WorldWideScience

Sample records for hbv dna vaccine

  1. HBV vaccination of HCV-infected patients with occult HBV infection and anti-HBc-positive blood donors

    Directory of Open Access Journals (Sweden)

    J.S.F. Pereira

    2006-04-01

    Full Text Available Anti-HBc positivity is a frequent cause of donation rejection at blood banks. Hepatitis B virus (HBV infection may also occur in HBsAg-negative patients, a situation denoted occult infection. Similarly, very low levels of HBV-DNA have also been found in the sera of patients with chronic hepatitis C virus (HCV infection, even in the absence of serum HBsAg. Initially we searched for HBV-DNA in serum of 100 blood donors and 50 HCV-infected patients who were HBsAg negative/anti-HBc positive by nested-PCR and by an HBV monitor commercial test for HBV-DNA. Anti-HBs seroconversion rates were measured in 100 blood donors and in 22 patients with chronic HCV infection after HBV vaccination to determine if the HBV vaccination could eliminate an occult HBV infection in these individuals. Occult HBV infection was detected in proportionally fewer blood donors (6/100 = 6% than chronic hepatitis C patients (12/50 = 24% (P 0.05. All subjects who were HBV-DNA(+ before the first dose of HBV vaccine (D1, became HBV-DNA(- after D1, D2, and D3. Among 22 HCV-positive patients, 10 HBV-DNA(+ and 12 HBV-DNA(-, seroconversion was observed in 9/10 (90% HBV-DNA(+ and in 9/12 (75% HBV-DNA(- subjects (P > 0.05. The disappearance of HBV-DNA in the majority of vaccinated patients suggests that residual HBV can be eliminated in patients with occult infection.

  2. Endoplasmic reticulum targeting sequence enhances HBV-specific cytotoxic T lymphocytes induced by a CTL epitope-based DNA vaccine

    International Nuclear Information System (INIS)

    Xu Wei; Chu Yiwei; Zhang Ruihua; Xu Huanbin; Wang Ying; Xiong Sidong

    2005-01-01

    CD8 + T cells play a critical role in protective immunity against Hepatitis B Virus (HBV). Epitope-based DNA vaccines expressing HBV-dominant CTL epitopes can be used as candidate vaccines capable of inducing cytotoxic T Lymphocytes (CTL) responses. A plasmid DNA encoding a CTL epitope of HBV core antigen, HBc 18-27 , was constructed. Intramuscular immunization of C57BL/6 mice with this DNA vaccine resulted in successful induction of HBV-specific CTL responses. In order to promote transportation of the peptide into endoplasmic reticulum (ER) to bind to MHC class I molecules for optimal class I antigen presentation, an ER targeting sequence (ERTS) was fused with the C 18-27 encoding gene. ERTS fusion significantly enhanced specific CD8 + T cell responses in terms of CTL cytolysis as well as IFN-γ secretion. This enhancement was correlated with promoted epitope presentation on target cell surface. We report here an enhanced immunogenicity of an epitope-based DNA vaccine using an ER targeting signal sequence, which has significant implications for future design of therapeutic HBV vaccine

  3. Efficacy and safety of telbivudine in preventing mother-to-infant transmission of HBV in pregnant women with high HBV DNA load

    Directory of Open Access Journals (Sweden)

    SUN Weihui

    2013-08-01

    Full Text Available ObjectiveTo evaluate the efficacy and safety of telbivudine given from the 12th week of gestation in preventing mother-to-infant transmission of hepatitis B virus (HBV in pregnant women with high HBV DNA load. MethodsEighty pregnant women (at 12 weeks of gestation with chronic hepatitis B, who had a HBV DNA load higher than 1.0×107 copies/ml, were enrolled. The patients were divided into two groups according to their personal preferences: treatment group (n=38 and control group (n=42. The treatment group received oral telbivudine (600 mg once daily until 12 weeks after delivery and was administered compound glycyrrhizin for liver protection, while the control group was given compound glycyrrhizin for liver protection alone. All infants in both groups were vaccinated with hepatitis B immunoglobulin (200 IU and HBV vaccine (20 μg after birth. The mother-to-infant transmission of HBV was indicated by the presence of HBsAg and HBV DNA in infants at 7 months after birth. The HBV DNA levels in these women were measured, and the positive rate of HBsAg in infants was determined. The difference in positive rate of HBsAg was analyzed by chi-square test; the between-group comparison was analyzed by group t(t′-test, and the before-after comparison was analyzed by paired t-test. ResultsThe treatment group showed significantly decreased HBV DNA and alanine aminotransferase levels before delivery. The HBV DNA load of treatment group dropped rapidly after 2 weeks of treatment and then decreased slowly until delivery. The treatment group had significantly decreased HBV DNA levels beforedelivery and at 12 weeks after delivery (t=29.15, P<0.01; t=40.06, P<0.01, but the control group showed no significant changes (P>0.05. The treatment group had significantly lower HBV DNA levels than the control group before delivery and at 12 weeks after delivery (P<0.01. No infants in the treatment group were HBV-positive, versus a positive rate of 14.3% in the

  4. Circulating Interferon-λ3, Responsiveness to HBV Vaccination, and HBV/HCV Infections in Haemodialysis Patients

    Directory of Open Access Journals (Sweden)

    Alicja E. Grzegorzewska

    2017-01-01

    Full Text Available The IFN-λ3 gene (IFNL3 plays a role in HCV clearance. We investigated circulating IFN-λ3 and IFNL3 SNPs in haemodialysis patients who differed in their response to HBV vaccination and their HBV/HCV infection status. In 201 patients, plasma IFN-λ3 was determined using ELISA. IFNL3 SNPs (rs12979860, rs8099917 were genotyped using HRM analysis. Differences in IFN-λ3 levels were shown between responders and nonresponders to HBV vaccination and between HBsAg-positive patients and those who developed anti-HBs after infection and became HBsAg negative. HBV vaccine responders without HCV resolution revealed lower IFN-λ3 than noninfected responders. HBsAg/HCV RNA-positive subjects showed lower IFN-λ3 than patients positive only for HCV RNA or subjects who resolved both infections. Circulating IFN-λ3 correlated positively with anti-HBs and negatively with positive HCV RNA testing in the adjusted regression analyses. HBV vaccine nonresponders, HBsAg-positive patients, and subjects with replicating HCV composed a group with unfavourable outcomes. Responders to HBV vaccination, subjects who became HBsAg negative, and those who cleared HCV were analysed as having favourable outcomes. The latter showed higher IFN-λ3 but did not differ in distribution of IFNL3 SNPs compared with subjects with unfavourable outcomes. Higher IFN-λ3 concentrations are associated with response to HBV vaccination, self-limited HBV infection, and HCV resolution.

  5. Anti-HBV DNA vaccination does not prevent relapse after discontinuation of analogues in the treatment of chronic hepatitis B: a randomised trial--ANRS HB02 VAC-ADN.

    Science.gov (United States)

    Fontaine, H; Kahi, S; Chazallon, C; Bourgine, M; Varaut, A; Buffet, C; Godon, O; Meritet, J F; Saïdi, Y; Michel, M L; Scott-Algara, D; Aboulker, J P; Pol, S

    2015-01-01

    The antiviral efficacy of nucleos(t)ide analogues whose main limitation is relapse after discontinuation requires long-term therapy. To overcome the risk of relapse and virological breakthrough during long-term therapy, we performed a phase I/II, open, prospective, multicentre trial using a HBV envelope-expressing DNA vaccine. 70 patients treated effectively with nucleos(t)ide analogues for a median of 3 years (HBV DNA 120 IU/mL) or impossibility of stopping treatment at week 48. Reactivation occurred in 97% of each group after a median 28 days without liver failure but with an HBV DNA <2000 IU/mL in 33%; 99% of adverse reactions were mild to moderate. Immune responses were evaluated by enzyme-linked immunosorbent spot and proliferation assays: there was no difference in the percentage of patients with interferon-γ secreting cells and a specific T-cell proliferation to HBcAg but not to HBsAg after reactivation in each group. Although it is fairly well tolerated, the HBV DNA vaccine does not decrease the risk of relapse in HBV-treated patients or the rate of virological breakthrough, and does not restore the anti-HBV immune response despite effective viral suppression by analogues. NCT00536627. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  6. Regulation Mechanism of HBV cccDNA

    Directory of Open Access Journals (Sweden)

    Cheng Jun

    2012-06-01

    Full Text Available Covalently closed circular (ccc DNA of hepatitis B virus (HBV existed in the nuclei of HBV infected hepatocytes with a half-life time of 14.3 years in a mathematic model. Viral protein feedback regulation in HBV life cycle to maintain vital viral replication is an important mechanism. Interleukin-6, epithelial growth factor, heme oxygenase-1, histones, and hepatocyte nuclear factors are demonstrated as the key regulators for HBV life cycle. CpG island structure and methylation status are involved in the regulation of HBV DNA replication. Nucleos(tide analogues are widely used in the clinical practice for the treatment of chronic hepatitis B patients, although no evidence indicating a direct inhibiton of HBV cccDNA. In the future, along with the study of HBV life cycle, new drugs including RNA interference technique, will pave the way to eliminate the HBV cccDNA from infected hepatocytes resulting final cure of chronic hepatitis B.

  7. Associated factors for recommending HBV vaccination to children among Georgian health care workers

    Directory of Open Access Journals (Sweden)

    Butsashvili Maia

    2012-12-01

    Full Text Available Abstract Background Most cases of hepatitis B virus (HBV infection and subsequent liver diseases can be prevented with universal newborn HBV vaccination. The attitudes of health care workers about HBV vaccination and their willingness to recommend vaccine have been shown to impact HBV vaccination coverage and the prevention of vertical transmission of HBV. The purpose of this study was to ascertain the factors associated with health care worker recommendations regarding newborn HBV vaccination. Methods A cross-sectional study of prevalence and awareness of hepatitis B and hepatitis B vaccine was conducted among randomly selected physicians and nurses employed in seven hospitals in Georgia in 2006 and 2007. Self-administered questionnaires included a module on recommendations for HBV, HCV and HIV. Results Of the 1328 participants included in this analysis, 36% reported recommending against hepatitis B vaccination for children, including 33% of paediatricians. Among the 70.6% who provided a reason for not recommending HBV vaccine, the most common concern was an adverse vaccine event. Unvaccinated physicians and nurses were more likely to recommend against HBV vaccine (40.4% vs 11.4%, PR 3.54; 95% CI: 2.38, 5.29. Additionally, health care worker age was inversely correlated with recommendations for HBV vaccine with older workers less likely to recommend it. Conclusion Vaccinating health care workers against HBV may provide a dual benefit by boosting occupational safety as well as strengthening universal coverage programs for newborns.

  8. The Infection Efficiency and Replication Ability of Circularized HBV DNA Optimized the Linear HBV DNA in Vitro and in Vivo

    Science.gov (United States)

    Li, Xiaosong; Zhu, Junke; Lai, Guoqi; Yan, Lei; Hu, Jieli; Chen, Juan; Tang, Ni; Huang, Ailong

    2015-01-01

    Studies on molecular mechanisms of the persist infection of hepatitis B virus have been hampered by a lack of a robust animal model. We successfully established a simple, versatile, and reproducible HBV persist infection model in vitro and in vivo with the circularized HBV DNA. The cells and mice were transfected or injected with circularized HBV DNA and pAAV/HBV1.2, respectively. At the indicated time, the cells, supernatants, serum samples, and liver tissues were collected for virological and serological detection. Both in vitro and in vivo, the circularized HBV DNA and pAAV/HBV1.2 could replicate and transcribe efficiently, but the infection effect of the former was superior to the latter (p HBV genome DNA into the mice robustly supported HBV infection and approximately 80% of HBV infected mice established persistent infection for at least 10 weeks. This study demonstrated that the infection efficiency and replication ability of the circularized structure of HBV DNA overmatched that of the expression plasmid containing the linear structure of HBV DNA in vitro and in vivo. Meanwhile, this research results could provide useful tools and methodology for further study of pathogenic mechanisms and potential antiviral treatments of human chronic HBV infection in vitro and in vivo. PMID:25751726

  9. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    International Nuclear Information System (INIS)

    Sun, Zhen; Xiang, Wenqing; Guo, Yajuan; Chen, Zhi; Liu, Wei; Lu, Daru

    2011-01-01

    Highlights: → LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. → LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. → LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  10. Inhibition of hepatitis B virus (HBV) by LNA-mediated nuclear interference with HBV DNA transcription

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zhen [The State Key Laboratory of Genetic Engineering and The MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200433 (China); Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Xiang, Wenqing; Guo, Yajuan [Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Chen, Zhi [The State Key Laboratory for Infectious Disease, Institute of Infectious Disease, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003 (China); Liu, Wei, E-mail: liuwei666@zju.edu.cn [Department of Biochemistry and Molecular Biology, Program in Molecular Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058 (China); Lu, Daru, E-mail: drlu@fudan.edu.cn [The State Key Laboratory of Genetic Engineering and The MOE Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200433 (China)

    2011-06-10

    Highlights: {yields} LNA-modified oligonucleotides can pass through the plasma membrane of cultured cells even without using transfection machinery. {yields} LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. {yields} LNA-oligonucleotide designed to target nuclear HBV DNA efficiently suppresses HBV replication and transcription in cultured hepatic cells. -- Abstract: Silencing target genes with small regulatory RNAs is widely used to investigate gene function and therapeutic drug development. Recently, triplex-based approaches have provided another attractive means to achieve targeted gene regulation and gene manipulation at the molecular and cellular levels. Nuclear entry of oligonucleotides and enhancement of their affinity to the DNA targets are key points of such approaches. In this study, we developed lipid-based transport of a locked-nucleic-acid (LNA)-modified oligonucleotide for hepatitis B virus (HBV) DNA interference in human hepatocytes expressing HBV genomic DNA. In these cells, the LNA-modified oligonucleotides passed efficiently across the cell membrane, and lipid-coating facilitated translocation from the cytoplasm to the nucleus. The oligonucleotide specifically targeting HBV DNA clearly interfered with HBV DNA transcription as shown by a block in pregenomic RNA (pgRNA) production. The HBV DNA-targeted oligonucleotide suppressed HBV DNA replication and HBV protein production more efficiently than small interfering RNAs directed to the pgRNA. These results demonstrate that fusion with lipid can carry LNA-modified oligonucleotides to the nucleus where they regulate gene expression. Interfering with HBV DNA transcription by LNA-modified oligonucleotides has strong potential as a new strategy for HBV inhibition.

  11. Serum ALT levels as a surrogate marker for serum HBV DNA levels in HBeAg-negative pregnant women.

    Science.gov (United States)

    Sangfelt, Per; Von Sydow, Madeleine; Uhnoo, Ingrid; Weiland, Ola; Lindh, Gudrun; Fischler, Björn; Lindgren, Susanne; Reichard, Olle

    2004-01-01

    In Stockholm, Sweden, the majority of pregnant women positive for hepatitis B surface antigen (HBsAg) are hepatitis Be antigen (HBeAg) negative. Newborns to HBeAg positive mothers receive vaccination and hepatitis B immunoglobulin (HBIg). Newborns to HBeAg negative mothers receive vaccine and HBIg only if the mothers have elevated ALT levels. The aim of this study was to retrospectively evaluate ALT levels as a surrogate marker for HBV DNA levels in HBeAg negative carrier mothers. Altogether 8947 pregnant women were screened for HBV markers from 1999 to 2001 at the Virology Department, Karolinska Hospital. Among mothers screened 192 tested positive for HBsAg (2.2%). 13 of these samples could not be retrieved. Of the remaining 179 sera, 8 (4%) tested positive for HBeAg and 171 (95.5%) were HBeAg negative. Among the HBeAg negative mothers, 9 had HBV DNA levels > 10(5) copies/ml, and of these 7 had normal ALT levels indicating low sensitivity of an elevated ALT level as a surrogate marker for high HBV DNA level. Furthermore, no correlation was found between ALT and HBV DNA levels. Hence, it is concluded that the use of ALT as a surrogate marker for high viral replication in HBeAg negative mothers could be questioned.

  12. Low occurrence of HBsAg but high frequency of transient occult HBV infection in vaccinated and HBIG-administered infants born to HBsAg positive mothers.

    Science.gov (United States)

    Zhou, Shan; Li, Tingting; Allain, Jean-Pierre; Zhou, Bin; Zhang, Yuming; Zhong, Mei; Fu, Yongshui; Li, Chengyao

    2017-12-01

    The status of chronic and occult HBV infection (OBI) in neonatal hepatitis B vaccine and immunoglobulin (HBIG) vaccinated infants born to HBsAg+ mothers was investigated at a major hospital in China. Seventy-seven and 15 blood samples were collected in first or second follow-up detection from the vaccinated babies aged 3-36 months born to 43 HBsAg+ or plus 25 HBeAg+ mothers. HBV infection was analyzed between the paired baby and mother by serology and DNA analysis. Among 77 children born to 68 HBsAg+ mothers, 3.9% (3/77) were HBsAg+, and 36.4% (28/77) were HBV DNA+/HBsAg- (OBIs) by a single PCR, respectively. Thirteen of 28 HBV DNA+/HBsAg- samples were conformed by two PCRs or S sequence, which accounted for 16.9% (13/77) of children. Three HBsAg+ and six OBIs were genotyped in consistent with their mother's HBV strains. Of 77 babies' blood samples, anti-HBs reactivity varied slightly according to age groups, while passively transmitted anti-HBc reactivity declined from 100% high reactivity at age 3-5 months to mostly negative at age ≥12 months. Babies with apparent OBI had higher levels of anti-HBc and lower levels of anti-HBs than those without OBI but all eight OBI babies with second follow-up samples became HBV DNA negative beyond 1 year of age. The vaccinated infants born to HBsAg+ mothers presented the low rate of HBsAg occurrence as vaccination failure and high frequency of viral persistence in the form of transient OBIs since no evidence of active HBV infection occurred beyond 1 year of age. © 2017 Wiley Periodicals, Inc.

  13. Prevalence of HBV and HBV vaccination coverage in health care workers of tertiary hospitals of Peshawar, Pakistan

    Directory of Open Access Journals (Sweden)

    Ali Ijaz

    2011-06-01

    Full Text Available Abstract Background Hepatitis B Virus (HBV may progress to serious consequences and increase dramatically beyond endemic dimensions that transmits to or from health care workers (HCWs during routine investigation in their work places. Basic aim of this study was to canvass the safety of HCWs and determine the prevalence of HBV and its possible association with occupational and non-occupational risk factors. Hepatitis B vaccination coverage level and main barriers to vaccination were also taken in account. Results A total of 824 health care workers were randomly selected from three major hospitals of Peshawar, Khyber Pakhtunkhwa. Blood samples were analyzed in Department of Zoology, Kohat University of Science and Technology Kohat, and relevant information was obtained by means of preset questionnaire. HCWs in the studied hospitals showed 2.18% prevalence of positive HBV. Nurses and technicians were more prone to occupational exposure and to HBV infection. There was significant difference between vaccinated and non-vaccinated HCWs as well as between the doctors and all other categories. Barriers to complete vaccination, in spite of good knowledge of subjects in this regard were work pressure (39.8%, negligence (38.8% un-affordability (20.9%, and unavailability (0.5%. Conclusions Special preventive measures (universal precaution and vaccination, which are fundamental way to protect HCW against HBV infection should be adopted.

  14. Evaluation of vaccination efficiency against HBV among Syrian multitransfused patients.

    Science.gov (United States)

    Yazji, Wadad; Habal, Wafaa; Menem, Fawza

    2018-03-05

    This cross-sectional study estimates HBV prevalence and evaluates vaccination efficiency among multitransfused patients. 159 patients with various hemoglobinopathies were tested for HBsAg, anti-HBs, and anti-HBc, using enzyme-linked immunosorbent assay (ELISA). The serological results were then compared with the relevant documentation in medical records. Seropositivity of HBV was detected in 1/8 of recruited patients. Serological immunity was found in only half of patients, while the other half were either infected or non-immune. The vaccination against HBV appeared inefficient in almost half of vaccinated patients and was not documented in the medical records of 1/6 of patients. Thus, multitransfused patients are at risk of acquiring hepatitis B infection. Applying prophylactic vaccination, documenting vaccine doses, and monitoring immune response are highly recommended.

  15. Serological and molecular epidemiological outcomes after two decades of universal infant hepatitis B virus (HBV) vaccination in Nunavut, Canada.

    Science.gov (United States)

    Huynh, Chris; Minuk, Gerald Y; Uhanova, Julia; Baikie, Maureen; Wong, Thomas; Osiowy, Carla

    2017-08-16

    Chronic hepatitis B virus (HBV) infection within the Canadian Arctic is considered endemic (>2% prevalence). Within the Arctic region of Nunavut, a vaccination program targeted at newborn infants was initiated approximately 20years ago, along with interim grade school catch-up programs, with the result that individuals born after 1980 are presumed vaccinated. This study investigates the effectiveness of these programs and is the first seroepidemiological survey to determine HBV prevalence in Nunavut in the post-vaccination era. Anonymized serum specimens scheduled for destruction following medical testing were collected between April 2013 and April 2014 from individuals granting consent. Specimens were tested for HBV antibodies, surface antigen (HBsAg), and HBV DNA to perform molecular characterization. Four thousand eight hundred and two specimens (13% of the population) were collected, with a resulting median age of 29years (range 1week to 93years). The prevalence of antibody to the HBV core protein was 9.4%; however, a 10-fold decrease in the rate of HBV exposure was noted among those born after 1980 compared to those born before (1.8% vs. 19.8%, pB5 (previously B6) was the most prevalent genotype observed (81.8%) indicating persistence of locally acquired infection. Vaccine-based antibody as the sole serological marker was evident in the vaccine age cohort, although the rate of decay with increasing age was much greater than predicted (less than 10% in those aged 5-19years). Nearly two decades after the advent of HBV vaccination in Nunavut, HBV prevalence has decreased to 1.2%, indicating non-endemic prevalence. However, the persistence of infection and a lower than expected prevalence of vaccine-based immunity in the vaccine age cohort will require further investigation to understand the causes and consequences. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Lamivudine monotherapy-based cART is efficacious for HBV treatment in HIV/HBV co-infection when baseline HBV DNA<20,000IU/ml

    Science.gov (United States)

    LI, Yijia; XIE, Jing; HAN, Yang; WANG, Huanling; ZHU, Ting; WANG, Nidan; LV, Wei; GUO, Fuping; QIU, Zhifeng; LI, Yanling; DU, Shanshan; SONG, Xiaojing; THIO, Chloe L; LI, Taisheng

    2016-01-01

    Background Although combination antiretroviral therapy (cART) including tenofovir (TDF)+lamivudine (3TC) or emtricitabine (FTC) is recommended for treatment of HIV/HBV co-infected patients, TDF is unavailable in some resource-limited areas. Some data suggest that 3TC monotherapy-based cART may be effective in patients with low pre-treatment HBV DNA. Methods Prospective study of 151 Chinese HIV/HBV co-infected subjects of whom 60 received 3TC-based cART and 91 received TDF+3TC-based cART. Factors associated with HBV DNA suppression at 24 and 48 weeks, including anti-HBV drugs, baseline HBV DNA, and baseline CD4 cell count, were evaluated overall and stratified by baseline HBV DNA using Poisson regression with a robust error variance. Results Baseline HBV DNA≥20,000 IU/ml was present in 48.3% and 44.0% of subjects in the 3TC and TDF groups, respectively (P=0.60). After 48 weeks of treatment, HBV DNA suppression rates were similar between these two groups (96.8% vs. 98.0% for 3TC and TDF+3TC, P>0.999) in subjects with baseline HBV DNAHBV DNA ≥20,000 IU/ml, TDF+3TC was associated with higher suppression rates (34.5% vs. 72.5% in 3TC and TDF+3TC groups, respectively, P=0.002). In stratified multivariate regression, TDF use (RR 1.98, P=0.010) and baseline HBV DNA (per 1 log increase in IU/ml, RR 0.74, PHBV DNA suppression only when baseline HBV DNA≥20,000IU/ml. Conclusion This study suggests that 3TC monotherapy-based cART is efficacious for HBV treatment through 48 weeks in HIV/HBV co-infection when baseline HBV DNA<20,000IU/ml. Studies with long-term follow-up are warranted to determine if this finding persists. PMID:26745828

  17. Fluorescence quantitative PCR in detection of HBV DNA

    International Nuclear Information System (INIS)

    Shen Zheng; Li Ming; Shen Xia

    2003-01-01

    Objective: To study the relationship between the serum content of HBV-DNA and expression of serological markers with HBV infection patients. Methods: Serum samples from 375 hepatitis B patients with different clinical status and 70 normal persons were quantitated for HBV-DNA by FQ-PCR. Results: The average of HBV-DNA contents in the patient in the groups of HBsAg (+) and of HBeAg(+) were significantly higher than those in the group of HBsAg(-) and of HBeAg(-). Even in the group of HBeAg negative, high HBV-DNA contents might still be present in both the HBeAg(+) and HBeAg(-) groups. Conclusion: FQ-PCR can be used to monitor the real state of HBV infection, replication and the course of disease

  18. Effectiveness of HBV vaccination in infants and prediction of HBV prevalence trend under new vaccination plan: findings of a large-scale investigation.

    Directory of Open Access Journals (Sweden)

    Shi-gui Yang

    Full Text Available BACKGROUND: Hepatitis B virus (HBV infection remains a severe public health problem. Investigating its prevalence and trends is essential to prevention. METHODS: To evaluate the effectiveness of HBV vaccination under the 1992 Intervention Program for infants and predicted HBV prevalence trends under the 2011 Program for all ages. We conducted a community-based investigation of 761,544 residents of 12 counties in Zhejiang Province selected according to their location, population density, and economic development. The HBV prevalence trends were predicted by a time-shifting approach. HBV surface antigen (HBsAg and alanine amino transferase (ALT were determined. RESULTS: Of the 761,544 persons screened for HBsAg, 54,132 were positive (adjusted carrier rate 6.13%; 9,455 had both elevated ALT and a positive HBsAg test (standardized rate 1.18%. The standardized HBsAg carrier rate for persons aged ≤20 years was 1.51%. Key factors influencing HBV infection were sex, age, family history, drinking, smoking, employment as a migrant worker, and occupation. With the vaccination program implemented in 2011, we predict that by 2020, the HBsAg carrier rate will be 5.27% and that for individuals aged ≤34 years will reach the 2% upper limit of low prevalence according to the WHO criteria, with a standardized rate of 1.86%. CONCLUSIONS: The national HBV vaccination program for infants implemented in 1992 has greatly reduced the prevalence of HBV infection. The 2011 program is likely to reduce HBV infection in Zhejiang Province to a low moderate prevalence, and perinatal transmission is expected to be controlled by 2020.

  19. Impact of HBV genotype and mutations on HBV DNA and qHBsAg levels in patients with HBeAg-negative chronic HBV infection.

    Science.gov (United States)

    Kuhnhenn, L; Jiang, B; Kubesch, A; Vermehren, J; Knop, V; Susser, S; Dietz, J; Carra, G; Finkelmeier, F; Grammatikos, G; Zeuzem, S; Sarrazin, C; Hildt, E; Peiffer, K-H

    2018-04-10

    HBV DNA and quantitative (q)HBsAg levels as prognostic markers for HBV-related disease are mostly validated in Asia and their significance in Western populations is uncertain. To analyse the impact of the HBV genotype and frequent mutations in precore (PC), basal core promoter (BCP) and preS on HBV DNA and qHBsAg levels. HBV DNA and qHBsAg serum levels of 465 patients with HBeAg-negative chronic HBV infection were correlated with the HBV genotype and mutations in PC, BCP and preS. For a detailed analysis of the molecular virology, genotype A2 genomes harbouring these mutations were analysed for replication efficacy and HBsAg release in cell culture. While no impact of the HBV genotype on HBV DNA levels was observed, qHBsAg levels differed up to 1.4 log among the genotypes (P HBV DNA levels (P HBV genome harbouring a preS deletion. In contrast, a perinuclear HBsAg accumulation was detected for the PC and BCP-variants, reflecting an impaired HBsAg release. qHBsAg serum levels depend on the HBV genotype and together with HBV DNA levels on frequent mutations in PC, BCP and preS in HBeAg-negative patients. qHBsAg cut-offs when used as prognostic markers require genotype-dependent validation. © 2018 John Wiley & Sons Ltd.

  20. Enrichment of Ly6Chi monocytes by multiple GM-CSF injections with HBV vaccine contributes to viral clearance in a HBV mouse model.

    Science.gov (United States)

    Zhao, Weidong; Zhou, Xian; Zhao, Gan; Lin, Qing; Wang, Xianzheng; Yu, Xueping; Wang, Bin

    2017-12-02

    Adjuvants are considered a necessary component for HBV therapeutic vaccines but few are licensed in clinical practice due to concerns about safety or efficiency. In our recent study, we established that a combination protocol of 3-day pretreatments with GM-CSF before a vaccination (3 × GM-CSF+VACCINE) into the same injection site could break immune tolerance and cause over 90% reduction of HBsAg level in the HBsAg transgenic mouse model. Herein, we further investigated the therapeutic potential of the combination in AAV8-1.3HBV-infected mice. After 4 vaccinations, both serum HBeAg and HBsAg were cleared and there was a 95% reduction of HBV-positive hepatocytes, in addition to the presence of large number of infiltrating CD8 + T cells in the livers. Mechanistically, the HBV-specific T-cell responses were elicited via a 3 × GM-CSF+VACCINE-induced conversion of CCR2-dependent CD11b + Ly6C hi monocytes into CD11b + CD11c + DCs. Experimental depletion of Ly6C hi monocytes resulted in a defective HBV-specific immune response thereby abrogating HBV eradication. This vaccination strategy could lead to development of an effective therapeutic protocol against chronic HBV in infected patients.

  1. A new model mimicking persistent HBV e antigen-negative infection using covalently closed circular DNA in immunocompetent mice.

    Directory of Open Access Journals (Sweden)

    Lei Wang

    Full Text Available Despite the availability of an effective vaccine, hepatitis B virus (HBV infection remains a major health problem. HBV e antigen (HBeAg-negative strains have become prevalent. Previously, no animal model mimicked the clinical course of HBeAg-negative HBV infection. To establish an HBeAg-negative HBV infection model, the 3.2-kb full-length genome of HBeAg-negative HBV was cloned from a clinical sample and then circularized to form covalently closed circular (cccDNA. The resulting cccDNA was introduced into the liver of C57BL/6J mice through hydrodynamic injection. Persistence of the HBeAg-negative infection was monitored at predetermined time points using HBV-specific markers including HBV surface antigen (HBsAg, HBeAg, and HBV core antigen (HBcAg as well as DNA copies. Throughout the study, pAAV-HBV1.2 was used as a control. In mice injected with HBeAg-negative cccDNA, the HBV infection rate was 100% at the initial stage. HBsAg levels increased up to 1 week, at which point levels peaked and dropped quickly thereafter. In 60% of injected mice, HBsAg and HBcAg persisted for more than 10 weeks. High numbers of HBV DNA copies were detected in the serum and liver. Moreover, cccDNA persisted in the liver tissue of HBeAg-negative mice. In contrast to the pAAV-HBV 1.2 injected mice, no HBeAg was found in mice injected with HBeAg-negative HBV throughout the study period. These results demonstrate the first successful establishment of a model of HBeAg-negative HBV-persistent infection in immunocompetent mice. Compared to pAAV-HBV1.2-injected mice, the infection persistence and levels of serum virological and biochemical markers were approximately equal in the model mice. This model will be useful for mechanistic studies on HBeAg-negative HBV infection and will facilitate the evaluation of new antiviral drugs.

  2. HBV DNA Integration: Molecular Mechanisms and Clinical Implications

    Science.gov (United States)

    Tu, Thomas; Budzinska, Magdalena A.; Shackel, Nicholas A.; Urban, Stephan

    2017-01-01

    Chronic infection with the Hepatitis B Virus (HBV) is a major cause of liver-related morbidity and mortality. One peculiar observation in cells infected with HBV (or with closely‑related animal hepadnaviruses) is the presence of viral DNA integration in the host cell genome, despite this form being a replicative dead-end for the virus. The frequent finding of somatic integration of viral DNA suggests an evolutionary benefit for the virus; however, the mechanism of integration, its functions, and the clinical implications remain unknown. Here we review the current body of knowledge of HBV DNA integration, with particular focus on the molecular mechanisms and its clinical implications (including the possible consequences of replication-independent antigen expression and its possible role in hepatocellular carcinoma). HBV DNA integration is likely to influence HBV replication, persistence, and pathogenesis, and so deserves greater attention in future studies. PMID:28394272

  3. Transmission of HBV DNA Mediated by Ceramide-Triggered Extracellular Vesicles.

    Science.gov (United States)

    Sanada, Takahiro; Hirata, Yuichi; Naito, Yutaka; Yamamoto, Naoki; Kikkawa, Yoshiaki; Ishida, Yuji; Yamasaki, Chihiro; Tateno, Chise; Ochiya, Takahiro; Kohara, Michinori

    2017-03-01

    An extracellular vesicle (EV) is a nanovesicle that shuttles proteins, nucleic acids, and lipids, thereby influencing cell behavior. A recent crop of reports have shown that EVs are involved in infectious biology, influencing host immunity and playing a role in the viral life cycle. In the present work, we investigated the EV-mediated transmission of hepatitis B virus (HBV) infection. We investigated the EV-mediated transmission of HBV infection by using a HBV infectious culture system that uses primary human hepatocytes derived from humanized chimeric mice (PXB-cells). Purified EVs were isolated by ultracentrifugation. To analyze the EVs and virions, we used stimulated emission depletion microscopy. Purified EVs from HBV-infected PXB-cells were shown to contain HBV DNA and to be capable of transmitting HBV DNA to naive PXB-cells. These HBV-DNA-transmitting EVs were shown to be generated through a ceramide-triggered EV production pathway. Furthermore, we showed that these HBV-DNA-transmitting EVs were resistant to antibody neutralization; stimulated emission depletion microscopy showed that EVs lacked hepatitis B surface antigen, the target of neutralizing antibodies. These findings suggest that EVs harbor a DNA cargo capable of transmitting viral DNA into hepatocytes during HBV infection, representing an additional antibody-neutralization-resistant route of HBV infection.

  4. Correlation of HBV DNA PCR and HBeAg in hepatitis carriers

    International Nuclear Information System (INIS)

    Hussain, A.B.; Karamat, K.A.; Kazmi, S.Y.; Anwar, M.; Tariq, W.Z.

    2004-01-01

    Objective: To correlate hepatitis B HBV DNA polymerase chain reaction (PCR) results with HBeAg and serum ala- nine transferase (ALT) in carriers. Materials and Methods: Fifty hepatitis B carriers, with known HBsAg positive serostatus, raised serum ALT and detectable HBV DNA, were selected out of the patients reporting at AFIP for their blood test for HBV DNA. HBV DNA testing in these cases was carried out using PCR kit of Accugen-USA. After confirmation of their carrier status and raised serum ALT levels, the sera were tested for HBeAg and results of HBeAg testing were correlated with those of HBV DNA testing. Results: Out of the total 50 HBV DNA PCR positive hepatitis B carriers, 48 samples were positive for HBeAg. All the 50 HBV DNA positive cases had raised serum ALT levels. Conclusion: In case of non-availability of facility for HBV PCR, detectable HBeAg should be taken as a surrogate marker for HBV DNA in hepatitis B carriers with raised serum ALT. (author)

  5. A cross-sectional sero-survey on preoperative HBV vaccination policy in Poland.

    Science.gov (United States)

    Ganczak, Maria; Korzen, Marcin; Jurewicz, Alina; Szych, Zbigniew

    2017-07-25

    A two-dose preoperative vaccination schedule against HBV has been the widely accepted policy in Poland. However, its effectiveness has not yet been assessed. To evaluate a two-dose preoperative HBV vaccination policy by an assessment of the proportion of patients who don't present a protective level of anti-HBs (HBV with a two-dose regimen, were asked to complete an anonymous questionnaire. Serum samples were assayed for anti-HBs with the use of third-generation testing methods. To compare sensitivity versus specificity across a range of values for the ability to predict a dichotomous outcome (a protection against HBV infection) a Receiver operating characteristic (ROC) curve was determined. There were 193 patients, 58.5% women, median age 52 years. Almost a half (46.0%) of the patients were operated on within 0-60 days of taking the second vaccine dose, 16.2% - 61-180 days after, 37.8% >180 days after. Anti-HBs titer was below a protective level in 49.2% of participants (0.0 mIU/ml in 17.8%, 0.1-9.9 mIU/ml in 31.4%); none of them were aware of this fact. Age ≤ 52 years (OR = 1.89) and having surgery more than 37.5 days after HBV vaccination (OR = 2.70) were associated with greater odds of being protected against HBV infection through vaccination. For the time frame between the second dose implementation and surgery 23 days, a sensitivity of 84% and specificity of 22% for obtaining protection against HBV infection was found, for the time frame >37.5 days - sensitivity remained high (80%), while specificity increased (41%); there was an apparent peek on the ROC curve between 38 and 60 day. In the group vaccinated 0-37.5 days before surgery, less patients had the protective level of anti-HBs titer than in vaccinated 38-60 days before surgery (32.3% vs 60.0%; p = 0.03). The success rate in achieving adequate immune protection with two dose HBV vaccination schedule in preoperatively vaccinated patients is relatively low, especially among those

  6. The relationship between HBcrAg and HBV reinfection in HBV related post-liver transplantation patients.

    Science.gov (United States)

    Urabe, Ayako; Imamura, Michio; Tsuge, Masataka; Kan, Hiromi; Fujino, Hatsue; Fukuhara, Takayuki; Masaki, Keiichi; Kobayashi, Tomoki; Ono, Atsushi; Nakahara, Takashi; Kawaoka, Tomokazu; Hiramatsu, Akira; Kawakami, Yoshiiku; Aikata, Hiroshi; Hayes, Clair Nelson; Maki, Noboru; Ohdan, Hideaki; Chayama, Kazuaki

    2017-03-01

    Post-transplant hepatitis B virus (HBV) reinfection is one of the major problems facing patients who undergo HBV-related liver transplantation (LT). We analyzed the clinical impact of serum hepatitis B core-related antigen (HBcrAg) on HBV reinfection in post-LT patients with HBV-related liver diseases. Serum hepatitis B surface antigen (HBsAg), HBV DNA, and HBcrAg were measured over time in 32 post-LT patients. Twenty-one out of 32 patients had HCC at LT. The effects of HBcrAg, hepatocellular carcinoma (HCC) recurrence, and HBs gene mutation on HBV reinfection and withdrawal from hepatitis B immune globulin (HBIG) were analyzed. Sixteen out of 32 patients (50 %) were positive for HBcrAg even though only six patients were thought to have experienced HBV reinfection based on reappearance of either HBV DNA or HBsAg during a median follow-up time of 75 months. Three of these six patients who became re-infected with HBV experienced HCC recurrence after LT. The HBV DNA reappearance rate was significantly higher in patients with HCC recurrence after LT (p HBV re-infected patients without HCC recurrence had HBs gene mutations G145R and G145A, respectively. Anti-HBs antibody development rate by HB vaccination was similar between HBcrAg-positive and negative patients (p = 0.325). HBV reinfection is more common than is usually considered based on conventional measurement of HBsAg and HBV DNA. HCC recurrence and mutations in the HBV S gene were associated with HBV reinfection after LT.

  7. Clinical cancer chemoprevention: From the hepatitis B virus (HBV vaccine to the human papillomavirus (HPV vaccine

    Directory of Open Access Journals (Sweden)

    Horng-Jyh Tsai

    2015-04-01

    Full Text Available Approximately 2 million new cancer cases are attributed to infectious agents each year worldwide. Vaccines for the hepatitis B virus (HBV, a risk factor of hepatocellular cancer, and human papillomavirus (HPV, a risk factor of cervical cancer, are considered major successes in clinical chemoprevention of cancer. In Taiwan, the first evidence of cancer prevention through vaccinations was provided by HBV vaccination data in infants. The Taiwanese HBV vaccination program has since become a model immunization schedule for newborns worldwide. Persistent infection with high-risk HPV is generally accepted as prerequisite for cervical cancer diagnosis; however, cervical cancer is a rare complication of HPV infections. This is due to the fact that such infections tend to be transient. The safety and efficacy of both available HPV quadrivalent vaccine and bivalent vaccine are not in doubt at the present time. Until a human cytomegalovirus (CMV vaccine becomes available, simple hygienic practices, such as hand washing, can prevent CMV infection both before and during pregnancy. Each country should establish her official guidelines regarding which vaccines should be used to treat various conditions, the target population (i.e., universal or limited to a selected population, and the immunization schedules. After a vaccine is recommended, decisions regarding reimbursement by the public health care fund are evaluated. The guidelines become part of the immunization schedule, which is updated annually and published in the official bulletin. In conclusion, both HBV and HPV vaccines are considered major successes in the chemoprevention of cancer.

  8. Acute hepatitis B caused by a vaccine-escape HBV strain in vaccinated subject: sequence analysis and therapeutic strategy.

    Science.gov (United States)

    Luongo, Monica; Critelli, Rosina; Grottola, Antonella; Gitto, Stefano; Bernabucci, Veronica; Bevini, Mirco; Vecchi, Chiara; Montagnani, Giuliano; Villa, Erica

    2015-01-01

    HBV vaccine contains the 'a' determinant region, the major immune-target of antibodies (anti-HBs). Failure of immunization may be caused by vaccine-induced or spontaneous 'a' determinant surface gene mutants. Here, we evaluate the possible lack of protection by HBV vaccine, describing the case of an acute hepatitis B diagnosed in a 55-year-old Caucasian male unpaid blood donor, vaccinated against HBV. Sequencing data for preS-S region revealed multiple point mutations. Of all the substitutions found, Q129H, located in the "a" determinant region of HBsAg, can alter antigenicity, leading to mutants. This mutant may cause vaccine failure especially when associated with high viremia of infecting source. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Economic evaluation of HBV vaccination: A systematic review of recent publications (2000-2013).

    Science.gov (United States)

    La Torre, Giuseppe; Mannocci, Alice; Saulle, Rosella; Colamesta, Vittoria; Meggiolaro, Angela; Mipatrini, Daniele; Sinopoli, Alessandra

    2016-09-01

    To conduct a systematic review of the economic evaluations (EE) of HBV vaccination, taking also into account the studies published in the new millennium. An extensive scientific literature review was conducted using two electronic medical journal databases: Scopus and PubMed engines for published studies on EE of HBV vaccination. 22 articles were reviewed, 9, 5 and 8 cost-effectiveness, cost-benefit and cost-utility analysis, respectively. Studies were mainly concerning EE of universal vaccination (UV), mostly with regards to low or low-medium income countries. For high income countries, EE were focused on the possible implementation of HBV vaccination in particular settings, such as diabetic, renal and other chronic conditions care, as well as infectious diseasesUV has usually a very good cost-effectiveness ratio (80%), ranging from cost-saving (China) or few Euro per LY/QALY gained (in Thailand, and Vietnam) to 630.00$/QALY in USA (Asian and Pacific Islands) Moreover, EE of HBV vaccination are favorable in the infectious diseases field as well as for chronic conditions. In relation to diabetes the studies gave controversial results. This systematic review highlighted the importance of introducing HBV vaccination not only for infant UV program but also for other settings in which patients are people affected by communicable and non-communicable diseases.

  10. Labelling of HBV-DNA probe using reagent made in China

    International Nuclear Information System (INIS)

    Wang Quanshi

    1991-01-01

    The labelling hepatitis Bvirus DNA (HBV-DNA) probe was studied by using reagent made in China. The results showed that: (1) The dNTPs with high specific activity was necessary for the labelling of nigh specific activity HBV-DNA probe; (2) reaction of labelling HBV-DNA probe was completed in a few minutes; (3) 0.37 MBq 3 H dTTP (specific activity 1.554TBq/mmol) was enough to label 1 μg HBV-DNA and the specific activity of probe reached 3.4 x 10 cpm/μg; (4) 7 MBqα- 32 P dATP (specific activity > 111 TBq/mmol) can label HBV-DNA probe to specific activity 1.35 x 10 cpm/μg. It was concluded that the reagent made in China can be used for the study in molecular biology

  11. Primary and booster vaccination in Latin American children with a DTPw-HBV/Hib combination: a randomized controlled trial.

    Science.gov (United States)

    Espinoza, Felix; Tregnaghi, Miguel; Gentile, Angela; Abarca, Katia; Casellas, Javier; Collard, Alix; Lefevre, Inge; Jacquet, Jeanne-Marie

    2010-10-15

    Diphtheria-tetanus-whole-cell pertussis (DTPw)-based combination vaccines are an attractive option to rapidly achieve high coverage and protection against other important pathogens, such as hepatitis B virus (HBV) and Haemophilus influenzae type B (Hib). To ensure adequate antigen supply, GlaxoSmithKline Biologicals has introduced a new DTPw antigen source and developed a new DTPw-HBV/Hib combination vaccine containing a reduced amount of Hib polyribosylribitol phosphate (PRP). This study was undertaken to compare the immunogenicity and reactogenicity of this new DTPw-HBV/Hib vaccine with a licensed DTPw-HBV/Hib vaccine (Tritanrix™-HBV/Hib). This was a randomized, partially-blind, multicenter study in three countries in Latin America (Argentina, Chile and Nicaragua). Healthy children received either the new DTPw-HBV/Hib vaccine (1 of 3 lots; n = 439; double-blind) or Tritanrix™-HBV/Hib (n = 146; single-blind) co-administered with oral poliovirus vaccine (OPV) at 2, 4 and 6 months, with a booster dose at 18-24 months. One month after the end of the 3-dose primary vaccination course, the new DTPw-HBV/Hib vaccine was non-inferior to Tritanrix™-HBV/Hib in terms of seroprotection/vaccine response rates for all component antigens; ≥97.3% and ≥93.9% of subjects in the two groups, respectively, had seroprotective levels of antibodies against diphtheria, tetanus, hepatitis B and Hib and a vaccine response to the pertussis component. Persistence of antibodies against all vaccine antigens was comparable between groups, with marked increases in all antibody concentrations after booster administration in both groups. Both vaccines were generally well-tolerated as primary and booster doses. Results confirm the suitability of this new DTPw-HBV/Hib vaccine comprising antigens from a new source and a reduced PRP content for inclusion into routine childhood vaccination programs. http://www.clinicaltrials.gov NCT00332566.

  12. Establishment of Cre-mediated HBV recombinant cccDNA (rcccDNA) cell line for cccDNA biology and antiviral screening assays.

    Science.gov (United States)

    Wu, Min; Li, Jin; Yue, Lei; Bai, Lu; Li, Yaming; Chen, Jieliang; Zhang, Xiaonan; Yuan, Zhenghong

    2018-04-01

    Hepatitis B virus (HBV) covalently closed circular DNA (cccDNA), existing in hepatocyte nuclei as a stable minichromosome, plays a central role in the life cycle of the virus and permits the persistence of infection. Despite being essential for HBV infection, little is known about the molecular mechanisms of cccDNA formation, regulation and degradation, and there is no therapeutic agents directly targeting cccDNA, fore mostly due to the lack of robust, reliable and quantifiable HBV cccDNA models. In this study, combined the Cre/loxP and sleeping beauty transposons system, we established HepG2-derived cell lines integrated with 2-60 copies of monomeric HBV genome flanked by loxP sites (HepG2-HBV/loxP). After Cre expression via adenoviral transduction, 3.3-kb recombinant cccDNA (rcccDNA) bearing a chimeric intron can be produced in the nuclei of these HepG2-HBV/loxP cells. The rcccDNA could be accurately quantified by quantitative PCR using specific primers and cccDNA pool generated in this model could be easily detected by Southern blotting using the digoxigenin probe system. We demonstrated that the rcccDNA was epigenetically organized as the natural minichromosome and served as the template supporting pgRNA transcription and viral replication. As the expression of HBV S antigen (HBsAg) is dependent on the newly generated cccDNA, HBsAg is the surrogate marker of cccDNA. Additionally, the efficacies of 3 classes of anti-HBV agents were evaluated in HepG2-HBV/loxP cells and antiviral activities with different mechanisms were confirmed. These data collectively suggested that HepG2-HBV/loxP cell system will be powerful platform for studying cccDNA related biological mechanisms and developing novel cccDNA targeting drugs. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Quantification of intrahepatic total HBV DNA in liver biopsies of HBV-infected patients by a modified version of COBAS® Ampliprep/COBAS®TaqMan HBV test v2.0.

    Science.gov (United States)

    Salpini, Romina; Piermatteo, Lorenzo; Gill, Upkar; Battisti, Arianna; Stazi, Francesca; Guenci, Tania; Giannella, Sara; Serafini, Valentina; Kennedy, Patrick T F; Perno, Carlo Federico; Svicher, Valentina; Ciotti, Marco

    2017-08-01

    Intrahepatic total HBV DNA (it-HBV DNA) level might reflect the size of virus reservoir and correlate with the histological status of the liver. To quantitate it-HBV DNA in a series of 70 liver biopsies obtained from hepatitis B chronic patients, a modified version of the COBAS ® Ampliprep/COBAS ® TaqMan HBV test v2.0 was used for this purpose. The linearity and reproducibility of the modified protocol was tested by quantifying serial dilutions of a full-length HBV containing plasmid and it-HBV DNA from a reference patient. A good linear trend between the expected values and those generated by the assay was observed at different concentrations of both plasmid and reference patient (R 2  = 0.994 and 0.962, respectively). Differences between the values obtained in two independent runs were ≤0.3 log IU for the plasmid and ≤0.6 log IU/mg for the reference patient, showing a high inter-run reproducibility. In the 70 liver biopsies, it-HBV DNA level ranged from 1.4 to 5.4 log IU/mg, with a good linearity and reproducibility between the values obtained in two runs [R 2  = 0.981; median (IQR) difference of it-HBV DNA 0.05 (0.02-0.09) IU/mg]. The modified COBAS ® Ampliprep/COBAS ® TaqMan HBV test v2.0 allows an accurate quantitation of it-HBV DNA. Its determination may have prognostic value and may be a useful tool for the new therapeutic strategies aimed at eradicating the HBV infection.

  14. Primary and booster vaccination in Latin American children with a DTPw-HBV/Hib combination: a randomized controlled trial

    Directory of Open Access Journals (Sweden)

    Collard Alix

    2010-10-01

    Full Text Available Abstract Background Diphtheria-tetanus-whole-cell pertussis (DTPw-based combination vaccines are an attractive option to rapidly achieve high coverage and protection against other important pathogens, such as hepatitis B virus (HBV and Haemophilus influenzae type B (Hib. To ensure adequate antigen supply, GlaxoSmithKline Biologicals has introduced a new DTPw antigen source and developed a new DTPw-HBV/Hib combination vaccine containing a reduced amount of Hib polyribosylribitol phosphate (PRP. This study was undertaken to compare the immunogenicity and reactogenicity of this new DTPw-HBV/Hib vaccine with a licensed DTPw-HBV/Hib vaccine (Tritanrix™-HBV/Hib. Methods This was a randomized, partially-blind, multicenter study in three countries in Latin America (Argentina, Chile and Nicaragua. Healthy children received either the new DTPw-HBV/Hib vaccine (1 of 3 lots; n = 439; double-blind or Tritanrix™-HBV/Hib (n = 146; single-blind co-administered with oral poliovirus vaccine (OPV at 2, 4 and 6 months, with a booster dose at 18-24 months. Results One month after the end of the 3-dose primary vaccination course, the new DTPw-HBV/Hib vaccine was non-inferior to Tritanrix™-HBV/Hib in terms of seroprotection/vaccine response rates for all component antigens; ≥97.3% and ≥93.9% of subjects in the two groups, respectively, had seroprotective levels of antibodies against diphtheria, tetanus, hepatitis B and Hib and a vaccine response to the pertussis component. Persistence of antibodies against all vaccine antigens was comparable between groups, with marked increases in all antibody concentrations after booster administration in both groups. Both vaccines were generally well-tolerated as primary and booster doses. Conclusions Results confirm the suitability of this new DTPw-HBV/Hib vaccine comprising antigens from a new source and a reduced PRP content for inclusion into routine childhood vaccination programs. Trial registration http

  15. DNA immunization with fusion of CTLA-4 to hepatitis B virus (HBV core protein enhanced Th2 type responses and cleared HBV with an accelerated kinetic.

    Directory of Open Access Journals (Sweden)

    Ying Yin

    Full Text Available BACKGROUND: Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4 primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV clearance. PRINCIPAL FINDINGS: Plasmids expressing HBV core protein (HBcAg or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc, CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI of pAAV/HBV1.2. HBV surface antigen (HBsAg and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance. CONCLUSION: Viral clearance could be efficiently achieved by Th1/Th2-balanced

  16. Hepatitis B virus (HBV) DNA levels and the management of HBV-infected health care workers

    NARCIS (Netherlands)

    van der Eijk, A A; de Man, R A; Niesters, H G M; Schalm, S W; Zaaijer, H L

    Different guidelines exist for the management of hepatitis B virus (HBV)-infected health care workers (HCWs). Various HBV DNA levels are used as a cutoff level to determine whether an HBV-infected HCW is allowed to perform exposure-prone procedures (EPPs) or not. In this paper we discuss the factors

  17. Hepatitis B virus (HBV) DNA levels and the management of HBV-infected health care workers

    NARCIS (Netherlands)

    van der Eijk, A. A.; de Man, R. A.; Niesters, H. G. M.; Schalm, S. W.; Zaaijer, H. L.

    2006-01-01

    Different guidelines exist for the management of hepatitis B virus (HBV)-infected health care workers (HCWs). Various HBV DNA levels are used as a cutoff level to determine whether an HBV-infected HCW is allowed to perform exposure-prone procedures (EPPs) or not. In this paper we discuss the factors

  18. Anti-sense expression of a metallopeptidase gene enhances nuclear entry of HBV-DNA

    International Nuclear Information System (INIS)

    Yeh, C.-T.; Lai, H.-Y.; Chu, S.-P.; Tseng, I-Chu

    2004-01-01

    Although several putative hepatitis B virus (HBV) receptors have been identified, none of them is capable of initiating HBV replication in a non-permissive human cell line. Using an Epstein-Barr virus-based extrachromosomal replication system, we have screened through a human liver cDNA library and successfully identified a clone capable of facilitating nuclear transport of HBV-DNA during the early phase of HBV infection. This clone contained a cDNA encoding a metallopeptidase-like protein in anti-sense orientation. Pretreatment of naive HepG2 cells with 1,10-phenanthroline, an inhibitor for liver metallopeptidases, led to nuclear entry of HBV-DNA after HBV infection. However, cccDNA was still undetectable in the nuclei, indicating other cellular factors required to complete the replication cycle were still missing. Our present data suggest that in the initial stage of HBV infection, liver metallopeptidase constitutes a barrier for effective nuclear entry of HBV genomic DNA. Attenuation of metallopeptidase activity may facilitate HBV infection

  19. Combined DTP-HBV-HIB vaccine versus separately administered DTP-HBV and HIB vaccines for primary prevention of diphtheria, tetanus, pertussis, hepatitis B and Haemophilus influenzae B (HIB).

    Science.gov (United States)

    Bar-On, Edna S; Goldberg, Elad; Hellmann, Sarah; Leibovici, Leonard

    2012-04-18

    Advantages to combining childhood vaccines include reducing the number of visits, injections and patient discomfort, increasing compliance and optimising prevention. The World Health Organization (WHO) recommends that routine infant immunisation programmes include a vaccination against Haemophilus influenzae (H. influenzae) type B (HIB) in the combined diphtheria-tetanus-pertussis (DTP)-hepatitis B virus (HBV) vaccination. The effectiveness and safety of the combined vaccine should be carefully and systematically assessed to ensure its acceptability by the community. To compare the effectiveness of combined DTP-HBV-HIB vaccines versus combined DTP-HBV and separate HIB vaccinations. We searched the Cochrane Central Register of Controlled Trials (CENTRAL) (The Cochrane Library 2011, Issue 4), which contains the Cochrane Acute Respiratory Infections Group's Specialised Register, MEDLINE (January 1966 to week 1, November 2011), EMBASE (January 1990 to November 2011) and www.clinicaltrials.gov (up to April 2011). Randomised controlled trials (RCTs) or quasi-RCTs comparing vaccination with any combined DTP-HBV-HIB vaccine, with or without three types of inactivated polio virus (IPV) or concomitant oral polio vaccine (OPV) in any dose, preparation or time schedule, compared with separate vaccines or placebo, administered to infants up to two years old. Two review authors independently inspected references identified by the searches and evaluated them against the inclusion criteria, extracted data and assessed the methodological quality of included trials. Data for the primary outcome (prevention of disease) were lacking. We performed a meta-analysis to pool the results of 20 studies with 5874 participants in an immunogenicity analysis and 5232 participants in the reactogenicity analysis. There were no data on clinical outcomes for the primary outcome (prevention of disease) and all studies used immunogenicity and reactogenicity (adverse events). The number of vaccine

  20. Specific mutations in the C-terminus domain of HBV surface antigen significantly correlate with low level of serum HBV-DNA in patients with chronic HBV infection

    NARCIS (Netherlands)

    Mirabelli, Carmen; Surdo, Matteo; van Hemert, Formijn; Lian, Zhichao; Salpini, Romina; Cento, Valeria; Cortese, Maria Francesca; Aragri, Marianna; Pollicita, Michela; Alteri, Claudia; Bertoli, Ada; Berkhout, Ben; Micheli, Valeria; Gubertini, Guido; Santoro, Maria Mercedes; Romano, Sara; Visca, Michela; Bernassola, Martina; Longo, Roberta; de Sanctis, Giuseppe Maria; Trimoulet, Pascal; Fleury, Hervè; Marino, Nicoletta; Mazzotta, Francesco; Cappiello, Giuseppina; Spanò, Alberto; Sarrecchia, Cesare; Zhang, Jing Maria; Andreoni, Massimo; Angelico, Mario; Verheyen, Jens; Perno, Carlo Federico; Svicher, Valentina

    2015-01-01

    Background: To define HBsAg-mutations correlated with different serum HBV-DNA levels in HBV chronically-infected drug-naive patients. Methods: This study included 187 patients stratified into the following ranges of serum HBV-DNA: 12-2000 IU/ml, 2000-100,000 IU/ml, and > 100,000 IU/ml.

  1. Transmission of HBV DNA Mediated by Ceramide-Triggered Extracellular VesiclesSummary

    Directory of Open Access Journals (Sweden)

    Takahiro Sanada

    2017-03-01

    Full Text Available Background & Aims: An extracellular vesicle (EV is a nanovesicle that shuttles proteins, nucleic acids, and lipids, thereby influencing cell behavior. A recent crop of reports have shown that EVs are involved in infectious biology, influencing host immunity and playing a role in the viral life cycle. In the present work, we investigated the EV-mediated transmission of hepatitis B virus (HBV infection. Methods: We investigated the EV-mediated transmission of HBV infection by using a HBV infectious culture system that uses primary human hepatocytes derived from humanized chimeric mice (PXB-cells. Purified EVs were isolated by ultracentrifugation. To analyze the EVs and virions, we used stimulated emission depletion microscopy. Results: Purified EVs from HBV-infected PXB-cells were shown to contain HBV DNA and to be capable of transmitting HBV DNA to naive PXB-cells. These HBV-DNA–transmitting EVs were shown to be generated through a ceramide-triggered EV production pathway. Furthermore, we showed that these HBV-DNA–transmitting EVs were resistant to antibody neutralization; stimulated emission depletion microscopy showed that EVs lacked hepatitis B surface antigen, the target of neutralizing antibodies. Conclusions: These findings suggest that EVs harbor a DNA cargo capable of transmitting viral DNA into hepatocytes during HBV infection, representing an additional antibody-neutralization–resistant route of HBV infection. Keywords: HBV, Extracellular Vesicles, Transmission Pathway

  2. Study of Preoperative Antiviral Treatment of Patients with HCC Negative for HBV-DNA.

    Science.gov (United States)

    Liu, Xiao-Fang; Zhang, Tong; Tang, Kun; Sui, Lu-Lu; Xu, Gang; Liu, Qiang

    2017-08-01

    To study preoperative HBV-DNA negative HBV-related hepatocellular carcinoma (HCC) which was reactivated after surgery and could influence liver function and HCC recurrence. Patients were divided into two groups according to preoperative antiviral therapy status. The control group comprised of 102 preoperative HBV-DNA-negative patients who had not undergone antiviral therapy before surgery. In the treatment group, all HBV-DNA-negative patients (n=63) received entecavir 3-5 days before surgery and for 12 months after surgery. Patients were followed-up regularly, during the preoperative period, and at 1, 3, 6, 12, 18, 24, 30 and 36 months postoperatively. The data for the two groups were analyzed including the level of HBV-DNA and HBV-DNA activation; liver function; 1-, 2- and 3-year survival rate; cumulative survival time; and tumor recurrence. Liver function in the treatment group was better than that of the control group12 months after surgery. Compared to the control group, total bilirubin in the treatment group was significantly better at 6 and 12 months after surgery (pHBV-DNA activation while there were 13 cases (12.75%) with HBV-DNA activation in the control group (pHBV-related HCC with negative HBV-DNA is beneficial to liver function, coagulation function, disease control, prevention of tumor recurrence, improvement of patient quality of life, reduces the death rate and prolongs survival duration. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  3. Elimination of immunodominant epitopes from multispecific DNA-based vaccines allows induction of CD8 T cells that have a striking antiviral potential

    DEFF Research Database (Denmark)

    Riedl, Petra; Wieland, Andreas; Lamberth, Kasper

    2009-01-01

    Immunodominance limits the TCR diversity of specific antiviral CD8 T cell responses elicited by vaccination or infection. To prime multispecific T cell responses, we constructed DNA vaccines that coexpress chimeric, multidomain Ags (with CD8 T cell-defined epitopes of the hepatitis B virus (HBV...... cell immunity by multidomain Ags. The "weak" (i.e., easily suppressed) K(b)/C(93-100)-specific CD8 T cell response was efficiently elicited by a HBV core Ag-encoding vector in 1.4HBV-S(mut) tg mice (that harbor a replicating HBV genome that produces HBV surface, core, and precore Ag in the liver). K......(b)/C(93-100)-specific CD8 T cells accumulated in the liver of vaccinated 1.4HBV-S(mut) transgenic mice where they suppressed HBV replication. Subdominant epitopes in vaccines can hence prime specific CD8 T cell immunity in a tolerogenic milieu that delivers specific antiviral effects to HBV...

  4. Gene Therapy for Chronic HBV-Can We Eliminate cccDNA?

    Science.gov (United States)

    Bloom, Kristie; Maepa, Mohube Betty; Ely, Abdullah; Arbuthnot, Patrick

    2018-04-12

    Chronic infection with the hepatitis B virus (HBV) is a global health concern and accounts for approximately 1 million deaths annually. Amongst other limitations of current anti-HBV treatment, failure to eliminate the viral covalently closed circular DNA (cccDNA) and emergence of resistance remain the most worrisome. Viral rebound from latent episomal cccDNA reservoirs occurs following cessation of therapy, patient non-compliance, or the development of escape mutants. Simultaneous viral co-infections, such as by HIV-1, further complicate therapeutic interventions. These challenges have prompted development of novel targeted hepatitis B therapies. Given the ease with which highly specific and potent nucleic acid therapeutics can be rationally designed, gene therapy has generated interest for antiviral application. Gene therapy strategies developed for HBV include gene silencing by harnessing RNA interference, transcriptional inhibition through epigenetic modification of target DNA, genome editing by designer nucleases, and immune modulation with cytokines. DNA-binding domains and effectors based on the zinc finger (ZF), transcription activator-like effector (TALE), and clustered regularly interspaced short palindromic repeat (CRISPR) systems are remarkably well suited to targeting episomal cccDNA. This review discusses recent developments and challenges facing the field of anti-HBV gene therapy, its potential curative significance and the progress towards clinical application.

  5. Performance of the cobas Hepatitis B virus (HBV) test using the cobas 4800 system and comparison of HBV DNA quantification ability between the COBAS AmpliPrep/COBAS TaqMan HBV test version 2.0 and cobas HBV test.

    Science.gov (United States)

    Shin, Kyung-Hwa; Lee, Hyun-Ji; Chang, Chulhun L; Kim, Hyung-Hoi

    2018-04-01

    Hepatitis B virus (HBV) DNA levels are used to predict the response to therapy, determine therapy initiation, monitor resistance to therapy, and establish treatment success. To verify the performance of the cobas HBV test using the cobas 4800 system for HBV DNA quantification and to compare the HBV DNA quantification ability between the cobas HBV test and COBAS AmpliPrep/COBAS TaqMan HBV version 2.0 (CAP/CTM v2.0). The precision, linearity, and limit of detection of the cobas HBV test were evaluated using the 4th World Health Organization International Standard material and plasma samples. Clinical samples that yielded quantitative results using the CAP/CTM v2.0 and cobas HBV tests were subjected to correlational analysis. Three hundred forty-nine samples were subjected to correlational analysis, among which 114 samples showed results above the lower limit of quantification. Comparable results were obtained ([cobas HBV test] = 1.038 × [CAP/CTM v2.0]-0.173, r = 0.914) in 114 samples, which yielded values above the lower limit of quantification. The results for 86.8% of the samples obtained using the cobas HBV test were within 0.5 log 10 IU/mL of the CAP/CTM v2.0 results. The total precision values against the low and high positive controls were 1.4% (mean level: 2.25 log 10 IU/mL) and 3.2% (mean level: 6.23 log 10 IU/mL), respectively. The cobas HBV test demonstrated linearity (1.15-6.75 log 10 IU/mL, y = 0.95 × 6 + 0.17, r 2  = 0.994). The cobas HBV test showed good correlation with CAP/CTM v2.0, and had good precision and an acceptable limit of detection. The cobas HBV test using the cobas 4800 is a reliable method for quantifying HBV DNA levels in the clinical setting. Copyright © 2018. Published by Elsevier B.V.

  6. Impact of HBV replication in peripheral blood mononuclear cell on HBV intrauterine transmission.

    Science.gov (United States)

    Shi, Xiaohong; Wang, Xuefei; Xu, Xixi; Feng, Yongliang; Li, Shuzhen; Feng, Shuying; Wang, Bo; Wang, Suping

    2017-12-01

    This study determined the effect of hepatitis B virus (HBV) replication in peripheral blood mononuclear cell (PBMC) from HBsAg-positive mothers on HBV intrauterine transmission. A total of 150 HBsAg-positive mothers and their neonates were recruited in this study. Within 24 h after birth, HBV serological markers, serum HBV DNA, PBMC HBV relaxed circular DNA (rcDNA), and covalently closed circular DNA (cccDNA) were measured in the HBsAg-positive mothers and their neonates before passive-active immune prophylaxis. The relationship between HBV replication in PBMC and HBV intrauterine transmission was examined through Chisquare test and logistic regression. The rate of HBV intrauterine transmission was 8.00% (12/150) in the 150 neonates born to HBsAg-positive mothers. The positivities of PBMC HBV rcDNA and cccDNA in the HBsAg-positive mothers were 36.67% (55/150) and 10% (15/150), respectively. Maternal PBMC HBV cccDNA was a risk factor of HBV intrauterine transmission (OR = 6.003, 95% CI: 1.249-28.855). Maternal serum HBeAg was a risk factor of PBMC HBV rcDNA (OR = 3.896, 95% CI: 1.929-7.876) and PBMC HBV cccDNA (OR = 3.74, 95% CI: 1.186-11.793) in the HBsAg-positive mothers. Administration of hepatitis B immune globulin was a protective factor of PBMC HBV cccDNA (OR = 0.312, 95%CI: 0.102-0.954) during pregnancy. The positivity of PBMC HBV rcDNA was related to that of cccDNA in the HBsAg-positive mothers (χ 2 = 5.087, P = 0.024). This study suggests that PBMC is a reservoir of HBV and an extrahepatic site for virus replication and plays a critical role in HBV intrauterine transmission.

  7. Clinical patterns associated with the concurrent detection of anti-HBs and HBV DNA.

    Science.gov (United States)

    Anastasiou, Olympia E; Widera, Marek; Korth, Johannes; Kefalakes, Helenie; Katsounas, Antonios; Hilgard, Gudrun; Gerken, Guido; Canbay, Ali; Ciesek, Sandra; Verheyen, Jens

    2018-02-01

    Simultaneous detection of anti-HBs and HBV DNA is a rare serological combination and has been described in acute and chronic HBV infection. To scrutinize viral and clinical patterns associated with concurrent detection of anti-HBs and HBV DNA. Simultaneous detection of anti-HBs and HBV DNA was observed in 64/1444 (4.4%) patients treated for HBV infection at the University Hospital of Essen from 2006 to 2016 (8 with acute, 20 with reactivated, and 36 chronic HBV infection). Clinical data and laboratory parameters were analyzed. Regions of the small hepatitis B surface antigen (SHB) and the reverse transcriptase (RT) were sequenced using next generation sequencing (NGS). Among the 64 patients with detectable HBV DNA and anti-HBs, 17 were HBsAg negative (HBsAg[-]), and two had acute liver failure. Patients with acute HBV infection had fewer genotype specific amino acid substitutions in the SHB region than patients with reactivated HBV infection (4 [4.5] vs 9 [16.25], P = 0.043). However, we could observe a significantly higher number of mutations in the a-determinant region when comparing chronically infected patients to patients with acute infection (0 [1] vs 1 [1], P = 0.044). The ratio of nonsynonymous to synonymous mutations (Ka/Ks) was on average >1 for the SHB region and 1) in the SHB region indicates that anti-HBs might have exerted selection pressure on the HBsAg. In three cases the diagnosis of acute HBV infection would have been at least delayed by only focusing on HBsAg testing. © 2017 Wiley Periodicals, Inc.

  8. Booster HBV vaccination; is it really necessary? | Alavian | Egyptian ...

    African Journals Online (AJOL)

    Egyptian Journal of Pediatric Allergy and Immunology (The). Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 9, No 2 (2011) >. Log in or Register to get access to full text downloads. Username, Password, Remember me, or Register. Booster HBV vaccination; is it ...

  9. The detection of HBV DNA with gold-coated iron oxide nanoparticle gene probes

    International Nuclear Information System (INIS)

    Xi Dong; Luo Xiaoping; Lu Qianghua; Yao Kailun; Liu Zuli; Ning Qin

    2008-01-01

    Gold-coated iron oxide nanoparticle Hepatitis B virus (HBV) DNA probes were prepared, and their application for HBV DNA measurement was studied. Gold-coated iron oxide nanoparticles were prepared by the citrate reduction of tetra-chloroauric acid in the presence of iron oxide nanoparticles which were added as seeds. With a fluorescence-based method, the maximal surface coverage of hexaethiol 30-mer oligonucleotides and the maximal percentage of hybridization strands on gold-coated iron oxide nanoparticles were (120 ± 8) oligonucleotides per nanoparticle, and (14 ± 2%), respectively, which were comparable with those of (132 ± 10) and (22 ± 3%) in Au nanoparticle groups. Large network aggregates were formed when gold-coated iron oxide nanoparticle HBV DNA gene probe was applied to detect HBV DNA molecules as evidenced by transmission electron microscopy and the high specificity was verified by blot hybridization. Our results further suggested that detecting DNA with iron oxide nanoparticles and magnetic separator was feasible and might be an alternative effective method

  10. Usefulness of in-house real time PCR for HBV DNA quantification in serum and oral fluid samples.

    Science.gov (United States)

    Portilho, Moyra Machado; Mendonça, Ana Carolina da Fonseca; Bezerra, Cristianne Sousa; do Espirito-Santo, Márcia Paschoal; de Paula, Vanessa Salete; Nabuco, Leticia Cancella; Villela-Nogueira, Cristiane Alves; Lewis-Ximenez, Lia Laura; Lampe, Elisabeth; Villar, Livia Melo

    2018-06-01

    For quantification of hepatitis B virus DNA (HBV DNA), commercial assays are used with serum or plasma samples, but oral fluid samples could be an alternative for HBV diagnosis due to ease of collection. This study aims to develop in-house real time PCR using synthetic curve for HBV DNA quantification for serum and oral fluid samples. Samples were collected from 103 individuals (55 HBsAg reactive and HBV DNA reactive by commercial assay and 48 without HBV markers) and submitted to two in-house real time PCR assays for HBV pre-S/S region with different standard curves: qPCR plasmidial and qPCR synthetic. A total of 27 serum samples were HBV DNA positive by qPCR plasmidial and 40 with qPCR synthetic (72% and 85% of concordance, respectively). Quantitative PCR synthetic presented efficiency of 99% and sensitivity of 2log10 copies/mL. Among oral fluid samples, five and ten were detected using qPCR plasmidial and synthetic, respectively. This study demonstrated that qPCR synthetic using serum samples could be used as alternative for HBV DNA quantification due to its sensitivity. In addition, it was possible to quantify HBV DNA in oral fluid samples suggesting the potential of this specimen for molecular diagnosis of HBV. Copyright © 2018 Elsevier B.V. All rights reserved.

  11. Identifying the Genotypes of Hepatitis B Virus (HBV) with DNA Origami Label.

    Science.gov (United States)

    Liu, Ke; Pan, Dun; Wen, Yanqin; Zhang, Honglu; Chao, Jie; Wang, Lihua; Song, Shiping; Fan, Chunhai; Shi, Yongyong

    2018-02-01

    The hepatitis B virus (HBV) genotyping may profoundly affect the accurate diagnosis and antiviral treatment of viral hepatitis. Existing genotyping methods such as serological, immunological, or molecular testing are still suffered from substandard specificity and low sensitivity in laboratory or clinical application. In a previous study, a set of high-efficiency hybridizable DNA origami-based shape ID probes to target the templates through which genetic variation could be determined in an ultrahigh resolution of atomic force microscopy (AFM) nanomechanical imaging are established. Here, as a further confirmatory research to explore the sensitivity and applicability of this assay, differentially predesigned DNA origami shape ID probes are also developed for precisely HBV genotyping. Through the specific identification of visualized DNA origami nanostructure with clinical HBV DNA samples, the genetic variation information of genotypes can be directly identified under AFM. As a proof-of-concept, five genotype B and six genotype C are detected in 11 HBV-infected patients' blood DNA samples of Han Chinese population in the single-blinded test. The AFM image-based DNA origami shape ID genotyping approach shows high specificity and sensitivity, which could be promising for virus infection diagnosis and precision medicine in the future. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Acute hepatitis B virus infection with simultaneous high HBsAg and high anti-HBs signals in a previously HBV vaccinated HIV-1 positive patient.

    Science.gov (United States)

    van Dommelen, Laura; Verbon, Annelies; van Doorn, H Rogier; Goossens, Valère J

    2010-03-01

    We present a case of a clinical manifest hepatitis B virus infection and a potentially misleading HBV serological profile in an HIV-1 positive patient despite previous HBV vaccination. The patient presented with an acute hepatitis B and there was no indication of chronic HBV infection or the presence of a mutation in the 'a' determinant. Remarkably, simultaneously with high HBV surface antigen and HBV viral load, high anti-HBs antibodies were present. If, due to previous HBV vaccination only anti-HBs was tested in this patient, the result of the high anti-HBs antibodies could be very misleading and offering a false sense of security. Our findings contribute to the ongoing discussion on how to assess HBV specific immunological memory and determining the role of HBV booster vaccinations in immunocompromised individuals.

  13. Chronic hepatitis B infection and HBV DNA-containing capsids: Modeling and analysis

    Science.gov (United States)

    Manna, Kalyan; Chakrabarty, Siddhartha P.

    2015-05-01

    We analyze the dynamics of chronic HBV infection taking into account both uninfected and infected hepatocytes along with the intracellular HBV DNA-containing capsids and the virions. While previous HBV models have included either the uninfected hepatocytes or the intracellular HBV DNA-containing capsids, our model accounts for both these two populations. We prove the conditions for local and global stability of both the uninfected and infected steady states in terms of the basic reproduction number. Further, we incorporate a time lag in the model to encompass the intracellular delay in the production of the infected hepatocytes and find that this delay does not affect the overall dynamics of the system. The results for the model and the delay model are finally numerically illustrated.

  14. HBV-DNA in hemodialysis patients infected by HCV

    International Nuclear Information System (INIS)

    Arababadi, Mohammad Kazemi; Hassanshahi, Gholamhossein; Yousefi, Hassan

    2009-01-01

    End-stage renal disease patients on chronic hemodialysis (HD) patients are at risk for both hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, and they may coexist. To determine the prevalence and clinical impact of HBV and HCV infection, we studied poly chain reaction (PCR) and reverse transcription (RT)-PCR on the blood samples of 90 HD patients in Kerman, Iran. ELISA test was used to detect anti-HBc, anti-HBs and HBs Ag. We found that 30 out of 90 (33.3%) patients were PCR-RT-PCR positive for HCV-RNA. No HBV-DNA (0%) was detected through the PCR study in both positive and negative HCV-RNA patient groups. Though none of the samples was HBsAg positive, 10 (33.3%) HCV-RNA positive patients were anti-HBc positive, and 12 (40.7%) were anti-HBs positive. We conclude that prevalence of hepatitis C infection is high in HD patients in our region, but not associated with active HBV infection. (author)

  15. Baicalin benefits the anti-HBV therapy via inhibiting HBV viral RNAs

    International Nuclear Information System (INIS)

    Huang, Hai; Zhou, Wei; Zhu, Haiyan; Zhou, Pei; Shi, Xunlong

    2017-01-01

    Background: Although current antiviral treatments (nucleoside analogs, NAs) for chronic hepatitis B virus (HBV) infection are effective in suppressing HBV-DNA replication, their clinical outcomes can be compromised by the increasing drug resistance and the inefficiency in promoting HBsAg/HBeAg seroconversion. Objectives: In this study, we will explore possible effects and mechanism of a natural product baicalin (BA) with the anti-HBV efficacy of entecavir (ETV), a first-line anti-HBV drug, in HBV-DNA, HBsAg/HBeAg seroconversion and drug-resistance. Methods: The co-effects of BA and ETV were conducted in wild-type/NA-resistance mutant HBV cell lines and DHBV-infected duckling models. HBV-DNA/RNAs, HBsAg/HBeAg, host factors (hepatocyte nuclear factors) were explored for possible anti-HBV mechanism. Results and discussion: BA could significantly enhance and reduced HBsAg and HBeAg in hepG2.2.15, a wild-type HBV cell line. Co-treatment of BA and ETV had a more dramatic effect in NA-resistant HBV rtM204V/rtLl80M transfected hepG2 cells. Our study further revealed that BA mainly inhibited the production of HBV RNAs (3.5, 2.4, 2.1 kb), the templates for viral proteins and HBV-DNA synthesis. BA blocked HBV RNAs transcription possibly by down-regulating transcription and expression of HBV replication dependent hepatocyte nuclear factors (HNF1α and HNF4α). Thus, BA may benefit the anti-HBV therapy via inhibiting HBV viral RNAs. - Highlights: • Baicalin benefits the anti-HBV therapy. • Baicalin enhances ETV antiviral efficacy and overcomes NA-resistant HBV mutation. • The anti-HBV effect of baicalin is achieved by inhibiting HBV RNAs. • Baicalin down-regulates HBV replication-dependent host factors HNF 1α and HNF 4α.

  16. Baicalin benefits the anti-HBV therapy via inhibiting HBV viral RNAs

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hai, E-mail: HHai3552@sina.cn [Department of Microbiology and Biopharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (China); Zhou, Wei, E-mail: zhouw@fudan.edu.cn [Department of Chemistry, Fudan University, 220 Han Dan Road, Shanghai 200433 (China); Zhu, Haiyan, E-mail: haiyanzhu@fudan.edu.cn [Department of Microbiology and Biopharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (China); Zhou, Pei, E-mail: pzhou@shmu.edu.cn [Department of Microbiology and Biopharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (China); Shi, Xunlong, E-mail: xunlongshi@fudan.edu.cn [Department of Microbiology and Biopharmacy, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203 (China)

    2017-05-15

    Background: Although current antiviral treatments (nucleoside analogs, NAs) for chronic hepatitis B virus (HBV) infection are effective in suppressing HBV-DNA replication, their clinical outcomes can be compromised by the increasing drug resistance and the inefficiency in promoting HBsAg/HBeAg seroconversion. Objectives: In this study, we will explore possible effects and mechanism of a natural product baicalin (BA) with the anti-HBV efficacy of entecavir (ETV), a first-line anti-HBV drug, in HBV-DNA, HBsAg/HBeAg seroconversion and drug-resistance. Methods: The co-effects of BA and ETV were conducted in wild-type/NA-resistance mutant HBV cell lines and DHBV-infected duckling models. HBV-DNA/RNAs, HBsAg/HBeAg, host factors (hepatocyte nuclear factors) were explored for possible anti-HBV mechanism. Results and discussion: BA could significantly enhance and reduced HBsAg and HBeAg in hepG2.2.15, a wild-type HBV cell line. Co-treatment of BA and ETV had a more dramatic effect in NA-resistant HBV{sup rtM204V/rtLl80M} transfected hepG2 cells. Our study further revealed that BA mainly inhibited the production of HBV RNAs (3.5, 2.4, 2.1 kb), the templates for viral proteins and HBV-DNA synthesis. BA blocked HBV RNAs transcription possibly by down-regulating transcription and expression of HBV replication dependent hepatocyte nuclear factors (HNF1α and HNF4α). Thus, BA may benefit the anti-HBV therapy via inhibiting HBV viral RNAs. - Highlights: • Baicalin benefits the anti-HBV therapy. • Baicalin enhances ETV antiviral efficacy and overcomes NA-resistant HBV mutation. • The anti-HBV effect of baicalin is achieved by inhibiting HBV RNAs. • Baicalin down-regulates HBV replication-dependent host factors HNF 1α and HNF 4α.

  17. Baicalin benefits the anti-HBV therapy via inhibiting HBV viral RNAs.

    Science.gov (United States)

    Huang, Hai; Zhou, Wei; Zhu, Haiyan; Zhou, Pei; Shi, Xunlong

    2017-05-15

    Although current antiviral treatments (nucleoside analogs, NAs) for chronic hepatitis B virus (HBV) infection are effective in suppressing HBV-DNA replication, their clinical outcomes can be compromised by the increasing drug resistance and the inefficiency in promoting HBsAg/HBeAg seroconversion. In this study, we will explore possible effects and mechanism of a natural product baicalin (BA) with the anti-HBV efficacy of entecavir (ETV), a first-line anti-HBV drug, in HBV-DNA, HBsAg/HBeAg seroconversion and drug-resistance. The co-effects of BA and ETV were conducted in wild-type/NA-resistance mutant HBV cell lines and DHBV-infected duckling models. HBV-DNA/RNAs, HBsAg/HBeAg, host factors (hepatocyte nuclear factors) were explored for possible anti-HBV mechanism. BA could significantly enhance and reduced HBsAg and HBeAg in hepG2.2.15, a wild-type HBV cell line. Co-treatment of BA and ETV had a more dramatic effect in NA-resistant HBV rtM204V/rtLl80M transfected hepG2 cells. Our study further revealed that BA mainly inhibited the production of HBV RNAs (3.5, 2.4, 2.1kb), the templates for viral proteins and HBV-DNA synthesis. BA blocked HBV RNAs transcription possibly by down-regulating transcription and expression of HBV replication dependent hepatocyte nuclear factors (HNF1α and HNF4α). Thus, BA may benefit the anti-HBV therapy via inhibiting HBV viral RNAs. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Development of a digital droplet PCR assay to measure HBV DNA in patients receiving long-term TDF treatment.

    Science.gov (United States)

    Liu, Yang; Cathcart, Andrea L; Delaney, William E; Kitrinos, Kathryn M

    2017-11-01

    The COBAS TaqMan assay has a lower limit of quantification (LLOQ) of 169 HBV copies/mL and a lower limit of detection (LLOD) of 58 copies/mL. HBV DNA below the TaqMan LLOQ is classified as target not detected (TND) (HBV DNA to 8 copies/mL. HBV DNA levels in plasma from patients with or without HBsAg seroconversion were assessed by ddPCR. For patients who did not achieve HBsAg seroconversion, the majority of TD samples (33/58, 57%) were HBV DNA positive by ddPCR while (10/37, 27%) of TND samples were positive. In contrast, for patients who achieved HBsAg seroconversion, HBV DNA was rarely detected by ddPCR after HBsAg seroconversion (1/28, 3.6%). ddPCR is a sensitive method to evaluate low-level viral replication in plasma samples. Frequent detection of HBV DNA by ddPCR among patients who did not achieve HBsAg seroconversion suggests new agents may be needed to suppress low levels of replicating HBV. Copyright © 2017. Published by Elsevier B.V.

  19. Comparison of Abbott and Da-an real-time PCR for quantitating serum HBV DNA.

    Science.gov (United States)

    Qiu, Ning; Li, Rui; Yu, Jian-Guo; Yang, Wen; Zhang, Wei; An, Yong; Li, Tong; Liu, Xue-En; Zhuang, Hui

    2014-09-07

    To compare the performance of the Da-an real-time hepatitis B virus (HBV) DNA assay and Abbott RealTime HBV assay. HBV DNA standards as well as a total of 180 clinical serum samples from patients with chronic hepatitis B were measured using the Abbott and Da-an real-time polymerase chain reaction (PCR) assays. Correlation and Bland-Altman plot analysis was used to compare the performance of the Abbott and Da-an assays. The HBV DNA levels were logarithmically transformed for analysis. All statistical analyses were performed using SPSS for Windows version 18.0. The correlation between the two assays was analyzed by Pearson's correlation and linear regression. The Bland-Altman plots were used for the analysis of agreement between the two assays. A P value of Da-an assay were significantly correlated with the expected values of HBV DNA standards (r = 0.999, for Abbott; r = 0.987, for Da-an, P Da-an assay. Moreover, HBV DNA levels measured by the Abbott assay were significantly higher than those of the Da-an assay (6.23 ± 1.76 log IU/mL vs 5.46 ± 1.55 log IU/mL, P Da-an assay presented lower sensitivity and a narrower linear range as compared to the Abbott assay, suggesting the need to be improved.

  20. HBV reactivation in patients with HCV/HBV cirrhosis on treatment with direct-acting antivirals.

    Science.gov (United States)

    Calvaruso, V; Ferraro, D; Licata, A; Bavetta, M G; Petta, S; Bronte, F; Colomba, G; Craxì, A; Di Marco, V

    2018-01-01

    Anecdotal reports suggest that patients with chronic hepatitis C virus (HCV) hepatitis and overt or occult hepatitis B virus (HBV) coinfection may reactivate HBV when HCV is suppressed or cleared by direct-acting antivirals (DAAs). We assessed the prevalence of overt or previous HBV coinfection and the risk of HBV reactivation in patients with HCV cirrhosis treated with DAAs. This was a retrospective cohort of 104 consecutive patients with HCV cirrhosis treated with DAAs. Serum HCV-RNA and HBV-DNA were tested at weeks 4, 8 and 12 of DAAs therapy and at week 12 of follow-up. At the start of DAAs, eight patients (7.7%) were HBsAg positive/HBeAg negative with undetectable HBV-DNA and low levels of quantitative HBsAg (four on nucleos(t)ide analogues [NUCs] and four inactive carriers), 37 patients (35.6%) had markers of previous HBV infection (25 anti-HBc positive, 12 anti-HBc/anti-HBs positive) and 59 (56.7%) had no evidence of HBV infection. Sixty-seven patients (64.4%) were HCV-RNA negative at week 4 and 98 (94.2%) achieved sustained virological response. All four HBsAg-positive patients treated with NUCs remained HBV-DNA negative, but three of four untreated patients showed an increase in HBV-DNA of 2-3 log without a biochemical flare and achieved HBV-DNA suppression when given NUCs. During or after DAAs, by conventional assay, HBV-DNA remained not detectable in all 37 anti-HBc-positive patients but in three of them (8.1%) HBV-DNA became detectable with a highly sensitive PCR. HBV reactivation is likely to occur in untreated HBV/HCV-coinfected cirrhotic patients when they undergo HCV treatment with DAAs. Pre-emptive therapy with NUCs should be considered in this setting. Anti-HBc-positive patients rarely reactivate HBV without clinical or virological outcomes. © 2017 John Wiley & Sons Ltd.

  1. Hepatitis B virus DNA quantification with the three-in-one (3io) method allows accurate single-step differentiation of total HBV DNA and cccDNA in biopsy-size liver samples.

    Science.gov (United States)

    Taranta, Andrzej; Tien Sy, Bui; Zacher, Behrend Johan; Rogalska-Taranta, Magdalena; Manns, Michael Peter; Bock, Claus Thomas; Wursthorn, Karsten

    2014-08-01

    Hepatitis B virus (HBV) replicates via reverse transcription converting its partially double stranded genome into the covalently closed circular DNA (cccDNA). The long-lasting cccDNA serves as a replication intermediate in the nuclei of hepatocytes. It is an excellent, though evasive, parameter for monitoring the course of liver disease and treatment efficiency. To develop and test a new approach for HBV DNA quantification in serum and small-size liver samples. The p3io plasmid contains an HBV fragment and human β-actin gene (hACTB) as a standard. Respective TaqMan probes were labeled with different fluorescent dyes. A triplex real-time PCR for simultaneous quantification of total HBV DNA, cccDNA and hACTB could be established. Three-in-one method allows simultaneous analysis of 3 targets with a lower limit of quantification of 48 copies per 20 μl PCR reaction and a wide range of linearity (R(2)>0.99, pDNA samples from HBV infected patients. Total HBV DNA and cccDNA could be quantified in 32 and 22 of 33 FFPE preserved liver specimens, respectively. Total HBV DNA concentrations quantified by the 3io method remained comparable with Cobas TaqMan HBV Test v2.0. The three-in-one protocol allows the single step quantification of viral DNA in samples from different sources. Therefore lower sample input, faster data acquisition, a lowered error and significantly lower costs are the advantages of the method. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Mapping of histone modifications in episomal HBV cccDNA uncovers an unusual chromatin organization amenable to epigenetic manipulation

    Science.gov (United States)

    Tropberger, Philipp; Mercier, Alexandre; Robinson, Margaret; Zhong, Weidong; Ganem, Don E.; Holdorf, Meghan

    2015-01-01

    Chronic hepatitis B virus (HBV) infection affects 240 million people worldwide and is a major risk factor for liver failure and hepatocellular carcinoma. Current antiviral therapy inhibits cytoplasmic HBV genomic replication, but is not curative because it does not directly affect nuclear HBV closed circular DNA (cccDNA), the genomic form that templates viral transcription and sustains viral persistence. Novel approaches that directly target cccDNA regulation would therefore be highly desirable. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications (PTMs). Here, using a new cccDNA ChIP-Seq approach, we report, to our knowledge, the first genome-wide maps of PTMs in cccDNA-containing chromatin from de novo infected HepG2 cells, primary human hepatocytes, and from HBV-infected liver tissue. We find high levels of PTMs associated with active transcription enriched at specific sites within the HBV genome and, surprisingly, very low levels of PTMs linked to transcriptional repression even at silent HBV promoters. We show that transcription and active PTMs in HBV chromatin are reduced by the activation of an innate immunity pathway, and that this effect can be recapitulated with a small molecule epigenetic modifying agent, opening the possibility that chromatin-based regulation of cccDNA transcription could be a new therapeutic approach to chronic HBV infection. PMID:26438841

  3. Inhibition of hepatitis B virus replication via HBV DNA cleavage by Cas9 from Staphylococcus aureus.

    Science.gov (United States)

    Liu, Yu; Zhao, Miaoxian; Gong, Mingxing; Xu, Ying; Xie, Cantao; Deng, Haohui; Li, Xueying; Wu, Hongkai; Wang, Zhanhui

    2018-04-01

    Chronic hepatitis B virus (HBV) infection is difficult to cure due to the presence of covalently closed circular DNA (cccDNA). Accumulating evidence indicates that the CRISPR/Cas9 system effectively disrupts HBV genome, including cccDNA, in vitro and in vivo. However, efficient delivery of CRISPR/Cas9 system to the liver or hepatocytes using an adeno-associated virus (AAV) vector remains challenging due to the large size of Cas9 from Streptococcus pyogenes (Sp). The recently identified Cas9 protein from Staphylococcus aureus (Sa) is smaller than SpCas9 and thus is able to be packaged into the AAV vector. To examine the efficacy of SaCas9 system on HBV genome destruction, we designed 5 guide RNAs (gRNAs) that targeted different HBV genotypes, 3 of which were shown to be effective. The SaCas9 system significantly reduced HBV antigen expression, as well as pgRNA and cccDNA levels, in Huh7, HepG2.2.15 and HepAD38 cells. The dual expression of gRNAs/SaCas9 in these cell lines resulted in more efficient HBV genome cleavage. In the mouse model, hydrodynamic injection of gRNA/SaCas9 plasmids resulted in significantly lower levels of HBV protein expression. We also delivered the SaCas9 system into mice with persistent HBV replication using an AAV vector. Both the AAV vector and the mRNA of Cas9 could be detected in the C3H mouse liver cells. Decreased hepatitis B surface antigen (HBsAg), HBV DNA and pgRNA levels were observed when a higher titer of AAV was injected, although this decrease was not significantly different from the control. In summary, the SaCas9 system accurately and efficiently targeted the HBV genome and inhibited HBV replication both in vitro and in vivo. The system was delivered by an AAV vector and maybe used as a novel therapeutic strategy against chronic HBV infection. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. The New Aptima HBV Quant Real-Time TMA Assay Accurately Quantifies Hepatitis B Virus DNA from Genotypes A to F.

