WorldWideScience

Sample records for hb barrel calorimeters

  1. Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Vesztergombi, Gyorgy; Zálán, Peter; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sudhakar, Katta; Verma, Piyush; Paktinat, S; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Mescheryakov, G; Sergeyev, S; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Stolin, Viatcheslav; Ulyanov, A; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Kuzucu-Polatoz, A; Onengüt, G; Ozdes-Koca, N; Cankocak, Kerem; Ozok, Ferhat; Serin-Zeyrek, M; Sever, Ramazan; Zeyrek, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grinev, B; Lubinsky, V; Senchishin, V; Anderson, E Walter; Hauptman, John M; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Lazic, Dragoslav; Los, Serguei; O'Dell, Vivian; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Antchev, Georgy; Hazen, Eric; Lawlor, C; Machado, Emanuel; Posch, C; Rohlf, James; Wu, Shouxiang; Adams, Mark Raymond; Burchesky, Kyle; Qiang, W; Abdullin, Salavat; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumu, K; Thomas, Ray; Baarmand, Marc M; Ralich, Robert; Vodopiyanov, Igor; Cushman, Priscilla; Heering, Arjan Hendrix; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Mans, Jeremy; Tully, Christopher; De Barbaro, Pawel; Bodek, Arie; Budd, Howard; Chung, Yeon Sei; Haelen, T; Imboden, Matthias; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T; Pompos, Arnold

    2007-01-01

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%.

  2. First half-barrel of the CMS hadron calorimeter successfully asembled

    CERN Multimedia

    2001-01-01

    The first half barrel of the CMS hadron calorimeter has been assembled in the CMS construction hall in Cessy (neighbouring France), called SX5, in October 2001. The picture sequence shows the insertion of the last (the keystone) wedge. It is lifted up to the top of the structure and carefully inserted into the half barrel. Photos 6 and 7 show the HB- in SX5.

  3. Installation of CMS EB (ECAL Barrel) Supermodules 5 and 13 inside HB+ (HCAL Barrel) on 26/27 April 2006

    CERN Multimedia

    Ken Bell, RAL

    2006-01-01

    The first two barrel "supermodules" of the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the CMS experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. See also the document CMS-PHO-OREACH-2006-019. The first two pictures show the two supermodules in their final position. Fig. 3: the "enfourneur" in position on the HB Cradle. Fig. 4: supermodule n. 5 and extension rails being lifted to the enforneur. Figs. 5-6: supermodule approaching the enforneur. Fig. 7: rotating the Enfourneur to the correct phi direction Figs. 8-9: aligning the extension rails with the rails inside HB and view from inside HB, once the rails are aligned. Figs. 10-12: insertion of supermodule n. 5. Fig. ...

  4. Design, performance, and calibration of CMS hadron-barrel calorimeter wedges

    International Nuclear Information System (INIS)

    Abdullin, S.; Abramov, V.; Goncharov, P.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A.; Acharya, B.; Banerjee, S.; Banerjee, S.; Chendvankar, S.; Dugad, S.; Kalmani, S.; Katta, S.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sudhakar, K.; Verma, P.; Adams, M.; Burchesky, K.; Qian, W.; Akchurin, N.; Carrell, K.; Guemues, K.; Thomas, R.; Akgun, U.; Ayan, S.; Duru, F.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Norbeck, E.; Olson, J.; Onel, Y.; Schmidt, I.; Anderson, E.W.; Hauptman, J.; Antchev, G.; Hazen, E.; Lawlor, C.; Machado, E.; Posch, C.; Rohlf, J.; Wu, S.X.; Aydin, S.; Dumanoglu, I.; Eskut, E.; Kayis-Topaksu, A.; Polatoz, A.; Onengut, G.; Ozdes-Koca, N.; Baarmand, M.; Ralich, R.; Vodopiyanov, I.; Baden, D.; Bard, R.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A.; Barnes, V.; Laasanen, A.; Pompos, A.; Bawa, H.; Beri, S.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, J.; Baiatian, G.; Sirunyan, A.; Bencze, G.; Vesztergombi, G.; Zalan, P.; Bodek, A.; Budd, H.; Chung, Y.; De Barbaro, P.; Haelen, T.; Camporesi, T.; Visser, T. de; Cankocak, K.; Cremaldi, L.; Reidy, J.; Sanders, D.A.; Cushman, P.; Sherwood, B.; Damgov, J.; Dimitrov, L.; Genchev, V.; Piperov, S.; Vankov, I.; Demianov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Petrushanko, S.; Sarycheva, L.; Vardanyan, I.; Elias, J.; Elvira, D.; Freeman, J.; Green, D.; Los, S.; O'Dell, V.; Ronzhin, A.; Sergeyev, S.; Suzuki, I.; Vidal, R.; Whitmore, J.; Emeliantchik, I.; Massolov, V.; Shumeiko, N.; Stefanovich, R.; Fisher, W.; Tully, C.; Gavrilov, V.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Stolin, V.; Ulyanov, A.; Gershtein, Y.; Golutvin, I.; Kalagin, V.; Kosarev, I.; Mescheryakov, G.; Smirnov, V.; Volodko, A.; Zarubin, A.; Grinev, B.; Lubinsky, V.; Senchishin, V.; Guelmez, E.; Hagopian, S.; Hagopian, V.; Johnson, K.; Heering, A.; Imboden, M.; Isiksal, E.; Karmgard, D.; Ruchti, R.; Kaya, M.; Lazic, D.; Levchuk, L.; Sorokin, P.; Litvintsev, D.; Litov, L.; Mans, J.; Ozkorucuklu, S.; Ozok, F.; Serin-Zeyrek, M.; Sever, R.; Zeyrek, M.; Paktinat, S.; Podrasky, V.; Sanzeni, C.; Winn, D.; Vlassov, E.

    2008-01-01

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the compact muon solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. The energy dependent time slewing effect was measured and tuned for optimal performance. (orig.)

  5. Design, performance, and calibration of CMS hadron-barrel calorimeter wedges

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Univ. of Maryland, College Park, MD (United States); Abramov, V.; Goncharov, P.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A. [IHEP, Protvino (Russian Federation); Acharya, B.; Banerjee, S.; Banerjee, S.; Chendvankar, S.; Dugad, S.; Kalmani, S.; Katta, S.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sudhakar, K.; Verma, P. [Tata Inst. of Fundamental Research, Mumbai (India); Adams, M.; Burchesky, K.; Qian, W. [Univ. of Illinois at Chicago, Chicago, IL (United States); Akchurin, N.; Carrell, K.; Guemues, K.; Thomas, R. [Texas Tech Univ., Dept. of Physics, Lubbock, TX (United States); Akgun, U.; Ayan, S.; Duru, F.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Norbeck, E.; Olson, J.; Onel, Y.; Schmidt, I. [Univ. of Iowa, Iowa City, IA (United States); Anderson, E.W.; Hauptman, J. [Iowa State Univ., Ames, IA (United States); Antchev, G.; Hazen, E.; Lawlor, C.; Machado, E.; Posch, C.; Rohlf, J.; Wu, S.X. [Boston Univ., Boston, MA (United States); Aydin, S.; Dumanoglu, I.; Eskut, E.; Kayis-Topaksu, A.; Polatoz, A.; Onengut, G.; Ozdes-Koca, N. [Cukurova Univ., Adana (Turkey); Baarmand, M.; Ralich, R.; Vodopiyanov, I. [Florida Inst. of Technology, Melbourne, FL (United States); Baden, D.; Bard, R.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A. [Univ. of Maryland, College Park, MD (United States); Barnes, V.; Laasanen, A.; Pompos, A. [Purdue Univ., West Lafayette, IN (United States); Bawa, H.; Beri, S.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, J. [Panjab Univ., Chandigarh (India); Baiatian, G.; Sirunyan, A. [Yerevan Physics Inst., Yerevan (Armenia); Bencze, G.; Vesztergombi, G.; Zalan, P. [KFKI-RMKI, Research Inst. for Particle and Nuclear Physics, Budapest (Hungary)] [and others

    2008-05-15

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the compact muon solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. The energy dependent time slewing effect was measured and tuned for optimal performance. (orig.)

  6. Last Few Metres for the Barrel Calorimeter

    CERN Multimedia

    Nyman, T.

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows ...

  7. The CMS Barrel Calorimeter Response to Particle Beams from 2 to 350 GeV/c

    CERN Document Server

    Yazgan, Elfe

    2009-01-01

    The response of the combined CMS barrel calorimeters to hadrons, electrons and muons over a range from 2 to 350 GeV/$c$ has been measured. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a discussion of the underlying phenomena are presented. Techniques to correct the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons are also presented. Above 5 GeV/$c$, these corrections improve the energy resolution of the combined system where the stochastic term equals $84.7$\\% and the constant term is $7.4$\\%. The corrected mean response remains constant within 1.3\\% {\\it rms}.

  8. Barrel calorimeter of the CMD-3 detector

    Energy Technology Data Exchange (ETDEWEB)

    Shebalin, V. E., E-mail: V.E.Shebalin@inp.nsk.su; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation); Epifanov, D. A. [University of Tokyo, Department of Physics (Japan); Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V. [Russian Academy of Sciences, Budker Institute of Nuclear Physics, Siberian Branch (Russian Federation)

    2015-12-15

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV.

  9. Barrel calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Shebalin, V. E.; Anisenkov, A. V.; Aulchenko, V. M.; Bashtovoy, N. S.; Epifanov, D. A.; Epshteyn, L. B.; Grebenuk, A. A.; Ignatov, F. V.; Erofeev, A. L.; Kovalenko, O. A.; Kozyrev, A. N.; Kuzmin, A. S.; Logashenko, I. B.; Mikhailov, K. Yu.; Razuvaev, G. P.; Ruban, A. A.; Shwartz, B. A.; Talyshev, A. A.; Titov, V. M.; Yudin, Yu. V.

    2015-01-01

    The structure of the barrel calorimeter of the CMD-3 detector is presented in this work. The procedure of energy calibration of the calorimeter and the method of photon energy restoration are described. The distinctive feature of this barrel calorimeter is its combined structure; it is composed of two coaxial subsystems: a liquid xenon calorimeter and a crystalline CsI calorimeter. The calorimeter spatial resolution of the photon conversion point is about 2 mm, which corresponds to an angular resolution of ∼6 mrad. The energy resolution of the calorimeter is about 8% for photons with energy of 200 MeV and 4% for photons with energy of 1 GeV

  10. Work on a ATLAS tile calorimeter Barrel

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    The Tile Calorimeter is designed as one barrel and two extended barrel hadron parts. The calorimeter consists of a cylindrical structure with inner and outer radius of 2280 and 4230 mm respectively. The barrel part is 5640 mm in length along the beam axis, while each of the extended barrel cylinders is 2910 mm long. Each detector cylinder is built of 64 independent wedges along the azimuthal direction. Between the barrel and the extended barrels there is a gap of about 600 mm, which is needed for the Inner Detector and the Liquid Argon cables, electronics and services. The barrel covers the region -1.0barrels cover the region 0.8<|h|<1.7.

  11. The CMS Barrel Calorimeter Response to Particle Beams from 2 to 350 GeV/c

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Adzic, Petar; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Alemany-Fernandez, Reyes; Almeida, Nuno; Anagnostou, Georgios; Andelin, Daniel; Anderson, E Walter; Anfreville, Marc; Anicin, Ivan; Antchev, Georgy; Antunovic, Zeljko; Arcidiacono, Roberta; Arenton, Michael Wayne; Auffray, Etiennette; Argiro, Stefano; Askew, Andrew; Atramentov, Oleksiy; Ayan, S; Arcidy, M; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baccaro, Stefania; Baden, Drew; Baffioni, Stephanie; Bakirci, Mustafa Numan; Balazs, Michael; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barge, Derek; Barnes, Virgil E; Barney, David; Barone, Luciano; Bartoloni, Alessandro; Baty, Clement; Bawa, Harinder Singh; Baiatian, G; Bandurin, Dmitry; Beauceron, Stephanie; Bell, Ken W; Bencze, Gyorgy; Benetta, Robert; Bercher, Michel; Beri, Suman Bala; Bernet, Colin; Berntzon, Lisa; Berthon, Ursula; Besançon, Marc; Betev, Botjo; Beuselinck, Raymond; Bhatnagar, Vipin; Bhatti, Anwar; Biino, Cristina; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bodek, Arie; Bornheim, Adolf; Bose, Suvadeep; Bose, Tulika; Bourotte, Jean; Brett, Angela Mary; Brown, Robert M; Britton, David; Budd, Howard; Bühler, M; Burchesky, Kyle; Busson, Philippe; Camanzi, Barbara; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Carrera, E; Cartiglia, Nicolo; Cavallari, Francesca; Cerci, Salim; Cerutti, cM; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chen, E Augustine; Chen, Wan-Ting; Chen, Zheng-Yu; Chendvankar, Sanjay; Chipaux, Rémi; Choudhary, Brajesh C; Choudhury, Rajani Kant; Chung, Yeon Sei; Clarida, Warren; Cockerill, David J A; Combaret, Christophe; Conetti, Sergio; Cossutti, Fabio; Cox, Bradley; Cremaldi, Lucien Marcus; Cushman, Priscilla; Cussans, David; Dafinei, Ioan; Damgov, Jordan; Da Silva Di Calafiori, Diogo Raphael; Daskalakis, Georgios; Davatz, Giovanna; David, A; De Barbaro, Pawel; Debbins, Paul; Deiters, Konrad; Dejardin, Marc; Djordjevic, Milos; Deliomeroglu, Mehmet; Della Negra, Rodolphe; Della Ricca, Giuseppe; Del Re, Daniele; Demianov, A; De Min, Alberto; Denegri, Daniel; Depasse, Pierre; de Visser, Theo; Descamps, Julien; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Diemoz, Marcella; Di Marco, Emanuele; Dimitrov, Lubomir; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Duboscq, Jean Etienne; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Dutta, Dipanwita; Dzelalija, Mile; Efthymiopoulos, I; Elias, John E; Peisert, A; El-Mamouni, H; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Evangelou, Ioannis; Evans, David; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Fenyvesi, Andras; Ferri, Federico; Fisher, Wade Cameron; Flower, Paul S; Franci, Daniele; Franzoni, Giovanni; Freeman, Jim; Freudenreich, Klaus; Funk, Wolfgang; Ganjour, Serguei; Gargiulo, Corrado; Gascon, Susan; Gataullin, Marat; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Geerebaert, Yannick; Genchev, Vladimir; Gentit, François-Xavier; Gerbaudo, Davide; Gershtein, Yuri; Ghezzi, Alessio; Ghodgaonkar, Manohar; Gilly, Jean; Givernaud, Alain; Gleyzer, Sergei V; Gninenko, Sergei; Go, Apollo; Gobbo, Benigno; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Goncharov, Petr; Gong, Datao; Govoni, Pietro; Grant, Nicholas; Gras, Philippe; Grassi, Tullio; Green, Dan; Greenhalgh, R J S; Gribushin, Andrey; Grinev, B; Guevara Riveros, Luz; Guillaud, Jean-Paul; Gurtu, Atul; Murat Guler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Haguenauer, Maurice; Halyo, Valerie; Hamel de Monchenault, Gautier; Hansen, Sten; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heath, Helen F; Heering, Arjan Hendrix; Heister, Arno; Heltsley, Brian; Hill, Jack; Hintz, Wieland; Hirosky, Robert; Hobson, Peter R; Honma, Alan; Hou, George Wei-Shu; Hsiung, Yee; Hunt, Adam; Husejko, Michal; Ille, Bernard; Ilyina, N; Imlay, Richard; Ingram, D; Ingram, Quentin; Isiksal, Engin; Jarry, Patrick; Jarvis, Chad; Jeong, Chiyoung; Jessop, Colin; Johnson, Kurtis F; Jones, John; Jovanovic, Dragoslav; Kaadze, Ketino; Kachanov, Vassili; Kaftanova, V; Kailas, Swaminathan; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kataria, Sushil Kumar; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Kennedy, Bruce W; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kloukinas, Kostas; Kodolova, Olga; Kohli, Jatinder Mohan; Kokkas, Panagiotis; Kolberg, Ted; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krasnikov, Nikolai; Krinitsyn, Alexander; Krokhotin, Andrey; Krpic, Dragomir; Kryshkin, V; Kubota, Yuichi; Kubrik, A; Kuleshov, Sergey; Kumar, Arun; Kumar, P; Kunori, Shuichi; Kuo, Chen-Cheng; Kurt, Pelin; Kyberd, Paul; Kyriakis, Aristotelis; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Ledovskoy, Alexander; Lee, Sang Joon; Leshev, Georgi; Lethuillier, Morgan; Levchuk, Leonid; Lin, Sheng-Wen; Lin, Willis; Linn, Stephan; Lintern, A L; Litvine, Vladimir; Litvintsev, Dmitri; Litov, Leander; Lobolo, L; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Los, Serguei; Lubinsky, V; Luckey, Paul David; Lukanin, Vladimir; Lustermann, Werner; Lynch, Clare; Ma, Yousi; Machado, Emanuel; Mahlke-Krüger, H; Maity, Manas; Majumder, Gobinda; Malberti, Martina; Malclès, Julie; Maletic, Dimitrije; Mandjavidze, Irakli; Mans, Jeremy; Manthos, Nikolaos; Maravin, Yurii; Marchica, Carmelo; Marinelli, Nancy; Markou, Athanasios; Markou, Christos; Marlow, Daniel; Markowitz, Pete; Marone, Matteo; Martínez, German; Mathez, Hervé; Matveev, Viktor; Mavrommatis, Charalampos; Maurelli, Georges; Mazumdar, Kajari; Meridiani, Paolo; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Mikhailin, V; Milenovic, Predrag; Miller, Michael; Milleret, Gérard; Miné, Philippe; Möller, A; Mohammadi-Najafabadi, M; Mohanty, Ajit Kumar; Moissenz, P; Mondal, Naba Kumar; Moortgat, Filip; Mossolov, Vladimir; Mur, Michel; Musella, Pasquale; Musienko, Yuri; Nagaraj, P; Nardulli, Alessandro; Nash, Jordan; Nédélec, Patrick; Negri, Pietro; Newman, Harvey B; Nikitenko, Alexander; Norbeck, Edwin; Nessi-Tedaldi, Francesca; Obertino, Maria Margherita; Olson, Jonathan; Onel, Yasar; Onengüt, G; Organtini, Giovanni; Orimoto, Toyoko; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paganoni, Marco; Paganini, Pascal; Paktinat, S; Pal, Andras; Palma, Alessandro; Panev, Bozhidar; Pant, Lalit Mohan; Papadakis, Antonakis; Papadakis, Ioannis; Papadopoulos, Ioannis; Paramatti, Riccardo; Parracho, P; Pastrone, Nadia; Patil, Mandakini Ravindra; Patterson, Juliet Ritchie; Pauss, Felicitas; Penzo, Aldo; Petrakou, Eleni; Petrushanko, Sergey; Petrosian, A; Phillips II, David; Pikalov, Vladimir; Piperov, Stefan; Piroué, Pierre; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Ptochos, Fotios; Puljak, Ivica; Pullia, Antonino; Punz, Thomas; Puzovic, Jovan; Qian, Weiming; Ragazzi, Stefano; Rahatlou, Shahram; Ralich, Robert; Rande, J; Razis, Panos A; Redaelli, Nicola; Reddy, L; Reidy, Jim; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Ribeiro, Pedro Quinaz; Röser, Ulf; Rogalev, Evgueni; Rogan, Christopher; Roh, Youn; Rohlf, James; Romanteau, Thierry; Rondeaux, Françoise; Ronquest, Michael; Ronzhin, Anatoly; Rosowsky, André; Rovelli, Chiara; Ruchti, Randy; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Ryazanov, Anton; Safronov, Grigory; Sala, Leonardo; Salerno, Roberto; Sanders, David A; Santanastasio, Francesco; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schinzel, Dietrich; Schmidt, Ianos; Seez, Christopher; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Sharp, Peter; Shepherd-Themistocleous, Claire; Siamitros, Christos; Sillou, Daniel; Singh, Jas Bir; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Silva, J; Silva, Pedro; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shiu, Jing-Ge; Shivpuri, Ram Krishen; Shukla, Prashant; Shumeiko, Nikolai; Smirnov, Vitaly; Smith, Brian; Smith, Vincent J; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Sproston, Martin; Stefanovich, R; Stockli, F; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suter, Henry; Suzuki, Ichiro; Swain, John; Tabarellide Fatis, T; Talov, Vladimir; Takahashi, Maiko; Tcheremoukhine, Alexandre; Teller, Olivier; Teplov, Konstantin; Theofilatos, Konstantinos; Thiebaux, Christophe; Thomas, Ray; Timciuc, Vladlen; Timlin, Claire; Titov, Maksym; Tobias, A; Tonwar, Suresh C; Topakli, Huseyin; Topkar, Anita; Triantis, Frixos A; Troshin, Sergey; Tully, Christopher; Turchanovich, L; Tyurin, Nikolay; Ueno, Koji; Ulyanov, A; Uzunian, Andrey; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Varela, Joao; Vasil ev, A; Velasco, Mayda; Vergili, Mehmet; Verma, Piyush; Verrecchia, Patrice; Vesztergombi, Gyorgy; Veverka, Jan; Vichoudis, Paschalis; Vidal, Richard; Virdee, Tejinder; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Von Gunten, Hans Peter; Wang, Lei; Wang, Minzu; Wardrope, David; Weber, Markus; Weng, Joanna; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Williams, Jennifer C; Whitmore, Juliana; Won, Steven; Wu, Shouxiang; Yang, Yong; Yaselli, Ignacio; Yazgan, Efe; Yetkin, Taylan; Yohay, Rachel; Zabi, Alexandre; Zálán, Peter; Zamiatin, Nikolai; Zarubin, Anatoli; Zelepoukine, Serguei; Zeyrek, Mehmet; Zhang, Jia-Wen; Zhang, Lin; Zhu, Kejun; Zhu, Ren-Yuan

    2008-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7$\\pm$1.6$\\%$ and the constant term is 7.4$\\pm$0.8$\\%$. The corrected mean response remains constant within 1.3$\\%$ rms.

  12. The CMS barrel calorimeter response to particle beams from 2-GeV/c to 350-GeV/c

    CERN Document Server

    Abdullin, S

    2009-01-01

    The response of the CMS barrel calorimeter (electromagnetic plus hadronic) to hadrons, electrons and muons over a wide momentum range from 2 to 350 GeV/c has been measured. To our knowledge, this is the widest range of momenta in which any calorimeter system has been studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. The analysis of the differences in calorimeter response to charged pions, kaons, protons and antiprotons and a detailed discussion of the underlying phenomena are presented. We also show techniques that apply corrections to the signals from the considerably different electromagnetic (EB) and hadronic (HB) barrel calorimeters in reconstructing the energies of hadrons. Above 5 GeV/c, these corrections improve the energy resolution of the combined system where the stochastic term equals 84.7±1.6% and the constant term is 7.4±0.8%. The corrected mean response remains constant within 1.3% rms.

  13. HB+ prepares for insertion into the CMS solenoid

    CERN Multimedia

    Dave Barney, CERN

    2006-01-01

    With calibration of the first half of the barrel Hadron Calorimeter (HB+) complete (using a radioactive source), preparations begin for its insertion into the solenoid for the Magnet Test and Cosmic Challenge (MTCC). It was moved out of its alcove at the beginning of March - a non-trivial (but completely successful) operation due to the proximity of one of the barrel yoke rings (YB+1). The other half of the barrel Hadron Calorimeter (HB-) and one of the endcaps (HE+) should also be calibrated before the MTCC.

  14. Energy calibration of the barrel calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Anisenkov, A.V.; Aulchenko, V.M.; Bashtovoy, N.S.; Bondar, A.E.; Grebenuk, A.A.; Epifanov, D.A.; Epshteyn, L.B.; Erofeev, A.L.; Kovalenko, O.A.; Kozyrev, A.N.; Kuzmin, A.S.; Mikhailov, K.Yu.; Logashenko, I.B.; Razuvaev, G.P.; Ruban, A.A.; Shebalin, V.E.; Shwartz, B.A.; Talyshev, A.A.; Titov, V.M.; Yudin, Yu.V.

    2017-01-01

    The VEPP-2000 e + e − collider has been operated in the Budker Institute of Nuclear Physics since 2010. Experiments are carried out with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon calorimeter and crystal CsI calorimeter, and end cap calorimeter with BGO crystals. This paper describes the procedures of the energy calibration of the combined barrel calorimeter of the CMD-3 detector.

  15. Non-compensation of the ATLAS barrel combined calorimeter prototype

    International Nuclear Information System (INIS)

    Kul'chitskij, Yu.A.; Kuz'min, M.V.

    1998-01-01

    The e / π ratio for the ATLAS Barrel Combined Calorimeter Prototype, composed from electromagnetic LArg calorimeter and hadronic Tile calorimeter was investigated. Response of Combined Calorimeter on pions and electrons in the energy region of 20-300 GeV was studied. Found e / h = 1.37 ± 0.01 ± 0.02 is in good agreement with the results from previous Combined Calorimeter tests but has more precisions

  16. Design and construction of the ZEUS barrel calorimeter

    International Nuclear Information System (INIS)

    Repond, J.

    1990-01-01

    The mechanical design and construction techniques of the barrel calorimeter for the ZEUS detector are presented. The calorimeter uses alternate layers of depleted uranium and scintillator with one radiation length sampling. The unit cell has e/h = 1 which yields an optimal energy resolution for hadronic jets. We discuss the placing of the structural components and cracks between modules. Details of the construction and assembly effort needed to realize the total calorimeter are reported. 4 figs., 1 tab

  17. Design, Construction and Installation of the ATLAS Hadronic Barrel Scintillator-Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costello, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; Davidek, M; David, T; Dawson, J; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovianov, J; Silva, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazeille, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2007-01-01

    The scintillator tile hadronic calorimeter is a sampling calorimeter using steel as the absorber structure and scintillator as the active medium. The scintillator is located in "pockets" in the steel structure and the wavelength-shifting fibers are contained in channels running radially within the absorber to photomultiplier tubes which are located in the outer support girders of the calorimeter structure. In addition, to its role as a detector for high energy particles, the tile calorimeter provides the direct support of the liquid argon electromagnetic calorimeter in the barrel region, and the liquid argon electromagnetic and hadronic calorimeters in the endcap region. Through these, it indirectly supports the inner tracking system and beam pipe. The steel absorber, and in particular the support girders, provide the flux return for the solenoidal field from the central solenoid. Finally, the end surfaces of the barrel calorimeter are used to mount services, power supplies and readout crates for the inner tr...

  18. First physics pulses in the Barrel Electromagnetic Calorimeter with cosmics

    CERN Multimedia

    Laurent Serin

    2006-01-01

    The electromagnetic barrel calorimeter has been installed in its final position in October 2005. Since then, the calorimeter is being equipped with front-end electronics. Starting in April 2006, electronics calibration runs are taken a few times per week to debug the electronics and to study the performance in the pit (stability, noise). Today, 10 out of the 32 Front End crates are being read out, amounting to about 35000 channels. cool down, few little typos --> After a 6-week cool down, the barrel cryostat was filled with Liquid Argon in May. The presence of a few shorts (~1MΩ) at the edges of the modules was indicating the possibility of conducting dust having entered into the calorimeter with the flowing liquid. In order to try to improve this situation, the calorimeter was emptied and filled again, but this time by condensating the argon instead of flowing it in liquid phase. The new High Voltage tests are not showing any significant improvement but the situation is statisfactory for ATLAS runn...

  19. Signal feedthroughs for the ATLAS barrel and endcap calorimeters

    International Nuclear Information System (INIS)

    Axen, D.; Hackenburg, R.; Hoffmann, A.; Kane, S.; Lissauer, D.; Makowiecki, D.; Muller, T.; Pate, D.; Radeka, V.; Rahm, D.; Rehak, M.; Rescia, S.; Sexton, K.; Sondericker, J.; Birney, P.; Dowling, A.W.; Fincke-Keeler, M.; Hodges, T.; Holness, F.; Honkanen, N.

    2005-01-01

    The function, design, construction, testing, and installation of the signal feedthroughs for the barrel and endcap ATLAS liquid argon calorimeters are described. The feedthroughs provide a high density and radiation hard method to extract over 200 000 signals from the cryogenic environment of the calorimeters using an application of a design based on flexible kapton circuit board transmission lines. A model to describe the frequency dependent behavior of the transmission lines is also presented

  20. HB+ inserted into the CMS Solenoid

    CERN Multimedia

    Tejinder S. Virdee, CERN

    2006-01-01

    The first half of the barrel hadron calorimeter (HB+) has been inserted into the superconducting solenoid of CMS, in preparation for the magnet test and cosmic challenge. The operation went smoothly, lasting a couple of days.

  1. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat.The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent (visible here) was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team...

  2. Insertion of the first half-barrel of the ATLAS electromagnetic calorimeter into its cryostat

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    The first cylinder of the ATLAS electromagnetic calorimeter barrel and the presampler have been inserted in the cryostat. The ATLAS electromagnetic calorimeter is intended to detect electrons, positrons and photons by measuring the energy they deposit on being absorbed. The cylinder of the calorimeter is in two halves, that will be sunk in a liquid-argon bath cooled to 90 kelvin (-180°C). Each half-barrel is 3.2 metres long, 53 cm thick and formed by assembling 16 modules. Each module is made up of alternate lead absorbers and electrodes pressed into 64 layers folded accordion-fashion. The presampler, set up inside the cylinder, is an integral part of the calorimeter system: It measures the energy lost by a particle before it reaches the calorimeter. To ensure an ultra-clean environment, a tent was erected round the calorimeter and entry point to the cryostat. The detector and presampler, fitted together, could then be slid gradually into the cryostat like a drawer. To do so, the insertion team had to fine-t...

  3. Beam tests of the ZEUS barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Bernstein, A; Bienz, T; Caldwell, A; Chen, L; Derrick, M; Gialas, I; Hamri, A; Imlay, R; Kartik, S; Kim, H J; Kinnel, T; Kreutzmann, H; Li, C G; Lim, J N; Loveless, R; Lu, B; Mallik, U; McLean, K W; McNeil, R; Metcalf, W; Musgrave, B; Oh, B Y; Park, S; Parsons, J A; Reeder, D; Repond, J; Ritz, S; Roco, M T.P.; Sandler, P H; Sciulli, F; Smith, W H; Talaga, R L; Tzanakos, G; Wai, L; Wang, M Z; Whitmore, J; Wu, J; Yang, S [Argonne National Lab., IL (United States) Columbia Univ., New York, NY (United States) Nevis Labs., Irvington-on-Hudson, NY (United States) Univ. of Iowa, Iowa City, IA (United States) Louisiana State Univ., Baton Rouge, LA (United States) Ohio State Univ., Columbus, OH (United States) Pennsylvania State Univ., University Park, PA (United States) Virginia Polytechnic Inst., and State Univ., Blacksburg, VA (United States) Univ. of Wisconsin, Madison, WI (United States)

    1993-11-15

    A fully compensating uranium-scintillator calorimeter was constructed for the ZEUS detector at HERA. Several of the barrel calorimeter modules were subjected to beam tests at Fermilab before shipping them to DESY for installation. The calibrations of the modules used beams of electrons and hadrons, measuring the uniformity of the response, and checking the resolution. The runs also provided opportunity to test a large fraction of the actual ZEUS calorimeter readout system in an integrated beam environment more than one year before HERA turn on. The experiment utilized two computer controlled mechanical structures, one of which was capable of holding up to four modules in order to study shower containment, and a magnetic spectrometer with a high resolution beam tracking system. During two running periods, beams of 6 to 110 GeV containing e, [mu], [pi], and anti p were used. The results show energy resolutions of 35%/[radical]E for hadrons and 19%/[radical]E for electrons, uniformities at the 1% level, energy nonlinearity less than 1%, and equal response for electrons and hadrons. (orig.)

  4. Design, performance, and calibration of the CMS hadron-outer calorimeter

    International Nuclear Information System (INIS)

    Abdullin, S.; Gavrilov, V.; Ilyina, N.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stolin, V.; Ulyanov, A.; Abramov, V.; Goncharov, P.; Kalinin, A.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A.; Acharya, B.; Aziz, T.; Banerjee, Sudeshna; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P.V.; Dugad, S.; Ganguli, S.N.; Guchait, M.; Gurtu, A.; Kalmani, S.; Krishnaswamy, M.R.; Maity, M.; Majumder, G.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Narasimham, V.S.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sharma, S.; Sudhakar, K.; Tonwar, S.; Verma, P.; Adam, N.; Fisher, W.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Landsberg, G.; Marlow, D.; Tully, C.; Werner, J.; Adams, M.; Bard, R.; Burchesky, K.; Qian, W.; Akchurin, N.; Berntzon, L.; Carrell, K.; Guemues, K.; Jeong, C.; Kim, H.; Lee, S.W.; Popescu, S.; Roh, Y.; Spezziga, M.; Thomas, R.; Volobouev, I.; Wigmans, R.; Yazgan, E.; Akgun, U.; Albayrak, E.; Ayan, S.; Clarida, W.; Debbins, P.; Duru, F.; Ingram, D.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Schmidt, I.; Yetkin, T.; Anderson, E.W.; Hauptman, J.; Antchev, G.; Arcidy, M.; Hazen, E.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Posch, C.; Rohlf, J.; Sulak, L.; Varela, F.; Wu, S.X.; Aydin, S.; Bakirci, M.N.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis-Topaksu, A.; Onengut, G.; Ozkurt, H.; Polatoz, A.; Sogut, K.; Topakli, H.; Vergili, M.; Baarmand, M.; Mermerkaya, H.; Ralich, R.M.; Vodopiyanov, I.; Babich, K.; Golutvin, I.; Kalagin, V.; Kosarev, I.; Ladygin, V.; Mescheryakov, G.; Moissenz, P.; Petrosyan, A.; Rogalev, E.; Smirnov, V.; Vishnevskiy, A.; Volodko, A.; Zarubin, A.; Baden, D.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A.; Wang, L.; Wetstein, M.; Barnes, V.; Laasanen, A.; Pompos, A.; Bawa, H.; Beri, S.; Bhandari, V.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, B.; Singh, J.B.; Baiatian, G.; Sirunyan, A.; Bencze, G.; Laszlo, A.; Pal, A.; Vesztergombi, G.; Zalan, P.; Bhatti, A.; Bodek, A.; Budd, H.; Chung, Y.; Barbaro, P. de; Haelen, T.; Bose, T.; Esen, S.; Vanini, A.; Camporesi, T.; Visser, T. de; Efthymiopoulos, I.; Cankocak, K.; Cremaldi, L.; Reidy, J.; Sanders, D.A.; Cushman, P.; Ma, Y.; Sherwood, B.; Damgov, J.; Piperov, S.; Deliomeroglu, M.; Guelmez, E.; Isiksal, E.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Demianov, A.; Ershov, A.; Gribushin, A.; Kodolova, O.; Petrushanko, S.; Sarycheva, L.; Teplov, K.; Vardanyan, I.; Diaz, J.; Gaultney, V.; Kramer, L.; Linn, S.; Lobolo, L.; Markowitz, P.; Martinez, G.; Dimitrov, L.; Genchev, V.; Vankov, I.; Elias, J.; Elvira, D.; Freeman, J.; Green, D.; Los, S.; Ronzhin, A.; Sergeyev, S.; Suzuki, I.; Vidal, R.; Whitmore, J.; Emeliantchik, I.; Mossolov, V.; Shumeiko, N.; Stefanovich, R.; Fenyvesi, A.; Gamsizkan, H.; Murat Gueler, A.; Ozkan, C.; Sekmen, S.; Serin, M.; Sever, R.; Zeyrek, M.; Gleyzer, S.; Hagopian, S.; Hagopian, V.; Johnson, K.; Grinev, B.; Lubinsky, V.; Senchishin, V.; Hashemi, M.; Mohammadi-Najafabadi, M.; Paktinat, S.; Heering, A.; Karmgard, D.; Ruchti, R.; Levchuk, L.; Sorokin, P.; Litvintsev, D.; Mans, J.; Penzo, A.; Podrasky, V.; Sanzeni, C.; Winn, D.; Vlassov, E.

    2008-01-01

    The Outer Hadron Calorimeter (HCAL HO) of the CMS detector is designed to measure the energy that is not contained by the barrel (HCAL HB) and electromagnetic (ECAL EB) calorimeters. Due to space limitation the barrel calorimeters do not contain completely the hadronic shower and an outer calorimeter (HO) was designed, constructed and inserted in the muon system of CMS to measure the energy leakage. Testing and calibration of the HO was carried out in a 300 GeV/c test beam that improved the linearity and resolution. HO will provide a net improvement in missing E T measurements at LHC energies. Information from HO will also be used for the muon trigger in CMS. (orig.)

  5. Design, performance, and calibration of the CMS hadron-outer calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S.; Gavrilov, V.; Ilyina, N.; Kaftanov, V.; Kisselevich, I.; Kolossov, V.; Krokhotin, A.; Kuleshov, S.; Pozdnyakov, A.; Safronov, G.; Semenov, S.; Stolin, V.; Ulyanov, A. [ITEP, Moscow (Russian Federation); Abramov, V.; Goncharov, P.; Kalinin, A.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A. [IHEP, Protvino (Russian Federation); Acharya, B.; Aziz, T.; Banerjee, Sudeshna; Banerjee, Sunanda; Bose, S.; Chendvankar, S.; Deshpande, P.V.; Dugad, S.; Ganguli, S.N.; Guchait, M.; Gurtu, A.; Kalmani, S.; Krishnaswamy, M.R.; Maity, M.; Majumder, G.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Narasimham, V.S.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sharma, S.; Sudhakar, K.; Tonwar, S.; Verma, P. [Tata Inst. of Fundamental Research, Mumbai (India); Adam, N.; Fisher, W.; Halyo, V.; Hunt, A.; Jones, J.; Laird, E.; Landsberg, G.; Marlow, D.; Tully, C.; Werner, J. [Princeton Univ., NJ (United States); Adams, M.; Bard, R.; Burchesky, K.; Qian, W. [Univ. of Illinois, Chicago, IL (United States); Akchurin, N.; Berntzon, L.; Carrell, K.; Guemues, K.; Jeong, C.; Kim, H.; Lee, S.W.; Popescu, S.; Roh, Y.; Spezziga, M.; Thomas, R.; Volobouev, I.; Wigmans, R.; Yazgan, E. [Texas Tech Univ., Lubbock, TX (United States); Akgun, U.; Albayrak, E.; Ayan, S.; Clarida, W.; Debbins, P.; Duru, F.; Ingram, D.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Moeller, A.; Norbeck, E.; Olson, J.; Onel, Y.; Ozok, F.; Schmidt, I.; Yetkin, T. [Univ. of Iowa, Iowa City, IA (United States); Anderson, E.W.; Hauptman, J. [Iowa State Univ., Ames, IA (United States); Antchev, G.; Arcidy, M.; Hazen, E.; Heister, A.; Lawlor, C.; Lazic, D.; Machado, E.; Posch, C.; Rohlf, J.; Sulak, L.; Varela, F.; Wu, S.X. [Boston Univ., MA (United States); Aydin, S.; Bakirci, M.N.; Cerci, S.; Dumanoglu, I.; Erturk, S.; Eskut, E.; Kayis-Topaksu, A.; Onengut, G.; Ozkurt, H.; Polatoz, A.; Sogut, K. [and others

    2008-10-15

    The Outer Hadron Calorimeter (HCAL HO) of the CMS detector is designed to measure the energy that is not contained by the barrel (HCAL HB) and electromagnetic (ECAL EB) calorimeters. Due to space limitation the barrel calorimeters do not contain completely the hadronic shower and an outer calorimeter (HO) was designed, constructed and inserted in the muon system of CMS to measure the energy leakage. Testing and calibration of the HO was carried out in a 300 GeV/c test beam that improved the linearity and resolution. HO will provide a net improvement in missing E{sub T} measurements at LHC energies. Information from HO will also be used for the muon trigger in CMS. (orig.)

  6. ATLAS barrel hadron tile calorimeter: spacers plates mass production

    International Nuclear Information System (INIS)

    Artikov, A.M.; Budagov, Yu.A.; Khubua, J.

    1999-01-01

    In this article we expose the main problems of the mass production of the so-called 'spacer plates' for the ATLAS Barrel Hadron Tile Calorimeter. We describe all practical solutions of these problems. Particularly we present the measurement procedures and calculation schemes we used for the spacers dimensions determination. The results of the calculations are presented

  7. A cosmic ray muon recorded by the ATLAS barrel tile calorimeter at 18:30, on 21 June 2005.

    CERN Multimedia

    2005-01-01

    The ATLAS barrel tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk.

  8. Non-compensation of the ATLAS barrel tile hadron module-0 calorimeter

    International Nuclear Information System (INIS)

    Kul'chitskij, Yu.A.; Vinogradov, V.B.

    1999-01-01

    The detailed experimental information about the electron and pion responses, the electron energy resolution and the elh ratio as a function of incident energy E, impact point Z and incidence angle Θ of the Module-0 of the ATLAS iron-scintillator barrel hadron calorimeter with the longitudinal tile configuration is presented. The results are based on the electron and pion beams data for E = 10, 20, 60, 80, 100 and 180 GeV at η = - 0.25 and -0.55, which have been obtained during the test beam period in 1996. The results are compared with the existing experimental data of TILECAL 1m prototype modules, various iron-scintillator calorimeters and with some Monte Carlo calculations

  9. Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    CERN Document Server

    Adzic, Petar; Almeida, Nuno; Anagnostou, Georgios; Andelin, Daniel; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Arcidiacono, Roberta; Arenton, Michael Wayne; Auffray, Etiennette; Argiro, Stefano; Askew, Andrew; Atramentov, Oleksiy; Baccaro, Stefania; Baffioni, Stephanie; Balazs, Michael; Barney, David; Barone, Luciano; Bartoloni, Alessandro; Baty, Clement; Bandurin, Dmitry; Beauceron, Stephanie; Bell, Ken W; Benetta, Robert; Bercher, Michel; Bernet, Colin; Berthon, Ursula; Besançon, Marc; Betev, Botjo; Beuselinck, Raymond; Biino, Cristina; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bornheim, Adolf; Bourotte, Jean; Brett, Angela Mary; Brown, Robert M; Britton, David; Bühler, M; Busson, Philippe; Camanzi, Barbara; Camporesi, Tiziano; Carrera, E; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chen, E Augustine; Chen, Wan-Ting; Chen, Zheng-Yu; Chipaux, Rémi; Choudhary, Brajesh C; Choudhury, Rajani Kant; Cockerill, David J A; Combaret, Christophe; Conetti, Sergio; Cossutti, Fabio; Cox, Bradley; Cussans, David; Dafinei, Ioan; Da Silva Di Calafiori, Diogo Raphael; Daskalakis, Georgios; Davatz, Giovanna; David, A; Deiters, Konrad; Dejardin, Marc; Djordjevic, Milos; Della Negra, Rodolphe; Della Ricca, Giuseppe; Del Re, Daniele; De Min, Alberto; Denegri, Daniel; Depasse, Pierre; Descamps, Julien; Diemoz, Marcella; Di Marco, Emanuele; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Duboscq, Jean Etienne; Dutta, Dipanwita; Dzelalija, Mile; Peisert, A; El-Mamouni, H; Evangelou, Ioannis; Evans, David; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franci, Daniele; Franzoni, Giovanni; Freudenreich, Klaus; Funk, Wolfgang; Ganjour, Serguei; Gargiulo, Corrado; Gascon, Susan; Gataullin, Marat; Geerebaert, Yannick; Gentit, François-Xavier; Gershtein, Yuri; Ghezzi, Alessio; Ghodgaonkar, Manohar; Gilly, Jean; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Gobbo, Benigno; Godinovic, Nikola; Golubev, Nikolai; Gong, Datao; Govoni, Pietro; Grant, Nicholas; Gras, Philippe; Greenhalgh, R J S; Guevara Riveros, Luz; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel de Monchenault, Gautier; Hansen, Magnus; Heath, Helen F; Heltsley, Brian; Hill, Jack; Hintz, Wieland; Hirosky, Robert; Hobson, Peter R; Honma, Alan; Hou, George Wei-Shu; Hsiung, Yee; Husejko, Michal; Ille, Bernard; Imlay, Richard; Ingram, Quentin; Jarry, Patrick; Jessop, Colin; Jovanovic, Dragoslav; Kaadze, Ketino; Kachanov, Vassili; Kailas, Swaminathan; Kataria, Sushil Kumar; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Kolberg, Ted; Krasnikov, Nikolai; Krpic, Dragomir; Kubota, Yuichi; Kumar, P; Kuo, Chen-Cheng; Kyberd, Paul; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Ledovskoy, Alexander; Leshev, Georgi; Lethuillier, Morgan; Lin, Sheng-Wen; Lin, Willis; Lintern, A L; Litvine, Vladimir; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, Paul David; Lustermann, Werner; Lynch, Clare; Ma, Yousi; Mahlke-Krüger, H; Malberti, Martina; Malcles, Julie; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Maravin, Yurii; Marchica, Carmelo; Marinelli, Nancy; Markou, Athanasios; Markou, Christos; Marone, Matteo; Mathez, Hervé; Matveev, Viktor; Mavrommatis, Charalampos; Maurelli, Georges; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mohanty, Ajit Kumar; Moortgat, Filip; Mur, Michel; Musella, Pasquale; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Nédélec, Patrick; Negri, Pietro; Newman, Harvey B; Nikitenko, Alexander; Nessi-Tedaldi, Francesca; Obertino, Maria Margherita; Organtini, Giovanni; Orimoto, Toyoko; Paganoni, Marco; Paganini, Pascal; Palma, Alessandro; Panev, Bozhidar; Pant, Lalit Mohan; Papadakis, Antonakis; Papadakis, Ioannis; Papadopoulos, Ioannis; Paramatti, Riccardo; Parracho, P; Pastrone, Nadia; Patterson, Juliet Ritchie; Pauss, Felicitas; Petrakou, Eleni; Phillips, D G; Piroué, Pierre; Ptochos, Fotios; Puljak, Ivica; Pullia, Antonino; Punz, Thomas; Puzovic, Jovan; Ragazzi, Stefano; Rahatlou, Shahram; Rander, John; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Ribeiro, Pedro Quinaz; Röser, Ulf; Rogan, Christopher; Romanteau, Thierry; Rondeaux, Françoise; Ronquest, Michael; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Sala, Leonardo; Salerno, Roberto; Santanastasio, Francesco; Schinzel, Dietrich; Seez, Christopher; Sharp, Peter; Shepherd-Themistocleous, Claire; Siamitros, Christos; Sillou, Daniel; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Silva, J; Silva, Pedro; Shiu, Jing-Ge; Shivpuri, Ram Krishen; Shukla, Prashant; Smith, Brian; Smith, Vincent J; Sproston, Martin; Stöckli, Fabian; Suter, Henry; Swain, John; Tabarellide Fatis, T; Takahashi, Maiko; Tcheremoukhine, Alexandre; Teller, Olivier; Theofilatos, Konstantinos; Thiebaux, Christophe; Timciuc, Vladlen; Timlin, Claire; Titov, Maksym; Tobias, A; Topkar, Anita; Triantis, Frixos A; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Verrecchia, Patrice; Veverka, Jan; Vichoudis, Paschalis; Virdee, Tejinder; Vlassov, E; Von Gunten, Hans Peter; Wang, Minzu; Wardrope, David; Weber, Markus; Weng, Joanna; Williams, Jennifer C; Yang, Yong; Yaselli, Ignacio; Yohay, Rachel; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zhang, Jia-Wen; Zhang, Lin; Zhu, Kejun; Zhu, Ren-Yuan

    2008-01-01

    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished before installation with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3\\%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5\\% over most of the ECAL. The best intercalibration precision is expected to come from the analysis of events collected {\\it in situ} during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were in...

  10. Performance analysis for the CALIFA Barrel calorimeter of the R{sup 3}B experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez-Pol, H., E-mail: hector.alvarez@usc.es [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Ashwood, N. [School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT (United Kingdom); Aumann, T. [Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Bertini, D. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Cabanelas, P. [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Casarejos, E. [Universidade de Vigo, E-36310 Vigo (Spain); Cederkall, J. [Department of Physics, Lund University, SE 221 00 Lund (Sweden); Cortina-Gil, D.; Díaz Fernández, P.; Duran, I. [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); Fiori, E. [ExtreMe Matter Institute EMMI and Research Division, GSI Helmholtzzentrum für Schwerionenforschung GmbH, D-64291 Darmstadt (Germany); Frankfurt Institute for Advanced Studies, D-60438 Frankfurt am Main (Germany); Galaviz, D. [Centro de Fsica Nuclear da Universidade de Lisboa, 1649-003 Lisbon (Portugal); Labiche, M. [STFC Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Nacher, E. [Instituto de Estructura de la Materia CSIC, Madrid (Spain); Pietras, B. [Dpt. de Física de Partículas, Universidade de Santiago de Compostela, E-15782, Santiago de Compostela (Spain); and others

    2014-12-11

    The CALIFA calorimeter is an advanced detector for gamma rays and light charged particles, accordingly optimized for the demanding requirements of the physics programme proposed for the R{sup 3}B facility at FAIR. The multipurpose character of CALIFA is required to fulfil challenging demands in energy resolution (5–6% at 1 MeV for gamma rays) and efficiency. Charged particles, e.g. protons of energies up to 320 MeV in the Barrel section, should also be identified with an energy resolution better to 1%. CALIFA is divided into two well-separated sections: a “Forward EndCap” and a cylindrical “Barrel” covering an angular range from 43.2° to 140.3°. The Barrel section, based on long CsI(Tl) pyramidal frustum crystals coupled to large area avalanche photodiodes (LAAPDs), attains the requested high efficiency for calorimetric purposes. The construction of the CALIFA Demonstrator, comprising 20% of the total detector, has already been initiated, and commissioning experiments are expected for 2014. The assessment of the capabilities and expected performance of the detector elements is a crucial step in their design, along with the prototypes evaluation. For this purpose, the Barrel geometry has been carefully implemented in the simulation package R3BRoot, including easily variable thicknesses of crystal wrapping and carbon fibre supports. A complete characterization of the calorimeter response (including efficiency, resolution, evaluation of energy and reconstruction losses) under different working conditions, with several physics cases selected to probe the detector performance over a wide range of applications, has been undertaken. Prototypes of different sections of the CALIFA Barrel have been modeled and their responses have been evaluated and compared with the experimental results. The present paper summarizes the outcome of the simulation campaign for the entire Barrel section and for the corresponding prototypes tested at different European installations.

  11. Design studies for the Phase II upgrade of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Orimoto, Toyoko Jennifer

    2016-01-01

    The High Luminosity LHC (HL-LHC) will provide unprecedented instantaneous and integrated luminosity. The lead tungstate crystals forming the barrel part of the Electromagnetic Calorimeter (ECAL) of the Compact Muon Solenoid (CMS) will still perform well, even after the expected integrated luminosity of 3000fb-1 at the end of HL-LHC. The avalanche photodiodes (APDs) used to detect the scintillation light will also continue to be operational, although there will be some increase in noise due to radiation-induced dark currents. This will be mitigated by reducing the barrel operating temperature during HL-LHC running.The front-end electronics of the ECAL barrel will be replaced, in order to remove existing constraints on trigger rate and latency and to provide additional capability to fully exploit the higher luminosity delivered by the HL-LHC. New developments in high-speed optical links will allow single-crystal readout at 40 MHz to upgraded off-detector processors, allowing maximum flexibility and enhanced tri...

  12. The Response of CMS Combined Calorimeters to Single Hadrons, Electrons and Muons

    CERN Document Server

    Akchurin, Nural; Gumus, Kazim; Jeong Chi Young; Kim Hee Jong; Lee Sung Won; Roh, Youn; Volobouev, Igor; Wigmans, Richard

    2007-01-01

    We report on the response of the combined CMS electromagnetic (EB) and hadronic barrel (HB) calorimeters to hadrons, electrons and muons in a wide momentum range from 1 to 350 GeV/c. To our knowledge, this is the widest range of momenta in which any calorimeter system is studied. These tests, carried out at the H2 beam-line at CERN, provide a wealth of information, especially at low energies. We analyze in detail the differences in total calorimeter response to charged pions, kaons, protons and antiprotons and discuss the underlying phenomena. These data will play a crucial role in the thorough understanding of jets in CMS.

  13. A crystal barrel

    CERN Multimedia

    2007-01-01

    The production of crystals for the barrel of the CMS electromagnetic calorimeter has been completed. This is an important milestone for the experiment, which received the last of its 62,960 crystals on 9 March. The members of the team responsible for the crystal acceptance testing at CERN display the last crystal for the CMS electromagnetic calorimeter barrel. From left to right: Igor Tarasov, Etiennette Auffray and Hervé Cornet.One of the six machines specially developed to measure 67 different parameters on each crystal. Igor Tarasov is seen inserting the last batch of crystals into the machine. The last of the 62,960 CMS barrel crystals arrived at CERN on 9 March. Once removed from its polystyrene protection, this delicate crystal, like thousands of its predecessors, will be inserted into the last of the 36 supermodules of the barrel electromagnetic calorimeter in a few days' time. This marks the end of an important chapter in an almost 15-year-long journey by the CMS crystals team, some of whose member...

  14. Hadron Energy Reconstruction for ATLAS Barrel Combined Calorimeter Using Non-Parametrical Method

    CERN Document Server

    Kulchitskii, Yu A

    2000-01-01

    Hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter in the framework of the non-parametrical method is discussed. The non-parametrical method utilizes only the known e/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to fast energy reconstruction in a first level trigger. The reconstructed mean values of the hadron energies are within \\pm1% of the true values and the fractional energy resolution is [(58\\pm 3)%{\\sqrt{GeV}}/\\sqrt{E}+(2.5\\pm0.3)%]\\bigoplus(1.7\\pm0.2) GeV/E. The value of the e/h ratio obtained for the electromagnetic compartment of the combined calorimeter is 1.74\\pm0.04. Results of a study of the longitudinal hadronic shower development are also presented.

  15. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Fasanella, Giuseppe

    2017-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillating lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  16. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Fasanella, Giuseppe

    2016-01-01

    The CMS Electromagnetic Calorimeter utilizes scintillating lead tungstate crystals, with avalanche photodiodes (APD) as photo-detectors in the barrel part. 1224 HV channels bias groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  17. ATLAS: last few metresfor the Calorimeter

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15. The Barrel Calorimeter which will absorb and measure the energy of photons, electrons and hadrons at the core of the ATLAS detector is 8.6 meters in diameter, 6.8 meters long, and weighs over 1600 Tonnes. It consists of two concentric cylindrical detector elements. The innermost comprises aluminium pressure vessels containing the liquid argon electromagnetic calorimeter and the solenoid magnet. The outermost is an assembly of 64 hadron tile calorimeter sectors. Assembled 18 meters away from its final position, the Barrel Calorimeter was relocated with the help of a railway, which allows the ...

  18. High precision, low disturbance calibration of the High Voltage system of the CMS Barrel Electromagnetic Calorimeter

    CERN Document Server

    Marzocchi, Badder

    2017-01-01

    The CMS Electromagnetic Calorimeter is made of scintillating lead tungstate crystals, using avalanche photodiodes (APD) as photo-detectors in the barrel part. The high voltage system, consisting of 1224 channels, biases groups of 50 APD pairs, each at a voltage of about 380 V. The APD gain dependence on the voltage is 3pct/V. A stability of better than 60 mV is needed to have negligible impact on the calorimeter energy resolution. Until 2015 manual calibrations were performed yearly. A new calibration system was deployed recently, which satisfies the requirement of low disturbance and high precision. The system is discussed in detail and first operational experience is presented.

  19. Design of a 2 x 2 scintillating tile package for the SDC barrel electromagnetic tile/fiber calorimeter

    International Nuclear Information System (INIS)

    Hara, K.; Maekoba, H.; Minato, H.; Miyamoto, Y.; Nakano, I.; Okabe, M.; Seiya, Y.; Takano, T.; Takikawa, K.; Yasuoka, K.

    1996-01-01

    We describe R and D results on optical properties of a scintillating tile/fiber system for the SDC barrel electromagnetic calorimeter. The tile/fiber system uses a wavelength shifting fiber to read out the signal of a scintillating plate (tile) and a clear fiber to transmit the signal to a phototube. In the SDC calorimeter design, four of tile/fiber systems are grouped as a 2 x 2 tile package so that the gap width between and the location of the tiles in the absorber slot can be controlled. Optical properties of the tile package such as the light yield, its uniformity, and cross talk were measured in a test bench with a β-ray source and in a 2-GeV/c π + test beam. The performance as an electromagnetic calorimeter was evaluated by a GEANT simulation using the measured response map. We discuss a method of correction for the calorimeter non-uniformity. (orig.)

  20. ATLAS Barrel Hadron Calorimeter: general manufacturing concepts for 300000 absorber plates mass production

    International Nuclear Information System (INIS)

    Alikov, B.A.; Budagov, Yu.A.; Bylinkin, P.M

    1998-01-01

    We summarize a 4-year (1994-1997) experience of design and research efforts which led us to the solution of 2 important tasks of a principal significance for precision assembly of one of major elements of ATLAS, - its Hadron Barrel Tile Calorimeter. These tasks were: - to develop the high tolerances (50-100 microns) technology for about 300000 units of calorimeter nuclear absorber plates mass production, - to choose the best manufacturer(s) able to satisfy shop drawings demands in a reasonable balance with some other significant criteria: production period, price acceptable geography location (transport expenses), available storage area and access ways, reliable quality control etc. For the best absorbers producers our final choice was the TATRA PLANT (Czech Republic) for 1.6 m long plates stamping (40800 units) with Argonne punching die and the MINSK TRACTOR PLANT (Belarus Republic) for smaller size plates stamping (about 240000 units). We exclude noticeable (more than 1% of the day production) tolerances violations by the specially developed QUALITY CONTROL Program

  1. The ATLAS Liquid Argon Calorimeters: integration, installation and commissioning

    International Nuclear Information System (INIS)

    Tikhonov, Yu.

    2008-01-01

    The ATLAS liquid argon calorimeter system consists of an electromagnetic barrel calorimeter and two end-caps with electromagnetic, hadronic and forward calorimeters positioned in three cryostats. Since May 2006 the LAr barrel calorimeter records regular calibration runs and takes cosmic muon data together with tile hadronic calorimeter in the ATLAS cavern. The cosmic runs with end-cap calorimeters started in April 2007. First results of these combined runs are presented

  2. An FPGA-based Sampling-ADC readout for the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Muellers, Johannes [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Marciniewski, Pawel [Angstroemlaboratoriet, Uppsala (Sweden); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    The CBELSA/TAPS experiment at the electron accelerator ELSA (Bonn) investigates the photoproduction of mesons off protons and neutrons. The Crystal Barrel Calorimeter has been upgraded replacing its photodiode readout by APDs, which allows the integration of the calorimeter into the first level trigger. Since the possible DAQ rate is currently limited by the digitization stage (LeCroy QDC1885F) to ∼ 2 kHz, the implementation of a new Sampling-ADC (SADC) readout is the second important step in the upgrade of the detector system. Based on the 64-channel PANDA-SADC, the design was modified, adapting it to the needs of the CBELSA/TAPS experiment. The CB-SADC offers 64 channels in one NIM module with up to 14 bit rate at 125 MHz, accompanied by a modular analog input stage and power supply. Data processing and reduction are realized with Kintex7 FPGAs. Readout is possible via gigabit ethernet links. Using an FPGA provides a multitude of possibilities for online feature extraction, such as the determination of the energy deposited in the crystal, TDC capabilities and pile-up detection and recovery. The SADC development is discussed, and first measurements performed in comparison to the presently used LeCroy QDC are presented.

