WorldWideScience

Sample records for hc-21c muffle furnace

  1. Engineering study on conveyor system for HC-21C project

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1995-01-01

    The sludge stabilization process thermally stabilizes reactive plutonium bearing materials in a muffle furnace. This process is used to prepare the material for long term storage in the vaults. The process is conducted in Room 230A and 230B. The furnaces are located in glovebox HC-21C. Glovebox HC-21A is used for preparation of the charge and packaging of the high fired oxide. The feed for the process is located throughout the PRF and RMC-line gloveboxes, with over half of the feedstock currently being located in HA-23S. For readiness assessment, the sludge stabilization process at PFP was reviewed by the ALARA team to see how the process could be improved. One suggestion was made that the conveyor system be used to transfer items from HA-23S to the process glovebox (HA-21A) instead of sealing items in and out of the gloveboxes. The following discussion describes and compares past and current methods. In addition, actions are addressed that would need to be completed before the conveyor method could be used. The transportation of the feedstock to the process and all the different influencing factors will be examined to determine the best method. This assessment is being performed considering only the current campaign for HC-21C. However, there is a possibility that in the future, additional furnaces will be installed and further campaigns done

  2. CSER 98-003: criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    1999-01-01

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21 A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into Glovebox HC-21A are limited to those with a hydrogen to fissile atom ratio (H/X) ≤ 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k eff = 0.95 (including uncertainties). Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle

  3. CSER 98-003: Criticality safety evaluation report for PFP glovebox HC-21A with button can opening

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    1999-01-01

    Glovebox HC-21A is an enclosure where cans containing plutonium metal buttons or other plutonium bearing materials are prepared for thermal stabilization in the muffle furnaces. The Inert Atmosphere Confinement (IAC), a new feature added to Glovebox HC-21A, allows the opening of containers suspected of containing hydrided plutonium metal. The argon atmosphere in the IAC prevents an adverse reaction between oxygen and the hydride. The hydride is then stabilized in a controlled manner to prevent glovebox over pressurization. After removal from the containers, the plutonium metal buttons or plutonium bearing materials will be placed into muffle furnace boats and then be sent to one of the muffle furnace gloveboxes for stabilization. The materials allowed to be brought into GloveboxHC-21 A are limited to those with a hydrogen to fissile atom ratio (H/X) ≤ 20. Glovebox HC-21A is classified as a DRY glovebox, meaning it has no internal liquid lines, and no free liquids or solutions are allowed to be introduced. The double contingency principle states that designs shall incorporate sufficient factors of safety to require at least two unlikely, independent, and concurrent changes in process conditions before a criticality accident is possible. This criticality safety evaluation report (CSER) shows that the operations to be performed in this glovebox are safe from a criticality standpoint. No single identified event that causes criticality controls to be lost exceeded the criticality safety limit of k eff = 0.95. Therefore, this CSER meets the requirements for a criticality analysis contained in the Hanford Site Nuclear Criticality Safety Manual, HNF-PRO-334, and meets the double contingency principle

  4. Plan for the Startup of HA-21I Furnace Operations at the Plutonium Finishing Plant (PFP)

    International Nuclear Information System (INIS)

    WILLIS, H.T.

    2000-01-01

    Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given. The Startup Plan provides a phased approach that bridges the activities between the completion of the Activity Based Startup Review authorizing the use of the three additional furnaces and the unrestricted operation of the five thermal stabilization muffle furnaces. The four phases are: (1) the initiation of five furnace operations using three empty (simulated full) boat charges from HA-211 and two full charges from HC-21C; (2) three furnace operations (one full charge from HA-211 and two full charges from HC-21C); (3) four furnace operations (two full charges from HA-211 and two full charges from HC-21C); and (4) integrated five furnace operations and unrestricted operations. Phase 1 of the Plan will be considered as the cold runs. This Plan also provides management oversight and administrative controls that are to be implemented until unrestricted operations are authorized. It also provides a formal review process for ensuring that all preparations needed for full five furnace operations are completed and formally reviewed prior to proceeding to the increased activity levels associated with five furnace operations. Specific objectives include: (1) To ensure that activities are conducted in a safe manner. (2) To provide supplemental

  5. Tungsten-rhenium composite tube fabricated by CVD for application in 18000C high thermal efficiency fuel processing furnace

    International Nuclear Information System (INIS)

    Svedberg, R.C.; Bowen, W.W.; Buckman, R.W. Jr.

    1980-04-01

    Chemical Vapor Deposit (CVD) rhenium was selected as the muffle material for an 1800 0 C high thermal efficiency fuel processing furnace. The muffle is exposed to high vacuum on the heater/insulation/instrumentation side and to a flowing argon-8 V/0 hydrogen gas mixture at one atmosphere pressure on the load volume side. During operation, the muffle cycles from room temperature to 1800 0 C and back to room temperature once every 24 hours. Operational life is dependent on resistance to thermal fatigue during the high temperature exposure. For a prototypical furnace, the muffle is approximately 13 cm I.D. and 40 cm in length. A small (about one-half size) rhenium closed end tube overcoated with tungsten was used to evaluate the concept. The fabrication and testing of the composite tungsten-rhenium tube and prototypic rhenium muffle is described

  6. The chemical transformation of calcium in Shenhua coal during combustion in a muffle furnace

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Sida [North China Electric Power Univ., Beijing (China). School of Energy, Power and Mechanical Engineering; Ministry of Education, Beijing (China). Key Lab. of Condition Monitoring and Control for Power Plant Equipment; Zhuo, Yuqun; Chen, Changhe [Tsinghua Univ., Beijing (China). Dept. of Thermal Engineering; Ministry of Education, Beijing (China). Key Lab. for Thermal Science and Power Engineering; Shu, Xinqian [China Univ. of Mining and Technology, Beijing (China). School of Chemical and Environmental Engineering

    2013-07-01

    The chemical reaction characteristics of calcium in three samples of Shenhua coal, i.e. raw sample, hydrochloric acid washed sample and hydrochloric acid washed light fraction, during combustion in a muffle furnace have been investigated in this paper. Ca is bound by calcite and organic matter in Shenhua coal. X ray diffraction (XRD) phase analysis has been conducted to these samples' combustion products obtained by heating at different temperatures. It has been found that the organically-bound calcium could easily react with clays and transform into gehlenite and anorthite partially if combusted under 815 C, whilst the excluded minerals promoted the conversion of gehlenite to anorthite. Calcite in Shenhua coal decomposed into calcium oxide and partially transformed into calcium sulfate under 815 C, and formed gehlenite and anorthite under 1,050 C. Calcite and other HCl-dissolved minerals in Shenhua coal were responsible mainly for the characteristic that the clay minerals in Shenhua coal hardly became mullite during combustion.

  7. CSER 99-002: CSER for unrestricted moderation of sludge material with two-boat operations in gloveboxes HC-21A and HC-21C

    International Nuclear Information System (INIS)

    LAN, J.S.

    1999-01-01

    This Criticality Safety Evaluation Report was prepared by Fluor Daniel Northwest under contract to BWHC. This document establishes the criticality safety parameters for unrestricted moderation of Sludge material with two-boat operations in gloveboxes HC-21A and HC-21C

  8. Examining the efficiency of muffle furnance-induced alkaline hydrolysis in determining the titanium content of environmental samples containing engineered titanium dioxide particles

    Science.gov (United States)

    A novel muffle furnace (MF)-based potassium hydroxide (KOH) fusion digestion technique was developed and its comparative digestion and dissolution efficacy for different titanium dioxide nanoparticles (TiO2-NPs)/environmental matrices was evaluated. Digestion of different enviro...

  9. Plan for the Initiation of HA-211 Furnace Operations at the Plutonium Finishing Plan (PFP)

    International Nuclear Information System (INIS)

    WILLIS, H.T.

    2000-01-01

    This plan provides a phased approach authorizing the use of three additional muffle furnaces for thermal stabilization. Achievement of Thermal Stabilization mission elements require the installation and startup of three additional muffle furnaces for the thermal stabilization of plutonium and plutonium bearing materials at the Plutonium Finishing Plant (PFP). The release to operate these additional furnaces will require an Activity Based Startup Review. The conduct of the Activity Based Startup Review (ABSR) was approved by Fluor Daniel Hanford on October 15, 1999. This plan has been developed with the objective of identifying those activities needed to guide the controlled startup of five furnaces from authorization to unrestricted operations by adding the HA-211 furnaces in an orderly and safe manner after the approval to Startup has been given

  10. Sludge stabilization at the Plutonium Finishing Plant, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-10-01

    This Environmental Assessment evaluates the proposed action to operate two laboratory-size muffle furnaces in glovebox HC-21C, located in the Plutonium Finishing Plant (PFP), Hanford Site, Richland, Washington. The muffle furnaces would be used to stabilize chemically reactive sludges that contain approximately 25 kilograms (55 pounds) of plutonium by heating to approximately 500 to 1000 degrees C (900 to 1800 degrees F). The resulting stable powder, mostly plutonium oxide with impurities, would be stored in the PFP vaults. The presence of chemically reactive plutonium-bearing sludges in the process gloveboxes poses a risk to workers from radiation exposure and limits the availability of storage space for future plant cleanup. Therefore, there is a need to stabilize the material into a form suitable for long-term storage. This proposed action would be an interim action, which would take place prior to completion of an Environmental Impact Statement for the PFP which would evaluate stabilization of all plutonium-bearing materials and cleanout of the facility. However, only 10 percent of the total quantity of plutonium in reactive materials is in the sludges, so this action will not limit the choice of reasonable alternatives or prejudice the Record of Decision of the Plutonium Finishing Plant Environmental Impact Statement

  11. Sintering furnace for remote fuel fabrication

    International Nuclear Information System (INIS)

    Bowen, W.W.

    1978-10-01

    Component testing and evaluation of a chemical vapor deposition Re/W muffle has been initiated. Hydrogen permeation testing and thermal cycling behavior will be evaluated. Fabrication of prototype 10-12 Kg furnace is scheduled for completion late in 1979, at which time testing of the system will be initiated

  12. Mathematical experimental modeling for muffle furnace drying process of municipal sewage sludge in Beijing and Osaka

    International Nuclear Information System (INIS)

    Li, Xinyi; Takaoka, Masaki; Zhu, Fenfen; Oshita, Kazuyuki; Mizuno, Tadao; Morisawa, Shinsuke

    2010-01-01

    Over the past two decades, China has experienced rapid urbanization, which also leads to a lot of environmental problems including those of sewage sludge. As the amount of sewage sludge increases, conventional methods of treatment, such as compost and landfill, are facing the problems of limitations in demands or land. Considering that the demand of constructive materials in China keeps increasing, reusing municipal sewage sludge (MSS) in cement manufactory plant as fuels and raw materials is another practicable way to deal with it. The aim of this study is to describe the process of the heating of sewage sludge under different atmospheres of nitrogen and oxygen, and to find out some relation between the moisture of MSS and the heating time under different surrounding temperature by means of a mathematical model. In this study, we compared 4 kinds of MSS sampled in Beijing and Osaka. First of all, we defined the differences in those fundamental physical properties, such as concentration of various elements, calorific values and so on. Then the macroscopical thermal properties of the sludges were observed by means of thermogravimetric (TG) analysis. Both pyrolysis and combustion of 4 samples of MSS were studied by TG dynamic runs carried out at 10K/m. Visual observation of the heating profiles shows three stages in the heating process, which have been characterized. At last, we focused on batch processing drying tests using muffle furnace under temperature of 200, 250 and 300 degrees Celsius. The volatile matters loss besides moisture during heating process was evaluated and the experimental drying curves were matched with a mathematical model. (author)

  13. Effect of H/C ratio on coal ignition

    Energy Technology Data Exchange (ETDEWEB)

    Furimsky, E.

    1988-09-01

    The Cahn balance technique was found to be suitable for estimating ignition temperature and its dependence on the H/C ratio of the coal. This temperature decreased with increasing H/C ratio of coals. For coals a linear correlation between H/C ratio and the temperature was established. Chars derived from the coals deviated from the linear correlation established on coals. 17 refs., 4 figs.

  14. Observations of HC3N, HC5N, and HC7N in molecular clouds

    International Nuclear Information System (INIS)

    Snell, R.L.; Schloerb, F.P.; Young, J.S.; Hjalmarson, A.; Friberg, P.

    1981-01-01

    We present observations of HC 3 N, HC 5 N, and HC 7 N in five molecular clouds. Statistical equilibrium calculations have been performed for HC 5 N and HC 7 N and compared with our data and data on other transitions of these molecules reported in the literature to derive the densities and the column densities of the cyanopolyynes in these clouds. We derive densities for TMC 1, TMC 2, and L1544 of between 1 and 4 x 10 4 cm -3 . We have found that the ratios of the cyanopolyynes in these three clouds are the following: HC 3 N/HC 5 Nroughly-equal1.4 and HC 5 N/HC 7 Nroughly-equal3. In L134 N and DR 21(OH) we have measured limits on the HC 5 N emission and find the HC 3 N/HC 5 N ratio to be substantially greater than in the three Taurus clouds. We have also compared the cyanopolyyne column densities with those of 13 CO and find that the abundance of HC 3 N in L134 N and DR 21(OH) is an order of magnitude smaller than that found in the Taurus clouds. The chemical differences between L134 N and the Taurus clouds are particularly interesting in view of their similar physical properties

  15. Experimental studies on radiation heat transfer enhancement on a standard muffle furnace

    Directory of Open Access Journals (Sweden)

    Minea Alina Adriana

    2013-01-01

    Full Text Available One of the sources of increased industrial energy consumption is the heating equipment, e.g., furnaces. Their domain of use is very wide and due to its abundance of applications it is key equipment in modern civilization. The present experimental investigations are related to reducing energy consumptions and started from the geometry of a classic manufactured furnace. During this experimental study, different cases have been carefully chosen in order to compare and measure the effects of applying different enhancement methods of the radiation heat transfer processes. The main objective work was to evaluate the behavior of a heated enclosure, when different radiant panels were introduced. The experimental investigation showed that their efficiency was influenced by their position inside the heating area. In conclusion, changing the inner geometry by introducing radiant panels inside the heated chamber leads to important time savings in the heating process.

  16. CSER 01-008 Canning of Thermally Stabilized Plutonium Oxide Powder in PFP Glovebox HC-21A

    International Nuclear Information System (INIS)

    ERICKSON, D.G.

    2001-01-01

    This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-18M and HA-20MB, and is documented in HNF-2707 Rev I a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. The plutonium stabilization program at the Plutonium Finishing Plant (PFP) uses heat to convert plutonium-bearing materials into dry powder that is chemically stable for long term storage. The stabilized plutonium is transferred into one of several gloveboxes for the canning process, Gloveboxes HC-18M in Room 228'2, HA-20MB in Room 235B, and HC-21A in Room 230B are to be used for this process. This document presents the analysis performed to support the canning operation in HC-21A. Most of the actual analysis was performed for the operation in HC-I8M and HA-20MB, and is documented in HNF-2707 Rev l a (Erickson 2001a). This document will reference Erickson (2001a) as necessary to support the operation in HC-21A. Evaluation of this operation included normal, base cases, and contingencies. The base cases took the normal operations for each type of feed material and added the likely off-normal events. Each contingency is evaluated assuming the unlikely event happens to the conservative base case. Each contingency was shown to meet the double contingency requirement. That is, at least two unlikely, independent, and concurrent changes in process conditions are required before a criticality is possible

  17. Experimental investigation of HFC407C/HC290/HC600a mixture in a window air conditioner

    International Nuclear Information System (INIS)

    Jabaraj, D.B.; Avinash, P.; Lal, D. Mohan; Renganarayan, S.

    2006-01-01

    HCFC22, one of the widely used refrigerants in window air conditioners must be phased out soon as per the Montreal protocol. Presently, HFC407C is considered as a potential drop in substitute for HCFC22, but retrofitting HCFC22 systems with HFC407C with polyol ester oil (POE) is a major issue as HFC407C is immiscible with mineral oil. The miscibility issue of HFC407C with mineral oil was overcome with the addition of a HC blend to it. The above technoeconomic feasibility issues to retrofit the existing HCFC22 systems with an ozone friendly refrigerant and retain the energy efficiency of the system are challenges in the air conditioning sector. In this present work, an experimental analysis has been conducted in a window air conditioner retrofitted with eco-friendly refrigerant mixtures of HFC407C/HC290/HC600a without changing the mineral oil. Its performance, as well as energy consumption, was compared with the conventional one. It is observed that the mixtures demand lengthening of the condenser in order to maintain the discharge pressure within acceptable limits. This also resulted in better heat transfer at the condenser. Therefore, in this study, the condenser tube length was increased by 19% to suit the mixtures as compared to HCFC22. Compared to HCFC22, the refrigeration capacity of the new mixture was 9.54-12.76% higher than that of HCFC22, while the actual COP was found to be 11.91-13.24% higher than that of HCFC22. The overall performance has proved that the HFC407C/HC blend refrigerant mixture could be an eco-friendly substitute to phase out HCFC22

  18. Human Chromosome 21: Mapping of the chromosomes and cloning of cDNAs

    Energy Technology Data Exchange (ETDEWEB)

    Antonarakis, S.E.

    1991-09-01

    The objective of the research funded by DOE grant DE-FG02-89ER60857 from 6/15/89 to 8/31/91 was to contribute to the physical mapping of human chromosome 21 (HC21) by cloning large fragments of DNA into Yeast Artificial Chromosomes (YACs) and identify YACs that map on HC21. A total of 54 sequence tagged sites (STS) have been developed and mapped in our laboratory to HC21 and can be used as initial reference points for YAC identification and construction of overlapping clones. A small YAC library was constructed which is HC21 specific. DNA from somatic cell hybrid WAV17 or from flow-sorted HC21 was partially digested with EcoRI, ligated into vectors PJS97, PJS98, and YACs have been obtained with average size insert of more than 300 kb. This library has been deposited in D. Patterson's lab for the Joint YAC screening effort. Additional YAC libraries from ICI Pharmaceuticals or from Los Alamos National Laboratories have been screened with several STS and positive YACs have been identified. Work in progress includes screening of YAC libraries in order to construct overlapping clones, characterization of the cloning ends of YACs, characterization of additional STS and cloning of HC21 specific cDNAs. 15 refs., 2 figs., 5 tabs.

  19. Kinetics of the reactions H+C2H4->C2H5, H+C2H5->2CH3 and CH3+C2H5->products studies by pulse radiolysis combined with infrared diode laser spectroscopy

    DEFF Research Database (Denmark)

    Sillesen, A.; Ratajczak, E.; Pagsberg, P.

    1993-01-01

    Formation of methyl radicals via the consecutive reactions H+C2H4+M-->C2H5+M (1) and H+C2H5-->CH3+CH3 (2a) was initiated by pulse radiolysis of 10-100 mbar H-2 in the presence of ethylene. The kinetics of CH3 Were studied by monitoring the transient infrared absorption at the Q(3, 3) line of the ...

  20. The behavior of heavy metals in the process of desulfurization of Brazilian coal combustion gases by the addition of limestone

    Directory of Open Access Journals (Sweden)

    Sebag M.G.

    2001-01-01

    Full Text Available The concentrations of heavy metals in two kinds of Brazilian coals at 100° C (acid digestion and at 850° C were studied (ashes the obtained in muffle furnace with and without addition of limestone. Data were analyzed by flame atomic absorption, using the air acetylene flame. For Pb, Zn, Ni, Mn and Cu the metal concentration obtained the acid digestion were higher than metal concentration were obtained in tests in the muffle furnace. This behavior observed in the muffle furnace occurs because these metals are fixed in stable sulfated compounds in the ashes, which are difficult to dissociate at flame temperature, and also due to the volatile character of the metals, mainly Pb and Zn. There was a constant concentration in the ashes in of Cr the acid digestion and muffle furnace tests. Results from tests using an XRD apparatus indicated, he formation of sulfated compounds in the ashes for both. coals. The analysis using microprobe electronic showed retention of metals like Ni, Mn, Cu, Fe, Ti and Ca. For both coals, the low mobility of most of the metals studied occured due to the alkaline pH of sulfated ashes. These metals in the ash from coal combustion in fluidized bed reactor were also studied and showed similar results, enabling a scale-up to pilot scale.

  1. Measurement of 2J(H,C)- and 3J(H,C)-coupling constants by α/β selective HC(C)H-TOCSY

    International Nuclear Information System (INIS)

    Duchardt, Elke; Richter, Christian; Reif, Bernd; Glaser, Steffen J.; Engels, Joachim W.; Griesinger, Christian; Schwalbe, Harald

    2001-01-01

    A new heteronuclear NMR pulse sequence for the measurement of n J(C,H) coupling constants, the α/βselective HC(C)H-TOCSY, is described. It is shown that the S 3 E element (Meissner et al., 1997a,b) can be used to obtain spin state selective coherence transfer in molecules, in which adjacent CH moieties are labeled with 13 C. Application of the α/β selective HC(C)H-TOCSY to a 10nt RNA tetraloop 5'-CGCUUUUGCG-3', in which the four uridine residues are 13 C labeled in the sugar moiety, allowed measurement of two bond and three bond J(C,H) coupling constants, which provide additional restraints to characterize the sugar ring conformation of RNA in cases of conformational averaging

  2. Trace analysis of lead and cadmium in seafoods by differential pulse anodic stripping voltametry

    International Nuclear Information System (INIS)

    Sumera, F.C.; Verceluz, F.P.; Kapauan, P.A.

    1979-01-01

    A method for the simultaneous determination of cadmium and lead in seafoods is described. The sample is dry ashed in a muffle furnace elevating the temperature gradually up to 500 0 C. The ashed sample is treated with concentrated nitric acid, dried on a heating plate and returned to the muffle furnace for further heating. The treated ash is then dissolved in 1 N HCL acetate buffer and citric acid are added and the pH adjusted to 3.6-4. The resulting solution is analyzed for lead and cadmium by differential pulse anodic stripping voltametry (DPASV) using a wax-impregnated graphite thin film electrode. The average recoveries of 0.4 of cadmium and lead added to 5 fish samples were 97% and 99% respectively. The standard deviations, on a homogenized shark sample for lead and cadmium analysis were 6.7 ppb and 12.3 ppb, respectively, and the relative standard deviations were 21.0% and 15.5% respectively. Studies on instrumental parameters involved in the DPASV step of analysis and methods of measuring peak current signals were also made. (author)

  3. New Line Lists for planetological applications: HC3N and C4H2

    Science.gov (United States)

    Jolly, A.; Benilan, Y.; Fayt, A.

    2009-04-01

    The Composite Infrared Spectrometer (CIRS) on-board Cassini, after four years of operation in Saturnian orbit with over thirty close fly-bys of Titan, has obtained spectra in the far and mid-infrared with a spectral resolution of 0.5 cm-1. Mismatch between observed spectra and model spectra obtained from the available line lists has led us to study the bending bands of HC3N and C4H2, the longest carbon chains observed on Titan. Our experimental study for HC3N (Jolly et al. 2007, J.Mol.Spec) has shown that band intensities had to be revised and that including hot bands with lower level as high as 1300 cm-1 was necessary to model our experimental spectra at 0.5 cm-1 resolution. A new extended line list could be obtained by fitting high resolution data with the help of a global analysis. This line list was made available to the astronomers of the CIRS team and will be included in the next version of the GEISA data base. Thanks to the precision of the new spectroscopic data, 13C isotopologues of HC3N have been detected and quantified for the first time in the atmosphere of Titan (Jennings et al. 2008, ApJL). Search for the 15N isotopologues of HC3N will also be presented. The proportion of hot bands is even more important for C4H2 than for HC3N and a new extended line list was absolutely necessary to improve the CIRS spectral analysis. We will present a new line list and show comparison between synthetic spectra and experimental spectra of C4H2 obtained between 193 and 296 K at 0.1 and 0.5 cm-1 resolution. Comparison of model spectra to CIRS observations of C4H2 at 220 and 630 cm-1 will also be presented. Detections of hot bands and isotopes in cold environments such as Titan will be emphasized.

  4. Detection of HC5N and HC7N Isotopologues in TMC-1 with the Green Bank Telescope

    Science.gov (United States)

    Burkhardt, A. M.; Herbst, E.; Kalenskii, S. V.; McCarthy, M. C.; Remijan, A. J.; McGuire, B. A.

    2018-03-01

    We report the first interstellar detection of DC7N and six 13C-bearing isotopologues of HC7N towards the dark cloud TMC-1 through observations with the Green Bank Telescope, and confirm the recent detection of HC515N. For the average of the 13C isotopomers, DC7N, and HC515N, we derive column densities of 1.9(2) × 1011, 2.5(9) × 1011, and 1.5(4) × 1011 cm-2, respectively. The resulting isotopic ratios are consistent with previous values derived from similar species in the source, and we discuss the implications for the formation chemistry of the observed cyanopolyynes. Within our uncertainties, no significant 13C isotopomer variation is found for HC7N, limiting the significance CN could have in its production. The results further show that, for all observed isotopes, HC5N may be isotopically depleted relative to HC3N and HC7N, suggesting that reactions starting from smaller cyanopolyynes may not be efficient to form HCnN. This leads to the conclusion that the dominant production route may be the reaction between hydrocarbon ions and nitrogen atoms.

  5. High Temperature Transparent Furnace Development

    Science.gov (United States)

    Bates, Stephen C.

    1997-01-01

    This report describes the use of novel techniques for heat containment that could be used to build a high temperature transparent furnace. The primary objective of the work was to experimentally demonstrate transparent furnace operation at 1200 C. Secondary objectives were to understand furnace operation and furnace component specification to enable the design and construction of a low power prototype furnace for delivery to NASA in a follow-up project. The basic approach of the research was to couple high temperature component design with simple concept demonstration experiments that modify a commercially available transparent furnace rated at lower temperature. A detailed energy balance of the operating transparent furnace was performed, calculating heat losses through the furnace components as a result of conduction, radiation, and convection. The transparent furnace shells and furnace components were redesigned to permit furnace operation at at least 1200 C. Techniques were developed that are expected to lead to significantly improved heat containment compared with current transparent furnaces. The design of a thermal profile in a multizone high temperature transparent furnace design was also addressed. Experiments were performed to verify the energy balance analysis, to demonstrate some of the major furnace improvement techniques developed, and to demonstrate the overall feasibility of a high temperature transparent furnace. The important objective of the research was achieved: to demonstrate the feasibility of operating a transparent furnace at 1200 C.

  6. Microstructures and mechanical properties of 3D 4-directional, C{sub f}/ZrC–SiC composites using ZrC precursor and polycarbosilane

    Energy Technology Data Exchange (ETDEWEB)

    Li, Qinggang, E-mail: liqinggang66@gmail.com [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, Jinan 250022 (China); Dong, Shaoming [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Wang, Zhi; Shi, Guopu; Ma, Yan [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Zhou, Haijun; Wang, Zhen; He, Ping [Structural Ceramics and Composites Engineering Research Center, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China)

    2013-11-01

    Highlights: • Three-dimensional 4-directional C{sub f}/ZrC–SiC composites fabricated by polymer infiltration and pyrolysis. • The microstructure and mechanical properties of the composites were studied. • High-temperature oxidation resistance and anti-ablation properties were evaluated. • Results show the composites have good mechanical and excellent ablative properties. -- Abstract: Three-dimensional 4-directional C{sub f}/ZrC–SiC composites were successfully fabricated by polymer infiltration and pyrolysis combined with ZrC precursor impregnation. The microstructure and mechanical properties of the composites were studied. The composite with PyC/SiC interphase had a bulk density of 2.14 g/cm{sup 3}, an open porosity of 10%, and a bending stress of 474 MPa, and exhibited a non-brittle failure behavior due to propagation and deflection of cracks, and fracture and pullout of fibers. Their high-temperature oxidation resistance and anti-ablation properties were evaluated using a muffle furnace and plasma wind tunnel test. Results show that the composites have good mechanical and excellent ablative properties.

  7. Molecular dynamics simulation of chemical vapor deposition of amorphous carbon. Dependence on H/C ratio of source gas

    International Nuclear Information System (INIS)

    Ito, Atsushi M.; Takayama, Arimichi; Nakamura, Hiroaki; Saito, Seiki; Ohno, Noriyasu; Kajita, Shin

    2011-01-01

    By molecular dynamics simulation, the chemical vapor deposition of amorphous carbon onto graphite and diamond surfaces was studied. In particular, we investigated the effect of source H/C ratio, which is the ratio of the number of hydrogen atoms to the number of carbon atoms in a source gas, on the deposition process. In the present simulation, the following two source gas conditions were tested: one was that the source gas was injected as isolated carbon and hydrogen atoms, and the other was that the source gas was injected as hydrocarbon molecules. Under the former condition, we found that as the source H/C ratio increases, the deposition rate of carbon atoms decreases exponentially. This exponential decrease in the deposition rate with increasing source H/C ratio agrees with experimental data. However, under the latter molecular source condition, the deposition rate did not decrease exponentially because of a chemical reaction peculiar to the type of hydrocarbon in the source gas. (author)

  8. Effectiveness of Nigerian Bamboo Activated with Different Activating ...

    African Journals Online (AJOL)

    The effectiveness of Nigerian Bamboo activated with different activating agents on the adsorption of BTX was investigated. A series of activated carbons was prepared from Nigerian bamboo, carbonized at 400oC – 500oC and impregnated with different concentrations of four acids at 800oC in a muffle furnace for 2 hours.

  9. Addendum 1 to CSERs 94-007 and 94-008: Use of 2.2 liter boats in muffle furnace operations at PFP

    International Nuclear Information System (INIS)

    Hess, A.L.

    1996-01-01

    This criticality safety review justifies raising the container size limit in CPS-Z-165-80621 and CPS-165-80622 to 2.3 liters, thereby allowing the use of 2.2-liter furnace boats in the Pu stabilization activities covered by these specifications

  10. C3HC4-type RING finger protein NbZFP1 is involved in growth and fruit development in Nicotiana benthamiana.

    Directory of Open Access Journals (Sweden)

    Wenxian Wu

    Full Text Available C3HC4-type RING finger proteins constitute a large family in the plant kingdom and play important roles in various physiological processes of plant life. In this study, a C3HC4-type zinc finger gene was isolated from Nicotiana benthamiana. Sequence analysis indicated that the gene encodes a 24-kDa protein with 191 amino acids containing one typical C3HC4-type zinc finger domain; this gene was named NbZFP1. Transient expression of pGDG-NbZFP1 demonstrated that NbZFP1 was localized to the chloroplast, especially in the chloroplasts of cells surrounding leaf stomata. Virus-induced gene silencing (VIGS analysis indicated that silencing of NbZFP1 hampered fruit development, although the height of the plants was normal. An overexpression construct was then designed and transferred into Nicotiana benthamiana, and PCR and Southern blot showed that the NbZFP1 gene was successfully integrated into the Nicotiana benthamiana genome. The transgenic lines showed typical compactness, with a short internode length and sturdy stems. This is the first report describing the function of a C3HC4-type RING finger protein in tobacco.

  11. Purification of recombinant Chlamydia trachomatis histone H1-like protein Hc2, and comparative functional analysis of Hc2 and Hc1

    DEFF Research Database (Denmark)

    Pedersen, LB; Birkelund, Svend; Christiansen, Gunna

    1996-01-01

    The metabolically inactive developmental form of Chlamydia trachomatis, the elementary body, contains two very basic DNA-binding proteins with homology to eukaryotic histone H1. One of these, Hc1, is relatively well characterized and induces DNA condensation in vitro, whereas the other, Hc2......, is functionally virtually uncharacterized. In this study we describe the purification of Hc2, and a detailed comparative functional analysis of Hc2 and Hc1 is presented. By gel shift assays and electron microscopy, marked differences in the nucleic acid-binding properties of Hc2 and Hc1 were observed. Furthermore...

  12. Preparation and characterization of activated carbons from albizia ...

    African Journals Online (AJOL)

    Activated carbon was prepared from the pods of Albizia saman for the purpose of converting the waste to wealth. The pods were thoroughly washed with water to remove any dirt, air- dried and cut into sizes of 2-4 cm. The prepared pods were then carbonised in a muffle furnace at temperatures of 4000C, 5000C, 6000C ...

  13. Insights into the effect of structure-directing agents on structural ...

    Indian Academy of Sciences (India)

    properties of mesoporous carbon for polymer electrolyte fuel cells. A ARUNCHANDER ..... lowed by sintering in a muffle furnace at 350◦C for 30 min. For the catalyst ..... Su F B, Zeng J H, Bao X Y, Yu Y S, Lee J Y and Zhao X S. 2005 Chem.

  14. Observation of e(+)e(-) -> pi(0)pi(0)h(c) and a Neutral Charmoniumlike Structure Z(c)(0)

    NARCIS (Netherlands)

    Ablikim, M.; Achasov, M. N.; Ai, X. C.; Albayrak, O.; Albrecht, M.; Ambrose, D. J.; Amoroso, A.; An, F. F.; An, Q.; Bai, J. Z.; Ferroli, R. Baldini; Ban, Y.; Bennett, D. W.; Bennett, J. V.; Bertani, M.; Bettoni, D.; Bian, J. M.; Bianchi, F.; Boger, E.; Bondarenko, O.; Boyko, I.; Briere, R. A.; Cai, H.; Cai, X.; Cakir, O.; Calcaterra, A.; Cao, G. F.; Cetin, S. A.; Chang, J. F.; Chelkov, G.; Chen, G.; Chen, H. S.; Chen, H. Y.; Chen, J. C.; Chen, M. L.; Chen, S. J.; Chen, X.; Chen, X. R.; Chen, Y. B.; Cheng, H. P.; Chu, X. K.; Chu, Y. P.; Cibinetto, G.; Cronin-Hennessy, D.; Dai, H. L.; Dai, J. P.; Dedovich, D.; Deng, Z. Y.; Denig, A.; Denysenko, I.; Destefanis, M.; De Mori, F.; Ding, Y.; Dong, C.; Dong, J.; Dong, L. Y.; Dong, M. Y.; Du, S. X.; Duan, P. F.; Fan, J. Z.; Fang, J.; Fang, S. S.; Fang, X.; Fang, Y.; Fava, L.; Feldbauer, F.; Felici, G.; Feng, C. Q.; Fioravanti, E.; Fu, C. D.; Gao, Q.; Gao, Y.; Garzia, I.; Goetzen, K.; Gong, W. X.; Gradl, W.; Greco, M.; Gu, M. H.; Gu, Y. T.; Guan, Y. H.; Guo, A. Q.; Guo, L. B.; Guo, T.; Guo, Y.; Guo, Y. P.; Haddadi, Z.; Hafner, A.; Han, S.; Han, Y. L.; Harris, F. A.; He, K. L.; He, Z. Y.; Held, T.; Heng, Y. K.; Hou, Z. L.; Hu, C.; Hu, H. M.; Hu, J. F.; Hu, T.; Hu, Y.; Huang, G. M.; Huang, G. S.; Huang, H. P.; Huang, J. S.; Huang, X. T.; Huang, Y.; Hussain, T.; Ji, Q.; Ji, Q. P.; Ji, X. B.; Ji, X. L.; Jiang, L. L.; Jiang, L. W.; Jiang, X. S.; Jiao, J. B.; Jiao, Z.; Jin, D. P.; Jin, S.; Johansson, T.; Julin, A.; Kalantar-Nayestanaki, N.; Kang, X. L.; Kang, X. S.; Kavatsyuk, M.; Ke, B. C.; Kliemt, R.; Kloss, B.; Kolcu, O. B.; Kopf, B.; Kornicer, M.; Kuehn, W.; Kupsc, A.; Lai, W.; Lange, J. S.; Lara, M.; Larin, P.; Leyhe, M.; Li, Cheng; Li, D. M.; Li, F.; Li, G.; Li, H. B.; Li, J. C.; Li, Jin; Li, K.; Li, K.; Li, Q. J.; Li, T.; Li, W. D.; Li, W. G.; Li, X. L.; Li, X. M.; Li, X. N.; Li, X. Q.; Li, Z. B.; Liang, H.; Liang, Y. F.; Liang, Y. T.; Liao, G. R.; Lin, D. X.; Liu, B. J.; Liu, C. L.; Liu, C. X.; Liu, F. H.; Liu, Fang; Liu, Feng; Liu, H. B.; Liu, H. H.; Liu, H. H.; Liu, H. M.; Liu, J.; Liu, J. P.; Liu, J. Y.; Liu, K.; Liu, K. Y.; Liu, L. D.; Liu, Q.; Liu, S. B.; Liu, X.; Liu, X. X.; Liu, Y. B.; Liu, Z. A.; Liu, Zhiqiang; Liu, Zhiqing; Loehner, H.; Lou, X. C.; Lu, H. J.; Lu, J. G.; Lu, R. Q.; Lu, Y.; Lu, Y. P.; Luo, C. L.; Luo, M. X.; Luo, T.; Luo, X. L.; Lv, M.; Lyu, X. R.; Ma, F. C.; Ma, H. L.; Ma, Q. M.; Ma, S.; Ma, T.; Ma, X. N.; Ma, X. Y.; Maas, F. E.; Maggiora, M.; Malik, Q. A.; Mao, Y. J.; Mao, Z. P.; Marcello, S.; Messchendorp, J. G.; Min, J.; Min, T. J.; Mitchell, R. E.; Mo, X. H.; Mo, Y. J.; Moeini, H.; Morales Morales, C.; Moriya, K.; Muchnoi, N. Yu.; Muramatsu, H.; Nefedov, Y.; Nerling, F.; Nikolaev, I. B.; Ning, Z.; Nisar, S.; Niu, S. L.; Niu, X. Y.; Olsen, S. L.; Ouyang, Q.; Pacetti, S.; Patteri, P.; Pelizaeus, M.; Peng, H. P.; Peters, K.; Ping, J. L.; Ping, R. G.; Poling, R.; Pu, Y. N.; Qi, M.; Qian, S.; Qiao, C. F.; Qin, L. Q.; Qin, N.; Qin, X. S.; Qin, Y.; Qin, Z. H.; Qiu, J. F.; Rashid, K. H.; Redmer, C. F.; Ren, H. L.; Ripka, M.; Rong, G.; Ruan, X. D.; Santoro, V.; Sarantsev, A.; Savrie, M.; Schoenning, K.; Schumann, S.; Shan, W.; Shao, M.; Shen, C. P.; Shen, P. X.; Shen, X. Y.; Sheng, H. Y.; Shepherd, M. R.; Song, W. M.; Song, X. Y.; Sosio, S.; Spataro, S.; Spruck, B.; Sun, G. X.; Sun, J. F.; Sun, S. S.; Sun, Y. J.; Sun, Y. Z.; Sun, Z. J.; Sun, Z. T.; Tang, C. J.; Tang, X.; Tapan, I.; Thorndike, E. H.; Tiemens, M.; Toth, D.; Ullrich, M.; Uman, I.; Varner, G. S.; Wang, B.; Wang, B. L.; Wang, D.; Wang, D. Y.; Wang, K.; Wang, L. L.; Wang, L. S.; Wang, M.; Wang, P.; Wang, P. L.; Wang, Q. J.; Wang, S. G.; Wang, W.; Wang, X. F.; Wang, Y. D.; Wang, Y. F.; Wang, Y. Q.; Wang, Z.; Wang, Z. G.; Wang, Z. H.; Wang, Z. Y.; Wei, D. H.; Wei, J. B.; Weidenkaff, P.; Wen, S. P.; Wiedner, U.; Wolke, M.; Wu, L. H.; Wu, Z.; Xia, L. G.; Xia, Y.; Xiao, D.; Xiao, Z. J.; Xie, Y. G.; Xiu, Q. L.; Xu, G. F.; Xu, L.; Xu, Q. J.; Xu, Q. N.; Xu, X. P.; Xue, Z.; Yan, L.; Yan, W. B.; Yan, W. C.; Yan, Y. H.; Yang, H. X.; Yang, L.; Yang, Y.; Yang, Y. X.; Ye, H.; Ye, M.; Ye, M. H.; Yin, J. H.; Yu, B. X.; Yu, C. X.; Yu, H. W.; Yu, J. S.; Yuan, C. Z.; Yuan, W. L.; Yuan, Y.; Yuncu, A.; Zafar, A. A.; Zallo, A.; Zeng, Y.; Zhang, B. X.; Zhang, B. Y.; Zhang, C.; Zhang, C. C.; Zhang, D. H.; Zhang, H. H.; Zhang, H. T.; Zhang, H. Y.; Zhang, J. J.; Zhang, J. L.; Zhang, J. Q.; Zhang, J. W.; Zhang, J. Y.; Zhang, J. Z.; Zhang, K.; Zhang, L.; Zhang, S. H.; Zhang, X. J.; Zhang, X. Y.; Zhang, Y.; Zhang, Y. H.; Zhang, Z. H.; Zhang, Z. P.; Zhang, Z. Y.; Zhao, G.; Zhao, J. W.; Zhao, J. Y.; Zhao, J. Z.; Zhao, Lei; Zhao, Ling; Zhao, M. G.; Zhao, Q.; Zhao, Q. W.; Zhao, S. J.; Zhao, T. C.; Zhao, Y. B.; Zhao, Z. G.; Zhemchugov, A.; Zheng, B.; Zheng, J. P.; Zheng, Y. H.; Zhong, B.; Zhou, L.; Zhou, Li; Zhou, X.; Zhou, X. K.; Zhou, X. R.; Zhou, X. Y.; Zhu, K.; Zhu, K. J.; Zhu, S.; Zhu, X. L.; Zhu, Y. C.; Zhu, Y. S.; Zhu, Z. A.; Zhuang, J.; Zou, B. S.; Zou, J. H.

    2014-01-01

    Using data collected with the BESIII detector operating at the Beijing Electron Positron Collider at center-of-mass energies of root s = 4.23, 4.26, and 4.36 GeV, we observe e(+)e(-) -> pi(0)pi(0)h(c) for the first time. The Born cross sections are measured and found to be about half of those of

  15. Copenhagen ITS: Forsøg med wifi-baseret positionering på H.C. Andersens Boulevard

    DEFF Research Database (Denmark)

    Høeg, Per; Nielsen, Thomas Sick; Olsen, Allan

    2017-01-01

    I samarbejde med Københavns Kommune afprøvede CITS konsortiet potentialet i wifi-baseret positionering med en forsøgsstrækning på H.C. Andersens Boulevard i vintermånederne 2014-2015. Wifi-positioneringen giver et nyt datagrundlag for trafik og bylivsundersøgelser, herunder f.eks. et grundlag...

  16. Deep K-band Observations of TMC-1 with the Green Bank Telescope: Detection of HC7O, Nondetection of HC11N, and a Search for New Organic Molecules

    Science.gov (United States)

    Cordiner, M. A.; Charnley, S. B.; Kisiel, Z.; McGuire, B. A.; Kuan, Y.-J.

    2017-12-01

    The 100 m Robert C. Byrd Green Bank Telescope K-band (KFPA) receiver was used to perform a high-sensitivity search for rotational emission lines from complex organic molecules in the cold interstellar medium toward TMC-1 (cyanopolyyne peak), focussing on the identification of new carbon-chain-bearing species as well as molecules of possible prebiotic relevance. We report a detection of the carbon-chain oxide species HC7O and derive a column density of (7.8+/- 0.9)× {10}11 cm-2. This species is theorized to form as a result of associative electron detachment reactions between oxygen atoms and C7H-, and/or reaction of C6H2 + with CO (followed by dissociative electron recombination). Upper limits are given for the related HC6O, C6O, and C7O molecules. In addition, we obtained the first detections of emission from individual 13C isotopologues of HC7N, and derive abundance ratios HC7N/HCCC13CCCCN = 110 ± 16 and HC7N/HCCCC13CCCN = 96 ± 11, indicative of significant 13C depletion in this species relative to the local interstellar elemental 12C/13C ratio of 60-70. The observed spectral region covered two transitions of HC11N, but emission from this species was not detected, and the corresponding column density upper limit is 7.4× {10}10 {{cm}}-2 (at 95% confidence). This is significantly lower than the value of 2.8× {10}11 {{cm}}-2 previously claimed by Bell et al. and confirms the recent nondetection of HC11N in TMC-1 by Loomis et al. Upper limits were also obtained for the column densities of malononitrile and the nitrogen heterocycles quinoline, isoquinoline, and pyrimidine.

  17. Expression and characterization of the antimicrobial peptide ABP-dHC-cecropin A in the methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Sang, Ming; Wei, Hui; Zhang, Jiaxin; Wei, Zhiheng; Wu, Xiaolong; Chen, Yan; Zhuge, Qiang

    2017-12-01

    ABP-dHC-cecropin A is a linear cationic peptide that exhibits antimicrobial properties. To explore a new approach for expression of ABP-dHC-cecropin A using the methylotrophic yeast Pichia pastoris, we cloned the ABP-dHC-cecropin A gene into the vector pPICZαA. The SacI-linearized plasmid pPICZαA-ABP-dHC-cecropin A was then transformed into P. pastoris GS115 by electroporation. Expression was induced after a 96-h incubation with 0.5% methanol at 20 °C in a culture supplied with 2% casamino acids to avoid proteolysis. Under these conditions, approximately 48 mg of ABP-dHC-cecropin A was secreted into 1L (4 × 250-mL)of medium. Recombinant ABP-dHC-cecropin A was purified using size-exclusion chromatography, and 21 mg of pure active ABP-dHC-cecropin A was obtained from 1L (4 × 250-mL)of culture. Electrophoresis on 4-20% gradient gels indicated that recombinant ABP-dHC-cecropin A was secreted as a protein approximately 4 kDa in size. Recombinant ABP-dHC-cecropin A was successfully expressed, as the product displayed antibacterial and antifungal activities (based on an antibacterial assay, scanning electron microscopy, and antifungal assay) indistinguishable from those of the synthesized protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Two enzymes involved in biosynthesis of the host-selective phytotoxin HC-toxin

    International Nuclear Information System (INIS)

    Walton, J.D.

    1987-01-01

    Cochliobolus carbonum race 1 produces a cyclic tetrapeptide HC-toxin, which is necessary for its exceptional virulence on certain varieties of maize. Previous genetic analysis of HC-toxin production by the fungus has indicated that a single genetic locus controls HC-toxin production. Enzymes involved in the biosynthesis of HC-toxin have been sought by following the precedents established for the biosynthetic enzymes of cyclic peptide antibiotics. Two enzymatic activities from C. carbonum race 1 were found, a D-alanine- and an L-proline-dependent ATP/PP/sub i/ exchange, which by biochemical and genetic criteria were shown to be involved in the biosynthesis of HC-toxin. These two activities were present in all tested race 1 isolates of C. carbonum, which produce HC-toxin, and in none of the tested race 2 and race 3 isolates, which do not produce the toxin. In a genetic cross between two isolates of C. carbonum differing at the tox locus, all tox + progeny had both activities, and all tox - progeny lacked both activities

  19. Refractory of Furnaces to Reduce Environmental Impact

    International Nuclear Information System (INIS)

    Hanzawa, Shigeru

    2011-01-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO 2 produced from this high energy load. To improve this situation, R and D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO 2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  20. Refractory of Furnaces to Reduce Environmental Impact

    Science.gov (United States)

    Hanzawa, Shigeru

    2011-10-01

    The energy load of furnaces used in the manufacturing process of ceramics is quite large. Most of the environmental impact of ceramics manufacturing is due to the CO2 produced from this high energy load. To improve this situation, R&D has focused on furnace systems and techniques of control in order to reduce energy load. Since furnaces are comprised of refractory, consideration of their mechanical and thermal characteristics is important. Herein are described several refractory types which were chosen through comparison of the characteristics which contribute to heat capacity reduction, heat insulating reinforcement and high emissivity, thereby improving thermal radiation heat transfer efficiency to the ceramic articles. One selected refractory material which will reduce the environmental impact of a furnace, chosen considering low heat capacity and high emissivity characteristics, is SiC. In this study, thermal radiation heat transfer efficiency improvement and its effect on ceramic articles in the furnace and oxidation behaviour were investigated at 1700K. A high density SiC refractory, built into the furnace at construction, has relatively high oxidation durability and has the ability to reduce environmental impact-CO2 by 10 percent by decreasing the furnace's energy load. However, new oxidation prevention techniques for SiC will be necessary for long-term use in industrial furnaces, because passive to active oxidation transition behaviour of commercial SiC refractory is coming to close ideal.

  1. A cylindrical furnace for absorption spectral studies

    Indian Academy of Sciences (India)

    A cylindrical furnace with three heating zones, capable of providing a temperature of 1100°C, has been fabricated to enable recording of absorption spectra of high temperature species. The temperature of the furnace can be controlled to ± 1°C of the set temperature. The salient feature of this furnace is that the material ...

  2. High temperature vacuum furnace for the preparation of graphite targets for 14C dating by tandem accelerator mass spectrometry

    International Nuclear Information System (INIS)

    Lowe, D.C.; Bristow, P.; Judd, W.J.

    1985-02-01

    A simple and reliable furnace design capable of producing temperatures of up to 2800 deg. C is presented. The furnace has been specifically designed for the rapid and reliable production of graphite targets for 14 C dating purposes but may be used in a variety of applications requiring high temperatures under vacuum conditions

  3. Comparison of a burning mass ceramics coating in laboratory furnace and instrustrial furnace

    International Nuclear Information System (INIS)

    Soares, R.A.L.; Castro, J.R. de S.

    2012-01-01

    This work intends to analyze the differences obtained in the technological properties of a ceramic coating after firing in two distinct environments, laboratory furnace and industrial furnace. For this, was characterized a ceramic mass used in the production of porous coating. The analyzes were performed chemical, mineralogical and thermal mass in that. The specimens were obtained by compacting and burned in the maximum temperature of 1140 deg C in two furnaces, laboratory and industrial. The technological tests were performed linear shrinkage, water absorption, bulk density and mechanical strength. The microstructure was evaluated by ray-X diffraction and scanning electron microscopy. The results showed that both furnaces provided significant differences in analyzed specimens, such as increased strength and low water absorption in the fired samples in a laboratory furnace, for example. (author)

  4. A survey of HC3N in extragalactic sources - is HC3N a tracer of activity in ULIRGs?

    DEFF Research Database (Denmark)

    Lindberg, Johan; Aalto, S.; Costagliola, F.

    2011-01-01

    , and to compare HC3N with other molecular tracers (HCN, HNC), as well as other properties (silicate absorption strength, IR flux density ratios, C II flux, and megamaser activity). Methods. We present mm IRAM 30 m, OSO 20 m, and SEST observations of HC3N rotational lines (mainly the J = 10-9 transition...

  5. Solar Convective Furnace for Metals Processing

    Science.gov (United States)

    Patidar, Deepesh; Tiwari, Sheetanshu; Sharma, Piyush; Pardeshi, Ravindra; Chandra, Laltu; Shekhar, Rajiv

    2015-11-01

    Metals processing operations, primarily soaking, heat treatment, and melting of metals are energy-intensive processes using fossil fuels, either directly or indirectly as electricity, to operate furnaces at high temperatures. Use of concentrated solar energy as a source of heat could be a viable "green" option for industrial heat treatment furnaces. This paper introduces the concept of a solar convective furnace which utilizes hot air generated by an open volumetric air receiver (OVAR)-based solar tower technology. The potential for heating air above 1000°C exists. Air temperatures of 700°C have already been achieved in a 1.5-MWe volumetric air receiver demonstration plant. Efforts to retrofit an industrial aluminium soaking furnace for integration with a solar tower system are briefly described. The design and performance of an OVAR has been discussed. A strategy for designing a 1/15th-scale model of an industrial aluminium soaking furnace has been presented. Preliminary flow and thermal simulation results suggest the presence of recirculating flow in existing furnaces that could possibly result in non-uniform heating of the slabs. The multifarious uses of concentrated solar energy, for example in smelting, metals processing, and even fuel production, should enable it to overcome its cost disadvantage with respect to solar photovoltaics.

  6. Performance evaluation of Samsung LABGEO(HC10) Hematology Analyzer.

    Science.gov (United States)

    Park, Il Joong; Ahn, Sunhyun; Kim, Young In; Kang, Seon Joo; Cho, Sung Ran

    2014-08-01

    The Samsung LABGEO(HC10) Hematology Analyzer (LABGEO(HC10)) is a recently developed automated hematology analyzer that uses impedance technologies. The analyzer provides 18 parameters including 3-part differential at a maximum rate of 80 samples per hour. To evaluate the performance of the LABGEO(HC10). We evaluated precision, linearity, carryover, and relationship for complete blood cell count parameters between the LABGEO(HC10) and the LH780 (Beckman Coulter Inc) in a university hospital in Korea according to the Clinical and Laboratory Standards Institute guidelines. Sample stability and differences due to the anticoagulant used (K₂EDTA versus K₃EDTA) were also evaluated. The LABGEO(HC10) showed linearity over a wide range and minimal carryover ( 0.92) except for mean corpuscular hemoglobin concentration. The bias estimated was acceptable for all parameters investigated except for monocyte count. Most parameters were stable until 24 hours both at room temperature and at 4°C. The difference by anticoagulant type was statistically insignificant for all parameters except for a few red cell parameters. The accurate results achievable and simplicity of operation make the unit recommendable for small to medium-sized laboratories.

  7. An update on blast furnace granular coal injection

    Energy Technology Data Exchange (ETDEWEB)

    Hill, D.G. [Bethlehem Steel Corp., Burns Harbor, IN (United States); Strayer, T.J.; Bouman, R.W. [Bethlehem Steel Corp., PA (United States)

    1997-12-31

    A blast furnace coal injection system has been constructed and is being used on the furnace at the Burns Harbor Division of Bethlehem Steel. The injection system was designed to deliver both granular (coarse) and pulverized (fine) coal. Construction was completed on schedule in early 1995. Coal injection rates on the two Burns Harbor furnaces were increased throughout 1995 and was over 200 lbs/ton on C furnace in September. The injection rate on C furnace reached 270 lbs/ton by mid-1996. A comparison of high volatile and low volatile coals as injectants shows that low volatile coal replaces more coke and results in a better blast furnace operation. The replacement ratio with low volatile coal is 0.96 lbs coke per pound of coal. A major conclusion of the work to date is that granular coal injection performs very well in large blast furnaces. Future testing will include a processed sub-bituminous coal, a high ash coal and a direct comparison of granular versus pulverized coal injection.

  8. High-level SUMO-mediated fusion expression of ABP-dHC-cecropin A from multiple joined genes in Escherichia coli.

    Science.gov (United States)

    Zhang, Jiaxin; Movahedi, Ali; Wei, Zhiheng; Sang, Ming; Wu, Xiaolong; Wang, Mengyang; Wei, Hui; Pan, Huixin; Yin, Tongming; Zhuge, Qiang

    2016-09-15

    The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, evaluation of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve the expression level of ABP-dHC-cecropin A in E. coli, tandem repeats of the ABP-dHC-cecropin A gene were constructed and expressed as fusion proteins (SUMO-nABP-dHC-cecropin, n = 1, 2, 3, 4) via pSUMO-nABP-dHC-cecropin A vectors (n = 1, 2, 3, 4). Comparison of the expression levels of soluble SUMO-nABP-dHC-cecropin A fusion proteins (n = 1, 2, 3, 4) suggested that BL21 (DE3)/pSUMO-3ABP-dHC-cecropin A is an ideal recombinant strain for ABP-dHC-cecropin A production. Under the selected conditions of cultivation and isopropylthiogalactoside (IPTG) induction, the expression level of ABP-dHC-cecropin A was as high as 65 mg/L, with ∼21.3% of the fusion protein in soluble form. By large-scale fermentation, protein production reached nearly 300 mg/L, which is the highest yield of ABP-dHC-cecropin A reported to date. In antibacterial experiments, the efficacy was approximately the same as that of synthetic ABP-dHC-cecropin A. This method provides a novel and effective means of producing large amounts of ABP-dHC-cecropin A. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Determination of uranium in coated fuel particle compact by potassium fluoride fusion-gravimetric method

    International Nuclear Information System (INIS)

    Ito, Mitsuo; Iso, Shuichi; Hoshino, Akira; Suzuki, Shuichi.

    1992-03-01

    Potassium fluoride-gravimetric method has been developed for the determination of uranium in TRISO type-coated fuel particle compact. Graphite matrix in the fuel compact is burned off by heating it in a platinum crucible at 850degC. The coated fuel particles thus obtained are decomposed by fusion with potassium fluoride at 900degC. The melt was dissolved with sulfuric acid. Uranium is precipitated as ammonium diuranate, by passing ammonia gas through the solution. The resulting precipitate is heated in a muffle furnace at 850degC, to convert uranium into triuranium octoxide. Uranium in the triuranium octoxide was determined gravimetrically. Ten grams of caoted fuel particles were completely decomposed by fusion with 50 g of potassium fluoride at 900degC for 3 hrs. Analytical result for uranium in the fuel compact by the proposed method was 21.04 ± 0.05 g (n = 3), and was in good agreement with that obtained by non-destructive γ-ray measurement method : 21.01 ± 0.07 g (n = 3). (author)

  10. H.C. Schumacher - Center of international communication in astronomy and mediator betwen Denmark an Germany. (German Title: H.C. Schumacher - Zentrum der internationalen Kommunikation in der Astronomie und Mittler zwischen Dänemark und Deutschland)

    Science.gov (United States)

    Hamel, Jürgen

    As the editor of the ``Astronomische Nachrichten'', H.C. Schumacher played an outstanding role among the astronomers of the first half of the 19th century. Altona, his place of activity, belonged to the kingdom of Denmark. Both the foundation of the ``Astronomische Nachrichten'' and its existence depended for several decades on the support by the Danish kings and high-ranking officials at the Copenhagen court. This paper analyses these questions on the basis of previously unused archival sources and discusses also Schumacher's life and his relations to the royal dynasty.

  11. Determinations of total residue, total oxide and density of high-level liquid waste (HLLW) by gravimetric method

    International Nuclear Information System (INIS)

    Li Yun; Gao Yueying; Yang Ming; Jin Liyun

    1992-01-01

    Gravimetric method for determination of total residue, total oxide and density of HLLW is developed. An aliquot of the original HLLW solution is piped on to the small quartz disc and put into the mini muffle furnace carefully. It is first heated to below 100 degree C (for 1.5 hours to remove the free water, and then heated to 180 degree C for 2 hours to remove the crystal water in a furnace. The total residue is weighed at room temperature. The precision is better than 3% for the determination of total residue and total oxide. An aliquot of the original HLLW solution is piped into the weighing bottle and weighed. The precision is better than 1%

  12. Ge nanocrystals formed by furnace annealing of Ge(x)[SiO2](1-x) films: structure and optical properties

    Science.gov (United States)

    Volodin, V. A.; Cherkov, A. G.; Antonenko, A. Kh; Stoffel, M.; Rinnert, H.; Vergnat, M.

    2017-07-01

    Ge(x)[SiO2](1-x) (0.1  ⩽  x  ⩽  0.4) films were deposited onto Si(0 0 1) or fused quartz substrates using co-evaporation of both Ge and SiO2 in high vacuum. Germanium nanocrystals were synthesized in the SiO2 matrix by furnace annealing of Ge x [SiO2](1-x) films with x  ⩾  0.2. According to electron microscopy and Raman spectroscopy data, the average size of the nanocrystals depends weakly on the annealing temperature (700, 800, or 900 °C) and on the Ge concentration in the films. Neither amorphous Ge clusters nor Ge nanocrystals were observed in as-deposited and annealed Ge0.1[SiO2]0.9 films. Infrared absorption spectroscopy measurements show that the studied films do not contain a noticeable amount of GeO x clusters. After annealing at 900 °C intermixing of germanium and silicon atoms was still negligible thus preventing the formation of GeSi nanocrystals. For annealed samples, we report the observation of infrared photoluminescence at low temperatures, which can be explained by exciton recombination in Ge nanocrystals. Moreover, we report strong photoluminescence in the visible range at room temperature, which is certainly due to Ge-related defect-induced radiative transitions.

  13. Evaluation of fire severity via analysis of photosynthetic pigments: Oak, eucalyptus and cork oak leaves in a Mediterranean forest.

    Science.gov (United States)

    Soler, M; Úbeda, X

    2018-01-15

    Few studies to date have examined the effect of the high temperatures attained during wildfire events on the pigments present in forest foliage. Here, we seek to analyse the main photosynthetic pigments in the leaves of the oak, cork oak and eucalyptus following a wildfire. We also subject leaves of these last two species to a range of contact temperatures (100-500 °C) in the laboratory using a muffle furnace. The samples were left in the muffle for two hours at 100, 150, 200, 250, 300, 350, 400 and 500 °C, in line with other soil study models (Úbeda et al., 2009; Düdaite et al., 2013). At temperatures above 250 °C, chromatography fails to detect any pigments. A minimal increase in temperature degrades chlorophyll, the process being more rapid in eucalyptus than in cork oak, while it increases pheophytin concentrations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Design of safety monitor system for operation sintering furnace ME-06

    International Nuclear Information System (INIS)

    Sugeng Rianto; Triarjo; Djoko Kisworo; Agus Sartono

    2013-01-01

    Design of safety monitoring system for safety operation of sinter furnace ME-06 has been done. Parameters monitored during this operation include: temperature, gas pressure, flow rate of gas, voltage and current furnace. For sintering furnace temperature system that monitored were the temperature of the furnace temperature, the temperature of the cooling water system inlet and outlet, temperature of flow hydrogen gas inlet and outlet. For pressure system and flow rate gas sinter furnace which monitored the pressure and flow rate of hydrogen gas inlet and outlet. The system also monitors current and voltage applied to the sinter furnace heating system. Monitor system hardware consists of: the system temperature sensor, pressure, rate and data acquisition systems. While software systems using the labview driver interface that connects the hard and software systems. Function test results during sintering operation for setting the temperature 1700 °C sintering temperature increases the ramp function by 250 °C/hour average measurements obtained when the sintering time 1707.016 °C with a standard deviation of 0.38 °C. The maximum temperature of the hydrogen gas temperature 35.4 °C. The maximum temperature of the cooling water system 27.4 °C. The maximum pressure of 1,911 bar Gas Inlet and outlet of 0,051 bar. Maximum inlet gas flow 12.996 L / min and outlet 14.086 L / min. (author)

  15. Simulation of blast furnace operation during the substitution of coke and pulverized coal with granulated waste plastic

    Directory of Open Access Journals (Sweden)

    Kovačević Tihomir M.

    2014-01-01

    Full Text Available The possibility of using the waste plastic as reducing agent in blast furnace for obtaining pig iron is in focus for the past couple year. The simulation of blast furnace process in BFC software has been performed in order to analyze the coke and coals saving, CO2 emission and determining the economic benefits. Three different batches were made for comparative analysis, depending on the batch composition and input of batch components into the blast furnace: case 1 (C1, case 2 (C2 and case 3 (C3. The base case, C1 contains sinter (bulk material which is needed for obtaining 1 tone of pig iron, quartz which provides slag alkalinity and coke as reducing and energy agent. C2 has the same components as C1, but contains pulverized coal instead one part of coke and C3 contains granulated waste plastic instead coke in an approximately the same amount as pulverized coal. The substitution of coke with pulverized coal and waste plastic is 18.6 % and 25.2 %, respectively. The economic, productivity and ecologic aspects have been analyzed. The consumption of each tone of waste plastic in blast furnace saves 360 $, which is 18 times more than its price, bearing in mind that the market price of coke is 380 $/t % and waste plastic 20 $/t. Regarding the specific productivity, it decreases from 2.13 for C1 to 1.87 for C3. From an environmental aspect there are two main benefits: reduction of CO2 emission and impossibility of dioxin formation. The CO2 emission was 20.18, 19.46 and 17.21 for C1, C2 and C3, respectively.

  16. Radioactivity survey data in Japan. Pt. 2. Dietary materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This issue is the special number on the radioactive survey data of dietary materials collected in 1996. The samples sent from 46 prefectures in Japan were analyzed for strontium-90 and cesium-137 by Japan Chemical Analysis Center. The collection of dietary materials were conducted as follows. A full one-day ordinary diet including three meals, water, tea and snack between meals was collected semiyearly from 5 persons as a total diet sample and ashed at 450degC in an electric muffle furnace. Polished rice was yearly collected in producing districts and consumer`s areas followed by ashing in a porcelain dish. Raw milk is producing districts and commercial one were collected semiyearly. Spinach and Japanese radish were chosen as the representatives for left vegetables and for non-starch roots, respectively. Yearly collected fish, shellfish and seaweed were ashed in an electric muffle furnace after carbonization. All samples were analyzed for strontium-90 and cesium-137 after radiochemical separation by the precipitation method with sodium carbonate. Counting of radioactivity was conducted by low background {beta}-counter and based on those results, the concentrations of the nuclides were estimated. The detail data are presented in this report. (M.N.)

