WorldWideScience

Sample records for hbt-ep

  1. Initial Ferritic Wall Mode studies on HBT-EP

    Science.gov (United States)

    Hughes, Paul; Bialek, J.; Boozer, A.; Mauel, M. E.; Levesque, J. P.; Navratil, G. A.

    2013-10-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective US component test facility and DEMO. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these experiments. Although the ferritic wall mode (FWM) was seen in a linear machine, the FWM was not observed in JFT-2M, probably due to eddy current stabilization. Using its high-resolution magnetic diagnostics and positionable walls, HBT-EP has begun exploring the dynamics and stability of plasma interacting with high-permeability ferritic materials tiled to reduce eddy currents. We summarize a simple model for plasma-wall interaction in the presence of ferromagnetic material, describe the design of a recently-installed set of ferritic shell segments, and report initial results. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  2. Passive stabilization of MHD instabilities at high βn in the HBT-EP Tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Gates, David A. [Columbia Univ., New York, NY (United States)

    1993-01-01

    The HBT-EP Tokamak has been designed, built, and is now fully operational in the Columbia University Plasma Physics Laboratory. One of the primary purposes of this facility is to study the effects of a conducting wall on the MHD modes that lead up to plasma disruptions. Of particular interest are the types of instabilities that are driven by the kinetic pressure of the plasma, because these instabilities are believed to be responsible for the present limit to plasma β with β ∝/B2, where the is the volume averaged pressure and B is the magnetic field. To this end, a movable conducting wall has been installed inside the HBT-EP vacuum chamber. The primary result of this thesis are the initial results from experiments that study the effect of this wall on plasma instabilities. The experiment shows that the conducting wall significantly reduces the growth rate of instabilities that precede a plasma disruption that occurs when the value of β is near the Troyon limit. The location of the wall required for significant stabilization is b/a ~1.2 where a is the minor radius of the plasma and b is the minor radial location of the wall. Moving the wall closer than b/a = 1.2 slightly degrades the stabilizing effect, which is consistent with recent theories.

  3. Passive stabilization of MHD instabilities at high βn in the HBT-EP Tokamak

    International Nuclear Information System (INIS)

    Gates, D.A.

    1993-01-01

    The HBT-EP Tokamak has been designed, built, and is now fully operational in the Columbia University Plasma Physics Laboratory. One of the primary purposes of this facility is to study the effects of a conducting wall on the MHD modes that lead up to plasma disruptions. Of particular interest are the types of instabilities that are driven by the kinetic pressure of the plasma, because these instabilities are believed to be responsible for the present limit to plasma β with β ∝ /B 2 , where the is the volume averaged pressure and B is the magnetic field. To this end, a movable conducting wall has been installed inside the HBT-EP vacuum chamber. The primary result of this thesis are the initial results from experiments that study the effect of this wall on plasma instabilities. The experiment shows that the conducting wall significantly reduces the growth rate of instabilities that precede a plasma disruption that occurs when the value of β is near the Troyon limit. The location of the wall required for significant stabilization is b/a ∼1.2 where a is the minor radius of the plasma and b is the minor radial location of the wall. Moving the wall closer than b/a = 1.2 slightly degrades the stabilizing effect, which is consistent with recent theories

  4. Active Control of 2/1 Magnetic Islands in the HBT-EP Tokamak

    International Nuclear Information System (INIS)

    Navratil, G.A.; Cates, C.; Mauel, M.E.; Maurer, D.; Nadle, D.; Taylor, E.; Xiao, Q.; Wurden, G.A.; Reass, W.A.

    1997-01-01

    Closed and open loop control techniques were applied to growing m/n=2/1 rotating islands in wall stabilized plasmas in the HBT-EP tokamak. The approach taken by HBT-EP combines an adjustable segmented conducting wall (which slows the growth or stabilizes ideal external kinks) with a number of small (6degree wide) saddle coils located between the gaps of the conducting wall. In this paper we report demonstration of 2-phase island rotation control from 5 kHz to 15 kHz and observation of the phase instability which are well modeled by the single-helicity, predictions of nonlinear Rutherford island dynamics for 2/1 tearing modes including important effects of ion inertia and FLR which appears as a damping term in the model equations. The closed loop response of active feedback control of the 2/1 mode at moderate gain was observed to be in good agreement with the theory. We have also demonstrated suppression of the 2/1 island growth using an asynchronous frequency modulation drive which maintains the flow damping of the island by application of rotating control fields with frequencies alternating above and below the natural mode frequency. This frequency modulation control technique was also able to prevent disruptions normally observed to follow giant sawtooth crashes in the plasma core

  5. Active feedback control of kink modes in tokamaks: 3D VALEN modeling and HBT-EP experiments

    International Nuclear Information System (INIS)

    Maurer, D.A.