    Science.gov (United States)

    Chevaliez, Stéphane; Dauvillier, Claude; Dubernet, Fabienne; Poveda, Jean-Dominique; Laperche, Syria; Hézode, Christophe; Pawlotsky, Jean-Michel

    2017-04-01

    Sensitive and accurate hepatitis B virus (HBV) DNA detection and quantification are essential to diagnose HBV infection, establish the prognosis of HBV-related liver disease, and guide the decision to treat and monitor the virological response to antiviral treatment and the emergence of resistance. Currently available HBV DNA platforms and assays are generally designed for batching multiple specimens within an individual run and require at least one full day of work to complete the analyses. The aim of this study was to evaluate the ability of the newly developed, fully automated, one-step Aptima HBV Quant assay to accurately detect and quantify HBV DNA in a large series of patients infected with different HBV genotypes. The limit of detection of the assay was estimated to be 4.5 IU/ml. The specificity of the assay was 100%. Intra-assay and interassay coefficients of variation ranged from 0.29% to 5.07% and 4.90% to 6.85%, respectively. HBV DNA levels from patients infected with HBV genotypes A to F measured with the Aptima HBV Quant assay strongly correlated with those measured by two commercial real-time PCR comparators (Cobas AmpliPrep/Cobas TaqMan HBV test, version 2.0, and Abbott RealTi m e HBV test). In conclusion, the Aptima HBV Quant assay is sensitive, specific, and reproducible and accurately quantifies HBV DNA in plasma samples from patients with chronic HBV infections of all genotypes, including patients on antiviral treatment with nucleoside or nucleotide analogues. The Aptima HBV Quant assay can thus confidently be used to detect and quantify HBV DNA in both clinical trials with new anti-HBV drugs and clinical practice. Copyright © 2017 American Society for Microbiology.

  5. HBV-Specific shRNA is Capable of Reducing the Formation of Hepatitis B Virus Covalently Closed Circular DNA, but has No Effect on Established Covalently Closed Circular DNA in vitro

    OpenAIRE

    Starkey, Jason L.; Chiari, Estelle F.; Isom, Harriet C.

    2009-01-01

    Hepatitis B virus (HBV) covalently closed circular DNA (CCC DNA) is the source of HBV transcripts and persistence in chronically infected patients. The novel aspect of this study was to determine the effect of RNA interference (RNAi) on HBV CCC DNA when administered prior to establishment of HBV replication or during chronic HBV infection. HBV replication was initiated in HepG2 cells by transduction with HBV baculovirus. Subculture of HBV expressing HepG2 cells at 10 days post-transduction ge...

  6. Tears from children with chronic hepatitis B virus (HBV) infection are infectious vehicles of HBV transmission: experimental transmission of HBV by tears, using mice with chimeric human livers.

    Science.gov (United States)

    Komatsu, Haruki; Inui, Ayano; Sogo, Tsuyoshi; Tateno, Akihiko; Shimokawa, Reiko; Fujisawa, Tomoo

    2012-08-15

    Body fluids such as saliva, urine, sweat, and tears from hepatitis B virus (HBV) carriers are potential sources of HBV transmission. Thirty-nine children and 8 adults who were chronically infected with HBV were enrolled. Real-time polymerase chain reaction was used for the quantification of HBV DNA. HBV DNA was detected in 73.7% of urine samples (14 of 19), 86.8% of saliva samples (33 of 38), 100% of tear samples (11 of 11), and 100% of sweat samples (9 of 9). Mean HBV DNA levels (±SD) in urine, saliva, tears, and sweat were 4.3 ± 1.1 log copies/mL, 5.9 ± 1.2 log copies/mL, 6.2 ± 0.7 log copies/mL, and 5.2 ± 0.6 log copies/mL, respectively. A statistically significant correlation was observed between the HBV DNA level in serum specimens and HBV DNA levels in saliva and tear specimens (r = 0.88; P Tear specimens from a child were injected intravenously into 2 human hepatocyte-transplanted chimeric mice. One week after inoculation, both chimeric mice had serum positive for HBV DNA. The levels of HBV DNA in tear specimens from young children were high. Tears were confirmed to be infectious, using chimeric mice. Strict precautions should be taken against direct contact with body fluids from HBV carriers with high-level viremia.

  7. ORIGINAL ARTICLES HBV/HIV co-infection: The dynamics of HBV ...

    African Journals Online (AJOL)

    B virus (HBV) exposure, and an estimated 400 million are chronically infected.1 ... transplantation, cancer and HIV/AIDS might induce reactivation of occult HBV with ... productive infection.7-9 Occult HBV infection refers to the presence of HBV DNA without ... CD4+ cell count of <200 cells/µl in patients infected with HIV.

  8. Potential risk of HBV reactivation in patients with resolved HBV infection undergoing direct-acting antiviral treatment for HCV.

    Science.gov (United States)

    Ogawa, Eiichi; Furusyo, Norihiro; Murata, Masayuki; Toyoda, Kazuhiro; Hayashi, Takeo; Ura, Kazuya

    2018-01-01

    Despite a known risk of hepatitis B virus (HBV) reactivation during direct-acting antiviral (DAA) treatment for patients with hepatitis C virus (HCV)-HBV coinfection, it remains unclear whether patients with past HBV infection are at risk for reactivation. This study evaluated the risk of HBV reactivation during treatment with sofosbuvir (SOF)-based regimens, focusing on patients with resolved HBV infection. This study analyzes the data of 183 consecutive patients treated with SOF-based regimens. From these patients, 63 with resolved HBV infection (negative for hepatitis B surface antigen [HBsAg] and undetectable HBV DNA but positive for hepatitis B core antibody) were eligible for this study. HBV reactivation was defined as a quantifiable HBV DNA level >20 IU/mL. Among the patients antibody to HBsAg (anti-HBs) positive (10-500 mIU/mL) (n = 30), the titre of anti-HBs was significantly decreased with time, as shown by the results of repeated-measures analysis of variance (P = .0029). Overall, four patients (6.3%) with resolved HBV infection came to have detectable HBV DNA during treatment, including one who had HBV reactivation at week 4 (HBV DNA 80 IU/mL). However, none developed hepatic failure. Among four patients who had detectable HBV DNA during treatment, all were negative or had very low-titre (HBV infection and negative or very low-titre anti-HBs at baseline are at risk for having detectable HBV DNA transiently during treatment. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Application of k-means clustering algorithm in grouping the DNA sequences of hepatitis B virus (HBV)

    Science.gov (United States)

    Bustamam, A.; Tasman, H.; Yuniarti, N.; Frisca, Mursidah, I.

    2017-07-01

    Based on WHO data, an estimated of 15 millions people worldwide who are infected with hepatitis B (HBsAg+), which is caused by HBV virus, are also infected by hepatitis D, which is caused by HDV virus. Hepatitis D infection can occur simultaneously with hepatitis B (co infection) or after a person is exposed to chronic hepatitis B (super infection). Since HDV cannot live without HBV, HDV infection is closely related to HBV infection, hence it is very realistic that every effort of prevention against hepatitis B can indirectly prevent hepatitis D. This paper presents clustering of HBV DNA sequences by using k-means clustering algorithm and R programming. Clustering processes are started with collecting HBV DNA sequences from GenBank, then performing extraction HBV DNA sequences using n-mers frequency and furthermore the extraction results are collected as a matrix and normalized using the min-max normalization with interval [0, 1] which will later be used as an input data. The number of clusters is two and the initial centroid selected of the cluster is chosen randomly. In each iteration, the distance of every object to each centroid are calculated using the Euclidean distance and the minimum distance is selected to determine the membership in a cluster until two convergent clusters are created. As the result, the HBV viruses in the first cluster is more virulent than the HBV viruses in the second cluster, so the HBV viruses in the first cluster can potentially evolve with HDV viruses that cause hepatitis D.

  10. Cationic lipid-formulated DNA vaccine against hepatitis B virus: immunogenicity of MIDGE-Th1 vectors encoding small and large surface antigen in comparison to a licensed protein vaccine.

    Directory of Open Access Journals (Sweden)

    Anne Endmann

    Full Text Available Currently marketed vaccines against hepatitis B virus (HBV based on the small (S hepatitis B surface antigen (HBsAg fail to induce a protective immune response in about 10% of vaccinees. DNA vaccination and the inclusion of PreS1 and PreS2 domains of HBsAg have been reported to represent feasible strategies to improve the efficacy of HBV vaccines. Here, we evaluated the immunogenicity of SAINT-18-formulated MIDGE-Th1 vectors encoding the S or the large (L protein of HBsAg in mice and pigs. In both animal models, vectors encoding the secretion-competent S protein induced stronger humoral responses than vectors encoding the L protein, which was shown to be retained mainly intracellularly despite the presence of a heterologous secretion signal. In pigs, SAINT-18-formulated MIDGE-Th1 vectors encoding the S protein elicited an immune response of the same magnitude as the licensed protein vaccine Engerix-B, with S protein-specific antibody levels significantly higher than those considered protective in humans, and lasting for at least six months after the third immunization. Thus, our results provide not only the proof of concept for the SAINT-18-formulated MIDGE-Th1 vector approach but also confirm that with a cationic-lipid formulation, a DNA vaccine at a relatively low dose can elicit an immune response similar to a human dose of an aluminum hydroxide-adjuvanted protein vaccine in large animals.

  11. Detection of HBV Covalently Closed Circular DNA

    Directory of Open Access Journals (Sweden)

    Xiaoling Li

    2017-06-01

    Full Text Available Chronic hepatitis B virus (HBV infection affects approximately 240 million people worldwide and remains a serious public health concern because its complete cure is impossible with current treatments. Covalently closed circular DNA (cccDNA in the nucleus of infected cells cannot be eliminated by present therapeutics and may result in persistence and relapse. Drug development targeting cccDNA formation and maintenance is hindered by the lack of efficient cccDNA models and reliable cccDNA detection methods. Southern blotting is regarded as the gold standard for quantitative cccDNA detection, but it is complicated and not suitable for high-throughput drug screening, so more sensitive and simple methods, including polymerase chain reaction (PCR-based methods, Invader assays, in situ hybridization and surrogates, have been developed for cccDNA detection. However, most methods are not reliable enough, and there are no unified standards for these approaches. This review will summarize available methods for cccDNA detection. It is hoped that more robust methods for cccDNA monitoring will be developed and that standard operation procedures for routine cccDNA detection in scientific research and clinical monitoring will be established.

  12. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice.

    Science.gov (United States)

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-11-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8 + T cells from immunized animals, antigen-specific CD8 + T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients.

  13. Occult HBV infection in HIV-infected adults and evaluation of pooled NAT for HBV.

    Science.gov (United States)

    Dinesha, T R; Boobalan, J; Sivamalar, S; Subashini, D; Solomon, S S; Murugavel, K G; Balakrishnan, P; Smith, D M; Saravanan, S

    2018-01-06

    The study aimed to determine the prevalence of occult hepatitis B virus infection among HIV-infected persons and to evaluate the use of a pooling strategy to detect occult HBV infection in the setting of HIV infection. Five hundred and two HIV-positive individuals were tested for HBV, occult HBV and hepatitis C and D with serologic and nucleic acid testing (NAT). We also evaluated a pooled NAT strategy for screening occult HBV infection among the HIV-positive individuals. The prevalence of HBV infection among HIV-positive individuals was 32 (6.4%), and occult HBV prevalence was 10%. The pooling HBV NAT had a sensitivity of 66.7% and specificity of 100%, compared to HBV DNA NAT of individual samples. In conclusion, this study found a high prevalence of occult HBV infection among our HIV-infected population. We also demonstrated that pooled HBV NAT is highly specific, moderately sensitive and cost-effective. As conventional HBV viral load assays are expensive in resource-limited settings such as India, pooled HBV DNA NAT might be a good way for detecting occult HBV infection and will reduce HBV-associated complications. © 2018 John Wiley & Sons Ltd.

  14. Evaluation of the Aptima HBV Quant assay vs. the COBAS TaqMan HBV test using the high pure system for the quantitation of HBV DNA in plasma and serum samples.

    Science.gov (United States)

    Schalasta, Gunnar; Börner, Anna; Speicher, Andrea; Enders, Martin

    2018-03-28

    Proper management of patients with chronic hepatitis B virus (HBV) infection requires monitoring of plasma or serum HBV DNA levels using a highly sensitive nucleic acid amplification test. Because commercially available assays differ in performance, we compared herein the performance of the Hologic Aptima HBV Quant assay (Aptima) to that of the Roche Cobas TaqMan HBV test for use with the high pure system (HPS/CTM). Assay performance was assessed using HBV reference panels as well as plasma and serum samples from chronically HBV-infected patients. Method correlation, analytical sensitivity, precision/reproducibility, linearity, bias and influence of genotype were evaluated. Data analysis was performed using linear regression, Deming correlation analysis and Bland-Altman analysis. Agreement between the assays for the two reference panels was good, with a difference in assay values vs. target 0.98). The two assays had similar bias and precision across the different genotypes tested at low viral loads (25-1000 IU/mL). Aptima has a performance comparable with that of HPS/CTM, making it suitable for use for HBV infection monitoring. Aptima runs on a fully automated platform (the Panther system) and therefore offers a significantly improved workflow compared with HPS/CTM.

  15. Analysis of hepatitis B virus intrahepatic covalently closed circular DNA and serum viral markers in treatment-naive patients with acute and chronic HBV infection.

    Directory of Open Access Journals (Sweden)

    Weijie Li

    Full Text Available BACKGROUND: This study aimed to investigate the relationships of intrahepatic cccDNA with serum HBsAg and with HBV DNA in treatment-naive patients throughout acute and chronic HBV infection. METHODS: A total of 120 patients who had a liver biopsy were enrolled, including 19 with acute hepatitis B (AHB, and 101 patients with chronic HBV infection (CHB of whom were 10 in immune-tolerant (IT phase, 59 in immune-clearance (IC phase, 8 in low-replicative (LR phase, and 24 in HBeAg-negative hepatitis (ENH phase. Intrahepatic cccDNA, serum HBsAg and serum HBV DNA levels were comparatively analyzed. RESULTS: The median intrahepatic cccDNA levels were 0.18 4.80, 3.81, 0.22 and 0.97 copies/cell for patients with AHB, CHB-IT, CHB-IC, CHB-LR, and CHB-ENH, respectively. In AHB patients, intrahepatic cccDNA was positively correlated with serum HBsAg (r = 0.665, P = 0.003, as well as serum HBV DNA (r = 0.536, P = 0.022. In CHB patients, intrahepatic cccDNA was positively correlated with serum HBsAg in the IC phase (r = 0.392, P = 0.005, and with serum HBV DNA in the IC phase (r = 0.301, P = 0.036 and ENH phase (r = 0.588, P = 0.013. HBV replicative efficiency, defined as the ratio of serum HBV DNA to intrahepatic cccDNA, was obviously lower in AHB and CHB-LR patients than in CHB-IT, CHB-IC and CHB-ENH patients (0.70 and 0.53 vs. 1.12, 1.09 and 0.99, P<0.001, values were logarithmic transformed for analysis. In CHB-IC patients, HBV replicative efficiency was positively correlated with histological activity index of liver inflammation (r = 0.308, P = 0.009. CONCLUSION: Serum HBsAg and HBV DNA levels may reflect the amount of active intrahepatic cccDNA in treatment-naive AHB and CHB-IC patients. Reduced intrahepatic cccDNA and HBV replicative efficiency may imply effective immune control of HBV infection.

  16. SIRT3 restricts HBV transcription and replication via epigenetic regulation of cccDNA involving SUV39H1 and SETD1A histone methyltransferases.

    Science.gov (United States)

    Ren, Ji-Hua; Hu, Jie-Li; Cheng, Sheng-Tao; Yu, Hai-Bo; Wong, Vincent Kam Wai; Law, Betty Yuen Kwan; Yang, Yong-Feng; Huang, Ying; Liu, Yi; Chen, Wei-Xian; Cai, Xue-Fei; Tang, Hua; Hu, Yuan; Zhang, Wen-Lu; Liu, Xiang; Long, Quan-Xin; Zhou, Li; Tao, Na-Na; Zhou, Hong-Zhong; Yang, Qiu-Xia; Ren, Fang; He, Lin; Gong, Rui; Huang, Ai-Long; Chen, Juan

    2018-04-06

    Hepatitis B virus (HBV) infection remains a major health problem worldwide. Maintenance of the covalently closed circular DNA (cccDNA) which serves as a template for HBV RNA transcription is responsible for the failure of eradicating chronic HBV during current antiviral therapy. cccDNA is assembled with cellular histone proteins into chromatin, but little is known about the regulation of HBV chromatin by histone posttranslational modifications. In this study, we identified SIRT3 as a host factor restricting HBV transcription and replication by screening seven members of Sirtuin family which is the class III histone deacetylase. Ectopic SIRT3 expression significantly reduced total HBV RNAs, 3.5-kb RNA as well as replicative intermediate DNA in HBV-infected HepG2-NTCP cells and PHH. In contrast, gene silencing of SIRT3 promoted HBV transcription and replication. Mechanistic study found nuclear SIRT3 was recruited to the HBV cccDNA, where it deacetylated histone 3 lysine 9 (H3K9). Importantly, occupancy of SIRT3 onto cccDNA could increase the recruitment of histone methyltransferase SUV39H1 to cccDNA and decrease recruitment of SETD1A, leading to a marked increase of H3K9me3 and a decrease of H3K4me3 on cccDNA. Moreover, SIRT3-mediated HBV cccDNA transcriptional repression involved decreased binding of host RNA polymerase II and transcription factor YY1 to cccDNA. Finally, viral protein HBx could relieve SIRT3-mediated cccDNA transcriptional repression by inhibiting both SIRT3 expression and its recruitment to cccDNA. SIRT3 is a novel host factor epigenetically restricting HBV cccDNA transcription by acting cooperatively with histone methyltransferase. These data provided a rational for the use of SIRT3 activators in the prevention or treatment of HBV infection. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  17. Quantitation of HBV cccDNA in anti-HBc-positive liver donors by droplet digital PCR: a new tool to detect occult infection.

    Science.gov (United States)

    Caviglia, Gian Paolo; Abate, Maria Lorena; Tandoi, Francesco; Ciancio, Alessia; Amoroso, Antonio; Salizzoni, Mauro; Saracco, Giorgio Maria; Rizzetto, Mario; Romagnoli, Renato; Smedile, Antonina

    2018-04-02

    The accurate diagnosis of occult HBV infection (OBI) requires the demonstration of HBV DNA in liver biopsies of HBsAg-negative subjects. However, in clinical practice a latent OBI is deduced by the finding of the antibody to the HB-core antigen (anti-HBc). We investigated the true prevalence of OBI and the molecular features of intrahepatic HBV in anti-HBc-positive subjects. The livers of 100 transplant donors (median age 68.2 years; 64 males, 36 females) positive for anti-HBc at standard serologic testing, were examined for total HBV DNA by nested-PCR and for the HBV covalently closed circular DNA (HBV cccDNA) with an in-house droplet digital PCR assay (ddPCR) (Linearity: R 2 = 0.9998; lower limit of quantitation and detection of 2.4 and 0.8 copies/10 5 cells, respectively). A true OBI status was found in 52% (52/100) of the subjects and cccDNA was found in 52% (27/52) of the OBI-positive, with a median 13 copies/10 5 cells (95% confidence interval 5-25). Using an assay specific for anti-HBc of IgG class, the median antibody level was significantly higher in HBV cccDNA-positive than negative donors (5.7 [3.6-9.7] vs. 17.0 [7.0-39.2] COI, p = 0.007). By multivariate analysis, an anti-HBc IgG value above a 4.4 cut-off index (COI) was associated with the finding of intrahepatic HBV cccDNA (OR = 8.516, p = 0.009); a lower value ruled out its presence with a negative predictive value of 94.6%. With a new in-house ddPCR-based method, intrahepatic HBV cccDNA was detectable in quantifiable levels in about half of the OBI cases examined. The titer of anti-HBc IgG may be a useful surrogate to predict the risk of OBI reactivation in immunosuppressed patients. The covalently closed circular DNA (cccDNA) form of the Hepatitis B virus (HBV) sustains the persistence of the virus even after decades of resolution of the florid infection (Occult HBV infection=OBI). In the present study we developed an highly sensitive method based on droplet digital PCR technology for the detection

  18. Detection of Hepatitis B Virus (HBV) Genomes and HBV Drug Resistant Variants by Deep Sequencing Analysis of HBV Genomes in Immune Cell Subsets of HBV Mono-Infected and/or Human Immunodeficiency Virus Type-1 (HIV-1) and HBV Co-Infected Individuals

    Science.gov (United States)

    Lee, Z.; Nishikawa, S.; Gao, S.; Eksteen, J. B.; Czub, M.; Gill, M. J.; Osiowy, C.; van der Meer, F.; van Marle, G.; Coffin, C. S.

    2015-01-01

    The hepatitis B virus (HBV) and the human immunodeficiency virus type 1 (HIV-1) can infect cells of the lymphatic system. It is unknown whether HIV-1 co-infection impacts infection of peripheral blood mononuclear cell (PBMC) subsets by the HBV. Aims To compare the detection of HBV genomes and HBV sequences in unsorted PBMCs and subsets (i.e., CD4+ T, CD8+ T, CD14+ monocytes, CD19+ B, CD56+ NK cells) in HBV mono-infected vs. HBV/HIV-1 co-infected individuals. Methods Total PBMC and subsets isolated from 14 HBV mono-infected (4/14 before and after anti-HBV therapy) and 6 HBV/HIV-1 co-infected individuals (5/6 consistently on dual active anti-HBV/HIV therapy) were tested for HBV genomes, including replication indicative HBV covalently closed circular (ccc)-DNA, by nested PCR/nucleic hybridization and/or quantitative PCR. In CD4+, and/or CD56+ subsets from two HBV monoinfected cases, the HBV polymerase/overlapping surface region was analyzed by next generation sequencing. Results All analyzed whole PBMC from HBV monoinfected and HBV/HIV coinfected individuals were HBV genome positive. Similarly, HBV DNA was detected in all target PBMC subsets regardless of antiviral therapy, but was absent from the CD4+ T cell subset from all HBV/HIV-1 positive cases (PHBV monoinfected cases on tenofovir therapy, mutations at residues associated with drug resistance and/or immune escape (i.e., G145R) were detected in a minor percentage of the population. Summary HBV genomes and drug resistant variants were detectable in PBMC subsets from HBV mono-infected individuals. The HBV replicates in PBMC subsets of HBV/HIV-1 patients except the CD4+ T cell subpopulation. PMID:26390290

  19. Anti-virus prophylaxis withdrawal may be feasible in liver transplant recipients whose serum HBeAg and HBV DNA are negative

    Institute of Scientific and Technical Information of China (English)

    Lei Geng; Bing-Yi Lin; Tian Shen; Hua Guo; Yu-Fu Ye; Shu-Sen Zheng

    2015-01-01

    Anti-virus prophylactic therapy may be not nec-essary for the prevention of hepatitis B virus (HBV) recur-rence after HBV-related liver transplantation (LT). However, studies on completely stopping the hepatitis B immune globu-lin (HBIG) and nucleos(t)ide analogs (NUC) after LT are few. The aim of the current study was to evaluate the safety of anti-virus prophylaxis withdrawal in liver recipients whose serum hepatitis Be antigen (HBeAg) and HBV DNA are negative. We analyzed 190 patients undergone LT for HBV-related liver dis-ease from 2006 to 2012 and found that 10 patients completely stopped the HBIG and NUC due to poor compliance. These patients were liver biopsied and checked monthly with serum HBV markers, HBV DNA and liver function. Among the 10 patients, 9 did not show the signs of HBV recurrence after a mean follow-up of 51.6 months (range 20-73) after with-drawal of the HBIG and NUC. The average time from LT to the withdrawal of the anti-virus drug was 23.8 (13-42) months;one patient showed hepatitis B surface antigen-positive and detectable HBV DNA after stopping anti-virus drugs and this patient was successfully treated with entecavir. Our data sug-gested that complete withdrawal of anti-virus prophylaxis was safe and feasible for patients whose serum HBeAg and HBV DNA were negative at the time of LT.

  20. Anti-virus prophylaxis withdrawal may be feasible in liver transplant recipients whose serum HBeAg and HBV DNA are negative

    Institute of Scientific and Technical Information of China (English)

    Lei Geng; Bing-Yi Lin; Tian Shen; Hua Guo; Yu-Fu Ye; Shu-Sen Zheng

    2016-01-01

    Anti-virus prophylactic therapy may be not nec-essary for the prevention of hepatitis B virus (HBV) recur-rence after HBV-related liver transplantation (LT). However, studies on completely stopping the hepatitis B immune globu-lin (HBIG) and nucleos(t)ide analogs (NUC) after LT are few. The aim of the current study was to evaluate the safety of anti-virus prophylaxis withdrawal in liver recipients whose serum hepatitis Be antigen (HBeAg) and HBV DNA are negative. We analyzed 190 patients undergone LT for HBV-related liver dis-ease from 2006 to 2012 and found that 10 patients completely stopped the HBIG and NUC due to poor compliance. These patients were liver biopsied and checked monthly with serum HBV markers, HBV DNA and liver function. Among the 10 patients, 9 did not show the signs of HBV recurrence after a mean follow-up of 51.6 months (range 20-73) after with-drawal of the HBIG and NUC. The average time from LT to the withdrawal of the anti-virus drug was 23.8 (13-42) months;one patient showed hepatitis B surface antigen-positive and detectable HBV DNA after stopping anti-virus drugs and this patient was successfully treated with entecavir. Our data sug-gested that complete withdrawal of anti-virus prophylaxis was safe and feasible for patients whose serum HBeAg and HBV DNA were negative at the time of LT.

  1. Acute hepatitis B virus infection with simultaneous high HBsAg and high anti-HBs signals in a previously HBV vaccinated HIV-1 positive patient

    NARCIS (Netherlands)

    van Dommelen, Laura; Verbon, Annelies; van Doorn, H. Rogier; Goossens, Valère J.

    2010-01-01

    We present a case of a clinical manifest hepatitis B virus infection and a potentially misleading HBV serological profile in an HIV-1 positive patient despite previous HBV vaccination. The patient presented with an acute hepatitis B and there was no indication of chronic HBV infection or the

  2. The dose of HBV genome contained plasmid has a great impact on HBV persistence in hydrodynamic injection mouse model.

    Science.gov (United States)

    Li, Lei; Li, Sheng; Zhou, Yun; Yang, Lu; Zhou, Di; Yang, Yan; Lu, Mengji; Yang, Dongliang; Song, Jingjiao

    2017-10-25

    Hydrodynamic injection (HI) of hepatitis B virus (HBV) mouse model is an useful tool for HBV related research in vivo. However, only 40% of C57/BL6 mice injected with 10 μg HBV genome contained plasmid (pAAV-HBV1.2), serum HBsAg more than 6 months and none of the BALB/c mice injected with 10 μg pAAV-HBV1.2 plasmid DNA, serum HBsAg positive more than 4 weeks in the previous study. In this study, C57/BL6 and BALB/c mice were hydrodynamic injected with different doses of pAAV-HBV1.2 plasmid DNA. HBV related serum markers were detected by ELISA. ALT levels in the serum were measured using full automated biochemistry analyzer. HBcAg positive cells in the liver were detected by immunohistochemical staining. The mRNA levels of IRF3, ISGs including ISG15, OAS, PKR and immune factors including IFNγ, TNFα, TGFβ, IL-6, IL-10, PDL1 in liver of the mice were quantified by qRT-PCR. The results showed that the mice injected with 100 μg high-concentration or 1 μg low-concentration of pAAV-HBV1.2 plasmid DNA did not excert dominant influence on HBV persistence. In contrast, injection of 5 μg intermediate-dose of pAAV-HBV1.2 plasmid DNA led to significant prolonged HBsAg expression and HBV persistence in both C57/BL6 (80% of the mice with HBsAg positive more than 6 months) and BALB/c (60% of the mice with HBsAg positive more than 3 months) mice. IFNγ was significant up-regulated in liver of the mice injected with 1 μg or 100 μg pAAV-HBV1.2 plasmid DNA. TNFα was up-regulated significantly in liver of the mice injected with 100 μg pAAV-HBV1.2 plasmid DNA. Moreover, PDL1 was significant up-regulated in liver of the mice injected with 5 μg pAAV-HBV1.2 plasmid DNA. In this paper we demonstrated that, in the HBV HI mouse model, the concentration of injected pAAV-HBV1.2 plasmid DNA contributes to the diverse kinetics of HBsAg and HBeAg in the serum as well as HBcAg expression level in the liver, which then determined the HBV persisternce, while the antiviral

  3. Natural History of Serum HBV-RNA in Chronic HBV Infection.

    Science.gov (United States)

    Wang, Jing; Yu, Yiqi; Li, Guojun; Shen, Chuan; Li, Jing; Chen, Shaolong; Zhang, Xiao; Zhu, Mengqi; Zheng, Jiangjiang; Song, Zhangzhang; Wu, Jing; Shao, Lingyun; Zhefeng, Meng; Wang, Xuanyi; Huang, Yuxian; Zhang, Jiming; Qiu, Chao; Zhang, Wenhong

    2018-04-10

    Virus-like particles encapsulating HBV-RNA represent a serum biomarker for assessing viral replication activity in clinical practice. However, baseline levels of serum HBV-RNA and their associations with viral replicative intermediates and liver disease in phases of chronic hepatitis B remain unknown. In this cross-sectional study, 102 patients were categorized into immune tolerant (IT), HBeAg-positive immune active (HBeAg+IA), inactive carrier (IC), and HBeAg-negative immune active (HBeAg-IA) phases. HBV-RNA in serum samples and in 66 paired liver biopsies were quantified and correlated with serum ALT levels, histopathological scores, and the levels of other viral replicative intermediates. Mean levels of serum HBV-RNA differed among phases, with the highest levels among IT (6.78±0.83 log 10 copies mL -1 ) patients, followed by HBeAg+IA (5.73±1.16 log 10 copies mL -1 ), HBeAg-IA (4.52±1.25 log 10 copies mL -1 ), and IC (2.96±0.40 log 10 copies mL -1 ) patients. Serum HBV-RNA levels correlated with HBV DNA in all phases, though correlations with other viral replicative intermediates weakened or disappeared when cases were stratified into phases. Distinct compositions of viral products were found among phases: the ratio of HBsAg to serum HBV-RNA was highest in IC patients, while the ratio of serum HBV-RNA to intrahepatic HBV-RNA and the ratio of intrahepatic HBV-DNA to intrahepatic HBV-RNA were significantly higher in IT patients. In conclusion, baseline levels of HBV-RNA and the composition of viral replicative intermediates differ significantly across the natural course of chronic HBV infection. These findings shed light on the nature of viral replication and pathogenesis of disease among different phases of chronic HBV infection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  4. The Epidemiologic Survey on HBV in Zhangjiakou

    International Nuclear Information System (INIS)

    Miao Shihong; Li Hua; Pang Minhong; Du Xuan

    2010-01-01

    To investigate the HBV prevalence information and to improve HBV prevention level in Zhangjiakou, the serum HBsAg in patients in Zhangjiakou second hospital from 2001 to 2007 were tested by RIA. The results showed that HBV infection rate had no changes over the years. The HBV infection rate in over 45 years old people was more than that of less 15 years old people, and HBV infection rate in medical workers were more than other vocations. The inoculation of HBV vaccine is modus operandi to prevent HBV infection. The medical workers are HBV infection high risk group. The regular monitoring of HBsAg could cut down HBV infection rate.(authors)

  5. Effect of HBIG combined with hepatitis B vaccine on blocking HBV transmission between mother and infant and its effect on immune cells.

    Science.gov (United States)

    Gong, Junling; Liu, Xing

    2018-01-01

    The effect of hepatitis B immune globulin (HBIG) combined with hepatitis B vaccine on blocking hepatitis B virus (HBV) transmission between mother and infant and its effect on immune cells were studied. Ninety newborn infants confirmed to be HBV surface antigen (HBsAg)-positive were divided equally into three groups. Group A newborns received the hepatitis B vaccine at 0, 1 and 6 months after birth (10 µg/time). Group B newborns received an intramuscular injection of 100 IU HBIG 2 h after birth before the same treatment as group A. Mothers of group C newborns received three gluteus maxinus injections of 200 IU HBIG. The newborns in group C got the same treatment as group B. The blocking effect of HBV transmission between mother and infant was evaluated, and cell immune function was assessed. There were significant differences in comparison of blocking success rates between group A and B, and between group A and C as well (pmothers who were positivefor both HBsAg and HBeAg, HBIG intervention formothers during late pregnancy, together with combinedtreatment of HBIG and hepatitis B vaccine for infants, gavebetter blocking result of HBV transmission.

  6. Application of DNA chips in the analysis of gene mutation in HBV

    International Nuclear Information System (INIS)

    Wang Yongzhong; Ruan Lihua; Zhou Guoping; Wu Guoxiang; Chen Min

    2005-01-01

    Objective: To investigate the clinical applicability of DNA chips for analysis of gene mutation in HBV. Methods: Serum HBV DNA from 47 patients with viral hepatitis type B was amplified with PCR. Possible gene mutations were searched for in site 1896 of pre-C section, sites 1762,1764 of BCP section and sites 528, 552 of P section with DNA chip method based upon membrane coloration. Results: In the 32 patients without lamivudine treatment, the results were as follows: (1) 6 specimens with HBsAg + , HBeAg + , HBeAb - , no mutations observed. (2) 13 specimens with HBsAg + , HBeAg - , HBeAb + , mutations at site 1896, pre- C 4 cases, mutations at sites 1762,1764, BCP 11 cases. (3) 13 specimens with HBsAg + , HBeAg + , HBeAb + , mutations at site 1896 pre -C 4 cases, mutations at sites 1762,1764 BCP 13 cases. In the 15 patients after 48 weeks treatment with lamivudine but remained HBV DNA positive, mutations were observed at: site 1896 pre-C, 5 cases, sites 1762,1764 BCP, 6 cases, site 528 P section, 2 cases, site 552 P section, YVDD 4 cases, YIDD 7 cases. Conclusion: Mutations at sites 1896, 1762,1764 were more frequent in patients with HBeAb + and were related to the negative expression of HBeAg, Mutations at 1762,1764 BCP were closely related to the changes of HBeAg/HBeAb. P section mutations were only observed after lamivadine treatment and were related to resistance against the drug. DNA chip method based upon membrane coloration for detection of gene mutation was expedient and specific and worth popularization. (authors)

  7. Polymorphisms in IRG1 gene associated with immune responses to hepatitis B vaccination in a Chinese Han population and function to restrain the HBV life cycle.

    Science.gov (United States)

    Liu, Xing; Zhang, Li; Wu, Xiao-Pan; Zhu, Xi-Lin; Pan, Li-Ping; Li, Tao; Yan, Bing-Yu; Xu, Ai-Qiang; Li, Hui; Liu, Ying

    2017-07-01

    Vaccination against the hepatitis B virus (HBV) is extensively used as an effective method to prevent HBV infection. However, nearly 10% of healthy adults fail to produce a protective level of antibodies against the hepatitis B vaccine, and multiple genetic variants are known to affect the immune response to the hepatitis B vaccine. The aim of the present study was to investigate the association between polymorphisms in immunoresponsive gene 1 (IRG1) gene and the immune response to hepatitis B vaccination in a Chinese Han population. Four single nucleotide polymorphisms (SNPs) located in the IRG1 gene were genotyped in 1230 high-responders and 451 non-responders to hepatitis B vaccination. The SNPs rs17470171 and rs17385627 were associated with the immune response to hepatitis B vaccination (P = 0.014 and 0.029, respectively). In addition, the haplotypes G-A-A-A (rs614171-rs17470171-rs9530614-rs17385627, P = 0.0042, OR = 0.68) and A-A (rs17470171-rs17385627, P = 0.0065, OR = 0.72) exerted a protective role in the immune response to hepatitis B vaccination. Allele 'A' of rs17470171 and allele 'A' of rs17385627 show higher levels of expression for the IRG1 gene compared with allele 'C' of rs17470171 and allele 'T' of rs17385627 as demonstrated by luciferase reporter and overexpression assays. In addition, we observed that IRG1 inhibited the HBV life cycle and that IRG1 rs17385627 allele 'A' was more effective than rs17385627 allele 'T' at eliminating HBV in HepG2.2.15 cells. These findings suggest that polymorphisms in the IRG1 gene are associated with the immune response to hepatitis B vaccination. The antiviral effect of IRG1 was confirmed using HBV infection cell models. © 2017 Wiley Periodicals, Inc.

  8. Retinoid X Receptor α-Dependent HBV Minichromosome Remodeling and Viral Replication.

    Science.gov (United States)

    Zhang, Yan; He, Song; Guo, Jin-Jun; Peng, Hong; Fan, Jia-Hao; Li, Qing-Ling

    2017-01-01

    The HBV covalently closed circular DNA (cccDNA) is organized into a minichromosome in the nuclei of infected hepatocytes through interactions with histone and nonhistone proteins. Retinoid X receptor α (RXRα), a liver-enriched nuclear receptor, participates in regulation of HBV replication and transcription through modulation of HBV enhancer 1 and core promoter activity. This study investigated RXRα involvement in HBV cccDNA epigenetic modifications. Quantitative cccDNA chromatin immunoprecipitation (ChIP) was applied to study the recruitment of RXRα, histones, and chromatin-modifying enzymes to HBV minichromosome in HepG2 cells after transfection of the linear HBV genome. RXRα Was found to directly bind to HBV cccDNA; recruitment of RXRα to HBV mini-chromosome paralleled HBV replication, histone recruitment, and histone acetylation in HBVcccDNA. Moreover, RXRα overexpression or knock-down significantly increased or impaired the recruitment of the p300 acetyltransferase to cccDNAminichromosome. Our results confirmed the regulation of RXRα on HBV replication in vitro and demonstrated the modulation of RXRα on HBV cccDNA epigenetics. These findings provide a profound theoretical and experimental basis for late-model antiviral treatment acting on the HBV cccDNA and minichromosome.

  9. Detection of different categories of hepatitis B virus (HBV) infection in a multi-regional study comparing the clinical sensitivity of hepatitis B surface antigen and HBV-DNA testing

    DEFF Research Database (Denmark)

    Lelie, Nico; Bruhn, Roberta; Busch, Michael

    2017-01-01

    BACKGROUND: Twenty-two users of individual donation nucleic acid amplification technology (ID-NAT) in six geographical regions provided detailed hepatitis B virus (HBV) infection data in first-time, lapsed, and repeat donations and classified confirmed HBV-positive donors into different infection...... categories. These data were used to compare the clinical sensitivity of hepatitis B surface antigen (HBsAg) and HBV-DNA testing. STUDY DESIGN AND METHODS: In total 10,981,776 donations from South Africa, Egypt, the Mediterranean, North and Central Europe, South East Asia, and Oceania were screened for HBV...

  10. Update Treatment for HBV Infection and Persistent Risk for Hepatocellular Carcinoma: Prospect for an HBV Cure.

    Science.gov (United States)

    Yoo, Joseph; Hann, Hie-Won; Coben, Robert; Conn, Mitchell; DiMarino, Anthony J

    2018-04-20

    Since the discovery of the hepatitis B virus (HBV) by Blumberg et al. in 1965, its genome, sequence, epidemiology, and hepatocarcinogenesis have been elucidated. Globally, hepatitis B virus (HBV) is still responsible for the majority of hepatocellular carcinoma (HCC). HCC is the sixth-most common cancer in the world and the second-most common cancer death. The ultimate goal of treating HBV infection is the prevention of HCC. Fortunately, anti-HBV treatment with nucleos(t)ide analogues (NAs), which began with lamivudine in 1998, has resulted in remarkable improvements in the survival of patients with chronic hepatitis B and a reduced incidence of HCC. These results were documented with lamivudine, entecavir, and tenofovir. Nonetheless, as the duration of antiviral treatment increases, the risk for HCC still remains despite undetectable HBV DNA in serum, as reported by different investigators with observation up to 4⁻5 years. In our own experience, we are witnessing the development of HCC in patients who have received antiviral treatment. Some have enjoyed negative serum HBV DNA for over 12 years before developing HCC. Current treatment with NAs can effectively suppress the replication of the virus but cannot eradicate the covalently closed circular DNA (cccDNA) that is within the nucleus of hepatocytes. There still remains a great need for a cure for HBV. Fortunately, several compounds have been identified that have the potential to eradicate HBV, and there are ongoing clinical trials in progress in their early stages.

  11. Prediction value of serum HBV large surface protein in different phases of HBV infection and virological response of chronic hepatitis B patients.

    Science.gov (United States)

    Liu, Can; Wu, Wennan; Shang, Hongyan; Lin, Sheng; Xun, Zhen; Huang, Er; Lin, Jinpiao; Yang, Bin; Ou, Qishui

    2018-06-01

    Serum HBV large surface protein (HBV-LP) is an envelope protein that has a close relationship with HBV DNA level. This study is to explore the prediction value of HBV-LP in different phase of HBV infection and during antiviral therapy in chronic hepatitis B (CHB) patients. A retrospective study was conducted in 2033 individuals, which included 1677 HBV infected patients in different phases and 356 healthy controls. HBV-LP, HBV serum markers and HBV DNA were detected by ELISA, CMIA and qRT-PCR, respectively. 85 CHB patients receiving PegIFNα or ETV were divided into virological response (VR) and partial virological response (PVR). The dynamic changes of HBV DNA and HBV-LP were observed. The level of HBV-LP in 2033 individuals was shown as: HBeAg-positive hepatitis > HBeAg-positive infection > HBeAg-negative hepatitis > HBeAg-negative infection > healthy controls. HBV-LP was positive in all patients whose HBV DNA > 1.0E + 06 IU/ml. When HBsAg was 1000 IU/ml, HBV DNAs were all negative if HBV-LP HBV-LP with HBV DNA was 100% in case of HBV-LP > 4.0 S/CO in HBeAg-positive patients and HBV-LP > 2.0 S/CO in HBeAg-negative ones. During antiviral therapy, baseline HBV-LP was lower in VR patients than that in PVR patients. The optimal cut-off points to predict VR by baseline HBV-LP were 32.4 and 28.6 S/CO for HBeAg-positive and HBeAg-negative hepatitis patients, respectively. HBV-LP may be a useful marker for distinguishing the different phases of HBV infection. Moreover, baseline HBV-LP level can be used for predicting VR of CHB patients. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Immune response at birth, long-term immune memory and 2 years follow-up after in-utero anti-HBV DNA immunization.

    Science.gov (United States)

    Fazio, V M; Ria, F; Franco, E; Rosati, P; Cannelli, G; Signori, E; Parrella, P; Zaratti, L; Iannace, E; Monego, G; Blogna, S; Fioretti, D; Iurescia, S; Filippetti, R; Rinaldi, M

    2004-03-01

    Infections occurring at the end of pregnancy, during birth or by breastfeeding are responsible for the high toll of death among first-week infants. In-utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. A major contribution to infant immunization would be achieved if a vaccine proved able to be protective as early as at the birth, preventing the typical 'first-week infections'. To establish its potential for use in humans, in-utero DNA vaccination efficiency has to be evaluated for short- and long-term safety, protection at delivery, efficacy of boosts in adults and effective window/s for modulation of immune response during pregnancy, in an animal model suitable with human development. Here we show that a single intramuscular in-utero anti-HBV DNA immunization at two-thirds of pig gestation produces, at birth, antibody titers considered protective in humans. The boost of antibody titers in every animal following recall at 4 and 10 months demonstrates the establishment of immune memory. The safety of in-utero fetus manipulation is guaranteed by short-term (no fetus loss, lack of local alterations, at-term spontaneous delivery, breastfeeding) and long-term (2 years) monitoring. Treatment of fetuses closer to delivery results in immune ignorance without induction of tolerance. This result highlights the repercussion of selecting the appropriate time point when this approach is used to deliver therapeutic genes. All these findings illustrate the relevance of naked DNA-based vaccination technology in therapeutic efforts aimed to prevent the high toll of death among first-week infants.

  13. Simplified PCR protocols for INNO-LiPA HBV Genotyping and INNO-LiPA HBV PreCore assays

    NARCIS (Netherlands)

    Qutub, Mohammed O.; Germer, Jeffrey J.; Rebers, Sjoerd P. H.; Mandrekar, Jayawant N.; Beld, Marcel G. H. M.; Yao, Joseph D. C.

    2006-01-01

    INNO-LiPA HBV Genotyping (LiPA HBV GT) and INNO-LiPA HBV PreCore (LiPA HBV PC) are commercially available assays for hepatitis B virus (HBV) characterization. These assays are labor-intensive and may be prone to exogenous DNA contamination due to their use of nested PCR amplification procedures and

  14. If You Have Chronic Hepatitis B Virus (HBV) Infection

    Science.gov (United States)

    ... globulin (HBIG) and started on the hepatitis B vaccine series within 12 hours of birth to prevent your baby from getting HBV infec- tion.  Avoid alcoholic beverages. Alcohol can damage your liver. HBV infection People can get HBV ...

  15. The accelerated hepatitis B virus vaccination schedule among hemodialysis patients, does it work? A randomized controlled trial.

    Science.gov (United States)

    Imam, Mahmoud Hamada

    2017-12-01

    Hemodialysis patients possess particular attributes which increase the susceptibility to hepatitis B virus (HBV) infections. HBV vaccination significantly decreased the number of new HBV-infected patients. However, the conventional vaccination schedule requires a 6-months duration. This study aimed to examine the efficacy the accelerated vaccination schedule among hemodialysis patients. In this study, 202 consecutive hemodialysis patients at New Jeddah hospital were enrolled. The inclusion criteria were: (1) age was above 18 years, (2) all patients had undetectable HBV surface antigen and antibody. Exclusion criteria included: (1) patient had a positive serum HBV surface antigen and antibody using enzyme-linked immunosorbent assay; (2) patient received a previous course of HBV vaccine, (3) patient who was pregnant. Patients were sequentially randomized to receive either Hepatitis B recombinant DNA vaccine (conventional schedule) or to receive combined hepatitis A and B vaccine injection (accelerated schedule). Testing for HBV surface antibodies was done one and three months after completion of the dosage schedule. The primary outcome was the proportion of seroprotection (defined by serum HBV surface antibodies ≥ 10 mIU/ml). Adverse reactions were evaluated regarding both fever and post-injection pain scale. Patients' age ranged from 18 to 71 years.After 1 and 3 months of completion of the vaccination schedule, there was no statistical difference in the proportion of seroprotected patients among both groups. Accelerated vaccination schedule using combined hepatitis A and B vaccine may be beneficial for HBV seroprotection among hemodialysis patients.

  16. Immunogenicity and safety of primary and booster vaccination with 2 investigational formulations of diphtheria, tetanus and Haemophilus influenzae type b antigens in a hexavalent DTPa-HBV-IPV/Hib combination vaccine in comparison with the licensed Infanrix hexa

    Science.gov (United States)

    Vesikari, Timo; Rivera, Luis; Korhonen, Tiina; Ahonen, Anitta; Cheuvart, Brigitte; Hezareh, Marjan; Janssens, Winnie; Mesaros, Narcisa

    2017-01-01

    ABSTRACT Safety and immunogenicity of 2 investigational formulations of diphtheria, tetanus and Haemophilus influenzae type b antigens of the combined diphtheria-tetanus-acellular pertussis-hepatitis B-inactivated poliomyelitis-Hib vaccine (DTPa-HBV-IPV/Hib) were evaluated in a Primary (NCT01248884) and a Booster vaccination (NCT01453998) study. In the Primary study, 721 healthy infants (randomized 1:1:1) received 3 doses of DTPa-HBV-IPV/Hib formulation A (DATAPa-HBV-IPV/Hib), or B (DBTBPa-HBV-IPV/Hib) or the licensed DTPa-HBV-IPV/Hib vaccine (Infanrix hexa, GSK; control group) at 2, 3, 4 months of age. Infants were planned to receive a booster dose at 12–15 months of age with the same formulation received in the Primary study; however, following high incidence of fever associated with the investigational formulations in the Primary study, the Booster study protocol was amended and all infants yet to receive a booster dose (N = 385) received the licensed vaccine. In the Primary study, non-inferiority of 3-dose vaccination with investigational formulations compared with the licensed vaccine was not demonstrated due to anti-pertactin failing to meet the non-inferiority criterion. Post-primary vaccination, most infants had seroprotective levels of anti-diphtheria (100% of infants), anti-tetanus antigens (100%), against hepatitis B (≥ 97.5% across groups), polyribosyl-ribitol-phosphate (≥ 88.0%) and poliovirus types 1–3 (≥ 90.5%). Seropositivity rates for each pertussis antigen were 100% in all groups. Higher incidence of fever (> 38°C) was reported in infants receiving the investigational formulations (Primary study: 75.0% [A] and 72.1% [B] vs 58.8% [control]; Booster study, before amendment: 49.4% and 46.6% vs 37.4%, respectively). The development of the investigational formulations was not further pursued. PMID:28340322

  17. Efficacy of combined hepatitis B immunoglobulin and hepatitis B vaccine in blocking father-infant transmission of hepatitis B viral infection.

    Science.gov (United States)

    Cao, L-H; Liu, Z-M; Zhao, P-L; Sun, S-C; Xu, D-B; Shao, M-H; Zhang, J-D

    2015-05-04

    The aim of this study was to examine the efficacy of combined immunization of hepatitis B immunoglobulin (HBIG) and hepatitis B vaccine (HBVac) in blocking father-infant transmission of hepatitis B virus (HBV). Newborns positive at birth for blood HBV sur-face antigen (HBsAg) and/or HBV DNA were selected and immunized with HBIG combination HBVac. At 7 months, HBV markers and HBV DNA of each neonate were measured using electrochemiluminescence with the Cobas-e-411 Automatic Electrochemiluminescence Immuno-assay Analyzer and fluorescence quantitative polymerase chain reaction. Among all 7-month-old subjects, the negative conversion rates of HBV DNA and HBsAg were 48/61 (78.7%) and 19/41 (46.3%), respectively. Therefore, this study demonstrated that prompt combination injection of HBIG and HBVac can protect some of the HBV DNA- and/ or HBsAg-positive newborns from HBV.

  18. DNA fusion gene vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Bassi, Maria Rosaria; Thomsen, Allan Randrup

    2010-01-01

    DNA vaccines are versatile and safe, but limited immunogenicity has prevented their use in the clinical setting. Experimentally, immunogenicity may be enhanced by the use of new delivery technologies, by coadministration of cytokines and pathogen-associated molecular patterns, or by fusion...... of antigens into molecular domains that enhance antigen presentation. More specifically, the immunogenicity of DNA vaccines may benefit from increased protein synthesis, increased T-cell help and MHC class I presentation, and the addition of a range of specific cytokines and pathogen-associated molecular...... with viral-vectored vaccines, various synergistic components may need to be incorporated into DNA vaccines. From the perspective of the future clinical use of DNA vaccines, it has been suggested that antigen presentation should be improved and cytokine coadministration attempted. However, even...

  19. A phase II, randomized study on an investigational DTPw-HBV/Hib-MenAC conjugate vaccine administered to infants in Northern Ghana.

    Directory of Open Access Journals (Sweden)

    Abraham Hodgson

    Full Text Available BACKGROUND: Combining meningococcal vaccination with routine immunization in infancy may reduce the burden of meningococcal meningitis, especially in the meningitis belt of Africa. We have evaluated the immunogenicity, persistence of immune response, immune memory and safety of an investigational DTPw-HBV/Hib-MenAC conjugate vaccine given to infants in Northern Ghana. METHODS AND FINDINGS: In this phase II, double blind, randomized, controlled study, 280 infants were primed with DTPw-HBV/Hib-MenAC or DTPw-HBV/Hib vaccines at 6, 10 and 14 weeks of age. At 12 months of age, children in each group received a challenge dose of serogroup A+C polysaccharides. Antibody responses were assessed pre, and one month-post dose 3 of the priming schedule and pre and 1 month after administration of the challenge dose. One month post-dose 3, 87.8% and 88.2% of subjects in the study group had bactericidal meningococcal serogroup A (SBA-MenA and meningococcal serogroup C (SBA-MenC antibody titres > or = 1:8 respectively. Seroprotection/seropositivity rates to the 5 antigens administered in the routine EPI schedule were non-inferior in children in the study group compared to those in the control group. The percentages of subjects in the study group with persisting SBA-MenA titres > or = 1:8 or SBA-MenC titres > or = 1:8 at the age of 12 months prior to challenge were significantly higher than in control group (47.7% vs 25.7% and 56.4% vs 5.1% respectively. The administration of 10 microg of serogroup A polysaccharide increased the SBA-MenA GMT by 14.0-fold in the DTPW-HBV/HibMenAC-group compared to a 3.8 fold increase in the control-group. Corresponding fold-increases in SBA-MenC titres following challenge with 10 microg of group C polysaccharide were 18.8 and 1.9 respectively. Reactogenicity following primary vaccination or the administration of the challenge dose was similar in both groups, except for swelling (Grade 3 after primary vaccination which was more

  20. Emergence of Lamivudine-Resistant HBV during Antiretroviral Therapy Including Lamivudine for Patients Coinfected with HIV and HBV in China

    Science.gov (United States)

    Li, Yijia; Zhu, Ting; Song, Xiaojing; Huang, Ying; Yang, Feifei; Guan, Shuo; Xie, Jing; Gohda, Jin; Hosoya, Noriaki; Kawana-Tachikawa, Ai; Liu, Wenjun; Gao, George Fu; Iwamoto, Aikichi; Li, Taisheng; Ishida, Takaomi

    2015-01-01

    In China, HIV-1-infected patients typically receive antiretroviral therapy (ART) that includes lamivudine (3TC) as a reverse-transcriptase inhibitor (RTI) (ART-3TC). Previous studies from certain developed countries have shown that, in ART-3TC, 3TC-resistant HBV progressively emerges at an annual rate of 15–20% in patients coinfected with HIV-1 and HBV. This scenario in China warrants investigation because >10% of all HIV-infected patients in China are HBV carriers. We measured the occurrence of 3TC-resistant HBV during ART-3TC for HIV-HBV coinfection and also tested the effect of tenofovir disoproxil fumarate (TDF) used as an additional RTI (ART-3TC/TDF) in a cohort study in China. We obtained 200 plasma samples collected from 50 Chinese patients coinfected with HIV-1 and HBV (positive for hepatitis B surface antigen) and examined them for the prevalence of 3TC-resistant HBV by directly sequencing PCR products that covered the HBV reverse-transcriptase gene. We divided the patients into ART-3TC and ART-3TC/TDF groups and compared the efficacy of treatment and incidence of drug-resistance mutation between the groups. HIV RNA and HBV DNA loads drastically decreased in both ART-3TC and ART-3TC/TDF groups. In the ART-3TC group, HBV breakthrough or insufficient suppression of HBV DNA loads was observed in 20% (10/50) of the patients after 96-week treatment, and 8 of these patients harbored 3TC-resistant mutants. By contrast, neither HBV breakthrough nor treatment failure was recorded in the ART-3TC/TDF group. All of the 3TC-resistant HBV mutants emerged from the cases in which HBV DNA loads were high at baseline. Our results clearly demonstrated that ART-3TC is associated with the emergence of 3TC-resistant HBV in patients coinfected with HIV-1 and HBV and that ART-3TC/TDF reduces HBV DNA loads to an undetectable level. These findings support the use of TDF-based treatment regimens for patients coinfected with HIV-1 and HBV. PMID:26288093

  1. Long-term hepatitis B virus (HBV response to lamivudine-containing highly active antiretroviral therapy in HIV-HBV co-infected patients in Thailand.

    Directory of Open Access Journals (Sweden)

    Woottichai Khamduang

    Full Text Available Approximately 4 million of people are co-infected with HIV and Hepatitis B virus (HBV. In resource-limited settings, the majority of HIV-infected patients initiate first-line highly active antiretroviral therapy containing lamivudine (3TC-containing-HAART and long-term virological response of HBV to lamivudine-containing HAART in co-infected patients is not well known.HIV-HBV co-infected patients enrolled in the PHPT cohort (ClinicalTrials.gov NCT00433030 and initiating a 3TC-containing-HAART regimen were included. HBV-DNA, HIV-RNA, CD4+ T-cell counts and alanine transaminase were measured at baseline, 3 months, 12 months and then every 6 months up to 5 years. Kaplan-Meier analysis was used to estimate the cumulative rates of patients who achieved and maintained HBV-DNA suppression. Of 30 co-infected patients, 19 were positive for HBe antigen (HBeAg. At initiation of 3TC-containing-HAART, median HBV DNA and HIV RNA levels were 7.35 log(10 IU/mL and 4.47 log(10 copies/mL, respectively. At 12 months, 67% of patients achieved HBV DNA suppression: 100% of HBeAg-negative patients and 47% of HBeAg-positive. Seventy-three percent of patients had HIV RNA below 50 copies/mL. The cumulative rates of maintained HBV-DNA suppression among the 23 patients who achieved HBV-DNA suppression were 91%, 87%, and 80% at 1, 2, and 4 years respectively. Of 17 patients who maintained HBV-DNA suppression while still on 3TC, 4 (24% lost HBsAg and 7 of 8 (88% HBeAg-positive patients lost HBeAg at their last visit (median duration, 59 months. HBV breakthrough was observed only in HBeAg-positive patients and 6 of 7 patients presenting HBV breakthrough had the rtM204I/V mutations associated with 3TC resistance along with rtL180M and/or rtV173L.All HBeAg-negative patients and 63% of HBeAg-positive HIV-HBV co-infected patients achieved long-term HBV DNA suppression while on 3TC-containing-HAART. This study provides information useful for the management of co-infected patients

  2. The future of human DNA vaccines.

    Science.gov (United States)

    Li, Lei; Saade, Fadi; Petrovsky, Nikolai

    2012-12-31

    DNA vaccines have evolved greatly over the last 20 years since their invention, but have yet to become a competitive alternative to conventional protein or carbohydrate based human vaccines. Whilst safety concerns were an initial barrier, the Achilles heel of DNA vaccines remains their poor immunogenicity when compared to protein vaccines. A wide variety of strategies have been developed to optimize DNA vaccine immunogenicity, including codon optimization, genetic adjuvants, electroporation and sophisticated prime-boost regimens, with each of these methods having its advantages and limitations. Whilst each of these methods has contributed to incremental improvements in DNA vaccine efficacy, more is still needed if human DNA vaccines are to succeed commercially. This review foresees a final breakthrough in human DNA vaccines will come from application of the latest cutting-edge technologies, including "epigenetics" and "omics" approaches, alongside traditional techniques to improve immunogenicity such as adjuvants and electroporation, thereby overcoming the current limitations of DNA vaccines in humans. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. A European multicientre study on the comparison of HBV viral loads between VERIS HBV assay and Roche COBAS® TAQMAN® HBV test, Abbott RealTime HBV assay, Siemens VERSANT HBV assay, and Qiagen artus HBV RG kit.

    Science.gov (United States)

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Izopet, Jacques; Lombardi, Alessandra; Marcos, MaAngeles; Sauné, Karine; O'Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel

    2017-10-01

    Hepatitis B viral load testing is essential to treatment and monitoring decisions in patients with chronic Hepatitis B. Beckman Coulter has developed the VERIS HBV Assay (Veris) for use on the fully automated DxN VERIS Molecular Diagnostics System. 1 OBJECTIVES: To evaluate the clinical performance of the Veris HBV Assay at multiple EU laboratories STUDY DESIGN: Method comparison was performed with a total of 344 plasma specimens from HBV infected patients tested with Veris and COBAS ® TaqMan ® HBV Test (Cobas), 207 specimens tested with Veris and RealTime HBV Assay (RealTime), 86 specimens tested with Veris and VERSANT ® HBV Assay (Versant), and 74 specimens tested with Veris and artus ® HBV RG PCR kit (artus). Bland-Altman analysis showed average bias of -0.46 log 10 IU/mL between Veris and Cobas, -0.46 log 10 IU/mL between Veris and RealTime, -0.36 log 10 IU/mL between Veris and Versant, and -0.12 log 10 IU/mL between Veris and artus. Bias was consistent across the assay range. Patient monitoring results using Veris demonstrated similar viral load trends over time to Cobas, RealTime, and artus. The VERIS HBV Assay demonstrated comparable clinical performance, with varying degrees of negative bias, compared to other currently marketed assays for HBV DNA monitoring. This negative bias should be taken into consideration if switching monitoring methods to Veris. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. DNA vaccines for aquacultured fish

    DEFF Research Database (Denmark)

    Lorenzen, Niels; LaPatra, S.E.

    2005-01-01

    of licensing and public acceptance of the technology. The potential benefits of DNA vaccines for farmed fish include improved animal welfare, reduced environmental impacts of aquaculture activities, increased food quality and quantity, and more sustainable production. Testing under commercial production......Deoxyribonucleic acid (DNA) vaccination is based on the administration of the gene encoding the vaccine antigen, rather than the antigen itself. Subsequent expression of the antigen by cells in the vaccinated hosts triggers the host immune system. Among the many experimental DNA vaccines tested...... in various animal species as well as in humans, the vaccines against rhabdovirus diseases in fish have given some of the most promising results. A single intramuscular (IM) injection of microgram amounts of DNA induces rapid and long-lasting protection in farmed salmonids against economically important...

  5. Genetic mutation analysis of HBV covalently closed circular DNA in peripheral blood mononuclear cells from chronic hepatitis B patients with nucleos(tide analog-resistant mutations in serum virions

    Directory of Open Access Journals (Sweden)

    Zhong-bin LI

    2012-06-01

    Full Text Available Objective  To analyze the characteristics of genetic mutations in reverse-transcriptase (RT domain of HBV covalently closed circular DNA (cccDNA in peripheral blood mononuclear cells (PBMCs obtained from chronic hepatitis B (CHB patients with drug-resistant mutations in serum virions during nucleoside/nucleotide analog (NA therapy. Methods  A total of 30 CHB patients admitted to 302 Hospital of PLA from July 2010 to August 2011 were included in this study. All the patients were confirmed to harbor the drug-resistant mutations in serum virions during an NA therapy longer than 6 months. Total DNA was extracted from PBMCs isolated from 30 whole blood samples at the same time point as that of serum analysis. Plasmid-safe ATP-dependent DNase (PSAD digestion in combination with rolling circle amplification and gap-spanning semi-nested PCR were used to amplify the RT region of HBV cccDNA. NA-resistant-associated mutations were analyzed at nine sites. Results  HBV cccDNA was efficiently amplified in 16 out of 30 (53.3% PBMC samples, and the detection rate was not correlated with HBeAg-positive rate, serum ALT level or HBV DNA load. Five of 16 (31.3% patients were sustained to have genotype B HBV infection, and 11 of 16 (68.8% were of genotype C HBV infection, and the result was consistent with the genotyping results using serum HBV. Different from drug-resistant mutations detected in the serum virions, the viruses detected in HBV cccDNA of 16 PBMC samples were all wild-type viruses without NA-resistant-associated mutations in RT region. Conclusions  During NA antiviral treatment, if drug-resistant mutations occur in serum HBV DNA of CHB patients, the dominant species of HBV cccDNA in PBMCs from the same patient is still the original wild-type strains. It is speculated that PBMCs might be the potential "repository" of HBV wild-type strain in vivo.

  6. Hepatitis B virus exposure during childhood in Cameroon, Central African Republic and Senegal after the integration of HBV vaccine in the expanded program on immunization.

    Science.gov (United States)

    Rey-Cuille, Marie-Anne; Njouom, Richard; Bekondi, Claudine; Seck, Abdoulaye; Gody, Chrysostome; Bata, Petulla; Garin, Benoit; Maylin, Sarah; Chartier, Loic; Simon, François; Vray, Muriel

    2013-10-01

    More than 2 billion people worldwide have been exposed to hepatitis B virus (HBV). To prevent these infections, Senegal and Cameroon integrated the HBV vaccine into their Expanded Program on Immunization (EPI) in 2005, as did the Central African Republic (CAR) in 2008. We evaluated the prevalence of HBV exposure and infection after the integration of the HBV vaccine in the EPI. An observational cross-sectional study was conducted among the hospitalized children 3 months to 6 years of age in Cameroon, CAR and Senegal. Plasma was collected for the detection of anti-HBc, anti-HBs and hepatitis B surface antigen in children with anti-HBc and anti-HBs. Between April 2009 and May 2010, 1783 children were enrolled, 19.4% of whom were anti-HBc positive. The percentage of children with anti-HBc was 44.4% among the children younger than 6 months, decreasing after 6 months to reach 18.8% at 12 months. This decline was followed by a rapid increase in anti-HBc positivity rate in CAR observed as early as 12 months of age compared with Cameroon and Senegal, where the anti-HBc increased between 18 and 36 months of age, respectively. The prevalence of hepatitis B surface antigen-positive children was significantly higher in CAR than that in Cameroon and Senegal (5.1% versus 0.7% and 0.2%; P Senegal suggests a positive impact of HBV vaccination.

  7. DNA/MVA Vaccines for HIV/AIDS

    Directory of Open Access Journals (Sweden)

    Smita S. Iyer

    2014-02-01

    Full Text Available Since the initial proof-of-concept studies examining the ability of antigen-encoded plasmid DNA to serve as an immunogen, DNA vaccines have evolved as a clinically safe and effective platform for priming HIV-specific cellular and humoral responses in heterologous “prime-boost” vaccination regimens. Direct injection of plasmid DNA into the muscle induces T- and B-cell responses against foreign antigens. However, the insufficient magnitude of this response has led to the development of approaches for enhancing the immunogenicity of DNA vaccines. The last two decades have seen significant progress in the DNA-based vaccine platform with optimized plasmid constructs, improved delivery methods, such as electroporation, the use of molecular adjuvants and novel strategies combining DNA with viral vectors and subunit proteins. These innovations are paving the way for the clinical application of DNA-based HIV vaccines. Here, we review preclinical studies on the DNA-prime/modified vaccinia Ankara (MVA-boost vaccine modality for HIV. There is a great deal of interest in enhancing the immunogenicity of DNA by engineering DNA vaccines to co-express immune modulatory adjuvants. Some of these adjuvants have demonstrated encouraging results in preclinical and clinical studies, and these data will be examined, as well.

  8. C-Terminal Substitution of HBV Core Proteins with Those from DHBV Reveals That Arginine-Rich 167RRRSQSPRR175 Domain Is Critical for HBV Replication

    Science.gov (United States)

    Kim, Taeyeung; Shin, Bo-Hye; Park, Gil-Soon; Park, Sun; Chwae, Yong-Joon; Shin, Ho-Joon; Kim, Kyongmin

    2012-01-01

    To investigate the contributions of carboxyl-terminal nucleic acid binding domain of HBV core (C) protein for hepatitis B virus (HBV) replication, chimeric HBV C proteins were generated by substituting varying lengths of the carboxyl-terminus of duck hepatitis B virus (DHBV) C protein for the corresponding regions of HBV C protein. All chimeric C proteins formed core particles. A chimeric C protein with 221–262 amino acids of DHBV C protein, in place of 146–185 amino acids of the HBV C protein, supported HBV pregenomic RNA (pgRNA) encapsidation and DNA synthesis: 40% amino acid sequence identity or 45% homology in the nucleic-acid binding domain of HBV C protein was sufficient for pgRNA encapsidation and DNA synthesis, although we predominantly detected spliced DNA. A chimeric C protein with 221–241 and 251–262 amino acids of DHBV C, in place of HBV C 146–166 and 176–185 amino acids, respectively, could rescue full-length DNA synthesis. However, a reciprocal C chimera with 242–250 of DHBV C (242RAGSPLPRS 250) introduced in place of 167–175 of HBV C (167RRRSQSPRR 175) significantly decreased pgRNA encapsidation and DNA synthesis, and full-length DNA was not detected, demonstrating that the arginine-rich 167RRRSQSPRR175 domain may be critical for efficient viral replication. Five amino acids differing between viral species (underlined above) were tested for replication rescue; R169 and R175 were found to be important. PMID:22911745

  9. DNA Vaccines

    Indian Academy of Sciences (India)

    diseases. Keywords. DNA vaccine, immune response, antibodies, infectious diseases. GENERAL .... tein vaccines require expensive virus/protein purification tech- niques as ... sphere continue to remain major health hazards in developing nations. ... significance since it can be produced at a very low cost and can be stored ...

  10. [Risk Management of HBV Reactivation: Construction of Check System].

    Science.gov (United States)

    Tanaka, Yasuhito

    2015-09-01

    In recent years, reactivation of HBV in patients receiving cancer chemotherapy or immunosuppressive therapy has been a problem. Generally, HBV-DNA levels are elevated prior to HBsAg concentration, and then hepatic dysfunction is observed in the process of hepatitis by HBV reactivation. Therefore, the monitoring of HBV-DNA is useful for the prediction of hepatic dysfunction, and nucleoside/nucleoside analogue (NA) administration is able to prevent this HBV reactivation. According to these facts, "Guidelines for the Prevention of HBV Reactivation in Patients Receiving Immunosuppressive Therapy or Chemotherapy", 2009 (revised as "JSH Guidelines for the Management of Hepatitis B Virus Infection", 2013) is established, and the diagnostic algorithm of HBsAg, anti-HBc, anti-HBs, and HBV-DNA has relevant descriptions. Combination therapy with rituximab and steroid for malignant lymphoma has a high risk of leading to fulminant hepatitis and, consequently, the guidelines are widely followed in such cases. We introduced the improvement of electronic medical recording and ordering systems in collaboration with hepatologists, and such a system has been widely used. Although the monitoring of HBV-DNA levels is required every 1-3 months, the guidelines are not followed strictly in cases such as rheumatoid disease and solid tumors only with chemotherapy or steroid treatment. Since a DNA assay is complicated and expensive, cost-effective, time-saving, and highly sensitive/specific measurements are required as well. Therefore, Lumipulse HBsAg-HQ (CLIA method) with high sensitivity is expected to be used for the monitoring of HBV reactivation.

  11. Frequency of HBV infection and its risk factors in asymptomatic military personnels

    International Nuclear Information System (INIS)

    Kamran, S.M.; Iftikhar, R.; Wasti, S.M.W.; Awan, Z.I.

    2016-01-01

    Objective: To determine the frequency of silent Hepatitis B virus (HBV) infection, its symptoms and risk factors in apparently healthy military personnel of Pakistan Army. Study Design: Descriptive cross sectional study. Place and Duration of Study: Department of medicine, Combined Military Hospital Okara from Oct 2012 to Mar 2013. Material and Methods: A total of 6236 healthy troops with age ranging from 18 to 57 years without previous or present history of HBV infection were selected by consecutive sampling from Okara Garrison. Blood samples were subjected to rapid screening of HBV infection using immunochrom atographic (ICT) kits (Intec at the rate production, Inc) with sensitivity and specificity of 99.8 percent and 95 percent respectively. All positive cases were confirmed by 4th generation ELISA and PCR for HBV DNA were also sent. All infected cases were given a questionnaire about different risk factors of HBV infection. Finally variables were defined qualitatively and quantitatively and frequency, percentage, mean (SD) were calculated. All the data was analyzed using SPSS version 19. Results: Age ranged from 18-57 years with mean age of the study group 27 (+-7.2) years. Mean age among those with HBs Ag positive was 32 (+-7.3) years. Frequency of HBV infection was 2.03 percent (127 participants out of 6236) whereas PCR for HBV DNA was positive in 51 out of 127 (40.1 percent). Most common symptom was anorexia in 16 patients (12.6 percent) followed by fatigue and fever in 15 patients (11.8 percent) each. While 42 patients (33.1 percent) were asymptomatic. Dental procedures was found to be most frequent risk factor (25.9 percent) followed by previous history of surgery (21.2 percent). Conclusion: Although pre induction screening of HBV infection is carried out in Pak Army still its prevalence is matched with that of general Pakistani population. Soldiers' education and immediate vaccination is recommended at time of induction to stop the spread of this dreadful

  12. Nucleic Acid Sensors Involved in the Recognition of HBV in the Liver–Specific in vivo Transfection Mouse Models—Pattern Recognition Receptors and Sensors for HBV

    Directory of Open Access Journals (Sweden)

    Chean Ring Leong

    2015-04-01

    Full Text Available Cellular innate immune system recognizing pathogen infection is critical for the host defense against viruses. Hepatitis B virus (HBV is a DNA virus with a unique life cycle whereby the DNA and RNA intermediates present at different phases. However, it is still unclear whether the viral DNA or RNA templates are recognized by the pattern-recognition receptors (PRRs to trigger host antiviral immune response. Here in this article, we review the recent advances in the progress of the HBV studies, focusing on the nucleic acid sensors and the pathways involved in the recognition of HBV in the liver–specific in vivo transfection mouse models. Hydrodynamic injection transfecting the hepatocytes in the gene-disrupted mouse model with the HBV replicative genome DNA has revealed that IFNAR and IRF3/7 are indispensable in HBV eradication in the mice liver but not the RNA sensing pathways. Interestingly, accumulating evidence of the recent studies has demonstrated that HBV markedly interfered with IFN-β induction and antiviral immunity mediated by the Stimulator of interferon genes (STING, which has been identified as a central factor in foreign DNA recognition and antiviral innate immunity. This review will present the current understanding of innate immunity in HBV infection and of the challenges for clearing of the HBV infection.

  13. Asymmetric Modification of Hepatitis B Virus (HBV) Genomes by an Endogenous Cytidine Deaminase inside HBV Cores Informs a Model of Reverse Transcription.

    Science.gov (United States)

    Nair, Smita; Zlotnick, Adam

    2018-05-15

    Cytidine deaminases inhibit replication of a broad range of DNA viruses by deaminating cytidines on single-stranded DNA (ssDNA) to generate uracil. While several lines of evidence have revealed hepatitis B virus (HBV) genome editing by deamination, it is still unclear which nucleic acid intermediate of HBV is modified. Hepatitis B virus has a relaxed circular double-stranded DNA (rcDNA) genome that is reverse transcribed within virus cores from a RNA template. The HBV genome also persists as covalently closed circular DNA (cccDNA) in the nucleus of an infected cell. In the present study, we found that in HBV-producing HepAD38 and HepG2.2.15 cell lines, endogenous cytidine deaminases edited 10 to 25% of HBV rcDNA genomes, asymmetrically with almost all mutations on the 5' half of the minus strand. This region corresponds to the last half of the minus strand to be protected by plus-strand synthesis. Within this half of the genome, the number of mutations peaks in the middle. Overexpressed APOBEC3A and APOBEC3G could be packaged in HBV capsids but did not change the amount or distribution of mutations. We found no deamination on pregenomic RNA (pgRNA), indicating that an intact genome is encapsidated and deaminated during or after reverse transcription. The deamination pattern suggests a model of rcDNA synthesis in which pgRNA and then newly synthesized minus-sense single-stranded DNA are protected from deaminase by interaction with the virus capsid; during plus-strand synthesis, when enough dsDNA has been synthesized to displace the remaining minus strand from the capsid surface, the single-stranded DNA becomes deaminase sensitive. IMPORTANCE Host-induced mutation of the HBV genome by APOBEC proteins may be a path to clearing the virus. We examined cytidine-to-thymidine mutations in the genomes of HBV particles grown in the presence or absence of overexpressed APOBEC proteins. We found that genomes were subjected to deamination activity during reverse transcription

  14. Prior DNA vaccination does not interfere with the live-attenuated measles vaccine.

    Science.gov (United States)

    Premenko-Lanier, Mary; Rota, Paul; Rhodes, Gary; Bellini, William; McChesney, Michael

    2004-01-26

    The currently used live-attenuated measles vaccine is very effective although maternal antibody prevents its administration prior to 6 months of age. We are investigating the ability of a DNA vaccine encoding the measles viral hemagglutinin, fusion and nucleoprotein to protect newborn infants from measles. Here, we show that a measles DNA vaccine protects juvenile macaques from pathogenic measles virus challenge and that macaques primed and boosted with this DNA vaccine have anemnestic antibody and cell-mediated responses after vaccination with a live-attenuated canine distemper-measles vaccine. Therefore, this DNA vaccine administered to newborn infants may not hinder the subsequent use of live-attenuated measles vaccine.

  15. Low prevalence of liver disease but regional differences in HBV treatment characteristics mark HIV/HBV co-infection in a South African HIV clinical trial.

    Directory of Open Access Journals (Sweden)

    Prudence Ive

    Full Text Available Hepatitis B virus (HBV infection is endemic in South Africa however, there is limited data on the degree of liver disease and geographic variation in HIV/HBV coinfected individuals. In this study, we analysed data from the CIPRA-SA 'Safeguard the household study' in order to assess baseline HBV characteristics in HIV/HBV co-infection participants prior to antiretroviral therapy (ART initiation.812 participants from two South African townships Soweto and Masiphumelele were enrolled in a randomized trial of ART (CIPRA-SA. Participants were tested for hepatitis B surface antigen (HBsAg, hepatitis B e antigen (HBeAg, and HBV DNA. FIB-4 scores were calculated at baseline.Forty-eight (5.9% were HBsAg positive, of whom 28 (58.3% were HBeAg positive. Of those with HBV, 29.8% had an HBV DNA<2000 IU/ml and ALT<40 IU/ml ; 83.0% had a FIB-4 score <1.45, consistent with absent or minimal liver disease. HBV prevalence was 8.5% in Masiphumelele compared to 3.8% in Soweto (relative risk 2.3; 95% CI: 1.3-4.0. More participants in Masiphumelele had HBeAg-negative disease (58% vs. 12%, p = 0.002 and HBV DNA levels ≤2000 IU/ml, (43% vs. 6% p<0.007.One third of HIV/HBV co-infected subjects had low HBV DNA levels and ALT while the majority had indicators of only mild liver disease. There were substantial regional differences in HBsAg and HbeAg prevalence in HIV/HBV co-infection between two regions in South Africa. This study highlights the absence of severe liver disease and the marked regional differences in HIV/HBV co-infection in South Africa and will inform treatment decisions in these populations.

  16. Characterization of HBV integration patterns and timing in liver cancer and HBV-infected livers.

    Science.gov (United States)

    Furuta, Mayuko; Tanaka, Hiroko; Shiraishi, Yuichi; Unida, Takuro; Imamura, Michio; Fujimoto, Akihiro; Fujita, Masahi; Sasaki-Oku, Aya; Maejima, Kazuhiro; Nakano, Kaoru; Kawakami, Yoshiiku; Arihiro, Koji; Aikata, Hiroshi; Ueno, Masaki; Hayami, Shinya; Ariizumi, Shun-Ichi; Yamamoto, Masakazu; Gotoh, Kunihito; Ohdan, Hideki; Yamaue, Hiroki; Miyano, Satoru; Chayama, Kazuaki; Nakagawa, Hidewaki

    2018-05-18

    Integration of Hepatitis B virus (HBV) into the human genome can cause genetic instability, leading to selective advantages for HBV-induced liver cancer. Despite the large number of studies for HBV integration into liver cancer, little is known about the mechanism of initial HBV integration events owing to the limitations of materials and detection methods. We conducted an HBV sequence capture, followed by ultra-deep sequencing, to screen for HBV integrations in 111 liver samples from human-hepatocyte chimeric mice with HBV infection and human clinical samples containing 42 paired samples from non-tumorous and tumorous liver tissues. The HBV infection model using chimeric mice verified the efficiency of our HBV-capture analysis and demonstrated that HBV integration could occur 23 to 49 days after HBV infection via microhomology-mediated end joining and predominantly in mitochondrial DNA. Overall HBV integration sites in clinical samples were significantly enriched in regions annotated as exhibiting open chromatin, a high level of gene expression, and early replication timing in liver cells. These data indicate that HBV integration in liver tissue was biased according to chromatin accessibility, with additional selection pressures in the gene promoters of tumor samples. Moreover, an integrative analysis using paired non-tumorous and tumorous samples and HBV-related transcriptional change revealed the involvement of TERT and MLL4 in clonal selection. We also found frequent and non-tumorous liver-specific HBV integrations in FN1 and HBV-FN1 fusion transcript. Extensive survey of HBV integrations facilitates and improves the understanding of the timing and biology of HBV integration during infection and HBV-related hepatocarcinogenesis.

  17. Efficacy of neonatal HBV vaccination on liver cancer and other liver diseases over 30-year follow-up of the Qidong hepatitis B intervention study: a cluster randomized controlled trial.

    Directory of Open Access Journals (Sweden)

    Chunfeng Qu

    2014-12-01

    Full Text Available Neonatal hepatitis B vaccination has been implemented worldwide to prevent hepatitis B virus (HBV infections. Its long-term protective efficacy on primary liver cancer (PLC and other liver diseases has not been fully examined.The Qidong Hepatitis B Intervention Study, a population-based, cluster randomized, controlled trial between 1985 and 1990 in Qidong, China, included 39,292 newborns who were randomly assigned to the vaccination group in which 38,366 participants completed the HBV vaccination series and 34,441 newborns who were randomly assigned to the control group in which the participants received neither a vaccine nor a placebo. However, 23,368 (67.8% participants in the control group received catch-up vaccination at age 10-14 years. By December 2013, a total of 3,895 (10.2% in the vaccination group and 3,898 (11.3% in the control group were lost to follow-up. Information on PLC incidence and liver disease mortality were collected through linkage of all remaining cohort members to a well-established population-based tumor registry until December 31, 2013. Two cross-sectional surveys on HBV surface antigen (HBsAg seroprevalence were conducted in 1996-2000 and 2008-2012. The participation rates of the two surveys were 57.5% (21,770 and 50.7% (17,204 in the vaccination group and 36.3% (12,184 and 58.6% (17,395 in the control group, respectively. Using intention-to-treat analysis, we found that the incidence rate of PLC and the mortality rates of severe end-stage liver diseases and infant fulminant hepatitis were significantly lower in the vaccination group than the control group with efficacies of 84% (95% CI 23%-97%, 70% (95% CI 15%-89%, and 69% (95% CI 34%-85%, respectively. The estimated efficacy of catch-up vaccination on HBsAg seroprevalence in early adulthood was 21% (95% CI 10%-30%, substantially weaker than that of the neonatal vaccination (72%, 95% CI 68%-75%. Receiving a booster at age 10-14 years decreased HBsAg seroprevalence if

  18. Efficacy of Neonatal HBV Vaccination on Liver Cancer and Other Liver Diseases over 30-Year Follow-up of the Qidong Hepatitis B Intervention Study: A Cluster Randomized Controlled Trial

    Science.gov (United States)

    Fan, Chunsun; Zhan, Qimin; Wang, Yuting; Lu, Jianhua; Lu, Ling-ling; Ni, Zhengping; Huang, Fei; Yao, Hongyu; Zhu, Jian; Fan, Jian; Zhu, Yuanrong; Wu, Zhiyuan; Liu, Guoting; Gao, Wenhong; Zang, Mengya; Wang, Dongmei; Dai, Min; Hsia, Chu Chieh; Zhang, Yawei; Sun, Zongtang

    2014-01-01

    Background Neonatal hepatitis B vaccination has been implemented worldwide to prevent hepatitis B virus (HBV) infections. Its long-term protective efficacy on primary liver cancer (PLC) and other liver diseases has not been fully examined. Methods and Findings The Qidong Hepatitis B Intervention Study, a population-based, cluster randomized, controlled trial between 1985 and 1990 in Qidong, China, included 39,292 newborns who were randomly assigned to the vaccination group in which 38,366 participants completed the HBV vaccination series and 34,441 newborns who were randomly assigned to the control group in which the participants received neither a vaccine nor a placebo. However, 23,368 (67.8%) participants in the control group received catch-up vaccination at age 10–14 years. By December 2013, a total of 3,895 (10.2%) in the vaccination group and 3,898 (11.3%) in the control group were lost to follow-up. Information on PLC incidence and liver disease mortality were collected through linkage of all remaining cohort members to a well-established population-based tumor registry until December 31, 2013. Two cross-sectional surveys on HBV surface antigen (HBsAg) seroprevalence were conducted in 1996–2000 and 2008–2012. The participation rates of the two surveys were 57.5% (21,770) and 50.7% (17,204) in the vaccination group and 36.3% (12,184) and 58.6% (17,395) in the control group, respectively. Using intention-to-treat analysis, we found that the incidence rate of PLC and the mortality rates of severe end-stage liver diseases and infant fulminant hepatitis were significantly lower in the vaccination group than the control group with efficacies of 84% (95% CI 23%–97%), 70% (95% CI 15%–89%), and 69% (95% CI 34%–85%), respectively. The estimated efficacy of catch-up vaccination on HBsAg seroprevalence in early adulthood was 21% (95% CI 10%–30%), substantially weaker than that of the neonatal vaccination (72%, 95% CI 68%–75%). Receiving a booster at age

  19. Acute HBV infection in humanized chimeric mice has multiphasic viral kinetics.

    Science.gov (United States)

    Ishida, Yuji; Chung, Tje Lin; Imamura, Michio; Hiraga, Nobuhiko; Sen, Suranjana; Yokomichi, Hiroshi; Tateno, Chise; Canini, Laetitia; Perelson, Alan S; Uprichard, Susan L; Dahari, Harel; Chayama, Kazuaki

    2018-03-23

    Chimeric uPA/SCID mice reconstituted with humanized livers are useful for studying HBV infection in the absence of an adaptive immune response. However, the detailed characterization of HBV infection kinetics necessary to enable in-depth mechanistic studies in this novel in vivo HBV infection model is lacking. To characterize HBV kinetics post-inoculation (p.i.) to steady state, 42 mice were inoculated with HBV. Serum HBV DNA was frequently measured from 1 minute to 63 days p.i. Total intrahepatic HBV DNA, HBV cccDNA, and HBV RNA was measured in a subset of mice at 2, 4, 6, 10, and 13 weeks p.i. HBV half-life (t 1/2 ) was estimated using a linear mixed-effects model. During the first 6 h p.i. serum HBV declined in repopulated uPA/SCID mice with a t 1/2 =62 min [95%CI=59-67min]. Thereafter, viral decline slowed followed by a 2 day lower plateau. Subsequent viral amplification was multiphasic with an initial mean doubling time of t 2 =8±3 h followed by an interim plateau before prolonged amplification (t 2 =2±0.5 days) to a final HBV steady state of 9.3±0.3 log copies/ml. Serum HBV and intrahepatic HBV DNA were positively correlated (R 2 =0.98). HBV infection in uPA/SCID chimeric mice is highly dynamic despite the absence of an adaptive immune response. The serum HBV t 1/2 in humanized uPA/SCID mice was estimated to be ∼1 h regardless of inoculum size. The HBV acute infection kinetics presented here is an important step in characterizing this experimental model system so that it can be effectively used to elucidate the dynamics of the HBV lifecycle and thus possibly reveal effective antiviral drug targets. This article is protected by copyright. All rights reserved. © 2018 by the American Association for the Study of Liver Diseases.

  20. Assessment of the HBV vaccine response in a group of HIV-infected children in Morocco.

    Science.gov (United States)

    Haban, Houda; Benchekroun, Soumia; Sadeq, Mina; Benjouad, Abdelaziz; Amzazi, Said; Oumzil, Hicham; Elharti, Elmir

    2017-09-29

    Since its development in the early 1980s, Hepatitis B virus (HBV) vaccine has been proven to be highly protective. However, its immunogenicity may be ineffective among HIV-infected children. In Morocco, HBV vaccine was introduced in 1999, and since then all infants, including vertically HIV-infected infants, have been following the vaccination schedule, implemented by the Moroccan ministry of health. An assessment of the immunization of these children is important to optimize efforts aimed at tackling Hepatitis B coinfection, within the country. Forty-nine HIV-infected children (HIV group) and 112 HIV uninfected children (control group) were enrolled in this study. Samples were tested by Elisa (Monolisa Anti-HBs, Biorad) to quantify the anti-HBs antibodies. The % of lymphocyte subsets i.e. CD4+ T cells, CD8+ T cells, B cells, and NK, was determined by flow cytometry, using CellQuest Pro software (Becton-Dickinson), and for HIV group, HIV viral load was measured by real time PCR assay (Abbott). All variables were statistically compared in the two groups. The median age was 51 ± 35 months for the HIV group and 50 ± 36 months (p > 0.05) for the control group. Female represented 63% and 41% (p = 0.01), among the HIV group and the control group, respectively. Among HIV-infected children, 71.4% (35/49) were under HAART therapy at the enrollment in the study. Seroprotection titer i.e. anti-HBs ≥10mUI/ml among control group was 76% (85/112), and only 29% (14/49) among the perinatally HIV-infected children (p Morocco, in order to revaccinate non-immunized children.

  1. A novel therapeutic hepatitis B vaccine induces cellular and humoral immune responses and breaks tolerance in hepatitis B virus (HBV) transgenic mice.