  17. Radioactivity survey data in Japan. Pt. 2. Dietary materials

    International Nuclear Information System (INIS)

    1996-03-01

    This issue is the special number on the radioactive survey data of dietary materials collected in 1996. The samples sent from 46 prefectures in Japan were analyzed for strontium-90 and cesium-137 by Japan Chemical Analysis Center. The collection of dietary materials were conducted as follows. A full one-day ordinary diet including three meals, water, tea and snack between meals was collected semiyearly from 5 persons as a total diet sample and ashed at 450degC in an electric muffle furnace. Polished rice was yearly collected in producing districts and consumer's areas followed by ashing in a porcelain dish. Raw milk is producing districts and commercial one were collected semiyearly. Spinach and Japanese radish were chosen as the representatives for left vegetables and for non-starch roots, respectively. Yearly collected fish, shellfish and seaweed were ashed in an electric muffle furnace after carbonization. All samples were analyzed for strontium-90 and cesium-137 after radiochemical separation by the precipitation method with sodium carbonate. Counting of radioactivity was conducted by low background β-counter and based on those results, the concentrations of the nuclides were estimated. The detail data are presented in this report. (M.N.)

  18. Felix Spectroscopy of Likely Astronomical Molecular Ions: HC_3O^+, C_2H_3CNH^+, and C_2H_5CNH^+

    Science.gov (United States)

    Thorwirth, Sven; Asvany, Oskar; Brünken, Sandra; Jusko, Pavol; Schlemmer, Stephan; Martin-Drumel, Marie-Aline; McCarthy, Michael C.

    2017-06-01

    Infrared signatures of three molecular ions of relevance to the interstellar medium and planetary atmospheres have been detected at the Free Electron Laser for Infrared eXperiments, FELIX, at Radboud University (Nijmegen, The Netherlands) in combination with the 4K FELion 22-pole ion trap facility. Mid-infrared vibrational modes of protonated tricarbon monoxide, HC_3O^+, protonated vinyl cyanide, C_2H_3CNH^+, and protonated ethyl cyanide, C_2H_5CNH^+, were detected using resonant photodissociation of the respective Ne-complexes by monitoring the depletion of their cluster mass signal as a function of wavenumber. The infrared fingerprints compare very favorably with results from high-level quantum-chemical calculations performed at the CCSD(T) level of theory.

  19. Unique furnace system for high-energy-neutron experiments

    International Nuclear Information System (INIS)

    Panayotou, N.F.; Green, D.R.; Price, L.S.

    1982-03-01

    The low flux of high energy neutron sources requires optimum utilization of the available neutron field. A furnace system has been developed in support of the US DOE fusion materials program which meets this challenge. Specimens positioned in two temperature zones just 1 mm away from the outside surface of a neutron window in the furnace enclosure can be irradiated simultaneously at two independent, isothermal (+- 1 0 C) temperatures. The temperature difference between these closely spaced isothermal zones is controllable from 0 to 320 0 C and the maximum temperature is 400 0 C. The design of the system also provides a controlled specimen environment, rapid heating and cooling and easy access to heaters and thermocouples. This furnace system is in use at the Rotating Target Neutron Source-II of Lawrence Livermore National Laboratory

  20. Behaviour of radionuclides during accidental melting of orphan sources in electric arc furnaces by means of C.F.D. gas flow modeling

    International Nuclear Information System (INIS)

    Penalva, I.; Damborenea, J.; Legarda, F.; Zuloaga, P.; Ordonez, M.; Serrano, I.

    2006-01-01

    The appearance of orphan sources in steelmaking facilities has become a fact nowadays. Radiation sources, hidden within the scrap, may come into the scrap yard and become part of the melting. As a result, dispersion of the radioactive material that makes up the source takes place throughout the facility. The University of the Basque Country (U.P.V.-E.H.U.), in collaboration with the Empresa Nacional de Residuos Radiactivos, S.A. (E.N.R.E.S.A.) and the Consejo de Seguridad Nuclear (C.S.N.), has carried out a Research Project to analyze this accidental melting of radioactive sources in electric arc furnaces (E.A.F.). The whole steelmaking process can be analyzed in several discrete phases. Radioactive sources that may be incorporated to this process will be exposed to the different critical conditions prevailing during each phase. In this sense, Computational Fluid Dynamics (C.F.D.) has been used in order to recreate such conditions and so, determine the characteristics of the dispersion of radioactivity. Two different situations have been studied in detail using C.F.D. techniques: thermal conditions around a scrap-basket that contains the source just before entering the furnace and the deposition of steelmaking dust containing 137 Cs on the inner surface of flue pipes. Before entering the furnace, scrap is usually placed inside a basket that remains above the furnace during some time. Once the furnace is open the scrap is dropped into the furnace to complete the loading process. C.F.D. techniques have been used to analyze the thermal conditions around the basket in order to assess the possibility of a break of the radioactive source hidden within the scrap, concluding that commercial sources will maintain their integrity during the whole loading process. On the other hand, after entering the furnace dispersion of the radioactive material will take place. Physical and chemical properties of the active elements (chemical form, composition, melting point, etc

  1. Behaviour of radionuclides during accidental melting of orphan sources in electric arc furnaces by means of C.F.D. gas flow modeling

    Energy Technology Data Exchange (ETDEWEB)

    Penalva, I.; Damborenea, J.; Legarda, F. [University of the Basque Country, Nuclear Engineering and Fluids Mechanics (Spain); Zuloaga, P.; Ordonez, M. [Empresa Nacional de Residuos Radiactivos, SA (ENRESA), Madrid (Spain); Serrano, I. [Consejo de Seguridad Nuclear, Madrid (Spain)

    2006-07-01

    The appearance of orphan sources in steelmaking facilities has become a fact nowadays. Radiation sources, hidden within the scrap, may come into the scrap yard and become part of the melting. As a result, dispersion of the radioactive material that makes up the source takes place throughout the facility. The University of the Basque Country (U.P.V.-E.H.U.), in collaboration with the Empresa Nacional de Residuos Radiactivos, S.A. (E.N.R.E.S.A.) and the Consejo de Seguridad Nuclear (C.S.N.), has carried out a Research Project to analyze this accidental melting of radioactive sources in electric arc furnaces (E.A.F.). The whole steelmaking process can be analyzed in several discrete phases. Radioactive sources that may be incorporated to this process will be exposed to the different critical conditions prevailing during each phase. In this sense, Computational Fluid Dynamics (C.F.D.) has been used in order to recreate such conditions and so, determine the characteristics of the dispersion of radioactivity. Two different situations have been studied in detail using C.F.D. techniques: thermal conditions around a scrap-basket that contains the source just before entering the furnace and the deposition of steelmaking dust containing {sup 137}Cs on the inner surface of flue pipes. Before entering the furnace, scrap is usually placed inside a basket that remains above the furnace during some time. Once the furnace is open the scrap is dropped into the furnace to complete the loading process. C.F.D. techniques have been used to analyze the thermal conditions around the basket in order to assess the possibility of a break of the radioactive source hidden within the scrap, concluding that commercial sources will maintain their integrity during the whole loading process. On the other hand, after entering the furnace dispersion of the radioactive material will take place. Physical and chemical properties of the active elements (chemical form, composition, melting point, etc

  2. Acoustic Levitator With Furnace And Laser Heating

    Science.gov (United States)

    Barmatz, Martin B.; Stoneburner, James D.

    1991-01-01

    Acoustic-levitation apparatus incorporates electrical-resistance furnace for uniform heating up to temperature of about 1,000 degrees C. Additional local heating by pair of laser beams raise temperature of sample to more than 1,500 degrees C. High temperature single-mode acoustic levitator generates cylindrical-mode accoustic resonance levitating sample. Levitation chamber enclosed in electrical-resistance furnace. Infrared beams from Nd:YAG laser provide additional local heating of sample. Designed for use in containerless processing of materials in microgravity or in normal Earth gravity.

  3. Digital Kilns and Furnaces——the Development Direction of Industrial Kilns and Furnaces in the 21st Century

    Institute of Scientific and Technical Information of China (English)

    WANG Xiaoming; HUANG Zhichu; ZHANG Jiafan

    2006-01-01

    The digital manufacturing theory is applied to the special manufacturing equipments--industrial kilns and furnaces; the concept of digital kilns & furnaces is put forward. The present status of research and application for digital technologies in fuel industrial kilns & furnaces is also introduced. Then, take the case of gas fuel kilns & furnaces, their main key technical issues are discussed. Digital kilns & furnaces as an important constituent of the digital equipments are the crucial base of the digital manufacturing. The value of research on digital kilns & furnaces and the application prospect are undoubted. It will improve product quality, reduce the manpower cost, enhance product market competitive ability, promote comprehensively tradition industries such as ceramics, metallurgy industry,and so on.

  4. Programmable temperature regulator of VAO-1 furnace

    International Nuclear Information System (INIS)

    Zahalka, F.

    1979-01-01

    A programmable temperature controller is described for a furnace for high-level waste processing. Furnace temperature is controlled by a program compiled from a combination of 3 parts with different linear increments or decrements of time dependent temperature and 2 parts with isothermal control for over a preset period. The equipment consists essentially of a programming unit, a programmed digital-to-analog converter and a power unit. The design is described in detail and its specifications are given. The maximum operating temperature of 1500 degC may be reached in the furnace charge section. (B.S.)

  5. FULL LENGTH RESEARCH ARTICLE Jauro et al. (2008) SWJ:79 ...

    African Journals Online (AJOL)

    Dr. Ahmed

    environmental, economic, technological and human health impacts. (Renton 1982 ... 5g of the sample was weighed into a platinum crucible and ignited in a muffle furnace .... also enhances the risk of lung cancer (Lenntech 2008). Magnesium.

  6. Heat treatment furnace

    Science.gov (United States)

    Seals, Roland D; Parrott, Jeffrey G; DeMint, Paul D; Finney, Kevin R; Blue, Charles T

    2014-10-21

    A furnace heats through both infrared radiation and convective air utilizing an infrared/purge gas design that enables improved temperature control to enable more uniform treatment of workpieces. The furnace utilizes lamps, the electrical end connections of which are located in an enclosure outside the furnace chamber, with the lamps extending into the furnace chamber through openings in the wall of the chamber. The enclosure is purged with gas, which gas flows from the enclosure into the furnace chamber via the openings in the wall of the chamber so that the gas flows above and around the lamps and is heated to form a convective mechanism in heating parts.

  7. Numerical Investigation of the Effect of C/O Mole Ratio on the Performance of Rotary Hearth Furnace Using a Combined Model

    Science.gov (United States)

    Liu, Ying; Wen, Zhi; Lou, Guofeng; Li, Zhi; Yong, Haiquan; Feng, Xiaohong

    2014-12-01

    In a rotary hearth furnace (RHF) the direct reduction of composite pellets and processes of heat and mass transfer as well as combustion in the chamber of RHF influence each other. These mutual interactions should be considered when an accurate model of RHF is established. This paper provides a combined model that incorporates two sub-models to investigate the effects of C/O mole ratio in the feed pellets on the reduction kinetics and heat and mass transfer as well as combustion processes in the chamber of a pilot-scale RHF. One of the sub-models is established to describe the direct reduction process of composite pellets on the hearth of RHF. Heat and mass transfer within the pellet, chemical reactions, and radiative heat transfer from furnace walls and combustion gas to the surface of the pellet are considered in the model. The other sub-model is used to simulate gas flow and combustion process in the chamber of RHF by using commercial CFD software, FLUENT. The two sub-models were linked through boundary conditions and heat, mass sources. Cases for pellets with different C/O mole ratio were calculated by the combined model. The calculation results showed that the degree of metallization, the total amounts of carbon monoxide escaping from the pellet, and heat absorbed by chemical reactions within the pellet as well as CO and CO2 concentrations in the furnace increase with the increase of C/O mole ratio ranging from 0.6 to 1.0, when calculation conditions are the same except for C/O molar ratio. Carbon content in the pellet has little influence on temperature distribution in the furnace under the same calculation conditions except for C/O mole ratio in the feed pellets.

  8. Molecular structure, chemical synthesis, and antibacterial activity of ABP-dHC-cecropin A from drury (Hyphantria cunea).

    Science.gov (United States)

    Zhang, Jiaxin; Movahedi, Ali; Wang, Xiaoli; Wu, Xiaolong; Yin, Tongming; Zhuge, Qiang

    2015-06-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous efforts to develop new antibiotics with new modes of actions. In this paper, cDNA encoding cecropin A was amplified from drury (Hyphantria cunea) (dHC) pupa fatbody total RNA using RT-PCR. The full-length dHC-cecropin A cDNA encoded a protein of 63 amino acids with a predicted 26-amino acid signal peptide and a 37-amino acid functional domain. We synthesized the antibacterial peptide (ABP) from the 37-amino acid functional domain (ABP-dHC-cecropin A), and amidated it via the C-terminus. Time-of-flight mass spectrometry showed its molecular weight to be 4058.94. The ABP-dHC-cecropin A was assessed in terms of its protein structure using bioinformatics and CD spectroscopy. The protein's secondary structure was predicted to be α-helical. In an antibacterial activity analysis, the ABP-dHC-cecropin A exhibited strong antibacterial activity against E. coli K12D31 and Agrobacterium EHA105. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Materials analyses of ceramics for glass furnace recuperators

    Energy Technology Data Exchange (ETDEWEB)

    Weber, G.W.; Tennery, V.J.

    1979-11-01

    The use of waste heat recuperation systems offers significant promise for meaningful energy conservation in the process heat industries. This report details the analysis of candidate ceramic recuperator materials exposed to simulated industrial glass furnace hot flue gas environments. Several candidate structural ceramic materials including various types of silicon carbide, several grades of alumina, mullite, cordierite, and silicon nitride were exposed to high-temperature flue gas atmospheres from specially constructed day tank furnaces. Furnace charging, operation, and batch composition were selected to closely simulate industrial practice. Material samples were exposed in flues both with and without glass batch in the furnace for times up to 116 d at temperatures from 1150 to 1550/sup 0/C (2100 to 2800/sup 0/F). Exposed materials were examined by optical microscopy, scanning electron microscopy, energy dispersive x-ray analysis, x-ray diffraction, and x-ray fluorescence to identify material degradation mechanisms. The materials observations were summarized as: Silicon carbide exhibited enhanced corrosion at lower temperatures (1150/sup 0/C) when alkalies were deposited on the carbide from the flue gas and less corrosion at higher temperatures (1550/sup 0/C) when alkalies were not deposited on the carbide; alumina corrosion depended strongly upon purity and density and alumina contents less than 99.8% were unsatisfactory above 1400/sup 0/C; and mullite and cordierite are generally unacceptable for application in soda-lime glass melting environments at temperatures above 1100/sup 0/C.

  10. Development of vacuum brazing furnace

    International Nuclear Information System (INIS)

    Singh, Rajvir; Yedle, Kamlesh; Jain, A.K.

    2005-01-01

    In joining of components where welding process is not possible brazing processes are employed. Value added components, high quality RF systems, UHV components of high energy accelerators, carbide tools etc. are produced using different types of brazing methods. Furnace brazing under vacuum atmosphere is the most popular and well accepted method for production of the above mentioned components and systems. For carrying out vacuum brazing successfully it is essential to have a vacuum brazing furnace with latest features of modern vacuum brazing technology. A vacuum brazing furnace has been developed and installed for carrying out brazing of components of copper, stainless steel and components made of dissimilar metals/materials. The above furnace has been designed to accommodate jobs of 700mm diameter x 2000mm long sizes with job weight of 500kgs up to a maximum temperature of 1250 degC at a vacuum of 5 x 10 -5 Torr. Oil diffusion pumping system with a combination of rotary and mechanical booster pump have been employed for obtaining vacuum. Molybdenum heating elements, radiation shield of molybdenum and Stainless Steel Grade 304 have been used. The above furnace is computer controlled with manual over ride facility. PLC and Pentium PC are integrated together to maneuver steps of operation and safety interlocks of the system. Closed loop water supply provides cooling to the system. The installation of the above system is in final stage of completion and it will be ready for use in next few months time. This paper presents insights of design and fabrication of a modern vacuum brazing furnace and its sub-system. (author)

  11. [The electric furnace of Henri Moissan at one hundred years: connection with the electric furnace, the solar furnace, the plasma furnace?].

    Science.gov (United States)

    Royère, C

    1999-03-01

    The trace of Henri Moissan's pioneer work 100 years ago is clearly evidenced by an overview of achievements in high temperature devices; 1987: "Le four électrique" by Henri Moissan; 1948-1952: "High temperature heating in a cavity rotary kiln using focusing of solar radiation" by Félix Trombe; 1962: "The cavity rotary kiln using focused solar radiation jointly with a plasma gun" by Marc Foëx; 1970: "The rotary kiln with two plasma guns and arc transfer" by Marc Foëx; 1984: "The plasma furnace" by Electricité de France (EDF) at Renardières; 1997: "The plasma furnace" by the Atomic Energy Center (CEA) at Cadarache, the VULCANO program. The first part of this contribution is devoted to Henri Moissan. Re-reading his early book on the electric furnace, especially the first chapter and the sections on silica, carbon vapor and experiments performed in casting molten metal--the conclusions are outstanding--provides modern readers with an amazing insight into future developments. The last two parts are devoted to Félix Trombe and Marc Foëx, tracing the evolution of high temperature cavity processus leading to the solar furnace and the present day plasma furnace at the CEA. Focus is placed on research conducted by the French National Center for Scientific Research (CNRS) with the solar and plasma furnaces at Odeillo. The relationships with Henri Moissan's early work are amazing, offering a well deserved homage to this pioneer researcher.

  12. Primary ethynamines (HC similarly ordered CNH2, PhC similarly ordere CNH2), aminopropadienone (H2NCH=C=C=O), and imidoylketene (NH=CHCH=C=O). Preparation and identification of molecules of cosmochemical interest

    International Nuclear Information System (INIS)

    Wentrup, C.; Briehl, H.; Lorencak, P.; Vogelbacher, U.J.; Winter, H.W.; Maquestiau, A.; Flammang, R.

    1988-01-01

    Ethynamine (HC similarly ordered CNH 2 ) has been prepared from three different precursors by flash vacuum pyrolysis (FVP) and observed by low-temperature infrared spectroscopy for the first time. The collision activation mass spectra (CAMS) strongly support the assignments. The Meldrum's acid derivative also gives rise to equilibrating imidoylketene and aminopropadienone observable by both IR and CAMS. Ethynamine isomerizes in part to acetonitrile in the gas phase but polymerizes in the solid state between -70 and -50 0 C. Both ketene imine (H 2 C=C=NH) and acrylonitrile are formed on FVP of 3-hydroxypropionitrile. 2-Phenylethynamine (PhC similarly ordered CNH 2 ) is readily produced by FVP of the isoxazolone

  13. Strontium-90 and cesium-137 in total diet; from June 1980 to Dec. 1980

    International Nuclear Information System (INIS)

    1980-01-01

    A full one day ordinary diet including three meals, water, tea and other in-between snacks for five persons was collected as a sample of ''total diet''. The sample in a large stainless steel pan was carbonized carefully by direct application of gas flame, and was transferred to a porcelain dish and then ashed at 500 0 C in an electric muffle furnace. The results obtained from June 1980 to December 1980 were shown in a table. (J.P.N.)

  14. Strontium-90 and cesium-137 in total diet; from Nov. 1978 to Dec. 1979

    International Nuclear Information System (INIS)

    1980-01-01

    A full one day ordinary diet including three meals, water, tea and other in-between snacks for five persons was collected as a sample of ''total diet''. The sample in a large stainless steel pan was carbonized carefully by direct application of gas flame, and was transferred to a porcelain dish and then ashed at 500 0 C in an electric muffle furnace. The results obtained from November 1978 to December 1979 were shown in a table. (J.P.N.)

  15. Strontium-90 and cesium-137 in total diet; from Aug. 1979 to Jul. 1980

    International Nuclear Information System (INIS)

    1980-01-01

    A full one day ordinary diet including three meals, water, tea and other in-between snacks for five persons was collected as a sample of ''total diet''. The sample in a large stainless steel pan was carbonized carefully by direct application of gas flame, and was transferred to a porcelain dish and then ashed at 500 0 C in an electric muffle furnace. The results obtained from August 1979 to July 1980 were shown in a table. (J.P.N.)

  16. Polymorph-dependent titanium dioxide nanoparticle dissolution in acidic and alkali digestions

    Science.gov (United States)

    Multiple polymorphs (anatase, brookite and rutile) of titanium dioxide nanoparticles (TiO2-NPs) with variable structures were quantified in environmental matrices via microwave-based hydrofluoric (HF) and nitric (HNO3) mixed acid digestion and muffle furnace (MF)-based potassium ...

  17. Survey Observations to Study Chemical Evolution from High-mass Starless Cores to High-mass Protostellar Objects. I. HC3N and HC5N

    Science.gov (United States)

    Taniguchi, Kotomi; Saito, Masao; Sridharan, T. K.; Minamidani, Tetsuhiro

    2018-02-01

    We carried out survey observations of HC3N and HC5N in the 42‑45 GHz band toward 17 high-mass starless cores (HMSCs) and 35 high-mass protostellar objects (HMPOs) with the Nobeyama 45 m radio telescope. We have detected HC3N from 15 HMSCs and 28 HMPOs, and HC5N from 5 HMSCs and 14 HMPOs, respectively. The average values of the column density of HC3N are found to be (5.7+/- 0.7) × {10}12 and (1.03+/- 0.12)×{10}13 cm‑2 in HMSCs and HMPOs, respectively. The average values of the fractional abundance of HC3N are derived to be (6.6+/- 0.8)× {10}-11 and (3.6+/- 0.5)× {10}-11 in HMSCs and HMPOs, respectively. We find that the fractional abundance of HC3N decreases from HMSCs to HMPOs using the Kolmogorov–Smirnov test. On the other hand, its average value of the column density slightly increases from HMSCs to HMPOs. This may imply that HC3N is newly formed in dense gas in HMPO regions. We also investigate the relationship between the column density of HC3N in HMPOs and the luminosity-to-mass ratio (L/M), a physical evolutional indicator. The column density of HC3N tends to decrease with the increase of the L/M ratio, which suggests that HC3N is destroyed by the stellar activities.

  18. Use of Different Furnaces to Study Repeatability and Reproducibility of Three Pd-C Cells

    Science.gov (United States)

    Battuello, M.; Florio, M.; Girard, F.

    2010-09-01

    Three different Pd-C eutectic fixed-point cells were prepared and investigated at INRIM. Several tens of phase transition runs were carried out and recorded with both a Si-based radiation thermometer at 950 nm and a precision InGaAs-based thermometer at 1.6 μm. Two of the cells were of the same design with an inner volume of 12 cm3. The third one was smaller with a useful inner volume of 3.6 cm3. The three cells were filled with palladium powder 4N5 or 4N8 pure and graphite powder 6N pure. The repeatability and stability of the inflection point were investigated over a period of 1 year. The noticeably different external dimensions of the two cells, namely, 110 mm and 40 mm in length, allowed the influence of the longitudinal temperature distribution to be investigated. For this purpose, two different furnaces, a single-zone with SiC heaters and a three-zone with MoSi2 heaters, were used. Different operative conditions, namely, temperature steps, melting rate, longitudinal temperature distributions, and position of cells within the furnace, were tested to investigate the reproducibility of the cells. Effects on the duration and shape of the plateaux were also studied. This article gives details of the measurement setup and analyses of the melting plateaux obtained with the different conditions.

  19. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1993-07-20

    A method is described for effecting improved heat transfer with in an industrial furnace having a cylindrical furnace section, a door at one end of the furnace section, an end plate at the opposite end of the section a circular fan plate concentrically positioned within the furnace section to define a cylindrical fan chamber between the plate and the end section with a fan there between and a heat treat chamber between the plate and the door, the fan plate defining a non-orificing annular space extending between the interior of the cylindrical furnace section and the outer edge of the plate, the plate having a centrally located under-pressure opening extending there through and a plurality of circumferentially spaced tubular heating elements extending through the annular space into the heat treating chamber, the method comprising the steps of: (a) heating the heating elements to a temperature which is hotter that the temperature of the work within the heat treating chamber; (b) rotating the fan at a speed sufficient to form a portion of the furnace atmosphere as a wind mass swirling about the fan chamber; (c) propagating the wind mass through the annular space into the heat treating chamber as a swirling wind mass in the form of an annulus, the wind mass impinging the heating elements to establish heat transfer contact therewith while the mass retains its annulus shape until contacting the door and without any significant movement of the wind mass into the center of the heat treating chamber; (d) drawing the wind mass through the under-pressure zone after the wind mass comes into heat transfer contact with the work in the heat treating chamber; and (e) thereafter heating the work by radiation from the beating elements at high furnace temperatures in excess of about 1,600 F.

  20. Site-Directed Mutagenesis Study Revealed Three Important Residues in Hc-DAF-22, a Key Enzyme Regulating Diapause of Haemonchus contortus

    Directory of Open Access Journals (Sweden)

    Yan Huang

    2017-11-01

    Full Text Available Haemonchus contortus (H. contortus is one of the most important parasites of small ruminants, especially goats and sheep. The complex life cycle of this nematode is a main obstacle for the control and prevention of haemonchosis. So far, a special form of arrested development called diapause different from the dauer stage in Caenorhabditis elegans (C. elegans has been found in many parasitic nematodes. In our previous study, we have characterized a novel gene Hc-daf-22 from H. contortus sharing high homology with Ce-daf-22 and functional analysis showed this gene has similar biological function with Ce-daf-22. In this study, Hc-daf-22 mutants were constructed using site-directed mutagenesis, and carried out rescue experiments, RNA interference (RNAi experiments and in vitro enzyme activity analysis with the mutants to further explore the precise function site of Hc-DAF-22. The results showed that Hc-daf-22 mutants could be expressed in the rescued ok693 worms and the expression positions were mainly in the intestine which was identical with that of Hc-daf-22 rescued worms. Through lipid staining we found that Hc-daf-22 could rescue daf-22 mutant (ok693 from the fatty acid metabolism deficiency while Hc-daf-22 mutants failed. Brood size and body length analyses in rescue experiment along with body length and life span analyses in RNAi experiment elucidated that Hc-daf-22 resembled Ce-daf-22 in effecting the development and capacity of C. elegans and mutants impaired the function of Hc-daf-22. Together with the protease activity assay, this research revealed three important active resides 84C/299H/349H in Hc-DAF-22 by site-directed mutagenesis.

  1. Site-Directed Mutagenesis Study Revealed Three Important Residues in Hc-DAF-22, a Key Enzyme Regulating Diapause of Haemonchus contortus.

    Science.gov (United States)

    Huang, Yan; Zheng, Xiuping; Zhang, Hongli; Ding, Haojie; Guo, Xiaolu; Yang, Yi; Chen, Xueqiu; Zhou, Qianjin; Du, Aifang

    2017-01-01

    Haemonchus contortus ( H. contortus ) is one of the most important parasites of small ruminants, especially goats and sheep. The complex life cycle of this nematode is a main obstacle for the control and prevention of haemonchosis. So far, a special form of arrested development called diapause different from the dauer stage in Caenorhabditis elegans ( C. elegans ) has been found in many parasitic nematodes. In our previous study, we have characterized a novel gene Hc-daf-22 from H. contortus sharing high homology with Ce-daf-22 and functional analysis showed this gene has similar biological function with Ce-daf-22 . In this study, Hc-daf-22 mutants were constructed using site-directed mutagenesis, and carried out rescue experiments, RNA interference (RNAi) experiments and in vitro enzyme activity analysis with the mutants to further explore the precise function site of Hc-DAF-22. The results showed that Hc-daf-22 mutants could be expressed in the rescued ok693 worms and the expression positions were mainly in the intestine which was identical with that of Hc-daf-22 rescued worms. Through lipid staining we found that Hc-daf-22 could rescue daf-22 mutant ( ok693 ) from the fatty acid metabolism deficiency while Hc-daf-22 mutants failed. Brood size and body length analyses in rescue experiment along with body length and life span analyses in RNAi experiment elucidated that Hc-daf-22 resembled Ce-daf-22 in effecting the development and capacity of C. elegans and mutants impaired the function of Hc-daf-22 . Together with the protease activity assay, this research revealed three important active resides 84C/299H/349H in Hc-DAF-22 by site-directed mutagenesis.

  2. Mass Balance Modeling for Electric Arc Furnace and Ladle Furnace System in Steelmaking Facility in Turkey

    Institute of Scientific and Technical Information of China (English)

    (I)smail Ekmek(c)i; Ya(s)ar Yetisken; (U)nal (C)amdali

    2007-01-01

    In the electric arc furnace (EAF) steel production processes, scrap steel is principally used as a raw material instead of iron ore. In the steelmaking process with EAF, scrap is first melted in the furnace and then the desired chemical composition of the steel can be obtained in a special furnace such as ladle furnace (LF). This kind of furnace process is used for the secondary refining of alloy steel. LF furnace offers strong heating fluxes and enables precise temperature control, thereby allowing for the addition of desired amounts of various alloying elements. It also provides outstanding desulfurization at high-temperature treatment by reducing molten steel fluxes and removing deoxidation products. Elemental analysis with mass balance modeling is important to know the precise amount of required alloys for the LF input with respect to scrap composition. In present study, chemical reactions with mass conservation law in EAF and LF were modeled altogether as a whole system and chemical compositions of the final steel alloy output can be obtained precisely according to different scrap compositions, alloying elements ratios, and other input amounts. Besides, it was found that the mass efficiency for iron element in the system is 95.93%. These efficiencies are calculated for all input elements as 8.45% for C, 30.31% for Si, 46.36% for Mn, 30.64% for P, 41.96% for S, and 69.79% for Cr, etc. These efficiencies provide valuable ideas about the amount of the input materials that are vanished or combusted for 100 kg of each of the input materials in the EAF and LF system.

  3. Structural and functional characterization of a novel gene, Hc-daf-22, from the strongylid nematode Haemonchus contortus.

    Science.gov (United States)

    Guo, Xiaolu; Zhang, Hongli; Zheng, Xiuping; Zhou, Qianjin; Yang, Yi; Chen, Xueqiu; Du, Aifang

    2016-07-29

    The strongylid nematode Haemonchus contortus is a parasite of major concern for modern livestock husbandry because hostile environmental conditions may induce diapause in the early fourth-stage larvae. A new gene Hc-daf-22 was identified which is the homologue of Ce-daf-22 and human SCPx. Genome walking and RACE were performed to obtain the whole cDNA and genomic sequence of this gene. Using qRT-PCR with all developmental stages as templates to explore the transcription level and micro-injection was applied to confirm the promoter activity of the 5'-flanking region. Overexpression, rescue and RNA interference experiments were performed in N2, daf-22 mutant (ok 693) strains of C. elegans to study the gene function of Hc-daf-22. The full length gene of Hc-daf-22 (6,939 bp) contained 16 exons separated by 15 introns, and encoded a cDNA of 1,602 bp (533 amino acids, estimated at about 59.3 kDa) with a peak in L3 and L4 in transcriptional level. The Hc-DAF-22 protein was consisted of a 3-oxoacyl-CoA thiolase domain and a SCP2 domain and evolutionarily conserved. The 1,548 bp fragment upstream of the 5'-flanking region was confirmed to have promoter activity compared with 5'-flanking region of Ce-daf-22. The rescue experiment by micro-injection of daf-22 (ok693) mutant strain showed significant increase in body size and brood size in the rescued worms with significantly reduced or completely absent fat granules confirmed by Oil red O staining, indicating that Hc-daf-22 could partially rescue the function of Ce-daf-22. Furthermore, RNAi with Hc-daf-22 could partially silence the endogenous Ce-daf-22 in N2 worms and mimic the phenotype of daf-22 (ok693) mutants. The gene Hc-daf-22 was isolated and its function identified using C. elegans as a model organism. Our results indicate that Hc-daf-22 shared similar characteristics and function with Ce-daf-22 and may play an important role in peroxisomal β-oxidation and the development in H. contortus.

  4. Structural and morphological characteristics of composite: polyamide 6/ferrite nickel; Caracteristicas morfologicas e estruturais do composito: poliamida 6/ferrita de niquel

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes, P.C.; Santos, P.T.A.; Silva, T.R.G.; Araujo, E.M.; Costa, A.C.F.M., E-mail: patricia.fernandes24@hotmail.co [Universidade Federal de Campina Grande (UFCG), PB (Brazil). Unidade Academica de Engenharia de Materiais

    2010-07-01

    This study aims to evaluate the structural and morphological characteristics of a composite polyamide 6 with 50% loading of nickel ferrite. The ferrite was obtained by combustion synthesis and calcined in muffle furnace at 700 deg C. The polymer matrix was previously dried in vacuum oven at 80 deg C / 48 h to eliminate moisture. The composites were characterized by XRD and SEM. XRD results show the incorporation of cargo in the matrix, and that increasing temperature led to a considerable increase in crystallinity. The particle size of the load in the matrix was changed by increasing temperature. (author)

  5. Dental Porcelain Furnaces: Test and Evaluation.

    Science.gov (United States)

    1988-01-01

    D Q)L a ) a) C ) C C C C c *. . 3a)0. >4 a)->4 >4 -, Z 0 -a-’- 4-% a) ( nca )m m nU Cs C ) (3 ) 11) a) a) a3) Q) a) W) a2) C C~~ >4 L > > >1 >1 4 > 4...Fig. 1) is a computerized programmable porcelain furnace with 45 open programs. This unit has a large detachable cathode -ray tube (CRT) screen which

  6. Metallurgy of mercury in Almaden: from aludel furnaces until Pacific furnaces

    International Nuclear Information System (INIS)

    Tejero-Manzanares, J.; Garrido Saenz, I.; Mata Cabrera, F.; Rubio Mesas, M. L.

    2014-01-01

    This paper shows the different types of furnaces for roasting cinnabar, used in the metallurgy of quicksilver over the centuries of exploitation of the Almaden Mines (Spain). Some of these techniques are part of our industrial heritage. They have contributed to name UNESCO World Heritage Site the vast technological legacy of these mines recently. This research contributes to close the long way of metallurgical activity from aludel furnaces until Pacif furnaces, first and lasted technology to produce on an industrial scale. It is delved into the most relevant aspects having to do with the type, evolution and number of furnaces existing on each of the periods. (Author)

  7. Investigating the potential of Aucoumea klaineana Pierre sapwood ...

    African Journals Online (AJOL)

    vainqueuer

    2016-11-16

    Nov 16, 2016 ... process (Harris et al., 1945). Advantages and disadvantages of lignocellulose pretreatment process for ethanol cellulose production with sulfuric acid have been extensively ... ceramic ashing crucible, and introduced in a muffle furnace ... At the termination of the pyrolysis, the ceramic ashing crucible.

  8. Advanced steel reheat furnace

    Energy Technology Data Exchange (ETDEWEB)

    Moyeda, D.; Sheldon, M.; Koppang, R. [Energy and Environmental Research Corp., Irvine, CA (United States); Lanyi, M.; Li, X.; Eleazer, B. [Air Products and Chemicals, Inc., Allentown, PA (United States)

    1997-10-01

    Energy and Environmental Research Corp. (EER) under a contract from the Department of Energy is pursuing the development and demonstration of an Advanced Steel Reheating Furnace. This paper reports the results of Phase 1, Research, which has evaluated an advanced furnace concept incorporating two proven and commercialized technologies previously applied to other high temperature combustion applications: EER`s gas reburn technology (GR) for post combustion NOx control; and Air Product`s oxy-fuel enrichment air (OEA) for improved flame heat transfer in the heating zones of the furnace. The combined technologies feature greater production throughput with associated furnace efficiency improvements; lowered NOx emissions; and better control over the furnace atmosphere, whether oxidizing or reducing, leading to better control over surface finish.

  9. Organizational structure of HC Sparta Praha

    OpenAIRE

    Pázlerová, Veronika

    2015-01-01

    Title: Organizational structure of HC Sparta Praha Objectives: The aim of this bachelor thesis is based on an analysis of the organizational structure of czech ice hockey team HC Sparta Praha and to evaluate its individual parts and afterwards introduce suggestions to change it. Methods: To create the bachelors thesis was used qualitative research, from which it was used descriptive case study. Furthermore basic methods were used data acquisition as an observation, analysis of texts and docum...

  10. Similarity of Ferrosilicon Submerged Arc Furnaces With Different Geometrical Parameters

    Directory of Open Access Journals (Sweden)

    Machulec B.

    2017-12-01

    Full Text Available In order to determine reasons of unsatisfactory production output regarding one of the 12 MVA furnaces, a comparative analysis with a furnace of higher power that showed a markedly better production output was performed. For comparison of ferrosilicon furnaces with different geometrical parameters and transformer powers, the theory of physical similarity was applied. Geometrical, electrical and thermal parameters of the reaction zones are included in the comparative analysis. For furnaces with different geometrical parameters, it is important to ensure the same temperature conditions of the reaction zones. Due to diverse mechanisms of heat generation, different criteria for determination of thermal and electrical similarity for the upper and lower reaction zones were assumed contrary to other publications. The parameter c3 (Westly was assumed the similarity criterion for the upper furnace zones where heat is generated as a result of resistive heating while the parameter J1 (Jaccard was assumed the similarity criterion for the lower furnace zones where heat is generated due to arc radiation.

  11. Spectrographic determination of niobium in uranium - niobium alloys

    International Nuclear Information System (INIS)

    Charbel, M.Y.; Lordello, A.R.

    1984-01-01

    A method for the spectrographic determination of niobium in uranium-niobium alloys in the concentration range 1-10% has been developed. The metallic sample is converted to oxide by calcination in a muffle furnace at 800 0 C for two hours. The standards are prepared synthetically by dry-mixing. One part of the sample or standard is added to nineteen parts of graphite powder and the mixture is excited in a DC arc. Hafnium has been used as internal standard. The precision of the method is + - 4.8%. (Author) [pt

  12. Hc-daf-2 encodes an insulin-like receptor kinase in the barber's pole worm, Haemonchus contortus, and restores partial dauer regulation.

    Science.gov (United States)

    Li, Facai; Lok, James B; Gasser, Robin B; Korhonen, Pasi K; Sandeman, Mark R; Shi, Deshi; Zhou, Rui; Li, Xiangrui; Zhou, Yanqin; Zhao, Junlong; Hu, Min

    2014-06-01

    Infective L3s (iL3s) of parasitic nematodes share common behavioural, morphological and developmental characteristics with the developmentally arrested (dauer) larvae of the free-living nematode Caenorhabditis elegans. It is proposed that similar molecular mechanisms regulate entry into or exit from the dauer stage in C. elegans, and the transition from free-living to parasitic forms of parasitic nematodes. In C. elegans, one of the key factors regulating the dauer transition is the insulin-like receptor (designated Ce-DAF-2) encoded by the gene Ce-daf-2. However, nothing is known about DAF-2 homologues in most parasitic nematodes. Here, using a PCR-based approach, we identified and characterised a gene (Hc-daf-2) and its inferred product (Hc-DAF-2) in Haemonchus contortus (a socioeconomically important parasitic nematode of ruminants). The sequence of Hc-DAF-2 displays significant sequence homology to insulin receptors (IR) in both vertebrates and invertebrates, and contains conserved structural domains. A sequence encoding an important proteolytic motif (RKRR) identified in the predicted peptide sequence of Hc-DAF-2 is consistent with that of the human IR, suggesting that it is involved in the formation of the IR complex. The Hc-daf-2 gene was transcribed in all life stages of H. contortus, with a significant up-regulation in the iL3 compared with other stages. To compare patterns of expression between Hc-daf-2 and Ce-daf-2, reporter constructs fusing the Ce-daf-2 or Hc-daf-2 promoter to sequence encoding GFP were microinjected into the N2 strain of C. elegans, and transgenic lines were established and examined. Both genes showed similar patterns of expression in amphidial (head) neurons, which relate to sensation and signal transduction. Further study by heterologous genetic complementation in a daf-2-deficient strain of C. elegans (CB1370) showed partial rescue of function by Hc-daf-2. Taken together, these findings provide a first insight into the roles of Hc

  13. Mathematical Determination of Thermal Load for Fluidised Bed Furnaces Using Sawdust

    Directory of Open Access Journals (Sweden)

    Antonescu Nicolae

    2014-06-01

    Full Text Available For technical applications, a physical model capable of predicting the particle evolution in the burning process along its trajectory through the furnace is very useful. There are two major demands: all the thermo-dynamic processes that describe the particle burning process must be accounted and the model must be written in such equation terms to allow the intervention for parameter settings and particle definition. The computations were performed for the following parameters: furnace average temperature between 700 and 1200 °C, size of the sawdust particle from 4 to 6 mm and fix carbon ignition between 500 and 900 °C. The values obtained for the characteristic parameters of the burning process ranged from 30 to 60 [kg/(h·m3] for the gravimetrical burning speed WGh and from 150 to 280 [kW/m3] for the volumetric thermal load of the furnace QV. The main conclusion was that the calculus results are in good agreement with the experimental data from the pilot installations and the real-case measurements in the sawdust working boiler furnaces or pre-burning chambers. Another very important conclusion is that the process speed variation, when the furnace temperature changes, confirms the thermo-kinetic predictions, namely that the burning process speed decreases when the furnace temperature increases.

  14. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain

    DEFF Research Database (Denmark)

    Pedersen, Lotte Bang; Birkelund, S; Holm, A

    1996-01-01

    The Chlamydia trachomatis histone H1-like protein (Hc1) is a DNA-binding protein specific for the metabolically inactive chlamydial developmental form, the elementary body. Hc1 induces DNA condensation in Escherichia coli and is a strong inhibitor of transcription and translation. These effects may......-hydroxysuccinimide ester), purified recombinant Hc1 was found to form dimers. The dimerization site was located in the N-terminal part of Hc1 (Hc1(2-57)). Moreover, circular dichroism measurements indicated an overall alpha-helical structure of this region. By using limited proteolysis, Southwestern blotting, and gel...... retardation assays, Hc1(53-125) was shown to contain a domain capable of binding both DNA and RNA. Under the same conditions, Hc1(2-57) had no nucleic acid-binding activity. Electron microscopy of Hc1-DNA and Hc1(53-125)-DNA complexes revealed differences suggesting that the N-terminal part of Hc1 may affect...

  15. Effect of furnace type and ceramming heat treatment conditions on the biaxial flexural strength of a canasite glass-ceramic.

    Science.gov (United States)

    Johnson, A; Shareef, M Y; van Noort, R; Walsh, J M

    2000-07-01

    To assess the effect of different heat treatment conditions when using two different furnace types on the biaxial flexural strength (BFS) of a fluorcanasite castable glass-ceramic. Two furnace types, one a programmable furnace (PF), the other a dental laboratory burnout furnace (DLF), were used with various ceramming times to determine their effect on the BFS of a fluorcanasite castable glass-ceramic. The glass-ceramic material was cast to produce discs of 12 mm diameter and 2 mm thickness using the lost wax casting process (n = 80). After casting, both furnace types were used to ceram the discs. Half the discs were not de-vested from the casting ring before ceramming but cerammed in situ (DLF) and half were de-vested before ceramming (PF). All the discs were given a nucleation heat treatment at 520 degrees C for 1 h and then cerammed at 860 degrees C using four heat soak times (0.5, 1, 2 and 3 h). The DLF furnace had a rate of climb of 13 degrees C/min and the PF furnace had a rate of climb of 5 degrees C/min to 520 degrees C and 3 degrees C/min to 860 degrees C. After ceramming the discs were de-vested and the BFS determined using a Lloyd 2000R tester. The maximum BFS values seen for both furnace types were almost identical (280 MPa), but were achieved at different heat soak times (1 h DLF, and 2 h PF). The only significant differences in BFS values for the two furnaces were between the 0.5 and 2 h heat soak times (p < or = 0.05). Individual differences were seen between results obtained from each furnace type/heat soak times evaluated (p < or = 0.05). Already available dental laboratory burnout furnaces can be used to ceram fluorcanasite glass-ceramic castings to the same BFS values as more expensive and slower specialist programmable furnaces.

  16. Sensitivity study of the Hb$\\bar{b}$ and Hc$\\bar{c}$ couplings for e$^+$- e$^-$ collisions at FCC

    CERN Document Server

    Heckmann, Lea Alina

    2017-01-01

    The Future Circular Collider (FCC) is one of the possible future projects proposed at CERN. With a circumference of 80 - 100km it should initially serve as an e$^+$- e$^-$ collider reaching energies between 90 - 350 GeV. While operating at centre of mass energies of 240 GeV and luminosities of 5*10$^{34}$ cm$^{-2}$s$^{-1}$ FCC should be used as a Higgs factory with the aim of validating standard model predictions. Therefore, it should be able to measure the Higgs couplings with precisions around 1%. In order to estimate the sensitivity of the branching ratio for $H\\rightarrow c\\bar{c}$ (BR(Hcc)) a simultaneous simulation and analysis of Hb$\\bar{b}$ and Hc$\\bar{c}$ is necessary. Therefore, events were generated for both cases and afterwards the CMS detector with an added c-tagging method was used to simulate the detector response. Relevant events were selected and afterwards used for optimising a simultaneous fit determining BR(Hbb) and BR(Hcc) and its uncertainties. The same procedure was applied while chang...

  17. Experimental study on combustion of biomass micron fuel (BMF) in cyclone furnace

    International Nuclear Information System (INIS)

    Luo Siyi; Xiao Bo; Hu Zhiquan; Liu Shiming; He Maoyun

    2010-01-01

    Based on biomass micron fuel (BMF) with particle size less than 250 μm, a cyclone combustion concept was presented and a lab-scale cyclone furnace was designed to evaluate the feasibility. The influences of equivalence ration (ER) and particle size of BMF on combustion performance were studied, as well as temperature distribution in the combustion chamber. The results show that BMF combustion in the cyclone furnace is reliable, with rational temperature distribution inside furnace hearth, lower CO emission, soot concentration and C content in ashes. As ER being 1.2, the temperature in the chamber is maximized up to 1200 deg. C. Smaller particles results in better combustion performances.

  18. 22 March 2012 - Canada Foundation for Innovation Senior Programs Officer H.-C. Bandulet with spouse in the ATLAS visitor centre guided by Former Spokesperson P. Jenni.

    CERN Multimedia

    Maximilien Brice

    2012-01-01

    CERN-HI-1203073 16: Senior Canadian Scientist, ATLAS Collaboration, University of Toronto/IPP R. Teuscher; L. Andrzejewski(Spouse); H.-C. Bandulet; R.Voss (behind);ATLAS Collaboration, University of Toronto N.Ilic; ;ATLAS Collaboration, University of Toronto, R. Rezvani; ATLAS Collaboration Former Spokesperson P. Jenni.

  19. Video monitoring system for enriched uranium casting furnaces

    International Nuclear Information System (INIS)

    Turner, P.C.

    1978-03-01

    A closed-circuit television (CCTV) system was developed to upgrade the remote-viewing capability on two oralloy (highly enriched uranium) casting furnaces in the Y-12 Plant. A silicon vidicon CCTV camera with a remotely controlled lens and infrared filtering was provided to yield a good-quality video presentation of the furnace crucible as the oralloy material is heated from 25 to 1300 0 C. Existing tube-type CCTV monochrome monitors were replaced with solid-state monitors to increase the system reliability

  20. Conditional deletion of CD98hc inhibits osteoclast development

    Directory of Open Access Journals (Sweden)

    Hideki Tsumura

    2016-03-01

    Full Text Available The CD98 heavy chain (CD98hc regulates virus-induced cell fusion and monocyte fusion, and is involved in amino acid transportation. Here, we examined the role that CD98hc plays in the formation of osteoclasts using CD98hcflox/floxLysM-cre peritoneal macrophages (CD98hc-defect macrophages. Peritoneal macrophages were stimulated with co-cultured with osteoblasts in the presence of 1,25(OH2 vitamin D3, and thereafter stained with tartrate-resistant acid phosphatase staining solution. The multinucleated osteoclast formation was severely impaired in the peritoneal macrophages isolated from the CD98hc-defect mice compared with those from wild-type mice. CD98hc mediates integrin signaling and amino acid transport through the CD98 light chain (CD98lc. In integrin signaling, suppression of the M-CSF-RANKL-induced phosphorylation of ERK, Akt, JNK and p130Cas were observed at the triggering phase in the CD98h-defect peritoneal macrophages. Moreover, we showed that the general control non-derepressible (GCN pathway, which was activated by amino acid starvation, was induced by the CD98hc-defect peritoneal macrophages stimulated with RANKL. These results indicate that CD98 plays two important roles in osteoclast formation through integrin signaling and amino acid transport.

  1. Effect of Microstructure on the Wear Behavior of Heat Treated SS-304 Stainless Steel

    OpenAIRE

    S. Kumar

    2016-01-01

    Sliding wear characteristics of some heat treated SS-304 stainless steel against EN-8 steel in dry condition have been studied in the present experimental work. Samples of SS-304 stainless steel have been heated in a muffle furnace in desired temperature and allowed to dwell for two hours. The heated specimen are then cooled in different media namely inside the furnace, open air, cutting grade oil (grade 44) and water at room temperature to obtain different grades of heat treatment. Microstr...

  2. Decomposition mechanisms and non-isothermal kinetics of LiHC_2O_4·H_2O

    Institute of Scientific and Technical Information of China (English)

    2012-01-01

    The thermal decomposition process of LiHC2O4·H2O from 30 to 600 ℃ was investigated by the thermogravimetric and differential scanning calorimetry (TG-DSC). The phases decomposited at different temperature were characterized by X-ray diffraction (XRD), which indicated the decompositions at 150, 170, and 420℃, relating to LiHC2O4, Li2C2O4, Li2C2O4, and Li2CO3, respectively. Reaction mechanisms in the whole sintering process were determined, and the model fitting kinetic approaches were applied to data for non...

  3. Prediction value of anti-Mullerian hormone (AMH) serum levels and antral follicle count (AFC) in hormonal contraceptive (HC) users and non-HC users undergoing IVF-PGD treatment.

    Science.gov (United States)

    Bas-Lando, Maayan; Rabinowitz, Ron; Farkash, Rivka; Algur, Nurit; Rubinstein, Esther; Schonberger, Oshrat; Eldar-Geva, Talia

    2017-10-01

    Use of hormone contraceptives (HC) is very popular in the reproductive age and, therefore, evaluation of ovarian reserve would be a useful tool to accurately evaluate the reproductive potential in HC users. We conducted a retrospective cohort study of 41 HC users compared to 57 non-HC users undergoing IVF-preimplantation genetic diagnosis (PGD) aiming to evaluate the effect of HC on the levels of anti-Mullerian hormone (AMH), small (2-5 mm), large (6-10 mm) and total antral follicle count (AFC) and the ability of these markers to predict IVF outcome. Significant differences in large AFC (p = 0.04) and ovarian volume (p users (p users these correlations were weaker. In HC users, the significant predictors of achieving 18 oocytes were AFC (ROC-AUC; 0.958, p = 0.001 and 0.883, p = 0.001) and AMH (ROC-AUC-0.858, p = 0.01 and 0.878, p = 0.001), respectively. The predictive values were less significant in non-HC users. These findings are important in women treated for PGD, in ovum donors and for assessing the fertility prognosis in women using HC and wishing to postpone pregnancy.

  4. Thermogravimetric and kinetic study of methylolmelamine ...

    African Journals Online (AJOL)

    Some salient properties of cotton cellulose which requires it to be treated with additives to improve its versatility were examined taken into consideration, the molecular structure. Thermogravimetric analysis of the cotton fabric and the treated cotton fabric were carried out in an improvised muffled furnace. The result was in ...

  5. Improvement of refractories for bottom of DC-Arc furnace; Chokuryudenkiro no roshoyo taikabutsu no kaizen

    Energy Technology Data Exchange (ETDEWEB)

    Kawahara, Toshihiro; Suzuki, Koichi; Okamoto, Yutaka; Tokuchi, Kazumasa [Asahi Glass Corp., Tokyo (Japan)

    1999-06-01

    A conductive refractory furnace bottom type DC electric furnace has disadvantages of large material cost, large working cost and long working period in refractory replacement due to a large amount of refractory installation. The furnace bottom has three layers of permanent bricks, wear bricks and a hot repair material, and durability improvement of wear bricks is an important issue. From the study results for 4 years in a real furnace the following conclusions were obtained: (1) The use of MgO-C based unburned bricks of 15% carbon content as wear bricks reduced the erosion speed by about 20% compared with a conventional MgO-C based burned bricks of 20% carbon content, (2) The resistivity value of the MgO-C based unburned brick decreased to a value equivalent to that of MgO-C based burned brick, which gave no problem in electro conductivity, (3) The addition of the hot repair material over 260 degree C of furnace bottom temperature and stable forming of a protective coating layer of 200-400 mm thickness enabled high durability over 6,400 heats of wear bricks, and (4) The use of the permanent bricks for 15,477 heats promised possible further use. (NEDO)

  6. Comparison of a burning mass ceramics coating in laboratory furnace and instrustrial furnace; Comparacao de queimas de uma massa ceramica de revestimento em forno de laboratorio e forno industrial

    Energy Technology Data Exchange (ETDEWEB)

    Soares, R.A.L., E-mail: robertoarruda@ifpi.edu.br [Instituto Federal de Educacao, Ciencia e Tecnologia do Piaui (IFPI), Terersina, PI (Brazil); Castro, J.R. de S. [Universidade Federal do Piaui (UFPI), Teresina, PI (Brazil)

    2012-07-01

    This work intends to analyze the differences obtained in the technological properties of a ceramic coating after firing in two distinct environments, laboratory furnace and industrial furnace. For this, was characterized a ceramic mass used in the production of porous coating. The analyzes were performed chemical, mineralogical and thermal mass in that. The specimens were obtained by compacting and burned in the maximum temperature of 1140 deg C in two furnaces, laboratory and industrial. The technological tests were performed linear shrinkage, water absorption, bulk density and mechanical strength. The microstructure was evaluated by ray-X diffraction and scanning electron microscopy. The results showed that both furnaces provided significant differences in analyzed specimens, such as increased strength and low water absorption in the fired samples in a laboratory furnace, for example. (author)

  7. Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Osintsev, V V; Khidiyatov, A M

    1981-01-01

    The purpose of the invention is to improve the operating efficiency of the furnace device containing prefurnaces connected to the main combustion chamber. For this purpose in the proposed furnace device is equipped with prefurnaces with burners, rectangular vertical chamber of combustion is equipped with central hearth projection. As indicated by studies, the hearth projection of the indicated projections promotes the development of transverse streams which guarantee effective mixing of the combustion products in the upper part of the combustion chamber 3. This reduces the nonuniformity of temperature at the outlet from the latter, decreases the probability of slagging and hot spots on the heating surface.

  8. Marketingový mix HC Enegie Karlovy Vary

    OpenAIRE

    Štrobl, Adam

    2016-01-01

    Title: Marketing mix of HC Energie Karlovy Vary Objectives: This thesis is based on a questionnaire responses obtained from HC Energie Karlovy Vary fans. Its objective is focused on evaluation of their opinions on the marketing mix, their subsequent interpretation, and finally even development of recommendations for improvement based on previous analysis. Methods: Two methods are used to analyse the marketing mix. The first method is qualitative participant observation. The second method is a...

  9. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements

    International Nuclear Information System (INIS)

    Camarini, G.; Djanikian, J.G.

    1994-01-01

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95 0 C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab

  10. Selective cytotoxicity of the antibacterial peptide ABP-dHC-Cecropin A and its analog towards leukemia cells.

    Science.gov (United States)

    Sang, Ming; Zhang, Jiaxin; Zhuge, Qiang

    2017-05-15

    Some cationic antibacterial peptides, with typical amphiphilic α-helical conformations in a membrane-mimicking environment, exhibit anticancer properties as a result of a similar mechanism of action towards both bacteria and cancer cells. We previously reported the cDNA sequence of the antimicrobial peptide ABP-dHC-Cecropin A precursor cloned from drury (Hyphantria cunea) (dHC). In the present study, we synthesized and structurally characterized ABP-dHC-Cecropin A and its analog, ABP-dHC-Cecropin A-K(24). Circular dichroism spectroscopy showed that ABP-dHC-Cecropin A and its analog adopt a well-defined α-helical structure in a 50% trifluorethanol solution. The cytotoxicity and cell selectivity of these peptides were further examined in three leukemia cell lines and two non-cancerous cell lines. The MTT assay indicated both of these peptides have a concentration-dependent cytotoxic effect in leukemia cells, although the observed cytotoxicity was greater with ABP-dHC-Cecropin A-K(24) treatment, whereas they were not cytotoxic towards the non-cancerous cell lines. Moreover, ABP-dHC-Cecropin A and its analog had a lower hemolytic effect in human red blood cells. Together, these results suggest the peptides are selectively cytotoxic towards leukemia cells. Confocal laser scanning microscopy determined that the peptides were concentrated at the surface of the leukemia cells, and changes in the cell membrane were determined with a permeability assay, which suggested that the anticancer activity of ABP-dHC-Cecropin A and its analog is a result of its presence at the leukemia cell membrane. ABP-dHC-Cecropin A and its analog may represent a novel anticancer agent for leukemia therapy, considering its cancer cell selectivity and relatively low cytotoxicity in normal cells. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Sludge Stabilization Campaign blend plan

    International Nuclear Information System (INIS)

    De Vries, M.L.

    1994-01-01

    This sludge stabilization blend plan documents the material to be processed and the order of processing for the FY95 Sludge Stabilization Campaign. The primary mission of this process is to reduce the inventory of unstable plutonium bearing sludge. The source of the sludge is residual and glovebox floor sweepings from the production of material at the Plutonium Finishing Plant (PFP). The reactive sludge is currently being stored in various gloveboxes at PFP. There are two types of the plutonium bearing material that will be thermally stabilized in the muffle furnace: Plutonium Reclamation Facility (PRF) sludge and Remote Mechanical C (RMC) Line material

  12. Waste and dust utilisation in shaft furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Senk, D.; Babich, A.; Gudenau, H.W. [Rhein Westfal TH Aachen, Aachen (Germany)

    2005-07-01

    Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilised e.g. in agglomeration processes (sintering, pelletising or briquetting) and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverised coal (PC) has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

  13. [Value-based health care (VbHC): Whence and wither].

    Science.gov (United States)

    Raspe, Heiner

    2018-02-01

    Since about 2005 VbHC has become a prominent movement on the border between population medicine and health economics. The "value" it is aiming at is defined as health care "outcomes per dollar spent". The text focuses on the work of two prominent proponents: M.E. Porter and J.A.M. Gray. It considers background and central elements of VbHC and discusses similarities and differences between the two authors. Especially the differences raise questions that will hopefully play a role in the German discussion that is still in its infancy. Three complex topics seem to be particularly relevant: the relationship between VbHC and evidence-based health care, the question of who is to benefit from VbHC (total, diseased, patient population?), and the role of moral values especially the value of solidarity with the severely ill and socially deprived. Copyright © 2018. Published by Elsevier GmbH.

  14. Detection of Interstellar HC5O in TMC-1 with the Green Bank Telescope

    Science.gov (United States)

    McGuire, Brett A.; Burkhardt, Andrew M.; Shingledecker, Christopher N.; Kalenskii, Sergei V.; Herbst, Eric; Remijan, Anthony J.; McCarthy, Michael C.

    2017-07-01

    We report the detection of the carbon-chain radical HC5O for the first time in the interstellar medium toward the cold core TMC-1 using the 100 m Green Bank Telescope. We observe four hyperfine components of this radical in the J=17/2\\to 15/2 rotational transition that originates from the {}2{{{\\Pi }}}1/2 fine structure level of its ground state and calculate an abundance of n/{n}{H2}=1.7× {10}-10, assuming an excitation temperature of {T}{ex}=7 K. No indication of HC3O, HC4O, or HC6O, is found in these or archival observations of the source, while we report tentative evidence for HC7O. We compare calculated upper limits and the abundance of HC5O to predictions based on (1) the abundance trend of the analogous HC n N family in TMC-1 and (2) a gas-grain chemical model. We find that the gas-grain chemical model well reproduces the observed abundance of HC5O, as well as the upper limits of HC3O, HC6O, and HC7O, but HC4O is overproduced. The prospects for astronomical detection of both shorter and longer HC n O chains are discussed.

  15. The 18-kilodalton Chlamydia trachomatis histone H1-like protein (Hc1) contains a potential N-terminal dimerization site and a C-terminal nucleic acid-binding domain

    DEFF Research Database (Denmark)

    Pedersen, LB; Birkelund, Svend; Holm, A

    1996-01-01

    The Chlamydia trachomatis histone H1-like protein (Hc1) is a DNA-binding protein specific for the metabolically inactive chlamydial developmental form, the elementary body. Hc1 induces DNA condensation in Escherichia coli and is a strong inhibitor of transcription and translation. These effects may......-hydroxysuccinimide ester), purified recombinant Hc1 was found to form dimers. The dimerization site was located in the N-terminal part of Hc1 (Hc1(2-57)). Moreover, circular dichroism measurements indicated an overall alpha-helical structure of this region. By using limited proteolysis, Southwestern blotting, and gel...

  16. Alkaline carbonates in blast furnace process

    Directory of Open Access Journals (Sweden)

    P. Besta

    2014-10-01

    Full Text Available The production of iron in blast furnaces is a complex of physical, chemical and mechanical processes. The input raw materials contain not only metallic components, but also a number of negative elements. The most important negative elements include alkaline carbonates. They can significantly affect the course of the blast furnace process and thus the overall performance of the furnace. As a result of that, it is essential to accurately monitor the alkali content in the blast furnace raw materials. The article analyzes the alkali content in input and output raw materials and their impact on the blast furnace process.

  17. Industrial furnace with improved heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-07-07

    This patent describes an industrial furnace for heating work which emits volatiles during heating. It comprises a generally cylindrical, closed end furnace section defining a sealable heat transfer chamber for heating work disposed therein; fan means for directing furnace atmosphere as a swirling wind mass about the interior of the furnace section over a portion thereof; heat means for heating the wind mass within the fan chamber; and an incineration track formed as a circumferentially extending groove about the exterior of the furnace section and in heat transfer relationship with and situated at least to extend about a portion of the fan chamber.