    2002-01-01

    Significant progress in the development of active feedback control as a robust technique for the suppression of the wall stabilized external kink or resistive wall mode (RWM) in tokamaks has been achieved through a combination of modeling and experiments. Results from the 3D feedback modeling code VALEN, which serves as the primary analysis and feedback control design tool for RWM studies on the HBT-EP and DIII-D experiments, are in good agreement with observations. VALEN modeling of proposed advanced control system designs on HBT-EP, DIII-D, NSTX, and FIRE are predicted to approach the ideal wall beta limit in agreement with design principles based on simple single mode analytic theory of RWM feedback control. Benchmark experiments on HBT-EP have shown suppression of plasma disruption at rational edge q values using active feedback control in agreement with model predictions. In addition, the observation in HBT-EP of the plasma amplification of static resonant magnetic fields in plasmas marginally stable to the RWM is in agreement with theory. (author)

  6. Operational Performance of the Two-Channel 10 Megawatt Feedback Amplifier System for MHD Control on the Columbia University HBT-EP Tokamak

    International Nuclear Information System (INIS)

    Reass, W.A.; Wurden, G.A.

    1997-01-01

    The operational characteristics and performance of the two channel 10 Megawatt MHD feedback control system as installed by Los Alamos National Laboratory on the Columbia University HBT-EP tokamak are described. In the present configuration, driving independent 300 microH saddle coil sets, each channel can deliver 1100 Amperes and 16 kV peak to peak. Full power bandwidth is about 12 kHz, with capabilities at reduced power to 30 kHz. The present system topology is designed to suppress magnetohydrodynamic activity with m=2, n=1 symmetry. Application of either static (single phase) or rotating (twin phased) magnetic perturbations shows the ability to spin up or slow down the plasma, and also prevent (or cause) so-called ''mode-locking''. Open loop and active feedback experiments using a digital signal processor (DSP) have been performed on the HBT-EP tokamak and initial results show the ability to manipulate the plasma MHD mode frequency

  7. High-speed, multi-input, multi-output control using GPU processing in the HBT-EP tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rath, N., E-mail: Nikolaus@rath.org [Columbia University, Rm 200 Mudd, 500 W 120th St, New York, NY - 10027 (United States); Bialek, J.; Byrne, P.J.; DeBono, B.; Levesque, J.P.; Li, B.; Mauel, M.E.; Maurer, D.A.; Navratil, G.A.; Shiraki, D. [Columbia University, Rm 200 Mudd, 500 W 120th St, New York, NY - 10027 (United States)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer We present a GPU based system for magnetic control of perturbed equilibria. Black-Right-Pointing-Pointer Cycle times are below 5 {mu}s and I/O latencies below 10 {mu}s for 96 inputs and 64 outputs. Black-Right-Pointing-Pointer A new architecture removes host RAM and CPU from the control cycle. Black-Right-Pointing-Pointer GPU and DA/AD modules operate independently and communicate via PCIe peer-to-peer connections. Black-Right-Pointing-Pointer The Linux host system does not require real-time extensions. - Abstract: We report on the design of a new plasma control system for the HBT-EP tokamak that utilizes a graphical processing unit (GPU) to magnetically control the 3D perturbed equilibrium state [1] of the plasma. The control system achieves cycle times of 5 {mu}s and I/O latencies below 10 {mu}s for up to 96 inputs and 64 outputs. The number of state variables is in the same order. To handle the resulting computational complexity under the given time constraints, the control algorithms are designed for massively parallel processing. The necessary hardware resources are provided by an NVIDIA Tesla M2050 GPU, offering a total of 448 computing cores running at 1.3 GHz each. A new control architecture allows control input from magnetic diagnostics to be pushed directly into GPU memory by a D-TACQ ACQ196 digitizer, and control output to be pulled directly from GPU memory by two D-TACQ AO32 analog output modules. By using peer-to-peer PCI express connections, this technique completely eliminates the use of host RAM and central processing unit (CPU) from the control cycle, permitting single-digit microsecond latencies on a standard Linux host system without any real-time extensions.

  8. Design, construction, and first operational results of a 5 megawatt feedback controlled amplifier system for disruption control on the Columbia University HBT-EP tokamak

    International Nuclear Information System (INIS)

    Reass, W.A.; Alvestad, H.A.; Bartsch, R.R.; Wurden, G.A.; Ivers, T.H.; Nadle, D.L.

