10-01

    Nitrogen oxides and smoke are the substantial emissions for the diesel engines. Fuels comprising high-level oxygen content can have low smoke emission due to better oxidation of soot. The objective of the paper is to assess the potential to employ oxygenated fuel, i.e., n-butanol and its blends with the neat diesel from 0 to 30% by volume. The experimental and computational fluid dynamic (CFD) simulation is carried out to estimate the performance, combustion, and exhaust emission characteristics of n-butanol-diesel blends for various injection timings (9°, 12°, 15°, and 18°) using modern twin-cylinder, four-stroke, common rail direct injection (CRDI) engine. Experimental results reveal the increase in brake thermal efficiency (BTE) by ~ 4.5, 6, and 8% for butanol-diesel blends of 10% (Bu10), 20% (Bu20), and 30% (Bu30), respectively, compared to neat diesel (Bu0). Maximum BTE for Bu0 is 38.4%, which is obtained at 12° BTDC; however, for Bu10, Bu20 and Bu30 are 40.19, 40.9, and 41.7%, which are obtained at 15° BTDC, respectively. Higher flame speed of n-butanol-diesel blends burn a large amount of fuel in the premixed phase, which improves the combustion as well as emission characteristics. CFD and experimental results are compared and validated for all fuel blends for in-cylinder pressure and nitrogen oxides (NO x ), and found to be in good agreement. Both experimental and simulation results witnessed in reduction of smoke opacity, NO x , and carbon monoxide emissions with the increasing n-butanol percentage in diesel fuel.

  4. Experimental investigation of aerodynamics, combustion, and emissions characteristics within the primary zone of a gas turbine combustor

    Science.gov (United States)

    Elkady, Ahmed M.

    2006-04-01

    The present work investigates pollutant emissions production, mainly nitric oxides and carbon monoxide, within the primary zone of a highly swirling combustion and methods with which to reduce their formation. A baseline study was executed at different equivalence ratios and different inlet air temperatures. The study was then extended to investigate the effects of utilizing transverse air jets on pollutant emission characteristics at different jet locations, jet mass ratio, and overall equivalence ratio as well as to investigate the jets' overall interactions with the recirculation zone. A Fourier Transform Infrared (FTIR) spectrometer was employed to measure emissions concentrations generated during combustion of Jet-A fuel in a swirl-cup assembly. Laser Doppler Velocimetry (LDV) was employed to investigate the mean flow aerodynamics within the combustor. Particle Image Velocimetry (PIV) was utilized to capture the instantaneous aerodynamic behavior of the non-reacting primary zone. Results illustrate that NOx production is a function of both the recirculation zone and the flame length. At low overall equivalence ratios, the recirculation zone is found to be the main producer of NOx. At near stoichiometric conditions, the post recirculation zone appears to be responsible for the majority of NOx produced. Results reveal the possibility of injecting air into the recirculation zone without altering flame stability to improve emission characteristics. Depending on the jet location and strength, nitric oxides as well as carbon monoxide can be reduced simultaneously. Placing the primary air jet just downstream of the fuel rich recirculation zone can lead to a significant reduction in both nitric oxides and carbon monoxide. In the case of fuel lean recirculation zone, reduction of nitric oxides can occur by placing the jets below the location of maximum radius of the recirculation zone.

  5. Combustion characteristics and turbulence modeling of swirling reacting flow in solid fuel ramjet

    Science.gov (United States)

    Musa, Omer; Xiong, Chen; Changsheng, Zhou

    2017-10-01

    This paper reviews the historical studies have been done on the solid-fuel ramjet engine and difficulties associated with numerical modeling of swirling flow with combustible gases. A literature survey about works related to numerical and experimental investigations on solid-fuel ramjet as well as using swirling flow and different numerical approaches has been provided. An overview of turbulence modeling of swirling flow and the behavior of turbulence at streamline curvature and system rotation are presented. A new and simple curvature/correction factor is proposed in order to reduce the programming complexity of SST-CC turbulence model. Finally, numerical and experimental investigations on the impact of swirling flow on SFRJ have been carried out. For that regard, a multi-physics coupling code is developed to solve the problems of multi-physics coupling of fluid mechanics, solid pyrolysis, heat transfer, thermodynamics, and chemical kinetics. The connected-pipe test facility is used to carry out the experiments. The results showed a positive impact of swirling flow on SFRJ along with, three correlations are proposed.

  6. Combustion and emissions characteristics of a compression ignition engine fueled with n-butanol blends

    Science.gov (United States)

    Yusri, I. M.; Mamat, R.; Ali, O. M.; Aziz, A.; Akasyah, M. K.; Kamarulzaman, M. K.; Ihsan, C. K.; Mahmadul, H. M.; Rosdi, S. M.

    2015-12-01

    The use of biomass based renewable fuel, n-butanol blends for compression ignition (CI) engine has attracted wide attention due to its superior properties such as better miscibility, higher energy content, and cetane number. In this present study the use of n-butanol 10% blends (Bu10) with diesel fuel has been tested using 4-cylinder, 4-stroke common rail direct injection CI engine to investigate the combustion and emissions of the blended fuels. Based on the tested engine at BMEP=3.5Bar Bu10 fuel indicates lower first and second peak pressure by 5.4% and 2.4% for engine speed 1000rpm and 4.4% and 2.1% for engine speed 2500rpm compared to diesel fuel respectively. Percentage reduction relative to diesel fuel at engine speeds 1000rpm and 2500rpm for Bu10: Exhaust temperature was 7.5% and 5.2% respectively; Nitrogen oxides (NOx) 73.4% and 11.3% respectively.

  7. Improvement of lean combustion characteristics of heavy-hydrocarbon fuels with hydrogen addition; Suiso tenka ni yoru kokyu tanka suisokei nenryo no kihaku nensho no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Sakai, Y. [Saitama Institute of Technology, Saitama (Japan); Ishizuka, S. [Hiroshima University, Hiroshima (Japan). Faculty of Engineering

    1999-09-25

    The Lewis numbers of lean heavy-hydrocarbon fuels are larger than unity, and hence, their flames are prone to extinction in a shear flow, which occurs in a turbulent combustion. Here, propane is used as a representative fuel of heavy-hydrocarbon fuels because the Lewis number of lean propane/air mixtures is larger than unity, and an attempt to improve its combustion characteristics by hydrogen addition has been made. A tubular flame burner is used to evaluate its improvement, since a rotating, stretched vortex flow is established in the burner. The results show that with' hydrogen addition, the fuel concentration, the flame diameter and the flame temperature at extinction are reduced and its combustion characteristics are improved. However, it is found that the effective equivalence ration at extinction cannot become so small as that of lean methane/air mixture, which has a Lewis number less than unity. (author)

  8. INVESTIGATION OF COMBUSTION, PERFORMANCE AND EMISSION CHARACTERISTICS OF SPARK IGNITION ENGINE FUELLED WITH BUTHANOL – GASOLINE MIXTURE AND A HYDROGEN ENRICHED AIR

    Directory of Open Access Journals (Sweden)

    Alfredas Rimkus

    2016-09-01

    Full Text Available In this study, spark ignition engine fuelled with buthanol-gasoline mixture and a hydrogen-enriched air was investigated. Engine performance, emissions and combustion characteristics were investigated with different buthanol (10% and 20% by volume gasoline mixtures and additionally supplied oxygen and hydrogen (HHO gas mixture (3.6 l/min in the sucked air. Hydrogen, which is in the HHO gas, improves gasoline and gasoline-buthanol mixture combustion, increases indicated pressure during combustion phase and decreases effective specific fuel consumption. Buthanol addition decreases the rate of heat release, the combustion temperature and pressure are lower which have an influence on lower nitrous oxide (NOx emission in exhaust gases. Buthanol lowers hydrocarbon (HC formation, but it increases carbon monoxide (CO concentration and fuel consumption. Combustion process analysis was carried out using AVL BOOST software. Experimental research and combustion process numerical simulation showed that using balanced buthanol and hydrogen addition, optimal efficient and ecological parameters could be achieved when engine is working with optimal spark timing, as it would work on gasoline fuel.

  9. Experimental investigation of the catalytic decomposition and combustion characteristics of a non-toxic ammonium dinitramide (ADN)-based monopropellant thruster

    Science.gov (United States)

    Chen, Jun; Li, Guoxiu; Zhang, Tao; Wang, Meng; Yu, Yusong

    2016-12-01

    Low toxicity ammonium dinitramide (ADN)-based aerospace propulsion systems currently show promise with regard to applications such as controlling satellite attitude. In the present work, the decomposition and combustion processes of an ADN-based monopropellant thruster were systematically studied, using a thermally stable catalyst to promote the decomposition reaction. The performance of the ADN propulsion system was investigated using a ground test system under vacuum, and the physical properties of the ADN-based propellant were also examined. Using this system, the effects of the preheating temperature and feed pressure on the combustion characteristics and thruster performance during steady state operation were observed. The results indicate that the propellant and catalyst employed during this work, as well as the design and manufacture of the thruster, met performance requirements. Moreover, the 1 N ADN thruster generated a specific impulse of 223 s, demonstrating the efficacy of the new catalyst. The thruster operational parameters (specifically, the preheating temperature and feed pressure) were found to have a significant effect on the decomposition and combustion processes within the thruster, and the performance of the thruster was demonstrated to improve at higher feed pressures and elevated preheating temperatures. A lower temperature of 140 °C was determined to activate the catalytic decomposition and combustion processes more effectively compared with the results obtained using other conditions. The data obtained in this study should be beneficial to future systematic and in-depth investigations of the combustion mechanism and characteristics within an ADN thruster.

  10. Effects of biobutanol and biobutanol–diesel blends on combustion and emission characteristics in a passenger car diesel engine with pilot injection strategies

    International Nuclear Information System (INIS)

    Yun, Hyuntae; Choi, Kibong; Lee, Chang Sik

    2016-01-01

    Highlights: • Effects of biobutanol blends on NOx and soot emission characteristics in a diesel engine. • Comparison of combustion characteristics between biobutanol and diesel fuels. • Effect of pilot injection on combustion and emissions reduction in a diesel engine. - Abstract: In this study, we investigated the effect of biobutanol and biobutanol–diesel blends on the combustion and emission characteristics in a four-cylinder compression ignition engine using pilot injection strategies. The test fuels were a mixture of 10% biobutanol and 90% conventional diesel (Bu10), 20% biobutanol and 80% diesel (Bu20), and 100% diesel fuel (Bu0) based on mass. To study the combustion and emission characteristics of the biobutanol blended fuels, we carried out experimental investigations under various pilot injection timings from BTDC 20° to BTDC 60° with constant main injection timing. As the butanol content in the blended fuel increased, the experimental results indicated that the ignition delay was longer than that of diesel fuel for all pilot injection timings. Also, the indicated specific fuel consumption (ISFC) of the blended fuels was higher than that of diesel at all test conditions. However, the exhaust temperature was lower than that of diesel at all injection timings. Nitrogen oxide (NOx), carbon monoxide (CO) and soot from Bu20 were lower than those from diesel fuel at all test conditions and hydrocarbons (HC) were higher than that from diesel.

  11. Experimental Study of Combustion and Emissions Characteristics of Methyl Oleate, as a Surrogate for Biodiesel, in a Direct injection Diesel Engine

    Science.gov (United States)

    This study evaluates the combustion and emissions characteristics of methyl oleate (C19H36O2 CAS# 112-62) produced by transesterification from oleic acid, one of the main fatty acid components of biodiesel. The ignition delay of ultra-low sulfur diesel#2 (ULSD) and its blends with methyl oleate (O20...

  12. Effect of CO_2 dilution on combustion and emissions characteristics of the hydrogen-enriched gasoline engine

    International Nuclear Information System (INIS)

    Wang, Shuofeng; Ji, Changwei; Zhang, Bo; Cong, Xiaoyu; Liu, Xiaolong

    2016-01-01

    CO_2 (Carbon dioxide) dilution is a feasible way for controlling NOx (Nitrogen oxides) emissions and loads of the internal combustion engines. This paper investigated the effect of CO_2 dilution on the combustion and emissions characteristics of a hydrogen-enriched gasoline engine. The experiment was conducted on a 1.6 L spark-ignition engine with electronically controlled hydrogen and gasoline injection systems. At two hydrogen volume fractions of 0 and 3%, the CO_2 volume fraction in the intake was gradually increased from 0 to 4%. The fuel-air mixtures were kept at the stoichiometric. The experimental results demonstrated that brake mean effective pressure of the gasoline engine was quickly reduced after adopting CO_2 dilution. Comparatively, Bmep (Brake mean effective pressure) of the 3% hydrogen-enriched engine was gently decreased with the increase of CO_2 dilution level. Thermal efficiency of the 3% hydrogen-enriched gasoline engine was raised under properly increased CO_2 dilution levels. However, thermal efficiency of the pure gasoline engine was generally dropped after the CO_2 dilution. The addition of hydrogen could shorten flame development and propagation durations under CO_2 diluent conditions for the gasoline engine. Increasing CO_2 fraction in the intake caused the dropped NOx and raised HC (Hydrocarbon) emissions. Increasing hydrogen fraction in the intake could effectively reduce HC emissions under CO_2 diluent conditions. - Highlights: • CO_2 dilution reduces cooling loss and NOx of H_2-enriched gasoline engines. • H_2-blended gasoline engine gains better efficiency after CO_2 dilution. • CoVimep of H_2-blended gasoline engine is kept at low level after CO_2 addition. • CO_2 dilution has small effect on reducing Bmep of H_2-blended gasoline engine.

  13. Effect of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under CI engine condition

    International Nuclear Information System (INIS)

    Munsin, R.; Laoonual, Y.; Jugjai, S.; Matsuki, M.; Kosaka, H.

    2015-01-01

    Highlights: • Glycerol ethoxylate (GE) shows the similar results as the commercial additive. • GE decreases injection rate, but increases injection delay and duration of ethanol. • GE shortens ignition delay and decreases heat released in premixed burn of ethanol. • GE has a minor effect on flame temperature of ethanol. • KL factor and soot of ethanol are sensitive to both GE and the commercial additive. - Abstract: This paper investigates the effects of glycerol ethoxylate as an ignition improver on injection and combustion characteristics of hydrous ethanol under a CI engine condition. Injection characteristics were investigated by an in-house injection rate measurement device based on the Zeuch method, while spray combustion has been performed in the rapid compression and expansion machine (RCEM). The CI engine condition indicated as density, pressure and temperature of compressed synthetic gas, consisting of 80% argon and 20% oxygen, at fuel injection timing in RCEM of 21 kg/m 3 , 4.4 MPa and 900 K, respectively. This condition is equivalent to the isentropic compression of air of the actual CI engine with compression ratio of 22. Hydrous ethanol without ignition improver (Eh95) and the ethanol dedicated for heavy duty vehicles (ED95: composed of hydrous ethanol with the commercial additive for ED95) are reference fuels representing low and high quality ethanol fuel for CI engines, respectively. All test fuels are injected at constant heat input. The results indicate that the additional ignition improvers change injection characteristics, i.e. injection delay, injection rate and discharge coefficient of hydrous ethanol. The maximum injection rates at fully opened needle for the ethanol dedicated for heavy duty vehicles (ED95) and hydrous ethanol with 5% glycerol ethoxylate (5%GE) are lower than that of hydrous ethanol without ignition improver (Eh95) by approximately 10%. Additional injection duration is required for ED95 and 5%GE to maintain a

  14. Effect of H2 addition on combustion characteristics of dimethyl ether jet diffusion flame

    International Nuclear Information System (INIS)

    Kang, Yinhu; Lu, Xiaofeng; Wang, Quanhai; Gan, Lu; Ji, Xuanyu; Wang, Hu; Guo, Qiang; Song, Decai; Ji, Pengyu

    2015-01-01

    Highlights: • DME- and H 2 -dominated combustion regimes were quantitatively characterized. • The flame structure changed significantly when H 2 addition was above 60 vol.%. • An empirical correlation for normalized flame entrainment rate was developed. • The optimal H 2 addition to DME was 60 vol.% in the practical engineering. - Abstract: In this paper, experiments and numerical calculations were conducted to investigate the effect of H 2 addition on dimethyl ether (DME) jet diffusion flame behaviors, in terms of thermal and chemical structures, reaction zone size, flame entrainment, and NOx and CO emission indices. A wide range of H 2 additions from pure DME to pure H 2 were involved herein, while maintaining the volumetric flow rate of fuel mixture constant. The results indicate that when H 2 mole fraction in the fuel mixture exceeded 60%, the blended fuel was converted to H 2 -dominated. Besides, the flames behaved rather distinctly at the DME- and H 2 -dominated regimes. With the increment in H 2 addition, flame temperature, H 2 , H, O, and OH concentrations increased gradually, but concentrations of the intermediate hydrocarbons (such as CO, CH 2 O, CH 2 , and CH 3 ) decreased on the contrary. Additionally, after the flame became H 2 -dominated, the species concentrations varied increasingly quickly with H 2 addition. The reaction zone length and width decreased nearly linearly with H 2 addition at the DME- and H 2 -dominated regimes. But the decreasing speed of reaction zone length became faster after the flame was converted to H 2 -dominated. At the DME-dominated regime, the dependence of flame entrainment coefficient (C e ) on H 2 addition was rather small. While at the H 2 -dominated regime, C e increased increasingly quickly with H 2 addition. Moreover, with the increment in H 2 addition, NOx emission index increased and CO emission index decreased gradually. In addition, at the DME-dominated regime, NOx emission index increased fairly slowly

  15. Laser-assisted homogeneous charge ignition in a constant volume combustion chamber

    Science.gov (United States)

    Srivastava, Dhananjay Kumar; Weinrotter, Martin; Kofler, Henrich; Agarwal, Avinash Kumar; Wintner, Ernst

    2009-06-01

    Homogeneous charge compression ignition (HCCI) is a very promising future combustion concept for internal combustion engines. There are several technical difficulties associated with this concept, and precisely controlling the start of auto-ignition is the most prominent of them. In this paper, a novel concept to control the start of auto-ignition is presented. The concept is based on the fact that most HCCI engines are operated with high exhaust gas recirculation (EGR) rates in order to slow-down the fast combustion processes. Recirculated exhaust gas contains combustion products including moisture, which has a relative peak of the absorption coefficient around 3 μm. These water molecules absorb the incident erbium laser radiations ( λ=2.79 μm) and get heated up to expedite ignition. In the present experimental work, auto-ignition conditions are locally attained in an experimental constant volume combustion chamber under simulated EGR conditions. Taking advantage of this feature, the time when the mixture is thought to "auto-ignite" could be adjusted/controlled by the laser pulse width optimisation, followed by its resonant absorption by water molecules present in recirculated exhaust gas.