    Science.gov (United States)

    Buchmann, Pascale; Dembek, Claudia; Kuklick, Larissa; Jäger, Clemens; Tedjokusumo, Raindy; von Freyend, Miriam John; Drebber, Uta; Janowicz, Zbigniew; Melber, Karl; Protzer, Ulrike

    2013-02-06

    Therapeutic vaccines are currently being developed for chronic hepatitis B and C. As an alternative to long-term antiviral treatment or to support only partially effective therapy, they should activate the patient's immune system effectively to fight and finally control the virus. A paradigm of therapeutic vaccination is the potent induction of T-cell responses against key viral antigens - besides activation of a humoral immune response. We have evaluated the potential of a novel vaccine formulation comprising particulate hepatitis B surface (HBsAg) and core antigen (HBcAg), and the saponin-based ISCOMATRIX™ adjuvant for its ability to stimulate T and B cell responses in C57BL/6 mice and its ability to break tolerance in syngeneic HBV transgenic (HBVtg) mice. In C57BL/6 mice, the vaccine induced multifunctional HBsAg- and HBcAg-specific CD8+ T cells detected by staining for IFNγ, TNFα and IL-2, as well as high antibody titers against both antigens. Vaccination of HBVtg animals induced potent HBsAg- and HBcAg-specific CD8+ T-cell responses in spleens and HBcAg-specific CD8+ T-cell responses in livers as well as anti-HBs seroconversion two weeks post injection. Vaccination further reduced HBcAg expression in livers of HBVtg mice without causing liver damage. In summary, this study demonstrates therapeutic efficacy of a novel vaccine formulation in a mouse model of immunotolerant, chronic HBV infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Immunogenicity and Reactogenicity of DTPa-IPV/Hib Vaccine Co-administered With Hepatitis B Vaccine for Primary and Booster Vaccination of Taiwanese Infants

    Directory of Open Access Journals (Sweden)

    Pei-Lan Shao

    2011-06-01

    Full Text Available Immunogenicity and reactogenicity of the combined diphtheria-tetanus-acellular pertussis-inactivated poliovirus-Haemophilus influenzae type b (Hib conjugate vaccine (DTPa-IPV/Hib, Infanrix™-IPV + Hib was assessed when co-administered with hepatitis B (HBV vaccine. Seventy healthy infants received DTPa-IPV/Hib at 1.5, 3.5, 6 and 15–18 months, and HBV at birth, 1.5, 6 and 15–18 months of age. Serological responses were assessed. Diphtheria, tetanus, Hib and pertussis seroprotection/seropositivity rates were 100% after primary vaccination. Post-primary immune responses to poliovirus could not be evaluated for technical reasons. However, after the booster dose, seroprotection/seropositivity rates, including poliovirus, were 100%. Over 95% were seroprotected against HBV. Post-booster geometric mean antibody concentrations/titers (GMC/GMTs rose from 14-fold to 45-fold, indicating effective priming against all antigens, including polioviruses. DTPa-IPV/Hib was well tolerated alone or co-administered with HBV. No serious adverse events were considered related to vaccination. Primary and booster vaccination with combined DTPa-IPV/Hib and HBV was immunogenic and well tolerated. Combination vaccines enable vaccine providers to conveniently provide routine pediatric immunizations, with minimal discomfort.

  3. Interference of an ERM-vaccine with a VHS-DNA vaccine in rainbow trout

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Einer-Jensen, Katja; Rasmussen, Jesper Skou

    Simultaneous vaccination of fish against several diseases is often desirable in order to minimise cost and handling of the fish. Intramuscular DNA-vaccination of rainbow trout against viral haemorrhagic septicaemia virus (VHSV) has proved to provide very good protection. However, preliminary...... results showed that intraperitoneal injection of a commercial vaccine against Enteric Redmouth Disease (ERM) based on formalin-killed bacteria in oil adjuvant immediately followed by intramuscular injection of an experimental DNA-vaccine against VHSV, decreased the protective effect of the DNA......-vaccine against challenge with VHSV 11 weeks post vaccination (pv). This experiment was performed with rainbow trout of 30 g injected with 0.5 g VHS-DNA vaccine. The experiment was later repeated with smaller fish (2.5g) and using two different doses of DNA-vaccine, 1 g and 0.05 g. Both doses provided good...

  4. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    Demuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2013-04-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These ‘multilayer tattoo’ DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination.

  5. Polymer multilayer tattooing for enhanced DNA vaccination

    Science.gov (United States)

    DeMuth, Peter C.; Min, Younjin; Huang, Bonnie; Kramer, Joshua A.; Miller, Andrew D.; Barouch, Dan H.; Hammond, Paula T.; Irvine, Darrell J.

    2014-01-01

    DNA vaccines have many potential benefits but have failed to generate robust immune responses in humans. Recently, methods such as in vivo electroporation have demonstrated improved performance, but an optimal strategy for safe, reproducible, and pain-free DNA vaccination remains elusive. Here we report an approach for rapid implantation of vaccine-loaded polymer films carrying DNA, immune-stimulatory RNA, and biodegradable polycations into the immune-cell-rich epidermis, using microneedles coated with releasable polyelectrolyte multilayers. Films transferred into the skin following brief microneedle application promoted local transfection and controlled the persistence of DNA and adjuvants in the skin from days to weeks, with kinetics determined by the film composition. These “multilayer tattoo” DNA vaccines induced immune responses against a model HIV antigen comparable to electroporation in mice, enhanced memory T-cell generation, and elicited 140-fold higher gene expression in non-human primate skin than intradermal DNA injection, indicating the potential of this strategy for enhancing DNA vaccination. PMID:23353628

  6. Study the Three Extraction Methods for HBV DNA to Use in PCR

    Directory of Open Access Journals (Sweden)

    N. Sheikh

    2004-07-01

    Full Text Available Diagnosis of Hepatitis B is important because of the its high prevalence. Recently PCR method , has found greater interest among different diagnostic methods. Several reports emphasis on some false negative results in those laboratories using PCR. The aim of this study was to compare three different procedures for HBV DNA extraction. A total 30 serum samples received from Shariati hospital. Sera was taken from patients having chronic Hepatitis with HBs antigen positive and HBe antigen negative. The sensitivity of guanidium hydrochloride method for extracting the HBV DNA from serum were evaluated and compared with phenol–chloroform and boiling methods. Diagnostic PCR kit was obtained from Cynagene contained taq polymerase, reaction mixture, dNTP, and buffer for reaction. A 353 bp product were amplified by amplification program provided in used PCR protocol. The comparison of results indicated that procedure was successful for amplification of the designed products from Hepatitis B in sera. Number of positive results were 16,19,23 and number of negative result were 14,11,7 for the boiling, phenol-chloroform and guanidium-hydrochloride extraction methods respectively.PCR method is the fastest diagnosis method and the most accurate procedure to identify Hepatitis B. Guanidium hydrochloride method was the most successful procedure studied in this survey for viruses.

  7. HBV Genotype B/C and Response to Lamivudine Therapy: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Xiu-Li Chen

    2013-01-01

    Full Text Available A number of nucleoside analogues such as lamivudine (LAM, actually used for the treatment of chronic hepatitis B, can suppress HBV DNA replication, improve transaminase level and liver histology, and enhance the rate of hepatitis B e antigen (HBeAg clearance. The responses to LAM therapy involve HBeAg clearance and HBV DNA conversion of negative. However, the associations between HBV genotype B/C and response to LAM therapy remain ambiguous. The aim of this meta-analysis is to determine more precise estimations of the relationship. All the publications on the associations between HBV genotype B/C and response to LAM (HBeAg clearance and HBV DNA conversion of negative through June 2013 were collected. Relative risk (RR with 95% confidence intervals (95% CI was calculated in fixed or random model, was calculated to examine heterogeneity, and funnel plots were plotted to examine small study effects with Stata 11 software. Overall, for HBeAg clearance and genotype B/C, the RR (95% CI was 1.27 (0.94–1.71, while for HBV DNA conversion of negative and genotype B/C, the RR (95% CI was 1.07 (0.98–1.17. HBV genotype B/C shows no significance associations with response to lamivudine therapy (HBeAg clearance and HBV DNA conversion of negative.

  8. Molecular analysis of hepatitis B virus (HBV in an HIV co-infected patient with reactivation of occult HBV infection following discontinuation of lamivudine-including antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Costantini Andrea

    2011-11-01

    Full Text Available Abstract Background Occult hepatitis B virus (HBV infection (OBI is characterized by HBV DNA persistence even though the pattern of serological markers indicates an otherwise resolved HBV infection. Although OBI is usually clinically silent, immunocompromised patients may experience reactivation of the liver disease. Case presentation We report the case of an individual with human immunodeficiency virus (HIV infection and anti-HBV core antibody positivity, who experienced severe HBV reactivation after discontinuation of lamivudine-including antiretroviral therapy (ART. HBV sequencing analysis showed a hepatitis B surface antigen escape mutant whose presence in an earlier sample excluded reinfection. Molecular sequencing showed some differences between two isolates collected at a 9-year interval, indicating HBV evolution. Resumption of ART containing an emtricitabine/tenofovir combination allowed control of plasma HBV DNA, which fell to undetectable levels. Conclusion This case stresses the ability of HBV to evolve continuously, even during occult infection, and the effectiveness of ART in controlling OBI reactivation in HIV-infected individuals.

  9. Self-Assembly DNA Polyplex Vaccine inside Dissolving Microneedles for High-Potency Intradermal Vaccination

    Science.gov (United States)

    Liao, Jing-Fong; Lee, Jin-Ching; Lin, Chun-Kuang; Wei, Kuo-Chen; Chen, Pin-Yuan; Yang, Hung-Wei

    2017-01-01

    The strong immunogenicity induction is the powerful weapon to prevent the virus infections. This study demonstrated that one-step synthesis of DNA polyplex vaccine in microneedle (MN) patches can induce high immunogenicity through intradermal vaccination and increase the vaccine stability for storage outside the cold chain. More negative charged DNA vaccine was entrapped into the needle region of MNs followed by DNA polyplex formation with branched polyethylenimine (bPEI) pre-coated in the cavities of polydimethylsiloxane (PDMS) molds that can deliver more DNA vaccine to immune-cell rich epidermis with high transfection efficiency. Our data in this study support the safety and immunogenicity of the MN-based vaccine; the MN patch delivery system induced an immune response 3.5-fold as strong as seen with conventional intramuscular administration; the DNA polyplex formulation provided excellent vaccine stability at high temperature (could be stored at 45ºC for at least 4 months); the DNA vaccine is expected to be manufactured at low cost and not generate sharps waste. We think this study is significant to public health because there is a pressing need for an effective vaccination in developing countries. PMID:28819449

  10. miR-200c targets nuclear factor IA to suppress HBV replication and gene expression via repressing HBV Enhancer I activity.

    Science.gov (United States)

    Tian, Hui; He, Zhenkun

    2018-03-01

    Hepatitis B virus (HBV) chronic infection is a health problem in the worldwide, with a underlying higher risk of liver cirrhosis and hepaticocellular carcinoma. A number of studies indicate that microRNAs (miRNAs) play vital roles in HBV replication. This study was designed to explore the potential molecular mechanism of miR-200c in HBV replication. The expression of miR-200c, nuclear factor IA (NFIA) mRNA, HBV DNA, and HBV RNA (pregenomic RNA (pgRNA), and total RNA) were measured by qRCR. The levels of HBsAg and HBeAg were detected by ELISA. NFIA expression at protein level was measured by western blot. The direct interaction between miR-200c and NFIA were identified by Targetscan software and Dual-Luciferase reporter analysis. Enhance I activity were detected by Dual-Luciferase reporter assay. miR-200c expression was prominently reduced in pHBV1.3-tranfected Huh7 and in stable HBV-producing cell line (HepG2.2.15). The enforced expression of miR-200c significantly suppressed HBV replication, as demonstrated by the reduced levels of HBV protein (HBsAg and HBeAg) and, DNA and RNA (pgRNA and total RNA) levels. NFIA was proved to be a target of miR-200c and NFIA overexpression notably stimulated HBV replication. In addition, the inhibitory effect of miR-200c on HBV Enhance I activity was abolished following restoration of NFIA. miR-200c repressed HBV replication by directly targeting NFIA, which might provide a novel therapeutic target for HBV infection. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  11. Inhibition of histone deacetylases stimulates HBV replication independent of protein X

    NARCIS (Netherlands)

    van de Klundert, Maarten A. A.; Swart, Marjolein; Zaaijer, Hans L.; Kootstra, Neeltje A.

    2015-01-01

    Aim: HBV expresses an accessory protein called X (HBx), which supports HBV replication by increasing transcription from episomal templates. Here, we investigate whether HBx augments HBV replication by interfering with the deacetylation of HBV DNA associated histones by histone deacetylases (HDACs).

  12. Observational study of vaccine efficacy 24 years after the start of hepatitis B vaccination in two Gambian villages: no need for a booster dose.

    Directory of Open Access Journals (Sweden)

    Maimuna Mendy

    Full Text Available To determine the duration of protection from hepatitis B vaccine given in infancy and early childhood and asses risk factors for HBV infection and chronic infection.In 1984 infant HBV vaccination was started in two Gambian villages. Cross sectional serological surveys have been undertaken every 4 years to determine vaccine efficacy. In the current survey 84.6% of 1508 eligible participants aged 1-28 years were tested. A spouse study was conducted in females (aged 14 years and above and their male partners.Vaccine efficacy against chronic infection with hepatitis B virus was 95.1% (95% confidence interval 91.5% to 97.1%, which did not vary significantly between age groups or village. Efficacy against infection was 85.4% (82.7% to 87.7%, falling significantly with age. Concentrations of hepatitis B antibody fell exponentially with age varying according to peak response: 20 years after vaccination only 17.8% (95% CI 10.1-25.6 of persons with a low peak response (10-99 mIU/ml had detectable HBs antibody compared to 27% (21.9% to 32.2% of those with a high peak response (>999 mIU/ml. Time since vaccination and a low peak response were the strongest risk factors for HBV infections; males were more susceptible, marriage was not a significant risk for females. Hepatitis B DNA was not detected after infection, which tested soley core antibody positive. An undetectable peak antibody response of <10 mIU/ml and a mother who was hepatitis B e antigen positive were powerful risk factors for chronic infection.Adolescents and young adults vaccinated in infancy are at increased risk of hepatitis B infection, but not chronic infection. Married women were not at increased risk. There is no compelling evidence for the use of a booster dose of HBV vaccine in The Gambia.

  13. Routine screening of blood donations at Qingdao central blood bank, China, for hepatitis B virus (HBV) DNA with a real-time, multiplex nucleic acid test for HBV, hepatitis C virus, and human immunodeficiency virus Types 1 and 2.

    Science.gov (United States)

    Yang, Zhongsi; Xu, Lei; Liu, Li; Feng, Qiuxia; Zhang, Longmu; Ma, Weijuan; Saldanha, John; Wang, Mingmin; Zhao, Lin

    2013-10-01

    The Roche cobas TaqScreen MPX test was used to evaluate the rate of hepatitis B surface antigen (HBsAg)-negative donations that were hepatitis B virus (HBV) DNA reactive from June 2010 to January 2011 in Qingdao, China. HBsAg-negative samples from 65,800 voluntary blood donors were tested with the cobas TaqScreen MPX test in pools of 6 on the Roche cobas s 201 blood screening platform. Samples positive for HBV DNA and negative for HBsAg were quantitated with the Roche COBAS AmpliPrep/COBAS TaqMan HBV test. In addition, serologic tests for HBsAg, hepatitis B surface antibody, anti-hepatitis B core antigen (anti-HBc), anti-hepatitis B e antigen (anti-HBe), and hepatitis B e antigen (HBe) were done using the Roche electrochemiluminescence immunoassay. A total of 80 nucleic acid amplification technology (NAT) test-reactive pools were identified and 59 pools (74%) resolved to a reactive sample. All samples were HBV DNA reactive and the viral load in each sample was quantitated. The viral loads of the samples ranged from less than 20 to 34,600 IU/mL; 13 samples (22%) had viral loads of more than 20 IU/mL, 27 samples (45.8%) had viral loads of less than 20 IU/mL, and 19 samples (32.2%) had undetectable viral loads. Of the 59 NAT-reactive samples, 40 (67.8%) were anti-HBc positive. Fifteen of the 59 samples could not be confirmed as NAT reactive either by an alternative NAT test or by serology. The HBV NAT yield in blood donors in Qingdao is 0.06% (38/65,800). This study confirmed the value of NAT for interdicting HBV-positive donations and preventing transfusion-transmitted HBV infections. © 2013 American Association of Blood Banks.

  14. HBV-Derived Synthetic Long Peptide Can Boost CD4+ and CD8+ T-Cell Responses in Chronic HBV Patients Ex Vivo.

    Science.gov (United States)

    Dou, Yingying; van Montfoort, Nadine; van den Bosch, Aniek; de Man, Robert A; Zom, Gijs G; Krebber, Willem-Jan; Melief, Cornelis J M; Buschow, Sonja I; Woltman, Andrea M

    2018-02-14

    Vaccination with synthetic long peptides (SLP) is a promising new treatment strategy for chronic hepatitis B virus (CHB). SLP can induce broad T-cell responses for all HLA types. Here we investigated the ability of a prototype HBV-core (HBc)-sequence-derived SLP to boost HBV-specific T cells in CHB patients ex vivo. HBc-SLP was used to assess cross-presentation by monocyte-derived dendritic cells (moDC) and BDCA1+ blood myeloid DC (mDC) to engineered HBV-specific CD8+ T cells. Autologous SLP-loaded and toll-like receptor (TLR)-stimulated DC were used to activate patient HBc-specific CD8+ and CD4+ T cells. HBV-SLP was cross-presented by moDC, which was further enhanced by adjuvants. Patient-derived SLP-loaded moDC significantly increased autologous HBcAg18-27-specific CD8+ T cells and CD4+ T cells ex vivo. HBV-specific T cells were functional as they synthesized tumor necrosis factor-alpha and interferon-gamma. In 6/7 of patients blockade of PD-L1 further increased SLP effects. Also, importantly, patient-derived BDCA1+ mDC cross-presented and activated autologous T-cell responses ex vivo. As a proof of concept, we showed a prototype HBc-SLP can boost T-cell responses in patients ex vivo. These results pave the way for the development of a therapeutic SLP-based vaccine to induce effective HBV-specific adaptive immune responses in CHB patients. © The Author(s) 2017. Published by Oxford University Press for the Infectious Diseases Society of America.

  15. Comparison of serum HBsAg quantitation by four immunoassays, and relationships of HBsAg level with HBV replication and HBV genotypes.

    Directory of Open Access Journals (Sweden)

    Edouard Tuaillon

    Full Text Available BACKGROUND: The decline in hepatitis B virus surface antigen (HBsAg may be an early predictor of the viral efficacy of Hepatitis B virus (HBV therapy. The HBsAg levels obtained by different immunoassays now need comparing and the relationships between levels of HBsAg and HBV DNA alongside HBsAg and genotype must be evaluated. METHODOLOGY/PRINCIPAL FINDINGS: HBsAg levels were compared among 80 patients using the Abbott Architect assay, a commercial immunoassay approved for HBsAg detection and quantitation, and three other assays derived from immunoassays approved for HBsAg detection (manufactured by Diasorin, Bio-Rad and Roche. Good correlation was found between the Abbot vs. Diasorin, Bio-Rad and Roche assays with narrow 95% limits of agreement and small mean differences: -0.06 to 0.11, -0.09 log(10 IU/mL; -0.57 to 0.64, -0.04 log(10 IU/mL; -0.09 to 0.45, -0.27 log(10 IU/mL, respectively. These agreements were not affected by genotypes A or D. HBsAg was weakly correlated with HBV DNA, whatever the HBsAg assay used: Abbott, ρ = 0.36 p = 0.001, Diasorin ρ = 0.34, p = 0.002; Bio-Rad ρ = 0.37, p<0.001; or Roche ρ = 0.41, p<0.001. This relationship between levels of HBsAg and HBV DNA seemed to depend on genotypes. Whereas HBsAg (Abbott assay tended to correlate with HBV DNA for genotype A (ρ = 0.44, p = 0.02, no such correlation was significant for genotypes D (ρ = 0.29, p = 0.15. CONCLUSION/SIGNIFICANCE: The quantitation of HBsAg in routine clinical samples is comparable between the reference assay and the adapted assays with acceptable accuracy limits, low levels of variability and minimum discrepancy. While HBsAg quantitation is not affected by HBV genotype, the observed association between levels of HBsAg and HBV DNA seems genotype dependent.

  16. Application of CRISPR/Cas9 Technology to HBV

    Directory of Open Access Journals (Sweden)

    Guigao Lin

    2015-11-01

    Full Text Available More than 240 million people around the world are chronically infected with hepatitis B virus (HBV. Nucleos(tide analogs and interferon are the only two families of drugs to treat HBV currently. However, none of these anti-virals directly target the stable nuclear covalently closed circular DNA (cccDNA, which acts as a transcription template for viral mRNA and pre-genomic RNA synthesis and secures virus persistence. Thus, the fact that only a small number of patients treated achieve sustained viral response (SVR or cure, highlights the need for new therapies against HBV. The clustered regularly interspaced short palindromic repeats (CRISPR/Cas9 gene editing system can specifically target the conserved regions of the HBV genome. This results in robust viral suppression and provides a promising tool for eradicating the virus. In this review, we discuss the function and application of the CRISPR/Cas9 system as a novel therapy for HBV.

  17. Hepatitis B Virus (HBV) Load Response to 2 Antiviral Regimens, Tenofovir/Lamivudine and Lamivudine, in HIV/ HBV-Coinfected Pregnant Women in Guangxi, China: The Tenofovir in Pregnancy (TiP) Study.

    Science.gov (United States)

    Wang, Liming; Wiener, Jeffrey; Bulterys, Marc; Wei, Xiaoyu; Chen, Lili; Liu, Wei; Liang, Shujia; Shepard, Colin; Wang, Linhong; Wang, Ailing; Zhang, Fujie; Kourtis, Athena P

    2016-12-01

     There is limited information on antiviral therapy for hepatitis B virus (HBV) infection among pregnant women coinfected with human immunodeficiency virus (HIV) and HBV.  A phase 2 randomized, controlled trial of a regimen containing tenofovir (TDF)/lamivudine (3TC) and a regimen containing 3TC in HIV/HBV-coinfected pregnant women in China. The HBV virological response was compared in study arms.  The median decline in the HBV DNA level was 2.60 log 10 copies/mL in the TDF/3TC arm and 2.24 log 10 copies/mL in the 3TC arm (P = .41). All women achieved HBV DNA levels of <6 log 10 copies/mL at delivery.  Initiation of either regimen led to achievement of HBV DNA levels below the threshold associated with perinatal HBV transmission.  NCT01125696. Published by Oxford University Press for the Infectious Diseases Society of America 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  18. [Serologic response to a DNA recombinant vaccine against hepatitis B in natives of the Peruvian Amazonian jungle].

    Science.gov (United States)

    Colichón, A; Vildósola, H; Sjogren, M; Cantella, R; Rojas, C

    1990-01-01

    Large areas of the Amazon basin in Brazil, Colombia, Ecuador, and in the nonoriental region of the peruvian jungle have been found to be hyperendemic to Hepatitis B with high prevalence of asymptomatic carriers (11 to 25%) and, in more selected areas, Hepatitis Delta has been also reported. In the present report, we have studied 108 volunteers from six different Jivaroes communities living in a hyperendemic Hepatitis B area. They received 2 doses of DNA recombinant yeast derivated HBV vaccine. All the selected persons were HBsAb negatives, but many (80%) had antibodies to HBc. Following immunization schedule, 80% responded with the formation of HBsAb; a better seroconversion was achieved in those negatives to anticore IgG compared with those having HBcAb. We obtained 90% of seroconversion in spite of the fact that our vaccination schedule was prolonged up to 10 months from the one recommended by the manufacturer. The vaccination schedule 0,4, 14 months, and the schedule 0,4 months, had 76 and 29% of seroconversion, respectively. We want to point out three observations: 1) It is quite possible that many of the Anti-core positives, that did not respond to vaccination were carriers of HBsAg undetectable by the conventional EIA test carried out; 2) The seroconversion rate in these natives was low (up to six months after the vaccination schedule); and 3) Many of the HBcAb were false positives and many of them were recently infected. We conclude: A) It is highly important to assess the anti-HBs hyperendemic areas before attempting vaccinations; B) All persons negative to anti-HBs should be vaccinated in spite to anticore antibodies; C) Areas with difficult access could be vaccinated even until 10 months without affecting good results, and D) DNA recombinant vaccine (ENGERIX B) was well tolerated. No side effects were observed.

  19. JS-K, a nitric oxide prodrug, induces DNA damage and apoptosis in HBV-positive hepatocellular carcinoma HepG2.2.15 cell.

    Science.gov (United States)

    Liu, Zhengyun; Li, Guangmin; Gou, Ying; Xiao, Dongyan; Luo, Guo; Saavedra, Joseph E; Liu, Jie; Wang, Huan

    2017-08-01

    Hepatocellular carcinoma (HCC) is the most important cause of cancer-related death, and 85% of HCC is caused by chronic HBV infection, the prognosis of patients and the reduction of HBV DNA levels remain unsatisfactory. JS-K, a nitric oxide-releasing diazeniumdiolates, is effective against various tumors, but little is known on its effects on HBV positive HCC. We found that JS-K reduced the expression of HBsAg and HBeAg in HBV-positive HepG2.2.15 cells. This study aimed to further examine anti-tumor effects of JS-K on HepG2.2.15 cells. The MTT assay and colony forming assay were used to study the cell growth inhibition of JS-K; scratch assay and transwell assay were performed to detect cell migration. The cell cycle was detected by flow cytometry. The immunofluorescence, flow cytometry analysis, and western blot were used to study DNA damage and cell apoptosis. JS-K inhibited HepG2.2.15 cell growth in a dose-dependent manner, suppressed cell colony formation and migration, arrested cells gather in the G2 phase. JS-K (1-20μM) increased the expression of DNA damage-associated protein phosphorylation H 2 AX (γH 2 AX), phosphorylation of checkpoint kinase 1 (p-Chk1), phosphorylation of checkpoint kinase 2 (p-Chk2), ataxia-telangiectasia mutated (ATM), phosphorylation of ataxia-telangiectasia mutated rad3-related (p-ATR) and apoptotic-associated proteins cleaved caspase-3, cleaved caspase-7, cleaved poly ADP-ribose polymerase (cleaved PARP). The study demonstrated JS-K is effective against HBV-positive HepG2.2.15 cells, the mechanisms are not only related to inhibition of HBsAg and HBeAg secretion, but also related with induction of DNA damage and apoptosis. JS-K is a promising anti-cancer candidate against HBV-positive HCC. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  20. Vaccination of carp against SVCV with an oral DNA vaccine or an insect cells-based subunit vaccine.

    Science.gov (United States)

    Embregts, C W E; Rigaudeau, D; Tacchi, L; Pijlman, G P; Kampers, L; Veselý, T; Pokorová, D; Boudinot, P; Wiegertjes, G F; Forlenza, M

    2018-03-19

    We recently reported on a successful vaccine for carp against SVCV based on the intramuscular injection of a DNA plasmid encoding the SVCV glycoprotein (SVCV-G). This shows that the intramuscular (i.m.) route of vaccination is suitable to trigger protective responses against SVCV, and that the SVCV G-protein is a suitable vaccine antigen. Yet, despite the general success of DNA vaccines, especially against fish rhabdoviruses, their practical implementation still faces legislative as well as consumer's acceptance concerns. Furthermore, the i.m. route of plasmid administration is not easily combined with most of the current vaccination regimes largely based on intraperitoneal or immersion vaccination. For this reason, in the current study we evaluated possible alternatives to a DNA-based i.m. injectable vaccine using the SVCV-G protein as the vaccine antigen. To this end, we tested two parallel approaches: the first based on the optimization of an alginate encapsulation method for oral delivery of DNA and protein antigens; the second based on the baculovirus recombinant expression of transmembrane SVCV-G protein in insect cells, administered as whole-cell subunit vaccine through the oral and injection route. In addition, in the case of the oral DNA vaccine, we also investigated the potential benefits of the mucosal adjuvants Escherichia coli lymphotoxin subunit B (LTB). Despite the use of various vaccine types, doses, regimes, and administration routes, no protection was observed, contrary to the full protection obtained with our reference i.m. DNA vaccine. The limited protection observed under the various conditions used in this study, the nature of the host, of the pathogen, the type of vaccine and encapsulation method, will therefore be discussed in details to provide an outlook for future vaccination strategies against SVCV. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. The impact of vaccination and antiviral therapy on hepatitis B and hepatitis D epidemiology.

    Directory of Open Access Journals (Sweden)

    Ashish Goyal

    Full Text Available The major cause of liver cancer around the globe is hepatitis B virus (HBV, which also contributes to a large number of deaths due to liver failure alone. Hepatitis delta virus (HDV is as potentially alarming as HBV since life threatening cases are 10 times more likely with HBV-HDV dual infection compared to HBV monoinfection. So far, there is no established effective treatment against HDV and the only preventive action suggested by the World Health Organization is to introduce HBV vaccination for children immediately after birth (newborns and thus reduce the available pool for HDV infection. Here the main objective is to understand the complex dynamics of HBV-HDV infection in a human population that can inform public health policy makers on the level of different preventive measures required to eliminate HBV and HDV infections. Model simulations suggest that HBV vertical transmission and HBV vaccination rates for newborns are instrumental in determining HBV and HDV prevalence. A decrease in HBV prevalence is observed as vaccination coverage increases and it is possible to eradicate both HBV and HDV using high vaccination coverage of ≥80% in the long term. We further found that HDV presence results in lower HBV prevalence. An application of our model to China revealed that vaccinating every newborn in China will further prevent 1.69 million new infections by 2028 as compared to the current 90% vaccination coverage. Although, higher vaccination coverage of newborns should eliminate both HBV and HDV over a long time period, any short term strategy to eradicate HDV must include additional preventive measures such as HBV adult vaccination. Implementation of HBV adult vaccination programs at a rate of 10% per year over 15 years will further prevent 39 thousand new HDV infections in China by 2028 as compared to HBV vaccination programs solely for newborns.

  2. Clinical Relevance of HLA Gene Variants in HBV Infection

    Directory of Open Access Journals (Sweden)

    Li Wang

    2016-01-01

    Full Text Available Host gene variants may influence the natural history of hepatitis B virus (HBV infection. The human leukocyte antigen (HLA system, the major histocompatibility complex (MHC in humans, is one of the most important host factors that are correlated with the clinical course of HBV infection. Genome-wide association studies (GWASs have shown that single nucleotide polymorphisms (SNPs near certain HLA gene loci are strongly associated with not only persistent HBV infection but also spontaneous HBV clearance and seroconversion, disease progression, and the development of liver cirrhosis and HBV-related hepatocellular carcinoma (HCC in chronic hepatitis B (CHB. These variations also influence the efficacy of interferon (IFN and nucleot(side analogue (NA treatment and response to HBV vaccines. Meanwhile, discrepant conclusions were reached with different patient cohorts. It is therefore essential to identify the associations of specific HLA allele variants with disease progression and viral clearance in chronic HBV infection among different ethnic populations. A better understanding of HLA polymorphism relevance in HBV infection outcome would enable us to elucidate the roles of HLA SNPs in the pathogenesis and clearance of HBV in different areas and ethnic groups, to improve strategies for the prevention and treatment of chronic HBV infection.

  3. [Prevalence and related factors of HIV/HBV coinfection among HIV/AIDS patients].

    Science.gov (United States)

    Feng, D; Yao, T; Cheng, Y P; Pan, M H; Li, C X; Wang, J; Feng, Y L; Shi, J; Huang, H L; Lu, H Y; Lan, G H; Wang, S P; Zhang, Y W

    2017-12-10

    Objective: To reveal the prevalence and the related factors of hepatitis B (HepB) virus infection among HIV/AIDS patients. Methods: We conducted a cross-sectional study in two HIV clinics, affiliated to local Centers of Disease Control and Prevention in Guangxi Zhuang Autonomous Regional. A face-to-face interview, with questionnaire was conducted to collect information on socio-demographic characteristics, drug use, and sexual behavior. Blood samples were used to test HBsAg. χ (2) test or Fisher's exact test and unconditional logistic regression models were used to identify the influencing factors. Results: The prevalence of HBV and HIV co-infection was 13.85% (113/816). Results from multivariate logistic regression analyses showed that age (25-45), family history of HBV and history of HepB vaccination were independent influencing factors for HBV and HIV coinfection, with OR (95% CI ) as 1.738 (1.031-2.931), 2.898 (1.678-5.005) and 1.744 (1.052-2.892), respectively. Conclusion: The prevalence of HBV among HIV/AIDS patients was significantly higher than that in general population. HIV/AIDS patients aged between 25 and 45 and with family history of HBV were more likely to be infected with HBV, while HepB vaccination was associated with the reduction of HIV/HBV coinfection. Specific comprehensive prevention and treatment programs on HIV/AIDS patients need to be set up.

  4. Influence of serum HBV-DNA content on the expression of TGF-β1 and TNF-α in patients with chronic hepatitis B

    International Nuclear Information System (INIS)

    Gao Yujie; Nan Chunhong; Yan Lijuan; Yue Zhijun; Yang Zhicai

    2004-01-01

    Objective: To study the relationship between the serum HBV-DNA content and levels of transforming growth factor β1 (TGF-β1), tumor necrosis factor-α (TNF-α) as well as the degree of hepatic fibrosis in patients with chronic hepatitis B. Methods: Serum HBV-DNA content quantification was determined with PCR-real time fluorescence method; TGF-β1 and TNF-α with ELISA and the hepatic fibrosis indicators HA, LN, IV-C, P-III with RIA. Altogether 89 patients with clinical chronic hepatitis B of various degrees (mild 25, moderate 35, advanced 29) were tested. Results: With the progress of hepatic injury, the serum contents of HBV-DNA, TGF-β1, TNF-α were correspondingly increased with significant differences among the patients groups (p<0.01). The TGF-β1, TNF-α, HA, IV-C, PC III, levels were positively correlated to the degree of hepatic injury with r=0.9561, 0.8123, 0.8561, 0.7723, 0.7150 respectively and p<0.01; for LN it was r=0.542 and p<0.05. Conclusion: In patients with chronic hepatitis B, hepatic fibrosis is the fundamental process in the pathogenesis of liver cirrhosis. High concentration of HBV is the crucial factor for development of hepatic fibrosis, which works synergically with many cytokines especially TGF-β1 and TNF-α

  5. DNA Vaccine Electroporation and Molecular Adjuvants

    Science.gov (United States)

    2016-03-16

    Suschak and Schmaljohn DNA Vaccine Electroporation and Molecular Adjuvants 1 Abstract To date, there is no protective vaccine for Ebola virus...the formulation of DNA launched virus-like particles (VLP). In this case, the antigen is encoded in one DNA plasmid, while structural proteins are...Virol, 2010. 155(12): p. 2083-103. 2. Feldmann, H. and T.W. Geisbert, Ebola haemorrhagic fever. Lancet, 2011. 377(9768): p. 849-62. 3. Hart, M.K

  6. Immunogenicity of a DNA-launched replicon-based canine parvovirus DNA vaccine expressing VP2 antigen in dogs.

    Science.gov (United States)

    Dahiya, Shyam S; Saini, Mohini; Kumar, Pankaj; Gupta, Praveen K

    2012-10-01

    A replicon-based DNA vaccine encoding VP2 gene of canine parvovirus (CPV) was developed by cloning CPV-VP2 gene into a replicon-based DNA vaccine vector (pAlpha). The characteristics of a replicon-based DNA vaccine like, self-amplification of transcripts and induction of apoptosis were analyzed in transfected mammalian cells. When the pAlpha-CPV-VP2 was injected intradermal as DNA-launched replicon-based DNA vaccine in dogs, it induced CPV-specific humoral and cell mediated immune responses. The virus neutralization antibody and lymphocyte proliferative responses were higher than conventional CPV DNA vaccine and commercial CPV vaccine. These results indicated that DNA-launched replicon-based CPV DNA vaccine was effective in inducing both CPV-specific humoral and cellular immune responses and can be considered as effective alternative to conventional CPV DNA vaccine and commercial CPV vaccine. Crown Copyright © 2012. Published by Elsevier India Pvt Ltd. All rights reserved.

  7. Engineered zinc-finger transcription factors inhibit the replication and transcription of HBV in vitro and in vivo.

    Science.gov (United States)

    Luo, Wei; Wang, Junxia; Xu, Dengfeng; Bai, Huili; Zhang, Yangli; Zhang, Yuhong; Li, Xiaosong

    2018-04-01

    In the present study, an artificial zinc-finger transcription factor eukaryotic expression vector specifically recognizing and binding to the hepatitis B virus (HBV) enhancer (Enh) was constructed, which inhibited the replication and expression of HBV DNA. The HBV EnhI‑specific pcDNA3.1‑artificial transcription factor (ATF) vector was successfully constructed, and then transformed or injected into HepG2.2.15 cells and HBV transgenic mice, respectively. The results demonstrated that the HBV EnhI (1,070‑1,234 bp)‑specific ATF significantly inhibited the replication and transcription of HBV DNA in vivo and in vitro. The HBV EnhI‑specific ATF may be a meritorious component of progressive combination therapies for eliminating HBV DNA in infected patients. A radical cure for chronic HBV infection may become feasible by using this bioengineering technology.

  8. Vaccine induced Hepatitis A and B protection in children at risk for cystic fibrosis associated liver disease.

    Science.gov (United States)

    Shapiro, Adam J; Esther, Charles R; Leigh, Margaret W; Dellon, Elisabeth P

    2013-01-30

    Hepatitis A (HAV) and Hepatitis B (HBV) infections can cause serious morbidity in patients with liver disease, including cystic fibrosis associated liver disease (CFALD). HAV and HBV vaccinations are recommended in CFALD, and maintenance of detectable antibody levels is also recommended with chronic liver disease. A better understanding of factors predicting low HAV and HBV antibodies may help physicians improve protection from these viruses in CFALD patients. We examined HAV and HBV vaccine protection in children at risk for CFALD. Clinical and vaccine histories were reviewed, and HAV and HBV antibody titers measured. Those with no vaccination history or low HAV or HBV titers received primary or booster vaccinations, and responses were measured. Thirty-four of 308 children were at risk for CFALD per project criteria. Ten had previous HAV vaccination, of which 90% had positive anti-HAV antibodies. Thirty-three of 34 had previously received primary HBV vaccination (most in infancy), but only 12 (35%) had adequate anti-HBs levels (≥10mIU/mL). Children with adequate anti-HBs levels were older at first HBV vaccine (median 2.3 vs. 0.1 years, p<0.01), and at final HBV vaccine (median 4.0 vs. 0.8 years, p=0.01). Fourteen of 19 (74%) responded to HBV boosters. Z-scores for BMI at HBV booster were significantly lower in booster non-responders (p=0.04). Children at increased risk of CFALD have inadequate HAV and HBV antibody levels, and HBV antibody protection can be enhanced through vaccine boosters. HBV antibody titers should be assessed in CFALD patients with a history of vaccination, particularly in those who received HBV vaccines in infancy or who are malnourished. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Diagnostic accuracy of detection and quantification of HBV-DNA and HCV-RNA using dried blood spot (DBS) samples - a systematic review and meta-analysis.

    Science.gov (United States)

    Lange, Berit; Roberts, Teri; Cohn, Jennifer; Greenman, Jamie; Camp, Johannes; Ishizaki, Azumi; Messac, Luke; Tuaillon, Edouard; van de Perre, Philippe; Pichler, Christine; Denkinger, Claudia M; Easterbrook, Philippa

    2017-11-01

    The detection and quantification of hepatitis B (HBV) DNA and hepatitis C (HCV) RNA in whole blood collected on dried blood spots (DBS) may facilitate access to diagnosis and treatment of HBV and HCV infection in resource-poor settings. We evaluated the diagnostic performance of DBS compared to venous blood samples for detection and quantification of HBV-DNA and HCV-RNA in two systematic reviews and meta-analyses on the diagnostic accuracy of HBV DNA and HCV RNA from DBS compared to venous blood samples. We searched MEDLINE, Embase, Global Health, Web of Science, LILAC and Cochrane library for studies that assessed diagnostic accuracy with DBS. Heterogeneity was assessed and where appropriate pooled estimates of sensitivity and specificity were generated using bivariate analyses with maximum likelihood estimates and 95% confidence intervals. We also conducted a narrative review on the impact of varying storage conditions or different cut-offs for detection from studies that undertook this in a subset of samples. The QUADAS-2 tool was used to assess risk of bias. In the quantitative synthesis for diagnostic accuracy of HBV-DNA using DBS, 521 citations were identified, and 12 studies met the inclusion criteria. Overall quality of studies was rated as low. The pooled estimate of sensitivity and specificity for HBV-DNA was 95% (95% CI: 83-99) and 99% (95% CI: 53-100), respectively. In the two studies that reported on cut-offs and limit of detection (LoD) - one reported a sensitivity of 98% for a cut-off of ≥2000 IU/ml and another reported a LoD of 914 IU/ml using a commercial assay. Varying storage conditions for individual samples did not result in a significant variation of results. In the synthesis for diagnostic accuracy of HCV-RNA using DBS, 15 studies met the inclusion criteria, and this included six additional studies to a previously published review. The pooled sensitivity and specificity was 98% (95% CI:95-99) and 98% (95% CI:95-99.0), respectively

  10. Preclinical and clinical safety studies on DNA vaccines.

    NARCIS (Netherlands)

    Schalk, Johanna A C; Mooi, Frits R; Berbers, Guy A M; Aerts, Leon A G J M van; Ovelgönne, Hans; Kimman, Tjeerd G

    2007-01-01

    DNA vaccines are based on the transfer of genetic material, encoding an antigen, to the cells of the vaccine recipient. Despite high expectations of DNA vaccines as a result of promising preclinical data their clinical utility remains unproven. However, much data is gathered in preclinical and

  11. HBV Bypasses the Innate Immune Response and Does Not Protect HCV From Antiviral Activity of Interferon.

    Science.gov (United States)

    Mutz, Pascal; Metz, Philippe; Lempp, Florian A; Bender, Silke; Qu, Bingqian; Schöneweis, Katrin; Seitz, Stefan; Tu, Thomas; Restuccia, Agnese; Frankish, Jamie; Dächert, Christopher; Schusser, Benjamin; Koschny, Ronald; Polychronidis, Georgios; Schemmer, Peter; Hoffmann, Katrin; Baumert, Thomas F; Binder, Marco; Urban, Stephan; Bartenschlager, Ralf

    2018-05-01

    Hepatitis C virus (HCV) infection is sensitive to interferon (IFN)-based therapy, whereas hepatitis B virus (HBV) infection is not. It is unclear whether HBV escapes detection by the IFN-mediated immune response or actively suppresses it. Moreover, little is known on how HBV and HCV influence each other in coinfected cells. We investigated interactions between HBV and the IFN-mediated immune response using HepaRG cells and primary human hepatocytes (PHHs). We analyzed the effects of HBV on HCV replication, and vice versa, at the single-cell level. PHHs were isolated from liver resection tissues from HBV-, HCV-, and human immunodeficiency virus-negative patients. Differentiated HepaRG cells overexpressing the HBV receptor sodium taurocholate cotransporting polypeptide (dHepaRGNTCP) and PHHs were infected with HBV. Huh7.5 cells were transfected with circular HBV DNA genomes resembling viral covalently closed circular DNA (cccDNA), and subsequently infected with HCV; this served as a model of HBV and HCV coinfection. Cells were incubated with IFN inducers, or IFNs, and antiviral response and viral replication were analyzed by immune fluorescence, reverse-transcription quantitative polymerase chain reaction, enzyme-linked immunosorbent assays, and flow cytometry. HBV infection of dHepaRGNTCP cells and PHHs neither activated nor inhibited signaling via pattern recognition receptors. Incubation of dHepaRGNTCP cells and PHHs with IFN had little effect on HBV replication or levels of cccDNA. HBV infection of these cells did not inhibit JAK-STAT signaling or up-regulation of IFN-stimulated genes. In coinfected cells, HBV did not prevent IFN-induced suppression of HCV replication. In dHepaRGNTCP cells and PHHs, HBV evades the induction of IFN and IFN-induced antiviral effects. HBV infection does not rescue HCV from the IFN-mediated response. Copyright © 2018 AGA Institute. Published by Elsevier Inc. All rights reserved.

  12. HBV infection in untreated HIV-infected adults in Maputo, Mozambique.

    Directory of Open Access Journals (Sweden)

    Lúcia Mabalane Chambal

    Full Text Available HIV/ HBV coinfected patients are at high risk of developing chronic HBV infection, liver cirrhosis and hepatocellular carcinoma. In Mozambique, where HIV prevalence is one of the highest in the world, HIV-infected patients are scarcely characterized in terms of HBV coinfection and 3TC-resistance mutations profile.To characterize ART-naïve HIV-infected adults, with and without HBV coinfection, a cross-sectional study was conducted between May and November 2012 in two health centers from Maputo city, Mozambique. Subjects were consecutively enrolled in the study and, then, tested for hepatitis B surface antigen (HBsAg. Moreover, CD4+ T cells count, HBV DNA in plasma, HBV genotyping and 3TC-resistance mutations profile of HBV were assessed in HIV/HBV coinfected patients.In total, 518 patients were enrolled in the study. The median age was 33 years old and 66.8% were women. The median CD4+ T cells count was 361 cells/mm3 and 47 (9.1% were coinfected with HBV. Out of 46 coinfected patients, 24 (55.2% had HBV DNA ≥ 20 - 2.0 was reported in 4.3% of coinfected and 1.7% of monoinfected patients (p = 0.228, while FIB-4 > 3.25 was reported in 4.4% of coinfected and 1.3% of monoinfected patients (p = 0.112. Genotype A was the most frequent, identified in 25/27 (92.6% patients, whereas genotype E was present in 2/27 (7.4% patients. No patient had 3TC-resistance mutations.This study showed that HBV coinfection was prevalent among ART-naïve HIV-infected adults in Mozambique. Overall, these data highlight the importance of screening HBV coinfection as an integrated measure of HIV routine care to improve health conditions and treatment of HIV/HBV coinfected patients.

  13. Formulation and delivery of dermal DNA vaccines

    NARCIS (Netherlands)

    van den Berg, J.H.

    2009-01-01

    DNA vaccination is an appealing strategy of active vaccination, leading to the intracellular production of the encoding antigen which results in an efficient activation of an antigen specific immune response. Intradermal DNA tattooing was recently developed as a simple and robust method to induce

  14. The paradox of HBV evolution as revealed from a 16th century mummy.

    Directory of Open Access Journals (Sweden)

    Zoe Patterson Ross

    2018-01-01

    Full Text Available Hepatitis B virus (HBV is a ubiquitous viral pathogen associated with large-scale morbidity and mortality in humans. However, there is considerable uncertainty over the time-scale of its origin and evolution. Initial shotgun data from a mid-16th century Italian child mummy, that was previously paleopathologically identified as having been infected with Variola virus (VARV, the agent of smallpox, showed no DNA reads for VARV yet did for hepatitis B virus (HBV. Previously, electron microscopy provided evidence for the presence of VARV in this sample, although similar analyses conducted here did not reveal any VARV particles. We attempted to enrich and sequence for both VARV and HBV DNA. Although we did not recover any reads identified as VARV, we were successful in reconstructing an HBV genome at 163.8X coverage. Strikingly, both the HBV sequence and that of the associated host mitochondrial DNA displayed a nearly identical cytosine deamination pattern near the termini of DNA fragments, characteristic of an ancient origin. In contrast, phylogenetic analyses revealed a close relationship between the putative ancient virus and contemporary HBV strains (of genotype D, at first suggesting contamination. In addressing this paradox we demonstrate that HBV evolution is characterized by a marked lack of temporal structure. This confounds attempts to use molecular clock-based methods to date the origin of this virus over the time-frame sampled so far, and means that phylogenetic measures alone cannot yet be used to determine HBV sequence authenticity. If genuine, this phylogenetic pattern indicates that the genotypes of HBV diversified long before the 16th century, and enables comparison of potential pathogenic similarities between modern and ancient HBV. These results have important implications for our understanding of the emergence and evolution of this common viral pathogen.

  15. Development of DNA vaccines for fish

    DEFF Research Database (Denmark)

    Heppell, Joël; Lorenzen, Niels; Armstrong, Neil K.

    1998-01-01

    Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated with tradit......Disease control is one of the major concerns in the aquaculture industry. However, there are no vaccines available for the prevention of many piscine infectious diseases, especially those of viral and parasitic origin. DNA-based vaccination could circumvent several problems associated...... with traditional methods of immunization, but little is known on its efficacy in fish. The luciferase and lacZ reporter genes were used to characterize expression of plasmid-encoded genes in rainbow trout and zebra fish injected intramuscularly. For a given dose of DNA, the luciferase activity was higher in fish...... than in mouse muscle. The enzyme activity in fish peaked with 1 μg of DNA and remained constant for over 12 weeks, but it was not limited to the injected muscle since luciferase activity was also detected in the gills. Thin sections of rainbow trout muscle injected with the lacZ reporter gene showed...

  16. Influence of maintained hemodialysis on viral load in patients with end-stage renal disease with HBV infection

    Directory of Open Access Journals (Sweden)

    ZHANG Huifang

    2017-07-01

    Full Text Available In the patients with end-stage renal disease (ESRD with hepatitis B virus (HBV infection who underwent hemodialysis, the viral load of HBV DNA is relatively low and stable. For this phenomenon, some studies suggest that hemodialysis can reduce the HBV DNA load. The mechanism, which remains unclear, may be as follows: when HBV DNA enters the dialysate through the dialysis membrane, it was adsorbed onto the dialysis membrane; some virus particles were destroyed, and antiviral substances were produced in the course of hemodialysis. At present, there is no consensus on the mechanism responsible for the influence of maintained hemodialysis on the viral load of HBV DNA. This article reviews the factors involved in the influence of maintained hemodialysis on the viral load in ESRD patients with HBV infection and the recent progress.

  17. Deep sequencing shows low-level oncogenic hepatitis B virus variants persists post-liver transplant despite potent anti-HBV prophylaxis.

    Science.gov (United States)

    Lau, K C K; Osiowy, C; Giles, E; Lusina, B; van Marle, G; Burak, K W; Coffin, C S

    2018-01-06

    Recent studies suggest that withdrawal of hepatitis B immune globulin (HBIG) and nucleos(t)ide analogues (NA) prophylaxis may be considered in HBV surface antigen (HBsAg)-negative liver transplant (LT) recipients with a low risk of disease recurrence. However, the frequency of occult HBV infection (OBI) and HBV variants after LT in the current era of potent NA therapy is unknown. Twelve LT recipients on prophylaxis were tested in matched plasma and peripheral blood mononuclear cells (PBMCs) for HBV quasispecies by in-house nested PCR and next-generation sequencing of amplicons. HBV covalently closed circular DNA (cccDNA) was detected in Hirt DNA isolated from PBMCs with cccDNA-specific primers and confirmed by nucleic acid hybridization and Sanger sequencing. HBV mRNA in PBMC was detected with reverse-transcriptase nested PCR. In LT recipients on immunosuppressive therapy (10/12 male; median age 57.5 [IQR: 39.8-66.5]; median follow-up post-LT 60 months; 6 pre-LT hepatocellular carcinoma [HCC]), 9 were HBsAg-. HBV DNA was detected in all plasma and PBMC tested; cccDNA and/or mRNA was detected in the PBMC of 10/12 patients. Significant HBV quasispecies diversity (ie 143-2212 nonredundant HBV species) was noted in both sites, and single nucleotide polymorphisms associated with cirrhosis and HCC were detected at varying frequencies. In conclusion, OBI and HBV variants associated with severe liver disease persist in LT recipients on prophylaxis. Although HBV control and cccDNA transcriptional silencing may occur despite immunosuppression, complete virological eradication does not occur in LT recipients with a history of HBV-related end-stage liver disease. © 2018 John Wiley & Sons Ltd.

  18. Feasibilty of in utero DNA vaccination following naked gene transfer into pig fetal muscle: transgene expression, immunity and safety.

    Science.gov (United States)

    Rinaldi, Monica; Signori, Emanuela; Rosati, Paolo; Cannelli, Giorgio; Parrella, Paola; Iannace, Enrico; Monego, Giovanni; Ciafrè, Silvia Anna; Farace, Maria Giulia; Iurescia, Sandra; Fioretti, Daniela; Rasi, Guido; Fazio, Vito Michele

    2006-05-22

    The high toll of death among first-week infants is due to infections occurring at the end of pregnancy, during birth or by breastfeeding. This problem significantly concerns industrialized countries also. To prevent the typical "first-week infections", a vaccine would be protective as early as at the birth. In utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. We have already published results of a 2-year follow-up showing long-term safety, protective antibody titers at birth and long-term immune memory, following intramuscular in utero anti-HBV DNA immunization in 90-days pig fetuses. We have now analyzed further parameters of short-term safety. Two different reporter genes were injected in the thigh muscles of 90-days fetuses. At 8 days following DNA injection, we found high-level of transgenes expression in all injected fetuses. A step gradient of expression from the area of injection was observed with both reporter genes. CMV promoter/enhancer produced higher levels of expression compared to SV40 promoter/enhancer. Moreover, no evidence of local or systemic flogistic alterations or fetal malformations, mortality or haemorrhage following intramuscular injection were observed. A single anti-HBV s-antigen DNA immunization in 90-days fetuses supported protective antibody levels in all immunized newborns, lasting at least up to 4 months after birth. Our report further sustains safety and efficacy of intramuscular in utero naked gene transfer and immunization. This approach may support therapeutic or prophylactic procedure in many early life-threatening pathologic conditions.

  19. Hepatitis B vaccination coverage rates among adults in rural China: are economic barriers relevant?

    Science.gov (United States)

    Zhu, Dawei; Wang, Jian; Wangen, Knut Reidar

    2014-11-20

    Hepatitis B virus (HBV) infections cause major health problems in China. The Expanded Program of Immunization has succeeded in reducing infection rates among infants and children, but HBV vaccination coverage rates among adults remain low. The objective was to investigate how individual adult HBV vaccination decisions are influenced by economic factors, socioeconomic status, and demographic characteristics, and to assess how potential vaccination policies could affect HBV vaccination coverage rates among adults. We interviewed 22,618 adults, aged 15-59 years, from 7948 households, in 45 villages from 7 provinces. A questionnaire was used to collect information. The actual vaccine status was modeled using a polychotomous logistic regression with three outcomes; unvaccinated, partial vaccination, and complete vaccination. A subsample of unvaccinated adults gave responses to a hypothetical vaccination policy that offered HBV vaccination free of charge and various amounts of money to compensate for direct and indirect vaccination-related costs. The polychotomous logistic regression results suggest that vaccination user fees, time needed to get a vaccination, and vaccination-related travel costs were negatively associated with HBV vaccination coverage rates. Higher income was associated with higher coverage rates, and coverage rates decrease with age, with no significant difference between the genders. In the subsample that responded to the hypothetical policy, 55-72% (depending on the amount of money offered as compensation) stated they would accept a vaccination if it was offered free of charge. Our polychotomous logistic regression results suggest that higher HBV vaccination coverage rates among adults are obtainable and that user fees, time needed to get a vaccination, and travel costs have acted as economic barriers to vaccination. This is supported by the responses to the hypothetical policy, which suggest that adult coverage rates could surge if HBV vaccine is

  20. Future directions in the treatment of HIV-HBV coinfection.

    Science.gov (United States)

    Iser, David M; Lewin, Sharon R

    2009-07-01

    Liver disease is a major cause of mortality in individuals with HIV-HBV coinfection. The pathogenesis of liver disease in this setting is unknown, but is likely to involve drug toxicity, infection of hepatic cells with both HIV and HBV, and an altered immune response to HBV. The availability of therapeutic agents that target both HIV and HBV replication enable dual viral suppression, and assessment of chronic hepatitis B is important prior to commencement of antiretroviral therapy. Greater importance is now placed on HBV DNA levels and staging of liver fibrosis, either by liver biopsy or noninvasive measurement, such as transient elastography, since significant liver fibrosis may exist in the presence of normal liver function tests. Earlier treatment of both HIV and HBV is now generally advocated and treatment is usually lifelong.

  1. Future directions in the treatment of HIV–HBV coinfection

    Science.gov (United States)

    Iser, David M; Lewin, Sharon R

    2009-01-01

    Liver disease is a major cause of mortality in individuals with HIV–HBV coinfection. The pathogenesis of liver disease in this setting is unknown, but is likely to involve drug toxicity, infection of hepatic cells with both HIV and HBV, and an altered immune response to HBV. The availability of therapeutic agents that target both HIV and HBV replication enable dual viral suppression, and assessment of chronic hepatitis B is important prior to commencement of antiretroviral therapy. Greater importance is now placed on HBV DNA levels and staging of liver fibrosis, either by liver biopsy or noninvasive measurement, such as transient elastography, since significant liver fibrosis may exist in the presence of normal liver function tests. Earlier treatment of both HIV and HBV is now generally advocated and treatment is usually lifelong. PMID:20161405

  2. Lipopolysaccharide contamination in intradermal DNA vaccination : toxic impurity or adjuvant?

    NARCIS (Netherlands)

    Berg, J.H. van den; Quaak, S.G.L.; Beijnen, J.H.; Hennink, W.E.; Storm, G.; Schumacher, T.N.; Haanen, J.B.A.G.; Nuijen, B.

    Purpose: Lipopolysaccharides (LPS) are known both as potential adjuvants for vaccines and as toxic impurity in pharmaceutical preparations. The aim of this study was to assess the role of LPS in intradermal DNA vaccination administered by DNA tattooing. Method: Micewere vaccinated with a model DNA

  3. Prime-boost vaccination using DNA and whole inactivated virus vaccines provides limited protection against virulent feline immunodeficiency virus.

    Science.gov (United States)

    Dunham, Stephen P; Bruce, Jennifer; Klein, Dieter; Flynn, J Norman; Golder, Matthew C; MacDonald, Susan; Jarrett, Oswald; Neil, James C

    2006-11-30

    Protection against feline immunodeficiency virus (FIV) has been achieved using a variety of vaccines notably whole inactivated virus (WIV) and DNA. However protection against more virulent isolates, typical of those encountered in natural infections, has been difficult to achieve. In an attempt to improve protection against virulent FIV(GL8), we combined both DNA and WIV vaccines in a "prime-boost" approach. Thirty cats were divided into four groups receiving vaccinations and one unvaccinated control group. Following viral challenge, two vaccinated animals, one receiving DNA alone and one the prime-boost vaccine remained free of viraemia, whilst all controls became viraemic. Animals vaccinated with WIV showed apparent early enhancement of infection at 2 weeks post challenge (pc) with higher plasma viral RNA loads than control animals or cats immunised with DNA alone. Despite this, animals vaccinated with WIV or DNA alone showed significantly lower proviral loads in peripheral blood mononuclear cells and mesenteric lymph node cells, whilst those receiving the DNA-WIV prime-boost vaccine showed significantly lower proviral loads in PBMC, than control animals, at 35 weeks pc. Therefore both DNA and WIV vaccines conferred limited protection against viral challenge but the combination of WIV and DNA in a prime-boost approach appeared to offer no significant advantage over either vaccine alone.

  4. Immunogenicity of an HPV-16 L2 DNA vaccine

    Science.gov (United States)

    Hitzeroth, Inga I.; Passmore, Jo-Ann S.; Shephard, Enid; Stewart, Debbie; Müller, Martin; Williamson, Anna-Lise; Rybicki, Edward P.; Kast, W. Martin

    2009-01-01

    The ability to elicit cross-neutralizing antibodies makes human papillomavirus (HPV) L2 capsid protein a possible HPV vaccine. We examined and compared the humoral response of mice immunised with a HPV-16 L2 DNA vaccine or with HPV-16 L2 protein. The L2 DNA vaccine elicited a non-neutralising antibody response unlike the L2 protein. L2 DNA vaccination suppressed the growth of L2-expressing C3 tumor cells, which is a T cell mediated effect, demonstrating that the lack of non-neutralizing antibody induction by L2 DNA was not caused by lack of T cell immunogenicity of the construct. PMID:19559114

  5. Intranasal DNA Vaccine for Protection against Respiratory Infectious Diseases: The Delivery Perspectives

    Directory of Open Access Journals (Sweden)

    Yingying Xu

    2014-07-01

    Full Text Available Intranasal delivery of DNA vaccines has become a popular research area recently. It offers some distinguished advantages over parenteral and other routes of vaccine administration. Nasal mucosa as site of vaccine administration can stimulate respiratory mucosal immunity by interacting with the nasopharyngeal-associated lymphoid tissues (NALT. Different kinds of DNA vaccines are investigated to provide protection against respiratory infectious diseases including tuberculosis, coronavirus, influenza and respiratory syncytial virus (RSV etc. DNA vaccines have several attractive development potential, such as producing cross-protection towards different virus subtypes, enabling the possibility of mass manufacture in a relatively short time and a better safety profile. The biggest obstacle to DNA vaccines is low immunogenicity. One of the approaches to enhance the efficacy of DNA vaccine is to improve DNA delivery efficiency. This review provides insight on the development of intranasal DNA vaccine for respiratory infections, with special attention paid to the strategies to improve the delivery of DNA vaccines using non-viral delivery agents.

  6. Potential use of serum HBV RNA in antiviral therapy for chronic hepatitis B in the era of nucleos(t)ide analogs.

    Science.gov (United States)

    Lu, Fengmin; Wang, Jie; Chen, Xiangmei; Xu, Dongping; Xia, Ningshao

    2017-12-01

    Although the efficacy of nucleos(t)ide analogue (NA) has been confirmed for treatment of chronic hepatitis B, long-term therapy has been recommended due to the high frequency of off-therapy viral DNA rebound and disease relapse. In this review, the RNA virion-like particles of hepatitis B virus (HBV) are integrated into the life cycle of HBV replication, and the potential significance of serum HBV RNA is systematically described. The production of HBV RNA virion-like particles should not be blocked by NA; in this regard, serum HBV RNA is found to be a suitable surrogate marker for the activity of intrahepatic covalently closed circular DNA (cccDNA), particularly among patients receiving NA therapy. Therefore, the concept of virological response is redefined as persistent loss of serum HBV DNA and HBV RNA. In contrast to hepatitis B surface antigen (HBsAg) that can originate from either the cccDNA or the integrated HBV DNA fragment, serum HBV RNA, with pregenomic RNA origination, can only be transcribed from cccDNA. Therefore, the loss of serum HBV RNA would likely be a promising predicator for safe drug discontinuation. The clinical status of consistent loss of serum HBV RNA accompanied with low serum HBsAg levels might be implicated as a "para-functional cure," a status nearly close to the functional cure of chronic hepatitis B, to distinguish the "functional cure" characterized as serum HBsAg loss with or without anti-HBs seroconversion.

  7. Clinical course and core variability in HBV infected patients without detectable anti-HBc antibodies.

    Science.gov (United States)

    Anastasiou, Olympia E; Widera, Marek; Verheyen, Jens; Korth, Johannes; Gerken, Guido; Helfritz, Fabian A; Canbay, Ali; Wedemeyer, Heiner; Ciesek, Sandra

    2017-08-01

    The presence of anti-HBc antibodies indicates direct encounter of the immune system with hepatitis B virus (HBV). Aim of our study was to seek for anti-HBc negative but HBV replicating patients and analyze their clinical course and preconditions. From 1568 HBV-DNA positive patients, 29 patients (1.85%) tested negative for anti-HBc. The absence of anti-HBc could be confirmed in 19 patients using an alternative assay. In 16 of 19 cases, a partial or full HBV genome analysis was performed with NGS sequencing to evaluate if specific mutations were associated with anti-HBc absence. As a control group samples from 32 matched HBV infected patients with detectable anti-HBc were sequenced. Patients with detectable HBV-DNA and sequenced HBV core region in the confirmed absence of anti-HBc were diagnosed with acute HBV infection (n=3), HBV reactivation (n=9) and chronic hepatitis B (n=4). Most patients (12/16) were immunosuppressed: 3/16 patients had an HIV coinfection, 7/16 patients suffered from a malignant disease and 4/16 patients underwent solid organ transplantation (from which 2/4 had a malignant disease). Compared to the control cohort, HBV variants from anti-HBc negative patients showed less variability in the core region. In the absence of anti-HBc, HBV-DNA was most often found in immunocompromised hosts. Distinct mutations or deletions in the core region did not explain anti-HBc negativity. It would be advisable not to rely only on a single result of anti-HBc negativity to exclude HBV infection in immunocompromised hosts, but to measure anti-HBc repeatedly or with different methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. HBV And HCV Molecular Evolution

    Directory of Open Access Journals (Sweden)

    Flor H. Pujol

    2007-02-01

    Full Text Available

    Hepatitis B virus (HBV infection is still a significant health concern in in the world, since around 2 billion persons have been infected by this virus (HBV and around 350 millions of them are chronic carriers, in spite of a highly effective vaccine against this virus. Bearing a reverse transcriptase necessary for its replication but with a highly compacted genome, this hepadnavirus exhibits a degree of variability intermediate between DNA and RNA viruses. This plasticiy leads to the generation of several mutants and genotypic variability. HBV mutants develop during the natural course of infection and play an important role in the evasion of the selective pressure applied by the host (immune or chemotherapeutic. Eight HBV genotypes (A-H have been described, based on a minimum divergence of 8% of the complete genome sequences. HBV genotype F is the most divergent of the HBV genotypes, is autochthonous to South America and is highly predominant in the Northen region of South America. The recently described HBV genotype H is closely related to genotype F and seems to be restricted to Central and North America. Recombination among different HBV strains seems to be frequent. Several subgenotypes have also been described inside HBV genotypes, which exhibit a geographic pattern of distribution. The clinical and biologic importance of the genotypic diversity of HBV is of major concern at the present moment and has been studied in Asia and Europe. The origin of HBV is still an open question. Depending on the model used for the phylogenetic analysis, an Asian or an American origin of HBV has been proposed. By revisiting the genotypic diversity of HBV, an alternative explanation is that human HBV genotypes might have emerged by several zoonotic introductions, both in the Old and the New World. Around 170 millions persons in the world are thought to be infected with

  9. A new polymorphism in the GRP78 is not associated with HBV invasion

    Science.gov (United States)

    Zhu, Xiao; Wang, Yi; Tao, Tao; Li, Dong-Pei; Lan, Fei-Fei; Zhu, Wei; Xie, Dan; Kung, Hsiang-Fu

    2009-01-01

    AIM: To examine the association between -86 bp (T > A) in the glucose-regulated protein 78 gene (GRP78) and hepatitis B virus (HBV) invasion. METHODS: DNA was genotyped for the single-nucleotide polymorphism by polymerase chain reaction followed by sequencing in a sample of 382 unrelated HBV carriers and a total of 350 sex- and age-matched healthy controls. Serological markers for HBV infection were determined by enzyme-linked immunosorbent assay kits or clinical chemistry testing. RESULTS: The distributions of allelotype and genotype in cases were not significantly different from those in controls. In addition, our findings suggested that neither alanine aminotransferase/hepatitis B e antigen nor HBV-DNA were associated with the allele/genotype variation in HBV infected individuals. CONCLUSION: -86 bp T > A polymorphism in GRP78 gene is not related to the clinical risk and acute exacerbation of HBV invasion. PMID:19842229

  10. HBV Infection Trend in Iranian Disabled Children; Is It really Worrying?

    Directory of Open Access Journals (Sweden)

    Mohammad Hossein Khosravi

    2017-01-01

    Full Text Available We read with a great interest the article written by Davoodbeglou and colleagues entitled “Evaluation of Hepatitis B Infection Prevalence in Institutionalized Intellectually Disabled Children” which is recently published in your prestigious journal1. The authors concluded that HBV infection is more prevalent among institutionalized disabled children and that we should change our health policies for HBV infection management in this population. They have conducted a valuable study with an important subject in a high risk population for hepatitis. Despite our interest to the findings of Davoodbeglou et al. study there are some challenging points about their work; so we think that some comments may be of benefit. The first, authors have claimed a higher prevalence of HBV infection among vaccinated children in comparison with those with no or undetermined vaccination history. While there are studies in which the efficacy of neonatal HBV immunization has been proven2. How the authors justify this finding?In addition the authors have not mentioned the sampling method of their study which is the crucial factor of prevalence studies. This may seriously affect the results of study. Also the time period in which the study was conducted has not been determined by the authors. Was it after or before distribution of national vaccination program for hepatitis B? In this regard we should be aware of the maximum age of disabled individuals included in the study.In conclusion we appreciate the valuable effort of the authors; however we were wondering if we could kindly ask them to interpret better our concerns.

  11. Pharmacodynamic study of Bay41-4109 in HBV transgenic mouse model

    Directory of Open Access Journals (Sweden)

    Xiu-mei LI

    2011-09-01

    Full Text Available Objective To study the pharmacodynamics of Bay41-4109,a novel anti-HBV compound,in HBV transgenic mouse model.Methods specific pathogen frce(SPF level TgM(HBV D1.3mice were divided into 3 groups: Bay41-4109 group [30mg/(kg·d],lamivudine group [30mg/(kg·d] and vehicle group(0.5% sodium carboxymethycellulose,with 32 in each.Antiviral effect of Bay41-4109 was tested in HBV transgenic mice including the analysis of HBcAg changes in liver tissue by immunohistochemistry,and changes in HBV DNA in liver and serum by quantitative real time PCR analysis.Serum transaminase(ALT and AST and body weight were assayed to evaluate the safety of the compound.Results Oral Bay41-4109 significantly reduced the number of HBV core antigen(HBcAg positive cell nucleus,average area of HBcAg positive cell nucleus and the rate of OD compared with vehicle group after 50 days treatment(P 0.05.However,Bay41-4109 could not significantly reduce HBV-specific DNA in HBV transgenic mice,both in liver and plasma.No significant impact was found on ALT,AST and body weigh of Bay41-4109-treated mice.Conclusions Bay41-4109 can more effectively reduce cytoplasmic HBcAg in liver sections than lamivudine.It is suggested that Bay41-4109,a different mode of action from lamivudine,represents a promising anti-HBV drug candidate with good antiviral effect and safety.

  12. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    Energy Technology Data Exchange (ETDEWEB)

    Hidajat, Rachmat; Nickols, Brian [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Forrester, Naomi [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Tretyakova, Irina [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Weaver, Scott [Institute for Human Infections and Immunity, Sealy Center for Vaccine Development and Department of Pathology, University of Texas Medical Branch, GNL, 301 University Blvd., Galveston, TX 77555 (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2016-03-15

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  13. Next generation sequencing of DNA-launched Chikungunya vaccine virus

    International Nuclear Information System (INIS)

    Hidajat, Rachmat; Nickols, Brian; Forrester, Naomi; Tretyakova, Irina; Weaver, Scott; Pushko, Peter

    2016-01-01

    Chikungunya virus (CHIKV) represents a pandemic threat with no approved vaccine available. Recently, we described a novel vaccination strategy based on iDNA® infectious clone designed to launch a live-attenuated CHIKV vaccine from plasmid DNA in vitro or in vivo. As a proof of concept, we prepared iDNA plasmid pCHIKV-7 encoding the full-length cDNA of the 181/25 vaccine. The DNA-launched CHIKV-7 virus was prepared and compared to the 181/25 virus. Illumina HiSeq2000 sequencing revealed that with the exception of the 3′ untranslated region, CHIKV-7 viral RNA consistently showed a lower frequency of single-nucleotide polymorphisms than the 181/25 RNA including at the E2-12 and E2-82 residues previously identified as attenuating mutations. In the CHIKV-7, frequencies of reversions at E2-12 and E2-82 were 0.064% and 0.086%, while in the 181/25, frequencies were 0.179% and 0.133%, respectively. We conclude that the DNA-launched virus has a reduced probability of reversion mutations, thereby enhancing vaccine safety. - Highlights: • Chikungunya virus (CHIKV) is an emerging pandemic threat. • In vivo DNA-launched attenuated CHIKV is a novel vaccine technology. • DNA-launched virus was sequenced using HiSeq2000 and compared to the 181/25 virus. • DNA-launched virus has lower frequency of SNPs at E2-12 and E2-82 attenuation loci.

  14. Spinoculation Enhances HBV Infection in NTCP-Reconstituted Hepatocytes

    Science.gov (United States)

    Yan, Ran; Zhang, Yongmei; Cai, Dawei; Liu, Yuanjie; Cuconati, Andrea; Guo, Haitao

    2015-01-01

    Hepatitis B virus (HBV) infection and its sequelae remain a major public health burden, but both HBV basic research and the development of antiviral therapeutics have been hindered by the lack of an efficient in vitro infection system. Recently, sodium taurocholate cotransporting polypeptide (NTCP) has been identified as the HBV receptor. We herein report that we established a NTCP-complemented HepG2 cell line (HepG2-NTCP12) that supports HBV infection, albeit at a low infectivity level following the reported infection procedures. In our attempts to optimize the infection conditions, we found that the centrifugation of HepG2-NTCP12 cells during HBV inoculation (termed “spinoculation”) significantly enhanced the virus infectivity. Moreover, the infection level gradually increased with accelerated speed of spinoculation up to 1,000g tested. However, the enhancement of HBV infection was not significantly dependent upon the duration of centrifugation. Furthermore, covalently closed circular (ccc) DNA was detected in infected cells under optimized infection condition by conventional Southern blot, suggesting a successful establishment of HBV infection after spinoculation. Finally, the parental HepG2 cells remained uninfected under HBV spinoculation, and HBV entry inhibitors targeting NTCP blocked HBV infection when cells were spinoculated, suggesting the authentic virus entry mechanism is unaltered under centrifugal inoculation. Our data suggest that spinoculation could serve as a standard protocol for enhancing the efficiency of HBV infection in vitro. PMID:26070202

  15. Suppression of HBV replication by the expression of nickase- and nuclease dead-Cas9.

    Science.gov (United States)

    Kurihara, Takeshi; Fukuhara, Takasuke; Ono, Chikako; Yamamoto, Satomi; Uemura, Kentaro; Okamoto, Toru; Sugiyama, Masaya; Motooka, Daisuke; Nakamura, Shota; Ikawa, Masato; Mizokami, Masashi; Maehara, Yoshihiko; Matsuura, Yoshiharu

    2017-07-21

    Complete removal of hepatitis B virus (HBV) DNA from nuclei is difficult by the current therapies. Recent reports have shown that a novel genome-editing tool using Cas9 with a single-guide RNA (sgRNA) system can cleave the HBV genome in vitro and in vivo. However, induction of a double-strand break (DSB) on the targeted genome by Cas9 risks undesirable off-target cleavage on the host genome. Nickase-Cas9 cleaves a single strand of DNA, and thereby two sgRNAs are required for inducing DSBs. To avoid Cas9-induced off-target mutagenesis, we examined the effects of the expressions of nickase-Cas9 and nuclease dead Cas9 (d-Cas9) with sgRNAs on HBV replication. The expression of nickase-Cas9 with a pair of sgRNAs cleaved the target HBV genome and suppressed the viral-protein expression and HBV replication in vitro. Moreover, nickase-Cas9 with the sgRNA pair cleaved the targeted HBV genome in mouse liver. Interestingly, d-Cas9 expression with the sgRNAs also suppressed HBV replication in vitro without cleaving the HBV genome. These results suggest the possible use of nickase-Cas9 and d-Cas9 with a pair of sgRNAs for eliminating HBV DNA from the livers of chronic hepatitis B patients with low risk of undesirable off-target mutation on the host genome.

  16. Construction and analysis of experimental DNA vaccines against megalocytivirus.

    Science.gov (United States)

    Zhang, Min; Hu, Yong-Hua; Xiao, Zhi-Zhong; Sun, Yun; Sun, Li

    2012-11-01

    Iridoviruses are large double-stranded DNA viruses with icosahedral capsid. The Iridoviridae family contains five genera, one of which is Megalocytivirus. Megalocytivirus has emerged in recent years as an important pathogen to a wide range of marine and freshwater fish. In this study, we aimed at developing effective genetic vaccines against megalocytivirus affecting farmed fish in China. For this purpose, we constructed seven DNA vaccines based on seven genes of rock bream iridovirus isolate 1 from China (RBIV-C1), a megalocytivirus with a host range that includes Japanese flounder (Paralichthys olivaceus) and turbot (Scophthalmus maximus). The protective potentials of these vaccines were examined in a turbot model. The results showed that after vaccination via intramuscular injection, the vaccine plasmids were distributed in spleen, kidney, muscle, and liver, and transcription of the vaccine genes and production of the vaccine proteins were detected in these tissues. Following challenge with a lethal-dose of RBIV-C1, fish vaccinated with four of the seven DNA vaccines exhibited significantly higher levels of survival compared to control fish. Of these four protective DNA vaccines, pCN86, which is a plasmid that expresses an 86-residue viral protein, induced the highest protection. Immunological analysis showed that pCN86 was able to (i) stimulate the respiratory burst of head kidney macrophages at 14 d, 21 d, and 28 d post-vaccination, (ii) upregulate the expression of immune relevant genes involved in innate and adaptive immunity, and (iii) induce production of serum antibodies that, when incubated with RBIV-C1 before infection, significantly reduced viral loads in kidney and spleen following viral infection of turbot. Taken together, these results indicate that pCN86 is an effective DNA vaccine that may be used in the control of megalocytivirus-associated diseases in aquaculture. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Prevalence of Hepatitis B Vaccination among Health Care Workers in Nigeria in 2011–12

    Directory of Open Access Journals (Sweden)

    D Ogoina

    2014-01-01

    Full Text Available Background: Hepatitis B virus (HBV infection is an endemic infection in Nigeria. Health care workers (HCWs are at risk of occupational exposures to HBV-infected blood and body fluids. Objective: To determine the prevalence and determinants of HBV vaccine coverage among HCWs in two teaching hospitals in Nigeria. Methods: This cross-sectional study was undertaken in 2011 and 2012 in two teaching hospitals in Jos, North-Central Nigeria, and Yenagoa, South-South Nigeria. A self-administered structured questionnaire was administered to HCWs to obtain socio-demographic data and history of HBV vaccination. Results: Out of 290 HCWs who participated in the study, 185 (64.5% had received at least one dose of HBV vaccine; 105 (36.2% had full coverage of three doses. Professional category and previous training in infection control were independently associated with HBV vaccination. House officers and laboratory scientists were more likely to be unvaccinated than resident doctors, consultant doctors and nurses. Full vaccine coverage was associated with younger age and shorter years of professional experience. Conclusion: We observed a generally low rate of HBV vaccine coverage among HCWs in Nigeria. Establishment of policies on compulsory HBV vaccination of all HCWs in Nigeria is recommended.

  18. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection.

    Science.gov (United States)

    Wagemakers, A; Mason, L M K; Oei, A; de Wever, B; van der Poll, T; Bins, A D; Hovius, J W R

    2014-12-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method that can be applied in a rapid vaccination schedule. We vaccinated C3H/HeN mice with B. afzelii strain PKo OspC (outer-surface protein C) using a codon-optimized DNA vaccine tattoo and compared this with recombinant protein vaccination in a 0-2-4 week vaccination schedule. We also assessed protection by DNA tattoo in a 0-3-6 day schedule. DNA tattoo and recombinant OspC vaccination induced comparable total IgG responses, with a lower IgG1/IgG2a ratio after DNA tattoo. Two weeks after syringe-challenge with 5 × 10(5) B. afzelii spirochetes most vaccinated mice had negative B. afzelii tissue DNA loads and all were culture negative. Furthermore, DNA tattoo vaccination in a 0-3-6 day regimen also resulted in negative Borrelia loads and cultures after challenge. To conclude, DNA vaccination by tattoo was fully protective against B. afzelii challenge in mice in a rapid vaccination protocol, and induces a favorable humoral immunity compared to recombinant protein vaccination. Rapid DNA tattoo is a promising vaccination strategy against spirochetes.

  19. Molecular and Serological Assessment of Chronic HBV Carriers and Additional Burden of Applying Updated Guidelines in Pakistan

    International Nuclear Information System (INIS)

    Hussain, A. B.; Ghani, E.; Rathore, M. A.; Khan, F. A.; Ali, N.

    2014-01-01

    Objective: To assess the additional burden of the patients eligible for treatment, based on recommendations on viral load, in the light of 2009 version of AASLD guidelines, as compared to 2004 guidelines and to determine the frequency of HBeAg in chronic HBV carriers. Study Design: Descriptive cross-sectional study. Place and Duration of Study: Virology Department, Armed Forces Institute of Pathology, Rawalpindi, from November 2010 to January 2012. Methodology: Persons with chronic HBV infection, reporting for HBV DNA PCR test, were included in the study and blood samples were collected. HBV DNA load was determined by Real Time PCR. HBsAg and HBeAg were tested by ELISA. Results: Out of the 801 subjects positive for HBsAg, 74 (9.24%) were positive for HBeAg. Out of them, 113 (14.1%) had HBV DNA load > 100,000 copies/ml and were eligible for treatment according to AASLD 2004 guidelines. Forty one (5.1%) had HBV load between 10,000 and 100,000 copies/ml, and were additionally eligible for treatment as per AASLD 2009 guidelines. The 5.1% of 4.5 million estimated HBV carries in Pakistan comes to 229500. Conclusion: There was a low HBeAg positivity and HBV DNA positivity in our chronic HBV infected persons. Moreover, there is an increase of 229500 potential candidates for HBV treatment in Pakistan based on viral load testing, according to the AASLD 2009 guidelines when compared with 2004 guidelines. The increase in the number of candidates for treatment may require an additional expenditure of tens of billions of rupees. (author)

  20. Role of peripheral blood mononuclear cell transportation from mother to baby in HBV intrauterine infection.

    Science.gov (United States)

    Shao, Qingliang; Zhao, Xiaxia; Yao Li, M D

    2013-12-01

    We aimed to investigate the role of peripheral blood mononuclear cell transportation from mother to baby in hepatitis B virus (HBV) intrauterine infection. Thirty HBsAg-positive pregnant women in the second trimester and their aborted fetuses were included in this study. Enzyme-linked-immunosorbent-assay was utilized to detect HBsAg in the peripheral blood of pregnant women and the femoral vein blood of their aborted fetuses. HBV-DNA in serum and peripheral blood mononuclear cells (PBMC) and GSTM1 alleles of pregnant women and their aborted fetuses were detected by nested polymerase chain reaction (PCR) and seminested PCR, respectively. We also examined the location of placenta HBsAg and HBcAb using immunohistochemical staining. The expression of placenta HBV-DNA was detected by in situ hybridization. For the 30 aborted fetuses, the HBV intrauterine infection rate was 43.33%. The HBV-positive rates of HBsAg in peripheral blood, serum, and PBMC were 10% (3/30), 23.33% (7/30), and 33.33% (10/30), respectively. Maternal-fetal PBMC transport was significantly positively correlated with fetal PBMC HBV-DNA (P = 0.004). Meanwhile, the rates of HBV infection gradually decreased from the maternal side to the fetus side of placenta (decidual cells > trophoblastic cells > villous mesenchymal cells > villous capillary endothelial cells). However, no significant correlation between placenta HBV infection and HBV intrauterine infection was observed (P = 0.410). HBV intrauterine infection was primarily due to peripheral blood mononuclear cell maternal-fetal transportation in the second trimester in pregnant women.

  1. Treatment of HBV and HDV co-infection using lamivudine

    International Nuclear Information System (INIS)

    Qureshi, H.; Arif, A.; Alam, E.

    2009-01-01

    To see effect of Lamivudine on sero conversion of HBeAg positive cases co infected with Delta hepatitis. Hepatitis B positive patients with deranged liver functions for 6 months were tested for HBeAg, HBV DNA and anti-Delta virus (HDV), using ELISA. Patients were divided into 2 groups, group 1: HBeAg, HBV DNA positive (wild type) but delta negative and group 2: HBeAg, HBV DNA positive (wild type) with delta positive. Lamivudine (100 mg) was advised to both groups till sero-conversion. Of 124 cases in year 1999-2005, 69 were in (Group 1), and 55 were in (Group 2). Eighty percent were males in both groups. ALT normalisation occurred in 75%, 24% cases within 6 months respectively. At the start of therapy mean HBeAg was 289+-189 in group 1 and 142+-160 in group 2. With treatment, the values did not change much till 12 months of therapy. The fall was significantly slow in delta positive cases. At 36 months 26 (38%) cases in group 1 and 9 (16.4%) cases in group 2 sero-converted. Nine cases in each group remained non-responders while 2 in each group relapsed. Wild type of HBV/HDV co-infected cases have a 16% chance of seroconversion which negates the concept that once infected with delta virus there is not much that can be done. (author)

  2. Vaccines for preventing hepatitis B in health-care workers

    DEFF Research Database (Denmark)

    Chen, Weikeng; Gluud, C

    2005-01-01

    Hepatitis B virus (HBV) causes acute and chronic liver diseases. Hepatitis B vaccination is recommended for health-care workers.......Hepatitis B virus (HBV) causes acute and chronic liver diseases. Hepatitis B vaccination is recommended for health-care workers....

  3. Phase 1 study of pandemic H1 DNA vaccine in healthy adults.

    Directory of Open Access Journals (Sweden)

    Michelle C Crank

    Full Text Available A novel, swine-origin influenza A (H1N1 virus was detected worldwide in April 2009, and the World Health Organization (WHO declared a global pandemic that June. DNA vaccine priming improves responses to inactivated influenza vaccines. We describe the rapid production and clinical evaluation of a DNA vaccine encoding the hemagglutinin protein of the 2009 pandemic A/California/04/2009(H1N1 influenza virus, accomplished nearly two months faster than production of A/California/07/2009(H1N1 licensed monovalent inactivated vaccine (MIV.20 subjects received three H1 DNA vaccinations (4 mg intramuscularly with Biojector at 4-week intervals. Eighteen subjects received an optional boost when the licensed H1N1 MIV became available. The interval between the third H1 DNA injection and MIV boost was 3-17 weeks. Vaccine safety was assessed by clinical observation, laboratory parameters, and 7-day solicited reactogenicity. Antibody responses were assessed by ELISA, HAI and neutralization assays, and T cell responses by ELISpot and flow cytometry.Vaccinations were safe and well-tolerated. As evaluated by HAI, 6/20 developed positive responses at 4 weeks after third DNA injection and 13/18 at 4 weeks after MIV boost. Similar results were detected in neutralization assays. T cell responses were detected after DNA and MIV. The antibody responses were significantly amplified by the MIV boost, however, the boost did not increased T cell responses induced by DNA vaccine.H1 DNA vaccine was produced quickly, was well-tolerated, and had modest immunogenicity as a single agent. Other HA DNA prime-MIV boost regimens utilizing one DNA prime vaccination and longer boost intervals have shown significant immunogenicity. Rapid and large-scale production of HA DNA vaccines has the potential to contribute to an efficient response against future influenza pandemics.Clinicaltrials.gov NCT00973895.

  4. A multilateral effort to develop DNA vaccines against falciparum malaria.

    Science.gov (United States)

    Kumar, Sanjai; Epstein, Judith E; Richie, Thomas L; Nkrumah, Francis K; Soisson, Lorraine; Carucci, Daniel J; Hoffman, Stephen L

    2002-03-01

    Scientists from several organizations worldwide are working together to develop a multistage, multigene DNA-based vaccine against Plasmodium falciparum malaria. This collaborative vaccine development effort is named Multi-Stage DNA-based Malaria Vaccine Operation. An advisory board of international experts in vaccinology, malariology and field trials provides the scientific oversight to support the operation. This article discusses the rationale for the approach, underlying concepts and the pre-clinical development process, and provides a brief outline of the plans for the clinical testing of a multistage, multiantigen malaria vaccine based on DNA plasmid immunization technology.

  5. Positive hepatitis B surface antigen tests due to recent vaccination: a persistent problem

    Directory of Open Access Journals (Sweden)

    Rysgaard Carolyn D

    2012-09-01

    Full Text Available Abstract Background Hepatitis B virus (HBV is a common cause of viral hepatitis with significant health complications including cirrhosis and hepatocellular carcinoma. Assays for hepatitis B surface antigen (HBsAg are the most frequently used tests to detect HBV infection. Vaccination for HBV can produce transiently detectable levels of HBsAg in patients. However, the time course and duration of this effect is unclear. The objective of this retrospective study was to clarify the frequency and duration of transient HBsAg positivity following vaccination against HBV. Methods The electronic medical record at an academic tertiary care medical center was searched to identify all orders for HBsAg within a 17 month time period. Detailed chart review was performed to identify all patients who were administered HBV vaccine within 180 days prior to HBsAg testing and also to ascertain likely cause of weakly positive (grayzone results. Results During the 17 month study period, 11,719 HBsAg tests were ordered on 9,930 patients. There were 34 tests performed on 34 patients who received HBV vaccine 14 days or less prior to HBsAg testing. Of these 34 patients, 11 had grayzone results for HBsAg that could be attributed to recent vaccination. Ten of the 11 patients were renal dialysis patients who were receiving HBsAg testing as part of routine and ongoing monitoring. Beyond 14 days, there were no reactive or grayzone HBsAg tests that could be attributed to recent HBV vaccination. HBsAg results reached a peak COI two to three days following vaccination before decaying. Further analysis of all the grayzone results within the 17 month study period (43 results out of 11,719 tests revealed that only 4 of 43 were the result of true HBV infection as verified by confirmatory testing. Conclusions Our study confirms that transient HBsAg positivity can occur in patients following HBV vaccination. The results suggest this positivity is unlikely to persist beyond 14 days

  6. Detection of Hepatitis B Virus (HBV) in Blood Serum By Means of PCR (Polymerase Chain Reaction) Technique

    International Nuclear Information System (INIS)

    Lina, M.; Dadang, S.; Suhadi, F.

    2002-01-01

    Research for detecting the presence of HBV DNA in serum with PCR technique by using two pairs of oligonucleotide primers, has been carried out. Ten serum consisted of 5 HBsAg positive serum, I HBsAg weak positive serum, 3 HBsAg negative serum, and I sampel with negative HBV DNA as a previous PCR product trom another laboratory, were used to purify and to extract the DNA of virus, the sample pretreatment was done with Boom method. The two pairs of primers used for the- PCR process, were PC1 and PC2 and P1 and P2. The amplification process by means of PC1 and PC2 primer was carried out with two treatments, l.a. and l.b treatments of 5 HBsAg positive serum samples, 3 were positive for HBV DNA by PCR test with l.a. treatment. The PCR test by means of either the same primer but different treaunent (l.b treatment) or different pair of primer (pI and P2 pimer), revealed the presence of HBV DNA in all of HBsAg serum mentioned above of HBsAg negative Seruln, I serum was positive for HBV DNA and it was an amplification product of PCR test by using PI and P2 primer. The amplification products of PCR processwith either l.b treatment or PI and P2 primer, showed the positive results for I HBV positive serum as a previous PCR product trom another laboratory. All of the PCR test in this research provided the negative HBV DNA result in the HBsAg weak positive serum. The DNA amplification process by means of PI and P2 primer was more sensitive compared with PC I and PC2 primer

  7. [Seroconversion in response to a reinforced primary hepatitis B vaccination in children with cancer].

    Science.gov (United States)

    Villena, Rodolfo; Zubieta, Marcela; Hurtado, Carmen; Salgado, Carmen; Silva, Gladys; Fernández, Jazmine; Villarroel, Milena; Fernández, Marisol; Brahm, Javier; O'Ryan, Miguel; Santolaya, María Elena

    2015-01-01

    Immune response against vaccine antigens may be impaired in children with cancer. The aim of this study was to evaluate the seroconversion response against hepatitis B vaccination (HBV) at the time of chemotherapy onset and/or remission in children with cancer. Prospective, two-centre, controlled, non-randomised study conducted on children recently diagnosed with cancer, paired with healthy subjects. Cases received HBV at time 0, 1 and 6 months with DNA recombinant HBV at a dose of 20 and 40 μg if than 10 years of age, respectively, at the time of diagnosis for solids tumours and after the remission in case of haematological tumours. Controls received the same schedule, but at of 10 and 20 μg doses, respectively. HBs antibodies were measured in serum samples obtained at 2, 8 and 12 months post-vaccination. Protective titres were defined as > 10 mIU/ml at 8th month of follow up. A total of 78 children with cancer and 25 healthy controls were analysed at month 8th of follow up. Seroconversion rates in the cancer group reached 26.9%, with no differences by age, gender or type of tumour (P = .13, .29, and .44, respectively). Control group seroconversion was 100% at the 8th month, with P 10 mIU/ml. Vaccination against hepatitis B with three doses of DNA recombinant vaccine at an increased concentration, administrated at the time of onset of chemotherapy and/or remission provided an insufficient immune response in a majority of children with cancer. More immunogenic vaccines should be evaluated in this special population, such as a third generation, with more immunogenic adjuvants, enhanced schedules at 0, 1, 2, 6 month, evaluation of antibody titres at month 8 and 12h to evaluate the need for further booster doses. Copyright © 2015 Sociedad Chilena de Pediatría. Publicado por Elsevier España, S.L.U. All rights reserved.