    1995-01-01

    This paper presents the electrical design and first operational results of a 5 Megawatt feedback controlled amplifier system designed to drive a 300 uH saddle coil set on the ''HBT-EP'' tokamak. It will be used to develop various plasma feedback techniques to control and inhibit the onset of plasma disruptions that are observed in high ''B'' plasmas. To provide a well characterized system, a high fidelity, high power closed loop amplifier system has been refurbished from the Los Alamos ''ZT-P'' equilibrium feedback system. In it's configuration developed for the Columbia HBT-EP tokamak, any desired waveform may be generated within a I 100 ampere and 16 kV peak to peak dynamic range. An energy storage capacitor bank presently limits the effective full power pulse width to 10 mS. The full power bandwidth driving the saddle coil set is ∼12 kHz, with bandwidth at reduced powers exceeding 30 kHz. The system is designed similar to a grounded cathode, push-pull, transformer coupled, tube type amplifier system. 'Me push pull amplifier consists of 6 each Machlett ML8618 magnetically beamed triodes, 3 on each end of the (center tapped) coupling transformer. The transformer has .I volt-seconds of core and a 1:1 turns ratio. The transformer is specially designed for high power, low leakage inductance, and high bandwidth. Each array of ML8618's is (grid) driven with a fiber optic controlled hotdeck with a 3CXI0,000A7 (triode) output. To linearize the ML8618 grid drive, a minor feedback loop in the hotdeck is utilized. Overall system response is controlled by active feedback of the saddle coil current, derived from a coaxial current viewing resistor. The detailed electrical design of the power amplifier, transformer, and feedback system will be provided in addition to recent HBT-EP operational results

  9. High-Speed imaging of the plasma response to resonant magnetic perturbations in HBT-EP

    International Nuclear Information System (INIS)

    Angelini, Sarah M; Levesque, Jeffrey P; Mauel, Michael E; Navratil, Gerald A

    2015-01-01

    A Phantom v7.3 fast digital camera was used to study visible light fluctuations in the High Beta Tokamak–Extended Pulse (HBT–EP). This video data is the first to be used to analyze and understand the behavior of long wavelength kink perturbations in a wall-stabilized tokamak. The light was mostly comprised of Dα 656 nm light. Profiles of the plasma light at the midplane were hollow with a radial scale length of approximately 4 cm at the plasma edge. The fast camera was also used to measure the plasma’s response to applied helical magnetic perturbations. The programmed toroidal phase angle of the resonant magnetic perturbation (RMP) was directly inferred from the resulting images of the plasma response. The plasma response and the intensity of the RMP were compared under different conditions. The resulting amplitude correlations are consistent with previous measurements of the static response using an array of magnetic sensors. (paper)

  10. The influence of a conducting wall on disruptions in HBT-EP

    International Nuclear Information System (INIS)

    Kombargi, R.

    1997-01-01

    The characteristics of long wavelength magnetohydrodynamic (MHD) disruptive instabilities have been studied in a tokamak device with segmented and movable conducting walls. Coupling between the wall and the plasma was varied by systematically adjusting the radial position, b, of the conducting plates relative to the plasma surface of minor radius a. By pre-selecting the total plasma current ramp rate (dI p /dt), disruptive instabilities driven either by large edge currents or high plasma pressure were studied. Specifically, three types of disruptions caused by both external (to the plasma) and internal instabilities were obtained by changing the plasma-wall separation (b/a) and the temporal evolution of the total plasma current. The properties of these disruptions were examined using a variety of magnetic pickup coils and arrays of soft x-ray detectors. Experiments demonstrated that rapidly developing, low-n kink instabilities were suppressed if the conducting wall was positioned sufficiently near the plasma (b/a p /dt > 0) was maintained. Conducting wall stabilization of fast growing external instabilities was observed in discharges with high edge current and in plasmas with β-values near the ideal MED stability boundary. When the conducting wall was near the plasma surface and as the current profile evolved in time (dI p /dt < 0), slowly growing internal instabilities would also lead to disruptions. Disruption mechanisms for plasmas with b/a=1.52 and b/a=1.07 were compared. Differences in the precursor modes, the speed of the thermal collapse and the chronological sequence of events were found. In summary, the disruptions with an external character were eliminated when the conducting wall was moved from b/a=1.52 to b/a<1.2. Internal disruptions could not be averted even with b/a=1.07

  11. [High beta tokamak research and plasma theory

    International Nuclear Information System (INIS)

    1990-01-01

    Our activities on High Beta Tokamak Research during the past 12 months of the present budget period can be divided into four areas: completion of kink mode studies in HBT; completion of carbon impurity transport studies in HBT; design of HBT-EP; and construction of HBT-EP. Each of these is described briefly in the sections of this progress report

  12. The high beta tokamak-extended pulse magnetohydrodynamic mode control research program

    International Nuclear Information System (INIS)

    Maurer, D A; Bialek, J; Byrne, P J; De Bono, B; Levesque, J P; Li, B Q; Mauel, M E; Navratil, G A; Pedersen, T S; Rath, N; Shiraki, D