  18. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The Plutonium Immobilization Project (PIP), to be located at the Savannah River Site SRS, is a combined development and testing effort by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), Argonne National Laboratory (ANL), and the Australian National Science and Technology Organization (ANSTO). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulating package and resistance heating elements located within a nuclear glovebox. Other furnaces types considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment

  19. Calculations in furnace technology

    CERN Document Server

    Davies, Clive; Hopkins, DW; Owen, WS

    2013-01-01

    Calculations in Furnace Technology presents the theoretical and practical aspects of furnace technology. This book provides information pertinent to the development, application, and efficiency of furnace technology. Organized into eight chapters, this book begins with an overview of the exothermic reactions that occur when carbon, hydrogen, and sulfur are burned to release the energy available in the fuel. This text then evaluates the efficiencies to measure the quantity of fuel used, of flue gases leaving the plant, of air entering, and the heat lost to the surroundings. Other chapters consi

  20. Blast furnace hearth lining: post mortem analysis

    International Nuclear Information System (INIS)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando

    2017-01-01

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10"6 ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  1. Blast furnace hearth lining: post mortem analysis

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, Bruno Vidal de; Vernilli Junior, Fernando, E-mail: bva@usp.br [Universidade de Sao Paulo (USP), Lorena, SP (Brazil). Escola de Engenharia; Neves; Elton Silva; Silva, Sidiney Nascimento [Companhia Siderugica Nacional (CSN), Rio de Janeiro, RJ (Brazil)

    2017-05-15

    The main refractory lining of blast furnace hearth is composed by carbon blocks that operates in continuous contact with hot gases, liquid slag and hot metal, in temperatures above 1550 deg C for 24 hours a day. To fully understand the wear mechanism that acts in this refractory layer system it was performed a Post Mortem study during the last partial repair of this furnace. The samples were collected from different parts of the hearth lining and characterized using the following techniques: Bulk Density and Apparent Porosity, X-Ray Fluorescence, X-ray Diffraction, Scanning Electron Microscopy with Energy-dispersive X-Ray Spectroscopy. The results showed that the carbon blocks located at the opposite side of the blast furnace tap hole kept its main physicochemical characteristics preserved even after the production of 20x10{sup 6} ton of hot metal. However, the carbon blocks around the Tap Hole showed infiltration by hot metal and slag and it presents a severe deposition of zinc and sulfur over its carbon flakes. The presence of these elements is undesired because it reduces the physic-chemical stability of this refractory system. This deposition found in the carbon refractory is associated with impurities present in the both coke and the sinter feed used in this blast furnace in the last few years. (author)

  2. High-temperature CO / HC gas sensors to optimize firewood combustion in low-power fireplaces

    Directory of Open Access Journals (Sweden)

    B. Ojha

    2017-06-01

    Full Text Available In order to optimize firewood combustion in low-power firewood-fuelled fireplaces, a novel combustion airstream control concept based on the signals of in situ sensors for combustion temperature, residual oxygen concentration and residual un-combusted or partly combusted pyrolysis gas components (CO and HC has been introduced. A comparison of firing experiments with hand-driven and automated airstream-controlled furnaces of the same type showed that the average CO emissions in the high-temperature phase of the batch combustion can be reduced by about 80 % with the new control concept. Further, the performance of different types of high-temperature CO / HC sensors (mixed-potential and metal oxide types, with reference to simultaneous exhaust gas analysis by a high-temperature FTIR analysis system, was investigated over 20 batch firing experiments (∼ 80 h. The distinctive sensing behaviour with respect to the characteristically varying flue gas composition over a batch firing process is discussed. The calculation of the Pearson correlation coefficients reveals that mixed-potential sensor signals correlate more with CO and CH4; however, different metal oxide sensitive layers correlate with different gas species: 1 % Pt / SnO2 designates the presence of CO and 2 % ZnO / SnO2 designates the presence of hydrocarbons. In the case of a TGS823 sensor element, there was no specific correlation with one of the flue gas components observed. The stability of the sensor signals was evaluated through repeated exposure to mixtures of CO, N2 and synthetic air after certain numbers of firing experiments and exhibited diverse long-term signal instabilities.

  3. In vivo study of the HC-TN strain of hepatitis C virus recovered from a patient with fulminant hepatitis: RNA transcripts of a molecular clone (pHC-TN) are infectious in chimpanzees but not in Huh7.5 cells

    DEFF Research Database (Denmark)

    Sakai, Akito; Takikawa, Shingo; Thimme, Robert

    2007-01-01

    Both viral and host factors are thought to influence the pathogenesis of hepatitis C virus (HCV) infection. We studied strain HC-TN (genotype 1a), which caused fulminant hepatic failure in a patient and, subsequently, severe hepatitis in a chimpanzee (CH1422), to analyze the relationship between...... persistently infected. CH1579 and CH1581, despite their differing outcomes, both developed significant intrahepatic cellular immune responses, but not antibodies to the envelope glycoproteins or neutralizing antibodies, during the acute infection. We analyzed the polyprotein sequences of virus recovered...

  4. Electrostatic Levitation Furnace for the ISS

    Science.gov (United States)

    Murakami, Keiji; Koshikawa, Naokiyo; Shibasaki, Kohichi; Ishikawa, Takehiko; Okada, Junpei; Takada, Tetsuya; Arai, Tatsuya; Fujino, Naoki; Yamaura, Yukiko

    2012-01-01

    JAXA (Japan Aerospace Exploration Agency) has just started the development of Electrostatic Levitation Furnace to be launched in 2014 for the ISS. This furnace can control the sample position with electrostatic force and heat it above 2000 degree Celsius using semiconductor laser from four different directions. The announcement of Opportunity will be issued soon for this furnace. In this paper, we will show the specifications of this furnace and also the development schedule

  5. Cold exposure increases slow-type myosin heavy chain 1 (MyHC1) composition of soleus muscle in rats.

    Science.gov (United States)

    Mizunoya, Wataru; Iwamoto, Yohei; Sato, Yusuke; Tatsumi, Ryuichi; Ikeuchi, Yoshihide

    2014-03-01

    The aim of this study was to examine the effects of cold exposure on rat skeletal muscle fiber type, according to myosin heavy chain (MyHC) isoform and metabolism-related factors. Male Wistar rats (7 weeks old) were housed individually at 4 ± 2°C as a cold-exposed group or at room temperature (22 ± 2°C) as a control group for 4 weeks. We found that cold exposure significantly increased the slow-type MyHC1 content in the soleus muscle (a typical slow-type fiber), while the intermediate-type MyHC2A content was significantly decreased. In contrast to soleus, MyHC composition of extensor digitorum longus (EDL, a typical fast-type fiber) and gastrocnemius (a mix of slow-type and fast-type fibers) muscle did not change from cold exposure. Cold exposure increased mRNA expression of mitochondrial uncoupling protein 3 (UCP3) in both the soleus and EDL. Cold exposure also increased mRNA expression of myoglobin, peroxisome proliferator-activated receptor gamma coactivator 1α (PGC1α) and forkhead box O1 (FOXO1) in the soleus. Upregulation of UCP3 and PGC1α proteins were observed with Western blotting in the gastrocnemius. Thus, cold exposure increased metabolism-related factors in all muscle types that were tested, but MyHC isoforms changed only in the soleus. © 2013 Japanese Society of Animal Science.

  6. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, D.C.

    2000-06-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed LOI equipment, including a model 1608FL CM{trademark} Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform Loss on Ignition (LOI) testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet Glfilter will he flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A.

  7. GdCuMg with ZrNiAl-type structure. An 82.2 K ferromagnet

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Sebastian; Heletta, Lukas; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-08-01

    GdCuMg has been synthesized by induction-melting of the elements in a sealed niobium ampoule followed by annealing in a muffle furnace. The sample was studied by powder and single crystal X-ray diffraction: ZrNiAl type, P anti 62m (a=749.2(4), c=403.3(1) pm), wR2=0.0242, 315 F{sup 2} values and 15 variables. Temperature dependent magnetic susceptibility measurements have revealed an experimental magnetic moment of 8.54(1) μ{sub B} per Gd atom. GdCuMg orders ferromagnetically below T{sub C}=82.2(5) K and based on the magnetization isotherms it can be classified as a soft ferromagnet.

  8. The determination, by x-ray-fluorescence spectrometry, of gold, silver, and base metals on activated carbon

    International Nuclear Information System (INIS)

    Wall, G.; Jacobs, J.J.; Dixon, K.

    1980-01-01

    The method proposed involves ashing of the sample at a low temperature in a muffle furnace, mixing of the ash with alumina and boric acid in a Siebtechnik mill, and briquetting of the mixture. The elements are measured in the briquette by the use of x-ray fluorescence spectrometry. The detailed laboratory method is given in an appendix [af

  9. Influence of Botulinumtoxin A on the Expression of Adult MyHC Isoforms in the Masticatory Muscles in Dystrophin-Deficient Mice (Mdx-Mice

    Directory of Open Access Journals (Sweden)

    Ute Ulrike Botzenhart

    2016-01-01

    Full Text Available The most widespread animal model to investigate Duchenne muscular dystrophy is the mdx-mouse. In contrast to humans, phases of muscle degeneration are replaced by regeneration processes; hence there is only a restricted time slot for research. The aim of the study was to investigate if an intramuscular injection of BTX-A is able to break down muscle regeneration and has direct implications on the gene expression of myosin heavy chains in the corresponding treated and untreated muscles. Therefore, paralysis of the right masseter muscle was induced in adult healthy and dystrophic mice by a specific intramuscular injection of BTX-A. After 21 days the mRNA expression and protein content of MyHC isoforms of the right and left masseter, temporal, and the tongue muscle were determined using quantitative RT-PCR and Western blot technique. MyHC-IIa and MyHC-I-mRNA expression significantly increased in the paralyzed masseter muscle of control-mice, whereas MyHC-IIb and MyHC-IIx/d-mRNA were decreased. In dystrophic muscles no effect of BTX-A could be detected at the level of MyHC. This study suggests that BTX-A injection is a suitable method to simulate DMD-pathogenesis in healthy mice but further investigations are necessary to fully analyse the BTX-A effect and to generate sustained muscular atrophy in mdx-mice.

  10. Organic carbon determination in histosols and soil horizons with high organic matter content from Brazil Determinação do carbono orgânico em organossolos e solos com horizontes com elevado conteúdo de matéria orgânica

    Directory of Open Access Journals (Sweden)

    Marcos Gervasio Pereira

    2006-04-01

    Full Text Available Soil taxonomy systems distinguish mineral soils from organic soils based on the amount of soil organic carbon. Procedures adopted in soil surveys for organic carbon measurement are therefore of major importance to classify the soils, and to correlate their properties with data from other studies. To evaluate different methods for measuring organic carbon and organic matter content in Histosols and soils with histic horizons, from different regions of Brazil, 53 soil samples were comparatively analyzed by the methods of Walkley & Black (modified, Embrapa, Yeomans & Bremner, modified Yeomans & Bremner, muffle furnace, and CHN. The modified Walkley & Black (C-W & B md and the combustion of organic matter in the muffle furnace (OM-Muffle were the most suitable for the samples with high organic carbon content. Based on regression analysis data, the OM-muffle may be estimated from C-W & B md by applying a factor that ranges from 2.00 to 2.19 with 95% of probability. The factor 2.10, the average value, is suggested to convert results obtained by these methods.Sistemas taxonômicos distinguem horizontes e/ou camadas minerais das orgânicas baseando-se na quantidade de carbono orgânico. Assim, o procedimento adotado em pesquisas para a quantificação do conteúdo de carbono orgânico é de grande importância para a classificação das terras e correlacionar as suas propriedades com dados de outros estudos. Com o objetivo de avaliar os diferentes métodos para medir o conteúdo de carbono orgânico e de matéria orgânica em Organossolo e solos com elevados teores de matéria orgânica, de diferentes regiões do Brasil, cinqüenta e três amostras de terra foram comparativamente analisadas pelos métodos de Walkley & Black (modificado, Embrapa, Yeomans & Bremner, Yeomans & Bremner modificado, forno mufla, e CHN. O método Walkley & Black modificado (C-W & B md e a combustão de matéria orgânica no forno mufla (MO-Mufla revelaram-se mais satisfat

  11. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  12. Time and Temperature Test Results for PFP Thermal Stabilization Furnaces

    International Nuclear Information System (INIS)

    COMPTON, J.A.

    2000-01-01

    The national standard for plutonium storage acceptability (standard DOE-STD-3013-99, generally known as ''the 3013 standard'') has been revised to clarify the requirement for processes that will produce acceptable storage materials. The 3013 standard (Reference 1) now states that ''Oxides shall be stabilized by heating the material in an oxidizing atmosphere to a Material Temperature of at least 950 C (1742 F) for not less than 2 hours.'' The process currently in use for producing stable oxides for storage at the Plutonium Finishing Plant (PFP) heats a furnace atmosphere to 1000 C and holds it there for 2 hours. The temperature of the material being stabilized is not measured directly during this process. The Plutonium Process Support Laboratories (PPSL) were requested to demonstrate that the process currently in use at PFP is an acceptable method of producing stable plutonium dioxide consistently. A spare furnace identical to the production furnaces was set up and tested under varying conditions with non-radioactive surrogate materials. Reference 2 was issued to guide the testing program. The process currently in use at the PFP for stabilizing plutonium-bearing powders was shown to heat all the material in the furnace to at least 950 C for at least 2 hours. The current process will work for (1) relatively pure plutonium dioxide, (2) dioxide powders mixed with up to 20 weight percent magnesium oxide, and (3) dioxide powders with up to 11 weight percent magnesium oxide and 20 weight percent magnesium nitrate hexahydrate. Time and temperature data were also consistent with a successful demonstration for a mixture containing 10 weight percent each of sodium and potassium chloride; however, the molten chloride salts destroyed the thermocouples in the powder and temperature data were unavailable for part of that run. These results assume that the current operating limits of no more than 2500 grams per furnace charge and a powder height of no more than 1.5 inches remain

  13. Automated, High Temperature Furnace for Glovebox Operation

    International Nuclear Information System (INIS)

    Neikirk, K.

    2001-01-01

    The U.S. Department of Energy will immobilize excess plutonium in the proposed Plutonium Immobilization Plant (PIP) at the Savannah River Site (SRS) as part of a two track approach for the disposition of weapons usable plutonium. As such, the Department of Energy is funding a development and testing effort for the PIP. This effort is being performed jointly by Lawrence Livermore National Laboratory (LLNL), Westinghouse Savannah River Company (WSRC), Pacific Northwest National Laboratory (PNNL), and Argonne National Laboratory (ANL). The Plutonium Immobilization process involves the disposition of excess plutonium by incorporation into ceramic pucks. As part of the immobilization process, furnaces are needed for sintering the ceramic pucks. The furnace being developed for puck sintering is an automated, bottom loaded furnace with insulting package and resistance heating elements located within a nuclear glovebox. Other furnaces considered for the application include retort furnaces and pusher furnaces. This paper, in part, will discuss the furnace technologies considered and furnace technology selected to support reliable puck sintering in a glovebox environment. Due to the radiation levels and contamination associated with the plutonium material, the sintering process will be fully automated and contained within nuclear material gloveboxes. As such, the furnace currently under development incorporates water and air cooling to minimize heat load to the glovebox. This paper will describe the furnace equipment and systems needed to employ a fully automated puck sintering process within nuclear gloveboxes as part of the Plutonium Immobilization Plant

  14. Loss on Ignition Furnace Acceptance and Operability Test Procedure

    International Nuclear Information System (INIS)

    JOHNSTON, D.C.

    2000-01-01

    The purpose of this Acceptance Test Procedure and Operability Test Procedure (ATP/OTP)is to verify the operability of newly installed Loss on Ignition (LOI) equipment, including a model 1608FL CMTM Furnace, a dessicator, and balance. The operability of the furnace will be verified. The arrangement of the equipment placed in Glovebox 157-3/4 to perform LOI testing on samples supplied from the Thermal Stabilization line will be verified. In addition to verifying proper operation of the furnace, this ATP/OTP will also verify the air flow through the filters, verify a damper setting to establish and maintain the required differential pressure between the glovebox and the room pressure, and test the integrity of the newly installed HEPA filter. In order to provide objective evidence of proper performance of the furnace, the furnace must heat 15 crucibles, mounted on a crucible rack, to 1000 C, according to a program entered into the furnace controller located outside the glovebox. The glovebox differential pressure will be set to provide the 0.5 to 2.0 inches of water (gauge) negative pressure inside the glovebox with an expected airflow of 100 to 125 cubic feet per minute (cfm) through the inlet filter. The glovebox inlet G1 filter will be flow tested to ensure the integrity of the filter connections and the efficiency of the filter medium. The newly installed windows and glovebox extension, as well as all disturbed joints, will be sonically tested via ultra probe to verify no leaks are present. The procedure for DOS testing of the filter is found in Appendix A

  15. CSAR 81-001 addendum 2: Use of a plexiglass contamination barrier in HC-227-T

    International Nuclear Information System (INIS)

    Chiao, T.

    1994-01-01

    Plutonium Finish Plant (PFP) Engineering requested a criticality safety evaluation (Appendix 1) to support a revision of Criticality Prevention Specification CPS-Z-165-80601 allowing a plexiglass enclosure (PGE) to be placed inside the HC-227T hood as a contamination barrier. The HC-227T hood is the receiving/transfer enclosure for Pu nitrate solution contained in Product Removal containers (PR Cans), L10 Containers (L10, Fl-10, 10 L) or L-3 Containers. Within the HC-227T, a 1.349 square meter (15 square foot) enclosure, PGE, has been created to provide contamination control around the weighing scale. Two or more standard criticality drains shall be installed on this enclosure prior to beneficial usage. The evaluation considered the normal process, spillage scenarios, waste/container accumulations within the enclosure, and interactions of Pu within the enclosure as well as other containers external to the enclosure. The results from the criticality safety analysis by CRA shows that such as contamination barrier can be placed inside the HC-227T Hood if the PGE is equipped with adequate criticality drains. In addition, other limits as well as administrative controls listed in CPS-Z-165-80601 Rev./Mod. B/0 and CPS-Z-165-80010 Rev./Mod. C/1 shall also apply

  16. Improved Casting Furnace Conceptual Design

    Energy Technology Data Exchange (ETDEWEB)

    Fielding, Randall Sidney [Idaho National Lab. (INL), Idaho Falls, ID (United States); Tolman, David Donald [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-02-01

    In an attempt to ensure more consistent casting results and remove some schedule variance associated with casting, an improved casting furnace concept has been developed. The improved furnace uses the existing arc melter hardware and glovebox utilities. The furnace concept was designed around physical and operational requirements such as; a charge sized of less than 30 grams, high heating rates and minimal additional footprint. The conceptual model is shown in the report as well as a summary of how the requirements were met.

  17. Plasma nitriding and simultaneous tempering of VF 800AT tool steel; Nitretacao por plasma com revenimento simultaneo do aco ferramenta VF 800AT

    Energy Technology Data Exchange (ETDEWEB)

    Prass, Andre Ricardo; Fontana, Luis Cesar; Recco, Abel Andre Candido, E-mail: prass.andrericardo@gmail.com, E-mail: luis.fontana@udesc.br, E-mail: abel.recco@udesc.br [Universidade do Estado de Santa Catarina (UDESC), Joinville, SC (Brazil)

    2017-04-15

    Plasma nitriding of tool steels improves the surface hardness due to formation of diffusion zone and/or compound layer. The process parameters such as temperature, gas composition and dwell time, allow to control the layer thickness, the microstructure, the crystalline phases and the type of layer (for example white layer or diffusion zone). This paper discusses an alternative procedure for the heat treatment of tempering and surface treatment, both in plasma or combining conventional heat treatment with subsequent plasma nitriding. Carrying out both treatments in plasma could enable reduction in manufacturing costs, lower energy consumption and less time for tools manufacturing. Samples of VF800AT steel were treated and characterized (at surface and core of samples) through the following technique: X-ray diffraction, optical microscopy, scanning electron microscopy, micro-hardness profile and Rockwell C measurement. Temperature measurements during the plasma treatment, show that arise thermal gradient between the surface and the core of the samples. In this work, it was observed that the surface was up to 7% hotter than the core of sample, during the plasma treatment with temperature of magnitude about 5 x 10{sup 2} °C. This thermal gradient seems inherent to the plasma process, so that it can produce different microstructure, hardness and crystalline phases between core and edge of samples. However, when two tempering operations are prior carried out in a muffle furnace and the third tempering treatment is subsequently carried out simultaneously with the plasma nitriding, it is observed that the microstructure, the crystalline phases, hardness and micro hardness (in both, edge and core) are similar to treatments done in conventional mode cycle (in muffle furnace) with subsequent plasma nitriding. (author)

  18. Industrial and process furnaces principles, design and operation

    CERN Document Server

    Jenkins, Barrie

    2014-01-01

    Furnaces sit at the core of all branches of manufacture and industry, so it is vital that these are designed and operated safely and effi-ciently. This reference provides all of the furnace theory needed to ensure that this can be executed successfully on an industrial scale. Industrial and Process Furnaces: Principles, 2nd Edition provides comprehensive coverage of all aspects of furnace operation and design, including topics essential for process engineers and operators to better understand furnaces. This includes: the combustion process and its control, furnace fuels, efficiency,

  19. Behavior of coke in large blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, N

    1978-01-01

    Three blast furnaces were quenched in operation and the contents were examined; the temperature distribution was also measured, using Tempil pellets. The furnaces examined included a low productivity one, which was examined to see what was wrong. Changes in the quality of coke as it descends in the furnace, and coke behavior in the raceway and hearth are reported. The functions required of coke, and the effects of poor coke quality, are explained, together with the coke quality required in large blast furnaces. A theoretical study of the role of coke in large blast furnaces is included.

  20. Observations of HC5N and NH3 in Taurus

    International Nuclear Information System (INIS)

    Myers, P.C.; Ho, P.T.P.; Benson, P.J.

    1979-01-01

    Observations of HC 5 N lines toward TMC-2 indicate that it is a small (Lapprox.0.1 pc), dense (napprox.4 x 10 4 cm -3 ), low-mass (Mapprox.1 M/sub sun/) fragment in the Taurus complex, with velocity dispersion at the emission peak only about twice thermal (Δvapprox.0.2 km s -1 ). The HC 5 N emission region in TMC-2 has roughly half the projected area of that in TMC-1, and is more round than filamentary. The HC 5 N and NH 3 emission regions in TMC-2 are coincident, with N (HC 5 N)/N (NH 3 ) approx.0.1. The line width is much smaller than the free-fall width; the deduced values of L, n, and T satisfy the virial-theorem requirement for stable equilibrium. The temporary equilibrium of such fragments may serve to lengthen the time scales for formation of low-mass stars and long-chain molecules

  1. Antiferromagnetic ordering in the plumbide EuPdPb

    Energy Technology Data Exchange (ETDEWEB)

    Heletta, Lukas; Klenner, Steffen; Block, Theresa; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie

    2017-07-01

    The plumbide EuPdPb was synthesized in polycrystalline form by reaction of the elements in a sealed niobium ampoule in a muffle furnace. The structure was refined from single-crystal X-ray diffractometer data: TiNiSi type, Pnma, a = 752.4(2), b = 476.0(2), c = 826.8(2) pm, wR2 = 0.0485, 704 F{sup 2} values and 20 variables. The europium atoms are coordinated by two tilted and puckered Pd{sub 3}Pb{sub 3} hexagons (280-289 pm Pd-Pb) with pronounced Eu-Pd bonding (312-339 pm). Temperature-dependent magnetic susceptibility measurements show Curie-Weiss behaviour and an experimental magnetic moment of 7.35(1) μB per Eu atom. EuPdPb orders antiferromagnetically at T{sub N} = 13.8(5) K and shows a metamagnetic transition at a critical field of 15 kOe. {sup 151}Eu Moessbauer spectra confirm divalent europium (δ = -10.04(1) mm s{sup -1}) and show full magnetic hyperfine field splitting (B{sub hf} = 21.1(1) T) at 6 K.

  2. Influence of the hydrogen-rich on the furnace thermal efficiency

    International Nuclear Information System (INIS)

    Lee, Chien-Li; Jou, Chih-Ju G.

    2016-01-01

    Highlights: • Iν fixed velocity mixing fuel, the flame length is reduced when adding more hydrogen. • Orange-yellowish brightness decrease with increasing tail gas to hydrocarbon fuel. • Adding hydrogen to hydrocarbon fuel will improve the velocity and stability flame. - Abstract: In this research a full-scale furnace is used to recover the hydrogen-rich tail gas as fuel. Adding hydrogen gas to hydrocarbon fuel will reduce the ignition delay of methane, increase the flame velocity and speed up the relatively slow reaction rate of methane to improve the flame stability. The results show that the flame length and orange-yellowish brightness decrease as the amount of tail gas fuel added to the natural gas increases, because of the lower C/H ratio in the flame. Moreover, at a fixed flow rate of hydrocarbon fuel, the moving length of the burning flame is reduced as the amount of hydrogen increases, and thus the visible flame length becomes shorter. Additionally, burning the mixture of tail gas reduces the pressure and increases the gas rising velocity in the furnace radiation and convective zones compared to burning pure tail gas, and thus the gas temperatures in the convective zone and in the flue are raised. The furnace convective zone temperature and the flue gas temperature are 793.6 °C and 350.7 °C, respectively, for burning the mixture fuel (45 vol. % tail gas + 55 vol. % natural gas) vs. 648.5 °C and 346.3 °C for burning the pure tail gas.

  3. Detection of the HC3NH+ and HCNH+ ions in the L1544 pre-stellar core

    Science.gov (United States)

    Quénard, D.; Vastel, C.; Ceccarelli, C.; Hily-Blant, P.; Lefloch, B.; Bachiller, R.

    2017-09-01

    The L1544 pre-stellar core was observed as part of the ASAI (Astrochemical Surveys At IRAM) Large Program. We report the first detection in a pre-stellar core of the HCNH+ and HC3NH+ ions. The high spectral resolution of the observations allows us to resolve the hyperfine structure of HCNH+. Local thermodynamic equilibrium (LTE) analysis leads to derive a column density equal to (2.0 ± 0.2) × 1013 cm-2 for HCNH+ and (1.5 ± 0.5) × 1011 cm-2 for HC3NH+. We also present non-LTE analysis of five transitions of HC3N, three transitions of H13CN and one transition of HN13C, all of them linked to the chemistry of HCNH+ and HC3NH+. We computed for HC3N, HCN and HNC a column density of (2.0 ± 0.4) × 1013 cm-2, (3.6 ± 0.9) × 1014 cm-2 and (3.0 ± 1.0) × 1014 cm-2, respectively. We used the gas-grain chemical code nautilus to predict the abundances of all these species across the pre-stellar core. Comparison of the observations with the model predictions suggests that the emission from HCNH+ and HC3NH+ originates in the external layer where non-thermal desorption of other species was previously observed. The observed abundance of both ionic species ([HCNH+] ≃ 3 × 10-10 and [HC3NH+] ≃ [1.5 - 3.0] × 10-12, with respect to H2) cannot be reproduced at the same time by the chemical modelling within the error bars of the observations only. We discuss the possible reasons for the discrepancy and suggest that the current chemical models are not fully accurate or complete. However, the modelled abundances are within a factor of 3, consistent with the observations, considering a late stage of the evolution of the pre-stellar core, compatible with previous observations.

  4. Co-C and Pd-C Eutectic Fixed Points for Radiation Thermometry and Thermocouple Thermometry

    Science.gov (United States)

    Wang, L.

    2017-12-01

    Two Co-C and Pd-C eutectic fixed point cells for both radiation thermometry and thermocouple thermometry were constructed at NMC. This paper describes details of the cell design, materials used, and fabrication of the cells. The melting curves of the Co-C and Pd-C cells were measured with a reference radiation thermometer realized in both a single-zone furnace and a three-zone furnace in order to investigate furnace effect. The transition temperatures in terms of ITS-90 were determined to be 1324.18 {°}C and 1491.61 {°}C with the corresponding combined standard uncertainty of 0.44 {°}C and 0.31 {°}C for Co-C and Pd-C, respectively, taking into account of the differences of two different types of furnaces used. The determined ITS-90 temperatures are also compared with that of INRIM cells obtained using the same reference radiation thermometer and the same furnaces with the same settings during a previous bilateral comparison exercise (Battuello et al. in Int J Thermophys 35:535-546, 2014). The agreements are within k=1 uncertainty for Co-C cell and k = 2 uncertainty for Pd-C cell. Shapes of the plateaus of NMC cells and INRIM cells are compared too and furnace effects are analyzed as well. The melting curves of the Co-C and Pd-C cells realized in the single-zone furnace are also measured by a Pt/Pd thermocouple, and the preliminary results are presented as well.

  5. Control of the Gas Flow in an Industrial Directional Solidification Furnace for Production of High Purity Multicrystalline Silicon Ingots

    Directory of Open Access Journals (Sweden)

    Lijun Liu

    2015-01-01

    Full Text Available A crucible cover was designed as gas guidance to control the gas flow in an industrial directional solidification furnace for producing high purity multicrystalline silicon. Three cover designs were compared to investigate their effect on impurity transport in the furnace and contamination of the silicon melt. Global simulations of coupled oxygen (O and carbon (C transport were carried out to predict the SiO and CO gases in the furnace as well as the O and C distributions in the silicon melt. Cases with and without chemical reaction on the cover surfaces were investigated. It was found that the cover design has little effect on the O concentration in the silicon melt; however, it significantly influences CO gas transport in the furnace chamber and C contamination in the melt. For covers made of metal or with a coating on their surfaces, an optimal cover design can produce a silicon melt free of C contamination. Even for a graphite cover without a coating, the carbon concentration in the silicon melt can be reduced by one order of magnitude. The simulation results demonstrate a method to control the contamination of C impurities in an industrial directional solidification furnace by crucible cover design.

  6. The degradation of lining of rotary furnaces in the production of zinc oxide

    Czech Academy of Sciences Publication Activity Database

    Luptáková, Natália; Pešlová, F.; Anisimov, E.

    2014-01-01

    Roč. 21, č. 3 (2014), s. 116-121 ISSN 1335-0803 Institutional support: RVO:68081723 Keywords : zinc oxide * the production of zinc oxide * zinc slag * refractories * the degradation of rotary furnace linings Subject RIV: JG - Metallurgy http://ojs.mateng.sk/index.php/Mateng/article/view/133/194

  7. Model based energy benchmarking for glass furnace

    International Nuclear Information System (INIS)

    Sardeshpande, Vishal; Gaitonde, U.N.; Banerjee, Rangan

    2007-01-01

    Energy benchmarking of processes is important for setting energy efficiency targets and planning energy management strategies. Most approaches used for energy benchmarking are based on statistical methods by comparing with a sample of existing plants. This paper presents a model based approach for benchmarking of energy intensive industrial processes and illustrates this approach for industrial glass furnaces. A simulation model for a glass furnace is developed using mass and energy balances, and heat loss equations for the different zones and empirical equations based on operating practices. The model is checked with field data from end fired industrial glass furnaces in India. The simulation model enables calculation of the energy performance of a given furnace design. The model results show the potential for improvement and the impact of different operating and design preferences on specific energy consumption. A case study for a 100 TPD end fired furnace is presented. An achievable minimum energy consumption of about 3830 kJ/kg is estimated for this furnace. The useful heat carried by glass is about 53% of the heat supplied by the fuel. Actual furnaces operating at these production scales have a potential for reduction in energy consumption of about 20-25%

  8. Behavior of an indigenously fabricated transferred arc plasma furnace for smelting studies

    Science.gov (United States)

    A, K. MANDAL; R, K. DISHWAR; O, P. SINHA

    2018-03-01

    The utilization of industrial solid waste for metal recovery requires high-temperature tools due to the presence of silica and alumina, which is reducible at high temperature. In a plasma arc furnace, transferred arc plasma furnace (TAP) can meet all requirements, but the disadvantage of this technology is the high cost. For performing experiments in the laboratory, the TAP was fabricated indigenously in a laboratory based on the different inputs provided in the literature for the furnace design and fabrication. The observed parameters such as arc length, energy consumption, graphite electrode consumption, noise level as well as lining erosion were characterized for this fabricated furnace. The nitrogen plasma increased by around 200 K (200 °C) melt temperature and noise levels decreased by ∼10 dB compared to a normal arc. Hydrogen plasma offered 100 K (100 °C) higher melt temperature with ∼5 dB higher sound level than nitrogen plasma. Nitrogen plasma arc melting showed lower electrode and energy consumption than normal arc melting, whereas hydrogen plasma showed lower energy consumption and higher electrode consumption in comparison to nitrogen plasma. The higher plasma arc temperature resulted in a shorter meltdown time than normal arc with smoother arcing. Hydrogen plasma permitted more heats, reduced meltdown time, and lower energy consumption, but with increased graphite consumption and crucible wear. The present study showed that the fabricated arc plasma is better than the normal arc furnace with respect to temperature generation, energy consumption, and environmental friendliness. Therefore, it could be used effectively for smelting-reduction studies.

  9. Chemical Complexity in Local Diffuse and Translucent Clouds: Ubiquitous Linear C3H and CH3CN, a Detection of HC3N and an Upper Limit on the Abundance of CH2CN

    Science.gov (United States)

    Liszt, Harvey; Gerin, Maryvonne; Beasley, Anthony; Pety, Jerome

    2018-04-01

    We present Jansky Very Large Array observations of 20–37 GHz absorption lines from nearby Galactic diffuse molecular gas seen against four cosmologically distant compact radio continuum sources. The main new observational results are that l-C3H and CH3CN are ubiqitous in the local diffuse molecular interstellar medium at {\\text{}}{A}{{V}} ≲ 1, while HC3N was seen only toward B0415 at {\\text{}}{A}{{V}} > 4 mag. The linear/cyclic ratio is much larger in C3H than in C3H2 and the ratio CH3CN/HCN is enhanced compared to TMC-1, although not as much as toward the Horsehead Nebula. More consequentially, this work completes a long-term program assessing the abundances of small hydrocarbons (CH, C2H, linear and cyclic C3H and C3 {{{H}}}2, and C4H and C4H‑) and the CN-bearing species (CN, HCN, HNC, HC3N, HC5N, and CH3CN): their systematics in diffuse molecular gas are presented in detail here. We also observed but did not strongly constrain the abundances of a few oxygen-bearing species, most prominently HNCO. We set limits on the column density of CH2CN, such that the anion CH2CN‑ is only viable as a carrier of diffuse interstellar bands if the N(CH2CN)/N(CH2CN‑) abundance ratio is much smaller in this species than in any others for which the anion has been observed. We argue that complex organic molecules (COMS) are not present in clouds meeting a reasonable definition of diffuse molecular gas, i.e., {\\text{}}{A}{{V}} ≲ 1 mag. Based on observations obtained with the NRAO Jansky Very Large Array (VLA).

  10. Characterization and study of the behavior of wire Ti-Ni with shape memory effect enables manufacture of actuators; Estudo da caracterizacao e do comportamento de fios de Ti-Ni com efeito memoria de forma viabilizando fabricacao de atuadores

    Energy Technology Data Exchange (ETDEWEB)

    Pina, E.A.C.; Araujo Filho, O.O. de; Urtiga Filho, S.L.; Gonzalez, C.H., E-mail: kikipina@hotmail.co [Universidade Federal de Pernambuco (DEM/CTG/UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Dept. de Engenharia Mecanica

    2010-07-01

    This work aims to characterize the wire commercial Ti-Ni of 1.27 mm in diameter with shape memory effect for the development of helical springs with the function of sensor / actuator. After heat treatment, the transformation temperatures, the presence of precipitates, the degree of damping, maximum stress of rupture, modulus of elasticity, the presence of phase R, the behavior of the alloy under tension, will be analyzed and compared in each situation. For characterization we used several methods including: heat treatment, Differential Scanning Calorimetry (DSC), tensile, dynamic mechanical analysis (DMA), X-ray diffraction, thermomechanical cycling. The wires were cut into pieces and heat-treated at 400 deg C with variation of time in muffle furnaces and quenching in water at 25 deg C. (author)

  11. Characterization and study of the behavior of wire Ti-Ni with shape memory effect enables manufacture of actuators

    International Nuclear Information System (INIS)

    Pina, E.A.C.; Araujo Filho, O.O. de; Urtiga Filho, S.L.; Gonzalez, C.H.

    2010-01-01

    This work aims to characterize the wire commercial Ti-Ni of 1.27 mm in diameter with shape memory effect for the development of helical springs with the function of sensor / actuator. After heat treatment, the transformation temperatures, the presence of precipitates, the degree of damping, maximum stress of rupture, modulus of elasticity, the presence of phase R, the behavior of the alloy under tension, will be analyzed and compared in each situation. For characterization we used several methods including: heat treatment, Differential Scanning Calorimetry (DSC), tensile, dynamic mechanical analysis (DMA), X-ray diffraction, thermomechanical cycling. The wires were cut into pieces and heat-treated at 400 deg C with variation of time in muffle furnaces and quenching in water at 25 deg C. (author)

  12. Energy Saving in Industrial Annealing Furnaces

    Directory of Open Access Journals (Sweden)

    Fatma ÇANKA KILIÇ

    2018-03-01

    Full Text Available In this study, an energy efficiency studies have been carried out in a natural gas-fired rolling mill annealing furnace of an industrial establishment. In this context, exhaust gas from the furnace has been examined in terms of waste heat potential. In the examinations that have been made in detail; waste heat potential was found as 3.630,31 kW. Technical and feasibility studies have been carried out to realize electricity production through an Organic Rankine Cycle (ORC system for evaluating the waste heat potential of the annealing furnace. It has been calculated that 1.626.378,88 kWh/year of electricity can be generated by using the exhaust gas waste heat of the annealing furnace through an ORC system to produce electric energy with a net efficiency of 16%. The financial value of this energy was determined as 436.032,18 TL/year and the simple repayment period of the investment was 8,12 years. Since the annealing period of the annealing furnace is 2800 hours/year, the investment has not been found to be feasible in terms of the feasibility studies. However, the investment suitability can be assured when the annealing furnace is operating at full capacity for 8,000 hours or more annually.

  13. HFC404A vaporisation inside a Brazed Plate Heat Exchanger (BPHE): Comparison with the possible long-term low GWP substitutes HC290 (Propane) and HC1270 (Propylene)

    International Nuclear Information System (INIS)

    Longo, Giovanni A.; Mancin, Simone; Righetti, Giulia; Zilio, Claudio

    2016-01-01

    Highlights: • This paper investigates HFC404A vaporisation inside a BPHE. • HC290 and HC1270 exhibit heat transfer coefficients similar to HFC404A. • HC290 and HC1270 exhibit frictional pressure drops higher than HFC404A. • The experimental measurements are complemented with an IR thermography analysis. - Abstract: This paper presents the heat transfer coefficients and the pressure drops measured during HFC404A vaporisation inside a commercial BPHE and the comparison of this data with previous measurements carried out during HC290 (Propane) and HC1270 (Propylene) vaporisation inside the same BPHE and similar operating condition in order to assess the capability of HydroCarbon refrigerants as long-term low GWP substitutes for HFC404A in commercial and industrial refrigeration. Propane and Propylene exhibit boiling heat transfer coefficient very similar and frictional pressure drops higher than to those of HFC404A, therefore, taking into account also their good thermodynamic properties, they seems to be very promising as long-term low GWP substitutes for HFC404A. The HFC404A boiling heat transfer coefficients were also compared with a new model for refrigerant boiling inside BPHE (Longo et al., 2015): the mean absolute percentage deviation between calculated and experimental data is 6.0%. The heat transfer measurements were also complemented with an IR thermography analysis for a better understanding of refrigerant vaporisation heat transfer regime inside a BPHE.

  14. Design and Development of Tilting Rotary Furnace

    Science.gov (United States)

    Sai Varun, V.; Tejesh, P.; Prashanth, B. N.

    2018-02-01

    Casting is the best and effective technique used for manufacturing products. The important accessory for casting is furnace. Furnace is used to melt the metal. A perfect furnace is one that reduces the wastage of material, reduces the cost of manufacturing and there by reduces the cost of production. Of all the present day furnaces there may be wastage of material, and the chances of increasing the time of manufacturing as the is continuous need of tilting of the furnace for every mould and then changing the moulds. Considering these aspects, a simple and least expensive tilting rotary furnace is designed and developed. The Tilting and Rotary Furnace consists of mainly melting chamber and the base. The metal enters the melting chamber through the input door that is provided on the top of the melting chamber. Inside the melting chamber there is a graphite furnace. The metal is melted in the graphite crucible. An insulation of ceramic fibre cloth is provided inside the furnace. The metal is melted using Propane gas. The propane gas is easily available and economic. The gas is burned using a pilot burner. The pilot burner is more efficient that other burners. The pilot burner is lit with a push button igniter. The pilot burner is located at the bottom of the combustion chamber. This enables the uniform heating of the metal inside the crucible. The temperature inside the melting chamber is noted using a temperature sensor. The gas input is cut-off if the temperature is exceeding a specific temperature. After the melting of the metal is done the furnace is tilted and after the mould is filled it is rotated. The external gears are used to controlling the tilting. The results of studies carried out for the design & development of low cost, simple furnace that can be mounted anywhere on the shop floor and this can be very much useful for the education purposes and small scale manufacturing. The furnace can be rotated in 360 degrees and can help in reducing the time taken

  15. Comprehensive Numerical Modeling of the Blast Furnace Ironmaking Process

    Science.gov (United States)

    Zhou, Chenn; Tang, Guangwu; Wang, Jichao; Fu, Dong; Okosun, Tyamo; Silaen, Armin; Wu, Bin

    2016-05-01

    Blast furnaces are counter-current chemical reactors, widely utilized in the ironmaking industry. Hot reduction gases injected from lower regions of the furnace ascend, reacting with the descending burden. Through this reaction process, iron ore is reduced into liquid iron that is tapped from the furnace hearth. Due to the extremely harsh environment inside the blast furnace, it is difficult to measure or observe internal phenomena during operation. Through the collaboration between steel companies and the Center for Innovation through Visualization and Simulation, multiple computational fluid dynamics (CFD) models have been developed to simulate the complex multiphase reacting flow in the three regions of the furnace, the shaft, the raceway, and the hearth. The models have been used effectively to troubleshoot and optimize blast furnace operations. In addition, the CFD models have been integrated with virtual reality. An interactive virtual blast furnace has been developed for training purpose. This paper summarizes the developments and applications of blast furnace CFD models and the virtual blast furnace.

  16. Sealed rotary hearth furnace with central bearing support

    Science.gov (United States)

    Docherty, James P.; Johnson, Beverly E.; Beri, Joseph

    1989-01-01

    The furnace has a hearth which rotates inside a stationary closed chamber and is supported therein on vertical cylindrical conduit which extends through the furnace floor and is supported by a single center bearing. The charge is deposited through the furnace roof on the rim of the hearth as it rotates and is moved toward the center of the hearth by rabbles. Externally generated hot gases are introduced into the furnace chamber below the hearth and rise through perforations in the hearth and up through the charge. Exhaust gases are withdrawn through the furnace roof. Treated charge drops from a center outlet on the hearth into the vertical cylindrical conduit which extends downwardly through the furnace floor to which it is also sealed.

  17. Measurement of relative permittivity of LTCC ceramic at different temperatures

    Directory of Open Access Journals (Sweden)

    Qiulin Tan

    2014-02-01

    Full Text Available Devices based on LTCC (low-temperature co-fired ceramic technology are more widely applied in high temperature environments, and the temperature-dependent properties of the LTCC material play an important role in measurements of the characteristics of these devices at high temperature. In this paper, the temperature-dependence of the relative permittivity of DuPont 951 LTCC ceramic is studied from room temperature to 500 °C. An expression for relative permittivity is obtained, which relates the relative permittivity to the resonant frequency, inductance, parasitic capacitance and electrode capacitance of the LTCC sample. Of these properties, the electrode capacitance is the most strongly temperature-dependent. The LTCC sample resonant frequency, inductance and parasitic capacitance were measured (from room temperature to 500 °C with a high temperature measurement system comprising a muffle furnace and network analyzer. We found that the resonant frequency reduced and the inductance and parasitic capacitance increased slightly as the temperature increases. The relative permittivity can be calculated from experimental frequency, inductance and parasitic capacitance measurements. Calculating results show that the relative permittivity of DuPont 951 LTCC ceramic ceramic increases to 8.21 from room temperature to 500 °C.

  18. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  19. AUTOMATION OF GLASS TEMPERING FURNACE BY USING PLC

    Directory of Open Access Journals (Sweden)

    Abdullah BÜYÜKYILDIZ

    2007-02-01

    Full Text Available In this study, a furnace which is used for observation of environments under high temperature, and also used for manufacturing of glasses which are resisted to high temperature has been designed and implemented. Automation of this system has been done by using PLC. Operating parameters of furnace such as materials entering, the furnace, the local temperature control of furnace, cooling control and materials outing have been sensed with Hall Effect Sensor. Furthermore, the observation of parameters of furnace on screen has been provided with SCADA software. Obtained products have been shown the system works successfully.

  20. Reactive carbon-chain molecules: synthesis of 1-diazo-2,4-pentadiyne and spectroscopic characterization of triplet pentadiynylidene (H-C[triple bond]C-:C-C[triple bond]C-H).

    Science.gov (United States)

    Bowling, Nathan P; Halter, Robert J; Hodges, Jonathan A; Seburg, Randal A; Thomas, Phillip S; Simmons, Christopher S; Stanton, John F; McMahon, Robert J

    2006-03-15

    1-Diazo-2,4-pentadiyne (6a), along with both monodeuterio isotopomers 6b and 6c, has been synthesized via a route that proceeds through diacetylene, 2,4-pentadiynal, and 2,4-pentadiynal tosylhydrazone. Photolysis of diazo compounds 6a-c (lambda > 444 nm; Ar or N2, 10 K) generates triplet carbenes HC5H (1) and HC5D (1-d), which have been characterized by IR, EPR, and UV/vis spectroscopy. Although many resonance structures contribute to the resonance hybrid for this highly unsaturated carbon-chain molecule, experiment and theory reveal that the structure is best depicted in terms of the dominant resonance contributor of penta-1,4-diyn-3-ylidene (diethynylcarbene, H-C[triple bond]C-:C-C[triple bond]C-H). Theory predicts an axially symmetric (D(infinity h)) structure and a triplet electronic ground state for 1 (CCSD(T)/ANO). Experimental IR frequencies and isotope shifts are in good agreement with computed values. The triplet EPR spectrum of 1 (absolute value(D/hc) = 0.6157 cm(-1), absolute value(E/hc) = 0.0006 cm(-1)) is consistent with an axially symmetric structure, and the Curie law behavior confirms that the triplet state is the ground state. The electronic absorption spectrum of 1 exhibits a weak transition near 400 nm with extensive vibronic coupling. Chemical trapping of triplet HC5H (1) in an O2-doped matrix affords the carbonyl oxide 16 derived exclusively from attack at the central carbon.

  1. A metallurgical study of Nāga Bhasma

    Directory of Open Access Journals (Sweden)

    Dev Nath Singh Gautam

    2017-01-01

    Full Text Available Background: The metal Nāga (Lead is being used by Indians since ancient times. Its external and internal uses have been described in Caraka, Suśruta and other Ayurvedic Saṃhitā. According to most of the Rasa texts, Nāga Bhasma and its formulations are used in many diseases such as Prameha, Jvara, Gulma, Śukrameha etc. Objectives: In the present study, Nāga Bhasma was prepared by the traditional Puṭa method (TPM and by the electric muffle furnace Puṭa method (EMFPM and standardized using Metallographic studies. Doing so helps in the study of the microstructure of Nāga Bhasma and also helps in the identification of the metal particles along with the nature of compound formed during the Māraṇa (Bhasmīkaraṇa process. Setting and Design: Different samples from initial raw material to final product of Nāga Bhasma were collected during the pharmaceutical process (1st, 30th and 60th Puṭa from both methods i.e. TPM and EMFPM. Samples from both methods were studied using metallographic examination. Materials and Methods: The processing of the Nāga Bhasma (ṣaṣṭipuṭa was done according to Ānanda Kanda[9] Samples from the raw material i.e. Aśodhita Nāga (raw Lead and that processed after 1st, 30th and 60th Puṭa from both methods i.e. traditional Puṭa method (using heat from burning of cow dung cakes and electric muffle furnace Puṭa method were taken. They were mounted on self hardening acrylic base. After careful polishing to obtain scratch free surface of product, they were used for metallurgical study. Conclusion: This study shows that traditional Puṭa method may be better than electric muffle furnace Puṭa method because of more homogeneous distribution of Lead sulphide in the Nāga Bhasma which is prepared by traditional method.

  2. Modeling and Simulation of Claus Unit Reaction Furnace

    Directory of Open Access Journals (Sweden)

    Maryam Pahlavan

    2016-01-01

    Full Text Available Reaction furnace is the most important part of the Claus sulfur recovery unit and its performance has a significant impact on the process efficiency. Too many reactions happen in the furnace and their kinetics and mechanisms are not completely understood; therefore, modeling reaction furnace is difficult and several works have been carried out on in this regard so far. Equilibrium models are commonly used to simulate the furnace, but the related literature states that the outlet of furnace is not in equilibrium and the furnace reactions are controlled by kinetic laws; therefore, in this study, the reaction furnace is simulated by a kinetic model. The predicted outlet temperature and concentrations by this model are compared with experimental data published in the literature and the data obtained by PROMAX V2.0 simulator. The results show that the accuracy of the proposed kinetic model and PROMAX simulator is almost similar, but the kinetic model used in this paper has two importance abilities. Firstly, it is a distributed model and can be used to obtain the temperature and concentration profiles along the furnace. Secondly, it is a dynamic model and can be used for analyzing the transient behavior and designing the control system.

  3. Combustion of Solid Fuel in a Vortex Furnace with Counter-swirling Flows

    Directory of Open Access Journals (Sweden)

    Redko A.A.

    2017-12-01

    Full Text Available The results of computer simulation of the processes of incineration of low-grade solid fuel-pulverized peat with a moisture content of 40%, an ash content of 6% are given. It has been determined the fields of distribution of temperature, velocity of gases and particles in the volume and at the outlet from the furnace. The three-dimensional temperature distribution in the combustion chamber indicates high-temperature combustion of peat particles at temperatures above 1700°C with liquid ash removal in the lower part of the furnace. It has been determined that when the furnace is cooled, it is not ensured combustion of the fuel completely. The value of the swirling flow rate at the outlet from the furnace (up to 370 m/s ensures the efficiency of separation of fuel particles, reducing heat losses from mechanical underburning. It is determined that the concentration of oxygen is close to zero over the entire height of the furnace, at an outlet from the furnace the oxygen concentration is 5...6%, since oxygen is supplied with excess (αв=1,2. The results of a numerical study showed that the diameter of peat particles affects the process of their combustion: coke particles with an initial diameter of 25 mkm to 250 mkm burn out by 96%. With an increase in particle diameter up to 1000 mkm, the degree of burn-out of coke decreases, but at the same time their removal decreases. It is shown that the furnace ensures the completeness of combustion of peat particles of peat 99.8%, volatiles is 100%.

  4. Performance of an effectively integrated biomass multi-stage gasification system and a steel industry heat treatment furnace

    International Nuclear Information System (INIS)

    Gunarathne, Duleeka Sandamali; Mellin, Pelle; Yang, Weihong; Pettersson, Magnus; Ljunggren, Rolf

    2016-01-01

    Highlights: • Multi-stage biomass gasification is integrated with steel heat treatment furnace. • Fossil fuel derived CO_2 emission is eliminated by replacing natural gas with syngas. • The integrated system uses waste heat from the furnace for biomass gasification. • Up to 13% increment of the gasifier system energy efficiency is observed. • Fuel switching results in 10% lower flue gas loss and improved furnace efficiency. - Abstract: The challenges of replacing fossil fuel with renewable energy in steel industry furnaces include not only reducing CO_2 emissions but also increasing the system energy efficiency. In this work, a multi-stage gasification system is chosen for the integration with a heat treatment furnace in the steel powder industry to recover different rank/temperature waste heat back to the biomass gasification system, resulting higher system energy efficiency. A system model based on Aspen Plus was developed for the proposed integrated system considering all steps, including biomass drying, pyrolysis, gasification and the combustion of syngas in the furnace. Both low temperature (up to 400 °C) and high temperature (up to 700 °C) heat recovery possibilities were analysed in terms of energy efficiency by optimizing the biomass pretreatment temperature. The required process conditions of the furnace can be achieved by using syngas. No major changes to the furnace, combustion technology or flue gas handling system are necessary for this fuel switching. Only a slight revamp of the burner system and a new waste heat recovery system from the flue gases are required. Both the furnace efficiency and gasifier system efficiency are improved by integration with the waste heat recovery. The heat recovery from the hot furnace flue gas for biomass drying and steam superheating is the most promising option from an energy efficiency point of view. This option recovers two thirds of the available waste heat, according to the pinch analysis performed

  5. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [Verein Deutscher Eisenhuettenleute (VDEh), Duesseldorf (Germany, F.R.)

    1979-10-01

    Presented in two parts, this paper is intended to provide an outline of the theoretical fundamentals for the design of rotating-hearth furnaces for heating round stock and deals with the characteristic design features of such furnaces.

  6. An experimental investigation of concentrated slop combustion characteristics in cyclone furnace

    Science.gov (United States)

    Panpokha, Suphaopich; Wongwuttanasatian, Tanakorn; Tangchaichit, Kiatfa

    2018-02-01

    Slop is a by-product in alcoholic industries requiring costly waste management. An idea of using slop as a fuel in a boiler for the industries was proposed. Due to high content of ash, a cyclone furnace was designed to combust the slop. This study aims to examine the concentrated slop combustion in a designed cyclone furnace, consisting of combustion temperature and exhaust gases. The tests were carried out under 4 different air-fuel ratios. Fuels injected into the furnace were 3 g/s of concentrated slop and 1 g/s of diesel. The air-fuel ratios were corresponding to 100, 120, 140 and 160 percent theoretical air. The results demonstrated that combustion of concentrated slop can gave temperature of 800-1000°C and a suitable theoretical air was 100%-120%, because the combustion temperature was higher than that of other cases. In cyclone combustion, excess air is not recommended because it affects a reduction in overall temperature inside the cyclone furnace. It is expected that utilization of the concentrated slop (by-product) will be beneficial in the development of green and zero waste factory.

  7. Ekonomika HC ČSOB Pojišťovna Pardubice

    OpenAIRE

    Každan, Daniel

    2012-01-01

    Title: Economics of HC ČSOB Pojišťovna Pardubice Objectives: The main goal is to use the theory of strategic management in selected hockey club HC ČSOB Pojišťovna Pardubice, and to propose recommendations for sporting, economic and social areas. Methods: To analyze the current situation of the club will be used case study method of analysis of documents and interviews with club management. Furthermore, the analysis will use internal and external factors sports club which also contains PEST an...

  8. Glass: Rotary Electric Glass Furnace

    Energy Technology Data Exchange (ETDEWEB)

    Recca, L.

    1999-01-29

    Compared to conventional gas-fired furnaces, the new rotary electric furnace will increase energy efficiency while significantly reducing air emissions, product turnaround time, and labor costs. As this informative new fact sheet explains, the thousand different types of glass optical blanks produced for the photonics industry are used for lasers, telescopes, cameras, lights, and many other products.

  9. Paired Straight Hearth Furnace - Transformational Ironmaking Process

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Wei-Kao [McMaster Univ., Hamilton, ON (Canada); Debski, Paul [Andritz Metals Inc.,Canonsburg, PA (United States)

    2014-11-19

    The U. S. steel industry has reduced its energy intensity per ton of steel shipped by 33% since 1990. However, further significant gains in energy efficiency will require the development of new, transformational iron and steelmaking processes. The Paired Straight Hearth Furnace (PSH) process is an emerging alternative high productivity, direct reduced iron (DRI) technology that may achieve very low fuel rates and has the potential to replace blast furnace ironmaking. The PSH furnace can operate independently or may be coupled with other melting technologies to produce liquid hot metal that is both similar to blast furnace iron and suitable as a feedstock for basic oxygen steelmaking furnaces. The PSH process uses non-metallurgical coal as a reductant to convert iron oxides such as iron ore and steelmaking by-product oxides to DRI pellets. In this process, a multi-layer, nominally 120mm tall bed of composite “green balls” made from oxide, coal and binder is built up and contained within a moving refractory hearth. The pellet bed absorbs radiant heat energy during exposure to the high temperature interior refractory surfaces of the PSH while generating a strongly reducing gas atmosphere in the bed that yields a highly metalized DRI product. The PSH concept has been well tested in static hearth experiments. A moving bed design is being developed. The process developers believe that if successful, the PSH process has the potential to replace blast furnaces and coke ovens at a fraction of the operating and capital cost while using about 30% less energy relative to current blast furnace technology. DRI output could also feed electric arc furnaces (EAFs) by displacing a portion of the scrap charge.

  10. Oil injection into the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Dongsheng Liao; Mannila, P.; Haerkki, J.

    1997-12-31

    Fuel injection techniques have been extensively used in the commercial blast furnaces, a number of publications concerning the fuels injection have been reported. This present report only summarizes the study achievements of oil injection due to the research need the of authors, it includes the following parts: First, the background and the reasons reducing coke rate of oil injection are analyzed. Reducing coke rate and decreasing the ironmaking costs are the main deriving forces, the contents of C, H and ash are direct reasons reducing coke rate. It was also found that oil injection had great effects on the state of blast furnace, it made operation stable, center gas flow develop fully, pressure drop increase, descent speed of burden materials decrease and generation of thermal stagnation phenomena, the quality of iron was improved. Based on these effects, as an ideal mean, oil injection was often used to adjust the state of blast furnace. Secondly, combustion behavior of oil in the raceway and tuyere are discussed. The distribution of gas content was greatly changed, the location of CO, H{sub 2} generation was near the tuyere; the temperature peak shifts from near the raceway boundary to the tuyere. Oxygen concentration and blast velocity were two important factors, it was found that increasing excess oxygen ratio 0.9 to 1.3, the combustion time of oil decreases 0.5 msec, an increase of the blast velocity results in increasing the flame length. In addition, the nozzle position and oil rate had large effects on the combustion of oil. Based on these results, the limit of oil injection is also discussed, soot formation is the main reason limiting to further increase oil injection rate, it was viewed that there were three types of soot which were generated under blast furnace operating conditions. The reason generating soot is the incomplete conversion of the fuel. Finally, three methods improving combustion of oil in the raceway are given: Improvement of oil

  11. Optical cavity furnace for semiconductor wafer processing

    Science.gov (United States)

    Sopori, Bhushan L.

    2014-08-05

    An optical cavity furnace 10 having multiple optical energy sources 12 associated with an optical cavity 18 of the furnace. The multiple optical energy sources 12 may be lamps or other devices suitable for producing an appropriate level of optical energy. The optical cavity furnace 10 may also include one or more reflectors 14 and one or more walls 16 associated with the optical energy sources 12 such that the reflectors 14 and walls 16 define the optical cavity 18. The walls 16 may have any desired configuration or shape to enhance operation of the furnace as an optical cavity 18. The optical energy sources 12 may be positioned at any location with respect to the reflectors 14 and walls defining the optical cavity. The optical cavity furnace 10 may further include a semiconductor wafer transport system 22 for transporting one or more semiconductor wafers 20 through the optical cavity.

  12. High temperature oxidation of copper and copper aluminium alloys: Impact on furnace side wall cooling systems

    Science.gov (United States)

    Plascencia Barrera, Gabriel

    The high temperature oxidation behaviours of copper and dilute Cu-Al alloys were investigated. Experiments were carried out by: (i) Oxidizing under various oxygen potentials at different temperatures using a combined TG-DTA apparatus. (ii) Oxidizing in a muffle furnace (in air) at different temperatures for extended periods of time. The oxidation mechanisms were evaluated based upon the kinetic data obtained as well as by X-ray diffraction and microscopical (SEM and optical) analyses. It was found that oxidation of copper strongly depends on the temperature. Two distinct mechanisms were encountered. Between 300 and 500°C, the oxidation rate is controlled by lateral growth of the oxide on the metal surface, whereas between 600 and 1000°C oxidation is controlled by lattice diffusion of copper ions through the oxide scale. On the other hand, the partial pressure of oxygen only has a small effect on the oxidation of copper. Alloy oxidation is also dependent on the temperature. As temperature increases, more aluminium is required to protect copper from being oxidized. It was shown that if the amount of oxygen that dissolves in the alloy exceeds the solubility limit of oxygen in copper, an internal oxidation layer will develop, leading to the formation of a tarnishing scale. On the other hand if the oxygen content in the alloy lies below the solubility limit of oxygen in copper, no oxidation products will form since a tight protective alumina layer will form on the alloy surface. Surface phenomena may affect the oxidation behaviour of dilute Cu-Al alloys. Immersion tests in molten copper matte and copper converting slag, using laboratory scale cooling elements with various copper based materials, were conducted. Results from these tests showed that alloying copper with 3 to 4 wt% Al decreases the oxidation rate of pure copper by 4 orders of magnitude; however due to a significant drop in thermal conductivity, the ability to extract heat is compromised, leading to

  13. Modelling of carry-over in recovery furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Fakhrai, Reza [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Metallurgy

    2000-04-01

    Development of mathematical modelling of the combustion process in the furnace of recovery boilers is the subject of this work. This work as a continuation of many years of modelling efforts carried out at KTH/Vaerme- och Ugnsteknik focussed particularly on: char bed modelling; droplets-wall interaction modelling; and carry-over modelling. The char bed model has been studied. Droplets/parcels were considered as a single reactor working independently of the other droplets. The mass of the droplets was not distributed uniformly but induced in the landing place. The droplets hitting the char bed will stick to it and they are alive and part of the calculation. In this way the distribution of the mass on the char bed is only dependent on the parameters which effect flight history such as droplet/parcel diameter, boilers flow field, etc. The droplet- wall interaction model has been studied and found to be very important for obtaining the correct temperature distribution in the recovery furnace. The new approach is based on removal of droplets which hits the wall in the upper part of the recovery boiler from carryover calculation. This model has been proposed and implemented into the GRFM (General Recovery Furnace Model). The carryover modelling effort was based on mass balance in which the number and physical statistics of the droplets/parcel were estimated and the amount of unburned mass was calculated. All of the above listed models were tested together with all other models of heat and mass transfer processes in recovery furnaces using a GRFM. Three-dimensional numerical simulations of the industrial recovery boiler (63 kg/s, 82 bar, 480 deg C) were performed. The number of grid was 232,000 and the number of air ports in this simulation was 178. The air entering the furnace by these ports has different flow rates. Flow and temperature fields as well as species distributions were calculated. The results show good agreement with previously published data and modelling

  14. Honeywell Modular Automation System Computer Software Documentation

    International Nuclear Information System (INIS)

    CUNNINGHAM, L.T.

    1999-01-01

    This document provides a Computer Software Documentation for a new Honeywell Modular Automation System (MAS) being installed in the Plutonium Finishing Plant (PFP). This system will be used to control new thermal stabilization furnaces in HA-211 and vertical denitration calciner in HC-230C-2

  15. Effect of Temperature on the Toughness of Locally Manufactured Low Alloy Steel SUP9 Used for Manufacturing Leaf Springs

    Directory of Open Access Journals (Sweden)

    Muhammad Ishaque Abro

    2011-10-01

    Full Text Available The effect of heat treatment on locally manufactured low alloy steel grade SUP9 most frequently used in making leaf springs for automobiles was studied. While for determination of toughness and hardness Charpy impact testing machine and Rockwell hardness tester were used. The cryogenic test temperatures were achieved by soaking the samples in liquid nitrogen and temperature was measured using digital thermometer capable of reading the temperature from -40-200oC. Hardening, tempering and austempering treatments were conducted using muffle furnace and salt bath furnace. After heat treatment samples were quenched in oil. The results of present work confirmed that toughness and hardness are inversely related with each other and are highly dependent on the type of heat treatment employed. Highest toughness was measured after austempering at 450oC. Effect of test temperature revealed that toughness of the samples increased significantly with decreasing temperature. DBTT (Ductile to Brittle Transition Temperature of the austempered samples was observed at -10oC, whereas, that of tempered samples could not be determined. Based on the test results authors wish to recommend the 600oC tempering temperature in place of 450oC where normally tempering is practiced in Alwin industry Karachi during manufacturing of leaf spring.

  16. HC-130 Wing Life Raft Replacement Study

    National Research Council Canada - National Science Library

    Scher, Bob

    1997-01-01

    The U.S. Coast Guard (USCG) uses HC-130 aircraft for search and rescue (SAR) and other missions. The aircraft are presently equipped with two to four 20 person inflatable life rafts, stowed in cells in the wings...

  17. Adsorption of arsenate from aqueous solution by rice husk-based adsorbent

    International Nuclear Information System (INIS)

    Khan, Taimur; Chaudhuri, Malay

    2013-01-01

    Rice husk-based adsorbent (RHBA) was prepared by burning rice husk in a muffle furnace at 400°C for 4 h and adsorption of arsenate by the RHBA from aqueous solution was examined. Batch adsorption test showed that extent of arsenate adsorption depended on contact time and pH. Equilibrium adsorption was attained in 60 min, with maximum adsorption occurring at pH 7. Equilibrium adsorption data were well described by the Freundlich isotherm model. Freundlich constants K f and 1/n were 3.62 and 2, respectively. The RHBA is effective in the adsorption of arsenate from water and is a potentially suitable filter medium for removing arsenate from groundwater at wells or in households.