  8. Activity of nucleic acid polymers in rodent models of HBV infection.

    Science.gov (United States)

    Schöneweis, Katrin; Motter, Neil; Roppert, Pia L; Lu, Mengji; Wang, Baoju; Roehl, Ingo; Glebe, Dieter; Yang, Dongliang; Morrey, John D; Roggendorf, Michael; Vaillant, Andrew

    2018-01-01

    Nucleic acid polymers (NAPs) block the release of HBsAg from infected hepatocytes. These compounds have been previously shown to have the unique ability to eliminate serum surface antigen in DHBV-infected Pekin ducks and achieve multilog reduction of HBsAg or HBsAg loss in patients with chronic HBV infection and HBV/HDV coinfection. In ducks and humans, the blockage of HBsAg release by NAPs occurs by the selective targeting of the assembly and/or secretion of subviral particles (SVPs). The clinically active NAP species REP 2055 and REP 2139 were investigated in other relevant animal models of HBV infection including woodchucks chronically infected with WHV, HBV transgenic mice and HBV infected SCID-Hu mice. The liver accumulation of REP 2139 in woodchucks following subcutaneous administration was examined and was found to be similar to that observed in mice and ducks. However, in woodchucks, NAP treatment was associated with only mild (36-79% relative to baseline) reductions in WHsAg (4/10 animals) after 3-5 weeks of treatment without changes in serum WHV DNA. In HBV infected SCID-Hu mice, REP 2055 treatment was not associated with any reduction of HBsAg, HBeAg or HBV DNA in the serum after 28 days of treatment. In HBV transgenic mice, no reductions in serum HBsAg were observed with REP 2139 with up to 12 weeks of treatment. In conclusion, the antiviral effects of NAPs in DHBV infected ducks and patients with chronic HBV infection were weak or absent in woodchuck and mouse models despite similar liver accumulation of NAPs in all these species, suggesting that the mechanisms of SVP assembly and or secretion present in rodent models differs from that in DHBV and chronic HBV infections. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  9. Efficacy of hepatitis B vaccine against antiviral drug-resistant hepatitis B virus mutants in the chimpanzee model.

    Science.gov (United States)

    Kamili, Saleem; Sozzi, Vitini; Thompson, Geoff; Campbell, Katie; Walker, Christopher M; Locarnini, Stephen; Krawczynski, Krzysztof

    2009-05-01

    Hepatitis B virus (HBV) mutants resistant to treatment with nucleoside or nucleotide analogs and those with the ability to escape from HBV-neutralizing antibody have the potential to infect HBV-vaccinated individuals. To address this potential serious public health challenge, we tested the efficacy of immunity induced by a commercial hepatitis B vaccine against a tissue culture-derived, clonal HBV polymerase mutant in HBV seronegative chimpanzees. The polymerase gene mutant contained a combination of three mutations (rtV173L, rtL180M, rtM204V), two of which resulted in changes to the overlapping viral envelope of the hepatitis B surface antigen (sE164D, sI195M). Prior to the HBV mutant challenge of vaccinated chimpanzees, we established virologic, serologic, and pathologic characteristics of infections resulting from intravenous inoculation of the HBV polymerase gene mutant and the sG145R vaccine-escape surface gene mutant. Cloning and sequencing experiments determined that the three mutations in the polymerase gene mutant remained stable and that the single mutation in the surface gene mutant reverted to the wild-type sequence. Immunological evidence of HBV replication was observed in the vaccinated chimpanzees after challenge with the polymerase gene mutant as well as after rechallenge with serum-derived wild-type HBV (5,000 chimpanzee infectious doses administered intravenously), despite robust humoral and cellular anti-HBV immune responses after hepatitis B vaccination. Our data showing successful experimental infection by HBV mutants despite the presence of high anti-HBs levels considered protective in the vaccinated host are consistent with clinical reports on breakthrough infection in anti-HBs-positive patients infected with HBV mutants. In the absence of a protective humoral immunity, adaptive cellular immune responses elicited by infection may limit HBV replication and persistence.

  10. Multivalent human papillomavirus l1 DNA vaccination utilizing electroporation.

    Directory of Open Access Journals (Sweden)

    Kihyuck Kwak

    Full Text Available Naked DNA vaccines can be manufactured simply and are stable at ambient temperature, but require improved delivery technologies to boost immunogenicity. Here we explore in vivo electroporation for multivalent codon-optimized human papillomavirus (HPV L1 and L2 DNA vaccination.Balb/c mice were vaccinated three times at two week intervals with a fusion protein comprising L2 residues ∼11-88 of 8 different HPV types (11-88×8 or its DNA expression vector, DNA constructs expressing L1 only or L1+L2 of a single HPV type, or as a mixture of several high-risk HPV types and administered utilizing electroporation, i.m. injection or gene gun. Serum was collected two weeks and 3 months after the last vaccination. Sera from immunized mice were tested for in-vitro neutralization titer, and protective efficacy upon passive transfer to naive mice and vaginal HPV challenge. Heterotypic interactions between L1 proteins of HPV6, HPV16 and HPV18 in 293TT cells were tested by co-precipitation using type-specific monoclonal antibodies.Electroporation with L2 multimer DNA did not elicit detectable antibody titer, whereas DNA expressing L1 or L1+L2 induced L1-specific, type-restricted neutralizing antibodies, with titers approaching those induced by Gardasil. Co-expression of L2 neither augmented L1-specific responses nor induced L2-specific antibodies. Delivery of HPV L1 DNA via in vivo electroporation produces a stronger antibody response compared to i.m. injection or i.d. ballistic delivery via gene gun. Reduced neutralizing antibody titers were observed for certain types when vaccinating with a mixture of L1 (or L1+L2 vectors of multiple HPV types, likely resulting from heterotypic L1 interactions observed in co-immunoprecipitation studies. High titers were restored by vaccinating with individual constructs at different sites, or partially recovered by co-expression of L2, such that durable protective antibody titers were achieved for each type

  11. Impact of hepatitis B vaccination on acute hepatitis B epidemiology in European Union/European Economic Area countries, 2006 to 2014

    Science.gov (United States)

    Miglietta, Alessandro; Quinten, Chantal; Lopalco, Pier Luigi; Duffell, Erika

    2018-01-01

    Hepatitis B prevention in European Union/European Economic Area (EU/EEA) countries relies on vaccination programmes. We describe the epidemiology of acute hepatitis B virus (HBV) at country and EU/EEA level during 2006–2014. Using a multi-level mixed-effects Poisson regression model we assessed differences in the acute HBV infection notification rates between groups of countries that started universal HBV vaccination before/in vs after 1995; implemented or not a catch-up strategy; reached a vaccine coverage ≥ 95% vs  0.05) were found in the acute HBV infection notification rates between groups of countries, while as vaccine coverage increased, such rates decreased (p < 0.01). Countries with universal HBV vaccination before 1995, a catch-up strategy, and a vaccine coverage ≥ 95% had significant decreasing trends (p < 0.01). Ending HBV transmission in Europe by 2030 will require high vaccine coverage delivered through universal programmes, supported, where appropriate, by catch-up vaccination campaigns. PMID:29439751

  12. Evolution of HBV S-gene in the backdrop of HDV co-infection.

    Science.gov (United States)

    Baig, Samina; Abidi, Syed H; Azam, Zahid; Majid, Shahid; Khan, Saeed; Khanani, Muhammad R; Ali, Syed

    2018-04-16

    HBV-HDV co-infected people have a higher chance of developing cirrhosis, fulminant hepatitis, and hepatocellular carcinoma (HCC) compared to those infected only with HBV. The present study was conducted to investigate HBV genotypes and phylogeny among HBV mono-infected and HBV-HDV co-infected patients, as well as analyze mutations in the surface gene of HBV in mono-infected and co-infected patients. A total of 100 blood samples (50 co-infected with HBV and HDV, and 50 mono-infected with HBV only) were collected for this study. HBV DNA was extracted from patient sera and partial surface antigen gene was amplified from HBV genome using polymerase chain reaction. HBV S gene was sequenced from 49 mono-infected and 36 co-infected patients and analyzed to identify HBV genotypes and phylogenetic patterns. Subsequently, HBV S amino acid sequences were analyzed for mutational differences between sequences from mono- and co-infected patients. HBV genotype D was predominantly found in both mono-infected as well as co-infected patients. Phylogenetic analysis showed the divergence of HBV sequences, between mono- and co-infected patients, into two distinct clusters. HBV S gene mutation analysis revealed certain mutations in HBV-HDV co-infected subjects to be distinct from those found in mono-infected patients. This might indicate the evolution of HBV S gene under selection pressures generated from HDV coinfection. © 2018 Wiley Periodicals, Inc.

  13. The past, current and future trends in DNA vaccine immunisations

    Directory of Open Access Journals (Sweden)

    Sidgi Syed Anwer Abdo Hasson

    2015-05-01

    Full Text Available This review focuses on DNA vaccines, denoting the last two decades since the early substantiation of preclinical protection was published in Science in 1993 by Ulmer et al. In spite of being safely administered and easily engineered and manufactured DNA vaccine, it holds the future prospects of immunization by inducing potent cellular immune responses against infectious and non-infectious diseases. It is well documented that injection of DNA plasmid encoding a desired gene of interest can result in the subsequent expression of its products and lead to the induction of an immune response within a host. This is pertinent to prophylactic and therapeutic vaccination approach when the peculiar gene produces a protective epitope from a pathogen. The recent studies demonstrated by a number of research centers showed that these immune responses evoke protective immunity against several infectious diseases and cancers, which provides adequate support for the use of this approach. We attempt in this review to provide an informative and unbiased overview of the general principles and concept of DNA vaccines technology with a summary of a novel approach to the DNA vaccine, present investigations that describe the mechanism(s of protective immunity provoked by DNA immunization and to highlight the advantages and disadvantages of DNA immunisation.

  14. The role of HBV-induced autophagy in HBV replication and HBV related-HCC.

    Science.gov (United States)

    Xie, Mingjie; Yang, Zhenggang; Liu, Yanning; Zheng, Min

    2018-04-27

    Hepatitis B virus (HBV) is infecting about 364 million people around the world. It can cause various diseases, such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma (HCC). However, the present anti-viral treatment in clinics is limited; studies for new therapies are highly desired. Autophagy is a crucial and major catabolic process in the maintenance of normal intracellular homeostasis in host cells. Host cells use this unique process to degrade and recycle long-lived proteins, damaged organelles, and various pathogens for keeping the normal physiological functions. Recently, published studies indicated that HBV can induce autophagy in host cells; this autophagic response is involved in viral replication and pathogenesis. Several viral proteins, such as surface and X proteins, are assumed to be responsible for inducing autophagy in HBV infection. This review briefly summarizes some important mechanisms involved in HBV-induced autophagy and provides a novel perspective on therapies of HBV infection and HBV-related HCC. Copyright © 2017. Published by Elsevier Inc.

  15. Epigenome-wide study for the offspring exposed to maternal HBV infection during pregnancy, a pilot study.

    Science.gov (United States)

    Cheng, Qijun; Zhao, Bin; Huang, Zhenxiang; Su, Yanhua; Chen, Biqin; Yang, Songjing; Peng, Xueqi; Ma, Qilin; Yu, Xiaoshan; Zhao, Benhua; Ke, Xiayi

    2018-06-05

    Hepatitis B virus (HBV) can be transmitted to infants, and is related to infants' later disease risk. Epigenetic change (such as DNA methylation) may be mechanism underlying the relationship. In this study, we aimed to investigate whether prenatal HBV infection could alter DNA methylation status in newborns. We selected 12 neonates with intrauterine HBV infection whose mothers were HBsAg-positive during pregnancy, relative to 12 HBV-free neonates with HBsAg-negative mothers. The pattern of genome-wide DNA methylation in the umbilical cord blood was investigated by Illumina Infinium Human Methylation 450K BeadChip. The average level of global methylation in infected neonates exposed to maternal HBV infection was not significantly different from controls. However, after adjusting for multiple comparisons, we found differential significance in the cases group compared to the controls for 663 CpG sites, associated with 534 genes. Among these sites, 53.85% (357/663) had decreased methylation (ΔM  0). The average percentage change (Δβ) in methylation ranged from -46% to 36%. Validated by pyrosequencing, we identified 4 significantly differentially methylated CpG sites in the KLHL35 gene and additional CpGs for the CPT1B gene. These genes play a role in the development of hepatocellular and colorectal carcinoma and fatty acid oxidation, suggesting the candidature of these genes in HBV related disease. Prenatal HBV exposure, even without malformation or preterm birth, may alter the epigenome profile in newborns. We identified a set of genes with differentially methylated CpG sites presented in the cord blood of HBV-infected newborns with HBsAg-positive mothers, demonstrating that DNA methylation status at birth can be used as a biomarker of prenatal exposure. These DNA methylation differences suggest a possible role for epigenetic processes in neonatal development in response to prenatal HBV exposure. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Natural history of acute and chronic hepatitis B: The role of HBV genotypes and mutants.

    Science.gov (United States)

    Lin, Chih-Lin; Kao, Jia-Horng

    2017-06-01

    Molecular epidemiologic studies reveal remarkable differences in the geographical distribution of hepatitis B virus (HBV) genotypes. The frequency of mutants among HBV genotypes also varies. The role of HBV genotypes/mutants in the pathogenesis of HBV infection and natural history of HBV infection has been extensively investigated. The distribution of HBV genotypes in acute hepatitis B patients reflects the predominant genotypes in a given geographic area. In chronic hepatitis B patients, genotype C and D have a higher frequency of basal core promoter A1762T/G1764A mutations than genotype A and B. HBV genotypes C, D and F carry a higher lifetime risk of cirrhosis and HCC development than genotype A and B. HBV pre-S/S gene mutations were associated with immune escape of hepatitis B immunoglobulin or vaccine-induced immunity. Mutations in the pre-S, core promoter and X regions correlate with an increased risk of cirrhosis and HCC. In summary, HBV genotypes and mutants are associated with the disease progression and long-term outcome of HBV infection. They may serve as viral genetic markers for risk stratification of chronic hepatitis B patients in clinical practice. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Infectivity of HBV DNA positive donations identified in look-back studies in Hyogo-Prefecture, Japan.

    Science.gov (United States)

    Bouike, Y; Imoto, S; Mabuchi, O; Kokubunji, A; Kai, S; Okada, M; Taniguchi, R; Momose, S; Uchida, S; Nishio, H

    2011-04-01

    To clarify transfusion incidence of hepatitis B virus (HBV) infected blood negative for mini pool-nucleic acid amplification testing (MP-NAT). Japanese Red Cross (JRC) blood centres screen donated blood to avoid contamination with HBV. However, a low copy number of HBV may be overlooked. In Hyogo-Prefecture, JRC blood centres screened 787 695 donations for HBV from April 2005 to March 2009. Of these, 685 844 were donations from the repeat donors. To detect the donors with HBV, serological tests, MP-NAT and/or individual donation (ID)-NAT were performed. To detect the recipients with transfusion-transmitted HBV infection (TTHBI), serological analysis and/or ID-NAT were performed. In this study, 265 of the 685 844 repeat donations were serologically and/or MP-NAT positive for HBV. Their repository samples from the previous donation were examined in a look-back study; 13 of the 265 repository samples proved ID-NAT positive. Twelve recipients were transfused with HBV-infected blood components derived from 10 of the 13 HBV-infected donors. Only 1 of the 12 recipients was identified as TTHBI case. Seven of the 12 recipients escaped from our follow-up study and 4 recipients were negative for HBV during the observation period. On the basis of the look-back study among the repeat donors in Hyogo-Prefecture, Japan, donations with HBV-infected blood negative for MP-NAT occurred with a frequency of 13 in 685 844 donations (∼1/53 000 donations). However, more than half of the recipients transfused with HBV-infected blood negative for MP-NAT could not be followed up. It is necessary to establish a more cautious follow-up system. © 2010 The Authors. Transfusion Medicine © 2010 British Blood Transfusion Society.

  18. A potent human neutralizing antibody Fc-dependently reduces established HBV infections.

    Science.gov (United States)

    Li, Dan; He, Wenhui; Liu, Ximing; Zheng, Sanduo; Qi, Yonghe; Li, Huiyu; Mao, Fengfeng; Liu, Juan; Sun, Yinyan; Pan, Lijing; Du, Kaixin; Ye, Keqiong; Li, Wenhui; Sui, Jianhua

    2017-09-26

    Hepatitis B virus (HBV) infection is a major global health problem. Currently-available therapies are ineffective in curing chronic HBV infection. HBV and its satellite hepatitis D virus (HDV) infect hepatocytes via binding of the preS1 domain of its large envelope protein to sodium taurocholate cotransporting polypeptide (NTCP). Here, we developed novel human monoclonal antibodies that block the engagement of preS1 with NTCP and neutralize HBV and HDV with high potency. One antibody, 2H5-A14, functions at picomolar level and exhibited neutralization-activity-mediated prophylactic effects. It also acts therapeutically by eliciting antibody-Fc-dependent immunological effector functions that impose durable suppression of viral infection in HBV-infected mice, resulting in reductions in the levels of the small envelope antigen and viral DNA, with no emergence of escape mutants. Our results illustrate a novel antibody-Fc-dependent approach for HBV treatment and suggest 2H5-A14 as a novel clinical candidate for HBV prevention and treatment of chronic HBV infection.

  19. Hepatitis A and B among young persons who inject drugs--vaccination, past, and present infection.

    Science.gov (United States)

    Collier, Melissa G; Drobeniuc, Jan; Cuevas-Mota, Jazmine; Garfein, Richard S; Kamili, Saleem; Teshale, Eyasu H

    2015-06-04

    Our study aims were to assess hepatitis A virus (HAV) and hepatitis B virus (HBV) susceptibility and infection among young persons who inject drugs (PWID) who may have been vaccinated as children and to evaluate self-report of HAV and HBV vaccination. We recruited PWID aged 18-40 years-old in San Diego during 2009 and 2010 and collected demographic, socioeconomic, health, and behavioral factors. Participants were asked if they had been vaccinated against HAV and HBV, and serum samples were collected for HAV and HBV serologic testing. Of 519 participants, 365 (72%) were male, 252 (49%) were white non-Hispanic, 38 (7%) were Black non-Hispanic, 138 (27%) were White Hispanic, and 22 (4%) were born outside the U. S. Of the total participants, 245 (47%) had surface hepatitis B antibody (anti-HBs) titers Hepatitis B surface antigen was detected in 7 (1%) of total participants; and 135 (26%) were anti-HCV-antibody positive. Compared to serologic findings, self-report of HBV and HAV vaccination was 71% and 41% sensitive, and 58% and 73% specific, respectively. HAV and HBV antibodies in half or more of this young PWID population did not have levels indicative of protection, and about a quarter had HCV infection, putting them at risk for complications resulting from co-infection with HAV or HBV. Programs serving this population should vaccinate PWIDs against HAV and HBV and not rely on self-report of vaccination. Published by Elsevier Ltd.

  20. Evaluation of Immune Response to Hepatitis B Vaccine among Malnourished Children in Yemen

    Directory of Open Access Journals (Sweden)

    Fuad A. A. Alssamei

    2015-12-01

    Full Text Available Objectives: To determine the coverage rate of hepatitis B virus (HBV vaccine and to evaluate the immune response to HBV vaccine by measuring hepatitis B surface antibody (anti-HBs among malnourished un-der-five-year old children. Methods: A cross-sectional study was conducted in two tertiary hospitals in Yemen; Al-Sabeen Maternity and Child Hospital in Sana’a and the Yemeni-Swedish Hospital in Taiz city in the period from March 2014 to Dec. 2014. The target population was malnourished children aged from 6 to 59 months old with a histo-ry of three HBV vaccine doses in infancy. According to the World Health Organization’s definition of malnu-trition, 121 malnourished children were enrolled in the study. Data of malnourished children were collect-ed using a pre-designed, pre-tested questionnaire. Two milliliters of venous blood were taken, and anti-HBs was then tested by enzyme linked immunosorbent assay. An anti-HBs level of at least 10 IU/L was considered a successful response to the vaccine. Results: The coverage rate of HBV vaccine among malnourished children was 89.3%, being higher among girls (52.1% than boys (37.2%. Response to HBV vaccine (≥10 IU/L was observed in 72.2% (78/108 of children while 27.8% (30/108 of children failed to respond to the vaccine, with a statistically significant difference (p <0.001. Conclusions: A good HBV vaccine coverage rate was found among malnourished Yemeni children, with a moderate rate of protection. Therefore, re-vaccination or administration of booster doses to a substantial proportion of vaccinated children should be considered.

  1. Production optimisation of a DNA vaccine candidate against ...

    African Journals Online (AJOL)

    Plasmid DNA (pDNA) vaccines are promising means to prevent and treat infectious diseases, such as leishmaniasis, but immunisation protocols require large amounts of supercoiled plasmid DNA (scpDNA). Although pDNA can be produced at a reasonable cost in bioreactors; this scale of production may not be the best ...

  2. Antiviral strategies to eliminate hepatitis B virus covalently closed circular DNA (cccDNA).

    Science.gov (United States)

    Revill, Peter; Locarnini, Stephen

    2016-10-01

    It has been over 50 years since the discovery of hepatitis B virus (HBV), yet 240 million people worldwide live with chronic HBV, resulting in up to 800000 deaths per year. A cure is yet to be achieved, due largely to a viral nuclear reservoir of transcriptionally active covalently closed circular DNA (cccDNA). While current antiviral therapies are effective at reducing viral replication, they have no impact on the existing cccDNA reservoir. Identifying mechanisms to either eliminate (complete cure) or inactivate (functional cure) HBV cccDNA are a major focus of HBV research worldwide. This review discusses recent advances in efforts to eliminate and/or regulate cccDNA, as well as future directions that may be considered in efforts to cure chronic HBV. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  3. Immunisation against PCV2 structural protein by DNA vaccination of mice

    DEFF Research Database (Denmark)

    Kamstrup, Søren; Barfoed, Annette Malene; Frimann, Tine

    2004-01-01

    the capsid protein of PCV2 was cloned in a DNA vaccination plasmid and expression of capsid protein was demonstrated in vitro. Mice were gene gun vaccinated three timesand all mice responded serologically by raising antibodies against PCV2. The results suggest, that DNA based vaccination might offer...

  4. HCV and HBV coexist in HBsAg-negative patients with HCV viremia; possibility of coinfection in these patients must be considered in HBV-high endemic area

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dong Soon [Korea Cancer Center Hospital, Seoul (Korea, Republic of)

    1998-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers and is highly associated with HBV infection in Korea. It has been suggested that HCV core protein may impair the polymerase activity of HBV in vitro, potentially lowering HBV titre in coinfected patients. The aim of this study was to confirm the coexistence of HBV viremia in HCV infected patients HCC who have apparent HBsAg seronegativity. The serological profiles of HBV and HCV in 616 patients with HCC were analysed and coinfection rate of HBV and HCV investigated. Sera were obtained from 16 patients who were both anti-HCV and HCV RNA positive but HbsAg negative, and tested for HBV BY PCR. As a control group, sera were obtained from 15 patients with HCC and 30 non-A abd non-B chronic hepatitis patients without HCC; both were anti-HCV, HCV-RNA, and HBsAg negative and tested for HBV PCR. Of 616 patients with HCC, 450 (73.1 %) had current HBV infection, 48 (7.8 %) had anti-HCV antibodies, and nine (1.5 %) had viral markers of both HCV abd HBV by serological profiles. Of 27 the patients with HCV viremia and HBsAg seronegativity, 14 (51.9 %) showed HBV viremia by PCR. In contrast, of the 75 patients in the control group who were both HCV PCR negative and HBsAg negative, five (11.1 %) showed HBV viremia by PCR. The PCR for HBV revealed coexistent HBV viremia in HCV viremia patients, despite HBsAg negativity by EIA. In HBV-endemic areas, the possibility of coinfection of HBV in HBsAg-negative patients with HCV viremia should be considered and molecular analysis for HBV-DNA performed. (author). 18 refs., 4 tabs.

  5. HCV and HBV coexist in HBsAg-negative patients with HCV viremia; possibility of coinfection in these patients must be considered in HBV-high endemic area

    International Nuclear Information System (INIS)

    Lee, Dong Soon

    1998-01-01

    Hepatocellular carcinoma (HCC) is one of the most common cancers and is highly associated with HBV infection in Korea. It has been suggested that HCV core protein may impair the polymerase activity of HBV in vitro, potentially lowering HBV titre in coinfected patients. The aim of this study was to confirm the coexistence of HBV viremia in HCV infected patients HCC who have apparent HBsAg seronegativity. The serological profiles of HBV and HCV in 616 patients with HCC were analysed and coinfection rate of HBV and HCV investigated. Sera were obtained from 16 patients who were both anti-HCV and HCV RNA positive but HbsAg negative, and tested for HBV BY PCR. As a control group, sera were obtained from 15 patients with HCC and 30 non-A abd non-B chronic hepatitis patients without HCC; both were anti-HCV, HCV-RNA, and HBsAg negative and tested for HBV PCR. Of 616 patients with HCC, 450 (73.1 %) had current HBV infection, 48 (7.8 %) had anti-HCV antibodies, and nine (1.5 %) had viral markers of both HCV abd HBV by serological profiles. Of 27 the patients with HCV viremia and HBsAg seronegativity, 14 (51.9 %) showed HBV viremia by PCR. In contrast, of the 75 patients in the control group who were both HCV PCR negative and HBsAg negative, five (11.1 %) showed HBV viremia by PCR. The PCR for HBV revealed coexistent HBV viremia in HCV viremia patients, despite HBsAg negativity by EIA. In HBV-endemic areas, the possibility of coinfection of HBV in HBsAg-negative patients with HCV viremia should be considered and molecular analysis for HBV-DNA performed. (author). 18 refs., 4 tabs

  6. Occult HBV among Anti-HBc Alone: Mutation Analysis of an HBV Surface Gene and Pre-S Gene.

    Science.gov (United States)

    Kim, Myeong Hee; Kang, So Young; Lee, Woo In

    2017-05-01

    The aim of this study is to investigate the molecular characteristics of occult hepatitis B virus (HBV) infection in 'anti-HBc alone' subjects. Twenty-four patients with 'anti-HBc alone' and 20 control patients diagnosed with HBV were analyzed regarding S and pre-S gene mutations. All specimens were analyzed for HBs Ag, anti-HBc, and anti-HBs. For specimens with an anti-HBc alone, quantitative analysis of HBV DNA, as well as sequencing and mutation analysis of S and pre-S genes, were performed. A total 24 were analyzed for the S gene, and 14 were analyzed for the pre-S gene through sequencing. A total of 20 control patients were analyzed for S and pre-S gene simultaneously. Nineteen point mutations of the major hydrophilic region were found in six of 24 patients. Among them, three mutations, S114T, P127S/T, M133T, were detected in common. Only one mutation was found in five subjects of the control group; this mutation was not found in the occult HBV infection group, however. Pre-S mutations were detected in 10 patients, and mutations of site aa58-aa100 were detected in 9 patients. A mutation on D114E was simultaneously detected. Although five mutations from the control group were found at the same location (aa58-aa100), no mutations of occult HBV infection were detected. The prevalence of occult HBV infection is not low among 'anti-HBc alone' subjects. Variable mutations in the S gene and pre-S gene were associated with the occurrence of occult HBV infection. Further larger scale studies are required to determine the significance of newly detected mutations. © Copyright: Yonsei University College of Medicine 2017

  7. Animal models for HCV and HBV studies

    Directory of Open Access Journals (Sweden)

    Isabelle Chemin

    2007-02-01

    develop fulminant hepatitis, acute hepatitis, or chronic liver disease after adoptive transfer, and others spontaneously develop hepatocellular carcinoma (HCC. Among HCV transgenic mice, most develop no disease, but acute hepatitis has been observed in one model, and HCC in another. Although mice are not susceptible to HBV and HCV, their ability to replicate these viruses and to develop liver diseases characteristic of human infections provides opportunities to study pathogenesis and develop novel therapeutics In the search for the mechanism of hepatocarcinogenesis in hepatitis viral infection, two viral proteins, the core protein of hepatitis C virus (HCV and the HBx protein of hepatitis B virus (HBV, have been shown to possess oncogenic potential through transgenic mouse studies, indicating the direct involvement of the hepatitis viruses in hepatocarcinogenesis.

    This may explain the very high frequency of HCC in patients with HCV or HBV infection.

    Chimpanzees remain the only recognized animal model for the study of hepatitis C virus (HCV. Studies performed in chimpanzees played a critical role in the discovery of HCV and are continuing to play an essential role in defining the natural history of this important human pathogen. In the absence of a reproducible cell culture system, the infectivity titer of HCV challenge pools can be determined only in chimpanzees.

    Recent studies in chimpanzees have provided new insight into the nature of host immune responses-particularly the intrahepatic responses-following primary and secondary experimental HCV infections. The immunogenicity and efficacy of vaccine candidates against HCV can be tested only in chimpanzees. Finally, it would not have been possible to demonstrate

  8. Tenofovir alafenamide demonstrates broad cross-genotype activity against wild-type HBV clinical isolates and maintains susceptibility to drug-resistant HBV isolates in vitro.

    Science.gov (United States)

    Liu, Yang; Miller, Michael D; Kitrinos, Kathryn M

    2017-03-01

    Tenofovir alafenamide (TAF) is a novel prodrug of tenofovir (TFV). This study evaluated the antiviral activity of TAF against wild-type genotype A-H HBV clinical isolates as well as adefovir-resistant, lamivudine-resistant, and entecavir-resistant HBV isolates. Full length HBV genomes or the polymerase/reverse transcriptase (pol/RT) region from treatment-naïve patients infected with HBV genotypes A-H were amplified and cloned into an expression vector under the control of a CMV promoter. In addition, 11 drug resistant HBV constructs were created by site-directed mutagenesis of a full length genotype D construct. Activity of TAF was measured by transfection of each construct into HepG2 cells and assessment of HBV DNA levels following treatment across a range of TAF concentrations. TAF activity in vitro was similar against wild-type genotype A-H HBV clinical isolates. All lamivudine- and entecavir-resistant isolates and 4/5 adefovir-resistant isolates were found to be sensitive to inhibition by TAF in vitro as compared to the wild-type isolate. The adefovir-resistant isolate rtA181V + rtN236T exhibited low-level reduced susceptibility to TAF. TAF is similarly active in vitro against wild-type genotype A-H HBV clinical isolates. The TAF sensitivity results for all drug-resistant isolates are consistent with what has been observed with the parent drug TFV. The in vitro cell-based HBV phenotyping assay results support the use of TAF in treatment of HBV infected subjects with diverse HBV genotypes, in both treatment-naive and treatment-experienced HBV infected patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Hepatitis b vaccination uptake among a cohort of nigerian surgical ...

    African Journals Online (AJOL)

    Background and Objectives: Transmission of Hepatitis B virus (HBV) from patients to health care personnel (HCP) can occur following occupational exposures. Vaccination is effective in disease prevention. The study aimed to determine the level of uptake of HBV vaccine among a cohort of Nigerian surgical residents.

  10. HBV reactivation in rheumatic diseases patients under therapy: A meta-analysis.

    Science.gov (United States)

    Moghoofei, Mohsen; Mostafaei, Shayan; Ashraf-Ganjouei, Amir; Kavosi, Hoda; Mahmoudi, Mahdi

    2018-01-01

    Hepatitis B is one of the most common infectious diseases worldwide. In patients undergoing immunosuppressive therapy such as rheumatic diseases, reactivation of hepatitis B virus (HBV) is considered clinically important. This systematic review and meta-analysis were performed to determine the prevalence rate of HBV reactivation in rheumatic patients from different parts of the world. The authors performed a systematic literature review from several reliable databases including Scopus, ISI Web of Science and PubMed. Furthermore, the keywords of this research were "Hepatitis B virus", "Rheumatic diseases", "HBV reactivation", "Anti-TNF", "DMARDs" and "Biologic agents". The authors selected 30 studies out of 983 for the present review. The overall estimation of the prevalence of HBV reactivation was 1.4 (95% confidence interval (CI): 1.3-1.6). Also, the heterogeneity in estimating the pooled prevalence among the studies was shown; Cochran Q test, P HBV were in Italy and France respectively. Rheumatic disease patients with resolved hepatitis B should be tightly monitored for possible HBV reactivation by elevation of liver enzymes and HBV DNA levels. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Profile of Mutations in the Reverse Transcriptase and Overlapping Surface Genes of Hepatitis B Virus (HBV) in Treatment-Naïve Indonesian HBV Carriers.

    Science.gov (United States)

    Yamani, Laura Navika; Yano, Yoshihiko; Utsumi, Takako; Wasityastuti, Widya; Rinonce, Hanggoro Tri; Widasari, Dewiyani Indah; Juniastuti; Lusida, Maria Inge; Soetjipto; Hayashi, Yoshitake

    2017-11-22

    Mutations in the reverse transcriptase (RT) region of the hepatitis B virus (HBV) genome are an important factor in low therapeutic effectiveness. Nonetheless, the prevalence of these mutations in HBV strains isolated previously in Indonesia has not been systematically examined. Therefore, in this study, we investigated the profile of mutations in the RT region and the associations of these mutations with amino acid changes in the surface protein in the virus of treatment-naïve Indonesian HBV carriers. Overall, 96 sequences of the full-length Indonesian HBV genomes (genotype B, n = 54; genotype C, n = 42) were retrieved from the National Center for Biotechnology Information. Naturally occurring primary and/or compensatory drug resistance mutations were found in 6/54 (11.1%) genotype B strains and in 1/42 (2.4%) genotype C strains. The potential mutations underlying resistance to a nucleos(t)ide analog and/or pretreatment mutations were more frequent in both genotypes but more frequent in genotype C strains than in genotype B strains. The A-B interdomain region in the RT gene was more frequently mutated in genotype C than in genotype B (3.51 ± 2.53 vs. 1.08 ± 1.52, P < 0.001). Knowledge about the mutational profiles of the RT gene and changes in the surface protein may help clinicians to select the most appropriate antiviral drug and vaccination or HBV immunoglobulin regimen for management of HBV infection in Indonesia.

  12. Evolution of HBV S-gene in the backdrop of HDV co-infection.

    Science.gov (United States)

    Baig, Samina; Abidi, Syed H; Azam, Zahid; Majid, Shahid; Khan, Saeed; Khanani, Muhammad R; Ali, Syed

    2018-04-12

    HBV-HDV co-infected people have a higher chance of developing cirrhosis, fulminant hepatitis, and hepatocellular carcinoma (HCC) compared to those infected only with HBV. The present study was conducted to investigate HBV genotypes and phylogeny among HBV mono-infected and HBV-HDV co-infected patients, as well as analyze mutations in the surface gene of HBV in mono-infected and co-infected patients. A total of 100 blood samples (50 co-infected with HBV and HDV, and 50 mono-infected with HBV only) were collected for this study. HBV DNA was extracted from patient sera and partial surface antigen gene was amplified from HBV genome using polymerase chain reaction. HBV S gene was sequenced from 49 mono-infected and 36 co-infected patients and analyzed to identify HBV genotypes and phylogenetic patterns. Subsequently, HBV S amino acid sequences were analyzed for mutational differences between sequences from mono- and co-infected patients. HBV genotype D was predominantly found in both mono-infected as well as co-infected patients. Phylogenetic analysis showed the divergence of HBV sequences, between mono- and co-infected patients, into two distinct clusters. HBV S gene mutation analysis revealed certain mutations in HBV-HDV co-infected subjects to be distinct from those found in mono-infected patients. In this study, we found that HBV S gene sequences from mono- and co-infected patients exhibit distinct mutation profiles. This might indicate the evolution of HBV S gene under selection pressures generated from HDV coinfection. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Analisis Mutasi Gen Protein X Virus Hbv Pada Penderita Hepatitis B Akut Di Manado

    OpenAIRE

    Fatimawali; Kepel, Billy

    2014-01-01

    Faktor-faktor yang mempengaruhi perkembangan hepatitis B kronis menjadi kanker hati antara lain mutasi pada gen x. Penelitian ini bertujuan untuk mengidentifikasi gen protein x virus HBV dan menganalisis apakah terjadi mutasi gen yang terkait dengan munculnya tumor ganas sirosis hati (HCC). Penelitian ini menggunakan primer untuk proses nested PCR yang telah dirancang sebelumnya. Proses nested PCR terhadap 10 sampel DNA HBV pasien dilakukan untuk mengamplifikasi fragmen DNA gen x dilanjutkan ...

  14. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Science.gov (United States)

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2017-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  15. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Directory of Open Access Journals (Sweden)

    Yonas Bekele

    2018-01-01

    Full Text Available During anti-retroviral therapy (ART HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV and hepatitis B virus (HBV vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory and CD8+ (central memory T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced

  16. Hepatitis B Virus Vaccination in HIV-1-Infected Young Adults: A Tool to Reduce the Size of HIV-1 Reservoirs?

    Science.gov (United States)

    Bekele, Yonas; Graham, Rebecka Lantto; Soeria-Atmadja, Sandra; Nasi, Aikaterini; Zazzi, Maurizio; Vicenti, Ilaria; Naver, Lars; Nilsson, Anna; Chiodi, Francesca

    2018-01-01

    During anti-retroviral therapy (ART) HIV-1 persists in cellular reservoirs, mostly represented by CD4+ memory T cells. Several approaches are currently being undertaken to develop a cure for HIV-1 infection through elimination (or reduction) of these reservoirs. Few studies have so far been conducted to assess the possibility of reducing the size of HIV-1 reservoirs through vaccination in virologically controlled HIV-1-infected children. We recently conducted a vaccination study with a combined hepatitis A virus (HAV) and hepatitis B virus (HBV) vaccine in 22 HIV-1-infected children. We assessed the size of the virus reservoir, measured as total HIV-1 DNA copies in blood cells, pre- and postvaccination. In addition, we investigated by immunostaining whether the frequencies of CD4+ and CD8+ T cells and parameters of immune activation and proliferation on these cells were modulated by vaccination. At 1 month from the last vaccination dose, we found that 20 out of 22 children mounted a serological response to HBV; a majority of children had antibodies against HAV at baseline. The number of HIV-1 DNA copies in blood at 1 month postvaccination was reduced in comparison to baseline although this reduction was not statistically significant. A significant reduction of HIV-1 DNA copies in blood following vaccination was found in 12 children. The frequencies of CD4+ (naïve, effector memory) and CD8+ (central memory) T-cell subpopulations changed following vaccinations and a reduction in the activation and proliferation pattern of these cells was also noticed. Multivariate linear regression analysis revealed that the frequency of CD8+ effector memory T cells prior to vaccination was strongly predictive of the reduction of HIV-1 DNA copies in blood following vaccination of the 22 HIV-1-infected children. The results of this study suggest a beneficial effect of vaccination to reduce the size of virus reservoir in HIV-1-infected children receiving ART. A reduced frequency of

  17. Clonorchis sinensis Co-infection Could Affect the Disease State and Treatment Response of HBV Patients.

    Science.gov (United States)

    Li, Wenfang; Dong, Huimin; Huang, Yan; Chen, Tingjin; Kong, Xiangzhan; Sun, Hengchang; Yu, Xinbing; Xu, Jin

    2016-06-01

    Clonorchis sinensis (C. sinensis) is considered to be an important parasitic zoonosis because it infects approximately 35 million people, while approximately 15 million were distributed in China. Hepatitis B virus (HBV) infection is a major public health issue. Two types of pathogens have the potential to cause human liver disease and eventually hepatocellular carcinoma. Concurrent infection with HBV and C. sinensis is often observed in some areas where C. sinensis is endemic. However, whether C. sinensis could impact HBV infection or vice versa remains unknown. Co-infection with C. sinensis and HBV develops predominantly in males. Co-infected C. sinensis and HBV patients presented weaker liver function and higher HBV DNA titers. Combination treatment with antiviral and anti-C. sinensis drugs in co-infected patients could contribute to a reduction in viral load and help with liver function recovery. Excretory-secretory products (ESPs) may, in some ways, increase HBV viral replication in vitro. A mixture of ESP and HBV positive sera could induce peripheral blood mononuclear cells (PBMCs) to produce higher level of Th2 cytokines including IL-4, IL-6 and IL-10 compared to HBV alone, it seems that due to presence of ESP, the cytokine production shift towards Th2. C. sinensis/HBV co-infected patients showed higher serum IL-6 and IL-10 levels and lower serum IFN-γ levels. Patients with concomitant C. sinensis and HBV infection presented weaker liver function and higher HBV DNA copies. In co-infected patients, the efficacy of anti-viral treatment was better in patients who were prescribed with entecavir and praziquantel than entecavir alone. One possible reason for the weaker response to antiviral therapies in co-infected patients was the shift in cytokine production from Th1 to Th2 that may inhibit viral clearance. C. sinensis/HBV co-infection could exacerbate the imbalance of Th1/Th2 cytokine.

  18. Platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR) are associated with chronic hepatitis B virus (HBV) infection.

    Science.gov (United States)

    Zhao, Zhidan; Liu, Jianhua; Wang, Jiaxin; Xie, Tinyan; Zhang, Qiuhuan; Feng, Sisi; Deng, Hui; Zhong, Baiyun

    2017-10-01

    This retrospective study aimed to investigate the associations between the platelet-to-lymphocyte ratio (PLR) and neutrophil-to-lymphocyte ratio (NLR) and disease severity in patients with chronic HBV infection-related liver disease (CHB). Patients with CHB were retrospectively identified. Clinical data for 172 HBV-infected patients and 40 healthy controls were collected from the electronic patient medical record system database of our hospital. HBV-related-compensated-cirrhosis patients (HBV-CC patients) had a significantly lower mean PLR than did other patients (PHBV-related-decompensated-cirrhosis patients (HBV-DC patients) had a significantly higher mean NLR than did any other patients (PHBV DNA (r=0.264, PHBV DNA in both HBV-CC patients (r=-0.116, P=0.044) and HBV-DC patients (r=0.456, P=0.008). In HBV-Active-Carriers patients (HBV-AC patients), the PLR was positively correlated with serum HBeAg level (r=0.321, P=0.023). In HBV-DC patients, the NLR was positively correlated with serum HBeAg level (r=0.372, P=0.033). In the logistic regression prediction model, a predictive probability cutoff of 0.392 had the highest sensitivity and specificity (sensitivity, 91.2%; specificity, 84.0%) in distinguishing between HBV-CC and HBV-AC patients. A NLR cutoff value of 2.94 had the highest sensitivity and specificity (sensitivity, 81.8%; specificity, 88.2%) in distinguishing between HBV-DC and HBV-CC patients. The PLR and NLR partially reflect the amounts of serum HBV DNA and serum HBeAg levels circulating in CHB patients. The logistic regression model including the PLR and age most accurately distinguished between HBV-CC and HBV-AC patients. The NLR may be useful for follow-up in HBV-CC patients to predict disease progression. In summary, the PLR and NLR provided a supplementary means for effectively managing chronic HBV infection and disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Predictive study of HBsAg in different stages of neonatal venous blood on failure of blocking HBV mother to infant transmission].

    Science.gov (United States)

    Yi, Wei; Li, Ming-Hui; Hu, Yu-Hong; Liu, Feng; Zhang, Yang-Li; Liu, Xue-Jing; Hao, Hong-Xiao; Song, Shu-Jing; Liu, Ying; Li, Xing-Hong; Sun, Ji-Yun; Liu, Min; Cheng, Jun; Xie, Yao

    2011-10-01

    In this study, we discuss the predictive value of different content of HBsAg in different stages of neotal venous blood on failure of blocking mother to infant transmission of HBV. 150 infants born of chronically HBV infected mothers who were positive of both HBsAg and HBeAg and who also had a HBV DNA virus load above 10(5) copies/ml were enrolled. These infants were given hepatitis B virus immune globin (HBIG) 200 IU immediately after birth and were given hepatitis B vaccine 10 or 20 microg at brith, 1 month and 6 months after birth. HBV serological index of these infants were test at birth, 1 month and 7 months after birth respectively. Different content of HBsAg in different stages of neonatal venus blood were analyzed to predict the failure of blocking mother to infant transmission of HBV. 11 infants failed in blocking of HBV mother to infant transmission. The positive rate of HBsAg at birth, 1 month and 7 months after birth were 41.26%, 10.49% and 7.69% respectively, and were 97.90%, 65.73% and 13.29% of HBeAg. The positive predictive value of HBsAg > or = 0.05 and HBsAg > or = 1 IU/ml at birth were 18.64% and 70% respectively, and were 73.33% and 100% one month after birth. Infants with HBsAg > or = 1 IU/ml at birth should be suspicious of failure on blocking HBV mother-to-infant transmission and it should be more credible if the infant has HBsAg > or = 1 IU/ml one month after birth. How to improve the blocking rate of neonates who were positive of HBsAg at birth and one month after birth should be the focus of our future research.

  20. Oral DNA Vaccine in Chickens

    Directory of Open Access Journals (Sweden)

    Seyed Davoud Jazayeri

    2012-01-01

    Full Text Available Attenuated Salmonella has been used as a carrier for DNA vaccine. However, in vitro and in vivo studies on the bacteria following transfection of plasmid DNA were poorly studied. In this paper, eukaryotic expression plasmids encoding avian influenza virus (AIV subtype H5N1 genes, pcDNA3.1/HA, NA, and NP, were transfected into an attenuated Salmonella enteric typhimurium SV4089. In vitro stability of the transfected plasmids into Salmonella were over 90% after 100 generations. The attenuated Salmonella were able to invade MCF-7 (1.2% and MCF-10A (0.5% human breast cancer cells. Newly hatched specific-pathogen-free (SPF chicks were inoculated once by oral gavage with 109 colony-forming unit (CFU of the attenuated Salmonella. No abnormal clinical signs or deaths were recorded after inoculation. Viable bacteria were detected 3 days after inoculation by plating from spleen, liver, and cecum. Fluorescent in situ hybridization (FISH and polymerase chain reaction (PCR were carried out for confirmation. Salmonella was not detected in blood cultures although serum antibody immune responses to Salmonella O antiserum group D1 factor 1, 9, and 12 antigens were observed in all the inoculated chickens after 7 days up to 35 days. Our results showed that live attenuated S. typhimurium SV4089 harboring pcDNA3.1/HA, NA, and NP may provide a unique alternative as a carrier for DNA oral vaccine in chickens.

  1. 2'-Fluoro-6'-methylene carbocyclic adenosine and its phosphoramidate prodrug: A novel anti-HBV agent, active against drug-resistant HBV mutants.

    Science.gov (United States)

    Singh, Uma S; Mulamoottil, Varughese A; Chu, Chung K

    2018-05-01

    Chronic hepatitis B (CHB) is one of the major causes of morbidity and mortality worldwide. Currently, clinically approved nucleos(t)ide analogs (NAs) are very efficient in reducing the load of hepatitis B virus (HBV) with minimum side effects. However, the long-term administration of antiviral drugs promotes HBV for potential drug resistance. To overcome this problem, combination therapies are administered, but HBV progressively altered mutations remain a threat. Therefore, optimally designed NAs are urgently needed to treat drug-resistant HBV. Herein, 2'-fluoro-6'-methylene carbocyclic adenosine (FMCA) and its phosphoramidate (FMCAP) have been discovered, which may be utilized in combination therapies for curing drug-resistant chronic hepatitis B. In preclinical studies, these carbocyclic NAs demonstrated potential anti-HBV activity against adefovir, as well as lamivudine (LMV/LAM) drug-resistant mutants. In vitro, these molecules have demonstrated significant activity against LMV/entecavir (ETV) triple mutants (L180M + S202G + M204V). Also, preliminary studies of FMCA/FMCAP in chimeric mice and female Non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse models having the LMV/ETV triple mutant have shown a high rate of reduction of HBV DNA levels compared to ETV. In this review, we have summarized preclinical studies of FMCA and its phosphoramidate prodrug (FMCAP). © 2018 Wiley Periodicals, Inc.

  2. Effects of Interferon-α/β on HBV Replication Determined by Viral Load

    Science.gov (United States)

    Tian, Yongjun; Chen, Wen-ling; Ou, Jing-hsiung James

    2011-01-01

    Interferons α and β (IFN-α/β) are type I interferons produced by the host to control microbial infections. However, the use of IFN-α to treat hepatitis B virus (HBV) patients generated sustained response to only a minority of patients. By using HBV transgenic mice as a model and by using hydrodynamic injection to introduce HBV DNA into the mouse liver, we studied the effect of IFN-α/β on HBV in vivo. Interestingly, our results indicated that IFN-α/β could have opposite effects on HBV: they suppressed HBV replication when viral load was high and enhanced HBV replication when viral load was low. IFN-α/β apparently suppressed HBV replication via transcriptional and post-transcriptional regulations. In contrast, IFN-α/β enhanced viral replication by inducing the transcription factor HNF3γ and activating STAT3, which together stimulated HBV gene expression and replication. Further studies revealed an important role of IFN-α/β in stimulating viral growth and prolonging viremia when viral load is low. This use of an innate immune response to enhance its replication and persistence may represent a novel strategy that HBV uses to enhance its growth and spread in the early stage of viral infection when the viral level is low. PMID:21829354

  3. Socio-demographic and behavioral determinants of hepatitis B vaccination and infection in pregnant women on Mayotte Island, Indian Ocean.

    Science.gov (United States)

    Saindou, Maoulide; Voirin, Nicolas; Troalen, Didier; Abaine, Abdoulkarim; Chevallier-Queyron, Philippe; Ecochard, René; Vanhems, Philippe

    2013-10-09

    Socio-demographic and behavioral determinants of Hepatitis B virus (HBV) vaccination and infection among pregnant women (PW) of Mayotte Island (Indian Ocean) are not well understood. Six hundred and seventy-one pregnant women presenting to public antenatal clinics on Mayotte Island were included between September 15, 2008 and September 27, 2009. Socio-demographics, sexual risk behavior characteristics, and data for HBV biomarkers were collected. Logistic regression was undertaken to study determinants of HBV vaccination and factors associated with the risk of HBV infection were assessed using a survival method adapted to interval-censored data. Due to missing data for HBV biomarkers, data were analyzed using multiple imputation (MI). Past or recent HBV infection was observed for 35.5% (95% confidence interval (CI): 30.4-40.8) of PW and 18.6% (95% CI: 14.7-23.2) had evidence of HBV vaccination. PW with unemployed and education qualification (adjusted odds ratio (aOR) 2.65, 95% CI 1.52-4.60) and student status (aOR 4.79, 95% CI 1.63-4.07) were better vaccinated against HBV, compared to those without employment and education. Being born on Comoros was associated with a 63% reduction in HBV vaccination (aOR 0.37, 95% CI 0.21-0.65), compared to be born in Mayotte/France. Women with a history of sexually-transmitted infections in the last 5 years had an increased risk of HBV infection (adjusted hazard ratio (aHR) 3.10, 95% CI: 1.13-8.50), whereas those who sometimes used condoms had a 60% reduced risk (aHR=0.40, 95% CI: 0.23-0.69). Socio-demographic factors were identified for HBV vaccination, while behavioral factors were observed for HBV infection. These results could help to determine priorities for intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.

  4. Molecular studies of fibroblasts transfected with hepatitis B virus DNA

    International Nuclear Information System (INIS)

    Chen, M.L.; Hood, A.; Thung, S.N.; Gerber, M.A.

    1987-01-01

    Two subclones (D7 and F8) derived from an NIH 3T3 mouse fibroblast cell line after transfection with hepatitis B virus (HBV) genomes, secreted significantly different amounts of HBsAg and HBeAg. DNA extracted from the subclones revealed only integrated and no extrachromosomal HBV DNA sequences as determined by the Southern blot technique with a /sup 32/P-labeled full length HBV DNA probe. The amount and integration sites of HBV sequences were significantly different in the two subclones. HBV DNA sequences coding for HBsAg and HBcAg were detected by alkaline phosphatase-conjugated, single-stranded synthetic gene-specific oligonucleotide probes revealing a larger number of copies in D7 DNA than in F8 DNA. Using a biotinylated probe for in situ hybridization, HBV DNA was found in the nuclei of all D7 cells with predominant localization to a single chromsome, but only in 10-20% of F8 cells. These observations demonstrate different integration patterns of HBV and DNA in two subclones derived from a transfected cell line and suggest that the amount of integrated HBV DNA is proportional to the amount of HBV antigens produced

  5. Production and pharmaceutical formulation of plasmid DNA vaccines

    NARCIS (Netherlands)

    van der Heijden, I.

    2013-01-01

    Research leading to the thesis ‘Production and pharmaceutical formulation of plasmid DNA vaccines‘ can be divided into two parts. The first part describes the development of a Good Manufacturing Practice (GMP) compliant plasmid DNA production process of pDNA vaccines for the treatment of Human

  6. Genetic diversity of hepatitis B virus (HBV) in Madagascar.

    Science.gov (United States)

    Andriamandimby, Soa Fy; Lo Presti, Alessandra; Lai, Alessia; Olive, Marie-Marie; Angeletti, Silvia; De Florio, Lucia; Cella, Eleonora; Razafindramparany, Minoharimbola; Ravalohery, Jean-Piere; Andriamamonjy, Seta; Gioffrè, Sonia; Zehender, Gianguglielmo; Mottini, Giovanni; Ciccozzi, Massimo; Heraud, Jean-Michel

    2016-12-01

    Hepatitis B virus (HBV) is a DNA virus belonging to Hepadnaviridae family. Chronic infection with HBV is one major risk factor of hepatic disease. In Madagascar, former studies classified the country as part of high endemic area, as HBV prevalence can reach 23% in general population. However, this prevalence differs largely between urban and rural areas and is estimated to be, respectively, 5% and 26%. The aims of the present study were to describe the genetic diversity of HBV strains from different regions of Madagascar, and to describe the viral gene flow throughout the country by using phylogenetic analysis. This is the first large-scale molecular and phylogenetic study analyzing HBV sequences from 28 different Malagasy areas, never sampled in the past. In this study, the most prevalent genotype/sub-genotypes was E. Migration analysis showed a gene flow from zone 3 (rural) to zone 2 (suburban), and a greater gene flow from the middle part of Madagascar to the north than to the south. It is important to study the HBV infections in Madagascar and to monitor the potential spread of this viral strain inside this country. J. Med. Virol. 88:2138-2144, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  7. Hepatitis C performance measure on hepatitis A and B vaccination: missed opportunities?

    Science.gov (United States)

    Hernandez, Bridget; Hasson, Noelle K; Cheung, Ramsey

    2009-08-01

    Prevention of hepatitis A virus (HAV) and hepatitis B virus (HBV) infection in patients with chronic hepatitis C (CHC) through vaccination is endorsed by all major professional societies. This study was conducted to determine adherence to the recently adopted physician performance measure on HAV and HBV vaccination. This was a retrospective study. Hepatitis A and B serology data and immunization records between 2000 and 2007 from CHC patients with detectable hepatitis C virus (HCV) RNA were analyzed. A total of 2,968 CHC patients were included in the study. Of these, 2,143 patients (72%) were tested for susceptibility to HAV, of which 53% had immunity. Of the non-immune patients, 746 (74%) were vaccinated as well as an additional 218 without prior testing. For HBV, 2,303 patients (78%) were tested for immunity and 782 (34%) were immune. Of the susceptible patients, 1,086 (71%) were vaccinated as well as an additional 197 patients without prior testing. The overall vaccination performance measure adherence rate was 71% for HAV, 70% for HBV, and 62% for both HAV and HBV. Random review of 176 charts found the major reasons for non-adherence were missed opportunity (41%), change of health care system (31%), and documented vaccination outside our health care system (22%). Our study found a high and improved adherence to the recommendations, but missed opportunity was still the main reason of non-adherence. This study also supported the strategy of selective vaccination in the veteran population.

  8. Frequency and persistency of DNA vaccine encoding GP25 by oral on common carp

    Directory of Open Access Journals (Sweden)

    Sri Nuryati

    2015-05-01

    Full Text Available ABSTRACT Koi herpesvirus (KHV is a major viral pathogen that infects common carp and koi. KHV disease outbreak is happened in almost all centre of common carp culture in Indonesia and caused mass mortality. Deoxyribonucleic acid (DNA vaccination method is one of ways to cope with KHV infection. Vaccines were commonly given by injection. The aim of this research was to get frequency and persistency of DNA vaccine encoding GP25 given by oral delivery method in common carp. This research would like to determine dose, frequency of vaccination, persistency of DNA vaccine and culture medium for the bacterial host. DNA vaccine persistency test was done by using polymerase chain reaction (PCR method with the specific primer for GP25 gene. The results showed that level of DNA vaccine that could be detected in feed was 7.56 ng (equal to 1.598×1010 copies. Efficient culture medium for Escherichia coli DH5α carrying DNA vaccine was LB triptone. Feeding fish with diet supplemented with 1 mL E. coli DH5α containing DNA vaccine for each fish and two times a week allowed persistence of DNA vaccine in kindney and spleen. Keywords: common carp, KHV, DNA vaccine, GP25, persistance  ABSTRAK Koi herpesvirus (KHV adalah virus patogen utama yang menginfeksi ikan mas dan ikan koi. Wabah penyakit KHV terjadi di hampir semua sentra budidaya ikan mas di Indonesia dan menyebabkan kematian massal ikan. Metode vaksinasi DNA merupakan salah satu cara yang dapat dilakukan untuk menanggulangi serangan KHV. Pemberian vaksin umumnya dilakukan dengan cara injeksi. Tujuan penelitian ini adalah untuk menguji frekuensi dan persistensi vaksin DNA GP25 antivirus KHV yang diberikan melalui oral pada ikan mas. Pada penelitian ini dilakukan uji dosis, frekuensi pemberian vaksin, persistensi vaksin DNA, dan media kultur bakteri inang. Persistensi vaksin DNA dianalisis menggunakan metode PCR dengan primer spesifik gen GP25. Hasil penelitian menunjukkan bahwa dosis vaksin DNA yang

  9. Performance evaluation of cobas HBV real-time PCR assay on Roche cobas 4800 System in comparison with COBAS AmpliPrep/COBAS TaqMan HBV Test.

    Science.gov (United States)

    Kim, Hanah; Hur, Mina; Bae, Eunsin; Lee, Kyung-A; Lee, Woo-In

    2018-02-19

    Hepatitis B virus (HBV) nucleic acid amplification testing (NAAT) is important for the diagnosis and management of HBV infection. We evaluated the analytical performance of the cobas HBV NAAT (Roche Diagnostics GmbH, Mannheim, Germany) on the cobas 4800 System in comparison with COBAS AmpliPrep/COBAS TaqMan HBV Test (CAP/CTM HBV). Precision was evaluated using three levels of cobas HBV/HCV/HIV-1 Control Kit, and linearity was evaluated across the anticipated measuring range (10.0-1.0×109 IU/mL) at seven levels using clinical samples. Detection capability, including limit of blank (LOB), limit of detection (LOD) and limit of quantitation (LOQ), was verified using the 4th WHO International Standard for HBV DNA for NAT (NIBSC code: 10/266). Correlation between the two systems was compared using 205 clinical samples (102 sera and 103 EDTA plasma). Repeatability and total imprecision (coefficient of variation) ranged from 0.5% to 3.8% and from 0.5% to 3.5%, respectively. Linearity (coefficient of determination, R2) was 0.999. LOB, LOD and LOQ were all acceptable within the observed proportion rate (85%). Correlation was very high between the two systems in both serum and plasma samples (correlation coefficient [r]=0.995). The new cobas HBV real-time PCR assay on the cobas 4800 System showed reliable analytical performances.

  10. Trial watch: Naked and vectored DNA-based anticancer vaccines.

    Science.gov (United States)

    Bloy, Norma; Buqué, Aitziber; Aranda, Fernando; Castoldi, Francesca; Eggermont, Alexander; Cremer, Isabelle; Sautès-Fridman, Catherine; Fucikova, Jitka; Galon, Jérôme; Spisek, Radek; Tartour, Eric; Zitvogel, Laurence; Kroemer, Guido; Galluzzi, Lorenzo

    2015-05-01

    One type of anticancer vaccine relies on the administration of DNA constructs encoding one or multiple tumor-associated antigens (TAAs). The ultimate objective of these preparations, which can be naked or vectored by non-pathogenic viruses, bacteria or yeast cells, is to drive the synthesis of TAAs in the context of an immunostimulatory milieu, resulting in the (re-)elicitation of a tumor-targeting immune response. In spite of encouraging preclinical results, the clinical efficacy of DNA-based vaccines employed as standalone immunotherapeutic interventions in cancer patients appears to be limited. Thus, efforts are currently being devoted to the development of combinatorial regimens that allow DNA-based anticancer vaccines to elicit clinically relevant immune responses. Here, we discuss recent advances in the preclinical and clinical development of this therapeutic paradigm.

  11. Hepatitis A and B screening and vaccination rates among patients with chronic liver disease.

    Science.gov (United States)

    Ramirez, Jonathan C; Ackerman, Kimberly; Strain, Sasha C; Ahmed, Syed T; de Los Santos, Mario J; Sears, Dawn

    2016-01-01

    Vaccinations against hepatitis A virus (HAV) and hepatitis B virus (HBV) are recommended for patients with chronic liver disease (CLD), yet implementation of these recommendations is lacking. This study reviewed HAV and HBV antibody testing and vaccination status of patients with CLD. In 2008, we began using pre-printed liver order sets, which included vaccination options. We compared Scott & White liver clinic CLD patient records from 2005 (238) with patient records from 2008 (792). Screening rates for immunity and vaccination rates of those lacking immunity were calculated. In 2005, 66% of CLD patients were screened for HAV immunity. In 2008, 56% of CLD patients were screened. The HAV vaccination completion rate was 37% in 2005, while in 2008, the rate was 46%. In 2005, 66% of CLD patients were screened for HBV immunity; in 2008, 56 % CLD patients were screened. The HBV vaccination completion rate was 26% in 2005 compared with 36% in 2008. Although there was a lower percentage of screening in 2008, the overall number of patients tripled between 2005 and 2008. There was a significant increase in the total number of patients screened and vaccinated in 2008. Some physicians may have vaccinated their patients without checking for immunity. In January 2008, we implemented pre-printed order sets with checkboxes to help remind providers to order labs to screen for immunity against HAV and HBV and to order vaccinations for those who lacked immunity. The use of these sets may have aided in the increase of vaccination completion rates.

  12. Natural Killer Cell Characteristics in Patients With Chronic Hepatitis B Virus (HBV) Infection Are Associated With HBV Surface Antigen Clearance After Combination Treatment With Pegylated Interferon Alfa-2a and Adefovir

    NARCIS (Netherlands)

    Stelma, Femke; de Niet, Annikki; Tempelmans Plat-Sinnige, Marjan J.; Jansen, Louis; Takkenberg, R. Bart; Reesink, Hendrik W.; Kootstra, Neeltje A.; van Leeuwen, Ester M. M.

    2015-01-01

    The role of natural killer (NK) cells in the process of hepatitis B virus (HBV) surface antigen (HBsAg) clearance and whether their phenotype is related to treatment outcome in patients with chronic hepatitis B are currently unknown. Patients with chronic hepatitis B (HBV DNA load, >17 000 IU/mL)

  13. Field testing of Schistosoma japonicum DNA vaccines in cattle in China.

    Science.gov (United States)

    Shi, Fuhui; Zhang, Yaobi; Lin, Jiaojiao; Zuo, Xin; Shen, Wei; Cai, Yiumin; Ye, Ping; Bickle, Quentin D; Taylor, Martin G

    2002-11-01

    Vaccines are needed to reduce the zoonotic reservoir of Schistosoma japonicum infection in bovines in China. We have developed two experimental DNA vaccines and have already shown these to be capable of inducing partial protection in water buffalo naturally exposed to the risk of S. japonicum infection in the field. We now report a similar field trial in cattle, the other major bovine reservoir host species in China. Groups of cattle were vaccinated with the VRSj28 vaccine or the VRSj23 vaccine, or, to test whether protection could be enhanced by combination vaccination, with both these DNA vaccines together. After vaccination, the cattle were exposed to natural infection in the field for a period of 54 days. Worm and egg counts carried out at the end of the experiment showed that each of the vaccine groups showed partial resistance, and that combined vaccination was not more effective than vaccination with the individual plasmids.

  14. Increased immunogenicity of avian influenza DNA vaccine delivered to the skin using a microneedle patch

    Science.gov (United States)

    Kim, Yeu-Chun; Song, Jae-Min; Lipatov, Aleksandr S.; Choi, Seong-O; Lee, Jeong Woo; Donis, Ruben O.; Compans, Richard W.; Kang, Sang-Moo; Prausnitz, Mark R.

    2012-01-01

    Effective public health responses to an influenza pandemic require an effective vaccine that can be manufactured and administered to large populations in the shortest possible time. In this study, we evaluated a method for vaccination against avian influenza virus that uses a DNA vaccine for rapid manufacturing and delivered by a microneedle skin patch for simplified administration and increased immunogenicity. We prepared patches containing 700 µm-long microneedles coated with an avian H5 influenza hemagglutinin DNA vaccine from A/Viet Nam/1203/04 influenza virus. The coating DNA dose increased with DNA concentration in the coating solution and the number of dip coating cycles. Coated DNA was released into the skin tissue by dissolution within minutes. Vaccination of mice using microneedles induced higher levels of antibody responses and hemagglutination inhibition titers, and improved protection against lethal infection with avian influenza as compared to conventional intramuscular delivery of the same dose of the DNA vaccine. Additional analysis showed that the microneedle coating solution containing carboxymethylcellulose and a surfactant may have negatively affected the immunogenicity of the DNA vaccine. Overall, this study shows that DNA vaccine delivery by microneedles can be a promising approach for improved vaccination to mitigate an influenza pandemic. PMID:22504442

  15. High rates of chronic HBV genotype E infection in a group of migrants in Italy from West Africa: Virological characteristics associated with poor immune clearance.

    Science.gov (United States)

    Malagnino, Vincenzo; Salpini, Romina; Maffongelli, Gaetano; Battisti, Arianna; Fabeni, Lavinia; Piermatteo, Lorenzo; Colagrossi, Luna; Fini, Vanessa; Ricciardi, Alessandra; Sarrecchia, Cesare; Perno, Carlo Federico; Andreoni, Massimo; Svicher, Valentina; Sarmati, Loredana

    2018-01-01

    Hepatitis B virus (HBV) genotype E almost exclusively occurs in African people, and its presence is more commonly associated with the development of chronic HBV (CHB) infection. Moreover, an epidemiological link has been found between the distribution of HBV genotype E infection and African countries with high incidences of hepatocellular carcinoma. As part of a programme for the health assessment of migrants, we evaluated 358 young African subjects for HBV infection; 58.1% (208/358) were positive for an HBV marker, and 54 (25.5%) had CHB. Eighty-one percent of the CHB subjects were infected with HBV genotype E, with a median serum HBV-DNA of 3.2 (IQR: 2.7-3.6) logIU/ml. All patients had high serum HBsAg titres (10,899 [range 5,359-20,272] IU/ml), and no correlation was found between HBsAg titres and HBV-DNA plasma levels. RT sequence analysis showed the presence of a number of immune escape mutations: strains from all of the patients had a serine at HBsAg position 140; 3 also had T116N, Y100C, and P142L+S143L substitutions; and 1 had a G112R substitution. Six (18%) patients had stop-codons at position 216. In 5 of the 9 (26.5%) CHB patients, ultrasound liver biopsy, quantification of total intrahepatic HBV-DNA and cccDNA, and RT/HBsAg sequencing were performed. The median (IQR) total intrahepatic HBV-DNA was 766 (753-1139) copies/1000 cells, and the median (IQR) cccDNA was 17 (10-27) copies/1000 cells. Correlations were observed for both total intrahepatic HBV-DNA and cccDNA with serum HBV-DNA, while no correlation was found for the HBsAg titres. A difference of 2.5/1,000 nucleotides was found in the HBsAg sequences obtained from plasma and from liver tissue, with 3 cases of possible viral anatomical compartmentalization. In conclusion, a high rate of CHB infection due to the E genotype was demonstrated in a group of immigrants from Western Africa. An analysis of the viral strains obtained showed the virological characteristics of immune escape, which may be the

  16. Loss of confidence in vaccines following media reports of infant deaths after hepatitis B vaccination in China.

    Science.gov (United States)

    Yu, Wenzhou; Liu, Dawei; Zheng, Jingshan; Liu, Yanmin; An, Zhijie; Rodewald, Lance; Zhang, Guomin; Su, Qiru; Li, Keli; Xu, Disha; Wang, Fuzhen; Yuan, Ping; Xia, Wei; Ning, Guijun; Zheng, Hui; Chu, Yaozhu; Cui, Jian; Duan, Mengjuan; Hao, Lixin; Zhou, Yuqing; Wu, Zhenhua; Zhang, Xuan; Cui, Fuqiang; Li, Li; Wang, Huaqing

    2016-04-01

    China reduced hepatitis B virus (HBV) infection by 90% among children under 5 years old with safe and effective hepatitis B vaccines (HepB). In December 2013, this success was threatened by widespread media reports of infant deaths following HepB administration. Seventeen deaths and one case of anaphylactic shock following HBV vaccination had been reported. We conducted a telephone survey to measure parental confidence in HepB in eleven provinces at four points in time; reviewed maternal HBV status and use of HepB for newborns in birth hospitals in eight provinces before and after the event; and monitored coverage with hepatitis B vaccine and other programme vaccines in ten provinces. HepB from the implicated company was suspended during the investigation, which showed that the deaths were not caused by HepB vaccination. Before the event, 85% respondents regarded domestic vaccines as safe, decreasing to 26.7% during the event. During the height of the crisis, 30% of parents reported being hesitant to vaccinate and 18.4% reported they would refuse HepB. Use of HepB in the monitored provinces decreased by 18.6%, from 53 653 doses the week before the event to 43 688 doses during the week that Biokangtai HepB was suspended. Use of HepB within the first day of life decreased by 10% among infants born to HBsAg-negative mothers, and by 6% among infants born to HBsAg-positive mothers. Vaccine refusal and HepB birth dose rates returned to baseline within 2 months; confidence increased, but remained below baseline. The HBV vaccine event resulted in the suspension of a safe vaccine, which was associated with a decline of parental confidence, and refusal of vaccination. Suspension of a vaccine can lead to loss of confidence that is difficult to recover. Timely and credible investigation, accompanied by proactive outreach to stakeholders and the media, may help mitigate negative impact of future coincidental adverse events following immunization. © The Author 2016; all rights

  17. Hepatitis B virus infection and vaccine-induced immunity in Madrid (Spain).

    Science.gov (United States)

    Pedraza-Flechas, Ana María; García-Comas, Luis; Ordobás-Gavín, María; Sanz-Moreno, Juan Carlos; Ramos-Blázquez, Belén; Astray-Mochales, Jenaro; Moreno-Guillén, Santiago

    2014-01-01

    To estimate the prevalence of hepatitis B virus (HBV) infection and vaccine-induced immunity in the region of Madrid, and to analyze their evolution over time. An observational, analytical, cross-sectional study was carried out in the population aged 16-80 years between 2008 and 2009. This was the last of four seroprevalence surveys in the region of Madrid. The prevalence of HBV infection and vaccine-induced immunity was estimated using multivariate logistic models and were compared with the prevalences in the 1989, 1993 and 1999 surveys. In the population aged 16-80 years, the prevalence of HBV infection was 11.0% (95% CI: 9.8-12.3) and that of chronic infection was 0.7% (95% CI: 0.5-1.1). The prevalence of vaccine-induced immunity in the population aged 16-20 years was 73.0% (95% CI: 70.0-76.0). Compared with previous surveys, there was a decrease in the prevalence of HBV infection. Based on the prevalence of chronic infection (<1%), Madrid is a region with low HBV endemicity. Preventive strategies against HBV should especially target the immigrant population. Copyright © 2013. Published by Elsevier Espana.

  18. Analysis of HBV basal core promoter/precore gene variability in patients with HBV drug resistance and HIV co-infection in Northwest Ethiopia.

    Directory of Open Access Journals (Sweden)

    Yeshambel Belyhun

    Full Text Available We recently reported complex hepatitis B virus (HBV drug resistant and concomitant vaccine escape hepatitis B surface antigen (HBsAg variants during human immunodeficiency virus (HIV co-infection and antiretroviral therapy (ART exposure in Ethiopia. As a continuation of this report using the HBV positive sera from the same study participants, the current study further analyzed the HBV basal core promoter (BCP/precore (PC genes variability in patients with HBV drug resistance (at tyrosine-methionine-aspartate-aspartate (YMDD reverse transcriptase (RT motifs and HIV co-infection in comparison with HBV mono-infected counterparts with no HBV drug resistant gene variants.A total of 143 participants of HBV-HIV co-infected (n = 48, HBV mono-infected blood donors (n = 43 and chronic liver disease (CLD patients (n = 52 were included in the study. The BCP/PC genome regions responsible for HBeAg expression from the EcoRI site (nucleotides 1653-1959 were sequenced and analyzed for the BCP/PC mutant variants.Among the major mutant variants detected, double BCP mutations (A1762T/G1764A (25.9%, Kozak sequences mutations (nt1809-1812 (51.7% and the classical PC mutations such as A1814C/C1816T (15.4%, G1896A (25.2% and G1862T (44.8% were predominant mutant variants. The prevalence of the double BCP mutations was significantly lower in HIV co-infected patients (8.3% compared with HBV mono-infected blood donors (32.6% and CLD patients (36.5%. However, the Kozak sequences BCP mutations and the majority of PC mutations showed no significant differences among the study groups. Moreover, except for the overall BCP/PC mutant variants, co-prevalence rates of each major BCP/PC mutations and YMDDRT motif associated lamivudine (3TC/entecavir (ETV resistance mutations showed no significant differences when compared with the rates of BCP/PC mutations without YMDD RT motif drug resistance gene mutations. Unlike HIV co-infected group, no similar comparison made among HBV mono

  19. Vaccination of rhesus macaques with a vif-deleted simian immunodeficiency virus proviral DNA vaccine

    International Nuclear Information System (INIS)

    Sparger, Ellen E.; Dubie, Robert A.; Shacklett, Barbara L.; Cole, Kelly S.; Chang, W.L.; Luciw, Paul A.

    2008-01-01

    Studies in non-human primates, with simian immunodeficiency virus (SIV) and simian/human immunodeficiency virus (SHIV) have demonstrated that live-attenuated viral vaccines are highly effective; however these vaccine viruses maintain a low level of pathogenicity. Lentivirus attenuation associated with deletion of the viral vif gene carries a significantly reduced risk for pathogenicity, while retaining the potential for virus replication of low magnitude in the host. This report describes a vif-deleted simian immunodeficiency virus (SIV)mac239 provirus that was tested as an attenuated proviral DNA vaccine by inoculation of female rhesus macaques. SIV-specific interferon-γ enzyme-linked immunospot responses of low magnitude were observed after immunization with plasmid containing the vif-deleted SIV provirus. However, vaccinated animals displayed strong sustained virus-specific T cell proliferative responses and increasing antiviral antibody titers. These immune responses suggested either persistent vaccine plasmid expression or low level replication of vif-deleted SIV in the host. Immunized and unvaccinated macaques received a single high dose vaginal challenge with pathogenic SIVmac251. A transient suppression of challenge virus load and a greater median survival time was observed for vaccinated animals. However, virus loads for vaccinated and unvaccinated macaques were comparable by twenty weeks after challenge and overall survival curves for the two groups were not significantly different. Thus, a vif-deleted SIVmac239 proviral DNA vaccine is immunogenic and capable of inducing a transient suppression of pathogenic challenge virus, despite severe attenuation of the vaccine virus

  20. Clonorchis sinensis Co-infection Could Affect the Disease State and Treatment Response of HBV Patients.

    Directory of Open Access Journals (Sweden)

    Wenfang Li

    2016-06-01

    Full Text Available Clonorchis sinensis (C. sinensis is considered to be an important parasitic zoonosis because it infects approximately 35 million people, while approximately 15 million were distributed in China. Hepatitis B virus (HBV infection is a major public health issue. Two types of pathogens have the potential to cause human liver disease and eventually hepatocellular carcinoma. Concurrent infection with HBV and C. sinensis is often observed in some areas where C. sinensis is endemic. However, whether C. sinensis could impact HBV infection or vice versa remains unknown.Co-infection with C. sinensis and HBV develops predominantly in males. Co-infected C. sinensis and HBV patients presented weaker liver function and higher HBV DNA titers. Combination treatment with antiviral and anti-C. sinensis drugs in co-infected patients could contribute to a reduction in viral load and help with liver function recovery. Excretory-secretory products (ESPs may, in some ways, increase HBV viral replication in vitro. A mixture of ESP and HBV positive sera could induce peripheral blood mononuclear cells (PBMCs to produce higher level of Th2 cytokines including IL-4, IL-6 and IL-10 compared to HBV alone, it seems that due to presence of ESP, the cytokine production shift towards Th2. C. sinensis/HBV co-infected patients showed higher serum IL-6 and IL-10 levels and lower serum IFN-γ levels.Patients with concomitant C. sinensis and HBV infection presented weaker liver function and higher HBV DNA copies. In co-infected patients, the efficacy of anti-viral treatment was better in patients who were prescribed with entecavir and praziquantel than entecavir alone. One possible reason for the weaker response to antiviral therapies in co-infected patients was the shift in cytokine production from Th1 to Th2 that may inhibit viral clearance. C. sinensis/HBV co-infection could exacerbate the imbalance of Th1/Th2 cytokine.

  1. Rapid quantification of semen hepatitis B virus DNA by real-time polymerase chain reaction

    Science.gov (United States)

    Qian, Wei-Ping; Tan, Yue-Qiu; Chen, Ying; Peng, Ying; Li, Zhi; Lu, Guang-Xiu; Lin, Marie C.; Kung, Hsiang-Fu; He, Ming-Ling; Shing, Li-Ka

    2005-01-01

    AIM: To examine the sensitivity and accuracy of real-time polymerase chain reaction (PCR) for the quantification of hepatitis B virus (HBV) DNA in semen. METHODS: Hepatitis B viral DNA was isolated from HBV carriers’ semen and sera using phenol extraction method and QIAamp DNA blood mini kit (Qiagen, Germany). HBV DNA was detected by conventional PCR and quantified by TaqMan technology-based real-time PCR (quantitative polymerase chain reaction (qPCR)). The detection threshold was 200 copies of HBV DNA for conventional PCR and 10 copies of HBV DNA for real time PCR per reaction. RESULTS: Both methods of phenol extraction and QIAamp DNA blood mini kit were suitable for isolating HBV DNA from semen. The value of the detection thresholds was 500 copies of HBV DNA per mL in the semen. The viral loads were 7.5 × 107 and 1.67 × 107 copies of HBV DNA per mL in two HBV infected patients’ sera, while 2.14 × 105 and 3.02 × 105 copies of HBV DNA per mL in the semen. CONCLUSION: Real-time PCR is a more sensitive and accurate method to detect and quantify HBV DNA in the semen. PMID:16149152

  2. Compartmental HBV evolution and replication in liver and extrahepatic sites after nucleos/tide analogue therapy in chronic hepatitis B carriers.

    Science.gov (United States)

    Gao, Shan; Duan, Zhong-Ping; Chen, Yu; van der Meer, Frank; Lee, Samuel S; Osiowy, Carla; van Marle, Guido; Coffin, Carla S

    2017-09-01

    Hepatitis B virus (HBV) variants are associated with nucleos/tide analogue (NA) response and liver disease but it is unknown whether NA influences extrahepatic HBV persistence. To investigate HBV replication and genetic evolution in hepatic and extrahepatic sites of chronic hepatitis B (CHB) before and after NA therapy. A total of 13 paired plasma, peripheral blood mononuclear cells (PBMC), were collected from chronic HBV carriers at baseline and after a median 53 weeks NA therapy as well as liver biopsy (N=7 baseline, N=5 follow-up). HBV covalently closed circular DNA (cccDNA) and messenger (m) RNA in liver and PBMC were analyzed. HBV polymerase (P)/surface (S), basal core promoter (BCP)/pre-core (PC)/C gene clonal sequencing was done in plasma, peripheral blood mononuclear cells (PBMC), and liver. Compare to baseline, at ∼53 weeks follow-up, there was no significant change in HBV cccDNA levels in liver (0.2-0.08 copies/hepatocyte, p>0.05) or in PBMC 0.003-0.02 copies/PBMC, p>0.05), and HBV mRNA remained detectable in both sites. At baseline, BCP variants were higher in PBMC vs. liver and plasma. After therapy, drug resistant (DR) and immune escape (IE) variants increased in liver but IE and PC variants were more frequent in PBMC. HBV P/S diversity was significantly higher in PBMC compared to plasma. Continuous HBV replication occurs in liver and PBMC and shows compartmentalized evolution under selective pressure of potent NA therapy. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. DNA priming for seasonal influenza vaccine: a phase 1b double-blind randomized clinical trial.

    Directory of Open Access Journals (Sweden)

    Julie E Ledgerwood

    Full Text Available The efficacy of current influenza vaccines is limited in vulnerable populations. DNA vaccines can be produced rapidly, and may offer a potential strategy to improve vaccine immunogenicity, indicated by studies with H5 influenza DNA vaccine prime followed by inactivated vaccine boost.Four sites enrolled healthy adults, randomized to receive 2011/12 seasonal influenza DNA vaccine prime (n=65 or phosphate buffered saline (PBS (n=66 administered intramuscularly with Biojector. All subjects received the 2012/13 seasonal inactivated influenza vaccine, trivalent (IIV3 36 weeks after the priming injection. Vaccine safety and tolerability was the primary objective and measurement of antibody response by hemagglutination inhibition (HAI was the secondary objective.The DNA vaccine prime-IIV3 boost regimen was safe and well tolerated. Significant differences in HAI responses between the DNA vaccine prime and the PBS prime groups were not detected in this study.While DNA priming significantly improved the response to a conventional monovalent H5 vaccine in a previous study, it was not effective in adults using seasonal influenza strains, possibly due to pre-existing immunity to the prime, unmatched prime and boost antigens, or the lengthy 36 week boost interval. Careful optimization of the DNA prime-IIV3 boost regimen as related to antigen matching, interval between vaccinations, and pre-existing immune responses to influenza is likely to be needed in further evaluations of this vaccine strategy. In particular, testing this concept in younger age groups with less prior exposure to seasonal influenza strains may be informative.ClinicalTrials.gov NCT01498718.

  4. Development of novel vaccines using DNA shuffling and screening strategies.

    Science.gov (United States)

    Locher, Christopher P; Soong, Nay Wei; Whalen, Robert G; Punnonen, Juha

    2004-02-01

    DNA shuffling and screening technologies recombine and evolve genes in vitro to rapidly obtain molecules with improved biological activity and fitness. In this way, genes from related strains are bred like plants or livestock and their successive progeny are selected. These technologies have also been called molecular breeding-directed molecular evolution. Recent developments in bioinformatics-assisted computer programs have facilitated the design, synthesis and analysis of DNA shuffled libraries of chimeric molecules. New applications in vaccine development are among the key features of DNA shuffling and screening technologies because genes from several strains or antigenic variants of pathogens can be recombined to create novel molecules capable of inducing immune responses that protect against infections by multiple strains of pathogens. In addition, molecules such as co-stimulatory molecules and cytokines have been evolved to have improved T-cell proliferation and cytokine production compared with the wild-type human molecules. These molecules can be used to immunomodulate vaccine responsiveness and have multiple applications in infectious diseases, cancer, allergy and autoimmunity. Moreover, DNA shuffling and screening technologies can facilitate process development of vaccine manufacturing through increased expression of recombinant polypeptides and viruses. Therefore, DNA shuffling and screening technologies can overcome some of the challenges that vaccine development currently faces.

  5. Human pegivirus (HPgV) infection in Ghanaians co-infected with human immunodeficiency virus (HIV) and hepatitis B virus (HBV).

    Science.gov (United States)

    N'Guessan, Kombo F; Boyce, Ceejay; Kwara, Awewura; Archampong, Timothy N A; Lartey, Margaret; Sagoe, Kwamena W; Kenu, Ernest; Obo-Akwa, Adjoa; Blackard, Jason T

    2018-03-17

    Human pegivirus (HPgV) is a positive single-stranded RNA virus in the Flaviviridae family. Phylogenetic analysis reveals the presence of multiple HPgV genotypes with distinct geographic locations. HPgV is of interest because of its potential beneficial impact on HIV disease progression. Despite this, the effects of HPgV in the context of other viral infections, such as hepatitis B virus (HBV), are poorly understood, and data from resource-limited settings are scarce. Therefore, we conducted a cross-sectional analysis of HPgV in HIV/HBV co-infected patients in Ghana. Sera from 100 HIV/HBV co-infected individuals were evaluated for HPgV RNA, and the genotype determined by sequencing the 5' untranslated region. HPgV RNA was detected in 27 samples (27%). Of these, 26 were genotyped successfully with 23 belonging to HPgV genotype 1 and 3 belonging to HPgV genotype 2. The presence of HPgV RNA had no statistically significant impact on CD4 cell count or HBV DNA titers in the HIV/HBV co-infected patients. However, there was a trend towards decreased HBV DNA levels in HPgV RNA-positive patients with CD4 cell count HBV disease among HIV/HBV co-infected patients was minimal. However, decreased HBV DNA levels in HPgV RNA-positive patients with low CD4 cell counts highlight the need for prospective studies of HPgV in HIV and hepatitis co-infected patients, especially in those with advanced HIV disease, to study further the effects of HPgV on liver disease.

  6. Branched oligosaccharide structures on HBV prevent interaction with both DC-SIGN and L-SIGN

    NARCIS (Netherlands)

    Op den Brouw, M. L.; de Jong, M. A. W. P.; Ludwig, I. S.; van der Molen, R. G.; Janssen, H. L. A.; Geijtenbeek, T. B. H.; Woltman, A. M.

    2008-01-01

    Hepatitis B virus (HBV) is a DNA virus that infects the liver as primary target. Currently, a high affinity receptor for HBV is still unknown. The dendritic cell specific C-type lectin DC-SIGN is involved in pathogen recognition through mannose and fucose containing carbohydrates leading to the

  7. A Role for the Host DNA Damage Response in Hepatitis B Virus cccDNA Formation—and Beyond?

    Directory of Open Access Journals (Sweden)

    Sabrina Schreiner

    2017-05-01

    Full Text Available Chronic hepatitis B virus (HBV infection puts more than 250 million people at a greatly increased risk to develop end-stage liver disease. Like all hepadnaviruses, HBV replicates via protein-primed reverse transcription of a pregenomic (pg RNA, yielding an unusually structured, viral polymerase-linked relaxed-circular (RC DNA as genome in infectious particles. Upon infection, RC-DNA is converted into nuclear covalently closed circular (ccc DNA. Associating with cellular proteins into an episomal minichromosome, cccDNA acts as template for new viral RNAs, ensuring formation of progeny virions. Hence, cccDNA represents the viral persistence reservoir that is not directly targeted by current anti-HBV therapeutics. Eliminating cccDNA will thus be at the heart of a cure for chronic hepatitis B. The low production of HBV cccDNA in most experimental models and the associated problems in reliable cccDNA quantitation have long hampered a deeper understanding of cccDNA molecular biology. Recent advancements including cccDNA-dependent cell culture systems have begun to identify select host DNA repair enzymes that HBV usurps for RC-DNA to cccDNA conversion. While this list is bound to grow, it may represent just one facet of a broader interaction with the cellular DNA damage response (DDR, a network of pathways that sense and repair aberrant DNA structures and in the process profoundly affect the cell cycle, up to inducing cell death if repair fails. Given the divergent interactions between other viruses and the DDR it will be intriguing to see how HBV copes with this multipronged host system.

  8. Research progress of therapeutic vaccines for treating chronic hepatitis B.

    Science.gov (United States)

    Li, Jianqiang; Bao, Mengru; Ge, Jun; Ren, Sulin; Zhou, Tong; Qi, Fengchun; Pu, Xiuying; Dou, Jia

    2017-05-04

    Hepatitis B virus (HBV) is a member of Hepadnavirus family, which leads to chronic infection in around 5% of patients with a high risk of developing liver cirrhosis, liver failure, and hepatocellular carcinoma. 1 Despite the availability of prophylactic vaccines against hepatitis B for over 3 decades, there are still more than 2 billion people have been infected and 240 million of them were chronic. Antiviral therapies currently used in the treatment of CHB (chronic hepatitis B) infection include peg-interferon, standard α-interferon and nucleos/tide analogs (NAs), but none of them can provide sustained control of viral replication. As an alternative strategy, therapeutic vaccines for CHB patients have been widely studied and showed some promising efficacies in dozens of preclinical and clinical trials. In this article, we review current research progress in several types of therapeutic vaccines for CHB treatment, including protein-based vaccines, DNA-based vaccines, live vector-based vaccines, peptide-based vaccines and cell-based therapies. These researches may provide some clues for developing new treatments in CHB infection.

  9. Protection of Rhesus Monkeys by a DNA Prime/Poxvirus Boost Malaria Vaccine Depends on Optimal DNA Priming and Inclusion of Blood Stage Antigens

    Science.gov (United States)

    Weiss, Walter R.; Kumar, Anita; Jiang, George; Williams, Jackie; Bostick, Anthony; Conteh, Solomon; Fryauff, David; Aguiar, Joao; Singh, Manmohan; O'Hagan, Derek T.; Ulmer, Jeffery B.; Richie, Thomas L.