    2011-01-01

    The high beta tokamak-extended pulse (HBT-EP) magnetohydrodynamic (MHD) mode control research program is studying ITER relevant internal modular feedback control coil configurations and their impact on kink mode rigidity, advanced digital control algorithms and the effects of plasma rotation and three-dimensional magnetic fields on MHD mode stability. A new segmented adjustable conducting wall has been installed on the HBT-EP and is made up of 20 independent, movable, wall shell segments instrumented with three distinct sets of 40 saddle coils, totaling 120 in-vessel modular feedback control coils. Each internal coil set has been designed with varying toroidal angular coil coverage of 5, 10 and 15 0 , spanning the toroidal angle range of an ITER port plug based internal coil to test resistive wall mode (RWM) interaction and multimode MHD plasma response to such highly localized control fields. In addition, we have implemented 336 new poloidal and radial magnetic sensors to quantify the applied three-dimensional fields of our control coils along with the observed plasma response. This paper describes the design and implementation of the new control shell incorporating these control and sensor coils on the HBT-EP, and the research program plan on the upgraded HBT-EP to understand how best to optimize the use of modular feedback coils to control instability growth near the ideal wall stabilization limit, answer critical questions about the role of plasma rotation in active control of the RWM and the ferritic resistive wall mode, and to improve the performance of MHD control systems used in fusion experiments and future burning plasma systems.

  13. Fast, multi-channel real-time processing of signals with microsecond latency using graphics processing units

    Energy Technology Data Exchange (ETDEWEB)

    Rath, N., E-mail: Nikolaus@rath.org; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.; Peng, Q. [Department of Applied Physics and Applied Mathematics, Columbia University, 500 W 120th St, New York, New York 10027 (United States); Kato, S. [Department of Information Engineering, Nagoya University, Nagoya (Japan)

    2014-04-15

    Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The system runs all signal processing exclusively on a Graphics Processing Unit (GPU) to achieve real-time performance with latencies below 8 μs. Signals are transferred into and out of the GPU using PCI Express peer-to-peer direct-memory-access transfers without involvement of the central processing unit or host memory. Tests were performed on the feedback control system of the HBT-EP tokamak using forty 16-bit floating point inputs and outputs each and a sampling rate of up to 250 kHz. Signals were digitized by a D-TACQ ACQ196 module, processing done on an NVIDIA GTX 580 GPU programmed in CUDA, and analog output was generated by D-TACQ AO32CPCI modules.

  14. Fast, multi-channel real-time processing of signals with microsecond latency using graphics processing units

    International Nuclear Information System (INIS)

    Rath, N.; Levesque, J. P.; Mauel, M. E.; Navratil, G. A.; Peng, Q.; Kato, S.

    2014-01-01

    Fast, digital signal processing (DSP) has many applications. Typical hardware options for performing DSP are field-programmable gate arrays (FPGAs), application-specific integrated DSP chips, or general purpose personal computer systems. This paper presents a novel DSP platform that has been developed for feedback control on the HBT-EP tokamak device. The system runs all signal processing exclusively on a Graphics Processing Unit (GPU) to achieve real-time performance with latencies below 8 μs. Signals are transferred into and out of the GPU using PCI Express peer-to-peer direct-memory-access transfers without involvement of the central processing unit or host memory. Tests were performed on the feedback control system of the HBT-EP tokamak using forty 16-bit floating point inputs and outputs each and a sampling rate of up to 250 kHz. Signals were digitized by a D-TACQ ACQ196 module, processing done on an NVIDIA GTX 580 GPU programmed in CUDA, and analog output was generated by D-TACQ AO32CPCI modules

  15. High Beta Tokamak research

    International Nuclear Information System (INIS)

    Navratil, G.A.; Mauel, M.E.; Ivers, T.H.; Sankar, M.K.V.; Eisner, E.; Gates, D.; Garofalo, A.; Kombargi, R.; Maurer, D.; Nadle, D.; Xiao, Q.

    1993-01-01

    During the past 6 months, experiments have been conducted with the HBT-EP tokamak in order to (1) test and evaluate diagnostic systems, (2) establish basic machine operation, (3) document MHD behavior as a function of global discharge parameters, (4) investigate conditions leading to passive stabilization of MHD instabilities, and (5) quantify the external saddle coil current required for DC mode locking. In addition, the development and installation of new hardware systems has occurred. A prototype saddle coil was installed and tested. A five-position (n,m) = (1,2) external helical saddle coil was attached for mode-locking experiments. And, fabrication of the 32-channel UV tomography and the multipass Thomson scattering diagnostics have begun in preparation for installation later this year

  16. Design and installation of a ferromagnetic wall in tokamak geometry

    International Nuclear Information System (INIS)

    Hughes, P. E.; Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A.