  16. Experimental validation of concentration profiles in an HCCI engine, modelled by a multi-component kinetic mechanism: Outline for auto-ignition and emission control

    Energy Technology Data Exchange (ETDEWEB)

    Machrafi, Hatim, E-mail: hatim-machrafi@enscp.f [UPMC Universite Paris 06, Ecole Nationale Superieure de Chimie de Paris, 11, rue de Pierre et Marie Curie, 75005 Paris (France); Universite de Liege, Thermodynamique des Phenomenes Irreversibles, 17, Allee du Six-Aout, 4000 Liege (Belgium)

    2010-10-15

    In order to contribute to the auto-ignition and emission control for Homogeneous Charge Compression Ignition (HCCI), a kinetic multi-component mechanism, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene is validated in this work, comparing for the concentration profiles of the fuel, the total hydrocarbons, O{sub 2}, CO{sub 2}, CO, acetaldehyde and iso-butene. These species are sampled during the combustion and quantified. For these measurements an automotive exhaust analyser, a gas chromatograph, coupled to a mass spectrometer and a flame ionisation detector are used, depending on the species to be measured. The fuel, total hydrocarbons, O{sub 2}, CO{sub 2}, iso-butene and acetaldehyde showed a satisfactory quantitative agreement between the mechanism and the experiments. Both the experiments and the modelling results showed the same formation behaviour of the different species. An example is shown of how such a validated mechanism can provide for a set of information of the behaviour of the auto-ignition process and the emission control as a function of engine parameters.

  17. Experimental validation of concentration profiles in an HCCI engine, modelled by a multi-component kinetic mechanism: Outline for auto-ignition and emission control

    International Nuclear Information System (INIS)

    Machrafi, Hatim

    2010-01-01

    In order to contribute to the auto-ignition and emission control for Homogeneous Charge Compression Ignition (HCCI), a kinetic multi-component mechanism, containing 62 reactions and 49 species for mixtures of n-heptane, iso-octane and toluene is validated in this work, comparing for the concentration profiles of the fuel, the total hydrocarbons, O 2 , CO 2 , CO, acetaldehyde and iso-butene. These species are sampled during the combustion and quantified. For these measurements an automotive exhaust analyser, a gas chromatograph, coupled to a mass spectrometer and a flame ionisation detector are used, depending on the species to be measured. The fuel, total hydrocarbons, O 2 , CO 2 , iso-butene and acetaldehyde showed a satisfactory quantitative agreement between the mechanism and the experiments. Both the experiments and the modelling results showed the same formation behaviour of the different species. An example is shown of how such a validated mechanism can provide for a set of information of the behaviour of the auto-ignition process and the emission control as a function of engine parameters.

  18. Combustion Characteristics of Torrefied Wood Samples of Pinus Carrebea and Leucaena Leucocephala Grown in Nigeria

    Directory of Open Access Journals (Sweden)

    Francis Akinyele FARUWA

    2016-12-01

    Full Text Available Torrefaction of selected wood samples of Pinus Carrebea and Leucaena Leucocephala were carried out at temperatures ranging from 200 to 300°C to improve the energy parameters of biomass and to determine the effect of torrefication temperature on the physical and combustion properties of wood selected from Pinus carrebea and Leuceanea leucocephala grown in Nigeria. In this process the biomass hemicellulose is degraded, maintaining its cellulose and lignin content. The samples were dried and heated to 225, 250, 275, and 300°C. Then the torrefied mass was subjected to basic property testing on proximate analysis and heating value was calculated in order to understand the differences between raw material and its torrefied products. Specifically, the wood blocks changed from light brown to black, stemming from the partial carbonization at the wood surface. When the temperature is 225°C, the color of the wood is between dark brown and once the torrefaction temperatures are 250 and 275°C, the colors of the wood become dark and darker respectively. The results of the proximate analysis also showed that increasing of torrefied temperature; volatile fraction was reduced while fixed carbon was increased with increase in temperature from 21.34 to 52.74 and 18.58 to 56.83 for Leucaena leucocephala and Pinus carreabeanus respectively at 225 to 300°C. The volatile content is decreased from 78.58% to 62.76% with increase in temperature. Ash content of were within 1.57-3.41% of torrefied wood. It could be observed that the High calorific value (HCV for pine ranged between 19.80 and 28.06MJ/Kg for the top, 19.93and 24.96MJ/kg for middle with 19.72and 25.96MJ/Kg for base. The values recorded for raw sample and at 275°C been the lowest and highest respectively. The High calorific value (HCV were found to be on the increase and nose dive at 300°C for the tree parts used in this research. The result revealed that for Leuceana the value increased from raw up to

  19. COMBUSTION CHARACTERISTICS OF TORREFIED WOOD SAMPLES OF PINUS CARREBEA AND LEUCAENA LEUCOCEPHALA GROWN IN NIGERIA

    Directory of Open Access Journals (Sweden)

    Joseph Adeola FUWAPE

    2016-12-01

    Full Text Available Torrefaction of selected wood samples of Pinus Carrebea and Leucaena Leucocephala were carried out at temperatures ranging from 200 to 300°C to improve the energy parameters of biomass and to determine the effect of torrefication temperature on the physical and combustion properties of wood selected from Pinus carrebea and Leuceanea leucocephala grown in Nigeria. In this process the biomass hemicellulose is degraded, maintaining its cellulose and lignin content. The samples were dried and heated to 225, 250, 275, and 300°C. Then the torrefied mass was subjected to basic property testing on proximate analysis and heating value was calculated in order to understand the differences between raw material and its torrefied products. Specifically, the wood blocks changed from light brown to black, stemming from the partial carbonization at the wood surface. When the temperature is 225°C, the color of the wood is between dark brown and once the torrefaction temperatures are 250 and 275°C, the colors of the wood become dark and darker respectively. The results of the proximate analysis also showed that increasing of torrefied temperature; volatile fraction was reduced while fixed carbon was increased with increase in temperature from 21.34 to 52.74 and 18.58 to 56.83 for Leucaena leucocephala and Pinus carreabeanus respectively at 225 to 300°C. The volatile content is decreased from 78.58% to 62.76% with increase in temperature. Ash content of were within 1.57-3.41% of torrefied wood. It could be observed that the High calorific value (HCV for pine ranged between 19.80 and 28.06MJ/Kg for the top, 19.93and 24.96MJ/kg for middle with 19.72and 25.96MJ/Kg for base. The values recorded for raw sample and at 275°C been the lowest and highest respectively. The High calorific value (HCV were found to be on the increase and nose dive at 300°C for the tree parts used in this research. The result revealed that for Leuceana the value increased from raw up to

  20. Impact of the Flame-Holder Heat-Transfer Characteristics on the Onset of Combustion Instability

    KAUST Repository

    Hong, Seunghyuck

    2013-10-03

    In this article, we investigate the impact of heat transfer between the flame and the flameholder on the dynamic stability characteristics of a 50-kW backward-facing step combustor. We conducted a series of tests where two backward step blocks were used, made of ceramic and stainless steel, whose thermal conductivities are 1.06 and 12 W/m/K, respectively. Stability characteristics of the two flame-holder materials were examined using measurements of the dynamic pressure and flame chemiluminescence over a range of operating conditions. Results show that with the ceramic flameholder, the onset of instability is significantly delayed in time and, for certain operating conditions, disappears altogether, whereas with the higher conductivity material, the combustor becomes increasingly unstable over a range of operating conditions. We explain these trends using the heat flux through the flameholder and the change in the burning velocity near the step wall. Results suggest a potential approach using low-thermal-conductivity material near the flame-holder as passive dynamics suppression methods. Copyright © Taylor & Francis Group, LLC.

  1. An experimental study of emission and combustion characteristics of marine diesel engine with fuel pump malfunctions

    International Nuclear Information System (INIS)

    Kowalski, Jerzy

    2014-01-01

    Presented paper shows the results of the laboratory study on the relation between the chosen malfunctions of a fuel pump and the exhaust gas composition of the marine engine. The object of research is a laboratory four-stroke diesel engine, operated at a constant speed. During the research over 50 parameters were measured with technical condition of the engine recognized as “working properly” and with simulated fuel pump malfunctions. Considered malfunctions are: fuel injection timing delay and two sets of fuel leakages in the fuel pump of one engine cylinder. The results of laboratory research confirm that fuel injection timing delay and fuel leakage in the fuel pump cause relatively small changes in thermodynamic parameters of the engine. Changes of absolute values are so small they may be omitted by marine engines operators. The measuring of the exhaust gas composition shows markedly affection with simulated malfunctions of the fuel pump. Engine operation with delayed fuel injection timing in one cylinder indicates CO 2 emission increase and NOx emission decreases. CO emission increases only at high the engine loads. Fuel leakage in the fuel pump causes changes in CO emission, the increase of CO 2 emission and the decrease of NOx emission. - Highlights: •Chosen malfunctions of the fuel injection pump of marine engine are simulated. •Changes of thermodynamic parameters of marine engine are analyzed. •Changes of CO, CO 2 and NOx emission characteristics of marine engine are analyzed. •Injection pump malfunctions take significant changes in emission characteristics

  2. The effects of hydrous ethanol gasoline on combustion and emission characteristics of a port injection gasoline engine

    Directory of Open Access Journals (Sweden)

    Xiaochen Wang

    2015-09-01

    Full Text Available Comparative experiments were conducted on a port injection gasoline engine fueled with hydrous ethanol gasoline (E10W, ethanol gasoline (E10 and pure gasoline (E0. The effects of the engine loads and the additions of ethanol and water on combustion and emission characteristics were analyzed deeply. According to the experimental results, compared with E0, E10W showed higher peak in-cylinder pressure at high load. Increases in peak heat release rates were observed for E10W fuel at all the operating conditions. The usage of E10W increased NOX emissions at a wide load range. However, at low load conditions, E10W reduced HC, CO and CO2 emissions significantly. E10W also produced slightly less HC and CO emissions, while CO2 emissions were not significantly affected at higher operating points. Compared with E10, E10W showed higher peak in-cylinder pressures and peak heat release rates at the tested operating conditions. In addition, decreases in NOX emissions were observed for E10W from 5 Nm to 100 Nm, while HC, CO and CO2 emissions were slightly higher at low and medium load conditions. From the results, it can be concluded that E10W fuel can be regarded as a potential alternative fuel for gasoline engine applications.

  3. Simultaneous harvesting of straw and chaff for energy purposes : influence on bale density, yield, field drying process and combustion characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, G. [JTI Swedish Inst. of Agricultural and Environmental Engineering, Uppsala (Sweden); Ronnback, M. [SP Technical Research Inst. of Sweden, Boras (Sweden)

    2010-07-01

    The potential to increase the productivity of fuel straw harvest and transportation was examined. When harvesting straw for energy purposes, only the long fraction is currently collected. However, technological improvements have now rendered it possible to harvest chaff, thus increasing the amount of harvest residues and bale density. The purpose of this study was to determine how harvest yield, bale density, field-drying behaviour and combustion characteristics are affected by the simultaneous harvest of straw and chaff. Field experiments were conducted in 2009 for long- and short-stalked winter wheat crops. Combine harvesting was carried out with 2 different types of combine harvesters. A high-density baler was used to bale the crop residues. Mixing chaff in with the straw swath by combine harvesting gave a lower initial moisture content compared with straw only. The density and the weight of each bale were not affected by the treatments. However, the added chaff increased the total yield of crop residues by 14 per cent, indicating that about half of the biologically available chaff was harvested. Although mixing in chaff increased the ash content by 1 percentage unit, there was no considerable change in net calorific value or ash melting behaviour.

  4. Control of spontaneous combustion of coal in goaf at high geotemperatureby injecting liquid carbon dioxide: inertand cooling characteristics of coal

    Science.gov (United States)

    Liu, Zhenling; Wen, Hu; Yu, Zhijin; Wang, Chao; Ma, Li

    2018-02-01

    The spontaneous combustion of coal in goaf at high geo temperatures is threatening safety production in coalmine. The TG-DSC is employed to study the variation of mass and energy at 4 atmospheres (mixed gases of N2, O2 and CO2) and heating rates (10°C/min) during oxidation of coal samples. The apparent activation energy and pre-exponential factor of coal oxidation decrease rapidly with increasing theCO2 concentration. Furthermore, its reaction rate is slow, its heat released reduces. Based on the conditions of 1301 face in the Longgucoalmine, a three-dimensional geometry model is developed to simulate the distributions stream field and temperature field and the variation characteristics ofCO2 concentration field after injecting liquidCO2. The results indicate that oxygen reached to depths of˜120m in goaf, 100m in the side of inlet air, and 10m in the side of outlet air before injecting liquidCO2. After injecting liquidCO2for 28.8min, the width of oxidation and heat accumulation zone is shortened by 20m, and the distance is 80m in the side of working face and 40˜60m in goafin the direction of dip affected by temperature.

  5. Characteristics of ammonia emission during thermal drying of lime sludge for co-combustion in cement kilns.

    Science.gov (United States)

    Liu, Wei; Xu, Jingcheng; Liu, Jia; Cao, Haihua; Huang, Xiang-Feng; Li, Guangming

    2015-01-01

    Thermal drying was used to reduce sludge moisture content before co-combustion in cement kilns. The characteristics of ammonia (NH3) emission during thermal drying of lime sludge (LS) were investigated in a laboratory-scale tubular dry furnace under different temperature and time conditions. As the temperature increased, the NH3 concentration increased in the temperature range 100-130°C, decreased in the temperature range 130-220°C and increased rapidly at >220°C. Emission of NH3 also increased as the lime dosage increased and stabilized at lime dosages>5%. In the first 60 min of drying experiments, 55% of the NH3 was released. NH3 accounted for about 67-72% of the change in total nitrogen caused by the release of nitrogen-containing volatile compounds (VCs) from the sludge. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy revealed that the main forms of nitrogen in sludge were amides and amines. The addition of lime (CaO) could cause conversion of N-H, N-O or C-N containing compounds to NH3 during the drying process.

  6. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    Science.gov (United States)

    Patond, S. B.; Chaple, S. A.; Shrirao, P. N.; Shaikh, P. I.