  18. Low-dose hydrocortisone (HC) replacement therapy is associated with improved bone remodeling balance in hypopituitary subjects

    LENUS (Irish Health Repository)

    Behan, L A

    2011-06-01

    The effect of commonly used glucocorticoid replacement regimens on bone health in hypopituitary subjects is not well known. We aimed to assess the effect of 3 hydrocortisone (HC) replacement dose regimens on bone turnover in this group.10 hypopituitary men with severe ACTH deficiency were randomised in a crossover design to 3 HC dose regimens, Dose A (20mg mane, 10mg tarde), Dose B (10mg twice daily) and Dose C (10mg mane, 5mg tarde). Following 6 weeks of each regimen participants underwent fasting sampling of bone turnover markers.Data from matched controls were used to produce a Z score for subject bone formation and resorption markers and to calculate the bone remodeling balance (formation Z score-resorption Z score) and turnover index ((formation Z + resorption Z)\\/2). A positive bone remodeling balance with increased turnover is consistent with a favourable bone cycle. Data are expressed as median (range).The Pro Collagen Type 1 Peptide (PINP) bone formation Z-score was significantly increased in Dose C, (1.805 (-0.6-10.24)) compared to Dose A (0.035 (-1.0-8.1)) p<0.05 while there was no difference in the C-terminal crosslinking telopeptide (CTx) resorption Z score. The bone remodeling balance was significantly lower for dose A -0.02 (-1.05-4.12) compared to dose C 1.13 (0.13-6.4) (p<0.05). Although there was a trend to an increased bone turnover index with the lower dose regimen, this was not statistically significant.Low dose HC replacement (10mg mane\\/5 mg tarde) was associated with increased bone formation and improved bone remodeling balance which is associated with a more favourable bone cycle. This may have a long term beneficial effect on bone health.

  19. Concrete with steel furnace slag and fractionated reclaimed asphalt pavement.

    Science.gov (United States)

    2014-09-01

    Steel furnace slag (SFS) is an industrial by-product material that can contain free calcium oxide (CaO) and free magnesium oxide (MgO), both : of which can cause significant expansion when hydrated. SFS aggregates are therefore not commonly used in c...

  20. Systems and methods to mitigate NO.sub.x and HC emissions

    Science.gov (United States)

    Gupta, Aniket; Cunningham, Michael J.; Ruth, Michael J.; Chilumukuru, Krishna P.

    2017-06-14

    Systems and methods are provided for managing low temperature NO.sub.x and HC emissions, such as during a cold start of an internal combustion engine. The systems and methods include storing NO.sub.x and HC emissions at low temperatures and passively releasing and treating these emissions as the temperature of the exhaust system increases.

  1. Alternative fuels for multiple-hearth furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Bracket, B D; Lawson, T U

    1980-04-01

    Results are described of a feasibility study on the use of refuse-derived fuel, shredded paper, wood waste, coal, and waste oil in multiple-hearth furnaces at the Lower Molonglo Water Quality Control Centre in Australia. An assessment of waste fuel availability and characteristics is given, and a summary is made of the technical and economic aspects of using these alternative fuels and of minimizing furnace fuel requirements by reducing sludge moisture. The recommended method of reducing fuel oil consumption in the furnace is shown to be sludge drying, using process exhaust heat in a rotary dryer.

  2. Dicty_cDB: SFA139 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available ideum mRNA for cysteine proteinase 1. 240 e-135 3 X85123 |X85123.1 Artificial sequences cloning vector DNA p...DXA-HC. 74 1e-09 1 X85119 |X85119.1 Artificial sequences cloning vector DNA pDXA-3H. 74 1e-09 1 X85121 |X851...21.1 Artificial sequences cloning vector DNA pDXD-3C. 74 1e-09 1 AJ510163 |AJ5101...85122 |X85122.1 Artificial sequences cloning vector DNA pDXA-HY. 74 1e-09 1 AJ510161 |AJ510161.1 Cloning vec

  3. Procedures for Handling and Chemical Analysis of Sediment and Water Samples,

    Science.gov (United States)

    1981-05-01

    spc i fica 1y (ei.;3 ,ed fotr m’erury analys i may be s r1)A 1 tit the -Ltumic ’ibl;orption spetIopho tometer. The flow cell -lh)iu 1w ’ p:3proxi...approximately 14 by 10 by 2-1/2 in. Oven, drying Muffle furnace Desiccator Crucibles, porcelain, squat form, Size 2 Omni or Sorvall mixer with chamber of

  4. Modelo hipermedia creador (HC

    Directory of Open Access Journals (Sweden)

    Manuel Armenteros Gallardo

    2012-04-01

    Full Text Available El presente artículo expone las bases creativas del modelo Hipermedia Creador (HC, un modelo basado en la filosofía de los llamados tutores inteligentes. Tiene como objetivo la creación de una herramienta hipermedia que permita y facilite la producción creativa de proyectos hipermedias educativos con parámetros comunes a los usados en la fórmula del videojuego (entretenimiento. Se describe su estructura, y se analiza y explica la disposición creativa de sus elementos, entre los cuales sobresale las posibilidades pedagógicas del movimiento expresivo de la imagen.

  5. Radioecological investigations on tree rings of spruce

    International Nuclear Information System (INIS)

    Haas, G.; Mueller, A.

    1995-01-01

    Tree ring analysis contributes essentially to the explanation of physiological and element-specific transport phenomena in trees. After the accident in Chernobyl the behaviour of Cs-134 and Cs-137 in trees is most informative for the prediction of the future development of the distribution of these elements. In this study the uptake and the long term behaviour of Cs-134, Cs-137, Pb-210, Ra-226, Ra-228, K-40, Th-228, Th-230, Th-232, U-234 and U-238 in tree rings of spruce are examined by α- and γ-spectrometry. All samples are dried at 105C and ashed at 450C in a muffle furnace. The distributions found in the tree rings vary for different radionuclides. A soil profile from the spruce stand provides additional information

  6. Estimation of slagging in furnaces; Kuonaavuuden ennustaminen kivihiilen poelypoltossa

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, T; Jaeaeskelaeinen, K; Oeini, J; Koskiahde, A; Jokiniemi, J; Pyykkoenen, J [Imatran Voima Oy, Vantaa (Finland)

    1997-10-01

    Understanding and estimation of slagging in furnaces is essential in the design of new power plants with high steam values or in modifications like low-NO{sub x} retrofits in existing furnaces. Major slagging yields poor efficiency, difficult operation and high maintenance costs of the plant. The aim of the project is to develop a computational model for slagging in pulverized coal combustion. The model is based on Computer Controlled Scanning Electron Microscopy (CCSEM) analysis of mineral composition of the coal and physical models for behaviour of minerals inside a furnace. The analyzed mineral particles are classified to five composition classes and distributed to calculational coal particles if internal minerals of coal. The calculational coal particles and the external minerals are traced in the furnace to find out the behaviour of minerals inside the furnace. If the particle tracing indicates that the particle hits the heat transfer surface of the furnace the viscosity of the particle is determined to see if particle is sticky. The model will be implemented to 3D computational fluid dynamics based furnace simulation environment Ardemus which predicts the fluid dynamics, heat transfer and combustion in a furnace. (orig.)

  7. Dynamics and control of a gas-fired furnace

    NARCIS (Netherlands)

    Roffel, B.; Rijnsdorp, J.E.

    1974-01-01

    A non-linear model has been developed for a gas-fired furnace in which oil is heated. The model is applicable from minimum to maximum heat load of the furnace. The dynamics of the model have been compared to experimental results, which were obtained for a pilot-scale furnace. They are in good

  8. HC StratoMineR: A Web-Based Tool for the Rapid Analysis of High-Content Datasets.

    Science.gov (United States)

    Omta, Wienand A; van Heesbeen, Roy G; Pagliero, Romina J; van der Velden, Lieke M; Lelieveld, Daphne; Nellen, Mehdi; Kramer, Maik; Yeong, Marley; Saeidi, Amir M; Medema, Rene H; Spruit, Marco; Brinkkemper, Sjaak; Klumperman, Judith; Egan, David A

    2016-10-01

    High-content screening (HCS) can generate large multidimensional datasets and when aligned with the appropriate data mining tools, it can yield valuable insights into the mechanism of action of bioactive molecules. However, easy-to-use data mining tools are not widely available, with the result that these datasets are frequently underutilized. Here, we present HC StratoMineR, a web-based tool for high-content data analysis. It is a decision-supportive platform that guides even non-expert users through a high-content data analysis workflow. HC StratoMineR is built by using My Structured Query Language for storage and querying, PHP: Hypertext Preprocessor as the main programming language, and jQuery for additional user interface functionality. R is used for statistical calculations, logic and data visualizations. Furthermore, C++ and graphical processor unit power is diffusely embedded in R by using the rcpp and rpud libraries for operations that are computationally highly intensive. We show that we can use HC StratoMineR for the analysis of multivariate data from a high-content siRNA knock-down screen and a small-molecule screen. It can be used to rapidly filter out undesirable data; to select relevant data; and to perform quality control, data reduction, data exploration, morphological hit picking, and data clustering. Our results demonstrate that HC StratoMineR can be used to functionally categorize HCS hits and, thus, provide valuable information for hit prioritization.

  9. Holden gas-fired furnace baseline data. Revision 1

    International Nuclear Information System (INIS)

    Weatherspoon, K.A.

    1996-11-01

    The Holden gas-fired furnace is used in the enriched uranium recovery process to dry and combust small batches of combustibles. The ash is further processed. The furnace operates by allowing a short natural gas flame to burn over the face of a wall of porous fire brick on two sides of the furnace. Each firing wall uses two main burners and a pilot burner to heat the porous fire brick to a luminous glow. Regulators and orifice valves are used to provide a minimum gas pressure of 4 in. water column at a rate of approximately 1,450 scf/h to the burners. The gas flow rate was calculated by determining the gas flow appropriate for the instrumentation in the gas line. Observed flame length and vendor literature were used to calculate pilot burner gas consumption. Air for combustion, purging, and cooling is supplied by a single blower. Rough calculations of the air-flow distribution in piping entering the furnace show that air flow to the burners approximately agrees with the calculated natural gas flow. A simple on/off control loop is used to maintain a temperature of 1,000 F in the furnace chamber. Hoods and glove boxes provide contamination control during furnace loading and unloading and ash handling. Fan EF-120 exhausts the hoods, glove boxes, and furnace through filters to Stack 33. A review of the furnace safety shows that safety is ensured by design, interlocks, procedure, and a safety system. Recommendations for safety improvements include installation of both a timed ignition system and a combustible-gas monitor near the furnace. Contamination control in the area could be improved by redesigning the loading hood face and replacing worn gaskets throughout the system. 33 refs., 16 figs

  10. The use of blast furnace slag

    Directory of Open Access Journals (Sweden)

    V. Václavík

    2012-10-01

    Full Text Available The paper presents the results of experimental research that dealt with the substitution of finely ground blast furnace slag for Portland cement in the course of simple concrete manufacturing. Physical and mechanical properties of experimental concrete mixtures based on finely ground blast furnace slag were observed.

  11. Graphite electrode DC arc furnace. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-05-01

    The Graphite Electrode DC Arc Furnace (DC Arc) is a high-temperature thermal process, which has been adapted from a commercial technology, for the treatment of mixed waste. A DC Arc Furnace heats waste to a temperature such that the waste is converted into a molten form that cools into a stable glassy and/or crystalline waste form. Hazardous organics are destroyed through combustion or pyrolysis during the process and the majority of the hazardous metals and radioactive components are incorporated in the molten phase. The DC Arc Furnace chamber temperature is approximately 593--704 C and melt temperatures are as high as 1,500 C. The DC Arc system has an air pollution control system (APCS) to remove particulate and volatiles from the offgas. The advantage of the DC Arc is that it is a single, high-temperature thermal process that minimizes the need for multiple treatment systems and for extensive sorting/segregating of large volumes of waste. The DC Arc has the potential to treat a wide range of wastes, minimize the need for sorting, reduce the final waste volumes, produce a leach resistant waste form, and destroy organic contaminants. Although the DC arc plasma furnace exhibits great promise for treating the types of mixed waste that are commonly present at many DOE sites, several data and technology deficiencies were identified by the Mixed Waste Focus Area (MWFA) regarding this thermal waste processing technique. The technology deficiencies that have been addressed by the current studies include: establishing the partitioning behavior of radionuclides, surrogates, and hazardous metals among the product streams (metal, slag, and offgas) as a function of operating parameters, including melt temperature, plenum atmosphere, organic loading, chloride concentration, and particle size; demonstrating the efficacy of waste product removal systems for slag and metal phases; determining component durability through test runs of extended duration, evaluating the effect of

  12. The efficacy of radiant heat controls on workers' heat stress around the blast furnace of a steel industry.

    Science.gov (United States)

    Giahi, Omid; Darvishi, Ebrahim; Aliabadi, Mohsen; Khoubi, Jamshid

    2015-01-01

    Workers' exposure to excessive heat in molten industries is mainly due to radiant heat from hot sources. The aim of this study was to evaluate the efficacy of radiant heat controls on workers heat stress around a typical blast furnace. Two main interventions were applied for reducing radiant heat around the blast furnace of a steel industry located in western Iran. These included using a heat absorbing system in the furnace body and installing reflective aluminum barrier in the main workstation. Heat stress indexes were measured before and after each intervention using the digital WBGT-meter. The results showed MRT and WBGT indexes decreased by 20 °C and 3.9 °C, respectively after using heat absorbing system and also decreased by 18.6 °C and 2.5 °C, respectively after installing a reflective barrier. These indexes decrease by 26.5 °C and 5.2 °C, respectively due to the simultaneous application of the two interventions which were statistically significant (p steel industries.

  13. Furnace for treating bituminous material

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1922-04-28

    A furnace with saw-teeth-like profiled hearth, which by means of a kind of shaking slide executes a backward and forward motion, for carrying out the process according to Patent 422,391. It is characterized in that the stroke of the hearth moving in the furnace is smaller than the length of the profile tooth and the height of the feed is held less than the tooth height.

  14. Development of an instrument to measure health center (HC) personnel's computer use, knowledge and functionality demand for HC computerized information system in Thailand.

    Science.gov (United States)

    Kijsanayotin, Boonchai; Pannarunothai, Supasit; Speedie, Stuart

    2005-01-01

    Knowledge about socio-technical aspects of information technology (IT) is vital for the success of health IT projects. The Thailand health administration anticipates using health IT to support the recently implemented national universal health care system. However, the national knowledge associate with the socio-technical aspects of health IT has not been studied in Thailand. A survey instrument measuring Thai health center (HC) personnel's computer use, basic IT knowledge and HC computerized information system functionality needs was developed. The instrument reveals acceptable test-retest reliability and reasonable internal consistency of the measures. The future nation-wide demonstration study will benefit from this study.

  15. Nitrogen oxide emissions from a kraft recovery furnace

    International Nuclear Information System (INIS)

    Prouty, A.L.; Stuart, R.C.; Caron, A.L.

    1993-01-01

    Nitrogen Oxide (NOx) emissions from a rebuilt kraft recovery furnace slightly exceeded the specified limit of 1.1 lb/ton (0.55 kg/metric ton) of black-liquor solids. Mill trials were undertaken to determine whether NOx emissions could be minimized by modifying furnace operation. NOx emissions increased when secondary air was shifted to tertiary ports. NOx emissions fell when the amounts of primary and total air were decreased, but this increased emissions of other pollutants. After demonstrating that best operation of the furnace could not meet the permit with an emissions limit that matched the furnace's performance at best operation

  16. Method of operating a centrifugal plasma arc furnace

    International Nuclear Information System (INIS)

    Kujawa, S.T.; Battleson, D.M.; Rademacher, E.L. Jr.; Cashell, P.V.; Filius, K.D.; Flannery, P.A.; Whitworth, C.G.

    1998-01-01

    A centrifugal plasma arc furnace is used to vitrify contaminated soils and other waste materials. An assessment of the characteristics of the waste is performed prior to introducing the waste into the furnace. Based on the assessment, a predetermined amount of iron is added to each batch of waste. The waste is melted in an oxidizing atmosphere into a slag. The added iron is oxidized into Fe 3 O 4 . Time of exposure to oxygen is controlled so that the iron does not oxidize into Fe 2 O 3 . Slag in the furnace remains relatively non-viscous and consequently it pours out of the furnace readily. Cooled and solidified slag produced by the furnace is very resistant to groundwater leaching. The slag can be safely buried in the earth without fear of contaminating groundwater. 3 figs

  17. Waste and dust utilisation in shaft furnaces

    Directory of Open Access Journals (Sweden)

    Senk, D.

    2005-12-01

    Full Text Available Wastes and dusts from steel industry, non-ferrous metallurgy and other branches can be utilized e.g. in agglomeration processes (sintering, pelletizing or briquetting and by injection into shaft furnaces. This paper deals with the second way. Combustion and reduction behaviour of iron- and carbon-rich metallurgical dusts and sludges containing lead, zinc and alkali as well as other wastes with and without pulverized coal (PC has been studied when injecting into shaft furnaces. Following shaft furnaces have been examined: blast furnace, cupola furnace, OxiCup furnace and imperial-smelting furnace. Investigations have been done at laboratory and industrial scale. Some dusts and wastes under certain conditions can be not only reused but can also improve combustion efficiency at the tuyeres as well as furnace performance and productivity.

    Los residuos y polvos de filtro provenientes de la industria siderúrgica, de la obtención de metales no ferrosos y de otras industrias, pueden ser utilizados, por ejemplo, en procesos de aglomeración como sintetizado, peletizado o briqueteado. En su caso, estos pueden ser inyectados en los hornos de cuba. Este artículo se enfoca a la inyección de estos materiales en los hornos de cuba. El comportamiento de la combustión y reducción de los polvos ricos en hierro y carbono y también lodos que contienen plomo, zinc y compuestos alcalinos y otros residuos con o sin carbón pulverizado (CP fue examinado, cuando se inyectaron en hornos de cuba. Los siguientes hornos de cuba fueron examinados: Horno alto, cubilote, OxiCup y horno de cuba Imperial Smelting. Las investigaciones se llevaron a cabo a escala de laboratorio e industrial. Algunos residuos y polvos bajo ciertas condiciones, no sólo pueden ser reciclados, sino también mejoran la eficiencia de combustión en las toberas, la operación y productividad del horno.

  18. Leaching of Carbothermic Reduced Titanium-bearing Blast Furnace Slag by Acid

    Institute of Scientific and Technical Information of China (English)

    ZHEN Yulan; ZHANG Guohua; CHOU Kuochih

    2016-01-01

    The kinetics of the leaching of carbothermic reduced titanium-bearing blast furnace slag in Panzhihua Iron and Steel Company with acid system under atmosphere pressure was studied. The results show that the temperature and concentration have significant influence on leaching of carbothermic reduced titanium-bearing blast furnace slag by ac-id. The experimental data of leaching indicate that the shrinking core model with chemical reaction controlled process is most applicable for the acid leaching. The apparent activation energy can be estimated to be from 23 to 32 kJ/mol. Fur-thermore, the main products are TiC and SiO2 after leaching.

  19. Multiple hearth furnace for reducing iron oxide

    Science.gov (United States)

    Brandon, Mark M [Charlotte, NC; True, Bradford G [Charlotte, NC

    2012-03-13

    A multiple moving hearth furnace (10) having a furnace housing (11) with at least two moving hearths (20) positioned laterally within the furnace housing, the hearths moving in opposite directions and each moving hearth (20) capable of being charged with at least one layer of iron oxide and carbon bearing material at one end, and being capable of discharging reduced material at the other end. A heat insulating partition (92) is positioned between adjacent moving hearths of at least portions of the conversion zones (13), and is capable of communicating gases between the atmospheres of the conversion zones of adjacent moving hearths. A drying/preheat zone (12), a conversion zone (13), and optionally a cooling zone (15) are sequentially positioned along each moving hearth (30) in the furnace housing (11).

  20. Study on the influence of electromagnetic field on the property of coal combustion burnout in circulating fluidized bed

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Y. [Ruiping Coal and Electric Power Ltd. Co., Ruzhou (China)

    2008-08-15

    To study the influences of electromagnetism field pretreatment of pulverized Coal (EFPPC) on the properties of its combustion, thermogravimetric analysis, a Muffle furnace experiment and an X-ray diffraction experiment were carried out for three Coal banks. It was shown that EFPPC will induce the molecular structure of Coal to change into amorphous carbon, which causes an increase in the rate of oxygen absorption during the initial stages of Coal burning and reaction activity. It is also shown that the residual carbon of bituminous Coal would be increased by about 0.33% - 0.41%, i.e, the loss of standard Coal is about 3,000 t/a for double 480 t/h boilers, when applying EFPPC for 1 min at a temperature of 800 - 1,000 {sup o}C. When the temperature increases 200 {sup o}C, the residual carbon increases by about 2.07% but the effect of EFPPC is less than 0.21% for bituminous Coal and residual carbon is about 1.47% and the effect of EFPPC is less than 0.05% for lean Coal. Therefore the effect of increasing the temperature of EFPPC on residual carbon is less than that of increasing the time of EFPPC. 9 refs., 4 figs., 2 tabs.

  1. Analysis of CO2, CO and HC emission reduction in automobiles

    Science.gov (United States)

    Balan, K. N.; Valarmathi, T. N.; Reddy, Mannem Soma Harish; Aravinda Reddy, Gireddy; Sai Srinivas, Jammalamadaka K. M. K.; Vasan

    2017-05-01

    In the present scenario, the emission from automobiles is becoming a serious problem to the environment. Automobiles, thermal power stations and Industries majorly constitute to the emission of CO2, CO and HC. Though the CO2 available in the atmosphere will be captured by oceans, grasslands; they are not enough to control CO2 present in the atmosphere completely. Also advances in engine and vehicle technology continuously to reduce the emission from engine exhaust are not sufficient to reduce the HC and CO emission. This work concentrates on design, fabrication and analysis to reduce CO2, CO and HC emission from exhaust of automobiles by using molecular sieve 5A of 1.5mm. In this paper, the details of the fabrication, results and discussion about the process are discussed.

  2. Insulin and C peptide response, and antibody levels in hepatitis C related chronic liver disease

    International Nuclear Information System (INIS)

    Abbas, Z.; Tariq, N.; Iqbal, M.; Shah, M.A.

    2002-01-01

    Objective: Patients with cirrhosis due to hepatitis C (HC) have an increased prevalence of diabetes mellitus. The pathogenic mechanism by which HC predisposes to DM is not clear. The objective of this study was to determine the insulin and C-peptide response to 75 gram oral glucose load and measure anti phospholipid antibody levels in patients with chronic liver disease due to HC. Design: a prospective study. Place and duration of study: This study was conducted at the department of medicine, Jinnah postgraduate medical centre over period of three months. Subjects and methods: An analytical case control study was carried out on 37 patients (m-18,f=19); none of these patients had received interferon. They were divided into four groups: (a) HC cirrhosis with DM (n=9 ), (b) HC cirrhosis without DM (n=11), (c) hepatitis B (HB) cirrhosis without DM (n=7), (d) chronic hepatitis C without DM (n=10). Group C and D were taken as controls. Fasting blood samples were taken and repeated after 2 hours of 75 gram oral glucose load (2 h PG). Result: mean ages of group A,B,C and D were (yr +- SD) 51.3 +- 7.6,48.9 +- 2.4, 33.7 +-10.8 and 31.7 +- 8.8 respectively. There was no statistically significant difference in the age, Pugh score and body mass index of HC cirrhotic patients with and without DM. Patients of group A had higher fasting and 2 h PG glucose levels (P=0.003 and 0.000) and higher fasting insulin level (p=0.045). However, increments in insulin and c peptide levels 2 h PG were much less (p=0.048 and 0.003). HB cirrhotics without diabetes (group C behaved just like HC cirrhotic without diabetes (group B). Patients of group D had normal glucose tolerance and insulin and C peptide levels. All four groups had normal anti phospholipid antibody levels. Conclusion: Patients with cirrhosis due to HC nd HB show evidence of glucose intolerance in spite of hyperinsulinaemia probably due to insulin resistance. HC cirrhotics with diabetes have fasting hyperglycemia in spite of

  3. Application of Carbon Composite Bricks for Blast Furnace Hearth

    Science.gov (United States)

    Zuo, Haibin; Wang, Cong; Zhang, Jianliang; Zhao, Yongan; Jiao, Kexin

    Traditional refractory materials for blast furnace hearth lining are mainly composed of carbon bricks and the ceramic cup. However, these materials can't meet the demands for long service life design of blast furnaces. In this paper, a new refractory called carbon composite brick (CCB) was introduced, which combined the advantages of carbon bricks and the ceramic cup. In this case, the resistance of the CCB against corrosion was equal to the ceramic cup and the thermal conductivity of the CCB was equal to carbon bricks. From the results of more than 20 blast furnaces, the CCB could be well used in small blast furnaces and large blast furnaces. In the bad condition of low grade burden and high smelting intensity, the CCB gave full play to the role of cooling system, and effectively resisted the erosion of hot metal to improve the service life of blast furnaces.

  4. In vitro production and antifungal activity of peptide ABP-dHC-cecropin A.

    Science.gov (United States)

    Zhang, Jiaxin; Movahedi, Ali; Xu, Junjie; Wang, Mengyang; Wu, Xiaolong; Xu, Chen; Yin, Tongming; Zhuge, Qiang

    2015-04-10

    The antimicrobial peptide ABP-dHC-cecropin A is a small cationic peptide with potent activity against a wide range of bacterial species. Evidence of antifungal activity has also been suggested; however, testing of this peptide has been limited due to the low expression of cecropin proteins in Escherichia coli. To improve expression of this peptide in E. coli, ABP-dHC-cecropin A was cloned into a pSUMO vector and transformed into E. coli, resulting in the production of a pSUMO-ABP-dHC-cecropin A fusion protein. The soluble form of this protein was then purified by Ni-IDA chromatography, yielding a total of 496-mg protein per liter of fermentation culture. The SUMO-ABP-dHC-cecropin A fusion protein was then cleaved using a SUMO protease and re-purified by Ni-IDA chromatography, yielding a total of 158-mg recombinant ABP-dHC-cecropin A per liter of fermentation culture at a purity of ≥94%, the highest yield reported to date. Antifungal activity assays performed using this purified recombinant peptide revealed strong antifungal activity against both Candida albicans and Neurospora crassa, as well as Rhizopus, Fusarium, Alternaria, and Mucor species. Combined with previous analyses demonstrating strong antibacterial activity against a number of important bacterial pathogens, these results confirm the use of ABP-dHC-cecropin A as a broad-spectrum antimicrobial peptide, with significant therapeutic potential. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Predictive control of thermal state of blast furnace

    Science.gov (United States)

    Barbasova, T. A.; Filimonova, A. A.

    2018-05-01

    The work describes the structure of the model for predictive control of the thermal state of a blast furnace. The proposed model contains the following input parameters: coke rate; theoretical combustion temperature, comprising: natural gas consumption, blasting temperature, humidity, oxygen, blast furnace cooling water; blast furnace gas utilization rate. The output parameter is the cast iron temperature. The results for determining the cast iron temperature were obtained following the identification using the Hammerstein-Wiener model. The result of solving the cast iron temperature stabilization problem was provided for the calculated values of process parameters of the target area of the respective blast furnace operation mode.

  6. The fate of injectant coal in blast furnaces: The origin of extractable materials of high molecular mass in blast furnace carryover dusts

    Energy Technology Data Exchange (ETDEWEB)

    Dong, S.N.; Wu, L.; Paterson, N.; Herod, A.A.; Dugwell, D.R.; Kandiyoti, R. [University of London Imperial College of Science & Technology, London (United Kingdom). Dept. of Chemical Engineering

    2005-07-01

    The aim of the work was to investigate the fate of injectant coal in blast furnaces and the origin of extractable materials in blast furnace carryover dusts. Two sets of samples including injectant coal and the corresponding carryover dusts from a full sized blast furnace and a pilot scale rig have been examined. The samples were extracted using 1-methyl-2-pyrrolidinone (NMP) solvent and the extracts studied by size exclusion chromatography (SEC). The blast furnace carryover dust extracts contained high molecular weight carbonaceous material, of apparent mass corresponding to 10{sup 7}-10{sup 8} u, by polystyrene calibration. In contrast, the feed coke and char prepared in a wire mesh reactor under high temperature conditions did not give any extractable material. Meanwhile, controlled combustion experiments in a high-pressure wire mesh reactor suggest that the extent of combustion of injectant coal in the blast furnace tuyeres and raceways is limited by time of exposure and very low oxygen concentration. It is thus likely that the extractable, soot-like material in the blast furnace dust originated in tars is released by the injectant coal. Our results suggest that the unburned tars were thermally altered during the upward path within the furnace, giving rise to the formation of heavy molecular weight (soot-like) materials.

  7. Study of effect of temperature on burning of textile sludge for use as alternative material on civil building; Estudo do efeito da temperatura na queima de lodo textil para uso como material alternativo na construcao civil

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, B.F.R.; Morais, C.R.S.; Altidis, M.E.D.; Lira, B.S.; Morais, S.R.A., E-mail: crislene@dema.ufcg.edu.br [Universidade Federal de Campina Grande (UFCG), PB (Brazil)

    2011-07-01

    The waste generated by textile industries has been the target of numerous challenges due to their release to the environment without proper treatment. These problems have led many researchers to seek solutions that enable the use of waste as building materials. This study aimed to heat-treat the textile sludge, and evaluate their chemical, mineralogical and structural properties. The textile sludge was calcined in a muffle furnace, a heating rate of 10°C/min and 2 hours stabilization by the following temperatures 400°C, 450°C, 500°C, 550°C and 600°C. It was observed a reduction between 88 and 90% weight, indicating the presence of a large amount of formation water and organic matter. The sludge after calcinations was characterized by techniques such as X-ray diffraction, infrared and chemical analysis. The x-ray spectra showed predominant peaks of silica, which were confirmed by chemical analysis (86% silica). (author)

  8. Study of effect of temperature on burning of textile sludge for use as alternative material on civil building

    International Nuclear Information System (INIS)

    Guedes, B.F.R.; Morais, C.R.S.; Altidis, M.E.D.; Lira, B.S.; Morais, S.R.A.

    2011-01-01

    The waste generated by textile industries has been the target of numerous challenges due to their release to the environment without proper treatment. These problems have led many researchers to seek solutions that enable the use of waste as building materials. This study aimed to heat-treat the textile sludge, and evaluate their chemical, mineralogical and structural properties. The textile sludge was calcined in a muffle furnace, a heating rate of 10°C/min and 2 hours stabilization by the following temperatures 400°C, 450°C, 500°C, 550°C and 600°C. It was observed a reduction between 88 and 90% weight, indicating the presence of a large amount of formation water and organic matter. The sludge after calcinations was characterized by techniques such as X-ray diffraction, infrared and chemical analysis. The x-ray spectra showed predominant peaks of silica, which were confirmed by chemical analysis (86% silica). (author)

  9. Detailed model for practical pulverized coal furnaces and gasifiers

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P.J.; Smoot, L.D.

    1989-08-01

    This study has been supported by a consortium of nine industrial and governmental sponsors. Work was initiated on May 1, 1985 and completed August 31, 1989. The central objective of this work was to develop, evaluate and apply a practical combustion model for utility boilers, industrial furnaces and gasifiers. Key accomplishments have included: Development of an advanced first-generation, computer model for combustion in three dimensional furnaces; development of a new first generation fouling and slagging submodel; detailed evaluation of an existing NO{sub x} submodel; development and evaluation of an improved radiation submodel; preparation and distribution of a three-volume final report: (a) Volume 1: General Technical Report; (b) Volume 2: PCGC-3 User's Manual; (c) Volume 3: Data Book for Evaluation of Three-Dimensional Combustion Models; and organization of a user's workshop on the three-dimensional code. The furnace computer model developed under this study requires further development before it can be applied generally to all applications; however, it can be used now by specialists for many specific applications, including non-combusting systems and combusting geseous systems. A new combustion center was organized and work was initiated to continue the important research effort initiated by this study. 212 refs., 72 figs., 38 tabs.

  10. Reactor as furnace and reactor as lamp

    International Nuclear Information System (INIS)

    Goldanskii, V.I.

    1992-01-01

    There are presented general characteristics of the following ways of transforming of nuclear energy released in reactors into chemical : ordinary way (i.e. trough the heat, mechanical energy and electricity); chemonuclear synthesis ; use of high-temperature fuel elements (reactor as furnace); use of the mixed nγ-radiation of reactors; use of the radiation loops; radiation - photochemical synthesis (reactor as lamp). Advantage and disadvantages of all above variants are compared. The yield of the primary product of fixation of nitrogen (nitric oxide NO) in reactor with the high-temperature (above ca. 1900degC) fuel elements (reactor-furnace) can exceed W ∼ 200 kg per gram of burned uranium. For the latter variant (reactor-lamp) the yield of chemical products can reach W ∼ 60 kg. per gram of uranium. Such values of W are close to or even strongly exceed the yields of chemical products for other abovementioned variants and - what is particularly important - are not connected to the necessity of archscrupulous removal of radioactive contamination of products. (author)

  11. Enhanced visible light photocatalytic activity in SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Hao; Zhao, Xiaoru, E-mail: xrzhao@nwpu.edu.cn; Duan, Libing; Liu, Ruidi; Li, Hui

    2017-04-15

    Highlights: • Novel SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized. • The core-shell structures exhibited enhanced visible light photocatalytic activity. • The enhanced photocatalytic activity was due to synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}. - Abstract: SnO{sub 2}@g-C{sub 3}N{sub 4} core-shell structures were successfully synthesized by simple calcination of SnO{sub 2} microspheres and urea in a muffle furnace. The investigation of morphologies and microstructures showed that g-C{sub 3}N{sub 4} was wrapped tightly on the surface of SnO{sub 2} microspheres with large intimate interface contact areas between the g-C{sub 3}N{sub 4} shells and SnO{sub 2} cores. The X-ray photoelectron spectroscopy results and photoluminescence spectra demonstrated that the intimate interface contacts could facilitate the transfer and separation of the photogenerated charge carriers at their interface, thus the recombination of the photogenerated electron-hole pairs was impeded. The photocatalytic activity of the synthesized composites was evaluated by the photodegradation of methyl orange under visible light irradiation. It was found that SnO{sub 2}@g-C{sub 3}N{sub 4} exhibited higher photodegradation rate (k = 0.013 min{sup −1}) than that of g-C{sub 3}N{sub 4} (k = 0.008 min{sup −1}) and pure SnO{sub 2}. The enhanced photocatalytic activity could be attributed to the synergic action of SnO{sub 2} and g-C{sub 3}N{sub 4}.

  12. Design and performance of a new induction furnace for heat treatment of superconducting radiofrequency niobium cavities.

    Science.gov (United States)

    Dhakal, Pashupati; Ciovati, Gianluigi; Rigby, Wayne; Wallace, John; Myneni, Ganapati Rao

    2012-06-01

    Superconducting radio frequency (SRF) cavities made of high purity niobium (Nb) are the building blocks of many modern particle accelerators. The fabrication process includes several cycles of chemical and heat treatment at low (∼120 °C) and high (∼800 °C) temperatures. In this contribution, we describe the design and performance of an ultra-high-vacuum furnace which uses an induction heating system to heat treat SRF cavities. Cavities are heated by radiation from the Nb susceptor. By using an all-niobium hot zone, contamination of the Nb cavity by foreign elements during heat treatment is minimized and allows avoiding subsequent chemical etching. The furnace was operated up to 1400 °C with a maximum pressure of ∼1 × 10(-5) Torr and the maximum achievable temperature is estimated to be higher than 2000 °C. Initial results on the performance of a single cell 1.5 GHz cavity made of ingot Nb heat treated at 1200 °C using this new induction furnace and without subsequent chemical etching showed a reduction of the RF losses by a factor of ∼2 compared to cavities made of fine-grain Nb which underwent standard chemical and heat treatments.

  13. Tests of Bed Agglomeration Tendency Using a Rotating Furnace; Roterugn foer bedoemning av sintringsbenaegenhet

    Energy Technology Data Exchange (ETDEWEB)

    Larfeldt, Jenny; Zintl, Frank [TPS Termiska Processer AB, Nykoeping (Sweden)

    2003-08-01

    Bed sintering is a well known problem in fluidised bed boilers. In order to avoid bed sintering the bed material turn over ratio is high which leads a high consumption of bed material. This work aims at developing and evaluating a method for testing the bed agglomeration tendency of a FB bed material by using a rotating furnace. A rotating furnace has been designed and tests have shown that three temperatures describing the increasing agglomeration tendency can be evaluated; TA when several particles stick to each other and to the crucible wall, TB when half of the material sticks to the wall and TC when almost all the material forms a ball in the crucible. Comparison with bed agglomeration tests has shown that TA is between 80 deg C to 130 deg C lower than the bed agglomeration temperature from fluid bed tests. It is shown that TB is closer to the bed agglomeration temperature and finally that the temperature TC is higher than the bed agglomeration temperature. It is concluded that in the rotating furnace sticking of particles is visualised early, and that this sticking will not cause defluidisation of the bed until more than half of the material in the crucible is sticky. Repeated tests has been performed at a heating rate of 5 deg/minute and a rotating speed of 12 rpm and a furnace inclination of 20 deg was found to give distinct results in the evaluation. The evaluation has shown to be reproducible at lower temperatures. At higher temperatures, around 1,000 deg C, the evaluation was complicated by a poor picture quality which probably can be improved by proper cooling of the camera. It has also been shown that sticking of material in the rotating furnace could be detected at relatively low temperatures of 750 deg C that disappeared at higher temperatures. This is likely to be explained by melting salts that evaporates as temperature increase. At even higher temperatures the sticking reappeared until a ball was formed in the crucible. The latter sticking is

  14. Emissions of HC, CO, NOx, CO2, and SO2 from civil aviation in China in 2010

    Science.gov (United States)

    Fan, Weiyi; Sun, Yifei; Zhu, Tianle; Wen, Yi

    2012-09-01

    Civil aviation in China has developed rapidly in recent years, and the effects of civil aviation emissions on the atmospheric environment should not be neglected. The establishment of emission inventories of atmospheric pollutants from civil aviation contributes to related policy formation and pollution control. According to the 2010's China flight schedules, aircraft/engine combination information and revised emission indices from the International Civil Aviation Organization emission data bank based on meteorological data, the fuel consumption and HC, CO, NOx, CO2, SO2 emissions from domestic flights of civil aviation in China (excluding Taiwan Province) in 2010 are estimated in this paper. The results show that fuel consumption in 2010 on domestic flights in China is 12.12 million tons (metric tons), HC, CO, NOx, CO2 and SO2 emissions are 4600 tons, 39,700 tons, 154,100 tons, 38.21 million tons and 9700 tons, respectively. The fuel consumption and pollutant emissions of China Southern Airline are responsible for the largest national proportion of each, accounting for 27% and 25-28%, respectively.

  15. Preparation and Optimization of Vanadium Titanomagnetite Carbon Composite Hot Briquette: A New Type of Blast Furnace Burden

    Science.gov (United States)

    Zhao, W.; Wang, H. T.; Liu, Z. G.; Chu, M. S.; Ying, Z. W.; Tang, J.

    2017-10-01

    A new type of blast furnace burden, named VTM-CCB (vanadium titanomagnetite carbon composite hot briquette), is proposed and optimized in this paper. The preparation process of VTM-CCB includes two components, hot briquetting and heat treatment. The hot-briquetting and heat-treatment parameters are systematically optimized based on the Taguchi method and single-factor experiment. The optimized preparation parameters of VTM-CCB include a hot-briquetting temperature of 300°C, a coal particle size of coal-added ratio of 28.52%, a heat-treatment temperature of 500°C and a heat-treatment time of 3 h. The compressive strength of VTM-CCB, based on the optimized parameters, reaches 2450 N, which meets the requirement of blast furnace ironmaking. These integrated parameters provide a theoretical basis for the production and application of a blast furnace smelting VTM-CCB.

  16. The metallurgic furnaces at the Curamba Inca site (Peru): a study by Moessbauer spectroscopy and X-ray diffractometry

    International Nuclear Information System (INIS)

    Huaypar, Yezena; Vetter, Luisa; Bravo, Jorge

    2007-01-01

    The Inca site at Curamba is located in the Province of Apurimac in the southern highlands of Peru where, according to some historians, several thousand furnaces used for ore smelting were found. For this work, four samples of burned soil were gathered from these furnaces and classified as Curamba1, Curamba2, Curamba3, and Curamba4, and studied using transmission Moessbauer spectroscopy (TMS) and X-ray diffractometry (XRD). The mineralogical composition of the samples was determined by XRD and the structural sites in the minerals occupied by iron cations were characterized by TMS. Moreover, an attempt was made to determine the maximum temperature reached in these furnaces using the refiring technique of the samples in an oxidizing environment and monitoring the structural modifications at the iron sites by changes in the Moessbauer hyperfine parameters. The TMS results of Curamba2 show that the maximum temperature reached in this furnace was about 900 deg. C, in agreement with the mineralogical composition found by XRD. In the case of Curamba1 and Curamba4 the maximum temperature estimated was about 400 deg. C.

  17. Design analysis and performance test of reduction furnace of kernel U3O8

    International Nuclear Information System (INIS)

    Moch Setyadji; Triyono; Dedy Husnurrofiq

    2015-01-01

    High Temperature Reactor (HTR) with coated particle fuel is a future reactor (generation IV) because it is not only having high efficiency but also release no fission product into the environment. It has a passive safety principles and negative reactivity. Coated particle fuel for high temperature reactor is made through Sol-Gel process followed by aging, drying, calcination, reduction, sintering and coating process. Research of design analysis of heating system, electrical system, and insulation systems continued construction and performance test of reduction furnace has been done. The aim of this research was to obtain a reduction furnace with adequate performance that can be used to reduce the kernel of U 3 O 8 into UO 2 . The results of the performance test of the reduction furnace showed that heating zones 1-3 can generate heat to a temperature of 900°C with operation time 144 minutes and heat rate of 5.979°C/min. The coefficient of convection in the outer wall of fireproof stone having 7 cm thick was around 30 W/m 2 C. UO 2 kernel resulting from the reduction process has a diameter of between 0.850 to 0.992 mm and qualify as feed sintering process. (author)

  18. BPM Motors in Residential Gas Furnaces: What are the Savings?

    OpenAIRE

    Lutz, James; Franco, Victor; Lekov, Alex; Wong-Parodi, Gabrielle

    2006-01-01

    Residential gas furnaces contain blowers to distribute warm air. Currently, furnace blowers use either a Permanent Split Capacitor (PSC) or a Brushless Permanent Magnet (BPM) motor. Blowers account for the majority of furnace electricity consumption. Therefore, accurate determination of the blower electricity consumption is important for understanding electricity consumption of furnaces. The electricity consumption of blower motors depends on the static pressure across the blower. This p...

  19. Development of synthetic graphite resistive elements for sintering furnace

    International Nuclear Information System (INIS)

    Otani, C.; Rezende, Mirabel C.; Polidoro, H.A.; Otani, S.

    1987-01-01

    The synthetic graphites have been produced using lignin coke, natural graphite and phenolic resin. The bulk density, porosity, flexural strength and eletrical resistivity measurements have been performed on specimens at about 2400 0 C. The performance of these materials, as heating elements, was evaluated in a sintering furnace prototype. This paper reports the fabrication process and the experimental results. (Author) [pt

  20. Adverse Events Associated with Hospitalization or Detected through the RAI-HC Assessment among Canadian Home Care Clients

    Science.gov (United States)

    Doran, Diane; Hirdes, John P.; Blais, Régis; Baker, G. Ross; Poss, Jeff W.; Li, Xiaoqiang; Dill, Donna; Gruneir, Andrea; Heckman, George; Lacroix, Hélène; Mitchell, Lori; O'Beirne, Maeve; Foebel, Andrea; White, Nancy; Qian, Gan; Nahm, Sang-Myong; Yim, Odilia; Droppo, Lisa; McIsaac, Corrine

    2013-01-01

    Background: The occurrence of adverse events (AEs) in care settings is a patient safety concern that has significant consequences across healthcare systems. Patient safety problems have been well documented in acute care settings; however, similar data for clients in home care (HC) settings in Canada are limited. The purpose of this Canadian study was to investigate AEs in HC, specifically those associated with hospitalization or detected through the Resident Assessment Instrument for Home Care (RAI-HC). Method: A retrospective cohort design was used. The cohort consisted of HC clients from the provinces of Nova Scotia, Ontario, British Columbia and the Winnipeg Regional Health Authority. Results: The overall incidence rate of AEs associated with hospitalization ranged from 6% to 9%. The incidence rate of AEs determined from the RAI-HC was 4%. Injurious falls, injuries from other than fall and medication-related events were the most frequent AEs associated with hospitalization, whereas new caregiver distress was the most frequent AE identified through the RAI-HC. Conclusion: The incidence of AEs from all sources of data ranged from 4% to 9%. More resources are needed to target strategies for addressing safety risks in HC in a broader context. Tools such as the RAI-HC and its Clinical Assessment Protocols, already available in Canada, could be very useful in the assessment and management of HC clients who are at safety risk. PMID:23968676

  1. Comparative Study of Furnace and Flash Lamp Annealed Silicon Thin Films Grown by Plasma Enhanced Chemical Vapor Deposition

    Directory of Open Access Journals (Sweden)

    Maheshwar Shrestha

    2018-03-01

    Full Text Available Low-temperature growth of microcrystalline silicon (mc-Si is attractive for many optoelectronic device applications. This paper reports a detailed comparison of optical properties, microstructure, and morphology of amorphous silicon (a-Si thin films crystallized by furnace annealing and flash lamp annealing (FLA at temperatures below the softening point of glass substrate. The initial a-Si films were grown by plasma enhanced chemical vapor deposition (PECVD. Reflectance measurement indicated characteristic peak in the UV region ~280 nm for the furnace annealed (>550 °C and flash lamp annealed films, which provided evidence of crystallization. The film surface roughness increased with increasing the annealing temperature as well as after the flash lamp annealing. X-ray diffraction (XRD measurement indicated that the as-deposited samples were purely amorphous and after furnace crystallization, the crystallites tended to align in one single direction (202 with uniform size that increased with the annealing temperature. On the other hand, the flash lamp crystalized films had randomly oriented crystallites with different sizes. Raman spectroscopy showed the crystalline volume fraction of 23.5%, 47.3%, and 61.3% for the samples annealed at 550 °C, 650 °C, and with flash lamp, respectively. The flash lamp annealed film was better crystallized with rougher surface compared to furnace annealed ones.

  2. Connection between in-plane upper critical field Hc 2 and gap symmetry in layered d -wave superconductors

    Science.gov (United States)

    Wang, Jing-Rong; Liu, Guo-Zhu; Zhang, Chang-Jin

    2016-07-01

    Angle-resolved upper critical field Hc 2 provides an efficient tool to probe the gap symmetry of unconventional superconductors. We revisit the behavior of in-plane Hc 2 in d -wave superconductors by considering both the orbital effect and Pauli paramagnetic effect. After carrying out systematic analysis, we show that the maxima of Hc 2 could be along either nodal or antinodal directions of a d -wave superconducting gap, depending on the specific values of a number of tuning parameters. This behavior is in contrast to the common belief that the maxima of in-plane Hc 2 are along the direction where the superconducting gap takes its maximal value. Therefore, identifying the precise d -wave gap symmetry through fitting experiments results of angle-resolved Hc 2 with model calculations at a fixed temperature, as widely used in previous studies, is difficult and practically unreliable. However, our extensive analysis of angle-resolved Hc 2 show that there is a critical temperature T*: in-plane Hc 2 exhibits its maxima along nodal directions at T change as other parameters vary, but the existence of π /4 shift of Hc 2 at T* appears to be a general feature. Thus a better method to identify the precise d -wave gap symmetry is to measure Hc 2 at a number of different temperatures, and examine whether there is a π /4 shift in its angular dependence at certain T*. We further show that Landau level mixing does not change this general feature. However, in the presence of Fulde-Ferrell-Larkin-Ovchinnikov state, the angular dependence of Hc 2 becomes quite complicated, which makes it more difficult to determine the gap symmetry by measuring Hc 2. Our results indicate that some previous studies on the gap symmetry of CeCu2Si2 are unreliable and need to be reexamined, and also provide a candidate solution to an experimental discrepancy in the angle-resolved Hc 2 in CeCoIn5.

  3. A new compact fixed-point blackbody furnace

    International Nuclear Information System (INIS)

    Hiraka, K.; Oikawa, H.; Shimizu, T.; Kadoya, S.; Kobayashi, T.; Yamada, Y.; Ishii, J.

    2013-01-01

    More and more NMIs are realizing their primary scale themselves with fixed-point blackbodies as their reference standard. However, commercially available fixed-point blackbody furnaces of sufficient quality are not always easy to obtain. CHINO Corp. and NMIJ, AIST jointly developed a new compact fixed-point blackbody furnace. The new furnace has such features as 1) improved temperature uniformity when compared to previous products, enabling better plateau quality, 2) adoption of the hybrid fixed-point cell structure with internal insulation to improve robustness and thereby to extend lifetime, 3) easily ejectable and replaceable heater unit and fixed-point cell design, leading to reduced maintenance cost, 4) interchangeability among multiple fixed points from In to Cu points. The replaceable cell feature facilitates long term maintenance of the scale through management of a group of fixed-point cells of the same type. The compact furnace is easily transportable and therefore can also function as a traveling standard for disseminating the radiation temperature scale, and for maintaining the scale at the secondary level and industrial calibration laboratories. It is expected that the furnace will play a key role of the traveling standard in the anticipated APMP supplementary comparison of the radiation thermometry scale

  4. Electric melting furnace for waste solidification

    International Nuclear Information System (INIS)

    Masaki, Toshio.

    1990-01-01

    To avoid electric troubles or reduction of waste processing performance even when platinum group elements are contained in wastes to be applied with glass solidification. For this purpose, a side electrode is disposed to the side wall of a melting vessel and a central electrode serving as a counter electrode is disposed about at the center inside the melting vessel. With such a constitution, if conductive materials are deposited at the bottom of the furnace or the bottom of the melting vessel, heating currents flow selectively between the side electrode and the central electrode. Accordingly, no electric currents flow through the conductive deposits thereby enabling to prevent abnormal heating in the bottom of the furnace. Further, heat generated by electric supply between the side electrode and the central electrode is supplied efficiently to raw material on the surface of the molten glass liquid to improve the processing performance. Further, disposition of the bottom electrode at the bottom of the furnace enables current supply between the central electrode and the bottom electrode to facilitate the temperature control for the molten glass in the furnace than in the conventional structure. (I.S.)

  5. Strontium-90 and cesium-137 in total diet from Oct. 1983 to Jul. 1984

    International Nuclear Information System (INIS)

    1984-01-01

    Sr-90 and Cs-137 in total diet were determined using radiochemical analysis. A full one day ordinary diet including three meales, water, tea, and other in-between snacks for five persons was collected as a sample of ''total diet'' from 29 sampling locations. The sample in a large stainless steel pan was carbonized carefully by direct application of gas flame, and was transfered to a porcelain dish and then ashed at 500 0 C in an electric muffle furnace. The maximum values of Sr-90 and Cs-137 were 5.8+-0.47 pCi.p -1 .d -1 and 19.0+-0.60 pCi.p -1 .d -1 in total diet collected from Akita in July 1984. (Namekawa, K.)

  6. Strontium-90 and cesium-137 in total diet (from Jun. 1983 to Dec. 1983)

    International Nuclear Information System (INIS)

    1983-01-01

    Sr-90 and Cs-137 in total diet were determined using radiochemical analysis. A full one day ordinary diet including three meals, water, tea and other in-between snacks for five persons was collected as a sample of ''total diet'' from 27 sampling locations. The sample in a large stainless steel pan was carbonized carefully by direct application of gas flame, and was transfered to a porcelain dish and then ashed at 500 0 C in an electric muffle furnace. The maximum values of Sr-90 and Cs-137 in total diet were 5.4 +- 0.43 pCi.p -1 .d -1 from Kochi in November 1983 and 5.5 +- 0.32 pCi.p -1 .d -1 from Akita in November 1983, respectively. (Namekawa, K.)

  7. Strontium-90 and cesium-137 in total diet (from Jun. 1984 to Dec. 1984)

    International Nuclear Information System (INIS)

    1984-01-01

    Sr-90 and Cs-137 in total diet were determined using radiochemical analysis. A full one ordinary diet including three meals, water, tea and other in-between snacks for five persons was collected as a sample of ''total diet'' from 20 sampling locations. The sample in a large stainless steel pan was carbonized carefully by direct application of gas flame, and was transferred to a porcelain dish and then ashed at 500 deg C in an electric muffle furnace. The maximum values of Sr-90 and Cs-137 in total diet were 5.3 +- 0.47 pCi · p -1 · d -1 and 5.4 +- 0.38 pCi · p -1 · d -1 , respectively, from Hokkaido in December 1984. (Namekawa, K.)

  8. Strontium-90 and cesium-137 in total diet (from Oct. 1984 to Jul. 1985)

    International Nuclear Information System (INIS)

    1985-01-01

    Sr-90 and Cs-137 in total diet were determined using radiochemical analysis. A full one day ordinary diet including three meals, water, tea and other in-between snacks for five persons was collected as a sample of ''total diet'' from 27 sampling locations. The sample in a large stainless steel pan was carbonized carefully by direct application of gas flame, and was transferred to a porcelain dish and then ashed at 500 deg C in an electric muffle furnace. The maximum values of Sr-90 and Cs-137 in total diet were 4.5 +- 0.43 pCi/p·d from Niigata in June 1985 and 4.9 +- 0.40 pCi/p·d from Fukushima in January 1985, respectively. (Namekawa, K.)

  9. Electrosynthesis of Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 from Ti-Bearing Blast Furnace Slag in Molten CaCl2

    Science.gov (United States)

    Li, Shangshu; Zou, Xingli; Zheng, Kai; Lu, Xionggang; Chen, Chaoyi; Li, Xin; Xu, Qian; Zhou, Zhongfu

    2018-04-01

    Ti5Si3, Ti5Si3/TiC, and Ti5Si3/Ti3SiC2 have been electrochemically synthesized from the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors at a cell voltage of 3.8 V and 1223 K to 1273 K (950 °C to 1000 °C) in molten CaCl2. The pressed porous mixture pellets were used as the cathode, and a solid oxide oxygen-ion-conducting membrane (SOM)-based anode was used as the anode. The phase composition and morphologies of the cathodic products were systematically characterized. The final products possess a porous nodular microstructure due to the interconnection of particles. The variations of impurity elements, i.e., Ca, Mg, and Al, have been analyzed, and the result shows that Ca and Mg can be almost completely removed; however, Al cannot be easily removed from the pellet due to the formation of Ti-Al alloys during the electroreduction process. The electroreduction process has also been investigated by the layer-depended phase composition analysis of the dipped/partially reduced pellets to understand the detailed reaction process. The results indicate that the electroreduction process of the Ti-bearing blast furnace slag/TiO2 and/or C mixture precursors can be typically divided into four periods, i.e., (i) the decomposition of initial Ca(Mg,Al)(Si,Al)2O6, (ii) the reduction of Ti/Si-containing intermediate phases, (iii) the removal of impurity elements, and (iv) the formation of Ti5Si3, TiC, and Ti3SiC2. It is suggested that the SOM-based anode process has great potential to be used for the direct and facile preparation of Ti alloys and composites from cheap Ti-containing ores.

  10. High Temperature Oxidation of Steel in an Oxygen-enriched Low NOX Furnace Environment

    Energy Technology Data Exchange (ETDEWEB)

    Poirier, D.; Grandmaison, E.W. [Department of Chemical Engineering, Queen' s University, Kingston, ON K7L 3N6 (Canada); Matovic, M.D. [Department of Mechanical and Materials Engineering, Queen' s University, Kingston, ON K7L 3N6 (Canada); Barnes, K.R. [KB Technical Services, Inc (formerly) Stelco Inc, Research Manager, Stelco Inc., P.O. Box 2030, Hamilton, ON L8N 3T1 (Canada); Nelson, B.D. [Department of Chemical Engineering, Senior Researcher, Dofasco Inc., P.O. Box 2460, Hamilton, ON L8N 3J5 (Canada)

    2006-09-15

    Steel scaling tests have been performed in a research furnace utilizing an oxygen-enriched, low NOX, burner. This work was performed in conjunction with a study of the combustion characteristics for the Canadian Gas Research Institute (CGRI) low NOX burner. The furnace (a facility of the Centre for Advanced Gas Combustion Technology (CAGCT)) was fired with the burner mounted in a sidewall configuration similar to the geometry encountered in steel reheat furnaces. Scale habit, intactness, adhesion and oxidation rates were examined for five grades of steel over a range of stack oxygen concentrations ({approx}0.8% - {approx}4.3%) and oxygen enrichment levels (0-90%) at 1100C. Steel grade had the largest effect on scaling properties examined in this work. Within the tests for each grade, stack oxygen concentration had the largest effect on the scaling properties while oxygen enrichment level had only a small effect.

  11. High temperature aircraft research furnace facilities

    Science.gov (United States)

    Smith, James E., Jr.; Cashon, John L.

    1992-01-01

    Focus is on the design, fabrication, and development of the High Temperature Aircraft Research Furnace Facilities (HTARFF). The HTARFF was developed to process electrically conductive materials with high melting points in a low gravity environment. The basic principle of operation is to accurately translate a high temperature arc-plasma gas front as it orbits around a cylindrical sample, thereby making it possible to precisely traverse the entire surface of a sample. The furnace utilizes the gas-tungsten-arc-welding (GTAW) process, also commonly referred to as Tungsten-Inert-Gas (TIG). The HTARFF was developed to further research efforts in the areas of directional solidification, float-zone processing, welding in a low-gravity environment, and segregation effects in metals. The furnace is intended for use aboard the NASA-JSC Reduced Gravity Program KC-135A Aircraft.

  12. Synthesis of [21-13C]-cholesterol

    International Nuclear Information System (INIS)

    Caballero, G.M.; Gros, E.G.

    1994-01-01

    The synthesis of [21- 13 C]-cholesterol from 3β-O-(t-butyldimethylsilyl)-17β-cyano-androst-5-ene is described. Labelled carbon-atom was introduced by Grignard reaction of nitrile derivative with [ 13 C]-methylmagnesium iodide. Location of label was confirmed by 13 C-NMR spectroscopy. (author)

  13. Assessment of selected furnace technologies for RWMC waste

    International Nuclear Information System (INIS)

    Batdorf, J.; Gillins, R.; Anderson, G.L.

    1992-03-01

    This report provides a description and initial evaluation of five selected thermal treatment (furnace) technologies, in support of earlier thermal technologies scoping work for application to the Idaho National Engineering Laboratory Radioactive Waste Management Complex (RWMC) buried wastes. The cyclone furnace, molten salt processor, microwave melter, ausmelt (fuel fired lance) furnace, and molten metal processor technologies are evaluated. A system description and brief development history are provided. The state of development of each technology is assessed, relative to treatment of RWMC buried waste

  14. Internal heat exchange tubes for industrial furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Hoetzl, M.; Lingle, T.M.

    1992-05-26

    This patent describes a method for cooling the work within an industrial furnace. It comprises providing a longitudinally extending outer tube which extends into the furnace having a closed axial end and an open axial end; providing a preformed inner tube open at both ends within the outer tube; injecting a coolant into the inner tube so that the coolant flows from one axial end of the tube out the opposite end adjacent the closed end of the outer tube, and from the closed end of the outer tube to the open end thereof; circulating a gas within the furnace against the outer tube to effect heat transfer therewith.

  15. Uranium casting furnace automatic temperature control development

    International Nuclear Information System (INIS)

    Lind, R.F.

    1992-01-01

    Development of an automatic molten uranium temperature control system for use on batch-type induction casting furnaces is described. Implementation of a two-color optical pyrometer, development of an optical scanner for the pyrometer, determination of furnace thermal dynamics, and design of control systems are addressed. The optical scanning system is shown to greatly improve pyrometer measurement repeatability, particularly where heavy floating slag accumulations cause surface temperature gradients. Thermal dynamics of the furnaces were determined by applying least-squares system identification techniques to actual production data. A unity feedback control system utilizing a proportional-integral-derivative compensator is designed by using frequency-domain techniques. 14 refs

  16. A furnace for firing carbon products

    Energy Technology Data Exchange (ETDEWEB)

    Sudavskii, A M

    1979-12-05

    A furnace for firing carbon products is patented that consists of several chambers with a perforated hearth, which are interconnected by a lower and an upper reservoir with a locking fixture, and a flue. In order to intensify the firing process by increasing the specific hearth productivity, the flue is connected to the upper reservoir. A block diagram of the patented furnace is given, together with a description of its operation.

  17. Elements of the electric arc furnace's environmental management

    Science.gov (United States)

    Ioana, Adrian; Semenescu, Augustin; Costoiu, Mihnea; Marcu, Dragoş

    2017-12-01

    The paper presents a theoretical and experimental analysis of the polluting generating mechanisms for steel making in the Electric Arc Furnaces (EAF). The scheme for the environment's polluting system through the EAF is designed and presented in this paper. The ecological experimenting consisted of determining by specialized measures of the dust percentage in the evacuated gases from the EAF and of thereof gas pollutants. From the point of view of reducing the impact on the environment, the main problem of the electric arc furnace (EAF) is the optimization of the powder collecting from the process gases, both from the furnace and from the work-area. The paper deals with the best dependence between the aggregate's constructive, functional and technological factors, which are necessary for the furnace's ecologization and for its energetically-technologically performances increasing.

  18. Methods for monitoring heat flow intensity in the blast furnace wall

    Directory of Open Access Journals (Sweden)

    L'. Dorčák

    2010-04-01

    Full Text Available In this paper we present the main features of an online system for real-time monitoring of the bottom part of the blast furnace. Firstly, monitoring concerns the furnace walls and furnace bottom temperatures measurement and their visualization. Secondly, monitored are the heat flows of the furnace walls and furnace bottom. In the case of two measured temperatures, the heat flow is calculated using multi-layer implicit difference scheme and in the case of only one measured temperature, the heat flow is calculated using a method based on application of fractional-order derivatives. Thirdly, monitored is the theoretical temperature of the blast furnace combustion process in the area of tuyeres.

  19. Production and loss of HC3N in interstellar clouds: some relevant laboratory measurements

    International Nuclear Information System (INIS)

    Knight, J.S.; Freeman, C.G.; McEwan, M.J.; Smith, S.C.; Adams, N.G.; Smith, D.

    1986-01-01

    The results of recent selected ion flow tube (SIFT) experiments on the ion-molecule chemistry of cyanoacetylene are considered in the context of the chemistry of HC 3 N in the interstellar environment. Important errors revealed by this SIFT investigation, following an earlier flowing afterglow study in the authors' laboratory, have led to a different perception of the ion-molecule chemistry that HC 3 N may undergo in interstellar clouds. It is now evident that insertion and association occur in the reactions of hydrocarbon ions with HC 3 N. (author)

  20. Utilization of formed coke from HBNPC in the Dunkerque blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Le Scour, C; Capelani, R

    1978-01-01

    Recalls the aspects involved in the manufacture of formed coke together with the coke characteristics. Describes the features of blast-furnaces No. 1 and No. 2 at Dunkerque. The blend used for producing the ovoids is composed of 70 to 80% non-coking coal and the ovoids are carbonized at 900 C. The first stage of the tests was carried out with 25% formed coke and the second stage with 22%. The formed coke was charged separately. The results were as follows: the coke rate was comparable and the permeability identical; there was no change in the behaviour of the furnace chamber and no problems were experienced at the hearth stage. The replacement of 30% of the conventional coke by HBNPC formed coke seemed a practical proposition.

  1. Thermal Analysis of an Industrial Furnace

    Directory of Open Access Journals (Sweden)

    Mirko Filipponi

    2016-10-01

    Full Text Available Industries, which are mainly responsible for high energy consumption, need to invest in research projects in order to develop new managing systems for rational energy use, and to tackle the devastating effects of climate change caused by human behavior. The study described in this paper concerns the forging industry, where the production processes generally start with the heating of steel in furnaces, and continue with other processes, such as heat treatments and different forms of machining. One of the most critical operations, in terms of energy loss, is the opening of the furnace doors for insertion and extraction operations. During this time, the temperature of the furnaces decreases by hundreds of degrees in a few minutes. Because the dispersed heat needs to be supplied again through the combustion of fuel, increasing the consumption of energy and the pollutant emissions, the evaluation of the amount of lost energy is crucial for the development of systems which can contain this loss. To perform this study, CFD simulation software was used. Results show that when the door opens, because of temperature and pressure differences between the furnace and the ambient air, turbulence is created. Results also show that the amount of energy lost for an opening of 10 min for radiation, convection and conduction is equal to 5606 MJ where convection is the main contributor, with 5020 MJ. The model created, after being validated, has been applied to perform other simulations, in order to improve the energy performance of the furnace. Results show that reducing the opening time of the door saves energy and limits pollutant emissions.