  3. Experimental study of the effect of hadron shower leakage on the energy response and resolution of ATLAS hadron barrel prototype calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Vinogradov, V.B.; Kul'chitskij, Yu.A.; Rumyantsev, V.S.; Bogush, A.A.; Karapetyan, G.; Nessi, M.

    1996-01-01

    The hadronic shower longitudinal and lateral leakages and their effect on the pion response and energy resolution of ATLAS iron-scintillator barrel hadron prototype calorimeter have been investigated. The results are based on 100 GeV pion beam data at incidence angle Θ=10 deg. The fraction of the energy leaking out at the back of this calorimeter amounts to 1.8 % and agrees with the one for a conventional iron-scintillator calorimeter. Unexpected behaviour of the energy resolution as a function of leakage is observed: 6 % lateral leakage leads to 18 % improving of energy resolution in compare with the showers without leakage. 22 refs., 13 figs., 4 tabs

  4. Energy Resolution of the Barrel of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Baillon, Paul; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Bialas, Wojciech; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton, David; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Del Re, Daniele; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl, James; Gras, Philippe; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel De Montechenault, G; Hansen, Magnus; Heath, Helen F; Hill, Jack; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, M A; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman, Harvey B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Y; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; Triantis, F A; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Jia-Wen; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2007-01-01

    The energy resolution of the barrel part of the CMS Electromagnetic Calorimeter has been studied using electrons of 20 to 250 GeV in a test beam. The incident electron's energy was reconstructed by summing the energy measured in arrays of 3x3 or 5x5 channels. There was no significant amount of correlated noise observed within these arrays. For electrons incident at the centre of the studied 3x3 arrays of crystals, the mean stochastic term was measured to be 2.8% and the mean constant term to be 0.3%. The amount of the incident electron's energy which is contained within the array depends on its position of incidence. The variation of the containment with position is corrected for using the distribution of the measured energy within the array. For uniform illumination of a crystal with 120 GeV electrons a resolution of 0.5% was achieved. The energy resolution meets the design goal for the detector.

  5. The Compact Muon Solenoid (CMS) hadron calorimeter

    International Nuclear Information System (INIS)

    Hagopian, Vasken

    1999-01-01

    The Hadron Calorimeter of the CMS detector for the CERN LHC accelerator is designed to measure hadron jets as well as single hadrons. It has six segments. The central barrel made of brass and scintillators covers the vertical bar η vertical bar range of about 0 to 1.3. Two End Caps, also made of brass and scintillators extends the vertical bar η vertical bar range to 3.0. Two Forward calorimeters made of iron and quartz fibers cover the range 3.0 to 5.0. Since the barrel portion of the calorimeter is only 6.5 interaction lengths, the outer barrel will sample, by scintillators, outside the magnet coil and cryostat. Progress has been made on all subsystems and prototypes have been built. We now have a better understanding of magnetic field effects on calorimeters

  6. The TileCal Barrel Test Assembly

    CERN Multimedia

    Leitner, R

    On 30th October, the mechanics test assembly of the central barrel of the ATLAS tile hadronic calorimeter was completed in building 185. It started on 23rd June and is the second wheel for the Tilecal completely assembled this year. The ATLAS engineers and technicians are quick: instead of the 27 weeks initially foreseen for assembling the central barrel of the tile hadronic calorimeter (Tilecal) in building 185, they inserted the last of the 64 modules on 30th October after only 19 weeks. In part, this was due to the experience gained in the dry run assembly of the first extended barrel, produced in Spain, in spring this year (see Bulletin 23/2003); however, the central barrel is twice as long - and twice as heavy. With a length of 6.4 metres, an outer diameter of 8.5 metres and an inner diameter of 4.5 metres, the object weight is 1300 tonnes. The whole barrel cylinder is supported by the stainless steel support structure weighing only 27 tons. The barrel also has to have the right shape: over the whole 8...

  7. Proposal for the completion of outstanding work on the mechanical absorber structure of SDC barrel electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Guarino, V.; Hill, N.; Kicmal, T.; Nasiatka, J.; Petereit, E.; Price, L.; Proudfoot, J.; Stanek, R.; Scherbarth, D.

    1993-01-01

    The High Energy Physics Division at Argonne National Laboratory and Westinghouse Science and Technology Center, Pittsburgh Pennsylvania have worked jointly on a scintillating tile/fiber calorimeter with the SDC collaboration since it's inception in 1989. During the design and prototyping phase of the last three years, we have particularly worked on the development of an innovative cast lead approach to the absorber and the associated design of tile/fiber packaging for the barrel electromagnetic calorimeter (EMC). A full scale prototype program was initiated in 1992 to construct four EMC castings to be mated to respective steel hadronic wedges fabricated in China and presently at Fermilab. This proposal we outline in detail both the tasks that we have completed and those that we propose to complete in order to make the extensive investment in this technology useful to others in the field

  8. The ATLAS Liquid Argon Calorimeter: Construction, Integration, Commissioning

    International Nuclear Information System (INIS)

    Aleksa, Martin

    2006-01-01

    The ATLAS liquid argon (LAr) calorimeter system consists of an electromagnetic barrel calorimeter and two end caps with electromagnetic, hadronic and forward calorimeters. The liquid argon sampling technique, with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the end cap (EMEC). The hadronic end cap calorimeter (HEC) uses a copper-liquid argon sampling technique with flat plate geometry and is subdivided in depth in two wheels per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules employing cylindrical electrodes with thin liquid argon gaps.The construction of the full calorimeter system is complete since mid-2004. Production modules constructed in the home institutes were integrated into wheels at CERN in 2003-2004, and inserted into the three cryostats. They passed their first complete cold test before the lowering into the ATLAS cavern. Results of quality checks (e.g. electrical, mechanical, ...) performed on all the 190304 read-out channels after cool down will be reported. End 2004 the ATLAS barrel electromagnetic (EM) calorimeter was installed in the ATLAS cavern and since summer 2005 the front-end electronics are being connected and tested. Results of this first commissioning phase will be shown to demonstrate the high standards of quality control for our detectors

  9. What's new with the CMS hadron calorimeter

    CERN Document Server

    Hagopian, V

    2002-01-01

    The CMS Hadron Calorimeter is designed to measure hadron jets, single hadrons and single mu 's. The central barrel and the two end caps, made of brass and scintillators cover the ¿ eta ¿ range of 0.0 to 3.0. The two forward calorimeters made of iron and quartz fibers extend the ¿ eta ¿ range to 5.0. Scintillators are also placed outside of the magnet coil, within the muon system to measure the energy leakage from the central barrel. The construction of the calorimeter is about 50% complete. Several design changes were made to simplify the calorimeter and reduce the cost. The longitudinal segmentation of the central barrel and end caps was reduced by one unit. The quartz fiber diameter was doubled from 300 to 600 microns. Improvements were made to the hybrid photodetectors (HPD) and various other components. The special purpose ADC (QIE) and other electronics are in prototype stage. (3 refs).

  10. End of the EM Barrel Presampler Construction and Insertion

    CERN Multimedia

    Hostachy, J.Y.

    The liquid argon barrel presampler is a thin detector placed in front of the electromagnetic barrel calorimeter, made up of two half barrels also, but with 32 sectors per half barrel instead of 16. Each of these 64 sectors is 3.1 m long, 28 cm large and 2.9 cm thick. Three countries took part in its construction: France (LPSC-Grenoble), Sweden (KTH-Stockholm) and Morocco (Hassan II Ain Chock-Casablanca and Mohamed V-Rabat universities, and CNESTEN-Rabat). The design of the presampler started 11 years ago and the series production began at the end of 2000. Cabling, mechanical and electronic tests of the anodes were achieved in Morocco. Forty-one sectors were assembled and validated at the LPSC-Grenoble and 25 at the KTH-Stockholm. In November 2002, the first half was inserted on the inner face of the first EM calorimeter wheel. The insertion of the other 32 sectors in the second EM calorimeter wheel was achieved in July 2003 (see pictures). The production of two additional sectors will allow us to study the p...

  11. Overview of the Calorimeter Readout Upgrades

    CERN Document Server

    Straessner, Arno; The ATLAS collaboration

    2018-01-01

    The ATLAS and CMS calorimeter electronics will be upgraded for the HL-LHC data taking phase to cope with higher event pile-up and to allow improved trigger strategies. This presentations gives an overview of the ongoing developments for the CMS barrel calorimeters and the ATLAS LAr and Tile calorimeters.

  12. Calibration of the CMS Hadron Calorimeter in Run 2

    CERN Document Server

    Chadeeva, Marina

    2017-01-01

    Various calibration techniques for the CMS Hadron calorimeter in Run2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3\\%. The {\\it in situ} energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Z$\\rightarrow ee$ process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4\\% in the barrel and 2.6\\% in the endcap region (at $\\vert \\eta \\vert < 2$) and is dominated by the systematic uncertainty due to pileup contributions.

  13. Calibration of the CMS hadron calorimeter in Run 2

    Science.gov (United States)

    Chadeeva, M.; Lychkovskaya, N.

    2018-03-01

    Various calibration techniques for the CMS Hadron calorimeter in Run 2 and the results of calibration using 2016 collision data are presented. The radiation damage corrections, intercalibration of different channels using the phi-symmetry technique for barrel, endcap and forward calorimeter regions are described, as well as the intercalibration with muons of the outer hadron calorimeter. The achieved intercalibration precision is within 3%. The in situ energy scale calibration is performed in the barrel and endcap regions using isolated charged hadrons and in the forward calorimeter using the Zarrow ee process. The impact of pileup and the developed technique of correction for pileup is also discussed. The achieved uncertainty of the response to hadrons is 3.4% in the barrel and 2.6% in the endcap region (at the pseudorapidity range |η|<2) and is dominated by the systematic uncertainty due to pileup contributions.

  14. Calibration of the ATLAS Tile hadronic calorimeter using muons

    CERN Document Server

    van Woerden, M C; The ATLAS collaboration

    2012-01-01

    The ATLAS Tile Calorimeter (TileCal) is the barrel hadronic calorimeter of the ATLAS experiment at the CERN Large Hadron Collider (LHC). It is a sampling calorimeter using plastic scintillator as the active material and iron as the absorber. TileCal , together with the electromagnetic calorimeter, provides precise measurements of hadrons, jets, taus and the missing transverse energy. Cosmic rays muons and muon events produced by scraping 450 GeV protons in one collimator of the LHC machine have been used to test the calibration of the calorimeter. The analysis of the cosmic rays data shows: a) the response of the third longitudinal layer of the Barrel differs from those of the first and second Barrel layers by about 3-4%, respectively and b) the differences between the energy scales of each layer obtained in this analysis and the value set at beam tests using electrons are found to range between -3% and +1%. In the case of the scraping beam data, the responses of all the layer pairs were found to be consisten...

  15. The ATLAS installation team, led by Tommi Nyman, after having positioned the Barrel Calorimeter in its final location in the ATLAS experimental cavern UX15

    CERN Multimedia

    2005-01-01

    On Friday 4th November, the ATLAS Barrel Calorimeter was moved from its assembly point at the side of the ATLAS cavern to the centre of the toroidal magnet system. The detector was finally aligned, to the precision of within a millimetre, on Wednesday 9th November.

  16. ATLAS Tile Calorimeter central barrel assembly and installation.

    CERN Multimedia

    nikolai topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  17. Construction techniques of the high resolution lead / scintillating fibre electromagnetic calorimeter for the KLOE experiment

    International Nuclear Information System (INIS)

    Anelli, M.; Bisogni, G.; Ceccarelli, A.

    1997-07-01

    The electromagnetic calorimeter of the KLOE experiment is a lead-scintillating fibre sampling device. This calorimeter is arranged as a 'barrel', closed at both ends with an 'end-cap'. The barrel consists in 24 modules defining a cylinder, 4.3 long, with 4 m inner diameter. Each end-cap consists of 32 modules running vertically along the chords of the circle inscribed into the barrel. In this paper the calorimeter construction techniques are described

  18. Construction techniques of the high resolution lead / scintillating fibre electromagnetic calorimeter for the KLOE experiment

    Energy Technology Data Exchange (ETDEWEB)

    Anelli, M; Bisogni, G; Ceccarelli, A [INFN, Laboratori Nazionali di Frascati, Rome (Italy); and others

    1997-07-01

    The electromagnetic calorimeter of the KLOE experiment is a lead-scintillating fibre sampling device. This calorimeter is arranged as a `barrel`, closed at both ends with an `end-cap`. The barrel consists in 24 modules defining a cylinder, 4.3 long, with 4 m inner diameter. Each end-cap consists of 32 modules running vertically along the chords of the circle inscribed into the barrel. In this paper the calorimeter construction techniques are described.

  19. STAR barrel electromagnetic calorimeter absolute calibration using 'minimum ionizing particles' from collisions at RHIC

    International Nuclear Information System (INIS)

    Cormier, T.M.; Pavlinov, A.I.; Rykov, M.V.; Rykov, V.L.; Shestermanov, K.E.

    2002-01-01

    The procedure for the STAR Barrel Electromagnetic Calorimeter (BEMC) absolute calibrations, using penetrating charged particle hits (MIP-hits) from physics events at RHIC, is presented. Its systematic and statistical errors are evaluated. It is shown that, using this technique, the equalization and transfer of the absolute scale from the test beam can be done to a percent level accuracy in a reasonable amount of time for the entire STAR BEMC. MIP-hits would also be an effective tool for continuously monitoring the variations of the BEMC tower's gains, virtually without interference to STAR's main physics program. The method does not rely on simulations for anything other than geometric and some other small corrections, and also for estimations of the systematic errors. It directly transfers measured test beam responses to operations at RHIC

  20. High performance interactive graphics for shower reconstruction in HPC, the DELPHI barrel electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Stanescu, C.

    1990-01-01

    Complex software for shower reconstruction in DELPHI barrel electromagnetic calorimeter which deals, for each event, with great amounts of information, due to the high spatial resolution of this detector, needs powerful verification tools. An interactive graphics program, running on high performance graphics display system Whizzard 7555 from Megatek, was developed to display the logical steps in showers and their axes reconstruction. The program allows both operations on the image in real-time (rotation, translation and zoom) and the use of non-geometrical criteria to modify it (as the use of energy) thresholds for the representation of the elements that compound the showers (or of the associated lego plots). For this purpose graphics objects associated to user parameters were defined. Instancing and modelling features of the native graphics library were extensively used

  1. Recent developments in crystal calorimeters (featuring the CMS PbWO4 electromagnetic calorimeter)

    International Nuclear Information System (INIS)

    Gascon-Shotkin, S.

    2003-01-01

    In the mass range of 110-150 GeV the favored process for Higgs boson detection via p-p collisions is via its decay into two photons, which demands a very high-resolution electromagnetic calorimeter. This physics goal plus the Large Hadron Calorimeter (LHC)-imposed design constraints of 25ns bunch spacing and a hostile radiation environment have led the Compact Muon Solenoid (CMS) collaboration to the choice of lead tungstate (PbWO 4 ) crystals. These factors plus the presence of a 4T magnetic field and the relatively low room-temperature scintillation photon yield of PbWO 4 make photo detection a real challenge, which CMS has met via the choice of devices providing gain amplification: Avalanche photodiodes (APD) in the central barrel region and vacuum phototriodes (VPT) in the forward and backward endcap regions. In the past year the CMS electromagnetic calorimeter has entered the construction phase. We review progress in the areas of crystals, barrel and endcap photo detection devices, plans for detector calibration as well as the status of assembly and quality control. We also invoke relevant developments in other crystal calorimeters currently in operation or under development. Crystal calorimeters remain the medium of choice for precision energy and position measurements in high energy physics

  2. First two barrel ECAL supermodules inserted in CMS HCAL

    CERN Multimedia

    K.Bell

    2006-01-01

    The first two barrel "supermodules" for the CMS Electromagnetic Calorimeter (ECAL) have been inserted into the barrel hadron calorimeter (HCAL) in the experimental hall (called SX5) in Cessy in preparation for the forthcoming magnet test and cosmic challenge (MTCC). Each of the two supermodules contains 1700 lead tungstate crystals in glass-fibre alveolar support structures, with associated avalanche photodiodes (APDs, for scintillation light detection), electronics and cooling system. The barrel ECAL will consist of 36 supermodules, many of which have already been produced (see CERN Bulletin 17-18, 2006). Team from CMS ECAL, CMS Integration and CEA-DAPNIA were involved in the insertion, with the production/integration of the supermodules themselves involving many technicians, engineers and physicists from many institutes. From left to right: Olivier Teller, Maf Alidra and Lucien Veillet.

  3. An FPGA-based sampling-ADC readout for the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Muellers, Johannes [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Marciniewski, Pawel [Angstroemlaboratoriet, Uppsala (Sweden); Collaboration: CBELSA/TAPS-Collaboration

    2015-07-01

    The CBELSA/TAPS experiment at the electron accelerator ELSA (Bonn) investigates the photoproduction of mesons off protons and neutrons. Presently the readout of the CsI(Tl)-crystals of the Crystal Barrel calorimeter is being upgraded from a PIN-diode readout to an APD readout to create a fast signal for first-level-triggering. This will increase the trigger efficiency especially for final states with only neutral particles substantially. To increase the possible data readout rate, which is currently limited by the digitization stage (LeCroy QDC 1885F) to ∼ 2 kHz, the implementation of a new Sampling-ADC (SADC) readout is being prepared. Based on the 64-channel PANDA-SADC, the CB-SADC design was modified and adapted to the needs of the CBELSA/TAPS experiment. It offers 64 channels in one NIM module, together with modular analog or FPGA-based digital shaping. The data transfer will be realized by two standard gigabit links. Using an FPGA together with SADCs provides a multitude of possibilities for online feature extraction, such as the determination of the energy deposited in the crystal, TDC capabilities and pile-up detection and recovery.

  4. Status of the ATLAS Liquid Argon Calorimeter and its Performance

    CERN Document Server

    Barillari, T; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region |eta|<3.2, as well as for hadronic calorimetry from |eta|=1.4 to |eta|=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes ...

  5. CsI calorimeter of the CMD-3 detector

    International Nuclear Information System (INIS)

    Aulchenko, V.M.; Bondar, A.E.; Erofeev, A.L.; Kovalenko, O.A.; Kozyrev, A.N.; Kuzmin, A.S.; Logashenko, I.B.; Razuvaev, G.P.; Ruban, A.A.; Shebalin, V.E.; Shwartz, B.A.; Talyshev, A.A.; Titov, V.M.; Yudin, Yu.V.; Epifanov, D.A.

    2015-01-01

    The VEPP-2000 e + e − collider has been operated at Budker Institute of Nuclear Physics since 2010. The experiments are performed with two detectors CMD-3 and SND. The calorimetry at the CMD-3 detector is based on three subsystems, two coaxial barrel calorimeters—Liquid Xenon Calorimeter and crystal CsI calorimeter, and endcap calorimeter with BGO crystals. This paper describes the CsI calorimeter of the CMD-3 detector. The calorimeter design, its electronics and calibration procedures are discussed

  6. The CMS Outer Hadron Calorimeter

    CERN Document Server

    Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Bawa, Harinder Singh; Beri, Suman Bala; Bhandari, Virender; Bhatnagar, Vipin; Chendvankar, Sanjay; Deshpande, Pandurang Vishnu; Dugad, Shashikant; Ganguli, Som N; Guchait, Monoranjan; Gurtu, Atul; Kalmani, Suresh Devendrappa; Kaur, Manjit; Kohli, Jatinder Mohan; Krishnaswamy, Marthi Ramaswamy; Kumar, Arun; Maity, Manas; Majumder, Gobinda; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Narasimham, Vemuri Syamala; Patil, Mandakini Ravindra; Reddy, L V; Satyanarayana, B; Sharma, Seema; Singh, B; Singh, Jas Bir; Sudhakar, Katta; Tonwar, Suresh C; Verma, Piyush

    2006-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with a outer calorimeter to ensure high energy shower containment in CMS and thus working as a tail catcher. Fabrication, testing and calibrations of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter has a very good signal to background ratio even for a minimum ionising particle and can hence be used in coincidence with the Resistive Plate Chambers of the CMS detector for the muon trigger.

  7. Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES - 08193 Bellaterra (Barcelona) (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE 55099 (Germany); Ahmad, A [Department of Physics and Astronomy, Stony Brook, NY 11794-3800 (United States); Akesson, T P.A. [Lunds Universitet, Naturvetenskapliga Fakulteten, Fysiska Institutionen, Box 118, SE - 221 00, Lund (Sweden); Aleksa, M [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Anghinolfi, F [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR - 80815 Bebek-Istanbul (Turkey); Baker, O K [Yale University, Department of Physics, PO Box 208121, New Haven, CT 06520-8121 (United States); Banfi, D [Universita di Milano, Dipartimento di Fisica and INFN, via Celoria 16, IT - 20133 Milano (Italy); Baron, S [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Beck, H P [University of Bern, Laboratory for High Energy Physics, Sidlerstrasse 5, CH - 3012 Bern (Switzerland)

    2010-09-21

    A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.

  8. Study of energy response and resolution of the ATLAS barrel calorimeter to hadrons of energies from 20 to 350 GeV

    International Nuclear Information System (INIS)

    Abat, E.; Abdallah, J.M.; Addy, T.N.; Adragna, P.; Aharrouche, M.; Ahmad, A.; Akesson, T.P.A.; Aleksa, M.; Alexa, C.; Anderson, K.; Anghinolfi, F.; Antonaki, A.; Arabidze, G.; Arik, E.; Baker, O.K.; Banfi, D.; Baron, S.; Beck, H.P.

    2010-01-01

    A fully instrumented slice of the ATLAS detector was exposed to test beams from the SPS (Super Proton Synchrotron) at CERN in 2004. In this paper, the results of the measurements of the response of the barrel calorimeter to hadrons with energies in the range 20-350 GeV and beam impact points and angles corresponding to pseudo-rapidity values in the range 0.2-0.65 are reported. The results are compared to the predictions of a simulation program using the Geant 4 toolkit.

  9. A new avalanche photo diode based readout for the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Martin [Helmholtz-Institut fuer Strahlen- und Kernphysik, Nussallee 14-16, 53115 Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2015-07-01

    The CBELSA/TAPS experiment at ELSA has proven successful in the measurement of double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions on a polarized neutron target with high efficiency, the main calorimeter consisting of 1320 CsI(Tl) crystals has to be integrated into the first level trigger. Key requirement to achieve this goal is an exchange of the existing PIN photo diode by a new avalanche photo diode (APD) readout. The main advantage of the new readout system is that it will provide timing information which allows a fast trigger signal. The energy resolution will remain compatible to the previous system. Besides the development of automated test routines for the front end electronics, the characterization of all APDs was successfully accomplished in Bonn. After tests with a 3 x 3 CsI(Tl) crystal matrix at the tagged photon beam facilities at ELSA and MAMI the first half of the Crystal Barrel was upgraded in 2014. This talk shows the result of the latest test measurements including the gain stabilization of the new APD readout electronics and presents the progress of the ongoing upgrade.

  10. Response and Shower Topology of 2 to 180 GeV Pions Measured with the ATLAS Barrel Calorimeter at the CERN Test-beam and Comparison to Monte Carlo Simulations

    CERN Document Server

    Abat, E; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Alexa, C; Anderson, K; Andreazza, A; Anghinolfi, F; Antonaki, A; Arabidze, G; Arik, E; Atkinson, T; Baines, J; Baker, O K; Banfi, D; Baron, S; Barr, A J; Beccherle, R; Beck, H P; Belhorma, B; Bell, P J; Benchekroun, D; Benjamin, D P; Benslama, K; Bergeaas Kuutmann, E; Bernabeu, J; Bertelsen, H; Binet, S; Biscarat, C; Boldea, V; Bondarenko, V G; Boonekamp, M; Bosman, M; Bourdarios, C; Broklova, Z; Burckhart Chromek, D; Bychkov, V; Callahan, J; Calvet, D; Canneri, M; Capeans Garrido, M; Caprini, M; Cardiel Sas, L; Carli, T; Carminati, L; Carvalho, J; Cascella, M; Castillo, M V; Catinaccio, A; Cauz, D; Cavalli, D; Cavalli Sforza, M; Cavasinni, V; Cetin, S A; Chen, H; Cherkaoui, R; Chevalier, L; Chevallier, F; Chouridou, S; Ciobotaru, M; Citterio, M; Clark, A; Cleland, B; Cobal, M; Cogneras, E; Conde Muino, P; Consonni, M; Constantinescu, S; Cornelissen, T; Correard, S; Corso Radu, A; Costa, G; Costa, M J; Costanzo, D; Cuneo, S; Cwetanski, P; Da Silva, D; Dam, M; Dameri, M; Danielsson, H O; Dannheim, D; Darbo, G; Davidek, T; De, K; Defay, P O; Dekhissi, B; Del Peso, J; Del Prete, T; Delmastro, M; Derue, F; Di Ciaccio, L; Dita, S; Dittus, F; Djama, F; Djobava, T; Dobos, D; Dobson, M; Dolgoshein, B A; Dotti, A; Drake, G; Drasal, Z; Dressnandt, N; Driouchi, G; Drohan, J; Ebenstein, W L; Eerola, P; Eerola, P; Efthymiopoulos, I; Egorov, K; Eifert, T F; Einsweiler, K; El Kacimi, M; Elsing, M; Emelyanov, D; Escobar, C; Etienvre, A I; Fabich, A; Facius, K; Fakhr-Edine, A I; Fanti, M; Farbin, A; Farthouat, P; Fassouliotis, D; Fayard, L; Febbraro, R; Fedin, O L; Fenyuk, A; Fergusson, D; Ferrari, P; Ferrari, R; Ferreira, B C; Ferrer, A; Ferrere, D; Filippini, G; Flick, T; Fournier, D; Francavilla, P; Francis, D; Froeschl, R; Froidevaux, D; Fullana, E; Gadomski, S; Gagliardi, G; Gagnon, P; Gallas, M; Gallop, B J; Gameiro, S; Gan, K K; Garcia, R; Garcia, C; Gavrilenko, I L; Gemme, C; Gerlach, P; Ghodbane, N; Giakoumopoulou, V; Giangiobbe, V; Giokaris, N; Di Girolamo, B; Glonti, G; Goettfert, T; Golling, T; Gollub, N; Gomes, A; Gomez, M D; Gonzalez-Sevilla, S; Goodrick, M J; Gorfine, G; Gorini, B; Goujdami, D; Grahn, K J; Grenier, P; Grigalashvili, N; Grishkevich, Y; Grosse-Knetter, J; Gruwe, M; Guicheney, C; Gupta, A; Haeberli, C; Haertel, R; Hajduk, Z; Hakobyan, H; Hance, M; Hansen, D J; Hansen, P H; Hara, K; Harvey Jr, A; Hawkings, R J; Heinemann, F E W; Henriques Correia, A; Henss, T; Hervas, L; Higon, E; Hill, J C; Hoffman, J; Hostachy, J Y; Hruska, I; Hubaut, F; Huegging, F; Hulsbergen, W; Hurwitz, M; Iconomidou-Fayard, L; Jansen, E; Jen-La Plante, I; Johansson, P D C; Jon-And, K; Joos, M; Jorgensen, S; Joseph, J; Kaczmarska, A; Kado, M; Karyukhin, A; Kataoka, M; Kayumov, F; Kazarov, A; Keener, P T; Kekelidze, G D; Kerschen, N; Kersten, S; Khomich, A; Khoriauli, G; Khramov, E; Khristachev, A; Khubua, J; Kittelmann, T H; Klingenberg, R; Klinkby, E B; Kodys, P; Koffas, T; Kolos, S; Konovalov, S P; Konstantinidis, N; Kopikov, S; Korolkov, I; Kostyukhin, V; Kovalenko, S; Kowalski, T Z; Kruger, K; Kramarenko, V; Kudin, L G; Kulchitsky, Y; Le Bihan, A C; Lacasta, C; Lafaye, R; Laforge, B; Lampl, W; Lanni, F; Laplace, S; Lari, T; Latorre, S; Le Bihan, A C; Lechowski, M; Ledroit-Guillon, F; Lehmann, G; Leitner, R; Lelas, D; Lester, C G; Liang, Z; Lichard, P; Liebig, W; Lipniacka, A; Lokajicek, M; Louchard, L; Lourerio, K F; Lucotte, A; Luehring, F; Lund-Jensen, B; Lundberg, B; Ma, H; Mackeprang, R; Maio, A; Maleev, V P; Malek, F; Mandelli, L; Maneira, J; Mangin-Brinet, M; Manousakis, A; Mapelli, L; Marques, C; Marti i García, S; Martin, F; Mathes, M; Mazzanti, M; McFarlane, K W; McPherson, R; Mchedlidze, G; Mehlhase, S; Meirosu, C; Meng, Z; Meroni, C; Miagkov, A; Mialkovski, V; Mikulec, B; Milstead, D; Minashvili, I; Mindur, B; Mitsou, V A; Moed, S; Monnier, E; Moorhead, G; Morettini, P; Morozov, S V; Mosidze, M; Mouraviev, S V; Moyse, E W J; Munar, A; Nadtochi, A V; Nakamura, K; Nechaeva, P; Negri, A; Nemecek, S; Nessi, M; Nesterov, S Y; Newcomer, F M; Nikitine, I; Nikolaev, K; Nikolic-Audit, I; Ogren, H; Oh, S H; Oleshko, S B; Olszowska, J; Onofre, A; Padilla Aranda, C; Paganis, S; Pallin, D; Pantea, D; Paolone, V; Parodi, F; Parsons, J; Parzhitskiy, S; Pasqualucci, E; Passmore, M S; Pater, J; Patrichev, S; Peez, M; Perez Reale, V; Perini, L; Peshekhonov, V D; Petersen, J; Petersen, T C; Petti, R; Phillips, P W; Pilcher, J; Pina, J; Pinto, B; Podlyski, F; Poggioli, L; Poppleton, A; Poveda, J; Pralavorio, P; Pribyl, L; Price, M J; Prieur, D; Puigdengoles, C; Puzo, P; Rohne, O; Ragusa, F; Rajagopalan, S; Reeves, K; Reisinger, I; Rembser, C; Bruckman de Renstrom, P; Reznicek, P; Ridel, M; Risso, P; Riu, I; Robinson, D; Roda, C; Roe, S; Romaniouk, A; Rousseau, D; Rozanov, A; Ruiz, A; Rusakovich, N; Rust, D; Ryabov, Y F; Ryjov, V; Salto, O; Salvachua, B; Salzburger, A; Sandaker, H; Santamarina Rios, C; Santi, L; Santoni, C; Saraiva, J G; Sarri, F; Sauvage, G; Says, L P; Schaefer, M; Schegelsky, V A; Schiavi, C; Schieck, J; Schlager, G; Schlereth, J; Schmitt, C; Schultes, J; Schwemling, P; Schwindling, J; Seixas, J M; Seliverstov, D M; Serin, L; Sfyrla, A; Shalanda, N; Shaw, C; Shin, T; Shmeleva, A; Silva, J; Simion, S; Simonyan, M; Sloper, J E; Smirnov, S Yu; Smirnova, L; Solans, C; Solodkov, A; Solovianov, O; Soloviev, I; Sosnovtsev, V V; Spano, F; Speckmayer, P; Stancu, S; Stanek, R; Starchenko, E; Straessner, A; Suchkov, S I; Suk, M; Szczygiel, R; Tarrade, F; Tartarelli, F; Tas, P; Tayalati, Y; Tegenfeldt, F; Teuscher, R; Thioye, M; Tikhomirov, V O; Timmermans, C; Tisserant, S; Toczek, B; Tremblet, L; Troncon, C; Tsiareshka, P; Tyndel, M; Karagoez Unel, M; Unal, G; Unel, G; Usai, G; Van Berg, R; Valero, A; Valkar, S; Valls, J A; Vandelli, W; Vannucci, F; Vartapetian, A; Vassilakopoulos, V I; Vasilyeva, L; Vazeille, F; Vernocchi, F; Vetter-Cole, Y; Vichou, I; Vinogradov, V; Virzi, J; Vivarelli, I; De Vivie, J B; Volpi, M; Vu Anh, T; Wang, C; Warren, M; Weber, J; Weber, M; Weidberg, A R; Weingarten, J; Wells, P S; Werner, P; Wheeler, S; Wiessmann, M; Wilkens, H; Williams, H H; Wingerter-Seez, I; Yasu, Y; Zaitsev, A; Zenin, A; Zenis, T; Zenonos, Z; Zhang, H; Zhelezko, A; Zhou, N

    2010-01-01

    The response of the ATLAS barrel calorimeter to pions with momenta from $2$ to $180$~GeV~ is studied in a test--beam at the CERN H8 beam line. %Various methods to reconstruct the deposited pion energies are studied. The mean energy, the energy resolution and the longitudinal and radial shower profiles, and, various observables characterising the shower topology in the calorimeter are measured. The data are compared to Monte Carlo simulations based on a detailed description of the experimental set--up and on various models describing the interaction of particles with matter based on Geant4.

  11. A lead-scintillating fiber calorimeter to increase L3 hermeticity

    CERN Document Server

    Basti, G

    1997-01-01

    A lead-scintillating fiber calorimeter has been built to fill the gap between endcap and barrel of the L3 BGO electromagnetic calorimeter. We report details of the construction, as well as results from test-beam and simulation.

  12. Monte Carlo simulation of a gas-sampled hadron calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Chang, C Y; Kunori, S; Rapp, P; Talaga, R; Steinberg, P; Tylka, A J; Wang, Z M

    1988-02-15

    A prototype of the OPAL barrel hadron calorimeter, which is a gas-sampled calorimeter using plastic streamer tubes, was exposed to pions at energies between 1 and 7 GeV. The response of the detector was simulated using the CERN GEANT3 Monte Carlo program. By using the observed high energy muon signals to deduce details of the streamer formation, the Monte Carlo program was able to reproduce the observed calorimeter response. The behavior of the hadron calorimeter when placed behind a lead glass electromagnetic calorimeter was also investigated.

  13. First Half Of CMS Hadron Calorimeter Completed

    CERN Multimedia

    2001-01-01

    CMS HCAL electronics coordinator John Elias from Fermilab inspecting the assembled first half of the calorimeter. The first half barrel of the CMS hadron calorimeter was completed last month and assembly work on the elements of the second half commenced just last week. This is not a simple task considering the fact that the constructed half-barrel consists of eighteen 30 tonne segments each made with 0.15 mm tolerance. But through the work of everyone on the CMS hadron calorimeter team it is all moving forward. In the LHC, detection of particles produced in collisions of two proton beams requires measurement of their energy. To do this, the particle energy has to be changed into a form that can be easily measured. This is achieved by stopping the initial particles in a dense medium, where they create a shower of secondary particles. While particles that interact through electromagnetic forces (electrons and positrons) create relatively small showers, the size of showers created by hadrons, particles that i...

  14. Non-compensation of an electromagnetic compartment of a combined calorimeter

    International Nuclear Information System (INIS)

    Kil'chitskij, Yu.A.; Kuz'min, M.V.; Vinogradov, V.B.

    1999-01-01

    The method of extraction of the e/h ratio, the degree of noncompensation of the electromagnetic compartment of the ATLAS barrel combined prototype calorimeter is suggested. The e/h ratio of 1.74 ± 0.04 has been determined on the basis of the 1996 combined calorimeter test beam data. This value agrees with the prediction that e/h > 1.7 for this electromagnetic calorimeter

  15. Design, Performance, and Calibration of the CMS Hadron-Outer Calorimeter

    CERN Document Server

    Abdullin, Salavat; Acharya, Bannaje Sripathi; Adam, Nadia; Adams, Mark Raymond; Akchurin, Nural; Akgun, Ugur; Albayrak, Elif Asli; Anderson, E Walter; Antchev, Georgy; Arcidy, M; Ayan, S; Aydin, Sezgin; Aziz, Tariq; Baarmand, Marc M; Babich, Kanstantsin; Baden, Drew; Bakirci, Mustafa Numan; Banerjee, Sunanda; Banerjee, Sudeshna; Bard, Robert; Barnes, Virgil E; Bawa, Harinder Singh; Baiatian, G; Bencze, Gyorgy; Beri, Suman Bala; Berntzon, Lisa; Bhatnagar, Vipin; Bhatti, Anwar; Bodek, Arie; Bose, Suvadeep; Bose, Tulika; Budd, Howard; Burchesky, Kyle; Camporesi, Tiziano; Cankocak, Kerem; Carrell, Kenneth Wayne; Cerci, Salim; Chendvankar, Sanjay; Chung, Yeon Sei; Clarida, Warren; Cremaldi, Lucien Marcus; Cushman, Priscilla; Damgov, Jordan; De Barbaro, Pawel; Debbins, Paul; Deliomeroglu, Mehmet; Demianov, A; de Visser, Theo; Deshpande, Pandurang Vishnu; Díaz, Jonathan; Dimitrov, Lubomir; Dugad, Shashikant; Dumanoglu, Isa; Duru, Firdevs; Efthymiopoulos, I; Elias, John E; Elvira, D; Emeliantchik, Igor; Eno, Sarah Catherine; Ershov, Alexander; Erturk, Sefa; Esen, Selda; Eskut, Eda; Fenyvesi, Andras; Fisher, Wade Cameron; Freeman, Jim; Ganguli, Som N; Gaultney, Vanessa; Gamsizkan, Halil; Gavrilov, Vladimir; Genchev, Vladimir; Gleyzer, Sergei V; Golutvin, Igor; Goncharov, Petr; Grassi, Tullio; Green, Dan; Gribushin, Andrey; Grinev, B; Gurtu, Atul; Murat Güler, A; Gülmez, Erhan; Gümüs, K; Haelen, T; Hagopian, Sharon; Hagopian, Vasken; Halyo, Valerie; Hashemi, Majid; Hauptman, John M; Hazen, Eric; Heering, Arjan Hendrix; Heister, Arno; Hunt, Adam; Ilyina, N; Ingram, D; Isiksal, Engin; Jarvis, Chad; Jeong, Chiyoung; Johnson, Kurtis F; Jones, John; Kaftanov, Vitali; Kalagin, Vladimir; Kalinin, Alexey; Kalmani, Suresh Devendrappa; Karmgard, Daniel John; Kaur, Manjit; Kaya, Mithat; Kaya, Ozlem; Kayis-Topaksu, A; Kellogg, Richard G; Khmelnikov, Alexander; Kim, Heejong; Kisselevich, I; Kodolova, Olga; Kohli, Jatinder Mohan; Kolossov, V; Korablev, Andrey; Korneev, Yury; Kosarev, Ivan; Kramer, Laird; Krinitsyn, Alexander; Krishnaswamy, Marthi Ramaswamy; Krokhotin, Andrey; Kryshkin, V; Kuleshov, Sergey; Kumar, Arun; Kunori, Shuichi; Laasanen, Alvin T; Ladygin, Vladimir; Laird, Edward; Landsberg, Greg; Laszlo, Andras; Lawlor, C; Lazic, Dragoslav; Lee, Sang Joon; Levchuk, Leonid; Linn, Stephan; Litvintsev, Dmitri; Lobolo, L; Los, Serguei; Lubinsky, V; Lukanin, Vladimir; Ma, Yousi; Machado, Emanuel; Maity, Manas; Majumder, Gobinda; Mans, Jeremy; Marlow, Daniel; Markowitz, Pete; Martínez, German; Mazumdar, Kajari; Merlo, Jean-Pierre; Mermerkaya, Hamit; Mescheryakov, G; Mestvirishvili, Alexi; Miller, Michael; Möller, A; Mohammadi-Najafabadi, M; Moissenz, P; Mondal, Naba Kumar; Mossolov, Vladimir; Nagaraj, P; Narasimham, Vemuri Syamala; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Onengüt, G; Ozkan, Cigdem; Ozkurt, Halil; Ozkorucuklu, Suat; Ozok, Ferhat; Paktinat, S; Pal, Andras; Patil, Mandakini Ravindra; Penzo, Aldo; Petrushanko, Sergey; Petrosian, A; Pikalov, Vladimir; Piperov, Stefan; Podrasky, V; Polatoz, A; Pompos, Arnold; Popescu, Sorina; Posch, C; Pozdnyakov, Andrey; Qian, Weiming; Ralich, Robert; Reddy, L; Reidy, Jim; Rogalev, Evgueni; Roh, Youn; Rohlf, James; Ronzhin, Anatoly; Ruchti, Randy; Ryazanov, Anton; Safronov, Grigory; Sanders, David A; Sanzeni, Christopher; Sarycheva, Ludmila; Satyanarayana, B; Schmidt, Ianos; Sekmen, Sezen; Semenov, Sergey; Senchishin, V; Sergeyev, S; Serin, Meltem; Sever, Ramazan; Singh, B; Singh, Jas Bir; Sirunyan, Albert M; Skuja, Andris; Sharma, Seema; Sherwood, Brian; Shumeiko, Nikolai; Smirnov, Vitaly; Sogut, Kenan; Sonmez, Nasuf; Sorokin, Pavel; Spezziga, Mario; Stefanovich, R; Stolin, Viatcheslav; Sudhakar, Katta; Sulak, Lawrence; Suzuki, Ichiro; Talov, Vladimir; Teplov, Konstantin; Thomas, Ray; Tonwar, Suresh C; Topakli, Huseyin; Tully, Christopher; Turchanovich, L; Ulyanov, A; Vanini, A; Vankov, Ivan; Vardanyan, Irina; Varela, F; Vergili, Mehmet; Verma, Piyush; Vesztergombi, Gyorgy; Vidal, Richard; Vishnevskiy, Alexander; Vlassov, E; Vodopiyanov, Igor; Volobouev, Igor; Volkov, Alexey; Volodko, Anton; Wang, Lei; Werner, Jeremy Scott; Wetstein, Matthew; Winn, Dave; Wigmans, Richard; Whitmore, Juliana; Wu, Shouxiang; Yazgan, Efe; Yetkin, Taylan; Zálán, Peter; Zarubin, Anatoli; Zeyrek, Mehmet

    2008-01-01

    The CMS hadron calorimeter is a sampling calorimeter with brass absorber and plastic scintillator tiles with wavelength shifting fibres for carrying the light to the readout device. The barrel hadron calorimeter is complemented with an outer calorimeter to ensure high energy shower containment in the calorimeter. Fabrication, testing and calibration of the outer hadron calorimeter are carried out keeping in mind its importance in the energy measurement of jets in view of linearity and resolution. It will provide a net improvement in missing $\\et$ measurements at LHC energies. The outer hadron calorimeter will also be used for the muon trigger in coincidence with other muon chambers in CMS.

  16. Liquid Argon Barrel Cryostat Arrived

    CERN Multimedia

    Pailler, P

    Last week the first of three cryostats for the ATLAS liquid argon calorimeter arrived at CERN. It had travelled for 46 days over several thousand kilometers from Japan to CERN. During three years it has been fabricated by Kawasaki Heavy Industries Ltd. at Harima, close to Kobe, under contract from Brookhaven National Laboratory (BNL) of the U.S.. This cryostat consists of two concentric cylinders made of aluminium: the outer vacuum vessel with a diameter of 5.5 m and a length of 7 m, and the inner cold vessel which will contain the electromagnetic barrel calorimeter immersed in liquid argon. The total weight will be 270 tons including the detectors and the liquid argon. The cryostat is now located in building 180 where it will be equipped with 64 feed-throughs which serve for the passage of 122,880 electrical lines which will carry the signals of the calorimeter. After integration of the calorimeter, the solenoidal magnet of ATLAS will be integrated in the vacuum vessel. A final cold test of the cryostat inc...

  17. Drift time measurement in the ATLAS liquid argon electromagnetic calorimeter using cosmic muons

    DEFF Research Database (Denmark)

    Aad..[], G.; Dam, Mogens; Hansen, Jørgen Beck

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact...... on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.8% in the endcaps. This leads to an estimated contribution to the constant term of (0.29^{+0.05}_{-0.04})% in the barrel and (0...

  18. STATUS OF THE ATLAS LIQUID ARGON CALORIMETER AND ITS PERFORMANCE

    CERN Document Server

    Berillari, T; The ATLAS collaboration

    2011-01-01

    The liquid argon (LAr) calorimeters are used in ATLAS for all electromagnetic and for hadron calorimetry. The LAr calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic, hadronic and forward calorimeters. The latest status of the detector as well as problems and solutions addressed during the last years will be presented. Aspects of operation of a large detector over a long time period will be summarized and selected topics showing the performance of the detector will be shown.

  19. Both ATLAS members and the team engaged in transport and reception, of the lower part of the central barrel of the tile hadronic calorimeter, will not forget installation of the first active piece of the detector!

    CERN Multimedia

    2004-01-01

    Both ATLAS members and the team engaged in transport and reception, of the lower part of the central barrel of the tile hadronic calorimeter, will not forget installation of the first active piece of the detector!

  20. Hermeticity of three cryogenic calorimeter geometries

    International Nuclear Information System (INIS)

    Strovink, M.; Wormersley, W.J.; Forden, G.E.

    1989-04-01

    We calculate the effect of cracks and dead material on resolution in three simplified cryogenic calorimeter geometries, using a crude approximation that neglects transverse shower spreading and considers only a small set of incident angles. For each dead region, we estimate the average unseen energy using a shower parametrization, and relate it to resolution broadening using a simple approximation that agrees with experimental data. Making reasonable and consistent assumptions on cryostat wall thicknesses, we find that the effects of cracks and dead material dominate the expected resolution in the region where separate ''barrel'' and ''end'' cryostats meet. This is particularly true for one geometry in which the end calorimeter caps the barrel and also protrudes into the hole within it. We also find that carefully designed auxiliary ''crack filler'' detectors can substantially reduce the loss of resolution in these areas. 6 figs

  1. The CMS Barrel Muon trigger upgrade

    International Nuclear Information System (INIS)

    Triossi, A.; Sphicas, P.; Bellato, M.; Montecassiano, F.; Ventura, S.; Ruiz, J.M. Cela; Bedoya, C. Fernandez; Tobar, A. Navarro; Fernandez, I. Redondo; Ferrero, D. Redondo; Sastre, J.; Ero, J.; Wulz, C.; Flouris, G.; Foudas, C.; Loukas, N.; Mallios, S.; Paradas, E.; Guiducci, L.; Masetti, G.

    2017-01-01

    The increase of luminosity expected by LHC during Phase1 will impose tighter constraints for rate reduction in order to maintain high efficiency in the CMS Level1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors: Drift Tubes, Resistive Plate Chambers and Outer Hadron Calorimeter. It arranges the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent in multiple copies to the track finders. Results from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown.

  2. Status of the ATLAS Liquid Argon Calorimeter and its performance after one year of LHC operation

    CERN Document Server

    "Hoffman, J A; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry covering the pseudorapidity region η<3.2, as well as for hadronic calorimetry from η=1.4 to η=4.8. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The lead-liquid argon sampling technique with an accordion geometry was chosen for the barrel electromagnetic calorimeter (EMB) and adapted to the endcap (EMEC). This geometry allows a uniform acceptance over the whole azimuthal range without any gap. The hadronic endcap calorimeter (HEC) uses a copper-liquid argon sampling technique with plate geometry and is subdivided into two wheels in depth per end-cap. Finally, the forward calorimeter (FCAL) is composed of three modules featuring cylindrical electrodes with thin...

  3. Results from a combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Ajaltouni, Ziad J; Alifanov, A; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K J; Astvatsaturov, A R; Aubert, Bernard; Augé, E; Autiero, D; Azuelos, Georges; Badaud, F; Baisin, L; Battistoni, G; Bazan, A; Bee, C P; Bellettini, Giorgio; Berglund, S R; Berset, J C; Blaj, C; Blanchot, G; Blucher, E; Bogush, A A; Bohm, C; Boldea, V; Borisov, O N; Bosman, M; Bouhemaid, N; Brette, P; Bromberg, C; Brossard, M; Budagov, Yu A; Buono, S; Calôba, L P; Camin, D V; Canton, B; Casado, M P; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chase, Robert L; Chekhtman, A; Chevaleyre, J C; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Cozzi, L; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; de La Taille, C; Del Prete, T; Depommier, P; de Saintignon, P; De Santo, A; Dinkespiler, B; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Fassnacht, P; Fedyakin, N N; Ferrari, A; Ferreira, P; Ferrer, A; Flaminio, Vincenzo; Fouchez, D; Fournier, D; Fumagalli, G; Gallas, E J; Gaspar, M; Gianotti, F; Gildemeister, O; Gingrich, D M; Glagolev, V V; Golubev, V B; Gómez, A; González, J; Gordon, H A; Grabskii, V; Hakopian, H H; Haney, M; Hellman, S; Henriques, A; Holmgren, S O; Honoré, P F; Hostachy, J Y; Huston, J; Ivanyushenkov, Yu M; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karapetian, G V; Karyukhin, A N; Khokhlov, Yu A; Klioukhine, V I; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Laborie, G; Lami, S; Lapin, V; Lebedev, A; Lefebvre, M; Le Flour, T; Leitner, R; León-Florián, E; Leroy, C; Le Van-Suu, A; Li, J; Liba, I; Linossier, O; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; Lund-Jensen, B; Mahout, G; Maio, A; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marroquin, F; Martin, L; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miotto, A; Miralles, L; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Muanza, G S; Nagy, E; Némécek, S; Nessi, Marzio; Nicoleau, S; Noppe, J M; Olivetto, C; Orteu, S; Padilla, C; Pallin, D; Pantea, D; Parrour, G; Pereira, A; Perini, L; Perlas, J A; Pétroff, P; Pilcher, J E; Pinfold, James L; Poggioli, Luc; Poirot, S; Polesello, G; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Resconi, S; Richards, R; Riu, I; Romanov, V; Ronceux, B; Rumyantsev, V; Rusakovitch, N A; Sala, P R; Sanders, H; Sauvage, G; Savard, P; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Scheel, C V; Schwemling, P; Schindling, J; Seguin-Moreau, N; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shchelchkov, A S; Shevtsov, V P; Shochet, M J; Sidorov, V; Simaitis, V J; Simion, S; Sissakian, A N; Solodkov, A A; Sonderegger, P; Soustruznik, K; Stanek, R; Starchenko, E A; Stephani, D; Stephens, R; Studenov, S; Suk, M; Surkov, A; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Tisserant, S; Tokár, S; Topilin, N D; Trka, Z; Turcot, A S; Turcotte, M; Valkár, S; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Wagner, D; White, Alan R; Wingerter-Seez, I; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zdrazil, M; Zitoun, R; Zolnierowski, Y

    1996-01-01

    The first combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 20 to 300~GeV at an incident angle $\\theta$ of about 11$^\\circ$ is well-described by the expression $\\sigma/E = ((46.5 \\pm 6.0)\\%/\\sqrt{E} +(1.2 \\pm 0.3)\\%) \\oplus (3.2 \\pm 0.4)~\\mbox{GeV}/E$. Shower profiles, shower leakage, and the angular resolution of hadronic showers were also studied.

  4. Design of the LHC US ATLAS Barrel Cryostat

    CERN Document Server

    Rehak, M L; Farah, Y; Grandinetti, R; Müller, T; Norton, S; Sondericker, J

    2002-01-01

    One of the experiments of CERN's Large Hadron Collider (LHC) is the ATLAS Liquid Argon detector. The Liquid Argon Barrel Cryostat is part of the United States contribution to the LHC project and its design is presented here. The device is made up of four concentric cylinders: the smallest and largest of which form a vacuum vessel enclosing a cold vessel cryostat filled with liquid argon. The Cryostat serves as the housing for an electromagnetic barrel calorimeter, supports and provides space in vacuum for a solenoid magnet while the toroidal opening furnishes room for a tracker detector. Design requirements are determined by its use in a collider experiment: the construction has to be compact, the material between the interaction region and the calorimeter has to be minimal and made of aluminum to reduce the amount of absorbing material. The design complies with code regulations while being optimized for its use in a physics environment. (2 refs).

  5. The ATLAS liquid argon calorimeter--status and expected performance

    International Nuclear Information System (INIS)

    Schacht, Peter

    2004-01-01

    For the ATLAS detector at the LHC, the liquid argon technique is exploited for the electromagnetic calorimetry in the central part and for the electromagnetic and hadronic calorimetry in the forward and backward regions. The construction of the calorimeter is well advanced with full cold tests of the barrel calorimeter and first endcap calorimeter only months away. The status of the project is discussed as well as the related results from beam test studies of the various calorimeter subdetectors. The results show that the expected performance meets the ATLAS requirements as specified in the ATLAS Technical Design Report

  6. Design and performance of an electromagnetic calorimeter for a FCC-hh experiment

    Science.gov (United States)

    Zaborowska, A.

    2018-03-01

    The physics reach and feasibility of the Future Circular Collider are currently under investigation. The goal is to collide protons with centre-of-mass energies up to 100 TeV, extending the research carried out at the current HEP facilities. The detectors designed for the FCC experiments need to tackle harsh conditions of the unprecedented collision energy and luminosity. The baseline technology for the calorimeter system of the FCC-hh detector is described. The electromagnetic calorimeter in the barrel, as well as the electromagnetic and hadronic calorimeters in the endcaps and the forward regions, are based on the liquid argon as active material. The detector layout in the barrel region combines the concept of a high granularity calorimeter with precise energy measurements. The calorimeters have to meet the requirements of high radiation hardness and must be able to deal with a very high number of collisions per bunch crossings (pile-up). A very good energy and angular resolution for a wide range of electrons' and photons' momentum is needed in order to meet the demands based on the physics benchmarks. First results of the performance studies with the new liquid argon calorimeter are presented, meeting the energy resolution goal.

  7. Progress of the EM Barrel Presampler Assembly

    CERN Multimedia

    Hostachy, J.Y.

    The liquid argon barrel presampler is a separate detector which will be placed in front of the electromagnetic barrel calorimeter, in the same cryostat. It is made of 32×2 sectors, each of them being 3.1 m long, about 28 cm large and a few cm thick. Three countries are involved in its construction: France (ISN-Grenoble), Sweden (KTH-Stockholm) and Morocco (Universities: Hassan II Ain Chock-Casablanca and Mohamed V-Rabat, and CNESTEN-Rabat). The design of the presampler started ten years ago and the series production began at the end of the year 2000. Today two-thirds of the sectors are produced and validated. In November 2002, half the detector (i.e. 32 sectors), was inserted on the internal face of the first EM calorimeter wheel (see pictures). Despite the fact that only 0.4 mm was available between sectors, it was possible to insert them all without meeting major difficulties. This operation was led by a team of four people, the sectors being systematically tested after insertion in the wheel. The inserti...

  8. The ZEUS uranium-scintillator calorimeter for HERA

    International Nuclear Information System (INIS)

    Hilger, E.

    1987-01-01

    The high resolution calorimeter for the ZEUS detector at HERA is presented. The choice of a sandwich calorimeter from depleted uranium plates and plastic scintillator was made to accomplish compensation and thus the best possible energy resolution for hadrons and jets. The calorimeter is segmented transversely into towers and longitudinally into an electromagnetic and one or two hadronic sections. It is divided in a forward, barrel and rear part which surround hermetically the interaction region and the inner detectors. The expected energy resolutions are for electrons σ(E)/E = 0.15/√E, and for hadrons σ(E)/E = 0.35/√E, with a constant term of maximum 2% added in quadrature. First results from calorimeter test measurements are presented. (orig.)

  9. Results from an expanded combined test of an EM LAr calorimeter with a hadronic scintillating-tile calorimeter

    International Nuclear Information System (INIS)

    Ajaltouni, Z.; Boldea, V.; Constantinescu, S.; Dita, S.; Pantea, V.

    1999-01-01

    The future ATLAS experiment at the CERN Large Hadron Collider (LHC) will include in the central ('barrel') region a calorimeter system composed of two separate units: a liquid argon (LAr) electromagnetic calorimeter and a scintillating-tile hadronic calorimeter. This system must be capable of identifying electrons, photons, and jets and of reconstructing their energies and angles, as well as of measuring missing transverse energy in the event. Over the past few years, several prototypes of the two calorimeters went through a series of separate tests, carried out at CERN SPS in beams of pions, muons and electrons at several values for incident momenta in the range 10 - 300 GeV/c. The barrel calorimeters were tested as well in a combined mode. An azimuthal sector of the ATLAS barrel calorimeter was reproduced by placing the hadronic device downstream of the electromagnetic calorimeter. The first combined test has been done in 1994 and a second one, with the same prototypes, in 1996. The experimental setup is shown. In order to try to understand the energy loss in dead material between the active part of the LAr and the Tile detectors in 1996 test, a layer of scintillator was installed, called the midsampler. It consists of five scintillators, 20 cm x 100 cm each, fastened directly to the front face of the Tile modules. The scintillator is 1 cm thick, and is readout using ten 1 mm WLS fibers on each of the long sides. Electrons were reconstructed in the EM calorimeter for two purposes: to estimate the electron response in the EM section for the evaluation of the e/h ratio and to measure the energy resolution and linearity in order to verify the quality of the response. The fitted energy resolution, corrected for a beam momentum spread of 0.3 %, is: σ E /E (12.15 ± 0.23)%/ √E + (0.0 ± 0.20) % + (374 ± 54) MeV/E. The linearity is, within errors, better than 1%. The energy resolution for hadrons is affected by several factors: sampling fluctuations, the electronic

  10. Calibration of the ATLAS hadronic barrel calorimeter TileCal using 2008, 2009 and 2010 cosmic rays data

    CERN Document Server

    The ATLAS collaboration

    2011-01-01

    Cosmic rays collected in 2008, 2009 and 2010 have been used in the ATLAS experiment to test the calibration of the hadronic barrel calorimeter TileCal. Stable results were obtained for the three periods. The analysis was based on the comparison between experimental and simulated data, and addresses three issues. First, the average non uniformity of the response of the cells within a layer was estimated to be about 2%. Second, the average response of different layers is found to be not intercalibrated, considering the sources of error. The largest difference between the responses of two layers is 4%. Finally, the differences between the energy scales of each layer obtained in this analysis and the value set at test beams using electrons was found to range between -2% and +2%. The sources of uncertainties in the response measurements are strongly correlated and include the uncertainty in the simulation of the muon response. The overall uncertainty in the energy scale is estimated to be 3%.

  11. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Central Calorimeter (HB/HE/HO) Photodetectors The main activity of the HCAL group during the present shutdown is the replacement of a small fraction of the Central Calorimeter (HB/HE/HO) photodetectors -- the Hybrid Photo-Detectors (HPDs). During the MTCC of 2006 it was established that all HPDs exhibit a low rate of discharge generating large random pulses. This behaviour persists at the full CMS field. However, at relatively low fields (0.5 Tesla) this discharge rate increases dramatically and becomes very large for a fraction of the HPDs. The HO HPDs which sit in the gap of the return yoke are thus adversly affected. These discharge pulses have been labelled "HPD noise" (which must be distinguished from low level electronic noise which manifests itself as pedestal noise for all HPD readout channels). Additional intermediate level noise can be generated by ion-feedback arising from thermal and field emission electrons. Ion feedback noise never exceeds the equivalent of few 10s of GeV, the...

  12. Calibration of the ATLAS calorimeters and discovery potential for massive top quark resonances at the LHC

    CERN Document Server

    Bergeaas Kuutmann, E; Jon-And, K; Hellman, S

    2010-01-01

    ATLAS is a multi-purpose detector which has recently started to take data at the LHC at CERN. This thesis describes the tests and calibrations of the central calorimeters of ATLAS and outlines a search for heavy top quark pair resonances.The calorimeter tests were performed before the ATLAS detector was assembled at the LHC, in such a way that particle beams of known energy were targeted at the calorimeter modules. In one of the studies presented here, modules of the hadronic barrel calorimeter, TileCal, were exposed to beams of pions of energies between 3 and 9 GeV. It is shown that muons from pion decays in the beam can be separated from the pions, and that the simulation of the detector correctly describes the muon behaviour. In the second calorimeter study, a scheme for local hadronic calibration is developed and applied to single pion test beam data in a wide range of energies, measured by the combination of the electromagnetic barrel calorimeter and the TileCal hadronic calorimeter. The calibration meth...