    2007-01-01

    Background We have previously described a four antigen malaria vaccine consisting of DNA plasmids boosted by recombinant poxviruses which protects a high percentage of rhesus monkeys against Plasmodium knowlesi (Pk) malaria. This is a multi-stage vaccine that includes two pre-erythrocytic antigens, PkCSP and PkSSP2(TRAP), and two erythrocytic antigens, PkAMA-1 and PkMSP-1(42kD). The present study reports three further experiments where we investigate the effects of DNA dose, timing, and formulation. We also compare vaccines utilizing only the pre-erythrocytic antigens with the four antigen vaccine. Methodology In three experiments, rhesus monkeys were immunized with malaria vaccines using DNA plasmid injections followed by boosting with poxvirus vaccine. A variety of parameters were tested, including formulation of DNA on poly-lactic co-glycolide (PLG) particles, varying the number of DNA injections and the amount of DNA, varying the interval between the last DNA injection to the poxvirus boost from 7 to 21 weeks, and using vaccines with from one to four malaria antigens. Monkeys were challenged with Pk sporozoites given iv 2 to 4 weeks after the poxvirus injection, and parasitemia was measured by daily Giemsa stained blood films. Immune responses in venous blood samples taken after each vaccine injection were measured by ELIspot production of interferon-γ, and by ELISA. Conclusions 1) the number of DNA injections, the formulation of the DNA plasmids, and the interval between the last DNA injection and the poxvirus injection are critical to vaccine efficacy. However, the total dose used for DNA priming is not as important; 2) the blood stage antigens PkAMA-1 and PkMSP-1 were able to protect against high parasitemias as part of a genetic vaccine where antigen folding is not well defined; 3) immunization with PkSSP2 DNA inhibited immune responses to PkCSP DNA even when vaccinations were given into separate legs; and 4) in a counter-intuitive result, higher

  10. HBV genome analysis in the progression of HBV related chronic liver disease

    Directory of Open Access Journals (Sweden)

    Ruksana Raihan

    2017-12-01

    Full Text Available Although HBV is a non-cytopathic virus, alteration of viral genome may also alter host immunity and may play a part in the pathogenesis LC and HCC. During the last decade, various studies have shown that mutations in the HBV genome may play a role in HCC pathogenesis. Here, we have analyzed HBV genome from patients with asymptomatic HBV carrier [ASC], chronic hepatitis B (CHB, cirrhosis of liver (LC, and hepatocellular carcinoma (HCC of Bangladeshi origin. A total of 225 patients tested positive for HBV with different stages of chronic HBV infection were enrolled in this study. The extent of liver damages were assayed by estimating serum levels of alanine aminotransferase (ALT, serum bilirubin and finally by abdominal ultrasonography and/or fine needle aspiration cytology. Wherever required, cancer marker like alpha fetoprotein (AFP was assessed. HBV genotype was evaluated by immunoassays and sequenced. A total of 25 patients were ASC, 135 were CHB and 65 were LC and HCC. Among ASC patients, 5, 7 and 13 belonged to HBV genotype A, C, and D, respectively. On the other hand, HBV genotype C was most prevalent in CHB patients (about 42%, followed by HBV genotype D (36%. About 69% patients with LC and HCC also had genotype C. Full genomic analysis of sera of patients with progressive liver damages (LC and HCC revealed mutations at HBeAg promoter regions in more than 80% patients. However, mutations in this region were mostly unseen in ASC and patients with less progressive liver diseases. HBV genotype was found quite different in Bangladeshi HBV patients which seem a mixture of Indian and Asia-Pacific region. This study also reveals that HBeAg promoter region mutation may have role in development of HBV related LC and HCC.

  11. Immunotherapy against visceral leishmaniasis with the nucleoside hydrolase-DNA vaccine of Leishmania donovani.

    Science.gov (United States)

    Gamboa-León, R; Paraguai de Souza, E; Borja-Cabrera, G P; Santos, F N; Myashiro, L M; Pinheiro, R O; Dumonteil, E; Palatnik-de-Sousa, C B

    2006-05-29

    The nucleoside hydrolase (NH36) of Leishmania (L.) donovani is a vital enzyme which releases purines or pyrimidines of foreign DNA to be used in the synthesis of parasite DNA. As a bivalent DNA vaccine, the VR1012-NH36 was immunoprotective against visceral and cutaneous murine leishmaniasis. In this work we tested the immunotherapy against Leishmania (L.) chagasi infection, using two doses of 100 or 20 microg VR1012-NH36 vaccine (i.m. route), and, as a possible immunomodulator, aqueous garlic extract (8 mg/kg/day by the i.p. route), which was effective in immunotherapy of cutaneous murine leishmaniasis. Liver parasitic load was significantly reduced following treatment with 100 microg (91%) and 20 microg (77%) of the DNA vaccine, and by 20 microg DNA vaccine and garlic extract (76%) (p=0.023). Survival was 33% for saline controls, 100% for the 100 microg vaccine, and 83 and 67% for the 20 microg vaccine with and without garlic extract addition, respectively. Garlic treatment alone did not reduce parasite load (p>0.05), but increased survival (100%). The NH36-DNA vaccine was highly effective as a new tool for the therapy and control of visceral leishmaniasis, while the mild protective effect of garlic might be related to an unspecific enhancement of IFN-gamma secretion.

  12. Protective effect of a polyvalent influenza DNA vaccine in pigs

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Rosenstierne, Maiken Worsøe

    2018-01-01

    Background Influenza A virus in swine herds represents a major problem for the swine industry and poses a constant threat for the emergence of novel pandemic viruses and the development of more effective influenza vaccines for pigs is desired. By optimizing the vector backbone and using a needle...... needle-free delivery to the skin, we immunized pigs with two different doses (500 μg and 800 μg) of an influenza DNA vaccine based on six genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase as previously demonstrated....... Two weeks following immunization, the pigs were challenged with the 2009 pandemic H1N1 virus. Results When challenged with 2009 pandemic H1N1, 0/5 vaccinated pigs (800 μg DNA) became infected whereas 5/5 unvaccinated control pigs were infected. The pigs vaccinated with the low dose (500 μg DNA) were...

  13. A DNA vaccine against yellow fever virus: development and evaluation.

    Directory of Open Access Journals (Sweden)

    Milton Maciel

    2015-04-01

    Full Text Available Attenuated yellow fever (YF virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE, aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  14. A DNA vaccine against yellow fever virus: development and evaluation.

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T A; Dhalia, Rafael

    2015-04-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies.

  15. A DNA Vaccine against Yellow Fever Virus: Development and Evaluation

    Science.gov (United States)

    Maciel, Milton; Cruz, Fábia da Silva Pereira; Cordeiro, Marli Tenório; da Motta, Márcia Archer; Cassemiro, Klécia Marília Soares de Melo; Maia, Rita de Cássia Carvalho; de Figueiredo, Regina Célia Bressan Queiroz; Galler, Ricardo; Freire, Marcos da Silva; August, Joseph Thomas; Marques, Ernesto T. A.; Dhalia, Rafael

    2015-01-01

    Attenuated yellow fever (YF) virus 17D/17DD vaccines are the only available protection from YF infection, which remains a significant source of morbidity and mortality in the tropical areas of the world. The attenuated YF virus vaccine, which is used worldwide, generates both long-lasting neutralizing antibodies and strong T-cell responses. However, on rare occasions, this vaccine has toxic side effects that can be fatal. This study presents the design of two non-viral DNA-based antigen formulations and the characterization of their expression and immunological properties. The two antigen formulations consist of DNA encoding the full-length envelope protein (p/YFE) or the full-length envelope protein fused to the lysosomal-associated membrane protein signal, LAMP-1 (pL/YFE), aimed at diverting antigen processing/presentation through the major histocompatibility complex II precursor compartments. The immune responses triggered by these formulations were evaluated in H2b and H2d backgrounds, corresponding to the C57Bl/6 and BALB/c mice strains, respectively. Both DNA constructs were able to induce very strong T-cell responses of similar magnitude against almost all epitopes that are also generated by the YF 17DD vaccine. The pL/YFE formulation performed best overall. In addition to the T-cell response, it was also able to stimulate high titers of anti-YF neutralizing antibodies comparable to the levels elicited by the 17DD vaccine. More importantly, the pL/YFE vaccine conferred 100% protection against the YF virus in intracerebrally challenged mice. These results indicate that pL/YFE DNA is an excellent vaccine candidate and should be considered for further developmental studies. PMID:25875109

  16. Assessment of Hepatitis B Virus DNA Stability in Serum by the Chiron Quantiplex Branched-DNA Assay

    Science.gov (United States)

    Krajden, Mel; Comanor, Lorraine; Rifkin, Oretta; Grigoriew, Anna; Minor, James M.; Kapke, Gordon F.

    1998-01-01

    Quantification of hepatitis B virus (HBV) DNA in serum is used to establish eligibility for treatment and to monitor therapeutic response. With the trend toward centralized testing, defining the conditions that preserve sample integrity is of paramount importance. We therefore evaluated the stability of HBV DNA in 26 previously frozen (PF) and 5 fresh, never previously frozen serum specimens. PF specimens, covering a 3-log10 HBV DNA dynamic range, were thawed and stored at −70, 4, 23, 37, and 45°C (±1.5°C) for 0, 24, 72, and 120 h (±2 h) and were refrozen at −70°C prior to testing. Five fresh specimens were split into two groups. Both group FG1 and group FG2 specimens were handled as described above; however, group FG1 specimens were subsequently maintained at 4°C and were never frozen prior to testing. Linear regression analysis of PF specimens demonstrated no significant HBV DNA degradation at ≤4°C over 5 days; however, HBV DNA levels decreased by 1.8, 3.4, and 20% per day at 23, 37, and 45°C, respectively. Three independent statistical methods confirmed that the probability of specimen failure, defined as a loss of 20% or more of HBV DNA and/or coagulation of serum, was lowest at ≤4°C and increased with temperature. Because only 10 to 20% of individual patient specimens demonstrated losses of HBV DNA of ≥20% at 23 or 37°C, sufficient numbers of serum specimens must be evaluated to determine overall statistical trends. In conclusion, HBV DNA integrity in separated serum specimens is preserved for at least 5 days when the specimens are stored at −70 or 4°C. PMID:9466745

  17. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    International Nuclear Information System (INIS)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S.; Pushko, Peter

    2014-01-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA ® platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice

  18. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice

    Energy Technology Data Exchange (ETDEWEB)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States); Jokinen, Jenny; Lukashevich, Igor S. [Department of Pharmacology and Toxicology, School of Medicine, Center for Predictive Medicine and Emerging Infectious Diseases, University of Louisville, Louisville, KY (United States); Pushko, Peter, E-mail: ppushko@medigen-usa.com [Medigen, Inc., 8420 Gas House Pike, Suite S, Frederick, MD 21701 (United States)

    2014-11-15

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. - Highlights: • The iDNA{sup ®} platform combines advantages of DNA and live attenuated vaccines. • Yellow fever (YF) 17D vaccine was launched from iDNA plasmid in vitro and in vivo. • Safety of iDNA-generated 17D virus was confirmed in AG129 mice. • BALB/c mice seroconverted after a single-dose vaccination with iDNA. • YF virus-neutralizing response was elicited in iDNA-vaccinated mice.

  19. Heterologous prime-boost vaccination with DNA and MVA vaccines, expressing HIV-1 subtype C mosaic Gag virus-like particles, is highly immunogenic in mice.

    Directory of Open Access Journals (Sweden)

    Ros Chapman

    Full Text Available In an effort to make affordable vaccines suitable for the regions most affected by HIV-1, we have constructed stable vaccines that express an HIV-1 subtype C mosaic Gag immunogen (BCG-GagM, MVA-GagM and DNA-GagM. Mosaic immunogens have been designed to address the tremendous diversity of this virus. Here we have shown that GagM buds from cells infected and transfected with MVA-GagM and DNA-GagM respectively and forms virus-like particles. Previously we showed that a BCG-GagM prime MVA-GagM boost generated strong cellular immune responses in mice. In this study immune responses to the DNA-GagM and MVA-GagM vaccines were evaluated in homologous and heterologous prime-boost vaccinations. The DNA homologous prime boost vaccination elicited predominantly CD8+ T cells while the homologous MVA vaccination induced predominantly CD4+ T cells. A heterologous DNA-GagM prime MVA-GagM boost induced strong, more balanced Gag CD8+ and CD4+ T cell responses and that were predominantly of an effector memory phenotype. The immunogenicity of the mosaic Gag (GagM was compared to a naturally occurring subtype C Gag (GagN using a DNA homologous vaccination regimen. DNA-GagN expresses a natural Gag with a sequence that was closest to the consensus sequence of subtype C viruses sampled in South Africa. DNA-GagM homologous vaccination induced cumulative HIV-1 Gag-specific IFN-γ ELISPOT responses that were 6.5-fold higher than those induced by the DNA-GagN vaccination. Similarly, DNA-GagM vaccination generated 7-fold higher levels of cytokine-positive CD8+ T cells than DNA-GagN, indicating that this subtype C mosaic Gag elicits far more potent immune responses than a consensus-type Gag. Cells transfected and infected with DNA-GagM and MVA-GagM respectively, expressed high levels of GagM and produced budding virus-like particles. Our data indicates that a heterologous prime boost regimen using DNA and MVA vaccines expressing HIV-1 subtype C mosaic Gag is highly

  20. Hepatitis B virus vaccination booster does not provide additional protection in adolescents: a cross-sectional school-based study.

    Science.gov (United States)

    Chang, Yung-Chieh; Wang, Jen-Hung; Chen, Yu-Sheng; Lin, Jun-Song; Cheng, Ching-Feng; Chu, Chia-Hsiang

    2014-09-23

    Current consensus does not support the use of a universal booster of hepatitis B virus (HBV) vaccine because there is an anamnestic response in almost all children 15 years after universal infant HBV vaccination. We aimed to provide a booster strategy among adolescents as a result of their changes in lifestyle and sexual activity. This study comprised a series of cross-sectional serological surveys of HBV markers in four age groups between 2004 and 2012. The seropositivity rates of hepatitis B surface antigen (HBsAg) and its reciprocal antibody (anti-HBs) for each age group were collected. There were two parts to this study; age-specific HBV seroepidemiology and subgroup analysis, including effects of different vaccine types, booster response for immunogenicity at 15 years of age, and longitudinal follow-up to identify possible additional protection by HBV booster. Within the study period, data on serum anti-HBs and HBsAg in a total of 6950 students from four age groups were collected. The overall anti-HBs and HBsAg seropositivity rates were 44.3% and 1.2%, respectively. The anti-HBs seropositivity rate in the plasma-derived subgroup was significantly higher in both 15- and 18-year age groups. Overall response rate in the double-seronegative recipients at 15 years of age was 92.5% at 6 weeks following one recombinant HBV booster dose. Among the 24 recipients showing anti-HBs seroconversion at 6 weeks after booster, seven subjects (29.2%) had lost their anti-HBs seropositivity again within 3 years. Increased seropositivity rates and titers of anti-HBs did not provide additional protective effects among subjects comprehensively vaccinated against HBV in infancy. HBV booster strategy at 15 years of age was the main contributor to the unique age-related phenomenon of anti-HBs seropositivity rate and titer. No increase in HBsAg seropositivity rates within different age groups was observed. Vaccination with plasma-derived HBV vaccines in infancy provided higher

  1. Toll-like receptor 7 agonist GS-9620 induces prolonged inhibition of HBV via a type I interferon-dependent mechanism.

    Science.gov (United States)

    Niu, Congrong; Li, Li; Daffis, Stephane; Lucifora, Julie; Bonnin, Marc; Maadadi, Sarah; Salas, Eduardo; Chu, Ruth; Ramos, Hilario; Livingston, Christine M; Beran, Rudolf K; Garg, Abhishek V; Balsitis, Scott; Durantel, David; Zoulim, Fabien; Delaney, William E; Fletcher, Simon P

    2018-05-01

    GS-9620, an oral agonist of toll-like receptor 7 (TLR7), is in clinical development for the treatment of chronic hepatitis B (CHB). GS-9620 was previously shown to induce prolonged suppression of serum viral DNA and antigens in the woodchuck and chimpanzee models of CHB. Herein, we investigated the molecular mechanisms that contribute to the antiviral response to GS-9620 using in vitro models of hepatitis B virus (HBV) infection. Cryopreserved primary human hepatocytes (PHH) and differentiated HepaRG (dHepaRG) cells were infected with HBV and treated with GS-9620, conditioned media from human peripheral blood mononuclear cells treated with GS-9620 (GS-9620 conditioned media [GS-9620-CM]), or other innate immune stimuli. The antiviral and transcriptional response to these agents was determined. GS-9620 had no antiviral activity in HBV-infected PHH, consistent with low level TLR7 mRNA expression in human hepatocytes. In contrast, GS-9620-CM induced prolonged reduction of HBV DNA, RNA, and antigen levels in PHH and dHepaRG cells via a type I interferon (IFN)-dependent mechanism. GS-9620-CM did not reduce covalently closed circular DNA (cccDNA) levels in either cell type. Transcriptional profiling demonstrated that GS-9620-CM strongly induced various HBV restriction factors - although not APOBEC3A or the Smc5/6 complex - and indicated that established HBV infection does not modulate innate immune sensing or signaling in cryopreserved PHH. GS-9620-CM also induced expression of immunoproteasome subunits and enhanced presentation of an immunodominant viral peptide in HBV-infected PHH. Type I IFN induced by GS-9620 durably suppressed HBV in human hepatocytes without reducing cccDNA levels. Moreover, HBV antigen presentation was enhanced, suggesting additional components of the TLR7-induced immune response played a role in the antiviral response to GS-9620 in animal models of CHB. GS-9620 is a drug currently being tested in clinical trials for the treatment of chronic

  2. Protecting health workers from nosocomial Hepatitis B infections: A review of strategies and challenges for implementation of Hepatitis B vaccination among health workers in Sub-Saharan Africa.

    Science.gov (United States)

    Malewezi, Bridget; Omer, Saad B; Mwagomba, Beatrice; Araru, Trish

    2016-12-01

    The Sub-Saharan region has the highest Hepatitis B virus (HBV) rates, and health workers are at an increased risk of contracting nosocomial HBV infection. Vaccination of health workers plays a critical role in protecting them from sequelae of HBV; however, health-worker vaccination remains a challenge for many countries. This study was conducted to review practices/measures and challenges in the Sub-Saharan region relating to vaccination of health workers against HBV. We performed a literature review of articles addressing any aspect of HBV vaccination of health workers in the Sub-Saharan region sourced from PubMed, Embase, and Web of Science, including a case study of Malawi policies and strategies in training institutions and facilities. Our findings indicated that HBV awareness and vaccination were relatively high, but vaccination rates were lower, with 4.6-64.4% of those "ever vaccinated" completing the vaccination regimen. There was also great variation in the proportion of health workers exhibiting natural immunity from previous exposure (positive for anti-Hepatitis B core antibodies; 41-92%). Commonly cited reasons for non-uptake of vaccine included cost, lack of awareness of vaccine availability, and inadequate information concerning the vaccine. Countries in this region will require locally relevant data to develop cost-effective strategies that maximize the benefit to their health workers due to the great diversity of HBV epidemiology in the region. Copyright © 2016 Ministry of Health, Saudi Arabia. Published by Elsevier Ltd. All rights reserved.

  3. DNA Polymerase κ Is a Key Cellular Factor for the Formation of Covalently Closed Circular DNA of Hepatitis B Virus.

    Directory of Open Access Journals (Sweden)

    Yonghe Qi

    2016-10-01

    Full Text Available Hepatitis B virus (HBV infection of hepatocytes begins by binding to its cellular receptor sodium taurocholate cotransporting polypeptide (NTCP, followed by the internalization of viral nucleocapsid into the cytoplasm. The viral relaxed circular (rc DNA genome in nucleocapsid is transported into the nucleus and converted into covalently closed circular (ccc DNA to serve as a viral persistence reservoir that is refractory to current antiviral therapies. Host DNA repair enzymes have been speculated to catalyze the conversion of rcDNA to cccDNA, however, the DNA polymerase(s that fills the gap in the plus strand of rcDNA remains to be determined. Here we conducted targeted genetic screening in combination with chemical inhibition to identify the cellular DNA polymerase(s responsible for cccDNA formation, and exploited recombinant HBV with capsid coding deficiency which infects HepG2-NTCP cells with similar efficiency of wild-type HBV to assure cccDNA synthesis is exclusively from de novo HBV infection. We found that DNA polymerase κ (POLK, a Y-family DNA polymerase with maximum activity in non-dividing cells, substantially contributes to cccDNA formation during de novo HBV infection. Depleting gene expression of POLK in HepG2-NTCP cells by either siRNA knockdown or CRISPR/Cas9 knockout inhibited the conversion of rcDNA into cccDNA, while the diminished cccDNA formation in, and hence the viral infection of, the knockout cells could be effectively rescued by ectopic expression of POLK. These studies revealed that POLK is a crucial host factor required for cccDNA formation during a de novo HBV infection and suggest that POLK may be a potential target for developing antivirals against HBV.

  4. Protective Immunity Induced by DNA Vaccination against Ranavirus Infection in Chinese Giant Salamander Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Zhong-Yuan Chen

    2018-01-01

    Full Text Available Andrias davidianus ranavirus (ADRV is an emerging viral pathogen that causes severe systemic hemorrhagic disease in Chinese giant salamanders. There is an urgent need for developing an effective vaccine against this fatal disease. In this study, DNA vaccines containing the ADRV 2L gene (pcDNA-2L and the 58L gene (pcDNA-58L were respectively constructed, and their immune protective effects were evaluated in Chinese giant salamanders. In vitro and in vivo expression of the vaccine plasmids were confirmed in transfected cells and muscle tissues of vaccinated Chinese giant salamanders by using immunoblot analysis or RT-PCR. Following ADRV challenge, the Chinese giant salamanders vaccinated with pcDNA-2L showed a relative percent survival (RPS of 66.7%, which was significant higher than that in Chinese giant salamanders immunized with pcDNA-58L (RPS of 3.3%. Moreover, the specific antibody against ADRV was detected in Chinese giant salamanders vaccinated with pcDNA-2L at 14 and 21 days post-vaccination by indirect enzyme-linked immunosorbent assay (ELISA. Transcriptional analysis revealed that the expression levels of immune-related genes including type I interferon (IFN, myxovirus resistance (Mx, major histocompatibility complex class IA (MHC IA, and immunoglobulin M (IgM were strongly up-regulated after vaccination with pcDNA-2L. Furthermore, vaccination with pcDNA-2L significantly suppressed the virus replication, which was seen by a low viral load in the spleen of Chinese giant salamander survivals after ADRV challenge. These results indicated that pcDNA-2L could induce a significant innate immune response and an adaptive immune response involving both humoral and cell-mediated immunity that conferred effective protection against ADRV infection, and might be a potential vaccine candidate for controlling ADRV disease in Chinese giant salamanders.

  5. Effective compounds screening from Rabdosia serra (Maxim) Hara against HBV and tumor in vitro.

    Science.gov (United States)

    Chen, Cheng; Chen, Yang; Zhu, Hongyuan; Xiao, Yiyun; Zhang, Xiuzhen; Zhao, Jingfeng; Chen, Yuxiang

    2014-01-01

    The aim of this study was to screen and investigate the anti-HBV and anti-tumor activities of separated compounds from Rabdosia serra (Maxim.) Hara to lay the basis for further isolate active entity. Three kinds of extractions from Rabdosia serra using different solvents (petroleum ether, acetidin, butyl alcohol) were prepared and used to analyze their anti-HBV activity in HepG2.2.15 cells for further separation. The cytotoxicity of each extraction was tested by MTT assay, the levels of HBsAg, HBeAg and HBV DNA in supernatants from HepG2.2.15 cells were detected by ELISA and real-time quantitative polymerase chain reaction (PCR). Then, the most effective extraction was further separated, the anti-HBV activities of separated compounds were also tested by MTT and ELISA, and three compounds with highest cytotoxicity were selected to further identify their anti-tumor activities on MCF-7, BGC-823 and HepG2 cells. Acetidin extraction C2 had the most effective anti-HBV activity that was used to be further separated, it led to statistically significant reduction in HBsAg and HBeAg secretion and HBV DNA. The separation of C2 resulted in 14 compounds, A3 and A5 markedly inhibited HBsAg secretion, while A9 inhibited HBeAg secretion in a dose-dependent manner with higher TI comparing with C2. A6, A7, A11 had different anti-tumor activity against different tumor cells. These data showed that the extraction and their separated effective compounds had strong inhibitory effect on HBV replication so as to have anti-HBV activity, and further separation and purification could enhance anti-HBV activity. Meanwhile, some compounds have high cytotoxicities on different tumor cells. Our study could provide a theoretical basis for the next clinical use and the development of potential and efficient drugs for HBV and tumor therapy from Rabdosia serra.

  6. A new series of HAPs as anti-HBV agents targeting at capsid assembly.

    Science.gov (United States)

    Yang, Xiu-yan; Xu, Xiao-qian; Guan, Hua; Wang, Li-li; Wu, Qin; Zhao, Guo-ming; Li, Song

    2014-09-01

    A series of novel Heteroaryldihydropyrimidines (HAPs) derivatives were designed and synthesized as potent inhibitors of HBV capsid assembly. These compounds were prepared from efforts to optimize an earlier series of HAPs, and compounds Mo1, Mo7, Mo8, Mo10, Mo12, and Mo13 demonstrated potent inhibition of HBV DNA replication at submicromolar range. Copyright © 2014. Published by Elsevier Ltd.

  7. Rapid DNA vaccination against Burkholderia pseudomallei flagellin by tattoo or intranasal application.

    Science.gov (United States)

    Lankelma, Jacqueline M; Wagemakers, Alex; Birnie, Emma; Haak, Bastiaan W; Trentelman, Jos J A; Weehuizen, Tassili A F; Ersöz, Jasmin; Roelofs, Joris J T H; Hovius, Joppe W; Wiersinga, W Joost; Bins, Adriaan D

    2017-11-17

    Melioidosis is a severe infectious disease with a high mortality that is endemic in South-East Asia and Northern Australia. The causative pathogen, Burkholderia pseudomallei, is listed as potential bioterror weapon due to its high virulence and potential for easy dissemination. Currently, there is no licensed vaccine for prevention of melioidosis. Here, we explore the use of rapid plasmid DNA vaccination against B. pseudomallei flagellin for protection against respiratory challenge. We tested three flagellin DNA vaccines with different subcellular targeting designs. C57BL/6 mice were vaccinated via skin tattoo on day 0, 3 and 6 before intranasal challenge with B. pseudomallei on day 21. Next, the most effective construct was used as single vaccination on day 0 by tattoo or intranasal formulation. Mice were sacrificed 72 hours post-challenge to assess bacterial loads, cytokine responses, inflammation and microscopic lesions. A construct encoding a cellular secretion signal resulted in the most effective protection against melioidosis via tattooing, with a 10-fold reduction in bacterial loads in lungs and distant organs compared to the empty vector. Strikingly, a single intranasal administration of the same vaccine resulted in >1000-fold lower bacterial loads and increased survival. Pro-inflammatory cytokine responses were significantly diminished and strong reductions in markers for distant organ damage were observed. A rapid vaccination scheme using flagellin DNA tattoo provides significant protection against intranasal challenge with B. pseudomallei, markedly improved by a single administration via airway mucosa. Hence intranasal vaccination with flagellin-encoding DNA may be applicable when acute mass vaccination is indicated and warrants further testing.

  8. A window of opportunity: declining rates of hepatitis B virus infection among injection drug users in Rio de Janeiro, and prospects for targeted hepatitis B vaccination.

    Science.gov (United States)

    Oliveira, Sabrina A N; Hacker, Mariana A; Oliveira, M Lourdes A; Yoshida, Clara F T; Telles, Paulo R; Bastos, Francisco I

    2005-01-01

    To measure hepatitis B virus (HBV) infection rates among injection drug users in Rio de Janeiro, Brazil, and to report their knowledge of and attitudes toward hepatitis and HBV vaccination. 609 injection drug users recruited in Rio de Janeiro between 1999 and 2001 answered a questionnaire and were tested for hepatitis B and other blood-borne infections. Questions covered sociodemographic information, alcohol and illicit drug consumption, drug injection and sexual practices, medical history, and knowledge about HIV, AIDS and viral hepatitis. The prevalence of HBV infection was 27.1%, with 3.4% of the sample positive for HbsAg (active infection) and 0.8% positive for anti-HBs (indicating previous HBV vaccination). Most interviewees (81.3%) were aware of at least one form of viral hepatitis and received information from many different sources. In agreement with laboratory findings, 96.7% of the interviewees stated they had never been vaccinated against hepatitis B, but almost all unvaccinated interviewees (97.8%) said they would volunteer to be vaccinated if HBV vaccination were available. Few of the injection drug users surveyed had ever been vaccinated against HBV. Although most were aware of the risks posed by viral hepatitis, this awareness seldom translated into consistent behavioral change. The participants' willingness to be vaccinated against HBV suggests that the implementation of vaccination for this population may help decrease rates of hepatitis B infection.

  9. Safety and immunogenicity of a modified process hepatitis B vaccine in healthy neonates.

    Science.gov (United States)

    Minervini, Gianmaria; McCarson, Barbara J; Reisinger, Keith S; Martin, Jason C; Stek, Jon E; Atkins, Barbara M; Nadig, Karin B; Liska, Vladimir; Schödel, Florian P; Bhuyan, Prakash K

    2012-02-14

    A manufacturing process using a modified adjuvant was developed to optimize the consistency and immunogenicity for recombinant hepatitis B vaccine (control: RECOMBIVAX-HB™). This modified process hepatitis B vaccine (mpHBV), which was previously shown to have an acceptable safety and immunogenicity profile in young adults, has now been studied in newborn infants. Healthy 1-10-day-old neonates (N=566) received 3 intramuscular doses (5μg hepatitis B surface antigen [HBsAg] per dose) of either mpHBV or control at Day 1, and Months 1 and 6. Serum antibody to HBsAg (anti-HBs) was assayed at Month 7 (1 month Postdose 3). Anti-HBs geometric mean titers (GMTs) and seroprotection rates (SPRs) (% of subjects with an anti-HBs titer ≥10mIU/mL) were compared at Month 7. After each dose, injection-site adverse experiences (AEs) and axillary temperatures were recorded for 5 days; systemic AEs were recorded for Days 1-14. Month 7 SPR was 97.9% for the mpHBV group and 98.9% for the control. The GMT was 843.7mIU/mL for the mpHBV group and 670.1mIU/mL for the control. The GMT ratio (mpHBV/control) was 1.26 (95% confidence interval [CI]: 0.94, 1.69), meeting the prespecified non-inferiority criteria. The percentages of subjects reporting any AE, injection-site AEs, or systemic AEs were similar across the 2 vaccination groups. There were no serious AEs. The safety profile of mpHBV was comparable to that of the control vaccine. The geometric mean antibody titer for mpHBV was higher than control vaccine in this infant population, but the difference did not meet the predefined statistical criterion for superiority. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Reduced Hepatitis B Virus (HBV)-Specific CD4+ T-Cell Responses in Human Immunodeficiency Virus Type 1-HBV-Coinfected Individuals Receiving HBV-Active Antiretroviral Therapy

    OpenAIRE

    Chang, J. Judy; Wightman, Fiona; Bartholomeusz, Angeline; Ayres, Anna; Kent, Stephen J.; Sasadeusz, Joseph; Lewin, Sharon R.

    2005-01-01

    Functional hepatitis B virus (HBV)-specific T cells are significantly diminished in individuals chronically infected with HBV compared to individuals with self-limiting HBV infection or those on anti-HBV therapy. In individuals infected with human immunodeficiency virus type 1 (HIV-1), coinfection with HBV is associated with an increased risk of worsening liver function following antiviral therapy and of more rapid HBV disease progression. Total HBV-specific T-cell responses in subjects with ...

  11. Hepatitis B surface antigen concentrations in patients with HIV/HBV co-infection.

    Directory of Open Access Journals (Sweden)

    Jerzy Jaroszewicz

    Full Text Available HBsAg clearance is associated with clinical cure of chronic hepatitis B virus (HBV infection. Quantification of HBsAg may help to predict HBsAg clearance during the natural course of HBV infection and during antiviral therapy. Most studies investigating quantitative HBsAg were performed in HBV mono-infected patients. However, the immune status is considered to be important for HBsAg decline and subsequent HBsAg loss. HIV co-infection unfavorably influences the course of chronic hepatitis B. In this cross-sectional study we investigated quantitative HBsAg in 173 HBV/HIV co-infected patients from 6 centers and evaluated the importance of immunodeficiency and antiretroviral therapy. We also compared 46 untreated HIV/HBV infected patients with 46 well-matched HBV mono-infected patients. HBsAg levels correlated with CD4 T-cell count and were higher in patients with more advanced HIV CDC stage. Patients on combination antiretroviral therapy (cART including nucleos(tide analogues active against HBV demonstrated significant lower HBsAg levels compared to untreated patients. Importantly, HBsAg levels were significantly lower in patients who had a stronger increase between nadir CD4 and current CD4 T-cell count during cART. Untreated HIV/HBV patients demonstrated higher HBsAg levels than HBV mono-infected patients despite similar HBV DNA levels. In conclusion, HBsAg decline is dependent on an effective immune status. Restoration of CD4 T-cells during treatment with cART including nucleos(tide analogues seems to be important for HBsAg decrease and subsequent HBsAg loss.

  12. T cell--associated immunoregulation and antiviral effect of oxymatrine in hydrodynamic injection HBV mouse model.

    Science.gov (United States)

    Sang, Xiuxiu; Wang, Ruilin; Han, Yanzhong; Zhang, Cong'en; Shen, Honghui; Yang, Zhirui; Xiong, Yin; Liu, Huimin; Liu, Shijing; Li, Ruisheng; Yang, Ruichuang; Wang, Jiabo; Wang, Xuejun; Bai, Zhaofang; Xiao, Xiaohe

    2017-05-01

    Although oxymatrine (OMT) has been shown to directly inhibit the replication of hepatitis B virus (HBV) in vitro , limited research has been done with this drug in vivo . In the present study, the antiviral effect of OMT was investigated in an immunocompetent mouse model of chronic HBV infection. The infection was achieved by tail vein injection of a large volume of DNA solution. OMT (2.2, 6.7 and 20 mg/kg) was administered by daily intraperitoneal injection for 6 weeks. The efficacy of OMT was evaluated by the levels of HBV DNA, hepatitis B surface antigen (HBsAg), hepatitis B e antigen (HBeAg) and hepatitis B core antigen (HBcAg). The immunoregulatory activity of OMT was evaluated by serum ELISA and flow cytometry. Results shows that OMT at 20 mg/kg inhibited HBV replication, and it was more efficient than entecavir (ETV) in the elimination of serum HBsAg and intrahepatic HBcAg. In addition, OMT accelerated the production of interferon- γ (IFN- γ ) in a dose-dependent manner in CD4 + T cells. Our findings demonstrate the beneficial effects of OMT on the enhancement of immunological function and in the control of HBV antigens. The findings suggest this drug to be a good antiviral therapeutic candidate for the treatment of HBV infection.

  13. Saccharomyces boulardii improves humoral immune response to DNA vaccines against leptospirosis.

    Science.gov (United States)

    Silveira, Marcelle Moura; Conceição, Fabricio Rochedo; Mendonça, Marcelo; Moreira, Gustavo Marçal Schmidt Garcia; Da Cunha, Carlos Eduardo Pouey; Conrad, Neida Lucia; Oliveira, Patrícia Diaz de; Hartwig, Daiane Drawanz; De Leon, Priscila Marques Moura; Moreira, Ângela Nunes

    2017-02-01

    Saccharomyces boulardii may improve the immune response by enhancing the production of anti-inflammatory cytokines, T-cell proliferation and dendritic cell activation. The immunomodulator effect of this probiotic has never been tested with DNA vaccines, which frequently induce low antibody titers. This study evaluated the capacity of Saccharomyces boulardii to improve the humoral and cellular immune responses using DNA vaccines coding for the leptospiral protein fragments LigAni and LigBrep. BALB/c mice were fed with rodent-specific feed containing 108 c.f.u. of Saccharomycesboulardii per gram. Animals were immunized three times intramuscularly with 100 µg of pTARGET plasmids containing the coding sequences for the above mentioned proteins. Antibody titers were measured by indirect ELISA. Expression levels of IL-4, IL-10, IL-12, IL-17, IFN-γ and TGF-β were determined by quantitative real-time PCR from RNA extracted from whole blood, after an intraperitoneal boost with 50 µg of the recombinant proteins.Results/Key findings. Antibody titers increased significantly after the second and third application when pTARGET/ligAni and pTARGET/ligBrep were used to vaccinate the animals in comparison with the control group (PSaccharomyces boulardii. The results suggested that Saccharomyces boulardii has an immunomodulator effect in DNA vaccines, mainly by stimulating the humoral response, which is often limited in this kind of vaccine. Therefore, the use of Saccharomyces boulardii as immunomodulator represents a new alternative strategy for more efficient DNA vaccination.

  14. Engineering nanoparticle-coated bacteria as oral DNA vaccines for cancer immunotherapy.

    Science.gov (United States)

    Hu, Qinglian; Wu, Min; Fang, Chun; Cheng, Changyong; Zhao, Mengmeng; Fang, Weihuan; Chu, Paul K; Ping, Yuan; Tang, Guping

    2015-04-08

    Live attenuated bacteria are of increasing importance in biotechnology and medicine in the emerging field of cancer immunotherapy. Oral DNA vaccination mediated by live attenuated bacteria often suffers from low infection efficiency due to various biological barriers during the infection process. To this end, we herein report, for the first time, a new strategy to engineer cationic nanoparticle-coated bacterial vectors that can efficiently deliver oral DNA vaccine for efficacious cancer immunotherapy. By coating live attenuated bacteria with synthetic nanoparticles self-assembled from cationic polymers and plasmid DNA, the protective nanoparticle coating layer is able to facilitate bacteria to effectively escape phagosomes, significantly enhance the acid tolerance of bacteria in stomach and intestines, and greatly promote dissemination of bacteria into blood circulation after oral administration. Most importantly, oral delivery of DNA vaccines encoding autologous vascular endothelial growth factor receptor 2 (VEGFR2) by this hybrid vector showed remarkable T cell activation and cytokine production. Successful inhibition of tumor growth was also achieved by efficient oral delivery of VEGFR2 with nanoparticle-coated bacterial vectors due to angiogenesis suppression in the tumor vasculature and tumor necrosis. This proof-of-concept work demonstrates that coating live bacterial cells with synthetic nanoparticles represents a promising strategy to engineer efficient and versatile DNA vaccines for the era of immunotherapy.

  15. Induction of protective and therapeutic anti-pancreatic cancer immunity using a reconstructed MUC1 DNA vaccine

    International Nuclear Information System (INIS)

    Rong, Yefei; Jin, Dayong; Wu, Wenchuan; Lou, Wenhui; Wang, Danshong; Kuang, Tiantao; Ni, Xiaoling; Qin, Xinyu

    2009-01-01

    Pancreatic cancer is a common, highly lethal disease with a rising incidence. MUC1 is a tumor-associated antigen that is over-expressed in pancreatic adenocarcinoma. Active immunotherapy that targets MUC1 could have great treatment value. Here we investigated the preventive and therapeutic effect of a MUC1 DNA vaccine on the pancreatic cancer. MUC1-various tandem repeat units(VNTR) DNA vaccine was produced by cloning one repeat of VNTR and inserting the cloned gene into the pcDNA3.1. In the preventive group, female C57BL/6 mice were immunized with the vaccine, pcDNA3.1 or PBS; and challenged with panc02-MUC1 or panc02 cell. In the therapeutic group the mice were challenged with panc02-MUC1 or panc02 cell, and then immunized with the vaccine, pcDNA3.1 or PBS. The tumor size and the survival time of the animals were compared between these groups. The DNA vaccine pcDNA3.1-VNTR could raise cytotoxic T lymphocyte (CTL) activity specific for MUC1. In the preventive experiment, the mice survival time was significantly longer in the vaccine group than in the control groups (P < 0.05). In the therapeutic experiment, the DNA vaccine prolonged the survival time of the panc02-MUC1-bearing mice (P < 0.05). In both the preventive and therapeutic experiments, the tumor size was significantly less in the vaccine group than in the control groups (P < 0.05). This pcDNA3.1-VNTR vaccine, however, could not prevent the mice attacked by panc02 cells and had no therapeutic effect on the mice attacked by panc02 cells. The MUC1 DNA vaccine pcDNA3.1-VNTR could induce a significant MUC1-specific CTL response; and had both prophylactic and therapeutic effect on panc02-MUC1 tumors. This vaccine might be used as a new adjuvant strategy against pancreatic cancer

  16. A European multicenter study on the analytical performance of the VERIS HBV assay.

    Science.gov (United States)

    Braun, Patrick; Delgado, Rafael; Drago, Monica; Fanti, Diana; Fleury, Hervé; Izopet, Jacques; Lombardi, Alessandra; Mancon, Alessandro; Marcos, Maria Angeles; Sauné, Karine; O Shea, Siobhan; Pérez-Rivilla, Alfredo; Ramble, John; Trimoulet, Pascale; Vila, Jordi; Whittaker, Duncan; Artus, Alain; Rhodes, Daniel

    Hepatitis B viral load monitoring is an essential part of managing patients with chronic Hepatits B infection. Beckman Coulter has developed the VERIS HBV Assay for use on the fully automated Beckman Coulter DxN VERIS Molecular Diagnostics System. 1 OBJECTIVES: To evaluate the analytical performance of the VERIS HBV Assay at multiple European virology laboratories. Precision, analytical sensitivity, negative sample performance, linearity and performance with major HBV genotypes/subtypes for the VERIS HBV Assay was evaluated. Precision showed an SD of 0.15 log 10 IU/mL or less for each level tested. Analytical sensitivity determined by probit analysis was between 6.8-8.0 IU/mL. Clinical specificity on 90 unique patient samples was 100.0%. Performance with 754 negative samples demonstrated 100.0% not detected results, and a carryover study showed no cross contamination. Linearity using clinical samples was shown from 1.23-8.23 log 10 IU/mL and the assay detected and showed linearity with major HBV genotypes/subtypes. The VERIS HBV Assay demonstrated comparable analytical performance to other currently marketed assays for HBV DNA monitoring. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Ebola Vaccination Using a DNA Vaccine Coated on PLGA-PLL/γPGA Nanoparticles Administered Using a Microneedle Patch.

    Science.gov (United States)

    Yang, Hung-Wei; Ye, Ling; Guo, Xin Dong; Yang, Chinglai; Compans, Richard W; Prausnitz, Mark R

    2017-01-01

    Ebola DNA vaccine is incorporated into PLGA-PLL/γPGA nanoparticles and administered to skin using a microneedle (MN) patch. The nanoparticle delivery system increases vaccine thermostability and immunogenicity compared to free vaccine. Vaccination by MN patch produces stronger immune responses than intramuscular administration. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. The cost-effectiveness of two strategies for vaccinating US veterans with hepatitis C virus infection against hepatitis A and hepatitis B viruses.

    Science.gov (United States)

    Jakiche, Rita; Borrego, Matthew E; Raisch, Dennis W; Gupchup, Gireesh V; Pai, Manjunath A; Jakiche, Antoine

    2007-01-01

    Although hepatitis A and B vaccinations are recommended for patients with chronic hepatitis C virus (HCV), the ideal vaccination strategy has not been determined. Our objective was to model the cost-effectiveness of two strategies for vaccinating patients with HCV infection against hepatitis A (HAV) and hepatitis B (HBV) viruses. The strategies evaluated were: universal vaccination with the combined HAV and HBV vaccine, and selective vaccination based on immunity determined by blood testing. A decision tree model was constructed to compare the cost-effectiveness of the two vaccination strategies from the New Mexico Veterans Affairs Health Care System (NMVAHCS) perspective. A retrospective review of all HCV patients (2517 subjects) at the NMVAHCS was performed to extract prevalence of immunity to HAV and HBV, and prevalence of decompensated liver disease. Literature review was performed to obtain other probabilities for the model. Only direct medical costs were considered; the effectiveness measure was the number of patients immune to both HAV and HBV. Sensitivity analyses were performed to test robustness of the results to changes in input variables. All costs were in 2004 US dollars. The selective strategy was less costly but less effective, with a cost-effectiveness ratio of 105 dollars per patient immune to HAV and HBV. The universal strategy was more effective but more expensive with a cost-effectiveness ratio of 112 dollars per patient immune to HAV and HBV. Compared with the selective strategy, universal strategy was associated with an incremental cost-effectiveness (ICE) ratio of 154 dollars per additional patient immune to HAV and HBV. The universal strategy would become more cost-effective if 1) the cost of combined vaccine was reduced to less than 30.75 dollars (9.7% reduction), 2) the cost of HBV vaccine increased to greater than 34.50 dollars (25% increase), 3) the cost of blood tests for immunity increased to more than 25.25 dollars (23% increase), or

  19. 78 FR 29698 - Availability of an Environmental Assessment for Field Testing a Canine Lymphoma Vaccine, DNA

    Science.gov (United States)

    2013-05-21

    ...] Availability of an Environmental Assessment for Field Testing a Canine Lymphoma Vaccine, DNA AGENCY: Animal and... Canine Lymphoma Vaccine, DNA. The environmental assessment, which is based on a risk analysis prepared to... biological product: Requester: Merial, Inc. Product: Canine Lymphoma Vaccine, DNA. Possible Field Test...

  20. Gene-gun DNA vaccination aggravates respiratory syncytial virus-induced pneumonitis

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Olszewska, Wieslawa; Stryhn, Anette

    2004-01-01

    elicited with recombinant vaccinia virus expressing the complete RSV M2 protein, but stronger than those induced by a similar DNA construct without the beta2m gene. DNA vaccination led to enhanced pulmonary disease after RSV challenge, with increased weight loss and cell recruitment to the lung. Depletion......A CD8+ T-cell memory response to respiratory syncytial virus (RSV) was generated by using a DNA vaccine construct encoding the dominant Kd-restricted epitope from the viral transcription anti-terminator protein M2 (M2(82-90)), linked covalently to human beta2-microglobulin (beta2m). Cutaneous gene...... of CD8+ T cells reduced, but did not abolish, enhancement of disease. Mice vaccinated with a construct encoding a class I-restricted lymphocytic choriomeningitis virus epitope and beta2m suffered more severe weight loss after RSV infection than unvaccinated RSV-infected mice, although RSV-specific CD8...

  1. Superior induction of T cell responses to conserved HIV-1 regions by electroporated alphavirus replicon DNA compared to that with conventional plasmid DNA vaccine.

    Science.gov (United States)

    Knudsen, Maria L; Mbewe-Mvula, Alice; Rosario, Maximillian; Johansson, Daniel X; Kakoulidou, Maria; Bridgeman, Anne; Reyes-Sandoval, Arturo; Nicosia, Alfredo; Ljungberg, Karl; Hanke, Tomás; Liljeström, Peter

    2012-04-01

    Vaccination using "naked" DNA is a highly attractive strategy for induction of pathogen-specific immune responses; however, it has been only weakly immunogenic in humans. Previously, we constructed DNA-launched Semliki Forest virus replicons (DREP), which stimulate pattern recognition receptors and induce augmented immune responses. Also, in vivo electroporation was shown to enhance immune responses induced by conventional DNA vaccines. Here, we combine these two approaches and show that in vivo electroporation increases CD8(+) T cell responses induced by DREP and consequently decreases the DNA dose required to induce a response. The vaccines used in this study encode the multiclade HIV-1 T cell immunogen HIVconsv, which is currently being evaluated in clinical trials. Using intradermal delivery followed by electroporation, the DREP.HIVconsv DNA dose could be reduced to as low as 3.2 ng to elicit frequencies of HIV-1-specific CD8(+) T cells comparable to those induced by 1 μg of a conventional pTH.HIVconsv DNA vaccine, representing a 625-fold molar reduction in dose. Responses induced by both DREP.HIVconsv and pTH.HIVconsv were further increased by heterologous vaccine boosts employing modified vaccinia virus Ankara MVA.HIVconsv and attenuated chimpanzee adenovirus ChAdV63.HIVconsv. Using the same HIVconsv vaccines, the mouse observations were supported by an at least 20-fold-lower dose of DNA vaccine in rhesus macaques. These data point toward a strategy for overcoming the low immunogenicity of DNA vaccines in humans and strongly support further development of the DREP vaccine platform for clinical evaluation.

  2. Clinical Characteristics and Correlation Analysis of Subjects with Chronic Hepatitis B Virus (HBV) Infection and Sustained Low Levels of Hepatitis B Surface Antigen (HBsAg)

    Science.gov (United States)

    Cheng, Jun; Dai, Yuzhu; Yan, Li; Zhou, Huajun; Xu, Xujian

    2018-01-01

    Background The aim of this study was to investigate the clinical characteristics of individuals with chronic hepatitis B virus (HBV) infection with persistent low levels of hepatitis B surface antigen (HBsAg) and to undertake a correlation analysis of the clinical characteristics. Material/Methods The study included 1,204 subjects with chronic HBV infection. Serum HBsAg, HBV envelope antigen (HBeAg), and HBV core antigen (HBcAg) levels were measured using the chemiluminescent microparticle immunoassay (CMIA) and the neutralization test. HBV DNA was measured using real-time fluorescence quantitative polymerase chain reaction (RT-FQ-PCR). Results There were 1,023 subjects in the high-level HBsAg group (HBsAg level ≥10 IU/mL) and 181 subjects in the low-level HBsAg group (HBsAg level HBV-M2), and the asymptomatic carrier (ASC) status was 98.34%. The low-level HBsAg group had a lower HBV DNA-positive rate compared with the high-level HBsAg group (40.33% vs. 75.07%), with a normal distribution across all age groups (P>0.05). The low-level HBsAg group included an older age group. A low-level of HBsAg was positively correlated with a low level of replication of HBV DNA (r=0.452). Conclusions The findings of this study showed that individuals with chronic HBV infection and sustained low-levels of HBsAg were an older population and had a lower level of replicating HBV DNA when compared with individuals with high levels of HBsAg, and the majority (93.7%) were also HBsAg and HBeAg and HBcAg-positive. PMID:29593208

  3. Factors associated with HIV and HBV co-infection in Northern Thailand

    Directory of Open Access Journals (Sweden)

    Tawatchai Apidechkul

    2016-03-01

    Full Text Available Objective: To identify factors associated with HIV and hepatitis B virus (HBV co-infection in Northern Thailand. Methods: We tested 355 newly diagnosed HIV-infected subjects for hepatitis B surface antigen, hepatitis B surface antibody, and hepatitis B core antibody by using immunochromatographic and ELISA methods. Cases were positive for one or more of the HBV markers and controls were negative for all HBV markers. All study subjects were asked to complete a questionnaire to identify the associations between variables. We used logistic regression model to evaluate the associations between demographic and behavioral variables and HIV/HBV co-infection. Results: A total of 41 cases and 83 controls were suitable to analyze in the study. Among them, 15.0% were males, 40.3% were 30–39 years old, 62.9% were married, 18.6% were illiterate and 89.5% were employed. Besides, 26 cases (23.4% had a history of a blood transfusion, 12.9% had a history of jaundice, 29.0% had a CD4 cell count ≤ 200 cells/mm3, 0.8% were intravenous drug user, 29.8% tattooed, 64.5% had a body piercing, 12.1% were commercial sex workers, 11.3% had first sexual intercourse at age ≤ 15 years old, 6.5% were homosexual, and no one had a history of HBV vaccination. After controlling for all possible confounder factors in the multiple logistic regression model, we found two factors associated with HIV/ HBV co-infection: number of years in school and CD4 cell count. Subjects with no education were more likely to have HIV/HBV co-infection, which was 7.07 times (odds ratio = 7.07, 95% confidence interval = 1.77–28.24 greater than those with 7 years of education group. Subjects with CD4 count ≤ 200 cells/mm3 were less likely to have HIV/HBV co-infection than those with a CD count ≥ 200 cells/mm3 (odds ratio = 0.35, 95% confidence interval = 0.13–0.94. Conclusions: Our findings suggest that having a good education and having a good immune status are a protective factor of HIV/HBV

  4. Strategies to overcome HBV-specific T cell exhaustion: checkpoint inhibitors and metabolic re-programming.

    Science.gov (United States)

    Fisicaro, Paola; Boni, Carolina; Barili, Valeria; Laccabue, Diletta; Ferrari, Carlo

    2018-01-29

    HBV-specific T cells play a key role in antiviral protection and failure to control HBV is associated with severely dysfunctional T cell responses. Therefore, functional T cell reconstitution represents a potential way to treat chronically infected patients. The growing understanding of the dysregulated transcriptional/epigenetic and metabolic programs underlying T cell exhaustion allows to envisage functional T cell reconstitution strategies based on the combined/sequential use of compounds able to induce decline of antigen load, checkpoint modulation, metabolic and epigenetic reprogramming with possible boosting of functionally restored responses by specific vaccines. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. Canine distemper virus DNA vaccination of mink can overcome interference by maternal antibodies.

    Science.gov (United States)

    Jensen, Trine Hammer; Nielsen, Line; Aasted, Bent; Pertoldi, Cino; Blixenkrone-Møller, Merete

    2015-03-10

    Canine distemper virus (CDV) is highly contagious and can cause severe disease against which conventional live vaccines are ineffective in the presence of maternal antibodies. Vaccination in the presences of maternal antibodies was challenged by vaccination of 5 days old and 3 weeks old mink kits with CDV DNA vaccines. Virus neutralising (VN) antibody responses were induced in mink kits vaccinated with a plasmid encoding the haemaglutinin protein (H) of CDV (n=5, pCDV-H) or a combination of the H, fusion (F) and nucleoprotein (N) of CDV (n=5, pCDV-HFN). These DNA vaccinated kits were protected against virulent experimental infection with field strains of CDV. The pCDV-H was more efficient in inducing protective immunity in the presence of maternal antibodies compared to the pCDV-HFN. The results show that DNA vaccination with the pCDV-H or pCDV-HFN (n=4) only given once at 5 days of age induces virus specific immune response in neonatal mink and protection against virulent CDV exposure later in life. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Tailoring DNA vaccines: designing strategies against HER2 positive cancers

    Directory of Open Access Journals (Sweden)

    Cristina eMarchini

    2013-05-01

    Full Text Available The crucial role of HER2 in epithelial transformation and its selective overexpression on cancer tissues makes it an ideal target for cancer immunotherapies such as passive immunotherapy with Trastuzumab. There are, however, a number of concerns regarding the use of monoclonal antibodies which include resistance, repeated treatments, considerable costs and side effects that make active immunotherapies against HER2 desirable alternative approaches. The efficacy of anti-HER2 DNA vaccination has been widely demonstrated in transgenic cancer-prone mice, which recapitulate several features of human breast cancers. Nonetheless, the rational design of a cancer vaccine able to trigger a long lasting immunity, and thus prevent tumor recurrence in patients, would require the understanding of how tolerance and immunosuppression regulate antitumor immune responses and, at the same time, the identification of the most immunogenic portions of the target protein. We herein retrace the findings that led to our most promising DNA vaccines that, by encoding human/rat chimeric forms of HER2, are able to circumvent peripheral tolerance. Preclinical data obtained with these chimeric DNA vaccines have provided the rationale for their use in an ongoing phase I clinical trial (EudraCT 2011-001104-34.

  7. Chinese herbal extract Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant hepatitis B virus (HBV) in vitro and effectively suppressed HBV replication in mouse model.

    Science.gov (United States)

    Liu, Yan; Yao, Weiming; Si, Lanlan; Hou, Jun; Wang, Jiabo; Xu, Zhihui; Li, Weijie; Chen, Jianhong; Li, Ruisheng; Li, Penggao; Bo, Lvping; Xiao, Xiaohe; Lan, Jinchu; Xu, Dongping

    2018-04-24

    The present study aimed to investigate anti-HBV effect and major active compounds of Su-duxing, a medicine extracted from Chinese herbs. HBV-replicating cell lines HepG2.2.15 (wild-type) and HepG2. A64 (entecavir-resistant) were used for in vitro test. C57BL/6 mice infected by adeno-associated virus carrying 1.3 mer wild-type HBV genome were used for in vivo test. Inhibitory rates of Su-duxing (10 μg/mL) on HBV replicative intermediate and HBsAg levels were 75.1%, 51.0% in HepG2.2.15 cells and 65.2%, 42.9% in HepG2. A64 cells. The 50% inhibitory concentration of Su-duxing and entecavir on HBV replicative intermediates had 0.2-fold and 712.5-fold increase respectively for entecavir-resistant HBV compared to wild-type HBV. Mice treated with Su-duxing (45.0 mg kg -1  d -1 for 2 weeks) had 1.39 log 10 IU/mL decrease of serum HBV DNA, and 48.9% and 51.7% decrease of serum HBsAg and HBeAg levels. GeneChip and KEGG analysis proposed that anti-HBV mechanisms included relief of HBx stability and viral replication, deregulation of early cell cycle checkpoints, and induction of type I interferon. Six active compounds (Matrine, Oxymatrine, Chlorogenic acid, Sophocarpine, Baicalein, and Wogonin) against HBV were identified in Su-duxing. Greater anti-HBV effects were observed in some compound pairs compared to each single compound. In conclusion, Su-duxing had potent inhibitory effects on both wild-type and entecavir-resistant HBV. Its effects were associated with coordinated roles of active compounds in its composition. Copyright © 2018. Published by Elsevier B.V.

  8. The Smc5/6 Complex Restricts HBV when Localized to ND10 without Inducing an Innate Immune Response and Is Counteracted by the HBV X Protein Shortly after Infection

    Science.gov (United States)

    Daffis, Stephane; Ramakrishnan, Dhivya; Burdette, Dara; Peiser, Leanne; Salas, Eduardo; Ramos, Hilario; Yu, Mei; Cheng, Guofeng; Strubin, Michel; Delaney IV, William E.; Fletcher, Simon P.

    2017-01-01

    The structural maintenance of chromosome 5/6 complex (Smc5/6) is a restriction factor that represses hepatitis B virus (HBV) transcription. HBV counters this restriction by expressing HBV X protein (HBx), which targets Smc5/6 for degradation. However, the mechanism by which Smc5/6 suppresses HBV transcription and how HBx is initially expressed is not known. In this study we characterized viral kinetics and the host response during HBV infection of primary human hepatocytes (PHH) to address these unresolved questions. We determined that Smc5/6 localizes with Nuclear Domain 10 (ND10) in PHH. Co-localization has functional implications since depletion of ND10 structural components alters the nuclear distribution of Smc6 and induces HBV gene expression in the absence of HBx. We also found that HBV infection and replication does not induce a prominent global host transcriptional response in PHH, either shortly after infection when Smc5/6 is present, or at later times post-infection when Smc5/6 has been degraded. Notably, HBV and an HBx-negative virus establish high level infection in PHH without inducing expression of interferon-stimulated genes or production of interferons or other cytokines. Our study also revealed that Smc5/6 is degraded in the majority of infected PHH by the time cccDNA transcription could be detected and that HBx RNA is present in cell culture-derived virus preparations as well as HBV patient plasma. Collectively, these data indicate that Smc5/6 is an intrinsic antiviral restriction factor that suppresses HBV transcription when localized to ND10 without inducing a detectable innate immune response. Our data also suggest that HBx protein may be initially expressed by delivery of extracellular HBx RNA into HBV-infected cells. PMID:28095508

  9. DNA vaccine protects ornamental koi (Cyprinus carpio koi) against North American spring viremia of carp virus

    Science.gov (United States)

    Emmenegger, E.J.; Kurath, G.

    2008-01-01

    The emergence of spring viremia of carp virus (SVCV) in the United States constitutes a potentially serious alien pathogen threat to susceptible fish stocks in North America. A DNA vaccine with an SVCV glycoprotein (G) gene from a North American isolate was constructed. In order to test the vaccine a challenge model utilizing a specific pathogen-free domestic koi stock and a cold water stress treatment was also developed. We have conducted four trial studies demonstrating that the pSGnc DNA vaccine provided protection in vaccinated fish against challenge at low, moderate, and high virus doses of the homologous virus. The protection was significant (p DNA immunized fish were challenged 28-days post-vaccination (546 degree-days) and experienced low mortalities varying from 10 to 50% with relative percent survivals ranging from 50 to 88%. The non-vaccinated controls and mock construct vaccinated fish encountered high cumulative percent mortalities ranging from 70 to 100%. This is the first report of a SVCV DNA vaccine being tested successfully in koi. These experiments prove that the SVCV DNA (pSGnc) vaccine can elicit specific reproducible protection and validates its potential use as a prophylactic vaccine in koi and other vulnerable North American fish stocks.

  10. Meeting vaccination quality measures for hepatitis A and B virus in patients with chronic hepatitis C infection.

    Science.gov (United States)

    Kramer, Jennifer R; Hachem, Christine Y; Kanwal, Fasiha; Mei, Minghua; El-Serag, Hashem B

    2011-01-01

    Coinfection with hepatitis A virus (HAV) or hepatitis B virus (HBV) in patients with chronic hepatitis C virus (HCV) is associated with increased morbidity and mortality. The Center for Medicare and Medicaid Services has identified HAV and HBV vaccination as a priority area for quality measurement in HCV. It is unclear to what extent patients with HCV meet these recommendations. We used national data from the Department of Veterans Affairs HCV Clinical Case Registry to evaluate the prevalence and predictors of meeting the quality measure (QM) of receiving vaccination or documented immunity to HAV and HBV in patients with chronic HCV. We identified 88,456 patients who had overall vaccination rates of 21.9% and 20.7% for HBV and HAV, respectively. The QM rates were 57.0% and 45.5% for HBV and HAV, respectively. Patients who were nonwhite or who had elevated alanine aminotransferase levels, cirrhosis, or human immunodeficiency virus were more likely to meet the HBV QM. Factors related to HCV care were also determinants of meeting the HBV QM. These factors included receiving a specialist consult, genotype testing, or HCV treatment. Patients who were older, had psychosis, and had a higher comorbidity score were less likely to meet the HBV QM. With a few exceptions, similar variables were related to meeting the HAV QM. The incidence of superinfection with acute HBV and HAV was low, but it was significantly lower in patients who received vaccination than in those who did not. Quality measure rates for HAV and HBV are suboptimal for patients with chronic HCV. In addition, several patient-related factors and receiving HCV-related care are associated with a higher likelihood of meeting QMs. Copyright © 2010 American Association for the Study of Liver Diseases.

  11. [Impact of HIV/HBV infection and HIV/HBV co-infection on outcomes of pregnancy].

    Science.gov (United States)

    Yang, Y; Cheng, W T; Zhou, Y B; Jiang, Q W

    2017-06-10

    Both HIV and HBV infection have become major health problems, of global concern, due to the high prevalence in the past few decades. Data from cumulated epidemiological surveys have shown the links between maternal HIV or HBV infection and adverse outcomes on pregnancy. Maternal HIV or HBV infection may also increase the mother-to-child (MTCT) transmission of the two diseases. However, association between HIV-HBV co-infection and adverse pregnancy is still inconclusive. Does maternal HIV-HBV co-infection have an impact on mother-to-child transmission on either HIV or HBV? Study on effective precautionary measures to promote both maternal and child's health is deemed necessary.

  12. TGF-β Suppression of HBV RNA through AID-Dependent Recruitment of an RNA Exosome Complex

    Science.gov (United States)

    Kitamura, Kouichi; Wang, Zhe; Chowdhury, Sajeda; Monjurul, Ahasan Md; Wakae, Kousho; Koura, Miki; Shimadu, Miyuki; Kinoshita, Kazuo; Muramatsu, Masamichi

    2015-01-01

    Transforming growth factor (TGF)-β inhibits hepatitis B virus (HBV) replication although the intracellular effectors involved are not determined. Here, we report that reduction of HBV transcripts by TGF-β is dependent on AID expression, which significantly decreases both HBV transcripts and viral DNA, resulting in inhibition of viral replication. Immunoprecipitation reveals that AID physically associates with viral P protein that binds to specific virus RNA sequence called epsilon. AID also binds to an RNA degradation complex (RNA exosome proteins), indicating that AID, RNA exosome, and P protein form an RNP complex. Suppression of HBV transcripts by TGF-β was abrogated by depletion of either AID or RNA exosome components, suggesting that AID and the RNA exosome involve in TGF-β mediated suppression of HBV RNA. Moreover, AID-mediated HBV reduction does not occur when P protein is disrupted or when viral transcription is inhibited. These results suggest that induced expression of AID by TGF-β causes recruitment of the RNA exosome to viral RNP complex and the RNA exosome degrades HBV RNA in a transcription-coupled manner. PMID:25836330

  13. HBsAg-redirected T cells exhibit antiviral activity in HBV-infected human liver chimeric mice.

    Science.gov (United States)

    Kruse, Robert L; Shum, Thomas; Tashiro, Haruko; Barzi, Mercedes; Yi, Zhongzhen; Whitten-Bauer, Christina; Legras, Xavier; Bissig-Choisat, Beatrice; Garaigorta, Urtzi; Gottschalk, Stephen; Bissig, Karl-Dimiter

    2018-04-06

    Chronic hepatitis B virus (HBV) infection remains incurable. Although HBsAg-specific chimeric antigen receptor (HBsAg-CAR) T cells have been generated, they have not been tested in animal models with authentic HBV infection. We generated a novel CAR targeting HBsAg and evaluated its ability to recognize HBV+ cell lines and HBsAg particles in vitro. In vivo, we tested whether human HBsAg-CAR T cells would have efficacy against HBV-infected hepatocytes in human liver chimeric mice. HBsAg-CAR T cells recognized HBV-positive cell lines and HBsAg particles in vitro as judged by cytokine production. However, HBsAg-CAR T cells did not kill HBV-positive cell lines in cytotoxicity assays. Adoptive transfer of HBsAg-CAR T cells into HBV-infected humanized mice resulted in accumulation within the liver and a significant decrease in plasma HBsAg and HBV-DNA levels compared with control mice. Notably, the fraction of HBV core-positive hepatocytes among total human hepatocytes was greatly reduced after HBsAg-CAR T cell treatment, pointing to noncytopathic viral clearance. In agreement, changes in surrogate human plasma albumin levels were not significantly different between treatment and control groups. HBsAg-CAR T cells have anti-HBV activity in an authentic preclinical HBV infection model. Our results warrant further preclinical exploration of HBsAg-CAR T cells as immunotherapy for HBV. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  14. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Sheraz, Muhammad; Cheng, Junjun; Qi, Yonghe; Su, Qing; Cuconati, Andrea; Wei, Lai; Du, Yanming; Li, Wenhui; Chang, Jinhong; Guo, Ju-Tao

    2017-09-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  15. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways.

    Directory of Open Access Journals (Sweden)

    Fang Guo

    2017-09-01

    Full Text Available Hepatitis B virus (HBV core protein assembles viral pre-genomic (pg RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs and sulfamoylbenzamides (SBAs, have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or "empty" capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B.

  16. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  17. Twenty years of universal vaccination against hepatitis B in Italy: achievements and challanges

    Directory of Open Access Journals (Sweden)

    Luisa Romano'

    2012-04-01

    Full Text Available Viral hepatitis B is a vaccine-preventable disease. Vaccination has proved to be safe and highly effective in reducing the incidence, the carrier rate and HBV-related mortality on a global scale. In Italy, universal vaccination against hepatitis B started in 1991 in infants as well as in adolescents, providing an outstanding record of safety and effectiveness. Within a few years, over 95% coverage was consistently reported. Today, some 17 million people are immune against hepatitis B and their immunity has been shown to be long-lasting. At present, no booster is required in healthy vaccinated people to sustain protection. Surveillance data from Italy have shown a clear overall decline in hepatitis B among successfully vaccinated individuals. Furthermore, a generation of children and young people (at present cohorts ranging from 0 to 32 years is emerging with practically no markers of HBV infection. Italy’s vaccination programme has resulted in substantial progress being made towards the prevention and control of hepatitis B. The vaccination programme must continue. Maintaining mandatory vaccination of infants and increasing HBV vaccination coverage in high-risk groups, including households of HBsAg carriers as well as immigrants, remain a priority for the future.

  18. Plasmid DNA initiates replication of yellow fever vaccine in vitro and elicits virus-specific immune response in mice.

    Science.gov (United States)

    Tretyakova, Irina; Nickols, Brian; Hidajat, Rachmat; Jokinen, Jenny; Lukashevich, Igor S; Pushko, Peter

    2014-11-01

    Yellow fever (YF) causes an acute hemorrhagic fever disease in tropical Africa and Latin America. To develop a novel experimental YF vaccine, we applied iDNA infectious clone technology. The iDNA represents plasmid that encodes the full-length RNA genome of 17D vaccine downstream from a cytomegalovirus (CMV) promoter. The vaccine was designed to transcribe the full-length viral RNA and to launch 17D vaccine virus in vitro and in vivo. Transfection with 10 ng of iDNA plasmid was sufficient to start replication of vaccine virus in vitro. Safety of the parental 17D and iDNA-derived 17D viruses was confirmed in AG129 mice deficient in receptors for IFN-α/β/γ. Finally, direct vaccination of BALB/c mice with a single 20 μg dose of iDNA plasmid resulted in seroconversion and elicitation of virus-specific neutralizing antibodies in animals. We conclude that iDNA immunization approach combines characteristics of DNA and attenuated vaccines and represents a promising vaccination strategy for YF. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. A DNA Vaccine Protects Human Immune Cells against Zika Virus Infection in Humanized Mice

    Directory of Open Access Journals (Sweden)

    Guohua Yi

    2017-11-01

    Full Text Available A DNA vaccine encoding prM and E protein has been shown to induce protection against Zika virus (ZIKV infection in mice and monkeys. However, its effectiveness in humans remains undefined. Moreover, identification of which immune cell types are specifically infected in humans is unclear. We show that human myeloid cells and B cells are primary targets of ZIKV in humanized mice. We also show that a DNA vaccine encoding full length prM and E protein protects humanized mice from ZIKV infection. Following administration of the DNA vaccine, humanized DRAG mice developed antibodies targeting ZIKV as measured by ELISA and neutralization assays. Moreover, following ZIKV challenge, vaccinated animals presented virtually no detectable virus in human cells and in serum, whereas unvaccinated animals displayed robust infection, as measured by qRT-PCR. Our results utilizing humanized mice show potential efficacy for a targeted DNA vaccine against ZIKV in humans.

  20. Enhanced immunogenicity of DNA fusion vaccine encoding secreted hepatitis B surface antigen and chemokine RANTES

    International Nuclear Information System (INIS)

    Kim, Seung Jo; Suh, Dongchul; Park, Sang Eun; Park, Jeong-Sook; Byun, Hyang-Min; Lee, Chan; Lee, Sun Young; Kim, Inho; Oh, Yu-Kyoung

    2003-01-01

    To increase the potency of DNA vaccines, we constructed genetic fusion vaccines encoding antigen, secretion signal, and/or chemokine RANTES. The DNA vaccines encoding secreted hepatitis B surface antigen (HBsAg) were constructed by inserting HBsAg gene into an expression vector with an endoplasmic reticulum (ER)-targeting secretory signal sequence. The plasmid encoding secretory HBsAg (pER/HBs) was fused to cDNA of RANTES, generating pER/HBs/R. For comparison, HBsAg genes were cloned into pVAX1 vector with no signal sequence (pHBs), and further linked to the N-terminus of RANTES (pHBs/R). Immunofluorescence study showed the cytoplasmic localization of HBsAg protein expressed from pHBs and pHBs/R, but not from pER/HBs and pER/HBs/R at 48 h after transfection. In mice, RANTES-fused DNA vaccines more effectively elicited the levels of HBsAg-specific IgG antibodies than pHBs. All the DNA vaccines induced higher levels of IgG 2a rather than IgG 1 antibodies. Of RANTES-fused vaccines, pER/HBs/R encoding the secreted fusion protein revealed much higher humoral and CD8 + T cell-stimulating responses compared to pHBs/R. These results suggest that the immunogenicity of DNA vaccines could be enhanced by genetic fusion to a secretory signal peptide sequence and RANTES

  1. LAMP-1-chimeric DNA vaccines enhance the antibody response in Japanese flounder, Paralichthys olivaceus.

    Science.gov (United States)

    Rondón-Barragán, Iang; Nozaki, Reiko; Hirono, Ikuo; Kondo, Hidehiro

    2017-08-01

    DNA vaccination is one method to protect farmed fish from viral and bacterial diseases. Chimeric antigens encoded by DNA vaccines have been shown to increase the resistance to viral diseases. Here, we sequenced the gene encoding lysosome-associated membrane protein-1 from Japanese flounder, Paralichthys olivaceus, (JfLAMP-1) and assessed its use in a chimeric DNA vaccine fused with the major capsule protein (MCP) from red seabream iridovirus (RSIV). JfLAMP-1 cDNA has a length of 1248 bp encoding 415 aa, which contains transmembrane and cytoplasmic domains. JfLAMP-1 is constitutively expressed in several tissues and its expression in spleen was upregulated following injection of formalin-killed cells (FKC) of Edwardsiella tarda. Immunofluorescence analysis showed that JfLAMP-1 is distributed in the small and large granules in the cytoplasm and groups close to the nucleus. The DNA encoding the luminal domain of JfLAMP-1 was replaced with the gene for the RSIV MCP, and the construct was cloned in an expression vector (pCIneo). Fish vaccinated with pCLAMP-MCP had significantly higher antibody levels than fish vaccinated with pCIneo vector harboring the MCP gene (p day 30 post-vaccination. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Efficacy of DNA vaccine encoding koi herpesvirus glycoprotein GP-25in common carp juvenile by immersion

    Directory of Open Access Journals (Sweden)

    Soko Nuswantoro

    2013-11-01

    Full Text Available Koi herpesvirus (KHV is a herpesvirus that particularly infects and causes mass mortality to koi and common carp. Therefore, the protection of common carp from KHV infection is urgently needed. In this study, we developed an application of DNA vaccine encoding KHV glycoprotein-25 by immersion method to increase survival of common carp against KHV infection. A total of 400 common carp juveniles at 30-day-old were immersed in 1-L water containing 1.3×108CFU/mL of the killed Escherichia coli cells carrying DNA vaccine. Three frequencies and three duration of fish immersion were tested, namely: 1×30 minutes, 1×60 minutes, 1× 90 minutes, 2×90 minutes and 3×90 minutes by interval of 24 hours. Reversetranscription polymerase chain reaction analysis showed that DNA vaccine was successfully expressed in the vaccinated fish. Fish at twenty eight days post vaccination were challenged by injecting 10-4 mL of KHV per fish. The result showed that vaccination by 1×30 minutes immersion allowed 61% of fish survived, and this was significantly higher (p<0.05 compared to control (without vaccination, but it was similar among vaccination treatments (p>0.05. The relative percent survival of vaccinated fish were also similar among treatments (p>0.05. DNA vaccination has increased fish survival about two fold higher compared to unvaccinated fish control (26.67%. Thus, DNA vaccination was effectively delivered by immersion for 1×30 minutes, and this technique can be useful to level up the resistance of common carp juveniles against KHV infection. Keywords: DNA vaccine, KHV, glycoprotein, immersion, common carp

  3. Value of HBsAg level in dynamic monitoring of disease progression in patients with chronic HBV infection

    Directory of Open Access Journals (Sweden)

    BAO Teng

    2017-08-01

    Full Text Available ObjectiveTo investigate the clinical value of HBsAg level in dynamic monitoring of disease progression in patients with chronic HBV infection. MethodsA retrospective analysis was performed for the clinical data of 1107 patients with different clinical stages of chronic HBV infection who had not received antiviral therapy at the time of hospitalization in The Second Affiliated Hospital of Anhui Medical University from May 2011 to December 2015, and according to the disease status, they were divided into HBeAg-positive chronic hepatitis B (CHB group, HBeAg-negative CHB group, compensated liver cirrhosis group (LC-C group, decompensated liver cirrhosis group (LC-D group, and primary liver cancer (PLC group. These groups were compared in terms of HBsAg expression and the association between HBsAg and clinical features. An analysis of variance was used for comparison of continuous data between multiple groups, and the least significant difference t-test was used for further comparison between any two groups; the t-test was used for comparison of continuous data between two groups. The chi-square test was used for comparison of categorical data between these groups. Pearson correlation analysis was also performed. ResultsThere was a significant difference in serum HBsAg level between the HBeAg-positive CHB group, HBeAg-negative CHB group, LC-C group, LC-D group, and PLC group (F=100.45, P<0.001. The HBeAg-positive CHB group had significantly higher levels of HBsAg and HBV DNA than the HBeAg-negative CHB group (t= 16.67 an 16.22, both P<0.001. There were significant differences in HBsAg and HBV DNA levels between the HBeAg-positive CHB group, LC-C group, LC-D group, and PLC group (F= 42.92 and 27.38, both P<0.001, as well as between the HBeAg-negative CHB group, LC-C group, LC-D group, and PLC group (F=6.04 and 4.10, both P<0.05. HBV DNA level was significantly different across patients with different HBsAg levels (<1000 IU/ml, 1000-20 000 IU

  4. Modulation of immune response to rDNA hepatitis B vaccination by psychological stress

    NARCIS (Netherlands)

    L. Jabaaij (Lea); J. van Hattum (Jan); A.J.J.M. Vingerhoets (Ad); F.G. Oostveen (Frank); H.J. Duivenvoorden (Hugo); R.E. Ballieux (Rudy)

    1996-01-01

    textabstractIn a previous study it was shown that antibody formation after vaccination with a low-dose recombinant DNA (rDNA) hepatitis B vaccine was negatively influenced by psychological stress. The present study was designed to assess whether the same inverse relation between HBs-antibody levels

  5. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    Science.gov (United States)

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  6. Impact of Universal Hepatitis B Vaccination on Prevalence, Infection-Associated Morbidity and Mortality, and Circulation of Immune Escape Variants in Russia.

    Directory of Open Access Journals (Sweden)

    Vitalina V Klushkina

    Full Text Available 6,217 sera samples collected from volunteers in six epidemiologically different regions of Russia were tested for serological and molecular markers of HBV infection. A mathematical model developed by the U.S. Centers for Disease Control and Prevention was used to estimate the effect of vaccination and birth dose coverage on the incidence of HB and adverse outcomes of infection.Prevalence of HBsAg in the study population varied from 1.2% to 8.2%; anti-HBc detection rates were 13.0-46.2%. HBsAg detection rates in epidemiologically significant cohorts were 0.6-10.5% in women of childbearing age; 0-2.4% in children ≤5 years old; 1.9-8.1% in adults ≥30 years old. Mathematical modeling demonstrated that the current 96.1-99.6% level of birth dose coverage increased the effectiveness of vaccination 10-21 times compared to 50% and 0% birth dose coverage scenarios. HBV DNA was detected in 63 sera samples. The frequency of amino acid substitutions in HBsAg was 38% (24/63. Only in 3% (2/63 the mutations were within the a-determinant of HBsAg (M133T and G145S, one case each. None of the identified mutations eluded HBsAg detection, since all these samples tested positive for HBsAg by commercial ELISA.Despite a significant decline in acute HB incidence after the introduction of universal vaccination, many undiagnosed potential sources of infection remain. Low prevalence of HBV immune escape variants is a favorable predictor of vaccine effectiveness in the future.

  7. An endogenous immune adjuvant released by necrotic cells for enhancement of DNA vaccine potency.

    Science.gov (United States)

    Dorostkar, Rohollah; Bamdad, Taravat; Parsania, Masoud; Pouriayevali, Hassan

    2012-12-01

    Improving vaccine potency in the induction of a strong cell-mediated cytotoxicity can enhance the efficacy of vaccines. Necrotic cells and the supernatant of necrotic tumor cells are attractive adjuvants, on account of their ability to recruit antigen-presenting cells to the site of antigen synthesis as well as its ability to stimulate the maturation of dendritic cells. To evaluate the utility of supernatant of necrotic tumor cells as a DNA vaccine adjuvant in a murine model. The supernatant of EL4 necrotic cells was co-administered with a DNA vaccine expressing the glycoprotein B of Herpes simplex virus-1 as an antigen model under the control of Cytomegalovirus promoter. C57BL/6 mice were vaccinated three times at two weeks intervals with glycoprotein B DNA vaccine and supernatant of necrotic EL4 cells. Five days after the last immunization, cell cytotoxicity, IFN-γ and IL-4 were evaluated. The obtained data showed that the production of IFN-γ from the splenocytes after antigenic stimulation in the presence of the supernatant of necrotic EL4 cells was significantly higher than the other groups (pEL4 cells in the mice immunized with DNA vaccine and supernatant of necrotic EL4 cells comparing to the other groups (p<0.001). The supernatant of necrotic cells contains adjuvant properties that can be considered as a candidate for tumor vaccination.

  8. Early DNA vaccination of puppies against canine distemper in the presence of maternally derived immunity.

    Science.gov (United States)

    Griot, Christian; Moser, Christian; Cherpillod, Pascal; Bruckner, Lukas; Wittek, Riccardo; Zurbriggen, Andreas; Zurbriggen, Rinaldo

    2004-01-26

    Canine distemper (CD) is a disease in carnivores caused by CD virus (CDV), a member of the morbillivirus genus. It still is a threat to the carnivore and ferret population. The currently used modified attenuated live vaccines have several drawbacks of which lack of appropriate protection from severe infection is the most outstanding one. In addition, puppies up to the age of 6-8 weeks cannot be immunized efficiently due to the presence of maternal antibodies. In this study, a DNA prime modified live vaccine boost strategy was investigated in puppies in order to determine if vaccinated neonatal dogs induce a neutralizing immune response which is supposed to protect animals from a CDV challenge. Furthermore, a single DNA vaccination of puppies, 14 days after birth and in the presence of high titers of CDV neutralizing maternal antibodies, induced a clear and significant priming effect observed as early as 3 days after the subsequent booster with a conventional CDV vaccine. It was shown that the priming effect develops faster and to higher titers in puppies preimmunized with DNA 14 days after birth than in those vaccinated 28 days after birth. Our results demonstrate that despite the presence of maternal antibodies puppies can be vaccinated using the CDV DNA vaccine, and that this vaccination has a clear priming effect leading to a solid immune response after a booster with a conventional CDV vaccine.

  9. Development of Tat-Conjugated Dendrimer for Transdermal DNA Vaccine Delivery.

    Science.gov (United States)

    Bahadoran, Azadeh; Moeini, Hassan; Bejo, Mohd Hair; Hussein, Mohd Zobir; Omar, Abdul Rahman

    In order to enhance cellular uptake and to facilitate transdermal delivery of DNA vaccine, polyamidoamine (PAMAM) dendrimers conjugated with HIV transactivator of transcription (TAT) was developed. First, the plasmid DNA (pIRES-H5/GFP) nanoparticle was formulated using PAMAM dendrimer and TAT peptide and then characterized for surface charge, particle size, DNA encapsulation and protection of the pIRES-H5/GFP DNA plasmid to enzymatic digestion. Subsequently, the potency of the TAT-conjugated dendrimer for gene delivery was evaluated through in vitro transfection into Vero cells followed by gene expression analysis including western blotting, fluorescent microscopy and PCR. The effect of the TAT peptide on cellular uptake of DNA vaccine was studied by qRT-PCR and flow cytometry. Finally, the ability of TAT-conjugated PAMAM dendrimer for transdermal delivery of the DNA plasmid was assessed through artificial membranes followed by qRT-PCR and flow cytometry. TAT-conjugated PAMAM dendrimer showed the ability to form a compact and nanometre-sized polyplexes with the plasmid DNA, having the size range of 105 to 115 nm and a positive charge of +42 to +45 mV over the N/P ratio of 6:1(+/-).  In vitro transfection analysis into Vero cells confirms the high potency of TAT-conjugated PAMAM dendrimer to enhance the cellular uptake of DNA vaccine.  The permeability value assay through artificial membranes reveals that TAT-conjugated PAMAM has more capacity for transdermal delivery of the DNA compared to unmodified PAMAM dendrimer (Pdendrimer is a promising non-viral vector for transdermal use.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  10. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Directory of Open Access Journals (Sweden)

    Li-Li Dong

    2017-11-01

    Full Text Available AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1 glycoprotein C (gC and glycoprotein D (gD will achieve better protective effect against herpes simplex keratitis (HSK than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS: Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK, when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION: gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future.

  11. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    Science.gov (United States)

    Dong, Li-Li; Tang, Ru; Zhai, Yu-Jia; Malla, Tejsu; Hu, Kai

    2017-01-01

    AIM To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice were inoculated with DNA/nanoparticle for 3 times with 2wk interval, and two weeks after the final immunization, the specific immune responses and clinical degrees of primary HSK were evaluated. RESULTS Fusion protein gD.gC could be expressed successfully in cultured 293T cells. And, pRSC-gC.gD-IL21 DNA/chitosan nanoparticle could effectively elicit strongest humoral and cellular immune response in primary HSK mice evidenced by higher levels of specific neutralizing antibody and sIgA production, enhanced cytotoxicities of splenocytes and nature killer cells (NK), when compared with those of gD alone or mocked vaccine immunized mice. As a result, gC-based vaccine immunized mice showed least HSK disease. CONCLUSION gC-based DNA vaccine could effectively prevent the progress of primary HSK, suggesting that this DNA vaccine could be a promising vaccine for HSK treatment in the future. PMID:29181304

  12. Age-dependent decrease of anti-HBs titers and effect of booster doses using 2 different vaccines in Palestinian children vaccinated in early childhood

    Science.gov (United States)

    Qawasmi, Mohammad; Samuh, Monjed; Glebe, Dieter; Gerlich, Wolfram H; Azzeh, Maysa

    2015-01-01

    Immunization against hepatitis B virus (HBV) has proven to be highly effective and led to significant reduction of new infections worldwide. However, protective immunity measured by anti-HBs titers may decrease to critical levels in the years after basal immunization, particularly in case of exposure to HBV variants different from the vaccine strain. We tested 400 Palestinian children between one and 19 years of age for their anti-HBs titer, challenged the immune memory of those with low or absent anti-HBs with 2 types of hepatitis B vaccines and determined thereafter the anti-HBs titer. At the age of one, 92.2% of the children presented with protective anti-HBs titers (≥10 mIU/ml) with the majority having ≥100 mIU/ml. Protective immunity was still high at ages 2 (87.5%) and 4 (95%), declining by age 5 and 6 (from 69.2% to 66.7%) and down to an average of 39.8% between the ages of 7 and 19. 160 children with a nonprotective or low immune response challenged with either the yeast-derived Engerix-B or the mammalian cell-derived preS1-containing Sci-B-Vac vaccine showed an anamnestic immune response. 92.4% and 85.9% of the children challenged with one dose Sci-B-Vac and Engerix-B presented with anti-HBs titers >100 mIU/ml respectively. Our results reveal that vaccine-induced protective anti-HBs titers against HBV decrease rapidly beyond the age of 6 in Palestinian children, but can be strongly enhanced with a single booster vaccine dose, independent of brand and antigen composition. Our data suggest that a booster vaccine dose against HBV during school years may be useful. PMID:25996579

  13. The Hepatitis B Virus (HBV) HBx Protein Activates AKT To Simultaneously Regulate HBV Replication and Hepatocyte Survival

    Science.gov (United States)

    Rawat, Siddhartha

    2014-01-01

    ABSTRACT Chronic infection with hepatitis B virus (HBV) is a risk factor for developing liver diseases such as hepatocellular carcinoma (HCC). HBx is a multifunctional protein encoded by the HBV genome; HBx stimulates HBV replication and is thought to play an important role in the development of HBV-associated HCC. HBx can activate the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway in some cell lines; however, whether HBx regulates PI3K/AKT signaling in normal hepatocytes has not been evaluated. In studies described here, we assessed HBx activation of PI3K/AKT signaling in an ex vivo model of cultured primary hepatocytes and determined how this HBx activity affects HBV replication. We report that HBx activates AKT in primary hepatocytes and that the activation of AKT decreases HBV replication and HBV mRNA and core protein levels. We show that the transcription factor hepatocyte nuclear factor 4α (HNF4α) is a target of HBx-regulated AKT, and we link HNF4α to HBx-regulated AKT modulation of HBV transcription and replication. Although we and others have shown that HBx stimulates and is likely required for HBV replication, we now report that HBx also activates signals that can diminish the overall level of HBV replication. While this may seem counterintuitive, we show that an important effect of HBx activation of AKT is inhibition of apoptosis. Consequently, our studies suggest that HBx balances HBV replication and cell survival by stimulating signaling pathways that enhance hepatocyte survival at the expense of higher levels of HBV replication. IMPORTANCE Chronic hepatitis B virus (HBV) infection is a common cause of the development of liver cancer. Regulation of cell signaling pathways by the HBV HBx protein is thought to influence the development of HBV-associated liver cancer. HBx stimulates, and may be essential for, HBV replication. We show that HBx activates AKT in hepatocytes to reduce HBV replication. While this seems contradictory to an

  14. Hepatitis B Virus Vaccine: The Nigerian Story | Odusanya | Journal ...

    African Journals Online (AJOL)

    Hepatitis B (HBV) virus in endemic in Nigeria. Infection is acquired mainly in childhood through horizontal transmission. The infection is preventable by vaccination. Universal childhood vaccination against the infection started in Nigeria less than ten years. Hepatitis B vaccine coverage in Nigeria is 41%, though now it has ...

  15. Rearrangement of a common cellular DNA domain on chromosome 4 in human primary liver tumors

    International Nuclear Information System (INIS)

    Pasquinelli, C.; Garreau, F.; Bougueleret, L.; Cariani, E.; Thiers, V.; Croissant, O.; Hadchouel, M.; Tiollais, P.; Brechot, C.; Grzeschik, K.H.

    1988-01-01

    Hepatitis B virus (HBV) DNA integration has been shown to occur frequently in human hepatocellular carcinomas. The authors have investigated whether common cellular DNA domains might be rearranged, possibly by HBV integration, in human primary liver tumors. Unique cellular DNA sequences adjacent to an HBV integration site were isolated from a patient with hepatitis B surface antigen-positive hepatocellular carcinoma. These probes detected rearrangement of this cellular region of chromosomal DNA in 3 of 50 additional primary liver tumors studied. Of these three tumor samples, two contained HBV DNA, without an apparent link between the viral DNA and the rearranged allele; HBV DNA sequences were not detected in the third tumor sample. By use of a panel of somatic cell hybrids, these unique cellular DNA sequences were shown to be located on chromosome 4. Therefore, this region of chromosomal DNA might be implicated in the formation of different tumors at one step of liver cell transformation, possible related to HBV integration

  16. Interferon-stimulated gene of 20 kDa protein (ISG20) degrades RNA of hepatitis B virus to impede the replication of HBV in vitro and in vivo

    Science.gov (United States)

    Oshiumi, Hiroyuki; Mengao, Deng; Takaki, Hiromi; Matsumoto, Misako; Aly, Hussein H.; Watashi, Koichi; Chayama, Kazuaki; Seya, Tsukasa

    2016-01-01

    Hepatitis B virus (HBV) barely induces host interferon (IFN)-stimulated genes (ISGs), which allows efficient HBV replication in the immortalized mouse hepatocytes as per human hepatocytes. Here we found that transfection of Isg20 plasmid robustly inhibits the HBV replication in HBV-infected hepatocytes irrespective of IRF3 or IFN promoter activation. Transfection of Isg20 is thus effective to eradicate HBV in the infected hepatocytes. Transfection of HBV genome or ε-stem of HBV pgRNA (active pgRNA moiety) failed to induce Isg20 in the hepatocytes, while control polyI:C (a viral dsRNA analogue mimic) activated MAVS pathway leading to production of type I IFN and then ISGsg20 via the IFN-α/β receptor (IFNAR). Consistently, addition of IFN-α induced Isg20 and partially suppressed HBV replication in hepatocytes. Chasing HBV RNA, DNA and proteins by blotting indicated that ISG20 expression decreased HBV RNA and replicative DNA in HBV-transfected cells, which resulted in low HBs antigen production and virus titer. The exonuclease domains of ISG20 mainly participated in HBV-RNA decay. In vivo hydrodynamic injection, ISG20 was crucial for suppressing HBV replication without degrading host RNA in the liver. Taken together, ISG20 acts as an innate anti-HBV effector that selectively degrades HBV RNA and blocks replication of infectious HBV particles. ISG20 would be a critical effector for ameliorating chronic HBV infection in the IFN therapy. PMID:27626689

  17. Identification of KX2-391 as an inhibitor of HBV transcription by a recombinant HBV-based screening assay.

    Science.gov (United States)

    Harada, Keisuke; Nishitsuji, Hironori; Ujino, Saneyuki; Shimotohno, Kunitada

    2017-08-01

    Antiviral therapies for chronic hepatitis B virus (HBV) infection that are currently applicable for clinical use are limited to nucleos(t)ide analogs targeting HBV polymerase activity and pegylated interferon alpha (PEG-IFN). Towards establishing an effective therapy for HBV related diseases, it is important to develop a new anti-HBV agent that suppresses and eradicates HBV. This study used recombinant HBV encoding NanoLuc to screen anti-HBV compounds from 1827 US Food and Drug Administration approved compounds and identified several compounds that suppressed HBV infection. Among them, KX2-391, a non-ATP-competitive inhibitor of SRC kinase and tubulin polymerization, was identified as a lead candidate for an anti-HBV drug. Treatment of sodium taurocholate cotransporting polypeptide (NTCP) transduced-HepG2 (HepG2-NTCP) or primary human hepatocytes with KX2-391 suppressed HBV replication in a dose-dependent manner. The anti-HBV activity of KX2-391 appeared not to depend on SRC kinase activity because siRNA for SRC mRNA did not impair the HBV infection/replication. The anti-HBV activity of KX2-391 depended on the inhibitory effect of tubulin polymerization similar to other tubulin polymerization inhibitors, some of which were shown to inhibit HBV replication. KX2-391 inhibited HBV transcription driven by a HBV precore promoter in an HBV X protein-independent manner but did not inhibit the activity of HBV-S1, -S2, -X or cytomegalovirus promoters. Treatment with KX2-391 reduced the expression of several various factors including hepatocyte nuclear factor-4a. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Increased humoral immunity by DNA vaccination using an alpha-tocopherol-based adjuvant

    DEFF Research Database (Denmark)

    Karlsson, Ingrid; Borggren, Marie; Nielsen, Jens

    2017-01-01

    approaches. We tested whether the emulsion-based and alpha-tocopherol containing adjuvant Diluvac Forte® has the ability to enhance the immunogenicity of a naked DNA vaccine (i.e., plasmid DNA). As a model vaccine, we used plasmids encoding both a surface-exposed viral glycoprotein (hemagglutinin......) and an internal non-glycosylated nucleoprotein in the Th1/Th2 balanced CB6F1 mouse model. The naked DNA (50 µg) was premixed at a 1:1 volume/volume ratio with Diluvac Forte®, an emulsion containing different concentrations of alpha-tocopherol, the emulsion alone or endotoxin-free phosphate-buffered saline (PBS......). The animals received two intracutaneous immunizations spaced 3 weeks apart. When combined with Diluvac Forte® or the emulsion containing alpha-tocopherol, the DNA vaccine induced a more potent and balanced immunoglobulin G (IgG)1 and IgG2c response, and both IgG subclass responses were significantly enhanced...