  2. Fluxless furnace brazing and its theoretical fundamentals

    International Nuclear Information System (INIS)

    Lison, R.

    1979-01-01

    In this paper the theoretical fundamental of fluxless furnace brazing are described. The necessary conditions for a wetting in the vacuum, under a inert-gas and with a reducing gas are discussed. Also other methods to reduce the oxygen partial pressure are described. Some applications of fluxless furnace brazing are outlined. (orig.) [de

  3. Hypermethylation of MIR21 in CD4+ T cells from patients with relapsing-remitting multiple sclerosis associates with lower miRNA-21 levels and concomitant up-regulation of its target genes

    KAUST Repository

    Ruhrmann, Sabrina

    2017-08-02

    Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system caused by genetic and environmental factors. DNA methylation, an epigenetic mechanism that controls genome activity, may provide a link between genetic and environmental risk factors.We sought to identify DNA methylation changes in CD4+ T cells in patients with relapsing-remitting (RR-MS) and secondary-progressive (SP-MS) disease and healthy controls (HC).We performed DNA methylation analysis in CD4+ T cells from RR-MS, SP-MS, and HC and associated identified changes with the nearby risk allele, smoking, age, and gene expression.We observed significant methylation differences in the VMP1/MIR21 locus, with RR-MS displaying higher methylation compared to SP-MS and HC. VMP1/MIR21 methylation did not correlate with a known MS risk variant in VMP1 or smoking but displayed a significant negative correlation with age and the levels of mature miR-21 in CD4+ T cells. Accordingly, RR-MS displayed lower levels of miR-21 compared to SP-MS, which might reflect differences in age between the groups, and healthy individuals and a significant enrichment of up-regulated miR-21 target genes.Disease-related changes in epigenetic marking of MIR21 in RR-MS lead to differences in miR-21 expression with a consequence on miR-21 target genes.

  4. Experimental evaluation of automotive air-conditioning using HFC-134a and HC-134a

    Science.gov (United States)

    Nasution, Henry; Zainudin, Muhammad Amir; Aziz, Azhar Abdul; Latiff, Zulkarnain Abdul; Perang, Mohd Rozi Mohd; Rahman, Abd Halim Abdul

    2012-06-01

    An experimental study to evaluate the energy consumption of an automotive air conditioning is presented. In this study, these refrigerants will be tested using the experimental rig which simulated the actual cars as a cabin complete with a cooling system component of the actual car that is as the blower, evaporator, condenser, radiators, electric motor, which acts as a vehicle engine, and then the electric motor will operate the compressor using a belt and pulley system, as well as to the alternator will recharge the battery. The compressor working with the fluids HFC-134a and HC-134a and has been tested varying the speed in the range 1000, 1500, 2000 and 2500 rpm. The measurements taken during the one hour experimental periods at 2-minutes interval times for temperature setpoint of 20°C with internal heat loads 0, 500, 700 and 1000 W. The final results of this study show an overall better energy consumption of the HFC-134a compared with the HC-134a.

  5. Fuel sparing: Control of industrial furnaces using process gas as supplemental fuel

    International Nuclear Information System (INIS)

    Boisvert, Patrick G.; Runstedtler, Allan

    2014-01-01

    Combustible gases from industrial processes can be used to spare purchased fuels such as natural gas and avoid wasteful flaring of the process gases. One of the challenges of incorporating these gases into other furnaces is their intermittent availability. In order to incorporate the gases into a continuously operating furnace, the furnace control system must be carefully designed so that the payload is not affected by the changing fuel. This paper presents a transient computational fluid dynamics (CFD) model of an industrial furnace that supplements natural gas with carbon monoxide during furnace operation. A realistic control system of the furnace is simulated as part of the CFD calculation. The time dependent changes in fuels and air injection on the furnace operation is observed. It is found that there is a trade-off between over-controlling the furnace, which results in too sensitive a response to normal flow oscillations, and under-controlling, which results in a lagged response to the fuel change. - Highlights: •Intermittently available process gases used in a continuously operating furnace. •Study shows a trade-off between over-controlling and under-controlling the furnace. •Over-controlling: response too sensitive to normal flow oscillations. •Under-controlling: lagged response to changing fuel composition. •Normal flow oscillations in furnace would not be apparent in steady-state model

  6. Sludge stabilization operability test report

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    Document provides the results of the Operability Test Procedure performed to test the operability of the HC-21C thermal stabilization process for sludge. The OTP assured all equipment functioned properly and established the baseline temperature profile for glovebox HC-21C

  7. Increased protoporphyrin IX accumulation does not improve the effect of photodynamic therapy for actinic keratosis

    DEFF Research Database (Denmark)

    Nissen, C V; Heerfordt, I M; Wiegell, S R

    2017-01-01

    BACKGROUND: Photodynamic therapy (PDT) with methyl aminolaevulinate (MAL) is highly effective for treating actinic keratosis (AK) on the face/scalp, but less effective on the extremities. Insufficient accumulation of protoporphyrin IX (PpIX) may cause these inferior efficacy rates. However...... (P = 0·001 and P = 0·002, respectively). However, the median total clearance rates did not improve accordingly: 3hC+ (55·0%), 21hC- (55·0%) and 21hC+ (53·6%). Conversely, insufficient PpIX accumulation in the 3hC- regimen led to a significantly lower clearance rate (33·3%) than the other regimens (P...

  8. Feasibility study of utilizing solar furnace technology in steel making industry

    Energy Technology Data Exchange (ETDEWEB)

    Abbaspoursani, K. [The Faculty of Mechanical Engineering, Takestan Islamic Azad University (Iran, Islamic Republic of)], Email: a.abbaspour@tiau.ac.ir; Tofigh, A.A.; Nahang Toudeshki, S.; Hadadian, A. [Department of Energy, Materials and Energy Research Center (Iran, Islamic Republic of)], Email: Ali.A.Tofigh@gmail.com, email: toudeshki@hotmail.com, email: Arash.Hadadian@gmail.com; Farahmandpour, B. [Iranian Fuel Conservation company (Iran, Islamic Republic of)], Email: farahmandpour@gmail.com

    2011-07-01

    In Iran, the casting industry consumes 33.6% of electricity production, and most of this electricity is used in the melting process. Currently, scrap preheating is done using electric arc furnaces and the aim of this study is to assess the feasibility of replacing electric arc furnaces with solar furnaces. The performance of solar furnaces in the Iran Alloy Steel Company under Yazd climate conditions was studied. It was found that the solar irradiation time and solar insulation are sufficient to operate a solar furnace with the capacity to preheat 250 thousand tons per year of scrap to 500 degrees celsius. Results showed that such a furnace would decrease energy consumption by 40 GWh per year and that it would take 5 years to return the investment. This study demonstrated that operating a solar furnace in the Iran Alloy Steel Company under Yazd climate conditions is feasible and would result in economic and environmental benefits.

  9. 10 CFR 431.72 - Definitions concerning commercial warm air furnaces.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 3 2010-01-01 2010-01-01 false Definitions concerning commercial warm air furnaces. 431... CERTAIN COMMERCIAL AND INDUSTRIAL EQUIPMENT Commercial Warm Air Furnaces § 431.72 Definitions concerning commercial warm air furnaces. The following definitions apply for purposes of this subpart D, and of subparts...

  10. Numerical simulation of the direct reduction of pellets in a rotary hearth furnace for zinc-containing metallurgical dust treatment

    Science.gov (United States)

    Wu, Yu-liang; Jiang, Ze-yi; Zhang, Xin-xin; Wang, Peng; She, Xue-feng

    2013-07-01

    A mathematical model was established to describe the direct reduction of pellets in a rotary hearth furnace (RHF). In the model, heat transfer, mass transfer, and gas-solid chemical reactions were taken into account. The behaviors of iron metallization and dezincification were analyzed by the numerical method, which was validated by experimental data of the direct reduction of pellets in a Si-Mo furnace. The simulation results show that if the production targets of iron metallization and dezincification are up to 80% and 90%, respectively, the furnace temperature for high-temperature sections must be set higher than 1300°C. Moreover, an undersupply of secondary air by 20% will lead to a decline in iron metallization rate of discharged pellets by 10% and a decrease in dezincing rate by 13%. In addition, if the residence time of pellets in the furnace is over 20 min, its further extension will hardly lead to an obvious increase in production indexes under the same furnace temperature curve.

  11. Smelting of high-quality boiler steel in large-load arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kablukovskij, A F; Breus, V M; Tyurin, E I; Khristich, V D; Dumchev, Ya P [Tsentral' nyj Nauchno-Issledovatel' skij Inst. Chernoj Metallurgii, Moscow (USSR)

    1975-02-01

    High-grade steel can be obtained in large-capacity furnaces if the smelting technology used takes account of the size of the aggregates, the course of the metal fusion process, interaction with slag, furnace atmosphere, reducing agents, and other process characteristics. 12Kh1MF boiler steel smelted in a 100-ton electric arc furnace by an oxidizing process with oxygen bath blow and cast by the siphon method into 6.5-ton ingots using a slag-forming mixture (240 mm diameter billets and 219 to 245 mm diameter tubes) is satisfactory with regard to macro and microstructure, oxygen and nonmetallic oxide inclusion content, and mechanical properties. The stress rupture strength of 10/sup 5/ h at 570/sup 0/C is similar to that of open-hearth steel. Sulfides larger than a 3.5 spheroid have been detected in it. The nitrogen content of the electric steel is 0.0090 to 0.0120%, which is somewhat greater than usual in open-hearth metal. Of the oxygen inclusions in the steel, spinel-alumina predominates. Large inclusions were represented mainly by brittle silicates which appeared to be of exogenous origin.

  12. TECHNOLOGICAL PECULIARITIES O F MELTING AND OUT-OF-FURNACE PROCESSING OF BALANCED STEELS IN CONDITIONS OF ELECTRIC FURNACE STEELMAKING AND CONTINUOUS CASTING

    Directory of Open Access Journals (Sweden)

    S. V. Terletski

    2007-01-01

    Full Text Available The technological peculiarities of melting and out-of-furnace processing of balanced steels in conditions of electric furnace steelmaking and continuous cast of RUP “BMZ” are considered.

  13. Chemical energy in electro arc furnace - examples from experience

    International Nuclear Information System (INIS)

    Shushlevski, Ljupcho; Georgievski, Panche; Hadzhidaovski, Ilija

    2004-01-01

    Great competition on the market in steel-producing and chemical lack of electrical energy leads to realization of new project in section Steelworks AD 'Makstil' - Skopje named: 'Substitution of electrical energy i.e. entering of additional chemical energy in Electrical arc furnace for steel melting using fuels-naturual gas (CH 4 ), oxygen (O 2 ) and carbon (C)'. It is accumulate experience from two and one half year of intensive use of chemical energy with its accompanying problems, appropriate efficiency and economy in process for steel producing. In 2001 year we announced and described project for using of an additional alternative chemical energy in aggregate Electrical are furnace. In this work we will present realization, working experience and efficiency of the system for generating chemical energy. Practical realization needs serious approach in chemical energy usage The usage of chemical energy brings restrictions and needs many innovation for protection of equipment from shown aggressiveness during the combustion of fuel gasses. (Author)

  14. Multiphase flow modelling of furnace tapholes

    OpenAIRE

    Reynolds, Quinn G.; Erwee, Markus W.

    2017-01-01

    Pyrometallurgical furnaces of many varieties make use of tapholes in order to facilitate the removal of molten process material from inside the vessel. Correct understanding and operation of the taphole is essential for optimal performance of such furnaces. The present work makes use of computational fluid dynamics models generated using the OpenFOAM® framework in order to study flow behaviour in the taphole system. Single-phase large-eddy simulation models are used to quantify the discharge ...

  15. Immobilization of uranium and plutonium into boro-basalt, pyroxene and andradite mineral-like compositions

    International Nuclear Information System (INIS)

    Matyunin, Y.I.; Smelova, T.V.

    2000-01-01

    The immobilization of plutonium-containing wastes with the manufacturing of stable solid compositions is one of the problems that should be solved in the disposal of radioactive wastes. The works on the choice, preparation with the use of the cold crucible induction melter (CCIM) technology, and investigation of materials that are most suitable for immobilizing plutonium-containing wastes of different origin have been carried out at the All-Russian Scientific Research Institute of Inorganic Materials (VNIINM) and the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences in the framework of the agreements with Lawrence Livermore National Laboratory (LLNL, USA) on the material and technical support. This paper presents the data on the synthesis of cerium-, uranium-, and plutonium-containing materials based on boro-basalt, pyroxene, and andradite compositions in the muffle furnace and by using the CCIM method. The compositions containing up to 15 - 18 wt % cerium oxide, 8 - 11 wt % uranium oxide, and 4.6 - 5.7 wt % plutonium oxide were obtained in laboratory facilities installed in glove boxes. Comparison studies of the materials synthesized in the muffle furnace and CCIM demonstrate the advantages of using the CCIM method. The distribution of components in the materials synthesized are investigated, and their certain physicochemical properties are determined. (authors)

  16. The Automation Control System Design of Walking Beam Heating Furnace

    Directory of Open Access Journals (Sweden)

    Hong-Yu LIU

    2014-10-01

    Full Text Available Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distribution system picture of walking beam heating furnace were designed. Charge machine movement process was elaborated. Walking beam movement process was elaborated. Extractor movement process was elaborated. The hydraulic station of walking mechanism was elaborated. Relative control circuit diagram was designed. The control function of parallel shift motor, uplifted and degressive motor was elaborated. The control circuit diagram of parallel shift motor of charge machine and extractor of first heating furnace was designed. The control circuit diagram of uplifted and degressive motor of charge machine and extractor of first heating furnace was designed. The realization method of steel blank length test function was elaborated. The realization method of tracking and sequence control function of heating furnace field roller were elaborated. The design provides important reference base for enhancing walking beam heating furnace control level.

  17. Modeling of aerodynamics in vortex furnace

    Energy Technology Data Exchange (ETDEWEB)

    Anufriev, I.; Krasinsky, D. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Salomatov, V.; Anikin, Y.; Sharypov, O. [Russian Academy of Sciences, Novosibirsk (Russian Federation). Inst. of Thermophysics; Novosibirsk State Univ. (Russian Federation); Enkhjargal, Kh. [Mongol Univ. of Science and Technology, Ulan Bator (Mongolia)

    2013-07-01

    At present, the torch burning technology of pulverized-coal fuel in vortex flow is one of the most prospective and environmentally-friendly combustion technologies of low-grade coals. Appropriate organization of aerodynamics may influence stability of temperature and heat flux distributions, increase slag catching, and reduce toxic emissions. Therefore, from scientific point of view it is interesting to investigate aerodynamics in the devices aiming at justification of design and operating parameters for new steam generators with vortex furnace, and upgrade of existing boiler equipment. The present work is devoted to physical and mathematical modeling of interior aerodynamics of vortex furnace of steam generator of thermal power plants. Research was carried out on the air isothermal model which geometry was similar to one section of the experimental- industrial boiler TPE-427 of Novosibirsk TPS-3. Main elements of vortex furnace structure are combustion chamber, diffuser, and cooling chamber. The model is made from organic glass; on the front wall two rectangular nozzles (through which compressed air is injected) are placed symmetrically at 15 to the horizon. The Laser Doppler Velocimeter LAD-05 was used for non-contact measurement of vortex flow characteristics. Two velocity components in the XY-plane (in different cross- sections of the model) were measured in these experiments. Reynolds number was 3.10{sup 5}. Numerical simulation of 3-D turbulent isothermal flow was performed with the use of CFD package FLUENT. Detailed structure of the flow in vortex furnace model has been obtained in predictions. The distributions of main flow characteristics (pressure, velocity and vorticity fields, turbulent kinetic energy) are presented. The obtained results may be used at designing boilers with vortex furnace. Computations were performed using the supercomputer NKS-160.

  18. 46 CFR 59.15-5 - Stayed furnaces and combustion chambers.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Stayed furnaces and combustion chambers. 59.15-5 Section... and combustion chambers. (a) Where the plate forming the walls of stayed furnaces or combustion... wall of a stayed furnace or combustion chamber, the defective portion of the plate shall be cut away...

  19. Development and Validation of a 3-Dimensional CFB Furnace Model

    Science.gov (United States)

    Vepsäläinen, Arl; Myöhänen, Karl; Hyppäneni, Timo; Leino, Timo; Tourunen, Antti

    At Foster Wheeler, a three-dimensional CFB furnace model is essential part of knowledge development of CFB furnace process regarding solid mixing, combustion, emission formation and heat transfer. Results of laboratory and pilot scale phenomenon research are utilized in development of sub-models. Analyses of field-test results in industrial-scale CFB boilers including furnace profile measurements are simultaneously carried out with development of 3-dimensional process modeling, which provides a chain of knowledge that is utilized as feedback for phenomenon research. Knowledge gathered by model validation studies and up-to-date parameter databases are utilized in performance prediction and design development of CFB boiler furnaces. This paper reports recent development steps related to modeling of combustion and formation of char and volatiles of various fuel types in CFB conditions. Also a new model for predicting the formation of nitrogen oxides is presented. Validation of mixing and combustion parameters for solids and gases are based on test balances at several large-scale CFB boilers combusting coal, peat and bio-fuels. Field-tests including lateral and vertical furnace profile measurements and characterization of solid materials provides a window for characterization of fuel specific mixing and combustion behavior in CFB furnace at different loads and operation conditions. Measured horizontal gas profiles are projection of balance between fuel mixing and reactions at lower part of furnace and are used together with both lateral temperature profiles at bed and upper parts of furnace for determination of solid mixing and combustion model parameters. Modeling of char and volatile based formation of NO profiles is followed by analysis of oxidizing and reducing regions formed due lower furnace design and mixing characteristics of fuel and combustion airs effecting to formation ofNO furnace profile by reduction and volatile-nitrogen reactions. This paper presents

  20. Simulated and experimental performance of split packaged air conditioner using refrigerant HC-290 as a substitute for HCFC-22

    International Nuclear Information System (INIS)

    Padalkar, Atul S.; Mali, Kundlik V.; Devotta, Sukumar

    2014-01-01

    This paper discusses the use of propane (HC-290) as a safe and energy efficient alternative to HCFC-22 in a typical split air conditioner with nominal cooling capacities up to 5.1 kW. Initially split air conditioner performance is simulated for cooling capacity, energy efficiency ratio (EER), and refrigerant charge. Tests were conducted for different test cases in a psychrometric test chamber with HCFC-22 and HC-290. The test conditions considered are as per Indian Standards, IS 1391 (1992) Part I. The various parameters considered were based on simulated performance with the objective to achieve maximum EER for the desired cooling capacity. As the flammability is an issue for HC-290, the reduction of HC-290 charge was another objective. Two different types of condensers, first with smaller size tubing and another parallel flow condenser (PFC) or minichannel condenser were used in order to reduce HC-290 charge. For HC-290, the highest EER achieved was 3.7 for cooling capacity 4.90 kW for a refrigerant charge of 360 g. The important safety aspects of using HC-290 in air conditioner are discussed. The refrigerant charge as per EN 378 for different cooling capacities and room sizes is also considered. -- Highlights: • Simulation for performance of split air conditioner has been done using HC-290 as a replacement to HCFC-22. • The safety aspects of HC-290 are discussed when used in split air conditioner. • HC-290 was tested in psychrometric test chamber as per IS 1391 part 1. • With PFC, HC-290 gave highest EER of 3.7 which was 37% higher than that of HCFC-22. • The lowest HC-290 charge used in test was 340 g which is well below LFL

  1. Infrared Spectroscopic and Theoretical Study of the HC_nO^+(N=5-12) Cations

    Science.gov (United States)

    Li, Wei; Jin, Jiaye; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    Carbon chains and derivatives are highly active species, which are widely existed as reactive intermediates in many chemical processes including atmospheric chemistry, hydrocarbon combustion, as well as interstellar chemistry. The carbon chain cations, HC_nO^+ (n = 5-12) are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC_nO.CO] cation complexes in the 1600-3500 \\wn region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra in conjunction with theoretical calculations. All the HC_nO^+ (n = 5-12) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen. The HC_nO^+ cations with odd n have closed-shell singlet ground states with polyyne-like structures, while those with even n have triplet ground states with allene-like structures.

  2. Determination of the angular dependence of Hc2 in high Tc single crystals by a microwave technique

    OpenAIRE

    Shaltiel, David; Bill, Hans; Grayevsky, A.; Junod, Alain; Lovy, Dominique; Sadowski, S.; Walker, Eric

    1991-01-01

    It is shown that using an ESR spectrometer with magnetic field modulation and sweeping the temperature across Tc (at a constant and a very low magnetic field), is equivalent to temperature modulation. The signal intensity obtained when crossing Tc is proportional to 1/( delta Hc2/ delta T) at T=Tc. Using the WHH relation Hc2(T=0)=0.7 Tc( delta Hc2/ delta T)T=Tc enabled the measurement of the relative angular variation of Hc2 in single crystals of YBaCuO with Tc approximately 85 K. The data fi...

  3. Characterization of core-drilled cokes in a working blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shanning Dong; Nigel Paterson; Denis R. Dugwell; Rafael Kandiyoti [Imperial College London, London (United Kingdom). Dept. of Chemical Engineering

    2007-07-01

    A batch of tuyere-level core-drilled cokes, taken from a blast furnace working with coal injection has been characterized using a battery of analytical techniques. These included size exclusion chromatography (SEC), FT-Raman Spectroscopy (FT-RS) and X-ray Powder Diffraction (XRD). SEC tests on NMP-extracts of cokes taken from zones where temperatures were ca. 1500{sup o}C, showed the presence of heavy soot-like material (ca. 107-108 u apparent mass). By contrast, cokes in higher temperature zones (ca. 2000{sup o}C), only gave small amounts of extractable material with up to ca. 105 u apparent mass. The presence of soot-like material indicated the conversion-unfavoured locations at the tuyere-level. FT-Raman spectra of NMP-extracted cokes varied: the area ratios of D (at 1288-1295cm{sup -1}) to G (at ca. 1596cm{sup -1}) bands decreased as the exposure temperature increased. The random (r) fractions decreased with increasing exposure temperature, whereas, the graphitic (G) fractions increased whilst the defect (D) fraction showed a more complex variation with temperature. The latter is a likely indicator of graphitization of tuyere-level cokes in the blast furnace. The Raman spectral results were validated by XRD analyses of the demineralised and NMP-extracted cokes. Raceway coke possessed the largest crystalline dimensions and closest inter-layer spacing because it had encountered highest temperatures as well as iron catalysis. The combination of SEC and Raman spectrometry on core-drill samples has provided information relevant for maintaining stable operation in a blast-furnace operating with coal injection. 13 refs., 7 figs., 6 tabs.

  4. Alkali-activated blast furnace slag-zeolite cements and concretes

    International Nuclear Information System (INIS)

    Rakhimov, R.; Rakhimova, N.

    2012-01-01

    The aim of this work has been the study of alkali-activated slag-zeolite cements and concretes based on them. Various compositions have been tested and some characteristics such as the compressive strength have been measured versus zeolite additions. A table lists the specific surface area and particle size distributions of different cements. The conclusions of the study are the following. First, alkali-activated slag cements and concretes based on them are effective for immobilization of radioactive wastes and the production of building structures, designed for high radiation load. Secondly, zeolite-containing mineral additions are able to increase the immobilization capacity and radiation resistance of alkali-activated blast furnace slag cements and concretes. Thirdly, the efficiency of different zeolite-containing additions - 10% to increase alkali-activated blast furnace slag-zeolite cement strength was established. It is with alkaline components of water-glass, sodium carbonate, sodium sulphate. Fourth, the effective way of introducing zeolite additions in alkali-activated blast furnace slag-zeolite cement is inter-grinding of the slag and addition. Increase in strength of alkali-activated blast furnace slag-zeolite cement stone is 40% higher than that of the stone of a mixture of separately milled components. Fifth, Alkali-activated blast furnace slag-zeolite cements with zeolite-containing additions with a compressive strength of 10.1 to 140 MPa; alkali-activated blast furnace slag-zeolite cements mortars with compressive strength from 35.2 to 97.7 MPa; alkali-activated blast furnace slag-zeolite cements concretes with compressive strength up to 84.5 MPa and frost resistant up to 800 cycles were obtained

  5. Non-detection of HC11N towards TMC-1: constraining the chemistry of large carbon-chain molecules

    Science.gov (United States)

    Loomis, Ryan A.; Shingledecker, Christopher N.; Langston, Glen; McGuire, Brett A.; Dollhopf, Niklaus M.; Burkhardt, Andrew M.; Corby, Joanna; Booth, Shawn T.; Carroll, P. Brandon; Turner, Barry; Remijan, Anthony J.

    2016-12-01

    Bell et al. reported the first detection of the cyanopolyyne HC11N towards the cold dark cloud TMC-1; no subsequent detections have been reported towards any source. Additional observations of cyanopolyynes and other carbon-chain molecules towards TMC-1 have shown a log-linear trend between molecule size and column density, and in an effort to further explore the underlying chemical processes driving this trend, we have analysed Green Bank Telescope observations of HC9N and HC11N towards TMC-1. Although we find an HC9N column density consistent with previous values, HC11N is not detected and we derive an upper limit column density significantly below that reported in Bell et al. Using a state-of-the-art chemical model, we have investigated possible explanations of non-linearity in the column density trend. Despite updating the chemical model to better account for ion-dipole interactions, we are not able to explain the non-detection of HC11N, and we interpret this as evidence of previously unknown carbon-chain chemistry. We propose that cyclization reactions may be responsible for the depleted HC11N abundance, and that products of these cyclization reactions should be investigated as candidate interstellar molecules.

  6. 26 CFR 1.381(c)(2)-1 - Earnings and profits.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Earnings and profits. 1.381(c)(2)-1 Section 1.381(c)(2)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Insolvency Reorganizations § 1.381(c)(2)-1 Earnings and profits. (a) In...

  7. Separation of {sup 90}Sr from radioactive waste matrices-Microwave versus fusion decomposition

    Energy Technology Data Exchange (ETDEWEB)

    Jaeggi, M. [Paul Scherrer Institut, Department Logistics for Radiation Safety and Security, Radioanalytics, 5232 Villigen (Switzerland)], E-mail: maya.jaeggi@psi.ch; Eikenberg, J. [Paul Scherrer Institut, Department Logistics for Radiation Safety and Security, Radioanalytics, 5232 Villigen (Switzerland)

    2009-05-15

    Radioactive waste (slurry) from a detention pond deriving from two research reactors and several inactive and active drain outlets at the Paul Scherrer Institute are the basis for the current {sup 90}Sr investigation. For decomposition, a microwave method was applied, where 1 g of dry-ashed slurry was partially dissolved (HNO{sub 3} (65%)/H{sub 2}O{sub 2} (30%); v:v=8:2). In this slurry we obtained an {sup 90}Sr activity of 5.3{+-}0.2 Bq/g in solution. In a second run, we applied a borate-fusion (Li metaborate/Li tetraborate (80:20 w/w%) dissolving 1 g of dry-ashed 'Si-free' slurry at 1100 deg. C in a muffle furnace. We achieved an {sup 90}Sr activity of (7.8{+-}0.3) Bq/g, yet observing BaSO{sub 4} precipitation during the chromatographical separation of Sr. An alkali fusion using Na{sub 2}CO{sub 3} was done using the Bunsen burner and the muffle furnace for 20 min at 1000 deg. C, in combination. During formation of the hot glass, the surplus of Na{sub 2}CO{sub 3}, produced Na{sub 2}SO{sub 4} and BaCO{sub 3} in solid form. The hot glass was dissolved in deionised water, removing thus the SO{sub 4}{sup 2-} ions. Dissolving the residue directly in HNO{sub 3}, solves Ba as Ba(NO{sub 3}){sub 2} and thus we achieved over 80% of the {sup 133}Ba activity in the solution, as measured by {gamma}-spectrometry. {sup 85}Sr tracer of 88.0%{+-}3.3% was recovered, yielding on average in (7.4{+-}0.3) Bq/g of {sup 90}Sr activity. The increase of 2.1-2.5 Bq/g of {sup 90}Sr activity achieved with the alkali fusion, and the Li metaborate/Li tetraborate 80:20 w/w% fusion, respectively, clearly shows that some Sr must have been present as SrSO{sub 4} in the slurry.

  8. 275 C Downhole Microcomputer System

    Energy Technology Data Exchange (ETDEWEB)

    Chris Hutchens; Hooi Miin Soo

    2008-08-31

    An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessor ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry.

  9. 2750 C Downhole Microcomputer System

    International Nuclear Information System (INIS)

    Hutchens, Chris; Soo, Hooi Miin

    2008-01-01

    An HC11 controller IC and along with serial SRAM and ROM support ICs chip set were developed to support a data acquisition and control for extreme temperature/harsh environment conditions greater than 275 C. The 68HC11 microprocessor is widely used in well logging tools for control, data acquisition, and signal processing applications and was the logical choice for a downhole controller. This extreme temperature version of the 68HC11 enables new high temperature designs and additionally allows 68HC11-based well logging tools and MWD tools to be upgraded for high temperature operation in deep gas reservoirs, The microcomputer chip consists of the microprocessor ALU, a small boot ROM, 4 kbyte data RAM, counter/timer unit, serial peripheral interface (SPI), asynchronous serial interface (SCI), and the A, B, C, and D parallel ports. The chip is code compatible with the single chip mode commercial 68HC11 except for the absence of the analog to digital converter system. To avoid mask programmed internal ROM, a boot program is used to load the microcomputer program from an external mask SPI ROM. A SPI RAM IC completes the chip set and allows data RAM to be added in 4 kbyte increments. The HC11 controller IC chip set is implemented in the Peregrine Semiconductor 0.5 micron Silicon-on-Sapphire (SOS) process using a custom high temperature cell library developed at Oklahoma State University. Yield data is presented for all, the HC11, SPI-RAM and ROM. The lessons learned in this project were extended to the successful development of two high temperature versions of the LEON3 and a companion 8 Kbyte SRAM, a 200 C version for the Navy and a 275 C version for the gas industry

  10. Heat treatment of nuclear reactor pump part in integrated furnace facility

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    A flexible heat treating system is meeting strict work specifications while accommodating the production flow pattern requirements and floor space needs of Advanced Metal Treating, Inc., Butler, Wis. Modular design and appropriate furnace configurations allow realization of the most efficient heat treat processing and energy use in a relatively small production area. The totally-integrated system (Pacemaker--manufactured by Lindberg, A Unit of General Signal, Chicago) consists of an electric integral-quench furnace with companion draw furnaces, washer unit and a material transfer car. With its one-side, inout configuration, the furnace operates with a minimum of drawing and washing equipment. The integral-quench furnace has a work chamber dimension of 30 by 48 by 30 inches (76.2 x 122 x 76.2 cm). The firm has two of these units, plus three in-out draw furnaces, one washer, one transfer car and two endothermic gas generators

  11. Towards the total synthesis of stawamycin. Synthesis of C11-C21 fragment.

    OpenAIRE

    Dias, LC; Jardim, LSA; Ferreira, AA; Soarez, HU

    2001-01-01

    The carbocyclic (C11-C21) fragment of Stawamycin has been prepared by a sequence involving 11 steps (10% overall yield) from methyl (R)-(-)-3-hydroxy-2-methylpropionate. Key steps are Pd-catalyzed Stille coupling reaction between a vinyl iodide and a vinylstannane followed by an intramolecular Diels-Alder cycloaddition reaction to afford the desired adduct as the major isomer together with three other possible adducts in 78% overall yield. A porção carbocíclica (C11-C21) da Estavamicina fo...

  12. Comparison of possibilities the blast furnace and cupola slag utilization by concrete production

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2010-04-01

    Full Text Available In process of pig iron and cast iron production secondary raw materials and industrial wastes are formed The most abundant secondaryproduct originating in these processes are furnace slag. Blast furnace slag and cupola furnace slag originates from melting of gangue parts of metal bearing materials, slag forming additions and coke ash. In general, slag are compounds of oxides of metallic and non-metallic elements, which form chemical compounds and solutions with each other and also contain small volume of metals, sulfides of metals and gases. Chemical, mineralogical and physical properties of slag determinate their utilisation in different fields of industry.The paper presents results from the research of the blast furnace and cupola furnace slag utilization in the concrete production. Pilotexperiments of the concrete production were performed, by that the blast furnace and cupola furnace slag with a fractions of 0–4mm;4–8mm; 8–16mm were used as a natural substitute. A cupola furnace slag and combination of the blast furnace and cupola furnace slagwere used in the experiments. The analysis results show that such concretes are suitable for less demanding applications.

  13. 40 CFR 60.261 - Definitions.

    Science.gov (United States)

    2010-07-01

    ... cycle means the time period from completion of a furnace product tap to the completion of the next... reference—see § 60.17) grades HC1 through HC6. (r) Charge chrome means that alloy containing 52 to 70...

  14. Non-polluting steam generators with fluidized-bed furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brandes, H [Deutsche Babcock A.G., Oberhausen (Germany, F.R.)

    1979-07-01

    The author reports on a 35 MW steam generator with hard coal fluidized-bed furnace a planned 35 MW steam generator with flotation-dirt fluidized-bed furnace, and on planned steam generators for fluidized-bed firing of hard coal up to a steam power of about 200 MW.

  15. Investigation of four self-report instruments (FABT, TSK-HC, Back-PAQ, HC-PAIRS) to measure healthcare practitioners' attitudes and beliefs toward low back pain: Reliability, convergent validity and survey of New Zealand osteopaths and manipulative physiotherapists.

    Science.gov (United States)

    Moran, Robert W; Rushworth, Wendy M; Mason, Jesse

    2017-12-01

    Healthcare practitioner beliefs influence advice and management provided to patients with back pain. Several instruments measuring practitioner beliefs have been developed but psychometric properties for some have not been investigated. To investigate internal consistency, test-retest reliability and convergent validity of the Fear Avoidance Beliefs Tool (FABT), the Tampa Scale of Kinesiophobia for Health Care Providers (TSK-HC), the Back Pain Attitudes Questionnaire (Back-PAQ), and the Health Care Pain and Impairment Relationship Scale (HC-PAIRS). A secondary aim was to explore beliefs of New Zealand osteopaths and physiotherapists regarding low back pain. FABT, TSK-HC, Back-PAQ, and HC-PAIRS were administered twice, 14 days apart. Data from 91 osteopaths and 35 physiotherapists were analysed. The FABT, TSK-HC and Back-PAQ each demonstrated excellent internal consistency, (Cronbach's α = 0.92, 0.91, and 0.91 respectively), and excellent test-retest reliability (lower limit of 95% CI for intraclass correlation coefficient >0.75). Correlations between instruments (Pearson's r = 0.51 to 0.77, p  0.47) for mean differences in scores, for all instruments, between professions. This study found excellent internal consistency, test-retest reliability and good convergent validity for the FABT, TSK-HC, and Back-PAQ. Previously reported internal consistency, test-retest and convergent validity of the HC-PAIRS were confirmed, and test-retest reliability was excellent. There were significant scoring differences on each instrument between professions, and while both groups demonstrated fear avoidant beliefs, physiotherapist respondent scores indicated that as a group, they held fewer fear-avoidant beliefs than osteopath respondents. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Copaifera cf. langsdorfii Desf. AND Dipteryx odorata (Aubl. Wild. CHARCOAL ANATOMY

    Directory of Open Access Journals (Sweden)

    Francielli Rodrigues Ribeiro Batista

    2012-11-01

    Full Text Available Species discrimination by charcoal analysis is possible, because the wood anatomical structure remains almost intact after carbonization process. Studies in this area are rare and directed to paleoecology and paleoetnobotany. Thus, this study aimed to characterize anatomically the carbonized wood of Copaifera cf. langsdorfii Desf. and Dipteryx odorata (Aubl. Wild., proceeding from north region of Mato Grosso state, in order to provide information to manage its illegal commerce. From each species were carbonized ten samples with dimensions of 2 x 2 x 5 cm in muffle furnace, in stage program and highest temperature of 450°C for 30 minutes, for seven hours. Final temperature applied does not change anatomical structure from both species, allowing its differentiation. The crystals formatremained without alterations, being visible little split.

  17. Interaction between the Chlamydia trachomatis histone H1-like protein (Hc1) and DNA

    DEFF Research Database (Denmark)

    Christiansen, G; Pedersen, Lotte Bang; Koehler, J E

    1993-01-01

    maintained its DNA-binding capacity and was able at high concentrations to form condensed aggregates with DNA (one molecule of Hc1 per base pair) independently of the form or size of the DNA but with a slight preference for supercoiled DNA. Hc1 alone is thus able to package DNA into condensed spherical...

  18. Lactogenic differentiation of HC11 cells is not accompanied by downregulation of AP-2 transcription factor genes

    Directory of Open Access Journals (Sweden)

    Schorle Hubert

    2008-06-01

    Full Text Available Abstract Background During pregnancy the mammary epithelium undergoes a complex developmental process which culminates in the generation of the milk-secreting epithelium. Secretory epithelial cells display lactogenic differentiation which is characterized by the expression of milk protein genes, such as beta-casein or whey acidic protein (WAP. Transcription factors AP-2alpha and AP-2gamma are downregulated during lactation, and their overexpression in transgenic mice impaired the secretory differentiation of the mammary epithelium, resulting in lactation failure. To explore whether the downregulation of AP-2alpha and AP-2gamma is of functional significance for lactogenic differentiation, we analyzed the expression of the AP-2 family members during the lactogenic differentiation of HC11 mammary epithelial cells in vitro. Differentiation of HC11 cells was induced following established protocols by applying the lactogenic hormones prolactin, dexamethasone and insulin. Findings HC11 cells express all AP-2 family members except AP-2delta. Using RT-PCR we could not detect a downregulation of any of these genes during the lactogenic differentiation of HC11 cells in vitro. This finding was confirmed for AP-2alpha and AP-2gamma using Northern analysis. Differentiating HC11 cells displayed lower expression levels of milk protein genes than mammary glands of mid-pregnant or lactating mice. Conclusion The extent of lactogenic differentiation of HC11 cells in vitro is limited compared to mammary epithelium undergoing secretory differentiation in vivo. Downregulation of AP-2 transcription factor genes is not required for lactogenic differentiation of HC11 cells but may functionally be involved in aspects of lactogenic differentiation in vivo that are not reflected by the HC11 system.

  19. Multi-fuel furnace. Demonstration project. Final rapport; Multibraendselsovn - Demonstrationsprojekt. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Dall Bentzen, J.

    2012-06-15

    It has been verified that the Dall Energy Furnace have unique features: - The furnace will accept biomass fuel with moisture content in range 20% to 60% and still keep the flue gas temperature within +-10 deg. Celsius (for pre-set temperature 900 to 975 deg. Celsius); - The ash quality from the furnace is very good with no excessive sintering and without carbon in the ash; - Flue gas dust content at the furnace exit is below 50 mg/Nm3, while the content of NO{sub x} and CO is below 175 mg/Nm3 and 20 mg/Nm3, respectively. The Dall Energy biomass furnace consists of two separate stages which are combined in a single aggregate: an updraft gasification process and a gas combustion process. As the furnace is refractory lined and as the furnace can operate at low excess air it is possible to burn biomass with water content above 60%. No mechanical parts are used at temperatures above 200 deg. Celsius. This provides a very rugged system. In the gasifier section a combustible gas is produced with a low velocity at the top of the gasifier bed. This gas is combusted to a flue gas with extremely low dust content. Also, the NO{sub x} and CO content is very low. The temperature of the flue gas at the exit is kept low by injecting water spray together with the secondary air. (Author)

  20. Synthesis of total protein (TP) and myosin heavy chain (HC) isozymes in pressure overloaded rabbit hearts

    International Nuclear Information System (INIS)

    Nagai, R.; Martin, B.J.; Pritzl, N.; Zak, R.; Low, R.B.; Stirewalt, W.S.; Alpert, N.R.; Litten, R.Z.

    1986-01-01

    Pulmonary artery banding (PO) leads to a rapid increase in right ventricular (RV) weight as well as a shift toward β myosin isozyme. They determined: (1) the contributions of changes in the capacity (RNA content) and efficiency of total protein synthesis to the increase in RV weight; and (2) the relative contributions of translational and pretranslational mechanisms to the shift in myosin HC isotypes. The rates of synthesis in vivo of TP, α- and β-HC were measured by a constant infusion technique using 3 H-leucine. TP synthesis was 7 +/- 2(SD) mg/day in control (RV:367 +/- 70 mg) and was increased by 2.6 fold at day 2 and 2.9 fold at day 4 following PO (p < 0.01). RV RNA content was increased by 83% at day 2 and 103% at day 4 PO (p < 0.05). The efficiency of synthesis (rate/RNA) was also significantly higher at these time points (1.4- and 1.3-fold). β-HC synthesis was 0.6 +/- 0.2 mg/day in control and increased by 2.6 fold at day 2 and 3.5 fold at day 4 following PO. In contrast, the rate of synthesis of α-HC was unchanged. The relative rates of β-HC to total HC synthesis was correlated linearly with the relative levels of β-myosin mRNA as measured by S1 nuclease mapping. They conclude that increases in the proportion of β-HC myosin following PO is due to increases in the relative amount of β-myosin mRNA and therefore involves modulation of a pretranslational mechanism

  1. Distribution of CCS and HC3N in L1147, an early phase dark cloud

    International Nuclear Information System (INIS)

    Suzuki, Taiki; Ohishi, Masatoshi; Hirota, Tomoya

    2014-01-01

    We used the Nobeyama 45 m radio telescope to reveal spatial distributions of CCS and HC 3 N in L1147, one of the carbon-chain producing region (CCPR) candidates, where carbon-chain molecules are dominant rather than NH 3 . We found that three cores (two CCS cores and one HC 3 N core), which are away from a very low luminosity object (a source that may turn into a sub-stellar mass brown dwarf), exist along the NE-SW filament traced by the 850 μm dust continuum. The column densities of CCS are 3-7 × 10 12 cm –2 and those of HC 3 N are 2-6 × 10 12 cm –2 , respectively, much lower than those previously reported toward other CCPRs. We also found that two CCS peaks are displaced from the peaks of HC 3 N. In order to interpret such interleaved distributions, we conducted chemical reaction network simulations and found that slightly different gas densities could lead to large variation of the CCS-to-HC 3 N ratio in the early phase of dark cloud evolution. Such a chemical 'variation' may be seen in other CCPRs. Finally, we were able to confirm that the L1147 filament can be regarded as a CCPR.

  2. Multikilowatt variable frequency microwave furnace

    International Nuclear Information System (INIS)

    Bible, D.W.; Lauf, R.J.; Everleigh, C.A.

    1992-01-01

    In this paper, the authors describe a new type of microwave processing furnace in which the frequency can be varied continuously from 4 to 8 GHz and the power level varied from zero up to 2.5 kW. The extraordinary bandwidth of this furnace is achieved by using a traveling wave tube (TWT) amplifier originally developed for electronic warfare applications. The TWT is a linear beam device characterized by a traveling electromagnetic wave that continuously extracts energy longitudinally along the path of an electron beam. The TWT, unlike other microwave tubes such as the magnetron, klystron, gyrotron, and others, does not depend upon resonant RF fields and is therefore capable of wide bandwidth operation.operation

  3. Concept study of an automatic ellipsoidal mirror furnace facility, prephase A. Volume 1: Executive summary

    Science.gov (United States)

    Stapelmann, J.

    1982-11-01

    A 1500C (max) mirror for materials science experiments and for growing 40 mm crystals under microgravity in an add-on payload for a retrievable carrier is proposed. Parts of the Spacelab mirror furnaces which can be used are identified. Design solutions for modifications due to experimental requirements or to the automatic operation mode are developed. The complete new parts of the facility, such as the sample storage and exchange mechanism (SSEM) were investigated, and design solutions are presented. A design featuring two monoellipsoidal mirror furnaces with the SSEM situated in between, and no active control, is favored.

  4. Effect of electropolishing on vacuum furnace design

    Directory of Open Access Journals (Sweden)

    Sutanwi Lahiri

    2015-03-01

    Full Text Available The use of thermal shields of materials having low emissivity in vacuum furnaces is well-known. However, the surface condition of the heat shields is one of the most important factors governing their efficiency as radiation resistances. The emissivity of the thermal shields dictates the power rating of the heaters in furnace design. The unpolished materials used in the heater tests showed poor performance leading to loss of a signi­ficant percentage of the input power. The present work deals with the refur­bishment of the radiation heat shields used in a furnace for heating graphite structure. The effect of refurbishment of the heat shields by the buffing and subsequently electro­polishing was found to improve the performance of the shields as heat reflectors. The com­position of the electrolyte was chosen in such a way that the large shields of Mo, Inconel and SS can be polished using the same reagents in different ratios. The present work deals with the development of a standard electropolishing procedure for large metallic sheets and subsequently qualifying them by roughness and emissivity measure­ments. The improvement noted in the shielding efficiency of the furnace in the subsequent runs is also discussed here.

  5. A review of temperature measurement in the steel reheat furnace

    International Nuclear Information System (INIS)

    Martocci, A.P.; Mihalow, F.A.

    1985-01-01

    The incentive for conducting research and development on reheat furnaces is substantial; the domestic steel industry spent approximately one billion dollars on fuel in reheat furnaces in 1981. Bethlehem Steel Corp. spent /145 million of that total, and neither figure includes fuel consumed in soaking pits or annealing furnaces. If the authors set a goal to save 10% of these annual fuel costs, that translates into /100 million for the domestic steel industry and /14.5 million for Bethlehem Steel. These large sums of money are significant incentives. The purpose of this paper is to review the historical heating practices and equipment at steel reheat furnaces along with current practices and instrumentation

  6. Lead scrap processing in rotary furnaces: a review

    Energy Technology Data Exchange (ETDEWEB)

    Rousseau, M

    1987-01-01

    Formerly, the lead scrap had been processed mainly in reverberatory and shaft furnaces or, even, in rotary furnaces (R.F.). The direct smelting of battery scrap entrains an expensive pollution control and high operating costs because of slag recirculation, coke consumption, losses in slag and matte. Nowadays, mechanized battery wrecking plants allow selective separation of casings and separators from metallic Pb (grids, poles, solders) as well as lead in non-metallic form (PbSO/sub 4/, PbO, PbO/sub 2/, contaminated with some Sb) frequently called paste. Because of their high performance and flexibility in metallurgical processing (melting, reducing, oxidizing and selective pouring) the R.F. supersedes the reverberatory furnace worldwide.

  7. Effects of heating on composition, degree of darkness, and stacking nanostructure of soil humic acids

    Energy Technology Data Exchange (ETDEWEB)

    Katsumi, Naoya, E-mail: n-katsu@ishikawa-pu.ac.jp; Yonebayashi, Koyo; Okazaki, Masanori

    2016-01-15

    Wildfires and prescribed burning can affect both the quality and the quantity of organic matter in soils. In this study, we investigated qualitative and quantitative changes of soil humic substances in two different soils (an Entisol from a paddy field and an Inceptisol from a cedar forest) under several controlled heating conditions. Soil samples were heated in a muffle furnace at 200, 250, or 300 °C for 1, 3, 5, or 12 h. The humic acid and fulvic acid contents of the soil samples prior to and after heating were determined. The degree of darkness, elemental composition, carbon and nitrogen stable isotope ratios, {sup 13}C nuclear magnetic resonance spectra, and X-ray diffraction patterns of humic acids extracted from the soils before and after heating were measured. The proportion of humic acids in total carbon decreased with increasing heating time at high temperature (300 °C), but increased with increasing heating time at ≤ 250 °C. The degree of darkness of the humic acids increased with increasing heating time and temperature. During darkening, the H/C atomic ratios, the proportion of aromatic C, and the carbon and nitrogen stable isotope ratios increased, whereas the proportions of alkyl C and O-alkyl C decreased. X-ray diffraction analysis verified that a stacking nanostructure developed by heating. Changes in the chemical structure of the humic acids from the heated soils depended on the type of soil. The major structural components of the humic acids from the heated Entisol were aromatic C and carboxylic C, whereas aliphatic C, aromatic C, and carboxylic C structural components were found in the humic acids from the heated Inceptisol. These results suggest that the heat-induced changes in the chemical structure of the humic acids depended on the source plant. - Highlights: • Darkness of humic acids increased with increasing heating time and temperature. • Aromatic carbon content increased during darkening. • Carbon and nitrogen stable isotope

  8. Utilizing Rice Husk Briquettes in Firing Crucible Furnace for Low Temperature Melting Metals in Nigeria

    Directory of Open Access Journals (Sweden)

    N. A. Musa

    2012-08-01

    Full Text Available The search for alternative fuels for firing crucible furnace for low temperature melting metals has become mandatory, as a result of the pollution problem associated with the use of fossil fuels, the expense of electricity and also deforestation as a result of the use of charcoal. An agricultural waste, rice husk, in briquette form was used as an alternative fuel to fire crucible furnace to melt lead, zinc and aluminium. Results showed that lead and zinc melted and reached their pouring temperatures of 3840C and 5300C in 70 minutes and 75 minutes respectively. Aluminium was raised to a maximum temperature of 5200C in 75 and 100 minutes.The average concentration of the pollutants (CO, SO2and NOX were found to be below the tolerance limit and that of TSP (Total Suspended Particulates was found to be within the tolerance limit stipulated by Federal Environmental Protection Agency (FEPA in Nigeria.

  9. Mechanism and Influencing Factors of Iron Nuggets Forming in Rotary Hearth Furnace Process at Lower Temperature

    Science.gov (United States)

    Han, Hongliang; Duan, Dongping; Chen, Siming; Yuan, Peng

    2015-10-01

    In order to improve the efficiency of slag and iron separation, a new idea of "the separation of slag (solid state) and iron (molten state) in rotary hearth furnace process at lower temperature" is put forward. In this paper, the forming process of iron nuggets has been investigated. Based on those results, the forming mechanisms and influencing factors of iron nugget at low temperature are discussed experimentally using an electric resistance furnace simulating a rotary hearth furnace process. Results show that the reduction of iron ore, carburization of reduced iron, and the composition and quantity of slag are very important for producing iron nuggets at lower temperature. Reduction reaction of carbon-containing pellets is mainly at 1273 K and 1473 K (1000 °C and 1200 °C). When the temperature is above 1473 K (1200 °C), the metallization rate of carbon-containing pellets exceeds 93 pct, and the reduction reaction is substantially complete. Direct carburization is the main method for carburization of reduced iron. This reaction occurs above 1273 K (1000 °C), with carburization degree increasing greatly at 1473 K and 1573 K (1200 °C and 1300 °C) after particular holding times. Besides, to achieve the "slag (solid state) and iron (molten state) separation," the melting point of the slag phase should be increased. Slag (solid state) and iron (molten state) separation can be achieved below 1573 K (1300 °C), and when the holding time is 20 minutes, C/O is 0.7, basicity is less than 0.5 and a Na2CO3 level of 3 pct, the recovery rate of iron can reach 90 pct, with a proportion of iron nuggets more than 3.15 mm of nearly 90 pct. This study can provide theoretical and technical basis for iron nugget production.

  10. Produção de carvão ativado a partir de casca de arroz

    Directory of Open Access Journals (Sweden)

    Amanda da Silva Reis

    2016-12-01

    Full Text Available The rice husk, one of the most abundant agricultural wastes in our country, is a fibrous material with a high silica content (SiO2. The use of rice husk as raw material for activated carbon production is a new project and its use is due to the adequacy of its basic characteristics (non-grafitizável, high fixed carbon content for this purpose. This study aimed to make charcoal activated from the rice husk. After rice husk being properly treated was charred to 600th C for 40 minutes in a muffle furnace. The activating agent used in the chemical activation of the material was Phosphoric Acid (H3PO4 concentrate (85%. The tests were: pH of zero charge, chromatographic methods (pesticides adsorption, AC test as adsorbent pesticides, FTIR analysis, scanning electron microscopy SEM. For determining the pHpcz, the point of intersection of the curve is at 6.4, that is, shows that the activated carbon from rice husk is slightly acidic. The chromatographic method (adsorption using HPLC showed that the activated carbon rice hull was more efficient removal of methyl parathion pesticidal solution (83.78%, which in the removal of 2,4 pesticide D (21.61% .

  11. Strong correlation between Jc(T, H||c) and Jc(77 K, 3 T||c) in Zr-added (Gd, Y)BaCuO coated conductors at temperatures from 77 down to 20 K and fields up to 9 T

    International Nuclear Information System (INIS)

    Xu, A; Delgado, L; Heydari Gharahcheshmeh, M; Khatri, N; Liu, Y; Selvamanickam, V

    2015-01-01

    We have conducted a critical current density J c (T, H) study over a wide temperature T from 77 down to 20 K and a magnetic field H up to 9 T on more than 50 ∼ 0.9 μm-thick REBa 2 Cu 3 O 7−δ (RE = rare earth) thin films containing different concentrations of BaZrO 3 (BZO). We found that, independent of the composition, there is a linear correlation between J c (77 K, 3 T||c) and J c (T, H||c) at T down to 20 K and H up to 9 T. Moreover, J c (77 K, 3 T||c) is also linearly correlated to J c (T, H||ab) below 40 K. We ascribed this linear correlation to the dominant pinning source of BZO nanorods, which act as a strong correlated pinning at T above ∼30 K and provide weak uncorrelated point pins at lower temperatures. Our result emphasizes that J c (77 K, 3 T||c) is a key metric for metal-organic chemical vapor deposited REBa 2 Cu 3 O 7−δ coated conductors. (fast track communication)

  12. Metallurgy of mercury in Almaden: from aludel furnaces until Pacific furnaces; La metalurgia del mercurio en Almaden: desde los hornos de aludeles a los hornos Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Tejero-Manzanares, J.; Garrido Saenz, I.; Mata Cabrera, F.; Rubio Mesas, M. L.

    2014-07-01

    This paper shows the different types of furnaces for roasting cinnabar, used in the metallurgy of quicksilver over the centuries of exploitation of the Almaden Mines (Spain). Some of these techniques are part of our industrial heritage. They have contributed to name UNESCO World Heritage Site the vast technological legacy of these mines recently. This research contributes to close the long way of metallurgical activity from aludel furnaces until Pacif furnaces, first and lasted technology to produce on an industrial scale. It is delved into the most relevant aspects having to do with the type, evolution and number of furnaces existing on each of the periods. (Author)

  13. Design of a rotating-hearth furnace

    Energy Technology Data Exchange (ETDEWEB)

    Behrens, H A [LOI Industrieofenanlagen G.m.b.H., Essen (Germany, F.R.)

    1979-09-01

    Part I of this paper is intended to present a review of the theory of heating round stock of a length considerably exceeding the diameter. It is permissible to neglect heating from the ends of the cylinders. With short and thick ingots as used in pilgrim mills, for instance, such simplification is not possible. The method for calculating the waste gas temperature can also be used for the remaining furnace sections provided certain conditions are allowed for and computational procedures observed. Part II of the paper will deal with this and with the major design features of rotating-hearth furnaces.

  14. Reports on research achievements in developing high-performance industrial furnaces in fiscal 1998 (Research and development of high-performance industrial furnaces). Volume 1; 1998 nendo koseino kogyoro nado ni kansuru kenkyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    From the reports on research achievements in developing high-performance industrial furnaces in fiscal 1998, the report volume 1 was prepared as a research achievement report of each working group, detailing fundamental researches, heating furnaces, and heat treatment furnaces. The fundamental researches have researched combustion evaluating technology, characteristics of the area in the vicinity of a combustor, characteristics of combustion of high-temperature air, heating characteristics of a furnace to investigate effect of local heat absorption, and combustion evaluation. For the heating furnaces, the following subjects were studied: development of an in-furnace combustion model, summary of an experiment for evaluating high-temperature air combustion, furnace height relative to combustion heat transfer characteristics, heat loss minimizing technology, combustion heat transfer characteristics of liquid fuels, optimal operation of the high-temperature air combustion, basic control in heating control, and steel piece heating control. Studies were performed for the heat treatment furnaces on the case of a direct firing furnace in evaluating the heat transfer characteristics, the case of a radiant tube furnace, application of thermal fluid simulation technology, furnace averaging technology, soot reducing technology, control technology, and trial design on a high-performance heat treatment furnace. (NEDO)

  15. Open fireplace furnace as an adequate heating system

    Energy Technology Data Exchange (ETDEWEB)

    Terbrack, E.

    The fireplace furnace is a furnace for the open fireplace. It is connected to the existing fuel-oil or gas central heating and is used for house heating and warm water preparation when the fire in the fireplace is on. It combines the romanticism of the open fireplace with the necessity of saving fuel oil and gas, ensuring heat supply.

  16. A Survey of CH3CN and HC3N in Protoplanetary Disks

    Science.gov (United States)

    Bergner, Jennifer B.; Guzmán, Viviana G.; Öberg, Karin I.; Loomis, Ryan A.; Pegues, Jamila

    2018-04-01

    The organic content of protoplanetary disks sets the initial compositions of planets and comets, thereby influencing subsequent chemistry that is possible in nascent planetary systems. We present observations of the complex nitrile-bearing species CH3CN and HC3N toward the disks around the T Tauri stars AS 209, IM Lup, LkCa 15, and V4046 Sgr as well as the Herbig Ae stars MWC 480 and HD 163296. HC3N is detected toward all disks except IM Lup, and CH3CN is detected toward V4046 Sgr, MWC 480, and HD 163296. Rotational temperatures derived for disks with multiple detected lines range from 29 to 73 K, indicating emission from the temperate molecular layer of the disk. V4046 Sgr and MWC 480 radial abundance profiles are constrained using a parametric model; the gas-phase CH3CN and HC3N abundances with respect to HCN are a few to tens of percent in the inner 100 au of the disk, signifying a rich nitrile chemistry at planet- and comet-forming disk radii. We find consistent relative abundances of CH3CN, HC3N, and HCN between our disk sample, protostellar envelopes, and solar system comets; this is suggestive of a robust nitrile chemistry with similar outcomes under a wide range of physical conditions.

  17. Zone modelling of the thermal performances of a large-scale bloom reheating furnace

    International Nuclear Information System (INIS)

    Tan, Chee-Keong; Jenkins, Joana; Ward, John; Broughton, Jonathan; Heeley, Andy

    2013-01-01

    This paper describes the development and comparison of a two- (2D) and three-dimensional (3D) mathematical models, based on the zone method of radiation analysis, to simulate the thermal performances of a large bloom reheating furnace. The modelling approach adopted in the current paper differs from previous work since it takes into account the net radiation interchanges between the top and bottom firing sections of the furnace and also allows for enthalpy exchange due to the flows of combustion products between these sections. The models were initially validated at two different furnace throughput rates using experimental and plant's model data supplied by Tata Steel. The results to-date demonstrated that the model predictions are in good agreement with measured heating profiles of the blooms encountered in the actual furnace. It was also found no significant differences between the predictions from the 2D and 3D models. Following the validation, the 2D model was then used to assess the impact of the furnace responses to changing throughput rate. It was found that the potential furnace response to changing throughput rate influences the settling time of the furnace to the next steady state operation. Overall the current work demonstrates the feasibility and practicality of zone modelling and its potential for incorporation into a model based furnace control system. - Highlights: ► 2D and 3D zone models of large-scale bloom reheating furnace. ► The models were validated with experimental and plant model data. ► Examine the transient furnace response to changing the furnace throughput rates. ► No significant differences found between the predictions from the 2D and 3D models.

  18. Innovation in electric arc furnaces scientific basis for selection

    CERN Document Server

    Toulouevski, Yuri N

    2013-01-01

    This book equips a reader with knowledge necessary for critical analysis of  innovations in electric arc furnaces and helps to select the most effective ones and for their successful implementation. The book also covers general issues related to history of development, current state and prospects of steelmaking in Electric Arc Furnaces. Therefore, it can be useful for everybody who studies metallurgy, including students of colleges and universities. The modern concepts of mechanisms of Arc Furnace processes are are discussed in the book at the level sufficient to solve practical problems: To help readers lacking knowledge required in the field of heat transfer as well as hydro-gas dynamics, it contains several chapters which provide the required minimum of information in these fields of science. In order to better assess different innovations, the book describes experience of the application of similar innovations in open-hearth furnaces and oxygen converters. Some promising ideas on key issues regarding int...

  19. Energy conservation in industrial furnaces with vertical radiation roofs of reinforced refractory concrete

    Energy Technology Data Exchange (ETDEWEB)

    Grafe, E

    1981-01-01

    The paper discusses static systems for furnaces of reinforced refractory concrete, the temperature field over the finned-plate cross section, the calculation of the reinforced refractory concrete, experimental application in a flat open-hearth pusher furnace, a pack heating furnace, and a sinker furnace. There are cantilever beam plates, frames, and drop ceiling elements particularly suited for efficient use of high-performance burners.

  20. TRICHLOROETHYLENE SORPTION AND OXIDATION USING A DUAL FUNCTION SORBENT/CATALYST IN A FALLING FURNACE REACTOR

    Science.gov (United States)

    A dual function medium (Cr-ZSM-5), capable of physisorbing trichloroethylene (TCE) at ambient temperature and catalytically oxidizing it at elevated temperature (-350 degrees C) was utilized in a novel continuous falling furnace reactor system to store and periodically destroy t...

  1. Efficient use of power in electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, E R; Medley, J E

    1978-02-01

    The maximum transfer of electric energy to the metal in an arc furnace depends on the length of arc and the impedance of the electrical supply system from the generators to the arc itself. The use of directly-reduced sponge iron by continuous feeding results in long periods of flat-bath operation, when it is particularly important to keep a short high-current arc to get the heat into the metal rather than to the refractories, which would suffer excessive wear. By reference to a 125 ton furnace, a method of assessing the optimum operating currents and power factors and the effects of differing power-supply systems is illustrated. The importance of a low-impedance power system is illustrated, and the possibility of being unable to use the maximum furnace power without excessive refractory wear is noted. The particular problems of connecting arc-furnace loads to electrical supply systems are reviewed, and consideration is given to the problem of voltage flicker. The use of compensators is discussed with reference to existing installations, in which strong supplies from the supply-authority system are not economically available. The furnace operating characteristics, which indicate the optimum points of working, have to be checked on commissioning, and the test procedures are outlined. The optimum points for each type of charge and steel can be assessed only during their actual production. The importance of proper recording of relevant data is stressed, and reference is made to the use of computers and automatic power-input controllers.

  2. Continuous austempering fluidized bed furnace. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Srinivasan, M.N. [Lamar Univ., Beaumont, TX (United States). Dept. of Mechanical Engineering

    1997-09-23

    The intended objective of this project was to show the benefits of using a fluidized bed furnace for austenitizing and austempering of steel castings in a continuous manner. The division of responsibilities was as follows: (1) design of the fluidized bed furnace--Kemp Development Corporation; (2) fabrication of the fluidized bed furnace--Quality Electric Steel, Inc.; (3) procedure for austempering of steel castings, analysis of the results after austempering--Texas A and M University (Texas Engineering Experiment Station). The Department of Energy provided funding to Texas A and M University and Kemp Development Corporation. The responsibility of Quality Electric Steel was to fabricate the fluidized bed, make test castings and perform austempering of the steel castings in the fluidized bed, at their own expense. The project goals had to be reviewed several times due to financial constraints and technical difficulties encountered during the course of the project. The modifications made and the associated events are listed in chronological order.

  3. Assessing energy efficiency of electric car bottom furnaces intended for thermal energization of minerals

    Science.gov (United States)

    Nizhegorodov, A. I.

    2017-01-01

    The paper deals with a new concept of electric furnaces for roasting and thermal energization of vermiculite and other minerals with vibrational transportation of a single-layer mass under constant thermal field. The paper presents performance calculation and comparative assessment of energy data for furnaces of different modifications: flame and electric furnaces with three units, furnaces with six units and ones with series-parallel connection of units, and furnaces of new concept.

  4. Ferromanganese Furnace Modelling Using Object-Oriented Principles

    Energy Technology Data Exchange (ETDEWEB)

    Wasboe, S.O.