  13. Energy Resolution Performance of the CMS Electromagnetic Calorimeter

    CERN Document Server

    Adzic, Petar; Almeida, Carlos; Almeida, Nuno; Anagnostou, Georgios; Anfreville, Marc; Anicin, Ivan; Antunovic, Zeljko; Auffray, Etiennette; Baccaro, Stefania; Baffioni, Stephanie; Barney, David; Barone, Luciano; Barrillon, Pierre; Bartoloni, Alessandro; Beauceron, Stephanie; Beaudette, Florian; Bell, Ken W; Benetta, Robert; Bercher, Michel; Berthon, Ursula; Betev, Botjo; Beuselinck, Raymond; Bhardwaj, Ashutosh; Biino, Cristina; Bimbot, Stephane; Blaha, Jan; Bloch, Philippe; Blyth, Simon; Bordalo, Paula; Bornheim, Adolf; Bourotte, Jean; Britton1, D; Brown, Robert M; Brunelière, Renaud; Busson, Philippe; Camporesi, Tiziano; Cartiglia, Nicolo; Cavallari, Francesca; Cerutti, Muriel; Chamont, David; Chang, Paoti; Chang, You-Hao; Charlot, Claude; Chatterji, Sudeep; Chen, E Augustine; Chipaux, Rémi; Choudhary, Brajesh C; Cockerill, David J A; Collard, Caroline; Combaret, Christophe; Cossutti, Fabio; Costantini, Silvia; Da Silva, J C; Dafinei, Ioan; Daskalakis, Georgios; Davatz, Giovanna; Debraine, Alain; Decotigny, David; De Min, Alberto; Deiters, Konrad; Dejardin, Marc; Della Negra, Rodolphe; Della Ricca, Giuseppe; Depasse, Pierre; Descamp, J; Dewhirst, Guy; Dhawan, Satish; Diemoz, Marcella; Dissertori, Günther; Dittmar, Michael; Djambazov, Lubomir; Dobrzynski, Ludwik; Drndarevic, Snezana; Dupanloup, Michel; Dzelalija, Mile; Ehlers, Jan; El-Mamouni, H; Peisert, Anna; Evangelou, Ioannis; Fabbro, Bernard; Faure, Jean-Louis; Fay, Jean; Ferri, Federico; Flower, Paul S; Franzoni, Giovanni; Funk, Wolfgang; Gaillac, Anne-Marie; Gargiulo, Corrado; Gascon-Shotkin, S; Geerebaert, Yannick; Gentit, François-Xavier; Ghezzi, Alessio; Gilly, Jean; Giolo-Nicollerat, Anne-Sylvie; Givernaud, Alain; Gninenko, Sergei; Go, Apollo; Godinovic, Nikola; Golubev, Nikolai; Golutvin, Igor; Gómez-Reino, Robert; Govoni, Pietro; Grahl1, J; Gras1, P; Greenhalgh, Justin; Guillaud, Jean-Paul; Haguenauer, Maurice; Hamel-de-Montechenault, G; Hansen, Magnus; Heath, Helen F; AHill, J; Hobson, Peter R; Holmes, Daniel; Holzner, André; Hou, George Wei-Shu; Ille, Bernard; Ingram, Quentin; Jain, Adarsh; Jarry, Patrick; Jauffret, C; Jha, Manoj; Karar, Akli; Kataria, Sushil Kumar; Katchanov, V A; Kennedy, Bruce W; Kloukinas, Kostas; Kokkas, Panagiotis; Korjik, M; Krasnikov, Nikolai; Krpic, Dragomir; Kyriakis, Aristotelis; Lebeau, Michel; Lecomte, Pierre; Lecoq, Paul; Lemaire, Marie-Claude; Lethuillier, Morgan; Lin, Willis; Lintern, A L; Lister, Alison; Litvin, V; Locci, Elizabeth; Lodge, Anthony B; Longo, Egidio; Loukas, Demetrios; Luckey, D; Lustermann, Werner; Lynch, Clare; MacKay, Catherine Kirsty; Malberti, Martina; Maletic, Dimitrije; Mandjavidze, Irakli; Manthos, Nikolaos; Markou, Athanasios; Mathez, Hervé; Mathieu, Antoine; Matveev, Viktor; Maurelli, Georges; Menichetti, Ezio; Meridiani, Paolo; Milenovic, Predrag; Milleret, Gérard; Miné, Philippe; Mur, Michel; Musienko, Yuri; Nardulli, Alessandro; Nash, Jordan; Neal, Homer; Nédélec, Patrick; Negri, Pietro; Nessi-Tedaldi, Francesca; Newman26, H B; Nikitenko, Alexander; Obertino, Maria Margherita; Ofierzynski, Radoslaw Adrian; Organtini, Giovanni; Paganini, Pascal; Paganoni, Marco; Papadopoulos, Ioannis; Paramatti, Riccardo; Pastrone, Nadia; Pauss, Felicitas; Poilleux, Patrick; Puljak, Ivica; Pullia, Antonino; Puzovic, Jovan; Ragazzi, Stefano; Ramos, Sergio; Rahatlou, Shahram; Rander, John; Ranjan, Kirti; Ravat, Olivier; Raymond, M; Razis, Panos A; Redaelli, Nicola; Renker, Dieter; Reucroft, Steve; Reymond, Jean-Marc; Reynaud, Michel; Reynaud, Serge; Romanteau, Thierry; Rondeaux, Françoise; Rosowsky, André; Rovelli, Chiara; Rumerio, Paolo; Rusack, Roger; Rusakov, Sergey V; Ryan, Matthew John; Rykaczewski, Hans; Sakhelashvili, Tariel; Salerno, Roberto; Santos, Marcelino; Seez, Christopher; Semeniouk, Igor; Sharif, Omar; Sharp, Peter; Shepherd-Themistocleous, Claire; Shevchenko, Sergey; Shivpuri, Ram Krishen; Sidiropoulos, Georgios; Sillou, Daniel; Singovsky, Alexander; Sirois, Yves; Sirunyan, Albert M; Smith, Brian; Smith, Vincent J; Sproston, Martin; Suter, Henry; Swain, John; Tabarelli de Fatis, Tommaso; Takahashi, Maiko; Tapper, Robert J; Tcheremoukhine, Alexandre; Teixeira, Isabel; Teixeira, Joao Paulo; Teller, Olivier; Timlin, Claire; ATriantis, F; Troshin, Sergey; Tyurin, Nikolay; Ueno, Koji; Uzunian, Andrey; Varela, Joao; Vaz-Cardoso, N; Verrecchia, Patrice; Vichoudis, Paschalis; Vigano, S; Viertel, Gert; Virdee, Tejinder; Vlassov, E; Wang, Minzu; Weinstein, Alan; Williams, Jennifer C; Yaselli, Ignacio; Zabi, Alexandre; Zamiatin, Nikolai; Zelepoukine, Serguei; Zeller, Michael E; Zhang, Lin; Zhang, Yawei; Zhu, Kejun; Zhu, Ren-Yuan

    2006-01-01

    The energy resolution performance of the CMS lead tungstate crystal electromagnetic calorimeter is presented. Measurements were made with an electron beam using a fully equipped supermodule of the calorimeter barrel. Results are given both for electrons incident on the centre of crystals and for electrons distributed uniformly over the calorimeter surface. The electron energy is reconstructed in matrices of 3 times 3 or 5 times 5 crystals centred on the crystal containing the maximum energy. Corrections for variations in the shower containment are applied in the case of uniform incidence. The resolution measured is consistent with the design goals.

  14. ATLAS: First rehearsal for the tile calorimeter

    CERN Multimedia

    2003-01-01

    The dry run assembly of the first barrel of the ATLAS tile hadron calorimeter has been successfully completed. It is now being dismantled again so that it can be lowered into the ATLAS cavern where it will be reassembled in October 2004.

  15. Development of an event builder for the new SADC-readout of the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Schultes, Jan; Muellers, Johannes [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    The CBELSA/TAPS experiment at the electron accelerator ELSA in Bonn investigates the photoproduction of mesons off nucleons. Presently the readout of the CsI(Tl)-crystals of the Crystal Barrel calorimeter is being upgraded from a PIN-diode readout to an APD readout to create a fast signal for first-level-triggering. Furthermore, an entirely new setup consisting of Sampling-ADCs (SADC) with FPGA-based readout is being prepared to increase the possible data rate achievable. The SADC is capable of sampling pulses from the detector with 80 MHz, extracting features by FPGA-logic and transferring this data via UDP. To improve package-handling, a server-client structure will be provided. It is foreseen to receive packages from each of the 48 SADC units (32 channels each), detect and handle possible package losses, distribute the received information further via TCP and control the SADC-behaviour. In addition and to assist the FPGA firmware development, a tool to monitor outgoing pulses and to extract important features, such as the deposited energy, timing information and pile-up detection to cross-check the information given by the FPGA is being developed.

  16. Fast shower simulation in the ATLAS calorimeter

    CERN Document Server

    Barberio, E; Butler, B; Cheung, S L; Dell'Acqua, A; Di Simone, A; Ehrenfeld, W; Gallas, M V; Glazov, A; Marshall, Z; Müller, J; Placakyte, R; Rimoldi, A; Savard, P; Tsulaia, V; Waugh, A; Young, C C

    2008-01-01

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime.

  17. The effect of passive material on the detection of hadrons in calorimeter configurations for the SDC detector

    International Nuclear Information System (INIS)

    Kirk, T.B.W.; Trost, H.J.

    1991-01-01

    We have used a flexible geometry model of a calorimeter design for SDC to study the effect of passive material in front of the calorimeter and between the barrel and endcap modules on the apparent response to hadrons. The thicknesses of the passive materials have been chosen to closely resemble the currently projected wall thicknesses of the scintillating tile-fiber and liquid-argon calorimeter designs. The liquid-argon model contains about three times the amount of material in its shells compared to the tile-fiber model. The solenoid coil reduces the relative difference somewhat in the barrel region but constitutes only a minor correction in the transition region from barrel to endcap. Correspondingly, we find a significantly worse response for the liquid-argon case which we demonstrate using beams of single π minus particles of 10 GeV/c momentum. 13 refs., 6 figs

  18. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    During the last 3 months commissioning of HCAL has continued for HO and HE+. We have also started the commissioning of the first wedge of HB+. Progress continues to be made by our Trigger/DAQ, DCS and DPG colleagues. HF will be used to obtain a Luminosity measurement for CMS. A first test of the modifications to the HF electronics was made in the August CMS global run. In addition to installation and commissioning of various parts of HCAL, we also completed a very successful summer Test Beam period which saw measurements of the combined HE/EE/ES calorimeter system in the H2 test beam. Installation and Commissioning a. HB commissioning This week, part of the final water-cooling system for HB was commissioned. Eighteen HB- wedges and two pilot wedges on HB+ have been connected to the water circuit on YB0. On Sept 6, 2007 cabling and commissioning was started for the first HB readout box (RBX) using temporary set of cables. We have connected RBX-17 to the Low Voltage PS and the HCAL Detector Control Sy...

  19. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL Barrel (EB) The cabling of the ECAL Barrel services on YB0 was completed early December 2007. The team has now commissioned the complete Barrel. To run all the supermodules in parallel, it is necessary to remove the heat from the service cables on YB0. The corresponding thermal screens are being installed and, for the time being, a max¬imum of 25 supermodules has been run concurrently. EB is read out regularly with a local DAQ as well as with the central DAQ and trigger. The calorimeter trigger has also been commissioned, allowing us to trigger on cosmic muons. ECAL Endcaps (EE) The Endcaps crystal production will be completed before the end of March 2008, as planned. The gluing of the VPTs (Vacuum Photo Triodes) on the crystals and the assembly of Supercrystals (sets of 25 crystals) are proceeding at the pace of 16 Supercrystals (400 channels) per week. Two thirds of the Supercrystals needed for the complete EE have been produced. Their mounting on the Dee backplates (including the connectio...

  20. Drift Time Measurement in the ATLAS Liquid Argon Electromagnetic Calorimeter using Cosmic Muons

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antos, J.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J.F.; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baker, S.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besana, M.I.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J.B.; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal Segura, F; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M D M; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, M.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz-Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Dietzsch, T.A.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Doan, T.K.O.; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M.A.; Dunford, M.; Duperrin, A.; Duran Yildiz, H; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L R; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallo, V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; García, C.; García Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J.C.; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.J.; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques Correia, A M; Henrot-Versille, S.; Hensel, C.; Henss, T.; Hernández Jiménez, Y; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillert, S.; Hillier, S.J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J.Y.; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S.C.; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles Quiles, A; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, B.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez-Belenguer, M.; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E.E.; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J.R.; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Lister, A.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Macana Goia, J A; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manning, P.M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melachrinos, C.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J.P.; Meyer, J.; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora Herrera, C; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Munwes, Y.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, A.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Ospanov, R.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Oyarzun, A.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M.A.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa Romero, D A; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Roda Dos Santos, D; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero Maltrana, D; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossetti, V.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F.W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B M; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.C.; Schumacher, J.W.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solc, J.; Solfaroli Camillocci, E; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra Suay, L; Soukharev, A.; Spagnolo, S.; Spanó, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stahlman, J.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Tennenbaum-Katan, Y.D.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique Aires Viegas, F J; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C.L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J.W.; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W.M.; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ionization signals in the liquid argon of the ATLAS electromagnetic calorimeter are studied in detail using cosmic muons. In particular, the drift time of the ionization electrons is measured and used to assess the intrinsic uniformity of the calorimeter gaps and estimate its impact on the constant term of the energy resolution. The drift times of electrons in the cells of the second layer of the calorimeter are uniform at the level of 1.3% in the barrel and 2.7% in the endcaps. This leads to an estimated contribution to the constant term of 0.29% in the barrel and 0.53% in the endcaps. The same data are used to measure the drift velocity of ionization electrons in liquid argon, which is found to be 4.61 +- 0.07 mm/microsecond at 88.5 K and 1 kV/mm.

  1. The CMS crystal calorimeter

    CERN Document Server

    Lustermann, W

    2004-01-01

    The measurement of the energy of electrons and photons with very high accuracy is of primary importance far the study of many physics processes at the Large Hadron Collider (LHC), in particular for the search of the Higgs Boson. The CMS experiment will use a crystal calorimeter with pointing geometry, almost covering 4p, as it offers a very good energy resolution. It is divided into a barrel composed of 61200 lead tungstate crystals, two end-caps with 14648 crystals and a pre-shower detector in front of the end-cap. The challenges of the calorimeter design arise from the high radiation environment, the 4 Tesla magnetic eld, the high bunch crossing rate of 40 MHz and the large dynamic range, requiring the development of fast, radiation hard crystals, photo-detectors and readout electronics. An overview of the construction and design of the calorimeter will be presented, with emphasis on some of the details required to meet the demanding performance goals. 19 Refs.

  2. In-situ probe of the response of the Tile Calorimeter to isolated hadrons

    CERN Document Server

    Jennens, D; The ATLAS collaboration

    2013-01-01

    The Tile calorimeter is the hadronic central barrel of the calorimeter system of the ATLAS experiment for the LHC at CERN. It is based on a sampling technique where scintillating tiles are embedded in iron absorber plates. The tiles are grouped together in cells which are disposed in three different layers. The cells from the two innermost layers cover a $\\Delta\\eta \\times \\Delta\\phi $ range of 0.1 $\\times$ 0.1, while the outermost layer covers 0.2 $\\times$ 0.1. An in-situ method to probe the calorimeter response to single charged hadrons can be established by using the ratio of energy measured in the calorimeter cells over the momentum measured by the inner tracking system. This measurement can be used to place constraints on the systematic uncertainty for the jet and tau energy scales. Results from pp collision data from 2010 and 2011 will be shown and discussed as a function of different layer and barrel section. Finally, comparison to MC simulation will prove the good performance of the detector.

  3. Dead zone analysis of ECAL barrel modules under static and dynamic load

    Science.gov (United States)

    Pierre-Emile, T.; Anduze, M.

    2018-03-01

    In the context of ILD project, impact studies of environmental loads on the Electromagnetic CALorimeter (ECAL) have been initiated. The ECAL part considered is the barrel and it consists of several independent modules which are mounted on the Hadronic CALorimeter barrel (HCAL) itself mounted on the cryostat coil and the yoke. The estimate of the gap required between each ECAL modules is fundamental to define the assembly step and avoid mechanical contacts over the barrel lifetime. In the meantime, it has to be done in consideration to the dead spaces reduction and detector hermiticity optimization. Several Finite Element Analysis (FEA) with static and dynamic loads have been performed in order to define correctly the minimum values for those gaps. Due to the implantation site of the whole project in Japan, seismic analysis were carried out in addition to the static ones. This article shows results of these analysis done with the Finite Element Method (FEM) in ANSYS. First results show the impact of HCAL design on the ECAL modules motion in static load. The second study dedicated to seismic approach on a larger model (including yoke and cryostat) gives additional results on earthquake consequences.

  4. The ATLAS Tile Calorimeter gets into shape!

    CERN Multimedia

    2002-01-01

    The last of the 64 modules for one of the ATLAS Hadron tile calorimeter barrels has just arrived at CERN. This arrival puts an end to two and a half years work assembling and testing all the modules in the Institut de Física d'Altes Energies (IFAE), in Barcelona.

  5. ATLAS Tile Calorimeter extended barrel Side A assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  6. ATLAS Tile Calorimeter extended barrel side C, assembly and installation in the cavern.

    CERN Multimedia

    Nikolai Topilin

    2009-01-01

    These photos belong to the self-published book by Nikolai Topilin "ATLAS Hadron Calorimeter Assembly". The book is a collection of souvenirs from the years of assembly and installation of the Tile Hadron Calorimeter, which extended from November 2002 until May 2006.

  7. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    Since the beginning of 2007, HCAL has made significant progress in the installation and commissioning of both hardware and software. A large fraction of the physical Hadron Calorimeter modules have been installed in UX5. In fact, the only missing pieces are HE- and part of HO. The HB+/- were installed in the cryostat in March. HB scintillator layer-17 was installed above ground before the HB were lowered. The HB- scintillator layer-0 was installed immediately after completion of EB- installation. HF/HCAL Commissioning The commissioning and checkout of the HCAL readout electronics is also proceeding at a rapid pace in Bldg. 904 and USC55. All sixteen crates of HCAL VME readout electronics have been commissioned and certified for service. Fifteen are currently operating in the S2 level of USC55. The last crate is being used for firmware development in the Electronics Integration Facility in 904. All installed crates are interfaced to their VME computers and receive synchronous control from the fully-equipp...

  8. Resource Review Board Celebrates the Magnet and Liquid Argon Barrel Tests in Hall 180

    CERN Multimedia

    Jenni, P.

    2004-01-01

    Address by the Director-General, R. Aymar, in front of the barrel cryostat. On 25th October 2004 many RRB delegates and guests, ATLAS National Contact Physicists, and colleagues from far and from CERN working on the Liquid Argon calorimeter and the magnet system were gathering in Hall 180 to celebrate the major milestones reached during the past months in this hall: the successful cold tests of the first barrel toroid coil, of the solenoid, and of the barrel Liquid Argon calorimeter. About 250 people spent a relaxing evening after the speeches by the Director-General R. Aymar and by the spokesperson who gave the following address: 'It is a great pleasure for me to welcome you all here in Hall 180 in the name of the ATLAS Collaboration! With a few words I would like to recall why we are actually here today to share, what I hope, is a relaxed and joyful moment. To concentrate it all in one sentence I could say: To thank cordially all the main actors for the enormous work accomplished here over many years,...

  9. Results from a new combined test of an electromagnetic liquid argon calorimeter with a hadronic scintillating-tile calorimeter

    CERN Document Server

    Akhmadaliev, S Z; Amaral, P; Ambrosini, G; Amorim, A; Anderson, K; Andrieux, M L; Aubert, Bernard; Augé, E; Badaud, F; Baisin, L; Barreiro, F; Battistoni, G; Bazan, A; Bazizi, K; Bee, C P; Belorgey, J; Belymam, A; Benchekroun, D; Berglund, S R; Berset, J C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bonivento, W; Borgeaud, P; Borisov, O N; Bosman, M; Bouhemaid, N; Breton, D; Brette, P; Bromberg, C; Budagov, Yu A; Burdin, S V; Calôba, L P; Camarena, F; Camin, D V; Canton, B; Caprini, M; Carvalho, J; Casado, M P; Cases, R; Castillo, M V; Cavalli, D; Cavalli-Sforza, M; Cavasinni, V; Chadelas, R; Chalifour, M; Chekhtman, A; Chevalley, J L; Chirikov-Zorin, I E; Chlachidze, G; Chollet, J C; Citterio, M; Cleland, W E; Clément, C; Cobal, M; Cogswell, F; Colas, Jacques; Collot, J; Cologna, S; Constantinescu, S; Costa, G; Costanzo, D; Coulon, J P; Crouau, M; Dargent, P; Daudon, F; David, M; Davidek, T; Dawson, J; De, K; Delagnes, E; de La Taille, C; Del Peso, J; Del Prete, T; de Saintignon, P; Di Girolamo, B; Dinkespiler, B; Dita, S; Djama, F; Dodd, J; Dolejsi, J; Dolezal, Z; Downing, R; Dugne, J J; Duval, P Y; Dzahini, D; Efthymiopoulos, I; Errede, D; Errede, S; Etienne, F; Evans, H; Eynard, G; Farida, F; Fassnacht, P; Fedyakin, N N; Fernández de Troconiz, J; Ferrari, A; Ferrer, A; Flaminio, Vincenzo; Fournier, D; Fumagalli, G; Gallas, E J; García, G; Gaspar, M; Gianotti, F; Gildemeister, O; Glagolev, V; Glebov, V Yu; Gómez, A; González, V; González de la Hoz, S; Gordeev, A; Gordon, H A; Grabskii, V; Graugès-Pous, E; Grenier, P; Hakopian, H H; Haney, M; Hébrard, C; Henriques, A; Henry-Coüannier, F; Hervás, L; Higón, E; Holmgren, S O; Hostachy, J Y; Hoummada, A; Huet, M; Huston, J; Imbault, D; Ivanyushenkov, Yu M; Jacquier, Y; Jézéquel, S; Johansson, E K; Jon-And, K; Jones, R; Juste, A; Kakurin, S; Karst, P; Karyukhin, A N; Khokhlov, Yu A; Khubua, J I; Klioukhine, V I; Kolachev, G M; Kolomoets, V; Kopikov, S V; Kostrikov, M E; Kovtun, V E; Kozlov, V; Krivkova, P; Kukhtin, V V; Kulagin, M; Kulchitskii, Yu A; Kuzmin, M V; Labarga, L; Laborie, G; Lacour, D; Lami, S; Lapin, V; Le Dortz, O; Lefebvre, M; Le Flour, T; Leitner, R; Leltchouk, M; Le Van-Suu, A; Li, J; Liapis, C; Linossier, O; Lissauer, D; Lobkowicz, F; Lokajícek, M; Lomakin, Yu F; Lomakina, O V; López-Amengual, J M; Lottin, J P; Lund-Jensen, B; Lundqvist, J M; Maio, A; Makowiecki, D S; Malyukov, S N; Mandelli, L; Mansoulié, B; Mapelli, Livio P; Marin, C P; Marrocchesi, P S; Marroquin, F; Martin, L; Martin, O; Martin, P; Maslennikov, A M; Massol, N; Mazzanti, M; Mazzoni, E; Merritt, F S; Michel, B; Miller, R; Minashvili, I A; Miralles, L; Mirea, A; Mnatzakanian, E A; Monnier, E; Montarou, G; Mornacchi, Giuseppe; Mosidze, M D; Moynot, M; Muanza, G S; Nagy, E; Nayman, P; Némécek, S; Nessi, Marzio; Nicod, D; Nicoleau, S; Niculescu, M; Noppe, J M; Onofre, A; Pallin, D; Pantea, D; Paoletti, R; Park, I C; Parrour, G; Parsons, J; Pascual, J I; Pereira, A; Perini, L; Perlas, J A; Perrodo, P; Petroff, P; Pilcher, J E; Pinhão, J; Plothow-Besch, Hartmute; Poggioli, Luc; Poirot, S; Price, L; Protopopov, Yu; Proudfoot, J; Pukhov, O; Puzo, P; Radeka, V; Rahm, David Charles; Reinmuth, G; Renardy, J F; Renzoni, G; Rescia, S; Resconi, S; Richards, R; Richer, J P; Riu, I; Roda, C; Roldán, J; Romance, J B; Romanov, V; Romero, P; Rusakovitch, N A; Sala, P R; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Sauvage, D; Sauvage, G; Savoy-Navarro, Aurore; Sawyer, L; Says, L P; Schaffer, A C; Schwemling, P; Schwindling, J; Seguin-Moreau, N; Seidl, W; Seixas, J M; Selldén, B; Seman, M; Semenov, A A; Senchyshyn, V G; Serin, L; Shaldaev, E; Shchelchkov, A S; Shochet, M J; Sidorov, V; Silva, J; Simaitis, V J; Simion, S; Sissakian, A N; Soloviev, I V; Snopkov, R; Söderqvist, J; Solodkov, A A; Sonderegger, P; Soustruznik, K; Spanó, F; Spiwoks, R; Stanek, R; Starchenko, E A; Stavina, P; Stephens, R; Studenov, S; Suk, M; Surkov, A; Sykora, I; Taguet, J P; Takai, H; Tang, F; Tardell, S; Tas, P; Teiger, J; Teubert, F; Thaler, J J; Thion, J; Tikhonov, Yu A; Tisserand, V; Tisserant, S; Tokar, S; Topilin, N D; Trka, Z; Turcotte, M; Valkár, S; Varanda, M J; Vartapetian, A H; Vazeille, F; Vichou, I; Vincent, P; Vinogradov, V; Vorozhtsov, S B; Vuillemin, V; Walter, C; White, A; Wielers, M; Wingerter-Seez, I; Wolters, H; Yamdagni, N; Yarygin, G; Yosef, C; Zaitsev, A; Zitoun, R; Zolnierowski, Y

    2000-01-01

    A new combined test of an electromagnetic liquid argon accordion calorimeter and a hadronic scintillating-tile calorimeter was carried out at the CERN SPS. These devices are prototypes of the barrel calorimeter of the future ATLAS experiment at the LHC. The energy resolution of pions in the energy range from 10 to 300 GeV at an incident angle theta of about 12 degrees is well described by the expression sigma /E=((41.9+or-1.6)%/ square root E+(1.8+or-0.1)%)(+) (1.8+or-0.1)/E, where E is in GeV. The response to electrons and muons was evaluated. Shower profiles, shower leakage and the angular resolution of hadronic showers were also studied. Results are compared with those from the previous beam test. (22 refs).

  10. ATLAS calorimeters: Run-2 performances and Phase-II upgrades

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to $10^{34} cm^{-2} s^{-1}$. A Liquid Argon-lead sampling (LAr) calorimeter is employed as electromagnetic and hadronic calorimeters, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. This presentation gives first an overview of the detector operation and data quality, as well as of the achieved performances of the ATLAS calorimetry system. Additionally the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) are presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to $L \\simeq 7.5 × 10^{34} cm^{-2} s^{-1}$ and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope with longer latenc...

  11. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Blaha, J. [Czech Technical University in Prague, CTU, Praha (Czech Republic); Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France)], E-mail: j.blaha@ipnl.in2p3.fr; Cartiglia, N. [Instituto Nazionale di Fisica Nucleare, INFN, Torino (Italy); Combaret, C. [Czech Technical University in Prague, CTU, Praha (Czech Republic); Fay, J. [Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France); Lustermann, W. [Eidgenossische Technische Hoschschule, ETH, Zuerich (Switzerland); Maurelli, G. [Institut de Physique Nucleaire de Lyon - IN2P3/CNRS and Universite Claude Bernard Lyon 1, Villeurbanne (France); Nardulli, A. [Eidgenossische Technische Hoschschule, ETH, Zuerich (Switzerland); Obertino, M. [Instituto Nazionale di Fisica Nucleare, INFN, Torino (Italy)

    2007-10-15

    The Very-Front-End cards processing signal from photodetectors of the CMS electromagnetic calorimeter, have been put through extensive test program to guarantee their functionality and reliability. The characteristics of the VFE cards designed for the calorimeter barrel are presented. The results confirm the high quality of the cards production and show that the specifications are fully reached.

  12. Calibration and performance test of the Very-Front-End electronics for the CMS electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Blaha, J.; Cartiglia, N.; Combaret, C.; Fay, J.; Lustermann, W.; Maurelli, G.; Nardulli, A.; Obertino, M.

    2007-01-01

    The Very-Front-End cards processing signal from photodetectors of the CMS electromagnetic calorimeter, have been put through extensive test program to guarantee their functionality and reliability. The characteristics of the VFE cards designed for the calorimeter barrel are presented. The results confirm the high quality of the cards production and show that the specifications are fully reached

  13. The Optical Instrumentation of the ATLAS Tile Calorimeter

    CERN Document Server

    Abdallah, J; Alexa, C; Alves, R; Amaral, P; Ananiev, A; Anderson, K; Andresen, X; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Biscarat, C; Blanch, O; Blanchot, G; Bohm, C; Boldea, V; Bosi, F; Bosman, M; Bromberg, C; Budagov, Yu A; Calvet, D; Cardeira, C; Carli, T; Carvalho, J; Cascella, M; Castillo, M V; Costelo, J; Cavalli-Sforza, M; Cavasinni, V; Cerqueira, A S; Clément, C; Cobal, M; Cogswell, F; Constantinescu, S; Costanzo, D; Da Silva, P; David, M; Davidek, T; Dawson, J; De, K; Del Prete, T; Diakov, E; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Drake, G; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Feng, E; Fenyuk, A; Ferdi, C; Ferreira, B C; Ferrer, A; Flaminio, V; Flix, J; Francavilla, P; Fullana, E; Garde, V; Gellerstedt, K; Giakoumopoulou, V; Giangiobbe, V; Gildemeister, O; Gilewsky, V; Giokaris, N; Gollub, N; Gomes, A; González, V; Gouveia, J; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Hellman, S; Henriques, A; Higón, E; Hill, N; Holmgren, S; Hruska, I; Hurwitz, M; Huston, J; Jen-La Plante, I; Jon-And, K; Junk, T; Karyukhin, A; Khubua, J; Klereborn, J; Konsnantinov, V; Kopikov, S; Korolkov, I; Krivkova, P; Kulchitsky, Y; Kurochkin, Yu; Kuzhir, P; Lapin, V; Le Compte, T; Lefèvre, R; Leitner, R; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Lourtie, P; Lovas, L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I; Miralles, L; Montarou, G; Némécek, S; Nessi, M; Nikitine, I; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M; Palan, B; Pallin, D; Pantea, D; Pereira, A; Pilcher, J E; Pina, J; Pinhão, J; Pod, E; Podlyski, F; Portell, X; Poveda, J; Pribyl, L; Price, L E; Proudfoot, J; Ramalho, M; Ramstedt, M; Raposeiro, L; Reis, J; Richards, R; Roda, C; Romanov, V; Rosnet, R; Roy, P; Ruiz, A; Rumiantsau, V; Russakovich, N; Sada Costa, J; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shalanda, N; Shevtsov, P; Shochet, M; Silva, J; Simaitis, V; Simonyan, M; Sisakian, A; Sjölin, J; Solans, C; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Speckmeyer, P; Stanek, R; Starchenko, E; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tischenko, M; Tokar, S; Topilin, N; Torres, J; Underwood, D; Usai, G; Valero, A; Valkár, S; Valls, J A; Vartapetian, A; Vazielle, F; Vellidis, C; Ventura, F; Vichou, I; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zaytsev, Yu; Zenin, A; Zenis, T; Zenonos, Z; Zenz, S; Zilka, B

    2013-01-01

    The purpose of this Note is to describe the optical assembly procedure called here Optical Instrumentation and the quality tests conducted on the assembled units. Altogether, 65 Barrel (or LB) modules were constructed - including one spare - together with 129 Extended Barrel (EB) modules (including one spare). The LB modules were mechanically assembled at JINR (Dubna, Russia) and transported to CERN, where the optical instrumentation was performed with personnel contributed by several Institutes. The modules composing one of the two Extended Barrels (known as EBA) were mechanically assembled in the USA, and instrumented in two US locations (ANL, U. of Michigan), while the modules of the other Extended barrel (EBC) were assembled in Spain and instrumented at IFAE (Barcelona). Each of the EB modules includes a subassembly known as ITC that contributes to the hermeticity of the calorimeter; all ITCs were assembled at UTA (Texas), and mounted onto the module mechanical structures at the EB mechanical assembly loc...

  14. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL crystal calorimeter (EB + EE) The Barrel and Endcaps ECAL calorimeters have been used routinely in global runs. The CRAFT data have confirmed that ECAL performance is the same with or without magnetic field. The CRUZET and CRAFT runs have allowed experience to be gained with ECAL operation in many areas, in particular for the trigger and the calibration sequence using gap events (laser events and LED pulsing). More details can be found in the Commissioning/DPG report in this bulletin.   The last components remaining to be installed and commissioned are the specific Endcap Trigger modules (TCC-48). Most of the modules have been delivered to LLR and half of them are already at CERN. In parallel, large progress has been made on the validation of the TCC-48 firmware. Preshower (ES) The Preshower project has also made impressive progress during Autumn. All the elements required to complete the detector assembly are at hand. Ladder assembly, test and calibration with cosmic rays at the operating ...

  15. Electron Reconstruction in the CMS Electromagnetic Calorimeter

    CERN Document Server

    Meschi, Emilio; Seez, Christopher; Vikas, Pratibha

    2001-01-01

    This note describes the reconstruction of electrons using the electromagnetic calorimeter (ECAL) alone. This represents the first step in the High Level Trigger reconstruction and selection chain. By making "super-clusters" (i.e. clusters of clusters) much of the energy radiated by bremsstrahlung in the tracker material can be recovered. Representative performance figures for energy and position resolution in the barrel are given.

  16. Readiness of the ATLAS Liquid Argon Calorimeter for LHC Collisions

    CERN Document Server

    Aad, G.; Abdallah, J.; Abdelalim, A.A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acharya, B.S.; Adams, D.L.; Addy, T.N.; Adelman, J.; Adorisio, C.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J.A.; Aharrouche, M.; Ahlen, S.P.; Ahles, F.; Ahmad, A.; Ahmed, H.; Ahsan, M.; Aielli, G.; Akdogan, T.; Akesson, T.P.A.; Akimoto, G.; Akimov, A.V.; Aktas, A.; Alam, M.S.; Alam, M.A.; Albert, J.; Albrand, S.; Aleksa, M.; Aleksandrov, I.N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P.P.; Allwood-Spiers, S.E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M.G.; Amako, K.; Amelung, C.; Ammosov, V.V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andeen, T.; Anders, C.F.; Anderson, K.J.; Andreazza, A.; Andrei, V.; Anduaga, X.S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Antonaki, A.; Antonelli, M.; Antonelli, S.; Antunovic, B.; Anulli, F.; Aoun, S.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A.T.H.; Archambault, J.P.; Arfaoui, S.; Arguin, J-F; Argyropoulos, T.; Arik, E.; Arik, M.; Armbruster, A.J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Arutinov, D.; Asai, M.; Asai, S.; Asfandiyarov, R.; Ask, S.; Asman, B.; Asner, D.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avolio, G.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M.A.; Baccaglioni, G.; Bacci, C.; Bach, A.; Bachacou, H.; Bachas, K.; Backes, M.; Badescu, E.; Bagnaia, P.; Bai, Y.; Bailey, D.C.; Bain, T.; Baines, J.T.; Baker, O.K.; Baker, M.D.; Baltasar Dos Santos Pedrosa, F; Banas, E.; Banerjee, P.; Banerjee, S.; Banfi, D.; Bangert, A.; Bansal, V.; Baranov, S.P.; Baranov, S.; Barashkou, A.; Barber, T.; Barberio, E.L.; Barberis, D.; Barbero, M.; Bardin, D.Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B.M.; Barnett, R.M.; Baron, S.; Baroncelli, A.; Barr, A.J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Barros, N.; Bartoldus, R.; Bartsch, D.; Bastos, J.; Bates, R.L.; Bathe, S.; Batkova, L.; Batley, J.R.; Battaglia, A.; Battistin, M.; Bauer, F.; Bawa, H.S.; Bazalova, M.; Beare, B.; Beau, T.; Beauchemin, P.H.; Beccherle, R.; Becerici, N.; Bechtle, P.; Beck, G.A.; Beck, H.P.; Beckingham, M.; Becks, K.H.; Bedajanek, I.; Beddall, A.J.; Beddall, A.; Bednár, P.; Bednyakov, V.A.; Bee, C.; Begel, M.; Behar Harpaz, S; Behera, P.K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P.J.; Bell, W.H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Belotskiy, K.; Beltramello, O.; Ben Ami, S; Benary, O.; Benchekroun, D.; Bendel, M.; Benedict, B.H.; Benekos, N.; Benhammou, Y.; Benincasa, G.P.; Benjamin, D.P.; Benoit, M.; Bensinger, J.R.; Benslama, K.; Bentvelsen, S.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Besson, N.; Bethke, S.; Bianchi, R.M.; Bianco, M.; Biebel, O.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K.M.; Blair, R.E.; Blanchard, J-B; Blanchot, G.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G.J.; Bocci, A.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J.A.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A.; Bondarenko, V.G.; Bondioli, M.; Boonekamp, M.; Booth, J.R.A.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Bosteels, M.; Boterenbrood, H.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E.V.; Boulahouache, C.; Bourdarios, C.; Boyd, J.; Boyko, I.R.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G.W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J.E.; Braun, H.M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Brett, N.D.; Britton, D.; Brochu, F.M.; Brock, I.; Brock, R.; Brodbeck, T.J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W.K.; Brown, G.; Brubaker, E.; Bruckman de Renstrom, P A; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchholz, P.; Buckley, A.G.; Budagov, I.A.; Budick, B.; Büscher, V.; Bugge, L.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C.P.; Butin, F.; Butler, B.; Butler, J.M.; Buttar, C.M.; Butterworth, J.M.; Byatt, T.; Caballero, J.; Cabrera Urbán, S; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L.P.; Caloi, R.; Calvet, D.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campabadal-Segura, F.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans-Garrido, M.D.M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Caracinha, D.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G D; Carron Montero, S; Carter, A.A.; Carter, J.R.; Carvalho, J.; Casadei, D.; Casado, M.P.; Cascella, M.; Caso, C.; Castaneda Hernadez, A M; Castaneda-Miranda, E.; Castillo Gimenez, V; Castro, N.; Cataldi, G.; Catinaccio, A.; Catmore, J.R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A.S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S.A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapman, J.D.; Chapman, J.W.; Chareyre, E.; Charlton, D.G.; Chavda, V.; Cheatham, S.; Chekanov, S.; Chekulaev, S.V.; Chelkov, G.A.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V.F.; Cherkaoui El Moursli, R; Tcherniatine, V.; Chesneanu, D.; Cheu, E.; Cheung, S.L.; Chevalier, L.; Chevallier, F.; Chiarella, V.; Chiefari, G.; Chikovani, L.; Childers, J.T.; Chilingarov, A.; Chiodini, G.; Chizhov, M.; Choudalakis, G.; Chouridou, S.; Chren, D.; Christidi, I.A.; Christov, A.; Chromek-Burckhart, D.; Chu, M.L.; Chudoba, J.; Ciapetti, G.; Ciftci, A.K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M.D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Citterio, M.; Clark, A.; Cleland, W.; Clemens, J.C.; Clement, B.; Clement, C.; Clements, D.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coelli, S.; Coggeshall, J.; Cogneras, E.; Cojocaru, C.D.; Colas, J.; Cole, B.; Colijn, A.P.; Collard, C.; Collins, N.J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Coluccia, R.; Conde Muiño, P; Coniavitis, E.; Consonni, M.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B.D.; Cooper-Sarkar, A.M.; Cooper-Smith, N.J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M.J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B.E.; Cranmer, K.; Cranshaw, J.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuenca Almenar, C; Cuhadar Donszelmann, T; Curatolo, M.; Curtis, C.J.; Cwetanski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P V M; Da Via, C; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dallison, S.J.; Daly, C.H.; Dam, M.; Danielsson, H.O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G.L.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davison, A.R.; Dawson, I.; Dawson, J.W.; Daya, R.K.; De, K.; de Asmundis, R; De Castro, S; De Castro Faria Salgado, P E; De Cecco, S; de Graat, J; De Groot, N; de Jong, P; De La Cruz Burelo, E; De La Taille, C; De Mora, L; De Oliveira Branco, M; De Pedis, D; De Salvo, A; De Sanctis, U; De Santo, A; De Vivie De Regie, J B; De Zorzi, G; Dean, S.; Deberg, H.; Dedes, G.; Dedovich, D.V.; Defay, P.O.; Degenhardt, J.; Dehchar, M.; Del Papa, C; Del Peso, J; Del Prete, T; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M; della Volpe, D; Delmastro, M.; Delruelle, N.; Delsart, P.A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Deng, W.; Denisov, S.P.; Dennis, C.; Derkaoui, J.E.; Derue, F.; Dervan, P.; Desch, K.; Deviveiros, P.O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A; Di Ciaccio, L; Di Domenico, A; Di Girolamo, A; Di Girolamo, B; Di Luise, S; Di Mattia, A; Di Nardo, R; Di Simone, A; Di Sipio, R; Diaz, M.A.; Diblen, F.; Diehl, E.B.; Dietrich, J.; Diglio, S.; Dindar Yagci, K; Dingfelder, D.J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djilkibaev, R.; Djobava, T.; do Vale, M A B; Do Valle Wemans, A; Dobbs, M.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Dogan, O.B.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B.A.; Dohmae, T.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A; Dotti, A.; Dova, M.T.; Doxiadis, A.; Doyle, A.T.; Drasal, Z.; Driouichi, C.; Dris, M.; Dubbert, J.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen ,.M.; Duflot, L.; Dufour, M-A; Dunford, M.; Duperrin, A.; Duran-Yildiz, H.; Dushkin, A.; Duxfield, R.; Dwuznik, M.; Düren, M.; Ebenstein, W.L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C.A.; Eerola, P.; Egorov, K.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Epshteyn, V.S.; Ereditato, A.; Eriksson, D.; Ermoline, I.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X; Esposito, B.; Etienne, F.; Etienvre, A.I.; Etzion, E.; Evans, H.; Fabbri, L.; Fabre, C.; Faccioli, P.; Facius, K.; Fakhrutdinov, R.M.; Falciano, S.; Falou, A.C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S.M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Fayard, L.; Fayette, F.; Febbraro, R.; Federic, P.; Fedin, O.L.; Fedorko, I.; Fedorko, W.; Feligioni, L.; Felzmann, C.U.; Feng, C.; Feng, E.J.; Fenyuk, A.B.; Ferencei, J.; Ferland, J.; Fernandes, B.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M.L.; Ferrere, D.; Ferretti, C.; Fiascaris, M.; Fiedler, F.; Filipcic, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M.C.N.; Fiorini, L.; Firan, A.; Fischer, G.; Fisher, M.J.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores-Castillo, L.R.; Flowerdew, M.J.; Föhlisch, F.; Fokitis, M.; Fonseca Martin, T; Forbush, D.A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J.M.; Fournier, D.; Foussat, A.; Fowler, A.J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; Freestone, J.; French, S.T.; Froeschl, R.; Froidevaux, D.; Frost, J.A.; Fukunaga, C.; Fullana Torregrosa, E; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E.J.; Gallas, M.V.; Gallop, B.J.; Gallus, P.; Galyaev, E.; Gan, K.K.; Gao, Y.S.; Gaponenko, A.; Garcia-Sciveres, M.; Garcí­a, C.; Garcí­a Navarro, J E; Gardner, R.W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gauzzi, P.; Gavrilenko, I.L.; Gay, C.; Gaycken, G.; Gayde, J-C; Gazis, E.N.; Ge, P.; Gee, C.N.P.; Geich-Gimbel, Ch; Gellerstedt, K.; Gemme, C.; Genest, M.H.; Gentile, S.; Georgatos, F.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S.M.; Gilbert, L.M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A.R.; Gingrich, D.M.; Ginzburg, J.; Giokaris, N.; Giordani, M.P.; Giordano, R.; Giovannini, P.; Giraud, P.F.; Girtler, P.; Giugni, D.; Giusti, P.; Gjelsten, B.K.; Gladilin, L.K.; Glasman, C.; Glazov, A.; Glitza, K.W.; Glonti, G.L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goggi, V.; Goldfarb, S.; Goldin, D.; Golling, T.; Gollub, N.P.; Gomes, A.; Gomez Fajardo, L S; Gonçalo, R.; Gonella, L.; Gong, C.; González de la Hoz, S; Gonzalez Silva, M L; Gonzalez-Sevilla, S.; Goodson, J.J.; Goossens, L.; Gorbounov, P.A.; Gordon, H.A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorisek, A.; Gornicki, E.; Goryachev, S.V.; Goryachev, V.N.; Gosdzik, B.; Gosselink, M.; Gostkin, M.I.; Gough Eschrich, I; Gouighri, M.; Goujdami, D.; Goulette, M.P.; Goussiou, A.G.; Goy, C.; Grabowska-Bold, I.; Grafström, P.; Grahn, K-J; Granado Cardoso, L; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H.M.; Gray, J.A.; Graziani, E.; Green, B.; Greenshaw, T.; Greenwood, Z.D.; Gregor, I.M.; Grenier, P.; Griesmayer, E.; Griffiths, J.; Grigalashvili, N.; Grillo, A.A.; Grimm, K.; Grinstein, S.; Grishkevich, Y.V.; Groer, L.S.; Grognuz, J.; Groh, M.; Groll, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V.J.; Guicheney, C.; Guida, A.; Guillemin, T.; Guler, H.; Gunther, J.; Guo, B.; Gupta, A.; Gusakov, Y.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C.B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H.K.; Hadley, D.R.; Haefner, P.; Härtel, R.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J.R.; Hansen, J.B.; Hansen, J.D.; Hansen, P.H.; Hansl-Kozanecka, T.; Hansson, P.; Hara, K.; Hare, G.A.; Harenberg, T.; Harrington, R.D.; Harris, O.B.; Harris, O.M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hashemi, K.; Hassani, S.; Hatch, M.; Haug, F.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C.M.; Hawkings, R.J.; Hawkins, D.; Hayakawa, T.; Hayward, H.S.; Haywood, S.J.; He, M.; Head, S.J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Hemperek, T.; Henderson, R.C.W.; Henke, M.; Henrichs, A.; Henriques-Correia, A.M.; Henrot-Versille, S.; Hensel, C.; Henß, T.; Hershenhorn, A.D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N.P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J.C.; Hiller, K.H.; Hillier, S.J.; Hinchliffe, I.; Hirose, M.; Hirsch, F.; Hobbs, J.; Hod, N.; Hodgkinson, M.C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M.R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holmgren, S.O.; Holy, T.; Holzbauer, J.L.; Homma, Y.; Homola, P.; Horazdovsky, T.; Hori, T.; Horn, C.; Horner, S.; Horvat, S.; Hostachy, J-Y; Hou, S.; Houlden, M.A.; Hoummada, A.; Howe, T.; Hrivnac, J.; Hryn'ova, T.; Hsu, P.J.; Hsu, S-C; Huang, G.S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Hughes, E.W.; Hughes, G.; Hughes-Jones, R.E.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Idarraga, J.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilyushenka, Y.; Imori, M.; Ince, T.; Ioannou, P.; Iodice, M.; Irles-Quiles, A.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Isobe, T.; Issakov, V.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A.V.; Iwanski, W.; Iwasaki, H.; Izen, J.M.; Izzo, V.; Jackson, J.N.; Jackson, P.; Jaekel, M.; Jahoda, M.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D.; Jansen, E.; Jantsch, A.; Janus, M.; Jared, R.C.; Jarlskog, G.; Jarron, P.; Jeanty, L.; Jelen, K.; Jen-La Plante, I; Jenni, P.; Jez, P.; Jézéquel, S.; Ji, W.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M; Jin, G.; Jin, S.; Jinnouchi, O.; Joffe, D.; Johansen, M.; Johansson, K.E.; Johansson, P.; Johnert, S.; Johns, K.A.; Jon-And, K.; Jones, G.; Jones, R.W.L.; Jones, T.W.; Jones, T.J.; Jonsson, O.; Joos, D.; Joram, C.; Jorge, P.M.; Juranek, V.; Jussel, P.; Kabachenko, V.V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinovskaya, L.V.; Kalinowski, A.; Kama, S.; Kanaya, N.; Kaneda, M.; Kantserov, V.A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Karagounis, M.; Karagoz Unel, M; Kartvelishvili, V.; Karyukhin, A.N.; Kashif, L.; Kasmi, A.; Kass, R.D.; Kastanas, A.; Kastoryano, M.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M.S.; Kayumov, F.; Kazanin, V.A.; Kazarinov, M.Y.; Kazi, S.I.; Keates, J.R.; Keeler, R.; Keener, P.T.; Kehoe, R.; Keil, M.; Kekelidze, G.D.; Kelly, M.; Kennedy, J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kersevan, B.P.; Kersten, S.; Kessoku, K.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A.G.; Khomich, A.; Khoriauli, G.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kilvington, G.; Kim, H.; Kim, M.S.; Kim, P.C.; Kim, S.H.; Kind, O.; Kind, P.; King, B.T.; Kirk, J.; Kirsch, G.P.; Kirsch, L.E.; Kiryunin, A.E.; Kisielewska, D.; Kittelmann, T.; Kiyamura, H.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E.B.; Klioutchnikova, T.; Klok, P.F.; Klous, S.; Kluge, E-E; Kluge, T.; Kluit, P.; Klute, M.; Kluth, S.; Knecht, N.S.; Kneringer, E.; Ko, B.R.; Kobayashi, T.; Kobel, M.; Koblitz, B.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A.C.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Kokott, T.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kolos, S.; Kolya, S.D.; Komar, A.A.; Komaragiri, J.R.; Kondo, T.; Kono, T.; Kononov, A.I.; Konoplich, R.; Konovalov, S.P.; Konstantinidis, N.; Koperny, S.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korolkov, I.; Korolkova, E.V.; Korotkov, V.A.; Kortner, O.; Kostka, P.; Kostyukhin, V.V.; Kotamäki, M.J.; Kotov, S.; Kotov, V.M.; Kotov, K.Y.; Koupilova, Z.; Kourkoumelis, C.; Koutsman, A.; Kowalewski, R.; Kowalski, H.; Kowalski, T.Z.; Kozanecki, W.; Kozhin, A.S.; Kral, V.; Kramarenko, V.A.; Kramberger, G.; Krasny, M.W.; Krasznahorkay, A.; Kreisel, A.; Krejci, F.; Krepouri, A.; Kretzschmar, J.; Krieger, P.; Krobath, G.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumshteyn, Z.V.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurchaninov, L.L.; Kurochkin, Y.A.; Kus, V.; Kuykendall, W.; Kuznetsova, E.; Kvasnicka, O.; Kwee, R.; La Rosa, M; La Rotonda, L; Labarga, L.; Labbe, J.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V.R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lamanna, M.; Lampen, C.L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M.P.J.; Lane, J.L.; Lankford, A.J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J.F.; Lari, T.; Larionov, A.V.; Larner, A.; Lasseur, C.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Laycock, P.; Lazarev, A.B.; Lazzaro, A.; Le Dortz, O; Le Guirriec, E; Le Maner, C; Le Menedeu, E; Le Vine, M; Leahu, M.; Lebedev, A.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J.S.H.; Lee, S.C.; Lefebvre, M.; Legendre, M.; LeGeyt, B.C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G; Lei, X.; Leitner, R.; Lelas, D.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K.J.C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leroy, C.; Lessard, J-R; Lester, C.G.; Leung Fook Cheong, A; Levêque, J.; Levin, D.; Levinson, L.J.; Levitski, M.S.; Levonian, S.; Lewandowska, M.; Leyton, M.; Li, H.; Li, J.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Liko, D.; Lilley, J.N.; Lim, H.; Limosani, A.; Limper, M.; Lin, S.C.; Lindsay, S.W.; Linhart, V.; Linnemann, J.T.; Liolios, A.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T.M.; Lissauer, D.; Litke, A.M.; Liu, C.; Liu, D.; Liu, H.; Liu, J.B.; Liu, M.; Liu, S.; Liu, T.; Liu, Y.; Livan, M.; Lleres, A.; Lloyd, S.L.; Lobodzinska, E.; Loch, P.; Lockman, W.S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F.K.; Loginov, A.; Loh, C.W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lopes, L.; Lopez Mateos, D; Losada, M.; Loscutoff, P.; Losty, M.J.; Lou, X.; Lounis, A.; Loureiro, K.F.; Lovas, L.; Love, J.; Love, P.; Lowe, A.J.; Lu, F.; Lu, J.; Lubatti, H.J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luisa, L.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L.L.; Maccarrone, G.; Macchiolo, A.; Macek, B.; Machado Miguens, J; Mackeprang, R.; Madaras, R.J.; Mader, W.F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P J; Magradze, E.; Magrath, C.A.; Mahalalel, Y.; Mahboubi, K.; Mahmood, A.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makouski, M.; Makovec, N.; Malecki, Pa; Malecki, P.; Maleev, V.P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mambelli, M.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandic, I.; Mandrysch, R.; Maneira, J.; Mangeard, P.S.; Manjavidze, I.D.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J.F.; Marchese, F.; Marcisovsky, M.; Marino, C.P.; Marques, C.N.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F.K.; Marti i.Garcia,.S.; Martin, A.J.; Martin, A.J.; Martin, B.; Martin, B.; Martin, F.F.; Martin, J.P.; Martin, T.A.; Martin dit Latour, B; Martinez, M.; Martinez Outschoorn, V; Martini, A.; Martynenko, V.; Martyniuk, A.C.; Maruyama, T.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A.L.; Massaro, G.; Massol, N.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maxfield, S.J.; May, E.N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzanti, P.; Mc Donald, J; Mc Kee, S P; McCarn, A.; McCarthy, R.L.; McCubbin, N.A.; McFarlane, K.W.; McGlone, H.; Mchedlidze, G.; McLaren, R.A.; McMahon, S.J.; McMahon, T.R.; McPherson, R.A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.M.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meirose, B.; Melamed-Katz, A.; Mellado Garcia, B R; Meng, Z.; Menke, S.; Meoni, E.; Merkl, D.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F.S.; Messina, A.M.; Messmer, I.; Metcalfe, J.; Mete, A.S.; Meyer, J-P; Meyer, J.; Meyer, T.C.; Meyer, W.T.; Miao, J.; Micu, L.; Middleton, R.P.; Migas, S.; Mijovic, L.; Mikenberg, G.; Mikuz, M.; Miller, D.W.; Mills, W.J.; Mills, C.M.; Milov, A.; Milstead, D.A.; Minaenko, A.A.; Miñano, M.; Minashvili, I.A.; Mincer, A.I.; Mindur, B.; Mineev, M.; Mir, L.M.; Mirabelli, G.; Misawa, S.; Miscetti, S.; Misiejuk, A.; Mitrevski, J.; Mitsou, V.A.; Miyagawa, P.S.; Mjörnmark, J.U.; Mladenov, D.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moles-Valls, R.; Molina-Perez, J.; Moloney, G.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Moore, R.W.; Mora-Herrera, C.; Moraes, A.; Morais, A.; Morel, J.; Morello, G.; Moreno, D.; Moreno Llácer, M; Morettini, P.; Morii, M.; Morley, A.K.; Mornacchi, G.; Morozov, S.V.; Morris, J.D.; Moser, H.G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S.V.; Moyse, E.J.W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T.A.; Muenstermann, D.; Muir, A.; Murillo Garcia, R; Murray, W.J.; Mussche, I.; Musto, E.; Myagkov, A.G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A.M.; Nakamura, K.; Nakano, I.; Nakatsuka, H.; Nanava, G.; Napier, A.; Nash, M.; Nation, N.R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nderitu, S.K.; Neal, H.A.; Nebot, E.; Nechaeva, P.; Negri, A.; Negri, G.; Nelson, A.; Nelson, T.K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A.A.; Nessi, M.; Neubauer, M.S.; Neusiedl, A.; Neves, R.N.; Nevski, P.; Newcomer, F.M.; Nicholson, C.; Nickerson, R.B.; Nicolaidou, R.; Nicolas, L.; Nicoletti, G.; Niedercorn, F.; Nielsen, J.; Nikiforov, A.; Nikolaev, K.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nomoto, H.; Nordberg, M.; Nordkvist, B.; Notz, D.; Novakova, J.; Nozaki, M.; Nozicka, M.; Nugent, I.M.; Nuncio-Quiroz, A-E; Nunes Hanninger, G; Nunnemann, T.; Nurse, E.; O'Neil, D.C.; O'Shea, V.; Oakham, F.G.; Oberlack, H.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Odino, G.A.; Ogren, H.; Oh, S.H.; Ohm, C.C.; Ohshima, T.; Ohshita, H.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Olcese, M.; Olchevski, A.G.; Oliveira, M.; Oliveira Damazio, D; Oliver, J.; Oliver Garcia, E; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P.U.E.; Oram, C.J.; Ordonez, G.; Oreglia, M.J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C; Orr, R.S.; Ortega, E.O.; Osculati, B.; Osuna, C.; Otec, R.; Ottersbach, J.P.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Ozcan, V.E.; Ozone, K.; Ozturk, N.; Pacheco Pages, A; Padhi, S.; Padilla Aranda, C; Paganis, E.; Pahl, C.; Paige, F.; Pajchel, K.; Pal, A.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J.D.; Pan, Y.B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadopoulou, Th D; Park, S.J.; Park, W.; Parker, M.A.; Parker, S.I.; Parodi, F.; Parsons, J.A.; Parzefall, U.; Pasqualucci, E.; Passardi, G.; Passeri, A.; Pastore, F.; Pastore, Fr; Pásztor, G.; Pataraia, S.; Pater, J.R.; Patricelli, S.; Patwa, A.; Pauly, T.; Peak, L.S.; Pecsy, M.; Pedraza Morales, M I; Peleganchuk, S.V.; Peng, H.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Perez Codina, E; Pérez García-Estañ, M T; Perez Reale, V; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Perus, P.; Peshekhonov, V.D.; Petersen, B.A.; Petersen, J.; Petersen, T.C.; Petit, E.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Pfeifer, B.; Phan, A.; Phillips, A.W.; Piacquadio, G.; Piccinini, M.; Piegaia, R.; Pilcher, J.E.; Pilkington, A.D.; Pina, J.; Pinamonti, M.; Pinfold, J.L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W.G.; Pleier, M-A; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poffenberger, P.; Poggioli, L.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D.M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B.G.; Popovic, D.S.; Poppleton, A.; Popule, J.; Portell Bueso, X; Porter, R.; Pospelov, G.E.; Pospichal, P.; Pospisil, S.; Potekhin, M.; Potrap, I.N.; Potter, C.J.; Potter, C.T.; Potter, K.P.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Preda, T.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L.E.; Prichard, P.M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Puigdengoles, C.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qi, M.; Qian, J.; Qian, W.; Qian, Z.; Qin, Z.; Qing, D.; Quadt, A.; Quarrie, D.R.; Quayle, W.B.; Quinonez, F.; Raas, M.; Radeka, V.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A.M.; Rahm, D.; Rajagopalan, S.; Rammes, M.; Ratoff, P.N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A.L.; Rebuzzi, D.M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z.L.; Renkel, P.; Rescia, S.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richards, R.A.; Richter, D.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R.R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.R.; Roa-Romero, D.A.; Robertson, S.H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, M.; Robson, A.; Rocha de Lima, J G; Roda, C.; Rodriguez, D.; Rodriguez Garcia, Y; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V.M.; Romeo, G.; Romero-Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosenbaum, G.A.; Rosenberg, E.I.; Rosselet, L.; Rossi, L.P.; Rotaru, M.; Rothberg, J.; Rottländer, I.; Rousseau, D.; Royon, C.R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Ruckert, B.; Ruckstuhl, N.; Rud, V.I.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rumyantsev, L.; Rusakovich, N.A.; Rutherfoord, J.P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y.F.; Ryadovikov, V.; Ryan, P.; Rybkin, G.; Rzaeva, S.; Saavedra, A.F.; Sadrozinski, H.F-W.; Sadykov, R.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua-Ferrando, B.M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B.H.; Sanchis Lozano, M A; Sandaker, H.; Sander, H.G.; Sanders, M.P.; Sandhoff, M.; Sandstroem, R.; Sandvoss, S.; Sankey, D.P.C.; Sanny, B.; Sansoni, A.; Santamarina Rios, C; Santi, L.; Santoni, C.; Santonico, R.; Santos, D.; Santos, J.; Saraiva, J.G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Savard, P.; Savine, A.Y.; Savinov, V.; Sawyer, L.; Saxon, D.H.; Says, L.P.; Sbarra, C.; Sbrizzi, A.; Scannicchio, D.A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaetzel, S.; Schaffer, A.C.; Schaile, D.; Schamberger, R.D.; Schamov, A.G.; Schegelsky, V.A.; Scheirich, D.; Schernau, M.; Scherzer, M.I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J.L.; Schmid, P.; Schmidt, M.P.; Schmieden, K.; Schmitt, C.; Schmitz, M.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schreiner, A.; Schroeder, C.; Schroer, N.; Schroers, M.; Schuler, G.; Schultes, J.; Schultz-Coulon, H-C; Schumacher, J.; Schumacher, M.; Schumm, B.A.; Schune, Ph; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W.G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S.C.; Seiden, A.; Seifert, F.; Seixas, J.M.; Sekhniaidze, G.; Seliverstov, D.M.; Sellden, B.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M.E.; Sfyrla, A.; Shamim, M.; Shan, L.Y.; Shank, J.T.; Shao, Q.T.; Shapiro, M.; Shatalov, P.B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M.J.; Shupe, M.A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S.B.; Simak, V.; Simic, Lj; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N.B.; Sipica, V.; Siragusa, G.; Sisakyan, A.N.; Sivoklokov, S.Yu.; Sjoelin, J.; Sjursen, T.B.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloper, J.; Sluka, T.; Smakhtin, V.; Smirnov, S.Yu.; Smirnov, Y.; Smirnova, L.N.; Smirnova, O.; Smith, B.C.; Smith, D.; Smith, K.M.; Smizanska, M.; Smolek, K.; Snesarev, A.A.; Snow, S.W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C.A.; Solar, M.; Solfaroli-Camillocci, E.; Solodkov, A.A.; Solovyanov, O.V.; Soluk, R.; Sondericker, J.; Sopko, V.; Sopko, B.; Sosebee, M.; Sosnovtsev, V.V.; Sospedra-Suay, L.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Speckmayer, P.; Spencer, E.; Spighi, R.; Spigo, G.; Spila, F.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St Denis, R D; Stahl, T.; Stamen, R.; Stancu, S.N.; Stanecka, E.; Stanek, R.W.; Stanescu, C.; Stapnes, S.; Starchenko, E.A.; Stark, J.; Staroba, P.; Starovoitov, P.; Stastny, J.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H.J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G.; Stockton, M.C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D.M.; Strong, J.A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Soh, D.A.; Su, D.; Suchkov, S.I.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suk, M.; Sulin, V.V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J.E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M.R.; Suzuki, T.; Suzuki, Y.; Sviridov, Yu M; Sykora, I.; Sykora, T.; Szymocha, T.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M.C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tappern, G.P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G.F.; Tas, P.; Tasevsky, M.; Tassi, E.; Taylor, C.; Taylor, F.E.; Taylor, G.N.; Taylor, R.P.; Taylor, W.; Teixeira-Dias, P.; Ten Kate, H; Teng, P.K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R.J.; Tevlin, C.M.; Thadome, J.; Thananuwong, R.; Thioye, M.; Thoma, S.; Thomas, J.P.; Thomas, T.L.; Thompson, E.N.; Thompson, P.D.; Thompson, P.D.; Thompson, R.J.; Thompson, A.S.; Thomson, E.; Thun, R.P.; Tic, T.; Tikhomirov, V.O.; Tikhonov, Y.A.; Timmermans, C.J.W.P.; Tipton, P.; Tique-Aires-Viegas, F.J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tomasek, L.; Tomasek, M.; Tomasz, F.; Tomoto, M.; Tompkins, D.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N.D.; Torrence, E.; Torró Pastor, E; Toth, J.; Touchard, F.; Tovey, D.R.; Tovey, S.N.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I.M.; Trincaz-Duvoid, S.; Trinh, T.N.; Tripiana, M.F.; Triplett, N.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trzupek, A.; Tsarouchas, C.; Tseng, J.C-L.; Tsiafis, I.; Tsiakiris, M.; Tsiareshka, P.V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E.G.; Tsukerman, I.I.; Tsulaia, V.; Tsung, J-W; Tsuno, S.; Tsybychev, D.; Turala, M.; Turecek, D.; Turk Cakir, I; Turlay, E.; Tuts, P.M.; Twomey, M.S.; Tylmad, M.; Tyndel, M.; Tzanakos, G.; Uchida, K.; Ueda, I.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D.G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urquijo, P.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E; Vallecorsa, S.; Valls Ferrer, J A; Van Berg, R; van der Graaf, H; van der Kraaij, E; van der Poel, E; Van Der Ster, D; van Eldik, N; van Gemmeren, P; van Kesteren, Z; van Vulpen, I; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F; Vari, R.; Varnes, E.W.; Varouchas, D.; Vartapetian, A.; Varvell, K.E.; Vasilyeva, L.; Vassilakopoulos, V.I.; Vazeille, F.; Vegni, G.; Veillet, J.J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J.C.; Vetterli, M.C.; Vichou, I.; Vickey, T.; Viehhauser, G.H.A.; Villa, M.; Villani, E.G.; Villaplana Perez, M; Villate, J.; Vilucchi, E.; Vincter, M.G.; Vinek, E.; Vinogradov, V.B.; Viret, S.; Virzi, J.; Vitale, A.; Vitells, O.V.; Vivarelli, I.; Vives Vaques, F; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogt, H.; Vokac, P.; Volpi, M.; Volpini, G.; von der Schmitt, H; von Loeben, J; von Radziewski, H; von Toerne, E; Vorobel, V.; Vorobiev, A.P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T.T.; Vossebeld, J.H.; Vranjes, N.; Vranjes Milosavljevic, M; Vrba, V.; Vreeswijk, M.; Vu Anh, T; Vudragovic, D.; Vuillermet, R.; Vukotic, I.; Wagner, P.; Wahlen, H.; Walbersloh, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Wang, C.; Wang, H.; Wang, J.; Wang, J.C.; Wang, S.M.; Ward, C.P.; Warsinsky, M.; Wastie, R.; Watkins, P.M.; Watson, A.T.; Watson, M.F.; Watts, G.; Watts, S.; Waugh, A.T.; Waugh, B.M.; Webel, M.; Weber, J.; Weber, M.D.; Weber, M.; Weber, M.S.; Weber, P.; Weidberg, A.R.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P.S.; Wen, M.; Wenaus, T.; Wendler, S.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Werthenbach, U.; Wessels, M.; Whalen, K.; Wheeler-Ellis, S.J.; Whitaker, S.P.; White, A.; White, M.J.; White, S.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F.J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L.A.M.; Wildauer, A.; Wildt, M.A.; Wilhelm, I.; Wilkens, H.G.; Williams, E.; Williams, H.H.; Willis, W.; Willocq, S.; Wilson, J.A.; Wilson, M.G.; Wilson, A.; Wingerter-Seez, I.; Winklmeier, F.; Wittgen, M.; Wolter, M.W.; Wolters, H.; Wosiek, B.K.; Wotschack, J.; Woudstra, M.J.; Wraight, K.; Wright, C.; Wright, D.; Wrona, B.; Wu, S.L.; Wu, X.; Wulf, E.; Xella, S.; Xie, S.; Xie, Y.; Xu, D.; Xu, N.; Yamada, M.; Yamamoto, A.; Yamamoto, S.; Yamamura, T.; Yamanaka, K.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U.K.; Yang, Y.; Yang, Z.; Yao, W-M; Yao, Y.; Yasu, Y.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.P.; Yu, D.; Yu, J.; Yu, M.; Yu, X.; Yuan, J.; Yuan, L.; Yurkewicz, A.; Zaidan, R.; Zaitsev, A.M.; Zajacova, Z.; Zambrano, V.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zema, P.F.; Zemla, A.; Zendler, C.; Zenin, O.; Zenis, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; Zevi della Porta, G; Zhan, Z.; Zhang, H.; Zhang, J.; Zhang, Q.; Zhang, X.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C.G.; Zhu, H.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zilka, B.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Zivkovic, L.; Zmouchko, V.V.; Zobernig, G.; Zoccoli, A.; zur Nedden, M; Zutshi, V.