    2013-06-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al2O3·2SiO2 (mullite) (Al2O3 = 60%, SiO2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  7. Experimental study on the effects of the number of heat exchanger modules on thermal characteristics in a premixed combustion system

    International Nuclear Information System (INIS)

    Yu, Byeonghun; Lee, Chang-Eon; Kum, Sung Min; Lee, Seungro

    2016-01-01

    The effects of the number of heat exchanger modules on thermal characteristics were experimentally studied in a premixed combustion system with a cross-flow staggered-tube heat exchanger. The various heat exchanger modules, from 4 to 8, combined with a premixed burner were tested to investigate the performance of the heat exchanger through the surface area of the heat exchanger at various equivalence ratios. Additionally, the performance of the heat exchanger was analyzed by applying entropy generation theory to the heat exchanger system. As a result, although the heat transfer rate increases with the increase of the equivalence ratio, the NOx and CO concentrations also increase due to the increasing flame temperature. In addition, the entropy generation increases with an increase of the equivalence ratio. Furthermore, the heat transfer rate and the effectiveness are increased with the increase of the number of the heat exchanger modules. Also, the effectiveness is sharply increased when the number of the heat exchanger modules is increased from 4 to 5. Consequently, the optimal operating conditions regarding pollutant emission, effectiveness and entropy generation in this experimental range are 0.85 for the equivalence ratio and 8 for the number of heat exchanger modules

  8. Comparative Study of Performance and Combustion Characteristics of Conventional and Low Heat Rejection (Mullite Coated) Diesel Engines

    International Nuclear Information System (INIS)

    Patond, S B; Chaple, S A; Shrirao, P N; Shaikh, P I

    2013-01-01

    Tests were performed on a single cylinder, four stroke, direct injection, diesel engine whose piston crown, cylinder head and valves were coated with a 0.5 mm thickness of 3Al 2 O 3 ·2SiO 2 (mullite) (Al 2 O 3 = 60%, SiO 2 = 40%) over a 150 μm thickness of NiCrAlY bond coat. The working conditions for the conventional engine (without coating) and LHR (mullite coated) engine were kept exactly same to ensure a comparison between the two configurations of the engine. This paper is intended to emphasis on performance and combustion characteristics of conventional and LHR (Mullite coated) diesel engines under identical conditions. Tests were carried out at same operational constraints i.e. air-fuel ratio and engine speed conditions for both conventional engine (without coating) and LHR (mullite coated) engines. The results showed that, there was as much as 1.8 % increasing on brake power for LHR (mullite coated) engine compared to conventional engine (without coating) at full load The average decrease in brake specific fuel consumption in the LHR engine compared with the conventional engine was 1.76 % for full engine load. However, there was increasing on cylinder gas pressure and net heat release rate for LHR engine compared to conventional engine. Also the results revealed that, there was as much as 22% increasing on exhaust gas temperature for LHR engine compared to conventional engine at full engine load.

  9. Effect of injection pressure on performance, emission, and combustion characteristics of diesel-acetylene-fuelled single cylinder stationary CI engine.

    Science.gov (United States)

    Srivastava, Anmesh Kumar; Soni, Shyam Lal; Sharma, Dilip; Jain, Narayan Lal

    2018-03-01

    In this paper, the effect of injection pressure on the performance, emission, and combustion characteristics of a diesel-acetylene fuelled single cylinder, four-stroke, direct injection (DI) diesel engine with a rated power of 3.5 kW at a rated speed of 1500 rpm was studied. Experiments were performed in dual-fuel mode at four different injection pressures of 180, 190, 200, and 210 bar with a flow rate of 120 LPH of acetylene and results were compared with that of baseline diesel operation. Experimental results showed that highest brake thermal efficiency of 27.57% was achieved at injection pressure of 200 bar for diesel-acetylene dual-fuel mode which was much higher than 23.32% obtained for baseline diesel. Carbon monoxide, hydrocarbon, and smoke emissions were also measured and found to be lower, while the NO x emissions were higher at 200 bar in dual fuel mode as compared to those in other injection pressures in dual fuel mode and also for baseline diesel mode. Peak cylinder pressure, net heat release rate, and rate of pressure rise were also calculated and were higher at 200 bar injection pressure in dual fuel mode.

  10. An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common-rail diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Seung Hyun; Cha, June Pyo [Graduate School of Hanyang University, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul, 133-791 (Korea); Lee, Chang Sik [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Sungdong-gu, Seoul 133-791 (Korea)

    2010-11-15

    An experimental investigation was performed on the effects of spray angle and injection strategies (single and multiple) on the combustion characteristics, concentrations of exhaust emissions, and the particle size distribution in a direct-injection (DI) compression ignition engine fueled with dimethyl ether (DME) fuel. In this study, two types of narrow spray angle injectors ({theta}{sub spray} = 70 and 60 ) were examined and its results were compared with the results of conventional spray angle ({theta}{sub spray} = 156 ). In addition, to investigate the optimal operating conditions, early single-injection and multiple-injection strategies were employed to reduce cylinder wall-wetting of the injected fuels and to promote the ignition of premixed charge. The engine test was performed at 1400 rpm, and the injection timings were varied from TDC to BTDC 40 of the crank angle. The experimental results showed that the combustion pressure from single combustion for narrow-angle injectors ({theta}{sub spray} = 70 and 60 ) is increased, as compared to the results of the wide-angle injector ({theta}{sub spray} = 156 ) with advanced injection timing of BTDC 35 . In addition, two peaks of the rate of heat release (ROHR) are generated by the combustion of air-fuel premixed mixtures. DME combustion for all test injectors indicated low levels of soot emissions at all injection timings. The NO{sub x} emissions for narrow-angle injectors simultaneously increased in proportion to the advance in injection timing up to BTDC 25 , whereas BTDC 20 for the wide-angle injector. For multiple injections, the combustion pressure and ROHR of the first injection with narrow-angle injectors are combusted more actively, and the ignition delay of the second injected fuel is shorter than with the wide-angle injector. However, the second combustion pressure and ROHR were lower than during the first injection, and combustion durations are prolonged, as compared to the wide-angle injector. With

  11. An investigation of the effects of spray angle and injection strategy on dimethyl ether (DME) combustion and exhaust emission characteristics in a common-rail diesel engine

    International Nuclear Information System (INIS)

    Yoon, Seung Hyun; Cha, June Pyo; Lee, Chang Sik

    2010-01-01

    An experimental investigation was performed on the effects of spray angle and injection strategies (single and multiple) on the combustion characteristics, concentrations of exhaust emissions, and the particle size distribution in a direct-injection (DI) compression ignition engine fueled with dimethyl ether (DME) fuel. In this study, two types of narrow spray angle injectors (θ spray = 70 and 60 ) were examined and its results were compared with the results of conventional spray angle (θ spray = 156 ). In addition, to investigate the optimal operating conditions, early single-injection and multiple-injection strategies were employed to reduce cylinder wall-wetting of the injected fuels and to promote the ignition of premixed charge. The engine test was performed at 1400 rpm, and the injection timings were varied from TDC to BTDC 40 of the crank angle. The experimental results showed that the combustion pressure from single combustion for narrow-angle injectors (θ spray = 70 and 60 ) is increased, as compared to the results of the wide-angle injector (θ spray = 156 ) with advanced injection timing of BTDC 35 . In addition, two peaks of the rate of heat release (ROHR) are generated by the combustion of air-fuel premixed mixtures. DME combustion for all test injectors indicated low levels of soot emissions at all injection timings. The NO x emissions for narrow-angle injectors simultaneously increased in proportion to the advance in injection timing up to BTDC 25 , whereas BTDC 20 for the wide-angle injector. For multiple injections, the combustion pressure and ROHR of the first injection with narrow-angle injectors are combusted more actively, and the ignition delay of the second injected fuel is shorter than with the wide-angle injector. However, the second combustion pressure and ROHR were lower than during the first injection, and combustion durations are prolonged, as compared to the wide-angle injector. With advanced timing of the first injection, narrow

  12. Experimental investigation of the influence of internal and external EGR on the combustion characteristics of a controlled auto-ignition two-stroke cycle engine

    International Nuclear Information System (INIS)

    Andwari, Amin Mahmoudzadeh; Aziz, Azhar Abdul; Said, Mohd Farid Muhamad; Latiff, Zulkarnain Abdul

    2014-01-01

    Highlights: • Investigate the effect of In-EGR, Ex-EGR and octane number on a CAI 2-stroke engine. • Effect of In-EGR, Ex-EGR and octane number on combustion phasing of the engine. • Effect of In-EGR, Ex-EGR and octane number on cyclic variability of the engine. • Identify the CAI combustion upper and lower boundary for operating regions. - Abstract: A two-stroke cycle engine incorporated with a controlled auto-ignition combustion approach presents a high thermodynamic efficiency, ultra-low exhaust emissions and high power-to-weight ratio features for future demand of prime movers. The start of auto-ignition, control of the auto-ignition and its cyclic variability, are major concerns that should be addressed in the combustion timing control of controlled auto-ignition engines. Several studies have been performed to examine the effect of internal exhaust gas recirculation utilization on auto-ignited two-stroke cycle engines. However, far too little attention has been devoted to study on the influence of external exhaust gas recirculation on the cyclic variation and the combustion characteristics of controlled auto-ignition two-stroke cycle engines. The purpose of this study is to examine the influence of external exhaust gas recirculation in combination with internal exhaust gas recirculation on the combustion characteristics and the cyclic variability of a controlled auto-ignition two-stroke engine using fuel with different octane numbers. In a detailed experimental investigation, the combustion-related and pressure-related parameters of the engine are examined and statistically associated with the coefficient of variation and the standard deviation. The outcomes of the investigation indicates that the most influential controlled auto-ignition combustion phasing parameters can be managed appropriately via regulating the internal and external exhaust gas recirculation and fuel octane number. In general, start of auto-ignition and its cyclic variability are

  13. Numerical and experimental investigation of the effect of geometry on combustion characteristics of solid-fuel ramjet

    Science.gov (United States)

    Gong, Lunkun; Chen, Xiong; Musa, Omer; Yang, Haitao; Zhou, Changsheng

    2017-12-01

    Numerical and experimental investigation on the solid-fuel ramjet was carried out to study the effect of geometry on combustion characteristics. The two-dimensional axisymmetric program developed in the present study adopted finite rate chemistry and second-order moment turbulence-chemistry models, together with k-ω shear stress transport (SST) turbulence model. Experimental data were obtained by burning cylindrical polyethylene using a connected pipe facility. The simulation results show that a fuel-rich zone near the solid fuel surface and an air-rich zone in the core exist in the chamber, and the chemical reactions occur mainly in the interface of this two regions; The physical reasons for the effect of geometry on regression rate is the variation of turbulent viscosity due to the geometry change. Port-to-inlet diameter ratio is the main parameter influencing the turbulent viscosity, and a linear relationship between port-to-inlet diameter and regression rate were obtained. The air mass flow rate and air-fuel ratio are the main influencing factors on ramjet performances. Based on the simulation results, the correlations between geometry and air-fuel ratio were obtained, and the effect of geometry on ramjet performances was analyzed according to the correlation. Three-dimensional regression rate contour obtained experimentally indicates that the regression rate which shows axisymmetric distribution due to the symmetry structure increases sharply, followed by slow decrease in axial direction. The radiation heat transfer in recirculation zone cannot be ignored. Compared with the experimental results, the deviations of calculated average regression rate and characteristic velocity are about 5%. Concerning the effect of geometry on air-fuel ratio, the deviations between experimental and theoretical results are less than 10%.

  14. Combustion and emission characteristics of a diesel engine with DME as port premixing fuel under different injection timing

    International Nuclear Information System (INIS)

    Wang, Ying; Zhao, Yuwei; Xiao, Fan; Li, Dongchang

    2014-01-01

    Highlights: • Combustion and emission of diesel engine with DME as premixing fuel were examined. • Injection timing has profound effect on HRR of diffusive combustion in PCCI engine. • DME introduction drastically influenced HRR of PCCI combustion, especially for HTR. • Effect of injection timing on emission of PCCI engine is similar to that of DICI engine. - Abstract: This work dealt with the combustion and exhaust performance of a DME premixed charge compression ignition diesel engine. With the port premixing DME, the heat-release process was made up of the premixed charge homogeneous charge compression ignition combustion and diffusion combustion. The in-cylinder fuel injection timing and port premixing DME quantity played the important roles in combustion and emission control. They had little impact on the peak position of heat-release rate (HRR) during LTR phase. However, they had great effects on the peak values and the crank-angle positions corresponding to the HRR peaks during HTR and diffusion combustion phase. The peak value of HRR increased and the crank-angle corresponding to the HRR peak advanced with an incremental DME quantity or an early injection during HTR phase. However, the peak value of HRR dropped with an incremental DME quantity or a late injection during the diffusion combustion phase. p max and T max increased with an incremental DME quantity or an early injection. At the fixed direct-injection timing, BSFC decreased slightly with a rise of DME quantity due to CA50 closer to TDC. At a fixed DME quantity, BSFC was lowest when diesel was injected into cylinder at 7°CA BTDC. Moreover, as more DME was aspirated from port, NO x emissions decreased firstly but this decreasing trend ceased later. Smoke reduced, but CO and HC increased with a rise of DME quantity. Meanwhile, like the conventional DICI operation, NO x increased, but smoke, CO and HC declined with an early direct-injection

  15. Improving the performance and emission characteristics of a single cylinder diesel engine having reentrant combustion chamber using diesel and Jatropha methyl esters.

    Science.gov (United States)

    Premnath, S; Devaradjane, G

    2015-11-01

    The emissions from the Compression ignition (CI) engines introduce toxicity to the atmosphere. The undesirable carbon deposits from these engines are realized in the nearby static or dynamic systems such as vehicles, inhabitants, etc. The objective of this research work is to improve the performance and emission characteristics of a diesel engine in the modified re-entrant combustion chamber using a diesel and Jatropha methyl ester blend (J20) at three different injection pressures. From the literature, it is revealed that the shape of the combustion chamber and the fuel injection pressure have an impact on the performance and emission parameters of the CI engine. In this work, a re-entrant combustion chamber with three different fuel injection pressures (200, 220 and 240bars) has been used in the place of the conventional hemispherical combustion chamber for diesel and J20. From the experimental results, it is found that the re-entrant chamber improves the brake thermal efficiency of diesel and J20 in all the tested conditions. It is also found that the 20% blend of Jatropha methyl ester showed 4% improvement in the brake thermal efficiency in the re-entrant chamber at the maximum injection pressure. Environmental safety directly relates to the reduction in the undesirable effects on both living and non-living things. Currently environmental pollution is of major concern. Even with the stringent emission norms new methods are required to reduce the harmful effects from automobiles. The toxicity of carbon monoxide (CO) is well known. In the re-entrant combustion chamber, the amount of CO emission is reduced by 26% when compared with the conventional fuel operation of the engine. Moreover, the amount of smoke is reduced by 24% and hydrocarbons (HC) emission by 24%. Thus, the modified re-entrant combustion chamber reduces harmful pollutants such as unburned HC and CO as well as toxic smoke emissions. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Combustion characteristics of a gasoline engine with independent intake port injection and direct injection systems for n-butanol and gasoline

    International Nuclear Information System (INIS)

    He, Bang-Quan; Chen, Xu; Lin, Chang-Lin; Zhao, Hua

    2016-01-01

    Highlights: • Different injection approaches for n-butanol and gasoline affect combustion events. • High n-butanol percentage in the total energy of fuels improves combustion stability. • N-butanol promotes ignition and shortens combustion duration. • Lean burn increases indicated mean effective pressure at fixed total energy of fuels. • Different fuel injection methods slightly affect indicated mean effective pressure. - Abstract: N-butanol, as a sustainable biofuel, is usually used as a blend with gasoline in spark ignition engines. In this study, the combustion characteristics were investigated on a four-cylinder spark ignition gasoline engine with independent port fuel injection and direct injection systems for n-butanol and gasoline in different operating conditions. The results show that in the case of port fuel injection of n-butanol with direct injection gasoline at a given total energy released in a cycle, indicated mean effective pressure is slightly affected by spark timing at stoichiometry while it changes much more with delayed spark timing in lean burn conditions and is much higher in lean burn conditions compared to stoichiometry at given spark timings. With the increase of n-butanol percentage in a fixed total energy released in a cycle at given spark timings, ignition timing advances, combustion duration shortens, indicated mean effective pressure and indicated thermal efficiency increase. For the cases of port fuel injection of n-butanol with direction injection gasoline and port fuel injection of gasoline with direction injection n-butanol at a fixed total energy released in a cycle, their indicated mean effective pressures are close. But their combustion processes are dependent on fuel injection approaches.