    1996-12-31

    This doctoral thesis defines an object-oriented framework for aiding unit process modelling and applies it to model high-carbon ferromanganese furnaces. A framework is proposed for aiding modelling of the internal topology and the phenomena taking place inside unit processes. Complex unit processes may consist of a number of zones where different phenomena take place. A topology is therefore defined for the unit process itself, which shows the relations between the zones. Inside each zone there is a set of chemical species and phenomena, such as reactions, phase transitions, heat transfer etc. A formalized graphical methodology is developed as a tool for modelling these zones and their interaction. The symbols defined in the graphical framework are associated with objects and classes. The rules for linking the objects are described using OMT (Object Modeling Technique) diagrams and formal language formulations. The basic classes that are defined are implemented using the C++ programming language. The ferromanganese process is a complex unit process. A general description of the process equipment is given, and a detailed discussion of the process itself and a system theoretical overview of it. The object-oriented framework is then used to develop a dynamic model based on mass and energy balances. The model is validated by measurements from an industrial furnace. 101 refs., 119 figs., 20 tabs.

  5. Development of a cylindrical gas-fired furnace for reycling ...

    African Journals Online (AJOL)

    This study presents the development of a cylindrical gas-fired furnace, which could be used for recycling aluminum in small-scale foundries in Nigeria. The crucible, combustion chamber, suspension shaft and bearings were appropriately sized. The furnace chamber was 410 mm high and 510 mm diameter and had a ...

  6. Application of roof radiant burners in large pusher-type furnaces

    Directory of Open Access Journals (Sweden)

    A. Varga

    2009-07-01

    Full Text Available The paper deals with the application of roof flat-flame burners in the pusher-type steel slab reheating furnaces, after furnace reconstruction and replacement of conventional torch burners, with the objective to increase the efficiency of radiative heat transfer from the refractory roof to the charge. Based on observations and on measurements of the construction and process parameters under operating conditions, the advantages and disadvantages of indirectly oriented radiant heat transfer are analysed in relation to the heat transfer in classically fired furnaces.

  7. Handling of corn stover bales for combustion in small and large furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Morissette, R.; Savoie, P.; Villeneuve, J. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    This paper reported on a study in which dry corn stover was baled and burned in 2 furnaces in the province of Quebec. Small and large rectangular bale formats were considered for direct combustion. The first combustion unit was a small 500,000 BTU/h dual chamber log wood furnace located at a hay growing farm in Neuville, Quebec. The heat was initially transferred to a hot water pipe system and then transferred to a hot air exchanger to dry hay bales. The small stover bales were placed directly into the combustion furnace. The low density of the bales compared to log wood, required filling up to 8 times more frequently. Stover bales produced an average of 6.4 per cent ash on a DM basis and required an automated system for ash removal. Combustion gas contained levels of particulate matter greater than 1417 mg/m{sup 3}, which is more than the local acceptable maximum of 600 mg/m{sup 3} for combustion furnaces. The second combustion unit was a high capacity 12.5 million BTU/h single chamber furnace located in Saint-Philippe-de-neri, Quebec. It was used to generate steam for a feed pellet mill. Large corn stover bales were broken up and fed on a conveyor and through a screw auger to the furnace. The stover was light compared to the wood chips used in this furnace. For mechanical reasons, the stover could not be fed continuously to the furnace.

  8. Measure Guideline. High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Rose, W. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2012-10-01

    This measure guideline covers installation of high-efficiency gas furnaces, including: when to install a high-efficiency gas furnace as a retrofit measure; how to identify and address risks; and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  9. RBF–ARX model of an industrial furnace for drying olive pomace

    International Nuclear Information System (INIS)

    Casanova-Peláez, P.J.; Cruz-Peragón, F.; Palomar-Carnicero, J.M.; Dorado, R.; López-García, R.

    2012-01-01

    Highlights: ► We model a real furnace, fuelled with orujo, used to dry olive pomace. ► We apply a radial basic functions–auto-regression with exogenous variables (ARXs–RBFs) method. ► Root-mean-square error and r 2 are used to validate the ARX–RBF model. - Abstract: Drying operations are common in food industries. One of the main components in a drying system is the furnace. The furnace operation involves heat–mass transfer and combustion, thus it demands a complex mathematic representation. Since autoregressive methods are simple, and help to simulate rapidly a system, we model a drying furnace of olive pomace via an auto-regression with exogenous variables (ARXs) method. A neural network of radial basic functions (RBFs) defines the ARX experimental relation between the amounts of dry pomace (moisture content of 15%) used like fuel and the temperature of outlet gases. A real industrial furnace is studied to validate the proposed model, which can help to control the drying process.

  10. Solution combustion synthesis of the nanocrystalline NCM oxide for lithium-ion battery uses

    Science.gov (United States)

    Habibi, Amirhosein; Jalaly, Maisam; Rahmanifard, Roohollah; Ghorbanzadeh, Milad

    2018-02-01

    In this study, the NCM cathode with a chemical composition of {{{LiNi}}}1/3}{{{Co}}}1/3}{{{Mn}}}1/3}{{{O}}}2 were synthesized through a solution combustion method. In this method, metal nitrates and urea were used as precursors and fuel, respectively. The powder obtained from combustion were transferred into a alumina crucible and insert to the muffle furnace and calcined at 750 °C for 15 h. The crystallite size of the sample was calculated with sherer equation to be about 41 nm. The prepared cathode were characterized using x-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry analysis (TGA), differential scanning calorimetry (DSC) and battery charge-discharge test. The initial charge and discharge capacities of {{{LiNi}}}1/3}{{{Co}}}1/3}{{{Mn}}}1/3}{{{O}}}2 electrode containing 94% active material at a rate of 0.05 C in voltage window of 2.5-4.3 V at room temperature was obtained 168.03 and 150.01 mAh g-1, respectively.

  11. Effect of fire on phosphorus forms in Sphagnum moss and peat soils of ombrotrophic bogs.

    Science.gov (United States)

    Wang, Guoping; Yu, Xiaofei; Bao, Kunshan; Xing, Wei; Gao, Chuanyu; Lin, Qianxin; Lu, Xianguo

    2015-01-01

    The effect of burning Sphagnum moss and peat on phosphorus forms was studied with controlled combustion in the laboratory. Two fire treatments, a light fire (250 °C) and a severe fire (600 °C), were performed in a muffle furnace with 1-h residence time to simulate the effects of different forest fire conditions. The results showed that fire burning Sphagnum moss and peat soils resulted in losses of organic phosphorus (Po), while inorganic phosphorus (Pi) concentrations increased. Burning significantly changed detailed phosphorus composition and availability, with severe fires destroying over 90% of organic phosphorus and increasing the availability of inorganic P by more than twofold. Our study suggest that, while decomposition processes in ombrotrophic bogs occur very slowly, rapid changes in the form and availability of phosphorus in vegetation and litter may occur as the result of forest fires on peat soils. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. 21 CFR 522.313c - Ceftiofur sodium.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Ceftiofur sodium. 522.313c Section 522.313c Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL... Ceftiofur sodium. (a) Specifications. Each milliliter of aqueous solution constituted from ceftiofur sodium...

  13. Developing and testing a vertical sintering furnace for remote nuclear applications

    International Nuclear Information System (INIS)

    Nesbitt, J.F.; Ryer, C.M.

    1980-01-01

    Horizontal-type furnaces used to sinter fuel pellets on a production basis are large and thus impractical for remote applications. However, research has shown that vertical-type furnaces are adaptable for use and are cheaper to operate and maintain. In 1979, Pacific Northwest Laboratory, working under the auspices of the Department of Energy's Fuel Refabrication and Development (FRAD) Program, began developing an advanced concept for a remotely operated furnace designed specifically to sinter nuclear fuel pellets. The FRAD Program at PNL ended before the sintering of nuclear fuels could be completely verified. However during 1979, PNL performed a sufficient number and variety of tests to establish that nuclear fuel pellets can be sintered in a vertical furnace

  14. Integration of Tuyere, Raceway and Shaft Models for Predicting Blast Furnace Process

    Science.gov (United States)

    Fu, Dong; Tang, Guangwu; Zhao, Yongfu; D'Alessio, John; Zhou, Chenn Q.

    2018-06-01

    A novel modeling strategy is presented for simulating the blast furnace iron making process. Such physical and chemical phenomena are taking place across a wide range of length and time scales, and three models are developed to simulate different regions of the blast furnace, i.e., the tuyere model, the raceway model and the shaft model. This paper focuses on the integration of the three models to predict the entire blast furnace process. Mapping output and input between models and an iterative scheme are developed to establish communications between models. The effects of tuyere operation and burden distribution on blast furnace fuel efficiency are investigated numerically. The integration of different models provides a way to realistically simulate the blast furnace by improving the modeling resolution on local phenomena and minimizing the model assumptions.

  15. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  16. Determination of total alpha and beta activities on vegetable samples by LSC

    International Nuclear Information System (INIS)

    Nogueira, Regina Apolinaria; Santos, Eliane Eugenia dos; Bakker, Alexandre Pereira; Vavassori, Giullia

    2011-01-01

    Gross alpha and beta analyses are screening techniques used for environmental radioactivity monitoring. The present study proposes to determine the gross alpha and beta activities in vegetable samples by using LSC - liquid scintillation spectrometry. The procedure was applied to vegetable foods. After ashing vegetable samples in a muffle furnace, 100 mg of ash were added to gel mixture of scintillation cocktails, Water - Instagel - Ultima Gold AB (6:10:4) ml, in polyethylene vial. Am-241 standard solution and a KCl (K-40) solution were used to determine the counting configuration, alpha/beta efficiencies and spillover

  17. Micro-nanocomposites Al2O3/ NbC/ WC and Al2O3/ NbC/ TaC

    International Nuclear Information System (INIS)

    Santos, Thais da Silva

    2014-01-01

    Alumina based ceramics belong to a class of materials designated as structural, which are widely used in cutting tools. Although alumina has good properties for application as a structural ceramics, composites with different additives have been produced with the aim of improving its fracture toughness and mechanical strength. New studies point out micro-nanocomposites, wherein the addition of micrometric particles should enhance mechanical strength, and nano-sized particles enhance fracture toughness. In this work, alumina based micro nanocomposites were obtained by including nano-sized NbC and micrometer WC particles at 2:1, 6:4, 10:5 and 15:10 vol% proportions, and also with the inclusion of nano-sized NbC and micrometer TaC particles at 2:1 vol% proportion. For the study of densification, micro-nanocomposites were sintered in a dilatometer with a heating rate of 20°C/min until a temperature of 1800°C in argon atmosphere. Based on the dilatometry results, specimens were sintered in a resistive graphite furnace under argon atmosphere between 1500°C and 1700°C by holding the sintering temperature for 30 minutes. Densities, crystalline phases, hardness and tenacity were determined, and micro-nanocomposites microstructures were analyzed. The samples Al 2 O 3 : NbC: TaC sintered at 1700 ° C achieved the greater apparent density (~ 95% TD) and the sample sintered at 1600 ° C showed homogeneous microstructure and increased hardness value (15.8 GPa) compared to the pure alumina . The compositions with 3% inclusions are the most promising for future applications. (author)

  18. A furnace and temperature controller for optical absorption studies with a spectrophotometer

    International Nuclear Information System (INIS)

    Mariani Rogat, F.

    1975-01-01

    The design and main features of a furnace with a temperature controller and programmer are shown. This system allows to measure the optical absorption spectrum of a sample from room temperature to 400 deg C, in a double beam spectrophotometer Perkin Elmer 350. The sample temperature can be linearly increased at different heating rates between 4 and 38 deg C/min. The temperature ramp can be stopped at any desired point and the sample temperature shall be stabilized in less than one minute. This temperature shall be kept constant within 0.5 deg C for hours. The sample is heated in vacuum. (author)

  19. Process and furnace for working bituminous materials

    Energy Technology Data Exchange (ETDEWEB)

    Klotzer, M

    1921-06-28

    A process for working up bitumen-containing materials, such as coal, peat and shale is characterized in that the material in thin-height batches with constant shaking by means of forward and backward movement of an elongated horizontal hearth heated underneath on which the material freely lies and on which it is moved in the furnace, through a single narrow furnace space with zone-wise heating of the hearth. A drying zone, a spent-material removal zone, and a carbonization zone are provided. Under separate hoods the gases and vapors are removed from these zones.

  20. Measure Guideline: High Efficiency Natural Gas Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L.; Rose, W.

    2012-10-01

    This Measure Guideline covers installation of high-efficiency gas furnaces. Topics covered include when to install a high-efficiency gas furnace as a retrofit measure, how to identify and address risks, and the steps to be used in the selection and installation process. The guideline is written for Building America practitioners and HVAC contractors and installers. It includes a compilation of information provided by manufacturers, researchers, and the Department of Energy as well as recent research results from the Partnership for Advanced Residential Retrofit (PARR) Building America team.

  1. A review of NOx formation mechanisms in recovery furnaces

    International Nuclear Information System (INIS)

    Nichols, K.M.; Thompson, L.M.; Empie, H.J.

    1993-01-01

    Review of NOx formation studies shows that NO forms in recovery furnaces primarily by two independent mechanisms, thermal and fuel. Thermal NO formation is extremely temperature-sensitive. However, theoretical predictions indicate that recovery furnace temperatures are not high enough to form significant thermal NO. Fuel NO formation is less temperature-sensitive, and is related to fuel nitrogen content. Black liquors are shown to contain 0.05 to 0.24 weight percent fuel nitrogen. Conversion of just 20% of this would yield approximately 25-120 ppm NOx (at 8% 0 2 ) in the flue gas, enough to represent the majority of the total NOx. Data from operating recovery furnaces show NOx emissions ranging from near zero to over 100 ppm at 8% 0 2 . An apparent increase in recovery furnace NOx emissions was observed with increasing solids. This increase is much less than predicted by thermal NO formation theory, indicating that other NO formation/destruction mechanisms, such as fuel NO formation, are important. No data are available to show the relative importance of thermal and fuel NO to total NOx during black liquor combustion

  2. Numerical modelling of an industrial glass-melting furnace

    Energy Technology Data Exchange (ETDEWEB)

    Hill, S C [Brigham Young Univ., Advanced Combustion Engineering Research Center, Provo, UT (United States); Webb, B W; McQuay, M Q [Brigham Young Univ., Mechanical Engineering Dept., Provo, UT (United States); Newbold, J [Lockheed Aerospace, Denver, CO (United States)

    2000-03-01

    The predictive capability of two comprehensive combustion codes, PCGC-3 and FLUENT, to simulate local flame structure and combustion characteristics in a industrial gas-fired, flat-glass furnace is investigated. Model predictions are compared with experimental data from the furnace for profiles of velocity, species concentrations, temperatures, and wall-incident radiative heat flux. Predictions from both codes show agreement with the measured mean velocity profiles and incident radiant flux on the crown. However, significant differences between the code predictions and measurements are observed for the flame-ozone temperatures and species concentrations. The observed discrepancies may be explained by (i) uncertainties in the distributions of mean velocity and turbulence in the portneck, (ii) uncertainties in the port-by-port stoichiometry, (iii) different grid-based approximations to the furnace geometry made in the two codes, (iv) the assumption of infinitely fast chemistry made in the chemical reaction model of both codes, and (v) simplifying assumptions made in the simulations regarding the complex coupling between the combustion space, batch blanket, and melt tank. The study illustrates the critical need for accurate boundary conditions (inlet air and fuel flow distributions, boundary surface temperatures, etc.) and the importance of representative furnace geometry in simulating these complex industrial combustion systems. (Author)

  3. Carbothermic reduction of electric arc furnace dust and calcination of waelz oxide by semi-pilot scale rotary furnace

    Directory of Open Access Journals (Sweden)

    Morcali M.H.

    2012-01-01

    Full Text Available The paper gives a common outline about the known recycling techniques from electric arc furnace dusts and describes an investigation of a pyrometallurgical process for the recovery of zinc and iron from electric arc furnace dusts (EAFD. In the waelz process, the reduction of zinc and iron from the waste oxides using solid carbon (lignite coal was studied. In the reduction experiments; temperature, time and charge type (powder and pellet were investigated in detail. It was demonstrated that zinc and iron recovery (% increases with increasing temperature as well as time. Pelletizing was found to be a better method than using the powder as received for the zinc recovery and iron conversion (. In the calcination (roasting process, crude zinc oxide, which evaporated from non-ferric metals were collected as condensed product (crude waelz oxide, was heated in air atmosphere. Lead, cadmium as well as chlorine and other impurities were successfully removed from crude waelz oxide by this method. In the calcination experiments; temperature and time are investigated in detail. It was demonstrated that zinc purification (% increases with increasing temperature. The highest zinc refining (% was obtained at 1200°C for 120 minutes. A kinetic study was also undertaken to determine the activation energy of the process. Activation energies were 242.77 kJ/mol for the zinc recovery with powder forms, 261.99 kJ/mol for the zinc recovery with pellet forms respectively. It was found that, initially, the reaction was chemically controlled.

  4. Steam generators and furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Swoboda, E

    1978-04-01

    The documents published in 1977 in the field of steam generators for conventional thermal power plants are classified according to the following subjects: power industry and number of power plants, planning and operation, design and construction, furnaces, environmental effects, dirt accumulation and corrosion, conservation and scouring, control and automation, fundamental research, and materials.

  5. Study of the reduction mechanism of ironsands with addition of blast furnace bag dust

    Science.gov (United States)

    Xing, Xiangdong; Chen, Yunfei; Liu, Yiran

    2018-02-01

    To improve the reduction properties of ironsands carbon-containing briquettes, the behavior of ironsand during reduction by the addition of blast furnace bag dust (BFBD) is studied using a high temperature resistance furnace, X-ray diffraction (XRD) analysis and scanning electron microscopy. Additionally, the reduction mechanism is discussed in this study. The results showed that the reduction level and compressive strength of ironsand carbon-containing briquettes could be promoted by increasing the proportion of BFBD. When the addition rate of BFBD was 31.25%, the metallization rate and compressive strength increased from 82.1% and 21.5 N/a to 91.4% and 172.5 N/a, respectively. Metallic iron reduced from BFBD particles favored the carbon gasification reaction, which enhanced the internal CO concentration, and then promoted the FeTiO3 reduction to Fe in ironsand. Meanwhile, a large amount of the liquid phase generated during the reduction process also favored Fe2+ diffusion, spread of iron joined crystals and the growth of crystals, which resulted in the improvement of the compressive strength of the ironsand carbon-containing briquettes.

  6. DEVELOPMENT AND TESTING OF COMPOUND FUEL CHAMBER WITHOUT A GRATE FOR HOUSEHOLD FURNACE

    Directory of Open Access Journals (Sweden)

    Shevyakov Vladimir Viktorovich

    2018-02-01

    Full Text Available In hearth furnaces, the firewood is burned more cleanly with less carbon monoxide at the outlet. The disadvantage of such fireboxes is a longer process of coal burnout than in grate-fired furnaces. In furnaces with a grate, the burnout time of coals is less, which makes it possible to finish the combustion process more quickly and close the outlet latch. This increases the efficiency of the furnace but to further reduce the time of burning out the coals they have to be raked and burned on the grate. This complicates the process of operating the furnace itself. The proposed design of the compound firebox allows us to improve characteristics of both the firebox itself and the entire furnace. Research objectives: creation and study of a compound firebox that increases the efficiency of the furnace and simplifies the furnace maintenance process with the values of carbon monoxide at the outlet comparable to hearth furnaces. Materials and methods: a detailed analysis of hearth fuel chambers ECO+ was carried out according to the amount of carbon monoxide at the outlet. The results of the analysis are used for comparison with compound fuel chamber. The structure of the compound firebox was chosen based on the results of preliminary tests of several fuel chambers proposed and tested by the author in the furnace PDKSh-2.0. A peculiarity of the structure of the compound firebox is the absence of a grate and the presence of a narrow slit in the lower part of the firebox through which the incoming air enters the firewood. Between the walls of the firebox and firewood, skids are installed, forming an air gap, through which the inlet air is uniformly supplied to the entire firewood supply. With gradual combustion of firewood and formation of coal, the firewood descends to the bottom of the firebox, where they intensively burn out in the maximum air flow. Compound firebox consists of several parts, it is made of steel with a thickness of 4.0 mm and installed

  7. Design and Construction of Oil Fired Compact Crucible Furnace ...

    African Journals Online (AJOL)

    As a prelude to necessary industrialization, foundries are springing up in various parts of Nigeria and most of these foundries rely on oil fired furnaces in their operation. This study is aimed at developing an oil fired crucible furnace from locally sourced materials for foundries in Nigeria. In our design, a new system of fuel ...

  8. CHARCOAL PACKED FURNACE FOR LOW-TECH CHARRING OF BONE

    DEFF Research Database (Denmark)

    Jacobsen, P.; Dahi, Elian

    1997-01-01

    A low-tech furnace for charring of raw bone using char coal is developed and tested. The furnace consists of a standard oil drum, fitted with simple materials as available in every market in small towns in developing counties. 80 kg of raw bone and 6 kg of charcoal are used for production of 50 kg...

  9. Crystallization and preliminary X-ray analysis of vicenisaminyltransferase VinC

    International Nuclear Information System (INIS)

    Nango, Eriko; Minami, Atsushi; Kumasaka, Takashi; Eguchi, Tadashi

    2008-01-01

    The crystallization of VinC, a glycosyltransferase involved in the biosynthesis of the antitumour antibiotic vicenistatin, is reported. A recombinant glycosyltransferase, VinC, from Streptomyces halstedii HC34 has been crystallized at 293 K using PEG 3350 as precipitant. The diffraction pattern of the crystal extends to 2.0 Å resolution at 100 K using synchrotron radiation at SPring-8. The crystals are orthorhombic and belong to space group I222, with unit-cell parameters a = 98.21, b = 130.39, c = 140.11 Å. The presence of two molecules per asymmetric unit gives a crystal volume per protein weight (V M ) of 2.43 Å 3 Da −1 and a solvent content of 49.5% by volume

  10. Evaluation of the graphite electrode DC arc furnace for the treatment of INEL buried wastes

    International Nuclear Information System (INIS)

    Surma, J.E.; Freeman, C.J.; Powell, T.D.; Cohn, D.R.; Smatlak, D.L.; Thomas, P.; Woskov, P.P.

    1993-06-01

    The past practices of DOE and its predecessor agencies in burying radioactive and hazardous wastes have left DOE with the responsibility of remediating large volumes of buried wastes and contaminated soils. The Buried Waste Integrated Demonstration (BWID), has chosen to evaluate treatment of buried wastes at the Idaho National Engineering Laboratory (INEL). Because of the characteristics of the buried wastes, the potential for using high-temperature thermal treatment technologies is being evaluated. The soil-waste mixture at INEL, when melted or vitrified, produces a glass/ceramic referred to as iron-enriched basalt (IEB). One potential problem with producing the IEB material is the high melting temperature of the waste and soil (1,400-1,600 degrees C). One technology that has demonstrated capabilities to process high melting point materials is the plasma arc heated furnace. A three-party program was initiated and the program involved testing an engineering-scale DC arc furnace to gain preliminary operational and waste processibility information. It also included the design, fabrication, and evaluation of a second-generation, pilot-scale graphite electrode DC arc furnace. Widely ranging simulants of INEL buried waste were prepared and processed in the Mark I furnace. The tests included melting of soils with metals, sludges, combustibles, and simulated drums. Very promising results in terms of waste product quality, volume reduction, heating efficiency, and operational reliability and versatility were obtained. The results indicate that the graphite electrode DC arc technology would be very well suited for treating high melting point wastes such as those found at INEL. The graphite electrode DC arc furnace has been demonstrated to be very simple, yet effective, with excellent prospects for remote or semi-remote operation

  11. Effect of surrounding gas temperature on the morphological evolution of TiO2 nanoparticles generated by laser ablation in tubular furnace

    International Nuclear Information System (INIS)

    Tsuji, Masayuki; Seto, Takafumi; Otani, Yoshio

    2012-01-01

    Titanium oxide nanoparticles are synthesized by laser ablation of Ti target in oxygen atmosphere under well-controlled temperature profiles in a tubular furnace. The size and the shape of generated nanoparticles are varied by changing the temperature of furnace. The mobility-based size distributions of generated air-borne nanoparticles are measured using a scanning mobility particle sizer, and the size distributions of primary particles are analyzed by a scanning electron microscope. When the particles are generated by laser ablation at the room temperature, the particles are agglomerates in gas phase with the average mobility diameter of 117 nm and the mean diameter of primary particles of 11 nm. The primary particle diameter increases from 11 to 24 nm by raising the furnace temperature up to 800 °C. Since the mass of Ti vapor ablated from a target is found to be constant regardless of the furnace temperature, this particle growth may be attributed to the reduction in nuclei number as a result of mild quenching at higher temperatures. As the temperature reaches higher than 1,000 °C, the mobility diameter suddenly drops and the primary particle diameter increases due to sintering, and at 1,200 °C the mobility diameter coincides with the primary particle diameter. Since the laser oven method offers an independent control of vapor concentration and the temperature of surrounding atmosphere, it is an effective tool to study the formation process of nanoparticles from primary particles with a given size.

  12. Determination of Chlorine in Milk via Molecular Absorption of SrCl Using High-Resolution Continuum Source Graphite Furnace Atomic Absorption Spectrometry.

    Science.gov (United States)

    Ozbek, Nil; Akman, Suleyman

    2016-07-20

    Total chlorine in milk was determined via the molecular absorption of diatomic strontium monochloride at 635.862 nm using high-resolution continuum source graphite furnace atomic absorption spectrometry. The effects of coating the graphite furnace, using different modifiers, amount of molecule-forming element, and different calibrants were investigated and optimized. Chlorine concentrations in milk samples were determined in a Zr-coated graphite furnace using 25 μg of Sr as the molecule-forming reagent and applying a pyrolysis temperature of 600 °C and a molecule-forming temperature of 2300 °C. Linearity was maintained up to 500 μg mL(-1) of Cl. The method was tested by analyzing a certified reference wastewater. The results were in the uncertainty limits of the certified value. The limit of detection of the method was 1.76 μg mL(-1). The chlorine concentrations in various cow milk samples taken from the market were found in the range of 588-1472 mg L(-1).

  13. Arc melting and homogenization of ZrC and ZrC + B alloys

    Science.gov (United States)

    Darolia, R.; Archbold, T. F.

    1973-01-01

    A description is given of the methods used to arc-melt and to homogenize near-stoichiometric ZrC and ZrC-boron alloys, giving attention to the oxygen contamination problem. The starting material for the carbide preparation was ZrC powder with an average particle size of 4.6 micron. Pellets weighing approximately 3 g each were prepared at room temperature from the powder by the use of an isostatic press operated at 50,000 psi. These pellets were individually melted in an arc furnace containing a static atmosphere of purified argon. A graphite resistance furnace was used for the homogenization process.

  14. Synthesis of [21-14C]-fusarin C by enzymic demethylation and remethylation with [14C]-diazomethane

    International Nuclear Information System (INIS)

    Lu, S.-J.; Li, M.H.

    1989-01-01

    Fusarin C, a potent mutagen isolated from Fusarium moniliforme culture extracts, has been prepared radiolabeled in two steps by enzymic hydrolysis of the 21-methyl ester group, using phenobarbital induced microsomal preparations, followed by remethylation using [ 14 F]-diazomethane. Yields, based upon fusarin C, were essentially quantitative and approximately 10% of the [ 14 C]-methyl-nitrosourea, converted to diazomethane, reacted to yield [ 14 C]-fusarin C. (author)

  15. HC-Pro silencing suppressor significantly alters the gene expression profile in tobacco leaves and flowers

    Directory of Open Access Journals (Sweden)

    Lehto Kirsi

    2011-04-01

    Full Text Available Abstract Background RNA silencing is used in plants as a major defence mechanism against invasive nucleic acids, such as viruses. Accordingly, plant viruses have evolved to produce counter defensive RNA-silencing suppressors (RSSs. These factors interfere in various ways with the RNA silencing machinery in cells, and thereby disturb the microRNA (miRNA mediated endogene regulation and induce developmental and morphological changes in plants. In this study we have explored these effects using previously characterized transgenic tobacco plants which constitutively express (under CaMV 35S promoter the helper component-proteinase (HC-Pro derived from a potyviral genome. The transcript levels of leaves and flowers of these plants were analysed using microarray techniques (Tobacco 4 × 44 k, Agilent. Results Over expression of HC-Pro RSS induced clear phenotypic changes both in growth rate and in leaf and flower morphology of the tobacco plants. The expression of 748 and 332 genes was significantly changed in the leaves and flowers, respectively, in the HC-Pro expressing transgenic plants. Interestingly, these transcriptome alterations in the HC-Pro expressing tobacco plants were similar as those previously detected in plants infected with ssRNA-viruses. Particularly, many defense-related and hormone-responsive genes (e.g. ethylene responsive transcription factor 1, ERF1 were differentially regulated in these plants. Also the expression of several stress-related genes, and genes related to cell wall modifications, protein processing, transcriptional regulation and photosynthesis were strongly altered. Moreover, genes regulating circadian cycle and flowering time were significantly altered, which may have induced a late flowering phenotype in HC-Pro expressing plants. The results also suggest that photosynthetic oxygen evolution, sugar metabolism and energy levels were significantly changed in these transgenic plants. Transcript levels of S

  16. Radiation from Large Gas Volumes and Heat Exchange in Steam Boiler Furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Makarov, A. N., E-mail: tgtu-kafedra-ese@mail.ru [Tver State Technical University (Russian Federation)

    2015-09-15

    Radiation from large cylindrical gas volumes is studied as a means of simulating the flare in steam boiler furnaces. Calculations of heat exchange in a furnace by the zonal method and by simulation of the flare with cylindrical gas volumes are described. The latter method is more accurate and yields more reliable information on heat transfer processes taking place in furnaces.

  17. The technological raw material heating furnaces operation efficiency improving issue

    Science.gov (United States)

    Paramonov, A. M.

    2017-08-01

    The issue of fuel oil applying efficiency improving in the technological raw material heating furnaces by means of its combustion intensification is considered in the paper. The technical and economic optimization problem of the fuel oil heating before combustion is solved. The fuel oil heating optimal temperature defining method and algorithm analytically considering the correlation of thermal, operating parameters and discounted costs for the heating furnace were developed. The obtained optimization functionality provides the heating furnace appropriate thermal indices achievement at minimum discounted costs. The carried out research results prove the expediency of the proposed solutions using.

  18. A Heat and Mass Transfer Model of a Silicon Pilot Furnace

    Science.gov (United States)

    Sloman, Benjamin M.; Please, Colin P.; Van Gorder, Robert A.; Valderhaug, Aasgeir M.; Birkeland, Rolf G.; Wegge, Harald

    2017-10-01

    The most common technological route for metallurgical silicon production is to feed quartz and a carbon source ( e.g., coal, coke, or charcoal) into submerged-arc furnaces, which use electrodes as electrical conductors. We develop a mathematical model of a silicon furnace. A continuum approach is taken, and we derive from first principles the equations governing the time evolution of chemical concentrations, gas partial pressures, velocity, and temperature within a one-dimensional vertical section of a furnace. Numerical simulations are obtained for this model and are shown to compare favorably with experimental results obtained using silicon pilot furnaces. A rising interface is shown to exist at the base of the charge, with motion caused by the heating of the pilot furnace. We find that more reactive carbon reduces the silicon monoxide losses, while reducing the carbon content in the raw material mixture causes greater solid and liquid material to build-up in the charge region, indicative of crust formation (which can be detrimental to the silicon production process). We also comment on how the various findings could be relevant for industrial operations.

  19. Mosaic structure of intragenic repetitive elements in histone H1-like protein Hc2 varies within serovars of Chlamydia trachomatis

    Directory of Open Access Journals (Sweden)

    Nilsson Anders

    2010-03-01

    Full Text Available Abstract Background The histone-like protein Hc2 binds DNA in Chlamydia trachomatis and is known to vary in size between 165 and 237 amino acids, which is caused by different numbers of lysine-rich pentamers. A more complex structure was seen in this study when sequences from 378 specimens covering the hctB gene, which encodes Hc2, were compared. Results This study shows that the size variation is due to different numbers of 36-amino acid long repetitive elements built up of five pentamers and one hexamer. Deletions and amino acid substitutions result in 14 variants of repetitive elements and these elements are combined into 22 configurations. A protein with similar structure has been described in Bordetella but was now also found in other genera, including Burkholderia, Herminiimonas, Minibacterium and Ralstonia. Sequence determination resulted in 41 hctB variants that formed four clades in phylogenetic analysis. Strains causing the eye disease trachoma and strains causing invasive lymphogranuloma venereum infections formed separate clades, while strains from urogenital infections were more heterogeneous. Three cases of recombination were identified. The size variation of Hc2 has previously been attributed to deletions of pentamers but we show that the structure is more complex with both duplication and deletions of 36-amino acid long elements. Conclusions The polymorphisms in Hc2 need to be further investigated in experimental studies since DNA binding is essential for the unique biphasic life cycle of the Chlamydiacae. The high sequence variation in the corresponding hctB gene enables phylogenetic analysis and provides a suitable target for the genotyping of C. trachomatis.

  20. CYP21A2 polymorphisms in patients with autoimmune Addison's disease, and linkage disequilibrium to HLA risk alleles.

    Science.gov (United States)

    Brønstad, Ingeborg; Skinningsrud, Beate; Bratland, Eirik; Løvås, Kristian; Undlien, Dag; Sverre Husebye, Eystein; Wolff, Anette Susanne Bøe

    2014-12-01

    Steroid 21-hydroxylase, encoded by CYP21A2, is the major autoantigen in autoimmune Addison's disease (AAD). CYP21A2 is located in the region of the HLA complex on chromosome 6p21.3, which harbours several risk alleles for AAD. The objective was to investigate whether CYP21A2 gene variants confer risk of AAD independently of other risk alleles in the HLA loci. DNA samples from 381 Norwegian patients with AAD and 340 healthy controls (HC) previously genotyped for the HLA-A, -B, -DRB1, and -DQB1 and MICA loci were used for genotyping of CYP21A2. Genotyping of CYP21A2 was carried out by direct sequencing. Linkage of CYP21A2 to the HLA loci was assessed using UNPHASED version 3.0.10 and PHASE version 2.1. Heterozygotes of the single-nucleotide polymorphisms (SNPs) rs397515394, rs6467, rs6474, rs76565726 and rs6473 were detected significantly more frequently in AAD patients compared with HC (P<0.005), but all SNPs were in a linkage disequilibrium (LD) with high-risk HLA-DRB1 haplotypes. rs6472C protected against AAD (odds ratio=0.15, 95% CI (0.08-0.30), P=3.8×10(-10)). This SNP was not in an LD with HLA loci (P=0.02), but did not increase protection when considering the effect of HLA-DRB1 alleles. Mutations causing congenital adrenal hyperplasia were found in heterozygosity in <1.5% of the cases in both groups. Genetic variants of CYP21A2 associated to AAD are in LD with the main AAD risk locus HLA-DRB1, and CYP21A2 does not constitute an independent susceptibility locus. © 2014 European Society of Endocrinology.

  1. Experimental Study on Environment Friendly Tap Hole Clay for Blast Furnace

    Science.gov (United States)

    Siva kumar, R.; Mohammed, Raffi; Srinivasa Rao, K.

    2018-03-01

    Blast furnace (BF) is the best possible route of iron production available. Blast furnace is a high pressure vessel where iron ore is melted and liquid iron is produced. The liquid iron is tapped through the hole in Blast Furnace called tap hole. The tapped liquid metal flowing through the tap hole is plugged using a clay called tap hole clay. Tap hole clay (THC) is a unshaped refractory used to plug the tap hole. The tap hole clay extruded through the tap hole using a gun. The tap hole clay is designed to expand and plug the tap hole. The tap hole filled with clay is drilled using drill bit and the hole made through the tap hole to tap the liquid metal accumulated inside the furnace. The number of plugging and drilling varies depending on the volume of the furnace. The tap hole clay need to have certain properties to avoid problems during plugging and drilling. In the present paper tap hole clay properties in industrial use was tested and studied. The problems were identified related to tap hole clay manufacturing. Experiments were conducted in lab scale to solve the identified problems. The present composition was modified with experimental results. The properties of the modified tap hole clay were found suitable and useful for blast furnace operation with lab scale experimental results.

  2. Liquid flow in the hearth of the blast furnace

    International Nuclear Information System (INIS)

    Gauje, P.; Nicolle, R.; Steiler, J.M.; Venturini, M.J.; Libralesso, J.M.

    1992-01-01

    The hearth of a blast furnace is poorly known. Our approach to characterize the hearth involves classical methods of chemical engineering, assessing the flow conditions by means of radioactive tracer techniques. The most important feature of this study is to combine measurements on industrial blast furnaces, experiments on a small scale model and flow model. calculations. 8 refs., 16 figs

  3. Material properties of the F82H melted in an electric arc furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sakasegawa, Hideo, E-mail: sakasegawa.hideo@jaea.go.jp [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Tanigawa, Hiroyasu [Japan Atomic Energy Agency, Rokkasho, Aomori (Japan); Kano, Sho; Abe, Hiroaki [Institute for Materials Research, Tohoku university, Sendai, Miyagi (Japan)

    2015-10-15

    Highlights: • We studied material properties of reduced activation ferritic/martensitic steel. • We melted F82H using a 20 tons electric arc furnace for the first time. • Mass effect likely affected material properties. • MX (M: Metal, C: Carbon and/or Nitrogen) precipitates mainly formed on grain and sub grain boundaries. - Abstract: Fusion DEMO reactor requires over 11,000 tons of reduced activation ferritic/martensitic steel. It is necessary to develop the manufacturing technology for fabricating such large-scale steel with appropriate mechanical properties. In this work, we focused fundamental mechanical properties and microstructures of F82H-BA12 heat which was melted using a 20 tons electric arc furnace followed by electroslag remelting process. Its raw material of iron was blast furnace iron, because the production volume of electrolytic iron which has been used in former heats, is limited. After melting and forging, this F82H-BA12 heat was heat-treated in four different conditions to consider their fluctuations and to optimize them, and tensile and Charpy impact tests were then performed. The result of these mechanical properties were comparable to those of former F82H heats less than 5 tons which were melted applying vacuum induction melting.

  4. Thermal and Physical Properties of Plutonium Dioxide Produced from the Oxidation of Metal: a Data Summary

    Energy Technology Data Exchange (ETDEWEB)

    Wayne, David M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2014-01-13

    The ARIES Program at the Los Alamos National Laboratory removes plutonium metal from decommissioned nuclear weapons, and converts it to plutonium dioxide in a specially-designed Direct Metal Oxidation furnace. The plutonium dioxide is analyzed for specific surface area, particle size distribution, and moisture content. The purpose of these analyses is to certify that the plutonium dioxide powder meets or exceeds the specifications of the end-user, and the specifications for the packaging and transport of nuclear materials. Analytical results from plutonium dioxide from ARIES development activities, from ARIES production activities, from muffle furnace oxidation of metal, and from metal that was oxidized over a lengthy time interval in air at room temperature, are presented. The processes studied produce plutonium dioxide powder with distinct differences in measured properties, indicating the significant influence of oxidation conditions on physical properties.

  5. Granulated blast furnace slag – A boon for foundry industry

    African Journals Online (AJOL)

    Keywords: Silica sand; Blast Furnace Slag; Mould properties; Ferrous and nonferrous ... raw material for the production of cast components in foundry industries. ... applications for conserving natural resources and reduce the cost of the raw .... in an elevated temperature melting furnace with temperature values of 750 to.

  6. Modeling of glass fusion furnaces; Modelisation des fours de fusion de verre

    Energy Technology Data Exchange (ETDEWEB)

    Mechitoua, N. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches; Plard, C. [Electricite de France, 77 - Moret sur Loing (France). Direction des Etudes et Recherches

    1997-12-31

    The furnaces used for glass melting are industrial installations inside which complex and coupled physical and chemical phenomena occur. Thermal engineering plays a major role and numerical simulation is a precious tool for the analysis of the different coupling, of their interaction and of the influence of the different parameters. In order to optimize the functioning of glass furnaces and to improve the quality of the glass produced, Electricite de France (EdF) has developed a specialized version of the ESTET fluid mechanics code, called `Joule`. This paper describes the functioning principle of glass furnaces, the interactions between heat transfers and flows inside the melted glass, the interactions between heat transfers and the thermal regulation of the furnace, the interactions between heat transfers and glass quality and the heat transfer interactions between the melted glass, the furnace walls and the combustion area. (J.S.)

  7. Development of the high temperature sintering furnace for DUPIC fuel fabrication

    International Nuclear Information System (INIS)

    Lee, Jung Won; Kim, B. G.; Park, J. J.; Yang, M. S.; Kim, K. H.; Kim, J. H.; Cho, K. H.; Lee, D. Y.; Lee, Y. S.

    1998-11-01

    This report describes the development of the high temperature sintering furnace for manufacturing DUPIC (Direct Use of spent PWR fuel in CANDU reactors) fuel pellets. The furnace has to be remotely operated and maintained in a high radioactive hot cell using master-slave manipulators. The high temperature sintering furnace for manufacturing DUPIC fuel pellets, which is satisfied with the requirements of remote operation and maintenance in a hot cell, was successfully developed and installed in the M6 hot cell at IMEF (Irradiated Material Examination Facility). The functional and thermal performance test was also successfully completed. The technology accumulated during developing this sintering furnace became the basis of other DUPIC equipment development, and will be very helpful in the development of equipment for use in hot cell in the future. (author). 20 figs

  8. Use of the CoFe{sub 2}O{sub 4} ferrospinel as catalyst in the WGSR process; Utilizacao do ferroespinelio CoFe{sub 2}O{sub 4} como catalisador no processo de WGSR

    Energy Technology Data Exchange (ETDEWEB)

    Lima, M.S.; Dantas, J.; Costa, A.C.F.M., E-mail: joeldadantas@yahoo.com.br [Universidade Federal de Campina Grande (LabSMaC/UFCG), PB (Brazil). Departamento de Engenharia de Materiais. Laboratorio de Sintese de Materiais Ceramicos; Sazaki, J.M. [Universidade Federal do Ceara (UFC), Fortaleza, CE (Brazil). Departamento de Fisica; Andrade, H.M.C. [Universidade Federal da Bahia (UFBA), Salvador, BA (Brazil). Departamento de Quimica Geral e Inorganica. Lab. de Catalise e Materiais

    2014-07-01

    This work investigates the use of ferrospinel CoFe{sub 2}O{sub 4} as a catalyst in water gas shift reactions (WGSR). The ferrospinel was synthesized by combustion reaction using the following heating conditions: ceramic base, resistive muffle oven, and microwave oven. The samples were characterized by XRD, FTIR, textural analysis and SEM. The catalytic tests were carried out on a bench scale using mixed CO/N{sub 2} (5% CO mol.mol) to the reaction flow 30mL.min{sup -1}, molar ratio H{sub 2}O/CO of 0.3. The results showed that for all heating conditions there was the monophasic formation of CoFe{sub 2}O{sub 4}, with crystallite size ranging from 38 to 40 nm. Samples showed mesoporous characteristics with type II isotherm and hysteresis loop H3. The sample synthesized in the muffle furnace showed the highest conversion rate of 56.0% and the sample synthesized in the ceramic base showed higher selectivity with 90.19% for the WGRS process. (author)

  9. Low-Temperature Sol-Gel Synthesis of Nitrogen-Doped Anatase/Brookite Biphasic Nanoparticles with High Surface Area and Visible-Light Performance

    Directory of Open Access Journals (Sweden)

    Liang Jiang

    2017-12-01

    Full Text Available Nitrogen doping in combination with the brookite phase or a mixture of TiO2 polymorphs nanomaterials can enhance photocatalytic activity under visible light. Generally, nitrogen-dopedanatase/brookite mixed phases TiO2 nanoparticles obtained by hydrothermal or solvothermal method need to be at high temperature and with long time heating treatment. Furthermore, the surface areas of them are low (<125 m2/g. There is hardly a report on the simple and direct preparation of N-doped anatase/brookite mixed phase TiO2 nanostructures using sol-gel method at low heating temperature. In this paper, the nitrogen-doped anatase/brookite biphasic nanoparticles with large surface area (240 m2/g were successfully prepared using sol-gel method at low temperature (165 °C, and with short heating time (4 h under autogenous pressure. The obtained sample without subsequent annealing at elevated temperatures showed enhanced photocatalytic efficiency for the degradation of methyl orange (MO with 4.2-, 9.6-, and 7.5-fold visible light activities compared to P25 and the amorphous samples heated in muffle furnace with air or in tube furnace with a flow of nitrogen at 165 °C, respectively. This result was attributed to the synergistic effects of nitrogen doping, mixed crystalline phases, and high surface area.

  10. Metal diffusion from furnace tubes depends on location

    International Nuclear Information System (INIS)

    Albright, L.F.

    1988-01-01

    Studies of metal samples from an ethylene furnace on the Texas Gulf Coast, using a scanning electron microscope (SEM) and an energy dispersive X-ray analyzer (EDAX), reveal preferential diffusion of chromium, titanium, and aluminum in the coil wall to the surfaces of the tube where they form metal oxides. These elements are gradually depleted from the tube wall. Complicated surface reactions that include the formation of several metal oxides, metal sulfides, and metal-catalyzed coke also occur. Several mechanisms can be postulated as to how metal fines or compounds are formed and transferred in the coil and transfer lines exchanger (TLX) of ethylene units. These surface reactions directly or indirectly affect coke formation in the tube. Finally, creep in the coils is likely a factor in promoting corrosion. Such creep is promoted by variable temperature-time patterns to which a coil is exposed during pyrolysis, and then decoking. Periods of stress and compression occur in the coil walls. Knowledge of the diffusion and reactions that take place can result in better furnace operations and decoking procedures to extend the life of the furnace tubes. In this second installment of a four-part series, photomicrographs of four pyrolysis tube samples from the ethylene furnace indicate that significant differences existed between the outer surfaces, inner surfaces, and cross-sectional areas of the samples. The first installment of the series dealt with coke

  11. Analysis of combustion efficiency in a pelletizing furnace

    Directory of Open Access Journals (Sweden)

    Rafael Simões Vieira de Moura

    Full Text Available Abstract The objective of this research is to assess how much the improvement in the combustion reaction efficiency can reduce fuel consumption, maintaining the same thermal energy rate provided by the reaction in a pelletizing furnace. The furnace for pelletizing iron ore is a complex thermal machine, in terms of energy balance. It contains recirculation fan gases and constant variations in the process, and the variation of a single process variable can influence numerous changes in operating conditions. This study demonstrated how the main variables related to combustion in the burning zone influence fuel consumption (natural gas from the furnace of the Usina de Pelotização de Fábrica (owned by VALE S/A, without changing process conditions that affect production quality. Variables were analyzed regarding the velocity and pressure of the fuel in the burners, the temperature of the combustion air and reactant gases, the conversion rate and the stoichiometric air/fuel ratio of the reaction. For the analysis, actual data of the furnace in operation was used, and for the simulation of chemical reactions, the software Gaseq® was used. The study showed that the adjustment of combustion reaction stoichiometry provides a reduction of 9.25% in fuel consumption, representing a savings of US$ 2.6 million per year for the company.

  12. Identita hokejbalového klubu HC Kert Park Praha a její využití v praxi

    OpenAIRE

    Gerlich, Leoš

    2013-01-01

    Title: Identity of HC KERT Park Praha and its usage in reality Objectives: The goal of this work is to create a project that leads to a better corporate identity of HC KERT Park Praha. Methods: In our thesis we used three methods that are non-structured interviews, focus groups and SWOT analysis. Results: It was found out that the identity of HC KERT Park Praha is incomplete and most respondents see it negatively. The respondents agreed on three main factors that could lead to improvement of ...

  13. Performance of a split-type air conditioner matched with coiled adiabatic capillary tubes using HCFC22 and HC290

    International Nuclear Information System (INIS)

    Zhou, Guobing; Zhang, Yufeng

    2010-01-01

    This paper experimentally investigated the system performance of a split-type air conditioner matching with different coiled adiabatic capillary tubes for HCFC22 and HC290. Experiments were carried out in a room-type calorimeter. The results have shown that (1) similar cooling effects can be achieved by matching various capillary tubes of different inner diameters; (2) parallel capillary tubes presented better system performance and flow stability with weaker inlet pressure fluctuations than the single capillary tube; (3) with the coil diameter of the capillary tube increasing from 40 mm to 120 mm, the mass flow rate tended to increase slightly. But the cooling capacity, input power and energy efficiency ratio (EER) did not show evident tendency of change; (4) the refrigerant charge and mass flow rate for HC290 were only 44% and 47% of that for HCFC22, respectively, due to the much lower density. And HC290 had 4.7-6.7% lower cooling capacity and 12.1-12.3% lower input power with respect to HCFC22. However, the EER of HC290 can be 8.5% higher than that of HCFC22, which exhibits the advantage of using HC290. In addition, the experimental uncertainties were analyzed and some application concerns of HC290 were discussed.

  14. The effects of ZnO2 nanoparticles on properties of concrete using ground granulated blast furnace Slag as binder

    Directory of Open Access Journals (Sweden)

    Ali Nazari

    2011-09-01

    Full Text Available In the present study, flexural strength together with pore structure, thermal behavior and microstructure of concrete containing ground granulated blast furnace slag with different amount of ZnO2 nanoparticles has been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impact the properties of concrete, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt. (%. ZnO2 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of 45 wt. (% of ground granulated blast furnace slag and physical and mechanical properties of the specimens was measured. ZnO2 nanoparticle as a partial replacement of cement up to 3 wt. (% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH2 amount at the early age of hydration and hence increase flexural strength of concrete. The increased the ZnO2 nanoparticles' content more than 3 wt. (%, causes the reduced the flexural strength because of the decreased crystalline Ca(OH2 content required for C-S-H gel formation together with unsuitable dispersion of nanoparticles in the concrete matrix. ZnO2 nanoparticles could improve the pore structure of concrete and shift the distributed pores to harmless and few-harm pores.

  15. Fluorine determination in coal using high-resolution graphite furnace molecular absorption spectrometry and direct solid sample analysis

    Energy Technology Data Exchange (ETDEWEB)

    Machado, Patrícia M.; Morés, Silvane; Pereira, Éderson R. [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Welz, Bernhard, E-mail: w.bernardo@terra.com.br [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil); Carasek, Eduardo [Departamento de Química, Universidade Federal de Santa Catarina, 88040-900 Florianópolis, SC (Brazil); Andrade, Jailson B. de [Instituto Nacional de Ciência e Tecnologia do CNPq, INCT de Energia e Ambiente, Universidade Federal da Bahia, 40170-115 Salvador, BA (Brazil)

    2015-03-01

    The absorption of the calcium mono-fluoride (CaF) molecule has been employed in this study for the determination of fluorine in coal using direct solid sample analysis and high-resolution continuum source graphite furnace molecular absorption spectrometry (HR-CS GF MAS). The rotational line at 606.440 nm was used for measuring the molecular absorption in the gas phase. The pyrolysis and vaporization temperatures were 700 °C and 2100 °C, respectively. Different chemical modifiers have been studied, such as Pd and Ir as permanent modifiers, and Pd and the mixed Pd/Mg modifier in solution. The limit of detection and the characteristic mass were 0.3 and 0.1 ng F, respectively. One certified reference material (CRM) of coal (NIST 1635) and four CRMs with a non-certified value for F (SARM 18, SARM 20, BCR 40, BCR 180) were used to evaluate the accuracy and precision of the method, obtaining good agreement (104%) with the certified value and with the informed values (ranging from 90 to 103%). - Highlights: • High-resolution Graphite Furnace Molecular Absorption Spectrometry (HR-GF MAS) • Fluorine has been determined using HR-GF MAS of the CaF molecule. • The CaF molecule was generated in a graphite furnace at a temperature of 2100 °C • Coal samples have been analyzed using direct solid sample introduction. • Aqueous standard solutions have been used for calibration.

  16. Interferometric imaging of Titan's HC$_3$N, H$^{13}$CCCN and HCCC$^{15}$N

    OpenAIRE

    Cordiner, M. A.; Nixon, C. A.; Charnley, S. B.; Teanby, N. A.; Molter, E. M.; Kisiel, Z.; Vuitton, V.

    2018-01-01

    We present the first maps of cyanoacetylene isotopologues in Titan's atmosphere, including H$^{13}$CCCN and HCCC$^{15}$N, detected in the 0.9 mm band using the Atacama Large Millimeter/submillimeter array (ALMA) around the time of Titan's (southern winter) solstice in May 2017. The first high-resolution map of HC$_3$N in its $v_7=1$ vibrationally excited state is also presented, revealing a unique snapshot of the global HC$_3$N distribution, free from the strong optical depth effects that adv...

  17. Development of slagging system using DC joule-heating furnace; Chokuryu denki teikoshiki hai yoyu gijutsu no shohinka

    Energy Technology Data Exchange (ETDEWEB)

    Yoshinari, N.; Ueda, J.; Nishino, J.; Takeshige, S. [Ishikawajima-Harima Heavy Industries Co. Ltd., Tokyo (Japan)

    1998-03-01

    Waste disposal by incineration is in wide use, inevitably discharging the unburnt portion or ash as the residue, and the residue contains heavy metals and dioxins. New slagging technologies capable of dealing with the situation, respecting in addition the effective use of resources, are now attracting attention, and are coming into popular use. IHI has already developed three types of melting technologies, which are the residual carbon combustion type, the joule-heating furnace type, and the coke-bed furnace type, and has already delivered to clients some facilities using these technologies. In this report, the three types are outlined, and the joule-heating furnace is taken up to explain the process of development up to commercialization. In the joule-heating furnace, molten slag (resistivity several ohms/cm at 1300degC) is electrified for the melting of ash by joule heat, and the result is a high-quality slag containing less chlorine thanks to the electrochemical decomposition. Studies were conducted about exhaust gas cleaning, silent operation, and cost performance (using only one electrode), etc., by operating 2.4t/d and 10t/d demonstration plants, and the efforts have culminated in the commercialization of the technology. 6 refs., 9 figs., 7 tabs.

  18. Nonmetallic inclusions in carbon steel smelted in plasma furnace

    Energy Technology Data Exchange (ETDEWEB)

    Shengelaya, I B; Kostyakov, V N; Nodiy, T K; Imerlishvili, V G; Gavisiani, A G [AN Gruzinskoj SSR, Tbilisi. Inst. Metallurgii

    1979-01-01

    A complex investigation on nonmetallic inclusions in carbon cast iron, smelted in plasma furnace in argon atmosphere and cast partly in the air and partly in argon atmosphere, has been carried out. As compared to open-hearth furnace carbon steel, the test metal was found to contain more oxide inclusions and nitrides; besides, in chromium-containing metal, chromium nitrides form the larger part of nitrides.

  19. Investigation and analysis of the usefulness of the Zellik method to design energy conserving electric furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Szilagyi, L.; Fay, G.

    1984-01-01

    The characteristics predetermined by the method Zellik in designing the electrical furnaces isolated traditionally are comparable with measured values of furnaces in operation. The newest furnaces have been built with isolation resulting in a lower energy consumption. To plot the static characteristics, the furnace was heated up three times to the steady state. In determining the static heat capacity the stored heat was measured by the conventional method. With a view to determining the kinetic heat capacity the furnace was heated up at different rates. On the base of the operating results of the furnace can be stated both the practicability of the method Zellik and the improvement of the characteristics of the furnace isolated with fibrous material.

  20. Method of burning highly reactive strongly slagging coal dust in a chamber furnace

    Energy Technology Data Exchange (ETDEWEB)

    Protsaylo, M.Ya.; Kotler, V.R.; Lobov, G.V.; Mechev, V.P.; Proshkin, A.V.; Zhuravlev, Yu.A.

    1982-01-01

    In the chamber furnace in order to reduce slagging, it is proprosed that, above the coal dust burners, nozzles be installed with inclination downwards through which air is fed in a mixture with flue gases. Under the influence of this flue gas-air mixture, the coal dust flame is deviated downwards. In this case there is an increase in the length of the flame and degree of filling of the volume of the furnace with the flame. This increases the effectiveness of dust burning. The input into the furnace of fuel jointly with the air and flue gases (optimally 10-15% of the total quantity of gases formed during fuel combustion) makes it possible to reduce the temperature in the furnace and the probability of slagging of the furnace walls.

  1. Advances in the graphitization protocol at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Macario, Kita D., E-mail: kitamacario@gmail.com [Departamento de Física, Instituto deFísica, Universidade Federal Fluminense, Campus da Praia Vermelha, Av. Gal. Milton Tavares de Souza s/n°, Niterói, RJ, 24210-346 (Brazil); Oliveira, Fabiana M. [Departamento de Física, Instituto deFísica, Universidade Federal Fluminense, Campus da Praia Vermelha, Av. Gal. Milton Tavares de Souza s/n°, Niterói, RJ, 24210-346 (Brazil); Carvalho, Carla [Departamento de Geoquímica, Instituto de Química, Universidade Federal Fluminense, Campus do Valonguinho, Outeiro São João Batista, s/n°, Niterói, RJ, 24020-150 (Brazil); Santos, Guaciara M.; Xu, Xiaomei [Department of Earth System Science, B321 Croul Hall, University of California Irvine, Irvine, CA, 92697-3100 (United States); Chanca, Ingrid S.; Alves, Eduardo Q.; Jou, Renata M.; Oliveira, Maria Isabela; Pereira, Bruna B.; Moreira, Vinicius; Muniz, Marcelo C.; Linares, Roberto; Gomes, Paulo Roberto Silveira; Meigikos dos Anjos, Roberto [Departamento de Física, Instituto deFísica, Universidade Federal Fluminense, Campus da Praia Vermelha, Av. Gal. Milton Tavares de Souza s/n°, Niterói, RJ, 24210-346 (Brazil); and others

    2015-10-15

    In this paper, we summarize the sample preparation methods currently used at the Radiocarbon Laboratory of the Universidade Federal Fluminense (LAC-UFF) in Brazil. We also report on a series of results with regards to the graphitization protocol. Tests with different temperatures and baking times were performed, and carbon stable isotope ratios of graphite were measured by an EA–IRMS (elemental analyzer coupled with an isotopic ratio mass spectrometer) to infer the completeness of the graphitization reaction. We monitored the muffle furnace temperature using an independent thermocouple and found a −60 °C offset, which may have caused the lower graphitization yields (detected from the large isotopic fractionation on several reference materials targets). At a temperature of 520 °C, the isotopic fractionation in the graphitization reaction was systematically lower (−5‰ in average) and the overall scattering was reduced. As long as isotopic fractionation corrections are made using the online stable isotopes ratios provided by the AMS system, the accuracy of the {sup 14}C results should be maintained.

  2. EFFECTS OF BLAST-FURNACE SLAG ON NATURAL POZZOLAN-BASED GEOPOLYMER CEMENT

    Directory of Open Access Journals (Sweden)

    MAHSHAD YAZDANIPOUR

    2011-03-01

    Full Text Available A number of geopolymer cement mixes were designed and produced by alkali-activation of a pumice-type natural pozzolan. Effects of blast-furnace slag on basic engineering properties of the mixes were studied. Different engineering properties of the mixes such as setting times and 28-day compressive strength were studied at different amounts of blast-furnace slag, sodium oxide content, and water-to-cement ratio. The mix comprising of 5 wt.% blast-furnace slag and 8 wt.% Na2O with a water-to-dry binder ratio of 0.30 exhibits the highest 28-day compressive strength, i.e. 36 MPa. Mixes containing 5 wt.% of ground granulated blast furnace slag showed the least efflorescence or best soundness. Laboratory techniques of X-ray diffractometry (XRD, fourier transform infrared spectroscopy (FTIR, and scanning electron microscopy (SEM were utilized for characterizing a number of mixes and studying their molecular and micro-structure. Investigations done by scanning electron microscopy confirm that smaller blast-furnace slag particles react totally while the larger ones react partially with alkaline activators and contribute to the formation of a composite microstructure.

  3. Infrared spectroscopic and theoretical study of the HC2n+1O+ (n = 2-5) cations

    Science.gov (United States)

    Jin, Jiaye; Li, Wei; Liu, Yuhong; Wang, Guanjun; Zhou, Mingfei

    2017-06-01

    The carbon chain cations, HC2n+1O+ (n = 2-5), are produced via pulsed laser vaporization of a graphite target in supersonic expansions containing carbon monoxide and hydrogen. The infrared spectra are measured via mass-selected infrared photodissociation spectroscopy of the CO "tagged" [HC2n+1O.CO]+ cation complexes in the 1600-3500 cm-1 region. The geometries and electronic ground states of these cation complexes are determined by their infrared spectra compared to the predications of theoretical calculations. All of the HC2n+1O+ (n = 2-5) core cations are characterized to be linear carbon chain derivatives terminated by hydrogen and oxygen, which have the closed-shell singlet ground states with polyyne-like carbon chain structures.

  4. Graphite electrode DC arc furnace system for treatment of environmentally undesirable solid waste

    International Nuclear Information System (INIS)

    Titus, C.H.

    1993-01-01

    A gas tight DC arc furnace system using graphite electrodes is ideally suited for destruction of organic materials, compaction of metallic materials, and vitrification of inorganic waste materials. A graphite electrode DC arc furnace system which was developed by Electro-Pyrolysis, Inc. has been used to demonstrate that iron basalt soil containing various surrogate nonradioactive materials found on Department of Energy's Atomic Energy Sites and hospital waste can be reduced to a compact, vitrified, solid material which is environmentally acceptable and will pass TCLP leachate tests. A second graphite electrode DC arc furnace system is presently under construction and will be in operation at MIT during the second quarter of 1993. This furnace system is designed for demonstration of waste treatment and stabilization at a rate of 500 pounds per hour and will also be used for development and performance evaluation of diagnostic techniques and equipment for measuring and understanding internal furnace temperature profiles, gas entrained particulate composition, and particulate size distribution in various locations in the furnace during operation

  5. Determination of wall wear of glassmelting furnaces by a nuclear technique

    International Nuclear Information System (INIS)

    Harsanyi, Gyoergy; Kodolanyi, Andras; Leitner, Laszlo

    1984-01-01

    A new in-service inspection technique of glassmelting furnaces is reported. Isotope-labelled refractory tank blocks were prepared, tested experimentally, and built into the furnace. Sup(60)Co isotope tracer was used. The residual wall thickness of the labelled blocks were determined by periodical radiation dose measurements. No environmental or health damage is caused by the specific activity of 3.7 - 4 Bq/g of the labelled furnace blocks, the dose rate in a distance of 1 m from the wall was as low as 0.05 mR/h. (P.J.)

  6. Hopewell Furnace NHS : alternative transportation study

    Science.gov (United States)

    2009-12-31

    This study assesses the potential for an alternative transportation system (ATS) at Hopewell Furnace National Historic Site (NHS). The Volpe Center investigated internal circulation and potential partnerships with local historic, cultural, and recrea...

  7. Arabidopsis C3HC4-RING finger E3 ubiquitin ligase AtAIRP4 positively regulates stress-responsive abscisic acid signaling.

    Science.gov (United States)

    Yang, Liang; Liu, Qiaohong; Liu, Zhibin; Yang, Hao; Wang, Jianmei; Li, Xufeng; Yang, Yi

    2016-01-01

    Degradation of proteins via the ubiquitin system is an important step in many stress signaling pathways in plants. E3 ligases recognize ligand proteins and dictate the high specificity of protein degradation, and thus, play a pivotal role in ubiquitination. Here, we identified a gene, named Arabidopsis thaliana abscisic acid (ABA)-insensitive RING protein 4 (AtAIRP4), which is induced by ABA and other stress treatments. AtAIRP4 encodes a cellular protein with a C3HC4-RING finger domain in its C-terminal side, which has in vitro E3 ligase activity. Loss of AtAIRP4 leads to a decrease in sensitivity of root elongation and stomatal closure to ABA, whereas overexpression of this gene in the T-DNA insertion mutant atairp4 effectively recovered the ABA-associated phenotypes. AtAIRP4 overexpression plants were hypersensitive to salt and osmotic stresses during seed germination, and showed drought avoidance compared with the wild-type and atairp4 mutant plants. In addition, the expression levels of ABA- and drought-induced marker genes in AtAIRP4 overexpression plants were markedly higher than those in the wild-type and atairp4 mutant plants. Hence, these results indicate that AtAIRP4 may act as a positive regulator of ABA-mediated drought avoidance and a negative regulator of salt tolerance in Arabidopsis. © 2015 The Authors. Journal of Integrative Plant Biology published by Wiley Publishing Asia Pty Ltd on behalf of Institute of Botany, Chinese Academy of Sciences.