    2010-01-01

    The ATLAS liquid argon calorimeter has been operating continuously since August 2006. At this time, only part of the calorimeter was readout, but since the beginning of 2008, all calorimeter cells have been connected to the ATLAS readout system in preparation for LHC collisions. This paper gives an overview of the liquid argon calorimeter performance measured in situ with random triggers, calibration data, cosmic muons, and LHC beam splash events. Results on the detector operation, timing performance, electronics noise, and gain stability are presented. High energy deposits from radiative cosmic muons and beam splash events allow to check the intrinsic constant term of the energy resolution. The uniformity of the electromagnetic barrel calorimeter response along eta (averaged over phi) is measured at the percent level using minimum ionizing cosmic muons. Finally, studies of electromagnetic showers from radiative muons have been used to cross-check the Monte Carlo simulation. The performance results obtained u...

  17. Next Generation CALICE Electromagnetic Calorimeter

    OpenAIRE

    Grondin, Denis; Jeans, Daniel

    2010-01-01

    This paper presents mechanical R&D for the CALICE Silicon-tungsten electromagnetic calorimeter. After the physics ECAL prototype, tested in 2006 (DESY-CERN), 2007 (CERN), 2008 (FNAL) and before the design of different 'modules 0' (barrel and endcap) for a final detector, a technological ECAL prototype, called the EUDET module, is under design in order to have a close to full scale technological solution which could be used for the final detector, taking into account future industrialisation o...

  18. Next Generation CALICE Electromagnetic Calorimeter

    OpenAIRE

    Grondin, Denis; Jeans, Daniel

    2010-01-01

    This paper presents mechanical R&D for the CALICE Silicon-tungsten electromagnetic calorimeter. After the physics ECAL prototype, tested in 2006 (DESY-CERN), 2007 (CERN), 2008 (FNAL) and before the design of different "modules 0" (barrel and endcap) for a final detector, a technological ECAL prototype, called the EUDET module, is under design in order to have a close to full scale technological solution which could be used for the final detector, taking into account future industrialisation o...

  19. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, T; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner , P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. The information from TileCal's last segmentation layer can assist in muon tagging and it is being considered for a near future upgrade of the level-one trigger, mainly for rejecting triggers due to cavern background at the barrel region. A muon receiver for the TileCal muon signals is being designed in order to interface with the ATLAS level-one trigger. This paper addresses the preliminary studies concerning the muon discrimination capability for the muon receiver. Monte Carlo simulations for single muons from the interaction point were used to study the effectiveness of hadronic calorimeter information on muon detection.

  20. ATLAS Calorimeters: Run-2 performance and Phase-II upgrade

    CERN Document Server

    Boumediene, Djamel Eddine; The ATLAS collaboration

    2017-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon (LAr)-lead sampling calorimeter is employed as electromagnetic calorimeter and hadronic calorimter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimter. This presentation will give first an overview of the detector operation and data quality, as well as the achieved performance of the ATLAS calorimetry system. Additionally, the upgrade projects of the ATLAS calorimeter system for the high luminosity phase of the LHC (HL-LHC) will be presented. For the HL-LHC, the instantaneous luminosity is expected to increase up to L ≃ 7.5 × 10^{34} cm^{−2} s^{−1} and the average pile-up up to 200 interactions per bunch crossing. The major R&D item is the upgrade of the electronics for both LAr and Tile calorimeters in order to cope wit...

  1. Installation of the Liquid Argon Calorimater Barrel in the ATLAS Experimental Cavern

    CERN Multimedia

    Vandoni, G.

    On the 27th of October, the Liquid Argon Barrel cryostat was transported from Building 180 to point 1. The next day, the Barrel was lowered into the cavern, and was placed on jacks close to its final position inside the completed lower half of the Tile calorimeter. After a day of precise adjustment, it was resting within a few millimetres of its nominal final position, waiting for the upper half of the Tile calorimeter to be installed. Tight requests had been issued by the Liquid Argon collaboration for the whole transport. It was foreseen that the cryostat should not see any acceleration larger than 0.15g along its axis, 0.08g transversally and 0.3g in the vertical direction. In addition, no acceleration higher than 0.03g (or even 0.003g for permanent oscillation) would be allowed at 20Hz, to avoid the risk of damaging the absorbers at this spontaneous vibration frequency. The difficulty would arise when coping these demands with the tortuous route, its slopes and curbs, vibration transmission from the engi...

  2. A conceptual design for the STAR endcap electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Bielick, E.; Fornek, T.; Spinka, H.; Underwood, D.G.

    1993-01-01

    In order to make measurements of the gluon spin or helicity distribution in the proton or the gluon spin average distribution in nuclei, both a barrel and an endcap electromagnetic calorimeter must be added to the STAR baseline detector. Information on the gluon will be obtained in inclusive direct-γ + jet and jet + jet production. In order to be sensitive to the proper gluon kinematic regions, either the direct-γ or the jet must be in the endcap electromagnetic calorimeter (EMC). However, the endcap EMC is not large enough to completely contain the jets, so that the barrel EMC is also needed. This note describes a conceptual design for the STAR endcap EMC. Constraints are imposed by the space available between the end of the time projection chamber (TPC) and the inside of the magnet pole tip iron. Severe constraints also occur near |η| = 1, where the barrel and endcap EMC's meet. Cables from detectors inside the EMC, including those from the TPC, will exit from STAR near |η| = 1. The constraints in this region have not yet been seriously studied since no decision on the detailed routing of these cables was available at the time this work was being done. This report includes details of the conceptual design, analytical and finite element calculations of stresses in various structural members for the endcap EMC, and a preliminary cost estimate

  3. In situ commissioning of the ATLAS electromagnetic calorimeter with cosmic muons

    CERN Document Server

    Cooke, M; Plamondon, M; Aleksa, M; Delmastro, M; Fayard, L; Henrot-Versillé, S; Hubaut, F; Lafaye, R; Lampl, W; Lévêque, J; Ma, H; Monnier, E; Parsons, J; Pralavorio, P; Schwemling, Ph; Serin, L; Trocmé, B; Unal, G; Vincter, M; Wilkens, H

    2007-01-01

    In 2006, ATLAS entered the {\\it in situ} commissioning phase. The primary goal of this phase is to verify the detector operation and performance with cosmic muons. Using a dedicated cosmic muon trigger from the hadronic Tile calorimeter, a sample of approximately $120\\,000$ events was collected in several modules of the barrel electromagnetic (EM) calorimeter between August 2006 and March 2007. As cosmic events are generally non-projective and arrive asynchronously with respect to the trigger clock, methods to improve the standard signal reconstruction for this situation are presented. Various selection criteria for projective muons and clustering algorithms have been tested, leading to preliminary results on calorimeter uniformity in $\\eta$ and timing performance.

  4. Development and application of high-precision metrology for the ATLAS tile-calorimeter construction (pre-assembly experience and lessons)

    International Nuclear Information System (INIS)

    Batusov, V.Yu.; Budagov, Yu.A.; Khubua, D.I.

    2004-01-01

    In view of the forthcoming ATLAS assembly in the pit the pre-assembly of the Hadron Tile Calorimeter BARRELS was undertaken at the laboratory hall. A complex of metrology methods (laser, photogrammetry, theodolite, mechanic, PREDICTION programme) developed at the principal stages and resulted in successful high-precision erection of the barrels has been described

  5. Intercalibration of the CMS Electromagnetic Calorimeter Using Jet Trigger Events

    CERN Document Server

    Futyan, David

    2004-01-01

    This note describes a strategy for rapidly obtaining electromagnetic calorimeter crystal intercalibration at LHC start-up in the absence of test beam precalibration of the complete detector. In the case of the CMS (Compact Muon Solenoid) Electromagnetic Calorimeter, the limit on the precision to which crystals can be intercalibrated in phi using fully simulated jet trigger events, and assuming complete ignorance of the distribution of material in front of the calorimeter, is determined as a function of the pseudorapidity eta. The value of the limit has been found to be close to 1.5% in the barrel and between 3.0% and 1.0% for the fiducial region of the endcaps. The precision is limited by the inhomogeneity of tracker material. With increasing knowledge of the material distribution in the tracker, the attainable precision of the method will increase, with the potential of providing rapid and repeated calibration of the calorimeter.

  6. Phase I Upgrade of the CMS Hadron Calorimeter

    CERN Document Server

    Cooper, Seth Isaac

    2014-01-01

    In preparation for Run 2 (2015) and Run 3 of the LHC (2019), the CMS hadron calorimeter has begun a series of ambitious upgrades. These include new photodetectors in addition to improved front-end and back-end readout electronics. In the hadron forward calorimeter, the existing photomultiplier tubes are being replaced with thinner window, multi-anode readout models, while in the central region, the hybrid photodiodes will be replaced with silicon photomultipliers. The front-end electronics will include high precision timing readout, and the backend electronics will handle the increased data bandwidth. The barrel and endcap longitudinal segmentation will also be increased. This report will describe the motivation for the upgrade, its major components, and its current status.

  7. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding and A. Skuja

    2010-01-01

    Splash and Collision Data HCAL recorded the beam-on-collimator (splash) and the first collision data in November and December 2009, and provided triggers to CMS with the forward calorimeter, HF. Splash events were used to improve the energy inter-calibration of the HB and HE channels, with the basic assumption that the energy deposited in the detector by the large flux of muons that passed through in splash events was a smooth function in eta and phi. The new HB and HE calibration coefficients were applied prior to the collision data taking. For HO, a similar analysis is being finalized. Splash events were also used to determine the relative timing between channels in HB and HE, and new delay settings were calculated based on splashes from one beam, applied and verified with the splash events from the other beam. During Fall 2009, the HF technical trigger was improved in order to be effectively used as one of the main CMS triggers during the collision data taking. Collisions were successfully recorded by all...

  8. Liquid Argon Calorimeter - Barrel Cryostat Construction and Testing May-June 2000

    CERN Multimedia

    US, ATLAS

    1999-01-01

    Photo 1 - Outer Cold Cryostat showing 'Y' support. Photo 2 - Outer Cold Vessel half showing 'X' and 'Z' stops and 'Y' supports. Photo 3 - Cold Vessel Bulkhead, End 'C'. Photo 4 - Outer Cold Vessel half, showing EM Calorimeter support rail. Photo 5 - End of Outer Cold Vessel showing EM Calorimeter support rail. Photo 6 - Al/SST Transitions for Signal and High Voltage feedthroughs. Test weld blocks shown in background. Photo 7 - Welding of Al/SST Transitions onto Outer Cold Vessel. Photo 8 - Al/SST Transitions, including test pumpouts. Photo 9 - Machining of Inner Cold vessel. Photo 10 - Warm Vessel being assembled for leak testing Photo 11 - Setting up Warm Vessel on test stand. Photo 12 - Warm Vessel assembly for testing complete. Photo 13 - Dial indicators mounted against the Warm Vessel Bulkhead during testing. Photo 14 - Pumping on Warm Vessel. Photo 15 - Pumping on the Warm Vessel. Photo 16 - Checking the Solenoid Chimney. Photo 17 - Leak checking the Inner Warm Vessel/Bulkhead flange in the area of ID co...

  9. Design and development of the SDC barrel electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Ambats, I.; Balka, L.; Blair, R.

    1994-01-01

    In fulfillment of contract SSC92-W-17743, Argonne National Laboratory is required to closeout and document all work performed in the design and development of the central calorimeter for the Solenoidal Detector Collaboration (SDC) Detector at the Superconducting Super Collider Laboratory (SSCL). This report will summarize the work performed, and identify all documents (technical reports, memo's, drawings, etc.) that resulted from that effort. The work under this contract was shared in collaboration with the Westinghouse Science and Technology Center (WSTC) of Pittsburgh, Pennsylvania. It is the intent of this report to provide information that can be useful in the development of future detectors for high energy physics particle research

  10. Results of L3 BGO calorimeter calibration using an RFQ accelerator

    CERN Document Server

    Chaturvedi, U K; Gataullin, M; Gratta, Giorgio; Kirkby, D; Lu, W; Newman, H; Shvorob, A V; Tully, C; Zhu, R

    2000-01-01

    A novel calibration system based on a radiofrequency-quadrupole (RFQ) accelerator has been installed in the L3 experiment. Radiative capture of 1.85 MeV protons from the RFQ accelerator in a lithium target produces a flux of 17.6 MeV photons which are used to calibrate 11000 crystals of the L3 BGO calorimeter. In this paper we present results of the RFQ run taken in November 1997. A calibration precision of 0.6% was reached in the barrel of the L3 BGO calorimeter, and 0.7% in the BGO endcaps. (8 refs).

  11. Instrumented module of the ATLAS tile calorimeter

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    The ATLAS tile calorimeter consists of steel absorber plates interspersed with plastic scintillator tiles. Interactions of high-energy hadrons in the plates transform the incident energy into a 'hadronic shower'. When shower particles traverse the scintillating tiles, the latter emit an amount of light proportional to the incident energy. This light is transmitted along readout fibres to a photomultiplier, where a detectable electrical signal is produced. These pictures show one of 64 modules or 'wedges' of the barrel part of the tile calorimeter, which are arranged to form a cylinder around the beam axis. The wedge has been instrumented with scintillators and readout fibres. Photos 03, 06: Checking the routing of the readout fibres into the girder that houses the photomultipliers. Photo 04: A view of the fibre bundles inside the girder.

  12. Fast shower simulation in the ATLAS calorimeter

    International Nuclear Information System (INIS)

    Barberio, E; Boudreau, J; Mueller, J; Tsulaia, V; Butler, B; Young, C C; Cheung, S L; Savard, P; Dell'Acqua, A; Simone, A D; Gallas, M V; Ehrenfeld, W; Glazov, A; Placakyte, R; Marshall, Z; Rimoldi, A; Waugh, A

    2008-01-01

    The time to simulate pp collisions in the ATLAS detector is largely dominated by the showering of electromagnetic particles in the heavy parts of the detector, especially the electromagnetic barrel and endcap calorimeters. Two procedures have been developed to accelerate the processing time of electromagnetic particles in these regions: (1) a fast shower parameterisation and (2) a frozen shower library. Both work by generating the response of the calorimeter to electrons and positrons with Geant 4, and then reintroduce the response into the simulation at runtime. In the fast shower parameterisation technique, a parameterisation is tuned to single electrons and used later by simulation. In the frozen shower technique, actual showers from low-energy particles are used in the simulation. Full Geant 4 simulation is used to develop showers down to ∼ 1GeV, at which point the shower is terminated by substituting a frozen shower. Judicious use of both techniques over the entire electromagnetic portion of the ATLAS calorimeter produces an important improvement of CPU time. We discuss the algorithms and their performance in this paper

  13. Data Quality system of the ATLAS hadronic Tile calorimeter

    International Nuclear Information System (INIS)

    Nemecek, Stanislav

    2012-01-01

    The Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. It is subdivided into a large central barrel and two smaller lateral extended barrels. Each barrel consists of 64 wedges, made of iron plates and scintillating tiles. Two edges of each scintillating tile are air-coupled to wave-length shifting (WLS) fibres which collect the scintillating light and transmit it to photo-multipliers. The total number of channels is about 10000. An essential part of the TileCal detector is the Data Quality (DQ) system. The DQ system is designed to check the status of the electronic channels. It is designed to provide information at two levels - online and offline. The online TileCal DQ system monitors continuously the data while they are recorded and provides a fast feedback. The offline DQ system allows a detailed study, if needed it provides corrections to be applied to the recorded data and it allows to validate the data for physics analysis. In addition to the check of physics data the TileCal DQ systems also operate with calibration data. The TileCal calibration system provides well defined signals and the response to the calibration signals allows checking the behaviour of the electronic channels in detail. The Monitoring and Calibration Web System supports data quality analyses at the level of channels. All online, offline and calibration versions of the TileCal DQ system also provide automatic tests, the results of which allow fast and robust feedback.

  14. ATLAS Calorimeter system: Run-2 performance, Phase-1 and Phase-2 upgrades

    CERN Document Server

    Starz, Steffen; The ATLAS collaboration

    2018-01-01

    The ATLAS detector was designed and built to study proton-proton collisions produced at the LHC at centre-of-mass energies up to 14 TeV and instantaneous luminosities up to 10^{34} cm^{−2} s^{−1}. A liquid argon-lead sampling calorimeter (LAr) is employed as electromagnetic calorimeter and hadronic calorimeter, except in the barrel region, where a scintillator-steel sampling calorimeter (TileCal) is used as hadronic calorimeter. ATLAS recorded 87 fb^{-1} of data at a center-of-mass energy of 13 TeV between 2015 and 2017. In order to achieve the level-1 acceptance rate of 100 kHz, certain adjustments have been performed. The calorimetry system performed accordingly to its design values and have played a crucial role in the ATLAS physics programme. This contribution will give an overview of the detector operation, monitoring and data quality, as well as the achieved performance, including the calibration and stability of the energy scale, noise level, response uniformity and time resolution of the ATLAS cal...

  15. Status of the ATLAS Liquid Argon Calorimeter and its performance after one year of LHC operation

    CERN Document Server

    "March, L; The ATLAS collaboration

    2011-01-01

    The ATLAS experiment is designed to study the proton-proton collisions produced at the LHC with a centre-of-mass energy of 14 TeV. Liquid argon (LAr) sampling calorimeters are used in ATLAS for all electromagnetic calorimetry and partly for hadronic calorimetry. The calorimeter system consists of an electromagnetic barrel calorimeter and two endcaps with electromagnetic (EMEC), hadronic (HEC) and forward (FCAL) calorimeters. The different parts of the LAr calorimeter have been installed inside the ATLAS cavern between October 2004 and April 2006. Since October 2006 the detector has been operated with liquid argon at nominal high voltage, and fully equipped with readout electronics including a LVL1 calorimeter trigger system. First cosmic runs were recorded and used in various stages of commissioning. Starting in September 2008 beam related events were collected for the first time with single beams circulating in the LHC ring providing first beam-gas interactions and then beam-collimator splash events. The fir...

  16. CCALT: A crystal calorimeter for the KLOE-2 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Cordelli, M; Happacher, F; Martini, M; Miscetti, S; Sarra, I [Laboratori Nazionali di Frascati dell' INFN, Frascati (Italy); Schioppa, M; Stucci, S, E-mail: fabio.happacher@lnf.infn.it [INFN and Department of Physics, University of Calabria, Cosenza (Italy)

    2011-04-01

    The angular coverage extension of the KLOE-2 electromagnetic calorimeter, from a polar angle of 20{sup 0} down to 10{sup 0}, will increase the multiphoton detection capability of the experiment enhancing the search reach for rare kaon, {eta} and {eta}' prompt decay channels. The basic layout of the calorimeter extension consists of two small barrels of LYSO crystals readout with APD photosensors aiming to achieve a timing resolution between 300 and 500 ps for 20 MeV photons. The first test of a (5.5x6x13) cm{sup 3} prototype for such a detector wa s carried out at the Beam Test Facility of Laboratori Nazionali di Frascati of INFN. We present here the results ofthis test.

  17. Proposal for the completion of outstanding work on the installation scheduling and alignment of the SDC central calorimeter

    International Nuclear Information System (INIS)

    Guarino, V.; Hill, N.; Nasiatka, J.; Petereit, E.; Price, L.

    1993-01-01

    The High Energy Physic Division at Argonne National Laboratory was given the task of developing the procedures, fixtures, and schedules for the final assembly of the barrel and endcap calorimeters for the SDC. The work completed led to some major decision about how and where this assembly work would be done. The primary assembly decision was the feasibility of assembling the major detector components (barrel and endcap sub-assemblies) above ground and lowering them into position in the experimental hall, as opposed to assembling the calorimeter directly in the experimental hall. Due to cost of above ground assembly and schedule changes, the in-hall option was adopted. Although no actual hardware was constructed, many conceptual ideas were formalized and brought to workable solutions as a result of the effort put forth at ANL

  18. An FPGA-based slowcontrol module and a baseline shifting extension card for the sampling-ADC readout of the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Urff, Georg; Poller, Timo [Helmholtz-Institut fuer Strahlen- und Kernphysik, Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    At the electron accelerator ELSA (Bonn) the CBELSA/TAPS experiment investigates the photoproduction of mesons off protons and neutrons. The CsI(Tl)-crystals of the Crystal Barrel calorimeter are being upgraded from a PIN-diode readout to an APD readout. In the context of this upgrade, an FPGA-based Sampling-ADC (SADC) is presently being developed (HK 304). A Slow-control Module for the SADC with TCP/Telnet access has been developed on the basis of a Spartan6 FPGA. Control and monitoring of the SADC's power supply as well as control of parameters of the analog and digital data processing in the SADC is realized via PMBus/I{sup 2}C. The prototype as well as an overview of its functionality will be presented. In order to fully utilize the dynamic input range of the SADCs, an interfacing extension board was designed. It receives the differential signal generated by previous amplification stages and adds an individual DC offset voltage to each channel supplied by a digital-to-analog converter. The circuit and the used techniques as well as simulations and measurements are presented.

  19. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    by J. Spalding and A. Skuja

    2010-01-01

    Operations and Maintenance All HCAL sub-detectors participated throughout the recent data taking with 7 TeV collisions. A timing scan of HF was performed to optimize the timing across the detectors and to set the overall time position of the ~10-ns wide signals within the 25-ns integration time slice. This position was chosen to ensure that the trigger primitives in physics events are generated synchronously at the desired bunch crossing, while also providing discrimination between the calorimeter signals and anomalous signals due to interactions within the photomultiplier tubes. This timing discrimination is now used in the standard filter algorithms for anomalous signals. For HB and HE, once the statistics needed to assess the timing of a sufficient number of channels was accumulated, it was verified that the time settings determined with cosmic, splash events and initial collision data were appropriate for the 7 TeV collision data taking. A further fine-tuning of the HB and HE time settings will be perfo...

  20. Radiation Hardness Study of CsI(Tl) Crystals for Belle II Calorimeter

    CERN Document Server

    Matvienko, D V; Sedov, E V; Shwartz, B A

    2017-01-01

    The Belle II calorimeter (at least, its barrel part) consists of CsI(Tl) scintillation crystals which have been used at the Belle experiment. We perform the radiation hardness study of some typical Belle crystals and conclude their light output reductions are acceptable for Belle II experiment where the absorption dose can reach 10 krad during the detector operation. CsI(Tl) crystals have high stablity and low maintenance cost and are considered as possible option for the calorimeter of the future Super-Charm-Tau factory (SCT) in Novosibirsk. Our study demonstrates sufficiently high radiation hardness of CsI(Tl) crystals for SCT conditions.

  1. Construction and Performance of an Iron-Scintillator Hadron Calorimeter with Longitudinal Tile Configuration

    CERN Multimedia

    2002-01-01

    % RD34 \\\\ \\\\ In a scintillator tile calorimeter with wavelength shifting fiber readout significant simplifications of the construction and the assembly are possible if the tiles are oriented $^{\\prime\\prime}$longitudinally$^{\\prime\\prime}$, i.e.~in a r-$\\phi$ planes for a barrel configuration. For a hybrid calorimeter consisting of a scintillator tile hadron compartment and a sufficiently containing liquid argon electromagnetic (EM) compartment, as proposed for the ATLAS detector, good jet resolution is predicted by simulations, which is not affected by this particular orientation of the tiles. \\\\ \\\\The aim of the proposed development program is to construct a calorimeter test module with longitudinal tiles and to check the simulation results by test beam measurements. In addition several component tests and further simulations and engineering studies are needed to optimize the design of a large calorimeter structure to be used in collider experiments. The construction of a test module will also provide valua...

  2. Barrels XXIX: Barrels go Hollywood.

    Science.gov (United States)

    Evans, Mathew H; Brumberg, Joshua C

    2017-03-01

    Barrels XXIX brought together researchers focusing on the rodent barrel cortex and associated systems. The meeting revolved around three themes: thalamocortical interactions in motor control, touch in rodent, monkey, and humans, and the nature of the multisensory computations the brain makes. Over two days these topics were covered as well as many more presentations that focused on the physiology, behavior, and development of the rodent whisker-to-barrel cortex system.

  3. The e/h method of energy reconstruction for combined calorimeter

    International Nuclear Information System (INIS)

    Kul'chitskij, Yu.A.; Kuz'min, M.V.; Vinogradov, V.B.

    1999-01-01

    The new simple method of the energy reconstruction for a combined calorimeter, which we called the e/h method, is suggested. It uses only the known e/h ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. The method has been tested on the basis of the 1996 test beam data of the ATLAS barrel combined calorimeter and demonstrated the correctness of the reconstruction of the mean values of energies. The obtained fractional energy resolution is [(58 ± 3)%/√E + (2.5 ± 0.3)%] O+ (1.7 ± 0.2) GeV/E. This algorithm can be used for the fast energy reconstruction in the first level trigger

  4. Mechanical design and finite element analysis of the SDC central calorimeter

    International Nuclear Information System (INIS)

    Guarino, V.; Hill, N.F.; Nasiatka, J.; Hoecker, D.A.; Hordubay, T.D.; Scherbarth, D.W.; Swensrud, R.L.

    1992-01-01

    When designing scintillating calorimeters for the study of particle interactions resulting from colliding beams, a primary goal is to instrument 100% of the available solid angle. In pursuit of this goal the challenge for mechanical designers is to minimize the amount of structural mass and still maintain acceptable engineering standards in the design. Argonne National Laboratory, High Energy Physics involvement in the design of a central calorimeter for the SSC started in 1989. Our first proposal was to design a depleted uranium scintillator calorimeter similar to the ZEUS detector presently installed at the HERA electron-proton collider in Hamburg, Germany. Argonne was involved at the time in final assembly of modules for ZEUS that had been designed and constructed at ANL. Due to the cost of using depleted uranium, lead was chosen as the absorber material. In collaboration with Westinghouse Science and Technology Center in Pittsburgh, Pennsylvania was embarked on a program to optimize the use of lead or lead alloys in the construction of the calorimeter. A cast lead design for the calorimeter evolved from this effort. Subsequent to this design, further pressure to reduce costs have now dictated a design which contains lead only in the electromagnetic sections of the calorimeter. The finite element analysis we will present here was done using lead for the HAD1 section of the barrel

  5. Upgrade of the CMS hardron calorimeter for an upgraded LHC

    OpenAIRE

    Anderson, Jake

    2012-01-01

    The CMS barrel and endcap hadron calorimeters (Hcal) upgrading the current photo-sensors are hybrid photodiodes (HPDs) to meet the demands of the upgraded luminosity of the LHC. A key aspect of the Hcal upgrade is to add longitudinal segmentation to improve background rejection, energy resolution, and electron isolation at L1 trigger. The increased segmentation can be achieved by replacing the HPD's with multi-pixel Geiger-mode avalanche photodiodes. The upgraded electron...

  6. Design and performance studies of a hadronic calorimeter for a FCC-hh experiment

    Science.gov (United States)

    Faltova, J.

    2018-03-01

    The hadron-hadron Future Circular Collider (FCC-hh) project studies the physics reach of a proton-proton machine with a centre-of-mass-energy of 100 TeV and five times greater peak luminosities than at the High-Luminosity LHC (HL-LHC). The high-energy regime of the FCC-hh opens new opportunities for the discovery of physics beyond the standard model. At 100 TeV a large fraction of the W, Z, H bosons and top quarks are produced with a significant boost. It implies an efficient reconstruction of very high energetic objects decaying hadronically. The reconstruction of those boosted objects sets the calorimeter performance requirements in terms of energy resolution, containment of highly energetic hadron showers, and high transverse granularity. We present the current baseline technologies for the calorimeter system in the barrel region of the FCC-hh reference detector: a liquid argon electromagnetic and a scintillator-steel hadronic calorimeters. The focus of this paper is on the hadronic calorimeter and the performance studies for hadrons. The reconstruction of single particles and the achieved energy resolution for the combined system of the electromagnetic and hadronic calorimeters are discussed.

  7. Overview of the 63000 PWO Barrel Crystals for CMS_ECAL Production

    CERN Document Server

    Auffray, E

    2008-01-01

    In March 2007, the PWO crystal production for the barrel part of the CMS electromagnetic calorimeter has been completed. Since September 1998, 63000 crystals (61000 in Russia, 2000 in China) have been produced, received and tested in two regional centers (CERN and INFN Rome). This paper presents an overview of the procedures used from the R&D phase up to the final large scale reception and quality control. The crystals characteristics and the lessons learned from the production of this unprecedented amount of crystals in a HEP experiment are also presented.

  8. Construction of the Zeus forward/rear calorimeter modules at NIKHEF

    International Nuclear Information System (INIS)

    Blankers, R.; Engelen, J.; Geerinck, H.; Homma, J.; Hunck, P.; Koning, N. de; Kooijman, P.; Korporaal, A.; Loos, R.; Straver, J.; Tiecke, H.

    1990-07-01

    ZEUS is one of the two experiments in preparation for studying electron-proton interactions at the HERA e-p collider at DESY in Hamburg. The design value for the energy of the electron beam is 30 GeV and for the proton beam 820 GeV. The asymmetry in the beam particle masses and their energies causes in general a strongly asymmetric energy distribution for the reaction products, in particular most of the energy flow will be in the proton direction. The layout of the ZEUS detector accomodates for this asymmetry. In the proton direction for instance, several wirechambers assure together with the central tracking detector good track reconstruction, in an area where high density of tracks is expected. The tracking detector is placed inside a magnetic field of 1.8 Tesla, provided by a superconducting coil. The interaction point is completely surrounded by a high resolution calorimeter, which in turn is surrounded by a backing calorimeter; this backing calorimeter has to detect late showering particles, has to serve as a muon filter and is also the return yoke for the magnetic field. The ZEUS collaboration has chosen for a type of hadron calorimeter with the best possible energy resolution known to date, a depleted uranium-scintillator sampling calorimeter. The calorimeter has an equal response to electrons and hadrons of the same energy (e/h=1). The sampling thickness is one radiation length. The calorimeter is subdivided in three components, the forward- (in proton direction), the rear- (in electron direction) and the barrel calorimeter, FCAL, RCAL and BCAL. In this report the design and assembly procedure of the FCAL/RCAL is described in detail. Furthermore the transport problems are discussed and the first calibration results obtained with beam particles are shown. (author). 5 refs.; 29 figs.; 1 tab

  9. Periodic position dependence of the energy measured in the CMS electromagnetic calorimeter

    CERN Document Server

    Descamps, Julien

    2006-01-01

    A uniform energy measurement response of the CMS electromagnetic calorimeter ECAL is essential for precision physics at the LHC. The ECAL barrel calorimeter consists of 61200 lead tungstate crystals arranged in a quasi-projective geometry. The energy of photons reaching the ECAL will be reconstructed by summing the channels corresponding to matrices of 3x3 or 5x5 crystals centred on the crystal with the largest energy deposit. The energy measured using such matrices of fixed size has been studied using electron test beam data taken in 2004. The variation of the energy containment with the incident electron impact position on the central crystal leads to a degradation of the energy resolution. A method using only the calorimeter information is presented to correct for the position dependent response. After correction, the energy resolution performance for uniform impact distributions of the electrons on the front face of a crystal approaches that obtained for maximal containment with a central impact. The univ...

  10. LAr calorimeter for SCC with a common vacuum bulkhead---a concept to improve hermeticity

    International Nuclear Information System (INIS)

    Pope, W.L.; Watt, R.D.

    1989-11-01

    A new concept for a Barrel/Endcap LAr Calorimeter (LAC) is described in which the Barrel and Endcaps are in separate vacuum enclosures but share a common vacuum bulkhead (CVB). We explore 2 possible bulkhead construction types; welded plate sandwich panels, and brazed sandwich panels in which the core is an isotropic cellular solid--foamed aluminum. Gas lines and electric cables from he innermost Drift Chamber pass through radial holes in the core of the sandwich bulkhead. The CVB concept offers the potential to obtain a more hermetic calorimeter with significantly reduced dead material and/or space in the interface region common to conventional design LAr detectors for the SSC with Endcap features. To utilize a common additional steps to remove the Drift Chamber, a large increase in Endcap standby heat leak, and perhaps, new cryogenic safety issues. We find that significant amount of dead mass can be removed from critical regions of the vacuum shells when compared to a promising SSC LAC reference design. It is also shown that the increased standby heat leak of this concept can be easily removed by existing cooling capacity in another large LAr calorimeter. It is further shown that shut-downs need not be appreciably longer. Finally, it is argued that cryogen spill hazards can be avoided if the Endcap's LAr is removed during Drift chamber maintenance shutdowns, and that cryogenic safety is not compromised

  11. Performances of the ATLAS Hadronic Tile Calorimeter Modules for Electrons and Pions

    CERN Document Server

    Kulchitskii, Yu A

    2004-01-01

    With the aim of establishing of an electromagnetic energy scale of the ATLAS Tile calorimeter and understanding of performance of the calorimeter to electrons 12 \\% of modules have been exposed in electron beams with various energies by three possible ways: cell-scan at $\\theta =20^o$ at the centers of the front face cells, $\\eta$-scan and tilerow scan at $\\theta = 90^o$ for the module side cells. We have extracted the electron calibration constants and electron energy resolutions some of these barrel and extended barrel modules at energies E = 10, 20, 50, 100 and 180 GeV for the cell-scan at $\\theta = 20^o$, the $\\eta$ scan and the tile scan at $90^o$. The average values of these constants are equal to $\\langle R_e \\rangle =1.157\\pm0.002$ pC/GeV for the cell-scan at $\\theta = 20^o$, $\\langle R_e \\rangle =1.143\\pm0.005$ pC/GeV for the $\\eta$-scan and $\\langle R_e\\rangle =1.196\\pm0.005$ pC/GeV for the tile-scan at $\\theta = 90^o$. The RMS values are the following: for the cell-scan is $RMS=2.6\\pm0.1$ \\%, for t...

  12. Radiation hardness of plastic scintillators for the Tile Calorimeter of the ATLAS detector

    CERN Document Server

    Jivan, Harshna; The ATLAS collaboration

    2014-01-01

    The Tile Calorimeter of the ATLAS detector, is a hadronic calorimeter responsible for detecting hadrons as well as accommodating for the missing transverse energy that result from the p-p collisions within the LHC. Plastic scintillators form an integral component of this calorimeter due to their ability to undergo prompt fluorescence when exposed to ionising particles. The scintillators employed are specifically chosen for their properties of high optical transmission and fast rise and decay time which enables efficient data capture since fast signal pulses can be generated. The main draw-back of plastic scintillators however is their susceptibility to radiation damage. The damage caused by radiation exposure reduces the scintillation light yield and introduces an error into the time-of flight data acquired. During Run 1 of the LHC data taking period, plastic scintillators employed within the GAP region between the Tile Calorimeter’s central and extended barrels sustained a significant amount of damage. Wit...

  13. ATLAS tile calorimeter cesium calibration control and analysis software

    International Nuclear Information System (INIS)

    Solovyanov, O; Solodkov, A; Starchenko, E; Karyukhin, A; Isaev, A; Shalanda, N

    2008-01-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented

  14. ATLAS tile calorimeter cesium calibration control and analysis software

    Energy Technology Data Exchange (ETDEWEB)

    Solovyanov, O; Solodkov, A; Starchenko, E; Karyukhin, A; Isaev, A; Shalanda, N [Institute for High Energy Physics, Protvino 142281 (Russian Federation)], E-mail: Oleg.Solovyanov@ihep.ru

    2008-07-01

    An online control system to calibrate and monitor ATLAS Barrel hadronic calorimeter (TileCal) with a movable radioactive source, driven by liquid flow, is described. To read out and control the system an online software has been developed, using ATLAS TDAQ components like DVS (Diagnostic and Verification System) to verify the hardware before running, IS (Information Server) for data and status exchange between networked computers, and other components like DDC (DCS to DAQ Connection), to connect to PVSS-based slow control systems of Tile Calorimeter, high voltage and low voltage. A system of scripting facilities, based on Python language, is used to handle all the calibration and monitoring processes from hardware perspective to final data storage, including various abnormal situations. A QT based graphical user interface to display the status of the calibration system during the cesium source scan is described. The software for analysis of the detector response, using online data, is discussed. Performance of the system and first experience from the ATLAS pit are presented.

  15. The New APD Based Readout for the Crystal Barrel Calorimeter

    International Nuclear Information System (INIS)

    Urban, M; Honisch, Ch; Steinacher, M

    2015-01-01

    The CBELSA/TAPS experiment at ELSA measures double polarization observables in meson photoproduction off protons and neutrons. To be able to measure purely neutral reactions off polarized neutrons with high efficiency, the main calorimeter has to be integrated into the first level trigger. This requires to exchange the existing PIN photo diode by a new avalanche photo diode (APD) readout. The newly developed readout electronics will provide an energy resolution compatible to the previous set-up and a fast trigger signal down to 10 MeV energy deposit per crystal. After the successful final tests with a 3x3 CsI crystal matrix in Bonn at ELSA and in Mainz at MAMI all front-end electronics were produced in fall 2013. Automated test routines for the front-end electronics were developed and the characterization measurements of all APDs were successfully accomplished in Bonn. The project is supported by the Deutsche Forschungsgemeinschaft (SFB/TR16) and Schweizerischer Nationalfonds

  16. The e/h ratio of the ATLAS hadronic tile calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Vinogradov, V.B.; Kul'chitskij, Yu.A.; Kuz'min, M.V.

    2002-01-01

    We have determined the e/h ratios of the Module-0 of the ATLAS iron-scintillator barrel hadron tile calorimeter for five values of pseudorapidity η in the range of -0.55 ≤ η ≤ -0.15 for the beam energy range from 10 to 300 GeV on the basis of the July 1999 test beam data. These e/h ratios demonstrate independence from |η| value. The mean value is e/h = 1.362 + 0.006. The results are compared with the existing experimental data and with some Monte Carlo calculations

  17. Muon Detection Based on a Hadronic Calorimeter

    CERN Document Server

    Ciodaro, Thiago; Abreu, R; Achenbach, R; Adragna, P; Aharrouche, M; Aielli, G; Al-Shabibi, A; Aleksandrov, I; Alexandrov, E; Aloisio, A; Alviggi, M G; Amorim, A; Amram, N; Andrei, V; Anduaga, X; Angelaszek, D; Anjos, N; Annovi, A; Antonelli, S; Anulli, F; Apolle, R; Aracena, I; Ask, S; Åsman, B; Avolio, G; Baak, M; Backes, M; Backlund, S; Badescu, E; Baines, J; Ballestrero, S; Banerjee, S; Bansil, H S; Barnett, B M; Bartoldus, R; Bartsch, V; Batraneanu, S; Battaglia, A; Bauss, B; Beauchemin, P; Beck, H P; Bee, C; Begel, M; Behera, P K; Bell, P; Bell, W H; Bellagamba, L; Bellomo, M; Ben Ami, S; Bendel, M; Benhammou, Y; Benslama, K; Berge, D; Bernius, C; Berry, T; Bianco, M; Biglietti, M; Blair, R E; Bogaerts, A; Bohm, C; Boisvert, V; Bold, T; Bondioli, M; Borer, C; Boscherini, D; Bosman, M; Bossini, E; Boveia, A; Bracinik, J; Brandt, A G; Brawn, I P; Brelier, B; Brenner, R; Bressler, S; Brock, R; Brooks, W K; Brown, G; Brunet, S; Bruni, A; Bruni, G; Bucci, F; Buda, S; Burckhart-Chromek, D; Buscher, V; Buttinger, W; Calvet, S; Camarri, P; Campanelli, M; Canale, V; Canelli, F; Capasso, L; Caprini, M; Caracinha, D; Caramarcu, C; Cardarelli, R; Carlino, G; Casadei, D; Casado, M P; Cattani, G; Cerri, A; Cerrito, L; Chapleau, B; Childers, J T; Chiodini, G; Christidi, I; Ciapetti, G; Cimino, D; Ciobotaru, M; Coccaro, A; Cogan, J; Collins, N J; Conde Muino, P; Conidi, C; Conventi, F; Corradi, M; Corso-Radu, A; Coura Torres, R; Cranmer, K; Crescioli, F; Crone, G; Crupi, R; Cuenca Almenar, C; Cummings, J T; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Dao, V; Darlea, G L; Davis, A O; De Asmundis, R; De Pedis, D; De Santo, A; de Seixas, J M; Degenhardt, J; Della Pietra, M; Della Volpe, D; Demers, S; Demirkoz, B; Di Ciaccio, A; Di Mattia, A; Di Nardo, R; Di Simone, A; Diaz, M A; Dietzsch, T A; Dionisi, C; Dobson, E; Dobson, M; dos Anjos, A; Dotti, A; Dova, M T; Drake, G; Dufour, M-A; Dumitru, I; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, K V; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Ermoline, Y; Ernst, J; Etzion, E; Falciano, S; Farrington, S; Farthouat, P; Faulkner, P J W; Fedorko, W; Fellmann, D; Feng, E; Ferrag, S; Ferrari, R; Ferrer, M L; Fiorini, L; Fischer, G; Flowerdew, M J; Fonseca Martin, T; Francis, D; Fratina, S; French, S T; Front, D; Fukunaga, C; Gadomski, S; Garelli, N; Garitaonandia Elejabarrieta, H; Gaudio, G; Gee, C N P; George, S; Giagu, S; Giannetti, P; Gillman, A R; Giorgi, M; Giunta, M; Giusti, P; Goebel, M; Gonçalo, R; Gonzalez Silva, L; Göringer, C; Gorini, B; Gorini, E; Grabowska-Bold, I; Green, B; Groll, M; Guida, A; Guler, H; Haas, S; Hadavand, H; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hansen, J R; Hasegawa, S; Hasegawa, Y; Hauser, R; Hayakawa, T; Hayden, D; Head, S; Heim, S; Hellman, S; Henke, M; Hershenhorn, A; Hidvégi, A; Hillert, S; Hillier, S J; Hirayama, S; Hod, N; Hoffmann, D; Hong, T M; Hryn'ova, T; Huston, J; Iacobucci, G; Igonkina, O; Ikeno, M; Ilchenko, Y; Ishikawa, A; Ishino, M; Iwasaki, H; Izzo, V; Jez, P; Jimenez Otero, S; Johansen, M; Johns, K; Jones, G; Joos, M; Kadlecik, P; Kajomovitz, E; Kanaya, N; Kanega, F; Kanno, T; Kapliy, A; Kaushik, V; Kawagoe, K; Kawamoto, T; Kazarov, A; Kehoe, R; Kessoku, K; Khomich, A; Khoriauli, G; Kieft, G; Kirk, J; Klemetti, M; Klofver, P; Klous, S; Kluge, E-E; Kobayashi, T; Koeneke, K; Koletsou, I; Koll, J D; Kolos, S; Kono, T; Konoplich, R; Konstantinidis, N; Korcyl, K; Kordas, K; Kotov, V; Kowalewski, R V; Krasznahorkay, A; Kraus, J; Kreisel, A; Kubota, T; Kugel, A; Kunkle, J; Kurashige, H; Kuze, M; Kwee, R; Laforge, B; Landon, M; Lane, J; Lankford, A J; Laranjeira Lima, S M; Larner, A; Leahu, L; Lehmann Miotto, G; Lei, X; Lellouch, D; Levinson, L; Li, S; Liberti, B; Lilley, J N; Linnemann, J T; Lipeles, E; Lohse, T; Losada, M; Lowe, A; Luci, C; Luminari, L; Lundberg, J; Lupu, N; Machado Miguéns, J; Mackeprang, R; Maettig, S; Magnoni, L; Maiani, C; Maltrana, D; Mangeard, P-S; Männer, R; Mapelli, L; Marchese, F; Marino, C; Martin, B; Martin, B T; Martin, T; Martyniuk, A; Marzano, F; Masik, J; Mastrandrea, P; Matsushita, T; McCarn, A; Mechnich, J; Medinnis, M; Meier, K; Melachrinos, C; Mendoza Nava, L M; Merola, L; Messina, A; Meyer, C P; Middleton, R P; Mikenberg, G; Mills, C M; Mincer, A; Mineev, M; Misiejuk, A; Moa, T; Moenig, K; Monk, J; Monticelli, F; Mora Herrera, C; Morettini, P; Morris, J D; Müller, F; Munwes, Y; Murillo Garcia, R; Nagano, K; Nagasaka, Y; Navarro, G A; Negri, A; Nelson, S; Nemethy, P; Neubauer, M S; Neusiedl, A; Newman, P; Nisati, A; Nomoto, H; Nozaki, M; Nozicka, M; Nurse, E; Ochando, C; Ochi, A; Oda, S; Oh, A; Ohm, C; Okumura, Y; Olivito, D; Omachi, C; Osculati, B; Oshita, H; Ospanov, R; Owen, M A; Özcan, V E; Ozone, K; Padilla, C; Panes, B; Panikashvili, N; Paramonov, A; Parodi, F; Pasqualucci, E; Pastore, F; Patricelli, S; Pauly, T; Perera, V J O; Perez, E; Petcu, M; Petersen, B A; Petersen, J; Petrolo, E; Phan, A; Piegaia, R; Pilkington, A; Pinder, A; Poddar, S; Polini, A; Pope, B G; Potter, C T; Primavera, M; Prokoshin, F; Ptacek, E; Qian, W; Quinonez, F; Rajagopalan, S; Ramos Dos Santos Neves, R; Reinherz-Aronis, E; Reinsch, A; Renkel, P; Rescigno, M; Rieke, S; Riu, I; Robertson, S H; Robinson, M; Rodriguez, D; Roich, A; Romeo, G; Romero, R; Roos, L; Ruiz Martinez, A; Ryabov, Y; Ryan, P; Saavedra, A; Safai Tehrani, F; Sakamoto, H; Salamanna, G; Salamon, A; Saland, J; Salnikov, A; Salvatore, F; Sankey, D P C; Santamarina, C; Santonico, R; Sarkisyan-Grinbaum, E; Sasaki, O; Savu, D; Scannicchio, D A; Schäfer, U; Scharf, V L; Scheirich, D; Schiavi, C; Schlereth, J; Schmitt, K; Schroder, C; Schroer, N; Schultz-Coulon, H-C; Schwienhorst, R; Sekhniaidze, G; Sfyrla, A; Shamim, M; Sherman, D; Shimojima, M; Shochet, M; Shooltz, D; Sidoti, A; Silbert, O; Silverstein, S; Sinev, N; Siragusa, G; Sivoklokov, S; Sjoen, R; Sjölin, J; Slagle, K; Sloper, J E; Smith, B C; Soffer, A; Soloviev, I; Spagnolo, S; Spiwoks, R; Staley, R J; Stamen, R; Stancu, S; Steinberg, P; Stelzer, J; Stockton, M C; Straessner, A; Strauss, E A; Strom, D; Su, D; Sugaya, Y; Sugimoto, T; Sushkov, S; Sutton, M R; Suzuki, Y; Taffard, A; Taiblum, N; Takahashi, Y; Takeda, H; Takeshita, T; Tamsett, M; Tan, C L A; Tanaka, S; Tapprogge, S; Tarem, S; Tarem, Z; Taylor, C; Teixeira-Dias, P; Thomas, J P; Thompson, P D; Thomson, M A; Tokushuku, K; Tollefson, K; Tomoto, M; Topfel, C; Torrence, E; Touchard, F; Traynor, D; Tremblet, L; Tricoli, A; Tripiana, M; Triplett, N; True, P; Tsiakiris, M; Tsuno, S; Tuggle, J; Ünel, G; Urquijo, P; Urrejola, P; Usai, G; Vachon, B; Vallecorsa, S; Valsan, L; Vandelli, W; Vari, R; Vaz Gil Lopes, L; Veneziano, S; Ventura, A; Venturi, N; Vercesi, V; Vermeulen, J C; Volpi, G; Vorwerk, V; Wagner, P; Wang, M; Warburton, A; Watkins, P M; Watson, A T; Watson, M; Weber, P; Weidberg, A R; Wengler, T; Werner, P; Werth, M; Wessels, M; White, M; Whiteson, D; Wickens, F J; Wiedenmann, W; Wielers, M; Winklmeier, F; Woods, K S; Wu, S-L; Wu, X; Xaplanteris Karampatsos, L; Xella, S; Yakovlev, A; Yamazaki, Y; Yang, U; Yasu, Y; Yuan, L; Zaitsev, A; Zanello, L; Zhang, H; Zhang, J; Zhao, L; Zobernig, H; zur Nedden, M

    2010-01-01

    The TileCal hadronic calorimeter provides a muon signal which can be used to assist in muon tagging at the ATLAS level-one trigger. Originally, the muon signal was conceived to be combined with the RPC trigger in order to reduce unforeseen high trigger rates due to cavern background. Nevertheless, the combined trigger cannot significantly deteriorate the muon detection performance at the barrel region. This paper presents preliminary studies concerning the impact in muon identification at the ATLAS level-one trigger, through the use of Monte Carlo simulations with single muons with 40 GeV/c momentum. Further, different trigger scenarios were proposed, together with an approach for matching both TileCal and RPC geometries.

  18. Performance of the CMS Hadron Calorimeter with Cosmic Ray Muons and LHC Beam Data

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS Hadron Calorimeter in the barrel, endcap and forward regions is fully commissioned. Cosmic ray data were taken with and without magnetic field at the surface hall and after installation in the experimental hall, hundred meters underground. Various measurements were also performed during the few days of beam in the LHC in September 2008. Calibration parameters were extracted, and the energy response of the HCAL determined from test beam data has been checked.

  19. A new piece of the puzzle

    CERN Multimedia

    2005-01-01

    The team responsible for the installation of the hadronic calorimeter's central barrel after completion of the assembly work. Assembly of the great ATLAS puzzle continues underground. On 10 December, the final module of the central barrel of the tile hadronic calorimeter was assembled. This piece of the tile calorimeter had already been assembled above ground during a "dress rehearsal" in 2003 (see Bulletin no 46/2003, 10 November 2003). The hadronic calorimeter's two other barrels, the so-called "extended barrels", remain to be assembled with this first central barrel, which now surrounds the electromagnetic calorimeter barrel that was lowered into the cavern at the end of October. At the end of November, the second of the eight barrel toroid coils was also installed.