    2015-01-01

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability

  17. A high-power spatial filter for Thomson scattering stray light reduction

    Science.gov (United States)

    Levesque, J. P.; Litzner, K. D.; Mauel, M. E.; Maurer, D. A.; Navratil, G. A.; Pedersen, T. S.

    2011-03-01

    The Thomson scattering diagnostic on the High Beta Tokamak-Extended Pulse (HBT-EP) is routinely used to measure electron temperature and density during plasma discharges. Avalanche photodiodes in a five-channel interference filter polychromator measure scattered light from a 6 ns, 800 mJ, 1064 nm Nd:YAG laser pulse. A low cost, high-power spatial filter was designed, tested, and added to the laser beamline in order to reduce stray laser light to levels which are acceptable for accurate Rayleigh calibration. A detailed analysis of the spatial filter design and performance is given. The spatial filter can be easily implemented in an existing Thomson scattering system without the need to disturb the vacuum chamber or significantly change the beamline. Although apertures in the spatial filter suffer substantial damage from the focused beam, with proper design they can last long enough to permit absolute calibration.

  18. A multimode analytic cylindrical model for the stabilization of the resistive wall modes

    International Nuclear Information System (INIS)

    Miron, I G

    2008-01-01

    A dispersion relation concerning the stability of the resistive wall modes within a multimode cylindrical analytical model is presented. This paper generalizes the Fitzpatrick-Aydemir model (Fitzpatrick R and Aydemir A Y 1996 Nucl. Fusion 1 11) in the presence of an unlimited number of neighboring modes for a tokamak plasma column surrounded by a resistive shell and a feedback system consisting of a number of detector and active feedback coils. The model is applied to the HBT-EP tokamak (Cates C et al 2000 Phys. Plasmas 7 3133) with its peculiar feedback system disposal. Finally, an analytical dispersion relation is obtained that can be solved by using a simple MATLAB code

  19. Design and installation of a ferromagnetic wall in tokamak geometry

    Energy Technology Data Exchange (ETDEWEB)

    Hughes, P. E., E-mail: peh2109@columbia.edu; Levesque, J. P.; Rivera, N.; Mauel, M. E.; Navratil, G. A. [Columbia University Plasma Physics Laboratory, Columbia University, 102 S.W. Mudd, 500 W. 120th St., New York, New York 10027 (United States)

    2015-10-15

    Low-activation ferritic steels are leading material candidates for use in next-generation fusion development experiments such as a prospective component test facility and DEMO power reactor. Understanding the interaction of plasmas with a ferromagnetic wall will provide crucial physics for these facilities. In order to study ferromagnetic effects in toroidal geometry, a ferritic wall upgrade was designed and installed in the High Beta Tokamak–Extended Pulse (HBT-EP). Several material options were investigated based on conductivity, magnetic permeability, vacuum compatibility, and other criteria, and the material of choice (high-cobalt steel) is characterized. Installation was accomplished quickly, with minimal impact on existing diagnostics and overall machine performance, and initial results demonstrate the effects of the ferritic wall on plasma stability.

  20. High resolution detection and excitation of resonant magnetic perturbations in a wall-stabilized tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Maurer, David A. [Physics Department, Auburn University, Auburn, Alabama 36849 (United States); Shiraki, Daisuke; Levesque, Jeffrey P.; Bialek, James; Angelini, Sarah; Byrne, Patrick; DeBono, Bryan; Hughes, Paul; Mauel, Michael E.; Navratil, Gerald A.; Peng Qian; Rhodes, Dov; Rath, Nickolaus; Stoafer, Christopher [Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027 (United States)

    2012-05-15

    We report high-resolution detection of the 3D plasma magnetic response of wall-stabilized tokamak discharges in the High Beta Tokamak-Extended Pulse [T. H. Ivers et al., Phys. Plasmas 3, 1926 (1996)] device. A new adjustable conducting wall has been installed on HBT-EP made up of 20 independent, movable, wall segments instrumented with three distinct sets of 40 modular coils that can be independently driven to generate a wide variety of magnetic perturbations. High-resolution detection of the plasma response is made with 216 poloidal and radial magnetic sensors that have been located and calibrated with high-accuracy. Static and dynamic plasma responses to resonant and non-resonant magnetic perturbations are observed through measurement of the step-response following a rapid change in the toroidal phase of the applied perturbations. Biorthogonal decomposition of the full set of magnetic sensors clearly defines the structures of naturally occurring external kinks as being composed of independent m/n = 3/1 and 6/2 modes. Resonant magnetic perturbations were applied to discharges with pre-existing, saturated m/n = 3/1 external kink mode activity. This m/n = 3/1 kink mode was observed to lock to the applied perturbation field. During this kink mode locked period, the plasma resonant response is characterized by a linear, a saturated, and a disruptive plasma regime dependent on the magnitude of the applied field and value of the edge safety factor and plasma rotation.