  17. Internal combustion engine report: Spark ignited ICE GenSet optimization and novel concept development

    Energy Technology Data Exchange (ETDEWEB)

    Keller, J.; Blarigan, P. Van [Sandia National Labs., Livermore, CA (United States)

    1998-08-01

    In this manuscript the authors report on two projects each of which the goal is to produce cost effective hydrogen utilization technologies. These projects are: (1) the development of an electrical generation system using a conventional four-stroke spark-ignited internal combustion engine generator combination (SI-GenSet) optimized for maximum efficiency and minimum emissions, and (2) the development of a novel internal combustion engine concept. The SI-GenSet will be optimized to run on either hydrogen or hydrogen-blends. The novel concept seeks to develop an engine that optimizes the Otto cycle in a free piston configuration while minimizing all emissions. To this end the authors are developing a rapid combustion homogeneous charge compression ignition (HCCI) engine using a linear alternator for both power take-off and engine control. Targeted applications include stationary electrical power generation, stationary shaft power generation, hybrid vehicles, and nearly any other application now being accomplished with internal combustion engines.

  18. Numerical and Experimental Study on the Combustion and Emission Characteristics of a Dimethyl Ether (DME Fueled Compression Ignition Engine Études numériques et expérimentales sur les caractéristiques de combustion et d’émissions d’un éther diméthylique (EDM- moteur à auto-allumage rempli de combustible

    Directory of Open Access Journals (Sweden)

    Kim Hyung Jun

    2012-05-01

    Full Text Available A numerical investigation was carried out to study on the combustion and emission characteristics of dimethyl ether (DME with wide ranges of injection timings in compression ignition engines. In order to simulate DME combustion processes, a KIVA-3V code coupled with a chemistry solver was used to solve the detailed chemical kinetics model of DME oxidation. In addition, the Kelvin-Helmholtz-Rayleigh-Taylor (KH-RT hybrid breakup model and Renormalization Group (RNG k-ε  models were applied to analyze the spray characteristics and turbulent flow, respectively. To predict the NOx formation during DME combustion, a reduced Gas Research Institute (GRI NO mechanism was used. From these results on the combustion and emission, the calculated results were compared with experimental ones for the same operating conditions. In the combustion characteristics, the calculated combustion pressure and heat release rates agreed well with experimental results. The levels of experimental NOx emissions was reduced as the start of the injection timing retarded, and also these trends appeared in calculated emission characteristics. Additionally, the calculated CO and HC emissions show an increasing trend as the start of the injection is retarded. Dans cette étude, nous considérons la simulation de la combustion du dimethyl ether (DME dans un moteur à allumage par compression. Les caractéristiques de la combustion ainsi que les émissions polluantes sont analysées sur une large gamme d’avance à l’injection. Afin de simuler le processus de combustion du EDM, le code KIVA-3V couplé à un solveur chimique a été utilisé pour résoudre la cinétique détaillée de l’oxydation du EDM. Le modèle de rupture de Kelvin-Helmholtz-Rayleigh- Taylor (KH-RT ainsi que le modèle de turbulence k-ε  RNG ont été appliqués pour analyser respectivement les caractéristiques du jet et l’écoulement turbulent. Pour prévoir la formation de NOx pendant la combustion

  19. The association between e-cigarette use characteristics and combustible cigarette consumption and dependence symptoms: Results from a national longitudinal study.

    Science.gov (United States)

    Buu, Anne; Hu, Yi-Han; Piper, Megan E; Lin, Hsien-Chang

    2018-09-01

    Existing longitudinal surveys focused on the association between ever use of e-cigarettes and combustible cigarette consumption, making it difficult to infer what characteristics of e-cigarette use could potentially change combustible cigarette use behavior, which may have long-term health consequences. Although e-cigarettes' efficacy of alleviating dependence symptoms was supported by studies conducted in laboratory settings, whether the results can be translated into symptom reduction in the real world and over time is an open question. This study conducted secondary analysis on the Waves 1-2 data of the Population Assessment of Tobacco and Health (PATH) Study to examine the association between e-cigarette use characteristics (frequency, flavoring, and voltage adjustment) and combustible cigarette use outcomes (frequency, quantity, and symptoms), using the Heckman 2-step selection procedure with the selection bias controlled. The inclusion criteria ensured that we followed an adult cohort of exclusive combustible cigarette users at Wave 1. The result shows that higher frequency of e-cigarette use was associated with lower combustible cigarette consumption and dependence symptoms, controlling for the corresponding baseline cigarette use variable and other confounders. Given the frequency of e-cigarette use, the feature of voltage adjustment was not significantly associated with any of the cigarette use outcomes. Flavoring, on the other hand, was associated with lower quantity of cigarette use. Exclusive smokers who start using e-cigarettes do indeed change the frequency and quantity with which they smoke cigarettes. E-cigarette use may also help reduce dependence symptoms. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Effects of pilot injection pressure on the combustion and emissions characteristics in a diesel engine using biodiesel–CNG dual fuel

    International Nuclear Information System (INIS)

    Ryu, Kyunghyun

    2013-01-01

    Highlights: • Injection pressure of pilot fuel in dual fuel combustion (DFC) affects the engine power and exhaust emissions. • In the biodiesel–CNG DFC mode, the combustion begins and ends earlier as the pilot-fuel injection pressure increases. • The ignition delay in the DFC mode is about 1.2–2.6 °CA longer than that in the diesel single fuel combustion (SFC) mode. • The smoke and NOx emissions are significantly reduced in the DFC mode. - Abstract: Biodiesel–compressed natural gas (CNG) dual fuel combustion (DFC) system is studied for the simultaneous reduction of particulate matters (PM) and nitrogen oxides (NOx) from diesel engine. In this study, biodiesel is used as a pilot injection fuel to ignite the main fuel, CNG of DFC system. In particular, the pilot injection pressure is controlled to investigate the characteristics of engine performance and exhaust emissions in a single cylinder diesel engine. The results show that the indicated mean effective pressure (IMEP) of biodiesel–CNG DFC mode is lower than that of diesel single fuel combustion (SFC) mode at higher injection pressure. However, the combustion stability of biodiesel–CNG DFC mode is increased with the increase of pilot injection pressure. At the same injection pressure, the start of combustion of biodiesel–CNG DFC is delayed compared to diesel SFC due to the increase of ignition delay of pilot fuel. On the contrary, it is observed that as the pilot injection pressure increase, the combustion process begins and ends a little earlier for biodiesel–CNG DFC. The ignition delay in the DFC is about 1.2–2.6 °CA longer compared to diesel SFC, but decreases with increases of pilot injection pressure. Smoke and NOx emissions are decreased and increased, respectively, as the pilot injection pressure increases in the biodiesel–CNG DFC. In comparison to diesel SFC, smoke emissions are significantly reduced over all the operating conditions and NOx emissions also exhibited similar

  1. An assessment on performance, emission and combustion characteristics of single cylinder diesel engine powered by Cymbopogon flexuosus biofuel

    International Nuclear Information System (INIS)

    Dhinesh, B.; Isaac JoshuaRamesh Lalvani, J.; Parthasarathy, M.; Annamalai, K.

    2016-01-01

    Highlights: • Cymbopogon Flexuosus biofuel is used as an alternative energy source. • Cymbopogon flexuosus biofuel 20% + Diesel 80% blend profile stayed close to diesel. • Resulting in higher thermal efficiency and reduced fuel consumption. • Reduced hydrocarbon, carbon monoxide and smoke emission. • Oxides of nitrogen and carbon di-oxide emission was marginally higher. - Abstract: The novelty of this manuscript is that it discusses about the experimental analysis of a new biofuel feedstock as an alternative fuel that has not drawn much attention among the researchers. An exploration for a new biofuel feedstock resulted in Cymbopogon flexuosus as an alternative energy source. Raw oil of Cymbopogon flexuosus was obtained through steam distillation process. Cymbopogon flexuosus biofuel was blended with diesel fuel in various proportions on volume basis, namely 10, 20, 30, 40, and 100 percent and its properties were assessed according to American Society for Testing and Materials standards. The considered test fuel was experimentally analysed in a single cylinder diesel engine at 1500 rpm for its performance, emission and combustion characteristics. Among various blends, Fuel blend of Cymbopogon flexuosus biofuel 20% + diesel 80% fuel profile stayed close to diesel fuel resulting in higher thermal efficiency and lower hydrocarbon, carbon monoxide, and smoke emission. However, oxides of nitrogen and carbon dioxide emission was marginally higher for the test fuel considered. Cylinder pressure and heat release rate curves were lower at full load condition as compared with diesel fuel. Against the grim background of fossil fuel depletion, Fuel blend of Cymbopogon flexuosus biofuel 20% + diesel 80% fuel acts as a promising alternative fuel and brings hope to the nation as well as the research world.

  2. The Effect of Hydrogen Addition on the Combustion Characteristics of RP-3 Kerosene/Air Premixed Flames

    Directory of Open Access Journals (Sweden)

    Wen Zeng

    2017-07-01

    Full Text Available Experimental studies have been performed to investigate the effects of hydrogen addition on the combustion characteristics of Chinese No.3 jet fuel (RP-3 kerosene/air premixed flames. Experiments were carried out in a constant volume chamber and the influences of the initial temperatures of 390 and 420 K, initial pressures of 0.1 and 0.3 MPa, equivalence ratios of 0.6–1.6 and hydrogen additions of 0.0–0.5 on the laminar burning velocities, and Markstein numbers of Hydrogen (H2/RP-3/air mixtures were investigated. The results show that the flame front surfaces of RP-3/air mixtures remain smooth throughout the entire flame propagation process at a temperature of 390 K, pressure of 0.3 MPa, equivalence ratio of 1.3 and without hydrogen addition, but when the hydrogen addition increases from 0.0 to 0.5 under the same conditions, flaws and protuberances occur at the flame surfaces. It was also found that with the increase of the equivalence ratio from 0.9 to 1.5, the laminar burning velocities of the mixtures increase at first and then decrease, and the highest laminar burning velocity was measured at an equivalence ratio of 1.2. Meanwhile, with the increase of hydrogen addition, laminar burning velocities of H2/RP-3/air mixtures increase. However, the Markstein numbers of H2/RP-3/air mixtures decrease with the increase of hydrogen addition, which means that the flames of H2/RP-3/air mixtures become unstable with the increase of hydrogen addition.

  3. Properties of chicken manure pyrolysis bio-oil blended with diesel and its combustion characteristics in RCEM, Rapid Compression and Expansion Machine

    Directory of Open Access Journals (Sweden)

    Sunbong Lee

    2014-06-01

    Full Text Available Bio-oil (bio-oil was produced from chicken manure in a pilot-scale pyrolysis facility. The raw bio-oil had a very high viscosity and sediments which made direct application to diesel engines difficult. The bio-oil was blended with diesel fuel with 25% and 75% volumetric ratio at the normal temperature, named as blend 25. A rapid compression and expansion machine was used for a combustion test under the experimental condition corresponding to the medium operation point of a light duty diesel engine using diesel fuel, and blend 25 for comparison. The injection related pressure signal and cylinder pressure signal were instantaneously picked up to analyze the combustion characteristics in addition to the measurement of NOx and smoke emissions. Blend 25 resulted in reduction of the smoke emission by 80% and improvements of the apparent combustion efficiency while the NOx emission increased by 40%. A discussion was done based on the analysis results of combustion.

  4. Comparing Spray Characteristics from Reynolds Averaged Navier-Stokes (RANS) National Combustion Code (NCC) Calculations Against Experimental Data for a Turbulent Reacting Flow

    Science.gov (United States)

    Iannetti, Anthony C.; Moder, Jeffery P.

    2010-01-01

    Developing physics-based tools to aid in reducing harmful combustion emissions, like Nitrogen Oxides (NOx), Carbon Monoxide (CO), Unburnt Hydrocarbons (UHC s), and Sulfur Dioxides (SOx), is an important goal of aeronautics research at NASA. As part of that effort, NASA Glenn Research Center is performing a detailed assessment and validation of an in-house combustion CFD code known as the National Combustion Code (NCC) for turbulent reacting flows. To assess the current capabilities of NCC for simulating turbulent reacting flows with liquid jet fuel injection, a set of Single Swirler Lean Direct Injection (LDI) experiments performed at the University of Cincinnati was chosen as an initial validation data set. This Jet-A/air combustion experiment operates at a lean equivalence ratio of 0.75 at atmospheric pressure and has a 4 percent static pressure drop across the swirler. Detailed comparisons of NCC predictions for gas temperature and gaseous emissions (CO and NOx) against this experiment are considered in a previous work. The current paper is focused on detailed comparisons of the spray characteristics (radial profiles of drop size distribution and at several radial rakes) from NCC simulations against the experimental data. Comparisons against experimental data show that the use of the correlation for primary spray break-up implemented by Raju in the NCC produces most realistic results, but this result needs to be improved. Given the single or ten step chemical kinetics models, use of a spray size correlation gives similar, acceptable results

  5. Effect of diesel pre-injection timing on combustion and emission characteristics of compression ignited natural gas engine

    International Nuclear Information System (INIS)

    Xu, Min; Cheng, Wei; Zhang, Hongfei; An, Tao; Zhang, Shaohua

    2016-01-01

    Highlights: • Pre-injection timing on combustion and emission of CING engine are studied. • Closely pre-injection operations leads to increase of combustion intensity. • Early pre-injection operations leads to lower combustion intensity. • Early pre-injection modes provide better NO x emission. - Abstract: Pre-injection strategy is considered to be one of the most important ways to improve diesel engine performance, emission and combustion. It is the same important factor in pilot diesel compression ignition natural gas (CING) engine. In this study, effects of pre-injection timing on combustion and emission performances were experimentally studied in a CING engine which was modified from a turbocharged six-cylinder diesel engine. The experiments were conducted at constant speed of 1400 rpm and different engine loads with a constant fuel injection pressure of 1100 bar. Main injection timing was fixed at 10 °CA BTDC in the advance process of pre-injection timing. The cylinder pressure, heart release rate (HRR), pressure rise rate (PRR), start of combustion (SOC) and coefficient of variation (COV IMEP ), as well as NO x , HC and CO emissions were analyzed. The results indicated that closely pre-injection operations lead to the advance of SOC which intensified combustion of in-cylinder mixture, thereby resulting in higher cylinder pressure, HRR and PRR, as well higher NO x emissions and lower HC and CO emissions. However, early pre-injection operations lead to lower cylinder pressure, HRR and PRR due to decreasing in combustion intensity. Pre-injection timing of 70 °CA BTDC is a conversion point in which influence of pre-injection fuel on ignition and combustion of natural gas nearly disappeared and lowest NO x emission could be obtained. Compared with single injection ignition mode, NO x emissions at the conversion point were reduced by 33%, 38% and 7% at engine load of 38%, 60% and 80% respectively. This is important for the conditions that ignition fuel

  6. An investigation of the engine performance, emissions and combustion characteristics of coconut biodiesel in a high-pressure common-rail diesel engine

    International Nuclear Information System (INIS)

    How, H.G.; Masjuki, H.H.; Kalam, M.A.; Teoh, Y.H.