  20. Performance of the CMS precision electromagnetic calorimeter at the LHC Run II and prospects for high-luminosity LHC

    CERN Document Server

    Negro, Giulia

    2017-01-01

    The Compact Muon Solenoid (CMS) electromagnetic calorimeter (ECAL) is a high-performance calorimeter wich will operate also at the High Luminosity Large Hadron Collider (HL-LHC). This talk will describe the strategies that have been employed to maintain the excellent performance of the CMS ECAL throughout Run 2. Performance results from the 2015-2016 data taking periods will be shown and an outlook on the expected Run 2 performance in the years to come will be provided. The status and plans for the upgraded ECAL barrel electronics for the HL-LHC will be presented, based on recent results from simulations, laboratory tests, and test beam measurements of prototype devices.

  1. Electron response and e/h ratio of ATLAS barrel hadron prototype calorimeter

    International Nuclear Information System (INIS)

    Budagov, Yu.A.; Vinogradov, V.B.; Arkadov, V.V.; Karapetyan, G.V.

    1995-01-01

    The detailed information about electron response, electron energy resolution and e/h ratio as a function of incident energy E, impact point Z and incidence angle Θ of ATLAS iron-scintillator hadron prototype calorimeter with longitudinal tile configuration is presented. These results are based on electron and pion beams data of E=20, 50, 100, 150, 300 GeV at Θ=10 deg, 20 deg, 30 deg, which were obtained during test beam period in July 1995. The obtained calibration constant is used for muon response converting from pC to GeV. The results are compared with existing experimental data and with some Monte Carlo calculations. For some E, Θ, Z values the compensation (e/h=1) is observed. 23 refs., 18 figs., 9 tabs

  2. Studies on an automated gain stabilisation for the new APD read-out of the crystal barrel calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Pauli, Peter [HISKP Bonn (Germany); Collaboration: CBELSA/TAPS-Collaboration

    2016-07-01

    For the investigation of the nucleon spectrum it is not enough to measure only cross sections because of the large overlap of resonances. To disentangle these resonances, a partial wave analysis is needed. To find unambiguous solutions it is necessary to measure (double) polarisation observables. The CBELSA/TAPS experiment is an important tool to measure these observables in meson photoproduction off nucleons. To achieve a high efficiency in purely neutral reactions it is important to implement the main calorimeter into the first level trigger. To do so it is necessary to replace the current PIN photo diodes with new avalanche photo diodes (APDs). The new read-out is able to provide a timing signal that is fast enough to use it as a trigger while it does not impair the energy resolution of the calorimeter compared to the previous system. A drawback of APDs is their temperature dependency. To provide a stable gain throughout varying running conditions it is vital to monitor the temperature change and correct it if necessary. The poster shows an approach to ensure temperature stability where the temperature is monitored via a temperature sensitive NTC thermistor and the gain is adjusted via changes of the high voltage supply of the APDs. This method proved successful while it is easy to implement in all 1320 CsI(Tl) crystals of the calorimeter.

  3. Barrels XXX meeting report: Barrels in Baltimore.

    Science.gov (United States)

    Shin, Hyeyoung; Bitzidou, Malamati; Palaguachi, Fernando; Brumberg, Joshua C

    2018-03-01

    The Barrels meeting annually brings together researchers focused on the rodent whisker to cortical barrel system prior to the Society for Neuroscience meeting. The 2017 meeting focused on the classification of cortical interneurons, the role interneurons have in shaping brain dynamics, and finally on the circuitry underlying oral sensations. The meeting highlighted the latest advancements in this rapidly advancing field.

  4. Search For New Physics In The Compact Muon Solenoid (CMS) Experiment And The Response Of The CMS Calorimeters To Particles And Jets

    CERN Document Server

    Gumus, Kazim Ziya

    2008-01-01

    A Monte Carlo study of a generic search for new resonances beyond the Standard Model (SM) in the CMS experiment is presented. The resonances are axigluon, coloron, E6 diquark, excited quark, W', Z', and the Randall-Sundrum graviton which decay to dijets. The dijet resonance cross section that the CMS can expect to discover at a 5s significance or to exclude at 95% confidence level for integrated luminosities of 100 pb-1, 1 fb-1, and 10 fb-1 is evaluated. It is shown that a 5s discovery of a multi-TeV dijet resonance is possible for an axigluon, excited quark, and E6 diquark. However, a 5s discovery can not be projected with confidence for a W', Z' and the Randall-Sundrum graviton. On the other hand, 95% CL exclusion mass regions can be measured for all resonances at high luminosities. In the second part of this dissertation, the analyses of the 2006 test beam data from the combined electromagnetic and hadronic barrel calorimeters are presented. The CMS barrel calorimeters' response to a variety of beam partic...

  5. Timing performance of the CMS electromagnetic calorimeter and prospects for the future

    CERN Document Server

    Bornheim, Adolf

    2014-01-01

    The CMS electromagnetic calorimeter (ECAL) is made of 75,848 scintillating lead tungstate crystals arranged in a barrel and two endcaps. The scintillation light is read out by avalanche photodiodes in the barrel and vacuum phototriodes in the endcaps, at which point the scintillation pulse is amplified and sampled at 40 MHz by the on-detector electronics. The fast signal from the crystal scintillation enables energy as well as timing measurements from the data collected in proton-proton collisions with high energy electrons and photons. The single-channel time resolution of ECAL measured at beam tests for high energy showers is better than 100 ps. The timing resolution achieved with the data collected in proton-proton collisions at the LHC is discussed. We present how precision timing is used in current physics measurements and discuss studies of subtle calorimetric effects, such as the timing response of different crystals belonging to the same electromagnetic shower. In addition, we present prospects for th...

  6. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    All the HCAL calorimeters are ready for data-taking in 2011 and participated fully in the cosmic running and initial beam operations in the last few weeks. Several improvements were made during the winter technical stop, including replacement of the light-guide sleeves in HF, improvements to the low voltage power connections, and separation of HF from HB and HE in the DAQ partitions. During the 2010 running a form of anomalous noise in the HF was identified as being caused by scintillation when charged particles pass through a portion of the air light-guide sleeve. This portion was constructed from a non-conductive mirror-like material called “HEM”. To suppress these anomalous signals, during the recent winter technical stop all sleeves in the detector were replaced with sleeves made of Tyvek. The detector has been recommissioned with all channels fully operational. Recalibration of the detector will be required due to the differing reflectivity of the new sleeves compared with the HEM sl...

  7. The ATLAS Liquid Argon Electromagnetic EndCap Calorimeter Construction and tests

    CERN Document Server

    Rodier, S; Del Peso, J

    2003-01-01

    This thesis has been carried out within the ATLAS collaboration. ATLAS is one of the two multipurpose experiments approved for data taking at the Large Hadron Collider (LHC) at CERN. The main goals of this experiment are, to find the Higgs boson, the missing piece in the otherwise so succesful Standard Model of Particle Physics, and to look for physics beyond the Standard Model up to a scale of 1TeV. For this purpose, electromagnetic (EM) calorimetry play a key role. The ATLAS Collaboration has chosen a Liquid Argon (LAr) option with lead as passive material. The liquid Argon Calorimeter is divided into two main subdetectors, the barrel and the end caps (EC). The design and construction of the LAr EM EC calorimeter is the responsability of the groups at Centre de Physique de Marseille (CPPM) and the Universidad Autonoma de Madrid (UAM)following the guideline developed by the research and development working, group 3 for LHC detectors (RD3). The sharing of responsabilities is such that CPPM provides spacers an...

  8. The supermodule insertion tool of the CMS electromagnetic calorimeter and the first trial insertion of a supermodule.

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The first trial insertion of a complete Electromagnetic Calorimeter (ECAL) "supermodule" (1700 lead-tungstate crystals, with support structures, light detectors (avalanche photodiodes), readout electronics and cooling system) was performed on 1st March. This delicate operation - sliding a 2-tonne 3m-long object onto support rails (in real life these are attached to the barrel hadron calorimeter (HCAL)) - made use of a custom designed "squirrel cage". The rotatable squirrel cage allows the insertion of any supermodule into any of the 18 positions, including very fine (sub-mm) adjustments. The first supermodule will be inserted into the real HCAL later this month in preparation for the "magnet test and cosmic-ray challenge" (MTCC). In the first image the supermodule is in the centre and the alignment disks are highlighted by the flash.

  9. Weapons barrel life cycle determination

    Directory of Open Access Journals (Sweden)

    Nebojša Pene Hristov

    2013-10-01

    Full Text Available This article describes the dynamic processes within the gun barrel during the firing process in exploitation. It generally defines the basic principles of constructing tube elements, and shows the distortion of the basic geometry of the tube interior due to wear as well as the impact it causes during exploitation. The article also defines basic empirical models as well as a model based on fracture mechanics for the calculation of a use-life of the barrel, and other elements essential for the safe use of the barrel as the basic weapon element. Erosion causes are analysed in order to control and reduce wear and prolong the lifetime of the gun barrel. It gives directions for the reparation of barrels with wasted resources. In conclusion, the most influential elements of tube wear are given as well as possible modifications of existing systems, primarily propellant charges, with a purpose of prolonging lifetime of gun barrels. The guidelines for a proper determination of the lifetime based on the barrel condition assessment are given as well. INTRODUCTION The barrel as the basic element of each weapon is described as well as the processes occurring during the firing that have impulsive character and are accompanied by large amounts of energy. The basic elements of barrel and itheir constructive characteristics are descibed. The relation between Internal ballistics, ie calculation of the propellant gas pressure in the firing process, and structural elements defined by the barrel material resistance is shown. In general, this part of the study explains the methodology of the gun barrel structural elements calculation, ie. barrel geometry, taking into account the degrees of safety in accordance with Military Standards.   TUBE WEAR AND DEFORMATIONS The weapon barrel gradually wears out during exploitation due to which it no longer satisfies the set requirements. It is considered that the barrel has experienced a lifetime when it fails to fulfill the

  10. The CPLEAR Electromagnetic Calorimeter

    CERN Document Server

    Adler, R; Bal, F; Behnke, O; Bloch, P; Damianoglou, D; Dechelette, Paul; Dröge, M; Eckart, B; Felder, C; Fetscher, W; Fidecaro, Maria; Garreta, D; Gerber, H J; Gumplinger, P; Guyon, D; Johner, H U; Löfstedt, B; Kern, J; Kokkas, P; Krause, H; Mall, U; Marin, C P; Nanni, F; Pagels, B; Pavlopoulos, P; Petit, P; Polivka, G; Rheme, C; Ruf, T; Santoni, C; Schaller, L A; Schopper, A; Tauscher, Ludwig; Tschopp, H; Weber, P; Wendler, H; Witzig, C; Wolter, M

    1997-01-01

    A large-acceptance lead/gas sampling electromagnetic calorimeter (ECAL) was constructed for the CPLEAR experiment to detect photons from decays of $\\pi^0$s with momentum $p_{\\pi^0} \\le 800$ MeV$/c$. The main purpose of the ECAL is to determine the decay vertex of neutral-kaon decays $\\ko \\rightarrow \\pi^0\\pi^0 \\rightarrow 4 \\gamma$ and $\\ko \\rightarrow \\pi^0\\pi^0\\pi^0 \\rightarrow 6 \\gamma$. This requires a position-sensitive photon detector with high spatial granularity in $r$-, $\\varphi$-, and $z$-coordinates. The ECAL --- a barrel without end-caps located inside a magnetic field of 0.44 T --- consists of 18 identical concentric layers. Each layer of $1/3$ radiation length (X${_0}$) contains a converter plate followed by small cross-section high-gain tubes of 2640 mm active length which are sandwiched by passive pick-up strip plates. The ECAL, with a total of $6$ X${_0}$, has an energy resolution of $\\sigma (E)/E \\approx 13\\% / \\sqrt{E(\\mathrm{GeV})}$ and a position resolution of 4.5 mm for the shower foot. ...

  11. Upgrade of the CMS muon trigger system in the barrel region

    International Nuclear Information System (INIS)

    Rabady, Dinyar; Ero, Janos; Flouris, Giannis; Fulcher, Jonathan; Loukas, Nikitas; Paradas, Evangelos; Reis, Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth

    2017-01-01

    To maintain the excellent performance shown during the LHC's Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF), as well as the cancel-out and sorting layer: the upgraded Global Muon Trigger (μGMT). Both the BMTF and μGMT have been implemented in a Xilinx Virtex-7 card utilizing the microTCA architecture. While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the μGMT is an almost complete re-development due to the re-organization of the underlying systems from track-finders for a specific detector to regional track finders covering a given area of the whole detector. Additionally the μGMT calculates a muon's isolation using energy information received from the calorimeter trigger. This information is added to the muon objects forwarded to the global decision layer, the so-called Global Trigger. - Highlights: • Presented upgraded Global Muon Trigger and Barrel Muon Track Finder systems. • Upgraded system moves from sub-detector centric view to geometric-view. • To improve trigger performance. • Common hardware improves maintainability and increases development speed. • Use of

  12. Upgrade of the CMS muon trigger system in the barrel region

    Energy Technology Data Exchange (ETDEWEB)

    Rabady, Dinyar, E-mail: dinyar.rabady@cern.ch [Institute of High Energy Physics Vienna (HEPHY), Nikolsdorfer Gasse 18, 1050 Wien (Austria); Ero, Janos [Institute of High Energy Physics Vienna (HEPHY), Nikolsdorfer Gasse 18, 1050 Wien (Austria); Flouris, Giannis [University of Ioannina, 45110 Ioannina (Greece); Fulcher, Jonathan [CERN, 1211 Geneve 23 (Switzerland); Loukas, Nikitas; Paradas, Evangelos [University of Ioannina, 45110 Ioannina (Greece); Reis, Thomas; Sakulin, Hannes; Wulz, Claudia-Elisabeth [CERN, 1211 Geneve 23 (Switzerland)

    2017-02-11

    To maintain the excellent performance shown during the LHC's Run-1 the Level-1 Trigger of the Compact Muon Solenoid experiment underwent a significant upgrade. One part of this upgrade is the re-organization of the muon trigger path from a subsystem-centric view in which hits in the drift tubes (DT), the cathode strip chambers (CSC), and the resistive plate chambers (RPC) were treated separately in dedicated track-finding systems to one in which complementary detector systems for a given region (barrel, overlap, and endcap) are merged at the track-finding level. This fundamental restructuring of the muon trigger system required the development of a system to receive track candidates from the track-finding layer, remove potential duplicate tracks, and forward the best candidates to the global decision layer. An overview will be given of the new track-finder system for the barrel region, the Barrel Muon Track Finder (BMTF), as well as the cancel-out and sorting layer: the upgraded Global Muon Trigger (μGMT). Both the BMTF and μGMT have been implemented in a Xilinx Virtex-7 card utilizing the microTCA architecture. While the BMTF improves on the proven and well-tested algorithms used in the Drift Tube Track Finder during Run-1, the μGMT is an almost complete re-development due to the re-organization of the underlying systems from track-finders for a specific detector to regional track finders covering a given area of the whole detector. Additionally the μGMT calculates a muon's isolation using energy information received from the calorimeter trigger. This information is added to the muon objects forwarded to the global decision layer, the so-called Global Trigger. - Highlights: • Presented upgraded Global Muon Trigger and Barrel Muon Track Finder systems. • Upgraded system moves from sub-detector centric view to geometric-view. • To improve trigger performance. • Common hardware improves maintainability and increases development speed. • Use of

  13. SCT Barrel Assembly Complete

    CERN Multimedia

    L. Batchelor

    As reported in the April 2005 issue of the ATLAS eNews, the first of the four Semiconductor Tracker (SCT) barrels, complete with modules and services, arrived safely at CERN in January of 2005. In the months since January, the other three completed barrels arrived as well, and integration of the four barrels into the entire barrel assembly commenced at CERN, in the SR1 building on the ATLAS experimental site, in July. Assembly was completed on schedule in September, with the addition of the innermost layer to the 4-barrel assembly. Work is now underway to seal the barrel thermal enclosure. This is necessary in order to enclose the silicon tracker in a nitrogen atmosphere and provide it with faraday-cage protection, and is a delicate and complicated task: 352 silicon module powertapes, 352 readout-fibre bundles, and over 400 Detector Control System sensors must be carefully sealed into the thermal enclosure bulkhead. The team is currently verifying the integrity of the low mass cooling system, which must be d...

  14. Interactions of Particles with Momenta of 1–10 GeV in a Highly Granular Hadronic Calorimeter with Tungsten Absorbers

    CERN Document Server

    Lam, Ching Bon; van Eijk, Bob

    Linear electron-positron colliders are proposed to complement and extend the physics programme of the Large Hadron Collider at CERN. In order to satisfy the physics goal requirements at linear colliders, detector concepts based on the Particle Flow approach are developed. Central to this approach are a high resolution tracker and a highly granular calorimeter which provide excellent jet energy resolution and background separation. The Compact Linear Collider (CLIC) is an electron-positron collider under study, aiming at centre-of-mass energies up to 3TeV. For the barrel hadronic calorimeter of experiments at CLIC, a detector with tungsten absorber plates is considered, as it is able to contain shower jets while keeping the diameter of the surrounding solenoid magnet limited. A highly granular analogue hadron calorimeter with tungsten absorbers was built by the CALICE collaboration. This thesis presents the analysis of the low-momentum data (1 GeV $\\leq$ p $\\leq$ 10 GeV) recorded in 2010 at the CERN Proton Syn...

  15. The upgrade of the CMS hadron calorimeter with silicon photomultipliers

    CERN Document Server

    Strobbe, N

    2017-01-01

    The upgrade of the hadron calorimeter of the CMS experiment at the CERN Large Hadron Collider is currently underway. The endcap sections will be upgraded in the winter of 2016–2017 and the barrel sections during the second LHC long shutdown in 2019. The existing photosensors will be replaced with about 16 000 new silicon photomultipliers (SiPMs), resulting in the first large installation of SiPMs in a radiation environment. All associated front-end electronics will also be upgraded. This paper discusses the motivation for the upgrade and provides a description 17 of the new system, including the SiPMs with associated control electronics and the front-end readout cards.

  16. ATLAS tile calorimeter data quality assessment and performance with calibration, cosmic and first beam data

    International Nuclear Information System (INIS)

    Volpi, Matteo

    2010-01-01

    The commissioning of the barrel hadronic calorimeter (Tile) of the ATLAS detector at the Large Hadron Collider (LHC) has been the focus of an extensive project over the last several years. Work with Tile has resulted in a fully operational detector before the first LHC beam test on 10 September 2008. A set of tools has been developed spanning from the hardware and software systems of the detector and online monitoring to the offline reconstruction. This set of tools constitutes the final Tile data quality system and is highly integrated with all ATLAS online and offline frameworks. A review of the final data quality system of the Tile hadronic calorimeter will be presented together with selected results on hardware reliability. This will be followed by the detector performance checks performed on cosmic data and on the first LHC beam data taken on 10 September 2008.

  17. Calibration of the ATLAS hadronic barrel calorimeter TileCal using 2008, 2009 and 2010 cosmic-ray muon data

    CERN Document Server

    Weng, Z

    2012-01-01

    The ATLAS iron-scintillator hadronic calorimeter (TileCal) provides precision measurements of jets and missing transverse energy produced in the LHC proton-proton collisions. Results assessing the calorimeter calibration obtained using cosmic ray muons collected in 2008, 2009 and 2010 are presented. The analysis was based on the comparison between experimental and simulated data, and addresses three issues. First the average non-uniformity of the response of the cells within a layer was estimated to be about ±2% . Second, the average response of different layers is found to be not inter-calibrated, considering the sources of error. The largest difference between the responses of two layers is ±4% . Finally, the differences between the energy scales of each layer obtained in this analysis and the value set at test beams using electrons was found to range between -3% and +1%. The sources of uncertainties in the response measurements are strongly correlated, including the uncertainty in the simulation. The tot...

  18. Light Distribution in the E3 and E4 Scintillation Counters of the ATLAS Tile Calorimeter

    CERN Document Server

    Hsu, Catherine

    2013-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment is an important component of the ATLAS calorimetry because they play a crucial role in the search for new particles. The E3 and E4 are crack scintillators of TileCal that extend into the gap region between the EM barrel and EM endcaps. They thus sample the energy of the EM showers produced by particles interacting with the dead material in the EM calorimeters and with the inner detector cables. This project focuses on the study of the light collection uniformity in the E3 and E4 scintillating tiles using low energy electrons as the ionising particles. It is important to have uniform light response in the tiles because it would ensure a good energy resolution for the dead region. However, many factors affect the uniform light collection within the scintillating tiles.

  19. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    A. Skuja

    HB installation and commissioning has been completed. The commissioning of HO and HF- is in progress. HE-will be lowered in early 2008 and will be comissioned at that time. HCAL DAQ With the completion of HCAL Barrel commissioning, the HCAL Online Software group has deployed a large number of significant updates to the software. These updates bring the HCAL software closer to final operations. At the core level, the HCAL software has been ported to the latest complete XDAQ release (3.11/Release 4). In parallel, significant effort has been made on zero suppression, front-end configuration, online databases, and monitoring. A major effort since the last CMS Week has been made to enable zero-suppression in HCAL - an effort which involves the DPG, the online SW group, and the firmware/ electronics team. The zero-suppression algorithm was specified by the DPG group based on simulation work, implemented and tested by the firmware team, and supported by the software team. Zero-suppression will be deployed for t...

  20. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    D. Green

    The organization of CMS HCAL contains four “geographic” efforts, HB, HO, HE and HF. In addition there are presently five “common” HCAL activities. These ef¬forts are concentrated on electronics, on controls (DCS), on physics objects (JetMet), on Installation and Commissioning (I&C), and on Test Beam (TB) and Cosmic Challenge (MTCC) data taking. HCAL has begun planning to re-organize to be synchronized with the overall CMS management structure. HF The full production of the wedges is completed for some time. The 2004 test beam work has established the radioactive source calibration system for HF works at the 5 % level or better and a note is completed. The calibration of the complete HF is complete. HF is now in the UX cavern and will be hooked up and read out as soon as the services are available. HE The two HE calorimeters are installed and an initial calibration has been established. In the MTCC the HE was read out and muon data was observed. Event b...

  1. HADRON CALORIMETER (HCAL)

    CERN Multimedia

    J. Spalding

    2011-01-01

    Throughout the entire proton-proton run of 2011, all HCAL calorimeters operated very efficiently. Over 99% of HCAL readout and trigger channels were alive. However, during the year we did face two hardware problems. One major operation problem was the occasional loss of data from a single RBX caused by single event upsets (SEUs). The rate of RBX data loss was on average one incident per 10 pb–1 of integrated luminosity. This led to approximately 1% of CMS data loss. In order to mitigate this problem, HCAL has introduced an automatic reset of the RBX. With this reset, full operation was restored within about one minute. The final hardware correction of the problem will be possible only during a long shutdown (LS1) in 2013-’14. Another hardware problem that developed in 2011 was the failure of QPLL (quartz phase lock loops) chips. This led to the loss of phase of the readout clock with respect to the LHC clock. As a consequence, in two sections in HCAL (10 degree in φ on HB and 1...

  2. TRT Barrel milestones passed

    CERN Multimedia

    Ogren, H

    2004-01-01

    The barrel TRT detector passed three significant milestones this spring. The Barrel Support Structure (BSS) was completed and moved to the SR-1 building on February 24th. On March 12th the first module passed the quality assurance testing in Building 154 and was transported to the assembly site in the SR-1 building for barrel assembly. Then on April 21st the final production module that had been scanned at Hampton University was shipped to CERN. TRT Barrel Module Production The production of the full complement of barrel modules (96 plus 9 total spares) is now complete. This has been a five-year effort by Duke University, Hampton University, and Indiana University. Actual construction of the modules in the United States was completed in the first part of 2004. The production crews at each of the sites in the United States have now completed their missions. They are shown in the following pictures. Duke University: Production crew with the final completed module. Indiana University: Module producti...

  3. Plutonium assay calorimeters

    International Nuclear Information System (INIS)

    Perry, R.B.

    1978-01-01

    Three calorimeters were developed for the IAEA: a small-sample portable calorimeter, a bulk calorimeter for up to 2 kg Pu in cans and capable of measuring up to 25 watts, and a calorimeter for 4-m long LWR Pu-recycle fuel roads. Design parameters and performance capability are given, and the instruments are compared with those developed for NRC

  4. Measurement of the time development of particle showers in a uranium scintillator calorimeter

    International Nuclear Information System (INIS)

    Caldwell, A.; Hervas, L.; Parsons, J.A.; Sciulli, F.; Sippach, W.; Wai, L.

    1992-11-01

    We report on the time evolution of particle showers, as measured in modules of the uranium-scintillator barrel calorimeter of the ZEUS detector. The time development of hadronic showers differs significantly from that of electromagnetic showers, with about 40% of the response to hadronic showers arising from energy depositions which occur late in the shower development. The degree of compensation and the hadronic energy resolution were measured as a function of integration time, giving a value of e/π=1.02±0.01 for a gate width of 100 ns. The possibilities for electron-hadron separation based on the time structure of the shower were studied, with pion rejection factors in excess of 100 being achieved for electron efficiencies greater than 60%. The custom electronics used to perform these measurements samples the calorimeter signal at close to 60 MHz, stores all samples for a period of over 4 μs using analog switched capacitor pipelines, and digitizes the samples for triggered events with 12-bit ADC's. (orig.)

  5. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    Czech Academy of Sciences Publication Activity Database

    Abat, E.; Abdallah, J.M.; Addy, T.N.; Lokajíček, Miloš; Němeček, Stanislav

    2010-01-01

    Roč. 6, č. 4 (2010), P04001/1-P04001/32 ISSN 1748-0221 R&D Projects: GA MŠk LA08047 Institutional research plan: CEZ:AV0Z10100502 Keywords : ATLAS * calorimeter * tracking detector * photon * Monte Carlo Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 3.148, year: 2010

  6. Effects of hemoglobin variants HbJ Bangkok, HbE, HbG Taipei, and HbH on analysis of glycated hemoglobin via ion-exchange high-performance liquid chromatography.

    Science.gov (United States)

    Zhang, Xiu-Ming; Wen, Dong-Mei; Xu, Sheng-Nan; Suo, Ming-Huan; Chen, Ya-Qiong

    2018-01-01

    To explore the effects of HbJ Bangkok, HbE, HbG Taipei, and α-thalassemia HbH on the results of HbA1c assessment using ion-exchange high-performance liquid chromatography (IE-HPLC). We enrolled five patients in which the results of the IE-HPLC HbA1c assay were inconsistent with the average levels of FBG. We performed hemoglobin capillary (Hb) electrophoresis using whole-blood samples. We also sequenced the genes encoding Hb using dideoxy-mediated chain termination and analyzed HbA1c using borate affinity HPLC (BA-HPLC) and turbidimetric inhibition immunoassay (TINIA). Two patients had the HbJ Bangkok variant. Hb genotypes of these patients were β 41-42 /β J Bangkok and β N /β J Bangkok , and the content of HbJ Bangkok was 93.9% and 52.4%, respectively. The remaining three patients had the following: HbE (β N /β E Hb genotype, 23.6% HbE content), HbG Taipei (β N /β G Taipei Hb genotype, 39.4% HbG Taipei content), and α-thalassemia HbH (6.1% HbH content, 2.8% Hb Bart's content). In the patients with β-thalassemia and HbJ Bangkok variants, the presence of the variants interfered with the results of HbA1c analyses using IE-HPLC and TINIA; in the remaining four patients, there was interference with the results of HbA1c IE-HPLC but not with the TINIA assay. There was no interference with BA-HPLC HbA1c results. HbJ Bangkok, HbE, HbG Taipei Hb, and α-thalassemia HbH disease cause varying degrees of interference with the analysis of HbA1c using IE-HPLC. In these patients, we suggest using methods free from such interference for the analysis of HbA1c and other indicators to monitor blood glucose levels. © 2017 Wiley Periodicals, Inc.

  7. The CMS Electromagnetic Calorimeter: Results on Crystal Measurements, Quality Control and Data Management in the Rome Regional Center

    CERN Document Server

    Costantini, S

    2004-01-01

    The barrel of the CMS electromagnetic calorimeter is currently under construction and will contain 61200 PbWO4 crystals. Half of them are being fully characterized for dimensions, optical properties and light yield in the INFN-ENEA Regional Center near Rome. We describe the setup of an automatic quality control system for the crystal measurements and the present results on their qualification, as well as the REDACLE project, which has been developed to control and ease the production process. As it will not be possible to precalibrate the whole calorimeter,the crystal measurements and quality checks performed at the Regional Center will be crucial to provide a basis for fast in-situ calibration with particles. REDACLE is at the same time a fast database and a data management system, where the database and the workflow structures are decoupled, in order to obtain the best flexibility.

  8. LHCb calorimeter electronics. Photon identification. Calorimeter calibration

    International Nuclear Information System (INIS)

    Machefert, F.

    2011-01-01

    LHCb is one of the four large experiments installed on the LHC accelerator ring. The aim of the detector is to precisely measure CP violation observables and rare decays in the B meson sector. The calorimeter system of LHCb is made of four sub-systems: the scintillating pad detector, the pre-shower, the electromagnetic (ECAL) and hadronic (HCAL) calorimeters. It is essential to reconstruct B decays, to efficiently trigger on interesting events and to identify electrons and photons. After a review of the LHCb detector sub-systems, the first part of this document describes the calorimeter electronics. First, the front-end electronics in charge of measuring the ECAL and HCAL signals from the photomultipliers is presented, then the following section is an overview of the control card of the four calorimeters. The chapters three and four concern the test software of this electronics and the technological choices making it tolerant to radiations in the LHCb cavern environment. The measurements performed to ensure this tolerance are also given. The second part of this document concerns both the identification of the photons with LHCb and the calibration of the calorimeters. The photon identification method is presented and the performances given. Finally, the absolute energy calibration of the PRS and ECAL, based on the data stored in 2010 is explained. (author)

  9. Functional testing of the ATLAS SCT barrels

    International Nuclear Information System (INIS)

    Phillips, Peter W.

    2007-01-01

    The ATLAS SCT (semiconductor tracker) comprises 2112 barrel modules mounted on four concentric barrels of length 1.6m and up to 1m diameter, and 1976 endcap modules supported by a series of nine wheels at each end of the barrel region, giving a total silicon area of 60m 2 . The assembly of modules onto each of the four barrel structures has recently been completed. In addition to functional tests made during the assembly process, each completed barrel was operated in its entirety. In the case of the largest barrel, with an active silicon area of approximately 10m 2 , this corresponds to more than one million instrumented channels. This paper documents the electrical performance of the four individual SCT barrels. An overview of the readout chain is also given

  10. Automatic low-temperature calorimeter

    International Nuclear Information System (INIS)

    Malyshev, V.M.; Mil'ner, G.A.; Shibakin, V.F.; Sorkin, E.L.

    1986-01-01

    This paper describes a low-temperature adiabatic calorimeter with a range of 1.5-500K. The system for maintaining adiabatic conditions is implemented by two resitance thermometers, whose sensitivity at low temperatures is several orders higher than that of thermocouples. The calorimeter cryostat is installed in an STG-40 portable Dewar flask. The calorimeter is controlled by an Elektronika-60 microcomputer. Standard platinum and germanium thermometers were placed inside of the calorimeter to calibrate the thermometers of the calorimeter and the shield, and the specific heats of specimens of OSCh 11-4 copper and KTP-8 paste were measured to demonstrate the possibilities of the described calorimeter. Experience with the calorimeter has shown that a thorough study of the dependence of heat capacity on temperature (over 100 points for one specimen) can be performed in one or two dats

  11. Molecular analysis of Hb Q-H disease and Hb Q-Hb E in a Singaporean family.

    Science.gov (United States)

    Tan, J; Tay, J S; Wong, Y C; Kham, S K; Bte Abd Aziz, N; Teo, S H; Wong, H B

    1995-01-01

    Hb Q (alpha 74Asp-His) results from a mutation in the alpha-gene such that abnormal alpha Q-chains are synthesized. The alpha Q-chains combine with the normal Beta A-chains to form abnormal Hb alpha 2Q beta 2A (Hb Q). Hb Q-H disease is rare, and has been reported only in the Chinese. We report here a Chinese family, were the mother diagnosed with Hb Q-H disease and the father with Hb E heterozygosity and a child with Hb Q-E-thalassemia. Thalassemia screening of the mother's blood revealed a Hb level of 6.8g/dl with low MCV and MCH. Her blood film was indicative of thalassemia. Cellulose acetate electrophoresis showed Hb H and Hb Q with the absence of Hb A. Globin chain biosynthesis was carried out and alpha Q- and beta-chains were detected. Normal alpha- chains were absent. Digestion of the mother's DNA with Bam HI and Bgl II followed by hybridization with the 1.5 kb alpha-Pst probe showed a two alpha-gene deletion on one chromosome and the -alpha Q chain mutant with the -alpha 4.2 defect on the other chromosome. DNA amplification studies indicated the two-gene deletion to be of the -SEA/ defect. The patient was concluded to possess Hb Q-H disease (--SEA/-alpha 4.2Q). Cellulose acetate electrophoresis of the father's blood showed the presence of Hb A, F and E. Molecular analysis of the father's DNA confirmed an intact set of alpha-genes (alpha alpha/alpha alpha). Globin chain biosynthesis of fetal blood of their child showed gamma, beta A, beta E, alpha A and alpha Q-chains. Molecular analysis of the child's DNA showed one alpha-gene deletion, thus giving a genotype of alpha alpha/-alpha 4.2Q beta beta E.

  12. PANDA electromagnetic calorimeters

    International Nuclear Information System (INIS)

    Semenov, P.A.; Kharlov, Yu.V.; Uzunian, A.V.; Chernichenko, S.K.; Derevschikov, A.A.; Davidenko, A.M.; Goncharenko, Y.M.; Kachanov, V.A.; Konstantinov, A.S.; Kormilitsin, V.A.; Matulenko, Yu.A.; Meschanin, A.P.; Melnick, Y.M.; Minaev, N.G.; Mochalov, V.V.; Morozov, D.A.; Novotny, R.W.; Ryazantsev, A.A.; Soldatov, A.P.; Soloviev, L.F.

    2009-01-01

    PANDA is a challenging experimental setup to be implemented at the high-energy storage ring (HESR) at the international facility FAIR, GSI (Germany). PANDA physics program relies heavily on the capability to measure photons with excellent energy, position and timing resolution. For this purpose PANDA proposed to employ electromagnetic calorimeters using two different technologies: compact crystal calorimeter cooled to -25 deg. C around target and lead-scintillator sandwich calorimeter with optical fibers light collection (so-called shashlyk calorimeter) in the forward region. Institute for High Energy Physics (IHEP) PANDA group reports on two types of measurements performed at IHEP, Protvino: radiation hardness of the PWO crystals at -25 deg. C and testbeam studies of the energy and position resolution of the shashlyk calorimeter prototype in the energy range up to 19 GeV.

  13. Quartz fiber calorimeter

    International Nuclear Information System (INIS)

    Akchurin, N.; Doulas, S.; Ganel, O.; Gershtein, Y.; Gavrilov, V.; Kolosov, V.; Kuleshov, S.; Litvinsev, D.; Merlo, J.-P.; Onel, Y.; Osborne, D.; Rosowsky, A.; Stolin, V.; Sulak, L.; Sullivan, J.; Ulyanov, A.; Wigmans, R.; Winn, D.

    1996-01-01

    A calorimeter with optical quartz fibers embedded into an absorber matrix was proposed for the small angle region of the CMS detector at LHC (CERN). This type of calorimeter is expected to be radiation hard and to produce extremely fast signal. Some results from beam tests of the quartz fiber calorimeter prototype are presented. (orig.)

  14. First SCT Barrel arrives at CERN

    CERN Multimedia

    Apsimon, R

    Mid-January saw the arrival at CERN of Barrel #3, the first of four SCT barrels. The barrels are formed as low-mass cylinders of carbon fibre skins on a honeycomb carbon core. They are manufactured in industry and then have all the final precision supports added and the final geometric metrology carried out at Geneva University. Barrel #3, complete with its 384 silicon detector modules, arrived by road from Oxford University in England where the modules were mounted using a purpose-built robot. The modules had been selected from the output of all four barrel module building clusters (in Japan, Scandinavia, USA and the UK). Since Barrel #3 will be exposed to high radiation levels within the tracker volume, these modules, representing over half a million readout channels, have been extensively tested at their operational temperature of around -25 degrees Celcius and at voltages of up to 500V. The dangers of shipping such a fragile component of ATLAS were apparent to all and considerable attention was focused...

  15. Proportional wire calorimeters at ISABELLE

    International Nuclear Information System (INIS)

    Matthews, J.A.J.

    1979-01-01

    Gas calorimeters have recently increased in popularity because they provide a simple method of achieving a high degree of calorimeter segmentation with only a modest loss in energy resolution compared with liquid argon or scintillator calorimeters. High radiation levels at ISABELLE will result in gas calorimeter lifetimes similar to those of MWPCs, although the intermediate speed of these devices may cause some resolution degradation due to signal pileup. Schemes for calibration and monitoring gas calorimeters in situ must be evolved and will presumably utilize a combination of pulsers, imbedded 55 Fe sources, etc. Most of the recent development work on gas calorimeters has been centered on electromagnetic (em) calorimetry for large detectors at CESR and PEP. Data on the performance of gas calorimeters are given and compared with the liquid argon results of Hitlin et al. The hadronic gas calorimeter results of Anderson et al. are shown along with typical energy resolution results from various scintillator and liquid argon steel calorimeters

  16. Peltier ac calorimeter

    OpenAIRE

    Jung, D. H.; Moon, I. K.; Jeong, Y. H.

    2001-01-01

    A new ac calorimeter, utilizing the Peltier effect of a thermocouple junction as an ac power source, is described. This Peltier ac calorimeter allows to measure the absolute value of heat capacity of small solid samples with sub-milligrams of mass. The calorimeter can also be used as a dynamic one with a dynamic range of several decades at low frequencies.

  17. Erroneous HbA1c results in a patient with elevated HbC and HbF.

    Science.gov (United States)

    Adekanmbi, Joy; Higgins, Trefor; Rodriguez-Capote, Karina; Thomas, Dylan; Winterstein, Jeffrey; Dixon, Tara; Gifford, Jessica L; Krause, Richard; Venner, Allison A; Clarke, Gwen; Estey, Mathew P

    2016-11-01

    HbA1c is used in the diagnosis and monitoring of diabetes mellitus (DM). Interference from hemoglobin variants is a well-described phenomenon, particularly with HPLC-based methods. While immunoassays may generate more reliable HbA1c results in the presence of some variants, these methods are susceptible to negative interference from high concentrations of HbF. We report a case where an accurate HbA1c result could not be obtained by any available method due to the presence of a compound hemoglobinopathy. HbA1c was measured by HPLC, immunoassay, and capillary electrophoresis. Hemoglobinopathy investigation consisted of a CBC, hemoglobin fractionation by HPLC and electrophoresis, and molecular analysis. HbA1c analysis by HPLC and capillary electrophoresis gave no result. Analysis by immunoassay yielded HbA1c results of 5.9% (Siemens DCA 2000+) and 5.1% (Roche Integra), which were inconsistent with other markers of glycemic control. Hemoglobinopathy investigation showed HbC with the hereditary persistence of fetal hemoglobin-2 Ghana deletion. Reliable HbA1c results may be unobtainable in the presence of some hemoglobinopathies. HPLC and capillary electrophoresis alerted the laboratory to the presence of an unusual hemoglobinopathy. Immunoassays generated falsely low results without warning, which could lead to missed diagnoses and under treatment of patients with DM. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. CMS Barrel Pixel Detector Overview

    CERN Document Server

    Kästli, H C; Erdmann, W; Gabathuler, K; Hörmann, C; Horisberger, Roland Paul; König, S; Kotlinski, D; Meier, B; Robmann, P; Rohe, T; Streuli, S

    2007-01-01

    The pixel detector is the innermost tracking device of the CMS experiment at the LHC. It is built from two independent sub devices, the pixel barrel and the end disks. The barrel consists of three concentric layers around the beam pipe with mean radii of 4.4, 7.3 and 10.2 cm. There are two end disks on each side of the interaction point at 34.5 cm and 46.5 cm. This article gives an overview of the pixel barrel detector, its mechanical support structure, electronics components, services and its expected performance.

  19. High precision laser control of the ATLAS tile-calorimeter module mass production at JINR

    International Nuclear Information System (INIS)

    Batusov, V.; Budagov, Yu.; Flyagin, V.; Khubua, D.; Lomakin, Yu.; Lyablin, M.; Rusakovich, N.; Shabalin, D.; Topilin, N.; Nessi, M.

    2001-01-01

    We present a short description of our last few years experience in the quality control of the ATLAS hadron barrel tile-calorimeter module mass production at JINR. A Laser Measurement System (LMS) proposed and realized in Dubna guarantees a high-precision module assembly. The non-planarity of module size surfaces (1.9x5.6 m) controlled area is well within the required ±0.6 mm tolerance for each of JINR assembled modules. The module assembly technique achieved with the LMS system allows us to deliver to CERN one module every 2 weeks. This laser-based measurement system could be used in future for the control measurement of other large-scale units during the ATLAS assembly

  20. Magnetically Coupled Calorimeters

    Science.gov (United States)

    Bandler, Simon

    2011-01-01

    Calorimeters that utilize the temperature sensitivity of magnetism have been under development for over 20 years. They have targeted a variety of different applications that require very high resolution spectroscopy. I will describe the properties of this sensor technology that distinguish it from other low temperature detectors and emphasize the types of application to which they appear best suited. I will review what has been learned so far about the best materials, geometries, and read-out amplifiers and our understanding of the measured performance and theoretical limits. I will introduce some of the applications where magnetic calorimeters are being used and also where they are in development for future experiments. So far, most magnetic calorimeter research has concentrated on the use of paramagnets to provide temperature sensitivity; recent studies have also focused on magnetically coupled calorimeters that utilize the diamagnetic response of superconductors. I will present some of the highlights of this research, and contrast the properties of the two magnetically coupled calorimeter types.

  1. A novel double heterozygous Hb Fontainebleau/HbD Punjab hemoglobinopathy.

    Science.gov (United States)

    Rodríguez-Capote, Karina; Estey, Mathew P; Barakauskas, Vilte; Bordeleau, Pierre; Christensen, Cathie-Lou; Zuberbuhler, Peter; Higgins, Trefor N

    2015-09-01

    To report the finding of a novel double heterozygous hemoglobinopathy, the coinheritance of Hb Fontainebleau (α-chain variant) with HbD-Punjab (β-chain variant) discovered upon investigation of unexplained microcytosis in an infant. Hemoglobinopathy investigation was performed by high performance liquid chromatography (HPLC) using the β-thalassemia Short Program on the Bio-Rad Variant II(TM) followed by gel electrophoresis at alkaline and acid pH (Sebia Hydrasys 2 Electrophoresis System) and molecular diagnostic testing. This study complied with our institutional board ethics requirements. HPLC and electrophoresis suggested a complex α- and β-chain hemoglobinopathy with presumptive identification of the beta Hb variant as Hb D-Punjab. DNA sequencing analysis revealed the presence of a double heterozygous status for Hb Fontainebleau/Hb D-Punjab. In this paper we report the coinheritance of Hb Fontainebleau with Hb D-Punjab. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  2. Comparison of the characteristics of two hemoglobin variants, Hb D-Iran and Hb E, eluting in the Hb A2 window.

    Science.gov (United States)

    Dass, Jasmita; Gupta, Aastha; Mittal, Suchi; Saraf, Amrita; Langer, Sabina; Bhargava, Manorama

    2017-06-01

    Cation exchange-high performance liquid chromatography (CE-HPLC) is most commonly used to evaluate hemoglobin (Hb) variants, which elute in the Hb A2 window. This study aimed to assess prevalence of an uncommon Hb variant, Hb D-Iran, and compare its red cell parameters and peak characteristics with those of Hb E that commonly elutes in the Hb A2 window. Generally, we assess abnormal Hb using CE-HPLC as the primary technique along with alkaline and acid electrophoresis. All cases with Hb A2 window >9%, as assessed by CE-HPLCs during 2009-2013, were selected. Twenty-nine cases with Hb D-Iran variant were identified-25 heterozygous, 2 homozygous, 1 compound heterozygous Hb D-Iran/β-thalassemia, and 1 Hb D-Iran/Hb D-Punjab. Overall prevalence of Hb D-Iran was 0.23%. Compared to patients with Hb E, those with Hb D-Iran had significantly higher Hb (12.1 vs. 11.3 g/dL, P =0.03), MCV (82.4 vs. 76.4 fL, P =0.0044), MCH (27.9 vs. 25.45 pg, P =0.0006), and MCHC (33.9 vs. 33.3 g/dL, P =0.0005). Amount of abnormal Hb (40.7 vs. 26.4%, P =0.0001) was significantly higher while retention time (3.56 vs. 3.70 min, P =0.0001) was significantly lower in Hb D-Iran than in Hb E. Hb D-Iran peak can be easily missed if area and retention time of the Hb A2 window are not carefully analyzed. To distinguish between variants, careful analysis of peak area and retention time is sufficient in most cases and may be further confirmed by the second technique-alkaline electrophoresis.

  3. Core barrel inner tube lifter

    Energy Technology Data Exchange (ETDEWEB)

    Jeffers, J P

    1968-07-16

    A core drill with means for selectively lifting a core barrel inner tube consists of a lifting means connected to the core barrel inner tube assembly. It has a closable passage to permit drilling fluid normally to pass through it. The lifting means has a normally downward facing surface and a means to direct drilling fluid pressure against that surface so that on closure of the passage to fluid flow, the pressure of the drilling fluid is caused to act selectively on it. This causes the lifting means to rise and lift the core barrel. (7 claims)

  4. Construction and tests of the Atlas barrel pre sampler and study of the photon/pion rejection in the electromagnetic calorimeter; Realisation du pre-echantillonneur central d'ATLAS et etude de la separation {gamma}/{pi}{sup 0} dans le calorimetre electromagnetique

    Energy Technology Data Exchange (ETDEWEB)

    Saboumazrag, S

    2004-02-01

    ATLAS is one of the detectors which will equip the future proton-proton collider LHC at CERN. The main motivation for the ATLAS experiment is the quest for the Higgs boson. The observation of this particle would be an important step in the understanding of particle physics in the context of the standard model, with or without supersymmetry. This thesis aims to present the construction of the barrel pre-sampler which will equip the front face of the ATLAS electromagnetic calorimeter. The construction and tests of sectors were achieved at the Laboratory of Subatomic Physics and Cosmology of Grenoble. Two of these sectors were mounted on one module of the electromagnetic calorimeter and tested with electron, photon and muon beams at CERN. I participated in these tests and analysed the data. The results were compared to a Monte-Carlo simulation GEANT3. One of the difficulties lies in the necessity to discard photons coming from {pi}{sup 0} {yields} {gamma}{gamma} events because they can be mistaken for photons released in gamma channels of Higgs boson decay. In the mass range spreading from 95 MeV to 150 MeV, H{sup 0} {yields} {gamma}{gamma} is the most adequate process to detect the Higgs boson. A study of the discard parameter {gamma}/{pi}{sup 0} has been performed. For a photon detection efficiency of 90%, the average discard parameter has been assessed to be 2.5 which is slightly lower than the value given by the simulation.

  5. Calibration of the electromagnetic barrel calorimeter. Identification of the tau leptons and search for a Higgs boson in the channel qqH {yields} qq {tau}{tau} in the Atlas experiment at LHC; Etalonnage du calorimetre electromagnetique tonneau. Identification des leptons taus et recherche d'un boson de Higgs dans le canal qqH {yields} qq {tau}{tau} dans l'experience ATLAS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Tarrade, F

    2006-09-15

    The Standard Model is the theory which describes the fundamental interactions most accurately. However, the Higgs mechanism and its associated boson have not yet been discovered. The ATLAS electromagnetic calorimeter will play an important role in its discovery if it exists. In the first part of this work, a final mapping of all barrel electromagnetic calorimeter cells, and in particular the problematic ones, was made. Then, the code for the calorimeter calibration was migrated into the ATLAS software environment (ATHENA), where it was tested and validated with the 2004 test beam data. In this code, the optimal filtering coefficients, which enable to reconstruct the energy deposited in the calorimeter while minimizing the electronic and pile-up noises, are calculated. For this, a model was developed to predict the physics signal waveform from the calibration waveform. In a third part, two algorithms for reconstructing and identifying {tau} leptons in their hadronic decay mode were studied and compared. Finally in a fourth part, one amongst the most important Standard Model Higgs production and decay channels was investigated, namely the weak boson fusion production followed by the Higgs decay into a tau lepton pair, for a low mass Higgs (115 < m{sub Higgs} < 145 GeV/c{sup 2}). This study was performed for 30 fb{sup -1} of integrated luminosity using fast and fully simulated data. A study of the dominant background Z + n jets (n {<=} 5) was also performed. (author)

  6. HbD Punjab/HbQ India compound heterozygosity: An unusual association.

    Directory of Open Access Journals (Sweden)

    Stacy Colaco

    2014-11-01

    Full Text Available Background: Haemoglobinopathies are the commonest hereditary disorders in India and pose a major health problem. Both beta thalassaemia and structural haemoglobin variants are relatively common in north western India. Here we report a 29 year old Sindhi female who was referred to us for a haemoglobinopathy work up and genetic counseling since her spouse was a classical beta thalassaemia carrier. Method: A complete blood count was done on an automated cell counter. Haemoglobin analysis was carried out using HPLC Variant Haemoglobin Testing System.  The cellulose acetate electrophoresis was carried out [pH 8.9]. Confirmation of mutations was done by automated DNA sequencing. Results: HPLC analysis showed four major peaks, HbA0, a peak in the HbD window, an unknown peak [retention time 4.74 minutes] and a peak in the HbC window. The HbA2 level was 2.2% and the HbF level was 0.7%.Cellulose acetate electrophoresis at alkaline pH, a slow moving band was seen at the HbS/D position along with a prominent band at the HbA2 position. DNA sequencing of the β and α genes showed presence of the 2 hemoglobin variants :Hb D [b 121GAA à CAA] and Hb Q [a 64 AAG à GAG]. The δ globin gene was normal. The additional peak in the HbC window was due to the formation of a heterodimer hybrid. Conclusion: Both HbD Punjab and HbQ India are relatively common in India but their co-inheritance has not been described in the country. This is the second report of compound heterozygosity for HbQ India/HbD Punjab haemoglobinopathy globally, and the first one from India.

  7. The Properties of Red Blood Cells from Patients Heterozygous for HbS and HbC (HbSC Genotype

    Directory of Open Access Journals (Sweden)

    A. Hannemann

    2011-01-01

    Full Text Available Sickle cell disease (SCD is one of the commonest severe inherited disorders, but specific treatments are lacking and the pathophysiology remains unclear. Affected individuals account for well over 250,000 births yearly, mostly in the Tropics, the USA, and the Caribbean, also in Northern Europe as well. Incidence in the UK amounts to around 12–15,000 individuals and is increasing, with approximately 300 SCD babies born each year as well as with arrival of new immigrants. About two thirds of SCD patients are homozygous HbSS individuals. Patients heterozygous for HbS and HbC (HbSC constitute about a third of SCD cases, making this the second most common form of SCD, with approximately 80,000 births per year worldwide. Disease in these patients shows differences from that in homozygous HbSS individuals. Their red blood cells (RBCs, containing approximately equal amounts of HbS and HbC, are also likely to show differences in properties which may contribute to disease outcome. Nevertheless, little is known about the behaviour of RBCs from HbSC heterozygotes. This paper reviews what is known about SCD in HbSC individuals and will compare the properties of their RBCs with those from homozygous HbSS patients. Important areas of similarity and potential differences will be emphasised.

  8. Stability study for magnetic reagent assaying Hb and HbA1c

    International Nuclear Information System (INIS)

    Hsieh, Wen-Pin; Chieh, J.J.; Yang, C.C.; Yang, S.Y.; Chen, Po-Yu; Huang, Yu-Hao; Hong, Y.W.; Horng, H.E.

    2013-01-01

    Reagents for magnetically labeled immunoassay on human Hb and human HbA1c have been synthesized. The reagents consist of Fe 3 O 4 magnetic particles biofunctionalized with antibodies against Hb and HbA1c. It has been demonstrated that the reagents can be applied to quantitatively detect Hb and HbA1c by using immunomagnetic reduction assay. In addition to characterizing the assay properties, such as the standard curve and the low-detection limit, the stability of reagents is investigated. To do this, the temporal dependence of particle sizes and the bio-activity of reagents are monitored. The results show that the reagents are highly stable when stored at 2–8 °C. This means that the reagents synthesized in this work are promising for practical applications. - Highlights: ► The properties of assaying Hb and HbA1c using immunomagnetic reduction are studied. ► The magnetic nanoparticles with antibodies are highly stable in solutions. ► No significant mutual interference between Hb and HbA1c in assays is observed. ► High-sensitivity assays on Hb and HbA1c using immunomagnetic reduction are achieved.

  9. International workshop on calorimeter simulation

    International Nuclear Information System (INIS)

    Filges, D.; Cloth, P.

    1988-10-01

    The aim of the Juelich workshop was to provide an overview of the state of calorimeter simulation and the methods used. This resulted in 29 contributions to the following topics: Code systems relevant to calorimeter simulation, vectorization and code speed-up, simulation of calorimeter experiments, special applications of calorimeter simulation. This report presents the viewgraphs of the given talks. (orig./HSI)

  10. Stability study for magnetic reagent assaying Hb and HbA1c

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Wen-Pin [Actherm Inc., Hsinchu 200, Taiwan (China); Chieh, J.J.; Yang, C.C. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Yang, S.Y. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); MagQu Co., Ltd., Sindian Dist., New Taipei City 231, Taiwan (China); Chen, Po-Yu; Huang, Yu-Hao [Actherm Inc., Hsinchu 200, Taiwan (China); Hong, Y.W. [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China); Horng, H.E., E-mail: phyfv001@ntnu.edu.tw [Institute of Electro-optical Science and Technology, National Taiwan Normal University, Taipei 116, Taiwan (China)

    2013-01-15

    Reagents for magnetically labeled immunoassay on human Hb and human HbA1c have been synthesized. The reagents consist of Fe{sub 3}O{sub 4} magnetic particles biofunctionalized with antibodies against Hb and HbA1c. It has been demonstrated that the reagents can be applied to quantitatively detect Hb and HbA1c by using immunomagnetic reduction assay. In addition to characterizing the assay properties, such as the standard curve and the low-detection limit, the stability of reagents is investigated. To do this, the temporal dependence of particle sizes and the bio-activity of reagents are monitored. The results show that the reagents are highly stable when stored at 2-8 Degree-Sign C. This means that the reagents synthesized in this work are promising for practical applications. - Highlights: Black-Right-Pointing-Pointer The properties of assaying Hb and HbA1c using immunomagnetic reduction are studied. Black-Right-Pointing-Pointer The magnetic nanoparticles with antibodies are highly stable in solutions. Black-Right-Pointing-Pointer No significant mutual interference between Hb and HbA1c in assays is observed. Black-Right-Pointing-Pointer High-sensitivity assays on Hb and HbA1c using immunomagnetic reduction are achieved.

  11. ID Barrel installed in cryostat

    CERN Multimedia

    Apsimon, R.; Romaniouk, A.

    Wednesday 23rd August was a memorable day for the Inner Detector community as they witnessed the transport and installation of the central part of the inner detector (ID-barrel) into the ATLAS detector. Many members of the collaboration gathered to witness this moment at Point 1. After years of design, construction and commissioning, the outer two detectors (TRT and SCT) of the ID barrel were moved from the SR1 cleanroom to the ATLAS cavern. The barrel was moved across the car park from building 2175 to SX1. Although only a journey of about 100 metres, this required weeks of planning and some degree of luck as far as the weather was concerned. Accelerometers were fitted to the barrel to provide real-time monitoring and no values greater than 0.1 g were recorded, fully satisfying the transport specification for this extremely precise and fragile detector. Muriel, despite her fear of heights, bravely volunteered to keep a close eye on the detector. Swapping cranes to cross the entire parking lot, while Mur...

  12. Diagnosis of Compound Heterozygous Hb Tak/β-Thalassemia and HbD-Punjab/β-Thalassemia by HbA2 Levels on Capillary Electrophoresis.

    Science.gov (United States)

    Panyasai, Sitthichai; Sakkhachornphop, Supachai; Pornprasert, Sakorn

    2018-01-01

    A misdiagnosis of β-thalassemia carrier in samples with Hb Tak and HbD-Punjab, the β-variants, can be a cause of inappropriate genetic counseling thus having a new case of β-thalassemia major. A capillary electrophoresis (CE) is very efficient in separating and quantifying HbA 2 . In this study, HbA 2 levels of samples which were doubted for compound heterozygous Hb Tak/β-thalassemia or heterozygous HbD-Punjab/β-thalassemia were measured and compared between CE and high performance liquid chromatography (HPLC). The molecular confirmation for Hb Tak, HbD-Punjab and β-thalassemia codons 17 (A > T), 41/42 (-TCTT), 71/72 (+A) and IVSI-nt1 (G > T) mutations and 3.4 kb deletion were also performed. Based on DNA analysis, 3 cases were diagnosed as compound heterozygous Hb Tak/β-thalassemia and one for HbD-Punjab/β-thalassemia. The elevated HbA 2 levels were found in all 4 samples with rages of 4.6-7.3% on CE while those were not found on HPLC. Thus, the elevated HbA 2 measured by CE can be used as a screening parameter for differentiating the homozygote of Hb Tak and HbD-Punjab from the compound heterozygote of these hemoglobinopathies and β-thalassemia.

  13. AIDA: concerted calorimeter development

    CERN Multimedia

    Felix Sefkow

    2013-01-01

    AIDA – the EU-funded project bringing together more than 80 institutes worldwide – aims at developing new detector solutions for future accelerators. Among the highlights reported at AIDA’s recent annual meeting in Frascati was the completion of an impressive calorimeter test beam programme, conducted by the CALICE collaboration over the past two years at CERN’s PS and SPS beam lines.   The CALICE tungsten calorimeter prototype under test at CERN. This cubic-metre hadron calorimeter prototype has almost 500,000 individually read-out electronics channels – more than all the calorimeters of ATLAS and CMS put together. Calorimeter development in AIDA is mainly motivated by experiments at possible future electron-positron colliders, namely ILC or CLIC. The physics requirements of such future machines demand extremely high-performance calorimetry. This is best achieved using a finely segmented system that reconstructs events using the so-called pa...

  14. Processing of Niobium-Lined M240 Machine Gun Barrels

    Science.gov (United States)

    2014-11-01

    Fig. 5 Finished niobium-lined M240 machine gun barrel with flash suppressor attached ..........11 Fig. 6 End of barrel 1 showing small amount of...the finished barrel is shown in Fig. 5. 11 Fig. 5 Finished niobium-lined M240 machine gun barrel with flash suppressor attached Firing tests

  15. Separation of a single photon and products of the π0-, η-, Ks0-meson neutral decay channels in the CMS electromagnetic calorimeter using neural network

    International Nuclear Information System (INIS)

    Bandurin, D.V.; Skachkov, N.B.

    2001-01-01

    The artificial neural network approach is used for separation of signals from a single photon γ and products of the π 0 -, η-, K s 0 -meson neutral decay channels on the basis of the data from the CMS electromagnetic calorimeter alone. Rejection values for the three types of mesons as a function of single photon selection efficiencies are obtained for two Barrel and one Endcap pseudorapidity regions and initial E t of 20, 40, 60 and 100 GeV

  16. Micro Calorimeter for Batteries

    Energy Technology Data Exchange (ETDEWEB)

    Santhanagopalan, Shriram [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-08-01

    As battery technology forges ahead and consumer demand for safer, more affordable, high-performance batteries grows, the National Renewable Energy Laboratory (NREL) has added a patented Micro Calorimeter to its existing family of R&D 100 Award-winning Isothermal Battery Calorimeters (IBCs). The Micro Calorimeter examines the thermal signature of battery chemistries early on in the design cycle using popular coin cell and small pouch cell designs, which are simple to fabricate and study.