  1. Modeling of active control of external magnetohydrodynamic instabilities

    International Nuclear Information System (INIS)

    Bialek, James; Boozer, Allen H.; Mauel, M.E.; Navratil, G.A.

    2001-01-01

    A general circuit formulation of resistive wall mode (RWM) feedback stabilization developed by Boozer [Phys. Plasmas 5, 3350 (1998)] has been used as the basis for the VALEN computer code that calculates the performance of an active control system in arbitrary geometry. The code uses a finite element representation of a thin shell structure in an integral formulation to model arbitrary conducting walls. This is combined with a circuit representation of stable and unstable plasma modes. Benchmark comparisons of VALEN results with large aspect ratio analytic model of the current driven kink mode are in very good agreement. VALEN also models arbitrary sensors, control coils, and the feedback logic connecting these sensors and control coils to provide a complete simulation capability for feedback control of plasma instabilities. VALEN modeling is in good agreement with experimental results on DIII-D [Garofalo et al., Nucl. Fusion 40, 1491 (2000)] and HBT-EP [Cates et al., Phys. Plasmas 7, 3133 (2000)]. VALEN feedback simulations have also been used to evaluate and optimize the sensor/coil configurations for present and planned RWM experiments on DIII-D. These studies have shown a clear advantage for the use of local poloidal field sensors driving a 'mode control' feedback logic control loop and configurations which minimize the control coil coupling to the stabilizing resistive wall

  2. Plasma Emission Profile Recreation using Soft X-Ray Tomography

    Science.gov (United States)

    Page, J. W.; Mauel, M. E.; Levesque, J. P.

    2015-11-01

    With sufficient views from multiple diode arrays, soft X-ray tomography is an invaluable plasma diagnostic because it is a non-perturbing method to reconstruct the emission within the interior of the plasma. In preparation for the installation of new SXR arrays in HBT-EP, we compute high-resolution tomographic reconstructions of discharges having kink-like structures that rotate nearly rigidly. By assuming a uniform angular mapping from the kink mode rotation, Δϕ ~ ωΔ t, a temporal sequence from a single 16-diode fan array represents as many as 16 x 100 independent views. We follow the procedure described by Wang and Granetz and use Bessel basis functions to take the inverse Radon transform. This transform is fit to our data using a least-squares method to estimate the internal SXR emissivity as a sum of polar functions. By varying different parameters of the transformation, we optimize the quality of our recreation of the emission profile and quantify how the reconstruction changes with the azimuthal order of the transform. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  3. Updated design for a low-noise, wideband transimpedance photodiode amplifier

    International Nuclear Information System (INIS)

    Paul, S. F.; Marsala, R.

    2006-01-01

    The high-speed rotation diagnostic developed for Columbia's HBT-EP tokamak requires a high quantum efficiency, very low drift detector/amplifier combination. An updated version of the circuit developed originally for the beam emission spectroscopy experiment on TFTR is being used. A low dark current (2 nA at 15 V bias), low input source capacitance (2 pF) FFD-040 N-type Si photodiode is operated in photoconductive mode. It has a quantum efficiency of 40% at the 468.6 nm (He II line that is being observed). A low-noise field-effect transistor (InterFET IFN152 with e Na =1.2 nV/√Hz) is used to reduce the noise in the transimpedance preamplifier (A250 AMPTEK op-amp) and a very high speed (unity-gain bandwidth=200 MHz) voltage feedback amplifier (LM7171) is used to restore the frequency response up to 100 kHz. This type of detector/amplifier is photon-noise limited at this bandwidth for incident light with a power of >∼2 nW. The circuit has been optimized using SIMETRIX 4.0 SPICE software and a prototype circuit has been tested successfully. Though photomultipliers and avalanche photodiodes can detect much lower light levels, for light levels >2 nW and a 10 kHz bandwidth, this detector/amplifier combination is more sensitive because of the absence of excess (internally generated) noise

  4. MHD Effects of a Ferritic Wall on Tokamak Plasmas

    Science.gov (United States)

    Hughes, Paul E.