    2014-01-01

    An experimental investigation on engine performance, emissions, combustion and vibration characteristics with coconut biodiesel fuels was conducted in a high-pressure common-rail diesel engine under five different load operations (0.17, 0.34, 0.52, 0.69 and 0.86 MPa). The test fuels included a conventional diesel fuel and four different fuel blends of coconut biodiesel (B10, B20, B30 and B50). The results showed that biodiesel blended fuels have significant influences on the BSFC (brake specific fuel consumption) and BSEC (brake specific energy consumption) at all engine loads. In general, the use of coconut biodiesel blends resulted in a reduction of BSCO (brake specific carbon monoxide) and smoke emissions regardless of the load conditions. A large reduction of 52.4% in smoke opacity was found at engine load of 0.86 MPa engine load with B50. For combustion characteristics, a slightly shorter ignition delay and longer combustion duration were found with the use of biodiesel blends under all loading operations. It was found that generally the biodiesel blends produced lower peak heat release rate than baseline diesel. The vibration results showed that the largest reduction of 13.7% in RMS (root mean square) of acceleration was obtained with B50 at engine load of 0.86 MPa with respect to the baseline diesel. - Highlights: • The performance, emissions and combustion characteristics of biodiesel were studied. • A tangible increase in BSFC was observed at all engine loads with coconut biodiesel. • A slightly shorter ignition delay was found with the use of biodiesel blends. • The vibrations for coconut biodiesel blends in diesel engine were investigated. • B50 achieved the largest reduction in RMS of acceleration at 0.86 MPa engine load

  7. The effects of ethanol addition with waste pork lard methyl ester on performance, emission and combustion characteristics of a diesel engine

    Directory of Open Access Journals (Sweden)

    John Panneer Selvam Dharmaraj

    2014-01-01

    Full Text Available In the recent research, as a result of depletion of world petroleum reserves, considerable attention has been focused on the use of different alternative fuels in diesel engines. The present work aims to ensure the possibility of adding ethanol as an additive with animal fat biodiesel that is tested as an alternative fuel for diesel in a CI engine. In this study, biodiesel is obtained from waste pork lard by base-catalyzed transesterification with methanol when potassium hydroxide as catalyst. 2.5%, 5% and 7.5% by volume of ethanol is blended with neat biodiesel in order to improve performance and combustion characteristics of a diesel engine. The experimental work is carried out in a 3.7 kW, single cylinder, naturally aspirated, water cooled, direct injection diesel engine for different loads and at a constant speed of 1500 rpm. The performance, emission and combustion characteristics of biodiesel-ethanol blends are investigated by comparing them with neat biodiesel and standard diesel. The experimental test results showed that the combustion and performance characteristics improved with the increase in percentage of ethanol addition with biodiesel. When compared to neat biodiesel and standard diesel, an increase in brake thermal efficiency of 5.8% and 4.1% is obtained for BEB7.5 blend at full load of the engine. With the increase in percentage of ethanol fraction in the blends, peak cylinder pressure and the corresponding heat release rate are increased. Biodiesel-ethanol blends exhibit longer ignition delay and shorter combustion duration when compared to neat biodiesel. Optimum reduction in carbon monoxide, unburned hydrocarbon and smoke emission are attained while using BEB5 blend at full load of the engine. However, there is an adverse effect in case of nitrogen oxide emission.

  8. Investigation and modelling of a diesel engine in order to identify combustion characteristics from the engine speed; Untersuchung und Modellierung eines Dieselmotors zur Bestimmung von Verbrennungsmerkmalen aus der Motordrehzahl

    Energy Technology Data Exchange (ETDEWEB)

    Schmidt, T.

    2008-07-01

    The author attempted to derive cylinder-selective combustion characteristics from the rotational speed of aninternal combustion engine which should be applicable as control variables for combustion control. Physical models of the components of a four-cylinder diesel engine were developed. Simulations, rotary vibration measurements and cylinder pressure indexing were used for quantitative assessment of external momenta at the crankshaft which are interfering variables in speed-based identification of combustion charcteristics. In particular, the dynamics of control drive and secondary aggregate drive are regarded as well as nonlinear mechanical effects. Further, the influence of intrinsic vibrations of the crankshaft is investigated. On the basis of the models developed here, a method is presented for determining the cylinder-selective combustion characteristics and cylinder momentum by comparing the models. (orig.)

  9. 三种印尼油砂燃烧特性研究%Study on Combustion Characteristics of Three Indonesia Oil Sands

    Institute of Scientific and Technical Information of China (English)

    王擎; 王引; 贾春霞; Deyin Wu

    2012-01-01

    The combustion characteristics of oil sand samples were investigated by the thermogravimetric analysis at different heating rates (i.e., 10 ,20, 50 'C/min). According to the thermogravimetric (TG) and differential thermogravimetric (DTG) curves, oil sand combustion process can be divided into three stages: low temperature section, transition section, high temperature section. The combustion characteristic parameters were calculated. The effect of heating rate and particle sizes were studied. Moreover, the kinetic parameters were obtained by three methods: the C-R, FWO and DEAM method. The results reveal that oil sand have better ignition features and a lower ignition temperature, and the combustion intensity is strong at the last stage of the combustion. The combustion of oil sand can be well described by three models. The result shows that every stage of combustion reaction is described in various reaction orders by using the C-R method. However, the results of DEAM and FWO method can reflect the instantaneous characteristic of combustion reaction perfectly, the activation energy increases in low temperature and high temperature period of combustion, the activation energy changes gently in transition section.%采用热重分析方法研究油砂的燃烧特性.在升温速率分别为10,20,50℃/min条件下,得到了油砂燃烧失重(thermogravimetric, TG)、微商失重(differential thermogravimetric,DTG)曲线.基于TG-DTG曲线,求得了油砂燃烧特性参数,考查了加热速率、粒径对燃烧特性的影响.采用单个扫描速率法中常用的CR法和多重扫描速率法中FWO法以及DEAM法求解了油砂的燃烧动力学参数,研究结果表明:油砂具有着火容易、着火温度低、燃烧高温段反应比较强烈等燃烧特性.油砂燃烧分为3个阶段:燃烧低温段、过渡段、高温段.这3种模型的拟合度都很高,C-R法结果表明油砂燃烧不同反应阶段可用不同的反应级数来描述;DEAM和FWO法结果

  10. Combustion performance, flame, and soot characteristics of gasoline–diesel pre-blended fuel in an optical compression-ignition engine

    International Nuclear Information System (INIS)

    Jeon, Joonho; Lee, Jong Tae; Kwon, Sang Il; Park, Sungwook

    2016-01-01

    Highlights: • Gasoline–diesel pre-blended fuel was investigated in an optical direct-injection diesel engine. • KIVA3V-CHEMKIN code modeled blended fuel spray and combustion with discrete multi-component model. • Flame and soot characteristics in the combustion chamber were shown by optical kits. • Combustion performance and soot emissions for gasoline–diesel blended fuel were discussed. - Abstract: Among the new combustion technologies available for internal combustion engines to enhance performance and reduce exhausted emissions, the homogeneous charge compression ignition method is one of the most effective strategies for the compression-ignition engine. There are some challenges to realize the homogeneous charge compression ignition method in the compression-ignition engine. The use of gasoline–diesel blended fuel has been suggested as an alternative strategy to take advantages of homogeneous charge compression ignition while overcoming its challenges. Gasoline and diesel fuels are reference fuels for the spark-ignition and compression-ignition engines, respectively, both of which are widely used. The application of both these fuels together in the compression-ignition engine has been investigated using a hybrid injection system combining port fuel injection (gasoline) and direct injection (diesel); this strategy is termed reactivity controlled compression ignition. However, the pre-blending of gasoline and diesel fuels for direct injection systems has been rarely studied. For the case of direct injection of pre-blended fuel into the cylinder, various aspects of blended fuels should be investigated, including their spray breakup, fuel/air mixing, combustion development, and emissions. In the present study, the use of gasoline–diesel pre-blended fuel in an optical single-cylinder compression-ignition engine was investigated under various conditions of injection timing and pressure. Furthermore, KIVA-3V release 2 code was employed to model the

  11. Numerical Analysis of the Combustion and Emission Characteristics of Diesel Engines with Multiple Injection Strategies Using a Modified 2-D Flamelet Model

    Directory of Open Access Journals (Sweden)

    Gyujin Kim

    2017-08-01

    Full Text Available The multiple injection strategy has been widely used in diesel engines to reduce engine noise, NOx and soot formation. Fuel injection developments such as the common-rail and piezo-actuator system provide more precise control of the injection quantity and time under higher injection pressures. As various injection strategies become accessible, it is important to understand the interaction of each fuel stream and following combustion process under the multiple injection strategy. To investigate these complex processes quantitatively, numerical analysis using CFD is a good alternative to overcome the limitation of experiments. A modified 2-D flamelet model is further developed from previous work to model multi-fuel streams with higher accuracy. The model was validated under various engine operating conditions and captures the combustion and emissions characteristics as well as several parametric variations. The model is expected to be used to suggest advanced injection strategies in engine development processes.

  12. Optical Engines as Representative Tools in the Development of New Combustion Engine Concepts Moteurs transparents comme outils représentatifs dans le développement de nouveaux concepts des moteurs à combustion interne

    Directory of Open Access Journals (Sweden)

    Kashdan J.

    2011-11-01

    (EGR. A comparison has been made between simulated EGR (using pure nitrogen with real EGR under Diesel LTC conditions. Finally, “pure”, single component fuels are often employed in optical Diesel engines due to laser diagnostic constraints. However, these fuels generally differ from standard Diesel fuel in terms of cetane number and fuel volatility which can significantly influence the combustion and emissions characteristics in optical engines. These aspects have also been investigated within the present study. An improved understanding of the differences between optical and all-metal engines has allowed us to develop appropriate strategies to compensate for these differences on the optical engine. It is shown here that combustion phasing (and engine-out emissions matching between optical and all-metal engines can be achieved even for advanced LTC Diesel combustion strategies. The ability to ensure fully representative combustion and emissions behaviour of optical engines ultimately increases the value of optical engine data, highlighting the importance of using such engines as research tools for the further development of innovative, low emission combustion concepts. Les moteurs monocylindres transparents sont employés comme outils de recherche et de développement des moteurs à combustion interne. Ils permettent l’utilisation de techniques de diagnostics non-intrusifs (qualitatifs et quantitatifs pour étudier des phénomènes comme l’aérodynamique interne, la préparation du mélange, la combustion et la formation de polluants. Ces données expérimentales sont importantes pour la validation des modèles numériques et permettent également d’obtenir une compréhension détaillée des phénomènes physiques se déroulant dans la chambre. Les données recueillies aident au développement des nouvelles stratégies de combustion telles que la combustion homogène (HCCI et la combustion Diesel à basse température (LTC. Dans ce contexte, il est important

  13. Effect of fuel injection pressure and injection timing of Karanja biodiesel blends on fuel spray, engine performance, emissions and combustion characteristics

    International Nuclear Information System (INIS)

    Agarwal, Avinash Kumar; Dhar, Atul; Gupta, Jai Gopal; Kim, Woong Il; Choi, Kibong; Lee, Chang Sik; Park, Sungwook

    2015-01-01

    Highlights: • Effect of FIP on microscopic spray characteristics. • Effect of FIP and SOI timing on CRDI engine performance, emissions and combustion. • Fuel injection duration shortened, peak injection rate increased with increasing FIP. • SMD (D 32 ) and AMD (D 10 ) of fuel droplets decreased for lower biodiesel blends. • Increase in biodiesel blend ratio and FIP, fuel injection duration decreased. - Abstract: In this investigation, effect of 10%, 20% and 50% Karanja biodiesel blends on injection rate, atomization, engine performance, emissions and combustion characteristics of common rail direct injection (CRDI) type fuel injection system were evaluated in a single cylinder research engine at 300, 500, 750 and 1000 bar fuel injection pressures at different start of injection timings and constant engine speed of 1500 rpm. The duration of fuel injection slightly decreased with increasing blend ratio of biodiesel (Karanja Oil Methyl Ester: KOME) and significantly decreased with increasing fuel injection pressure. The injection rate profile and Sauter mean diameter (D 32 ) of the fuel droplets are influenced by the injection pressure. Increasing fuel injection pressure generally improves the thermal efficiency of the test fuels. Sauter mean diameter (D 32 ) and arithmetic mean diameter (D 10 ) decreased with decreasing Karanja biodiesel content in the blend and significantly increased for higher blends due to relatively higher fuel density and viscosity. Maximum thermal efficiency was observed at the same injection timing for biodiesel blends and mineral diesel. Lower Karanja biodiesel blends (up to 20%) showed lower brake specific hydrocarbon (BSHC) and carbon monoxide (BSCO) emissions in comparison to mineral diesel. For lower Karanja biodiesel blends, combustion duration was shorter than mineral diesel however at higher fuel injection pressures, combustion duration of 50% blend was longer than mineral diesel. Up to 10% Karanja biodiesel blends in a CRDI

  14. Physical and combustion characteristics of biomass particles prepared by different milling processes for suspension firing in utility boilers

    DEFF Research Database (Denmark)

    Yin, Chungen; Momenikouchaksaraei, Maryam; Kær, Søren Knudsen

    2016-01-01

    close to suspension-fired boilers. The ignition, devolatilization and burnout times of the milled particles under different combustion conditions are analysed. A one-dimensional transient model, properly accounting for the particle-ambient flow interaction and appropriately addressing the key sub...

  15. An experimental and numerical investigation of the combustion characteristics of a dual fuel engine with a swirl chamber

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Karim, G.A.; Xiao, F.; Sohrabi, A. [Calgary Univ., AB (Canada). Schulich School of Engineering, Mechanical and Manufacturing Dept.

    2007-07-01

    The results of an experimental investigation of the performance of a small bore engine with a swirl chamber when operating as a dual fuel engine with commercial methane as the gaseous fuel were presented in this paper. The experiment involved using a 3-dimensional computational fluid dynamics model to predict the performance of the engine. A detailed chemical kinetics for the gaseous fuel component, consisting primarily of methane and a reduced detailed chemical kinetics for the diesel fuel while considering the turbulent combustion processes an associated performance of a dual fuel engine with a swirl chamber were incorporated in the simulation. The study experimentally and numerically investigated the effects of changes in the quantities of the liquid fuel pilot and gaseous fuels on the combustion processes, engine performance, cyclic variations, and emissions. The paper discussed the experimental approach and results. It also discussed the simulation of the dual fuel engine combustion process. It was concluded that dual fuel combustion was an effective method to burn a gaseous fuel-air mixture with a low energy density. 9 refs., 6 figs.

  16. Combustion characteristics, performance and exhaust emissions of a diesel engine fueled with a waste cooking oil biodiesel mixture

    International Nuclear Information System (INIS)

    Can, Özer

    2014-01-01

    Highlights: • High quality biodiesel fuels can be produced by using different waste cooking oils. • Biodiesel fuel blends (in 5 and 10% vol) can be used without any negative effects. • Effects of biodiesel addition on the combustion and exhaust emissions were investigated. - Abstract: In this study, a mixture of biodiesel fuels produced from two different kinds of waste cooking oils was blended in 5% and 10% with No. 2 diesel fuel. The biodiesel/No. 2 diesel fuel blends were tested in a single-cylinder, direct injection, four-stroke, natural aspirated diesel engine under four different engine loads (BMEP 0.48–0.36–0.24–0.12 MPa) and 2200 rpm engine speed. Despite of the earlier start of injection, the detailed combustion and engine performance results showed that the ignition delay with the biodiesel addition was decreased for the all engine loads with the earlier combustion timings due to higher cetane number of biodiesel fuel. Meanwhile the maximum heat release rate and the in-cylinder pressure rise rate were slightly decreased and the combustion duration was generally increased with the biodiesel addition. However, significant changings were not observed on the maximum in-cylinder pressures. In addition, it was observed that the indicated mean effective pressure values were slightly varied depending on the start of combustion timing and the center of heat release location. It was found that 5% and 10% biodiesel fuel addition resulted in slightly increment on break specific fuel consumption (up to 4%) and reduction on break thermal efficiency (up to 2.8%). The biodiesel additions also increased NO x emissions up to 8.7% and decreased smoke and total hydrocarbon emissions for the all engine loads. Although there were no significant changes on CO emissions at the low and medium engine loads, some reductions were observed at the full engine load. Also, CO 2 emissions were slightly increased for the all engine loads

  17. EXPERIMENTAL STUDY OF HOMOGENEOUS MIXTURE COMPRESSION IGNITION IN INTERNAL COMBUSTION ENGINES

    OpenAIRE

    ANTHONY OSWALDO ROQUE CCACYA

    2010-01-01

    Com o intuito de reduzir as emissões e melhorar a combustão em uma maior faixa de rotação e carga de um motor, foi proposto o estudo da combustão por compressão de misturas homogêneas (HCCI), este processo apresenta altas eficiências e baixas emissões, principalmente de NOx e fuligem. Assim, o objetivo do presente trabalho é a determinação das faixas de operação estável em um motor diesel, de alta taxa de compressão (20:1). O combustível utilizado foi gasolina tipo A, tendo em vista a sua gra...

  18. Improvement studies on emission and combustion characteristics of DICI engine fuelled with colloidal emulsion of diesel distillate of plastic oil, TiO2 nanoparticles and water.