  17. Precision titration mini-calorimeter

    International Nuclear Information System (INIS)

    Ensor, D.; Kullberg, L.; Choppin, G.

    1977-01-01

    The design and test of a small volume calorimeter of high precision and simple design is described. The calorimeter operates with solution sample volumes in the range of 3 to 5 ml. The results of experiments on the entropy changes for two standard reactions: (1) reaction of tris(hydroxymethyl)aminomethane with hydrochloric acid and (2) reaction between mercury(II) and bromide ions are reported to confirm the accuracy and overall performance of the calorimeter

  18. Analysis results of the April 1996 combined test of the LArgon and TILECAL barrel calorimeter prototypes

    CERN Document Server

    Cobal, M; Costanzo, D; David, M; Davidek, T; Efthymiopoulos, I; Khubua, J I; Kulchitskii, Yu A; Kuzmin, M V; Lund-Jensen, B; Leitner, R; Mazzoni, E; Mosidze, M; Némécek, S; Nessi, Marzio; Pantea, D; Sala, P; Solodkov, A; Stanek, B; Vichou, I

    1998-01-01

    In April 1996 a second combined electromagnetic and hadronic ATLAS calorimeter prototype test beam was performed. The response to pions and electrons of various energies (10, 20, 40, 50, 80, 100, 150 and 300~GeV) at an incident $\\theta$ angle of $12^0$ was investigated. The energy released by pions in the prototype was reconstructed using a minimal set of corrections introduced to take into account various detector effects ("benchmark" approach). A weighting method 'a la H1' was applied too. Energy resolution, $e$/$\\pi$ and linearity were calculated. Finally, the transverse and longitudinal pion shower developments were examined as well as the longitudinal leakage. The signal released by muons was analyzed. The noise was evaluated for both the detectors. The results were compared with those obtained in the previous combined test beam, performed in September 1994.

  19. Barrelled locally convex spaces

    CERN Document Server

    Pérez Carreras, P

    1987-01-01

    This book is a systematic treatment of barrelled spaces, and of structures in which barrelledness conditions are significant. It is a fairly self-contained study of the structural theory of those spaces, concentrating on the basic phenomena in the theory, and presenting a variety of functional-analytic techniques.Beginning with some basic and important results in different branches of Analysis, the volume deals with Baire spaces, presents a variety of techniques, and gives the necessary definitions, exploring conditions on discs to ensure that they are absorbed by the barrels of the sp

  20. Geant4 for the atlas electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Kordas, K.; Parrour, G.; Simion, St.

    2001-04-01

    We have recently employed the Geant4 tool-kit for the simulation of the barrel part of the ATLAS electromagnetic calorimeter. The two approaches used for the description of this geometry are presented and compared. Subsequently, we test the new simulation tool against the predictions of Geant3, the previous generation of the Geant simulation. We do so for muons. With the caveat of some differences in the detector geometry implementations in Geant4 and Geant3, we also show some extremely preliminary results for electrons. A comparison between the two geometry models has shown that there are very small differences, which are under study, but in general the tailored geometry approach is proven sound. We also investigated a way to reduce significantly the memory usage of the straight-forward 'static' geometry description. Comparing Geant4 against Geant3, we find that the mean energy depositions for 50 and 100 GeV muons are in agreement between the two simulations, but the two yield significantly different distributions. Preliminary results on electrons are encouraging and we plan to study these particles next, including comparisons with test beam data. (authors)

  1. Cation Homeostasis in Red Cells From Patients With Sickle Cell Disease Heterologous for HbS and HbC (HbSC Genotype

    Directory of Open Access Journals (Sweden)

    A. Hannemann

    2015-11-01

    Full Text Available Sickle cell disease (SCD in patients of HbSC genotype is considered similar, albeit milder, to that in homozygous HbSS individuals — but with little justification. In SCD, elevated red cell cation permeability is critical as increased solute loss causes dehydration and encourages sickling. Recently, we showed that the KCl cotransporter (KCC activity in red cells from HbSC patients correlated significantly with disease severity, but that in HbSS patients did not. Two transporters involved in red cell dehydration, the conductive channels Psickle and the Gardos channel, behaved similarly in red cells from the two genotypes, but were significantly less active in HbSC patients. By contrast, KCC activity was quantitatively greater in HbSC red cells. Results suggest that KCC is likely to have greater involvement in red cell dehydration in HbSC patients, which could explain its association with disease severity in this genotype. This work supports the hypothesis that SCD in HbSC patients is a distinct disease entity to that in HbSS patients. Results suggest the possibility of designing specific treatments of particular benefit to HbSC patients and a rationale for the development of prognostic markers, to inform early treatment of children likely to develop more severe complications of the disease.

  2. First ATLAS Events Recorded Underground

    CERN Multimedia

    Teuscher, R

    As reported in the CERN Bulletin, Issue No.30-31, 25 July 2005 The ATLAS barrel Tile calorimeter has recorded its first events underground using a cosmic ray trigger, as part of the detector commissioning programme. This is not a simulation! A cosmic ray muon recorded by the barrel Tile calorimeter of ATLAS on 21 June 2005 at 18:30. The calorimeter has three layers and a pointing geometry. The light trapezoids represent the energy deposited in the tiles of the calorimeter depicted as a thick disk. On the evening of June 21, the ATLAS detector, now being installed in the underground experimental hall UX15, reached an important psychological milestone: the barrel Tile calorimeter recorded the first cosmic ray events in the underground cavern. An estimated million cosmic muons enter the ATLAS cavern every 3 minutes, and the ATLAS team decided to make good use of some of them for the commissioning of the detector. Although only 8 of the 128 calorimeter slices ('superdrawers') were included in the trigg...

  3. The ATLAS/TILECAL Detector Control System

    CERN Document Server

    Santos, H; The ATLAS collaboration

    2010-01-01

    Tilecal, the barrel hadronic calorimeter of ATLAS, is a sampling calorimeter where scintillating tiles are embedded in an iron matrix. The tiles are optically coupled to wavelength shifting fibers that carry the optical signal to photo-multipliers. It has a cylindrical shape and is made out of 3 cylinders, the Long Barrel with the LBA and LBC partitions, and the two Extended Barrel with the EBA and EBC partitions. The main task of the Tile calorimeter Detector Control System (DCS) is to enable the coherent and safe operation of the calorimeter. All actions initiated by the operator, as well as all errors, warnings and alarms concerning the hardware of the detector are handled by DCS. The Tile calorimeter DCS controls and monitors mainly the low voltage and high voltage power supply systems, but it is also interfaced with the infrastructure (cooling system and racks), the laser and cesium calibration systems, the data acquisition system, configuration and conditions databases and the detector safety system. In...

  4. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    Crystals and Bare Supermodules The last Barrel crystal was delivered on March 9th and the last (36th) Bare Supermodule was completed by April 20th. Endcaps crystal production is ramping up at both producers and the delivery rate exceeds already 1050 crystals per month. The quality of the Endcaps crystals is similar to that of the Barrel. Electronics The production of the on-detector electronics (Barrel + Endcaps) is complete. Already 10 out of the 12 crates of the Barrel Off-detector modules have been commissioned and installed in the CMS service cavern, and the integration with the global DAQ is progressing fast. The last 2 crates will be completed in August, after reception of the last Trigger Modules TCC68. The installation of the High Voltage is also progressing well, taking into account that some HV supplies are still used in the various assembly and test centres of ECAL. A large fraction of the low voltage supplies has been delivered and tested. Electronics integration As explained in the Febru...

  5. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL Barrel The integration of the last Supermodule was completed early July. The insertion of the second half Barrel (EB+) was performed in the second half of July. The Barrel ECAL (36 Supermodules comprising 61200 channels) is now complete, and its cabling campaign has just started. Each Supermodule has been tested after insertion. The number of dead or partially-dead channels amounts to only 28 (0.05% of the total), a performance showing the excellence of the quality control during the whole construction process. The Barrel Off-detector electronics is installed in the CMS Service cavern (with the exception of a few Trigger modules), ready to be connected to the Supermodules after cabling. The ECAL DAQ has been integrated with the CMS DAQ system: at the end of August one supermodule was included in a CMS global run, allowing us to record cosmic muons in both ECAL and DTs. ECAL Endcaps The Endcaps crystal production is proceeding at full speed, and the delivery rate (summing both producers) exceeds ...

  6. Family reunion for the UA2 calorimeter

    CERN Multimedia

    Abha Eli Phoboo

    2015-01-01

    After many years in CERN’s Microcosm exhibition, the last surviving UA2 central calorimeter module has been moved to Hall 175, the technical development laboratory of the ATLAS Tile Hadronic Calorimeter (Tilecal). The UA2 and ATLAS calorimeters are cousins, as both were designed by Otto Gildemeister. Now side by side, the calorimeters illustrate the progress made in sampling organic scintillator calorimeters over the past 35 years.   The ATLAS Tile Calorimeter prototypes (left) and the UA2 central calorimeter (right) in Hall 175. (Image: Mario Campanelli/ATLAS.) From 1981 to 1990, the UA2 experiment was one of the two detectors on CERN’s flagship accelerator, the SPS. At the heart of the UA2 detector was the central calorimeter. It was made up of 24 slices – each weighing four tonnes – arranged like orange segments around the collision point. These calorimeter slices played a central role in the research carried out by UA2 for the discovery of W bosons...

  7. A highly segmented and compact liquid argon calorimeter for the LHC the TGT calorimeter

    CERN Document Server

    Berger, C; Geulig, H; Pierschel, G; Siedling, R; Tutas, J; Wlochal, M; Wotschack, J; Cheplakov, A P; Eremeev, R V; Feshchenko, A; Gavrishchuk, O P; Kazarinov, Yu M; Khrenov, Yu V; Kukhtin, V V; Ladygin, E; Obudovskij, V; Shalyugin, A N; Tolmachev, V T; Volodko, A G; Geweniger, C; Hanke, P; Kluge, E E; Krause, J; Putzer, A; Tittel, K; Wunsch, M; Bán, J; Bruncko, Dusan; Kriván, F; Kurca, T; Murín, P; Sándor, L; Spalek, J; Aderholz, Michael; Brettel, H; Dydak, Friedrich; Fent, J; Huber, J; Hajduk, L; Jakobs, K; Kiesling, C; Oberlack, H; Schacht, P; Stiegler, U; Bogolyubsky, M Yu; Chekulaev, S V; Kiryunin, A E; Kurchaninov, L L; Levitsky, M S; Maximov, V V; Minaenko, A A; Moiseev, A M; Semenov, P A; CERN. Geneva. Detector Research and Development Committee

    1992-01-01

    The development of a fast, highly granular and compact electromagnetic liquid argon calorimeter is proposed as an R&D project for an LHC calorimeter with full rapidity coverage. The proposed ``Thin Gap Turbine'' (TGT) calorimeter offers uniform energy response and constant energy resolution independent of the production angle of the impinging particle and of its impact position at the calorimeter. An important aspect of the project is the development of electronics for fast signal processing matched to the short charge collection time in the TGT read-out cell. The system aspects of the integration of a high degree of signal processing into the liquid argon would be investigated.

  8. Core barrel motion calibration factor calculation

    International Nuclear Information System (INIS)

    Shahrokhi, F.; Robinson, J.C.

    1976-01-01

    Neutron transport theory calculations were performed to obtain a calibration factor for inferring core-barrel motion from spectral density data using excore ionization chambers in PWRs. The analysis of core-barrel movement was based on the postulate that the movement is a cantilevered type, with the preferred direction x-x'

  9. Hb variants in Korea: effect on HbA1c using five routine methods.

    Science.gov (United States)

    Yun, Yeo-Min; Ji, Misuk; Ko, Dae-Hyun; Chun, Sail; Kwon, Gye Cheol; Lee, Kyunghoon; Song, Sang Hoon; Seong, Moon Woo; Park, Sung Sup; Song, Junghan

    2017-07-26

    Quantification of glycated hemoglobin (HbA1c) is a challenge in patients with hemoglobin (Hb) variants. We evaluated the impact of various Hb variants on five routine HbA1c assays by comparing with the IFCC reference measurement procedure (RMP). Whole blood samples showing warning flags or no results on routine HPLC HbA1c assays were confirmed for Hb variants and were submitted to HbA1c quantification using Sebia Capillarys 2 Flex Piercing, Roche Tina-quant HbA1c Gen. 2, Bio-Rad Variant II Turbo 2.0, ADAMS HA-8180, Tosoh G8 standard mode, and IFCC RMP using LC-MS. Among 114 samples, the most common variants were Hb G-Coushatta (n=47), Queens (n=41), Ube-4 (n=11), Chad (n=4), Yamagata (n=4), G-His-Tsou (n=2), G-Taipei (n=1), Fort de France (n=1), Hoshida (n=1), and two novel variants (Hb α-globin, HBA 52 Gly>Cys and Hb β-globin, HBB 146 His>Asn). In terms of control samples, all the result of HbA1c were "acceptable", within the criteria of ±7% compared to IFCC RMP target values. However, percentage of "unacceptable" results of samples with Hb variants were 16% for Capillarys 2, 7% for Tina-quant, 51% for Variant II Turbo 2.0, 95% for G8 standard mode, and 89% for HA-8180. The Capillarys 2 and HA-8180 assay did not provide the results in 5 and 40 samples with Hb variants, respectively. HbA1c results from five routine assays in patients with relatively common Hb variants in Korea showed various degrees of bias compared to those of IFCC RMP. Therefore, laboratories should be aware of the limitation of their methods with respect to interference from Hb variants found commonly in their local population and suggest an alternative HbA1c quantification method.

  10. Latest news from the Tiles

    CERN Multimedia

    Costanzo, D

    The Tile hadronic calorimeter will be installed in the central region of ATLAS with an inner radius of 2.28 m, an outer radius of 4.25 m, a total length of about 12 m and a weight of about 2300 tons. The calorimeter is mechanically divided in one central barrel and two extended barrels, with a gap in between for the services of the internal part of ATLAS. The construction of the calorimeter is advanced, and installation in the ATLAS pit is foreseen to start in December 2003. After mechanical assembly the modules are instrumented with all the optical components. Scintillating tiles are inserted into the slots, and the read-out Wave Length Shifting fibers are coupled to scintillators and bundled to achieve the quasi-projective cell geometry of the calorimeter. The final modules are stored in bldg 185, shown in the first photo, and in bldg 175 at CERN. The barrel modules are mechanically assembled in Dubna and then transported to CERN to be optically instrumented, while the extended barrels are constructed in t...

  11. The ATLAS Level-1 Calorimeter Trigger

    International Nuclear Information System (INIS)

    Achenbach, R; Andrei, V; Adragna, P; Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J P; Asman, B; Bohm, C; Ay, C; Bauss, B; Bendel, M; Dahlhoff, A; Eckweiler, S; Booth, J R A; Thomas, P Bright; Charlton, D G; Collins, N J; Curtis, C J

    2008-01-01

    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, τ leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 μs, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern

  12. The ATLAS Level-1 Calorimeter Trigger

    Energy Technology Data Exchange (ETDEWEB)

    Achenbach, R; Andrei, V [Kirchhoff-Institut fuer Physik, University of Heidelberg, D-69120 Heidelberg (Germany); Adragna, P [Physics Department, Queen Mary, University of London, London E1 4NS (United Kingdom); Apostologlou, P; Barnett, B M; Brawn, I P; Davis, A O; Edwards, J P [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX (United Kingdom); Asman, B; Bohm, C [Fysikum, Stockholm University, SE-106 91 Stockholm (Sweden); Ay, C; Bauss, B; Bendel, M; Dahlhoff, A; Eckweiler, S [Institut fuer Physik, University of Mainz, D-55099 Mainz (Germany); Booth, J R A; Thomas, P Bright; Charlton, D G; Collins, N J; Curtis, C J [School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT (United Kingdom)], E-mail: e.eisenhandler@qmul.ac.uk (and others)

    2008-03-15

    The ATLAS Level-1 Calorimeter Trigger uses reduced-granularity information from all the ATLAS calorimeters to search for high transverse-energy electrons, photons, {tau} leptons and jets, as well as high missing and total transverse energy. The calorimeter trigger electronics has a fixed latency of about 1 {mu}s, using programmable custom-built digital electronics. This paper describes the Calorimeter Trigger hardware, as installed in the ATLAS electronics cavern.

  13. Installing the ATLAS calorimeter

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    The eight toroid magnets can be seen surrounding the calorimeter that is later moved into the middle of the detector. This calorimeter will measure the energies of particles produced when protons collide in the centre of the detector.

  14. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2017-01-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  15. The new ATLAS Fast Calorimeter Simulation

    Science.gov (United States)

    Schaarschmidt, J.; ATLAS Collaboration

    2017-10-01

    Current and future need for large scale simulated samples motivate the development of reliable fast simulation techniques. The new Fast Calorimeter Simulation is an improved parameterized response of single particles in the ATLAS calorimeter that aims to accurately emulate the key features of the detailed calorimeter response as simulated with Geant4, yet approximately ten times faster. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. A prototype of this new Fast Calorimeter Simulation is in development and its integration into the ATLAS simulation infrastructure is ongoing.

  16. Sodium Dichromate Barrel Landfill expedited response action proposal

    International Nuclear Information System (INIS)

    1993-09-01

    The US Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology) recommended that the US Department of Energy (DOE) prepare an expedited response action (ERA) for the Sodium Dichromate Barrel Landfill. The Sodium Dichromate Barrel Disposal Site was used in 1945 for disposal of crushed barrels. The site location is the sole waste site within the 100-IU-4 Operable Unit. The Waste Information Data System (WIDS 1992) assumes that the crushed barrels contained 1% residual sodium dichromate at burial time and that only buried crushed barrels are at the site. Burial depth is shallow since visual inspection finds numerous barrel debris on the surface. A non-time-critical ERA proposal includes preparation of an engineering evaluation and cost analysis (EE/CA) section. The EE/CA is a rapid, focused evaluation of available technologies using specific screening factors to assess feasibility, appropriateness, and cost. The ERA goal is to reduce the potential for any contaminant migration from the landfill to the soil column, groundwater, and Columbia River. Since the landfill is the only waste site within the operable unit, the ERA will present a final remediation of the 100-IU-4 operable unit

  17. Hb Melusine and Hb Athens-Georgia: potentially underreported in the Belgian population? Four cases demonstrating the lack of detection using common CE-HPLC methods either for glycated hemoglobin (HbA1C) analysis or Hb variant screening.

    Science.gov (United States)

    Peeters, Bart; Brandt, Inger; Desmet, Koenraad; Harteveld, Cornelis L; Kieffer, Davy

    2016-12-01

    Suspected hemoglobin (Hb) variants, detected during HbA 1C measurements should be further investigated, determining the extent of the interference with each method. This is the first report of Hb Melusine and Hb Athens-Georgia in Caucasian Belgian patients. Intervention & Technique: Since common CE-HPLC methods for HbA 1C analysis or Hb variant screening are apparently unable to detect these Hb variants, their presence might be underestimated. HbA 1C analysis using CZE, however, alerted for their presence. Moreover, in case of Hb Melusine, even Hb variant screening using CZE was unsuccessful in its detection. Fortunately, carriage of Hb Melusine or Hb Athens-Georgia variants has no clinical implications and, as shown in this report, no apparent difference in HbA 1C should be expected.

  18. Scintillating plate calorimeter optical design

    International Nuclear Information System (INIS)

    McNeil, R.; Fazely, A.; Gunasingha, R.; Imlay, R.; Lim, J.

    1990-01-01

    A major technical challenge facing the builder of a general purpose detector for the SSC is to achieve an optimum design for the calorimeter. Because of its fast response and good energy resolution, scintillating plate sampling calorimeters should be considered as a possible technology option. The work of the Scintillating Plate Calorimeter Collaboration is focused on compensating plate calorimeters. Based on experimental and simulation studies, it is expected that a sampling calorimeter with alternating layers of high-Z absorber (Pb, W, DU, etc.) and plastic scintillator can be made compensating (e/h = 1.00) by suitable choice of the ratio of absorber/scintillator thickness. Two conceptual designs have been pursued by this subsystem collaboration. One is based on lead as the absorber, with read/out of the scintillator plates via wavelength shifter fibers. The other design is based on depleted uranium as the absorber with wavelength shifter (WLS) plate readout. Progress on designs for the optical readout of a compensating scintillator plate calorimeter are presented. These designs include readout of the scintillator plates via wavelength shifter plates or fiber readout. Results from radiation damage studies of the optical components are presented

  19. Advanced Thin Ionization Calorimeter (ATIC)

    Science.gov (United States)

    Wefel, John P.

    1998-01-01

    This is the final report for NASA grant NAGW-4577, "Advanced Thin Ionization Calorimeter (ATIC)". This grant covered a joint project between LSU and the University of Maryland for a Concept Study of a new type of fully active calorimeter to be used to measure the energy spectra of very high energy cosmic rays, particularly Hydrogen and Helium, to beyond 1014 eV. This very high energy region has been studied with emulsion chamber techniques, but never investigated with electronic calorimeters. Technology had advanced to the point that a fully active calorimeter based upon Bismuth Germanate (BGO) scintillating crystals appeared feasible for balloon flight (and eventually space) experiments.

  20. OPAL detector electromagnetic calorimeter

    CERN Multimedia

    1988-01-01

    Half of the electromagnetic calorimeter of the OPAL detector is seen in this photo. This calorimeter consists of 4720 blocks of lead glass. It was used to detect and measure the energy of photons, electrons and positrons by absorbing them.

  1. Globally intertwined evolutionary history of giant barrel sponges

    Science.gov (United States)

    Swierts, Thomas; Peijnenburg, Katja T. C. A.; de Leeuw, Christiaan A.; Breeuwer, Johannes A. J.; Cleary, Daniel F. R.; de Voogd, Nicole J.

    2017-09-01

    Three species of giant barrel sponge are currently recognized in two distinct geographic regions, the tropical Atlantic and the Indo-Pacific. In this study, we used molecular techniques to study populations of giant barrel sponges across the globe and assessed whether the genetic structure of these populations agreed with current taxonomic consensus or, in contrast, whether there was evidence of cryptic species. Using molecular data, we assessed whether giant barrel sponges in each oceanic realm represented separate monophyletic lineages. Giant barrel sponges from 17 coral reef systems across the globe were sequenced for mitochondrial (partial CO1 and ATP6 genes) and nuclear (ATPsβ intron) DNA markers. In total, we obtained 395 combined sequences of the mitochondrial CO1 and ATP6 markers, which resulted in 17 different haplotypes. We compared a phylogenetic tree constructed from 285 alleles of the nuclear intron ATPsβ to the 17 mitochondrial haplotypes. Congruent patterns between mitochondrial and nuclear gene trees of giant barrel sponges provided evidence for the existence of multiple reproductively isolated species, particularly where they occurred in sympatry. The species complexes in the tropical Atlantic and the Indo-Pacific, however, do not form separate monophyletic lineages. This rules out the scenario that one species of giant barrel sponge developed into separate species complexes following geographic separation and instead suggests that multiple species of giant barrel sponges already existed prior to the physical separation of the Indo-Pacific and tropical Atlantic.

  2. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2015-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  3. The integration and engineering of the ATLAS SemiConductor Tracker Barrel

    Energy Technology Data Exchange (ETDEWEB)

    Abdesselam, A; Barr, A J [Department of Physics, Oxford University, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Allport, P P; Austin, N [Oliver Lodge Laboratory, University of Liverpool, P.O. Box 147, Oxford Street, Liverpool L69 3BX (United Kingdom); Anastopoulos, C [University of Sheffield, Department of Physics and Astronomy, Hounsfield Road, Sheffield S3 7RH (United Kingdom); Anderson, B; Attree, D J [Department of Physics and Astronomy, University College London (United Kingdom); Andricek, L; Bangert, A [Max-Planck-Institut fuer Physik, (Werner-Heisenberg-Institut), Foehringer Ring 6, 80805 Muenchen (Germany); Anghinolfi, F [CERN, CH - 1211 Geneva 23 (Switzerland); Apsimon, R; Barclay, P; Batchelor, L E [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Atkinson, T [School of Physics, University of Melbourne, Parkville, Victoria 3010 (Australia); Barbier, G [Universite de Geneve, Section de Physique, 24 rue Ernest Ansermet, CH - 1211 Geneve 4 (Switzerland); Bates, R L; Bell, W H [University of Glasgow, Department of Physics and Astronomy, Glasgow G12 8QQ (United Kingdom); Batley, J R [Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE (United Kingdom); Beck, G A [Department of Physics, Queen Mary, University of London, Mile End Road, London E1 4NS (United Kingdom); Bell, P J [School of Physics and Astronomy, University of Manchester, Manchester M13 9PL (United Kingdom)] (and others)

    2008-10-15

    The ATLAS SemiConductor Tracker (SCT) was built in three sections: a barrel and two end-caps. This paper describes the design, construction and final integration of the barrel section. The barrel is constructed around four nested cylinders that provide a stable and accurate support structure for the 2112 silicon modules and their associated services. The emphasis of this paper is directed at the aspects of engineering design that turned a concept into a fully-functioning detector, as well as the integration and testing of large sub-sections of the final SCT barrel detector. The paper follows the chronology of the construction. The main steps of the assembly are described with the results of intermediate tests. The barrel service components were developed and fabricated in parallel so that a flow of detector modules, cooling loops, opto-harnesses and Frequency-Scanning-Interferometry (FSI) alignment structures could be assembled onto the four cylinders. Once finished, each cylinder was conveyed to the next site for the mounting of modules to form a complete single barrel. Extensive electrical and thermal function tests were carried out on the completed single barrels. In the next stage, the four single barrels and thermal enclosures were combined into the complete SCT barrel detector so that it could be integrated with the Transition Radiation Tracker (TRT) barrel to form the central part of the ATLAS inner detector. Finally, the completed SCT barrel was tested together with the TRT barrel in noise tests and using cosmic rays.

  4. Some possible improvements in scintillation calorimeters

    International Nuclear Information System (INIS)

    Lorenz, E.

    1985-03-01

    Two ideas for improvements of scintillation calorimeters will be presented: a) improved readout of scintillating, totally active electromagnetic calorimeters with combinations of silicon photodiodes and fluorescent panel collectors, b) use of time structure analysis on calorimetry, both for higher rate applications and improved resolution for hadron calorimeters. (orig.)

  5. Response sensitivity of barrel neuron subpopulations to simulated thalamic input.

    Science.gov (United States)

    Pesavento, Michael J; Rittenhouse, Cynthia D; Pinto, David J

    2010-06-01

    Our goal is to examine the relationship between neuron- and network-level processing in the context of a well-studied cortical function, the processing of thalamic input by whisker-barrel circuits in rodent neocortex. Here we focus on neuron-level processing and investigate the responses of excitatory and inhibitory barrel neurons to simulated thalamic inputs applied using the dynamic clamp method in brain slices. Simulated inputs are modeled after real thalamic inputs recorded in vivo in response to brief whisker deflections. Our results suggest that inhibitory neurons require more input to reach firing threshold, but then fire earlier, with less variability, and respond to a broader range of inputs than do excitatory neurons. Differences in the responses of barrel neuron subtypes depend on their intrinsic membrane properties. Neurons with a low input resistance require more input to reach threshold but then fire earlier than neurons with a higher input resistance, regardless of the neuron's classification. Our results also suggest that the response properties of excitatory versus inhibitory barrel neurons are consistent with the response sensitivities of the ensemble barrel network. The short response latency of inhibitory neurons may serve to suppress ensemble barrel responses to asynchronous thalamic input. Correspondingly, whereas neurons acting as part of the barrel circuit in vivo are highly selective for temporally correlated thalamic input, excitatory barrel neurons acting alone in vitro are less so. These data suggest that network-level processing of thalamic input in barrel cortex depends on neuron-level processing of the same input by excitatory and inhibitory barrel neurons.

  6. An instant dose obtainable in situ calorimeter

    International Nuclear Information System (INIS)

    Kubo, H.; Mento, D.

    1984-01-01

    The development of a computer-linked water calorimeter is described. The advantages of this system are twofold: (i) instant dose determination is possible; and (ii) the calorimeter operation is much simpler than conventional null balance techniques. The entire calorimeter measurement procedure from the set-up to the dose determination for 10 runs was finished in approximately 2 1/2 h. A smaller calorimeter which could be kept in the treatment room for equilibrium, should permit further reduction of the time. The use of a smaller, portable computer would allow local data taking and analysis, eliminating the need for modems, phone lines and long cables. This would lead to a completely self-contained set-up at the treatment room. Although the technique is described for a polystyrene-water calorimeter, it should be equally applicable for a water calorimeter as well as a conventional isolated calorimeter. (author)

  7. Celebration for the ATLAS Barrel Toroid magnet

    CERN Multimedia

    2007-01-01

    Representatives from Funding Agencies and Barrel Toroid Magnet Laboratories during the ceremony. From left to right: Jean Zinn-Justin (Head of DAPNIA/CEA/Saclay), CERN Director-General Robert Aymar, and Roberto Petronzio (President INFN).Allan Clark (DPNC University Geneva) and Enrique Fernandez (IFAE Barcelona) were among the guests visiting the ATLAS cavern. The barrel toroid is visible in the background. A celebration took place at Point 1 on 13 December to toast the recent powering-up of the ATLAS barrel toroid magnet to full field (Bulletin No. 47-48/06). About 70 guests were invited to attend, mainly composed of representatives from funding partners and key members of the laboratory management teams of the barrel toroid magnet, representing CEA France, INFN Italy, BMBF Germany, Spain, Sweden, Switzerland, Russia, JINR Dubna and CERN. An introductory speech by ATLAS spokesperson Peter Jenni the scene for evening. This was followed by the ATLAS magnet system project leader Herman Ten Kate's account of the...

  8. Web System for Data Quality Assessment of Tile Calorimeter During the ATLAS Operation

    CERN Document Server

    Guimaraes Ferreira, F; The ATLAS collaboration; Fink Grael, F; Sivolella Gomes, A; Balabram Filho, L

    2010-01-01

    TileCal is the barrel hadronic calorimeter of the ATLAS experiment and has ~10 000 electronic channels. Supervising the detector behavior is a very important task to ensure proper operation. Collaborators perform analyzes over reconstructed data of calibration runs in order to give detailed considerations about failures and to assert the equipment status. Then, the data quality responsible provides the list of problematic channels that should not be considered for physics analysis. Since the commissioning period, our group has developed seven web systems that guide the collaborators through the data quality assessment task. Each system covers a part of the job, providing information on the latest runs, displaying status from the automatic monitoring framework, giving details about power supplies operation, presenting the generated plots and storing the validation outcomes, assisting to write logbook entries, creating and submitting the bad channels list to the conditions database and publishing the equipment ...

  9. The PANDA Barrel DIRC

    Science.gov (United States)

    Schwiening, J.; Ali, A.; Belias, A.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Kalicy, G.; Krebs, M.; Lehmann, D.; Nerling, F.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Traxler, M.; Böhm, M.; Eyrich, W.; Lehmann, A.; Pfaffinger, M.; Uhlig, F.; Düren, M.; Etzelmüller, E.; Föhl, K.; Hayrapetyan, A.; Kreutzfeld, K.; Merle, O.; Rieke, J.; Schmidt, M.; Wasem, T.; Achenbach, P.; Cardinali, M.; Hoek, M.; Lauth, W.; Schlimme, S.; Sfienti, C.; Thiel, M.

    2018-03-01

    The PANDA experiment at the international accelerator Facility for Antiproton and Ion Research in Europe (FAIR) near GSI, Darmstadt, Germany will address fundamental questions of hadron physics. Excellent Particle Identification (PID) over a large range of solid angles and particle momenta will be essential to meet the objectives of the rich physics program. Charged PID for the barrel region of the PANDA target spectrometer will be provided by a DIRC (Detection of Internally Reflected Cherenkov light) detector. The Barrel DIRC will cover the polar angle range of 22o-140o and cleanly separate charged pions from kaons for momenta between 0.5 GeV/c and 3.5 GeV/c with a separation power of at least 3 standard deviations. The design is based on the successful BABAR DIRC and the SuperB FDIRC R&D with several important improvements to optimize the performance for PANDA, such as a focusing lens system, fast timing, a compact fused silica prism as expansion region, and lifetime-enhanced Microchannel-Plate PMTs for photon detection. This article describes the technical design of the PANDA Barrel DIRC and the result of the design validation using a "vertical slice" prototype in hadronic particle beams at the CERN PS.

  10. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1981-01-01

    At our current understanding of elementary particle physics, the fundamental constituents are the photon, quarks, gluons and leptons with a few highly forecasted heavy bosons. Calorimeters are essential for detecting all of these particles. Quarks and gluons fragment into many particles - at high energies, so many particles that one may not want to measure each one separately. This group of both charged and neutral particles can only be measured by calorimeters. The energy of an electron needs to be measured by a calorimeter and muon identification is enhanced by the recognition of a minimum ionizing particle passing through the calorimeter. Sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers - are reviewed. What follows is a very cursory overview of some fundamental aspects of sampling calorimeters. First, the properties of shower development are described for both the electromagnetic and hadronic cases. Then, examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described. 21 references

  11. Detailed GEANT description of the SDC central calorimeters

    International Nuclear Information System (INIS)

    Glagolev, V.V.; Li, W.

    1994-01-01

    This article represents the very detailed simulation model of the SDC central calorimeters and some results which were obtained using that model. The central calorimeters structure was coded on the GEANT 3.15 base in the frame of the SDCSIM environment. The SDCSIM is the general shell for simulation of the SDC set-up. The calorimeters geometry has been coded according to the FNAL and ANL engineering drawings and engineering data file. SDC central calorimeters detailed description is extremely useful for different simulation tasks, for fast simulation program parameters tuning, for different geometry especially studying (local response nonuniformity from bulkheads in the e.m. calorimeter and from coil supports and many others) and for the interpretation of the experimental data from the calorimeters. This simulation model is very useful for tasks of the test beam modules calorimeter calibration and for calorimeter in situ calibration. 3 refs., 8 figs

  12. Signal processing for liquid ionization calorimeters

    International Nuclear Information System (INIS)

    Cleland, W.E.; Stern, E.G.

    1992-01-01

    We present the results of a study of the effects of thermal and pileup noise in liquid ionization calorimeters operating in a high luminosity calorimeters operating in a high luminosity environment. The method of optimal filtering of multiply-sampled signals which may be used to improve the timing and amplitude resolution of calorimeter signals is described, and its implications for signal shaping functions are examined. The dependence of the time and amplitude resolution on the relative strength of the pileup and thermal noise, which varies with such parameters as luminosity, rapidity and calorimeter cell size, is examined

  13. Completion of the TRT Barrel

    CERN Multimedia

    Gagnon, P

    On February 3, the US-TRT team proudly completed the installation of the 96th barrel TRT module on its support structure in the SR building at CERN. This happy event came after many years of R&D initiated in the nineties by the TA1 team at CERN, followed by the construction of the modules in three American institutes (Duke, Hampton and Indiana Universities) from 1996 to 2003. In total, the 96 barrel modules contain 52544 kapton straws, each 4 mm in diameter and strung with a 30 micron gold-plated tungsten wire. Each wire was manually inserted, a feat in itself! The inner layer modules contain 329 straws, the middle layer modules have 520 straws and the outer layer, 793 straws. Thirty- two modules of each type form a full layer. Their special geometry was designed such as to leave no dead region. On average, a particle will cross 36 straws. Kirill Egorov, Chuck Mahlon and John Callahan inserted the last module in the Barrel Support Structure. After completion in the US, all modules were transferred...

  14. Co-inheritance of α0 -thalassemia elevates Hb A2 level in homozygous Hb E: Diagnostic implications.

    Science.gov (United States)

    Singha, K; Srivorakun, H; Fucharoen, G; Fucharoen, S

    2017-10-01

    Differentiation of homozygous hemoglobin (Hb) E with and without α 0 -thalassemia is subtle on routine hematological ground. We examined in a large cohort of homozygous Hb E if the level of Hb A 2 is helpful. A total of 592 subjects with homozygous Hb E were recruited from ongoing thalassemia screening program. Additionally, five couples at risk of having fetuses with Hb Bart's hydrops fetalis who were homozygous Hb E were also investigated. Hb analysis was performed using capillary electrophoresis system. Globin genotypes were defined by DNA analysis. Subjects were classified into four groups including pure homozygous Hb E (n=532), homozygous Hb E/α 0 -thalassemia (n=48), Hb Constant Spring EE Bart's disease (n=8), and Hb EE Bart's disease (n=4). The levels of Hb A 2 were found, respectively, to be 4.97±0.69, 6.64±1.02, 4.86±0.87, and 7.60±1.04%. Among five couples at risk, α 0 -thalassemia was identified in three subjects with Hb A 2 >6.0%. Increased Hb A 2 level is a useful marker for differentiation of homozygous Hb E with and without α 0 -thalassemia. This should lead to a significant reduction in number of referral cases of homozygous Hb E for molecular testing of α 0 -thalassemia in routine practice. © 2017 John Wiley & Sons Ltd.

  15. Large capacity water and air bath calorimeters

    International Nuclear Information System (INIS)

    James, S.J.; Kasperski, P.W.; Renz, D.P.; Wetzel, J.R.

    1993-01-01

    EG and G Mound Applied Technologies has developed an 11 in. x 17 in. sample size water bath and an 11 in. x 17 in. sample size air bath calorimeter which both function under servo control mode of operation. The water bath calorimeter has four air bath preconditioners to increase sample throughput and the air bath calorimeter has two air bath preconditioners. The large capacity calorimeters and preconditioners were unique to Mound design which brought about unique design challenges. Both large capacity systems calculate the optimum set temperature for each preconditioner which is available to the operator. Each system is controlled by a personal computer under DOS which allows the operator to download data to commercial software packages when the calorimeter is idle. Qualification testing yielded a one standard deviation of 0.6% for 0.2W to 3.0W Pu-238 heat standard range in the water bath calorimeter and a one standard deviation of 0.3% for the 6.0W to 20.0W Pu-238 heat standard range in the air bath calorimeter

  16. The Dynamic Characteristic Analysis of Mini Gamma Calorimeter

    International Nuclear Information System (INIS)

    Setiyanto

    2004-01-01

    The gamma calorimeter is a facility to measure the gamma heating in the nuclear reactor. The dimensions of the conventional calorimeters are in general too large, that is an inconvenience if those calorimeters will be applied in the high temperature reactor as a nuclear power plant. To avoid that inconvenience, it is necessary to propose the innovation on the feature of the existing calorimeter. The basic idea of the innovation is to create the small type of calorimeter without the absorbed material. The last analysis was realized to determine of the static calorimeter characteristic or sensitivities as a function of the dimension and the material of gas isolations. Based on those results, the analyses is reasonably to be continued to determine the dynamic characteristic or period of calorimeter. The analysis was performed using the finite difference method, two dimension simplified. It can be concluded that the mini gamma calorimeter proposed is reasonable to be made. (author)

  17. Diagnosis of a rare double heterozygous Hb D Punjab/Hb Q India hemoglobinopathy using Sebia capillary zone electrophoresis

    Directory of Open Access Journals (Sweden)

    Sushama Parab

    2014-01-01

    Full Text Available In India, hemoglobinopathies constitute a major genetic disorder and hemoglobin variants such as Hb S, Hb D Punjab, and Hb E are the most common ones. Other variants include Hb Q India, Hb Lepore, Hb J Meerut, Hb D Iran, etc. These variants show heterozygous state along with beta thalassemia. However, compound heterozygosities among these variants are very rare. Ethylenediaminetetraacetic acid whole blood sample received for routine thalassemia screening was subjected to alkaline electrophoresis using automated capillary zone electrophoresis. Suspecting the presence of rare variants, further analysis was carried out using Bio-Rad D10 and Tosoh G8 high-performance liquid chromatography (HPLC systems. Capillary zone electrophoretograms showed the presence of peaks in zone Hb A, Hb D, a fused peak in Hb A2, and a small peak in Z1 zone. Bio-Rad and Tosoh chromatograms also indicated the presence of four peaks which are identified as Hb A, Hb D Punjab, Hb Q India, and hybrid of Hb D Punjab/Hb Q India. A peak in Hb D zone of capillary was due to co-migration of Hb D Punjab and Hb Q India variants. Small peak in Z1 zone indicated the presence of alpha chain variant Hb Q India. The findings were further confirmed by HPLC results and molecular genetic studies. The present study reports for the 1 st time a rare hemoglobinopathy of double heterozygosity for Hb D Punjab, Hb Q India on Capillarys 2 Flex Piercing analyzer and is forth reported case for this rare hemoglobinopathy.

  18. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    Energy Technology Data Exchange (ETDEWEB)

    Abat, E; Arik, E [Bogazici University, Faculty of Sciences, Department of Physics, TR-80815 Bebek-Istanbul (Turkey); Abdallah, J M [Institut de Fisica d' Altes Energies, IFAE, Universitat Autonoma de Barcelona, Edifici Cn, ES-08193 Bellaterra, Barcelona (Spain); Addy, T N [Hampton University, Department of Physics, Hampton, VA 23668 (United States); Adragna, P [Queen Mary, University of London, Mile End Road, E1 4NS, London (United Kingdom); Aharrouche, M [Universitaet Mainz, Institut fuer Physik, Staudinger Weg 7, DE-55099 (Germany); Ahmad, A [Insitute of Physics, Academia Sinica, TW-Taipei 11529, Taiwan (China); Akesson, T P A [Lunds universitet, Naturvetenskapliga fakulteten, Fysiska institutionen, Box 118, SE-221 00, Lund (Sweden); Aleksa, M; Anghinolfi, F; Baron, S [European Laboratory for Particle Physics (CERN), CH-1211 Geneva 23 (Switzerland); Alexa, C [National Institute of Physics and Nuclear Engineering (Bucharest -IFIN-HH), P.O. Box MG-6, R-077125 Bucharest (Romania); Anderson, K [University of Chicago, Enrico Fermi Institute, 5640 S. Ellis Avenue, Chicago, IL 60637 (United States); Andreazza, A; Banfi, D [INFN Sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Antonaki, A; Arabidze, G [University of Athens, Nuclear and Particle Physics Department of Physics, Panepistimiopouli Zografou, GR 15771 Athens (Greece); Atkinson, T [School of Physics, University of Melbourne, AU-Parkvill, Victoria 3010 (Australia); Baines, J [Rutherford Appleton Laboratory, Science and Technology Facilities Council, Harwell Science and Innovation Campus, Didcot OX11 0QX (United Kingdom); Baker, O K, E-mail: stathes.paganis@cern.ch [Yale University, Department of Physics, PO Box 208121, New Haven, CT06520-8121 (United States)

    2011-04-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  19. Photon reconstruction in the ATLAS Inner Detector and Liquid Argon Barrel Calorimeter at the 2004 Combined Test Beam

    International Nuclear Information System (INIS)

    Abat, E; Arik, E; Abdallah, J M; Addy, T N; Adragna, P; Aharrouche, M; Ahmad, A; Akesson, T P A; Aleksa, M; Anghinolfi, F; Baron, S; Alexa, C; Anderson, K; Andreazza, A; Banfi, D; Antonaki, A; Arabidze, G; Atkinson, T; Baines, J; Baker, O K

    2011-01-01

    The reconstruction of photons in the ATLAS detector is studied with data taken during the 2004 Combined Test Beam, where a full slice of the ATLAS detector was exposed to beams of particles of known energy at the CERN SPS. The results presented show significant differences in the longitudinal development of the electromagnetic shower between converted and unconverted photons as well as in the total measured energy. The potential to use the reconstructed converted photons as a means to precisely map the material of the tracker in front of the electromagnetic calorimeter is also considered. All results obtained are compared with a detailed Monte-Carlo simulation of the test-beam setup which is based on the same simulation and reconstruction tools as those used for the ATLAS detector itself.

  20. Intercalibration of the ZEUS high resolution and backing calorimeters

    International Nuclear Information System (INIS)

    Abramowicz, H.; Czyrkowski, H.; Derlicki, A.; Krzyzanowski, M.; Kudla, I.; Kusmierz, W.; Nowak, R.J.; Pawlak, J.M.; Rajca, A.; Stopczynski, A.; Walczak, R.; Zarnecki, A.F.; Kowalski, T.Z.

    1991-07-01

    We have studied the combined performance of two calorimeters, the high resolution uranium-scintillator prototype of the ZEUS forward calorimeter (FCAL), followed by a prototype of the coarser ZEUS backing calorimeter (BAC), made out of thick iron plates interleaved with planes of aluminium proportional chambers. The test results, obtained in an exposure of the calorimeter system to a hadron test beam at the CERN-SPS, show that the backing calorimeter does fulfil its role of recognizing the energy leaking out of the FCAL calorimeter. The measurement of this energy is feasible, if an appropriate calibration of the BAC calorimeter is performed. (orig.)

  1. Intercalibration of the ZEUS high resolution and backing calorimeters

    International Nuclear Information System (INIS)

    Abramowicz, H.; Czyrkowski, H.; Derlicki, A.; Krzyzanowski, M.; Kudla, I.; Kusmierz, W.; Nowak, R.J.; Pawlak, J.M.; Rajca, A.; Stopczynski, A.; Walczak, R.; Zarnecki, A.F.; Kowalski, T.Z.

    1992-01-01

    We have studied the combined performance of two calorimeters, the high resolution uranium-scintillator prototype of the ZEUS forward calorimeter (FCAL), followed by a prototype of the coarser ZEUS backing calorimeter (BAC), made out of thick iron plates interleaved with planes of aluminium proportional chambers. The test results, obtained in an exposure of the calorimeter system to a hadron test beam at the CERN SPS, show that the backing calorimeter does fulfil its role of recognizing the energy leaking out of the FCAL calorimeter. The measurement of this energy is feasible, if an appropriate calibration of the BAC calorimeter is performed. (orig.)

  2. Detection of Co-inheritance of Hb Hope and Hb Constant Spring in Three Thai Samples by Capillary Electrophoresis.

    Science.gov (United States)

    Panyasai, Sitthichai; Pornprasert, Sakorn

    2016-06-01

    The diagnosis of co-inheritance of Hb Hope [β136(H14)Gly → Asp, GGT > GAT] and Hb constant spring [Hb CS; α142, Term → Gln (TAA > CAA IN α2)] by high performance liquid chromatography (HPLC) is difficult because Hb Hope has a HPLC elution pattern similar to that of Hb Pyrgos, Hb New York, Hb Kodaira, and Hb Phimai. Moreover, the Hb CS mRNA, as well as the gene product, are unstable and present at a low level in peripheral blood. We report the use of a capillary electrophoresis (CE) for diagnosis of co-inheritance of Hb Hope and Hb CS in 3 Thai females who had mild anemia with Hb and Hct varying from 91-114 g/L to 0.28-0.36 L/L, respectively. Hb Hope eluted with a retention time of 125-140 s (Zone 10) of CE electrophoregram. Furthermore, the peak of Hb CS at the retention time of 245-250 s (Zone 2) was observed in these samples. In addition, the manual analysis by taking the non-black area under both peaks of HbA and Hb Hope (inverted V) into account provided the corrected Hb CS levels which are useful in screening of heterozygote or homozygote for Hb CS. Thus, the CE method provides an accurate diagnosis of Hb Hope and Hb CS which is useful in genetic counseling, prevention and control programs for these hemoglobinopathies.

  3. Calibration of Tilecal hadronic calorimeter of the ATLAS

    International Nuclear Information System (INIS)

    Batkova, L.

    2009-01-01

    The aim of a precise calibration of a calorimeter is to get the best response relationship between the calorimeter and the energy of incident particles. Different types of particles interact through various types of interactions with the environment. Therefore, calorimeters are optimized to detect one type of particle (electromagnetic particles and hadrons). Within current high energy physics experiments, where the detectors reached gigantic proportions, calorimeters hold two important features: - serve to measure power showers by complete absorption method; - reconstruct a direction of showers of particles after their interaction with the environment of calorimeter. To deterioration of the resolving power of the hadronic calorimeter contributes incompensation of its response to hadrons and electromagnetic particles (e, μ). They record more energy from electrons as from pions of the same nominal power. During building of experiment of the ATLAS the prototypes of Tile calorimeter were calibrated using Cs and then were tested by means of calibration particle beams (e, μ, π). The work is aimed to evaluation of the response of the muon beam calibration experiment ATLAS. The scope of the work is to determine correction factors for the calibration constants obtained from the primary calibration of the calorimeter by cesium for end Tilecal calorimeter modules. Tile calorimeter modules consist of three layers A, BC and D. A correction factor for calibration constant for A layer was determined by electron beam firing angle less than 20 grad. Muons are used to determine correction factors for the remaining two layers of the end calorimeter module, where the electrons of given energy do not penetrate. (author)

  4. Measurement of HbA1c and HbA2 by Capillarys 2 Flex Piercing HbA1c programme for simultaneous management of diabetes and screening for thalassemia.

    Science.gov (United States)

    Ke, Peifeng; Liu, Jiawei; Chao, Yan; Wu, Xiaobin; Xiong, Yujuan; Lin, Li; Wan, Zemin; Wu, Xinzhong; Xu, Jianhua; Zhuang, Junhua; Huang, Xianzhang

    2017-10-01

    Thalassemia could interfere with some assays for haemoglobin A 1c (HbA 1c ) measurement, therefore, it is useful to be able to screen for thalassemia while measuring HbA 1c . We used Capillarys 2 Flex Piercing (Capillarys 2FP) HbA 1c programme to simultaneously measure HbA 1c and screen for thalassemia. Samples from 498 normal controls and 175 thalassemia patients were analysed by Capillarys 2FP HbA 1c programme (Sebia, France). For method comparison, HbA 1c was quantified by Premier Hb9210 (Trinity Biotech, Ireland) in 98 thalassaemia patients samples. For verification, HbA 1c from eight thalassaemia patients was confirmed by IFCC reference method. Among 98 thalassaemia samples, Capillarys 2FP did not provide an HbA 1c result in three samples with HbH due to the overlapping of HbBart's with HbA 1c fraction; for the remaining 95 thalassaemia samples, Bland-Altman plot showed 0.00 ± 0.35% absolute bias between two systems, and a significant positive bias above 7% was observed only in two HbH samples. The HbA 1c values obtained by Capillarys 2FP were consistent with the IFCC targets (relative bias below ± 6%) in all of the eight samples tested by both methods. For screening samples with alpha (α-) thalassaemia silent/trait or beta (β-) thalassemia trait, the optimal HbA 2 cut-off values were ≤ 2.2% and > 2.8%, respectively. Our results demonstrated the Capillarys 2FP HbA 1c system could report an accurate HbA 1c value in thalassemia silent/trait, and HbA 2 value (≤ 2.2% for α-thalassaemia silent/trait and > 2.8% for β-thalassemia trait) and abnormal bands (HbH and/or HbBart's for HbH disease, HbF for β-thalassemia) may provide valuable information for screening.

  5. Feasibility of a Mound-designed transportable calorimeter

    International Nuclear Information System (INIS)

    Duff, M.F.; Fellers, C.L.

    1979-01-01

    The feasibility of operating a Mound twin resistance bridge calorimeter outside a temperature-controlled water bath was demonstrated. An existing calorimeter was retrofit with two additional jackets through which water was transferred from an external reservoir. Comparison of test results collected before and after the retrofit indicated that the calorimeter performance was not degraded by this modification. Similarly designed calorimeters have potential applications in laboratories where equipment space is limited for inspectors who are required to transport their assay instrumentation

  6. The ATLAS Tile Calorimeter

    CERN Document Server

    Henriques Correia, Ana Maria

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics.

  7. The ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Henriques, A.

    2015-01-01

    TileCal is the Hadronic calorimeter covering the most central region of the ATLAS experiment at the LHC. It uses iron plates as absorber and plastic scintillating tiles as the active material. Scintillation light produced in the tiles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs). The resulting electronic signals from the approximately 10000 PMTs are measured and digitised every 25 ns before being transferred to off-detector data-acquisition systems. This contribution will review in a first part the performances of the calorimeter during run 1, obtained from calibration data, and from studies of the response of particles from collisions. In a second part it will present the solutions being investigated for the ongoing and future upgrades of the calorimeter electronics. (authors)

  8. Polystyrene calorimeter for electron beam dose measurements

    DEFF Research Database (Denmark)

    Miller, A.

    1995-01-01

    Calorimeters from polystrene have been constructed for dose measurement at 4-10 MeV electron accelerators. These calorimeters have been used successfully for a few years, and polystyrene calorimeters for use at energies down to 1 MeV and being tested. Advantage of polystyrene as the absorbing...

  9. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Van Daalen, Tal Roelof; The ATLAS collaboration

    2018-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for the reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized every 25 ns by sampling the signal. About 10000 channels of the front-end electronics measure the signals of the calorimeter with energies ranging from ~30 MeV to ~2 TeV. Each step of the signal reconstruction from scintillation light to the digital pulse reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations...

  10. Central hadron calorimeter of UA1

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.J.

    1983-12-01

    An iron-scintillator sampling calorimeter is described, which measures hadronic energy in proton-antiproton interactions at the CERN 540 GeV SPS collider. Construction details are given of the instrumentation of the magnet pieces of the UA1 experiment and of the methods used to measure the calorimeter response and resolution. The system of lasers and quartz fibres, which allows long term monitoring of the calorimeter response, is also described. (author)

  11. Central hadron calorimeter of UA1

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.J.; Ellis, N.N.; Garvey, J.; Grant, D.; Homer, R.J.; Kenyon, I.R.; McMahon, T.J.; Schanz, G.; Sumorok, K.C.T.O.; Watkins, P.M.; Wilson, J.A.; Barnes, G.; Bowcock, T.J.V.; Eisenhandler, E.; Gibson, W.R.; Honma, A.K.; Kalmus, P.I.P.; Keeler, R.K.; Pritchard, T.W.; Salvi, G.A.P.; Thompson, G.; Arnison, G.T.J.; Astbury, A.; Cash, A.R.; Grayer, G.H.; Haynes, W.J.; Hill, D.L.; Moore, D.R.; Nandi, A.K.; Percival, M.D.; Roberts, J.H.C.; Scott, W.G.; Shah, T.P.; Stanhope, R.J.; White, D.E.A.

    1985-01-01

    An iron-scintillator sampling calorimeter is described, which measures hadronic energy in proton-antiproton interactions at the CERN 540 GeV SPS collider. Construction details are given of the instrumentation of the magnet pieces of the UA1 experiment and of the methods used to measure the calorimeter response and resolution. The system of lasers and quartz fibres, which allows long term monitoring of the calorimeter response, is also described. (orig.)

  12. Probing the diphosphoglycerate binding pocket of HbA and HbPresbyterian (beta 108Asn --> Lys).

    Science.gov (United States)

    Gottfried, D S; Manjula, B N; Malavalli, A; Acharya, A S; Friedman, J M

    1999-08-31

    HbPresbyterian (beta 108Asn --> Lys, HbP) contains an additional positive charge (per alpha beta dimer) in the middle of the central cavity and exhibits a lower oxygen affinity than wild-type HbA in the presence of chloride. However, very little is known about the molecular origins of its altered functional properties. In this study, we have focused on the beta beta cleft of the Hb tetramer. Recently, we developed an approach for quantifying the ligand binding affinity to the beta-end of the Hb central cavity using fluorescent analogues of the natural allosteric effector 2, 3-diphosphoglycerate (DPG) [Gottfried, D. S., et al. (1997) J. Biol. Chem. 272, 1571-1578]. Time-correlated single-photon counting fluorescence lifetime studies were used to assess the binding of pyrenetetrasulfonate to both HbA and HbP in the deoxy and CO ligation states under acidic and neutral pH conditions. Both the native and mutant proteins bind the probe at a weak binding site and a strong binding site; in all cases, the binding to HbP was stronger than to HbA. The most striking finding was that for HbA the binding affinity varies as follows: deoxy (pH 6.35) > deoxy (pH 7.20) > CO (pH 6.35); however, the binding to HbP is independent of ligation or pH. The mutant oxy protein also hydrolyzes p-nitrophenyl acetate, through a reversible acyl-imidazole pathway linked to the His residues of the beta beta cleft, at a considerably higher rate than does HbA. This implies a perturbation of the microenvironment of these residues at the DPG binding pocket. Structural consequences due to the presence of the new positive charge in the middle of the central cavity have been transmitted to the beta beta cleft of the protein, even in its liganded conformation. This is consistent with a newly described quaternary state (B) for liganded HbPresbyterian and an associated change in the allosteric control mechanism.

  13. 27 CFR 25.141 - Barrels and kegs.

    Science.gov (United States)

    2010-04-01

    ... OF THE TREASURY LIQUORS BEER Marks, Brands, and Labels § 25.141 Barrels and kegs. (a) General... shown on the bung or on the tap cover, or on a label securely affixed to each barrel or keg, the place... production: (i) May be shown as the only location on the bung, or on the tap cover, or on a separate label...

  14. Upgrading the Atlas Tile Calorimeter Electronics

    CERN Document Server

    Popeneciu, G; The ATLAS collaboration

    2014-01-01

    Tile Calorimeter is the central hadronic calorimeter of the ATLAS experiment at LHC. Around 2024, after the upgrade of the LHC the peak luminosity will increase by a factor of 5 compared to the design value, thus requiring an upgrade of the Tile Calorimeter readout electronics. Except the photomultipliers tubes (PMTs), most of the on- and off-detector electronics will be replaced, with the aim of digitizing all PMT pulses at the front-end level and sending them with 10 Gb/s optical links to the back-end electronics. One demonstrator prototype module is planned to be inserted in Tile Calorimeter in 2015 that will include hybrid electronic components able to probe the new design.

  15. Monitoring core barrel motion by neutron noise diagnostics

    International Nuclear Information System (INIS)

    Por, G.

    1985-08-01

    The core barrel motion is detected by ionization chambers located around the reactor vessel. The method is based on the measurement of the neutron flux fluctuations. Calculations to determine the direction and the size of the motion are discussed. The identification of core barrel motion and its connection with the error of one of the main circulating pumps in the Rheinsberg nuclear power plant are described. Core barrel motion of 10 Hz with an amplitude less than 50 μm could be diagnozed at the Paks-1 reactor using the Dutch high accuracy evaluation system. (V.N.)

  16. Qualification Procedures of the CMS Pixel Barrel Modules

    CERN Document Server

    Starodumov, A; Horisberger, R.; Kastli, H.Chr.; Kotlinski, D.; Langenegger, U.; Meier, B.; Rohe, T.; Trueb, P.

    2006-01-01

    The CMS pixel barrel system will consist of three layers built of about 800 modules. One module contains 66560 readout channels and the full pixel barrel system about 48 million channels. It is mandatory to test each channel for functionality, noise level, trimming mechanism, and bump bonding quality. Different methods to determine the bump bonding yield with electrical measurements have been developed. Measurements of several operational parameters are also included in the qualification procedure. Among them are pixel noise, gains and pedestals. Test and qualification procedures of the pixel barrel modules are described and some results are presented.

  17. Failure analysis of a barrel exposed to high temperature

    International Nuclear Information System (INIS)

    Usman, A.; Salam, I.; Rizvi, S.A.; Qasir, S.

    2005-01-01

    The paper deals with the study of a tank gun barrel which had failed after firing only a few rounds. The failure was in the form of bulging at the muzzle end (ME). The material of the barrel was characterized using different techniques including chemical and mechanical testing, optical microscopy and electron microscopy. Study disclosed that the barrel was subjected to excessively high temperature that resulted in its softening and consequent bulging under high pressure of the round. (author)

  18. Concerning background from calorimeter ports

    International Nuclear Information System (INIS)

    Digiacomo, N.J.