  19. Can VHS Virus Bypass the Protective Immunity Induced by DNA Vaccination in Rainbow Trout?

    Directory of Open Access Journals (Sweden)

    Dagoberto Sepúlveda

    Full Text Available DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV, an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach, and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach. For the in vitro approach, the virus collected from the last passage (passaged virus was as sensitive as the parental virus to serum neutralization, suggesting that the passaging did not promote the selection of virus populations able to bypass the neutralization by serum antibodies. Also, in the in vivo approach, where virus was passaged several times in vaccinated fish, no increased virulence nor increased persistence in vaccinated fish was observed in comparison with the parental virus. However, some of the vaccinated fish did get infected and could transmit the infection to naïve cohabitant fish. The results demonstrated that the DNA vaccine induced a robust protection, but also that the immunity was non-sterile. It is consequently important not to consider vaccinated fish as virus free in veterinary terms.

  20. Hepatitis B virus DNA integration in hepatocellular carcinoma after interferon-induced disappearance of hepatitis C virus.

    Science.gov (United States)

    Tamori, Akihiro; Nishiguchi, Shuhei; Shiomi, Susumu; Hayashi, Takehiro; Kobayashi, Sawako; Habu, Daiki; Takeda, Tadashi; Seki, Shuichi; Hirohashi, Kazuhiro; Tanaka, Hiromu; Kubo, Shoji

    2005-08-01

    Hepatocellular carcinoma (HCC) has been reported in patients in whom hepatitis C virus (HCV) was eliminated by interferon (IFN) therapy. We examined the pathogenesis of HCC in patients with sustained viral response. Operable HCC developed in 7 of 342 patients cured of HCV infection by IFN monotherapy. No patient abused alcohol or had diabetes mellitus or obesity. Resected specimens of HCC were histologically evaluated. DNA extracted from HCC was examined by polymerase chain reaction (PCR) to locate hepatitis B virus (HBV) DNA. HBV integration sites in human genome were identified by cassette-ligation-mediated PCR. HBV DNA was not amplified in serum samples from any of the seven patients with HCC and was found in liver in four patients. In the latter four patients, HBV DNA was integrated into the human genome of HCC. In two of these patients, covalently closed circular HBV (cccHBV) was also detected. The patients with HBV DNA integration were free of HCV for more than 3 yr. In two of the three patients without HBV DNA integration, the surrounding liver showed cirrhosis. The liver of HCC with HBV DNA integration had not progressed to cirrhosis. Three of the four tumors with HBV integration had one integration site each, located at chromosomes 11q12, 11q22-23, and 22q11, respectively. The other tumor had two integration sites, situated at chromosomes 11q13 and 14q32. At chromosome 11q12, HBV DNA was integrated into protein-coding genome, the function of which remains unclear. Integrated HBV DNA may play a role in hepatocarcinogenesis after the clearance of HCV by IFN treatment.

  1. Aiming for cure in HBV and HDV infection.

    Science.gov (United States)

    Petersen, Jörg; Thompson, Alexander J; Levrero, Massimo

    2016-10-01

    Chronic hepatitis B virus (HBV) infection continues to be a major health burden worldwide. Currently available antiviral treatment options for chronic hepatitis B include pegylated interferon alpha2a (PegIFN) or nucleos(t)ide analogues (NAs). The major advantages of NAs are good tolerance and potent antiviral activity associated with high rates of sustained on-treatment response to therapy. The advantages of PegIFN include a finite course of treatment, the absence of drug resistance, and an opportunity to obtain a durable post-treatment response to therapy. Furthermore, PegIFN is the only approved agent known to be active against hepatitis D virus (HDV). The use of these two antiviral agents with different mechanisms of action in combination against hepatitis B is theoretically an attractive approach for treatment. Although several studies have confirmed certain virological advantages of combination therapies, data supporting a long-term clinical benefit for patients are lacking and monotherapy with PegIFN or NAs remains the therapy of choice. Moreover, with the current treatment approaches, only a limited number of patients achieve hepatitis B surface antigen (HBsAg) loss. HBsAg loss is considered a "functional cure", but does not mean viral eradication. There is a need for novel therapeutic approaches that enable not only suppression of viral replication, but resolution of HBV infection. A key challenge is to target covalently closed circular DNA (cccDNA) in the nucleus of infected hepatocytes. The recent development and availability of innovative in vitro and in vivo systems and sensitive molecular techniques has opened new possibilities to study the complex network of interactions that HBV establishes with the host in the course of infection and to define new targets for antiviral strategies. Several new antiviral or immunomodulatory compounds have reached preclinical or clinical testing with the aim of silencing or eradicating cccDNA to achieve functional cure

  2. Curcumin inhibits hepatitis B virus infection by down-regulating cccDNA-bound histone acetylation.

    Science.gov (United States)

    Wei, Zhi-Qiang; Zhang, Yong-Hong; Ke, Chang-Zheng; Chen, Hong-Xia; Ren, Pan; He, Yu-Lin; Hu, Pei; Ma, De-Qiang; Luo, Jie; Meng, Zhong-Ji

    2017-09-14

    To investigate the potential effect of curcumin on hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) and the underlying mechanism. A HepG2.2.15 cell line stably transfected with HBV was treated with curcumin, and HBV surface antigen (HBsAg) and e antigen (HBeAg) expression levels were assessed by ELISA. Intracellular HBV DNA replication intermediates and cccDNA were detected by Southern blot and real-time PCR, respectively. The acetylation levels of histones H3 and H4 were measured by Western blot. H3/H4-bound cccDNA was detected by chromatin immunoprecipitation (ChIP) assays. The deacetylase inhibitors trichostatin A and sodium butyrate were used to study the mechanism of action for curcumin. Additionally, short interfering RNAs (siRNAs) targeting HBV were tested along with curcumin. Curcumin treatment led to time- and dose-dependent reductions in HBsAg and HBeAg expression and significant reductions in intracellular HBV DNA replication intermediates and HBV cccDNA. After treatment with 20 μmol/L curcumin for 2 d, HBsAg and cccDNA levels in HepG2.2.15 cells were reduced by up to 57.7% ( P curcumin, accompanied by reductions in H3- and H4-bound cccDNA. Furthermore, the deacetylase inhibitors trichostatin A and sodium butyrate could block the effects of curcumin. Additionally, transfection of siRNAs targeting HBV enhanced the inhibitory effects of curcumin. Curcumin inhibits HBV gene replication via down-regulation of cccDNA-bound histone acetylation and has the potential to be developed as a cccDNA-targeting antiviral agent for hepatitis B.

  3. Strong and multi-antigen specific immunity by hepatitis B core antigen (HBcAg)-based vaccines in a murine model of chronic hepatitis B: HBcAg is a candidate for a therapeutic vaccine against hepatitis B virus.

    Science.gov (United States)

    Akbar, Sheikh Mohammad Fazle; Chen, Shiyi; Al-Mahtab, Mamun; Abe, Masanori; Hiasa, Yoichi; Onji, Morikazu

    2012-10-01

    Experimental evidence suggests that hepatitis B core antigen (HBcAg)-specific cytotoxic T lymphocytes (CTL) are essential for the control of hepatitis B virus (HBV) replication and prevention of liver damage in patients with chronic hepatitis B (CHB). However, most immune therapeutic approaches in CHB patients have been accomplished with hepatitis B surface antigen (HBsAg)-based prophylactic vaccines with unsatisfactory clinical outcomes. In this study, we prepared HBsAg-pulsed dendritic cells (DC) and HBcAg-pulsed DC by culturing spleen DC from HBV transgenic mice (HBV TM) and evaluated the immunomodulatory capabilities of these antigens, which may serve as a better therapy for CHB. The kinetics of HBsAg, antibody levels against HBsAg (anti-HBs), proliferation of HBsAg- and HBcAg-specific lymphocytes, production of antigen-specific CTL, and activation of endogenous DC were compared between HBV TM vaccinated with either HBsAg- or HBcAg-pulsed DC. Vaccination with HBsAg-pulsed DC induced HBsAg-specific immunity, but failed to induce HBcAg-specific immunity in HBV TM. However, immunization of HBV TM with HBcAg-pulsed DC resulted in: (1) HBsAg negativity, (2) production of anti-HBs, and (3) development of HBsAg- and HBcAg-specific T cells and CTL in the spleen and the liver. Additionally, significantly higher levels of activated endogenous DC were detected in HBV TM immunized with HBcAg-pulsed DC compared to HBsAg-pulsed DC (pdamage suggests that HBcAg should be an integral component of the therapeutic vaccine against CHB. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Vaccination against hepatitis A and B in persons subject to homelessness in inner Sydney: vaccine acceptance, completion rates and immunogenicity.

    Science.gov (United States)

    Poulos, Roslyn G; Ferson, Mark J; Orr, Karen J; McCarthy, Michele A; Botham, Susan J; Stern, Jerome M; Lucey, Adrienne

    2010-04-01

    To determine acceptance, completion rates and immunogenicity of the standard vaccination schedule for hepatitis A (HAV) and B (HBV) in persons subject to homelessness. A convenience sample of clients (n=201) attending a medical clinic for homeless and disadvantaged persons in Sydney was enrolled. Serological screening for HAV and HBV was undertaken. An appropriate vaccination program was instituted. Post-vaccination serology determined serological response. Although many clients had serological evidence of past infection, at least 138 (69%) clients had the potential to benefit from vaccination. For hepatitis A and B vaccinations, completion rates were 73% (73 of 100 clients) and 75% (69 of 92 clients), respectively; after vaccination, protective antibody was found in 98.2% (56 of 57) and 72% (36 of 50) of clients, respectively. A successful vaccination program can be mounted with a vulnerable population. We consider a clinic with a well-established history of acceptance and utilisation by the target group; a low staff turnover and regular clientele; inclusion of vaccination as part of routine client care; and counselling (part of pre- and post-serological testing) essential components in achieving good vaccination completion rates. © 2010 The Authors. Journal Compilation © 2010 Public Health Association of Australia.

  5. Hepatitis B Vaccination Status and Needle stick Injuries among ...

    African Journals Online (AJOL)

    Background: Hepatits B virus (HBV) is the most common blood borne pathogen that poses an occupational risk to Health-care workers. The incidence of infection following needle stick injury has been reported to be high among medical students. Effective vaccines against HBV are available. The aim of this study was to ...

  6. A Multiantigenic DNA Vaccine That Induces Broad Hepatitis C Virus-Specific T-Cell Responses in Mice.

    Science.gov (United States)

    Gummow, Jason; Li, Yanrui; Yu, Wenbo; Garrod, Tamsin; Wijesundara, Danushka; Brennan, Amelia J; Mullick, Ranajoy; Voskoboinik, Ilia; Grubor-Bauk, Branka; Gowans, Eric J

    2015-08-01

    There are 3 to 4 million new hepatitis C virus (HCV) infections annually around the world, but no vaccine is available. Robust T-cell mediated responses are necessary for effective clearance of the virus, and DNA vaccines result in a cell-mediated bias. Adjuvants are often required for effective vaccination, but during natural lytic viral infections damage-associated molecular patterns (DAMPs) are released, which act as natural adjuvants. Hence, a vaccine that induces cell necrosis and releases DAMPs will result in cell-mediated immunity (CMI), similar to that resulting from natural lytic viral infection. We have generated a DNA vaccine with the ability to elicit strong CMI against the HCV nonstructural (NS) proteins (3, 4A, 4B, and 5B) by encoding a cytolytic protein, perforin (PRF), and the antigens on a single plasmid. We examined the efficacy of the vaccines in C57BL/6 mice, as determined by gamma interferon enzyme-linked immunosorbent spot assay, cell proliferation studies, and intracellular cytokine production. Initially, we showed that encoding the NS4A protein in a vaccine which encoded only NS3 reduced the immunogenicity of NS3, whereas including PRF increased NS3 immunogenicity. In contrast, the inclusion of NS4A increased the immunogenicity of the NS3, NS4B, andNS5B proteins, when encoded in a DNA vaccine that also encoded PRF. Finally, vaccines that also encoded PRF elicited similar levels of CMI against each protein after vaccination with DNA encoding NS3, NS4A, NS4B, and NS5B compared to mice vaccinated with DNA encoding only NS3 or NS4B/5B. Thus, we have developed a promising "multiantigen" vaccine that elicits robust CMI. Since their development, vaccines have reduced the global burden of disease. One strategy for vaccine development is to use commercially viable DNA technology, which has the potential to generate robust immune responses. Hepatitis C virus causes chronic liver infection and is a leading cause of liver cancer. To date, no vaccine is

  7. Rapid outer-surface protein C DNA tattoo vaccination protects against Borrelia afzelii infection

    NARCIS (Netherlands)

    Wagemakers, A.; Mason, L. M. K.; Oei, A.; de Wever, B.; van der Poll, T.; Bins, A. D.; Hovius, J. W. R.

    2014-01-01

    Borrelia afzelii is the predominant Borrelia species causing Lyme borreliosis in Europe. Currently there is no human vaccine against Lyme borreliosis, and most research focuses on recombinant protein vaccines against Borrelia burgdorferi sensu stricto. DNA tattooing is a novel vaccination method

  8. Influences of obesity on the immunogenicity of Hepatitis B vaccine.

    Science.gov (United States)

    Liu, Fang; Guo, Zhirong; Dong, Chen

    2017-05-04

    Hepatitis B vaccine is regarded as the most effective method for the prevention of hepatitis B virus (HBV) infection. However, several factors such as age, body mass index and immunocompetent state have been reported to be associated with reduced immunization responses. The present commentary was aimed to discuss the influences of obesity on the immunogenicity of hepatitis B vaccines. Available peer-reviewed literatures, practice guidelines, and statistics published on hepatitis B vaccine in obesity between 1973 and 2015. Obesity was significantly associated with non-response to hepatitis B vaccine immunization. The risk of nonresponsiveness of hepatitis B vaccine among obese people increased with BMI. Moreover, the obesity might lead to an increased risk of HBV vaccine-escape mutations. The mechanism responsible for decreased immunization responses in obesity included leptin-induced systemic and B cell intrinsic inflammation, impaired T cell responses and lymphocyte division and proliferation. Therefore, more studies should be performed to analyze the influences of obesity on the immunogenicity of hepatitis B vaccines to improve the immunoprotecive effect of hepatitis B vaccines in future.

  9. Complementing nuclear techniques with DNA vaccine technologies for improving animal health

    International Nuclear Information System (INIS)

    Relucio, J.L.V.; Dacanay, M.E.K.; Maligalig, A.C.S.; Ramos, E.A.; Santos, A.D.; Torres-Villanueva, C.A.T.; Osorio, R.G.; Deocaris, C.C.

    2005-01-01

    The use of nuclear methods can enhance several features of DNA vaccines in protecting livestock against pathogens. While DNA vaccines already have several advantages over their traditional predecessors (e.g. cheap production, stability over a wide range of temperature, amenability to genetic manipulation, and no risk of reversion to pathogenicity), conventional gene delivery systems make immunization of livestock and aquaculture populations tedious. For this reason, we are developing radiation-synthesized intelligent delivery systems for DNA vaccines. We encapsulated a reporter construct pCMV·SPORT-β-gal in radiation-synthesized κ-carrageenan-polyvinylpyrrolidone microspheres IP20 (for stomach release) and IP18 (for intestinal release). The DNA-loaded polymers were orally administered to Oreochromis niloticus (black Nile tilapia), and whole organs were stained with X-gal to observe β-galactosidase activity. Intense staining was observed in the stomach regions with IP20, while minimal staining was observed with IP18. The gills, in contrast, did not express β-galactosidase activity. Our results show evidence of the successful gene delivery capabilities of radiation-synthesized microspheres. When monitoring the progress of an animal's immune response after DNA immunization, non-invasive and sensitive methods are preferred. We also evaluated chicken egg-yolk polyclonal antibody response (chIgY) after direct intramuscular inoculation of the Hepatitis B Surface antigen expression vector pRc/CMV-HBs(S). Radioimmunoassay (RIA) was done to maximize sensitivity for determining antibody levels. Polyclonal antibody titres were observed to have increased after six weeks. Results of the RIA using the chIgY were comparable to that of immunized sera. Our findings indicate that chIgY could offer a cheaper and more animal-friendly antibody source and could be derived with the advantage of epitope specificity through DNA vaccination. (author)

  10. New antivirals for the treatment of chronic hepatitis B.

    Science.gov (United States)

    Soriano, Vincent; Barreiro, Pablo; Benitez, Laura; Peña, Jose M; de Mendoza, Carmen

    2017-07-01

    Current treatment with oral nucleos(t)ides entecavir or tenofovir provide sustained suppression of HBV replication and clinical benefit in most chronic hepatitis B virus (HBV) infected persons. However, HBV rebound generally occurs upon drug discontinuation due to persistence of genomic HBV reservoirs as episomic cccDNA and chromosomic integrated HBV-DNA. There is renewed enthusiasm on HBV drug discovery following recent successes with antivirals for hepatitis C and immunotherapies for some cancers. Areas covered: New drugs that target distinct steps of the HBV life cycle are been developed, including inhibitors of viral entry, new polymerase inhibitors, capsid and assembly inhibitors, virus release blockers, and disruptors of cccDNA formation and transcription. Alongside these antivirals, agents that enhance anti-HBV specific immune responses are being tested, including TLR agonists, checkpoint inhibitors and therapeutic vaccines. Expert opinion: The achievement of a 'functional cure' for chronic HBV infection, with sustained HBsAg clearance and undetectable viremia once medications are stopped, represents the next step in the pace towards HBV elimination. Hopefully, the combination of new drugs that eliminate or functionally inactivate the genomic HBV reservoirs (cccDNA and integrated HBV-DNA) along with agents that enhance or activate immune responses against HBV will lead to a 'definitive cure' for chronic HBV infection.

  11. Optimised electroporation mediated DNA vaccination for treatment of prostate cancer.

    LENUS (Irish Health Repository)

    Ahmad, Sarfraz

    2010-01-01

    ABSTRACT: BACKGROUND: Immunological therapies enhance the ability of the immune system to recognise and destroy cancer cells via selective killing mechanisms. DNA vaccines have potential to activate the immune system against specific antigens, with accompanying potent immunological adjuvant effects from unmethylated CpG motifs as on prokaryotic DNA. We investigated an electroporation driven plasmid DNA vaccination strategy in animal models for treatment of prostate cancer. METHODS: Plasmid expressing human PSA gene (phPSA) was delivered in vivo by intra-muscular electroporation, to induce effective anti-tumour immune responses against prostate antigen expressing tumours. Groups of male C57 BL\\/6 mice received intra-muscular injections of phPSA plasmid. For phPSA delivery, quadriceps muscle was injected with 50 mug plasmid. After 80 seconds, square-wave pulses were administered in sequence using a custom designed pulse generator and acustom-designed applicator with 2 needles placed through the skin central to the muscle. To determine an optimum treatment regimen, three different vaccination schedules were investigated. In a separate experiment, the immune potential of the phPSA vaccine was further enhanced with co- administration of synthetic CpG rich oligonucleotides. One week after last vaccination, the mice were challenged subcutaneously with TRAMPC1\\/hPSA (prostate cancer cell line stably expressing human PSA) and tumour growth was monitored. Serum from animals was examined by ELISA for anti-hPSA antibodies and for IFNgamma. Histological assessment of the tumours was also carried out. In vivo and in vitro cytotoxicity assays were performed with splenocytes from treated mice. RESULTS: The phPSA vaccine therapy significantly delayed the appearance of tumours and resulted in prolonged survival of the animals. Four-dose vaccination regimen provided optimal immunological effects. Co - administration of the synthetic CpG with phPSA increased anti-tumour responses

  12. Detection of Hepatocyte Clones Containing Integrated Hepatitis B Virus DNA Using Inverse Nested PCR.

    Science.gov (United States)

    Tu, Thomas; Jilbert, Allison R

    2017-01-01

    Chronic hepatitis B virus (HBV) infection is a major cause of liver cirrhosis and hepatocellular carcinoma (HCC), leading to ~600,000 deaths per year worldwide. Many of the steps that occur during progression from the normal liver to cirrhosis and/or HCC are unknown. Integration of HBV DNA into random sites in the host cell genome occurs as a by-product of the HBV replication cycle and forms a unique junction between virus and cellular DNA. Analyses of integrated HBV DNA have revealed that HCCs are clonal and imply that they develop from the transformation of hepatocytes, the only liver cell known to be infected by HBV. Integrated HBV DNA has also been shown, at least in some tumors, to cause insertional mutagenesis in cancer driver genes, which may facilitate the development of HCC. Studies of HBV DNA integration in the histologically normal liver have provided additional insight into HBV-associated liver disease, suggesting that hepatocytes with a survival or growth advantage undergo high levels of clonal expansion even in the absence of oncogenic transformation. Here we describe inverse nested PCR (invPCR), a highly sensitive method that allows detection, sequencing, and enumeration of virus-cell DNA junctions formed by the integration of HBV DNA. The invPCR protocol is composed of two major steps: inversion of the virus-cell DNA junction and single-molecule nested PCR. The invPCR method is highly specific and inexpensive and can be tailored to DNA extracted from large or small amounts of liver. This procedure also allows detection of genome-wide random integration of any known DNA sequence and is therefore a useful technique for molecular biology, virology, and genetic research.

  13. A cross-sectional serosurvey on hepatitis B vaccination uptake among adult patients from GP practices in a region of South-West Poland.

    Science.gov (United States)

    Ganczak, Maria; Dmytrzyk-Daniłów, Gabriela; Korzeń, Marcin; Szych, Zbigniew

    2015-10-16

    Hepatitis B is a significant health burden in Poland with nosocomial transmission being the main source of infection. Therefore, HBV vaccination is widely recommended for those not covered by the national immunisation program. To assess the coverage and influencing determinants of HBV vaccination among adult patients attending GP clinics as well as to establish serological status in terms of HBV infection. Patients who were seen consecutively in March 2013 at four randomly selected GP practices located in Zgorzelec county, in south-western part of Poland, were invited to participate and complete questionnaires on socio-demographic data and other factors related to vaccination. A pilot study was done in one urban GP practice in the city of Gryfino (Gryfino county), the results have been included in the study. Patients' immunisation status was assessed basing on vaccination cards and anti-HBs titer with the use of third-generation testing methods. In addition, serum samples were assayed for anti-HBc total. Response rate: 99.3 %. Of 410 participants (66.1 % females, median age 56 years), 55.4 % (95%CI:50.5-60.1 %) were previously vaccinated; in those 11.5 % took 2 doses, 66.1 % - 3 doses,18.1 % - 4 doses. Elective surgery was the main reason (57.7 %) for HBV immunization, 4.8 % - were vaccinated due to recommendations by GPs. The multivariable logistic regression model revealed that living in a city (OR 2.11), and having a surgery in the past (OR 2.73) were each associated with greater odds of being vaccinated. Anti-HBc total prevalence among those unvaccinated was 13.6 % (95%CI:9.3 %-19,5 %), and 7.2 % (95%CI:4.4-11.8 %) among those vaccinated. Low HBV immunization coverage among adult patients from GP clinics and the presence of serological markers of HBV infection among both - those unvaccinated and vaccinated call for comprehensive preventative measures against infection, including greater involvement of family doctors. Although interventions should cover the

  14. Transfusion-transmitted hepatitis B virus (HBV) infection from an individual-donation nucleic acid (ID-NAT) non-reactive donor.

    LENUS (Irish Health Repository)

    O'Flaherty, N

    2018-02-14

    Lookback was initiated upon notification of an acute HBV infection in a repeat Irish donor, 108 days post-donation. The donation screened non-reactive by individual-donation nucleic acid testing (ID-NAT) using the Procleix Ultrio Elite multiplex assay and again when the archived sample was retested, but the discriminatory assay for HBV was reactive. The immunocompromised recipient of the implicated red cell component was tested 110 days post-transfusion, revealing a HBV DNA viral load of 470 IU\\/ml. Genotype C2 sequences identical across two regions of the HBV genome were found in samples from the donor and recipient.

  15. Glomerular diseases associated with HBV and HCV infection

    Directory of Open Access Journals (Sweden)

    Boriana Kiperova

    2014-03-01

    Full Text Available Hepatitis B and C viruses are human pathogens of major significance. Their extrahepatic manifestations are global health problem. HBV is a well-known cause of membranous nephropathy, membranoproliferative GN and IgA nephropathy, frequently in Asian populations. Polyarteritis nodosa is a rare, but serious systemic complication of chronic HBV. Immunosuppressive therapy in HBV-related GN is not recommended. Interferon alpha treatment produces sustained remission of porteinuria, often associated with clearance of HBeAg and/or HBsAg, however, it has many side effects. Compared to interferon, nucleos(tide analogues offer some advantages. These antiviral agents suppress HBV replication through their inhibitory effect on viral DNA polymerase. They have convenient administration and high tolerability. Lamivudine is well tolerated and safe in long-term studies, but the resistance of HBV is an escalating problem. The resistance to newer polymerase inhibitors Entecavir and Tenofovir is significantly lower. Hepatitis C virus causes cryoglobulinemia-mediated glomerulonephritis and other immune complex forms of GN. The renal manifestations are usually associated with long-lasting HCV infection. HCV glomerular disease is more frequent in adult males, and often leads to chronic renal insufficiency. The first line treatment in patients with mild to moderate clinical and histological kidney damage is the antiviral therapy with pegylated INF alpha and ribavirin. In case of severe HCV-associated cryoglobulinemic GN - nephrotic syndrome, nephritic syndrome and/or progressive renal failure, high activity score of glomerulonephritis on light microscopy, the initial treatment might consist of sequential administration of antiviral and immunosuppressive agents (corticosteroids, cyclophosphamide and plasma exchange, or rituximab. The treatment of HCV-related glomerular disease is still under debate and based on scant experimental evidence. Large randomized and controlled

  16. A meta-analysis of the antiviral activity of the HBV-specific immunotherapeutic TG1050 confirms its value over a wide range of HBsAg levels in a persistent HBV pre-clinical model.

    Science.gov (United States)

    Kratzer, Roland; Sansas, Benoît; Lélu, Karine; Evlachev, Alexei; Schmitt, Doris; Silvestre, Nathalie; Inchauspé, Geneviève; Martin, Perrine

    2018-02-01

    Pre-clinical models mimicking persistent hepatitis B virus (HBV) expression are seldom, do not capture all features of a human chronic infection and due to their complexity, are subject to variability. We report a meta-analysis of seven experiments performed with TG1050, an HBV-targeted immunotherapeutic, 1 in an HBV-persistent mouse model based on the transduction of mice by an adeno-associated virus coding for an infectious HBV genome (AAV-HBV). To mimic the clinical diversity seen in HBV chronically infected patients, AAV-HBV transduced mice displaying variable HBsAg levels were treated with TG1050. Overall mean percentages of responder mice, displaying decrease in important clinical parameters i.e. HBV-DNA (viremia) and HBsAg levels, were 52% and 51% in TG1050 treated mice, compared with 8% and 22%, respectively, in untreated mice. No significant impact of HBsAg level at baseline on response to TG1050 treatment was found. TG1050-treated mice displayed a significant shorter Time to Response (decline in viral parameters) with an Hazard Ratio (HR) of 8.3 for viremia and 2.6 for serum HBsAg. The mean predicted decrease for TG1050-treated mice was 0.5 log for viremia and 0.8 log for HBsAg, at the end of mice follow-up, compared to no decrease for viremia and 0.3 log HBsAg decrease for untreated mice. For mice receiving TG1050, a higher decline of circulating viremia and serum HBsAg level over time was detected by interaction term meta-analysis with a significant treatment effect (p = 0.002 and pHBV-persistent model mimicking clinical situations.

  17. Can VHS virus bypass the protective immunity induced by DNA vaccination in rainbow trout?

    DEFF Research Database (Denmark)

    Sepúlveda, Dagoberto; Lorenzen, Niels

    2016-01-01

    DNA vaccines encoding viral glycoproteins have been very successful for induction of protective immunity against diseases caused by rhabdoviruses in cultured fish species. However, the vaccine concept is based on a single viral gene and since RNA viruses are known to possess high variability...... and adaptation capacity, this work aimed at evaluating whether viral haemorrhagic septicaemia virus (VHSV), an RNA virus and member of Rhabdoviridae family, was able to evade the protective immune response induced by the DNA vaccination of rainbow trout. The experiments comprised repeated passages of a highly...... pathogenic VHSV isolate in a fish cell line in the presence of neutralizing fish serum (in vitro approach), and in rainbow trout immunized with the VHS DNA vaccine (in vivo approach). For the in vitro approach, the virus collected from the last passage (passaged virus) was as sensitive as the parental virus...

  18. Xenogeneic murine tyrosinase DNA vaccine for malignant melanoma of the digit of dogs.

    Science.gov (United States)

    Manley, C A; Leibman, N F; Wolchok, J D; Rivière, I C; Bartido, S; Craft, D M; Bergman, P J

    2011-01-01

    Malignant melanoma of dogs is a highly aggressive neoplasm and is the 2nd most common digit tumor. Metastatic disease is a common sequela for which few effective treatment options exist. Studies show that xenogeneic tyrosinase DNA vaccination yields immune responses and prolongation of survival in dogs with oral malignant melanoma. Describe clinical findings and tumor characteristics of a cohort of dogs with digit malignant melanoma, and evaluate the prognostic utility of a proposed staging system. Determine if a novel xenogeneic DNA vaccine is safe and potentially effective for treatment of dogs with digit melanoma. Fifty-eight dogs with digit malignant melanoma treated at the Animal Medical Center between 2004 and 2007. Retrospective, medical records review of dogs with digit melanoma treated with xenogeneic DNA vaccine. Overall median survival time (MST) for dogs treated with loco-regional control and xenogeneic DNA vaccine was 476 days with a 1-year survival rate of 63%. MST for dogs presenting with metastasis was 105 days versus 533 days for dogs presenting without metastasis (P dogs in the latter group were alive at 2 and 3 years. A proposed staging system proved prognostic with stages I-IV dogs surviving >952, >1,093, 321, and 76 days, respectively. The xenogeneic murine tyrosinase DNA vaccine was safe and appears effective when used in conjunction with local and regional disease control. The proposed staging system was prognostic in this study and future studies might benefit from utilizing this staging system. Copyright © 2010 by the American College of Veterinary Internal Medicine.

  19. Retinaldehyde dehydrogenase 2 as a molecular adjuvant for enhancement of mucosal immunity during DNA vaccination.

    Science.gov (United States)

    Holechek, Susan A; McAfee, Megan S; Nieves, Lizbeth M; Guzman, Vanessa P; Manhas, Kavita; Fouts, Timothy; Bagley, Kenneth; Blattman, Joseph N

    2016-11-04

    In order for vaccines to induce efficacious immune responses against mucosally transmitted pathogens, such as HIV-1, activated lymphocytes must efficiently migrate to and enter targeted mucosal sites. We have previously shown that all-trans retinoic acid (ATRA) can be used as a vaccine adjuvant to enhance mucosal CD8 + T cell responses during vaccination and improve protection against mucosal viral challenge. However, the ATRA formulation is incompatible with most recombinant vaccines, and the teratogenic potential of ATRA at high doses limits its usage in many clinical settings. We hypothesized that increasing in vivo production of retinoic acid (RA) during vaccination with a DNA vector expressing retinaldehyde dehydrogenase 2 (RALDH2), the rate-limiting enzyme in RA biosynthesis, could similarly provide enhanced programming of mucosal homing to T cell responses while avoiding teratogenic effects. Administration of a RALDH2- expressing plasmid during immunization with a HIVgag DNA vaccine resulted in increased systemic and mucosal CD8 + T cell numbers with an increase in both effector and central memory T cells. Moreover, mice that received RALDH2 plasmid during DNA vaccination were more resistant to intravaginal challenge with a recombinant vaccinia virus expressing the same HIVgag antigen (VACVgag). Thus, RALDH2 can be used as an alternative adjuvant to ATRA during DNA vaccination leading to an increase in both systemic and mucosal T cell immunity and better protection from viral infection at mucosal sites. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Increase in DNA vaccine efficacy by virosome delivery and co-expression of a cytolytic protein.

    Science.gov (United States)

    Gargett, Tessa; Grubor-Bauk, Branka; Miller, Darren; Garrod, Tamsin; Yu, Stanley; Wesselingh, Steve; Suhrbier, Andreas; Gowans, Eric J

    2014-06-01

    The potential of DNA vaccines has not been realised due to suboptimal delivery, poor antigen expression and the lack of localised inflammation, essential for antigen presentation and an effective immune response to the immunogen. Initially, we examined the delivery of a DNA vaccine encoding a model antigen, luciferase (LUC), to the respiratory tract of mice by encapsulation in a virosome. Virosomes that incorporated influenza virus haemagglutinin effectively delivered DNA to cells in the mouse respiratory tract and resulted in antigen expression and systemic and mucosal immune responses to the immunogen after an intranasal (IN) prime/intradermal (ID) boost regimen, whereas a multidose ID regimen only generated systemic immunity. We also examined systemic immune responses to LUC after ID vaccination with a DNA vaccine, which also encoded one of the several cytolytic or toxic proteins. Although the herpes simplex virus thymidine kinase, in the presence of the prodrug, ganciclovir, resulted in cell death, this failed to increase the humoral or cell-mediated immune responses. In contrast, the co-expression of LUC with the rotavirus non-structural protein 4 (NSP4) protein or a mutant form of mouse perforin, proteins which are directly cytolytic, resulted in increased LUC-specific humoral and cell-mediated immunity. On the other hand, co-expression of LUC with diphtheria toxin subunit A or overexpression of perforin or NSP4 resulted in a lower level of immunity. In summary, the efficacy of DNA vaccines can be improved by targeted IN delivery of DNA or by the induction of cell death in vaccine-targeted cells after ID delivery.

  1. A comparison of hepatitis A and hepatitis B measures among vaccinated and susceptible online men who have sex with men.

    Science.gov (United States)

    Gilbert, L K; Levandowski, B A; Scanlon, K E; Peterson, R S

    2010-06-01

    Hepatitis A virus (HAV) and hepatitis B virus (HBV) continue to be major health concerns among men who have sex with men (MSM). The Internet both facilitates high-risk sexual encounters and provides opportunities for promoting healthy behaviours. This study compared self-reported HAV and HBV vaccination levels, based on demographics, health characteristics, hepatitis knowledge, attitudes and risk behaviours among MSM using an online survey posted from February through June 2005. Each participant (n = 968) reported whether they were vaccinated, infected or susceptible for hepatitis A and/or for hepatitis B. Men whose health-care provider recommended vaccination were 12.91 (95% confidence interval [CI] 8.11, 20.55) times more likely to be vaccinated against HAV and 17.93 (95% CI 10.82, 29.70) times more likely to be vaccinated against HBV than those at risk of infection, respectively. These data provide essential information for public health professionals to successfully promote vaccination among members of this population.

  2. Inhibition of Hepatitis B virus cccDNA replication by siRNA

    International Nuclear Information System (INIS)

    Li Guiqiu; Gu Hongxi; Li Di; Xu Weizhen

    2007-01-01

    The development of an effective therapy for Hepatitis B virus (HBV) infection is still a challenge. Progress in RNA interference (RNAi) has shed slight on developing a new anti-HBV strategy. Here, we present a series of experiments showing a significant reduction in HBV transcripts and replication intermediates in HepG2.2.15 cells by vector-based siRNA targeted nuclear localization signal (NLS) region. More importantly, we showed that siRNA1 markedly inhibited HBV covalently closed circular DNA (cccDNA) replication. Our results indicated that HBV NLS may serve as a novel RNAi target to combat HBV infection, which can enhance anti-HBV efficacy and overcome the drawbacks of current therapies

  3. Sero-prevalence and vaccination status of hepatitis A and hepatitis B among adults with cirrhosis in Sri Lanka: a hospital based cohort study.

    Science.gov (United States)

    Niriella, Madunil Anuk; Kobbegala, Vipuli Jayendra; Karalliyadda, Hasnatha Nuwan; Ranawaka, Chamila Kumara; de Silva, Arjuna Priyadarshin; Dassanayake, Anuradha Supun; de Silva, Hithanadura Janaka

    2017-07-21

    As acute viral hepatitis can be fatal in patients with cirrhosis, vaccination against hepatitis A (HAV) and hepatitis B (HBV) is recommended for non-immune patients. With increasing affluence the incidence of hepatitis A in childhood has decreased leading to a significant proportion of non-immune adults. As part of their routine investigation, hepatitis A IgG antibodies (anti-HAV IgG), hepatitis B surface antigen (HBsAg) and anti-HCV antibodies was checked and immunization status was assessed among consenting newly diagnosed cirrhotic patients presenting to a tertiary referral center. Out of 135 patients, 107 [79.3%; males 91; mean age (SD) at presentation: 55.5 (11.6) years] with complete data were included for analysis. Most patients had either cryptogenic cirrhosis (62.6%) or alcoholic cirrhosis (29.9%); 2 (1.9%) had HBV cirrhosis, none had hepatitis C (HCV) cirrhosis. None of the patients had received vaccination against hepatitis A, while 71 (67.6%) had been vaccinated against HBV. The majority [62 (58%)] were negative for anti-HAV IgG. Most cirrhotic patients in this cohort were not immune to hepatitis A. None had been vaccinated against HAV, while a third of patients had not been vaccinated against HBV. Cirrhotic patients should be routinely investigated for immunity against HAV and HBV, and vaccination offered to those found to be non-immune.

  4. Detection of supercoiled hepatitis B virus DNA and related forms by means of molecular hybridization to an oligonucleotide probe

    International Nuclear Information System (INIS)

    Lin, H.J.; Chung, H.T.; Lai, C.L.; Leong, S.; Tam, O.S.

    1989-01-01

    A novel assay for supercoiled and other fully double-stranded forms of hepatitis B virus (HBV) DNA in blood is presented that utilizes molecular hybridisation to a radiophosphorous-labeled oligonucleotide probe. The probe [5'-d(ACGTGCAGAGGTGAAGCGA)] is complementary to the S(+)-strand sequence furthest downstream, at the end of the gap. We examined blood specimens from 137 healthy HBsAg-positive individuals, applying the probe to dots representing 2-3.5 ml serum or plasma. We found that supercoiled HBV is present in many HBV DNA-positive blood specimens albeit in small quantities. Of the 104 specimens that were positive for HBV DNA of any form, 53 annealed to the probe. Serial specimens from the same subject taken over a period of months showed that the proportion of supercoil to other HBV DNA forms was variable. The presence of supercoil HBV DNA was not closely correlated with the level of serum HBV DNA polymerase. The supercoil is an HBV DNA form that can persist in the liver in the presence or absence of other replicative intermediates. This assay may enable further characterization of the status of HBV infection

  5. Usefulness of in-house PCR methods for hepatitis B virus DNA detection.

    Science.gov (United States)

    Portilho, Moyra Machado; Baptista, Marcia Leite; da Silva, Messias; de Sousa, Paulo Sérgio Fonseca; Lewis-Ximenez, Lia Laura; Lampe, Elisabeth; Villar, Livia Melo

    2015-10-01

    The aim of the present study was to evaluate the performance of three in-house PCR techniques for HBV DNA detection and compare it with commercial quantitative methods to evaluate the usefulness of in-house methods for HBV diagnosis. Three panels of HBsAg reactive sera samples were evaluated: (i) 50 samples were examined using three methods for in-house qualitative PCR and the Cobas Amplicor HBV Monitor Assay; (ii) 87 samples were assayed using in-house semi-nested PCR and the Cobas TaqMan HBV test; (iii) 11 serial samples obtained from 2 HBV-infected individuals were assayed using the Cobas Amplicor HBV test and semi-nested PCR. In panel I, HBV DNA was detected in 44 samples using the Cobas Amplicor HBV test, 42 samples using semi-nested PCR (90% concordance with Cobas Amplicor), 22 samples using PCR for the core gene (63.6% concordance) and 29 samples using single-round PCR for the pre-S/S gene (75% concordance). In panel II, HBV DNA was quantified in 78 of the 87 HBsAg reactive samples using Cobas TaqMan but 52 samples using semi-nested PCR (67.8% concordance). HBV DNA was detected in serial samples until the 17th and 26th week after first donation using in-house semi-nested PCR and the Cobas Amplicor HBV test, respectively. In-house semi-nested PCR presented adequate concordance with commercial methods as an alternative method for HBV molecular diagnosis in low-resource settings. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. DNA vaccine expressing herpes simplex virus 1 glycoprotein C and D protects mice against herpes simplex keratitis

    OpenAIRE

    Li-Li Dong; Ru Tang; Yu-Jia Zhai; Tejsu Malla; Kai Hu

    2017-01-01

    AIM: To investigate whether DNA vaccine encoding herpes simplex virus 1 (HSV-1) glycoprotein C (gC) and glycoprotein D (gD) will achieve better protective effect against herpes simplex keratitis (HSK) than DNA vaccine encoding gD alone. METHODS: DNA vaccine expressing gD or gC combined gD (gD.gC) were constructed and carried by chitosan nanoparticle. The expression of fusion protein gD and gC were detected in DNA/nanoparticle transfected 293T cells by Western-blot. For immunization, mice w...

  7. The immunogenicity of GSK's recombinant hepatitis B vaccine in children: a systematic review of 30 years of experience.

    Science.gov (United States)

    van den Ende, Caroline; Marano, Cinzia; van Ahee, Ayla; Bunge, Eveline M; De Moerlooze, Laurence

    2017-08-01

    The World Health Organization recommends hepatitis B virus (HBV) vaccines to be included in national immunization schedules everywhere, and has adopted the strategic goal of halting viral hepatitis as a major public health threat by 2030, under which vaccination plays a major role. Engerix™ B (GSK HepB, GSK, Belgium) was the first recombinant HBV vaccine to be licensed, and marked its 30th anniversary in 2016. Areas covered: We conducted a systematic review of the literature summarizing 30 years of immunogenicity and safety data for GSK HepB in children and adolescents. Expert commentary: Primary 3-dose vaccination of healthy infants and children, including infants born to HBsAg-positive mothers, using the standard 0, 1, 6 month schedule was associated with seroprotection rates ≥96.0%. In high-risk infants, vaccine efficacy at year 5 was 96.0% after 3-dose priming in infancy and immunoglobulin at birth. Lower seroprotection rates were observed in children with severe underlying disease including human immunodeficiency virus infection and cancer. GSK HepB had a clinically acceptable safety profile in all of the populations studied. HBV vaccines have demonstrated long-term impacts on rates of fulminant hepatitis, chronic liver disease and hepatocellular carcinoma. GSK HepB will continue to contribute to global HBV control for the foreseeable future.

  8. Mechanisms and Effects on HBV Replication of the Interaction between HBV Core Protein and Cellular Filamin B.

    Science.gov (United States)

    Li, Yilin; Sun, Yishuang; Sun, Fuyun; Hua, Rong; Li, Chenlin; Chen, Lang; Guo, Deyin; Mu, Jingfang

    2018-03-28

    Hepatitis B virus (HBV) infection is one of the major problems that threatens global health. There have been many studies on HBV, but the relationship between HBV and host factors is largely unexplored and more studies are needed to clarify these interactions. Filamin B is an actin-binding protein that acts as a cytoskeleton protein, and it is involved in cell development and several signaling pathways. In this study, we showed that filamin B interacted with HBV core protein, and the interaction promoted HBV replication. The interaction between filamin B and core protein was observed in HEK 293T, Huh7 and HepG2 cell lines by co-immunoprecipitation and co-localization immnofluoresence. Overexpression of filamin B increased the levels of HBV total RNAs and pre-genome RNA (pgRNA), and improved the secretion level of hepatitis B surface antigen (HBsAg) and hepatitis B e antigen (HBeAg). In contrast, filamin B knockdown inhibited HBV replication, decreased the level of HBV total RNAs and pgRNA, and reduced the secretion level of HBsAg and HBeAg. In addition, we found that filamin B and core protein may interact with each other via four blocks of argentine residues at the C-terminus of core protein. In conclusion, we identify filamin B as a novel host factor that can interact with core protein to promote HBV replication in hepatocytes. Our study provides new insights into the relationship between HBV and host factors and may provide new strategies for the treatment of HBV infection.

  9. Increasing vaccine production using pulsed ultrasound waves.

    Directory of Open Access Journals (Sweden)

    Jida Xing

    Full Text Available Vaccination is a safe and effective approach to prevent deadly diseases. To increase vaccine production, we propose that a mechanical stimulation can enhance protein production. In order to prove this hypothesis, Sf9 insect cells were used to evaluate the increase in the expression of a fusion protein from hepatitis B virus (HBV S1/S2. We discovered that the ultrasound stimulation at a frequency of 1.5 MHz, intensity of 60 mW/cm2, for a duration of 10 minutes per day increased HBV S1/S2 by 27%. We further derived a model for transport through a cell membrane under the effect of ultrasound waves, tested the key assumptions of the model through a molecular dynamics simulation package, NAMD (Nanoscale Molecular Dynamics program and utilized CHARMM force field in a steered molecular dynamics environment. The results show that ultrasound waves can increase cell permeability, which, in turn, can enhance nutrient / waste exchange thus leading to enhanced vaccine production. This finding is very meaningful in either shortening vaccine production time, or increasing the yield of proteins for use as vaccines.

  10. Anti-HBV treatment induces novel reverse transcriptase mutations with reflective effect on HBV S antigen

    NARCIS (Netherlands)

    Cento, Valeria; van Hemert, Formijn; Neumann-Fraune, Maria; Mirabelli, Carmen; Di Maio, Velia-Chiara; Salpini, Romina; Bertoli, Ada; Micheli, Valeria; Gubertini, Guido; Romano, Sara; Visca, Michela; de Sanctis, Giuseppe-Maria; Berkhout, Ben; Marino, Nicoletta; Mazzotta, Francesco; Cappiello, Giuseppina; Spanò, Alberto; Sarrecchia, Cesare; Ceccherini-Silberstein, Francesca; Andreoni, Massimo; Angelico, Mario; Verheyen, Jens; Perno, Carlo Federico; Svicher, Valentina

    2013-01-01

    The identification of novel reverse-transcriptase (RT) drug-resistance mutations is critical in predicting the probability of success to anti-HBV treatment. Furthermore, due to HBV-RT/HBsAg gene-overlap, they can have an impact on HBsAg-detection and quantification. 356 full-length HBV-RT sequences

  11. Enhancement of immune response induced by DNA vaccine cocktail expressing complete LACK and TSA genes against Leishmania major.

    Science.gov (United States)

    Ghaffarifar, Fatemeh; Jorjani, Ogholniaz; Sharifi, Zohreh; Dalimi, Abdolhossein; Hassan, Zuhair M; Tabatabaie, Fatemeh; Khoshzaban, Fariba; Hezarjaribi, Hajar Ziaei

    2013-04-01

    Leishmaniasis is an important disease in humans. Leishmania homologue of receptor for Activated C Kinase (LACK) and thiol specific antioxidant (TSA) as immuno-dominant antigens of Leishmania major are considered the most promising molecules for a DNA vaccine. We constructed a DNA cocktail, containing plasmids encoding LACK and TSA genes of Leishmania major and evaluated the immune response and survival rate in BALB/c mice. IgG and Interferon gamma values were noticeably increased in the immunized group with DNA cocktail vaccine, which were significantly higher than those in the single-gene vaccinated and control groups (p 0.05). The immunized mice with the cocktail DNA vaccine presented a considerable reduction in diameter of lesion compared to other groups and a significant difference was observed (p < 0.05) in this regard. The survival time of the immunized mice with the cocktail DNA vaccine was significantly higher than that in the other groups (p < 0.05) after their being challenged with Leishmania major. The findings of this study indicated that the cocktail DNA vaccine increased the cellular response and survival rate and induced protection against infection with Leishmania in the mice. © 2012 The Authors © 2012 APMIS.

  12. Enhancement of human immunodeficiency virus type 1-DNA vaccine potency through incorporation of T-helper 1 molecular adjuvants.

    Science.gov (United States)

    Calarota, Sandra A; Weiner, David B

    2004-06-01

    It is clear that the development of a safe and effective vaccine for human immunodeficiency virus type 1 (HIV-1) remains a crucial goal for controlling the acquired immunodeficiency syndrome epidemic. At present, it is not clear what arm of the immune response correlates with protection from HIV-1 infection or disease. Therefore, a strong cellular and humoral immune response will likely be needed to control this infection. Among different vaccine alternatives, DNA vaccines appeared more than a decade ago, demonstrating important qualities of inducing both humoral and cellular immune responses in animal models. However, after several years and various clinical studies in humans, supporting the safety of the HIV-DNA vaccine strategies, it has become clear that their potency should be improved. One way to modulate and enhance the immune responses induced by a DNA vaccine is by including genetic adjuvants such as cytokines, chemokines, or T-cell costimulatory molecules as part of the vaccine itself. Particularly, vaccine immunogenicity can be modulated by factors that attract professional antigen-presenting cells, provide additional costimulation, or enhance the uptake of plasmid DNA. This review focuses on developments in the coadministration of molecular adjuvants for the enhancement of HIV-1 DNA-vaccine potency.

  13. Linear DNA vaccine prepared by large-scale PCR provides protective immunity against H1N1 influenza virus infection in mice.

    Science.gov (United States)

    Wang, Fei; Chen, Quanjiao; Li, Shuntang; Zhang, Chenyao; Li, Shanshan; Liu, Min; Mei, Kun; Li, Chunhua; Ma, Lixin; Yu, Xiaolan

    2017-06-01

    Linear DNA vaccines provide effective vaccination. However, their application is limited by high cost and small scale of the conventional polymerase chain reaction (PCR) generally used to obtain sufficient amounts of DNA effective against epidemic diseases. In this study, a two-step, large-scale PCR was established using a low-cost DNA polymerase, RKOD, expressed in Pichia pastoris. Two linear DNA vaccines encoding influenza H1N1 hemagglutinin (HA) 1, LEC-HA, and PTO-LEC-HA (with phosphorothioate-modified primers), were produced by the two-step PCR. Protective effects of the vaccines were evaluated in a mouse model. BALB/c mice were immunized three times with the vaccines or a control DNA fragment. All immunized animals were challenged by intranasal administration of a lethal dose of influenza H1N1 virus 2 weeks after the last immunization. Sera of the immunized animals were tested for the presence of HA-specific antibodies, and the total IFN-γ responses induced by linear DNA vaccines were measured. The results showed that the DNA vaccines but not the control DNA induced strong antibody and IFN-γ responses. Additionally, the PTO-LEC-HA vaccine effectively protected the mice against the lethal homologous mouse-adapted virus, with a survival rate of 100% versus 70% in the LEC-HA-vaccinated group, showing that the PTO-LEC-HA vaccine was more effective than LEC-HA. In conclusion, the results indicated that the linear H1N1 HA-coding DNA vaccines induced significant immune responses and protected mice against a lethal virus challenge. Thus, the low-cost, two-step, large-scale PCR can be considered a potential tool for rapid manufacturing of linear DNA vaccines against emerging infectious diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. DNA vaccination of pigs with open reading frame 1-7 of PRRS virus

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Blixenkrone-Møller, Merete; Jensen, Merethe Holm

    2004-01-01

    We cloned all open reading frames of a Danish isolate of porcine reproductive and respiratory syndrome (PRRS) virus in DNA vaccination vectors. Pigs were vaccinated using a gene gun with each single construct (ORF1, ORF2, ORF3, ORF4, ORF5, ORF6, or ORF7) or combinations thereof. Vaccination...

  15. Prevalence of non-responsiveness to an indigenous recombinant hepatitis B vaccine: A study among South Indian health care workers in a tertiary hospital

    Directory of Open Access Journals (Sweden)

    R J Thomas

    2015-01-01

    Full Text Available Background and Aim: Health care workers (HCW are at higher risk of contracting HBV infection. Non-response to HBV vaccine is one of the major impediments to prevent healthcare associated HBV infection (HAHI. We estimated the prevalence of non-responsiveness to initial 3-dose regimen of an indigenous recombinant HBV vaccine (GeneVac-B among South Indian HCWs and typed the HLA in non-responders. Study Design and Method: Of the 778 subjects screened over 1 year, 454 completed all three doses of the hepatitis B vaccination. Anti-HBs titers were estimated by microparticle enzyme immunoassay AxSYM AUSAB, (Abbott, Germany. HLA typing was done using SSP-PCR assay AllSet+™ Gold SSP (Invitrogen, USA. Results: The overall seroconversion rate (anti-HBs > 10 mIU/mL was 98.89% wherein 90.8% had titers >1000mIU/mL, 7.6% had titers 100-1000mIU/mL, 0.43% had titers < 100 mIU/mL and 1.1% were non-responsive (<10 mIU/mL to the initial 3-dose regimen. Antibody titers <1000 mIU/mL were significantly associated with the highest quartile of body mass index (BMI (P < 0.001. We found no significant difference in seroprotection rate between gender (P = 0.088. There was no difference in seroprotection rates among various ethnic groups (P = 0.62. Subjects who were non-responsive in our study had at least one HLA allele earlier known to be associated with non-responsiveness to the vaccine. Conclusion: Our findings suggest that non-response to HBV vaccine is not a major impediment to prevent HAHI. Robust seroprotection rates can be achieved using this indigenous HBV vaccine. However, gender and BMI might influence the level of anti-HBs titers. We recommend the use of this cost effective HBV vaccine as well as postvaccination anti-HBs testing to prevent HAHI among HCWs.

  16. Effects of a nurse-managed program on hepatitis A and B vaccine completion among homeless adults.

    Science.gov (United States)

    Nyamathi, Adeline; Liu, Yihang; Marfisee, Mary; Shoptaw, Steven; Gregerson, Paul; Saab, Sammy; Leake, Barbara; Tyler, Darlene; Gelberg, Lillian

    2009-01-01

    Hepatitis B virus (HBV) infection constitutes a major health problem for homeless persons. Ability to complete an HBV vaccination series is complicated by the need to prioritize competing needs, such as addiction issues, safe places to sleep, and food, over health concerns. The objectives of this study were to evaluate the effectiveness of a nurse-case-managed intervention compared with that of two standard programs on completion of the combined hepatitis A virus (HAV) and HBV vaccine series among homeless adults and to assess sociodemographic factors and risk behaviors related to the vaccine completion. A randomized, three-group, prospective, quasi-experimental design was conducted with 865 homeless adults residing in homeless shelters, drug rehabilitation sites, and outdoor areas in the Skid Row area of Los Angeles. The programs included (a) nurse-case-managed sessions plus targeted hepatitis education, incentives, and tracking (NCMIT); (b) standard targeted hepatitis education plus incentives and tracking (SIT); and (c) standard targeted hepatitis education and incentives only (SI). Sixty-eight percent of the NCMIT participants completed the three-series vaccine at 6 months, compared with 61% of SIT participants and 54% of SI participants. NCMIT participants had almost 2 times greater odds of completing vaccination than those of participants in the SI program. Completers were more likely to be older, to be female, to report fair or poor health, and not to have participated in a self-help drug treatment program. Newly homeless White adults were significantly less likely than were African Americans to complete the vaccine series. The use of vaccination programs incorporating nurse case management and tracking is critical in supporting adherence to completion of a 6-month HAV/HBV vaccine. The finding that White homeless persons were the least likely to complete the vaccine series suggests that programs tailored to address their unique cultural issues are needed.

  17. Significance of occult hbv infection in patients with chronic hepatitis c

    International Nuclear Information System (INIS)

    Anwar, W.; Sarwar, M.; Saif, M.; Hussain, A.B.; Tariq, W.Z.

    2006-01-01

    Objective: To determine the frequency of occurrence of occult Hepatitis B infection in chronic hepatitis C patients and its impact (if any) on the effectivity of standard chronic hepatitis C treatment. Design: Quasi-experimental study. Place and Duration of Study: The study was conducted at the Department of Medicine, Military Hospital, Rawalpindi, and Virology Department, Armed Forces Institute of Pathology, Rawalpindi, for a period of nine months from January 2003 to September 2003. Patients and Methods: This study was conducted on 30 HBsAg negative patients with chronic hepatitis C liver disease who were receiving combination therapy with interferon and ribavirin. Occult hepatitis B infection was assessed by carrying out HBV DNA by polymerase chain reaction (PCR) in the sera of these patients. Markers of previous hepatitis B infection Le; anti-HBs and total anti-HBc antibodies were also tested. Response to treatment for hepatitis C (with interferon and ribavirin) was assessed at the end of six months of therapy by measuring ALT levels and HCV RNA by PCR in the serum. Results: In our study only one patient (3.33%) was found to be harbouring HBV DNA in the serum detectable by PCR, with markers of previous HBV infection (both anti HBc antibodies and anti HBs antibodies were positive). A total 14 patients (46.67%) had markers of previous HBV infection, while 16 patients (53.33%) had no such sero markers. Twenty five out of 30 patients (83.33%) responded to treatment and 5 (16.66%) turned out to be non-responders. The single case of occult hepatitis B detected in this study responded to hepatitis C treatment. Conclusion: Occult hepatitis B is not a common occurrence in chronic hepatitis C patients and it did not alter the outcome of treatment for hepatitis C in our study. (author)

  18. Impaired quality of the hepatitis B virus (HBV)-specific T-cell response in human immunodeficiency virus type 1-HBV coinfection.

    Science.gov (United States)

    Chang, J Judy; Sirivichayakul, Sunee; Avihingsanon, Anchalee; Thompson, Alex J V; Revill, Peter; Iser, David; Slavin, John; Buranapraditkun, Supranee; Marks, Pip; Matthews, Gail; Cooper, David A; Kent, Stephen J; Cameron, Paul U; Sasadeusz, Joe; Desmond, Paul; Locarnini, Stephen; Dore, Gregory J; Ruxrungtham, Kiat; Lewin, Sharon R

    2009-08-01

    Hepatitis B virus (HBV)-specific T cells play a key role both in the control of HBV replication and in the pathogenesis of liver disease. Human immunodeficiency virus type 1 (HIV-1) coinfection and the presence or absence of HBV e (precore) antigen (HBeAg) significantly alter the natural history of chronic HBV infection. We examined the HBV-specific T-cell responses in treatment-naïve HBeAg-positive and HBeAg-negative HIV-1-HBV-coinfected (n = 24) and HBV-monoinfected (n = 39) Asian patients. Peripheral blood was stimulated with an overlapping peptide library for the whole HBV genome, and tumor necrosis factor alpha and gamma interferon cytokine expression in CD8+ T cells was measured by intracellular cytokine staining and flow cytometry. There was no difference in the overall magnitude of the HBV-specific T-cell responses, but the quality of the response was significantly impaired in HIV-1-HBV-coinfected patients compared with monoinfected patients. In coinfected patients, HBV-specific T cells rarely produced more than one cytokine and responded to fewer HBV proteins than in monoinfected patients. Overall, the frequency and quality of the HBV-specific T-cell responses increased with a higher CD4+ T-cell count (P = 0.018 and 0.032, respectively). There was no relationship between circulating HBV-specific T cells and liver damage as measured by activity and fibrosis scores, and the HBV-specific T-cell responses were not significantly different in patients with either HBeAg-positive or HBeAg-negative disease. The quality of the HBV-specific T-cell response is impaired in the setting of HIV-1-HBV coinfection and is related to the CD4+ T-cell count.

  19. Hepatitis B virus DNA integration occurs early in the viral life cycle in an in vitro infection model via NTCP-dependent uptake of enveloped virus particles.

    Science.gov (United States)

    Tu, Thomas; Budzinska, Magdalena A; Vondran, Florian W R; Shackel, Nicholas A; Urban, Stephan

    2018-02-07

    Chronic infection by the Hepatitis B Virus (HBV) is the major contributor to liver disease worldwide. Though HBV replicates via a nuclear episomal DNA (cccDNA), integration of HBV DNA into the host cell genome is regularly observed in the liver of infected patients. While reported as a pro-oncogenic alteration, the mechanism(s) and timing of HBV DNA integration are not well-understood, chiefly due to the lack of in vitro infection models that have detectable integration events. Here, we have established an in vitro system in which integration can be reliably detected following HBV infection. We measured HBV DNA integration using inverse nested PCR in primary human hepatocytes, HepaRG-NTCP, HepG2-NTCP, and Huh7-NTCP cells after HBV infection. Integration was detected in all cell types at a rate of >1 per 10000 cells, with the most consistent detection in Huh7-NTCP cells. Integration rate remained stable between 3 and 9 days post-infection. HBV DNA integration was efficiently blocked by treatment with 200nM of the HBV entry inhibitor Myrcludex B, but not with 10μM Tenofovir, 100U Interferon alpha, or 1μM of the capsid assembly inhibitor GLS4. This suggests integration of HBV DNA occurs immediately after infection of hepatocytes and is likely independent of de novo HBV replication in this model. Site analysis revealed that HBV DNA integrations were distributed over the entire human genome. Further, integrated HBV DNA sequences were consistent with double-stranded linear HBV DNA being the major precursor. Thus, we have established an in vitro system to interrogate the mechanisms of HBV DNA integration. Importance Hepatitis B Virus (HBV) is a common blood-borne pathogen and, following a chronic infection, can cause liver cancer and liver cirrhosis. Integration of HBV DNA into the host genome occurs in all known members of the hepadnaviridae family, despite this form not being necessary for viral replication. HBV DNA integration has been reported to drive liver cancer

  20. Prime-boost BCG vaccination with DNA vaccines based in β-defensin-2 and mycobacterial antigens ESAT6 or Ag85B improve protection in a tuberculosis experimental model.

    Science.gov (United States)

    Cervantes-Villagrana, Alberto R; Hernández-Pando, Rogelio; Biragyn, Arya; Castañeda-Delgado, Julio; Bodogai, Monica; Martínez-Fierro, Margarita; Sada, Eduardo; Trujillo, Valentin; Enciso-Moreno, Antonio; Rivas-Santiago, Bruno

    2013-01-11

    The World Health Organization (WHO) has estimated that there are about 8 million new cases annually of active Tuberculosis (TB). Despite its irregular effectiveness (0-89%), the Bacillus Calmette-Guérin) BCG is the only vaccine available worldwide for prevention of TB; thus, the design is important of novel and more efficient vaccination strategies. Considering that β-defensin-2 is an antimicrobial peptide that induces dendritic cell maturation through the TLR-4 receptor and that both ESAT-6 and Ag85B are immunodominant mycobacterial antigens and efficient activators of the protective immune response, we constructed two DNA vaccines by the fusion of the gene encoding β-defensin-2 and antigens ESAT6 (pDE) and 85B (pDA). After confirming efficient local antigen expression that induced high and stable Interferon gamma (IFN-γ) production in intramuscular (i.m.) vaccinated Balb/c mice, groups of mice were vaccinated with DNA vaccines in a prime-boost regimen with BCG and with BCG alone, and 2 months later were challenged with the mild virulence reference strain H37Rv and the highly virulent clinical isolate LAM 5186. The level of protection was evaluated by survival, lung bacilli burdens, and extension of tissue damage (pneumonia). Vaccination with both DNA vaccines showed similar protection to that of BCG. After the challenge with the highly virulent Mycobacterium tuberculosis strain, animals that were prime-boosted with BCG and then boosted with both DNA vaccines showed significant higher survival and less tissue damage than mice vaccinated only with BCG. These results suggest that improvement of BCG vaccination, such as the prime-boost DNA vaccine, represents a more efficient vaccination scheme against TB. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Encoded novel forms of HSP70 or a cytolytic protein increase DNA vaccine potency.

    Science.gov (United States)

    Garrod, Tamsin; Grubor-Bauk, Branka; Yu, Stanley; Gargett, Tessa; Gowans, Eric J

    2014-01-01

    In humans, DNA vaccines have failed to demonstrate the equivalent levels of immunogenicity that were shown in smaller animals. Previous studies have encoded adjuvants, predominantly cytokines, within these vaccines in an attempt to increase antigen-specific immune responses. However, these strategies have lacked breadth of innate immune activation and have led to disappointing results in clinical trials. Damage associated molecular patterns (DAMPs) have been identified as pattern recognition receptor (PRR) agonists. DAMPs can bind to a wide range of PRRs on dendritic cells (DCs) and thus our studies have aimed to utilize this characteristic to act as an adjuvant in a DNA vaccine approach. Specifically, HSP70 has been identified as a DAMP, but has been limited by its lack of accessibility to PRRs in and on DCs. Here, we discuss the promising results achieved with the inclusion of membrane-bound or secreted HSP70 into a DNA vaccine encoding HIV gag as the model immunogen.

  2. Protection of rainbow trout against infectious hematopoietic necrosis virus four days after specific or semi-specific DNA vaccination

    DEFF Research Database (Denmark)

    LaPatra, S.E.; Corbeil, S.; Jones, G.R.

    2001-01-01

    A DNA vaccine against a fish rhabdovirus, infectious hematopoietic necrosis virus (IHNV), was shown to provide significant protection as soon as 4 d after intramuscular vaccination in 2 g rainbow trout (Oncorhynchus mykiss) held at 15 degreesC. Nearly complete protection was also observed at late......-protection against IHNV challenge for a transient period of time, whereas a rabies virus DNA vaccine was not protective. This indication of distinct early and late protective mechanisms was not dependent on DNA vaccine doses from 0.1 to 2.5 mug....

  3. Virus neutralizing antibody response in mice and dogs with a bicistronic DNA vaccine encoding rabies virus glycoprotein and canine parvovirus VP2.

    Science.gov (United States)

    Patial, Sonika; Chaturvedi, V K; Rai, A; Saini, M; Chandra, Rajesh; Saini, Y; Gupta, Praveen K

    2007-05-16

    A bicistronic DNA vaccine against rabies and parvovirus infection of dogs was developed by subcloning rabies glycoprotein and canine parvovirus (CPV) VP2 genes into a bicistronic vector. After characterizing the expression of both the proteins in vitro, the bicistronic DNA vaccine was injected in mice and induced immune response was compared with monocistronic DNA vaccines. There was no significant difference in ELISA and virus neutralizing (VN) antibody responses against rabies and CPV in mice immunized with either bicistronic or monocistronic DNA vaccine. Further, there was significantly similar protection in mice immunized with either bicistronic or monocistronic rabies DNA vaccine on rabies virus challenge. Similarly, dogs immunized with monocistronic and bicistronic DNA vaccines developed comparable VN antibodies against rabies and CPV. This study indicated that bicistronic DNA vaccine can be used in dogs to induce virus neutralizing immune responses against both rabies and CPV.

  4. A portable pulmonary delivery system for nano engineered DNA vaccines driven by surface acoustic wave devices

    International Nuclear Information System (INIS)

    Rajapaksa, A.E.; Qi, Aisha; Yeo, L.; Friend, J.

    2010-01-01

    Full text: The increase in the need for effective delivery of potelll vaccines against infectious diseases, require robust yet straightforward pro duction of encapsulated DNA-laden aerosols. Aerosol delivery of drugs represents the next generation of vaccine delivery where the drug is deposited into the lung, which provides an ideal, non-invasive route. Moreover, several features of D A vaccines make them more attractive than conventional vaccines; thus, DNA vaccines have gained global interest for a variety of applications. However, several limitations such as ineffective cellular uptake and intracellular delivery, and degradation of DNA need to be overcome before clin ical applications. In this study, a novel and scalable engineered technique has been developed to create a biodegradable polymer system, which enables controlled delivery of a well designed DNA vaccine for immuno-therapeutics. Surface Acoustic Wave (SAW) atomisation has been found as useful mechanism for atomising fluid samples for medical and industrial devices. It is a straightforward method for synthesising un-agglomerated biodegradable nanoparti cles (<250 nm) in the absence of organic solvents which would represent a major breakthrough for biopharmaceutical encapsulation and delivery. Nano-scale polymer particles for DNA vaccines deliv ery were obtained through an evaporative process of the initial aerosol created by surface acoustic waves at 8-150 MHz, the final size of which could be controlled by modifying the initial polymer concen tration and solid contents. Thus, SAW atomiser represents a promising alternative for the development of a low power device for producing nano-engineered vaccines with a controlled and narrow size distribution as delivery system for genetic immuno-therapeutics.

  5. HBV and HCV test uptake and correlates among men who have sex with men in China: a nationwide cross-sectional online survey.

    Science.gov (United States)

    Fitzpatrick, Thomas; Pan, Stephen W; Tang, Weiming; Guo, Wilson; Tucker, Joseph D

    2018-05-19

    Hepatitis B virus (HBV) and hepatitis C virus (HCV) cause substantial morbidity and mortality in low-income and middle-income countries, including China. WHO guidelines recommend men who have sex with men (MSM) receive HBV and HCV screening. The purpose of this study was to determine the proportion of MSM in China who have HBV and HCV tested and identify correlates of test uptake. We conducted an online cross-sectional survey of young MSM in China. Respondents were asked to report previous HBV and HCV testing, sociodemographic information, sexual risk factors for hepatitis infection, other STI testing and primary care physician (PCP) status. Associations were analysed by logistic regression. 503 eligible MSM completed the survey. 41.0% (206/503) of MSM had HCV tested, and 38.2% (60/157) of MSM with no or uncertain HBV vaccination had HBV tested. In multivariate analysis, HCV testing was correlated with HBV testing (adjusted OR (aOR) 22.98, 95% CI 12.11 to 43.60), HIV testing (aOR 3.64, 95% CI 1.92 to 6.91), HIV-positive status (aOR 1.78, 95% CI 1.07 to 2.98) and having a PCP (aOR 2.40, 95% CI 1.44 to 3.98). Among MSM with no or uncertain HBV vaccination, HBV testing was correlated with HCV testing (aOR 80.85, 95% CI 20.80 to 314.33), HIV testing (aOR 5.26, 95% CI 1.81 to 15.28), HIV-positive status (aOR 3.00, 95% CI 1.22 to 7.37) and having a PCP (aOR 2.69, 95% CI 1.00 to 7.26). Our data suggest many young MSM in China have not received hepatitis testing. HCV testing rates were lower than those recently reported among MSM in Australia and the USA. The strong correlation between HBV and HCV testing suggests bundled testing interventions may be useful for MSM in China. Men with a PCP were more likely to have received hepatitis testing, consistent with literature demonstrating the importance of primary care in expanding access to testing. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No

  6. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice

    Directory of Open Access Journals (Sweden)

    Xiaoyan Zheng

    2017-05-01

    Full Text Available Dengue virus (DV is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  7. Effective Protection Induced by a Monovalent DNA Vaccine against Dengue Virus (DV) Serotype 1 and a Bivalent DNA Vaccine against DV1 and DV2 in Mice.

    Science.gov (United States)

    Zheng, Xiaoyan; Chen, Hui; Wang, Ran; Fan, Dongying; Feng, Kaihao; Gao, Na; An, Jing

    2017-01-01

    Dengue virus (DV) is the causal pathogen of dengue fever, which is one of the most rapidly spread mosquito-borne disease worldwide and has become a severe public health problem. Currently, there is no specific treatment for dengue; thus, a vaccine would be an effective countermeasure to reduce the morbidity and mortality. Although, the chimeric Yellow fever dengue tetravalent vaccine has been approved in some countries, it is still necessary to develop safer, more effective, and less costly vaccines. In this study, a DNA vaccine candidate pVAX1-D1ME expressing the prME protein of DV1 was inoculated in BALB/c mice via intramuscular injection or electroporation, and the immunogenicity and protection were evaluated. Compared with traditional intramuscular injection, administration with 50 μg pVAX1-D1ME via electroporation with three immunizations induced persistent humoral and cellular immune responses and effectively protected mice against lethal DV1 challenge. In addition, immunization with a bivalent vaccine consisting of pVAX1-D1ME and pVAX1-D2ME via electroporation generated a balanced IgG response and neutralizing antibodies against DV1 and DV2 and could protect mice from lethal challenge with DV1 and DV2. This study sheds new light on developing a dengue tetravalent DNA vaccine.

  8. Immunogenicity of DNA vaccines encoding simian immunodeficiency virus antigen targeted to dendritic cells in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Matthias Tenbusch

    Full Text Available BACKGROUND: Targeting antigens encoded by DNA vaccines to dendritic cells (DCs in the presence of adjuvants enhances their immunogenicity and efficacy in mice. METHODOLOGY/PRINCIPAL FINDINGS: To explore the immunogenicity of this approach in non-human primates, we generated a single chain antibody to the antigen uptake receptor DEC-205 expressed on rhesus macaque DCs. DNA vaccines encoding this single chain antibody fused to the SIV capsid protein were delivered to six monkeys each by either intramuscular electroporation or conventional intramuscular injection co-injected or not with poly ICLC, a stabilized poly I: C analogue, as adjuvant. Antibodies to capsid were induced by the DC-targeting and non-targeting control DNA delivered by electroporation while conventional DNA immunization at a 10-fold higher dose of DNA failed to induce detectable humoral immune responses. Substantial cellular immune responses were also observed after DNA electroporation of both DNAs, but stronger responses were induced by the non-targeting vaccine. Conventional immunization with the DC-targeting DNA at a 10-fold higher dose did not give rise to substantial cellular immune responses, neither when co-injected with poly ICLC. CONCLUSIONS/SIGNIFICANCE: The study confirms the potent immunogenicity of DNA vaccines delivered by electroporation. Targeting the DNA via a single chain antibody to DEC-205 expressed by DCs, however, does not improve the immunogenicity of the antigens in non-human primates.

  9. Selective hepatitis B virus vaccination has reduced hepatitis B virus transmission in the Netherlands.

    Directory of Open Access Journals (Sweden)

    Susan Hahné

    Full Text Available BACKGROUND & AIMS: In the Netherlands, a selective hepatitis B virus (HBV vaccination programme started in 2002 for men having sex with men, drug users, commercial sex workers and heterosexuals with frequent partner changes. We assessed the programme's effectiveness to guide policy on HBV prevention. METHODS: We analysed reports of acute HBV infection in the Netherlands between 2004 and 2010 requesting serum from patients for HBV-genome S- and C-region sequencing. We used coalescence analyses to assess genetic diversity of nonimported genotype-A cases over time. RESULTS: 1687 patients with acute HBV infection were reported between 2004 and 2010. The incidence of reported acute HBV infection decreased from 1.8 to 1.2 per 100,000 inhabitants, mostly due to a reduction in the number of cases in men who have sex with men. Men were overrepresented among cases with an unknown route of transmission, especially among genotype A2 cases mainly associated with transmission through male homosexual contact. The genetic diversity of nonimported genotype-A strains obtained from men who have sex with men decreased from 2006 onwards, suggesting HBV incidence in this group decreased. CONCLUSIONS: The selective HBV-vaccination programme for behavioural high-risk groups very likely reduced the incidence of HBV infection in the Netherlands mainly by preventing HBV infections in men who have sex with men. A considerable proportion of cases in men who did not report risk behaviour was probably acquired through homosexual contact. Our findings support continuation of the programme, and adopting similar approaches in other countries where HBV transmission is focused in high-risk adults.

  10. Selective Hepatitis B Virus Vaccination Has Reduced Hepatitis B Virus Transmission in The Netherlands

    Science.gov (United States)

    Koedijk, Femke; van Ballegooijen, Marijn; Cremer, Jeroen; Bruisten, Sylvia; Coutinho, Roel

    2013-01-01

    Background & Aims In the Netherlands, a selective hepatitis B virus (HBV) vaccination programme started in 2002 for men having sex with men, drug users, commercial sex workers and heterosexuals with frequent partner changes. We assessed the programme's effectiveness to guide policy on HBV prevention. Methods We analysed reports of acute HBV infection in the Netherlands between 2004 and 2010 requesting serum from patients for HBV-genome S- and C-region sequencing. We used coalescence analyses to assess genetic diversity of nonimported genotype-A cases over time. Results 1687 patients with acute HBV infection were reported between 2004 and 2010. The incidence of reported acute HBV infection decreased from 1.8 to 1.2 per 100,000 inhabitants, mostly due to a reduction in the number of cases in men who have sex with men. Men were overrepresented among cases with an unknown route of transmission, especially among genotype A2 cases mainly associated with transmission through male homosexual contact. The genetic diversity of nonimported genotype-A strains obtained from men who have sex with men decreased from 2006 onwards, suggesting HBV incidence in this group decreased. Conclusions The selective HBV-vaccination programme for behavioural high-risk groups very likely reduced the incidence of HBV infection in the Netherlands mainly by preventing HBV infections in men who have sex with men. A considerable proportion of cases in men who did not report risk behaviour was probably acquired through homosexual contact. Our findings support continuation of the programme, and adopting similar approaches in other countries where HBV transmission is focused in high-risk adults. PMID:23922651

  11. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge.

    Science.gov (United States)

    Nielsen, Line; Jensen, Trine Hammer; Kristensen, Birte; Jensen, Tove Dannemann; Karlskov-Mortensen, Peter; Lund, Morten; Aasted, Bent; Blixenkrone-Møller, Merete

    2012-10-01

    Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.

  12. Proteomic and transcriptomic studies of HBV-associated liver fibrosis of an AAV-HBV-infected mouse model.

    Science.gov (United States)

    Kan, Fangming; Ye, Lei; Yan, Tao; Cao, Jiaqi; Zheng, Jianhua; Li, Wuping

    2017-08-22

    Human hepatitis B virus (HBV) infection is an important public health issue in the Asia-Pacific region and is associated with chronic hepatitis, liver fibrosis, cirrhosis and even liver cancer. However, the underlying mechanisms of HBV-associated liver fibrosis remain incompletely understood. In the present study, proteomic and transcriptomic approaches as well as biological network analyses were performed to investigate the differentially expressed molecular signature and key regulatory networks that were associated with HBV-mediated liver fibrosis. RNA sequencing and 2DE-MALDI-TOF/TOF were performed on liver tissue samples obtained from HBV-infected C57BL/6 mouse generated via AAV8-HBV virus. The results showed that 322 genes and 173 proteins were differentially expressed, and 28 HBV-specific proteins were identified by comprehensive proteomic and transcriptomic analysis. GO analysis indicated that the differentially expressed proteins were predominantly involved in oxidative stress, which plays a key role in HBV-related liver fibrosis. Importantly, CAT, PRDX1, GSTP1, NXN and BLVRB were shown to be associated with oxidative stress among the differentially expressed proteins. The most striking results were validated by Western blot and RT-qPCR. The RIG-I like receptor signaling pathway was found to be the major signal pathway that changed during HBV-related fibrosis. This study provides novel insights into HBV-associated liver fibrosis and reveals the significant role of oxidative stress in liver fibrosis. Furthermore, CAT, BLVRB, NXN, PRDX1, and IDH1 may be candidates for detection of liver fibrosis or therapeutic targets for the treatment of liver fibrosis.

  13. Real-time PCR assays for hepatitis B virus DNA quantification may require two different targets.

    Science.gov (United States)

    Liu, Chao; Chang, Le; Jia, Tingting; Guo, Fei; Zhang, Lu; Ji, Huimin; Zhao, Junpeng; Wang, Lunan

    2017-05-12

    Quantification Hepatitis B virus (HBV) DNA plays a critical role in the management of chronic HBV infections. However, HBV is a DNA virus with high levels of genetic variation, and drug-resistant mutations have emerged with the use of antiviral drugs. If a mutation caused a sequence mismatched in the primer or probe of a commercial DNA quantification kit, this would lead to an underestimation of the viral load of the sample. The aim of this study was to determine whether commercial kits, which use only one pair of primers and a single probe, accurately quantify the HBV DNA levels and to develop an improved duplex real-time PCR assay. We developed a new duplex real-time PCR assay that used two pairs of primers and two probes based on the conserved S and C regions of the HBV genome. We performed HBV DNA quantitative detection of HBV samples and compared the results of our duplex real-time PCR assays with the COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. The target region of the discordant sample was amplified, sequenced, and validated using plasmid. The results of the duplex real-time PCR were in good accordance with the commercial COBAS TaqMan HBV Test version 2 and Daan real-time PCR assays. We showed that two samples from Chinese HBV infections underestimated viral loads when quantified by the Roche kit because of a mismatch between the viral sequence and the reverse primer of the Roche kit. The HBV DNA levels of six samples were undervalued by duplex real-time PCR assays of the C region because of mutations in the primer of C region. We developed a new duplex real-time PCR assay, and the results of this assay were similar to the results of commercial kits. The HBV DNA level could be undervalued when using the COBAS TaqMan HBV Test version 2 for Chinese HBV infections owing to a mismatch with the primer/probe. A duplex real-time PCR assay based on the S and C regions could solve this problem to some extent.

  14. Point-of-care screening for hepatitis B virus infection in pregnant women at an antenatal clinic: A South African experience.

    Directory of Open Access Journals (Sweden)

    Nafiisah Chotun

    Full Text Available Elimination of HIV and syphilis mother-to-child transmission (MTCT has received much attention but little consideration has been given to the possibility of elimination of HBV MTCT. In sub-Saharan Africa, HBV vertical transmission continues to be reported and it remains an important public health problem. This study aimed to assess the feasibility of screening pregnant women for HBV using a point-of-care (POC test and implementing interventions to prevent HBV MTCT.In this observational prospective cohort study, HIV-uninfected pregnant women who consented to testing were screened for HBV using a rapid POC test for HBsAg. Positive results were laboratory-confirmed and tested for HBV DNA and serological markers. Women with viral loads ≥ 20 000 IU/ml received tenofovir (TDF treatment and all infants received birth-dose HBV vaccine. Two blood samples collected six months apart from HBV-exposed infants within their first year of life were tested for HBV DNA.Of 144 women who were approached, 134 consented to participating (93% acceptance rate of HBV POC test. Six women tested positive for HBsAg (4.5%; 95% CI 0.99%-8.01%, all confirmed by laboratory testing. Two mothers, M1 and M4, were treated with TDF during their third trimester of pregnancy. Six HBV-exposed infants received the HBV vaccine within 24 hours of birth, of whom two were lost to follow-up and four (including the two born to M1 and M4 had undetectable levels of HBV DNA when tested at the two time points.We found that HBV screening using POC testing fulfilled the criteria considered necessary for implementation. It has acceptable performance, is inexpensive, reliable, and was well accepted by the study participants. Screening pregnant women as part of the HBV MTCT prevention strategy is therefore feasible in a South African clinical setting.

  15. DNA vaccination protects mice against Zika virus-induced damage to the testes

    Science.gov (United States)

    Griffin, Bryan D.; Muthumani, Kar; Warner, Bryce M.; Majer, Anna; Hagan, Mable; Audet, Jonathan; Stein, Derek R.; Ranadheera, Charlene; Racine, Trina; De La Vega, Marc-Antoine; Piret, Jocelyne; Kucas, Stephanie; Tran, Kaylie N.; Frost, Kathy L.; De Graff, Christine; Soule, Geoff; Scharikow, Leanne; Scott, Jennifer; McTavish, Gordon; Smid, Valerie; Park, Young K.; Maslow, Joel N.; Sardesai, Niranjan Y.; Kim, J. Joseph; Yao, Xiao-jian; Bello, Alexander; Lindsay, Robbin; Boivin, Guy; Booth, Stephanie A.; Kobasa, Darwyn; Embury-Hyatt, Carissa; Safronetz, David; Weiner, David B.; Kobinger, Gary P.

    2017-01-01

    Zika virus (ZIKV) is an emerging pathogen causally associated with serious sequelae in fetuses, inducing fetal microcephaly and other neurodevelopment defects. ZIKV is primarily transmitted by mosquitoes, but can persist in human semen and sperm, and sexual transmission has been documented. Moreover, exposure of type-I interferon knockout mice to ZIKV results in severe damage to the testes, epididymis and sperm. Candidate ZIKV vaccines have shown protective efficacy in preclinical studies carried out in animal models, and several vaccines have entered clinical trials. Here, we report that administration of a synthetic DNA vaccine encoding ZIKV pre-membrane and envelope (prME) completely protects mice against ZIKV-associated damage to the testes and sperm and prevents viral persistence in the testes following challenge with a contemporary strain of ZIKV. These data suggest that DNA vaccination merits further investigation as a potential means to reduce ZIKV persistence in the male reproductive tract. PMID:28589934

  16. Generation of covalently closed circular DNA of hepatitis B viruses via intracellular recycling is regulated in a virus specific manner.

    Directory of Open Access Journals (Sweden)

    Josef Köck

    Full Text Available Persistence of hepatitis B virus (HBV infection requires covalently closed circular (cccDNA formation and amplification, which can occur via intracellular recycling of the viral polymerase-linked relaxed circular (rc DNA genomes present in virions. Here we reveal a fundamental difference between HBV and the related duck hepatitis B virus (DHBV in the recycling mechanism. Direct comparison of HBV and DHBV cccDNA amplification in cross-species transfection experiments showed that, in the same human cell background, DHBV but not HBV rcDNA converts efficiently into cccDNA. By characterizing the distinct forms of HBV and DHBV rcDNA accumulating in the cells we find that nuclear import, complete versus partial release from the capsid and complete versus partial removal of the covalently bound polymerase contribute to limiting HBV cccDNA formation; particularly, we identify genome region-selectively opened nuclear capsids as a putative novel HBV uncoating intermediate. However, the presence in the nucleus of around 40% of completely uncoated rcDNA that lacks most if not all of the covalently bound protein strongly suggests a major block further downstream that operates in the HBV but not DHBV recycling pathway. In summary, our results uncover an unexpected contribution of the virus to cccDNA formation that might help to better understand the persistence of HBV infection. Moreover, efficient DHBV cccDNA formation in human hepatoma cells should greatly facilitate experimental identification, and possibly inhibition, of the human cell factors involved in the process.

  17. Correlation between the e-antigen, Pre-S2 antigen and DNA of hepatitis B virus

    International Nuclear Information System (INIS)

    Cai Changhui; Liang Jinsheng

    2006-01-01

    Objective: To study the relationship between the hepatitis B e-antigen (HBeAg), Pre-S1 antigen (Pre-S1), Pre-S2 antigen (Pre-S2) and DNA of hepatitis B virus (HBV). Methods: The blood samples of 268 cases of viral B hepatitis were collected. The HBV DNA of all samples were tested by fluorescent-quantitating PCR method, and HBeAg were assayed by time-resolved fluoro-immunoassay method, and their Pre-S1 and Pre-S2 were assayed by enzyme linked immunosorbentassay method. Results: The positive rates of HBeAg, Pre-S1 and Pre-S2 in HBV DNA positive group were 48.2%, 76.4% and 100% respectively, and 1.6%, 36.3% and 32.3% respectively in HBV DNA negative group. There was significantly difference between the HBeAg, Pre-S1 and Pre-S2 positive rates of the two groups (Chi-square test, P<0.01). Conclusions: There was positive relationship between the HBeAg, Pre-S1, Pre-S2 and DNA which all were indicators of HBV reproduction. Comparing to HBV DNA, Pre-S2 was the most, Pre-S1 the second, and HBeAg the third sensitive indicator for evaluating HBV reproduction. Pre-S1 and Pre-S2 could be used as the supplementary indicator for the reproduction of HBV. (authors)

  18. On the efficacy of malaria DNA vaccination with magnetic gene vectors.

    Science.gov (United States)

    Nawwab Al-Deen, Fatin; Ma, Charles; Xiang, Sue D; Selomulya, Cordelia; Plebanski, Magdalena; Coppel, Ross L

    2013-05-28

    We investigated the efficacy and types of immune responses from plasmid malaria DNA vaccine encoding VR1020-PyMSP119 condensed on the surface of polyethyleneimine (PEI)-coated SPIONs. In vivo mouse studies were done firstly to determine the optimum magnetic vector composition, and then to observe immune responses elicited when magnetic vectors were introduced via different administration routes. Higher serum antibody titers against PyMSP119 were observed with intraperitoneal and intramuscular injections than subcutaneous and intradermal injections. Robust IgG2a and IgG1 responses were observed for intraperitoneal administration, which could be due to the physiology of peritoneum as a major reservoir of macrophages and dendritic cells. Heterologous DNA prime followed by single protein boost vaccination regime also enhanced IgG2a, IgG1, and IgG2b responses, indicating the induction of appropriate memory immunity that can be elicited by protein on recall. These outcomes support the possibility to design superparamagnetic nanoparticle-based DNA vaccines to optimally evoke desired antibody responses, useful for a variety of diseases including malaria. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Incomplete effector/memory differentiation of antigen-primed CD8+ T cells in gene gun DNA-vaccinated mice

    DEFF Research Database (Denmark)

    Bartholdy, Christina; Stryhn, Anette; Hansen, Nils Jacob Vest

    2003-01-01

    DNA vaccination is an efficient way to induce CD8+ T cell memory, but it is still unclear to what extent such memory responses afford protection in vivo. To study this, we induced CD8+ memory responses directed towards defined viral epitopes, using DNA vaccines encoding immunodominant MHC class I......-restricted epitopes of lymphocytic choriomeningitis virus covalently linked to beta2-microglobulin. This vaccine construct primed for a stronger recall response than did a more conventional minigene construct. Despite this, vaccinated mice were only protected against systemic infection whereas protection against...... sites. Thus, our DNA vaccine induces a long-lived memory CD8+ T cell population that provides efficient protection against high-dose systemic infection. However, viral replication in solid non-lymphoid organs is not curtailed sufficiently fast to prevent significant virus-induced inflammation. Our...