    It has been recognized for some time that the very high fluence of fast (14.1MeV) neutrons produced by deuterium-tritium fusion will represent a major materials challenge for the development of next-generation fusion energy projects such as a fusion component test facility and demonstration fusion power reactor. The best-understood and most promising solutions presently available are a family of low-activation steels originally developed for use in fission reactors, but the ferromagnetic properties of these steels represent a danger to plasma confinement through enhancement of magnetohydrodynamic instabilities and increased susceptibility to error fields. At present, experimental research into the effects of ferromagnetic materials on MHD stability in toroidal geometry has been confined to demonstrating that it is still possible to operate an advanced tokamak in the presence of ferromagnetic components. In order to better quantify the effects of ferromagnetic materials on tokamak plasma stability, a new ferritic wall has been installated in the High Beta Tokamak---Extended Pulse (HBT-EP) device. The development, assembly, installation, and testing of this wall as a modular upgrade is described, and the effect of the wall on machine performance is characterized. Comparative studies of plasma dynamics with the ferritic wall close-fitting against similar plasmas with the ferritic wall retracted demonstrate substantial effects on plasma stability. Resonant magnetic perturbations (RMPs) are applied, demonstrating a 50% increase in n = 1 plasma response amplitude when the ferritic wall is near the plasma. Susceptibility of plasmas to disruption events increases by a factor of 2 or more with the ferritic wall inserted, as disruptions are observed earlier with greater frequency. Growth rates of external kink instabilities are observed to be twice as large in the presence of a close-fitting ferritic wall. Initial studies are made of the influence of mode rotation frequency

  5. Research using small tokamaks

    International Nuclear Information System (INIS)

    1991-05-01

    discharges, production and self-organization of a turbulent plasma column in a spheromak (''SK-CG-1''), and (iv) a planned large-aspect ratio, high-beta tokamak (HBT-EP) experiment. Refs, figs and tabs

  6. GPUbased, Microsecond Latency, HectoChannel MIMO Feedback Control of Magnetically Confined Plasmas

    Science.gov (United States)

    Rath, Nikolaus

    Feedback control has become a crucial tool in the research on magnetic confinement of plasmas for achieving controlled nuclear fusion. This thesis presents a novel plasma feedback control system that, for the first time, employs a Graphics Processing Unit (GPU) for microsecond-latency, real-time control computations. This novel application area for GPU computing is opened up by a new system architecture that is optimized for low-latency computations on less than kilobyte sized data samples as they occur in typical plasma control algorithms. In contrast to traditional GPU computing approaches that target complex, high-throughput computations with massive amounts of data, the architecture presented in this thesis uses the GPU as the primary processing unit rather than as an auxiliary of the CPU, and data is transferred from A-D/D-A converters directly into GPU memory using peer-to-peer PCI Express transfers. The described design has been implemented in a new, GPU-based control system for the High-Beta Tokamak - Extended Pulse (HBT-EP) device. The system is built from commodity hardware and uses an NVIDIA GeForce GPU and D-TACQ A-D/D-A converters providing a total of 96 input and 64 output channels. The system is able to run with sampling periods down to 4 μs and latencies down to 8 μs. The GPU provides a total processing power of 1.5 x 1012 floating point operations per second. To illustrate the performance and versatility of both the general architecture and concrete implementation, a new control algorithm has been developed. The algorithm is designed for the control of multiple rotating magnetic perturbations in situations where the plasma equilibrium is not known exactly and features an adaptive system model: instead of requiring the rotation frequencies and growth rates embedded in the system model to be set a priori, the adaptive algorithm derives these parameters from the evolution of the perturbation amplitudes themselves. This results in non-linear control

  7. Center for Momentum Transport and Flow Organization (CMTFO). Final technical report

    International Nuclear Information System (INIS)

    Tynan, George R.; Diamond, P. H.; Ji, H.; Forest, C. B.; Terry, P. W.; Munsat, T.; Brummell, N.

    2013-01-01

    The Center for Momentum Transport and Flow Organization (CMTFO) is a DOE Plasma Science Center formed in late 2009 to focus on the general principles underlying momentum transport in magnetic fusion and astrophysical systems. It is composed of funded researchers from UCSD, UW Madison, U. Colorado, PPPL. As of 2011, UCSD supported postdocs are collaborating at MIT/Columbia and UC Santa Cruz and beginning in 2012, will also be based at PPPL. In the initial startup period, the Center supported the construction of two basic experiments at PPPL and UW Madison to focus on accretion disk hydrodynamic instabilities and solar physics issues. We now have computational efforts underway focused on understanding recent experimental tests of dynamos, solar tachocline physics, intrinsic rotation in tokamak plasmas and L-H transition physics in tokamak devices. In addition, we have the basic experiments discussed above complemented by work on a basic linear plasma device at UCSD and a collaboration at the LAPD located at UCLA. We are also performing experiments on intrinsic rotation and L-H transition physics in the DIII-D, NSTX, C-Mod, HBT EP, HL-2A, and EAST tokamaks in the US and China, and expect to begin collaborations on K-STAR in the coming year. Center funds provide support to over 10 postdocs and graduate students each year, who work with 8 senior faculty and researchers at their respective institutions. The Center has sponsored a mini-conference at the APS DPP 2010 meeting, and co-sponsored the recent Festival de Theorie (2011) with the CEA in Cadarache, and will co-sponsor a Winter School in January 2012 in collaboration with the CMSO-UW Madison. Center researchers have published over 50 papers in the peer reviewed literature, and given over 10 talks at major international meetings. In addition, the Center co-PI, Professor Patrick Diamond, shared the 2011 Alfven Prize at the EPS meeting. Key scientific results from this startup period include initial simulations of the