    1985-01-01

    Any detector system viewing a port or slit in a calorimeter wall will see, in addition to the primary particles of interest, a background of charged and neutral particles and photons generated by scattering from the port walls and by leakage from incompletely contained primary particle showers in the calorimeter near the port. The signal to noise ratio attainable outside the port is a complex function of the primary source spectrum, the calorimeter and port design and, of course, the nature and acceptance of the detector system that views the port. Rather than making general statements about the overall suitability (or lack thereof) of calorimeter ports, we offer here a specific example based on the external spectrometer and slit of the NA34 experiment. This combination of slit and spectrometer is designed for fixed-target work, so that the primary particle momentum spectrum contains higher momentum particles than expected in a heavy ion colliding beam environment. The results are, nevertheless, quite relevant for the collider case

  19. Dietary determinants for Hb-acrylamide and Hb-glycidamide adducts in Danish non-smoking women

    DEFF Research Database (Denmark)

    Outzen, Malene; Egeberg, Rikke; Dragsted, Lars

    2011-01-01

    in erythrocytes were analysed by liquid chromatography/MS/MS. Dietary determinants were evaluated by multiple linear regression analyses adjusted for age and smoking behaviour among ex-smokers. The median for Hb-AA was 35 pmol/g globin (5th percentile 17, 95th percentile 89) and for Hb-GA 21 pmol/g globin (5th......Acrylamide (AA) is a probable human carcinogen that is formed in heat-treated carbohydrate-rich foods. The validity of FFQ to assess AA exposure has been questioned. The aim of the present cross-sectional study was to investigate dietary determinants of Hb-AA and Hb-glycidamide (GA) adducts....... The study included 537 non-smoking women aged 50–65 years who participated in the Diet, Cancer and Health cohort (1993–97). At study baseline, blood samples and information on dietary and lifestyle variables obtained from self-administered questionnaires were collected. From blood samples, Hb-AA and Hb-GA...

  20. Upgrading the Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    The tremendous need for simulated samples now and even more so in the future, encourage the development of fast simulation techniques. The Fast Calorimeter Simulation is a faster though less accurate alternative to the full calorimeter simulation with Geant4. It is based on parametrizing the longitudunal and lateral energy deposits of single particles in the ATLAS calorimeter. Principal component analysis and machine learning techniques are used to improve the performance and decrease the memory need compared to the current version of the ATLAS Fast Calorimeter Simulation. The parametrizations are expanded to cover very high energies and very forward detector regions, to increase the applicability of the tool. A prototype of this upgraded Fast Calorimeter Simulation has been developed and first validations with single particles show substantial improvements over the previous version.

  1. A Novel Double Heterozygous Hb D-Punjab/Hb J-Meerut Hemoglobinopathy.

    Science.gov (United States)

    Chandra, Dinesh; Tyagi, Seema; Deka, Roopam; Chauhan, Richa; Seth, Tulika; Saxena, Renu; Pati, H P

    2017-12-01

    A comprehensive laboratory diagnosis of hemoglobinopathies forms an integral part in workup of disorders of globin chain synthesis. Clinical findings, complete blood counts, peripheral smear examination along with hemoglobin (Hb) electrophoresis and/or cation exchange high performance liquid chromatography findings and parental study helps to clinch a final diagnosis. Compound heterozygous hemoglobinopathy presents with variable clinical findings and some of them are picked up on screening tests done as part of routine antenatal workup. Here we report a rare double heterozygous hemoglobinopathy of Hb D-Punjab and Hb J-Meerut in a 35 year antenatal female.

  2. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    D. Barney

    2013-01-01

    The CMS ECAL, comprising barrel (EB), endcaps (EE) and preshower (ES) detectors, operated reliably throughout the 2012 (proton-proton) and early 2013 (proton-lead) running periods. The data quality was excellent, with more than 98% of the delivered luminosity declared good for physics in 2012, and close to 100% in 2013. The number of active channels – ~99% in the EB/EE and ~97% in the ES – was stable during 2012-’13. The ECAL performance, as measured by the electron energy scale and resolution and Z→ee mass resolution in both barrel and endcaps, is excellent and very stable in time (see Figure 1 for an example, and CMS-DP-2013-007: https://cds.cern.ch/record/1528235) following a dedicated calibration using the full 2012 CMS dataset. Figure 1 (a) and (b): The mass resolution of the Z peak, reconstructed from its di-electron decay mode, as a function of time for the barrel (a) and endcaps (b). The sample is inclusive (no cut on the amount of bremsstrahlung undergone...

  3. Transportable high sensitivity small sample radiometric calorimeter

    International Nuclear Information System (INIS)

    Wetzel, J.R.; Biddle, R.S.; Cordova, B.S.; Sampson, T.E.; Dye, H.R.; McDow, J.G.

    1998-01-01

    A new small-sample, high-sensitivity transportable radiometric calorimeter, which can be operated in different modes, contains an electrical calibration method, and can be used to develop secondary standards, will be described in this presentation. The data taken from preliminary tests will be presented to indicate the precision and accuracy of the instrument. The calorimeter and temperature-controlled bath, at present, require only a 30-in. by 20-in. tabletop area. The calorimeter is operated from a laptop computer system using unique measurement module capable of monitoring all necessary calorimeter signals. The calorimeter can be operated in the normal calorimeter equilibration mode, as a comparison instrument, using twin chambers and an external electrical calibration method. The sample chamber is 0.75 in (1.9 cm) in diameter by 2.5 in. (6.35 cm) long. This size will accommodate most 238 Pu heat standards manufactured in the past. The power range runs from 0.001 W to <20 W. The high end is only limited by sample size

  4. LHCb Calorimeter modules arrive at CERN

    CERN Multimedia

    2002-01-01

    Two of the three components of the LHCb Calorimeter system have started to arrive from Russia. Members of the LHCb Calorimeter group with the ECAL and HCAL modules that have just arrived at CERN. The first two of the 56 Hadron Calorimeter (HCAL) modules and 1200 of the 3300 modules of the Electromagnetic Calorimeter (ECAL) have reached CERN from Russia. The third part of the system, the Preshower detector, is still being prepared in Russia. The calorimeter system identifies and triggers on high-energy particles, namely electrons, hadrons and photons by measuring their positions and energies. The HCAL is going to be a pure trigger device. The ECAL will also be used in the triggering, but in addition it will reconstruct neutral pions and photons from B meson decays. One of the major aims of the LHCb experiment is to study CP violation through B meson decays including Bs mesons with high statistics in different decay modes. CP violation (violation of charge and parity) is necessary to explain why the Universe...

  5. Performance of the ATLAS Tile Calorimeter

    Science.gov (United States)

    Hrynevich, A.

    2017-06-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC . Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV . Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadrons are used as a probe of the hadronic response and its modelling by the Monte Carlo simulations. The calorimeter time resolution is studied with multijet events. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  6. Calorimeters for diagnosis of laser-fusion experiments

    International Nuclear Information System (INIS)

    Gunn, S.R.

    1976-01-01

    A variety of calorimeters have been developed for measuring ions, x-rays, and scattered radiation emanating from laser-pulse-imploded fusion targets. The ion and x-ray calorimeters use metal or glass absorbers to reflect or transmit most of the scattered laser radiation; the versions using metal absorbers also incorporate a differential construction to compensate for the fraction of the scattered laser radiation that is absorbed. The scattered-radiation calorimeters use colored glass to absorb the radiation and a transparent glass shield to remove ions and x rays. Most of the calorimeters use commercial semiconductor thermoelectric modules as the temperature sensors

  7. The spaghetti calorimeter. Research, development, application

    Energy Technology Data Exchange (ETDEWEB)

    Scheel, C V

    1994-12-22

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from {Sigma} decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at {sigma}/E=12.9%/{radical}E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/{radical}E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam {Sigma}{sup -}particles via its decay {Sigma}{sup -}{yields}n{pi}{sup -}. Details of the calibration of SPACAL with electrons and protons are presented. (orig.).

  8. The spaghetti calorimeter. Research, development, application

    International Nuclear Information System (INIS)

    Scheel, C.V.

    1994-01-01

    The Spaghetti Calorimeter (SPACAL) is a detector intended primarily for the energy measurement of high-energy particles, but also provides spatial information and particle identification. It is a sampling calorimeter composed of plastic scintillating fibers, oriented in the direction of the particle, embedded in lead. The scintillation light is read out by photomultipliers, which are coupled to bunches of fibers through light guides, each forming a tower. It was developed as an electromagnetic (e.m.) and compensating hadronic calorimeter for use in future multi-TeV collider experiments. The largest prototype was installed for an alternative application as an hadronic calorimeter in the WA89 experiment, where it is used for the detection of neutrons resulting from Σ decays. The basic concepts behind calorimetry are discussed in detail. Several prototypes were tested in beams of electrons and pions with energies up to 150 GeV. Resonable e.m. energy resolution, at σ/E=12.9%/√E[GeV]+1.23%, was measured. Excellent hadronic energy resolution was found, at 30.6%/√E[GeV]+1.0%, but the calorimeter was found to be slightly undercompensating with e/h=1.15. The position of the shower barycenter for both electrons and pions was easily found according to the relative energy deposits in the calorimeter towers. The calorimeter was also found to be able to provide effective discrimination between electrons and hadrons. The performance of SPACAL in the WA89 experiment at the Omega spectrometer at CERN was studied with the reconstruction of beam Σ - particles via its decay Σ - →nπ - . Details of the calibration of SPACAL with electrons and protons are presented. (orig.)

  9. Work on the ATLAS semiconductor tracker barrel

    CERN Multimedia

    Maximilien Brice

    2005-01-01

    Precision work is performed on the semiconductor tracker barrel of the ATLAS experiment. All work on these delicate components must be performed in a clean room so that impurities in the air, such as dust, do not contaminate the detector. The semiconductor tracker will be mounted in the barrel close to the heart of the ATLAS experiment to detect the path of particles produced in proton-proton collisions.

  10. Gas calorimeter workshop: proceedings

    International Nuclear Information System (INIS)

    1982-01-01

    Gas calorimeters combining functions of energy measurement and fine tracking have become more and more popular in the past few years. They help identify muons, gammas, electrons, and hadrons within dense tracks from transverse and longitudinal shower development. Fine segmentation capability using pads and strips on the cathodes have made gas-sampling calorimeters very attractive for colliding-beam detectors where a large multiplicity of particles are detected in a projected geometry. Linearity, energy resolution, shower position resolution, multishower resolution, and calibration questions were discussed in detail at the workshop. Ease of energy calibration by monitoring radioactive sources, good gain uniformity, and gain stability obtained were among the topics of the speakers. There was a discussion session on the operation mode of wire chambers. Gas calorimeters have been used successfully at CERN, Cornell, Fermilab, and SLAC for experiments. Some of the results from those large-scale devices were reported. Future usage of gas-sampling calorimeters for colliding-beam experiments at Fermilab and CERN were discussed. Wire chambers using extruded conductive plastic tubes have made construction easy of pads and strips which can conveniently read out induced signals from the cathode. The results of extensive studies on such devices were discussed. Separate entries were prepared for the data base for the 17 papers presented

  11. Quantitative Trait Loci Influencing Hb F Levels in Southern Thai Hb E (HBB: c.79G>A) Heterozygotes.

    Science.gov (United States)

    Kesornsit, Aumpika; Jeenduang, Nutjaree; Horpet, Dararat; Plyduang, Thunyaluk; Nuinoon, Manit

    2018-01-01

    Variation of fetal hemoglobin (Hb F) expression in heterozygous Hb E (HBB: c.79G>A) individuals is associated with several genetic modifiers and not well understood. This study was undertaken in order to determine the effect of single nucleotide polymorphisms (SNPs), including XmnI G γ (rs7482144), rs766432 on the BCL11A gene and rs9376074 on the HBS1L gene, on Hb F levels in Southern Thai heterozygous Hb E individuals. A total of 97 Southern Thai subjects carrying heterozygous Hb E were selected for the hematological study. After excluding the samples with α-thalassemia (α-thal) interaction or moderate anemia, because both conditions can affect the hematological parameters, the remaining 74 samples were submitted to SNP analysis. Hematological parameters were measured using an automated hematology analyzer and high performance liquid chromatography (HPLC). The results show that rs766432 was strongly associated with increased Hb F levels and rs7482144 was associated with Hb F levels in each subgroup (genotype) of rs766432. This study suggested that the BCL11A locus has a major effect on Hb F levels compared with the XmnI polymorphism in Hb E heterozygotes. This association of Hb F levels with SNPs is useful for the interpretation of hemoglobin (Hb) typing in heterozygous Hb E samples with high Hb F levels. Future research will need to address the better understanding of the mechanisms of the SNPs that regulate Hb F production without stress erythropoiesis in Hb E heterozygotes.

  12. Thermal dynamics of bomb calorimeters.

    Science.gov (United States)

    Lyon, Richard E

    2015-12-01

    The thermal dynamics of bomb calorimeters are modeled using a lumped heat transfer analysis in which heat is released in a pressure vessel/bomb immersed in a stirred water bath that is surrounded by a static air space bounded by an insulated (static) jacket, a constant/controlled temperature jacket (isoperibol), or a changing temperature (adiabatic) jacket. The temperature history of the water bath for each of these boundary conditions (methods) is well described by the two-term solution for the calorimeter response to a heat impulse (combustion), allowing the heat transfer coefficients and thermal capacities of the bomb and water bath to be determined parametrically. The validated heat transfer model provides an expression for direct calculation of the heat released in an arbitrary process inside a bomb calorimeter using the temperature history of the water bath for each of the boundary conditions (methods). This result makes possible the direct calculation of the heat of combustion of a sample in an isoperibol calorimeter from the recorded temperature history without the need for semi-empirical temperature corrections to account for non-adiabatic behavior. Another useful result is that the maximum temperature rise of the water bath in the static jacket method is proportional to the total heat generated, and the empirical proportionality constant, which is determined by calibration, accounts for all of the heat losses and thermal lags of the calorimeter.

  13. Comparison of the Heat Release Rate from the Mass Loss Calorimeter to the Cone Calorimeter for Wood-based Materials

    Science.gov (United States)

    Laura E. Hasburgh; Robert H. White; Mark A. Dietenberger; Charles R. Boardman

    2015-01-01

    There is a growing demand for material properties to be used as inputs in fi re behavior models designed to address building fire safety. This comparative study evaluates using the mass loss calorimeter as an alternative to the cone calorimeter for obtaining heat release rates of wood-based materials. For this study, a modified mass loss calorimeter utilized an...

  14. Proposal for the award of a contract for the supply of 26 000 lead-tungstate scintillation crystals for the CMS electromagnetic calorimeter

    CERN Document Server

    2001-01-01

    This document concerns the award of a contract for the supply of 26 000 lead-tungstate scintillation crystals for the barrel part of the CMS Electromagnetic Calorimeter (ECAL). Following a CERN market survey (MS-2727/EP/CMS) carried out among seven firms in four Member States and two firms in two non-Member States, the Eidgenössische Technische Hochschule in Z rich (ETHZ) published on 15 February 2001 an open call for tenders and, in addition, invited tenders from four firms in two non-Member States, including the two firms identified in the CERN market survey. By the closing date, the ETHZ had received one bid from a firm in a CERN Member State and three bids from three firms in two non-Member States. The Finance Committee is invited to agree to the negotiation of a contract to be placed by CERN, on behalf of the ETHZ, with the lowest bidder, SCIONIX (NL), for the supply of 26 000 lead-tungstate crystals for the barrel part of the CMS ECAL for a total amount of 9 392 000 US dollars (16 060 320 Swiss francs)...

  15. CDF End Plug calorimeter Upgrade Project

    International Nuclear Information System (INIS)

    Apollinari, G.; de Barbaro, P.; Mishina, M.

    1994-01-01

    We report on the status of the CDF End Plug Upgrade Project. In this project, the CDF calorimeters in the end plug and the forward regions will be replaced by a single scintillator based calorimeter. After an extensive R ampersand D effort on the tile/fiber calorimetry, we have now advanced to a construction phase. We review the results of the R ampersand D leading to the final design of the calorimeters and the development of tooling devised for this project. The quality control program of the production of the electromagnetic and hadronic calorimeters is described. A shower maximum detector for the measurement of the shower centroid and the shower profile of electrons, γ and π 0 has been designed. Its performance requirements, R ampersand D results and mechanical design are discussed

  16. 2001, the ATLAS Cryostat Odyssey

    CERN Multimedia

    2001-01-01

    After a journey of several thousand kilometres, over sea and land, by canal and highway, the cryogenics barrel of the ATLAS electromagnetic calorimeter finally arrived at CERN last week. Installed in Hall 180, the cryogenics barrel of the ATLAS electromagnetic calorimeter will be fitted out to take the central superconducting solenoid and the electromagnetic calorimeter. On Monday 2 July, different French police units and EDF officials were once again keeping careful watch around the hairpin bends of the road twisting down from the Col de la Faucille: a special load weighing 100 tonnes, 7 metres high, 5.8 metres wide and 7.2 metres long was being brought down into the Pays de Gex to the Meyrin site of CERN. This time the destination was the ATLAS experiment. A huge blue tarpaulin cover concealed the cryogenics barrel of the experiment's liquid argon electromagnetic calorimeter. The cryostat consists of a vacuum chamber, a cylinder that is 5.5 metres in diameter, 7 metres long, and a concentric cold chamber ...

  17. A digital calorimeter

    International Nuclear Information System (INIS)

    Nitschke, J.M.

    1983-01-01

    The paper describes a calorimeter which is used to determine the particle flux of an accelerator. It incorporates as its principal feature a Peltier module which is operated in a constant current pulse mode. Via a feedback arrangement, the Peltier module thermally compensates the heat generated by the particle beam by supplying discrete 'cooling quanta'. The number of 'quanta' generated per unit time is measured with a frequency counter and is proportional to the beam power. The calorimeter can be calibrated via internal resistors which dissipate a precisely known amount of power in the target. (orig.)

  18. Some hadron calorimeter properties relevant to storage rings

    International Nuclear Information System (INIS)

    Corden, M.J.; Dowell, J.D.; Edwards, M.; Ellis, N.; Garvey, J.; Grant, D.; Homer, R.J.; Kenyon, I.R.; McMahon, T.; Schanz, G.; Sumorok, K.C.T.O.; Watkins, P.M.; Wilson, J.A.; Eisenhandler, E.; Gibson, W.R.; Kalmus, P.I.P.; Thompson, G.; Arnison, G.; Astbury, A.; Grayer, G.; Haynes, W.J.; Hill, D.; Nandi, A.K.; Roberts, C.; Shah, T.P.

    1982-01-01

    At wide angles in a storage ring environment, a substantial part of the energy seen by a hadron calorimeter can be in the form of very low momentum particles such as jet fragments or resonance cascade decay products. Data are presented on the deviations from Gaussian resolution and linear response for such low momentum particles. The differing responses to incident e - , μ - , π +- , K +- , p and anti p at momenta below 10 GeV/c are also compared. In addition, the authors discuss the significance of angle effects for a 4π calorimeter, and the problems of combining data from calorimeters with different physical characteristics. Experimental data are presented on the difference in hadron response between a fine grain (electromagnetic) lead calorimeter and a coarser (hadron) iron calorimeter, and on the dependence of the response on the energy sharing between the two calorimeters. (Auth.)

  19. Run 1 Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Heelan, Louise; The ATLAS collaboration

    2014-01-01

    The ATLAS Tile hadronic calorimeter (TileCal) provides highly-segmented energy measurements of incoming particles. It is a key detector for the measurement of hadrons, jets, tau leptons and missing transverse energy. It is also useful for identification and reconstruction of muons due to good signal to noise ratio. The calorimeter consists of thin steel plates and 460,000 scintillating tiles configured into 5000 cells, each viewed by two photomultipliers. The calorimeter response and its readout electronics is monitored to better than 1% using radioactive source, laser and charge injection systems. The calibration and performance of the calorimeter have been established through test beam measurements, cosmic ray muons and the large sample of proton-proton collisions acquired in 2011 and 2012. Results on the calorimeter performance are presented, including the absolute energy scale, timing, noise and associated stabilities. The results demonstrate that the Tile Calorimeter has performed well within the design ...

  20. Hemoglobin Constant Spring (Hb CS) Missed by HPLC in an Hb E Trait Pregnancy Resulting in Hb H-CS Disease in a Thai Girl: Utility of Capillary Electrophoresis.

    Science.gov (United States)

    Pornprasert, Sakorn; Saoboontan, Supansa; Wiengkum, Thanatcha

    2016-06-01

    Hemoglobin Constant Spring [Hb CS; α142, Term→Gln (TAA>CAA IN α2)] is often missed by routine laboratory testing, especially in subjects with co-inheritance of β-thalassemia or β-variants. We reported the case of a 1-year-old female with Hb H-CS disease who was born from a father with heterozygous of α-thalassemia-1 Southeast Asian type deletion and a mother with the combination of Hb CS and Hb E [β26 (B8) Glu→Lys, GAG>AAG] trait. A very tiny peak of Hb CS of the mother was easily ignored on the high performance liquid chromatography chromatogram while it was clearly seen on the capillary electrophoresis (CE) electrophoregram. Therefore, the CE is useful in screening for heterozygous Hb CS in a person with Hb E trait. This is of potential benefit for prevention of new cases of Hb H-CS disease.

  1. Fast Calorimeter Simulation in ATLAS

    CERN Document Server

    Schaarschmidt, Jana; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. It is 500 times faster than full simulation in the calorimeter system. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of mach...

  2. A water flow calorimeter calibration system

    International Nuclear Information System (INIS)

    Ullrich, F.T.

    1983-01-01

    Neutral beam systems are instrumented by several water flow calorimeter systems, and some means is needed to verify the accuracy of such systems and diagnose their failures. This report describes a calibration system for these calorimeters. The calibrator consists of two 24 kilowatt circulation water heaters, with associated controls and instrumentation. The unit can supply power from 0 to 48 kW in five coarse steps and one fine range. Energy is controlled by varying the power and the time of operation of the heaters. The power is measured by means of precision power transducers, and the energy is measured by integrating the power with respect to time. The accuracy of the energy measurement is better than 0.5% when the power supplied is near full scale, and the energy resolution is better than 1 kilojoule. The maximum energy delivered is approximately 50 megajoules. The calorimetry loop to be calibrated is opened, and the calibrator is put in series with the calorimeter heat source. The calorimeter is then operated in its normal fashion, with the calibrator used as the heat source. The calibrator can also be used in a stand alone mode to calibrate calorimeter sensors removed from systems

  3. The ATLAS electromagnetic calorimeter

    CERN Multimedia

    Maximilien Brice

    2003-01-01

    Michel Mathieu, a technician for the ATLAS collaboration, is cabling the ATLAS electromagnetic calorimeter's first end-cap, before insertion into its cryostat. Millions of wires are connected to the electromagnetic calorimeter on this end-cap that must be carefully fed out from the detector so that data can be read out. Every element on the detector will be attached to one of these wires so that a full digital map of the end-cap can be recreated.

  4. The super sickling haemoglobin HbS-Oman: a study of red cell sickling, K+ permeability and associations with disease severity in patients heterozygous for HbA and HbS-Oman (HbA/S-Oman genotype).

    Science.gov (United States)

    Al Balushi, Halima W M; Wali, Yasser; Al Awadi, Maha; Al-Subhi, Taimoora; Rees, David C; Brewin, John N; Hannemann, Anke; Gibson, John S

    2017-10-01

    Studying different sickle cell genotypes may throw light on the pathogenesis of sickle cell disease (SCD). Here, the clinical profile, red cell sickling and K + permeability in 29 SCD patients (15 patients with severe disease and 14 with a milder form) of HbA/S-Oman genotype were analysed. The super sickling nature of this Hb variant was confirmed. The red cell membrane permeability to K + was markedly abnormal with elevated activities of P sickle , Gardos channel and KCl cotransporter (KCC). Results were consistent with Ca 2+ entry and Mg 2+ loss via P sickle stimulating Gardos channel and KCC activities. The abnormal red cell behaviour was similar to that in the commonest genotype of SCD, HbSS, in which the level of mutated Hb is considerably higher. Although activities of all three K + transporters also correlated with the level of HbS-Oman, there was no association between transport phenotype and disease severity. The super sickling behaviour of HbS-Oman may obviate the need for solute loss and red cell dehydration to encourage Hb polymerisation, required in other SCD genotypes. Disease severity was reduced by concurrent α thalassaemia, as observed in other SCD genotypes, and represents an obvious genetic marker for prognostic tests of severity in young SCD patients of the HbA/S-Oman genotype. © 2017 John Wiley & Sons Ltd.

  5. Data acquisition system for LHCb calorimeter

    International Nuclear Information System (INIS)

    Dai Gang; Gong Guanghua; Shao Beibei

    2007-01-01

    LHCb Calorimeter system is mainly used to identify and measure the energy of the photon, electron, hadron produced by the collision of proton. TELL1 is a common data acquisition platform based on FPGA for LHCb experiment. It is used to adopt custom data acquisition and process method for every detector and provide the data standard for the CPU matrix. This paper provides a novel DAQ and data process model in VHDL for Calorimeter. According to this model. We have built an effective Calorimeter DAQ system, which would be used in LHCb Experiment. (authors)

  6. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Marjanovic, Marija; The ATLAS collaboration

    2018-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibers to photo-multiplier tubes (PMTs), located in the outer part of the calorimeter. The readout is segmented into about 5000 cells, each one being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of the full readout chain during the data taking, a set of calibration sub-systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser, charge injection elements, and an integrator based readout system. Combined information from all systems allows to monitor and to equalize the calorimeter response at each stage of the signal evolution, from scintillation light to digitization. Calibration runs are monitored from a data quality perspective and u...

  7. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    Cortes-Gonzalez, Arely; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two photomultiplier in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The calibration system comprises Cesium radioactive sources, laser, charge injection elements and an integrator based readout system. Combined information from all systems allows to monitor and equalise the calorimeter r...

  8. The large hadron collider beauty experiment calorimeters

    International Nuclear Information System (INIS)

    Martens, A.; LHCb Collaboration; Martens, A.

    2010-01-01

    The Large Hadron Collider beauty experiment (LHCb), one of the four largest experiments at the LHC at CERN, is dedicated to precision studies of CP violation and other rare effects, in particular in the b and c quark sectors. It aims at precisely measuring the Standard Model parameters and searching for effects inconsistent with this picture. The LHCb calorimeter system comprises a scintillating pad detector, a pre-shower (PS), electromagnetic (ECAL) and hadronic calorimeters, all of these employing the principle of transporting the light from scintillating layers with wavelength shifting fibers to photomultipliers. The fast response of the calorimeters ensures their key role in the LHCb trigger, which has to cope with the LHC collision rate of 40MHz. After discussing the design and expected performance of the LHCb calorimeter system, one addresses the time and energy calibration issues. The results obtained with the calorimeter system from the first LHC data will be shown.

  9. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2016-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises Cesium radioactive sources, laser and charge injection elements and it allows to monitor and equalize the calorimeter response at each stage of the signal production, from scin...

  10. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Bartos, Pavol; The ATLAS collaboration

    2016-01-01

    Performance of the ATLAS hadronic Tile calorimeter The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter have been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations o...

  11. ATLAS Tile calorimeter calibration and monitoring systems

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00445232; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, ...

  12. Incidence of hemoglobinopathies and thalassemias in Northern Alberta. Establishment of reference intervals for HbF and HbA2.

    Science.gov (United States)

    Rodriguez-Capote, Karina; Higgins, Trefor N

    2015-07-01

    The aims of this study were to identify the incidence of hemoglobinopathies and thalassemias in Northern Alberta and calculate the reference intervals (RI) for hemoglobin (Hb) HbF and HbA2. A retrospective ad-hoc analysis of the structural Hb variants and thalassemias identified on patients who had a hemoglobinopathy/thalassemia investigation performed between February 1 to December 31, 2013. Results were extracted from the Laboratory Information System. Statistical analysis was performed using MedCalc® version 11.4.2.0 for Windows software. 6616 hemoglobinopathy/thalassemia investigations and HbS screens were physician requested and 602 Hb variants were fortuitously found during HbA1c analysis. 3438 were interpreted as "normal" and 532 were classified as iron deficient. 3306 individuals, with age ranging from 3 to 92 years were included in the RI calculation. HbA2 RI was 2.3% to 3.4% and HbF 0.0% to 1.8%. 524 and 423 α and β thalassemia traits respectively were identified. Additionally ten δβ thalassemia traits and twelve cases of HbH disease were identified. Regarding hemoglobinopathies, 7% were classified as α-chain variants and 93% as β-chain variants with HbS (46%), HbE (16%), HbD Punjab (8%) and HbC (7%) traits being the most prevalent. We also documented 20 homozygous hemoglobinopathies and 36 compound/double heterozygous hemoglobinopathies. A wide diversity of hemoglobinopathies is found in the Northern Alberta population, 80% of the hemoglobinopathies were found as a reflex to HbA1c testing. Reference intervals for HbF and HbA2 were established. Copyright © 2015 The Canadian Society of Clinical Chemists. Published by Elsevier Inc. All rights reserved.

  13. Rugged calorimeter with a fast rise time

    International Nuclear Information System (INIS)

    McMurtry, W.M.; Dolce, S.R.

    1980-01-01

    An intrinsic 1-mil-thick gold foil calorimeter has been developed which rises to 95% of the energy deposited in less than 2 microseconds. This calorimeter is very rugged, and can withstand rough handling without damage. The time constant is long, in the millisecond range, because of its unique construction. Use of this calorimeter has produced 100% data recovery, and agreement with true deposition to less than 10%

  14. Electromagnetic and Hadron Calorimeters in the MIPP Experiment

    International Nuclear Information System (INIS)

    Nigmanov, T. S.; Gustafson, H. R.; Longo, M. J.; Rajaram, D.

    2006-01-01

    The purpose of the MIPP experiment is to study the inclusive production of photons, pions, kaons, and nucleons produced in π, K, and p interactions on various targets using beams from the Main Injector at Fermilab. The purpose of the calorimeters is to measure the production of forward-going photons and neutrons. The electromagnetic calorimeter consists of 10 lead plates interspersed with proportional chambers followed by the hadron calorimeter with 64 steel plates interspersed with scintillator. We collected data with a variety of targets with beam energies from 5 GeV/c up to 120 GeV/c. The energy calibration of both calorimeters with electrons, pions, kaons and protons is discussed. The performance of the calorimeters was tested on a neutron sample

  15. The ATLAS hadronic tile calorimeter from construction toward physics

    CERN Document Server

    Adragna, P; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Binet, S; Biscarat, C; Blanchot, G; Bogush, A A; Bohm, C; Boldea, V; Bosman, M; Bromberg, C; Budagov, Yu A; Caloba, L; Calvet, D; Carvalho, J; Castelo, J; Castillo, M V; Sforza, M C; Cavasinni, V; Cerqueira, A S; Chadelas, R; Costanzo, D; Cogswell, F; Constantinescu, S; Crouau, M; Cuenca, C; Damazio, D O; Daudon, F; David, M; Davidek, T; De, K; Del Prete, T; Di Girolamo, B; Dita, S; Dolejsi, J; Dolezal, Z; Dotti, A; Downing, R; Efthymiopoulos, I; Errede, D; Errede, S; Farbin, A; Fassouliotis, D; Fedorko, I; Fenyuk, A; Ferdi, C; Ferrer, A; Flaminio, V; Fullana, E; Garde, V; Giakoumopoulou, V; Gildemeister, O; Gilewsky, V; Giangiobbe, V; Giokaris, N; Gomes, A; González, V; Grabskii, V; Grenier, P; Gris, P; Guarino, V; Guicheney, C; Sen-Gupta, A; Hakobyan, H; Haney, M; Henriques, A; Higón, E; Holmgren, S O; Hurwitz, M; Huston, J; Iglesias, C; And, K J; Junk, T; Karyukhin, A N; Khubua, J; Klereborn, J; Korolkov, I Ya; Krivkova, P; Kulchitskii, Yu A; Kurochkin, Yu; Kuzhir, P; Lambert, D; Le Compte, T; Lefèvre, R; Leitner, R; Lembesi, M; Li, J; Liablin, M; Lokajícek, M; Lomakin, Y; Amengual, J M L; Lupi, A; Maidantchik, C; Maio, A; Maliukov, S; Manousakis, A; Marques, C; Marroquim, F; Martin, F; Mazzoni, E; Montarou, G; Merritt, F S; Myagkov, A; Miller, R; Minashvili, I A; Miralles, L; Némécek, S; Nessi, M; Nodulman, L; Norniella, O; Onofre, A; Oreglia, M J; Pantea, D; Pallin, D; Pilcher, J E; Pina, J; Pinhão, J; Podlyski, F; Portell, X; Poveda, J; Price, L E; Pribyl, L; Proudfoot, J; Ramstedt, M; Reinmuth, G; Richards, R; Roda, C; Romanov, V; Rosnet, P; Roy, P; Rumiantsau, V; Russakovich, N; Salto, O; Salvachúa, B; Sanchis, E; Sanders, H; Santoni, C; Santos, J; Saraiva, J G; Sarri, F; Satsunkevich, I S; Says, L P; Schlager, G; Schlereth, J L; Seixas, J M; Selldén, B; Shevtsov, P; Shochet, M; Da Silva, P; Silva, J; Simaitis, V; Sissakian, A N; Solodkov, A; Solovyanov, O; Sosebee, M; Spanó, F; Stanek, R; Starchenko, E A; Starovoitov, P; Suk, M; Sykora, I; Tang, F; Tas, P; Teuscher, R; Tokar, S; Topilin, N; Torres, J; Tsulaia, V; Underwood, D; Usai, G; Valkár, S; Valls, J A; Vartapetian, A H; Vazeille, F; Vichou, I; Vinogradov, V; Vivarelli, I; Volpi, M; White, A; Zaitsev, A; Zenine, A; Zenis, T

    2006-01-01

    The Tile Calorimeter, which constitutes the central section of the ATLAS hadronic calorimeter, is a non-compensating sampling device made of iron and scintillating tiles. The construction phase of the calorimeter is nearly complete, and most of the effort now is directed toward the final assembly and commissioning in the underground experimental hall. The layout of the calorimeter and the tasks carried out during construction are described, first with a brief reminder of the requirements that drove the calorimeter design. During the last few years a comprehensive test-beam program has been followed in order to establish the calorimeter electromagnetic energy scale, to study its uniformity, and to compare real data to Monte Carlo simulation. The test-beam setup and first results from the data are described. During the test-beam period in 2004, lasting several months, data have been acquired with a complete slice of the central ATLAS calorimeter. The data collected in the test-beam are crucial in order to study...

  16. Detection of compound heterozygous of hb constant spring and hb q-Thailand by capillary electrophoresis and high performance liquid chromatography.

    Science.gov (United States)

    Pornprasert, Sakorn; Punyamung, Manoo

    2015-06-01

    A capillary electrophoresis (CE) has proven to be superior to a high performance liquid chromatography (HPLC) in the detection of hemoglobin Constant Spring (Hb CS). Thus the aim of this study was to analyze the efficacy of CE and HPLC for the detection of Hb CS in samples with compound heterozygous of Hb CS and Hb Q-Thailand. Hemoglobin analysis was performed in blood samples of 2 patients with compound heterozygous of Hb CS and Hb Q-Thailand by using HPLC and CE. The HPLC chromatogram and CE electrophoregram of the two techniques were compared. Hb CS was not found on HPLC chromatogram while Hb QA2 (α2 (QT)δ2), a derivative of Hb Q-Thailand, was presented at the retention time of 4.70-4.80 min and it was close to the retention time of Hb CS. On CE electrophoregram, Hb CS was presented at zone 2 (Z2) and it was distinctly separated from Hb QA2 which was presented at Z1. Therefore, CE was more efficient to the HPLC for diagnosis of compound heterozygous of Hb CS and Hb Q-Thailand.

  17. Modeling response variation for radiometric calorimeters

    International Nuclear Information System (INIS)

    Mayer, R.L. II.

    1986-01-01

    Radiometric calorimeters are widely used in the DOE complex for accountability measurements of plutonium and tritium. Proper characterization of response variation for these instruments is, therefore, vital for accurate assessment of measurement control as well as for propagation of error calculations. This is not difficult for instruments used to measure items within a narrow range of power values; however, when a single instrument is used to measure items over a wide range of power values, improper estimates of uncertainty can result since traditional error models for radiometric calorimeters assume that uncertainty is not a function of sample power. This paper describes methods which can be used to accurately estimate random response variation for calorimeters used to measure items over a wide range of sample powers. The model is applicable to the two most common modes of calorimeter operation: heater replacement and servo control. 5 refs., 4 figs., 1 tab

  18. The CHORUS calorimeter: test results

    International Nuclear Information System (INIS)

    Buontempo, S.; Capone, A.; Cocco, A.G.; De Pedis, D.; Di Capua, E.; Dore, U.; Ereditato, A.; Ferroni, M.; Fiorillo, G.; Loverre, P.F.; Luppi, C.; Macina, D.; Mazzoni, M.A.; Migliozzi, P.; Palladino, V.; Piredda, G.; Riccardi, F.; Righini, P.P.; Saitta, B.; Santacesaria, R.; Strolin, P.; Zucchelli, P.

    1995-01-01

    In the framework of the CHORUS experiment for the search of ν μ ν τ oscillations at CERN, we have built the high resolution calorimeter, intended for the measurement of the energy of hadronic showers produced in neutrino interactions. The calorimeter consists of three parts. The first two are made of lead and plastic scintillating fibers in the volume ratio 4 : 1, such as to achieve compensation. The third is a sandwich of lead plates and scintillator strips in the same volume ratio. The techniques used for the construction of the calorimeter are described, as well as its performance in shower and muon detection. We used electron, pion and muon beams in the energy range 2-100 GeV for this purpose. (orig.)

  19. HB Puerta del Sol [HBA1:c.148A>C], HB Valdecilla [HBA2:c.3G>T], HB Gran Vía [HBA2:c.98T>G], HB Macarena [HBA2:c.358C>T] and HB El Retiro [HBA2:c.364_366dupGTG]: description of five new hemoglobinopathies.

    Science.gov (United States)

    de la Fuente-Gonzalo, Félix; Nieto, Jorge M; Velasco, Diego; Cela, Elena; Pérez, Germán; Fernández-Teijeiro, Ana; Escudero, Antonio; Villegas, Ana; González-Fernández, Fernando A; Ropero, Paloma

    2016-04-01

    Structural hemoglobinopathies do not usually have a clinical impact, but they can interfere with the analytical determination of some parameters, such as the glycated hemoglobin in diabetic patients. Thalassemias represent a serious health problem in areas where their incidence is high. The defects in the post-translational modifications produce hyper-unstable hemoglobin that is not detected by most of electrophoretic or chromatographic methods that are available so far. We studied seven patients who belong to six unrelated families. The first two families were studied because they had peak abnormal hemoglobin (Hb) during routine analytical assays. The other four families were studied because they had microcytosis and hypochromia with normal HbA2 and HbF without iron deficiency. HbA2 and F quantification and abnormal Hb separation were performed by chromatographic and electrophoretic methods. The molecular characterization was performed using specific sequencing. The Hb Puerta del Sol presents electrophoretic mobility and elution in HPLC that is different from HbA and similar to HbS. The electrophoretic and chromatographic profiles of the four other variants are normal and do not show any anomalies, and their identification was only possible with sequencing. Some variants, such as Hb Valdecilla, Hb Gran Vía, Hb Macarena and Hb El Retiro, have significant clinical impact when they are associated with other forms of α-thalassemia, which could lead to more serious forms of this group of pathologies as for HbH disease. Therefore, it is important to maintain an adequate program for screening these diseases in countries where the prevalence is high to prevent the occurrence of severe forms.

  20. METROLOGICAL PERFORMANCES OF BOMB CALORIMETERS AT REAL CONDITIONS

    Directory of Open Access Journals (Sweden)

    Yu. V. Maksimuk

    2016-01-01

    Full Text Available The high-usage measurement equipment for heat of combustion of organic fuels are bomb isoperibol calorimeters with a water thermostat. The stability of work of calorimeters at real conditions is important for maintenance of reliability of measurement results. The article purpose – the analysis of stability for parameters of calorimeters to environment changes. In this work influence room temperature (Тк and heat exchange conditions on metrological characteristics of two models of calorimeters is considered with different degree of thermal protection: V-08МА and BIC 100. For calorimeters V-08МА the increase in a effective heat capacity (W on 0,1 % by growth of Tк on everyone 5 °С is established. To use value W in all interval laboratory temperatures Tк = 14–28 °С it is necessary to correct W on 2,8 J/°C on everyone 1 °С changes of Tк. Updating W is required, if the correction exceeds error in determination W. For calorimeter BIC 100 it is not revealed dependences W from Tк. BIC 100 have constant-temperature cap, high stability a temperature in thermostat and stabilized heat exchange. It is established that an standard deviation of cooling constant for all calorimeters in direct proportional to standard deviation W. 

  1. Manufacturing of a graphite calorimeter at Yazd Radiation Processing Center

    International Nuclear Information System (INIS)

    Ziaie, F.

    2004-01-01

    In this work, a few quasi-adiabatic graphite calorimeters of different dimensions are described. The calorimeters have been manufactured by ourselves and studied for accurate absorbed dose measurements in 10 MeV electron beam. In order to prove the accuracy and reliability of dose measurements with the use of self designed graphite calorimeters (SCD), an inter comparison study was performed on these calorimeters and Risoe graphite calorimeters (SC,standard calorimeter) at different doses by using Rhodothron accelerator. The comparison shows conclusively of the optimal size, the results agreeing with those obtained with the Sc within 1%. (author)

  2. MARK II end cap calorimeter electronics

    International Nuclear Information System (INIS)

    Jared, R.C.; Haggerty, J.S.; Herrup, D.A.; Kirsten, F.A.; Lee, K.L.; Olson, S.R.; Wood, D.R.

    1985-10-01

    An end cap calorimeter system has been added to the MARK II detector in preparation for its use at the SLAC Linear Collider. The calorimeter uses 8744 rectangular proportional counter tubes. This paper describes the design features of the data acquisition electronics that has been installed on the calorimeter. The design and use of computer-based test stands for the amplification and signal-shaping components is also covered. A portion of the complete system has been tested in a beam at SLAC. In these initial tests, using only the calibration provided by the test stands, a resolution of 18%/√E was achieved

  3. Iron deficiency anemia interfering the diagnosis of compound heterozygosity for Hb constant spring and Hb Paksé: The first case report.

    Science.gov (United States)

    Chiasakul, Thita; Uaprasert, Noppacharn

    2018-01-01

    Diagnosis of thalassemia or hemoglobinopathy concomitant with iron deficiency anemia (IDA) is challenging. We report a case of 43-year-old female whose diagnosis of compound heterozygosity for hemoglobin Constant Spring (HbCS) and Hb Paksé became apparent after the treatment of IDA. Prior to treatment, Hb analysis using isoelectric focusing (IEF) showed HbA 95.6%, HbA 2 2.7%, and HbCS 1.7% compatible with heterozygous HbCS. After 4 months of oral iron therapy resulting in an improved Hb level, her HbCS level was substantially increased to 8.7% on IEF suggesting homozygous HbCS. Subsequent DNA analysis using multiplex amplification refractory mutation system analysis revealed compound heterozygosity for HbCS and Hb Paksé. This case demonstrated that IDA can significantly reduce HbCS/Hb Paksé levels and probably mask the diagnosis of homozygous HbCS, homozygous Hb Paksé or the compound heterozygosity for both hemoglobinopathies by hemoblogin analysis. The test should be repeated after resolution of IDA, or molecular testing should be performed to confirm the diagnosis. © 2017 Wiley Periodicals, Inc.

  4. High luminosity liquid-argon calorimeter test beam

    Energy Technology Data Exchange (ETDEWEB)

    Novgorodova, Olga; Straessner, Arno [TU Dresden, IKTP (Germany)

    2016-07-01

    In the future HL-LHC the luminosity will increase by factor of 5-7 with respect to the original LHC design. The HiLum collaboration studied the impact on small-sized modules of the ATLAS electromagnetic, hadronic, and forward calorimeters also instrumented by various intensity and position detectors. The intensity of beam varied over a wide range (10{sup 6} to 10{sup 12} p/s) and beyond the maximum expected at HL-LHC for these calorimeters. Results from the last test beam campaign in 2013 on the signal shape analysis from the calorimeter modules are compared with MC simulations. The correlation between high-voltage return currents of the electromagnetic calorimeter and beam intensity is used to estimate critical parameters and compared with predictions.

  5. Mounting LHCb hadron calorimeter scintillating tiles

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    Scintillating tiles are carefully mounted in the hadronic calorimeter for the LHCb detector. These calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  6. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00223142; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. The new ATLAS Fast Calorimeter Simulation (FastCaloSim) is an improved parametrisation compared to the one used in the LHC Run-1. It provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The new FastCaloSim incorporates developments in geometry and physics lists of the last five years and benefit...

  7. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00176100; The ATLAS collaboration

    2016-01-01

    The physics and performance studies of the ATLAS detector at the Large Hadron Collider re- quire a large number of simulated events. A GEANT4 based detailed simulation of the ATLAS calorimeter systems is highly CPU intensive and such resolution is often unnecessary. To reduce the calorimeter simulation time by a few orders of magnitude, fast simulation tools have been developed. The Fast Calorimeter Simulation (FastCaloSim) provides a parameterised simulation of the particle energy response at the calorimeter read-out cell level. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: it incorporates developments in geometry and physics lists during the last five years and benefits from the knowledge acquired from the Run 1 data. The algorithm uses machine learning techniques to improve the parameterisations and to optimise the amount of information to be stored in the...

  8. Performance of the ATLAS Tile Calorimeter

    CERN Document Server

    Hrynevich, Aliaksei; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) is the central scintillator-steel sampling hadronic calorimeter of the ATLAS experiment at the LHC. Jointly with other calorimeters it is designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been established with cosmic ray muons and the large sample of the proton-proton collisions. The response of high momentum isolated muons is used to study the energy response at the electromagnetic scale, isolated hadr...

  9. Upgrading the ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hubacek, Zdenek; The ATLAS collaboration

    2016-01-01

    Many physics and performance studies with the ATLAS detector at the Large Hadron Collider require very large samples of simulated events, and producing these using the full GEANT4 detector simulation is highly CPU intensive. Often, a very detailed detector simulation is not needed, and in these cases fast simulation tools can be used to reduce the calorimeter simulation time by a few orders of magnitude. In ATLAS, a fast simulation of the calorimeter systems was developed, called Fast Calorimeter Simulation (FastCaloSim). It provides a parametrized simulation of the particle energy response at the calorimeter read-out cell level. It is interfaced to the standard ATLAS digitization and reconstruction software, and can be tuned to data more easily than with GEANT4. The original version of FastCaloSim has been very important in the LHC Run-1, with several billion events simulated. An improved parametrisation is being developed, to eventually address shortcomings of the original version. It incorporates developme...

  10. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Dias, Flavia; The ATLAS collaboration

    2016-01-01

    A very large number of simulated events is required for physics and performance studies with the ATLAS detector at the Large Hadron Collider. Producing these with the full GEANT4 detector simulation is highly CPU intensive. As a very detailed detector simulation is not always required, fast simulation tools have been developed to reduce the calorimeter simulation time by a few orders of magnitude. The fast simulation of ATLAS for the calorimeter systems used in Run 1, called Fast Calorimeter Simulation (FastCaloSim), provides a parameterized simulation of the particle energy response at the calorimeter read-out cell level. It is then interfaced to the ATLAS digitization and reconstruction software. In Run 1, about 13 billion events were simulated in ATLAS, out of which 50% were produced using fast simulation. For Run 2, a new parameterisation is being developed to improve the original version: It incorporates developments in geometry and physics lists of the last five years and benefits from knowledge acquire...

  11. Reactor Gamma Heat Measurements with Calorimeters and Thermoluminescence Dosimeters

    DEFF Research Database (Denmark)

    Haack, Karsten; Majborn, Benny

    1973-01-01

    Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than calorimet......Intercomparison measurements of reactor γ-ray heating were carried out with calorimeters and thermoluminescence dosimeters. Within the measurement uncertainties the two methods yield coincident results. In the actual measurement range thermoluminescence dosimeters are less accurate than...... calorimeters, but possess advantages such as a small probe size and the possibility of making simultaneous measurements at many different positions. Hence, thermoluminescence dosimeters may constitute a valuable supplement to calorimeters for reactor γ-ray heating measurements....

  12. Performance of the SLD Warm Iron Calorimeter prototype

    International Nuclear Information System (INIS)

    Callegari, G.; Piemontese, L.; De Sangro, R.; Peruzzi, I.; Piccolo, M.; Busza, W.; Friedman, J.; Johnson, A.; Kendall, H.; Kistiakowsky, V.

    1986-03-01

    A prototype hadron calorimeter, of similar design to the Warm Iron Calorimeter (WIC) planned for the SLD experiment, has been built and its performance has been studied in a test beam. The WIC is an iron sampling calorimeter whose active elements are plastic streamer tubes similar to those used for the Mont-Blanc proton decay experiment. The construction and operation of the tubes will be briefly described together with their use in an iron calorimeter - muon tracker. Efficiency, resolution and linearity have been measured in a hadron/muon beam up to 11 GeV. The measured values correspond to the SLD design goals

  13. The concept and science process skills analysis in bomb calorimeter experiment as a foundation for the development of virtual laboratory of bomb calorimeter

    Science.gov (United States)

    Kurniati, D. R.; Rohman, I.

    2018-05-01

    This study aims to analyze the concepts and science process skills in bomb calorimeter experiment as a basis for developing the virtual laboratory of bomb calorimeter. This study employed research and development method (R&D) to gain the answer to the proposed problems. This paper discussed the concepts and process skills analysis. The essential concepts and process skills associated with bomb calorimeter are analyze by optimizing the bomb calorimeter experiment. The concepts analysis found seven fundamental concepts to be concerned in developing the virtual laboratory that are internal energy, burning heat, perfect combustion, incomplete combustion, calorimeter constant, bomb calorimeter, and Black principle. Since the concept of bomb calorimeter, perfect and incomplete combustion created to figure out the real situation and contain controllable variables, in virtual the concepts displayed in the form of simulation. Meanwhile, the last four concepts presented in the form of animation because no variable found to be controlled. The process skills analysis detect four notable skills to be developed that are ability to observe, design experiment, interpretation, and communication skills.

  14. Modeling of Reaction Calorimeter

    OpenAIRE

    Farzad, Reza

    2014-01-01

    The purpose of this project was to model the reaction calorimeter in order to calculate the heat of absorption which is the most important parameter in this work. Reaction calorimeter is an apparatus which is used in measuring the heat of absorption of CO2 as well as the total pressure in vapor phase based on vapor-liquid equilibrium state. Mixture of monoethanolamine (MEA) and water was used as a solvent to absorb the CO2.Project was divided in to three parts in order to make the programming...

  15. ALICE Zero Degree Calorimeter

    CERN Multimedia

    De Marco, N

    2013-01-01

    Two identical sets of calorimeters are located on both sides with respect to the beam Interaction Point (IP), 112.5 m away from it. Each set of detectors consists of a neutron (ZN) and a proton (ZP) Zero Degree Calorimeter (ZDC), positioned on remotely controlled platforms. The ZN is placed at zero degree with respect to the LHC beam axis, between the two beam pipes, while the ZP is positioned externally to the outgoing beam pipe. The spectator protons are separated from the ion beams by means of the dipole magnet D1.

  16. The SDC central calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Proudfoot, J.

    1992-01-01

    An overview of the calorimeter being designed and constructed by Solenoidal Detector Collaboration (SDC) for use at the Superconducting SuperCollider is presented. The collaboration have chosen to build a sampling calorimeter using scintillating tile with wavelength-shifter fiber readout as the detector medium, and absorber media of lead and iron for the electromagnetic and hadronic compartments. This choice was based on a substantial amount of R D and Monte Carlo simulation calculations, which showed that it both met the necessary experimental specifications in addition to being a cost effect design.

  17. The SDC central calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Proudfoot, J.; The SDC Collaboration

    1992-11-01

    An overview of the calorimeter being designed and constructed by Solenoidal Detector Collaboration (SDC) for use at the Superconducting SuperCollider is presented. The collaboration have chosen to build a sampling calorimeter using scintillating tile with wavelength-shifter fiber readout as the detector medium, and absorber media of lead and iron for the electromagnetic and hadronic compartments. This choice was based on a substantial amount of R&D and Monte Carlo simulation calculations, which showed that it both met the necessary experimental specifications in addition to being a cost effect design.

  18. ALICE Zero Degree Calorimeter (ZDC), General Pictures.

    CERN Multimedia

    2003-01-01

    The ZDC Calorimeter for spectator neutrons is made by 44 slabs of W-alloy; each slab has 44 grooves where quartz fibres are placed. The charged particles of the hadronic shower generated by the neutrons make Cerenkov light in the fibres and the light is collected by photomultipliers. Photos from 1 to 9 show the front-face of the calorimeter. Photo n. 10 shows the rear of the calorimeter where the fibres are divided in several groups to go to the different PMs.

  19. Vacuum-jacketed hydrofluoric acid solution calorimeter

    Science.gov (United States)

    Robie, R.A.

    1965-01-01

    A vacuum-jacketed metal calorimeter for determining heats of solution in aqueous HF was constructed. The reaction vessel was made of copper and was heavily gold plated. The calorimeter has a cooling constant of 0.6 cal-deg -1-min-1, approximately 1/4 that of the air-jacketed calorimeters most commonly used with HF. It reaches equilibrium within 10 min after turning off the heater current. Measurements of the heat of solution of reagent grade KCl(-100 mesh dried 2 h at 200??C) at a mole ratio of 1 KCl to 200 H2O gave ??H = 4198??11 cal at 25??C. ?? 1965 The American Institute of Physics.

  20. Calorimeter prediction based on multiple exponentials

    International Nuclear Information System (INIS)

    Smith, M.K.; Bracken, D.S.

    2002-01-01

    Calorimetry allows very precise measurements of nuclear material to be carried out, but it also requires relatively long measurement times to do so. The ability to accurately predict the equilibrium response of a calorimeter would significantly reduce the amount of time required for calorimetric assays. An algorithm has been developed that is effective at predicting the equilibrium response. This multi-exponential prediction algorithm is based on an iterative technique using commercial fitting routines that fit a constant plus a variable number of exponential terms to calorimeter data. Details of the implementation and the results of trials on a large number of calorimeter data sets will be presented

  1. CMS Calorimeter Trigger Phase I upgrade

    International Nuclear Information System (INIS)

    Klabbers, P; Gorski, T; Bachtis, M; Dasu, S; Fobes, R; Grothe, M; Ross, I; Smith, W H; Compton, K; Farmahini-Farahani, A; Gregerson, A; Seemuth, D; Schulte, M

    2012-01-01

    We present a design for the Phase-1 upgrade of the Compact Muon Solenoid (CMS) calorimeter trigger system composed of FPGAs and Multi-GBit/sec links that adhere to the μTCA crate Telecom standard. The upgrade calorimeter trigger will implement algorithms that create collections of isolated and non-isolated electromagnetic objects, isolated and non-isolated tau objects and jet objects. The algorithms are organized in several steps with progressive data reduction. These include a particle cluster finder that reconstructs overlapping clusters of 2x2 calorimeter towers and applies electron identification, a cluster overlap filter, particle isolation determination, jet reconstruction, particle separation and sorting.

  2. Two new wheels for ATLAS

    CERN Multimedia

    2002-01-01

    Juergen Zimmer (Max Planck Institute), Roy Langstaff (TRIUMF/Victoria) and Sergej Kakurin (JINR), in front of one of the completed wheels of the ATLAS Hadronic End Cap Calorimeter. A decade of careful preparation and construction by groups in three continents is nearing completion with the assembly of two of the four 4 m diameter wheels required for the ATLAS Hadronic End Cap Calorimeter. The first two wheels have successfully passed all their mechanical and electrical tests, and have been rotated on schedule into the vertical position required in the experiment. 'This is an important milestone in the completion of the ATLAS End Cap Calorimetry' explains Chris Oram, who heads the Hadronic End Cap Calorimeter group. Like most experiments at particle colliders, ATLAS consists of several layers of detectors in the form of a 'barrel' and two 'end caps'. The Hadronic Calorimeter layer, which measures the energies of particles such as protons and pions, uses two techniques. The barrel part (Tile Calorimeter) cons...

  3. Radiation-Hard Quartz Cerenkov Calorimeters

    International Nuclear Information System (INIS)

    Akgun, U.; Onel, Y.

    2006-01-01

    New generation hadron colliders are going to reach unprecedented energies and radiation levels. Quartz has been identified as a radiation-hard material that can be used for Cerenkov calorimeters of the future experiments. We report from the radiation hardness tests performed on quartz fibers, as well as the characteristics of the quartz fiber and plate Cerenkov calorimeters that have been built, designed, and proposed for the CMS experiment

  4. Assembly of the CMS hadronic calorimeter

    CERN Multimedia

    Maximilien Brice

    2004-01-01

    The hadronic calorimeter is assembled on the end-cap of the CMS detector in the assembly hall. Hadronic calorimeters measure the energy of particles that interact via the strong force, called hadrons. The detectors are made in a sandwich-like structure where these scintillator tiles are placed between metal sheets.

  5. The barrel muon spectrometer of the ATLAS detector has acquired its first cosmic event in a magnetic field produced by the barrel toroid magnet.

    CERN Multimedia

    2006-01-01

    A 3-D event display of a cosmic muon event, showing the path of a muon travelling through three layers of the barrel muon spectrometer. Three of the eight coils of the barrel toroid magnet can be seen in the top half of the drawing.

  6. Study of a novel electromagnetic liquid argon calorimeter TGT

    International Nuclear Information System (INIS)

    Berger, C.; Braunschweig, W.; Geulig, E.

    1994-01-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a test beam exposure. 15 refs., 16 figs., 2 tabs

  7. Measurements with the Hungarian Heat-Flow Calorimeter

    International Nuclear Information System (INIS)

    Bod, L.

    1970-01-01

    This calorimeter, like the others, consists of three essential parts: 1) the calorimetric sample; the radiation energy absorbed therein is to be determined; 2) the jacket; a well defined environment which includes the calorimetric sample; 3) the heat transfer medium, separating the former two. The measurement with this calorimeter consists of the determination of the equilibrium temperature difference between the calorimetric sample and the jacket of the calorimeter in the radiation field. From this the radiation energy absorbed in the calorimetric sample can be evaluated

  8. Mechanical Commissioning of the ATLAS Barrel Toroid Magnet

    CERN Document Server

    Foussat, A; Dudarev, A; Bajas, H; Védrine, P; Berriaud, C; Sun, Z; Sorbi, M

    2008-01-01

    ATLAS is a general-purpose detector designed to run at the highest luminosity at the CERN Large Hadron Collider. Its features include the 4 T Barrel Toroid magnet, the largest superconducting magnet (25 m long, 20 m diameter) that provides the magnetic field for the ATLAS muon spectrometer. The coils integrated at CERN, were tested individually at maximum current of 22 kA in 2005. Following the mechanical assembly of the Barrel Toroid in the ATLAS underground cavern, the test of the full Barrel Toroid was performed in October 2006. Further tests are foreseen at the end 2007 when the system will include the two End Cap Toroids (ECT). The paper gives an overview of the good mechanical test results achieved in comparison with model predictions and the experience gained in the mechanical behavior of the ATLAS Toroidal coils is discussed.

  9. Barrel Module0 Autopsy

    CERN Document Server

    Cobal, M; Nessi, Marzio; Blanch, O; Zamora, Y

    1999-01-01

    Using the information from the Cs calibration runs, many of the problems affecting the response of the barrel Module0 prototype have been spotted out. These can be bad fibre-tile couplings, light losses from fibres bundling, broken fibres, not transparent tiles etc. After a visual inspection, most of these problems have been repaired.