    Science.gov (United States)

    Karisathan Sundararajan, Narayanan; Ammal, Anand Ramachandran Bhagavathi

    2018-04-01

    Experimentation was conducted on a single cylinder CI engine using processed colloidal emulsions of TiO 2 nanoparticle-water-diesel distillate of crude plastic diesel oil as test fuel. The test fuel was prepared with plastic diesel oil as the principal constituent by a novel blending technique with an aim to improve the working characteristics. The results obtained by the test fuel from the experiments were compared with that of commercial petro-diesel (CPD) fuel for same engine operating parameters. Plastic oil produced from high density polyethylene plastic waste by pyrolysis was subjected to fractional distillation for separating plastic diesel oil (PDO) that contains diesel range hydrocarbons. The blending process showed a little improvement in the field of fuel oil-water-nanometal oxide colloidal emulsion preparation due to the influence of surfactant in electrostatic stabilization, dielectric potential, and pH of the colloidal medium on the absolute value of zeta potential, a measure of colloidal stability. The engine tests with nano-emulsions of PDO showed an increase in ignition delay (23.43%), and decrease in EGT (6.05%), BSNO x (7.13%), and BSCO (28.96%) relative to PDO at rated load. Combustion curve profiles, percentage distribution of compounds, and physical and chemical properties of test fuels ascertains these results. The combustion acceleration at diffused combustion phase was evidenced in TiO 2 emulsion fuels under study.

  19. Experimental investigations of the effect of pilot injection on performance, emissions and combustion characteristics of Karanja biodiesel fuelled CRDI engine

    International Nuclear Information System (INIS)

    Dhar, Atul; Agarwal, Avinash Kumar

    2015-01-01

    Highlights: • Effect of multiple injections on CRDI engine performance, emission and combustion. • Effect of multiple injections, injection pressures and injection timings on biodiesel. • Lower biodiesel blends showed lower BSCO, BSHC but higher BSNOx emissions. • Maximum cylinder pressure at higher FIP was higher at same SOPI and SOMI. • Combustion duration of KOME50 was higher than mineral diesel. - Abstract: Pilot and post injections are being used in modern diesel engines for improving engine performance in addition to meeting stringent emission norms. Biodiesel produced from different feedstocks is gaining global recognition as partial replacement for mineral diesel in compression ignition (CI) engines. In this study, 10%, 20% and 50% Karanja biodiesel blends were used for investigation of pilot injections, injection pressures and injection timings on biodiesel blends. Experiments were carried out in a single cylinder CRDI research engine in multiple injection mode at 500 and 1000 bar fuel injection pressure (FIP) under varying start of pilot injection (SOPI) and start of main injection (SOMI) timings. Brake specific fuel consumption (BSFC) increased with increasing Karanja biodiesel concentration in test fuels however brake thermal efficiency (BTE) of biodiesel blends was slightly higher than mineral diesel. Lower biodiesel blends showed lower brake specific carbon monoxide (BSCO) and brake specific hydrocarbon (BSHC) emissions than mineral diesel. Brake specific nitrogen oxides (BSNOx) emissions from KOME20 and KOME10 were higher than mineral diesel. Combustion duration of KOME50 was also higher than mineral diesel

  20. Combustion, performance, and emission characteristics of low heat rejection engine operating on various biodiesels and vegetable oils

    International Nuclear Information System (INIS)

    Abedin, M.J.; Masjuki, H.H.; Kalam, M.A.; Sanjid, A.; Ashraful, A.M.

    2014-01-01

    Highlights: • Combustion, performance, and emissions of low heat rejection engine are studied. • Comparative assessment is carried out for different fuels and coating materials. • Alternative coating materials are suggested for engine. • Thermal efficiency is increased and fuel consumption is decreased for all fuels. • Exhaust emissions have improved except nitrogen oxides emission. - Abstract: Internal combustion engine with its combustion chamber walls insulated by thermal barrier coating materials is referred to as low heat rejection engine or LHR engine. The main purpose of this concept is to reduce engine coolant heat losses, hence improve engine performance. Most of the researchers have reported that the thermal coating increases thermal efficiency, and reduces exhaust emissions. In contrast to the above expectations, a few researchers reported that almost there was no improvement in thermal efficiency. This manuscript investigates the contradictory results in order to find out the exact scenario. A wide range of coating materials has been studied in order to justify their feasibility of implementation in engine. The influence of coating material, thickness, and technique on engine performance and emissions has been studied critically to accelerate the LHR engine evolution. The objectives of higher thermal efficiency, improved fuel economy, and lower emissions are accomplishable but much more investigations with improved engine modification, and design are required to explore full potentiality of LHR engine

  1. Effect of compression ratio on performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas

    International Nuclear Information System (INIS)

    Bora, Bhaskor J.; Saha, Ujjwal K.; Chatterjee, Soumya; Veer, Vijay

    2014-01-01

    Highlights: • Maximum brake thermal efficiency of 20.04% was obtained in dual fuel mode. • Compression ratio of 18 produced the maximum brake thermal efficiency. • Maximum replacement of diesel was found to be 79.46% at a compression ratio of 18. • CO gets reduced by 26.22% with the increase of compression ratio from 16 to18. • HC gets reduced by 41.97% with the increase of compression ratio from 16 to18. - Abstract: The energy consumption of the world is increasing at a staggering rate due to population explosion. The extensive use of energy has led to fossil fuel depletion and the rise in pollution. Renewable energy holds the key solution to these aforementioned problems. Biogas, one such renewable fuel, can be used in a diesel engine under dual fuel mode for the generation of power. This work attempts to unfold the effect of compression ratio on the performance, combustion and emission characteristics of a dual fuel diesel engine run on raw biogas. For this investigation, a 3.5 kW single cylinder, direct injection, water cooled, variable compression ratio diesel engine is converted into a biogas run dual fuel diesel engine by connecting a venturi gas mixer at the inlet manifold. Experiments have been conducted at various compression ratios (18, 17.5, 17 and 16) and under different loading conditions fixing the standard injection timing at 23° before top dead centre. At 100% load, the brake thermal efficiencies of the dual fuel mode are found to be 20.04%, 18.25%, 17.07% and 16.42% at compression ratios of 18, 17.5, 17 and 16, respectively, whereas at the same load, the diesel mode shows an efficiency of 27.76% at a compression ratio of 17.5. The maximum replacement of the precious fossil fuel is found to be 79.46%, 76.1%, 74% and 72% at compression ratios of 18, 17.5, 17 and 16, respectively at 100% load. For the dual fuel mode, on an average, there is a reduction in carbon monoxide as well as hydrocarbon emission by 26.22% and 41.97% when compression

  2. Study of alcohol fuel of butanol and ethanol effect on the compression ignition (CI) engine performance, combustion and emission characteristic

    Science.gov (United States)

    Aziz, M. A.; Yusop, A. F.; Mat Yasin, M. H.; Hamidi, M. A.; Alias, A.; Hussin, H.; Hamri, S.

    2017-10-01

    Diesel engine which is one of the larger contributors to total consumption for petroleum is an attractive power unit used widely in many fields. However, diesel engines are among the main contributors to air pollutions for the large amount of emissions, such as CO, CO2 and NOx lead to an adverse effect on human health. Many researches have been done to find alternative fuels that are clean and efficient. Biodiesel is preferred as an alternative source for diesel engine which produces lower emission of pollutants. This study has focused on the evaluation of diesel and alcohol-diesel fuel properties and also the performance, combustion and exhaust emission from diesel engine fuelled with diesel and alcohol. Butanol and ethanol is blend with diesel fuel at 1:9 ratio. There are three test fuel that is tested which Diesel (100% diesel), D90BU10 (10% Butanol and 90% diesel) and D90E10 (10% Ethanol and 90% diesel). The comparison between diesel and alcohol-diesel blend has been made in terms of fuel properties characterization, engine performance such as brake power (BP) and brake specific fuel consumption (BSFC) also the in cylinder maximum pressure characteristic. Thus, exhaust gas emission of CO, CO2, NOx and O2 emission also has been observed at constant load of 50% but in different operating engine speed (1100 rpm, 1400 rpm, 1700 rpm, 2000 rpm and 2300 rpm). The results show the addition of 10% of each butanol and ethanol to diesel fuel had decreased the fuel density about 0.3% to 0.5% compared to mineral diesel. In addition, viscosity and energy content are also decrease. The addition of 10% butanol had improved the fuel cetane number however the ethanol blends react differently. In term of engine performance, as the engine speed increased, BP output also increase respectively. Hence, the alcohol blends fuel generates lower BP compared to diesel, plus BSFC for all test fuel shows decreasing trend at low and medium speed, however increased gradually at higher engine

  3. Combined effect of nanoemulsion and EGR on combustion and emission characteristics of neat lemongrass oil (LGO)-DEE-diesel blend fuelled diesel engine

    International Nuclear Information System (INIS)

    Sathiyamoorthi, R.; Sankaranarayanan, G.; Pitchandi, K.

    2017-01-01

    Highlights: • Neat lemongrass oil can be used as an alternate fuel in diesel engine. • The combined effect of nano emulsion and EGR using LGO25-DEE-Diesel is investigated. • The BTE is improved for nano emulsion fuel blend. • The NO_x and smoke emissions decrease significantly. • Cylinder pressure and Heat release rate increase with longer ignition delay. - Abstract: In the present experimental study, the combined effects of nanoemulsion and exhaust gas recirculation (EGR) on the performance, combustion and emission characteristics of a single cylinder, four stroke, variable compression ratio diesel engine fueled with neat lemongrass oil (LGO)-diesel-DEE (diethyl ether) blend are investigated. The Neat Lemongrass oil could be used as a new alternate fuel in compression ignition engines without any engine modifications. The entire investigation was conducted in the diesel engine using the following test fuels: emulsified LGO25, cerium oxide blended emulsified LGO25 and DEE added emulsified LGO25 with EGR respectively and compared with standard diesel and LGO25 (75% by volume of diesel and 25% by volume of lemongrass oil) fuels. The combined effect of DEE added nano-emulsified LGO25 with EGR yielded a significant reduction in NO_x and smoke emission by 30.72% and 11.2% respectively compared to LGO25. Furthermore, the HC and CO emissions were reduced by 18.18% and 33.31% respectively than with LGO25. The brake thermal efficiency and brake specific fuel consumption increased by 2.4% and 10.8% respectively than LGO25. The combustion characteristics such as cylinder pressure and heat release rate increased by 4.46% and 3.29% respectively than with LGO25. The combustion duration and ignition delay increase at nano-emulsified LGO25 with DEE and EGR mode but decrease for nano-emulsified LGO25 fuel.

  4. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation

    KAUST Repository

    Hong, Seunghyuck; Speth, Raymond L.; Shanbhogue, Santosh J.; Ghoniem, Ahmed F.

    2013-01-01

    In this paper, we experimentally investigate the combustion dynamics in lean premixed flames in a laboratory scale backward-facing step combustor in which flame-vortex driven dynamics are observed. A series of tests was conducted using propane/hydrogen/air mixtures for various mixture compositions at the inlet temperature ranging from 300K to 500K and at atmospheric pressure. Pressure measurements and high speed particle image velocimetry (PIV) are used to generate pressure response curves and phase-averaged vorticity and streamlines as well as the instantaneous flame front, respectively, which describe unsteady flame and flow dynamics in each operating regime. This work was motivated in part by our earlier study where we showed that the strained flame consumption speed Sc can be used to collapse the pressure response curves over a wide range of operating conditions. In previous studies, the stretch rate at which Sc was computed was determined by trial and error. In this study, flame stretch is estimated using the instantaneous flame front and velocity field from the PIV measurement. Independently, we also use computed strained flame speed and the experimental data to determine the characteristic values of stretch rate near the mode transition points at which the flame configuration changes. We show that a common value of the characteristic stretch rate exists across all the flame configurations. The consumption speed computed at the characteristic stretch rate captures the impact of different operating parameters on the combustor dynamics. These results suggest that the unsteady interactions between the turbulent flow and the flame dynamics can be encapsulated in the characteristic stretch rate, which governs the critical flame speed at the mode transitions and thereby plays an important role in determining the stability characteristics of the combustor. © 2013 The Combustion Institute.

  5. Examining flow-flame interaction and the characteristic stretch rate in vortex-driven combustion dynamics using PIV and numerical simulation

    KAUST Repository

    Hong, Seunghyuck

    2013-08-01

    In this paper, we experimentally investigate the combustion dynamics in lean premixed flames in a laboratory scale backward-facing step combustor in which flame-vortex driven dynamics are observed. A series of tests was conducted using propane/hydrogen/air mixtures for various mixture compositions at the inlet temperature ranging from 300K to 500K and at atmospheric pressure. Pressure measurements and high speed particle image velocimetry (PIV) are used to generate pressure response curves and phase-averaged vorticity and streamlines as well as the instantaneous flame front, respectively, which describe unsteady flame and flow dynamics in each operating regime. This work was motivated in part by our earlier study where we showed that the strained flame consumption speed Sc can be used to collapse the pressure response curves over a wide range of operating conditions. In previous studies, the stretch rate at which Sc was computed was determined by trial and error. In this study, flame stretch is estimated using the instantaneous flame front and velocity field from the PIV measurement. Independently, we also use computed strained flame speed and the experimental data to determine the characteristic values of stretch rate near the mode transition points at which the flame configuration changes. We show that a common value of the characteristic stretch rate exists across all the flame configurations. The consumption speed computed at the characteristic stretch rate captures the impact of different operating parameters on the combustor dynamics. These results suggest that the unsteady interactions between the turbulent flow and the flame dynamics can be encapsulated in the characteristic stretch rate, which governs the critical flame speed at the mode transitions and thereby plays an important role in determining the stability characteristics of the combustor. © 2013 The Combustion Institute.

  6. Combustion characteristics of a charcoal slurry in a direct injection diesel engine and the impact on the injection system performance

    International Nuclear Information System (INIS)

    Soloiu, Valentin; Lewis, Jeffery; Yoshihara, Yoshinobu; Nishiwaki, Kazuie

    2011-01-01

    The paper presents the research results pertaining to the renewable biomass charcoal-diesel slurries and their use as alternative fuels for combustion in diesel generating plants. The utilization of charcoal slurry fuel aims to reduce diesel oil consumption and would decrease fossil green house emissions into the atmosphere. The paper investigates the formulation, emulsification, sprays, combustion, injection system operation, and subsequent wear with charcoal-diesel slurries. In the research, cedar wood chips were used for the production of charcoal to be emulsified with diesel oil. The slurry's viscosity of 27 cP achieved the target ( o C. Charcoal slurry displayed a high vaporization rate of 75% by wt. at 300 o C. Engine investigations showed that the top combustion pressure at 1200 rpm and 100% load (7.8 brake mean effective pressure (bmep)) was 79 bar for diesel fuel and 78 bar for the charcoal slurry fuel. From the injection and heat release history was found an ignition delay of 1.7 ms for diesel that increased to 2.1 ms for the slurry fuel. A higher net heat release for charcoal slurry was observed, up to 180 J/crank angle degrees (CAD) compared with the diesel at 145 J/CAD The maximum combustion temperature reached 2300 K for diesel and 2330 K for slurry. The heat fluxes for both fuels have similar values and trends during the entire cycle showing the good compatibility of charcoal slurry with a diesel type combustion and low soot radiation. The exhaust temperatures were about 40-50 o C higher for charcoal slurry at 19 o before top dead center (BTDC) injection timing. The engine's bsfc increased as expected due to the lower heating value of the slurry fuel. The smoke Bosch no. was lower for the slurry fuel at any load, and is believed that the oxygen from the charcoal had a beneficial effect. The measured emissions of slurry fuel were better at 13 o BTDC than those of diesel fuel with the original engine settings and the remaining 6-10% oxygen content in

  7. The effects of different intake charge diluents on the combustion and emission characteristics of a spark ignition natural gas engine

    International Nuclear Information System (INIS)

    He, Zhuoyao; Jing, Qijian; Zhu, Lei; Zhang, Wugao; Huang, Zhen

    2015-01-01

    Exhaust gas recirculation (EGR) is the most common method to control NO_x emission of internal combustion engine. The major components of EGR are CO_2 and N_2, which have different influences on engine combustion and pollutants formation through thermal, dilution and chemical effects. The main objective of this work is to investigate the different influences of CO_2 and N_2 on engine combustion and emission on a four-cylinder, turbo charged, spark ignition natural gas engine with electronically control unit, simultaneously to separate the thermal effect with the comparison with Ar. It was found that the peak in-cylinder pressure and heat release rate both decreased along with the increase of intake dilution extent regardless of the diluent's type. For each diluent gas, NO_x emission decreases while HC emission increases with the increased dilution ratio. However, CO emission firstly decreased and then increased. Results also revealed that NO_x and CO emission could be simultaneously reduced by intake charge dilution at a little sacrifice of HC emission. The effects of three diluents are different compared with each other. Among these three diluents, it can be found that CO_2 is the most effective on reducing NO_x and CO emission followed by N_2. However, both CO_2 and N_2 dilution deteriorates the thermal efficiency while Ar dilution improved it. Besides, when NO_x emission was reduced to the same level, the thermal efficiency is the highest and CO emission is the lowest for Ar dilution. - Highlights: • CO_2 is the most effective on reducing NO_x and CO emission followed by N_2 and then Ar. • NO_x and CO emission could be simultaneously reduced by intake charge dilution regardless of the diluents when appropriate dilution extent is chosen. • Both CO_2 and N_2 dilution worsen while Ar dilution improves thermal efficiency. • Thermal effect is a dominant factor for reducing NO_x emission.