  8. Effect of Scale on Slab Heat Transfer in a Walking Beam Type Reheating Furnace

    OpenAIRE

    Man Young Kim

    2013-01-01

    In this work, the effects of scale on thermal behavior of the slab in a walking-beam type reheating furnace is studied by considering scale formation and growth in a furnace environment. Also, mathematical heat transfer model to predict the thermal radiation in a complex shaped reheating furnace with slab and skid buttons is developed with combined nongray WSGGM and blocked-off solution procedure. The model can attack the heat flux distribution within the furnace and the temperature distribut...

  9. Through-furnace for burning solid organic substances

    International Nuclear Information System (INIS)

    Kemmler, G.; Schlich, E.

    1984-01-01

    The through-furnace for burning radio-active organic solid waste consists of a reaction pipe heated from the outside, an input device and an output device. A solid pump is used as the input device, which has a common longitudinal axis with the reaction pipe. The reaction pipe is widened in the transport direction of the combustion pipe, where the angle between the longitudinal axis and the pipe wall is 0.5 to 5 0 . The pipe wall is wholely or partially permeable to gas. The thermal treatment of the solid organic substances can occur by combustion or by pyrohydrolysis or pyrolysis in the through-furnace. (orig./HP) [de

  10. Glass Furnace Project, October 1982-March 1983

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.

    1983-01-01

    In the Glass Furnace Project currently under way at Mound, a treatment technology for low-level radioactive waste is being evaluated that will combine volume reduction and immobilization in one step. Initial work focused on demonstrating the ability of the furnace to efficiently incinerate nonradioactive, simulated power-plant waste and on determining the adequacy of immobilization in a soda-lime silica matrix. Further evaluation of the system will involve a demonstration of the combustion and containment of radioactive waste. In preparation for this next phase of the program, preliminary investigation and design work were conducted during the past six months. 5 figures, 1 table

  11. Pilot scale electron bombardment furnace for continuous casting; application to the trial preparation of 20 kg of uranium monocarbide rods

    International Nuclear Information System (INIS)

    Trouve, J.; Genard, R.; Treillou, A.; Accary, A.

    1964-01-01

    The authors describe a pilot scale electron beam furnace designed for continuous melting and casting of uranium-carbon alloys. This equipment allows the melting and casting processes to be completely automatically controlled, the cooling being carried out under vacuum and the discharge being effected without breaking the vacuum. In a pre-production run of 20 kg of slugs, the composition of practically all the pieces was controlled within ± 0,1 per cent C. The output of the furnace was 2,2 kg/hour. (authors) [fr

  12. A REVIEW OF MILD COMBUSTION AND OPEN FURNACE DESIGN CONSIDERATION

    Directory of Open Access Journals (Sweden)

    M.M. Noor

    2012-12-01

    Full Text Available Combustion is still very important to generate energy. Moderate or Intense Low-oxygen Dilution (MILD combustion is one of the best new technologies for clean and efficient combustion. MILD combustion has been proven to be a promising combustion technology in industrial applications with decreased energy consumption due to the uniformity of its temperature distribution. It is clean compared to traditional combustion due to producing low NOx and CO emissions. This article provides a review and discussion of recent research and developments in MILD. The issue and applications are summarized, with some suggestions presented on the upgrading and application of MILD in the future. Currently MILD combustion has been successfully applied in closed furnaces. The preheating of supply air is no longer required since the recirculation inside the enclosed furnace already self-preheats the supply air and self-dilutes the oxygen in the combustion chamber. The possibility of using open furnace MILD combustion will be reviewed. The design consideration for open furnace with exhaust gas re-circulation (EGR was discussed.

  13. Compacting of fly dusts from cupola and electric arc furnace

    Directory of Open Access Journals (Sweden)

    D. Baricová

    2012-01-01

    Full Text Available Recycling and utilization of dust waste is important not only from the point of view of its usage as an alternative source of raw materials, but regarding the environmental problems also. Dust emissions arise from thermal and chemical or physical processes and mechanical actions. Two kinds of fl y dusts from cupola furnaces (hot and cold blast cupola furnace and fl y dust from electric arc furnace were used by experiments. They were pelletized only with addition of water and briquetted with diff erent addition of water glass, bentonite and cement. Quality of briquettes was tested by compression – strength test and by break down test in green state, after drying and afterstoring (1 month.

  14. Interaction of the Chlamydia trachomatis histone H1-like protein (Hc1) with DNA and RNA causes repression of transcription and translation in vitro

    DEFF Research Database (Denmark)

    Pedersen, LB; Birkelund, Svend; Christiansen, Gunna

    1994-01-01

    and severely affects DNA, RNA and protein synthesis. We have analysed the interaction of Hc1 with single-stranded DNA and RNA by Southwestern and Northwestern blotting. Furthermore, we show that purified, recombinant Hc1 dramatically affects transcription and translation in vitro at physiologically relevant......The 18 kDa histone H1-like protein from Chlamydia trachomatis (Hc1) is a DNA-binding protein thought to be involved in condensation of the chlamydial chromosome during late stages in the chlamydial life cycle. Expression of Hc1 in Escherichia coli results in an overall relaxation of DNA...... concentrations. These results were found to coincide with the formation of condensed Hc1-DNA and Hc1-RNA complexes as revealed by agarose gel electrophoresis and electron microscopy. The implications of these results for possible functions of Hc1 in vivo are discussed....

  15. Pulverized coal burnout in blast furnace simulated by a drop tube furnace

    Energy Technology Data Exchange (ETDEWEB)

    Du, Shan-Wen [Steel and Aluminum Research and Development Department, China Steel Corporation, Kaohsiung 812 (China); Chen, Wei-Hsin [Department of Greenergy, National University of Tainan, Tainan 700 (China); Lucas, John A. [School of Engineering of the University of Newcastle, Callaghan, NSW 2308 (Australia)

    2010-02-15

    Reactions of pulverized coal injection (PCI) in a blast furnace were simulated using a drop tube furnace (DTF) to investigate the burnout behavior of a number of coals and coal blends. For the coals with the fuel ratio ranging from 1.36 to 6.22, the experimental results indicated that the burnout increased with decreasing the fuel ratio, except for certain coals departing from the general trend. One of the coals with the fuel ratio of 6.22 has shown its merit in combustion, implying that the blending ratio of the coal in PCI operation can be raised for a higher coke replacement ratio. The experiments also suggested that increasing blast temperature was an efficient countermeasure for promoting the combustibility of the injected coals. Higher fuel burnout could be achieved when the particle size of coal was reduced from 60-100 to 100-200 mesh. However, once the size of the tested coals was in the range of 200 and 325 mesh, the burnout could not be improved further, resulting from the agglomeration of fine particles. Considering coal blend reactions, the blending ratio of coals in PCI may be adjusted by the individual coal burnout rather than by the fuel ratio. (author)

  16. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity.

    Science.gov (United States)

    Paiva, Aline Dias; de Oliveira, Michelle Dias; de Paula, Sérgio Oliveira; Baracat-Pereira, Maria Cristina; Breukink, Eefjan; Mantovani, Hilário Cuquetto

    2012-11-01

    Bacteriocins are ribosomally synthesized antimicrobial peptides produced by Bacteria and some Archaea. The assessment of the toxic potential of antimicrobial peptides is important in order to apply these peptides on an industrial scale. The aim of the present study was to investigate the in vitro cytotoxic and haemolytic potential of bovicin HC5, as well as to determine whether cholesterol influences bacteriocin activity on model membranes. Nisin, for which the mechanism of action is well described, was used as a reference peptide in our assays. The viability of three distinct eukaryotic cell lines treated with bovicin HC5 or nisin was analysed by using the MTT assay and cellular morphological changes were determined by light microscopy. The haemolytic potential was evaluated by using the haemoglobin liberation assay and the role of cholesterol on bacteriocin activity was examined by using model membranes composed of DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) and DPoPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine). The IC(50) of bovicin HC5 and nisin against Vero cells was 65.42 and 13.48 µM, respectively. When the MTT assay was performed with MCF-7 and HepG2 cells, the IC(50) obtained for bovicin HC5 was 279.39 and 289.30 µM, respectively, while for nisin these values were 105.46 and 112.25 µM. The haemolytic activity of bovicin HC5 against eukaryotic cells was always lower than that determined for nisin. The presence of cholesterol did not influence the activity of either bacteriocin on DOPC model membranes, but nisin showed reduced carboxyfluorescein leakage in DPoPC membranes containing cholesterol. In conclusion, bovicin HC5 only exerted cytotoxic effects at concentrations that were greater than the concentration needed for its biological activity, and the presence of cholesterol did not affect its interaction with model membranes.

  17. Heat pipes and use of heat pipes in furnace exhaust

    Science.gov (United States)

    Polcyn, Adam D.

    2010-12-28

    An array of a plurality of heat pipe are mounted in spaced relationship to one another with the hot end of the heat pipes in a heated environment, e.g. the exhaust flue of a furnace, and the cold end outside the furnace. Heat conversion equipment is connected to the cold end of the heat pipes.

  18. Production of blast furnace coke from soft brown coal

    Energy Technology Data Exchange (ETDEWEB)

    Scholz, G.; Wundes, H.; Schkommodau, F.; Zinke, H.-G. (VEB Gaskombinat Schwarze Pumpe (German Democratic Republic))

    1988-01-01

    Reviews experimental production and utilization of high quality brown coal coke in the GDR during 1985 and 1986. The technology of briquetting and coking brown coal dust is described; the superior parameters of produced coke quality are listed in comparison to those of regular industrial coke made from brown and black coal. Dust emission from high quality brown coal coke was suppressed by coke surface treatment with dispersion foam. About 4,200 t of this coke were employed in black coal coke substitution tests in a blast furnace. Substitution rate was 11%, blast furnace operation was positive, a substitution factor of 0.7 t black coal coke per 1 t of brown coal coke was calculated. Technology development of high quality brown coal coke production is regarded as complete; blast furnace coke utilization, however, requires further study. 8 refs.

  19. Computational Modeling of Arc-Slag Interaction in DC Furnaces

    Science.gov (United States)

    Reynolds, Quinn G.

    2017-02-01

    The plasma arc is central to the operation of the direct-current arc furnace, a unit operation commonly used in high-temperature processing of both primary ores and recycled metals. The arc is a high-velocity, high-temperature jet of ionized gas created and sustained by interactions among the thermal, momentum, and electromagnetic fields resulting from the passage of electric current. In addition to being the primary source of thermal energy, the arc jet also couples mechanically with the bath of molten process material within the furnace, causing substantial splashing and stirring in the region in which it impinges. The arc's interaction with the molten bath inside the furnace is studied through use of a multiphase, multiphysics computational magnetohydrodynamic model developed in the OpenFOAM® framework. Results from the computational solver are compared with empirical correlations that account for arc-slag interaction effects.

  20. Model technique for aerodynamic study of boiler furnace

    Energy Technology Data Exchange (ETDEWEB)

    1966-02-01

    The help of the Division was recently sought to improve the heat transfer and reduce the exit gas temperature in a pulverized-fuel-fired boiler at an Australian power station. One approach adopted was to construct from Perspex a 1:20 scale cold-air model of the boiler furnace and to use a flow-visualization technique to study the aerodynamic patterns established when air was introduced through the p.f. burners of the model. The work established good correlations between the behaviour of the model and of the boiler furnace.

  1. Heating characteristics of billet in a walking hearth type reheating furnace

    International Nuclear Information System (INIS)

    Emadi, Ali; Saboonchi, Ahmad; Taheri, Mahdi; Hassanpour, Saeid

    2014-01-01

    The heating characteristics of billet in a walking hearth type reheating furnace were studied by developing a mathematical heat transfer model. Radiation calculations were conducted by means of zone method and considering all radiation exchange paths. The weighted-sum-of-gray-gas-model was used for better accuracy of gas radiation prediction. Convective heat flux was calculated by considering suitable value of convective heat transfer coefficient at any location of the furnace. The model was substantiated through its comparison to experimental data. A comparison was drawn to evaluate the effect of constant and variable convective coefficient on convective flux distribution and billet thermal behavior. The effect of furnace wall's emissivity of each zone and whole of the furnace on the billet thermal behavior was investigated. The obtained results revealed that by increasing furnace wall's emissivity for a determined residence time, billet's temperature in primary zones rises but it has no significant effect on its final temperature. However, by increasing wall's emissivity from 0.7 to 0.95, the residence time can be declined by about 5%. Moreover, emissivity increase in non-firing and preheating zones as compared to heating and soaking zones has greater impact on the billet thermal behavior. -- Highlights: • 3D radiation modeling by considering all possible paths of radiation exchange. • Using WSGG model for better prediction of gas radiation. • Using non-constant convection coefficient to consider variation of gas mass flow. • Investigation of effect of convection coefficient on billet temperature behavior. • Investigation of wall emissivity of furnace zones

  2. Synthesis and reaction of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3): the complex containing three-coordinate manganese(I) with a Mn-Mn bond exhibiting unusual magnetic properties and electronic structure.

    Science.gov (United States)

    Chai, Jianfang; Zhu, Hongping; Stückl, A Claudia; Roesky, Herbert W; Magull, Jörg; Bencini, Alessandro; Caneschi, Andrea; Gatteschi, Dante

    2005-06-29

    This paper reports on the synthesis, X-ray structure, magnetic properties, and DFT calculations of [[HC(CMeNAr)2]Mn]2 (Ar = 2,6-iPr2C6H3) (2), the first complex with three-coordinate manganese(I). Reduction of the iodide [[HC(CMeNAr)2]Mn(mu-I)]2 (1) with Na/K in toluene afforded 2 as dark-red crystals. The molecule of 2 contains a Mn2(2+) core with a Mn-Mn bond. The magnetic investigations show a rare example of a high-spin manganese(I) complex with an antiferromagnetic interaction between the two Mn(I) centers. The DFT calculations indicate a strong s-s interaction of the two Mn(I) ions with the open shell configuration (3d54s1). This suggests that the magnetic behavior of 2 could be correctly described as the coupling between two S1 = S2 = 5/2 spin centers. The Mn-Mn bond energy is estimated at 44 kcal mol(-1) by first principle calculations with the B3LYP functional. The further oxidative reaction of 2 with KMnO4 or O2 resulted in the formation of manganese(III) oxide [[HC(CMeNAr)2]Mn(mu-O)]2 (3). Compound 3 shows an antiferromagnetic coupling between the two oxo-bridged manganese(III) centers by magnetic measurements.

  3. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  4. NEDO project reports. High performance industrial furnace development project - High temperature air combustion

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-21

    For the purpose of reducing energy consumption, a NEDO project 'Developmental research on high efficiency industrial furnaces' was carried out from FY 1993 to FY 1999 by The Japan Industrial Furnaces Manufacturers Association, and the paper outlined the details of the project. Industrial furnaces handled in this R and D can bring 30% reduction of the energy consumption and approximately 50% NOx reduction, and were given the 9th Nikkei global environmental technology prize. In the study of combustion phenomena of high temperature air combustion, the paper arranged characteristics of flame, the base of gaseous fuel flame, the base of liquid fuel flame, the base of solid fuel flame, etc. Concerning high temperature air combustion models for simulation, fluid dynamics and heat transfer models, and reaction and NOx models, etc. As to impacts of high temperature air combustion on performance of industrial furnaces, energy conservation, lowering of pollution, etc. In relation to a guide for the design of high efficiency industrial furnaces, flow charts, conceptual design, evaluation method for heat balance and efficiency using charts, combustion control system, applicability of high efficiency industrial furnaces, etc. (NEDO)

  5. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Yee, S. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States); Baker, J. [Partnership for Advanced Residential Retrofit (PARR), Des Plaines, IL (United States)

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. In this project, the U.S. Department of Energy Building America team Partnership for Advanced Residential Retrofit examined the impact that common installation practices and age-induced equipment degradation may have on the installed performance of natural gas furnaces over the life of the product, as measured by steady-state efficiency and annual efficiency. The team identified 12 furnaces of various ages and efficiencies that were operating in residential homes in the Des Moines, Iowa, metropolitan area and worked with a local heating, ventilation, and air conditioning contractor to retrieve furnaces and test them at the Gas Technology Institute laboratory for steady-state efficiency and annual efficiency. Prior to removal, system airflow, static pressure, equipment temperature rise, and flue loss measurements were recorded for each furnace as installed in the house.

  6. Determination of fluorine injuries on an alley of linden trees in the immediate proximity of a brick kiln near Ismaning by leaf analysis and aerial infrared photography

    Energy Technology Data Exchange (ETDEWEB)

    Baum, I F

    1974-01-01

    Upon discovery of severe leaf injuries in an alley of linden trees near Ismaning (Munich, West Germany), leaf samples were taken from the lower branches of the trees at three different time periods. The samples were dried, ground, and ashed according to the method by Buck (ashing of 5 g dry substance in a nickel vessel at a temperature of 450 to 500 C in a muffle furnace). The fluorine in the ash was determined by the method of Buck and Stratman. A relationship was determined between the fluorine concentration of the leaves and the location of the tree with regard to a brick kiln close to the alley. The severity of necrosis not only corresponded to the determined fluorine concentration but also the gray tone of the infrared photographs. The results led to the initiation of measures for reduction of the fluorine emissions by this brick kiln. 17 references.

  7. Relationship of serum S1P and HC-II levels with vasoactive substances and cytokines in patients with cerebral vascular restenosis after stent implantation

    Directory of Open Access Journals (Sweden)

    Yong Liu

    2017-04-01

    Full Text Available Objective: To study the relationship of serum sphingosine 1-phosphate (S1P and heparin cofactor II (HCII levels with vasoactive substances and cytokines in patients with cerebral vascular restenosis after stent implantation. Methods: 52 patients who received cerebrovascular stent implantation and developed restenosis in our hospital between May 2012 and December 2015 were collected as observation group, and 40 healthy patients with cerebrovascular stent implantation who had re-examination in our hospital during the same period were selected as control group. ELISA method was used to detect serum S1P and HC-II levels as well as vasoactive substance and inflammatory factor contents. Spearman correlation analysis was used to evaluate the relationship of serum S1P and HC-II levels with vasoactive substances and inflammatory factors. Results: Serum S1P and HC-II levels of observation group were lower than those of control group (P<0.05; serum vasoactive substances endothelin (ET, angiotensin II (AngII and thromboxane B2 (TXB2 contents of observation group were higher than those of control group while nitric oxide (NO content was lower than that of control group (P<0.05; serum inflammatory factors hypersensitive C-reactive protein (hs-CRP, interleukin-1 (IL-1, IL-6, IL-8 and IL-11 contents of observation group were higher than those of control group (P<0.05. Serum S1P and HC-II levels in patients with cerebral vascular restenosis after stent implantation were directly correlated with vasoactive substance and inflammatory factor contents. Conclusion: Serum S1P and HC-II levels decrease in patients with cerebral vascular restenosis after stent implantation, and it is an important cause of cerebral vascular dysfunction and systemic inflammatory response.

  8. Development of an Instrument to Measure Health Center (HC) Personnel's Computer Use, Knowledge and Functionality Demand for HC Computerized Information System in Thailand

    OpenAIRE

    Kijsanayotin, Boonchai; Pannarunothai, Supasit; Speedie, Stuart

    2005-01-01

    Knowledge about socio-technical aspects of information technology (IT) is vital for the success of health IT projects. The Thailand health administration anticipates using health IT to support the recently implemented national universal health care system. However, the national knowledge associate with the socio-technical aspects of health IT has not been studied in Thailand. A survey instrument measuring Thai health center (HC) personnel’s computer use, basic IT knowledge a...

  9. Furnace System Testing to Support Lower-Temperature Stabilization of High Chloride Plutonium Oxide Items at the Hanford Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    Schmidt, Andrew J.; Gerber, Mark A.; Fischer, Christopher M.; Elmore, Monte R.

    2003-01-01

    High chloride content plutonium (HCP) oxides are impure plutonium oxide scrap which contains NaCl, KCl, MgCl2 and/or CaCl2 salts at potentially high concentrations and must be stabilized at 950 C per the DOE Standard, DOE-STD-3013-2000. The chlorides pose challenges to stabilization because volatile chloride salts and decomposition products can corrode furnace heating elements and downstream ventilation components. Thermal stabilization of HCP items at 750 C (without water washing) is being investigated as an alternative method for meeting the intent of DOE STD 3013-2000. This report presents the results from a series of furnace tests conducted to develop material balance and system operability data for supporting the evaluation of lower-temperature thermal stabilization

  10. Thermal design of a pressure electroslag remelting furnace applied for 5

    International Nuclear Information System (INIS)

    Cruz M, J.P.

    1999-01-01

    Actual work defines the thermal design methodology for pressure electroslag remelting furnaces (P ESR) of variable capacity, applied for 5 Kg. It begins with classification and description of secondary refining furnaces, after PESR process and the concept of thermal design are described. Next, in base of the steel weight to remelt (5 Kg); ingot, crucible and electrode dimensions are obtained. These elements will be inside of pressure vessel whose thickness are determined according to ASME Code (Section 8, Division 1, U G-27). It was developed a computer program, where the furnace capacity can be modified, so like other conditions, and display principal dimensions of the furnace. Current and voltage are obtained from the heat necessary to remelt the ingot and the heat transfer in the crucible, is analysed because of it is the most critical element. It was selected too the equipment to registry temperatures and pressure in base of thermocouple characteristics. (Author)

  11. Phase identification of SiO/sub/2 in rice husk ash

    International Nuclear Information System (INIS)

    Ikram, N.; Hussain, K.; Shah, M.A.

    1987-01-01

    Semiconductor grade silicon is generally used in the manufacture of highly efficient solar cells. In this paper, we describe rice husk ash (RHA) as a viable raw material for obtaining silica. Rice husk contains about 15 percent silica. Rice husk ash is prepared by first burning rice husk in air at a temperature of 300 degree centigrade and then firing it in alumina crucibles in a muffle furnace upto 1200 degree centigrade. Rice husk ash is then ground into fine powder and its X-ray diffraction pattern is obtained in order to studies its structure at various temperatures of preparation. (author/A.B)

  12. Radiometric report for a blast furnace tracing with radioactive isotopes

    International Nuclear Information System (INIS)

    Tanase, G.; Tanase, M.

    1995-01-01

    One of the methods to monitor refractory wall of blast furnace is its tracing with radioactive isotopes. The tracer isotope can be detected by two ways: the external dosimetric measurement at the armour of the blast furnace and/or the radiometric measurement of the iron sample charge by charge. Any change in radiometric situation of tracer radioisotope is recorded in a radiometric report. This paper presents an original concept of radiometric report based upon PARADOX and CORELDRAW soft kits. Their advantage are: quick and easy changes, easy recording of current radioactivity of tracer isotope, short history of changes, visual mapping of the tracer isotope and others. In this way we monitored 6 blast furnaces and more than 180 radioactive sources

  13. Investigation on structural properties of M-type strontium hexaferrite synthesized in presence of neem and aloe-vera plant leaves extract

    Science.gov (United States)

    Solanki, Neha; Jotania, Rajshree B.

    2017-05-01

    M-type strontium hexaferrite powder samples were synthesized using a green synthesis route with and without presence of Aloe vera and Neem leaves extract. The dry brownish precursors of strontium hexaferrite were recovered from a mixed solution of metal salts and leaves extract, heated at 100 °C. The obtained precursors were pre-heated at 500 °C for 4 hrs. followed by final heating at 950 °C for 4 hrs. in a muffle furnace to obtain SrFe12O19 hexaferrite powder. The obtained SrFe12O19 hexaferrite powder samples characterized at room temperature in order to check phase purity and structural properties. XRD analysis confirms that samples prepared without and with Aloe vera leaves extract (heated at 950 °C for 4 hrs.) show formation of α-Fe2O3 and M-phase; while the sample prepared in presence of Neem leaves extract (heated at 950 °C for 4 hrs.) show formation of mono phase of strontium hexaferrite. Lattice parameter (a) and cell volume (V) are found to increase in the samples prepared in presence of Aloe vera and Neem leaves extract.

  14. The antimicrobial effect of CEN1HC-Br against Propionibacterium acnes and its therapeutic and anti-inflammatory effects on acne vulgaris.

    Science.gov (United States)

    Han, Rui; Blencke, Hans-Matti; Cheng, Hao; Li, Chun

    2018-01-01

    Propionibacterium acnes is a commensal bacterium, which is involved in acne inflammation. An antimicrobial peptide named CEN1HC-Br, which was isolated and characterized form the green sea urchin, has been shown to possess broad-spectrum antibacterial activity. Little is known concerning the potential effects of its antibacterial and anti-inflammatory properties against P. acnes. To examine the potency of CEN1HC-Br in acne treatment, we conducted experiments to analyze the antibacterial and anti-inflammatory activities of CEN1HC-Br both in vitro and in vivo. The antimicrobial activity of CEN1HC-Br was evaluated by minimal inhibitory concentration (MIC) assays using the broth dilution method. To elucidate the in vitro anti-inflammatory effect, HaCaT cells and human monocytes were treated with different concentration of CEN1HC-Br after stimulation by P. acnes. The expression of TLR2 and the secretion of the pro-inflammatory cytokines IL-6, IL-8, IL-1β, TNF-α, IL-12, respectively, were measured by enzyme immunoassays. An evaluation of P. acnes-induced ear edema in rat ear was conducted to compare the in vivo antibacterial and anti-inflammatory effect of CEN1HC-Br, the expression of IL-8, TNF-α, MMP-2 and TLR2 was evaluated by immunohistochemistry and real time-PCR. CEN1HC-Br showed stronger antimicrobial activity against P. acnes than clindamycin. CEN1HC-Br significantly reduced the expression of interleukin IL-12p40, IL-6, IL-1β, TNF-α and TLR2 in monocytes, but they were not influenced by clindamycin. Both CEN1HC-Br and Clindamycin attenuated P. acnes-induced ear swelling in rat along with pro-inflammatory cytokines IL-8, TNF-α, MMP-2 and TLR2. Our data demonstrates that CEN1HC-Br is bactericidal against P. acnes and that it has an anti-inflammatory effect on monocytes. The anti-inflammatory effect may partially occur through TLR2 down-regulation, triggering an innate immune response and the inhibition of pro-inflammatory cytokines. Copyright © 2017 The

  15. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1998-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  16. Simulation for the powder movement and accumulation in the lower part of blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Sugiyama, Takashi [Mineral Resources Research Center, Nippon Steel Technoresearch, Futtsu-shi Chiba (Japan)

    1997-12-31

    The behavior of unburnt char and coke powder in the blast furnace becomes material for discussion with the increase in injection rate of pulverized coal into the blast furnace. An analysis was made as to the simulation of powder accumulation at the deadman and dripping zone of blast furnace by using a powder/gas two-phases flow experimental data. When an excessive powder has penetrated at a low gas velocity, it brings an increment in holdup and the controlling factors are powder/gas ratio and gas velocity. An empirical formula used for estimating the powder hold-up in the blast furnace internal conditions has proposed based on similarity. The controlling {pi} numbers are Floude number, powder/gas ratio and particle diameter ratio of powder/lump. This empirical formular was connected with Blast Furnace Total Model `BRIGHT` for the simulation of powder amount distribution in the lower part of blast furnace. When Powder diameter Dk exceeds 100 {mu} and gas velocity becomes lower than 0.7m/s at PC1OOkg/T, the powder tends to accumulate in the deadman. These results was available for the decision of optimum blast conditions and optimum powder diameter in the high amount of pulverized coal injection to the blast furnace. (author) 10 refs.

  17. Monitoring device for glass melting furnace

    International Nuclear Information System (INIS)

    Endo, Noboru; Asano, Naoki; Higuchi, Tatsuo; Koyama, Mayumi; Hanado, Shinji.

    1995-01-01

    The device of the present invention can monitor, from a remote place, a liquid surface in a glass melting furnace for use in a solidification treatment, for example, of high level radioactive wastes. Namely, a vertical sleeve is disposed penetrating a ceiling wall of a melting vessel. A reflection mirror is disposed above the vertical sleeve and flex an optical axis. A monitoring means is disposed on the optical axis of the reflecting mirror at a spaced position. The monitoring means may have an optical telescopic means, a monitoring camera by way of a half mirror and an illumination means. The reflection mirror may be made of a metal. The monitoring device thus constituted suffer from no effects of high temperature and high radiation dose rate, thereby enabling to easily monitor the liquid surface in the melting furnace. (I.S.)

  18. X-ray diffractometry of steam cured ordinary Portland and blast-furnace-slag cements; Difratometria de raios X de pastas de cimento Portland comum e de alto-forno submetidas a cura termica

    Energy Technology Data Exchange (ETDEWEB)

    Camarini, G [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia; Djanikian, J G [Sao Paulo Univ., SP (Brazil). Escola Politecnica

    1994-12-31

    This work studies some aspects of the phases produced by hydration of ordinary and blast-furnace-slag cements, at normal conditions and steam cured (60 and 95{sup 0} C), using an X-ray diffraction technique. The blast-furnace-slag cement was a mixture of 50% of ordinary Portland cement and 50% of blast-furnace-slag (separately grinding). After curing the X-ray diffraction reveals that, in relation to ordinary Portland cement, the main phases in blast-furnace-slag cement are hydrated silicates and aluminates, hydro garnet, etringitte and mono sulphate. After steam curing the hydration of blast-furnace-slag cement proceeds. This is a result of the slag activation by the curing temperature. (author). 8 refs., 3 figs., 1 tab.

  19. Combination of rice husk and coconut shell activated adsorbent to adsorb Pb(II) ionic metal and it’s analysis using solid-phase spectrophotometry (sps)

    Science.gov (United States)

    Rohmah, D. N.; Saputro, S.; Masykuri, M.; Mahardiani, L.

    2018-03-01

    The purpose of this research was to know the effect and determine the mass comparation which most effective combination between rice husk and coconut shell activated adsorbent to adsorb Pb (II) ion using SPS method. This research used experimental method. Technique to collecting this datas of this research is carried out by several stages, which are: (1) carbonization of rice husk and coconut shell adsorbent using muffle furnace at a temperature of 350°C for an hour; (2) activation of the rice husk and coconut shell adsorbent using NaOH 1N and ZnCl2 15% activator; (3) contacting the adsorbent of rice husk and coconut shell activated adsorbent with liquid waste simulation of Pb(II) using variation comparison of rice husk and coconut shell, 1:0; 0:1; 1:1; 2:1; 1:2; (4) analysis of Pb(II) using Solid-Phase Spectrophotometry (SPS); (5) characterization of combination rice husk and coconut shell activated adsorbent using FTIR. The result of this research show that the combined effect of combination rice husk and coconut shell activated adsorbent can increase the ability of the adsorbent to absorb Pb(II) ion then the optimum adsorbent mass ratio required for absorbing 20 mL of Pb(II) ion with a concentration of 49.99 µg/L is a ratio of 2:1 with the absorption level of 97,06%Solid-Phase Spectrophotometry (SPS) is an effective method in the level of µg/L, be marked with the Limit of Detection (LOD) of 0.03 µg/L.

  20. The influence of the space between the billets on the productivity of a continuous walking-beam furnace

    Energy Technology Data Exchange (ETDEWEB)

    Jaklic, A. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering

    2005-04-01

    This paper presents a study of the influence of the space between billets on the productivity of a continuous walking-beam furnace. The study was performed using a simulation model of a billet-reheating process for three different billet dimensions. The simulation model considered the exact geometry of the furnace enclosure, including the geometry of the billets inside the furnace. A view-factor matrix of the furnace enclosure was determined using the Monte Carlo method. The heat exchange between the furnace gas, the furnace wall and the billet's surface was calculated using a three-temperature model. The temperature of the furnace floor was determined using a heat-balance equation, and the heat conduction in the billets was calculated using the 3D finite-difference method. The model was validated using measurements from trailing thermocouples positioned in the test billet during the reheating process in the furnace. (author)

  1. Modelling and control of a diffusion/LPCVD furnace

    Science.gov (United States)

    Dewaard, H.; Dekoning, W. L.

    1988-12-01

    Heat transfer inside a cylindrical resistance diffusion/Low Pressure Chemical Vapor Deposition (LPCVD) furnace is studied with the aim of developing an improved temperature controller. A model of the thermal behavior is derived, which covers the important class of furnaces equipped with semitransparent quartz process tubes. The model takes into account the thermal behavior of the thermocouples. Currently used temperature controllers are shown to be highly inefficient for very large scale integration applications. Based on the model an alternative temperature controller of the LQG (linear quadratic Gaussian) type is proposed which features direct wafer temperature control. Some simulation results are given.

  2. Modernization of two gas-fired shaft annealing furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Barthof, G.; Porst, G.; Raczek, S.

    1986-04-01

    The objective was to modernize two existing shaft-type annealing furnaces used for the heat treatment of grey iron castings with the aim of reducing the consumption of gaseous fuel, minimize the formation of scale, decrease maintenance expense and apply more automatic control to the annealing process. This was to be achieved by an optimum combination of new types of construction materials and advanced firing and control equipment. The author describes the furnace in its condition prior to and after reconstruction. The operating results obtained after reconstruction were found to justify the costs incurred. The payback period is roughly one year.

  3. Use of coal-water mixtures in blast furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Malgarini, G; Giuli, M; Davide, A; Carlesi, C [Centro Sviluppo Materiali, Rome (Italy); Italsider, Genoa [Italy; Deltasider, Piombino [Italy

    1989-03-01

    At the present time, an ironworks blast furnace employing a pulverized coal injection (PCI) system is in operation at the Piombino Works (Italy). A wide development, within this industry, of PCI techniques is expected in the near future to limit, as much as possible, the rebuilding of coke ovens. Research activities and industrial trials aimed at maximizing the use of coal injection into blast furnaces are in course of development. This paper uses flowsheets to illustrate such a system and provides graphs to indicate the economic convenience of PCI systems as compared with systems using naphtha as an injected fuel.

  4. Sintering mechanism of blast furnace slag-kaolin ceramics

    International Nuclear Information System (INIS)

    Mostafa, Nasser Y.; Shaltout, Abdallah A.; Abdel-Aal, Mohamed S.; El-maghraby, A.

    2010-01-01

    A general ceramics processing scheme by cold uniaxial pressing and conventional sintering process have been used to prepare ceramics from mixtures of blast furnace slag (BFS) and kaolin (10%, 30% and 50% kaolin). The properties of the ceramics were studied by measuring linear shrinkage, bulk density, apparent porosity and mechanical properties of samples heated at temperatures from 800 o C to 1100 o C. The formed crystalline phases were characterized using X-ray diffraction (XRD) and scanning electron microscope (SEM). Slag melt formed at relatively low temperatures (800-900 o C) modified the sintering process to liquid phase sintering mechanism. Combination of BFS with 10% kaolin gave the highest mechanical properties, densification and shrinkage at relatively low firing temperatures. The crystalline phases were identified as gehlenite (Ca 2 Al 2 SiO 7 ) in both BFS and BFS with 10% kaolin samples. Anorthite (CaAl 2 Si 2 O 8 ) phase increased with increasing kaolin contents. In the case of kaolin-rich mixtures (30% and 50% kaolin), increased expansion took place during firing at temperatures in the range 800-1000 o C. This effect could be attributed to the entrapment of released gases.

  5. Joule-heated glass-furnace system for the incineration of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Armstrong, K.M.; Klingler, L.M.; Doty, J.W.; Kramer, D.P.

    1982-01-01

    For the past 1-1/2 years, Mound has been preparing and evaluating a commercially available joule-heated glass furnace unit, coupled with a wet scrubbing system. The purpose of the glass furnace evaluation is to advance and document incinerator technology for such combustibles as solids, resins, and sludges, and to develop a stable waste form for subsequent disposal. Four (4) waste nonradioactive types were selected to determine the combustion efficiency of the furnace unit: (1) dry solid waste composed of paper, plastics, rubber, and cloth, (2) ion exchange resin of both the anionic and cationic type, (3) filter sludge composed of diatomaceous earth, organic cellulosic filter aid, and powdered ion exchange resin, and (4) cartridge filters having glass and plastic filter surfaces and nonmetallic cores. When completed, the combustion efficiency experiments for the proposed nonradioactive waste-types revealed the ability of the furnace to easily incinerate waste at feedrates of up to 150 lb/hr. During the course of the experiments, combustibles in the offgas remained consistently low, suggesting excellent combustion efficiency. Furthermore, ash produced by the combustion process was effectively incorporated into the melt by convective currents in the glass. Future work on the glass furnace incinerator will include spiking the waste to determine radioisotope behavior in the furnace

  6. Atomization mechanisms for barium in furnace atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Styris, D.L.

    1984-01-01

    Atomic absorption spectrometry and mass spectrometry are used simultaneously in order to elucidate atomization mechanisms of barium dichloride in pyrolytic graphite, vitreous carbon, and tantalum furnaces. Gas-phase barium dicarbide is observed to appear concurrently with the free barium. Barium oxide and barium dihydroxide precursors appear with the chlorides. Surface reactions involving species that are absorbed on the various furnaces are postulated to explain the appearances of the species that are observed in the gas phase. 49 references, 4 figures, 1 table

  7. Automation Activator of Hydrogen Gas Inlet Valve on Reduction Furnace ME-11

    International Nuclear Information System (INIS)

    Achmad Suntoro

    2007-01-01

    Operational of hydrogen inlet valve of the reduction furnace ME-11 was actuated manually by furnace operator if all its requirements have been fulfilled. Automation of the valve has been constructed as an additional option of the furnace operating system, in which any interruption by the existing manual system by the operator is still valid even though the automatic option is being used. This paper describes the information concerning the automation construction and its logical status of control in the form of its finite state machine. This automation system has been tested successfully. (author)

  8. Evaluation of refractory lining wear of Companhia Siderurgica Nacional (CSN) blast furnaces

    International Nuclear Information System (INIS)

    Santos, N.J. dos; Mello, A.H.B. de; Pereira, C.L.; Paula Sarkis, D. de; Martins Filho, D.I.; Banados Perez, H.E.; Carvalho, G.; Daltro, T.F.L.

    1984-01-01

    The blast furnace refractory linings are submitted to unfavourable conditions such as alkalis attack, temperature, top pressure, abrasion and so forth... After studies on distribution and installation of radioactive sources with low activities in the refractory lining, it was possible to develop a new technique of thickness evaluation and attendance of wearing in the furnace lining. The viability analysis, simulated laboratory tests, localization, identification, installations and periodical measurements of the radioactive sources are described, as well the results obtained on the present campaign of CSN Blast Furnaces. (Author) [pt

  9. The electrical characteristics of copper slags in a 270 kVA DC arc furnace

    International Nuclear Information System (INIS)

    Derin, Bora; Sahin, Filiz Cinar; Yucel, Onuralp

    2003-01-01

    The electrical resistance of slags is the main criteria to determine the design and the operation conditions of slag resistance furnace (SRF) depending on temperature and composition. In this study, a 270 kVA DC electric arc furnace were used to determine the electrical characteristic of molten ancient copper slags. The specific conductivity of the slag was estimated by using furnace geometric factor given in the literature as an empirical formula and by using furnace resistance measured during smelting of the copper slag with or without different additives such as coke, CaO and Al 2 O 3 . (Original)

  10. 76 FR 56339 - Energy Conservation Program for Consumer Products: Test Procedures for Residential Furnaces and...

    Science.gov (United States)

    2011-09-13

    ...) which covered furnaces (but not boilers), and it establishes amended energy efficiency standards for... Database for Residential Furnaces and Boilers,\\7\\ and the Consortium for Energy Efficiency's Qualifying...\\ Consortium of Energy Efficiency, Qualifying Furnace and Boiler List (2010) (Available at: http://www.cee1.org...

  11. Inhibition of the host proteasome facilitates papaya ringspot virus accumulation and proteosomal catalytic activity is modulated by viral factor HcPro.

    Directory of Open Access Journals (Sweden)

    Nandita Sahana

    Full Text Available The ubiquitin/26S proteasome system plays an essential role not only in maintaining protein turnover, but also in regulating many other plant responses, including plant-pathogen interactions. Previous studies highlighted different roles of the 20S proteasome in plant defense during virus infection, either indirectly through viral suppressor-mediated degradation of Argonaute proteins, affecting the RNA interference pathway, or directly through modulation of the proteolytic and RNase activity of the 20S proteasome, a component of the 20S proteasome, by viral proteins, affecting the levels of viral proteins and RNAs. Here we show that MG132, a cell permeable proteasomal inhibitor, caused an increase in papaya ringspot virus (PRSV accumulation in its natural host papaya (Carica papaya. We also show that the PRSV HcPro interacts with the papaya homologue of the Arabidopsis PAA (α1 subunit of the 20S proteasome, but not with the papaya homologue of Arabidopsis PAE (α5 subunit of the 20S proteasome, associated with the RNase activity, although the two 20S proteasome subunits interacted with each other. Mutated forms of PRSV HcPro showed that the conserved KITC54 motif in the N-terminal domain of HcPro was necessary for its binding to PAA. Co-agroinfiltration assays demonstrated that HcPro expression mimicked the action of MG132, and facilitated the accumulation of bothtotal ubiquitinated proteins and viral/non-viral exogenous RNA in Nicotiana benthamiana leaves. These effects were not observed by using an HcPro mutant (KITS54, which impaired the HcPro - PAA interaction. Thus, the PRSV HcPro interacts with a proteasomal subunit, inhibiting the action of the 20S proteasome, suggesting that HcPro might be crucial for modulating its catalytic activities in support of virus accumulation.

  12. Titanium Powder Sintering in a Graphite Furnace and Mechanical Properties of Sintered Parts

    Directory of Open Access Journals (Sweden)

    Changzhou Yu

    2017-02-01

    Full Text Available Recent accreditation of titanium powder products for commercial aircraft applications marks a milestone in titanium powder metallurgy. Currently, powder metallurgical titanium production primarily relies on vacuum sintering. This work reported on the feasibility of powder sintering in a non-vacuum furnace and the tensile properties of the as-sintered Ti. Specifically, we investigated atmospheric sintering of commercially pure (C.P. titanium in a graphite furnace backfilled with argon and studied the effects of common contaminants (C, O, N on sintering densification of titanium. It is found that on the surface of the as-sintered titanium, a severely contaminated porous scale was formed and identified as titanium oxycarbonitride. Despite the porous surface, the sintered density in the sample interiors increased with increasing sintering temperature and holding time. Tensile specimens cut from different positions within a large sintered cylinder reveal different tensile properties, strongly dependent on the impurity level mainly carbon and oxygen. Depending on where the specimen is taken from the sintered compact, ultimate tensile strength varied from 300 to 580 MPa. An average tensile elongation of 5% to 7% was observed. Largely depending on the interstitial contents, the fracture modes from typical brittle intergranular fracture to typical ductile fracture.

  13. 75 FR 41102 - Energy Conservation Program: Energy Conservation Standards for Furnace Fans: Reopening of Public...

    Science.gov (United States)

    2010-07-15

    ... Furnace Fans: Reopening of Public Comment Period AGENCY: Office of Energy Efficiency and Renewable Energy... work of residential heating and cooling systems (``furnace fans''). The comment period closed on July 6... information relevant to the furnace fan rulemaking will be accepted until July 27, 2010. ADDRESSES: Interested...

  14. Dicty_cDB: VFE616 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available nc*isilfknk*RKIIYKIIIKKCCNSI--- ---TLKTLNKYIIYNDLASIRR*qltwcwfriscsfrcc*r*clgtlswiqcr*r*gnnr tfskgwscirnwhpr...me C: tlktlnkyiiyndlasirr*qltwcwfriscsfrcc*r*clgtlswiqcr*r*gnnrtfs kgwscirnwhprcw...*eiyghqk*hqiclr*ircwwcclr*nlnlyhrccl**qittrccc *hc*kisrlfn*qqlln*ysfqk*it*nni*nnnkkml*ly--- ---TLKTLNKYIIYNDLASIRR*qltwcwfrisc

  15. 26 CFR 1.501(c)(21)-1 - Black lung trusts-certain terms.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 7 2010-04-01 2010-04-01 true Black lung trusts-certain terms. 1.501(c)(21)-1...) INCOME TAX (CONTINUED) INCOME TAXES (CONTINUED) Exempt Organizations § 1.501(c)(21)-1 Black lung trusts... insurer or guarantor of the liabilities of another. (c) Black Lung Acts. The term Black Lung Acts includes...

  16. Automatic Method for Controlling the Iodine Adsorption Number in Carbon Black Oil Furnaces

    Directory of Open Access Journals (Sweden)

    Zečević, N.

    2008-12-01

    Full Text Available There are numerous of different inlet process factors in carbon black oil furnaces which must be continuously and automatically adjusted, due to stable quality of final product. The most important six inlet process factors in carbon black oil-furnaces are:1. volume flow of process air for combustion2. temperature of process air for combustion3. volume flow of natural gas for insurance the necessary heat for thermal reaction of conversionthe hydrocarbon oil feedstock in oil-furnace carbon black4. mass flow rate of hydrocarbon oil feedstock5. type and quantity of additive for adjustment the structure of oil-furnace carbon black6. quantity and position of the quench water for cooling the reaction of oil-furnace carbon black.The control of oil-furnace carbon black adsorption capacity is made with mass flow rate of hydrocarbon feedstock, which is the most important inlet process factor. Oil-furnace carbon black adsorption capacity in industrial process is determined with laboratory analyze of iodine adsorption number. It is shown continuously and automatically method for controlling iodine adsorption number in carbon black oil-furnaces to get as much as possible efficient control of adsorption capacity. In the proposed method it can be seen the correlation between qualitatively-quantitatively composition of the process tail gasses in the production of oil-furnace carbon black and relationship between air for combustion and hydrocarbon feedstock. It is shown that the ratio between air for combustion and hydrocarbon oil feedstock is depended of adsorption capacity summarized by iodine adsorption number, regarding to BMCI index of hydrocarbon oil feedstock.The mentioned correlation can be seen through the figures from 1. to 4. From the whole composition of the process tail gasses the best correlation for continuously and automatically control of iodine adsorption number is show the volume fraction of methane. The volume fraction of methane in the

  17. 21 CFR 82.1260 - D&C Orange No. 10.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 10. 82.1260 Section 82.1260 Food... CERTIFIED PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics § 82.1260 D&C Orange No. 10. The color additive D&C Orange No. 10 shall conform in identity and specifications to the requirements...

  18. 21 CFR 74.2255 - D&C Orange No. 5.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 5. 74.2255 Section 74.2255 Food and... ADDITIVES SUBJECT TO CERTIFICATION Cosmetics § 74.2255 D&C Orange No. 5. (a) Identity and specifications. The color additive D&C Orange No. 5 shall conform in identity and specifications to the requirements...

  19. 21 CFR 74.2254 - D&C Orange No. 4.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 4. 74.2254 Section 74.2254 Food and... ADDITIVES SUBJECT TO CERTIFICATION Cosmetics § 74.2254 D&C Orange No. 4. (a) Identity and specifications. The color additive D&C Orange No. 4 shall conform in identity and specifications to the requirements...

  20. 21 CFR 82.1261 - D&C Orange No. 11.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 11. 82.1261 Section 82.1261 Food... CERTIFIED PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics § 82.1261 D&C Orange No. 11. The color additive D&C Orange No. 11 shall conform in identity and specifications to the requirements...

  1. 21 CFR 73.3112 - C.I. Vat Orange 1.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false C.I. Vat Orange 1. 73.3112 Section 73.3112 Food... COLOR ADDITIVES EXEMPT FROM CERTIFICATION Medical Devices § 73.3112 C.I. Vat Orange 1. (a) Identity. The color additive is C.I. Vat Orange 1, Colour Index No. 59105. (b) Uses and restrictions. (1) The...

  2. 21 CFR 74.2260 - D&C Orange No. 10.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 10. 74.2260 Section 74.2260 Food... COLOR ADDITIVES SUBJECT TO CERTIFICATION Cosmetics § 74.2260 D&C Orange No. 10. (a) Identity and specifications. The color additive D&C Orange No. 10 shall conform in identity and specifications to the...

  3. 21 CFR 74.2261 - D&C Orange No. 11.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 11. 74.2261 Section 74.2261 Food... COLOR ADDITIVES SUBJECT TO CERTIFICATION Cosmetics § 74.2261 D&C Orange No. 11. (a) Identity and specifications. The color additive D&C Orange No. 11 shall conform in identity and specifications to the...

  4. Synthesis, characterization and structural refinement of polycrystalline uranium substituted zirconolite

    International Nuclear Information System (INIS)

    Shrivastava, O.P.; Narendra Kumar; Sharma, I.B.

    2005-01-01

    Ceramic precursors of Zirconolite (CaZrTi 2 O 7 ) family have a remarkable property of substitution Zr 4+ cationic sites. This makes them potential material for nuclear waste management in 'synroc' technology. In order to simulate the mechanism of partial substitution of zirconium by tetravalent actinides, a solid phase of composition CaZr 0.95 U 0.5 Ti 2 O 7 has been synthesized through ceramic route by taking calculated quantities of oxides of Ca, Ti and nitrates of uranium and zirconium respectively. Solid state synthesis has been carried out by repeated pelletizing and sintering the finely powdered oxide mixture in a muffle furnace at 1050 degC. The polycrystalline solid phase has been characterized by its typical powder diffraction pattern. Step analysis data has been used for ab initio calculation of structural parameters. The uranium substituted zirconolite crystallizes in monoclinic symmetry with space group C2/c (15). The following unit cell parameters have been calculated: a =12.4883(15), b =7.2448(5), c 11.3973(10) and β = 100.615(9)0. The structure was refined to satisfactory completion. The Rp and Rwp are found to be 7.48% and 9.74% respectively. (author)

  5. Finite element modelling of electric currents in AC submerged arc furnaces

    CSIR Research Space (South Africa)

    Mc Dougall, I

    2007-01-01

    Full Text Available and the power ratings is not a hindrance. 2. MATHEMATICAL FORMULATION As the frequency of the current is low, the quasi-static form of Maxwell’s equations is solved. (1) (2) (3) (4) where E denotes the electric field intensity, H the magnetic field... of Electric Currents in AC Submerged Arc Furnaces 637 REFERENCES [1] Bermudez, A., Muniz, M.C., Pena, F. , Bullon, J., “ Numerical Computation of the Electromagnetic Field in the Electrodes of a Three-Phase Arc Furnace”, Int. Jnl for Numerical Methods...

  6. Energy Balance in DC Arc Plasma Melting Furnace

    International Nuclear Information System (INIS)

    Zhao Peng; Meng Yuedong; Yu Xinyao; Chen Longwei; Jiang Yiman; Nie Guohua; Chen Mingzhou

    2009-01-01

    In order to treat hazardous municipal solid waste incinerator's (MSWI) fly ash, a new DC arc plasma furnace was developed. Taking an arc of 100 V/1000 A DC as an example, the heat transfer characteristics of the DC arc plasma, ablation of electrodes, heat properties of the fly ash during melting, heat transfer characteristics of the flue gas, and heat loss of the furnace were analyzed based on the energy conservation law, so as to achieve the total heat information and energy balance during plasma processing, and to provide a theoretical basis for an optimized design of the structure and to improve energy efficiency. (plasma technology)

  7. Analysis of a furnace for heat generation using polydisperse biomass

    Energy Technology Data Exchange (ETDEWEB)

    Magalhaes, Edney Alves; Silva, Juarez de Sousa e; Silva, Jadir Nogueira da; Oliveira Filho, Delly [Universidade Federal de Vicosa (DEA/UFV), MG (Brazil). Dept. de Engenharia Agricola; Donzeles, Sergio Mauricio Lopes [Empresa de Pesquisa Agropecuaria de Minas Gerais (EPAMIG), Vicosa, MG (Brazil)

    2008-07-01

    In many agro-industrial activities, the processing of raw material generates a substantial amount of fine materials. Examples include the production of soluble coffee, processing of rice, and wood processing, among others. In many regions, these by-products keep piling up on the courtyard of companies or become an environmental problem for land dumps. However, detailed tests of these byproducts indicate that they are excellent sources of energy. With this in mind, a furnace was developed to generate clean and hot air, using the alimentation system for pneumatic transport. Wood sawdust was used as fuel for analysis. The obtained results were considered satisfactory, proven by the small heat losses, primarily by the non-burned carbon monoxide (less than 0.2%) and the cooling of the furnace (less than 2.5%) whereas the losses by the exhaust gases were a little more than 23%. The thermal efficiency of the furnace was considered high when compared to others with an indirect heating system, obtaining an average value of 73%. The developed furnace, beyond being efficient, allows the use of the waste from the wood industry, which is important in the reduction of environmental impacts and minimizing production costs associated with the acquisition of conventional energy. (author)

  8. The movement of the burden in submerged-arc furnaces for the production of high-carbon ferromanganese

    International Nuclear Information System (INIS)

    Dyason, G.J.; See, J.B.

    1978-01-01

    The mechanism by which the burden moves in a submerged-arc furnace was investigated in two large industrial furnaces by the stimulus-response technique with a radiotracer of the radio-isotope 5 Fe as the stimulus. As this radio-isotope was suitable only for the measurement of residence-time distributions in the alloy phase, the analysis of the experiments was limited to that phase. The residence-time distributions obtained by the measurement of alloy samples obtained during tapping were analysed by various techniques. This analysis verified the existence of stagnant zones within the furnace, and showed that the movement of the burden through the furnace could not be described by either of the two idealized patterns of flow, i.e., plug flow or mixed flow. A composite model to describe the movement of the burden through the furnace was developed by consideration of the mechanism and position of heat generation within the furnace, the inner structure of the furnace, the general form of the measured residence-time distributions, and the mode of burden descent through the furnace. The composite model consisted of a dispersed plug-flow region in the upper regions of the furnace discharging into a constantly stirred tank reactor beneath the electrode tips. Non-linear regression analysis of the equations developed from the composite model permitted the selection of optimum values of model parameters to give computed curves that approximated to the residence-time distributions [af

  9. Characterization of calcium carbonate sorbent particle in furnace environment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Soo [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of); Jung, Jae Hee [Environment Sensor System Research Center, KIST 39-1 Hawolgok-dong, Seongbuk-gu, Seoul, 136-791 (Korea, Republic of); Keel, Sang In; Yun, Jin Han; Min, Tai Jin [Environmental Systems Research Division, KIMM 104 Sinseongno, Yuseong-gu, Daejeon, 305-343 (Korea, Republic of); Kim, Sang Soo, E-mail: sskim@kaist.ac.kr [Aerosol and Particle Technology Laboratory, Department of Mechanical Engineering, KAIST 291 Daehak-ro, Yuseong-gu, Daejeon, 305-701 (Korea, Republic of)

    2012-07-01

    The oxy-fuel combustion system is a promising technology to control CO{sub 2} and NO{sub X} emissions. Furthermore, sulfation reaction mechanism under CO{sub 2}-rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO{sub 3}) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO{sub 3}, which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO{sub 3} sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO{sub 2} atmosphere due to the higher CO{sub 2} partial pressure. Instead, the sintering effect was dominant in the CO{sub 2} atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain-subgrain structure model in both the air and CO{sub 2} atmospheres.

  10. Characterization of calcium carbonate sorbent particle in furnace environment

    International Nuclear Information System (INIS)

    Lee, Kang Soo; Jung, Jae Hee; Keel, Sang In; Yun, Jin Han; Min, Tai Jin; Kim, Sang Soo

    2012-01-01

    The oxy-fuel combustion system is a promising technology to control CO 2 and NO X emissions. Furthermore, sulfation reaction mechanism under CO 2 -rich atmospheric condition in a furnace may lead to in-furnace desulfurization. In the present study, we evaluated characteristics of calcium carbonate (CaCO 3 ) sorbent particles under different atmospheric conditions. To examine the physical/chemical characteristics of CaCO 3 , which is used as a sorbent particle for in-furnace desulfurization in the oxy-fuel combustion system, they were injected into high temperature drop tube furnace (DTF). Experiments were conducted at varying temperatures, residence times, and atmospheric conditions in a reactor. To evaluate the aerosolizing characteristics of the CaCO 3 sorbent particle, changes in the size distribution and total particle concentration between the DTF inlet and outlet were measured. Structural changes (e.g., porosity, grain size, and morphology) of the calcined sorbent particles were estimated by BET/BJH, XRD, and SEM analyses. It was shown that sorbent particles rapidly calcined and sintered in the air atmosphere, whereas calcination was delayed in the CO 2 atmosphere due to the higher CO 2 partial pressure. Instead, the sintering effect was dominant in the CO 2 atmosphere early in the reaction. Based on the SEM images, it was shown that the reactions of sorbent particles could be explained as a grain–subgrain structure model in both the air and CO 2 atmospheres.

  11. Fluorophotometric determination of uranium: an automated sintering furnace and factors affecting precision

    International Nuclear Information System (INIS)

    Strain, J.E.

    1978-07-01

    The fusion furnace consists of four individually controlled, slotted-tube furnaces that automatically dry, sinter and anneal the fluoride or carbonate pellet used in the fluorometric determination of uranium. The furnace operates in air and prepares approximately 90 pellets per hour for fluorometric measurement. The factors that were thought to affect the precision of the method were investigated. The two factors that seem to be the most influential are (1) the manner in which the sample is loaded onto the pellet; and (2) the surface characteristics of the platinum dish in which the pellet is sintered and measured fluorometrically

  12. A numerical model including PID control of a multizone crystal growth furnace

    Science.gov (United States)

    Panzarella, Charles H.; Kassemi, Mohammad

    1992-01-01

    This paper presents a 2D axisymmetric combined conduction and radiation model of a multizone crystal growth furnace. The model is based on a programmable multizone furnace (PMZF) designed and built at NASA Lewis Research Center for growing high quality semiconductor crystals. A novel feature of this model is a control algorithm which automatically adjusts the power in any number of independently controlled heaters to establish the desired crystal temperatures in the furnace model. The control algorithm eliminates the need for numerous trial and error runs previously required to obtain the same results. The finite element code, FIDAP, used to develop the furnace model, was modified to directly incorporate the control algorithm. This algorithm, which presently uses PID control, and the associated heat transfer model are briefly discussed. Together, they have been used to predict the heater power distributions for a variety of furnace configurations and desired temperature profiles. Examples are included to demonstrate the effectiveness of the PID controlled model in establishing isothermal, Bridgman, and other complicated temperature profies in the sample. Finally, an example is given to show how the algorithm can be used to change the desired profile with time according to a prescribed temperature-time evolution.

  13. Model Predictive Control of the Exit Part Temperature for an Austenitization Furnace

    Directory of Open Access Journals (Sweden)

    Hari S. Ganesh

    2016-12-01

    Full Text Available Quench hardening is the process of strengthening and hardening ferrous metals and alloys by heating the material to a specific temperature to form austenite (austenitization, followed by rapid cooling (quenching in water, brine or oil to introduce a hardened phase called martensite. The material is then often tempered to increase toughness, as it may decrease from the quench hardening process. The austenitization process is highly energy-intensive and many of the industrial austenitization furnaces were built and equipped prior to the advent of advanced control strategies and thus use large, sub-optimal amounts of energy. The model computes the energy usage of the furnace and the part temperature profile as a function of time and position within the furnace under temperature feedback control. In this paper, the aforementioned model is used to simulate the furnace for a batch of forty parts under heuristic temperature set points suggested by the operators of the plant. A model predictive control (MPC system is then developed and deployed to control the the part temperature at the furnace exit thereby preventing the parts from overheating. An energy efficiency gain of 5.3 % was obtained under model predictive control compared to operation under heuristic temperature set points tracked by a regulatory control layer.

  14. Thermal analysis evaluation of the reactivity of coal mixtures for injection in the blast furnace

    Directory of Open Access Journals (Sweden)

    Maria de Lourdes Ilha Gomes

    2006-03-01

    Full Text Available Pulverized Coal Injection (PCI is an important standard technology replacing coke partially by pulverized coal into the blast furnace that allows a significant reduction of hot metal costs and environmental impact, contributing to a decrease of coke requirements for ironmaking. Coals typically used in this process in Brazil are, at current time, exclusively imported from many countries, although economic important coal-measures occur in the southern part of the country. The Brazilian coals have a low rank, higher contents of inert components, proportioning nocoking properties and an expected high reactivity. Due to these caractheristics, these coals could be used for injection in the blast furnaces in order to decrease the dependency on high cost imported coals. The efficiency in the combustion and the coal reactivity are considered important parameters in the blast furnace, since a larger amount of char (unburned coal causes severe problems to the furnace operation. The aim of the present work is to compare the reactivity of a south Brazilian coal, obtained from Faxinal mine, with two imported coals and the blends of the Brazilian coal with the imported ones. The reactivity of these coals and their blends were evaluated in a thermogravimetric analyzer. In the experiments, various mass ratios of Faxinal coal and the imported coals were used to compose the blends. The gasification reaction with pure CO2 was conducted under isothermal conditions at 1050 °C and atmospheric pressure. The experimental results show the greater reactivity of the Faxinal coal. The additive behavior was confirmed. The blends with a composition of up to 50% Faxinal coal have parameters according to the usual limits used for PCI.

  15. Dicty_cDB: VHH513 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available KIKKK--- ---HFHTLKTLNKYIIYNDLASIRR*qltwcwfriscsfrcc*r*clgtlswiqcr*r*g nnrtfskgwscirnwhprcw*eiyghqk*hqiclr*ir...lltvn*vlvvlfalkp*lvssllsmmtn ynqvllltllkn*pii*ltttvklvffskinnvk*y Frame C: hfhtlktlnkyiiyndlasirr*qltwcwfrisc...**qittr ccc*hc*kisrlfn*qqlln*ysfqk*it*nni*nkkk--- ---HFHTLKTLNKYIIYNDLASIRR*qltwcwfriscsfrcc*r*clgtlswiqcr*r

  16. The equiatomic intermetallics REPtCd (RE = La, Ce, Pr, Nd, Eu) and magnetic properties of CeAuCd

    Energy Technology Data Exchange (ETDEWEB)

    Johnscher, Michael; Niehaus, Oliver; Poettgen, Rainer [Muenster Univ. (Germany). Inst. fuer Anorganische und Analytische Chemie; Tappe, Frank [Hochschule Hamm-Lippstadt, Hamm (Germany)

    2015-06-01

    The cadmium intermetallics REPtCd (RE = La, Ce, Pr, Nd, Eu) and CeAuCd were synthesized by induction-melting of the elements in sealed niobium ampoules followed by annealing in muffle furnaces. The samples were characterized by powder X-ray diffraction. The structures of CePtCd (ZrNiAl type, P anti 62m, a = 763.8(6), c = 409.1(4) pm, wR2 = 0.0195, 298 F{sup 2} values, 14 variables) and EuPtCd (TiNiSi type, Pnma, a = 741.3(2), b = 436.4(1), c = 858.0(4) pm, wR2 = 0.0385, 440 F{sup 2} values, 20 variables) were refined from single-crystal data. The REPtCd structures exhibit three-dimensional networks of corner- and edge-sharing Cd rate at Pt{sub 2/6}Pt{sub 2/3} and Cd rate at Pt{sub 4/4} tetrahedra, which leave cages for the rare earth atoms. Temperature-dependent magnetic susceptibility data of CeAuCd reveal a paramagnetic to antiferromagnetic phase transition at T{sub N} = 3.7(5) K.

  17. The equiatomic intermetallics REPtCd (RE = La, Ce, Pr, Nd, Eu) and magnetic properties of CeAuCd

    International Nuclear Information System (INIS)

    Johnscher, Michael; Niehaus, Oliver; Poettgen, Rainer

    2015-01-01

    The cadmium intermetallics REPtCd (RE = La, Ce, Pr, Nd, Eu) and CeAuCd were synthesized by induction-melting of the elements in sealed niobium ampoules followed by annealing in muffle furnaces. The samples were characterized by powder X-ray diffraction. The structures of CePtCd (ZrNiAl type, P anti 62m, a = 763.8(6), c = 409.1(4) pm, wR2 = 0.0195, 298 F 2 values, 14 variables) and EuPtCd (TiNiSi type, Pnma, a = 741.3(2), b = 436.4(1), c = 858.0(4) pm, wR2 = 0.0385, 440 F 2 values, 20 variables) were refined from single-crystal data. The REPtCd structures exhibit three-dimensional networks of corner- and edge-sharing Cd rate at Pt 2/6 Pt 2/3 and Cd rate at Pt 4/4 tetrahedra, which leave cages for the rare earth atoms. Temperature-dependent magnetic susceptibility data of CeAuCd reveal a paramagnetic to antiferromagnetic phase transition at T N = 3.7(5) K.