  8. Center for Momentum Transport and Flow Organization (CMTFO). Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, George R. [University of California, San Diego, CA (United States); Diamond, P. H. [University of California, San Diego, CA (United States); Ji, H. [Princeton Plasma Physics Lab., NJ (United States); Forest, C. B. [Univ. of Wisconsin, Madison, WI (United States); Terry, P. W. [Univ. of Wisconsin, Madison, WI (United States); Munsat, T. [Univ. of Colorado, Boulder, CO (United States); Brummell, N. [Univ. of California, Santa Cruz (United States)

    2013-07-29

    The Center for Momentum Transport and Flow Organization (CMTFO) is a DOE Plasma Science Center formed in late 2009 to focus on the general principles underlying momentum transport in magnetic fusion and astrophysical systems. It is composed of funded researchers from UCSD, UW Madison, U. Colorado, PPPL. As of 2011, UCSD supported postdocs are collaborating at MIT/Columbia and UC Santa Cruz and beginning in 2012, will also be based at PPPL. In the initial startup period, the Center supported the construction of two basic experiments at PPPL and UW Madison to focus on accretion disk hydrodynamic instabilities and solar physics issues. We now have computational efforts underway focused on understanding recent experimental tests of dynamos, solar tachocline physics, intrinsic rotation in tokamak plasmas and L-H transition physics in tokamak devices. In addition, we have the basic experiments discussed above complemented by work on a basic linear plasma device at UCSD and a collaboration at the LAPD located at UCLA. We are also performing experiments on intrinsic rotation and L-H transition physics in the DIII-D, NSTX, C-Mod, HBT EP, HL-2A, and EAST tokamaks in the US and China, and expect to begin collaborations on K-STAR in the coming year. Center funds provide support to over 10 postdocs and graduate students each year, who work with 8 senior faculty and researchers at their respective institutions. The Center has sponsored a mini-conference at the APS DPP 2010 meeting, and co-sponsored the recent Festival de Theorie (2011) with the CEA in Cadarache, and will co-sponsor a Winter School in January 2012 in collaboration with the CMSO-UW Madison. Center researchers have published over 50 papers in the peer reviewed literature, and given over 10 talks at major international meetings. In addition, the Center co-PI, Professor Patrick Diamond, shared the 2011 Alfven Prize at the EPS meeting. Key scientific results from this startup period include initial simulations of the

  9. Final Technical Report for the Center for Momentum Transport and Flow Organization (CMTFO)

    Energy Technology Data Exchange (ETDEWEB)

    Forest, Cary B. [University of Wisconsin-Madison; Tynan, George R. [University of California San Diego

    2013-07-29

    The Center for Momentum Transport and Flow Organization (CMTFO) is a DOE Plasma Science Center formed in late 2009 to focus on the general principles underlying momentum transport in magnetic fusion and astrophysical systems. It is composed of funded researchers from UCSD, UW Madison, U. Colorado, PPPL. As of 2011, UCSD supported postdocs are collaborating at MIT/Columbia and UC Santa Cruz and beginning in 2012, will also be based at PPPL. In the initial startup period, the Center supported the construction of two basic experiments at PPPL and UW Madison to focus on accretion disk hydrodynamic instabilities and solar physics issues. We now have computational efforts underway focused on understanding recent experimental tests of dynamos, solar tacholine physics, intrinsic rotation in tokamak plasmas and L-H transition physics in tokamak devices. In addition, we have the basic experiments discussed above complemented by work on a basic linear plasma device at UCSD and a collaboration at the LAPD located at UCLA. We are also performing experiments on intrinsic rotation and L-H transition physics in the DIII-D, NSTX, C-Mod, HBT EP, HL-2A, and EAST tokamaks in the US and China, and expect to begin collaborations on K-STAR in the coming year. Center funds provide support to over 10 postdocs and graduate students each year, who work with 8 senior faculty and researchers at their respective institutions. The Center has sponsored a mini-conference at the APS DPP 2010 meeting, and co-sponsored the recent Festival de Theorie (2011) with the CEA in Cadarache, and will co-sponsor a Winter School in January 2012 in collaboration with the CMSO-UW Madison. Center researchers have published over 50 papers in the peer reviewed literature, and given over 10 talks at major international meetings. In addition, the Center co-PI, Professor Patrick Diamond, shared the 2011 Alfven Prize at the EPS meeting. Key scientific results from this startup period include initial simulations of the