  8. Analysis of a combustion, performance and emission characteristics of a CNG-B20 fuelled diesel engine under dual fuel mode

    Directory of Open Access Journals (Sweden)

    Pankaj S. Shelke

    2016-09-01

    Full Text Available The Carbon dioxide (CO2 is one of the primary greenhouse gases emitted by various human activities. CO2 is naturally present in the atmosphere as part of carbon cycle. Human activities are altering the carbon cycle by adding or removing CO2 to the atmosphere. The main human activity that emits the CO2 is combustion of fossil fuels for energy and transportation. Compression ignition (CI engines emit high amount of CO2 emission as it is the end product of complete combustion of hydro carbon fuels. Moreover, they emit higher NOx (nitrogen oxides and PM (particulate matter emissions and have higher fuel consumption. In the present study, experimental investigations were carried out on a CI engine under dual fuel mode with biodiesel as a pilot fuel and compressed natural gas (CNG as a main fuel. The effects of 10 % and 20 % CNG energy shares on performance and emission characteristics of the engine at rated (100% loads were studied. Experimental results indicate the beneficial of CNG addition on improvement in the engine efficiency, and reduction in NOx and CO2 emissions. The NOx and CO2 emissions decreased by 14.24 % and 30 % respectively at the rated load with biodiesel + CNG (20 % energy share as compared to base diesel. No knocking combustion was observed during the tests which confirm the smooth operation. The dual fuel operation with combination of CNG-biodiesel is an effective method to reduce NOx and CO2 emissions with an additional benefit of lower specific energy consumption.

  9. Numerical investigation on the combined effects of varying piston bowl geometries and ramp injection rate-shapes on the combustion characteristics of a kerosene-diesel fueled direct injection compression ignition engine

    International Nuclear Information System (INIS)

    Tay, Kun Lin; Yang, Wenming; Zhao, Feiyang; Yu, Wenbin; Mohan, Balaji

    2017-01-01

    Highlights: • Effect of injection rate-shaping on heat-release is significant with less turbulence. • Two peak heat-releases are seen for the shallow-depth re-entrant piston. • Significant combustion phasing occurs with kerosene usage and high turbulence. - Abstract: In this work, the combustion characteristics of a direct injection compression ignition (DICI) engine fueled with kerosene-diesel blends, using different piston bowl geometries together with varying injection rate-shapes were investigated. A total of three combustion bowl geometries, namely the omega combustion chamber (OCC), the shallow-depth combustion chamber (SCC) and the shallow-depth re-entrant combustion chamber (SRCC), were used together with six different ramp injection rate-shapes and pure diesel, kerosene-diesel and pure kerosene fuels. It is seen that the SRCC geometry, which has the shortest throat length, gives the highest turbulence kinetic energy (TKE) and this resulted in two peak heat-releases, with a primary peak heat-release during the premixed combustion phase and a secondary peak heat-release during the mixing-controlled combustion phase. In addition, the SCC geometry gives rather distinct premixed combustion and mixing-controlled combustion phases due to the fact that combustion is predominantly controlled by the injected fuel spray itself because of less turbulence. Also, when kerosene is used in place of diesel, the heat-release during the premixed combustion phase increases and diminishes during the mixing-controlled and late combustion phases. It is interesting to note that the effect of injection rate-shaping on the heat-release rate is more obvious for bowl geometries that generate less TKE. Moreover, bowl geometries that generate higher TKEs as well as fuels with lower viscosities generally give lower carbon monoxide (CO) emissions and higher nitrogen oxide (NO) emissions. More importantly, it is possible to achieve low NO and CO emissions simultaneously by using the

  10. Experimental Study on Effects of Particle Shape and Operating Conditions on Combustion Characteristics of Single Biomass Particles

    DEFF Research Database (Denmark)

    Momeni, M.; Yin, Chungen; Kær, Søren Knudsen

    2013-01-01

    An experimental study is performed to investigate the ignition, devolatilization, and burnout of single biomass particles of various shapes and sizes under process conditions that are similar to those in an industrial combustor. A chargecoupled device (CCD) camera is used to record the whole...... combustion process. For the particles with similar volume (mass), cylindrical particles are found to lose mass faster than spherical particles and the burnout time is shortened by increasing the particle aspect ratio (surface area). The conversion times of cylindrical particles with almost the same surface...... area/volume ratio are very close to each other. The ignition, devolatilization, and burnout times of cylindrical particles are also affected by the oxidizer temperature and oxygen concentration, in which the oxygen concentration is found to have a more pronounced effect on the conversion times at lower...

  11. Characteristics of combustion flame sprayed nickel aluminum using a Coanda Assisted Spray Manipulation collar for off-normal deposits

    Science.gov (United States)

    Archibald, Reid S.

    A novel flame spray collar called the Coanda Assisted Spray Manipulation collar (CSM) has been tested for use on the Sulzer Metco 5P II combustion flame spray gun. A comparison study of the stock nozzle and the CSM has been performed by evaluating the porosity, surface roughness, microhardness, tensile strength and microscopy of normal and off-normal sprayed NiAl deposits. The use of the CSM collar resulted in the need to position the sprayed coupons closer to the gun, which in turn affected the particle impact energy and particle temperatures of the NiAl powder. For the CSM, porosities had a larger scatterband, surface roughness was comparably the same, microhardness was lower, and tensile strength was higher. The microscopy analysis revealed a greater presence of unmelted particles and steeper intersplat boundaries for the CSM. For both processes, the porosity and surface roughness increased and the microhardness decreased as the spray angle decreased.

  12. Influence of the overfire air ratio on the NO(x) emission and combustion characteristics of a down-fired 300-MW(e) utility boiler.

    Science.gov (United States)

    Ren, Feng; Li, Zhengqi; Chen, Zhichao; Fan, Subo; Liu, Guangkui

    2010-08-15

    Down-fired boilers used to burn low-volatile coals have high NO(x) emissions. To find a way of solving this problem, an overfire air (OFA) system was introduced on a 300 MW(e) down-fired boiler. Full-scale experiments were performed on this retrofitted boiler to explore the influence of the OFA ratio (the mass flux ratio of OFA to the total combustion air) on the combustion and NO(x) emission characteristics in the furnace. Measurements were taken of gas temperature distributions along the primary air and coal mixture flows, average gas temperatures along the furnace height, concentrations of gases such as O(2), CO, and NO(x) in the near-wall region and carbon content in the fly ash. Data were compared for five different OFA ratios. The results show that as the OFA ratio increases from 12% to 35%, the NO(x) emission decreases from 1308 to 966 mg/Nm(3) (at 6% O(2) dry) and the carbon content in the fly ash increases from 6.53% to 15.86%. Considering both the environmental and economic effect, 25% was chosen as the optimized OFA ratio.

  13. Morphology and luminescence characteristics of combustion synthesized Y{sub 2}O{sub 3}: (Eu, Dy, Tb) nanoparticles with various amino-acid fuels

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, S.; Sudarsan, V. [Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Sastry, P.U.; Patra, A.K. [Solid State Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Tyagi, A.K., E-mail: aktyagi@barc.gov.in [Chemistry Division Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2014-01-15

    Y{sub 2}O{sub 3} nanoparticles doped with Dy{sup 3+}, Eu{sup 3+} and Tb{sup 3+} together were prepared by the gel combustion method using a variety of amino acids namely, glycine, phenyl alanine, arginine, glutamic and aspartic acids. Number of carboxylate groups present in the amino acids used for combustion reaction was found to have strong influence on powder characteristics as well as luminescence from the samples. Based on small angle X-ray scattering studies, it is inferred that the nanoparticles prepared by using glycine and arginine as the fuels have smooth surface compared to those prepared using other amino acids. For the nanoparticles prepared using glutamic and aspartic acids, there exist a diffused pore-grain interface due to the lesser extent of heat generated in the reaction which leads to smaller particle size, poor crystallinity and improper burning of the organic materials. Lower surface area and smooth surface of the nanoparticles prepared using glycine leads to their improved luminescence properties. -- Highlights: • Surface smoothness of Y{sub 2}O{sub 3} (Dy, Eu, Tb) nanoparticles vary with amino acids. • Optimum luminescence intensity is observed when glycine is used as the fuel. • Diffused pore grain interface when glutamic and aspartic acids are used as fuels.

  14. Combustion Characteristics Analysis of the Alcohol and Diesel Blends%醇类与柴油混合燃料的燃烧特性分析

    Institute of Scientific and Technical Information of China (English)

    周楠; 吴晗

    2018-01-01

    针对多种醇类与柴油混合物的燃烧特性进行了研究,选取的实验装置为顶部拥有可视观察窗的定容燃烧室.通过可燃混合气体预燃,模拟柴油发动机的高温高压环境,采用高速相机(幻影V7.1)记录醇类和柴油混合物的燃烧过程,进而分析其燃烧特性.实验结果表明,在较低的实验温度下,所选取的混合燃料能够达到无焰燃烧,产生的烟灰发光极低,可降低辐射热损失以及射流引起的壁面热损失.醇类混合燃料的高汽化潜热,有助于降低绝热火焰温度和氮氧化物的生成量.表征多醇柴油混合物是一种非常适合直接添加到柴油发动机中的替代燃料.%The combustion characteristics of the alcohol ( acetone -butanol -ethanol, ABE) and diesel fuel mixture was studied in the constant volume chamber with a window on the top. A premixed gas mixture containing C2 H2 , N2 , and air was burned in the constant volume chamber to generate a high temperature and high pressure environment that simulated the typical diesel engine in-cylinder top dead centre ( TDC) condition. The combustion process was recorded through the top window using a high speed camera (Phantom V7. 1) located above the chamber. The results and discussions were based on the data above. It is found that at low ambient temperature and low ambient oxygen, the mixture presented extremely low soot luminosity with better combustion efficiency comparing to pure diesel. The high latent heat of vaporization of the alcohol blends contributes to the reduction of the adiabatic flame temperature and the amount of nitrogen oxides suggesting that ABE solution, an intermediate product during ABE fermentation, is a very promising alternative fuel to be directly used in diesel engines especially under low temperature combustion ( LTC) conditions.

  15. Combustion engineering

    CERN Document Server

    Ragland, Kenneth W

    2011-01-01

    Introduction to Combustion Engineering The Nature of Combustion Combustion Emissions Global Climate Change Sustainability World Energy Production Structure of the Book   Section I: Basic Concepts Fuels Gaseous Fuels Liquid Fuels Solid Fuels Problems Thermodynamics of Combustion Review of First Law Concepts Properties of Mixtures Combustion StoichiometryChemical EnergyChemical EquilibriumAdiabatic Flame TemperatureChemical Kinetics of CombustionElementary ReactionsChain ReactionsGlobal ReactionsNitric Oxide KineticsReactions at a Solid SurfaceProblemsReferences  Section II: Combustion of Gaseous and Vaporized FuelsFlamesLaminar Premixed FlamesLaminar Flame TheoryTurbulent Premixed FlamesExplosion LimitsDiffusion FlamesGas-Fired Furnaces and BoilersEnergy Balance and EfficiencyFuel SubstitutionResidential Gas BurnersIndustrial Gas BurnersUtility Gas BurnersLow Swirl Gas BurnersPremixed-Charge Engine CombustionIntroduction to the Spark Ignition EngineEngine EfficiencyOne-Zone Model of Combustion in a Piston-...

  16. Structure and combustion characteristics of turbulent, pre-mixed high-pressure flames; Projekt 'Struktur und Brenneigenschaften von turbulenten, vorgemischten Hochdruckflammen'

    Energy Technology Data Exchange (ETDEWEB)

    Griebel, P.; Boschek, E.; Erne, D.; Siewert, P.

    2005-12-15

    This illustrated annual report for 2005 for the Swiss Federal Office of Energy (SFOE) reports on the work done in 2005 at the Paul Scherrer Institute (PSI) on the structure and combustion characteristics of turbulent, pre-mixed high-pressure flames. The aims of the project are described in detail, which include, among other things, the completion of previous work, the validation of simulations and the influence of turbulence on the flame front. Work done on the project in 2005 is described and commented on. Experimental installations are described and the results obtained are presented. Also, the influence of adding hydrogen to the methane fuel is commented on. National and international co-operation is reviewed and future work to be carried out is noted.

  17. Investigating the pros and cons of browns gas and varying EGR on combustion, performance, and emission characteristics of diesel engine.

    Science.gov (United States)

    Thangaraj, Suja; Govindan, Nagarajan

    2018-01-01

    The significance of mileage to the fruitful operation of a trucking organization cannot be downplayed. Fuel is one of the biggest variable expenses in a trucking wander. An attempt is made in this research to improve the combustion efficiency of a diesel engine for better fuel economy by introducing hydroxy gas which is also called browns gas or HHO gas in the suction line, without compromising performance and emission. Brown's gas facilitates the air-fuel mixture to ignite faster and efficient combustion. By considering safety and handling issues in automobiles, HHO gas generation by electrolysis of water in the presence of sodium bicarbonate electrolytes (NaHCO 3 ) and usage was explored in this research work over compressed pure hydrogen, due to generation and capacity of immaculate hydrogen as of now confines the application in diesel engine operation. Brown's gas was utilized as a supplementary fuel in a single-cylinder, four-stroke compression ignition (CI) engine. Experiments were carried out on a constant speed engine at 1500 rpm, result shows at constant HHO flow rate of 0.73 liter per minute (LPM), brake specific fuel consumption (BSFC) decreases by 7% at idle load to 16% at full load, and increases brake thermal efficiency (BTE) by 8.9% at minimum load to 19.7% at full load. In the dual fuel (diesel +HHO) operation, CO emissions decreases by 19.4, 64.3, and 34.6% at 25, 50, and 75% load, respectively, and unburned hydrocarbon (UHC) emissions decreased by 11.3% at minimum load to 33.5% at maximum load at the expense of NO x emission increases by 1.79% at 75% load and 1.76% at full load than neat diesel operation. The negative impact of an increase in NO x is reduced by adding EGR. It was evidenced in this experimental work that the use of Brown's gas with EGR in the dual fuel mode in a diesel engine improves the fuel efficiency, performance, and reduces the exhaust emissions.