  20. Low-dose radiation enhances therapeutic HPV DNA vaccination in tumor-bearing hosts.

    Science.gov (United States)

    Tseng, Chih-Wen; Trimble, Cornelia; Zeng, Qi; Monie, Archana; Alvarez, Ronald D; Huh, Warner K; Hoory, Talia; Wang, Mei-Cheng; Hung, Chien-Fu; Wu, T-C

    2009-05-01

    Current therapeutic approaches to treatment of patients with bulky cervical cancer are based on conventional in situ ablative modalities including cisplatin-based chemotherapy and radiation therapy. The 5-year survival of patients with nonresectable disease is dismal. Because over 99% of squamous cervical cancer is caused by persistent infection with an oncogenic strain of human papillomavirus (HPV), particularly type 16 and viral oncoproteins E6 and E7 are functionally required for disease initiation and persistence, HPV-targeted immune strategies present a compelling opportunity in which to demonstrate proof of principle. Sublethal doses of radiation and chemotherapeutic agents have been shown to have synergistic effect in combination with either vaccination against cancer-specific antigens, or with passive transfer of tumor-specific cytotoxic T lymphocytes (CTLs). Here, we explored the combination of low-dose radiation therapy with DNA vaccination with calreticulin (CRT) linked to the mutated form of HPV-16 E7 antigen (E7(detox)), CRT/E7(detox) in the treatment of E7-expressing TC-1 tumors. We observed that TC-1 tumor-bearing mice treated with radiotherapy combined with CRT/E7(detox) DNA vaccination generated significant therapeutic antitumor effects and the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of treated mice. Furthermore, treatment with radiotherapy was shown to render the TC-1 tumor cells more susceptible to lysis by E7-specific CTLs. In addition, we observed that treatment with radiotherapy during the second DNA vaccination generated the highest frequency of E7-specific CD8(+) T cells in the tumors and spleens of TC-1 tumor-bearing mice. Finally, TC-1 tumor-bearing mice treated with the chemotherapy in combination with radiation and CRT/E7(detox) DNA vaccination generate significantly enhanced therapeutic antitumor effects. The clinical implications of the study are discussed.

  1. Is hepatitis B vaccination performed at infant and adolescent age able to provide long-term immunological memory? An observational study on healthcare students and workers in Florence, Italy.

    Science.gov (United States)

    Bini, Costanza; Grazzini, Maddalena; Chellini, Martina; Mucci, Nicola; Arcangeli, Giulio; Tiscione, Emilia; Bonanni, Paolo

    2018-02-01

    Universal vaccination programmes against Hepatitis B Virus (HBV) have significantly reduced the burden of the disease; nevertheless, HBV infection remains a relevant issue for high-risk subjects, such as healthcare workers (HCWs), who may potentially be exposed to blood or body fluids. Our study evaluates the long-term duration of the immunological memory of HBV vaccination 11-23 years after primary immunization by examining the response to booster doses in HCWs and students of health disciplines at Careggi Teaching Hospital in Florence (Italy). All participants (n = 2,203) had received a complete HBV immunization course in infancy or adolescence. Blood samples were collected to measure antibody levels against the HBV surface antigen (anti-HBs); an anti-HBs titre long-term anti-HBs titres compared to those in case of vaccination performed during adolescence (titre long incubation period of the disease allows the activation of immunologic memory mechanisms, which is also true in case of low anti-HBs level. In conclusion HCWs still represent a high-risk category; it is therefore, necessary to increase efforts to protect and vaccinate these subjects.

  2. Protective immunity conferred by porcine circovirus 2 ORF2-based DNA vaccine in mice.

    Science.gov (United States)

    Sylla, Seydou; Cong, Yan-Long; Sun, Yi-Xue; Yang, Gui-Lian; Ding, Xue-Mei; Yang, Zhan-Qing; Zhou, Yu-Long; Yang, Minnan; Wang, Chun-Feng; Ding, Zhuang

    2014-07-01

    Post-weaning multisystemic wasting syndrome (PMWS) associated with porcine circovirus type 2 (PCV2) has caused the swine industry significant health challenges and economic damage. Although inactivated and subunit vaccines against PMWS have been used widely, so far no DNA vaccine is available. In this study, with the aim of exploring a new route for developing a vaccine against PCV2, the immunogenicity of a DNA vaccine was evaluated in mice. The pEGFP-N1 vector was used to construct a PCV2 Cap gene recombinant vaccine. To assess the immunogenicity of pEGFP-Cap, 80 BALB/c mice were immunized three times at 2 weekly intervals with pEGFP-Cap, LG-strain vaccine, pEGFP-N1 vector or PBS and then challenged with PCV2. IgG and cytokines were assessed by indirect ELISA and ELISA, respectively. Specimens stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC) techniques were examined histopathologically. It was found that vaccination of the mice with the pEGFP-Cap induced solid protection against PCV2 infection through induction of highly specific serum IgG antibodies and cytokines (IFN-γ and IL-10), and a small PCV2 viral load. The mice treated with the pEGFP-Cap and LG-strain developed no histopathologically detectable lesions (HE stain) and IHC techniques revealed only a few positive cells. Thus, this study demonstrated that recombinant pEGFP-Cap substantially alleviates PCV2 infection in mice and provides evidence that a DNA vaccine could be an alternative to PCV2 vaccines against PMWS. © 2014 The Societies and Wiley Publishing Asia Pty Ltd.

  3. Vaginal DNA vaccination against infectious diseases transmitted through the vagina.

    Science.gov (United States)

    Kanazawa, Takanori; Takashima, Yuuki; Okada, Hiroaki

    2012-06-01

    There is an urgent need for the development of vaccines against genital virus infections that are transmitted through heterosexual intercourse, including the HIV and HPV. In general, the surface of female genital mucosa, including vaginal mucosa, is the most common site of initiation of these infections. Thus, it is becoming clear that successful vaccines must induce both cellular and humoral immune responses in both the local genital tract and systemically. We believe that a strong vaginal immune response could be obtained by inducing strong gene expression of antigen-coding DNA in the local targeted tissue. In order to improve transfection efficiency in the vagina, it is important that methods allowing breakthrough of the various barriers, such as the epithelial layer, cellular and nuclear membrane, are developed. Therefore, systems providing less invasive and more effective delivery into the subepithelial layer are required. In this review, we will introduce our studies into efficient vaginal DNA vaccination methods, focusing on the effects of the menstrual cycle, utilization of the combination of functional peptides, and use of a needle-free injector.

  4. Hepatitis B virus prevalence and vaccine response in HIV-infected children and adolescents on combination antiretroviral therapy in Kigali, Rwanda

    NARCIS (Netherlands)

    Mutwa, Philippe R.; Boer, Kimberly R.; Rusine, John B.; Muganga, Narcisse; Tuyishimire, Diane; Reiss, Peter; Lange, Joep M. A.; Geelen, Sibyl P. M.

    2013-01-01

    The aim of this study was to determine the prevalence of hepatitis B virus (HBV) infection in a cohort of HIV-infected Rwandan children and adolescents on combination antiretroviral therapy (cART), and the success rate of HBV vaccination in those children found to be HBV negative. HIV-infected

  5. DNA technology for diagnosis and vaccines for infectious diseases

    International Nuclear Information System (INIS)

    Notani, N.K.

    1992-01-01

    Three or four general strategies are adopted for the control of infectious diseases. Early diagnosis, vaccination and chemotherapy. In the situations where there is transfer through mosquitoes or ticks from alternate hosts, control of the vector and of the infection in the alternate host are additional measures to be taken. This Chapter looks at the problems of disease control from the perspective of genetics, since molecular genetics now provides powerful tools in the form of radiolabelled DNA probes and clones of selected segments, useful for diagnosis as well as for vaccine design

  6. DNA technology for diagnosis and vaccines for infectious diseases

    Energy Technology Data Exchange (ETDEWEB)

    Notani, N K

    1993-12-31

    Three or four general strategies are adopted for the control of infectious diseases. Early diagnosis, vaccination and chemotherapy. In the situations where there is transfer through mosquitoes or ticks from alternate hosts, control of the vector and of the infection in the alternate host are additional measures to be taken. This Chapter looks at the problems of disease control from the perspective of genetics, since molecular genetics now provides powerful tools in the form of radiolabelled DNA probes and clones of selected segments, useful for diagnosis as well as for vaccine design

  7. Optimization of heterologous DNA-prime, protein boost regimens and site of vaccination to enhance therapeutic immunity against human papillomavirus-associated disease.

    Science.gov (United States)

    Peng, Shiwen; Qiu, Jin; Yang, Andrew; Yang, Benjamin; Jeang, Jessica; Wang, Joshua W; Chang, Yung-Nien; Brayton, Cory; Roden, Richard B S; Hung, Chien-Fu; Wu, T-C

    2016-01-01

    Human papillomavirus (HPV) has been identified as the primary etiologic factor of cervical cancer as well as subsets of anogenital and oropharyngeal cancers. The two HPV viral oncoproteins, E6 and E7, are uniquely and consistently expressed in all HPV infected cells and are therefore promising targets for therapeutic vaccination. Both recombinant naked DNA and protein-based HPV vaccines have been demonstrated to elicit HPV-specific CD8+ T cell responses that provide therapeutic effects against HPV-associated tumor models. Here we examine the immunogenicity in a preclinical model of priming with HPV DNA vaccine followed by boosting with filterable aggregates of HPV 16 L2E6E7 fusion protein (TA-CIN). We observed that priming twice with an HPV DNA vaccine followed by a single TA-CIN booster immunization generated the strongest antigen-specific CD8+ T cell response compared to other prime-boost combinations tested in C57BL/6 mice, whether naïve or bearing the HPV16 E6/E7 transformed syngeneic tumor model, TC-1. We showed that the magnitude of antigen-specific CD8+ T cell response generated by the DNA vaccine prime, TA-CIN protein vaccine boost combinatorial strategy is dependent on the dose of TA-CIN protein vaccine. In addition, we found that a single booster immunization comprising intradermal or intramuscular administration of TA-CIN after priming twice with an HPV DNA vaccine generated a comparable boost to E7-specific CD8+ T cell responses. We also demonstrated that the immune responses elicited by the DNA vaccine prime, TA-CIN protein vaccine boost strategy translate into potent prophylactic and therapeutic antitumor effects. Finally, as seen for repeat TA-CIN protein vaccination, we showed that the heterologous DNA prime and protein boost vaccination strategy is well tolerated by mice. Our results provide rationale for future clinical testing of HPV DNA vaccine prime, TA-CIN protein vaccine boost immunization regimen for the control of HPV-associated diseases.

  8. Early childhood transmission of hepatitis B prior to the first hepatitis B vaccine dose is rare among babies born to HIV-infected and non-HIV infected mothers in Gulu, Uganda.

    Science.gov (United States)

    Seremba, E; Van Geertruyden, J P; Ssenyonga, R; Opio, C K; Kaducu, J M; Sempa, J B; Colebunders, R; Ocama, P

    2017-05-19

    Hepatitis B (HBV) in sub-Saharan Africa is believed to be horizontally acquired. However, because of the high HBV prevalence in northern Uganda, no hepatitis B vaccination at birth and no access to HBV immunoglobulin, we hypothesize that vertical transmission also could also play an important role. We therefore investigated the incidence of HBV among babies presenting for their first HBV vaccine dose in Gulu, Uganda. We recruited mothers and their babies (at least 6-week old) presenting for their postnatal care and first HBV vaccine dose respectively. Socio-demographic and risk factors for HBV transmission were recorded. Mothers were tested for Hepatitis B core antibody (anti-HBc-IgG) and hepatitis B surface antigen (HBsAg). HBsAg-positive sera were tested for hepatitis B e antigen (HBeAg) and HBV viral load (HBVDNA). Babies were tested for HBsAg at presentation and at the last immunization visit. A sample of HBsAg-negative babies were tested for HBVDNA. Incident HBV infection was defined by either a positive HBsAg or HBVDNA test. Chi-square or fisher's exact tests were utilized to investigate associations and t-tests or Wilcoxon rank-sum test for continuous differences. We recruited 612 mothers, median age 23years (IQR 20-28). 53 (8.7%) were HBsAg-positive and 339 (61.5%) were anti-HBc-IgG-positive. Ten (18.9%) of the HBsAg-positive mothers were HBeAg-positive. Median HBVDNA levels of HBV-infected mothers was 5.7log (IQR 4.6-7.0) IU/mL with 9 (17.6%) having levels≥10 5 IU/mL. Eighty (13.3%) mothers were HIV-infected of whom 9 (11.5%) were co-infected with HBV. No baby tested HBsAg or HBVDNA positive. Vertical transmission does not seem to contribute substantially to the high HBV endemicity in northern Uganda. The current practice of administering the first HBV vaccine to babies in Uganda at six weeks of age may be adequate in control of HBV transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Impact of HBV DNA detection methods on evaluating the clinical effect of PEG-IFNɑ-2b in treatment of HBeAg-positive chronic hepatitis B: a comparative analysis

    Directory of Open Access Journals (Sweden)

    GUO Chunxia

    2017-04-01

    Full Text Available ObjectiveTo investigate the impact of different HBV DNA detection methods on evaluating the clinical effect of PEG-IFNɑ-2b in the treatment of HBeAg-positive chronic hepatitis B (CHB. MethodsA total of 83 CHB patients who were admitted to Tianjin Second People′s Hospital from September 2014 to January 2016 and treated with PEG-IFNɑ-2b for less than 24 weeks with clearance for the first time detected by HBV DNA low-sensitivity method (the lower limit of detection was 500 IU/ml and negative results within 36 weeks obtained by low-sensitivity detection. Among these patients, 33 patients with negative results within 36 weeks obtained by high-sensitivity detection (the lower limit of detection was 20 IU/ml were enrolled in negative group, and 50 with positive results were enrolled in positive group. The reductions in HBeAg and HBsAg and HBeAg seroconversion rate at 12, 24, and 36 weeks were compared between the two groups. The independent-samples t test was used for comparison of normally distributed continuous data between groups, the Mann-Whitney U rank sum test was used for comparison of non-normally distributed continuous data between groups, and the chi-square test was used for comparison of categorical data between groups. ResultsAt 12, 24, and 36 weeks after negative results were obtained by HBV DNA low-sensitivity detection, the negative group had a significant reduction in HBeAg than the positive group [12 weeks: 0.32 (0.16-0.92 log10 COI vs 014 (0.01-0.30 log10 COI, Z=-3.061, P=0.002; 24 weeks: 0.44 (0.19-1.15 log10 COI vs 0.16 (0.04-0.35 log10 COI, Z=-3.043, P=0.002; 36 weeks: 0.51 (0.36-1.21 log10 COI vs 0.24 (0.10-0.46 log10 COI, Z=-3.880, P<0.001]. At 12 weeks after negative results were obtained by HBV DNA low-sensitivity detection, there was no significant difference in the reduction in HBsAg (P=0.067, while at 24 and 36 weeks, the negative group had a significant reduction in HBsAg than the positive group [24 weeks: 0

  10. DNA vaccination of rainbow trout against viral hemorrhagic septicemia virus: A dose-response and time-course study

    DEFF Research Database (Denmark)

    Lorenzen, Ellen; Einer-Jensen, Katja; Martinussen, T.

    2000-01-01

    Viral hemorrhagic septicemia (VHS) in rainbow trout Oncorhynchus mykiss is caused by VHS virus (VHSV), which belongs to the rhabdovirus family. Among the different strategies for immunizing fish with a recombinant vaccine, genetic immunization has recently proven to be highly effective. To further...... investigate the potential for protecting fish against VHS by DNA vaccination, experiments were conducted to determine the amount of plasmid DNA needed for induction of protective immunity. The time to onset of immunity and the duration of protection following administration of a protective vaccine dose were...... serologically different from the isolate used for vaccine development. Following administration of 1 mug of a DNA vaccine, significant protection against VHS was observed in the fish as early as 8 d postvaccination. At 168 d postvaccination, the fish had increased in size by a factor of 10 and protection...

  11. Safety and Immunogenicity of an Anti-Zika Virus DNA Vaccine - Preliminary Report.

    Science.gov (United States)

    Tebas, Pablo; Roberts, Christine C; Muthumani, Kar; Reuschel, Emma L; Kudchodkar, Sagar B; Zaidi, Faraz I; White, Scott; Khan, Amir S; Racine, Trina; Choi, Hyeree; Boyer, Jean; Park, Young K; Trottier, Sylvie; Remigio, Celine; Krieger, Diane; Spruill, Susan E; Bagarazzi, Mark; Kobinger, Gary P; Weiner, David B; Maslow, Joel N

    2017-10-04

    Background Although Zika virus (ZIKV) infection is typically self-limiting, other associated complications such as congenital birth defects and the Guillain-Barré syndrome are well described. There are no approved vaccines against ZIKV infection. Methods In this phase 1, open-label clinical trial, we evaluated the safety and immunogenicity of a synthetic, consensus DNA vaccine (GLS-5700) encoding the ZIKV premembrane and envelope proteins in two groups of 20 participants each. The participants received either 1 mg or 2 mg of vaccine intradermally, with each injection followed by electroporation (the use of a pulsed electric field to introduce the DNA sequence into cells) at baseline, 4 weeks, and 12 weeks. Results The median age of the participants was 38 years, and 60% were women; 78% were white, and 22% black; in addition, 30% were Hispanic. At the interim analysis at 14 weeks (i.e., after the third dose of vaccine), no serious adverse events were reported. Local reactions at the vaccination site (e.g., injection-site pain, redness, swelling, and itching) occurred in approximately 50% of the participants. After the third dose of vaccine, binding antibodies (as measured on enzyme-linked immunosorbent assay) were detected in all the participants, with geometric mean titers of 1642 and 2871 in recipients of 1 mg and 2 mg of vaccine, respectively. Neutralizing antibodies developed in 62% of the samples on Vero-cell assay. On neuronal-cell assay, there was 90% inhibition of ZIKV infection in 70% of the serum samples and 50% inhibition in 95% of the samples. The intraperitoneal injection of postvaccination serum protected 103 of 112 IFNAR knockout mice (bred with deletion of genes encoding interferon-α and interferon-β receptors) (92%) that were challenged with a lethal dose of ZIKV-PR209 strain; none of the mice receiving baseline serum survived the challenge. Survival was independent of the neutralization titer. Conclusions In this phase 1, open-label clinical

  12. New vaccine strategies against enterotoxigenic Escherichia coli: II: Enhanced systemic and secreted antibody responses against the CFA/I fimbriae by priming with DNA and boosting with a live recombinant Salmonella vaccine

    Directory of Open Access Journals (Sweden)

    M.O. Lásaro

    1999-02-01

    Full Text Available The induction of systemic (IgG and mucosal (IgA antibody responses against the colonization factor I antigen (CFA/I of enterotoxigenic Escherichia coli (ETEC was evaluated in mice primed with an intramuscularly delivered CFA/I-encoding DNA vaccine followed by two oral immunizations with a live recombinant Salmonella typhimurium vaccine strain expressing the ETEC antigen. The booster effect induced by the oral immunization was detected two weeks and one year after the administration of the DNA vaccine. The DNA-primed/Salmonella-boosted vaccination regime showed a synergistic effect on the induced CFA/I-specific systemic and secreted antibody levels which could not be attained by either immunization strategy alone. These results suggest that the combined use of DNA vaccines and recombinant Salmonella vaccine strains can be a useful immunization strategy against enteric pathogens.

  13. Protection status against hepatitis B infection assessed fromanti-HBs level, history of vaccination andhistory of infection based on anti-HBc in medical students

    Science.gov (United States)

    Annisa; Zain, LH; Loesnihari, R.

    2018-03-01

    Hepatitis B virus (HBV) is one of the most contagious pathogens where the risk of exposure is very high among health care workers, especially students in the clerkship. This study describes the protection status by measuring anti-HBs level, history of vaccination, and history of HBV infection in medical students.Forty-four (44) students over 18 years old were randomly selected, interviewed for their vaccination history and then had their blood serum taken for anti-HBs and anti-HBc examinations to determine the protectivity and history of infection.There were 81.8% students without a protective anti-HBs level. Before starting their clerkship, 18.2% students received thevaccination, and only one-fourth formed protective antibody level above 10mIU/mL. Seventeen (38.6%) students had been exposed to HBV(positive anti-HBc), and only six of them showed protective anti-HBs level. None of the students that received vaccine underwent a post-vaccination serological test (PVST) to determine their immune response. These results indicated the vulnerability of medical students to the risk of HBV transmission while performing medical care. With the high incidence of HBV transmission, educational institutions are encouraged to make provisions for vulnerable students to receive a booster and an adequate PVST before their clerkship.

  14. Molecular Characterization of HBV Strains Circulating among the Treatment-Naive HIV/HBV Co-Infected Patients of Eastern India

    Science.gov (United States)

    Saha, Debraj; Pal, Ananya; Biswas, Avik; Panigrahi, Rajesh; Sarkar, Neelakshi; Das, Dipanwita; Sarkar, Jayeeta; Guha, Subhasish Kamal; Saha, Bibhuti; Chakrabarti, Sekhar; Chakravarty, Runu

    2014-01-01

    Previously we reported that the exposure to hepatitis B virus (HBV) infection serves as a major threat among the treatment naive HIV infected population of eastern India. Hence, molecular characterization of these strains is of utmost importance in order to identify clinically significant HBV mutations. A total of 85 treatment naive HIV/HBV co-infected participants were included of whom the complete basal core promoter/precore region, the core and the whole envelope gene could be successfully sequenced for 59, 57 and 39 isolates respectively. Following phylogenetic analysis, it was found that HBV/D was the predominant genotype with HBV/D2 (38.5%) being the most prevalent subgenotype followed by HBV/A1. The major mutations affecting HBeAg expression includes the A1762T/G1764A (13.6%), G1896A (22%) and G1862T mutation (33.9%) which was predominantly associated with HBV/A1. Moreover, the prevalence of G1896A was considerably high among the HBeAg negative HIV/HBV co-infected subjects compared to HBV mono-infection. The main amino acid substitutions within the MHC class II restricted T-cell epitope of HBcAg includes the T12S (15.8%) and T67N (12.3%) mutation and the V27I (10.5%) mutation in the MHC class I restricted T-cell epitope. PreS1/S2 deletion was detected in 3 isolates with all harboring the BCP double mutation. Furthermore, the frequently occurring mutations in the major hydrophilic loop of the S gene include the T125M, A128V and M133I/L. Therefore, this study is the first from India to report useful information on the molecular heterogeneity of the HBV strains circulating among the treatment naive HIV/HBV co-infected population and is thus clinically relevant. PMID:24587360

  15. Chronic HBV infection in pregnant immigrants: a multicenter study of the Italian Society of Infectious and Tropical Diseases.

    Science.gov (United States)

    Sagnelli, Evangelista; Taliani, Gloria; Castelli, Francesco; Bartolozzi, Dario; Cacopardo, Bruno; Armignacco, Orlando; Scotto, Gaetano; Coppola, Nicola; Stroffolini, Tommaso; Sagnelli, Caterina

    2016-04-01

    The aims of the study were to estimate the clinical impact of HBV infection in pregnant immigrants and their family members and to identify a useful approach to managing the healthcare of HBsAg-positive immigrants. Included in this study were 143 HBsAg-positive pregnant immigrants of the 1,970 from countries with intermediate/high HBV endemicity who delivered in 8 Italian hospitals in 2012-2013. In addition, 172 family members of 96 HBsAg-positive pregnant immigrants were tested for serum HBsAg. The median age of the 143 HBsAg-positive pregnant immigrants was 31.0±12.1 years and the length of stay in Italy 5.0±4.1 years; 56.5% were unaware of their HBsAg positivity. HBV DNA was detected in 74.5% of the pregnant immigrants, i.e., 94.3% from Eastern Europe, 72.2% from East Asia and 58.1% from Sub-Saharan Africa. HBV DNA ≥2000 IU/mL was detected in 47.8% of pregnant immigrants, associated with ALT ≥1.5 times the upper normal value in 15% of cases. Anti-HDV was detected in 10% of cases. HBsAg was detected in 31.3% of the 172 family members. All HBsAg-positive immigrants received counseling on HBV infection and its prevention, and underwent a complete clinical evaluation. The findings validate the approach used for the healthcare management of the HBsAg-positive immigrant population.

  16. Acute hepatitis B in a healthcare worker: A case report of genuine vaccination failure

    NARCIS (Netherlands)

    Boot, H.J.; Van Der Waaij, L.A.; Schirm, J.; Kallenberg, Cees; van Steenbergen, J.; Wolters, B.

    2009-01-01

    Background: Individuals who reach the antibody threshold level of 10 IU/I against the surface protein of the hepatitis B virus (HBV) after completion of a series of hepatitis B vaccination are considered to be long-term protected against a clinically manifest HBV infection. Case report: Here we

  17. Acute hepatitis B in a healthcare worker : A case report of genuine vaccination failure

    NARCIS (Netherlands)

    Boot, Hein J.; van der Waaij, Laurens A.; Schirm, Jurien; Kallenberg, Cees G. M.; van Steenbergen, Jim; Wolters, Bert

    Background: Individuals who reach the antibody threshold level of 10 IU/I against the surface protein of the hepatitis B virus (HBV) after completion of a series of hepatitis B vaccination are considered to be long-term protected against a clinically manifest HBV infection. Case report: Here we

  18. The role of peptide and DNA vaccines in myeloid leukemia immunotherapy

    Directory of Open Access Journals (Sweden)

    Lin Chen

    2013-02-01

    Full Text Available Abstract While chemotherapy and targeted therapy are successful in inducing the remission of myeloid leukemia as acute myeloid leukemia (AML and chronic myeloid leukemia (CML, the disease remains largely incurable. This observation is likely due to the drug resistance of leukemic cells, which are responsible for disease relapse. Myeloid leukemia vaccines may most likely be beneficial for eradicating minimal residual disease after treatment with chemotherapy or targeted therapy. Several targeted immunotherapies using leukemia vaccines have been heavily investigated in clinical and preclinical trials. This review will focus on peptides and DNA vaccines in the context of myeloid leukemias, and optimal strategies for enhancing the efficacy of vaccines based on myeloid leukemia immunization are also summarized.

  19. Long-Term Reduction of High Blood Pressure by Angiotensin II DNA Vaccine in Spontaneously Hypertensive Rats.

    Science.gov (United States)

    Koriyama, Hiroshi; Nakagami, Hironori; Nakagami, Futoshi; Osako, Mariana Kiomy; Kyutoku, Mariko; Shimamura, Munehisa; Kurinami, Hitomi; Katsuya, Tomohiro; Rakugi, Hiromi; Morishita, Ryuichi

    2015-07-01

    Recent research on vaccination has extended its scope from infectious diseases to chronic diseases, including Alzheimer disease, dyslipidemia, and hypertension. The aim of this study was to design DNA vaccines for high blood pressure and eventually develop human vaccine therapy to treat hypertension. Plasmid vector encoding hepatitis B core-angiotensin II (Ang II) fusion protein was injected into spontaneously hypertensive rats using needleless injection system. Anti-Ang II antibody was successfully produced in hepatitis B core-Ang II group, and antibody response against Ang II was sustained for at least 6 months. Systolic blood pressure was consistently lower in hepatitis B core-Ang II group after immunization, whereas blood pressure reduction was continued for at least 6 months. Perivascular fibrosis in heart tissue was also significantly decreased in hepatitis B core-Ang II group. Survival rate was significantly improved in hepatitis B core-Ang II group. This study demonstrated that Ang II DNA vaccine to spontaneously hypertensive rats significantly lowered high blood pressure for at least 6 months. In addition, Ang II DNA vaccines induced an adequate humoral immune response while avoiding the activation of self-reactive T cells, assessed by ELISPOT assay. Future development of DNA vaccine to treat hypertension may provide a new therapeutic option to treat hypertension. © 2015 American Heart Association, Inc.

  20. Quantification of serum markers of hepatitis B (HBV) and Delta virus (HDV) infections in patients with chronic HDV infection.

    Science.gov (United States)

    Ricco, Gabriele; Popa, Delia Codruta; Cavallone, Daniela; Iacob, Speranta; Salvati, Antonio; Tabacelia, Daniela; Oliveri, Filippo; Mascolo, Giovanni; Bonino, Ferruccio; Yuan, Quan; Xia, Ning-Shao; Gheorghe, Liana; Brunetto, Maurizia Rossana

    2018-03-25

    The interplay between hepatitis B (HBV) and Delta (HDV) viruses is complex and not always characterized during chronic HDV infection. We assessed the clinical usefulness of new quantitative assays for HBV and HDV serum markers in a retrospective cross-sectional study. Sera obtained from 122 HDV-genotype-1 and HBV-genotype-D co-infected, anti-HIV-negative patients [71 males; median age 49.8 (21.7-66.9) years], recruited consecutively in two geographic areas (Italy 69 patients, Romania 53) with different HBV and HDV epidemiology, were tested for HBsAg, HBV-DNA, HBcrAg, total anti-HBc, HDV-RNA, IgM and total anti-HDV using quantitative assays. Cirrhosis, that showed comparable prevalence in the two cohorts, was diagnosed in 97 of 122 (79.5%) patients. At multivariate analysis, cirrhosis was associated with lower total anti-HBc/IgM-anti-HDV ratio (OR 0.990, 95%CI 0.981-0.999, P=0.038), whereas disease activity was associated with higher total anti-HDV (OR 10.105, 95% CI 1.671-61.107, P=0.012) and HDV-RNA levels (OR 2.366, 95% CI 1.456-3.844, P=0.001). HDV-RNA serum levels showed a positive correlation with HBV-DNA (ρ=0.276, P=0.005), HBsAg (ρ=0.404, PHBV and HDV serum markers identifies specific patterns associated with activity and stage of chronic hepatitis D (CHD). HDV pathogenicity depends on the underlying active HBV infection in spite of the inhibition of its replication. HDV-RNA, IgM anti-HDV, total anti-HDV, total anti-HBc, HBsAg and HBcrAg serum levels qualify for prospective studies to predict progressive CHD and identify candidates to antiviral therapy. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Immunity induced shortly after DNA vaccination of rainbow trout against rhabdoviruses protects against heterologous virus but not against bacterial pathogens

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2002-01-01

    whereas no increased survival was found upon challenge with bacterial pathogens. Within two months after vaccination, the cross-protection disappeared while the specific immunity to homologous virus remained high. The early immunity induced by the DNA vaccines thus appeared to involve short-lived non......It was recently reported that DNA vaccination of rainbow trout fingerlings against viral hemorrhagic septicaemia virus (VHSV) induced protection within 8 days after intramuscular injection of plasmid DNA. In order to analyse the specificity of this early immunity, fish were vaccinated with plasmid...... DNA encoding the VHSV or the infectious haematopoietic necrosis virus (IHNV) glycoprotein genes and later challenged with homologous or heterologous pathogens. Challenge experiments revealed that immunity established shortly after vaccination was cross-protective between the two viral pathogens...

  2. Improvement of the Immunogenicity of Porcine Circovirus Type 2 DNA Vaccine by Recombinant ORF2 Gene and CpG Motifs.

    Science.gov (United States)

    Li, Jun; Shi, Jian-Li; Wu, Xiao-Yan; Fu, Fang; Yu, Jiang; Yuan, Xiao-Yuan; Peng, Zhe; Cong, Xiao-Yan; Xu, Shao-Jian; Sun, Wen-Bo; Cheng, Kai-Hui; Du, Yi-Jun; Wu, Jia-Qiang; Wang, Jin-Bao; Huang, Bao-Hua

    2015-06-01

    Nowadays, adjuvant is still important for boosting immunity and improving resistance in animals. In order to boost the immunity of porcine circovirus type 2 (PCV2) DNA vaccine, CpG motifs were inserted. In this study, the dose-effect was studied, and the immunity of PCV2 DNA vaccines by recombinant open reading frame 2 (ORF2) gene and CpG motifs was evaluated. Three-week-old Changbai piglets were inoculated intramuscularly with 200 μg, 400 μg, and 800 μg DNA vaccines containing 14 and 18 CpG motifs, respectively. Average gain and rectum temperature were recorded everyday during the experiments. Blood was collected from the piglets after vaccination to detect the changes of specific antibodies, interleukin-2, and immune cells every week. Tissues were collected for histopathology and polymerase chain reaction. The results indicated that compared to those of the control piglets, all concentrations of two DNA vaccines could induce PCV2-specific antibodies. A cellular immunity test showed that PCV2-specific lymphocytes proliferated the number of TH, TC, and CD3+ positive T-cells raised in the blood of DNA vaccine immune groups. There was no distinct pathological damage and viremia occurring in pigs that were inoculated with DNA vaccines, but there was some minor pathological damage in the control group. The results demonstrated that CpG motifs as an adjuvant could boost the humoral and cellular immunity of pigs to PCV2, especially in terms of cellular immunity. Comparing two DNA vaccines that were constructed, the one containing 18 CpG motifs was more effective. This is the first report that CpG motifs as an adjuvant insert to the PCV2 DNA vaccine could boost immunity.

  3. Seronegative Neuromyelitis Optica Spectrum Disorder following Exposure to Hepatitis B Vaccination

    Directory of Open Access Journals (Sweden)

    Richard Heekin

    2015-04-01

    Full Text Available Controversy exists regarding a potential link between exposure to recombinant hepatitis B vaccine (HBV and central nervous system demyelinating diseases. Here, we present a case of seronegative neuromyelitis optica spectrum disorder (NMOSD following exposure to HBV. A 28-year-old man developed painful eye movements 11 days after exposure to HBV. Within 24 h, he experienced vision loss, ascending numbness, and ataxia. T-spine MRI showed a cord lesion spanning T6-T9. Brain MRI showed bilateral optic nerve contrast enhancement and a right-sided internal capsule lesion. Cerebrospinal fluid analysis was normal, including negative oligoclonal bands and normal IgG index. AQP4-IgG serology was negative. The patient's visual symptoms improved after treatment with steroids and plasma exchange. He received plasma exchange weekly for 4 weeks with decreased numbness and tingling as well as improved coordination. Treatment with mycophenolate mofetil was started, and the patient remains clinically stable with near resolution of his prior symptoms. Neuromyelitis optica is characterized by optic neuritis and/or longitudinally extensive transverse myelitis. While our patient tested seronegative for AQP4-IgG (which remains negative in 10-50% of NMOSD cases, despite testing with the most sensitive assays available, he did meet NMOSD diagnostic criteria. In a literature review, we found 7 cases of NMOSD onset or relapse associated with exposure to various vaccines, but to our knowledge this represents the first published report of NMOSD onset following exposure to HBV. While causality between vaccination and CNS demyelinating disease remains elusive, it is important to report these cases to help develop safer vaccinations and provoke further inquiry into the pathogenesis of NMOSD.

  4. A long HBV transcript encoding pX is inefficiently exported from the nucleus

    International Nuclear Information System (INIS)

    Doitsh, Gilad; Shaul, Yosef

    2003-01-01

    The longest hepatitis B virus transcript is a 3.9-kb mRNA whose function remained unclear. In this study, we wished to identify the translation products and physiological role of this viral transcript. This transcript initiates from the X promoter region ignoring the inefficient and noncanonical viral polyadenylation signal at the first round of transcription. However, an HBV mutant with canonical polyadenylation signal continues, though with lower efficiency, to program the synthesis of this long transcript, indicating that the deviated HBV polyadenylation signal is important but not essential to enable transcription of the 3.9-kb species. The 3.9-kb RNA contains two times the X open reading frame (ORF). The X ORF at the 5'-end is positioned upstream of the CORE gene. By generating an HBV DNA mutant in which the X and Core ORFs are fused, we demonstrated the production of a 40-kDa X-Core fusion protein that must be encoded by the 3.9-kb transcript. Mutagenesis studies revealed that the production of this protein depends on the 5' X ORF ATG, suggesting that the 3.9-kb RNA is active in translation of the X ORF. Based on these features, the 3.9-kb transcript was designated lxRNA for long X RNA. Unlike other HBV transcripts, lxRNA harbors two copies of PRE, the posttranscriptional regulatory element that controls the nuclear export of HBV mRNAs. Unexpectedly, despite the presence of PRE sequences, RNA fractionation analysis revealed that lxRNA barely accumulates in the cytoplasm, suggesting that nuclear export of lxRNA is poor. Collectively, our data suggest that two distinct HBV mRNA species encode pX and that the HBV transcripts are differentially regulated at the level of nuclear export

  5. Knowledge of hepatitis B and vaccination status of some expatriate ethnic groups of blue collar workers in Northern Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Abdul Sattar Khan

    2008-01-01

    Background: Hepatitis B (HBV infection is relatively common throughout the world, but more prevalent in low socioeconomic and underprivileged classes. The chronic infection may lead to severe consequences including Hepatocellular carcinoma (HCC. Method: A cross-sectional, community-based survey of some ethnic expatriate groups of blue color workers (n=665 living in four main areas along the Northern Borders of Saudi Arabia was completed in 2005. We examined knowledge of HBV and vaccination status and compared them with some socio-demographic factors. Results: The mean age of the participants was 45.61 years (±8.44, 53% of whom were Non-Arabs (Non Arabic speaking. Of the total, 41.6% gave seven or more correct answers out of 12 questions addressing knowledge about the transmission and sequelae of HBV. Almost 40% of the respondents had not been vaccinated while the remaining respondents had had three full doses of vaccination. A high level of knowledge (≥ 7 correct answers was significantly associated (p0.05 with level of knowledge. However, vaccination status was associated (p<0.05 with almost all socio-demographic factors. Conclusion: Hepatitis screening programs for expatriates in the Kingdom of Saudi Arabia started 10 years ago and are expected to have a great impact on the combat against HBV infections and their complications. However, beyond screening, health promotion, vaccination campaigns, and access to vaccine for the underprivileged classes are some necessary measures towards achieving success.

  6. Multivalent HA DNA vaccination protects against highly pathogenic H5N1 avian influenza infection in chickens and mice.

    Directory of Open Access Journals (Sweden)

    Srinivas Rao

    Full Text Available Sustained outbreaks of highly pathogenic avian influenza (HPAI H5N1 in avian species increase the risk of reassortment and adaptation to humans. The ability to contain its spread in chickens would reduce this threat and help maintain the capacity for egg-based vaccine production. While vaccines offer the potential to control avian disease, a major concern of current vaccines is their potency and inability to protect against evolving avian influenza viruses.The ability of DNA vaccines encoding hemagglutinin (HA proteins from different HPAI H5N1 serotypes was evaluated for its ability to elicit neutralizing antibodies and to protect against homologous and heterologous HPAI H5N1 strain challenge in mice and chickens after DNA immunization by needle and syringe or with a pressure injection device. These vaccines elicited antibodies that neutralized multiple strains of HPAI H5N1 when given in combinations containing up to 10 HAs. The response was dose-dependent, and breadth was determined by the choice of the influenza virus HA in the vaccine. Monovalent and trivalent HA vaccines were tested first in mice and conferred protection against lethal H5N1 A/Vietnam/1203/2004 challenge 68 weeks after vaccination. In chickens, protection was observed against heterologous strains of HPAI H5N1 after vaccination with a trivalent H5 serotype DNA vaccine with doses as low as 5 microg DNA given twice either by intramuscular needle injection or with a needle-free device.DNA vaccines offer a generic approach to influenza virus immunization applicable to multiple animal species. In addition, the ability to substitute plasmids encoding different strains enables rapid adaptation of the vaccine to newly evolving field isolates.

  7. Clinical outcomes of liver transplantation for HBV-related hepatocellular carcinoma: data from the NIH HBV OLT study.

    Science.gov (United States)

    Han, Steven-Huy; Reddy, K Rajender; Keeffe, Emmet B; Soldevila-Pico, Consuelo; Gish, Robert; Chung, Raymond T; Degertekin, Bulent; Lok, Anna

    2011-01-01

    Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is an indication for orthotopic liver transplantation (OLT) in patients with tumor stage within the United Network for Organ Sharing criteria. The number of patients listed for HBV-related HCC is increasing, while the number of patients listed for HBV-related cirrhosis is declining presumptively because of the availability of more effective oral nucleos(t)ide analogues. This study presents the final, long-term outcome of patients transplanted for HBV-related HCC in the National Institutes of Health (NIH) HBV OLT Study Group. Ninety-eight patients (52.4%) in the NIH HBV OLT cohort underwent OLT for HBV-related HCC. With a mean follow-up of 36.5 months post-OLT, 12 (12.2%) patients developed recurrence of HCC. Multivariate analysis did not find a statistically significant role of gender, tumor stage at OLT, pre-OLT HCC treatment, recurrence of HBV, or duration of HCC diagnosis pre-OLT in predicting HCC recurrence. Serum alpha-fetoprotein (AFP) level >200 ng/mL at transplant was found to be statistically significant in predicting HCC recurrence (p=0.003). HCC recurrence was significantly associated with decreased post-OLT survival. HCC is the most common indication for OLT in patients with chronic hepatitis B in the era of more effective oral antivirals. Serum AFP at the time of OLT is significantly associated with HCC recurrence. © 2010 John Wiley & Sons A/S.

  8. Persistence of antibodies 20 y after vaccination with a combined hepatitis A and B vaccine.

    Science.gov (United States)

    Van Damme, Pierre; Leroux-Roels, Geert; Suryakiran, P; Folschweiller, Nicolas; Van Der Meeren, Olivier

    2017-05-04

    Vaccination is the most effective and well-tolerated method of conferring long-term protection against hepatitis A and B viruses (HAV; HBV). Long-term studies are required to characterize the duration of protection and need for boosters. Following primary immunization of 150 and 157 healthy adults with 3-doses of combined hepatitis A/hepatitis B vaccine (HAB; Twinrix™, GSK Vaccines, Belgium) at 0-1-6 months in 2 separate studies, we measured vaccine-induced antibody persistence against HAV and HBV annually for 20 y (Study A: NCT01000324; Study B: NCT01037114). Subjects with circulating anti-HAV antibodies B surface antigen B vaccine dose (Havrix™/Engerix™-B, GSK Vaccines, Belgium). Applying the immunogenicity results from these studies, mathematical modeling predicted long-term persistence. After 20 y, 18 and 25 subjects in studies A and B, respectively, comprised the long-term according-to-protocol cohort for immunogenicity; 100% and 96.0% retained anti-HAV antibodies ≥ 15 mIU/mL, respectively; 94.4% and 92.0% had anti-HBs antibodies ≥ 10 mIU/mL, respectively. Between Years 16-20, 4 subjects who received a challenge dose of monovalent hepatitis A vaccine (N = 2) or hepatitis B vaccine (N = 2), all mounted a strong anamnestic response suggestive of immune memory despite low antibody levels. Mathematical modeling predicts that 40 y after vaccination ≥ 97% vaccinees will maintain anti-HAV ≥ 15 mIU/mL and ≥ 50% vaccinees will retain anti-HBs ≥ 10 mIU/mL. Immunogenicity data confirm that primary immunization with 3-doses of HAB induces persisting anti-HAV and anti-HBs specific antibodies in most adults for up to 20 y; mathematical modeling predicts even longer-term protection.

  9. Persistence of antibodies 20 y after vaccination with a combined hepatitis A and B vaccine

    Science.gov (United States)

    Van Damme, Pierre; Leroux-Roels, Geert; Suryakiran, P.; Folschweiller, Nicolas; Van Der Meeren, Olivier

    2017-01-01

    ABSTRACT Vaccination is the most effective and well-tolerated method of conferring long-term protection against hepatitis A and B viruses (HAV; HBV). Long-term studies are required to characterize the duration of protection and need for boosters. Following primary immunization of 150 and 157 healthy adults with 3-doses of combined hepatitis A/hepatitis B vaccine (HAB; Twinrix™, GSK Vaccines, Belgium) at 0-1-6 months in 2 separate studies, we measured vaccine-induced antibody persistence against HAV and HBV annually for 20 y (Study A: NCT01000324; Study B: NCT01037114). Subjects with circulating anti-HAV antibodies hepatitis B surface antigen hepatitis A and/or B vaccine dose (Havrix™/Engerix™-B, GSK Vaccines, Belgium). Applying the immunogenicity results from these studies, mathematical modeling predicted long-term persistence. After 20 y, 18 and 25 subjects in studies A and B, respectively, comprised the long-term according-to-protocol cohort for immunogenicity; 100% and 96.0% retained anti-HAV antibodies ≥ 15 mIU/mL, respectively; 94.4% and 92.0% had anti-HBs antibodies ≥ 10 mIU/mL, respectively. Between Years 16–20, 4 subjects who received a challenge dose of monovalent hepatitis A vaccine (N = 2) or hepatitis B vaccine (N = 2), all mounted a strong anamnestic response suggestive of immune memory despite low antibody levels. Mathematical modeling predicts that 40 y after vaccination ≥ 97% vaccinees will maintain anti-HAV ≥ 15 mIU/mL and ≥ 50% vaccinees will retain anti-HBs ≥ 10 mIU/mL. Immunogenicity data confirm that primary immunization with 3-doses of HAB induces persisting anti-HAV and anti-HBs specific antibodies in most adults for up to 20 y; mathematical modeling predicts even longer-term protection. PMID:28281907

  10. Analysis of HBV genotype distribution and its association with liver cirrhosis in Xinjiang Uygur Autonomous Region, China

    Directory of Open Access Journals (Sweden)

    WANG Xiaozhong

    2014-12-01

    Full Text Available ObjectiveTo investigate the distribution of hepatitis B virus (HBV genotypes among patients in Xinjiang Uygur Autonomous Region, China, and to explore its association with liver cirrhosis. MethodsHBV genotypes of 1018 hepatitis B patients were determined by PCR analysis. The relationship of HBV genotype with clinical outcomes and relevant chronic liver diseases was assessed by contingency chi-square test, Kruskal-Wallis test, and multivariate unconditional logistic regression analysis. ResultsAmong the 828 patients whose HBV genotyping was completed in this study, type C was the major genotype and the percentage was 54.11% (448/828, 25.15% (200/828 had type B, and 16.18% (134/828 had type D. Among the 116 patients with liver cirrhosis, 20.84% had type C, which was significantly more frequent than other genotypes (P<0.00. The multivariate unconditional logistic regression model identified several risk factors for liver cirrhosis, including duration of hepatitis B≥10 years, C genotype, high HBV DNA viral load, and impaired liver function characterized by abnormal alanine aminotransferase test. Among all these factors, genotype C had the highest relevance to liver cirrhosis (OR=2819. ConclusionThe leading genotype of HBV in Xinjiang Uygur Autonomous Region is type C, followed by type B and type D. Genotype C is an independent risk factor for HBV-related liver cirrhosis.

  11. Multiplex electrochemiluminescence DNA sensor for determination of hepatitis B virus and hepatitis C virus based on multicolor quantum dots and Au nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Linlin; Wang, Xinyan; Ma, Qiang; Lin, Zihan; Chen, Shufan; Li, Yang [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China); Lu, Lehui [State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022 (China); Qu, Hongping [Department of Biotechnology, College of Life Science, Jilin Normal University, Siping, 136000 (China); Su, Xingguang, E-mail: suxg@jlu.edu.cn [Department of Analytical Chemistry, College of Chemistry, Jilin University, Changchun, 130012 (China)

    2016-04-15

    In this work, a novel multiplex electrochemiluminescence (ECL) DNA sensor has been developed for determination of hepatitis B virus (HBV) and hepatitis C virus (HCV) based on multicolor CdTe quantum dots (CdTe QDs) and Au nanoparticles (Au NPs). The electrochemically synthesized graphene nanosheets (GNs) were selected as conducting bridge to anchor CdTe QDs{sub 551}-capture DNA{sub HBV} and CdTe QDs{sub 607}-capture DNA{sub HCV} on the glassy carbon electrode (GCE). Then, different concentrations of target DNA{sub HBV} and target DNA{sub HCV} were introduced to hybrid with complementary CdTe QDs-capture DNA. Au NPs-probe DNA{sub HBV} and Au NPs-probe DNA{sub HCV} were modified to the above composite film via hybrid with the unreacted complementary CdTe QDs-capture DNA. Au NPs could quench the electrochemiluminescence (ECL) intensity of CdTe QDs due to the inner filter effect. Therefore, the determination of target DNA{sub HBV} and target DNA{sub HCV} could be achieved by monitoring the ECL DNA sensor based on Au NPs-probe DNA/target DNA/CdTe QDs-capture DNA/GNs/GCE composite film. Under the optimum conditions, the ECL intensity of CdTe QDs{sub 551} and CdTe QDs{sub 607} and the concentration of target DNA{sub HBV} and target DNA{sub HCV} have good linear relationship in the range of 0.0005–0.5 nmol L{sup −1} and 0.001–1.0 nmol L{sup −1} respectively, and the limit of detection were 0.082 pmol L{sup −1} and 0.34 pmol L{sup −1} respectively (S/N = 3). The DNA sensor showed good sensitivity, selectivity, reproducibility and acceptable stability. The proposed DNA sensor has been employed for the determination of target DNA{sub HBV} and target DNA{sub HCV} in human serum samples with satisfactory results. - Highlights: • A novel electrochemiluminescence DNA sensor has been developed for the determination of target DNA{sub HBV} and target DNA{sub HCV}. • The DNA sensor shows good sensitivity, reproducibility and stability. • The ECL provided a

  12. Hepatitis B and A vaccination in HIV-infected adults: A review.

    Science.gov (United States)

    Mena, G; García-Basteiro, A L; Bayas, J M

    2015-01-01

    Hepatitis B and A account for considerable morbidity and mortality worldwide. Immunization is the most effective means of preventing hepatitis B and A. However, the immune response to both hepatitis vaccines seems to be reduced in HIV-infected subjects. The aim of this review was to analyze the immunogenicity, safety, long-term protection and current recommendations of hepatitis B and A vaccination among HIV-infected adults. The factors most frequently associated with a deficient level of anti-HBs or IgG anti-HAV after vaccination are those related to immunosuppression (CD4 level and HIV RNA viral load) and to the frequency of administration and/or the amount of antigenic load per dose. The duration of the response to both HBV and HAV vaccines is associated with suppression of the viral load at vaccination and, in the case of HBV vaccination, with a higher level of antibodies after vaccination. In terms of safety, there is no evidence of more, or different, adverse effects compared with HIV-free individuals. Despite literature-based advice on the administration of alternative schedules, revaccination after the failure of primary vaccination, and the need for periodic re-evaluation of antibody levels, few firm recommendations are found in the leading guidelines.

  13. Hepatitis B and A vaccination in HIV-infected adults: A review

    Science.gov (United States)

    Mena, G; García-Basteiro, AL; Bayas, JM

    2015-01-01

    Hepatitis B and A account for considerable morbidity and mortality worldwide. Immunization is the most effective means of preventing hepatitis B and A. However, the immune response to both hepatitis vaccines seems to be reduced in HIV-infected subjects. The aim of this review was to analyze the immunogenicity, safety, long-term protection and current recommendations of hepatitis B and A vaccination among HIV-infected adults. The factors most frequently associated with a deficient level of anti-HBs or IgG anti-HAV after vaccination are those related to immunosuppression (CD4 level and HIV RNA viral load) and to the frequency of administration and/or the amount of antigenic load per dose. The duration of the response to both HBV and HAV vaccines is associated with suppression of the viral load at vaccination and, in the case of HBV vaccination, with a higher level of antibodies after vaccination. In terms of safety, there is no evidence of more, or different, adverse effects compared with HIV-free individuals. Despite literature-based advice on the administration of alternative schedules, revaccination after the failure of primary vaccination, and the need for periodic re-evaluation of antibody levels, few firm recommendations are found in the leading guidelines. PMID:26208678

  14. Two doses of bovine viral diarrhea virus DNA vaccine delivered by electroporation induce long-term protective immune responses.

    Science.gov (United States)

    van Drunen Littel-van den Hurk, Sylvia; Lawman, Zoe; Snider, Marlene; Wilson, Don; van den Hurk, Jan V; Ellefsen, Barry; Hannaman, Drew

    2013-02-01

    Bovine viral diarrhea virus (BVDV) is a pathogen of major importance in cattle, so there is a need for new effective vaccines. DNA vaccines induce balanced immune responses and are relatively inexpensive and thus promising for both human and veterinary applications. In this study, newborn calves with maternal antibodies were vaccinated intramuscularly (i.m.) with a BVDV E2 DNA vaccine with the TriGrid Delivery System for i.m. delivery (TDS-IM). Two doses of this vaccine spaced 6 or 12 weeks apart were sufficient to induce significant virus-neutralizing antibody titers, numbers of activated T cells, and reduction in viral shedding and clinical presentations after BVDV-2 challenge. In contrast to the placebo-treated animals, the vaccinated calves did not lose any weight, which is an excellent indicator of the well-being of an animal and has a significant economic impact. Furthermore, the interval between the two vaccinations did not influence the magnitude of the immune responses or degree of clinical protection, and a third immunization was not necessary or beneficial. Since electroporation may enhance not only the magnitude but also the duration of immunity after DNA immunization, the interval between vaccination and challenge was extended in a second trial, which showed that two doses of this E2 DNA vaccine again significantly reduced clinical disease against BVDV for several months. These results are promising and support this technology for use against infectious diseases in cattle and large species, including humans, in general.

  15. Nursing case management, peer coaching, and hepatitis a and B vaccine completion among homeless men recently released on parole: randomized clinical trial.

    Science.gov (United States)

    Nyamathi, Adeline; Salem, Benissa E; Zhang, Sheldon; Farabee, David; Hall, Betsy; Khalilifard, Farinaz; Leake, Barbara

    2015-01-01

    Although hepatitis A virus (HAV) and hepatitis B virus (HBV) infections are vaccine-preventable diseases, few homeless parolees coming out of prisons and jails have received the hepatitis A and B vaccination series. The study focused on completion of the HAV and HBV vaccine series among homeless men on parole. The efficacy of three levels of peer coaching (PC) and nurse-delivered interventions was compared at 12-month follow-up: (a) intensive peer coaching and nurse case management (PC-NCM); (b) intensive PC intervention condition, with minimal nurse involvement; and (c) usual care (UC) intervention condition, which included minimal PC and nurse involvement. Furthermore, we assessed predictors of vaccine completion among this targeted sample. A randomized control trial was conducted with 600 recently paroled men to assess the impact of the three intervention conditions (PC-NCM vs. PC vs. UC) on reducing drug use and recidivism; of these, 345 seronegative, vaccine-eligible subjects were included in this analysis of completion of the Twinrix HAV/HBV vaccine. Logistic regression was added to assess predictors of completion of the HAV/HBV vaccine series and chi-square analysis to compare completion rates across the three levels of intervention. Vaccine completion rate for the intervention conditions were 75.4% (PC-NCM), 71.8% (PC), and 71.9% (UC; p = .78). Predictors of vaccine noncompletion included being Asian and Pacific Islander, experiencing high levels of hostility, positive social support, reporting a history of injection drug use, being released early from California prisons, and being admitted for psychiatric illness. Predictors of vaccine series completion included reporting having six or more friends, recent cocaine use, and staying in drug treatment for at least 90 days. Findings allow greater understanding of factors affecting vaccination completion in order to design more effective programs among the high-risk population of men recently released from

  16. Plasma Epstein-Barr virus and Hepatitis B virus in non-Hodgkin lymphomas: Two lymphotropic, potentially oncogenic, latently occurring DNA viruses.

    Science.gov (United States)

    Sinha, Mahua; Rao, Clementina Rama; Premalata, C S; Shafiulla, Mohammed; Lakshmaiah, K C; Jacob, Linu Abraham; Babu, Govind K; Viveka, B K; Appaji, L; Subramanyam, Jayshree R

    2016-01-01

    There is a need to study potential infective etiologies in lymphomas. Lymphocyte-transforming viruses can directly infect lymphocytes, disrupt normal cell functions, and promote cell division. Epstein-Barr virus (EBV) is known to be associated with several lymphomas, especially Hodgkin lymphomas (HLs). And recently, the lymphocyte-transforming role of hepatitis B virus (HBV) has been emphasized. The aim of this study was to elucidate the association of two potentially oncogenic, widely prevalent latent DNA viruses, EBV and HBV, in non-HL (NHL). In this prospective study, we estimated plasma EBV and HBV DNA in NHL patients. Peripheral blood was obtained from newly diagnosed, treatment na ïve, histologically confirmed NHL patients. Plasma EBV DNA was quantified by real-time polymerase chain reaction (PCR) targeting Epstein-Barr Nucleic acid 1 while the plasma HBV DNA was detected using nested PCR targeting HBX gene. In a small subset of patients, follow-up plasma samples post-anticancer chemotherapy were available and retested for viral DNA. Of the 110 NHL patients, ~79% were B-cell NHL and ~21% were T-cell NHL. Plasma EBV-DNA was detected in 10% NHLs with a higher EBV association in Burkitt lymphoma (33.3%) than other subtypes. Pretherapy HBV DNA was detected in 21% NHLs; most of them being diffuse large B-cell lymphoma (DLBCL). Moreover, 42% of DLBCL patients had HBV DNA in plasma. Since all patients were HBV surface antigen seronegative at diagnosis, baseline plasma HBV-DNAemia before chemotherapy was indicative of occult hepatitis B infection. Our findings indicate a significant association of HBV with newly diagnosed DLBCL.

  17. Cost-Effectiveness of Cervical Cancer Screening With Human Papillomavirus DNA Testing and HPV-16,18 Vaccination

    Science.gov (United States)

    Goldhaber-Fiebert, Jeremy D.; Stout, Natasha K.; Salomon, Joshua A.; Kuntz, Karen M.; Goldie, Sue J.

    2011-01-01

    Background The availability of human papillomavirus (HPV) DNA testing and vaccination against HPV types 16 and 18 (HPV-16,18) motivates questions about the cost-effectiveness of cervical cancer prevention in the United States for unvaccinated older women and for girls eligible for vaccination. Methods An empirically calibrated model was used to assess the quality-adjusted life years (QALYs), lifetime costs, and incremental cost-effectiveness ratios (2004 US dollars per QALY) of screening, vaccination of preadolescent girls, and vaccination combined with screening. Screening varied by initiation age (18, 21, or 25 years), interval (every 1, 2, 3, or 5 years), and test (HPV DNA testing of cervical specimens or cytologic evaluation of cervical cells with a Pap test). Testing strategies included: 1) cytology followed by HPV DNA testing for equivocal cytologic results (cytology with HPV test triage); 2) HPV DNA testing followed by cytology for positive HPV DNA results (HPV test with cytology triage); and 3) combined HPV DNA testing and cytology. Strategies were permitted to switch once at age 25, 30, or 35 years. Results For unvaccinated women, triennial cytology with HPV test triage, beginning by age 21 years and switching to HPV testing with cytology triage at age 30 years, cost $78 000 per QALY compared with the next best strategy. For girls vaccinated before age 12 years, this same strategy, beginning at age 25 years and switching at age 35 years, cost $41 000 per QALY with screening every 5 years and $188 000 per QALY screening triennially, each compared with the next best strategy. These strategies were more effective and cost-effective than screening women of all ages with cytology alone or cytology with HPV triage annually or biennially. Conclusions For both vaccinated and unvaccinated women, age-based screening by use of HPV DNA testing as a triage test for equivocal results in younger women and as a primary screening test in older women is expected to be more

  18. Hepatitis B surface antigen (HBsAg) and core antigen (HBcAg) combine CpG oligodeoxynucletides as a novel therapeutic vaccine for chronic hepatitis B infection.

    Science.gov (United States)

    Li, Jianqiang; Ge, Jun; Ren, Sulin; Zhou, Tong; Sun, Ying; Sun, Honglin; Gu, Yue; Huang, Hongying; Xu, Zhenxing; Chen, Xiaoxiao; Xu, Xiaowei; Zhuang, Xiaoqian; Song, Cuiling; Jia, Fangmiao; Xu, Aiguo; Yin, Xiaojin; Du, Sean X

    2015-08-20

    Hepatitis B virus infection is a non-cytopathic hepatotropic virus which can lead to chronic liver disease and hepatocellular carcinoma. Traditional therapies fail to provide sustained control of viral replication and liver damage in most patients. As an alternative strategy, immunotherapeutic approaches have shown promising efficacy in the treatment of chronic hepatitis B patients. Here, we investigated the efficacy of a novel therapeutic vaccine formulation consisting of two HBV antigens, HBsAg and HBcAg, and CpG adjuvant. This vaccine formulation elicits forceful humoral responses directed against HBsAg/HBcAg, and promotes a Th1/Th2 balance response against HBsAg and a Th1-biased response against HBcAg in both C57BL/6 and HBV transgenic mice. Vigorous cellular immune response was also detected in HBV transgenic mice, for a significantly higher number of HBs/HBc-specific IFN-γ secreting CD4+ and CD8+ T cells was generated. Moreover, vaccinated mice elicited significantly intense in vivo CTL attack, reduced serum HBsAg level without causing liver damage in HBV transgenic mice. In summary, this study demonstrates a novel therapeutic vaccine with the potential to elicit vigorous humoral and cellular response, overcoming tolerance in HBV transgenic mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Immunogenicity of quadrivalent HPV and combined hepatitis A and B vaccine when co-administered or administered one month apart to 9-10 year-old girls according to 0-6 month schedule.

    Science.gov (United States)

    Gilca, Vladimir; Sauvageau, Chantal; Boulianne, Nicole; De Serres, Gaston; Couillard, Michel; Krajden, Mel; Ouakki, Manale; Murphy, Donald; Trevisan, Andrea; Dionne, Marc

    2014-01-01

    No immunogenicity data has been reported after a single dose of the quadrivalent HPV vaccine (qHPV-Gardasil®) and no data are available on co-administration of this vaccine with the HAV/HBV vaccine (Twinrix-Junior®). Two pre-licensure studies reported similar anti-HPV but lower anti-HBs titers when co-administering HPV and HBV vaccines. To assess the immunogenicity of the qHPV and HAV/HBV vaccine when co-administered (Group-Co-adm) or given one month apart (Group-Sep) and to measure the persistence of HPV antibodies three years post-second dose of qHPV vaccine in both study groups. 416 9-10 year-old girls were enrolled. Vaccination schedule was 0-6 months. Anti-HAV and anti-HBs were measured in all subjects 6 months post-first dose and 1 month post-second dose. Anti-HPV were measured 6 months post-first dose in Group-Co-adm and in all subjects 1 and 36 months post-second dose. Six months post-first dose: 100% of subjects had detectable anti-HAV and 56% and 73% had detectable anti-HBs in Group-Co-Adm and Group-Sep, respectively. In Group-Co-adm 94, 100, 99 and 96% had detectable antibodies to HPV 6, 11, 16 and 18, respectively. One month post-second dose of qHPV and HAV/HBV vaccine, in both study groups 99.5-100% of subjects had an anti-HAV titer ≥ 20IU/L, 97.5-97.6% an anti-HBs level ≥ 10IU/L, and 100% had an anti-HPV titer ≥ 3LU. Thirty-six months post-second dose of qHPV all but four subjects (99%) had antibodies to HPV18 and 100% had antibodies to HPV6, 11 and 16. The great majority (97-100%) had an anti-HPV titer ≥ 3 LU. Post-second dose administration of qHPV and HAV/HBV, no meaningful difference was observed in the immune response in the two study groups to any component of vaccines. The results indicate that qHPV and HAV/HBV can be given during the same vaccination session. Two doses of of qHPV and HAV/HBV vaccines induce a strong immune response. Three years post-second dose of qHPV, the great majority of subjects had antibodies to HPV types

  20. Resolution of HBV infection occurs sooner than recovery of renal disease in adult serum HBsAg-negative HBV-associated glomerulonephritis.

    Science.gov (United States)

    Xu, Fang; Wang, Chong; Shi, Xiaoju; Hou, Jie; Guo, Xiaolin; Gao, Pujun

    2018-05-02

    Most cases of hepatitis B virus-associated glomerulonephritis (HBV-GN) occur in children and present with serum HBsAg positivity. Few studies have investigated adult HBV-GN patients who are serum HBsAg-negative. This study aimed to determine the clinical and pathological features of serum HBsAg-negative adult HBV-GN patients. Clinical, pathologic and laboratory findings were collected and analyzed in a cohort of 27 adult HBV-GN patients who were serum HBsAg negative upon diagnosis. The study population included mostly men of middle age (40-59 years). Clinically, patients presented with nephrotic syndrome. Serum IgG levels were low, while serum IgM, IgA, C3, and C4 levels as well as liver and renal function tests were normal in most or all patients. Among the 27 patients, 21 tested positively for HBV antibodies. MN was the dominant pathological form on kidney biopsy. In addition, only a few patients showed a "full house" staining pattern and renal immune deposit of C1q. Serum HBsAg negative HBV-GN may represent a late stage of HBV infection. We recommend routine testing for HBV markers on renal biopsy in regions where HBV is prevalent, even when tests for serum HBV markers are negative. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  1. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    International Nuclear Information System (INIS)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne

    2012-01-01

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id + tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id + single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id + fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id + tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id + scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  2. Targeted DNA vaccines for enhanced induction of idiotype-specific B and T cells

    Energy Technology Data Exchange (ETDEWEB)

    Fredriksen, Agnete B.; Sandlie, Inger; Bogen, Bjarne, E-mail: bjarne.bogen@medisin.uio.no [Centre for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital, Oslo (Norway)

    2012-10-30

    Background: Idiotypes (Id) are antigenic determinants localized in variable (V) regions of Ig. Id-specific T and B cells (antibodies) play a role in immunotherapy of Id{sup +} tumors. However, vaccine strategies that enhance Id-specific responses are needed. Methods: Id{sup +} single-chain fragment variable (scFv) from multiple myelomas and B cell lymphomas were prepared in a fusion format that bivalently target surface molecules on antigen-presenting cells (APC). APC-specific targeting units were either scFv from APC-specific mAb (anti-MHC II, anti-CD40) or chemokines (MIP-1α, RANTES). Homodimeric Id-vaccines were injected intramuscularly or intradermally as plasmids in mice, combined with electroporation. Results: (i) Transfected cells secreted plasmid-encoded Id{sup +} fusion proteins to extracellular fluid followed by binding of vaccine molecules to APC. (ii) Targeted vaccine molecules increased Id-specific B and T cell responses. (iii) Bivalency and xenogeneic sequences both contributed to enhanced responses. (iv) Targeted Id DNA vaccines induced tumor resistance against challenges with Id{sup +} tumors. (v) Human MIP-1α targeting units enhanced Id-specific responses in mice, due to a cross reaction with murine chemokine receptors. Thus, targeted vaccines designed for humans can be quality tested in mice. (vi) Human Id{sup +} scFv from four multiple myeloma patients were inserted into the vaccine format and were successfully tested in mice. (vii) Human MIP-1α vaccine proteins enhanced human T cell responses in vitro. (viii) A hypothetical model for how the APC-targeted vaccine molecules enhance Id-specific T and B cells is presented. Conclusion: Targeted DNA Id-vaccines show promising results in preclinical studies, paving the way for testing in patients.

  3. Evaluation of the impact of hepatitis B vaccination in adults in Jiangsu province, China.

    Directory of Open Access Journals (Sweden)

    Liguo Zhu

    Full Text Available Hepatitis B immunization programs for newborns, children, and adolescents in China have shown remarkable results. To establish whether there would be any benefit in extending the program to cover older individuals, we examined both the epidemiology of hepatitis B virus (HBV infection and the coverage of hepatitis B vaccinations among adults born before routine vaccinations were implemented. We then evaluated the impact of hepatitis B vaccination in adults aged 20-59 years. A large-scale cross-sectional epidemiological survey of HBV infection was performed in the province of Jiangsu, south-east China, between September 2009 and March 2010. A total of 86,732 adults aged 20-59 years were included, of which 8,615 (9.9%, 95% CI = 9.7-10.1% were HBsAg sero-positive. Self-reported vaccination status suggested that the coverage was approximately 23.7% (95% CI = 23.4-24.0%. It was shown that higher HBV vaccination coverage was associated with a lower rate of HBsAg seropositivity among adults. There was a negative correlation between hepatitis B vaccination coverage and HBsAg prevalence (correlation coefficient = -0.805, p = 0.016, which might demonstrate the combined effects of vaccination and pre-vaccination HBsAg screening. In the unvaccinated group, the HBsAg-positive rate had an obvious upward trend with age growing among 20-39 year-olds (Trend χ2 = 22.605, P<0.001, while the vaccinated group showed no such trend (Trend χ2 = 3.462, P = 0.063. Overall, hepatitis B vaccination in adults might reduce the rate of HBsAg positivity. Therefore, routine immunization of adults aged 20-39 years should be seriously considered.

  4. [A survey of HIV, HBV and HCV infections in children aged 1-13 years in Yi ethnic area, Sichuan province].

    Science.gov (United States)

    Yang, Y; Zhou, Y B; Cheng, W T; Pan, X; Song, X X; Jiang, Q W

    2017-09-10

    Objective: To investigate the prevalence of HIV, HBV and HCV infections in children aged 1-13 years in Yi ethnic area in Sichuan province. Methods: A cross-sectional study was conducted in the form of field survey in four townships selected from Yi ethnic area of Sichuan during 2014-2015. Participants were children aged 1-13 years by sample size of 900 and were screened for HIV antibody, HBV surface antigen and HCV antibody, and laboratory comfirmation was conducted. The area, age, gender and ethnic group specific infection rates were compared by using Fisher's exact test, and multiple comparisons were corrected by using Bonferroni correction. Results: A total of 677 children aged 1-13 years were surveyed. The infection rates of HIV, HBV and HCV were 1.03 % (7/677, 95 %CI : 0.42 % -1.12 % ), 6.65 % (45/677, 95 %CI : 4.89 % -8.79 % ) and 0.15 % (1/677, 95 %CI : 0 % -0.82 % ), respectively. The infection rates of HIV differed among townships ( P =0.000), the infection rate was higher in township D than in township B, the difference was significant ( P HBV and HCV infections were not significant among different townships, age, gender and ethnic groups. The difference in HBV viral load between age group 5-9 years and age groups 10-13 years was not significant ( U =115.000, P =0.967). Conclusions: The burden of HIV and HBV infections in children aged 1-13 years was heavy in rural area of Yi ethnic area in Sichuan. Therefore, it is necessary to take effective measures to block the vertical transmission of HIV and HBV as well as to increase the coverage of HBV vaccination.

  5. Induction of protective immunity against Eimeria tenella, Eimeria necatrix, Eimeria maxima and Eimeria acervulina infections using multivalent epitope DNA vaccines.

    Science.gov (United States)

    Song, Xiaokai; Ren, Zhe; Yan, Ruofeng; Xu, Lixin; Li, Xiangrui

    2015-06-04

    Avian coccidiosis is mostly caused by mixed infection of several Eimeria species under natural conditions and immunity to avian coccidiosis is largely dependent on T-cell immune response. In this study, 14 T-cell epitope fragments from eight antigens of Eimeria tenella (E. tenella), Eimeria necatrix (E. necatrix), Eimeria maxima (E. maxima) and Eimeria acervulina (E. acervulina) were ligated with pVAX1 producing 14 monovalent DNA vaccines, respectively. Protective immunity of the monovalent DNA vaccines was assessed by in vivo challenge experiments and then four most protective fragments of each species were chosen to construct multivalent epitope DNA vaccines with or without chicken IL-2 as genetic adjuvant. Protective efficacies of the epitope DNA vaccines on chickens against E. tenella, E. necatrix, E. maxima and E. acervulina were evaluated. The results showed that the constructed multivalent epitope DNA vaccines significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds. Especially, the multivalent epitope DNA vaccines of pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1 and pVAX1-NA4-1-TA4-1-LDH-2-EMCDPK-1-IL-2 not only significantly increased body weight gain, alleviated enteric lesions and reduced oocyst output of the infected birds, but also resulted in anti-coccidial index (ACI) more than 170 against E. tenella, E. necatrix, E. maxima and E. acervulina, which indicated they could induce protective immunity against E. tenella, E. necatrix, E. maxima and E. acervulina. Our findings suggest the constructed multivalent epitope DNA vaccines are the potential candidate multivalent vaccines against mixed infection of Eimeria. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Protective Effects of Moringa oleifera on HBV Genotypes C and H Transiently Transfected Huh7 Cells

    Science.gov (United States)

    Feustel, Sina; Ayón-Pérez, Fabiola; Sandoval-Rodriguez, Ana; Rodríguez-Echevarría, Roberto; Contreras-Salinas, Homero

    2017-01-01

    Chronic hepatitis B infection treatment implicates a long-lasting treatment. M. oleifera extracts contain compounds with antiviral, antioxidant, and antifibrotic properties. In this study, the effect of M. oleifera was evaluated in Huh7 cells expressing either HBV genotypes C or H for the antiviral, antifibrotic, anti-inflammatory, and antioxidative responses. Huh7 cells were treated with an aqueous extract of M. oleifera (leaves) at doses of 0, 30, 45, or 60 μg/mL. The replicative virus and TGF-β1, CTGF, CAT, IFN-β1, and pgRNA expressions were measured by real time. HBsAg and IL-6 titers were determined by ELISA. CTGF, TGF-β1, IFN-β1, and pgRNA expressions decreased with M. oleifera treatment irrespective of the HBV genotype. HBsAg secretion in the supernatant of transfected Huh7 cells with both HBV genotypes was decreased regardless of the dose of M. oleifera. Similar effect was observed in proinflammatory cytokine IL-6, which had a tendency to decrease at 24 hours of treatment. Transfection with both HBV genotypes strongly decreased CAT expression, which is retrieved with M. oleifera treatment. M. oleifera treatment reduced fibrosis markers, IL-6, and HBsAg secretion in HBV genotypes C and H. However, at the level of replication, only HBV-DNA genotype C was slightly reduced with this treatment. PMID:29214184

  7. HBV genotypic variability in Cuba.

    Directory of Open Access Journals (Sweden)

    Carmen L Loureiro

    Full Text Available The genetic diversity of HBV in human population is often a reflection of its genetic admixture. The aim of this study was to explore the genotypic diversity of HBV in Cuba. The S genomic region of Cuban HBV isolates was sequenced and for selected isolates the complete genome or precore-core sequence was analyzed. The most frequent genotype was A (167/250, 67%, mainly A2 (149, 60% but also A1 and one A4. A total of 77 isolates were classified as genotype D (31%, with co-circulation of several subgenotypes (56 D4, 2 D1, 5 D2, 7 D3/6 and 7 D7. Three isolates belonged to genotype E, two to H and one to B3. Complete genome sequence analysis of selected isolates confirmed the phylogenetic analysis performed with the S region. Mutations or polymorphisms in precore region were more common among genotype D compared to genotype A isolates. The HBV genotypic distribution in this Caribbean island correlates with the Y lineage genetic background of the population, where a European and African origin prevails. HBV genotypes E, B3 and H isolates might represent more recent introductions.

  8. HBV Genotypic Variability in Cuba

    Science.gov (United States)

    Loureiro, Carmen L.; Aguilar, Julio C.; Aguiar, Jorge; Muzio, Verena; Pentón, Eduardo; Garcia, Daymir; Guillen, Gerardo; Pujol, Flor H.

    2015-01-01

    The genetic diversity of HBV in human population is often a reflection of its genetic admixture. The aim of this study was to explore the genotypic diversity of HBV in Cuba. The S genomic region of Cuban HBV isolates was sequenced and for selected isolates the complete genome or precore-core sequence was analyzed. The most frequent genotype was A (167/250, 67%), mainly A2 (149, 60%) but also A1 and one A4. A total of 77 isolates were classified as genotype D (31%), with co-circulation of several subgenotypes (56 D4, 2 D1, 5 D2, 7 D3/6 and 7 D7). Three isolates belonged to genotype E, two to H and one to B3. Complete genome sequence analysis of selected isolates confirmed the phylogenetic analysis performed with the S region. Mutations or polymorphisms in precore region were more common among genotype D compared to genotype A isolates. The HBV genotypic distribution in this Caribbean island correlates with the Y lineage genetic background of the population, where a European and African origin prevails. HBV genotypes E, B3 and H isolates might represent more recent introductions. PMID:25742179

  9. Protective immunity and lack of histopathological damage two years after DNA vaccination against infectious hematopoietic necrosis virus in trout

    Science.gov (United States)

    Kurath, Gael; Garver, Kyle A.; Corbeil, Serge; Elliott, Diane G.; Anderson, Eric D.; LaPatra, Scott E.

    2006-01-01

    The DNA vaccine pIHNw-G encodes the glycoprotein of the fish rhabdovirus infectious hematopoietic necrosis virus (IHNV). Vaccine performance in rainbow trout was measured 3, 6, 13, 24, and 25 months after vaccination. At three months all fish vaccinated with 0.1 μg pIHNw-G had detectable neutralizing antibody (NAb) and they were completely protected from lethal IHNV challenge with a relative percent survival (RPS) of 100% compared to control fish. Viral challenges at 6, 13, 24, and 25 months post-vaccination showed protection with RPS values of 47–69%, while NAb seroprevalence declined to undetectable levels. Passive transfer experiments with sera from fish after two years post-vaccination were inconsistent but significant protection was observed in some cases. The long-term duration of protection observed here defined a third temporal phase in the immune response to IHNV DNA vaccination, characterized by reduced but significant levels of protection, and decline or absence of detectable NAb titers. Examination of multiple tissues showed an absence of detectable long-term histopathological damage due to DNA vaccination.

  10. Effect of Vaccination with Irradiated Tachyzoites on Histopathological Changes and DNA Damage in Hepatocytes of Experimental Toxoplasmosis

    International Nuclear Information System (INIS)

    Amin, M.M.; Hafez, E.N.

    2015-01-01

    Current strategies for the control of toxoplasmosis are based on chemotherapy, however successful vaccine has also been demonstrated. The present study aims to assess the effect of the vaccination with radiation-attenuated tachyzoites in challenged mice regarding histopathological alteration and DNA damage of hepatocytes. Sixty mice were equally divided as follow: Group I left as a normal control group II was infected with 2x10 3 RH virulent tachyzoite s (infected control). Groups III and IV were subdivided into two subgroups a and b where subgroups III a and IV a were vaccinate d with 2.47 mw-min/cm 2 UV and 0.3 KGy gamma radiation – attenuate d tachyzoites respectively without challenge (as vaccine control). Subgroups III b and IV b were vaccinate d with UV and gamma radiation - attenuated tachyzoites and challenged after three weeks with 2x10 3 RH virulent tachyzoites. Livers were examined for histopathological changes and DNA comet assay. It was observed that acute infection with Toxoplasma tachyzoites produced toxic effects which lead to severe damage in liver tissues and DNA of hepatocytes. Meanwhile, the protective effect of UV or gamma radiation-attenuated tachyzoites vaccine resulted in the maintenance of normal histopathological characteristics and DNA of hepatocyte s and UV irradiation is better in its protective capacity

  11. Safety of administering the canine melanoma DNA vaccine (Oncept) to cats with malignant melanoma - a retrospective study.

    Science.gov (United States)

    Sarbu, Luminita; Kitchell, Barbara E; Bergman, Philip J

    2017-02-01

    Objectives A xenogeneic human tyrosinase DNA vaccine was developed for treatment of dogs with oral malignant melanoma (Oncept; Merial). No studies have evaluated the safety or efficacy of this vaccine in cats. The purpose of this study was to evaluate the safety of the canine melanoma vaccine in cats diagnosed with melanoma. Methods Medical records were reviewed from cats diagnosed with malignant melanoma and treated with the canine melanoma DNA vaccine (Oncept). Data regarding signalment, melanoma location, treatments received, vaccine adverse effects and cause of death were collected. Results A total of 114 melanoma vaccines were administered to 24 cats. Seven cats (11.4%) had clinical adverse effects from a total of 13 vaccines classified as grade 1 or 2 based on the Veterinary Cooperative Oncology Group's common terminology criteria for adverse events v1.1. These included pain on vaccine administration, brief muscle fasciculation, transient inappetence, depression, nausea and mild increase in pigmentation at the injection site. Nineteen cats were deceased at study close. The most common cause of death was melanoma (14 cats). Hematological and biochemical changes were observed in six cats, five of which had concurrent disease or treatments that likely caused or greatly contributed to the laboratory abnormalities found. Therefore, these adverse events were considered unlikely to be caused by the melanoma vaccine. One cat had transient grade 1 hypoalbuminemia, which was possibly caused by the vaccination but not thoroughly evaluated. Conclusions and relevance The canine melanoma DNA vaccine can be safely administered to cats, with minimal risk of adverse effects.

  12. Microneedle arrays coated with charge reversal pH-sensitive copolymers improve antigen presenting cells-homing DNA vaccine delivery and immune responses.

    Science.gov (United States)

    Duong, Huu Thuy Trang; Kim, Nak Won; Thambi, Thavasyappan; Giang Phan, V H; Lee, Min Sang; Yin, Yue; Jeong, Ji Hoon; Lee, Doo Sung

    2018-01-10

    Successful delivery of a DNA vaccine to antigen-presenting cells and their subsequent stimulation of CD4 + and CD8 + T cell immunity remains an inefficient process. In general, the delivery of prophylactic vaccines is mainly mired by low transfection efficacy, poor immunogenicity, and safety issues from the materials employed. Currently, several strategies have been exploited to improve immunogenicity, but an effective strategy for safe and pain-free delivery of DNA vaccines is complicated. Herein, we report the rapid delivery of polyplex-based DNA vaccines using microneedle arrays coated with a polyelectrolyte multilayer assembly of charge reversal pH-responsive copolymer and heparin. The charge reversal pH-responsive copolymer, composed of oligo(sulfamethazine)-b-poly(ethylene glycol)-b-poly(amino urethane) (OSM-b-PEG-b-PAEU), was used as a triggering layer in the polyelectrolyte multilayer assembly on microneedles. Charge reversal characteristics of this copolymer, that is, the OSM-b-PEG-b-PAEU copolymer exhibit, positive charge at low pH (pH4.03) and becoming negative charge when exposed to physiological pH conditions (pH7.4), allowing the facile assembly and disassembly of polyelectrolyte multilayers. The electrostatic repulsion between heparin and OSM-b-PEG-b-PAEU charge reversal copolymer triggered the release of DNA vaccines. DNA vaccines laden on microneedles are effectively transfected into RAW 264.7 macrophage cells in vitro. Vaccination of BALB/c mice by DNA vaccine-loaded microneedle arrays coated with a polyelectrolyte multilayer generated antigen-specific robust immune responses. These findings provide potential strategy of charge reversal pH-responsive copolymers coated microneedles for DNA vaccine delivery. Copyright © 2017. Published by Elsevier B.V.

  13. Altered response hierarchy and increased T-cell breadth upon HIV-1 conserved element DNA vaccination in macaques.

    Directory of Open Access Journals (Sweden)

    Viraj Kulkarni

    Full Text Available HIV sequence diversity and potential decoy epitopes are hurdles in the development of an effective AIDS vaccine. A DNA vaccine candidate comprising of highly conserved p24(gag elements (CE induced robust immunity in all 10 vaccinated macaques, whereas full-length gag DNA vaccination elicited responses to these conserved elements in only 5 of 11 animals, targeting fewer CE per animal. Importantly, boosting CE-primed macaques with DNA expressing full-length p55(gag increased both magnitude of CE responses and breadth of Gag immunity, demonstrating alteration of the hierarchy of epitope recognition in the presence of pre-existing CE-specific responses. Inclusion of a conserved element immunogen provides a novel and effective strategy to broaden responses against highly diverse pathogens by avoiding decoy epitopes, while focusing responses to critical viral elements for which few escape pathways exist.

  14. HIV-HBV coinfection in Southern Africa and the effect of lamivudine- versus tenofovir-containing cART on HBV outcomes

    NARCIS (Netherlands)

    Hamers, Raph L.; Zaaijer, Hans L.; Wallis, Carole L.; Siwale, Margaret; Ive, Prudence; Botes, Mariette E.; Sigaloff, Kim C. E.; Hoepelman, Andy I. M.; Stevens, Wendy S.; Rinke de Wit, Tobias F.

    2013-01-01

    This study assessed HIV-hepatitis B virus (HBV) coinfection in southern Africa in terms of prevalence, viral characteristics, occult HBV, and the effect of lamivudine- versus tenofovir-containing first-line combination antiretroviral treatment (cART) on HBV-related outcomes. A multicenter

  15. Hepatitis A virus among drug users and the role of vaccination: a review.

    Directory of Open Access Journals (Sweden)

    Fabio eLugoboni

    2012-01-01

    Full Text Available In countries with advanced economies better health and hygiene conditions, along with the introduction, in some cases, of global vaccination, have relegated most viral hepatitis to marginal social groups and, in particular, drug users (DUs.The availability of safe and effective vaccines for hepatitis A virus (HAV and B (HBV may play a major role in combating this phenomenon.Despite the availability of a safe and effective vaccine for over a decade and the recommendations of international health organizations, vaccinations against HAV among DUs are not as widely known and available as are HBV vaccinations. The purpose of this review article is to present the most significant data in the literature on the prevalence of HAV among DUs and the role of targeted vaccination. To our knowledge, the present article is the first to solely deal with vaccination against HAV in DUs. Immunization after the administration of anti-HAV vaccine has been demonstrated in DUs even if they have responded significantly less than either the GPOP or carriers of chronic liver disease. All the vaccines were well tolerated and adherence to the vaccine schedule was good.Further studies are needed to optimize the timing and doses of vaccine to be administered to DUs, especially to assess adherence and antibody persistence. Vaccination campaigns are feasible among DUs and have proven to be highly cost-effective.

  16. Detection of S-gene 'a' determinant variants in hepatitis B patients with both positive HBsAg and HBsAb markers

    International Nuclear Information System (INIS)

    Wu Yueping; Ling Yongwu; Huang Songping; Wang Shipeng; Chen Yufeng; Mao Liping; Lu Jianrong

    2005-01-01

    Objective: To explore the S-gene 'a' determinant variants in hepatitis B patients with both positive HBsAg and HBsAb markers and the effect on the antigenicity of HBsAg. Methods: Quantitative determination of HBV - DNA with competent PCR microfluidic chit method was performed in eight sera specimens from seven hepatitis B patients with both positive HBsAg and HBsAb markers. HBV S-gene was amplified with nested PCR, the PCR product was directly examined for any sequence variant of the amino acids. HBV markers were tested with the very sensitive ELISA/MEIA method in these seven patients. The above rests were also performed in 15 children after failed immunization with hepatitis B vaccine and 9 recipients of liver transplantation for terminal hepatitis B treated with HBIG and lamivudine, serving as controls. Results: The HBsAb contents in the seven patients were all below 80 mIu/ml. Two of the patients with positive HBV-DNA showed no 'a' determinant variant. Two of the four HBV-DNA negative patients demonstrated amino-acid variants (126, 131). One patients who was originally HBV-DNA positive but later turned negative after treatment with interferon and lamivudine demonstrated variant (126). In the 9 patients after successful liver transplantation, the HBsAb contents were all about 150mIu/ml with negative HBV-DNA and no variant. In the 15 immunization failures, HBV-DNA was positive in 14 of them, with 2 cases of variant at 145, 1 case at 126 and 1 case at 134. Conclusion: In some patients with chronic B hepatitis with both positive HBsAg and HBsAb markers, as well as in some vaccine immunization failures, there were 'a' determinant variants, which might alter the antigenicity of HBsAg with escape from the neutralization of low HBsAb. The 'a' determinant variant might also affect the replication of the virus. In this study, no variant was shown in patients after successful liver transplantation. However, the number of patients was too small and the result was of no

  17. Tolerogenic β2-glycoprotein I DNA vaccine and FK506 as an adjuvant attenuates experimental obstetric antiphospholipid syndrome.

    Science.gov (United States)

    Chao, Ya-Hsuan; Chen, Der-Yuan; Lan, Joung-Liang; Tang, Kuo-Tung; Lin, Chi-Chien

    2018-01-01

    DNA vaccines have recently emerged as a therapeutic agent for treating autoimmune diseases, such as multiple sclerosis. Antiphospholipid antibody syndrome (APS) is an autoimmune disease characterized by β2-glycoprotein I (β2-GPI)-targeting antiphospholipid antibodies (APAs) and vascular thrombosis or obstetrical complications. To examine the therapeutic potential of a β2-GPI DNA vaccine, we administered a vaccine mixed with FK506 as an adjuvant to a mouse model of obstetric APS. First, the pCMV3-β2-GPI DNA vaccine, which encodes the full-length human β2-GPI gene, was constructed. Then, we administered the β2-GPI DNA vaccine in 0.1 ml of saline, mixed with or without 100 μg of FK506, intramuscularly to the mice on days 28, 35 and 42. Blood titers of the anti-β2-GPI antibody, platelet counts, activated partial thromboplastin times (aPTTs), and the percentage of fetal loss were measured. We also stimulated murine splenic T cells ex vivo with β2-GPI and determined the T helper cell proportion and cytokine secretion. The administration of the β2-GPI DNA vaccine mixed with FK506 reduced the blood IgG anti-β2-GPI antibody titers and suppressed APS manifestations in mice. The combination also suppressed interferon-γ and interleukin (IL)-17A secretion but increased the Treg cell proportion and IL-10 secretion in murine splenic T cells following ex vivo stimulation with β2-GPI. Our results demonstrated the therapeutic efficacy of a β2-GPI DNA vaccine and FK506 as an adjuvant in a murine model of obstetric APS. Possible mechanisms include the inhibition of Th1 and Th17 responses and the up-regulation of Treg cells.

  18. Seroprevalence of HIV, HTLV, CMV, HBV and rubella virus infections in pregnant adolescents who received care in the city of Belém, Pará, Northern Brazil.

    Science.gov (United States)

    Guerra, Aubaneide Batista; Siravenha, Leonardo Quintão; Laurentino, Rogério Valois; Feitosa, Rosimar Neris Martins; Azevedo, Vânia Nakauth; Vallinoto, Antonio Carlos Rosário; Ishak, Ricardo; Machado, Luiz Fernando Almeida

    2018-05-16

    Prenatal tests are important for prevention of vertical transmission of various infectious agents. The objective of this study was to describe the prevalence of human immunodeficiency virus (HIV), human T-lymphotropic virus (HTLV), hepatitis B virus (HBV), cytomegalovirus (CMV), rubella virus and vaccination coverage against HBV in pregnant adolescents who received care in the city of Belém, Pará, Brazil. A cross-sectional study was performed with 324 pregnant adolescents from 2009 to 2010. After the interview and blood collection, the patients were screened for antibodies and/or antigens against HIV-1/2, HTLV-1/2, CMV, rubella virus and HBV. The epidemiological variables were demonstrated using descriptive statistics with the G, χ 2 and Fisher exact tests. The mean age of the participants was 15.8 years, and the majority (65.4%) had less than 6 years of education. The mean age at first intercourse was 14.4 years, and 60.8% reported having a partner aged between 12 and 14 years. The prevalence of HIV infection was 0.3%, and of HTLV infection was 0.6%. Regarding HBV, 0.6% of the participants had acute infection, 9.9% had a previous infection, 16.7% had vaccine immunity and 72.8% were susceptible to infection. The presence of anti-HBs was greater in adolescent between 12 and 14 years old (28.8%) while the anti-HBc was greater in adolescent between 15 and 18 years old (10.3%). Most of the adolescents presented the IgG antibody to CMV (96.3%) and rubella (92.3%). None of the participants had acute rubella infection, and 2.2% had anti-CMV IgM. This study is the first report of the seroepidemiology of infectious agents in a population of pregnant adolescents in the Northern region of Brazil. Most of the adolescents had low levels of education, were susceptible to HBV infection and had IgG antibodies to CMV and rubella virus. The prevalence of HBV, HIV and HTLV was similar to that reported in other regions of Brazil. However, the presence of these agents in this

  19. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Han [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Sonoda, Koh-Hei, E-mail: sonodak@med.kyushu-u.ac.jp [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan); Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro [Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka 812-8582 (Japan)

    2009-04-17

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8{sup +} T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8{sup +} T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  20. Antiangiogenic immunotherapy targeting Flk-1, DNA vaccine and adoptive T cell transfer, inhibits ocular neovascularization

    International Nuclear Information System (INIS)

    Zhang, Han; Sonoda, Koh-Hei; Hijioka, Kuniaki; Qiao, Hong; Oshima, Yuji; Ishibashi, Tatsuro

    2009-01-01

    Ocular neovascularization (NV) is the primary cause of blindness in a wide range of ocular diseases. The exact mechanism underlying the pathogenesis of ocular NV is not yet well understood, and so there is no satisfactory therapy for ocular NV. Here, we describe a strategy targeting Flk-1, a self-antigen overexpressed on proliferating endothelial cells in ocular NV, by antiangiogenic immunotherapy-DNA vaccine and adoptive T cell therapy. An oral DNA vaccine encoding Flk-1 carried by attenuated Salmonella typhimurium markedly suppressed development of laser-induced choroidal NV. We further demonstrated that adoptive transfer of vaccine-induced CD8 + T cells reduced pathological preretinal NV, with a concomitant facilitation of physiological revascularization after oxygen-induced retinal vessel obliteration. However, physiological retinal vascular development was unaffected in neonatal mice transferred with vaccine-induced CD8 + T cells. These findings suggested that antiangiogenic immunotherapy targeting Flk-1 such as vaccination and adoptive immunotherapy may contribute to future therapies for ocular NV.