  18. The Automation Control System Design of Walking Beam Heating Furnace

    OpenAIRE

    Hong-Yu LIU; Jun-Qing LIU; Jun-Jie XI

    2014-01-01

    Combining the transformation project of certain strip steel rolling production line, the techniques process of walking beam heating furnace was elaborated in this paper. The practical application of LOS-T18-2ZC1 laser detector was elaborated. The network communication model of walking beam heating furnace control system was designed. The realization method of production process automation control was elaborated. The entire automation control system allocation picture and PLC power distributio...

  19. Characterisation of the cell line HC-AFW1 derived from a pediatric hepatocellular carcinoma.

    Directory of Open Access Journals (Sweden)

    Sorin Armeanu-Ebinger

    Full Text Available Current treatment of paediatric hepatocellular carcinoma (HCC is often inefficient due to advanced disease at diagnosis and resistance to common drugs. The aim of this study was to generate a cell line derived from a paediatric HCC in order to expand research in this field. We established the HC-AFW1 cell line from a liver neoplasm of a 4-year-old boy through culturing of primary tumor specimens. The cell line has been stable for over one year of culturing and has a doubling time of 40 h. The tumour cells have an epithelial histology and express HCC-associated proteins such as Alpha-fetoprotein (AFP, Glypican 3, E-cadherin, CD10, CD326, HepPar1 and Vimentin. Forty-nine amino acids in exon 3 of β-Catenin that involve the phosphorylation sites of GSK3 were absent and β-Catenin is detectable in the cell nuclei. Cytogenetic analysis revealed large anomalies in the chromosomal map. Several alterations of gene copy numbers were detected by genome-wide SNP array. Among the different drugs tested, cisplatin and irinotecan showed effective inhibition of tumour cell growth in a proliferation assay at concentrations below 5 µg/ml. Subcutaneous xenotransplantation of HC-AFW1 cells into NOD/SCID mice resulted in fast growing dedifferentiated tumours with high levels of serum AFP. Histological analyses of the primary tumour and xenografts included national and international expert pathological review. Consensus reading characterised the primary tumour and the HC-AFW1-derived tumours as HCC. HC-AFW1 is the first cell line derived from a paediatric HCC without a background of viral hepatitis or cirrhosis and represents a valuable tool for investigating the biology of and therapeutic strategies for childhood HCC.

  20. 21 CFR 74.1261 - D&C Orange No. 11.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 11. 74.1261 Section 74.1261 Food... COLOR ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1261 D&C Orange No. 11. (a) Identity. (1) The color additive D&C Orange No. 11 is a mixture consisting principally of the disodium salts of 4′,5...

  1. 21 CFR 74.1254 - D&C Orange No. 4.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 4. 74.1254 Section 74.1254 Food and... ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1254 D&C Orange No. 4. (a) Identity. (1) the color additive D&C Orange No. 4 is principally the sodium salt of 4-[(2-hydroxy-1-naphthalenyl)azo]benzenesulfonic...

  2. 21 CFR 82.1255 - D&C Orange No. 5.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 5. 82.1255 Section 82.1255 Food and... PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics § 82.1255 D&C Orange No. 5. (a) The color additive D&C Orange No. 5 shall conform in identity and specifications to the requirements of § 74.1255(a...

  3. 21 CFR 74.1255 - D&C Orange No. 5.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 5. 74.1255 Section 74.1255 Food and... ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1255 D&C Orange No. 5. (a) Identity. (1) the color additive D&C Orange No. 5 is a mixture consisting principally the sodium salt of 4′,5′-dibromofluorescein (CAS...

  4. 21 CFR 82.1254 - D&C Orange No. 4.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 4. 82.1254 Section 82.1254 Food and... PROVISIONALLY LISTED COLORS AND SPECIFICATIONS Drugs and Cosmetics § 82.1254 D&C Orange No. 4. The color additive D&C Orange No. 4 shall conform in identity and specifications to the requirements of § 74.1254(a...

  5. Estimating the fuel moisture content to control the reciprocating grate furnace firing wet woody biomass

    International Nuclear Information System (INIS)

    Striūgas, N.; Vorotinskienė, L.; Paulauskas, R.; Navakas, R.; Džiugys, A.; Narbutas, L.

    2017-01-01

    Highlights: • Combustion of biomass with varying moisture content might lead to unstable operation of a furnace. • Method for automatic control of a furnace fired with wet biomass was developed. • Fuel moisture is estimated by cost-effective indirect method for predictive control. • Fuel moisture estimation methods and furnace control algorithm were validated in an industrial boiler. - Abstract: In small countries like Lithuania with a widespread district heating system, 5–10 MW moving grate biomass furnaces equipped with water boilers and condensing economisers are widely used. Such systems are designed for firing biomass fuels; however, varying fuel moisture, mostly in the range from 30% to 60%, complicates the automated operation. Without manual adjustment of the grate motion mode and other parameters, unstable operation or even extinction of the furnace is possible. To ensure stable furnace operation with moist fuel, the indirect method to estimate the fuel moisture content was developed based on the heat balance of the flue gas condensing economiser. The developed method was implemented into the automatic control unit of the furnace to estimate the moisture content in the feedstock and predictively adjust the furnace parameters for optimal fuel combustion. The indirect method based on the economiser heat balance was experimentally validated in a 6 MW grate-fired furnace fuelled by biomass with moisture contents of 37, 46, 50, 54 and 60%. The analysis shows that the estimated and manually measured values of the fuel moisture content do not differ by more than 3%. This deviation indicates that the indirect fuel moisture calculation method is sufficiently precise and the calculated moisture content varies proportionally to changes in the thermal capacity of the economiser. By smoothing the data using sliding weighted averaging, the oscillations of the fuel moisture content were identified.

  6. Operation Indicators of the Rotating-Hearth Furnace in Restrictive Manufacturing Conditions

    Directory of Open Access Journals (Sweden)

    Črnko, J.

    2007-01-01

    Full Text Available The heating operation of the rotating-hearth furnace involving semi-finished steel products was analysed, and specific heat consumption was determined as a function of furnace productivity. The aim was to find out how a change in productivity, which is not accompanied by a modification of the thermal regime, can affect the heating quality and surface oxidation of products.

  7. Furnace and Heat Recovery Area Design and Analysis for Conceptual Design of Supercritical O2-Based PC Boiler

    International Nuclear Information System (INIS)

    Andrew Seltzer

    2006-01-01

    The objective of the furnace and heat recovery area design and analysis task of the Conceptual Design of Supercritical Oxygen-Based PC Boiler study is to optimize the location and design of the furnace, burners, over-fire gas ports, and internal radiant surfaces. The furnace and heat recovery area were designed and analyzed using the FW-FIRE, Siemens, and HEATEX computer programs. The furnace is designed with opposed wall-firing burners and over-fire air ports. Water is circulated in the furnace by forced circulation to the waterwalls at the periphery and divisional wall panels within the furnace. Compared to the air-fired furnace, the oxygen-fired furnace requires only 65% of the surface area and 45% of the volume. Two oxygen-fired designs were simulated: (1) with cryogenic air separation unit (ASU) and (2) with oxygen ion transport membrane (OITM). The maximum wall heat flux in the oxygen-fired furnace is more than double that of the air-fired furnace due to the higher flame temperature and higher H 2 O and CO 2 concentrations. The coal burnout for the oxygen-fired case is 100% due to a 500 F higher furnace temperature and higher concentration of O 2 . Because of the higher furnace wall temperature of the oxygen-fired case compared to the air-fired case, furnace water wall material was upgraded from T2 to T92. Compared to the air-fired heat recovery area (HRA), the oxygen-fired HRA total heat transfer surface is 35% less for the cryogenic design and 13% less for the OITM design due to more heat being absorbed in the oxygen-fired furnace and the greater molecular weight of the oxygen-fired flue gas. The HRA tube materials and wall thickness are nearly the same for the air-fired and oxygen-fired design since the flue gas and water/steam temperature profiles encountered by the heat transfer banks are similar

  8. Experimental and numerical study of MILD combustion in a lab-scale furnace

    NARCIS (Netherlands)

    Huang, X.; Tummers, M.J.; Roekaerts, D.J.E.M.; Scherer, Viktor; Fricker, Neil; Reis, Albino

    2017-01-01

    Mild combustion in a lab-scale furnace has been experimentally and numerically studied. The furnace was operated with Dutch natural gas (DNG) at 10 kW and at an equivalence ratio of 0.8. OH∗chemiluminescence images were taken to characterize the reaction zone. The chemiluminescence intensity is

  9. Als Clinicus over de Grenzen van de Psychiatrie. De verwantschap tussen literatuur en wetenschap in het werk van de psychiater H.C. Rümke (1893-1967

    Directory of Open Access Journals (Sweden)

    Ingrid Kloosterman

    2010-09-01

    Full Text Available As a clincian beyond the boundaries of psychiatry. The congeniality of literature and psychiatry in the work of psychiatrist H.C. Rümke (1893-1967 One of the most important Dutch psychiatrists in the interwar period was H.C. Rümke (1893-1967. With his eclectic interest in psychiatric approaches such as both psychoanalysis and phenomenology, Rümke is most well known for his remarkable diagnostic and therapeutic skills. The life and work of Rümke has been studied in detail, most notably by the Dutch historian Jacob Van Belzen. Despite this extensive research, in this paper it is stated that a relevant aspect of Rümke’s work has been largely disregarded – namely his profound interest in and use of poetry and literature. Not only did Rümke write poems himself under the pseudonym of H. Cornelius, in his scholarly work he frequently refers to fictional literature and at the end of his career he wrote a comprehensive analysis of Frederik van Eeden’s novel Van de Koele Meeren des Doods. For the eclectic clinician Rümke literature and poetry are a source of knowledge to gain insight into the human psyche. Furthermore, according to Rümke, often literature succeeds better at expressing the human condition than the science of psychiatry can. In this article it is argued that for a coherent interpretation of the life and work of Rümke this literal and poetic aspect of his work cannot be disregarded. It is precisely Rümke’s profound interest in literature and poetry that reflects his two main theses about the science of psychiatry. These are on the one hand the centrality of clinical practice and on the other hand the boundaries of psychiatry. As a clinical practitioner Rümke’s aim was to be able to understand the suffering of the patient – literature and poetry could help him do that. Rümke’s use of literature and poetry can be understood by taking into account the context of the clinic, but the intertwinement between psychiatry

  10. Numerical study of particle filtration in an induction crucible furnace

    International Nuclear Information System (INIS)

    Asad, Amjad; Kratzsch, Christoph; Dudczig, Steffen; Aneziris, Christos G.; Schwarze, Rüdiger

    2016-01-01

    Highlights: • Removing particles from a melt in an induction furnace by using a filter is introduced. • The effect of filter and its permeability on the melt flow is shown. • The impact of filter permeability and particle diameter on filter efficiency is studied. • The filter efficiency depends on filter position and number of the used filter. - Abstract: The present paper deals with a numerical investigation of the turbulent melt flow driven by the electromagnetic force in an induction furnace. The main scope of the paper is to present a new principle to remove non-metallic particles from steel melt in an induction furnace by immersing a porous filter in the melt. The magnetic field acting on the melt is calculated by using the open source software MaxFEM"®, while the turbulent flow is simulated by means of the open source computational fluid dynamics library OpenFOAM"®. The validation of the numerical model is accomplished by using experimental results for the flow without the immersed filter. Here it is shown that the time-averaged flow, obtained numerically is in a good quantitive agreement with the experimental data. Then, the validated numerical model is employed to simulate the melt flow with the immersed filter in the induction furnace of a new type of real steel casting simulator investigated at Technische Universität Bergakademie Freiberg. The considerable effect of the filter on the flow pattern is indicated in the present work. Moreover, it is shown that the filter permeability and its position have a significant influence on the melt flow in the induction furnace. Additionally, particles are injected in the flow domain and tracked by using Lagrangian framework. In this case, the efficiency of the used filter is determined in the present investigation depending on its permeability, its position and the particles diameter.

  11. Synthesis of porous graphene powder through improved Hummers' method

    Science.gov (United States)

    Gupta, Siddhant; Bonageri, Shrilakshmi; Achar, Siddarth Krishnaraja; Menon, Atul; Basavaraja R., J.

    2018-05-01

    Graphene due to its high specific surface area is considered to be a potential adsorbent for air and water purification systems. In this study, graphene was synthesized using the recently developed Improved Hummers' method to achieve a high oxidation rate and thermal treatment of the synthesized graphene was done to increase its pore size and make it more capable for applications in purification systems. Graphite flakes were oxidized to obtain graphene oxide which was then reduced to obtain graphene. The synthesized graphene was then thermally treated at 200 °C for two hours in a muffle furnace to improve its surface properties. The characterization results of graphene oxide and graphene show the presence of many impurities which is inferred to be the result of contaminated water used in the experimentation. The analysis of the characterization results also shows that the thermally treated graphene has more spacing and voids when compared to graphene which makes it a better suit for adsorption of gases such as carbon dioxide.

  12. Thermal design and analysis of the HTGR fuel element vertical carbonizing and annealing furnace

    International Nuclear Information System (INIS)

    Llewellyn, G.H.

    1977-06-01

    Computer analyses of the thermal design for the proposed HTGR fuel element vertical carbonizing and annealing furnace were performed to verify its capability and to determine the required power input and distribution. Although the furnace is designed for continuous operation, steady-state temperature distributions were obtained by assuming internal heat generation in the fuel elements to simulate their mass movement. The furnace thermal design, the analysis methods, and the results are discussed herein

  13. 21 CFR 74.1260 - D&C Orange No. 10.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 1 2010-04-01 2010-04-01 false D&C Orange No. 10. 74.1260 Section 74.1260 Food... COLOR ADDITIVES SUBJECT TO CERTIFICATION Drugs § 74.1260 D&C Orange No. 10. (a) Identity. (1) The color additive D&C Orange No. 10 is a mixture consisting principally of 4′,5′-diiodofluorescein, 2′,4′,5...

  14. Methods of steel manufacturing - The electric arc furnace

    Science.gov (United States)

    Dragna, E. C.; Ioana, A.; Constantin, N.

    2018-01-01

    Initially, the carbon content was reduced by mixing “the iron” with metallic ingots in ceramic crucibles/melting pots, with external heat input. As time went by the puddling procedure was developed, a procedure which also assumes a mixture with oxidized iron ore. In 1856 Bessemer invented the convertor, thus demonstrating that steel can be obtained following the transition of an air stream through the liquid pig iron. The invention of Thomas, a slightly modified basic-lined converter, fostered the desulphurization of the steel and the removal of the phosphate from it. During the same period, in 1865, in Sireuil, the Frenchman Martin applies Siemens’ heat regeneration invention and brings into service the furnace with a charge composed of iron pig, scrap iron and iron ore, that produces a high quality steel [1]. An act worthy of being highlighted within the scope of steelmaking is the start-up of the converter with oxygen injection at the upper side, as there are converters that can produce 400 tons of steel in approximately 50 minutes. Currently, the share of the steel produced in electric arc furnaces with a charge composed of scrap iron has increased. Due to this aspect, the electric arc furnace was able to impose itself on the market.

  15. Recombination in the evolution of enterovirus C species sub-group that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99.

    Directory of Open Access Journals (Sweden)

    Teemu Smura

    Full Text Available Genetic recombination is considered to be a very frequent phenomenon among enteroviruses (Family Picornaviridae, Genus Enterovirus. However, the recombination patterns may differ between enterovirus species and between types within species. Enterovirus C (EV-C species contains 21 types. In the capsid coding P1 region, the types of EV-C species cluster further into three sub-groups (designated here as A-C. In this study, the recombination pattern of EV-C species sub-group B that contains types CVA-21, CVA-24, EV-C95, EV-C96 and EV-C99 was determined using partial 5'UTR and VP1 sequences of enterovirus strains isolated during poliovirus surveillance and previously published complete genome sequences. Several inter-typic recombination events were detected. Furthermore, the analyses suggested that inter-typic recombination events have occurred mainly within the distinct sub-groups of EV-C species. Only sporadic recombination events between EV-C species sub-group B and other EV-C sub-groups were detected. In addition, strict recombination barriers were inferred for CVA-21 genotype C and CVA-24 variant strains. These results suggest that the frequency of inter-typic recombinations, even within species, may depend on the phylogenetic position of the given viruses.

  16. Computer simulation of processes in the dead–end furnace

    International Nuclear Information System (INIS)

    Zavorin, A S; Khaustov, S A; Zaharushkin, Russia N A

    2014-01-01

    We study turbulent combustion of natural gas in the reverse flame of fire–tube boiler simulated with the ANSYS Fluent 12.1.4 engineering simulation software. Aerodynamic structure and volumetric pressure fields of the flame were calculated. The results are presented in graphical form. The effect of the twist parameter for a drag coefficient of dead–end furnace was estimated. Finite element method was used for simulating the following processes: the combustion of methane in air oxygen, radiant and convective heat transfer, turbulence. Complete geometric model of the dead–end furnace based on boiler drawings was considered

  17. The dual-electrode DC arc furnace-modelling brush arc conditions

    OpenAIRE

    Reynolds, Q.G.

    2012-01-01

    The dual-electrode DC arc furnace, an alternative design using an anode and cathode electrode instead of a hearth anode, was studied at small scale using computational modelling methods. Particular attention was paid to the effect of two key design variables, the arc length and the electrode separation, on the furnace behaviour. It was found that reducing the arc length to brush arc conditions was a valid means of overcoming several of the limitations of the dual-electrode design, namely high...

  18. Reliability of graphite furnace atomic absorption spectrometry as ...

    African Journals Online (AJOL)

    spectrometry as alternative method for trace analysis of ... Purpose: To evaluate the comparative efficiency of graphite furnace atomic absorption spectrometry .... Methods comparison and validation .... plasma-optical emission spectrometry.

  19. Electric Arc Furnace Modeling with Artificial Neural Networks and Arc Length with Variable Voltage Gradient

    Directory of Open Access Journals (Sweden)

    Raul Garcia-Segura

    2017-09-01

    Full Text Available Electric arc furnaces (EAFs contribute to almost one third of the global steel production. Arc furnaces use a large amount of electrical energy to process scrap or reduced iron and are relevant to study because small improvements in their efficiency account for significant energy savings. Optimal controllers need to be designed and proposed to enhance both process performance and energy consumption. Due to the random and chaotic nature of the electric arcs, neural networks and other soft computing techniques have been used for modeling EAFs. This study proposes a methodology for modeling EAFs that considers the time varying arc length as a relevant input parameter to the arc furnace model. Based on actual voltages and current measurements taken from an arc furnace, it was possible to estimate an arc length suitable for modeling the arc furnace using neural networks. The obtained results show that the model reproduces not only the stable arc conditions but also the unstable arc conditions, which are difficult to identify in a real heat process. The presented model can be applied for the development and testing of control systems to improve furnace energy efficiency and productivity.

  20. Inhibited-coupling HC-PCF based beam-delivery-system for high power green industrial lasers

    Science.gov (United States)

    Chafer, M.; Gorse, A.; Beaudou, B.; Lekiefs, Q.; Maurel, M.; Debord, B.; Gérôme, F.; Benabid, F.

    2018-02-01

    We report on an ultra-low loss Hollow-Core Photonic Crystal Fiber (HC-PCF) beam delivery system (GLO-GreenBDS) for high power ultra-short pulse lasers operating in the green spectral range (including 515 nm and 532 nm). The GLOBDS- Green combines ease-of-use, high laser-coupling efficiency, robustness and industrial compatible cabling. It comprises a pre-aligned laser-injection head, a sheath-cable protected HC-PCF and a modular fiber-output head. It enables fiber-core gas loading and evacuation in a hermetic fashion. A 5 m long GLO-BDS were demonstrated for a green short pulse laser with a transmission coefficient larger than 80%, and a laser output profile close to single-mode (M2 <1.3).

  1. Efficacy of a potential trivalent vaccine based on Hc fragments of botulinum toxins A, B, and E produced in a cell-free expression system.

    Science.gov (United States)

    Zichel, R; Mimran, A; Keren, A; Barnea, A; Steinberger-Levy, I; Marcus, D; Turgeman, A; Reuveny, S

    2010-05-01

    Botulinum toxins produced by the anaerobic bacterium Clostridium botulinum are the most potent biological toxins in nature. Traditionally, people at risk are immunized with a formaldehyde-inactivated toxin complex. Second generation vaccines are based on the recombinant carboxy-terminal heavy-chain (Hc) fragment of the neurotoxin. However, the materialization of this approach is challenging, mainly due to the high AT content of clostridial genes. Herein, we present an alternative strategy in which the native genes encoding Hc proteins of botulinum toxins A, B, and E were used to express the recombinant Hc fragments in a cell-free expression system. We used the unique property of this open system to introduce different combinations of chaperone systems, protein disulfide isomerase (PDI), and reducing/oxidizing environments directly to the expression reaction. Optimized expression conditions led to increased production of soluble Hc protein, which was successfully scaled up using a continuous exchange (CE) cell-free system. Hc proteins were produced at a concentration of more than 1 mg/ml and purified by one-step Ni(+) affinity chromatography. Mice immunized with three injections containing 5 microg of any of the in vitro-expressed, alum-absorbed, Hc vaccines generated a serum enzyme-linked immunosorbent assay (ELISA) titer of 10(5) against the native toxin complex, which enabled protection against a high-dose toxin challenge (10(3) to 10(6) mouse 50% lethal dose [MsLD(50)]). Finally, immunization with a trivalent HcA, HcB, and HcE vaccine protected mice against the corresponding trivalent 10(5) MsLD(50) toxin challenge. Our results together with the latest developments in scalability of the in vitro protein expression systems offer alternative routes for the preparation of botulinum vaccine.

  2. Ground source heat pumps versus high efficiency natural gas furnaces in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Shaw, J.

    2003-02-02

    For the past twenty years or so, the heating and cooling of numerous buildings in northern Europe has been accomplished using ground source heat pumps (GSHPs), while in North America they have been in use for approximately ten years. In the Prairies, natural gas furnaces dominate, while GSHP are more popular in eastern Canada. The author noted that natural gas furnaces have an efficiency of 80 per cent or less, while high efficiency natural gas (HENG) furnaces, more expensive, have an efficiency in the 90 per cent range. A brief outline of the principles behind GSHPs was provided. The Coefficient of Performance (COP) of GSHP reaches up to 500 per cent depending whether the unit is cooling or heating. The amount of heat produced by a heating system expressed as a percentage of the energy input required to operate the system is the definition used for the efficiency. In those cases where it is possible to amortize the initial costs, pay now or obtain a subsidy, the installation of GSHP is advantageous. Several factors affect the total cost of heating a building, such as the airtightness of the building and its insulation, the coldness of the climate, and the inside controlled temperature setting. The author then examined the cost of operating a GSHP versus a natural gas furnace. In most examples studied, the cost of operating a GSHP was less than the cost of operating a natural gas furnace. The Total Equivalent Warming Impact (TEWI) of GSHPs and HENG furnaces was examined. The author concluded that the cost of heating by GSHP in Alberta will be lower than the cost of heating by HENG which requires a separate air conditioning unit for the summer months, with additional improvements in efficiency and insulation. 7 refs., 4 tabs.

  3. Treatment of simulated INEL buried wastes using a graphite electrode DC arc furnace

    International Nuclear Information System (INIS)

    Surma, J.E.; Lawrence, W.E.; Titus, C.H.; Wittle, J.K.; Hamilton, R.A.; Cohn, D.R.; Rhea, D.; Thomas, P.; Woskov, P.P.

    1994-08-01

    A program has been established under the auspices of the Department of Energy (DOE), Office of Technology Development (OTD), to develop the graphite electrode DC arc technology for the application of treating buried heterogenous solid wastes. A three way open-quotes National Laboratory-University-Industryclose quotes partnership was formed to develop this technology in the most timely and cost effective manner. This program is presently testing a newly fabricated pilot-scale DC arc furnace with associated diagnostics at the Plasma Fusion Center at the Massachusetts Institute of Technology. Initial testing in a smaller engineering scale furnace has established the viability of this technology for the treatment of solid heterogeneous wastes. Two diagnostic tools were developed under this program which support the evaluation of the DC arc technology. The diagnostics provide for both spatially resolved temperature measurements within the furnace and real time monitoring of the furnace metal emissions

  4. Melting method for miscellaneous radioactive solid waste and melting furnace

    International Nuclear Information System (INIS)

    Osaki, Toru; Furukawa, Hirofumi; Uda, Nobuyoshi; Katsurai, Kiyomichi

    1998-01-01

    A vessel containing miscellaneous solid wastes is inserted in a crucible having a releasable material on the inner surface, they are induction-heated from the outside of the crucible by way of low temperature heating coils to melt low melting point materials in the miscellaneous wastes within a temperature range at which the vessel does not melt. Then, they are induction-heated by way of high temperature heating coils to melt the vessel and not yet melted materials, those molten materials are cooled, solidified molten material and the releasable material are taken out, and then the crucible is used again. Then, the crucible can be used again, so that it can be applied to a large scaled melting furnace which treats wastes by a unit of drum. In addition, since the cleaning of the used crucible and the application of the releasable material can be conducted without interrupting the operation of the melting furnace, the operation cycle of the melting furnace can be shortened. (N.H.)

  5. Thermal valorisation of automobile shredder residue: injection in blast furnace.

    Science.gov (United States)

    Mirabile, Daphne; Pistelli, Maria Ilaria; Marchesini, Marina; Falciani, Roberta; Chiappelli, Lisa

    2002-01-01

    Wastes with residual heating value, according to the trend of the world legislation, could be thermally reused. The present study is conducted to verify the possibility of thermal valorisation of a waste, denominated fluff, by injection in blast furnace. The fluff, arising from the automobile shredder operations, is a waste characterised by a high organic matrix and is potentially dangerous due to the heavy metals, oils filter and halogenated plastics content. The first step of the work is the chemical, physical and toxicological characterisation of this material. Then the fluff injection in a blast furnace tuyere is theoretically analysed with a mathematical model. Finally, experimental trials are conducted in a pilot plant, simulating the most important part of the blast furnace: the raceway, in order to analyse process and industrial aspects. In view of an industrial application a first economical evaluation is carried out on the basis of model and experimental results.

  6. Formation mechanism of the graphite-rich protective layer in blast furnace hearths

    Science.gov (United States)

    Jiao, Ke-xin; Zhang, Jian-liang; Liu, Zheng-jian; Liu, Feng; Liang, Li-sheng

    2016-01-01

    A long campaign life of blast furnaces is heavily linked to the existence of a protective layer in their hearths. In this work, we conducted dissection studies and investigated damage in blast furnace hearths to estimate the formation mechanism of the protective layer. The results illustrate that a significant amount of graphite phase was trapped within the hearth protective layer. Furthermore, on the basis of the thermodynamic and kinetic calculations of the graphite precipitation process, a precipitation potential index related to the formation of the graphite-rich protective layer was proposed to characterize the formation ability of this layer. We determined that, under normal operating conditions, the precipitation of graphite phase from hot metal was thermodynamically possible. Among elements that exist in hot metal, C, Si, and P favor graphite precipitation, whereas Mn and Cr inhibit this process. Moreover, at the same hot-face temperature, an increase of carbon concentration in hot metal can shorten the precipitation time. Finally, the results suggest that measures such as reducing the hot-face temperature and increasing the degree of carbon saturation in hot metal are critically important to improve the precipitation potential index.

  7. A rapid method for the determination on fluoride in geological samples

    International Nuclear Information System (INIS)

    Josephson, M.; Cook, E.B.T.; Dixon, K.

    1977-01-01

    An account is given of a rapid procedure for the determination by use of the specific-ion electrode of fluoride in geological samples. The sample is fused with sodium hydroxide in a nickel crucible in a muffle furnace. The melt is leached with water, a buffer solution of ammonium citrate is added, and the fluoride activity is measured with a specific-ion electrode. All operations are carried out in the crucible, making possible approximately 100 determinations a day. The precision of the method is approximately 10 per cent at a fluoride concentration of 500 p.p.m., which is acceptable for geological-survey work [af

  8. Investigation about the thermal features of the ovens used for thermoluminescence; Indagine sulle specifiche dei forni usati per i trattamenti termici dei rilevatori a termoluminescenza

    Energy Technology Data Exchange (ETDEWEB)

    Scarpa, G; Caporali, C; Moscati, M [ENEA - Area Energia, Ambiente e Salute, Centro Ricerche Energia, Casaccia, Rome (Italy)

    1991-02-15

    The present paper reports the results of an investigation carried out by the PAS-FIBI-DOSIBIO laboratory (ENEA, Casaccia, Roma) about the thermal features of the ovens used for annealing treatments of TL dosemeters. A total number of 45 commercial ovens and muffle furnaces were studied. belonging to 24 Italian Health Physics laboratories. The investigation has shown that the majority of the ovens do not possess a degree of accuracy, stability, uniformity and reproducibility suitable for their use in the field of thermoluminescence dosimetry. Practical suggestions are also given in order to reduce the effects of some of the negative characteristics found in most ovens. (author)

  9. Investigation about the thermal features of the ovens used for thermoluminescence

    International Nuclear Information System (INIS)

    Scarpa, G.; Caporali, C.; Moscati, M.

    1991-02-01

    The present paper reports the results of an investigation carried out by the PAS-FIBI-DOSIBIO laboratory (ENEA, Casaccia, Roma) about the thermal features of the ovens used for annealing treatments of TL dosemeters. A total number of 45 commercial ovens and muffle furnaces were studied. belonging to 24 Italian Health Physics laboratories. The investigation has shown that the majority of the ovens do not possess a degree of accuracy, stability, uniformity and reproducibility suitable for their use in the field of thermoluminescence dosimetry. Practical suggestions are also given in order to reduce the effects of some of the negative characteristics found in most ovens. (author)

  10. International blast furnace hearth and raceway symposium

    Energy Technology Data Exchange (ETDEWEB)

    1981-01-01

    Papers presented discussed some of the physical and chemical processes occuring in the raceway and hearths of blast furnaces. The injection of coal or fuel slurries to replace some of the coke was also covered. Fourteen papers are abstracted separately.

  11. Improving Gas Furnace Performance: A Field and Laboratory Study at End of Life

    Energy Technology Data Exchange (ETDEWEB)

    Brand, L. [Gas Technology Inst., Des Plaines, IL (United States); Yee, S. [Gas Technology Inst., Des Plaines, IL (United States); Baker, J. [Gas Technology Inst., Des Plaines, IL (United States)

    2015-02-01

    In 2010, natural gas provided 54% of total residential space heating energy the U.S. on a source basis, or 3.5 Quadrillion Btu. Natural gas burned in furnaces accounted for 92% of that total, and boilers and other equipment made up the remainder. A better understanding of installed furnace performance is a key to energy savings for this significant energy usage. Natural gas furnace performance can be measured in many ways. The annual fuel utilization efficiency (AFUE) rating provides a fixed value under specified conditions, akin to the EPA miles per gallon rating for new vehicles. The AFUE rating is provided by the manufacturer to the consumer and is a way to choose between models tested on the same basis. This value is commonly used in energy modeling calculations. ASHRAE 103 is a consensus furnace testing standard developed by the engineering community. The procedure provided in the standard covers heat-up, cool down, condensate heat loss, and steady-state conditions and an imposed oversize factor. The procedure can be used to evaluate furnace performance with specified conditions or with some variation chosen by the tester. In this report the ASHRAE 103 test result will be referred to as Annualized Efficiency (AE) to avoid confusion, and any non-standard test conditions will be noted. Aside from these two laboratory tests, steady state or flue loss efficiency can be measured in the field under many conditions; typically as found or tuned to the manufacturers recommended settings. In this report, AE and steady-state efficiency will be used as measures of furnace performance.

  12. 76 FR 37407 - Energy Conservation Program: Energy Conservation Standards for Residential Furnaces and...

    Science.gov (United States)

    2011-06-27

    .... Background 1. Current Standards a. Furnaces b. Central Air Conditioners and Heat Pumps 2. History of... Compliance Requirements a. Central Air Conditioning and Heat Pumps b. Residential Furnaces 3. Duplication... residential central air conditioners and central air conditioning heat pumps (air conditioners and heat pumps...

  13. New algorithm for controlling electric arc furnaces using their vibrational and acoustic characteristics

    Science.gov (United States)

    Cherednichenko, V. S.; Bikeev, R. A.; Serikov, V. A.; Rechkalov, A. V.; Cherednichenko, A. V.

    2016-12-01

    The processes occurring in arc discharges are analyzed as the sources of acoustic radiation in an electric arc furnace (EAF). Acoustic vibrations are shown to transform into mechanical vibrations in the furnace laboratory. The shielding of the acoustic energy fluxes onto water-cooled wall panels by a charge is experimentally studied. It is shown that the rate of charge melting and the depth of submergence of arc discharges in the slag and metal melt can be monitored by measuring the vibrational characteristics of furnaces and using them in a universal industrial process-control system, which was developed for EAFs.

  14. Modular Distributed Concentrator for Solar Furnace, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This research proposes to develop a lightweight approach to achieving the high concentrations of solar energy needed for a solar furnace achieving temperatures of...

  15. Functional replacement of Wheat streak mosaic virus HC-Pro with the corresponding cistron from a diverse array of viruses in the family Potyviridae

    International Nuclear Information System (INIS)

    Stenger, Drake C.; French, Roy

    2004-01-01

    Helper component-proteinase (HC-Pro) of Wheat streak mosaic virus strain Sidney 81 (WSMV-Sidney 81) was systematically replaced with the corresponding cistron derived from four strains of WSMV (Type, TK1, CZ, and El Batan 3), the tritimovirus Oat necrotic mottle virus (ONMV), the rymoviruses Agropyron mosaic virus (AgMV) and Hordeum mosaic virus (HoMV), or the potyviruses Tobacco etch virus (TEV) and Turnip mosaic virus (TuMV). These HC-Pro proteins varied in amino acid sequence identity shared with HC-Pro of WSMV-Sidney 81 from high (strains of WSMV at ∼86-99%) to moderate (ONMV at 70%) to low (rymoviruses and potyviruses at ∼15-17%). Surprisingly, all chimeric viral genomes examined were capable of systemic infection of wheat upon inoculation with RNA transcripts produced in vitro. HC-Pro replacements derived from tritimoviruses did not alter host range relative to WSMV-Sidney 81, as each of these chimeric viruses was able to systemically infect wheat, oat, and corn line SDp2. These results indicate that differences in host range among tritimoviruses, including the inability of ONMV to infect wheat or the inability of WSMV strains Type and El Batan 3 to infect SDp2 corn, are not determined by HC-Pro. In contrast, all chimeric viruses bearing HC-Pro replacements derived from rymoviruses or potyviruses were unable to infect SDp2 corn and oat. Collectively, these results indicate that HC-Pro from distantly related virus species of the family Potyviridae are competent to provide WSMV-Sidney 81 with all functions necessary for infection of a permissive host (wheat) and that virus-host interactions required for systemic infection of oat and SDp2 corn are more stringent. Changes in symptom severity or mechanical transmission efficiency observed for some chimeric viruses further suggest that HC-Pro affects virulence in WSMV

  16. Atomization in a graphite furnace with ballast - a method of improvement of reliability of atomic absorption analysis

    International Nuclear Information System (INIS)

    Katskov, D.A.; Grinshtejn, I.L.

    1978-01-01

    For the purpose of improving the reliability with which elements are determined in atomic absorption analysis with atomization in a graphite furnace, a method is proposed based on the use of a furnace with an extra ballast body. A small cylinder of graphite or refractory metal (Ta) placed in the central part of the furnace, is used as ballast. When in poor heat contact with the wall the ballast is heated by ray emission at a somewhat slower rate than the furnace. It is shown that the kinetics of evaporation of the substance being analysed in the ballast furnace is determined by the rate of change of temperature of the ballast body. As a result of the lag in evaporation, vapour from the analysed substance reaches a zone of a much higher temperature than with evaporation in the usual type furnace, leading to an increase in the degree of atomization. Theoretical analysis establishes the temperature of the ballast, and conditions for the determination of elements (Cd) are optimized. The experiments conducted indicate a considerable decrease in the effect of the composition of the sample on the results of the analysis and a lower molecular interference in the ballast furnace. With high evaporation lag the vapours of the sample reach the zone of practically constant temperature, thus making it possible to use the integral method of absorption registration with absolute accuracy. With fractionated distillation of volatile components of the sample, fractionation is considerably more accurate in a ballast furnace than in the usual type furnace

  17. The p21 ras C-terminus is required for transformation and membrane association

    DEFF Research Database (Denmark)

    Willumsen, B M; Christensen, A; Hubbert, N L

    1984-01-01

    The Harvey murine sarcoma virus (Ha-MuSV) transforming gene, v-rasH, encodes a 21,000 molecular weight protein (p21) that is closely related to the p21 proteins encoded by the cellular transforming genes of the ras gene family. The primary translation product (prop21), which is found in the cytosol...... of these biochemical features of the protein, we have now studied a series of deletion mutants located at or near the C-terminus of the viral p21 protein. Our tissue culture studies indicate that amino acids located at or near the C-terminus are required for cellular transformation, membrane association and lipid...

  18. Imaging of amyloid using [11C]-PIB PET in patients with Alzheimer's disease

    International Nuclear Information System (INIS)

    Hatashita, Shizuo; Yamasaki, Hidetomo

    2010-01-01

    We investigated whether [N-methyl- 11 C]2-(4'-metylaminophenyl)-6-hydroxybenzothiazole ([11C]-PIB) positron emission tomography (PET) detects underlying amyloid deposition at clinically different stages of Alzheimer's disease (AD). Post-mortem study of typical AD brain has recently demonstrated that the in vivo retention of PIB is related directly to the amount of insoluble amyloid B peptides, including amyloid plaques. Fifty-six patients who met criteria for AD and 74 age-matched healthy controls (HC) were included. All subjects underwent cognitive testing and 60-min dynamic [11C]-PIB PET. [11C]-PIB data were acquired from 35-60 min after injection. Regions of interest were defined on co-registered MRI and applied to dynamic images. Distribution volume ratios (DVR) of PIB retention were determined using Logan graphical analysis (cerebellar gray as reference region). All 56 patients with AD showed robust increases in PIB retention in cingulate, precuneus, frontal, parietal, and lateral temporal cortical regions (typical PIB AD-pattern). In contrast, there was no PIB retention in cortical regions in all HC subjects. Mean DVR values in 11 patients with moderate AD (clinical dementia rating (CDR): 2.1±0.4) showed significantly higher PIB retention (2.38±0.42, P<0.01) than in HC subjects. The DVR values in 23 patients with very mild AD (CDR: 0.5) and 22 patients with mild AD (CDR: 1.0) were 2.32±0.45 and 2.34±0.42, respectively, and were similar to moderate AD. Mean DVR values in whole cortical regions did not significantly correlated with mini-mental state examination (MMSE) or CDR sum of boxes (SB) score in AD patients. The [11C]-PIB PET scan is potentially useful as a non-invasive method to determine brain amyloid deposition. In vivo PIB PET imaging is distinctive and reliable biomarkers of AD, even in early stage of AD. (author)

  19. Towards the total synthesis of Stawamycin. Synthesis of C11-C21 fragment

    Directory of Open Access Journals (Sweden)

    Dias Luiz C.

    2001-01-01

    Full Text Available The carbocyclic (C11-C21 fragment of Stawamycin has been prepared by a sequence involving 11 steps (10% overall yield from methyl (R-(--3-hydroxy-2-methylpropionate. Key steps are Pd-catalyzed Stille coupling reaction between a vinyl iodide and a vinylstannane followed by an intramolecular Diels-Alder cycloaddition reaction to afford the desired adduct as the major isomer together with three other possible adducts in 78% overall yield.

  20. The role of SiO2 nanoparticles and ground granulated blast furnace slag admixtures on physical, thermal and mechanical properties of self compacting concrete

    International Nuclear Information System (INIS)

    Nazari, Ali; Riahi, Shadi

    2011-01-01

    Research highlights: → Nanoparticles in concrete. → Ground granulated blast furnace slag as concrete's binder. → Mechanical properties of concrete specimens by non-traditional admixtures. - Abstract: In this work, strength assessments and percentage of water absorption of self compacting concrete containing ground granulated blast furnace slag and SiO 2 nanoparticles as binder have been investigated. Portland cement was replaced by different amounts of ground granulated blast furnace slag and the properties of concrete specimens were investigated. Although it negatively impacts the physical and mechanical properties of concrete at early ages of curing, ground granulated blast furnace slag was found to improve the physical and mechanical properties of concrete up to 45 wt% at later ages. SiO 2 nanoparticles with the average particle size of 15 nm were added partially to concrete with the optimum content of ground granulated blast furnace slag and physical and mechanical properties of the specimens were measured. SiO 2 nanoparticle as a partial replacement of cement up to 3.0 wt% could accelerate C-S-H gel formation as a result of increased crystalline Ca(OH) 2 amount at the early ages and hence increase strength and improve the resistance to water permeability of concrete specimens. The increased SiO 2 nanoparticles' content by more than 3.0 wt%, causes the reduced strength because of the decreased crystalline Ca(OH) 2 content required for C-S-H gel formation. Several empirical relationships have been presented to predict flexural and split tensile strength of the specimens by means of the corresponding compressive strength at a certain age of curing. Accelerated peak appearance in conduction calorimetry tests, more weight loss in thermogravimetric analysis and more rapid appearance of the peaks related to hydrated products in X-ray diffraction results, all indicate that SiO 2 nanoparticles could improve mechanical and physical properties of the concrete

  1. Preparation of. beta. -spodumene glass-ceramics from blast furnace slag. Koro slag wo genryo to shita. beta. -spodumene kei kesshoka glass no seizo

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M. (National Kaoshing Institute Technology, Kaoshiung (Rep. of China)); Hon, M. (National Cheng Kung University, Tainan (Rep. of China))

    1990-07-01

    Li {sub 2} O-CaO-Al {sub 2} O {sub 3} -SiO {sub 2} (LCAS) glass-ceramics were prepared from blast furnace slag by quenching in water after heating at 1,450 {degree} C for 3 hours. Blast furnace slag (40.0wt%) containing CaO, MgO, Al {sub 2} O {sub 3} and SiO {sub 2} as major components was used as a raw material, and batch compositions were modified by mixing blast furnace slag with Al {sub 2} O {sub 3}, SiO {sub 2} and Li {sub 2} CO {sub 3}, and a nucleating agent TiO {sub 2}. The A specimen with TiO {sub 2} of 7.4wt% and B specimen with 4.6wt% were prepared, and the crystallization process of the glass was examined with X-ray diffraction, electron diffraction and so forth. As a result, a major crystalline phase was {beta} -spodumene (Li {sub 2} O-Al {sub 2} O {sub 3} -4SiO {sub 2}), and the average thermal expansion coefficients of A and B were 40.1 and 47.2 {times} 10 {sup {minus} 7} / {degree} C in the temperature range from 25 to 700 {degree} C, respectively. A small amount of titanite was also observed in A as a sub-phase. 14 refs., 5 figs., 3 tabs.

  2. 21 CFR 522.1696c - Penicillin G procaine in oil.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Penicillin G procaine in oil. 522.1696c Section... § 522.1696c Penicillin G procaine in oil. (a) Specifications. Each milliliter contains penicillin G procaine equivalent to 300,000 units of penicillin G. (b) Sponsor. See No. 053501 in § 510.600(c) of this...

  3. Paradoxical aging in HIV: immune senescence of B Cells is most prominent in young age.

    Science.gov (United States)

    Rinaldi, Stefano; Pallikkuth, Suresh; George, Varghese K; de Armas, Lesley R; Pahwa, Rajendra; Sanchez, Celeste M; Pallin, Maria Fernanda; Pan, Li; Cotugno, Nicola; Dickinson, Gordon; Rodriguez, Allan; Fischl, Margaret; Alcaide, Maria; Gonzalez, Louis; Palma, Paolo; Pahwa, Savita

    2017-04-01

    Combination antiretroviral therapies (cART)can lead to normal life expectancy in HIV-infected persons, and people aged >50 yrs represent the fastest growing HIV group. Although HIV and aging are independently associated with impaired humoral immunity, immune status in people aging with HIV is relatively unexplored. In this study influenza vaccination was used to probe age associated perturbations in the B cell compartment of HIV-negative "healthy controls" (HC) and virologically controlled HIV-infected participants on cART (HIV) (n=124), grouped by age as young (aged (40-59yrs) or old ( > 60 yrs). H1N1 antibody response at d21 post-vaccination correlated inversely with age in both HC and HIV. Immunophenotyping of cryopreserved PBMC demonstrated increased frequencies of double negative B cells and decreased plasmablasts in old compared to young HC. Remarkably, young HIV were different from young HC but similar to old HC in B cell phenotype, influenza specific spontaneous (d7) or memory (d21) antibody secreting cells. We conclude that B cell immune senescence is a prominent phenomenon in young HIV in comparison to young HC, but distinctions between old HIV and old HC are less evident though both groups manifest age-associated B cell dysfunction.

  4. Paradoxical aging in HIV: immune senescence of B Cells is most prominent in young age

    Science.gov (United States)

    George, Varghese K.; de Armas, Lesley R.; Pahwa, Rajendra; Sanchez, Celeste M.; Pallin, Maria Fernanda; Pan, Li; Cotugno, Nicola; Dickinson, Gordon; Rodriguez, Allan; Fischl, Margaret; Alcaide, Maria; Gonzalez, Louis; Palma, Paolo; Pahwa, Savita

    2017-01-01

    Combination antiretroviral therapies (cART) can lead to normal life expectancy in HIV-infected persons, and people aged >50 yrs represent the fastest growing HIV group. Although HIV and aging are independently associated with impaired humoral immunity, immune status in people aging with HIV is relatively unexplored. In this study influenza vaccination was used to probe age associated perturbations in the B cell compartment of HIV-negative “healthy controls” (HC) and virologically controlled HIV-infected participants on cART (HIV) (n=124), grouped by age as young (<40 yrs), middle-aged (40-59yrs) or old (≥60 yrs). H1N1 antibody response at d21 post-vaccination correlated inversely with age in both HC and HIV. Immunophenotyping of cryopreserved PBMC demonstrated increased frequencies of double negative B cells and decreased plasmablasts in old compared to young HC. Remarkably, young HIV were different from young HC but similar to old HC in B cell phenotype, influenza specific spontaneous (d7) or memory (d21) antibody secreting cells. We conclude that B cell immune senescence is a prominent phenomenon in young HIV in comparison to young HC, but distinctions between old HIV and old HC are less evident though both groups manifest age-associated B cell dysfunction. PMID:28448963

  5. FURNACE 2. Toroidal geometry neutronic program system method. Description and users manual

    Energy Technology Data Exchange (ETDEWEB)

    Verschuur, K.A.

    1995-10-01

    FURNACE2 is a 3-dimensional neutron/photon-transport program system for toroidal geometries. It uses ray-tracing and double-differential reflection-and transmission-coefficients and flux-kernels to calculate the angular-flux spectra inside the torus of a fusion-reactor. FURNACE2 is an extended version of FURNACE, developed for application to the neutron-diagnostics at JET, which was supported financially by JET. It is used at JET to calculate the foil-activation for the KN2 diagnostics, the angular-fluxes on the lines of sight of the KN3 profile monitors, and general background fluxes and activation of the vessel. The program is used along with MCNP, combining the advantages of each of the programs and for mutual checks. (orig.).

  6. FURNACE 2. Toroidal geometry neutronic program system method. Description and users manual

    International Nuclear Information System (INIS)

    Verschuur, K.A.

    1995-10-01

    FURNACE2 is a 3-dimensional neutron/photon-transport program system for toroidal geometries. It uses ray-tracing and double-differential reflection-and transmission-coefficients and flux-kernels to calculate the angular-flux spectra inside the torus of a fusion-reactor. FURNACE2 is an extended version of FURNACE, developed for application to the neutron-diagnostics at JET, which was supported financially by JET. It is used at JET to calculate the foil-activation for the KN2 diagnostics, the angular-fluxes on the lines of sight of the KN3 profile monitors, and general background fluxes and activation of the vessel. The program is used along with MCNP, combining the advantages of each of the programs and for mutual checks. (orig.)

  7. Contribution to the study of an electric rotating furnace with gaseous electrodes

    International Nuclear Information System (INIS)

    Dallaire, Serge

    1976-01-01

    As the most primary and also most efficient way to transfer to a body the energetic content of an electric arc is to put it directly in contact with the arc, this research thesis reports the study of the development of a device allowing this operation: the electric rotating furnace with gaseous electrodes. In the first part, the author presents the furnace and its operation characteristics: thermal enclosure, heat source, hardware and installation description, operation characteristics. The second part reports the study of heat transfer phenomena: main determinations of the transfer coefficient, inverse problem, study of the thermal diffusivity with phase change, proposed solutions, and experimental study. The third part reports the search for boundary conditions and the study of furnace efficiency [fr

  8. CFD study of temperature distribution in full scale boiler adopting in-furnace coal blending

    International Nuclear Information System (INIS)

    Fadhil, S S A; Hasini, H; Shuaib, N H

    2013-01-01

    This paper describes the investigation of temperature characteristics of an in-furnace combustion using different coals in a 700 MW full scale boiler. Single mixture fraction approach is adopted for combustion model of both primary and secondary coals. The primary coal was based on the properties of Adaro which has been used as the design coal for the boiler under investigation. The secondary blend coal was selected based on sub-bituminous coal with higher calorific value. Both coals are simultaneously injected into the furnace at alternate coal burner elevations. The general prediction of the temperature contours at primary combustion zone shows identical pattern compared with conventional single coal combustion in similar furnace. Reasonable agreement was achieved by the prediction of the average temperature at furnace exit. The temperature distribution is at different furnace elevation is non-uniform with higher temperature predicted at circumferential 'ring-like' region at lower burner levels for both cases. The maximum flame temperature is higher at the elevation where coal of higher calorific value is injected. The temperature magnitude is within the accepTable limit and the variations does not differ much compared to the conventional single coal combustion.

  9. Dicty_cDB: FC-BS21 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-BS21 (Link to dictyBase) - - - Contig-U15764-1 FC-BS21Z (Li...nk to Original site) - - FC-BS21Z 723 - - - - Show FC-BS21 Library FC (Link to library) Clone ID FC-BS21 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-BS/FC-BS21Q.Seq.d/ Representative seq. ID FC-BS...21Z (Link to Original site) Representative DNA sequence >FC-BS21 (FC-BS21Q) /CSM/FC/FC-BS/FC-BS21Q.Seq.... Score E Sequences producing significant alignments: (bits) Value FC-BS21 (FC-BS21Q) /CSM/FC/FC-BS/FC-BS21Q.

  10. Thermal performance evaluation of a four pan jaggery processing furnace for improvement in energy utilization

    Energy Technology Data Exchange (ETDEWEB)

    Sardeshpande, Vishal R.; Shendage, D.J.; Pillai, Indu R. [Department of Energy Science and Engineering, Indian Institute of Technology, Bombay (India)

    2010-12-15

    The jaggery making from sugarcane is one of the traditional process industries contributing to the local employment and entrepreneurship opportunities to the rural population. Jaggery is a condensed form of sugarcane juice produced by evaporation of moisture. Bagasse which is internally generated during juice extraction from sugarcane is used as the fuel for evaporation in a jaggery furnace. Any efficiency improvement in the thermal performance of a jaggery furnace leads to bagasse saving which provides additional revenue for the jaggery manufacturer. A procedure for thermal evaluation using mass and energy balance for a jaggery furnace is proposed to establish furnace performance and loss stream analysis. The proposed method is used to investigate a four pan traditional jaggery furnace in India. The loss stream analysis indicates that the theoretical energy required for jaggery processing is only 29% of total energy supplied by bagasse combustion. The major loss is associated with heat carried in flue gas and wall losses. The air available for combustion depends upon the draft created by chimney in natural draft furnaces. The oxygen content in the flue gas is a measure of degree of combustion. A controlled fuel feeding based on the oxygen percentage in the flue gases is proposed and demonstrated. The traditional practice of fuel feeding rate is changed to control feeding rate leading to reduction in specific fuel consumption from 2.39 kg bagasse/kg jaggery to 1.73 kg bagasse/kg jaggery. This procedure can be used for evaluation of jaggery furnaces for identification and quantification of losses, which will help in improving thermal energy utilization. (author)

  11. Plasma arc and cold crucible furnace vitrification for medium level waste: a review

    International Nuclear Information System (INIS)

    Poitou, S.; Fiquet, O.; Bourdeloie, C.; Gramondi, P.; Rebollo, F.; Girold, C.; Charvillat, J.P.; Boen, R.; Jouan, A.; Ladirat, C.; Nabot, J.P.; Ochem, D.; Baronnet, J.M.

    2001-01-01

    Initially developed for high-level waste reprocessing, several vitrification processes have been under study since the 80's at the French Atomic Energy Commission (CEA) for other waste categories. According to the French law concerning waste management research passed on December 30, 1991, vitrification may be applied to mixed medium-level waste. A review of processes developed at CEA is presented: cold crucible furnace heated by induced current, refractory furnace heated by nitrogen transferred arc plasma torch, and coupling of cold crucible furnace with oxygen transferred plasma arc twin torch. Furthermore, gas post-combustion has been studied with an oxygen non-transferred plasma torch. (authors)

  12. Fiscal 1998 research report on development of the advanced industrial furnace (R and D on the advanced industrial furnace). Volume 3; 1998 nendo koseino kogyoro no kaihatsu ni kansuru kenkyu seika hokokusho. Koseino kogyoro nado ni kansuru kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This report summarizes the research results of the chapter 4 and 5 (experimental database) from the research report on development of the advanced industrial furnace. The chapter 4 summarizes functions of the temperature performance evaluation simulator of the advanced continuous heating furnace for the database system, and various research results obtained by the simulator. This chapter also summarizes the research result on the applicability of high-temperature air combustion to other industries, the patent research result on heat storage combustion technology, the basic technology research result, and the reaction analysis result by FLUENT. The chapter 5 summarizes the combustion experiment data collection by developing self-completion high-temperature high-radiation heating technology. As for R and D on technology optimizing the profile of heating furnaces, the following data are summarized: measurement data of heat transfer in furnaces and heat flux data at right overhead furnace temperature under cold air and preheated air combustion in conventional furnaces, and heat storage combustion. (NEDO)

  13. FURNACE INJECTION OF ALKALINE SORBENTS FOR SULFURIC ACID REMOVAL

    Energy Technology Data Exchange (ETDEWEB)

    Gary M. Blythe

    2004-01-01

    The objective of this project has been to demonstrate the use of alkaline reagents injected into the furnace of coal-fired boilers as a means of controlling sulfuric acid emissions. The project was co-funded by the U.S. DOE National Energy Technology Laboratory under Cooperative Agreement DE-FC26-99FT40718, along with EPRI, the American Electric Power Company (AEP), FirstEnergy Corporation, the Tennessee Valley Authority, and Carmeuse North America. Sulfuric acid controls are becoming of increased interest for coal-fired power generating units for a number of reasons. In particular, sulfuric acid can cause plant operation problems such as air heater plugging and fouling, back-end corrosion, and plume opacity. These issues will likely be exacerbated with the retrofit of selective catalytic reduction (SCR) for NOX control, as SCR catalysts are known to further oxidize a portion of the flue gas SO{sub 2} to SO{sub 3}. The project tested the effectiveness of furnace injection of four different magnesium-based or dolomitic alkaline sorbents on full-scale utility boilers. These reagents were tested during one- to two-week tests conducted on two FirstEnergy Bruce Mansfield Plant (BMP) units. One of the sorbents tested was a magnesium hydroxide slurry byproduct from a modified Thiosorbic{reg_sign} Lime wet flue gas desulfurization process. The other three sorbents are available commercially and include dolomite, pressure-hydrated dolomitic lime, and commercially available magnesium hydroxide. The dolomite reagent was injected as a dry powder through out-of-service burners. The other three reagents were injected as slurries through air-atomizing nozzles inserted through the front wall of the upper furnace. After completing the four one- to two-week tests, the most promising sorbents were selected for longer-term (approximately 25-day) full-scale tests on two different units. The longer-term tests were conducted to confirm sorbent effectiveness over extended operation on two

  14. Two stage catalytic converter system to reduce exhaust emissions of HC, CO and NO in a motor vehicle

    Energy Technology Data Exchange (ETDEWEB)

    Nagalingam, B; Gopalakrishnan, K V; Murthy, B S

    1978-09-01

    Two-stage catalytic converter system is currently receiving considerable attention as a means to control the primary pollutants, namely, HC, CO and NO in the automobile exhaust. In order to explore the possibility of developing catalysts from indigenous and inexpensive sources of materials, sponge iron for NO reduction and manganese ore pebbles for HC/CO oxidation were tested as candidate-catalysts in an engine dynamometer test bed to study their catalytic activity. The results of these experiments are reported.

  15. A novel inclusion complex (β-CD/ABP-dHC-cecropin A) with antibiotic propertiess for use as an anti-Agrobacterium additive in transgenic poplar rooting medium.

    Science.gov (United States)

    Zhang, Jiaxin; Li, Jianfeng; Movahedi, Ali; Sang, Ming; Xu, Chen; Xu, Junjie; Wei, Zhiheng; Yin, Tongming; Zhuge, Qiang

    2015-12-01

    The increasing resistance of bacteria and fungi to currently available antibiotics is a major concern worldwide, leading to enormous effort to develop novel antibiotics with new modes of action.We recently reported that ABP-dHC-cecropin A exhibited strong antibacterial and antifungal activity, making it a candidate antibiotic substitute. In this study, β-cyclodextrin (β-CD) combined with ABP-dHC-cecropin A enhanced the physical and chemical properties of ABP-dHC-cecropin A but did not significantly decrease its antibacterial activity. Thus, β-CD/ABP-dHC-cecropin A should be considered a novel antibacterial drug. We used β-CD/ABP-dHC-cecropin A as an anti-Agrobacterium compound to supplementtransgenic poplar medium. Sideeffects of the inclusion complex had little impact on plantgrowth. Thus, β-CD/ABP-dHC-cecropin A may be used as traditional antibiotics forpoplar transplantation with greater antibbacterial effects. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Pollutant emissions of commercial and industrial wood furnaces

    International Nuclear Information System (INIS)

    Baumbach, G.; Angerer, M.

    1993-03-01

    Based on literature surveys, personal contacts to designers, manufactures and users of woold furnaces, as well as informations of experts from Austria and Switzerland, the used wood fuels and combustion techniques and the potentially by commercial and industrial wood burning emitted air pollutants are described; including the mechanism of pollutant formation, concentrations, and their environmental relevance. The actual situation in Baden-Wuerttemberg concerning the used wood fuels, the state of installed and operated furnaces and the amount of emitted pollutants is presented basing on informations of the 'Statistical Country Bureau' and a country-wide inquiry round the chimney-sweepers. In order to realize the described existing possibilities to reduce pollutant emissions the introduction of a general brand test and certification mode is proposed. (orig.). 53 figs., 118 refs [de

  17. Modelling and prediction of pig iron variables in the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Saxen, H.; Laaksonen, M.; Waller, M. [Aabo Akademi, Turku (Finland). Heat Engineering Lab.

    1996-12-31

    The blast furnace, where pig iron for steelmaking is produced, is an extremely complicated process, with heat and mass transfer and chemical reactions between several phases. Very few direct measurements on the internal state are available in the operation of the process. A main problem in on-line analysis and modelling is that the state of the furnace may undergo spontaneous changes, which alter the dynamic behaviour of the process. Moreover, large internal disturbances frequently occur, which affect the product quality. The work in this research project focuses on a central problem in the control of the blast furnace process, i.e., short-term prediction of pig iron variables. The problem is of considerable importance for fuel economy, product quality, and for an optimal decision making in integrated steel plants. The operation of the blast furnace aims at producing a product (hot metal) with variables maintained on a stable level (close to their setpoints) without waste of expensive fuel (metallurgical coke). The hot metal temperature and composition affect the downstream (steelmaking) processes, so fluctuations in the pig iron quality must be `corrected` in the steel plant. The goal is to develop a system which predicts the evolution of the hot metal variables (temperature, chemical composition) during the next few taps, and that can be used for decision-making in the operation of the blast furnace. Because of the complicated behaviour of the process, it is considered important to include both deterministic and stochastic components in the modelling: Mathematical models, which on the basis of measurements describe the physical state of the process, and statistical (black-box) models will be combined in the system. Moreover, different models will be applied in different domains in order to capture structural changes in the dynamics of the process SULA 2 Research Programme; 17 refs.

  18. Modelling and prediction of pig iron variables in the blast furnace

    Energy Technology Data Exchange (ETDEWEB)

    Saxen, H; Laaksonen, M; Waller, M [Aabo Akademi, Turku (Finland). Heat Engineering Lab.

    1997-12-31

    The blast furnace, where pig iron for steelmaking is produced, is an extremely complicated process, with heat and mass transfer and chemical reactions between several phases. Very few direct measurements on the internal state are available in the operation of the process. A main problem in on-line analysis and modelling is that the state of the furnace may undergo spontaneous changes, which alter the dynamic behaviour of the process. Moreover, large internal disturbances frequently occur, which affect the product quality. The work in this research project focuses on a central problem in the control of the blast furnace process, i.e., short-term prediction of pig iron variables. The problem is of considerable importance for fuel economy, product quality, and for an optimal decision making in integrated steel plants. The operation of the blast furnace aims at producing a product (hot metal) with variables maintained on a stable level (close to their setpoints) without waste of expensive fuel (metallurgical coke). The hot metal temperature and composition affect the downstream (steelmaking) processes, so fluctuations in the pig iron quality must be `corrected` in the steel plant. The goal is to develop a system which predicts the evolution of the hot metal variables (temperature, chemical composition) during the next few taps, and that can be used for decision-making in the operation of the blast furnace. Because of the complicated behaviour of the process, it is considered important to include both deterministic and stochastic components in the modelling: Mathematical models, which on the basis of measurements describe the physical state of the process, and statistical (black-box) models will be combined in the system. Moreover, different models will be applied in different domains in order to capture structural changes in the dynamics of the process SULA 2 Research Programme; 17 refs.

  19. Dicty_cDB: FC-AI21 [Dicty_cDB

    Lifescience Database Archive (English)

    Full Text Available FC (Link to library) FC-AI21 (Link to dictyBase) - - - Contig-U16254-1 FC-AI21Z (Li...nk to Original site) - - FC-AI21Z 696 - - - - Show FC-AI21 Library FC (Link to library) Clone ID FC-AI21 (Li.../dictycdb.biol.tsukuba.ac.jp/CSM/FC/FC-AI/FC-AI21Q.Seq.d/ Representative seq. ID FC-AI...21Z (Link to Original site) Representative DNA sequence >FC-AI21 (FC-AI21Q) /CSM/FC/FC-AI/FC-AI21Q.Seq....YPGYMYTDLSTIYERAGRIQGRNGSITQI PILTMPNDDITHPIPDLTGYITEGQIFIDRQINNRQIYPPINVLPSLSRLMKSAI

  20. Optimal Design of TCR/FC in Electric Arc Furnaces for Power Quality Improvement in Power Systems

    Directory of Open Access Journals (Sweden)

    Mahdi TORABIAN ESFAHANI

    2009-12-01

    Full Text Available Electric Arc Furnaces (EAFs are unbalanced, nonlinear and time varying loads, which can cause many problems in the power system quality. As the use of arc furnace loads increases in industry, the importance of the power quality problems also increase. So in order to optimize the usages of electric power in EAFs, it is necessary to minimize the effects of arc furnace loads on power quality in power systems as much as possible. Therefore, in this paper, design and simulation of an electric plant supplying an arc furnace is considered. For this purpose, a three phase arc furnace model, which can simulate all the mentioned power quality indices, is developed based on Hyperbolic -Exponential model (V-I model. Then by considering the high changes of reactive power and voltage flicker of nonlinear furnace load, a thyristor controlled reactor compensation with fixed capacitor (TCR/FC are designed and simulated. In this procedure, the reactive power is measured so that maximum speed and accuracy are achieved. Finally, simulation results verify the accuracy of the load modelling and show the effectiveness of the proposed TCR/FC model for reactive compensating of the EAF.