  18. Study on combustion characteristics of dimethyl ether under the moderate or intense low-oxygen dilution condition

    International Nuclear Information System (INIS)

    Kang, Yinhu; Lu, Tianfeng; Lu, Xiaofeng; Wang, Quanhai; Huang, Xiaomei; Peng, Shini; Yang, Dong; Ji, Xuanyu; Song, Yangfan

    2016-01-01

    Highlights: • Oxygen content in the flame base increased due to the prolonged ignition delay time. • Flow field in the furnace affected thermal/chemical structure of the flame partially. • Preheating and dilution facilitated moderate or intense low-oxygen dilution regime. • Dominant pollutant formation ways of dimethyl ether in hot dilution were clarified. • Preheating and dilution reduced nitrogen oxide emission of dimethyl ether. - Abstract: Experiments and numerical simulations were conducted in this paper to study the combustion behavior of dimethyl ether in the moderate or intense low-oxygen dilution regime, in terms of thermal/chemical structure and chemical kinetics associated with nitrogen oxide and carbon monoxide emissions. Several co-flow temperatures and oxygen concentrations were involved in the experiments to investigate their impacts on the flame behavior systematically. The results show that in the moderate or intense low-oxygen dilution regime, oxygen concentrations in the flame base slightly increased because of the prolonged ignition delay time of the reactant mixture due to oxidizer dilution, which changed the local combustion process and composition considerably. The oxidation rates of hydrocarbons were significantly depressed in the moderate or intense low-oxygen dilution regime, such that a fraction of unburned hydrocarbons at the furnace outlet were recirculated into the outer annulus of the furnace, which changed the local radial profiles of carbon monoxide, methane, and hydrogen partially. Moreover, with the increment in co-flow temperature or oxygen mole fraction, flame temperature, and hydroxyl radical, carbon monoxide, and hydrogen mole fractions across the reaction zone increased gradually. For the dimethyl ether-moderate or intense low-oxygen dilution flame, temperature homogeneity was improved at higher co-flow temperature or lower oxygen mole fraction. The carbon monoxide emission depended on the levels of temperature and

  19. Experimental studies on the combustion and emission characteristics of a diesel engine fuelled with used cooking oil methyl ester and its diesel blends

    Energy Technology Data Exchange (ETDEWEB)

    Lakshmi Narayana Rao, G.; Sampath, S. [Sri Venkateswara College of Engineering, Sriperumbudur (India); Rajagopal, K. [Jawaharlal Nehru Technological Univ., Hyderabad (India)

    2008-04-01

    Transesterified vegetable oils (biodiesel) are promising alternative fuel for diesel engines. Used vegetable oils are disposed from restaurants in large quantities. But higher viscosity restricts their direct use in diesel engines. In this study, used cooking oil was dehydrated and then transesterified using an alkaline catalyst. The combustion, performance and emission characteristics of Used Cooking oil Methyl Ester (UCME) and its blends with diesel oil are analyzed in a direct injection C.I. engine. The fuel properties and the combustion characteristics of UCME are found to be similar to those of diesel. A minor decrease in thermal efficiency with significant improvement in reduction of particulates, carbon monoxide and unburnt hydrocarbons is observed compared to diesel. The use of transesterified used cooking oil and its blends as fuel for diesel engines will reduce dependence on fossil fuels and also decrease considerably the environmental pollution. Of the various alternate fuels under consideration, biodiesel is the most promising due to the following reasons: (1) Biodiesel can be used in the existing engine without any modifications. (2) Biodiesel is made entirely from vegetable sources; it does not contain any sulfur, aromatic hydrocarbons, metals or crude oil residues. (3) Biodiesel is an oxygenated fuel; emissions of carbon monoxide and soot tend to reduce. (4) Unlike fossil fuels, the use of biodiesel does not contribute to global warming as CO{sub 2} emitted is once again absorbed by the plants grown for vegetable oil/biodiesel production. Thus CO{sub 2} balance is maintained. (5) The Occupational Safety and Health Administration classifies biodiesel as a non-flammable liquid. (6) The use of biodiesel can extend the life of diesel engines because it is more lubricating than petroleum diesel fuel. (7) Biodiesel is produced from renewable vegetable oils/animal fats and hence improves the fuel or energy security and economy independence.

  20. Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives

    International Nuclear Information System (INIS)

    El-Seesy, Ahmed I.; Abdel-Rahman, Ali K.; Bady, Mahmoud; Ookawara, S.

    2017-01-01

    Highlights: • Considerable improvements in the combustion of JB20D50MWCNTs compared to pure JB20D. • p_m_a_x, dp/dθ_m_a_x and dQg/dθ_m_a_x increased by 7%, 4% and 4%, respectively. • Brake specific fuel consumption decreased by 15%. • NO_x, CO, and UHC reduced by 35%, 50%, and 60%, respectively. • Significant enhancement in all engine performance was achieved at a concentration of 40 mg/l. - Abstract: In this work, the effects of adding Multi-Walled Carbon nanotubes (MWCNTs) to Jojoba methyl ester-diesel blended fuel (JB20D) on performance, combustion and emissions characteristics of a compression-ignition engine were experimentally investigated. The JB20D with 10, 20, 30, 40 and 50 mg/l of MWCNTs were examined at different engine loads and speeds. Compared to pure diesel, the use of JB20D without MWCNTs caused a slight decrease in the engine performance and an increase in the engine emissions at most examined conditions. The MWCNTs–B20D blended fuel attained a maximum increase of 16% in the brake thermal efficiency and a decrease of 15% in the brake specific fuel consumption at the dose level of 50 mg/l compared to JB20D. The MWCNTs-JB20D blended fuel also brought about an enhancement in combustion characteristics where the peak cylinder pressure, the maximum rate of pressure rise and the peak heat release rate were increased by 7%, 4%, and 4%, respectively, at the same dose level. According to the measured emissions, a significant reduction of engine emissions was achieved at the dose level of 20 mg/l, where NO_x, CO, and UHC were reduced by 35%, 50%, and 60%, respectively. According to the obtained results, the recommended concentration of MWCNTs in JB20D was concluded to be 40 mg/l, which could give significant improvements in overall the parameters of engine performance and emissions with a good balance between them.

  1. Combustion and emission characteristics of a dual fuel engine operated with mahua oil and liquefied petroleum gas

    Directory of Open Access Journals (Sweden)

    Nadar Kapilan N.

    2008-01-01

    Full Text Available For the present work, a single cylinder diesel engine was modified to work in dual fuel mode. To study the feasibility of using methyl ester of mahua oil as pilot fuel, it was used as pilot fuel and liquefied petroleum gas was used as primary fuel. In dual fuel mode, pilot fuel quantity and injector opening pressure are the few variables, which affect the performance and emission of dual fuel engine. Hence, in the present work, pilot fuel quantity and injector opening pressure were varied. From the test results, it was observed that the pilot fuel quantity of 5 mg per cycle and injector opening pressure of 200 bar results in higher brake thermal efficiency. Also the exhaust emissions such as smoke, unburnt hydrocarbon and carbon monoxide are lower than other pressures and pilot fuel quantities. The higher injection pressure and proper pilot fuel quantity might have resulted in better atomization, penetration of methyl ester of mahua oil and better combustion of fuel.

  2. A Study on Performance, Combustion and Emission Characteristics of Compression Ignition Engine Using Fish Oil Biodiesel Blends

    Science.gov (United States)

    Ramesha, D. K.; Thimmannachar, Rajiv K.; Simhasan, R.; Nagappa, Manjunath; Gowda, P. M.

    2012-07-01

    Bio-fuel is a clean burning fuel made from natural renewable energy resource; it operates in C. I. engine similar to the petroleum diesel. The rising cost of diesel and the danger caused to the environment has led to an intensive and desperate search for alternative fuels. Among them, animal fats like the fish oil have proven to be a promising substitute to diesel. In this experimental study, A computerized 4-stroke, single cylinder, constant speed, direct injection diesel engine was operated on fish oil-biodiesel of different blends. Three different blends of 10, 20, and 30 % by volume were used for this study. Various engine performance, combustion and emission parameters such as Brake Thermal Efficiency, Brake Specific Fuel Consumption, Heat Release Rate, Peak Pressure, Exhaust Gas Temperature, etc. were recorded from the acquired data. The data was recorded with the help of an engine analysis software. The recorded parameters were studied for varying loads and their corresponding graphs have been plotted for comparison purposes. Petroleum Diesel has been used as the reference. From the properties and engine test results it has been established that fish oil biodiesel is a better replacement for diesel without any engine modification.

  3. Combustion and exhaust emission characteristics of a compression ignition engine using liquefied petroleum gas-Diesel blended fuel

    International Nuclear Information System (INIS)

    Qi, D.H.; Bian, Y.ZH.; Ma, ZH.Y.; Zhang, CH.H.; Liu, SH.Q.

    2007-01-01

    Towards the effort of reducing pollutant emissions, especially smoke and nitrogen oxides, from direct injection (DI) Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. The use of liquefied petroleum gas (LPG) as an alternative fuel is a promising solution. The potential benefits of using LPG in Diesel engines are both economical and environmental. The high auto-ignition temperature of LPG is a serious advantage since the compression ratio of conventional Diesel engines can be maintained. The present contribution describes an experimental investigation conducted on a single cylinder DI Diesel engine, which has been properly modified to operate under LPG-Diesel blended fuel conditions, using LPG-Diesel blended fuels with various blended rates (0%, 10%, 20%, 30%, 40%). Comparative results are given for various engine speeds and loads for conventional Diesel and blended fuels, revealing the effect of blended fuel combustion on engine performance and exhaust emissions

  4. The individual effects of cetane number, oxygen content or fuel properties on the ignition delay, combustion characteristics, and cyclic variation of a turbocharged CRDI diesel engine – Part 1

    International Nuclear Information System (INIS)

    Labeckas, Gvidonas; Slavinskas, Stasys; Kanapkienė, Irena

    2017-01-01

    Highlights: • Diesel-HRD fuel blends involving ethanol (E) or biodiesel (B) were investigated in a turbocharged CRDI engine. • Improved cetane number of fuel blends ambiguously affected the ignition delay and maximum heat release rate. • Increased fuel-bound oxygen content enhanced combustion, heat release and in-cylinder pressure at 2500 rpm. • Fuel properties almost did not change premixed phase, but affected burn angle MBF 50 and the end of combustion. • Burn angles MBF 50 and MBF 90 were 1.0° and 5.7° CADs shorter when using oxygenated blend OE4 (3.6 wt%) at 2000 rpm. - Abstract: The study deals with the effects made by individual variation of cetane number, fuel-oxygen content, or widely differing properties of diesel-HRD fuel blends involving ethanol (E) or biodiesel (B) on the ignition delay, combustion phenomenon, maximum heat release rate, and the cyclic variation of a turbocharged CRDI diesel engine. The most important control factors one after another operated separately in this study to make a difference. Load characteristics were taken when running with a straight diesel and various (18) diesel-HRD fuel blends at maximum torque mode of 2000 rpm and speeds of 1500 and 2500 rpm to provide correct interpretation of the test results. Then, load (bmep) characteristics were plotted as a function of the relative air-fuel ratio (λ) and the analysis of combustion parameters was conducted for the ‘lambda’ values of λ = 1.30, 1.25 and 1.20, at the respective speeds of 1500, 2000 and 2500 rpm. Analysis of changes in the ignition delay, combustion characteristics, and the cyclic variation of parameters when using fuel blends of both origins was performed on comparative bases with the corresponding values measured with ‘base-line’ blends with CN = 51.2 or zero oxygen content and a straight diesel to reveal the potential developing trends. The enhanced cetane number of oxygenated fuels improved combustion and reduced cyclic variation when

  5. Effect of torrefaction pre-treatment on physical and combustion characteristics of biomass composite briquette from rice husk and banana residue

    Directory of Open Access Journals (Sweden)

    Amira Atan Nor

    2018-01-01

    Full Text Available Biomass is an alternative renewable energy sources that can generates energy almost same as fossil fuel. The depletion sources of fossil fuel had increase the potential use of biomass energy. In Malaysia, rice husk and banana residues are abundantly left and not treated with proper disposal method which later may contribute to environment and health problems. Thus the development of biomass composite briquette made from rice husk and banana residue is one of the potential ways to reduce the problems and hence may contribute the better way to treat the waste by recycling the waste into a form of biomass product. The biomass briquettes are used for thermal applications because it can produce a complete combustion as it has a consistent quality and high burning efficiency. However, the quality of the biomass briquette can be added by application of torrefaction pre-treatment method. Torrefaction is a thermal method that can produce more high quality of the briquette with high calorific value, high fixed carbon content, low volatile matter, and low ash content. This study was conducted to assess the physical and combustion characteristic of the biomass briquette from rice husk and banana residue which was produced through torrefaction process. The biomass briquette, were densified by using hot press machine with temperature of 180°C for about 30 minutes. The briquette produce are 150 μm in particle size with varies in mixing ratio of rice husk to banana residue which are 100:0, 80:20 and 60:40. After the briquetting process, the biomass fuel briquettes have been undergoes parameter testing and the data have been analysed. Result showed the best biomass briquette is developed from torrefied rice husk and banana residue mixed at ratio of 60:40. Moreover, SEM image reveal that torrefaction pre-treatment has shrinkage the fibres size which confirming the thermal stability of the briquette.

  6. Effects of Port Shape on Steady Flow Characteristics in an SI Engine with Semi-Wedge Combustion Chamber (2) - Velocity Distribution (2)

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Inkyoung; Ohm, Inyong [Seoul Nat’l Univ. of Science and Technology, Seoul (Korea, Republic of)

    2017-02-15

    This study is the second investigation on the steady flow characteristics of an SI engine with a semi-edge combustion chamber as a function of the port shape with varying evaluation positions. For this purpose, the planar velocity profiles were measured from 1.75B, 1.75 times of bore position apart from the bottom of head, to 6.00B positions using particle – image velocimetry. The flow patterns were examined with both a straight and a helical port. The velocity profiles, streamlines, and centers of swirl were almost the same at the same valve lift regardless of the measuring position, which is quite different from the case of the pent-roof combustion chamber. All the eccentricity values of the straight port were out of distortion criterion 0.15 through the lifts and the position. However, the values of the helical port exceeded the distortion criterion by up to 4 mm lift, but decreased rapidly above the 3.00B position and the 5 mm lift. There always existed a relative offset effect in the evaluation of the swirl coefficient using the PIV method due to the difference of the ideal impulse swirl meter velocity profile assumption, except for the cylinder-center-base estimation that was below 4 mm of the straight port. Finally, it was concluded that taking the center as an evaluation basis and the assumption about the axial velocity profile did not have any qualitative effect on swirl evaluation, but affected the value owing to the detailed profile.

  7. Effects of Injection Timing on Fluid Flow Characteristics of Partially Premixed Combustion Based on High-Speed Particle Image Velocimetry

    KAUST Repository

    Izadi Najafabadi, Mohammad; Tanov, Slavey; Wang, Hua; Somers, Bart; Johansson, Bengt; Dam, Nico

    2017-01-01

    behavior. The scope of the present study is to investigate the fluid flow characteristics of PPC at different injection timings. To this end, high-speed Particle Image Velocimetry (PIV) is implemented in a light-duty optical engine to measure fluid flow

  8. Study of fuel spray characteristics for premixed lean diesel combustion; Kihaku yokongo diesel kikan ni okeru nenryo funmu keisei ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, S.; Miyamoto, T.; Harada, A.; Akagawa, H.; Tsujimura, K. [New ACE Institute Co. Ltd., Tokyo (Japan)

    1998-05-01

    A study is being made on premixed lean diesel combustion (PREDIC) by means of early fuel injection in diesel engines. The PREDIC makes it possible to largely reduce NOx emission, but has such problems as ignition control and increase in THC and CO generation. In order to clarify the relationship between fuel spray characteristics in the PREDIC and properties of gas mixture and exhausts, the present study has investigated spread and internal structure of the spray by means of spray observation experiment using a pintle swirl nozzle. Based on the result therefrom, simulations were used to investigate effects of spatial dispersion characteristics of the spray on properties of the gas mixture and exhausts before ignition. The pintle swirl nozzle forms conical spray having an air layer inside the spray, where penetration is suppressed even under low atmospheric pressure. By forming hollow spray or solid spray in the conical spray, a possibility was indicated that equivalent ratio distribution of the gas mixture can be controlled and NO emission may be reduced. 8 refs., 12 figs., 1 tab.

  9. Investigation of the particle size distribution and particle density characteristics of Douglas fir hogged fuel fly ash collected under known combustion conditions. Technical Progress Report No. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lang, A.J.; Junge, D.C.

    1978-12-01

    The increased interest in wood as a fuel source, coupled with the increasing demand to control the emission generated by wood combustion, has created a need for information characterizing the emissions that occur for given combustion conditions. This investigation characterizes the carbon char and inorganic fly ash size and density distribution for each of thirty-eight Douglas fir bark samples collected under known conditions of combustion.

  10. Combustion physics

    Science.gov (United States)

    Jones, A. R.

    1985-11-01

    Over 90% of our energy comes from combustion. By the year 2000 the figure will still be 80%, even allowing for nuclear and alternative energy sources. There are many familiar examples of combustion use, both domestic and industrial. These range from the Bunsen burner to large flares, from small combustion chambers, such as those in car engines, to industrial furnaces for steel manufacture or the generation of megawatts of electricity. There are also fires and explosions. The bountiful energy release from combustion, however, brings its problems, prominent among which are diminishing fuel resources and pollution. Combustion science is directed towards finding ways of improving efficiency and reducing pollution. One may ask, since combustion is a chemical reaction, why physics is involved: the answer is in three parts. First, chemicals cannot react unless they come together. In most flames the fuel and air are initially separate. The chemical reaction in the gas phase is very fast compared with the rate of mixing. Thus, once the fuel and air are mixed the reaction can be considered to occur instantaneously and fluid mechanics limits the rate of burning. Secondly, thermodynamics and heat transfer determine the thermal properties of the combustion products. Heat transfer also plays a role by preheating the reactants and is essential to extracting useful work. Fluid mechanics is relevant if work is to be performed directly, as in a turbine. Finally, physical methods, including electric probes, acoustics, optics, spectroscopy and pyrometry, are used to examine flames. The article is concerned mainly with how physics is used to improve the efficiency of combustion.

  11. Combustion behaviour and deposition characteristics of Cynara Cardunculus/Greek lignite co-firing under various thermal shares in a thermal pilot-scale facility

    Energy Technology Data Exchange (ETDE