  1. Risk Perceptions, Barriers, and Self-Efficacy of Hepatitis B Screening and Vaccination among Chinese Immigrants

    Science.gov (United States)

    Ma, Grace X.; Shive, Steven S.; Toubbeh, Jamil; Wu, Dunli; Wang, Ping

    2006-01-01

    Hepatitis B (HBV) infection is a serious health problem among Asian Americans, including Chinese Americans. This study was conducted to measure the perceptions of risk, barriers, and self-efficacy of HBV screening and vaccination in Chinese immigrants. A cross-sectional study was conducted among 429 Chinese Americans in New York City. A…

  2. Epidemiological, virological and clinical characteristics of HBV infection in 223 HIV co-infected patients: a French multi-centre collaborative study.

    Science.gov (United States)

    Thibault, Vincent; Gaudy-Graffin, Catherine; Colson, Philippe; Gozlan, Joël; Schnepf, Nathalie; Trimoulet, Pascale; Pallier, Coralie; Saune, Karine; Branger, Michel; Coste, Marianne; Thoraval, Francoise Roudot

    2013-03-15

    Chronic hepatitis B (CHB) is a clinical concern in human immunodeficiency virus (HIV)-infected individuals due to substantial prevalence, difficulties to treat, and severe liver disease outcome. A large nationwide cross-sectional multicentre analysis of HIV-HBV co-infected patients was designed to describe and identify parameters associated with virological and clinical outcome of CHB in HIV-infected individuals with detectable HBV viremia. A multicenter collaborative cross-sectional study was launched in 19 French University hospitals distributed through the country. From January to December 2007, HBV load, genotype, clinical and epidemiological characteristics of 223 HBV-HIV co-infected patients with an HBV replication over 1000 IU/mL were investigated. Patients were mostly male (82%, mean age 42 years). Genotype distribution (A 52%; E 23.3%; D 16.1%) was linked to risk factors, geographic origin, and co-infection with other hepatitis viruses. This genotypic pattern highlights divergent contamination event timelines by HIV and HBV viruses. Most patients (74.7%) under antiretroviral treatment were receiving a drug with anti-HBV activity, including 47% receiving TDF. Genotypic lamivudine-resistance detected in 26% of the patients was linked to duration of lamivudine exposure, age, CD4 count and HIV load. Resistance to adefovir (rtA181T/V) was detected in 2.7% of patients. Advanced liver lesions were observed in 54% of cases and were associated with an older age and lower CD4 counts but not with viral load or genotype. Immune escape HBsAg variants were seldom detected. Despite the detection of advanced liver lesions in most patients, few were not receiving anti-HBV drugs and for those treated with the most potent anti-HBV drugs, persistent replication suggested non-optimal adherence. Heterogeneity in HBV strains reflects epidemiological differences that may impact liver disease progression. These findings are strong arguments to further optimize clinical management

  3. A polyvalent influenza DNA vaccine applied by needle-free intradermal delivery induces cross-reactive humoral and cellular immune responses in pigs

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Karlsson, Ingrid

    2016-01-01

    of the optimized DNA vaccine were evaluated in groups of five to six pigs. The DNA vaccine consisted of six selected influenza genes of pandemic origin, including internally expressed matrix and nucleoprotein and externally expressed hemagglutinin and neuraminidase. RESULTS: Needle-free vaccination of growing pigs...

  4. DNA vaccine-generated duck polyclonal antibodies as a postexposure prophylactic to prevent hantavirus pulmonary syndrome (HPS.

    Directory of Open Access Journals (Sweden)

    Rebecca Brocato

    Full Text Available Andes virus (ANDV is the predominant cause of hantavirus pulmonary syndrome (HPS in South America and the only hantavirus known to be transmitted person-to-person. There are no vaccines, prophylactics, or therapeutics to prevent or treat this highly pathogenic disease (case-fatality 35-40%. Infection of Syrian hamsters with ANDV results in a disease that closely mimics human HPS in incubation time, symptoms of respiratory distress, and disease pathology. Here, we evaluated the feasibility of two postexposure prophylaxis strategies in the ANDV/hamster lethal disease model. First, we evaluated a natural product, human polyclonal antibody, obtained as fresh frozen plasma (FFP from a HPS survivor. Second, we used DNA vaccine technology to manufacture a polyclonal immunoglobulin-based product that could be purified from the eggs of vaccinated ducks (Anas platyrhynchos. The natural "despeciation" of the duck IgY (i.e., Fc removed results in an immunoglobulin predicted to be minimally reactogenic in humans. Administration of ≥ 5,000 neutralizing antibody units (NAU/kg of FFP-protected hamsters from lethal disease when given up to 8 days after intranasal ANDV challenge. IgY/IgYΔFc antibodies purified from the eggs of DNA-vaccinated ducks effectively neutralized ANDV in vitro as measured by plaque reduction neutralization tests (PRNT. Administration of 12,000 NAU/kg of duck egg-derived IgY/IgYΔFc protected hamsters when administered up to 8 days after intranasal challenge and 5 days after intramuscular challenge. These experiments demonstrate that convalescent FFP shows promise as a postexposure HPS prophylactic. Moreover, these data demonstrate the feasibility of using DNA vaccine technology coupled with the duck/egg system to manufacture a product that could supplement or replace FFP. The DNA vaccine-duck/egg system can be scaled as needed and obviates the necessity of using limited blood products obtained from a small number of HPS survivors. This

  5. Occult HBV infection status among chronic hepatitis C and hemodialysis patients in Northeastern Egypt: regional and national overview.

    Science.gov (United States)

    Mandour, Mohamed; Nemr, Nader; Shehata, Atef; Kishk, Rania; Badran, Dahlia; Hawass, Nashaat

    2015-01-01

    Occult hepatitis B infection (OBI) is considered to be one of the major risks for patients suffering from end-stage renal disease (ESRD) on regular hemodialysis (HD) and patients with chronic hepatitis C virus (HCV) infection. This study compared the prevalence of OBI among these two high-risk groups in the Suez Canal region, Northeastern Egypt, to obtain a better national overview of the magnitude of OBI in this region. Serum samples were collected from 165 HD patients and 210 chronic HCV-infected patients. Anti-HCV antibody, hepatitis B surface antigen (HBsAg), total hepatitis B core (anti-HBc) antibody, and hepatitis B surface antibody (anti-HBs) were detected by enzyme-linked immunosorbent assay (ELISA). HCV RNA was detected using a quantitative real-time RT-PCR assay, and HBV was detected using a nested PCR. All patients were negative for HBsAg. A total of 49.1% and 25.2% of the patients in the HD and HCV groups, respectively, were anti-HBc-positive. In addition, more anti-HBs-positive patients were detected in the HD group compared to the HCV group (52.1% and 11.4%, respectively). Three cases were positive for HBV DNA in the HD group, while eighteen positive cases were detected in the HCV group. Both study groups showed significant differences in serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) level as well as anti-HBc, anti-HBs and HBV-DNA positivity. OBI was more prevalent among chronic HCV patients than HD patients in the Suez Canal region, Egypt, with rates of 8.5% and 1.8%, respectively. However, more precise assessment of this infection requires regular patient follow-up using HBV DNA detection methods.

  6. Correlation of oxidative stress in patients with HBV-induced liver disease with HBV genotypes and drug resistance mutations.

    Science.gov (United States)

    Xianyu, Jianbo; Feng, Jiafu; Yang, Yuwei; Tang, Jie; Xie, Gang; Fan, Lingying

    2018-05-01

    This study aims to explore the correlation of oxidative stress (OxS) in patients with chronic hepatitis B (CHB) and the disease severity with HBV genotypes and drug resistance mutations. A total of 296 patients with CHB were enrolled into the study. PCR-reverse dot-blot hybridization was used to detect the HBV genotypes (B, C, and D) and the drug resistance-causing HBV mutant genes. In addition, the total oxidative stress (TOS) and total antioxidant status (TAS) were determined, and oxidative stress index (OSI) was calculated and compared. Serum levels of TOS and OSI, the B/C ratio, and drug resistance mutation rate were increased along with the elevated disease severity degree (CHBHBV mutation had higher serum TOS and OSI levels, while lower serum TAS levels (P HBV-induced liver disease, and the damage degree is correlated with the HBV genotype and drug resistance mutation. Oxidative stress might be a useful indicator of the progression of HBV-induced liver disease in patients. Copyright © 2018. Published by Elsevier Inc.

  7. Hepatitis B virus infection among pregnant women in Haiti: A cross-sectional serosurvey.

    Science.gov (United States)

    Tohme, Rania A; Andre-Alboth, Jocelyne; Tejada-Strop, Alexandra; Shi, Ran; Boncy, Jacques; François, Jeannot; Domercant, Jean Wysler; Griswold, Mark; Hyppolite, Erlantz; Adrien, Paul; Kamili, Saleem

    2016-03-01

    Hepatitis B vaccine administered shortly after birth is highly effective in preventing mother to child transmission (MTCT) of infection. While hepatitis B vaccine was introduced in Haiti as part of a combined pentavalent vaccine in 2012, a birth dose is not yet included in the immunization schedule. Determine the seroprevalence of hepatitis B virus (HBV) infection among pregnant women to evaluate the risk of MTCT. We selected 1364 residual serum specimens collected during a 2012 human immunodeficiency virus (HIV) sentinel serosurvey among pregnant women attending antenatal care clinics. Haiti was stratified into two regions: West, which includes metropolitan Port-au-Prince, and non-West, which includes all other departments. We evaluated the association between demographic and socioeconomic characteristics and HIV infection with HBV infection. Of 1364 selected specimens, 1307 (96%) were available for testing. A total of 422 specimens (32.7%) tested positive for total anti-HBc (38.2% in West vs. 27% in non-West, pHaiti has an intermediate endemicity of chronic HBV infection with high prevalence of positive HBV DNA among chronically infected women. Introduction of a universal birth dose of hepatitis B vaccine might help prevent perinatal HBV transmission. Published by Elsevier B.V.

  8. Transcription of hepatitis B virus covalently closed circular DNA is regulated by CpG methylation during chronic infection.

    Directory of Open Access Journals (Sweden)

    Yongmei Zhang

    Full Text Available The persistence of hepatitis B virus (HBV infection is maintained by the nuclear viral covalently closed circular DNA (cccDNA, which serves as transcription template for viral mRNAs. Previous studies suggested that cccDNA contains methylation-prone CpG islands, and that the minichromosome structure of cccDNA is epigenetically regulated by DNA methylation. However, the regulatory effect of each CpG island methylation on cccDNA activity remains elusive. In the present study, we analyzed the distribution of CpG methylation within cccDNA in patient samples and investigated the impact of CpG island methylation on cccDNA-driven virus replication. Our study revealed the following observations: 1 Bisulfite sequencing of cccDNA from chronic hepatitis B patients indicated that CpG island I was seldom methylated, 2 CpG island II methylation was correlated to the low level of serum HBV DNA in patients, and in vitro methylation studies confirmed that CpG island II methylation markedly reduced cccDNA transcription and subsequent viral core DNA replication, 3 CpG island III methylation was associated with low serum HBsAg titers, and 4 Furthermore, we found that HBV genotype, HBeAg positivity, and patient age and liver fibrosis stage were also relevant to cccDNA CpG methylation status. Therefore, we clearly demonstrated that the status of cccDNA methylation is connected to the biological behavior of HBV. Taken together, our study provides a complete profile of CpG island methylation within HBV cccDNA and new insights for the function of CpG methylation in regulating HBV cccDNA transcription.

  9. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA.

    Science.gov (United States)

    Majid, Farjana; Jahan, Munira; Lutful Moben, Ahmed; Tabassum, Shahina

    2014-01-01

    Both real-time-polymerase chain reaction (PCR) and hybrid capture 2 (HC2) assay can detect and quantify hepatitis B virus (HBV) DNA. However, real-time-PCR can detect a wide range of HBV DNA, while HC2 assay could not detect lower levels of viremia. The present study was designed to detect and quantify HBV DNA by real-time-PCR and HC2 assay and compare the quantitative data of these two assays. A cross-sectional study was conducted in between July 2010 and June 2011. A total of 66 serologically diagnosed chronic hepatitis B (CHB) patients were selected for the study. Real-time-PCR and HC2 assay was done to detect HBV DNA. Data were analyzed by statistical Package for the social sciences (SPSS). Among 66 serologically diagnosed chronic hepatitis B patients 40 (60.61%) patients had detectable and 26 (39.39%) had undetectable HBV DNA by HC2 assay. Concordant results were obtained for 40 (60.61%) out of these 66 patients by real-time-PCR and HC2 assay with mean viral load of 7.06 ± 1.13 log 10 copies/ml and 6.95 ± 1.08 log 10 copies/ml, respectively. In the remaining 26 patients, HBV DNA was detectable by real-time-PCR in 20 patients (mean HBV DNA level was 3.67 ± 0.72 log 10 copies/ml. However, HBV DNA could not be detectable in six cases by the both assays. The study showed strong correlation (r = 0.915) between real-time-PCR and HC2 assay for the detection and quantification of HBV DNA. HC2 assay may be used as an alternative to real-time-PCR for CHB patients. How to cite this article: Majid F, Jahan M, Moben AL, Tabassum S. Comparison of Hybrid Capture 2 Assay with Real-time-PCR for Detection and Quantitation of Hepatitis B Virus DNA. Euroasian J Hepato-Gastroenterol 2014;4(1):31-35.

  10. C3d enhanced DNA vaccination induced humoral immune response to glycoprotein C of pseudorabies virus

    International Nuclear Information System (INIS)

    Tong Tiezhu; Fan Huiying; Tan Yadi; Xiao Shaobo; Ling Jieyu; Chen Huanchun; Guo Aizhen

    2006-01-01

    Murine C3d were utilized to enhance immunogenicity of pseudorabies virus (PrV) gC DNA vaccination. Three copies of C3d and four copies of CR2-binding domain M28 4 were fused, respectively, to truncated gC gene encoding soluble glycoprotein C (sgC) in pcDNA3.1. BALB/c mice were, respectively, immunized with recombinant plasmids, blank vector, and inactivated vaccine. The antibody ELISA titer for sgC-C3d 3 DNA was 49-fold more than that for sgC DNA, and the neutralizing antibody obtained 8-fold rise. Protection of mice from death after lethal PrV (316 LD 5 ) challenge was augmented from 25% to 100%. Furthermore, C3d fusion increased Th2-biased immune response by inducing IL-4 production. The IL-4 level for sgC-C3d 3 DNA immunization approached that for the inactivated vaccine. Compared to C3d, M28 enhanced sgC DNA immunogenicity to a lesser extent. In conclusion, we demonstrated that murine C3d fusion significantly enhanced gC DNA immunity by directing Th1-biased to a balanced and more effective Th1/Th2 response

  11. MPT-51/CpG DNA vaccine protects mice against Mycobacterium tuberculosis.

    Science.gov (United States)

    Silva, Bruna Daniella de Souza; da Silva, Ediane Batista; do Nascimento, Ivan Pereira; Dos Reis, Michelle Cristina Guerreiro; Kipnis, André; Junqueira-Kipnis, Ana Paula

    2009-07-16

    Tuberculosis (TB) is a severe infectious disease that kills approximately two million people worldwide every year. Because BCG protection is variable and does not protects adults, there is a great need for a new vaccine against TB that does not represent a risk for immunocompromised patients and that is also capable of protecting adult individuals. MPT-51 is a protein found in the genome of mycobacteria and binds to the fibronectin of the extracellular matrix, which may have a role in host tissue attachment and virulence. In order to test the usefulness of MPT-51 as a subunit vaccine, BALB/c were vaccinated and challenged with Mycobacterium tuberculosis. The infection of BALB/c with M. tuberculosis increased the number of IFN-gamma(+) T lymphocytes specific to MPT-51 in the spleen and lungs. Inoculation with rMPT-51/FIA and with rMPT-51/CpG DNA in non-infected BALB/c increased the amounts of IFN-gamma(+) T lymphocytes. Inoculation with rMPT-51/FIA also induced a humoral response specific to MPT-51. CFU counts of lung tissues done 60 days after infection showed a reduction of about 2 log in the bacteria load in the group of animals inoculated with rMPT-51/CpG DNA. These results make MPT-51 a valuable component to be further evaluated in the development of other subunit vaccines.

  12. Significance of isolated hepatitis B core antibody in blood donors from São Paulo

    Directory of Open Access Journals (Sweden)

    ALMEIDA NETO Cesar de

    2001-01-01

    Full Text Available The clinical significance of isolated anti-HBc is still a challenge. To elucidate the real importance of this finding in our blood donors, an investigation algorithm was tested. One hundred and twelve isolated anti-HBc seropositive blood donors underwent clinical evaluation and retesting of HBV markers. Those who presented repeatedly reactive isolated anti-HBc, received a single dose of hepatitis B recombinant vaccine to verify anti-HBs early response. A HBV-DNA determination by PCR was done for those who did not test positive to anti-HBs after vaccine. The level of anti-HBc was recorded as a ratio of the sample-to-cut-off values (S:C ratio in 57 candidates at donation. Comparing true and false-positive anti-HBc results, the different S:C ratios of them were statistically significant and when less than 2, implying in a false-positive result probability over 80%. A high percent of false-positive results (16.07% was verified after anti-HBc retesting. HBV immunity was characterized in 49.11%, either by anti-HBs detection in retesting (15.18%, or after a single dose HBV vaccination (33.93%. HBV-DNA was negative in all tested donors. In conclusion, this algorithm was useful to clarify the meaning of isolated anti-HBc in most of our blood donors.

  13. Hepatitis B Vaccination and Associated Oral Manifestations: A Non ...

    African Journals Online (AJOL)

    their patients by HBV if adequate infection control policies are ... Departments of Oral Maxillofacial Sciences and 2Restorative Dentistry Sciences, ... Hepatitis B vaccine has been administered in children and adults routinely to reduce the.

  14. Vector optimization and needle-free intradermal application of a broadly protective polyvalent influenza A DNA vaccine for pigs and humans

    DEFF Research Database (Denmark)

    Borggren, Marie; Nielsen, Jens; Bragstad, Karoline

    2015-01-01

    such as the induction of cellular and humoral immunity, inherent safety and rapid production time. We have previously developed a DNA vaccine encoding selected influenza proteins of pandemic origin and demonstrated broad protective immune responses in ferrets and pigs. In this study, we evaluated our DNA vaccine......The threat posed by the 2009 pandemic H1N1 virus emphasized the need for new influenza A virus vaccines inducing a broad cross-protective immune response for use in both humans and pigs. An effective and broad influenza vaccine for pigs would greatly benefit the pork industry and contribute...... to public health by diminishing the risk of emerging highly pathogenic reassortants. Current inactivated protein vaccines against swine influenza produce only short-lived immunity and have no efficacy against heterologous strains. DNA vaccines are a potential alternative with advantages...

  15. Multigenic DNA vaccine induces protective cross-reactive T cell responses against heterologous influenza virus in nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Merika T Koday

    Full Text Available Recent avian and swine-origin influenza virus outbreaks illustrate the ongoing threat of influenza pandemics. We investigated immunogenicity and protective efficacy of a multi-antigen (MA universal influenza DNA vaccine consisting of HA, M2, and NP antigens in cynomolgus macaques. Following challenge with a heterologous pandemic H1N1 strain, vaccinated animals exhibited significantly lower viral loads and more rapid viral clearance when compared to unvaccinated controls. The MA DNA vaccine induced robust serum and mucosal antibody responses but these high antibody titers were not broadly neutralizing. In contrast, the vaccine induced broadly-reactive NP specific T cell responses that cross-reacted with the challenge virus and inversely correlated with lower viral loads and inflammation. These results demonstrate that a MA DNA vaccine that induces strong cross-reactive T cell responses can, independent of neutralizing antibody, mediate significant cross-protection in a nonhuman primate model and further supports development as an effective approach to induce broad protection against circulating and emerging influenza strains.

  16. A Pilot Program Integrating Hepatitis B Virus (HBV) Screening into an Outpatient Endoscopy Unit Improves HBV Screening Among an Ethnically Diverse Safety-Net Hospital.

    Science.gov (United States)

    Campbell, Brendan; Lopez, Aristeo; Liu, Benny; Bhuket, Taft; Wong, Robert J

    2018-01-01

    Safety-net hospitals are enriched in ethnic minorities and provide opportunities for high-impact hepatitis B virus (HBV) screening. We aim to evaluate the impact of a pilot program integrating HBV screening into outpatient endoscopy among urban safety-net populations. From July 2015 to May 2017, consecutive adults undergoing outpatient endoscopy were prospectively assessed for HBV screening eligibility using US Preventative Services Task Force guidelines. Rates of prior HBV screening were assessed, and those eligible but not screened were offered HBV testing. Multivariate logistic regression models evaluated predictors of test acceptance among eligible patients. Among 1557 patients (47.1% male, 69.4% foreign born), 65.1% were eligible for HBV screening, among which 24.5% received prior screening. In our pilot screening program in the endoscopy unit, 91.4% (n = 855) of eligible patients accepted HBV testing. However, only 55.3% (n = 415) of those that accepted actually completed HBV testing. While there was a trend toward higher rates of test acceptance among African-Americans compared to non-Hispanic whites (OR 3.31, 95% CI 0.96-11.38, p = 0.06), no other sex-specific or race/ethnicity-specific disparities in HBV test acceptance were observed. Among those who completed HBV testing, we identified 10 new patients with chronic HBV (2.4% prevalence). Only 24.5% of eligible patients received prior HBV screening among our cohort. Our pilot program integrating HBV screening into outpatient endoscopy successfully tested an additional 415 patients, improving overall HBV screening from 24.5 to 75.6%. Integrating HBV testing into non-traditional settings has potential to bridge the gap in HBV screening among safety-net systems.

  17. Gene Gun Bombardment with DNA-Coated Golden Particles Enhanced the Protective Effect of a DNA Vaccine Based on Thioredoxin Glutathione Reductase of Schistosoma japonicum

    Directory of Open Access Journals (Sweden)

    Yan Cao

    2013-01-01

    Full Text Available Schistosomiasis, caused by infection with Schistosoma species, remains an important parasitic zoonosis. Thioredoxin glutathione reductase of Schistosoma japonicum (SjTGR plays an important role in the development of the parasite and for its survival. Here we present a recombinant plasmid DNA vaccine, pVAX1/SjTGR, to estimate its protection against S. japonicum in BALB/c mice. The DNA vaccine administrated by particle bombardment induced higher protection than by intramuscular injection. All animals vaccinated with pVAX1/SjTGR developed significant specific anti-SjTGR antibodies than control groups. Moreover, animals immunized by gene gun exhibited a splenocyte proliferative response, with an increase in IFN-γ and IL-4. The recombinant plasmid administrated by gene gun achieved a medium protective efficacy of 27.83–38.83% ( of worm reduction and 40.38–44.51% ( of liver egg count reduction. It suggests that different modes of administering a DNA vaccine can influence the protective efficacy induced by the vaccine. Interestingly, from the enzymatic activity results, we found that worms obtained from pVAX1/SjTGR-vaccinated animals expressed lower enzymatic activity than the control group and the antibodies weakened the enzymatic activity of SjTGR in vitro, too. It implies that the high-level antibodies may contribute to the protective effects.

  18. Subtype C gp140 Vaccine Boosts Immune Responses Primed by the South African AIDS Vaccine Initiative DNA-C2 and MVA-C HIV Vaccines after More than a 2-Year Gap.

    Science.gov (United States)

    Gray, Glenda E; Mayer, Kenneth H; Elizaga, Marnie L; Bekker, Linda-Gail; Allen, Mary; Morris, Lynn; Montefiori, David; De Rosa, Stephen C; Sato, Alicia; Gu, Niya; Tomaras, Georgia D; Tucker, Timothy; Barnett, Susan W; Mkhize, Nonhlanhla N; Shen, Xiaoying; Downing, Katrina; Williamson, Carolyn; Pensiero, Michael; Corey, Lawrence; Williamson, Anna-Lise

    2016-06-01

    A phase I safety and immunogenicity study investigated South African AIDS Vaccine Initiative (SAAVI) HIV-1 subtype C (HIV-1C) DNA vaccine encoding Gag-RT-Tat-Nef and gp150, boosted with modified vaccinia Ankara (MVA) expressing matched antigens. Following the finding of partial protective efficacy in the RV144 HIV vaccine efficacy trial, a protein boost with HIV-1 subtype C V2-deleted gp140 with MF59 was added to the regimen. A total of 48 participants (12 U.S. participants and 36 Republic of South Africa [RSA] participants) were randomized to receive 3 intramuscular (i.m.) doses of SAAVI DNA-C2 of 4 mg (months 0, 1, and 2) and 2 i.m. doses of SAAVI MVA-C of 1.45 × 10(9) PFU (months 4 and 5) (n = 40) or of a placebo (n = 8). Approximately 2 years after vaccination, 27 participants were rerandomized to receive gp140/MF59 at 100 μg or placebo, as 2 i.m. injections, 3 months apart. The vaccine regimen was safe and well tolerated. After the DNA-MVA regimen, CD4(+) T-cell and CD8(+) T-cell responses occurred in 74% and 32% of the participants, respectively. The protein boost increased CD4(+) T-cell responses to 87% of the subjects. All participants developed tier 1 HIV-1C neutralizing antibody responses as well as durable Env binding antibodies that recognized linear V3 and C5 peptides. The HIV-1 subtype C DNA-MVA vaccine regimen showed promising cellular immunogenicity. Boosting with gp140/MF59 enhanced levels of binding and neutralizing antibodies as well as CD4(+) T-cell responses to HIV-1 envelope. (This study has been registered at ClinicalTrials.gov under registration no. NCT00574600 and NCT01423825.). Copyright © 2016 Gray et al.

  19. [HPV DNA vaccines expressing recombinant CRT/HPV6bE7 fusion protein inhibit tumor growth and angiogenic activity].

    Science.gov (United States)

    Xu, Yan; Cheng, Hao; Zhao, Ke-Jia; Zhu, Ke-Jian; Zhang, Xing

    2007-11-01

    This paper was to study the angiogenic inhibitory effect and the potential antitumor effect of the constructed recombinant DNA vaccine CRT/HPV6bE7 in vivo. The C57BL/6 mice were vaccinated respectively with recombinant CRT/HPV6bE7 DNA plamids. The inhibitory effects on angiogenesis of generated vaccines in vivo were evaluated by a bFGF-induced angiogenesis assay using the Matrigel kit. To investigate the potential antitumor effect, the mean tumor weights, sizes and tumor appearing times were measured in C57BL/6 mice treated with HPV6bE7-expressing B16 cells. The results indicated that the recombinants CRT180/HPV6bE7 and CRT180 showed strong anti-angiogenic effects in bFGF-induced angiogenesis in vivo. Moreover, CRT180/HPV6bE7 and CRT180 DNA vaccines could significantly inhibit the tumor growth in tumor challenge experiment, and CRT180/HPV6bE7 was superior to other vaccines in delaying tumor formation time, limiting tumor size and weight in tumor protection experiment. In conclusion, recombinant CRT180/HPV6bE7 DNA could elicit a most efficient anti-angiogenic effect and inhibit tumor growth in mice inoculated with DNA vaccines. The antiangiogenic activity of CRT were suggested residing in a domain between CRT 120-180 aa.

  20. Safety and immunogenicity of a novel therapeutic DNA vaccine encoding chicken type II collagen for rheumatoid arthritis in normal rats.

    Science.gov (United States)

    Juan, Long; Xiao, Zhao; Song, Yun; Zhijian, Zhang; Jing, Jin; Kun, Yu; Yuna, Hao; Dongfa, Dai; Lili, Ding; Liuxin, Tan; Fei, Liang; Nan, Liu; Fang, Yuan; Yuying, Sun; Yongzhi, Xi

    2015-01-01

    Current clinically available treatments for rheumatoid arthritis (RA) fail to cure the disease or unsatisfactorily halt disease progression. To overcome these limitations, the development of therapeutic DNA vaccines and boosters may offer new promising strategies. Because type II collagen (CII) as a critical autoantigen in RA and native chicken type II collagen (nCCII) has been used to effectively treat RA, we previously developed a novel therapeutic DNA vaccine encoding CCII (pcDNA-CCOL2A1) with efficacy comparable to that of the current "gold standard", methotrexate(MTX). Here, we systemically evaluated the safety and immunogenicity of the pcDNA-CCOL2A1 vaccine in normal Wistar rats. Group 1 received only a single intramuscular injection into the hind leg with pcDNA-CCOL2A1 at the maximum dosage of 3 mg/kg on day 0; Group 2 was injected with normal saline (NS) as a negative control. All rats were monitored daily for any systemic adverse events, reactions at the injection site, and changes in body weights. Plasma and tissues from all experimental rats were collected on day 14 for routine examinations of hematology and biochemistry parameters, anti-CII IgG antibody reactivity, and histopathology. Our results indicated clearly that at the maximum dosage of 3 mg/kg, the pcDNA-CCOL2A1 vaccine was safe and well-tolerated. No abnormal clinical signs or deaths occurred in the pcDNA-CCOL2A1 group compared with the NS group. Furthermore, no major alterations were observed in hematology, biochemistry, and histopathology, even at the maximum dose. In particularly, no anti-CII IgG antibodies were detected in vaccinated normal rats at 14 d after vaccination; this was relevant because we previously demonstrated that the pcDNA-CCOL2A1 vaccine, when administered at the therapeutic dosage of 300 μg/kg alone, did not induce anti-CII IgG antibody production and significantly reduced levels of anti-CII IgG antibodies in the plasma of rats with established collagen-induced arthritis

  1. Approaches towards DNA vaccination against a skin ciliate parasite in fish.

    Directory of Open Access Journals (Sweden)

    Louise von Gersdorff Jørgensen

    Full Text Available Rainbow trout (Oncorhynchus mykiss were immunized with plasmid DNA vaccine constructs encoding selected antigens from the parasite Ichthyophthirius multifiliis. Two immobilization antigens (I-ags and one cysteine protease were tested as genetic vaccine antigen candidates. Antigenicity was evaluated by immunostaining of transfected fish cells using I-ag specific mono- and polyclonal antibodies. I. multifiliis specific antibody production, regulation of immune-relevant genes and/or protection in terms of parasite burden or mortality was measured to evaluate the induced immune response in vaccinated fish. Apart from intramuscular injection, needle free injection and gene gun delivery were tested as alternative administration techniques. For the I-ags the complement protein fragment C3d and the termini of the viral haemorrhagic septicaemia virus glyco(Gprotein (VHSV G were tested as opsonisation and cellular localisation mediators, respectively, while the full length viral G protein was tested as molecular adjuvant. Expression of I-ags in transfected fish cells was demonstrated for several constructs and by immunohistochemistry it was possible to detect expression of a secreted form of the Iag52B in the muscle cells of injected fish. Up-regulations of mRNA coding for IgM, MHC I, MHC II and TCR β, respectively, were observed in muscle tissue at the injection site in selected trials. In the spleen up-regulations were found for IFN-γ and IL-10. The highest up-regulations were seen following co-administration of I-ag and cysteine protease plasmid constructs. This correlated with a slight elevation of an I. multifiliis specific antibody response. However, in spite of detectable antigen expression and immune reactions, none of the tested vaccination strategies provided significant protection. This might suggest an insufficiency of DNA vaccination alone to trigger protective mechanisms against I. multifiliis or that other or additional parasite antigens

  2. Hepatitis B virus (HBV)-specific T-cell responses to recombinant HBV core protein in patients with normal liver function and co-infected with chronic HBV and human immunodeficiency virus 1 (HIV-1)

    Science.gov (United States)

    2013-01-01

    Background Little is known about HBV-specific T-cell responses in chronic Hepatitis B patients (HBV) that are co-infected with Human immunodeficiency virus type 1 (HIV-1), especially those with normal alanine aminotransferase (ALT) levels. Methods Twenty-five patients with chronic HBV (11 hepatitis B e antigen [HBeAg]-positive, 14 HBeAg-negative) were enrolled in a cross-sectional study. A longitudinal study as also conducted in which follow-up was done at 3, 12, and 24 months, after acute HIV-1 infection, in 11 individuals who also had chronic HBV. Peripheral blood mononuclear cells were stimulated with recombinant HBV surface protein (S protein), core protein (C protein) or gag peptide. IFN-γ-secreting T cells were identified by ELISPOT assay. Results In the cross-sectional study, co-infected chronic HBV patients had lower C protein-specific T-cell responses compared with mono-infected individuals, though the difference was not significant. In co-infected, chronic HBV patients, the magnitude of C protein-specific T-cell responses was significantly greater in HBeAg-positive subjects compared to HBeAg-negative subjects (p = 0.011). C protein-specific T-cell responses were positively correlated with HBV viral load (rs = 0.40, p = 0.046). However, gag-specific T-cell responses were negatively correlated with HIV viral load (rs = −0.44, p = 0.026) and positively correlated with CD4+ count (rs = 0.46, p = 0.021). The results were different in mono-infected individuals. PBMCs from co-infected HBeAg-positive patients secreted more specific-IFN-γ in cultured supernatants compared with PBMCs from co-infected HBeAg-negative patients (p = 0.019). In the longitudinal study, S protein- and C protein-specific T-cell responses were decreased as the length of follow-up increased (p = 0.034, for S protein; p = 0.105, for C protein). Additionally, the S protein- and C protein-specific T-cell responses were significantly higher in HBe

  3. Changing serum levels of quantitative hepatitis B surface antigen and hepatitis B virus DNA in hepatitis B virus surface antigen carriers: A follow-up study of an elderly cohort

    Directory of Open Access Journals (Sweden)

    Yuan-Hung Kuo

    2015-02-01

    Full Text Available This study was to elucidate longitudinally quantitative changes of hepatitis B virus (HBV surface antigen (HBsAg and HBV DNA in elder HBsAg carriers in a community. Among 1002 residents screened for HBsAg in 2005, 405 responded to this follow-up study in 2010. Fifty-nine (14.6% were HBsAg carriers in 2005; HBsAg quantification and HBV DNA were measured. HBsAg quantification (cutoff 1600 IU/mL and HBV DNA (cutoff 2000 IU/mL were combined to stratify the participants between two screens. A total of 30 men and 29 women with a mean age of 63.9 ± 7.9 years were enrolled. Quantitative levels of HBsAg and HBV DNA were significantly correlated in 2005 (r = 0.509, p < 0.001 and 2010 (r = 0.777, p < 0.001. Concentrations of HBsAg (IU/mL significantly decreased from 2.2 ± 1.0 log in 2005 to 1.7 ± 1.5 log in 2010 (p < 0.001. The level of HBsAg was decreased in 48 (81.4% individuals and HBsAg was undetectable in eight (13.6%. The annual incidence of HBsAg clearance was 2.7%. These 59 HBsAg carriers in 2005 were divided into four groups: low HBsAg low HBV DNA (n = 32, high HBsAg low HBV DNA (n = 5, low HBsAg high HBV DNA (n = 12 and high HBsAg high HBV DNA (n = 10. All 32 individuals in the low HBsAg low HBV DNA group were still in that group in 2010, whereas only two of the high HBsAg high HBV DNA group became inactive. As with a younger cohort in hospital, HBsAg quantification was still well correlated with HBV DNA in elderly HBsAg carriers in the community. Lower levels of both HBsAg and HBV DNA might represent an inactive HBV infection.

  4. A Built-In CpG Adjuvant in RSV F Protein DNA Vaccine Drives a Th1 Polarized and Enhanced Protective Immune Response

    Directory of Open Access Journals (Sweden)

    Yao Ma

    2018-01-01

    Full Text Available Human respiratory syncytial virus (RSV is the most significant cause of acute lower respiratory infection in children. However, there is no licensed vaccine available. Here, we investigated the effect of five or 20 copies of C-Class of CpG ODN (CpG-C motif incorporated into a plasmid DNA vaccine encoding RSV fusion (F glycoprotein on the vaccine-induced immune response. The addition of CpG-C motif enhanced serum binding and virus-neutralizing antibody responses in BALB/c mice immunized with the DNA vaccines. Moreover, mice vaccinated with CpG-modified vaccines, especially with the higher 20 copies, resulted in an enhanced shift toward a Th1-biased antibody and T-cell response, a decrease in pulmonary pathology and virus replication, and a decrease in weight loss after RSV challenge. This study suggests that CpG-C motif, cloned into the backbone of DNA vaccine encoding RSV F glycoprotein, functions as a built-in adjuvant capable of improving the efficacy of DNA vaccine against RSV infection.

  5. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs

    Directory of Open Access Journals (Sweden)

    Touihri Leila

    2012-12-01

    Full Text Available Abstract Background During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV or distemper virus (CDV after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. Methods We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an “Internal Ribosome Entry Site” (IRES domain. Results The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The

  6. Design of different strategies of multivalent DNA-based vaccination against rabies and canine distemper in mice and dogs.

    Science.gov (United States)

    Touihri, Leila; Ahmed, Sami Belhaj; Chtourou, Yacine; Daoud, Rahma; Bahloul, Chokri

    2012-12-27

    During the vaccination campaigns, puppies younger than 3 months old are not targeted and remain unvaccinated for at least the first year of their lives. Almost half of the reported rabid dogs are 6 months or younger. Hence, we should recommend the vaccination against rabies of young puppies. Unfortunately, owing to the exposure of puppies to infections with either canine parvovirus (CPV) or distemper virus (CDV) after the intervention of the vaccinators, owners are reluctant to vaccinate puppies against rabies. Therefore, it is necessary to include the CPV and CDV valences in the vaccine against rabies. Multivalent DNA-based vaccination in dogs, including rabies and distemper valences, could help in raising vaccine coverage. We have designed monovalent and multivalent DNA-based vaccine candidates for in vitro and in vivo assays. These plasmids encode to the rabies virus glycoprotein and/or the canine distemper virus hemagglutinin. The first strategy of multivalent DNA-based vaccination is by mixing plasmids encoding to a single antigen each. The second is by simply fusing the genes of the antigens together. The third is by adding the foot and mouth disease virus (FMDV) 2A oligopeptide gene into the antigen genes. The last strategy is by the design and use of a bicistronic plasmid with an "Internal Ribosome Entry Site" (IRES) domain. The monovalent construct against canine distemper was efficiently validated by inducing higher humoral immune responses compared to cell-culture-derived vaccine both in mice and dogs. All multivalent plasmids efficiently expressed both valences after in vitro transfection of BHK-21 cells. In BALB/c mice, the bicistronic IRES-dependant construct was the most efficient inducer of virus-neutralizing antibodies against both valences. It was able to induce better humoral immune responses compared to the administration of either cell-culture-derived vaccines or monovalent plasmids. The FMDV 2A was also efficient in the design of multivalent

  7. Highly immunogenic prime–boost DNA vaccination protects chickens against challenge with homologous and heterologous H5N1 virus

    Directory of Open Access Journals (Sweden)

    Anna Stachyra

    2014-01-01

    Full Text Available Highly pathogenic avian influenza viruses (HPAIVs cause huge economic losses in the poultry industry because of high mortality rate in infected flocks and trade restrictions. Protective antibodies, directed mainly against hemagglutinin (HA, are the primary means of protection against influenza outbreaks. A recombinant DNA vaccine based on the sequence of H5 HA from the H5N1/A/swan/Poland/305-135V08/2006 strain of HPAIV was prepared. Sequence manipulation included deletion of the proteolytic cleavage site to improve protein stability, codon usage optimization to improve translation and stability of RNA in host cells, and cloning into a commercially available vector to enable expression in animal cells. Naked plasmid DNA was complexed with a liposomal carrier and the immunization followed the prime–boost strategy. The immunogenic potential of the DNA vaccine was first proved in broilers in near-to-field conditions resembling a commercial farm. Next, the protective activity of the vaccine was confirmed in SPF layer-type chickens. Experimental infections (challenge experiments indicated that 100% of vaccinated chickens were protected against H5N1 of the same clade and that 70% of them were protected against H5N1 influenza virus of a different clade. Moreover, the DNA vaccine significantly limited (or even eliminated transmission of the virus to contact control chickens. Two intramuscular doses of DNA vaccine encoding H5 HA induced a strong protective response in immunized chicken. The effective protection lasted for a minimum 8 weeks after the second dose of the vaccine and was not limited to the homologous H5N1 virus. In addition, the vaccine reduced shedding of the virus.

  8. Immunity to viral haemorrhagic septicaemia (VHS) following DNA vaccination of rainbow trout at an early life-stage

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2001-01-01

    -vaccination respectively, revealed that a highly protective and lasting immunity was established shortly after vaccination, in accordance with earlier experiments with larger fish. The defence mechanisms activated by the DNA vaccine are thus functional at an early life-stage in rainbow trout....

  9. Mucosal delivery of a transmission-blocking DNA vaccine encoding Giardia lamblia CWP2 by Salmonella typhimurium bactofection vehicle.

    Science.gov (United States)

    Abdul-Wahid, Aws; Faubert, Gaétan

    2007-12-05

    In this study, we investigated the use of Salmonella typhimurium (STM1 strain) as a bactofection vehicle to deliver a transmission-blocking DNA vaccine (TBDV) plasmid to the intestinal immune system. The gene encoding the full length cyst wall protein-2 (CWP2) from Giardia lamblia was subcloned into the pCDNA3 mammalian expression vector and stably introduced into S. typhimurium STM1. Eight-week-old female BALB/c mice were orally immunized every 2 weeks, for a total of three immunizations. Vaccinated and control mice were sacrificed 1 week following the last injection. Administration of the DNA vaccine led to the production of CWP2-specific cellular immune responses characterized by a mixed Th1/Th2 response. Using ELISA, antigen-specific IgA and IgG antibodies were detected in intestinal secretions. Moreover, analysis of sera demonstrated that the DNA immunization also stimulated the production of CWP2-specific IgG antibodies that were mainly of the IgG2a isotype. Finally, challenge infection with live Giardia muris cysts revealed that mice receiving the CWP2-encoding DNA vaccine were able to reduce cyst shedding by approximately 60% compared to control mice. These results demonstrate, for the first time, the development of parasite transmission-blocking immunity at the intestinal level following the administration of a mucosal DNA vaccine delivered by S. typhimurium STM1.

  10. Oral Vaccination Based on DNA-Chitosan Nanoparticles against Schistosoma mansoni Infection

    Directory of Open Access Journals (Sweden)

    Carolina R. Oliveira

    2012-01-01

    Full Text Available The development of a vaccine would be essential for the control of schistosomiasis, which is recognized as the most important human helminth infection in terms of morbidity and mortality. A new approach of oral vaccination with DNA-chitosan nanoparticles appears interesting because of their great stability and the ease of target accessibility, besides chitosan immunostimulatory properties. Here we described that chitosan nanoparticles loaded with plasmid DNA encoding Rho1-GTPase protein of Schistosoma mansoni, prepared at different molar ratios of primary amines to DNA phosphate anion (N/P, were able to complex electrostatically with DNA and condense it into positively charged nanostructures. Nanoparticles were able to maintain zeta potential and size characteristics in media that simulate gastric (SGF and intestinal fluids (SIF. Further in vivo studies showed that oral immunization was not able to induce high levels of specific antibodies but induced high levels of the modulatory cytokine IL-10. This resulted in a significative reduce of liver pathology, although it could not protect mice of infection challenge with S. mansoni worms. Mice immunized only with chitosan nanoparticles presented 47% of protection against parasite infection, suggesting an important role of chitosan in inducing a protective immune response against schistosomiasis, which will be more explored in further studies.

  11. Efficacy of a DNA Vaccine Carrying Eimeria maxima Gam56 Antigen Gene against Coccidiosis in Chickens

    Science.gov (United States)

    Xu, Jinjun; Zhang, Yan

    2013-01-01

    To control coccidiosis without using prophylactic medications, a DNA vaccine targeting the gametophyte antigen Gam56 from Eimeria maxima in chickens was constructed, and the immunogenicity and protective effects were evaluated. The ORF of Gam56 gene was cloned into an eukaryotic expression vector pcDNA3.1(zeo)+. Expression of Gam56 protein in COS-7 cells transfected with recombinant plasmid pcDNA-Gam56 was confirmed by indirect immunofluorescence assay. The DNA vaccine was injected intramuscularly to yellow feathered broilers of 1-week old at 3 dosages (25, 50, and 100 µg/chick). Injection was repeated once 1 week later. One week after the second injection, birds were challenged orally with 5×104 sporulated oocysts of E. maxima, then weighed and killed at day 8 post challenge. Blood samples were collected and examined for specific peripheral blood lymphocyte proliferation activity and serum antibody levels. Compared with control groups, the administration of pcDNA-Gam56 vaccine markedly increased the lymphocyte proliferation activity (P<0.05) at day 7 and 14 after the first immunization. The level of lymphocyte proliferation started to decrease on day 21 after the first immunization. A similar trend was seen in specific antibody levels. Among the 3 pcDNA-Gam56 immunized groups, the median dosage group displayed the highest lymphocyte proliferation and antibody levels (P<0.05). The median dosage group had the greatest relative body weight gain (89.7%), and the greatest oocyst shedding reduction (53.7%). These results indicate that median dosage of DNA vaccine had good immunogenicity and immune protection effects, and may be used in field applications for coccidiosis control. PMID:23710081

  12. A recoding method to improve the humoral immune response to an HIV DNA vaccine.

    Directory of Open Access Journals (Sweden)

    Yaoxing Huang

    Full Text Available This manuscript describes a novel strategy to improve HIV DNA vaccine design. Employing a new information theory based bioinformatic algorithm, we identify a set of nucleotide motifs which are common in the coding region of HIV, but are under-represented in genes that are highly expressed in the human genome. We hypothesize that these motifs contribute to the poor protein expression of gag, pol, and env genes from the c-DNAs of HIV clinical isolates. Using this approach and beginning with a codon optimized consensus gag gene, we recode the nucleotide sequence so as to remove these motifs without modifying the amino acid sequence. Transfecting the recoded DNA sequence into a human kidney cell line results in doubling the gag protein expression level compared to the codon optimized version. We then turn both sequences into DNA vaccines and compare induced antibody response in a murine model. Our sequence, which has the motifs removed, induces a five-fold increase in gag antibody response compared to the codon optimized vaccine.

  13. Influence of routes and administration parameters on antibody response of pigs following DNA vaccination

    DEFF Research Database (Denmark)

    Barfoed, Annette Malene; Kirstensen, Birte; Dannemann-Jensen, Tove

    2004-01-01

    Using the nucleoprotein of porcine reproductive and respiratory syndrome virus as model antigen, we optimised parameters for gene gun vaccination of pigs, including firing pressure and vaccination site. As criteria for optimisation, we characterised particle penetration and local tissue damage...... by histology. For selected combinations, vaccination efficiency in terms of antibody response was studied. Gene gun vaccination on ear alone was as efficient as a multi-site (ear, thorax, inguinal area, tongue mucosa) gene gun approach, and more efficient than combined intramuscular (i.m.)/intradermal (i.......d.) injection of plasmid DNA. This indicates, that the ear is an attractive site for gene gun vaccination of pigs....

  14. Clinical Development of a Cytomegalovirus DNA Vaccine: From Product Concept to Pivotal Phase 3 Trial.

    Science.gov (United States)

    Smith, Larry R; Wloch, Mary K; Chaplin, Jennifer A; Gerber, Michele; Rolland, Alain P

    2013-09-25

    2013 marks a milestone year for plasmid DNA vaccine development as a first-in-class cytomegalovirus (CMV) DNA vaccine enters pivotal phase 3 testing. This vaccine consists of two plasmids expressing CMV antigens glycoprotein B (gB) and phosphoprotein 65 (pp65) formulated with a CRL1005 poloxamer and benzalkonium chloride (BAK) delivery system designed to enhance plasmid expression. The vaccine's planned initial indication under investigation is for prevention of CMV reactivation in CMV-seropositive (CMV⁺) recipients of an allogeneic hematopoietic stem cell transplant (HCT). A randomized, double-blind placebo-controlled phase 2 proof-of-concept study provided initial evidence of the safety of this product in CMV⁺ HCT recipients who underwent immune ablation conditioning regimens. This study revealed a significant reduction in viral load endpoints and increased frequencies of pp65-specific interferon-γ-producing T cells in vaccine recipients compared to placebo recipients. The results of this endpoint-defining trial provided the basis for defining the primary and secondary endpoints of a global phase 3 trial in HCT recipients. A case study is presented here describing the development history of this vaccine from product concept to initiation of the phase 3 trial.

  15. For t 2 DNA vaccine prevents Forcipomyia taiwana (biting midge) allergy in a mouse model.

    Science.gov (United States)

    Lee, M-F; Song, P-P; Lin, T-M; Chiu, Y-T; Chen, Y-H

    2016-04-01

    Forcipomyia taiwana (biting midge) is the most prevalent allergenic biting insect in Taiwan, and 60% of the exposed subjects develop allergic reactions. Subjects with insect allergy frequently limit their outdoor activities to avoid the annoyingly intense itchy allergic reactions, leading to significant worsening of their quality of life. Allergen-specific immunotherapy is the only known therapy that provides long-term host immune tolerance to the allergen, but is time-consuming and cumbersome. This study tested whether the For t 2 DNA vaccine can prevent allergic symptoms in For t 2-sensitized mice. Two consecutive shots of For t 2 DNA vaccine were given to mice with a 7-day interval before sensitization with recombinant For t 2 proteins, using the two-step sensitization protocol reported previously. The For t 2 DNA vaccine at 50 μg prevented the production of For t 2-specific IgE (P allergy in the future. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Next Generation Immunotherapy for Pancreatic Cancer: DNA Vaccination is Seeking New Combo Partners.

    Science.gov (United States)

    Cappello, Paola; Curcio, Claudia; Mandili, Giorgia; Roux, Cecilia; Bulfamante, Sara; Novelli, Francesco

    2018-02-16

    Pancreatic Ductal Adenocarcinoma (PDA) is an almost incurable radio- and chemo-resistant tumor, and its microenvironment is characterized by a strong desmoplastic reaction associated with a significant infiltration of T regulatory lymphocytes and myeloid-derived suppressor cells (Tregs, MDSC). Investigating immunological targets has identified a number of metabolic and cytoskeletal related molecules, which are typically recognized by circulating antibodies. Among these molecules we have investigated alpha-enolase (ENO1), a glycolytic enzyme that also acts a plasminogen receptor. ENO1 is also recognized by T cells in PDA patients, so we developed a DNA vaccine that targets ENO1. This efficiently induces many immunological processes (antibody formation and complement-dependent cytotoxicity (CDC)-mediated tumor killing, infiltration of effector T cells, reduction of infiltration of myeloid and Treg suppressor cells), which significantly increase the survival of genetically engineered mice that spontaneously develop pancreatic cancer. Although promising, the ENO1 DNA vaccine does not completely eradicate the tumor, which, after an initial growth inhibition, returns to proliferate again, especially when Tregs and MDSC ensue in the tumor mass. This led us to develop possible strategies for combinatorial treatments aimed to broaden and sustain the antitumor immune response elicited by DNA vaccination. Based on the data we have obtained in recent years, this review will discuss the biological bases of possible combinatorial treatments (chemotherapy, PI3K inhibitors, tumor-associated macrophages, ENO1 inhibitors) that could be effective in amplifying the response induced by the immune vaccination in PDA.

  17. Expression of Plasma hsa-miR122 in HBV-related Hepatocellular Carcinoma (HCC) in Vietnamese Patients.

    Science.gov (United States)

    Quoc, Nguyen Bao; Phuong, Nguyen Doan Nguyen; Ngan, Tang Kim; Linh, Nguyen Thi Minh; Cuong, Pham Hung; Chau, Nguyen Ngoc Bao

    2018-04-27

    Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death in the world and considered as one of the most susceptible cancers in humans. The microRNA molecule, hsa-miR122, considered as a potential biological marker linked with the injury of hepatocellular tissue, is the most common microRNA in human liver cancer. Understanding the expression profile of hsa-miR122 plays an important role in the diagnosis of HCC Objective: Identification and comparison of cut-off values of plasma hsa-miR122 expression were conducted in blood samples of healthy control, HBV infected and HBV-related HCC Vietnamese patients Method and result: Fifty-two blood samples of healthy control and HBV-related HCC cases, collected between 2015 and 2017 were obtained from Ho Chi Minh City Oncology Hospital, Vietnam. Written informed consent was attained from all patients and the Human Research Ethics Committee, Oncology Hospital (#08/BVUB-HDDD) approved the research protocol. Total RNA was isolated from blood samples with TrizolTM Reagent (Thermo Fisher Scientific, USA). To analyze the expression level of hsa-miR122, miRNA specific reverse transcription was performed using SensiFASTTM¬ cDNA Synthesis Kit (Bioline, UK) as described by the manufacturer, followed by running RT-qPCR with SensiFASTTMSYBR No-ROX Kit (Bioline, UK). The housekeeping gene, GAPDH (glyceraldehyde-3-phosphate dehydrogenase) was used for normalization. The presence of hsa-miR122 and HBV-DNA were identified in human blood using RT-PCR and LAMP techniques. Downregulation of plasma hsa-miR122 was observed in HBV-related HCC patients with a ΔCt value of 7.9 ± 2.1 which was significantly lower than found in healthy control (pHBV infected patients. We also identified the difference of diagnostic values of this microRNA in different populations and provided a high diagnostic accuracy of HCC (AUC = 0.984 with sensitivity and specificity of 96% and 94%, respectively). hsa-miR122 was downregulated in HBV-related HCC

  18. Evaluation of the immune response in Shitou geese (Anser anser domesticus) following immunization with GPV-VP1 DNA-based and live attenuated vaccines.

    Science.gov (United States)

    Deng, Shu-xuan; Cai, Ming-sheng; Cui, Wei; Huang, Jin-lu; Li, Mei-li

    2014-01-01

    Goose parvovirus (GPV) is a highly contagious and deadly disease for goslings and Muscovy ducklings. To compare the differences in immune response of geese immunized with GPV-VP1 DNA-based and live attenuated vaccines. Shitou geese were immunized once with either 20 μg pcDNA-GPV-VP1 DNA gene vaccine by gene gun bombardment via intramuscular injection, or 300 μg by i.m. injection, or 300 μL live attenuated vaccine by i.m. injection, whereas 300 μg pcDNA3.1 (+) i.m. or 300 μL saline i.m. were used as positive and negative controls, respectively. Each group comprised 28 animals. Peripheral blood samples were collected from 2-210 days after immunization and the proliferation of T lymphocytes, the number of CD4(+) and CD8(+) T cells and the level of IgG assessed. Statistical analysis was performed using a one-way analysis of variance with group multiple comparisons via Tukey's test. The pcDNA-GPV-VP1 DNA and attenuated vaccine induced cellular and humoral responses, and there were no differences between the 20 and 300 μg group in the responses of proliferation of T lymphocyte and the CD8(+) T-cell. However, as to CD4(+) T-cell response and humoral immunity, the 20 μg group performed better than the 300 μg group, which induced better cellular and humoral immunity than live attenuated vaccine. This study showed that it is possible to induce both cellular and humoral response using DNA-based vaccines and that the pcDNA-GPV-VP1 DNA gene vaccine induced better cellular and humoral immunity than live attenuated vaccine.

  19. Trans-activation function of a 3' truncated X gene-cell fusion product from integrated hepatitis B virus DNA in chronic hepatitis tissues

    International Nuclear Information System (INIS)

    Takada, Shinako; Koike, Katsuro

    1990-01-01

    To investigate the expression and transactivation function of the X gene in integrated hepatitis B virus (HBV) DNA from chronic hepatitis tissues, a series of transfectants containing cloned integrated HBV DNAs was made and analyzed for X mRNA expression and trans-activation activity by using a chloramphenicol acetyltransferase assay. Most of the integrated HBV DNAs expressed X mRNA and encoded a product with trans-activation activity in spite of the loss of the 3' end region of the X gene due to integration. From cDNA cloning and sequence analysis of X mRNA transcribed from native or integrated HBV DNA, the X protein was found to be translated from the X open reading frame without splicing. For integrated HBV DNA, transcription was extended to a cellular flanking DNA and an X gene-cell fusion transcript was terminated by using a cellular poly(A) signal. The amino acid sequence deduced from an X-cell fusion transcript indicated truncation of the carboxyl-terminal five amino acids, but the upstream region of seven amino acids conserved among hepadnaviruses was retained in the integrated HBV DNA, suggesting that this conserved region is essential for the transactivation function of the X protein. These findings support the following explanation for hepatocarcinogenesis by HBV DNA integration: the expression of a cellular oncogene(s) is transactivated at the time of chronic infection by the increasing amounts of the integrated HBV gene product(s), such as the X-cell fusion product

  20. Is it necessary to delay antiviral therapy for 3-6 months to anticipate HBeAg seroconversion in patients with HBeAg-positive chronic hepatitis B in endemic areas of HBV genotype C?

    Directory of Open Access Journals (Sweden)

    Byung-Cheol Song

    2014-12-01

    Full Text Available Background/AimsSpontaneous HBeAg seroconversion occurs frequently in the immune reactive phase in HBeAg-positive chronic hepatitis B (CHB. Therefore, observation for 3-6 months before commencing antiviral therapy is recommended in patients with alanine aminotransferase (ALT levels that exceed twice the upper limit of normal (ULN. However, HBeAg seroconversion occurs infrequently in patients infected with hepatitis B virus (HBV genotype C. The aim of the present study was to determine whether the waiting policy is necessary in endemic areas of HBV genotype C infection.MethodsNinety patients with HBeAg-positive CHB were followed prospectively without administering antiviral therapy for 6 months. Antiviral therapy was initiated promptly at any time if there was any evidence of biochemical (i.e., acute exacerbation of HBV infection or aggravation of jaundice or symptomatic deterioration. After 6 months of observation, antiviral therapy was initiated according to the patient's ALT and HBV DNA levels.ResultsOnly one patient (1.1% achieved spontaneous HBeAg seroconversion. Biochemical and symptomatic deterioration occurred before 6 months in 17 patients (18.9% and 5 patients, respectively. High ALT and HBV DNA levels were both independent risk factors for biochemical deterioration. Of 15 patients with HBV DNA ≥5.1×107 IU/mL and ALT ≥5×ULN, biochemical deterioration occurred in 7 (46.7%, including 1 patient receiving liver transplantation due to liver failure.ConclusionsSpontaneous HBeAg seroconversion in patients with HBeAg-positive CHB is rare within 6 months. Biochemical deterioration was common and may lead to liver failure. Immediate antiviral therapy should be considered, especially in patients with high ALT and HBV DNA levels in endemic areas of genotype C infection.

  1. Randomized phase I trial HIV-CORE 003: Depletion of serum amyloid P component and immunogenicity of DNA vaccination against HIV-1.

    Science.gov (United States)

    Borthwick, Nicola J; Lane, Thirusha; Moyo, Nathifa; Crook, Alison; Shim, Jung Min; Baines, Ian; Wee, Edmund G; Hawkins, Philip N; Gillmore, Julian D; Hanke, Tomáš; Pepys, Mark B

    2018-01-01

    The failure of DNA vaccination in humans, in contrast to its efficacy in some species, is unexplained. Observational and interventional experimental evidence suggests that DNA immunogenicity may be prevented by binding of human serum amyloid P component (SAP). SAP is the single normal DNA binding protein in human plasma. The drug (R)-1-[6-[(R)-2-carboxypyrrolidin-1-yl]-6-oxo-hexanoyl]pyrrolidine-2-carboxylic acid (CPHPC, miridesap), developed for treatment of systemic amyloidosis and Alzheimer's disease, depletes circulating SAP by 95-99%. The proof-of-concept HIV-CORE 003 clinical trial tested whether SAP depletion by CPHPC would enhance the immune response in human volunteers to DNA vaccination delivering the HIVconsv immunogen derived from conserved sub-protein regions of HIV-1. Human volunteers received 3 intramuscular immunizations with an experimental DNA vaccine (DDD) expressing HIV-1-derived immunogen HIVconsv, with or without prior depletion of SAP by CPHPC. All subjects were subsequently boosted by simian (chimpanzee) adenovirus (C)- and poxvirus MVA (M)-vectored vaccines delivering the same immunogen. After administration of each vaccine modality, the peak total magnitudes, kinetics, functionality and memory subsets of the T-cell responses to HIVconsv were thoroughly characterized. No differences were observed between the CPHPC treated and control groups in any of the multiple quantitative and qualitative parameters of the T-cell responses to HIVconsv, except that after SAP depletion, there was a statistically significantly greater breadth of T-cell specificities, that is the number of recognized epitopes, following the DDDC vaccination. The protocol used here for SAP depletion by CPHPC prior to DNA vaccination produced only a very modest suggestion of enhanced immunogenicity. Further studies will be required to determine whether SAP depletion might have a practical value in DNA vaccination for other plasmid backbones and/or immunogens. Clinicaltrials

  2. Topical Administration Is a Promising Inoculating Route versus Intramuscular Inoculation for the Nanoparticle-Carried DNA Vaccine to Prevent Corneal Infections.

    Science.gov (United States)

    Hu, Kai; Malla, Tejsu; Zhai, Yujia; Dong, Lili; Tang, Ru

    2015-01-01

    To evaluate the comparative effect of topical versus intramuscular administration of nanoparticle-carried DNA vaccine in preventing corneal herpes simplex virus type 1 (HSV-1) infection. Nanoparticle [polyethylenimine (PEI)-Fe3O4]-carried DNA vaccine (PEI-Fe3O4-pRSC-gD-IL-21) or DNA vaccine (pRSC-gD-IL-21) alone were topically versus intramuscularly inoculated into one eye each of mice on days 0, 14 and 28. Three weeks after the final immunization, the specific immune responses and clinical degrees of primary herpes simplex keratitis were evaluated. Topical inoculation of nanoparticle-carried DNA vaccine induced mice to generate similar levels of specific HSV-1-neutralizing antibody, IFN-γ and IL-4 in serum and specific killing (cytotoxicity) and proliferative activities of the splenic lymphocytes, but a significantly higher level of secretory IgA in tears compared to those of intramuscular inoculation. More importantly, the mice inoculated topically showed a significantly decreased herpes simplex keratitis severity than the mice inoculated intramuscularly after HSV-1 challenge on the corneas of the mice. Topical inoculation of nanoparticle-carried DNA vaccine elicits a stronger specific local immune response and more effectively inhibits herpes simplex keratitis as compared to intramuscular inoculation in an HSV-1 ocular challenge mouse model. Thus, topical administration may be a promising inoculating route for the nanoparticle-carried DNA vaccine to prevent corneal infections. © 2015 S. Karger AG, Basel.

  3. In vivo electroporation enhances the immunogenicity of an HIV-1 DNA vaccine candidate in healthy volunteers.

    Directory of Open Access Journals (Sweden)

    Sandhya Vasan

    Full Text Available DNA-based vaccines have been safe but weakly immunogenic in humans to date.We sought to determine the safety, tolerability, and immunogenicity of ADVAX, a multigenic HIV-1 DNA vaccine candidate, injected intramuscularly by in vivo electroporation (EP in a Phase-1, double-blind, randomized placebo-controlled trial in healthy volunteers. Eight volunteers each received 0.2 mg, 1 mg, or 4 mg ADVAX or saline placebo via EP, or 4 mg ADVAX via standard intramuscular injection at weeks 0 and 8. A third vaccination was administered to eleven volunteers at week 36. EP was safe, well-tolerated and considered acceptable for a prophylactic vaccine. EP delivery of ADVAX increased the magnitude of HIV-1-specific cell mediated immunity by up to 70-fold over IM injection, as measured by gamma interferon ELISpot. The number of antigens to which the response was detected improved with EP and increasing dosage. Intracellular cytokine staining analysis of ELISpot responders revealed both CD4+ and CD8+ T cell responses, with co-secretion of multiple cytokines.This is the first demonstration in healthy volunteers that EP is safe, tolerable, and effective in improving the magnitude, breadth and durability of cellular immune responses to a DNA vaccine candidate.ClinicalTrials.gov NCT00545987.

  4. Perinatal transmission in infants of mothers with chronic hepatitis B in California

    OpenAIRE

    Burgis, Jennifer C; Kong, Darryl; Salibay, Catheryn; Zipprich, Jennifer; Harriman, Kathleen; So, Samuel

    2017-01-01

    AIM To evaluate maternal hepatitis B virus (HBV) DNA as risk for perinatal HBV infection among infants of HBV-infected women in California. METHODS Retrospective analysis among infants born to hepatitis B surface antigen (HBsAg)-positive mothers who received post vaccination serologic testing (PVST) between 2005 and 2011 in California. Demographic information was collected from the California Department of Public Health Perinatal Hepatitis B Program databaseand matched to birth certificate re...

  5. PRMT5 restricts hepatitis B virus replication through epigenetic repression of covalently closed circular DNA transcription and interference with pregenomic RNA encapsidation.

    Science.gov (United States)

    Zhang, Wen; Chen, Jieliang; Wu, Min; Zhang, Xiaonan; Zhang, Min; Yue, Lei; Li, Yaming; Liu, Jiangxia; Li, Baocun; Shen, Fang; Wang, Yang; Bai, Lu; Protzer, Ulrike; Levrero, Massimo; Yuan, Zhenghong

    2017-08-01

    Chronic hepatitis B virus (HBV) infection remains a major health problem worldwide. The covalently closed circular DNA (cccDNA) minichromosome, which serves as the template for the transcription of viral RNAs, plays a key role in viral persistence. While accumulating evidence suggests that cccDNA transcription is regulated by epigenetic machinery, particularly the acetylation of cccDNA-bound histone 3 (H3) and H4, the potential contributions of histone methylation and related host factors remain obscure. Here, by screening a series of methyltransferases and demethylases, we identified protein arginine methyltransferase 5 (PRMT5) as an effective restrictor of HBV transcription and replication. In cell culture-based models for HBV infection and in liver tissues of patients with chronic HBV infection, we found that symmetric dimethylation of arginine 3 on H4 on cccDNA was a repressive marker of cccDNA transcription and was regulated by PRMT5 depending on its methyltransferase domain. Moreover, PRMT5-triggered symmetric dimethylation of arginine 3 on H4 on the cccDNA minichromosome involved an interaction with the HBV core protein and the Brg1-based human SWI/SNF chromatin remodeler, which resulted in down-regulation of the binding of RNA polymerase II to cccDNA. In addition to the inhibitory effect on cccDNA transcription, PRMT5 inhibited HBV core particle DNA production independently of its methyltransferase activity. Further study revealed that PRMT5 interfered with pregenomic RNA encapsidation by preventing its interaction with viral polymerase protein through binding to the reverse transcriptase-ribonuclease H region of polymerase, which is crucial for the polymerase-pregenomic RNA interaction. PRMT5 restricts HBV replication through a two-part mechanism including epigenetic suppression of cccDNA transcription and interference with pregenomic RNA encapsidation; these findings improve the understanding of epigenetic regulation of HBV transcription and host-HBV

  6. Time trends of chronic HBV infection over prior decades - A global analysis.

    Science.gov (United States)

    Ott, Jördis J; Horn, Johannes; Krause, Gérard; Mikolajczyk, Rafael T

    2017-01-01

    Information on trends in chronic hepatitis B virus (HBV) prevalence across countries is lacking. We studied changes in chronic HBV infection over previous decades by country, and assessed patterns of change between and within WHO-defined regions. Based on data from a published systematic review on chronic HBV, we applied a linear model on the logit scale to assess time trends in country-specific prevalence. Estimated HBsAg prevalence in 2000 and relative changes in prevalence over time were evaluated by country and region. Sufficient data were available for 50 countries, mostly showing reductions in prevalence over time. Various degrees of heterogeneity were observed within regions, with a relatively homogenous pattern in the Eastern Mediterranean region with strong decreases in HBsAg prevalence. Europe showed a mixed pattern: higher and stable chronic HBsAg prevalence in Eastern, and constantly low prevalence in Western Europe. In Africa, some countries demonstrated no change in prevalence; increases were seen in Uganda (odds ratio 1.05 per year; 95% confidence interval 1.04-1.06), Nigeria (1.02; 1.02-1.02), Senegal (1.01; 1.01-1.02), and South Africa (1.02; 1.01-1.02). With some exceptions, country-patterns overlapped among countries of South East Asian and Western Pacific regions, characterized by low-medium HBsAg decreases, most prominent in China and Malaysia. Most countries experienced decreases in HBsAg prevalence. Dynamics varied, even within regions; decreases occurred mostly before the direct effects of childhood vaccination may have manifested. These findings together with stable and increasing HBsAg prevalence in some countries of Africa and Eastern Europe indicate the need for further tailored country-specific prevention. This study investigated time trends in prevalence of chronic HBV infection in 50 countries worldwide over the last decade, by estimating relative changes in prevalence. Results show decreases in chronic HBV infection in most countries

  7. Persistence of immunity 18-19 years after vaccination against hepatitis B in 2 cohorts of vaccinees primed as infants or as adolescents in Italy.

    Science.gov (United States)

    Romanò, Luisa; Galli, Cristina; Tagliacarne, Catia; Tosti, Maria Elena; Velati, Claudio; Fomiatti, Laura; Chironna, Maria; Coppola, Rosa Cristina; Cuccia, Mario; Mangione, Rossana; Marrone, Fosca; Negrone, Francesco Saverio; Parlato, Antonino; Zotti, Carla Maria; Mele, Alfonso; Zanetti, Alessandro Remo

    2017-05-04

    This study was aimed at assessing the anti-HBs persistence and immune memory 18-19 y after vaccination against hepatitis B in healthy individuals primed as infants or adolescents. We enrolled 405 teenagers (Group A) vaccinated as infants, and 409 young adults (Group B) vaccinated as adolescents. All vaccinees were tested for anti-HBs and anti-HBc antibodies; those found anti-HBc positive were further tested for HBsAg and HBV DNA. Eight individuals belonging to Group B were positive for anti-HBc alone, and were excluded from analysis. Individuals with anti-HBs concentration ≥ 10 mIU/ml were considered protected while those with anti-HBs concentration memory persists for at least 18-19 y after immunization of infants or adolescents with a primary course of vaccination. Thus, booster doses are not needed at this time, but additional follow up is required to assess the long-life longevity of protection.

  8. Immunogenicity and protective efficacy of Semliki forest virus replicon-based DNA vaccines encoding goatpox virus structural proteins

    International Nuclear Information System (INIS)

    Zheng Min; Jin Ningyi; Liu Qi; Huo Xiaowei; Li Yang; Hu Bo; Ma Haili; Zhu Zhanbo; Cong Yanzhao; Li Xiao; Jin Minglan; Zhu Guangze

    2009-01-01

    Goatpox, caused by goatpox virus (GTPV), is an acute feverish and contagious disease in goats often associated with high morbidity and high mortality. To resolve potential safety risks and vaccination side effects of existing live attenuated goatpox vaccine (AV41), two Semliki forest virus (SFV) replicon-based bicistronic expression DNA vaccines (pCSm-AAL and pCSm-BAA) which encode GTPV structural proteins corresponding to the Vaccinia virus proteins A27, L1, A33, and B5, respectively, were constructed. Then, theirs ability to induce humoral and cellular response in mice and goats, and protect goats against virulent virus challenge were evaluated. The results showed that, vaccination with pCSm-AAL and pCSm-BAA in combination could elicit strong humoral and cellular responses in mice and goats, provide partial protection against viral challenge in goats, and reduce disease symptoms. Additionally, priming vaccination with the above-mentioned DNA vaccines could significantly reduce the goats' side reactions from boosting vaccinations with current live vaccine (AV41), which include skin lesions at the inoculation site and fevers. Data obtained in this study could not only facilitate improvement of the current goatpox vaccination strategy, but also provide valuable guidance to suitable candidates for evaluation and development of orthopoxvirus vaccines.

  9. Variability in the precore and core promoter regions of HBV strains in Morocco: characterization and impact on liver disease progression.

    Directory of Open Access Journals (Sweden)

    Bouchra Kitab

    Full Text Available BACKGROUND: Hepatitis B virus (HBV is one of the most common human pathogens that cause aggressive hepatitis and advanced liver disease (AdLD, including liver cirrhosis and Hepatocellular Carcinoma. The persistence of active HBV replication and liver damage after the loss of hepatitis B e antigen (HBeAg has been frequently associated with mutations in the pre-core (pre-C and core promoter (CP regions of HBV genome that abolish or reduce HBeAg expression. The purpose of this study was to assess the prevalence of pre-C and CP mutations and their impact on the subsequent course of liver disease in Morocco. METHODS/PRINCIPAL FINDINGS: A cohort of 186 patients with HBeAg-negative chronic HBV infection was studied (81 inactive carriers, 69 with active chronic hepatitis, 36 with AdLD. Pre-C and CP mutations were analyzed by PCR-direct sequencing method. The pre-C stop codon G1896A mutation was the most frequent (83.9% and was associated with a lower risk of AdLD development (OR, 0.4; 95% CI, 0.15-1.04; p = 0.04. HBV-DNA levels in patients with G1896A were not significantly different from the other patients carrying wild-type strains (p = 0.84. CP mutations C1653T, T1753V, A1762T/G1764A, and C1766T/T1768A were associated with higher HBV-DNA level and increased liver disease severity. Multiple logistic regression analysis showed that older age (≥ 40 years, male sex, high viral load (>4.3 log(10 IU/mL and CP mutations C1653T, T1753V, A1762T/G1764A, and C1766T/T1768A were independent risk factors for AdLD development. Combination of these mutations was significantly associated with AdLD (OR, 7.52; 95% CI, 4.8-8; p<0.0001. CONCLUSIONS: This study shows for the first time the association of HBV viral load and CP mutations with the severity of liver disease in Moroccan HBV chronic carriers. The examination of CP mutations alone or in combination could be helpful for prediction of the clinical outcome.

  10. Hepatitis B Virus (HBV) Subgenotypes C2 and B2 Differ in Lamivudine- and Adefovir-Resistance-Associated Mutational Patterns in HBV-Infected Chinese Patients▿

    OpenAIRE

    Li, Xiaodong; Wang, Lin; Zhong, Yanwei; Wong, Vincent Wai-Sun; Xu, Zhihui; Liu, Yan; Li, Qinghong; Xin, Shaojie; Zhao, Jingmin; Xu, Dongping

    2010-01-01

    We aimed to study the prevalence and clinical implications of hepatitis B virus (HBV) subgenotypes in Chinese patients. A total of 4,300 patients, mainly from northern China, were enrolled, including 182 patients with acute hepatitis B and 4,118 patients with chronic HBV infection who had been exposed to nucleoside or nucleotide analogs. HBV genotypes/subgenotypes were determined by direct sequencing of the HBV S/Pol region. The prevalence rates were 0.40% for HBV/B1, 14.30% for HBV/B2, 0.25%...

  11. Decline of hepatitis B antibody level in vaccinated 5-7 year-old children

    Directory of Open Access Journals (Sweden)

    Mitra Safari

    2010-06-01

    Full Text Available Background: Vaccination is the best way to prevent hepatitis B infection. The efficacy of hepatitis B vaccine and duration of protection after vaccination in infants is unknown. The aim of this study was to evaluate the immunity level of school age children against HBV in order to determine the decline of hepatitis B antibody level during the childhood period.Materials and Methods: This cross-sectional research was performed on 729, 5-7 year-old children in Kohgiloyeh& Boyerahmad Province who had been vaccinated at birth. Patients selected by multiple stage sampling method. While interviewing parents the questionnaire were completed. The laboratory rep[ort was attached to the questionnaire. After confirming the correct date of vaccination time, parents were asked for an informed consent. From each patient 3ml blood sample were taken and hepatitis B surface antibody (HBs-Ab and hepatitis B surface antigen (HBs-Ag were determined by ELISA method. Chi-squared and t-tests were used to analyze obtained data by using SPSS-15 software.Results: HBs-Ag was negative in all patients. 84.4% of subjects were immune against HBV (had protective antibody titer. The mean antibody titer was 308.9±230.5 IU/ml with range of 10.6–1175 IU/ml. 15.6% of samples had non protective antibody titer and mean antibody titer was 4.97 ±3. 5 IU/ml. Anti-HBsAb titers were related to the age and residency of children. The immunity level decreased with increasing age. No statistically significant differences could be found between two sexes. Conclusion: Based on this stud, the immunity persistency rate in this age group was suitable compared to other studies. Unfortunately, there is about 20% of non-immune children to HBV infection in this susceptible age with a high risk of contamination and affliction. Because of seriousness of HBV infection proper immunization strategy should be considered in this era by health care authorities

  12. Halofuginone ameliorates inflammation in severe acute hepatitis B virus (HBV-infected SD rats through AMPK activation

    Directory of Open Access Journals (Sweden)

    Zhan WL

    2017-10-01

    Full Text Available Weili Zhan, Yanhong Kang, Ning Chen, Chongshan Mao, Yi Kang, Jia Shang Department of Infectious Diseases, Henan Provincial People’s Hospital, Zhengzhou, Henan, China Abstract: The hepatitis B virus (HBV has caused acute and chronic liver diseases in ~350 million infected people worldwide. Halofuginone (HF is a plant alkaloid which has been demonstrated to play a crucial role in immune regulation. Our present study explored the function of HF in the immune response of HBV-infected Sprague Dawley (SD rats. Plasmid containing pCDNA3.1-HBV1.3 was injected in SD rats for the construction of an acute HBV-infected animal model. Our data showed that HF reduced the high concentrations of serum hepatitis B e-antigen, hepatitis B surface antigen, and HBV DNA induced by HBV infection. HF also reduced the number of T helper (Th17 cells and the expression of interleukin (IL-17 compared with the pCDNA3.1-HBV1.3 group. Moreover, pro-inflammatory cytokine levels (IL-17, IL-23, interferon-γ, and IL-2 were downregulated and anti-inflammatory cytokine levels (IL-4 and IL-13 were upregulated by HF. Through further research we found that the expression of AMP-activated protein kinase (AMPK and IKBA which suppressed NF-κB activation was increased while the expression of p-NF-κB P65 was decreased in pCDNA3.1-HBV1.3+HF group compared with pCDNA3.1-HBV1.3 group, indicating that HF may work through the activation of AMPK. Finally, our conjecture was further verified by using the AMPK inhibitor compound C, which counteracted the anti-inflammation effect of HF, resulting in the decreased expression of AMPK, IKBA and increased expression of p-NF-κB P65 and reduced number of Th17 cells. In our present study, HF was considered as an anti-inflammatory factor in acute HBV-infected SD rats and worked through AMPK-mediated NF-κB p65 inactivation. This study implicated HF as a potential therapeutic strategy for hepatitis B. Keywords: halofuginone, hepatitis B virus

  13. DNA vaccines: general concerns and its applications in human and veterinary medicine/ Vacina de DNA: aspectos gerais e sua aplicação na medicina humana e veterinária

    Directory of Open Access Journals (Sweden)

    Marilda Carlos Vidotto

    2007-08-01

    Full Text Available The vaccination with DNA is one of the most promising immunization techniques against a pathogens variety and tumors, for which the conventional methods have not been efficient. DNA vaccines are capable to induce immune humoral and cellular response, directed to lymphocytes CD4+ and CD8+, without the necessity of live microorganisms. In spite of the great potential of inducing protective immunity, the DNA vaccine not always has success. The immunity depends on several factors such as the selection of the target gene, construction of the expression vector, frequency and via of administration of the vaccine, amount of DNA, location of the antigen codified by the plasmid and age, health and species of vaccinated animals. This revision shows the development of some vaccines of DNA for diseases of interest in the veterinary and human medicine.A vacinação com DNA é uma das mais promissoras técnicas de imunização contra uma variedade de patógenos e tumores, para os quais os métodos convencionais não tem sido eficientes. Vacinas de DNA são capazes de induzir resposta imune humoral e celular, tanto para resposta de linfócitos CD4+ quanto CD8+, sem a necessidade de microrganismos vivos. Apesar do grande potencial de induzir imunidade protetora, a vacina de DNA nem sempre apresenta bons resultados. A imunidade depende de vários fatores como a seleção do gene alvo, construção do vetor de expressão, freqüência e via de administração da vacina, quantidade de DNA, localização do antígeno codificado pelo plasmídio e idade, saúde e espécies de animais vacinados. Esta revisão relata o desenvolvimento de algumas vacinas de DNA para doenças de interesse na medicina veterinária e humana.

  14. Immunotherapy for Alzheimer's disease: DNA- and protein-based epitope vaccines.

    Science.gov (United States)

    Davtyan, Hayk; Petrushina, Irina; Ghochikyan, Anahit

    2014-01-01

    Active immunotherapy for Alzheimer's disease (AD) is aimed to induce antibodies specific to amyloid-beta (Aβ) that are capable to reduce the level of Aβ in the CNS of Alzheimer's disease patients. First clinical trial AN-1792 that was based on vaccination with full-length Aβ42 showed that safe and effective AD vaccine should induce high titers of anti-Aβ antibodies without activation of harmful autoreactive T cells. Replacement of self-T cell epitope with foreign epitope, keeping self-B cell epitope intact, may allow to induce high titers of anti-Aβ antibodies while avoiding the activation of T cells specific to Aβ. Here we describe the protocols for evaluation of AD DNA- or multiple antigenic peptide (MAP)-based epitope vaccines composed of Aβ(1-11) B cell epitope fused to synthetic T cell epitope PADRE (Aβ(1-11)-PADRE). All protocols could be used for testing any epitope vaccine constructed in your lab and composed of other T cell epitopes using the appropriate peptides in tests for evaluation of humoral and cellular immune responses.

  15. An economic analysis of adult hepatitis B vaccination in China.

    Science.gov (United States)

    Zheng, Hui; Wang, Fu-zhen; Zhang, Guo-min; Cui, Fu-qiang; Wu, Zhen-hua; Miao, Ning; Sun, Xiao-jin; Liang, Xiao-feng; Li, Li

    2015-11-27

    With the universal infant hepatitis B vaccination (HepB) program, China has made remarkable achievements to prevent and control hepatitis B. In order to further reduce hepatitis B virus (HBV) infection, the Chinese government is considering implementing a widespread adult HBV vaccination campaign. We performed an economic analysis of two different adult HepB vaccination strategies for 21-59-years-olds: vaccination without screening and screening-based vaccination. Cost-benefit analyses were conducted. All 21-59-year-olds were divided into two groups: young adults (ages 21-39) and middle-aged adults (ages 40-59). Costs and benefits were estimated using the direct cost and societal (direct and indirect costs) perspectives. All costs and benefits were adjusted to 2014 US dollars, where future values were discounted at a 3% annual rate. We calculated benefit-cost ratios (BCRs) of the two vaccination strategies for the two different age groups. Sensitivity analyses varied key parameters within plausible ranges. Among young adults, the direct and societal BCRs for a vaccination campaign with no screening would be 1.06 and 1.42; with a screening-based vaccination campaign, the model estimated the direct and societal BCRs would be 1.19 and 1.73. Among middle-aged adults, the direct and societal BCRs for a vaccination campaign without screening would be 0.59 and 0.59; with a screening-based vaccination campaign, the model estimated the direct and societal BCRs would be 0.68 and 0.73. The results of our study support a HepB vaccination campaign for young adults. Additionally, a vaccination campaign with screening appeared to provide greater value than a vaccination without screening. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Performance characteristics and comparison of Abbott and artus real-time systems for hepatitis B virus DNA quantification.

    Science.gov (United States)

    Ismail, Ashrafali M; Sivakumar, Jayashree; Anantharam, Raghavendran; Dayalan, Sujitha; Samuel, Prasanna; Fletcher, Gnanadurai J; Gnanamony, Manu; Abraham, Priya

    2011-09-01

    Virological monitoring of hepatitis B virus (HBV) DNA is critical to the management of HBV infection. With several HBV DNA quantification assays available, it is important to use the most efficient testing system for virological monitoring. In this study, we evaluated the performance characteristics and comparability of three HBV DNA quantification systems: Abbott HBV real-time PCR (Abbott PCR), artus HBV real-time PCR with QIAamp DNA blood kit purification (artus-DB), and artus HBV real-time PCR with the QIAamp DSP virus kit purification (artus-DSP). The lower limits of detection of these systems were established against the WHO international standards for HBV DNA and were found to be 1.43, 82, and 9 IU/ml, respectively. The intra-assay and interassay coefficients of variation of plasma samples (1 to 6 log(10) IU/ml) ranged between 0.05 to 8.34% and 0.16 to 3.48% for the Abbott PCR, 1.53 to 26.85% and 0.50 to 12.89% for artus-DB, and 0.29 to 7.42% and 0.94 to 3.01% for artus-DSP, respectively. Ninety HBV clinical samples were used for comparison of assays, and paired quantitative results showed strong correlation by linear regression analysis (artus-DB with Abbott PCR, r = 0.95; Abbott PCR with artus-DSP, r = 0.97; and artus-DSP with artus-DB, r = 0.94). Bland-Altman analysis showed a good level of agreement for Abbott PCR and artus-DSP, with a mean difference of 0.10 log(10) IU/ml and limits of agreement of -0.91 to 1.11 log(10) IU/ml. No genotype-specific bias was seen in all three systems for HBV genotypes A, C, and D, which are predominant in this region. This finding illustrates that the Abbott real-time HBV and artus-DSP systems show more comparable performance than the artus-DB system, meeting the current guidelines for assays to be used in the management of hepatitis B.

  17. Strategies to enhance immunogenicity of cDNA vaccine encoded antigens by modulation of antigen processing

    NARCIS (Netherlands)

    Platteel, Anouk C M; Marit de Groot, A; Andersen, Peter; Ovaa, Huib; Kloetzel, Peter M; Mishto, Michele; Sijts, Alice J A M

    2016-01-01

    Most vaccines are based on protective humoral responses while for intracellular pathogens CD8(+) T cells are regularly needed to provide protection. However, poor processing efficiency of antigens is often a limiting factor in CD8(+) T cell priming, hampering vaccine efficacy. The multistage cDNA

  18. Antiviral immunity in fish – functional analysis using DNA vaccination as a tool

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lorenzen, Ellen; Einer-Jensen, Katja

    2013-01-01

    fingerlings. Vaccination of fish at an early stage appears advantageous, since larger fish require higher doses of vaccine to be protected. Even in fish with an average size of 0.5 g at the time of vaccination, good protection can be obtained. Interestingly, immunity is established already a few days after...... and cellular components both play a role in the long lasting protection. The similarity of the functional immune response profile to that induced by a natural virus infection is striking and is most likely one of the major reasons for the efficacy of the rhabdovirus DNA vaccines. Although other elements like...... protein gene suggest that the structural requirements for antigenicity are different from the requirements for immunogenicity....

  19. Immune responses elicited by Mycoplasma hyopneumoniae recombinant antigens and DNA constructs with potential for use in vaccination against porcine enzootic pneumonia.

    Science.gov (United States)

    Virginio, Veridiana Gomes; Gonchoroski, Taylor; Paes, Jéssica Andrade; Schuck, Desirée Cigaran; Zaha, Arnaldo; Ferreira, Henrique Bunselmeyer

    2014-10-07

    Mycoplasma hyopneumoniae is the etiological agent of porcine enzootic pneumonia (PEP) and causes major economic losses to the pig industry worldwide. Commercially available vaccines provide only partial protection and are relatively expensive. In this study, we assessed the humoral and cellular immune responses to three recombinant antigens of M. hyopneumoniae. Immune responses to selected domains of the P46, HSP70 and MnuA antigens (P46102-253, HSP70212-601 and MnuA182-378), delivered as recombinant subunit or DNA vaccines, were evaluated in BALB/c mice. All purified recombinant antigens and two DNA vaccines, pcDNA3.1(+)/HSP70212-601 and pcDNA3.1(+)/MnuA182-378, elicited a strong humoral immune response, indicated by high IgG levels in the serum. The cellular immune response was assessed by detection of IFN-γ, IL-10 and IL-4 in splenocyte culture supernatants. The recombinant subunit and DNA vaccines induced Th1-polarized immune responses, as evidenced by increased levels of IFN-γ. All recombinant subunit vaccines and the pcDNA3.1(+)/MnuA182-378 vaccine also induced the secretion of IL-10, a Th2-type cytokine, in large quantities. The mixed Th1/Th2-type response may elicit an effective immune response against M. hyopneumoniae, suggesting that P46102-253, HSP70212-601 and MnuA182-378 are potential novel and promising targets for the development of vaccines against PEP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Dendritic cell targeted liposomes–protamine–DNA complexes mediated by synthetic mannosylated cholestrol as a potential carrier for DNA vaccine

    International Nuclear Information System (INIS)

    Li Pan; Chen Simu; Jiang Yuhong; Jiang Jiayu; Zhang Zhirong; Sun Xun

    2013-01-01

    To construct mannosylated liposomes/protamine/DNA (LPD) carriers for DNA vaccine targeting to dendritic cells (DCs), a mannosylated cholesterol derivative (Man-C6-Chol) was synthesized via simple ester linkage and amide bonds. Then, the Man-C6-Chol was applied to LPD formulation as a synthetic ligand. The physicochemical properties of mannosylated LPD (Man-LPD) were first evaluated, including the size and zeta potential, morphology and the ability to protect DNA against DNase I degradation. Man-LPD showed a small size with a stable viral-like structure. In comparison to non-mannose liposomes/LPD (Man-free liposomes/LPD), mannosylated liposomes/LPD (Man-liposomes/Man-LPD) exhibited higher efficiency in both intracellular uptake (2.3-fold) and transfection (4.5-fold) in vitro. Subsequent MTT assays indicated that the LPD carriers had low toxicity on the tested cells. Afterwards, the investigation into the maturation activation on primary bone marrow-derived DCs (BMDCs) showed that both Man-LPD and Man-free LPD induced remarkable up-regulation of CD80, CD86 and CD40 on BMDCs. Inspired by these studies, we can conclude that the synthetic mannosylated LPD targeting to DCs was a potential carrier for DNA vaccine. (paper)