  10. A radial map of multi-whisker correlation selectivity in the rat barrel cortex.

    Science.gov (United States)

    Estebanez, Luc; Bertherat, Julien; Shulz, Daniel E; Bourdieu, Laurent; Léger, Jean-François

    2016-11-21

    In the barrel cortex, several features of single-whisker stimuli are organized in functional maps. The barrel cortex also encodes spatio-temporal correlation patterns of multi-whisker inputs, but so far the cortical mapping of neurons tuned to such input statistics is unknown. Here we report that layer 2/3 of the rat barrel cortex contains an additional functional map based on neuronal tuning to correlated versus uncorrelated multi-whisker stimuli: neuron responses to uncorrelated multi-whisker stimulation are strongest above barrel centres, whereas neuron responses to correlated and anti-correlated multi-whisker stimulation peak above the barrel-septal borders, forming rings of multi-whisker synchrony-preferring cells.

  11. Analytical heat transfer modeling of a new radiation calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Obame Ndong, Elysée [Department of Industrial Engineering and Maintenance, University of Sciences and Technology of Masuku (USTM), BP 941 Franceville (Gabon); Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Gallot-Lavallée, Olivier [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France); Aitken, Frédéric, E-mail: frederic.aitken@g2elab.grenoble-inp.fr [Grenoble Electrical Engineering Laboratory (G2Elab), University Grenoble Alpes and CNRS, G2Elab, F38000 Grenoble (France)

    2016-06-10

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  12. Analytical heat transfer modeling of a new radiation calorimeter

    International Nuclear Information System (INIS)

    Obame Ndong, Elysée; Gallot-Lavallée, Olivier; Aitken, Frédéric

    2016-01-01

    Highlights: • Design of a new calorimeter for measuring heat power loss in electrical components. • The calorimeter can operate in a temperature range from −50 °C to 150 °C. • An analytical model of heat transfers for this new calorimeter is presented. • The theoretical sensibility of the new apparatus is estimated at ±1 mW. - Abstract: This paper deals with an analytical modeling of heat transfers simulating a new radiation calorimeter operating in a temperature range from −50 °C to 150 °C. The aim of this modeling is the evaluation of the feasibility and performance of the calorimeter by assessing the measurement of power losses of some electrical devices by radiation, the influence of the geometry and materials. Finally a theoretical sensibility of the new apparatus is estimated at ±1 mW. From these results the calorimeter has been successfully implemented and patented.

  13. ATLAS Tile Calorimeter calibration and monitoring systems

    Science.gov (United States)

    Cortés-González, Arely

    2018-01-01

    The ATLAS Tile Calorimeter is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes, located in the outer part of the calorimeter. Neutral particles may also produce a signal after interacting with the material and producing charged particles. The readout is segmented into about 5000 cells, each of them being read out by two photomultipliers in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. This comprises Cesium radioactive sources, Laser, charge injection elements and an integrator based readout system. Information from all systems allows to monitor and equalise the calorimeter response at each stage of the signal production, from scintillation light to digitisation. Calibration runs are monitored from a data quality perspective and used as a cross-check for physics runs. The data quality efficiency achieved during 2016 was 98.9%. These calibration and stability of the calorimeter reported here show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  14. LHCb: Physics with the LHCb calorimeter

    CERN Multimedia

    Barsuk, S

    2007-01-01

    The LHCb calorimeter comprises the scintillator pad detector (SPD), preshower (PS), electromagnetic Shashlyk type (ECAL) and hadronichadronic Tile (HCAL) calorimeters, arranged in pseudo-projective geometry. All the four detectors follow the general principle of reading the light from scintillator tiles with wave length shifting fibers, and transporting the light towards photomultipliers (25 ns R/O).

  15. The H1 lead/scintillating-fibre calorimeter

    International Nuclear Information System (INIS)

    Appuhn, R.D.; Arndt, C.; Barrelet, E.

    1996-08-01

    The backward region of the H1 detector has been upgraded in order to provide improved measurement of the scattered electron in deep inelastic scattering events. The centerpiece of the upgrade is a high-resolution lead/scintillating-fibre calorimeter. The main design goals of the calorimeter are: good coverage of the region close to the beam pipe, high angular resolution and energy resolution of better than 2% for 30 GeV electrons. The calorimeter should be capable of providing coarse hadronic energy measurement and precise time information to suppress out-of-time background events at the first trigger level. It must be compact due to space restrictions. These requirements were fulfilled by constructing two separate calorimeter sections. The inner electromagnetic section is made of 0.5 mm scintillating plastic fibres embedded in a lead matrix. Its lead-to-fibre ratio is 2.3:1 by volume. The outer hadronic section consists of 1.0 mm diameter fibres with a lead-to-fibre ratio of 3.4:1. The mechanical construction of the new calorimeter and its assembly in the H1 detector are described. (orig.)

  16. The H1 lead/scintillating-fibre calorimeter

    International Nuclear Information System (INIS)

    Appuhn, R.-D.; Arndt, C.; Barrelet, E.

    1997-01-01

    The backward region of the H1 detector has been upgraded in order to provide improved measurement of the scattered electron in deep inelastic scattering events. The centerpiece of the upgrade is a high-resolution lead/scintillating-fibre calorimeter. The main design goals of the calorimeter are: good coverage of the region close to the beam pipe, high angular resolution and energy resolution of better than 2% for 30 GeV electrons. The calorimeter should be capable of providing coarse hadronic energy measurement and precise time information to suppress out-of-time background events at the first trigger level. It must be compact due to space restrictions. These requirements were fulfilled by constructing two separate calorimeter sections. The inner electromagnetic section is made of 0.5 mm scintillating plastic fibres embedded in a lead matrix. Its lead-to-fibre ratio is 2.3:1 by volume. The outer hadronic section consists of 1.0 mm diameter fibres with a lead-to-fibre ratio of 3.4:1. The mechanical construction of the new calorimeter and its assembly in the H1 detector are described. (orig.)

  17. ATLAS Tile calorimeter calibration and monitoring systems

    Science.gov (United States)

    Chomont, Arthur; ATLAS Collaboration

    2017-11-01

    The ATLAS Tile Calorimeter (TileCal) is the central section of the hadronic calorimeter of the ATLAS experiment and provides important information for reconstruction of hadrons, jets, hadronic decays of tau leptons and missing transverse energy. This sampling calorimeter uses steel plates as absorber and scintillating tiles as active medium. The light produced by the passage of charged particles is transmitted by wavelength shifting fibres to photomultiplier tubes (PMTs), located on the outside of the calorimeter. The readout is segmented into about 5000 cells (longitudinally and transversally), each of them being read out by two PMTs in parallel. To calibrate and monitor the stability and performance of each part of the readout chain during the data taking, a set of calibration systems is used. The TileCal calibration system comprises cesium radioactive sources, Laser and charge injection elements, and allows for monitoring and equalization of the calorimeter response at each stage of the signal production, from scintillation light to digitization. Based on LHC Run 1 experience, several calibration systems were improved for Run 2. The lessons learned, the modifications, and the current LHC Run 2 performance are discussed.

  18. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00304670; The ATLAS collaboration

    2016-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted to photomultiplier tubes (PMTs). Signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. Results on the calorimeter operation and performance are presented, including the calibration, stability, absolute energy scale, uniformity and time resolution. These results show that the TileCal performance is within the design requirements and has given essential contribution to reconstructed objects and physics results.

  19. First results from the SLD silicon calorimeters

    International Nuclear Information System (INIS)

    Berridge, S.C.; Bugg, W.M.; Kroeger, R.S.; Weidemann, A.W.; White, S.L.

    1992-07-01

    The small-angle calorimeters of the SLD were successfully operated during the recent SLC engineering run. The Luminosity Monitor and Small-Angle Tagger (LMSAT) covers the angular region between 28 and 68 milliradians from the beam axis, while the Medium-Angle Silicon Calorimeter (MASC) covers the 68--190 milliradian region. Both are silicon-tungsten sampling calorimeters; the LMSAT employs 23 layers of 0.86 X 0 sampling, while the MASC has 10 layers of 1.74 X 0 sampling. We present results from the first run of the SLC with the SLD on beamline

  20. GSPEL - Calorimeter Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Testing performance claims on heat transfer componentsThe Calorimeter Lab, located in the Ground Systems Power and Energy Lab (GSPEL), is one of the largest in the...

  1. The Scintillator Tile Hadronic Calorimeter Prototype

    International Nuclear Information System (INIS)

    Rusinov, V.

    2006-01-01

    A high granularity scintillator hadronic calorimeter prototype is described. The calorimeter is based on a novel photodetector - Silicon Photo-Multiplier (SiPM). The main parameters of SiPM are discussed as well as readout cell construction and optimization. The experience with a small prototype production and testing is described. A new 8 k channel prototype is being manufactured now

  2. Relationship between Hb and HbA1c in Japanese adults: an analysis of the 2009 Japan Society of Ningen Dock database.

    Science.gov (United States)

    Takahashi, Eiko; Moriyama, Kengo; Yamakado, Minoru

    2014-06-01

    We investigated the effect of Hb on HbA1c levels in 265,427 Japanese individuals. The divergence between fasting plasma glucose (FPG) and HbA1c levels increased with lower Hb, resulting in HbA1c levels that were higher in relation to than the FPG levels. Similarly, the correlation between FPG and HbA1c levels, stratified by Hb, weakened as Hb decreased. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Phenotypic Diversity of Sickle Cell Disease in Patients with a Double Heterozygosity for Hb S and Hb D-Punjab.

    Science.gov (United States)

    Torres, Lidiane S; Okumura, Jéssika V; Belini-Júnior, Édis; Oliveira, Renan G; Nascimento, Patrícia P; Silva, Danilo G H; Lobo, Clarisse L C; Oliani, Sonia M; Bonini-Domingos, Claudia R

    2016-09-01

    Phenotypic heterogeneity for sickle cell disease is associated to several genetic factors such as genotype for sickle cell disease, β-globin gene cluster haplotypes and Hb F levels. The coinheritance of Hb S (HBB: c.20A > T) and Hb D-Punjab (HBB: c.364G > C) results in a double heterozygosity, which constitutes one of the genotypic causes of sickle cell disease. This study aimed to assess the phenotypic diversity of sickle cell disease presented by carriers of the Hb S/Hb D-Punjab genotype and the Bantu [- + - - - -] haplotype. We evaluated medical records from 12 patients with sickle cell disease whose Hb S/Hb D-Punjab genotype and Bantu haplotype were confirmed by molecular analysis. Hb S and Hb D-Punjab levels were quantified by chromatographic analysis. Mean concentrations of Hb S and Hb D-Punjab were 44.8 ± 2.3% and 43.3 ± 1.8%, respectively. Painful crises were present in eight (66.7%) patients evaluated, representing the most common clinical event. Acute chest syndrome (ACS) was the second most prevalent manifestation, occurring in two individuals (16.7%). Three patients were asymptomatic, while another two exhibited greater diversity of severe clinical manifestations. Medical records here analyzed reported a significant clinical diversity in sickle cell disease ranging from the absence of symptoms to wide phenotypic variety. The sickle cell disease genotype, Bantu haplotype and hemoglobin (Hb) levels did not influence the clinical diversity. Thus, we concluded that the phenotypic variation in sickle cell disease was present within a specific genotype for disease regardless of the β-globin gene cluster haplotypes.

  4. First Case of a Compound Heterozygosity for Two Nondeletional α-Thalassemia mutations, Hb Constant Spring and Hb Quong Sze.

    Science.gov (United States)

    Zhou, Jian-Ying; Yan, Jin-Mei; Li, Jian; Li, Dong-Zhi

    2016-06-01

    Nondeletional α-thalassemia (α-thal) is the result of point mutations in critical regions of the α-globin genes, affecting mRNA processing, mRNA translation, or α-globin stability. Hb Constant Spring (Hb CS, HBA2: c.427T > C) is the most common nondeletional α-thal that results from a nucleotide substitution at the termination codon of the α2-globin gene. Hb Quong Sze (Hb QS, HBA2: c.377T > C) is another nondeletional α-thal in South China with the missense mutation at codon 125 of the α2-globin gene making this hemoglobin (Hb) variant highly unstable. Although homozygosity for Hb CS (α(CS)α/α(CS)α) or Hb QS (α(QS)α/α(QS)α) has been reported, clinical pictures vary from severe hemolysis that developed early in life to only mild anemia, no clinical phenotypic data of compound heterozygosity for Hb CS/Hb QS (α(CS)α/α(QS)α) has been described. In this report we describe an adult case with such a compound heterozygosity who presented with a mild α-thal.

  5. The optical instrumentation of the ATLAS Tile Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J [IFIC, Centro Mixto Universidad de Valencia-CSIC, E46100 Burjassot, Valencia (Spain); Adragna, P; Bosi, F [Pisa University and INFN, Pisa (Italy); Alexa, C; Boldea, V [National Institute of Physics and Nuclear Engineering, Bucharest (Romania); Alves, R [LIP and FCTUC Univ. of Coimbra (Portugal); Amaral, P; Andresen, X [CERN, Geneva (Switzerland); Ananiev, A [LIP and IDMEC-IST, Lisbon (Portugal); Anderson, K [University of Chicago, Chicago, Illinois 60637 (United States); Antonaki, A [University of Athens, Athens (Greece); Batusov, V [JINR, Dubna (Russian Federation); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas, E; Bohm, C [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Universite Blaise Pascal / CNRS-IN2P3, Clermont-Ferrand (France); Blanch, O; Blanchot, G; Bosman, M [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bromberg, C [Michigan State University, East Lansing, Michigan 48824 (United States); others, and

    2013-01-15

    The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of {+-}1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.

  6. Comparative haematological parameters of HbAA and HbAS genotype children infected with Plasmodium falciparum malaria in Yemen.

    Science.gov (United States)

    Albiti, Anisa H; Nsiah, Kwabena

    2014-04-01

    Sickle haemoglobin (HbS) is known to offer considerable protection against falciparum malaria. However, the mechanism of protection is not yet completely understood. In this study, we investigate how the presence of the sickle cell trait affects the haematological profile of AS persons with malaria, in comparison with similarly infected persons with HbAA. This study is based on the hypothesis that the sickle cell trait plays a protective role against malaria. Children from an endemic malaria transmission area in Yemen were enrolled in this study. Hematological parameters were estimated using manual methods, the percentage of parasite density on stained thin smear was calculated, haemoglobin genotypes were determined on paper electrophoresis, ferritin was measured using enzyme-linked immunosorbent assay, serum iron and TIBC were assayed using spectrophotometer, transferrin saturation index was calculated by dividing serum iron by TIBC and expressing the result as a percentage. Haematological parameters were compared in HbAA- and HbAS-infected children. Falciparum malaria parasitaemia was confirmed in the blood smears of 62 children, 44 (55.7%) of AA and 18 (37.5%) AS, so there was higher prevalence in HbAA children (P = 0.047). Parasite density was lower in HbAS- than HbAA-infected children (P = 0.003). Anaemia was prominent in malaria-infected children, with high proportions of moderate and severe forms in HbAA (P = 0.001). The mean levels of haemoglobin, packed cell volume, reticulocyte count, platelets count, lymphocytes, eosinophils, and serum iron were significantly lower while total leukocytes, immature granulocytes, monocytes, erythrocyte sedimentation rate, transferrin saturation, and serum ferritin were significantly higher in HbAA-infected children than HbAS-infected children. Infection with Plasmodium falciparum malaria caused more significant haematological alterations of HbAA children than HbAS. This study supports the observation that sickle cell trait

  7. Design, Construction and Commissioning of the Digital Hadron Calorimeter - DHCAL

    CERN Document Server

    Adams, C; Bilki, B.; Butler, J.; Corriveau, F.; Cundiff, T.; Drake, G.; Francis, K.; Furst, B.; Guarino, V.; Haberichter, B.; Hazen, E.; Hoff, J.; Holm, S.; Kreps, A.; DeLurgio, P.; Matijas, Z.; Monte, L.Dal; Mucia, N.; Norbeck, E.; Northacker, D.; Onel, Y.; Pollack, B.; Repond, J.; Schlereth, J.; Skrzecz, F.; Smith, J.R.; Trojand, D.; Underwood, D.; Velasco, M.; Walendziak, J.; Wood, K.; Wu, S.; Xia, L.; Zhang, Q.; Zhao, A.

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of this prototype calorimeter.

  8. Study of response nonuniformity for the LHCb calorimeter module and the prototype of the CBM calorimeter module

    International Nuclear Information System (INIS)

    Korolko, I. E.; Prokudin, M. S.

    2009-01-01

    A spatial nonuniformity of the response to high-energy muons is studied in the modules of the LHCb electromagnetic calorimeter and the prototype of the calorimeter module with lead plates and scintillator tiles 0.5 mm thick. The nonuniformity of the response of the inner LHCb modules to 50-GeV electrons is also measured. Software is developed for a thorough simulation of light collection in scintillator plates of a shashlik calorimeter. A model is elaborated to describe light transmission from the initial scintillation to the wavelength-shifting fiber with a subsequent reradiation and propagation of light over the fiber to the photodetector. The results of the simulation are in good agreement with data.

  9. The PANDA Barrel DIRC detector

    International Nuclear Information System (INIS)

    Hoek, M.; Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M.; Dodokhov, V. Kh.; Britting, A.; Eyrich, W.

    2014-01-01

    The PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt, will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Efficient Particle Identification for a wide momentum range and the full solid angle is required for reconstructing the various physics channels of the PANDA program. Hadronic Particle Identification in the barrel region of the detector will be provided by a DIRC counter. The design is based on the successful BABAR DIRC with important improvements, such as focusing optics and fast photon timing. Several of these improvements, including different radiator geometries and optics, were tested in particle beams at GSI and at CERN. The evolution of the conceptual design of the PANDA Barrel DIRC and the performance of complex prototypes in test beam campaigns will be discussed

  10. The PANDA Barrel DIRC detector

    Energy Technology Data Exchange (ETDEWEB)

    Hoek, M., E-mail: matthias.hoek@uni-mainz.de [Institut für Kernphysik, Johannes Gutenberg University Mainz, Mainz (Germany); Dzhygadlo, R.; Gerhardt, A.; Götzen, K.; Hohler, R.; Kalicy, G.; Kumawat, H.; Lehmann, D.; Lewandowski, B.; Patsyuk, M.; Peters, K.; Schepers, G.; Schmitt, L.; Schwarz, C.; Schwiening, J.; Traxler, M.; Zühlsdorf, M. [GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt (Germany); Dodokhov, V. Kh. [Joint Institute for Nuclear Research, Dubna (Russian Federation); Britting, A.; Eyrich, W. [Friedrich Alexander-University of Erlangen-Nuremberg, Erlangen (Germany); and others

    2014-12-01

    The PANDA experiment at the new Facility for Antiproton and Ion Research in Europe (FAIR) at GSI, Darmstadt, will study fundamental questions of hadron physics and QCD using high-intensity cooled antiproton beams with momenta between 1.5 and 15 GeV/c. Efficient Particle Identification for a wide momentum range and the full solid angle is required for reconstructing the various physics channels of the PANDA program. Hadronic Particle Identification in the barrel region of the detector will be provided by a DIRC counter. The design is based on the successful BABAR DIRC with important improvements, such as focusing optics and fast photon timing. Several of these improvements, including different radiator geometries and optics, were tested in particle beams at GSI and at CERN. The evolution of the conceptual design of the PANDA Barrel DIRC and the performance of complex prototypes in test beam campaigns will be discussed.

  11. Calorimeters for biotechnology

    International Nuclear Information System (INIS)

    Russell, Donald J.; Hansen, Lee D.

    2006-01-01

    The isothermal and temperature scanning calorimeters manufactured by Calorimetry Sciences Corporation are briefly described. Applications of calorimetry to determine thermodynamics and kinetics of reactions of interest in biotechnology are described with illustrative examples

  12. Cone calorimeter tests of wood composites

    Science.gov (United States)

    Robert H. White; Kuma Sumathipala

    2013-01-01

    The cone calorimeter is widely used for the determination of the heat release rate (HRR) of building products and other materials. As part of an effort to increase the availability of cone calorimeter data on wood products, the U.S. Forest Products Laboratory and the American Wood Council conducted this study on composite wood products in cooperation with the Composite...

  13. Status of the ATLAS hadronic tile calorimeter

    International Nuclear Information System (INIS)

    Leitner, R.

    2005-01-01

    Short status of the Tile Calorimeter project is given. Major achievements in the mechanical construction of the detector modules, their instrumentation, cylinders assembly, as well as the principles of the detector front-end electronics, are described. The ideas of Tile Calorimeter module calibration are presented

  14. Several versions of forward gas ionization calorimeter

    International Nuclear Information System (INIS)

    Babintsev, V.V.; Kholodenko, A.G.; Rodnov, Yu.V.

    1994-01-01

    The properties of several versions of a gas ionization calorimeter are analyzed by means of the simulation with the GEANT code. The jet energy and coordinate resolutions are evaluated. Some versions of the forward calorimeter meet the ATLAS requirements. 13 refs., 15 figs., 7 tabs

  15. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Braunschweig, W. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Geulig, E. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Schoentag, M. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Siedling, R. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Wlochal, M. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.; Putzer, A. [European Organization for Nuclear Research, Geneva (Switzerland); Wotschack, J. [European Organization for Nuclear Research, Geneva (Switzerland); Cheplakov, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Feshchenko, A. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Kazarinov, M. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Kukhtin, V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Ladygin, E. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Obudovskij, V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation); Geweniger, C. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Hanke, P. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Kluge, E.E. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Krause, J. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Schmidt, M. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Stenzel, H. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Tittel, K. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Wunsch, M. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Zerwas, D. [Heidelberg Univ. (Germany). Inst. fuer Hochenergiephysik; Bruncko, D. [Slovenska Akademia Vied, Kosice (Slovakia). Ustav Experimentalnej Fyziky; Jusko, A. [Slovenska Akademia Vied, Kosice (Slovakia). Ustav Experimentalnej Fyziky; Kocper, B.; RD33 Collaboration

    1994-11-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. (orig.)

  16. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    Energy Technology Data Exchange (ETDEWEB)

    Berger, C.; Braunschweig, W.; Geulig, E. [Technische Hochschule Aachen (Germany). 1. Physikalisches Inst.] [and others

    1995-04-21

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. ((orig.)).

  17. Study of a novel electromagnetic liquid argon calorimeter - the TGT

    International Nuclear Information System (INIS)

    Berger, C.; Braunschweig, W.; Geulig, E.

    1995-01-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure. ((orig.))

  18. Continued studies of calorimeter performance at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Steward, S.A.; Tsugawa, R.T.

    1975-01-01

    Calibrations of two calorimeters used for tritium and plutonium assays were made. Data from three new standards of about 0.5, 1, and 5 W were added to the results of a previous report and analyzed together. The accuracies of both calorimeters appear to fall within the specified 0.5 percent, although the data now available for the large calorimeter is insufficient to permit a more definite conclusion. An expression of the bias correction for each calorimeter with respect to the sample power cannot be determined. The bias of the medium thermopile-type calorimeter tends to be positive, however, and that of the large resistance-bridge design appears to be negative

  19. Calibration and performance of the CHORUS calorimeter

    International Nuclear Information System (INIS)

    Buontempo, S.; Capone, A.; Cocco, A.G.; De Pedis, D.; Di Capua, E.; Dore, U.; Ereditato, A.; Ferroni, M.; Fiorillo, G.; Loverre, P.F.; Luppi, C.; Macina, D.; Marchetti-Stasi, F.; Mazzoni, M.A.; Migliozzi, P.; Palladino, V.; Piredda, G.; Ricciardi, S.; Righini, P.P.; Saitta, B.; Santacesaria, R.; Strolin, P.; Zucchelli, P.

    1995-01-01

    A high resolution calorimeter has been built for CHORUS, an experiment which searches for ν μ →ν τ oscillation in the CERN neutrino beam. Aim of the calorimeter is to measure the energy and direction of hadronic showers produced in interactions of the neutrinos in a nuclear emulsion target and to track through-going muons. It is a longitudinally segmented sampling device made of lead and scintillating fibers or strips. This detector has been exposed to beams of pions and electrons of defined momentum for calibration. The method used for energy calibration and results on the calorimeter performance are reported. (orig.)

  20. Performance of a shashlik calorimeter at LEP II

    CERN Document Server

    Ferrari, P; Klovning, A; Maeland, O A; Stugu, B; Benvenuti, Alberto C; Giordano, V; Guerzoni, M; Navarria, Francesco Luigi; Verardi, M G; Camporesi, T; Bozzo, M; Cereseto, R; Barreira, G; Espirito-Santo, M C; Maio, A; Onofre, A; Peralta, L; Pimenta, M; Tomé, B; Carling, H; Falk, E; Hedberg, V; Jarlskog, G; Kronkvist, I J; Bonesini, M; Chignoli, F; Gumenyuk, S A; Leoni, R; Mazza, R; Negri, P; Paganoni, M; Petrovykh, L P; Terranova, F; Dharmasiri, D R; Nossum, B; Read, A L; Skaali, T B; Castellani, L; Pegoraro, M; Fenyuk, A; Guz, Yu; Karyukhin, A N; Konoplyannikov, A K; Obraztsov, V F; Shalanda, N A; Vlasov, E; Zaitsev, A; Bigi, M; Cassio, V; Gamba, D; Migliore, E; Romero, A; Simonetti, L; Torassa, E; Trapani, P P; Bari, M D; Della Ricca, G; Lanceri, L; Poropat, P; Prest, M; Vallazza, E

    1999-01-01

    The small angle tile calorimeter (STIC) is a sampling lead- scintillator calorimeter, built with "shashlik" technique. Results are presented from extensive studies of the detector performance at LEP. (5 refs).

  1. Hadron showers in a highly granular calorimeter

    International Nuclear Information System (INIS)

    Lutz, Benjamin

    2010-11-01

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  2. Hadron showers in a highly granular calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Lutz, Benjamin

    2010-11-15

    A future electron-positron collider like the planned International Linear Collider (ILC) needs excellent detectors to exploit the full physics potential. Different detector concepts have been evaluated for the ILC and two concepts on the particle-flow approach were validated. To make particle-flow work, a new type of imaging calorimeters is necessary in combination with a high performance tracking system, to be able to track the single particles through the full detector system. These calorimeters require an unprecedented level of both longitudinal and lateral granularity. Several calorimeter technologies promise to reach the required readout segmentation and are currently studied. This thesis addresses one of these: The analogue hadron calorimeter technology. It combines work on the technological aspects of a highly granular calorimeter with the study of hadron shower physics. The analogue hadron calorimeter technology joins a classical scintillator-steel sandwich design with a modern photo-sensor technology, the silicon photomultiplier (SiPM). The SiPM is a millimetre sized, magnetic field insensitive, and low cost photo-sensor, that opens new possibilities in calorimeter design. This thesis outlines the working principle and characteristics of these devices. The requirements for an application specific integrated circuit (ASIC) to read the SiPM are discussed; the performance of a prototype chip for SiPM readout, the SPIROC, is quantified. Also the SiPM specific reconstruction of a multi-thousand channel prototype calorimeter, the CALICE AHCAL, is explained; the systematic uncertainty of the calibration method is derived. The AHCAL does not only offer a test of the calorimeter technology, it also allows to record hadron showers with an unprecedented level of details. Test-beam measurements have been performed with the AHCAL and provide a unique sample for the development of novel analysis techniques and the validation of hadron shower simulations. A method to

  3. The optical instrumentation of the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Abdallah, J; Adragna, P; Bosi, F; Alexa, C; Boldea, V; Alves, R; Amaral, P; Andresen, X; Ananiev, A; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Bohm, C; Biscarat, C; Blanch, O; Blanchot, G; Bosman, M; Bromberg, C

    2013-01-01

    The Tile Calorimeter, covering the central region of the ATLAS experiment up to pseudorapidities of ±1.7, is a sampling device built with scintillating tiles that alternate with iron plates. The light is collected in wave-length shifting (WLS) fibers and is read out with photomultipliers. In the characteristic geometry of this calorimeter the tiles lie in planes perpendicular to the beams, resulting in a very simple and modular mechanical and optical layout. This paper focuses on the procedures applied in the optical instrumentation of the calorimeter, which involved the assembly of about 460,000 scintillator tiles and 550,000 WLS fibers. The outcome is a hadronic calorimeter that meets the ATLAS performance requirements, as shown in this paper.

  4. Hydroxyurea decreases hospitalizations in pediatric patients with Hb SC and Hb SB+ thalassemia

    Directory of Open Access Journals (Sweden)

    Lebensburger JD

    2015-12-01

    Full Text Available Jeffrey D Lebensburger, Rakeshkumar J Patel, Prasannalaxmi Palabindela, Christina J Bemrich-Stolz, Thomas H Howard, Lee M HilliardDivision of Pediatric Hematology Oncology, University of Alabama at Birmingham, Birmingham, AL, USAPurpose: Patients with hemoglobin SC (Hb SC and hemoglobin SB+ (Hb SB+ thalassemia suffer from frequent hospitalizations yet strong evidence of a clinical benefit of hydroxyurea (HU in this population is lacking. Patients with recurrent hospitalizations for pain crisis are offered HU at our institution based on small cohort data and anecdotal benefit. This study identifies outcomes from a large cohort of patients with Hb SC and SB+ thalassemia who were treated with HU for 2 years.Materials and methods: A retrospective review was conducted of 32 patients with Hb SC and SB+ thalassemia who were treated with HU. We reviewed the number, and reasons for hospitalization in the 2 years prior to, and 2 years post-HU treatment as well as laboratory changes from baseline, over 1 year.Results: Patients with Hb SC and SB+ thalassemia started on HU for frequent pain, had a significant reduction in hospitalizations over 2 years as compared to the 2 years prior to HU initiation (mean total hospitalizations/year: pre-HU: 1.6 vs post-HU 0.4 hospitalizations, P<0.001; mean pain hospitalizations/year: pre-HU 1.5 vs post-HU 0.3 hospitalizations, P<0.001. Patients demonstrated hematologic changes including an increase in percent fetal hemoglobin (%HbF pre–post HU (4.5% to 7.7%, P=0.002, mean corpuscular volume (74 to 86 fL, P<0,0001, and decrease in absolute neutrophil count (5.0 to 3.2×109/L, P=0.007. Patients with higher doses of HU demonstrated the greatest reduction in hospitalizations but this was unrelated to absolute neutrophil count.Conclusion: This cohort of patients with Hb SC and SB+ thalassemia provides additional support for using HU in patients with recurrent hospitalizations for pain. A large randomized multicenter trial of

  5. Correction

    CERN Multimedia

    2002-01-01

    Tile Calorimeter modules stored at CERN. The larger modules belong to the Barrel, whereas the smaller ones are for the two Extended Barrels. (The article was about the completion of the 64 modules for one of the latter.) The photo on the first page of the Bulletin n°26/2002, from 24 July 2002, illustrating the article «The ATLAS Tile Calorimeter gets into shape» was published with a wrong caption. We would like to apologise for this mistake and so publish it again with the correct caption.

  6. The TIM Barrel Architecture Facilitated the Early Evolution of Protein-Mediated Metabolism.

    Science.gov (United States)

    Goldman, Aaron David; Beatty, Joshua T; Landweber, Laura F

    2016-01-01

    The triosephosphate isomerase (TIM) barrel protein fold is a structurally repetitive architecture that is present in approximately 10% of all enzymes. It is generally assumed that this ubiquity in modern proteomes reflects an essential historical role in early protein-mediated metabolism. Here, we provide quantitative and comparative analyses to support several hypotheses about the early importance of the TIM barrel architecture. An information theoretical analysis of protein structures supports the hypothesis that the TIM barrel architecture could arise more easily by duplication and recombination compared to other mixed α/β structures. We show that TIM barrel enzymes corresponding to the most taxonomically broad superfamilies also have the broadest range of functions, often aided by metal and nucleotide-derived cofactors that are thought to reflect an earlier stage of metabolic evolution. By comparison to other putatively ancient protein architectures, we find that the functional diversity of TIM barrel proteins cannot be explained simply by their antiquity. Instead, the breadth of TIM barrel functions can be explained, in part, by the incorporation of a broad range of cofactors, a trend that does not appear to be shared by proteins in general. These results support the hypothesis that the simple and functionally general TIM barrel architecture may have arisen early in the evolution of protein biosynthesis and provided an ideal scaffold to facilitate the metabolic transition from ribozymes, peptides, and geochemical catalysts to modern protein enzymes.

  7. Energy metrics for driving competitiveness of countries: Energy weakness magnitude, GDP per barrel and barrels per capita

    International Nuclear Information System (INIS)

    Coccia, Mario

    2010-01-01

    Energy metrics is the development of a whole new theoretical framework for the conception and measurement of energy and economic system performances, energy efficiency and productivity improvements with important political economy implications consistent with the best use of all natural and economic resources. The purpose of this research is to present some vital energy indicators based on magnitude and scale of energy weakness, GDP per barrel of oil that is an indicator of energy productivity and barrels (of oil) per capita that is an indicator of energy efficiency. Energy metrics can support the monitoring of energy and economic system performances in order to design effective energy strategy and political economy interventions focused on the 'competitive advantage' increase of countries in modern economies.

  8. Understanding and Predicting Gun Barrel Erosion

    National Research Council Canada - National Science Library

    Johnston, Ian A

    2005-01-01

    The Australian Defence Force will soon have to contend with gun barrel erosion issues arising from the use of new low-vulnerability gun propellants, the acquisition of new ammunition and gun systems...

  9. Radioactively induced noise in gas-sampling uranium calorimeters

    International Nuclear Information System (INIS)

    Gordon, H.A.; Rehak, P.

    1982-01-01

    The signal induced by radioactivity of a U 238 absorber in a cell of a gas-sampling uranium calorimeter was studied. By means of Campbell's theorem, the levels of the radioactively induced noise in uranium gas-sampling calorimeters was calculated. It was shown that in order to obtain similar radioactive noise performance as U-liquid argon or U-scintillator combinations, the α-particles from the uranium must be stopped before entering the sensing volume of gas-uranium calorimeters

  10. Construction and performance of the ATLAS silicon microstrip barrel modules

    International Nuclear Information System (INIS)

    Kondo, T.; Apsimon, R.; Beck, G.A.; Bell, P.; Brenner, R.; Bruckman de Renstrom, P.; Carter, A.A.; Carter, J.R.; Charlton, D.; Dabrowski, W.; Dorholt, O.; Ekelof, T.; Eklund, L.; Gibson, M.; Gadomski, S.; Grillo, A.; Grosse-Knetter, J.; Haber, C.; Hara, K.; Hill, J.C.; Ikegami, Y.; Iwata, Y.; Johansen, L.G.; Kohriki, T.; Macpherson, A.; McMahon, S.; Moorhead, G.; Morin, J.; Morris, J.; Morrissey, M.; Nagai, K.; Nakano, I.; Pater, J.; Pernegger, H.; Perrin, E.; Phillips, P.; Robinson, D.; Skubic, B.; Spencer, N.; Stapnes, S.; Stugu, B.; Takashima, R.; Terada, S.; Tyndel, M.; Ujiie, N.; Unno, Y.; Vos, M.

    2002-01-01

    The ATLAS Semiconductor Tracker (SCT) consists of four barrel cylinders and 18 end-cap disks. This paper describes the SCT modules of the barrel region, of which more than 2000 are about to be constructed. The module design is fixed. Its design concept is given together with the electrical, thermal and mechanical specifications. The pre-series production of the barrel modules is underway using mass-production procedures and jigs. The pre-series modules have given satisfactory performances on noise, noise occupancy, electrical as well as mechanical and thermal properties. In addition, irradiated modules were demonstrated to work successfully. Also first results from a 10-module system test are given

  11. Upgrading ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of s...

  12. The Prism Plastic Calorimeter (PPC)

    CERN Multimedia

    2002-01-01

    This proposal supports two goals: \\\\ \\\\ First goal:~~Demonstrate that current, widely used plastic technologies allow to design Prism Plastic Calorimeter~(PPC) towers with a new ``liquid crystal'' type plastic called Vectra. It will be shown that this technique meets the requirements for a LHC calorimeter with warm liquids: safety, hermeticity, hadronic compensation, resolution and time response. \\\\ \\\\ Second goal:~~Describe how one can design a warm liquid calorimeter integrated into a LHC detector and to list the advantages of the PPC: low price, minimum of mechanical structures, minimum of dead space, easiness of mechanical assembly, accessibility to the electronics, possibility to recirculate the liquid. The absorber and the electronic being outside of the liquid and easily accessible, one has maximum flexibility to define them. \\\\ \\\\ The R&D program, we define here aims at showing the feasibility of these new ideas by building nine towers of twenty gaps and exposing them to electron and hadron beams.

  13. SLD liquid argon calorimeter

    International Nuclear Information System (INIS)

    Vella, E.

    1992-10-01

    The liquid argon calorimeter (LAC) of the SLD detector is a parallel plate -- liquid argon sampling calorimeter, used to measure particle energies in Z 0 decays at the Stanford Linear Collider. The LAC module design is based on a unique projective tower structure, in which lead plates and segmented lead tiles serve both as absorbers and electrodes. The LAC front end electronics incorporates several novel features, including extensive multiplexing and optical fiber readout, which take advantage of the low SLC beam crossing frequency. The operational performance of the LAC during the recently completed SLD physics run (which recorded over 10,000 Z 0 events) is discussed

  14. A real-time low energy electron calorimeter

    International Nuclear Information System (INIS)

    Mod Ali, N.; Smith, F.A.

    1999-01-01

    A real-time low energy electron calorimeter with a thin film window has been designed and fabricated to facilitate a reliable method of dose assessment for electron beam energies down to 200 keV. The work was initiated by the Radiation Physics Group of Queen Mary and Westfield College in collaboration with the National Physical Laboratory (NPL), Teddington. Irradiations were performed on the low and medium electron energy electron accelerators at the Malaysian Institute for Nuclear Technology Research (MINT). Calorimeter response was initially tested using the on-line temperature measurements for a 500-keV electron beam. The system was later redesigned by incorporating a data-logger to use on the self-shielded 200-keV beam. In use, the final version of the calorimeter could start logging temperature a short time before the calorimeter passed under the beam and continue measurements throughout the irradiation. Data could be easily retrieved at the end of the exposure. (author)

  15. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The ATLAS Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum fro...

  16. Performance of the ATLAS hadronic Tile calorimeter

    CERN Document Server

    Mlynarikova, Michaela; The ATLAS collaboration

    2017-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for reconstruction of hadrons, jets, tau-particles and missing transverse energy. TileCal is a scintillator-steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the scintillator tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal frontend electronics reads out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. Each stage of the signal production from scintillation light to the signal reconstruction is monitored and calibrated. The performance of the calorimeter has been studied in-situ employing cosmic ray muons and a large sample of proton-proton collisions acquired during the operations of the LHC. Prompt isolated muons of high momentum from elec...

  17. Performance of the ATLAS Zero Degree Calorimeter

    CERN Document Server

    Leite, M; The ATLAS collaboration

    2013-01-01

    The ATLAS Zero Degree Calorimeter (ZDC) at the Large Hadron Collider (LHC) is a set of two sampling calorimeters modules symmetrically located at 140m from the ATLAS interaction point. The ZDC covers a pseudorapidity range of |eta| > 8.3 and it is both longitudinally and transversely segmented, thus providing energy and position information of the incident particles. The ZDC is installed between the two LHC beam pipes, in a configuration such that only the neutral particles produced at the interaction region can reach this calorimeter. The ZDC uses Tungsten plates as absorber material and rods made of quartz interspersed in the absorber as active media. The energetic charged particles crossing the quartz rods produces Cherenkov light which is then detected by photomultipliers and sent to the front end electronics for processing, in a total of 120 individual electronic channels. The Tungsten plates and quartz rods are arranged in a way to segment the calorimeters in 4 longitudinal sections. The first section (...

  18. Implementation of linear bias corrections for calorimeters at Mound

    International Nuclear Information System (INIS)

    Barnett, T.M.

    1993-01-01

    In the past, Mound has generally made relative bias corrections as part of the calibration of individual calorimeters. The correction made was the same over the entire operating range of the calorimeter, regardless of the magnitude of the range. Recently, an investigation was performed to check the relevancy of using linear bias corrections to calibrate the calorimeters. The bias is obtained by measuring calibrated plutonium and/or electrical heat standards over the operating range of the calorimeter. The bias correction is then calculated using a simple least squares fit (y = mx + b) of the bias in milliwatts over the operating range of the calorimeter in watts. The equation used is B i = B 0 + (B w * W m ), where B i is the bias at any given power in milliwatts, B 0 is the intercept (absolute bias in milliwatts), B w is the slope (relative bias in milliwatts per watt), and W m is the measured power in watts. The results of the study showed a decrease in the random error of bias corrected data for most of the calorimeters which are operated over a large wattage range (greater than an order of magnitude). The linear technique for bias correction has been fully implemented at Mound and has been included in the Technical Manual, ''A Measurement Control Program for Radiometric Calorimeters at Mound'' (MD-21900)

  19. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  20. Flow Type Bio-Chemical Calorimeter with Micro Differential Thermopile Sensor.

    Science.gov (United States)

    Saito, Masataka; Nakabeppu, Osamu

    2015-04-01

    Bio-chemical calorimeters with a MEMS (Micro-Electro-Mechanical Systems) thermopile sensor have been studied for monitoring detailed processes of the biochemical reactions of a minute sample with a high temporal resolution. The bio-calorimeters are generally divided into a batch-type and a flow-type. We developed a highly sensitive batch-type calorimeter which can detect a 100 nW level thermal reaction. However it shows a long settling time of 2 hours because of the heat capacity of a whole calorimeter. Thus, the flow-type calorimeters in passive and active mode have been studied for measuring the thermal reactions in an early stage after starting an analysis. The flow-type calorimeter consists of the MEMS differential thermopile sensor, a pair of micro channel reactor in a PDMS (polydimethylsiloxane) sheet in a three-fold thermostat chamber. The calorimeter in the passive mode was tested with dilution reactions of ethanol to water and NaCl aqueous solution to water. It was shown that the calorimeter detects exo- and endothermic reaction over 250 nW at solution flow rate of 0.05 ~ 1 µl/min with a settling time of about 4 minutes. In the active mode, a response test was conducted by using heat removal by water flow from the reactor channel. The active calorimetry enhances the response time about three to four times faster.

  1. Calibration of film dosimeters by means of absorbed dose calorimeters

    International Nuclear Information System (INIS)

    Nikolaev, S.M.; Vanyushkin, B.M.; Kon'kov, N.G.

    1980-01-01

    Methods of graduating film dosimeters by means of calorimeters of absorbed doses, are considered. Graduating of film dosimeters at the energies of accelerated electrons from 4 to 10 MeV can be carried out by means of quasiadiabatic calorimeter of local absorption, the absorber thickness of which should not exceed 5-10% of Rsub(e) value, where Rsub(e) - free electron path of the given energy. In this case film is located inside the calorimeter. For graduating films with thickness not less than (0.1-0.2)Rsub(e) it is suggested to use calorimeter of full absorption; then the graduated dosimeters are located in front of the calorimeter. Graduation of films at small energies of electrons is exercised by means of a package of films, approximately Rsub(e) thick. A design of quasiadiabatic calorimeter, intended for graduating dosimeters within the energy range of electron beam from 4 to 10 MeV, is considered. The quasiadiabatic calorimeter is a thin graphite tablet with heater and thermocouple, surrounded by foam plastic thermostating case. Electricity quantity, accumulated during the radiation field pass, is measured in the case of using the quasiadiabatic calorimeter for film graduating. The results of graduating film dosimeters, obtained using film package with Rsub(e) thickness, are presented. The obtained results coincide within 5% limits with the data known beforehand [ru

  2. QCALT: A tile calorimeter for KLOE-2 upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Balla, A.; Ciambrone, P.; Corradi, G. [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Martini, M., E-mail: matteo.martini@lnf.infn.it [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Università degli studi Guglielmo Marconi, Rome (Italy); Paglia, C.; Pileggi, G.; Ponzio, B.; Saputi, A. [INFN, Laboratori Nazionali di Frascati, Frascati (Rm) (Italy); Tagnani, D. [INFN, Sezione di Roma 3, Rome (Italy)

    2013-08-01

    The upgrade of the DaΦne machine layout requires a modification of the size and position of the inner focusing quadrupoles of KLOE-2, thus asking for the realization of two new calorimeters, named QCALT, covering this area. To improve the reconstruction of K{sub L}→2π{sup 0} events with photons hitting the quadrupoles, a calorimeter with high efficiency to low energy photons (20–300 MeV), time resolution of less than 1 ns and space resolution of few cm, is needed. To match these requirements we are now constructing a scintillator tile calorimeter where each single tile is readout by mean of SiPM for a total granularity of 1760 channels. We show the design of the different calorimeter components and the present status of the construction.

  3. Development of a portable graphite calorimeter for photons and electrons

    International Nuclear Information System (INIS)

    McEwen, M.R.; Duane, S.

    1999-01-01

    The aim of this project is to develop a calorimeter for use in both electron and photon beams. The calorimeter should be more robust than the present NPL primary standard X-ray calorimeter and is designed to be sufficiently portable to enable measurements at clinical accelerators away from NPL. Although intended for therapy-level dosimetry, the new calorimeter can also be used for high-dose measurements at industrial facilities. The system consists of a front end (the calorimeter itself), means for thermal isolation and temperature control, and a measurement system based on thermistors in a DC Wheatstone bridge. The early part of the project focused on the development of a temperature control system sensitive enough to allow measurements of temperature rises of the order of 1 mK. The control system responds to the calorimeter, phantom and air temperatures and maintains the temperature of the calorimeter to within ± 0.2 mK over several hours. Initial operation at NPL in 6, 10 and 16 MV X-ray beams show that the system is capable of measurements of 1 Gy at 2 Gy/min with a random uncertainty of ± 0.5% (1 standard deviation). (author)

  4. Mechanical construction and installation of the ATLAS tile calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Abdallah, J [IFIC, Centro Mixto Universidad de Valencia-CSIC, E46100 Burjassot, Valencia (Spain); Adragna, P; Bosi, F [Pisa University and INFN, Pisa (Italy); Alexa, C; Boldea, V [Institute of Atomic Physics, Bucharest (Romania); Alves, R [LIP and FCTUC University of Coimbra (Portugal); Amaral, P; Andresen, X; Behrens, A; Blocki, J [CERN, Geneva (Switzerland); Ananiev, A [LIP and IDMEC-IST, Lisbon (Portugal); Anderson, K [University of Chicago, Chicago, Illinois (United States); Antonaki, A [University of Athens, Athens (Greece); Batusov, V [JINR, Dubna (Russian Federation); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas, E; Bohm, C [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Université Blaise Pascal, Clermont-Ferrand (France); Blanch, O; Blanchot, G [Institut de Fisica d' Altes Energies, Universitat Autònoma de Barcelona, Barcelona (Spain); others, and

    2013-11-01

    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight.

  5. Mechanical construction and installation of the ATLAS tile calorimeter

    International Nuclear Information System (INIS)

    Abdallah, J; Adragna, P; Bosi, F; Alexa, C; Boldea, V; Alves, R; Amaral, P; Andresen, X; Behrens, A; Blocki, J; Ananiev, A; Anderson, K; Antonaki, A; Batusov, V; Bednar, P; Bergeaas, E; Bohm, C; Biscarat, C; Blanch, O; Blanchot, G

    2013-01-01

    This paper summarises the mechanical construction and installation of the Tile Calorimeter for the ATLAS experiment at the Large Hadron Collider in CERN, Switzerland. The Tile Calorimeter is a sampling calorimeter using scintillator as the sensitive detector and steel as the absorber and covers the central region of the ATLAS experiment up to pseudorapidities ±1.7. The mechanical construction of the Tile Calorimeter occurred over a period of about 10 years beginning in 1995 with the completion of the Technical Design Report and ending in 2006 with the installation of the final module in the ATLAS cavern. During this period approximately 2600 metric tons of steel were transformed into a laminated structure to form the absorber of the sampling calorimeter. Following instrumentation and testing, which is described elsewhere, the modules were installed in the ATLAS cavern with a remarkable accuracy for a structure of this size and weight

  6. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    DEFF Research Database (Denmark)

    Sato, T.; Takahashi, T.; Saito, T.

    1993-01-01

    Graphite and water calorimeters, which were developed for use a 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found...... to be directly proportional to the beam current and the variation among three water calorimeters was less than +/- 2 % in the range of 10 to 40 kGy. CTA, PMMA, RCD dosimeters were calibrated by irradiating the dosimeters and water calorimeters Simultaneously. The water calorimeter was proved to be an useful tool...... at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95 % confidence level) for X-ray measurement....

  7. Application of calorimeters for 5 MeV EB and bremsstrahlung dosimetry

    International Nuclear Information System (INIS)

    Sato, Toshio; Takahashi, Toru; Saito, Toshio; Takehisa, Masaaki; Miller, A.

    1993-01-01

    Graphite and water calorimeters, which were developed for use with 10 MeV electron beams (EB) at Riso National Laboratory, were used for process validation and routine dosimeter calibration at a 5 MeV EB. Water calorimeters were used for reference measurements for 5 MeV EB, the response was found to be directly proportional to the beam current and the variation among three water calorimeters was less than ± 2% in the range of 10 to 40 kGy. CTA PMMA RCD dosimeters were calibrated by irradiating the dosimeters and water calorimeters simultaneously. The water calorimeter was proved to be an useful tool at 5 MeV EB. Graphite calorimeters gave reproducible readings within 3.3 % relative errors (95% confidence level) for X-ray measurement. (Author)

  8. X-ray calorimeters used for measurement in laser-fusion experiments

    International Nuclear Information System (INIS)

    Tang Daorun; China Academy of Engineering Physics, Mianyang; Wu Dengxue; Lin Libin; Sun Kexu; Jiang Shaoen

    2005-01-01

    X-ray calorimeters are ready to measure the total soft X-ray energy emitted from the plasma produced by laser because of their bodily absorption, linear response, insensitivity to the electromagnetic disturbance, and so on. The calorimeters mainly include absorbers, thermocouples, bases and shrouds. When X-rays are deposited in the absorbers, photon energy absorbed is quickly converted into intrinsic energy which simultaneously dissipates by thermal conduction and radiation. The X-ray calorimeters were absolutely on-line calibrated in Shenguang-II laser facility with the X-ray diode array spectrometer which has been absolutely calibrated on Beijing Synchrotron Radiation Facility. 20 shots' experimental results show that the X-ray calorimeters are stable, the sensitivity of calorimeter is (84.1 ± 3.4) μv/mJ and the related combined standard uncertainty in the X-ray energy measure is about 31%. The calorimeters can be applied to measure the X-ray energy. (authors)

  9. The H1 liquid argon calorimeter system

    International Nuclear Information System (INIS)

    Andrieu, B.; Babayev, A.; Ban, J.

    1993-06-01

    The liquid argon calorimeter of the H1 detector presently taking data at the HERA ep - collider at DESY, Hamburg, is described here. The main physics requirements and the most salient design features relevant to this calorimeter are given. The aim to have smooth and hermetic calorimetric coverage over the polar angular range 4 ≤ θ ≤ 154 is achieved by a single liquid argon cryostat containing calorimeter stacks structured in wheels and octants for easy handling. The absorber materials used are lead in the electromagnetic part and stainless steel in the hadronic part. The read-out system is pipelined to reduce the dead time induced by the high trigger rate expected at the HERA collider where consecutive bunches are separated in time by 96 ns. The main elements of the calorimeter, such as the cryostat, with its associated cryogenics, the stack modules, the read-out, calibration and trigger electronics as well as the data acquisition system are described. Performance results from data taken in calibration runs with full size H1 calorimeter stacks at a CERN test beam, as well as results from data collected with the complete H1 detector using cosmic rays during the initial phase of ep operations are presented. The observed energy resolutions and linearities are well in agreement with the requirements. (orig.)

  10. Simulation of secondary emission calorimeter for future colliders

    Science.gov (United States)

    Yetkin, E. A.; Yetkin, T.; Ozok, F.; Iren, E.; Erduran, M. N.

    2018-03-01

    We present updated results from a simulation study of a conceptual sampling electromagnetic calorimeter based on secondary electron emission process. We implemented the secondary electron emission process in Geant4 as a user physics list and produced the energy spectrum and yield of secondary electrons. The energy resolution of the SEE calorimeter was σ/E = (41%) GeV1/2/√E and the response linearity to electromagnetic showers was to within 1.5%. The simulation results were also compared with a traditional scintillator calorimeter.

  11. Sampling calorimeters in high energy physics

    International Nuclear Information System (INIS)

    Gordon, H.A.; Smith, S.D.

    1980-01-01

    Attention is given to sampling calorimeters - those instruments in which part of the shower is sampled in an active medium sandwiched between absorbing layers. A very cursory overview is presented of some fundamental aspects of sampling calorimeters. First the properties of shower development are described for both the electromagnetic and hadronic cases. Then examples of various readout schemes are discussed. Finally, some currently promising new ideas in calorimetry are described

  12. Patchwork-Type Spontaneous Activity in Neonatal Barrel Cortex Layer 4 Transmitted via Thalamocortical Projections

    Directory of Open Access Journals (Sweden)

    Hidenobu Mizuno

    2018-01-01

    Full Text Available Summary: Establishment of precise neuronal connectivity in the neocortex relies on activity-dependent circuit reorganization during postnatal development; however, the nature of cortical activity during this period remains largely unknown. Using two-photon calcium imaging of the barrel cortex in vivo during the first postnatal week, we reveal that layer 4 (L4 neurons within the same barrel fire synchronously in the absence of peripheral stimulation, creating a “patchwork” pattern of spontaneous activity corresponding to the barrel map. By generating transgenic mice expressing GCaMP6s in thalamocortical axons, we show that thalamocortical axons also demonstrate the spontaneous patchwork activity pattern. Patchwork activity is diminished by peripheral anesthesia but is mostly independent of self-generated whisker movements. The patchwork activity pattern largely disappeared during postnatal week 2, as even L4 neurons within the same barrel tended to fire asynchronously. This spontaneous L4 activity pattern has features suitable for thalamocortical (TC circuit refinement in the neonatal barrel cortex. : By two-photon calcium imaging of layer 4 neurons and thalamocortical axon terminals in neonatal mouse barrel cortex, Mizuno et al. find a patchwork-like spontaneous activity pattern corresponding to the barrel map, which may be important for thalamocortical circuit maturation. Keywords: activity-dependent development, spontaneous activity, synchronized activity, barrel cortex, thalamocortical axons, neonates, in vivo calcium imaging, awake, single-cell labeling, whisker monitoring

  13. Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex.

    Science.gov (United States)

    Benedetti, B; Matyash, V; Kettenmann, H

    2011-03-01

    Astrocytes in the barrel cortex respond with a transient Ca2+ increase to neuronal stimulation and this response is restricted to the stimulated barrel field. In the present study we suppressed the astrocyte response by dialysing these cells with the Ca2+ chelator BAPTA. Electrical stimulation triggered a depolarization in stellate or pyramidal ‘regular spiking' neurons from cortex layer 4 and 2/3 and this response was augmented in amplitude and duration after astrocytes were dialysed with BAPTA. Combined blockade of GABAA and GABAB receptors mimicked the effect of BAPTA dialysis, while glutamate receptor blockers had no effect. Moreover, the frequency of spontaneous postsynaptic currents was increased after BAPTA dialysis. Outside the range of BAPTA dialysis astrocytes responded with a Ca2+ increase, but in contrast to control, the response was no longer restricted to one barrel field. Our findings indicate that astrocytes control neuronal inhibition in the barrel cortex.

  14. Integration and installation of the CMS pixel barrel detector

    CERN Document Server

    Kastli, Hans-Christian

    2008-01-01

    A 66 million pixel detector has been installed in 2008 into the CMS experiment at CERN. The development and construction time took more than 10 years. In this paper the assembly of the barrel detector is described. A simple but effective method to accomplish a survey of the module positions during assembly is discussed. Furthermore the insertion and commissioning of the CMS pixel barrel detector which took place in July 2008 is illustrated.

  15. Calorimeter based detectors for high energy hadron colliders

    International Nuclear Information System (INIS)

    Marx, M.D.; Rijssenbeek, M.

    1990-01-01

    This report discusses the following topics: the central calorimeter; and installation; commissioning; and calorimeter beam tests; the central drift chamber; cosmic ray and beam tests; chamber installation and commissioning; and software development; and SSC activities: the EMPACT project

  16. Web System for Data Quality Assessment of Tile Calorimeter During the ATLAS Operation

    International Nuclear Information System (INIS)

    Maidantchik, C; Ferreira, F; Grael, F; Sivolella, A; Balabram, L

    2011-01-01

    TileCal, the barrel hadronic calorimeter of the ATLAS experiment, gathers almost about 10,000 electronic channels. The supervision of the detector behavior is very important in order to ensure proper operation. Collaborators perform analysis over reconstructed data of calibration runs for giving detailed considerations about the equipment status. During the commissioning period, our group has developed seven web systems to support the data quality (DQ) assessment task. Each system covers a part of the process by providing information on the latest runs, displaying the DQ status from the monitoring framework, giving details about power supplies operation, presenting the generated plots and storing the validation outcomes, assisting to write logbook entries, creating and submitting the bad channels list to the conditions database and publishing the equipment performance history. The ATLAS operation increases amount of data that are retrieved, processed and stored by the web systems. In order to accomplish the new requirements, an optimized data model was designed to reduce the number of needed queries. The web systems were reassembled in a unique system in order to provide an integrated view of the validating process. The server load was minimized by using asynchronous requests from the browser.

  17. Electromagnetic response of a highly granular hadronic calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adloff, C.; Blaha, J.; Blaising, J.J. [Savoie Univ., CNRS/IN2P3, Annecy-le-Vieux (FR). Lab. d' Annecy-le-Vieux de Physique des Particules] (and others)

    2010-12-15

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  18. Electromagnetic response of a highly granular hadronic calorimeter

    International Nuclear Information System (INIS)

    Adloff, C.; Blaha, J.; Blaising, J.J.

    2010-12-01

    The CALICE collaboration is studying the design of high performance electromagnetic and hadronic calorimeters for future International Linear Collider detectors. For the hadronic calorimeter, one option is a highly granular sampling calorimeter with steel as absorber and scintillator layers as active material. High granularity is obtained by segmenting the scintillator into small tiles individually read out via silicon photo-multipliers (SiPM). A prototype has been built, consisting of thirty-eight sensitive layers, segmented into about eight thousand channels. In 2007 the prototype was exposed to positrons and hadrons using the CERN SPS beam, covering a wide range of beam energies and incidence angles. The challenge of cell equalization and calibration of such a large number of channels is best validated using electromagnetic processes. The response of the prototype steel-scintillator calorimeter, including linearity and uniformity, to electrons is investigated and described. (orig.)

  19. Calibration of the ZEUS forward calorimeter

    International Nuclear Information System (INIS)

    Kraemer, M.

    1990-10-01

    The physics at the ep-collider HERA requires high resolution calorimetry calibrated with an accuracy of better than 2%. The ZEUS detector meets these conditions by means of a compensating uranium scintillator sandwich calorimeter with an energy resolution of σ/E = 35%/√E + σ cal , where σ cal is the calibration error. One of the tools to minimize σ cal is the calibration with the signals of the radioactivity of the Uranium plates (UNO). Taking UNO data every 8 hours keeps the calibration stable within ≅ 1%. The muon calibration is done employing an algorithm, that determines the most probable energy loss with a precision of ≅ 1%. The channel-to-channel fluctuations of the ratio μ/UNO for a forward calorimeter (FCAL) prototype show a spread of 5.2% for the electromagnetic calorimeter and ≅ 2.5% for the hadronic sections. Improvements in the construction of the FCAL modules decreased these fluctuations to 2.0% and ≅ 1.8% respectively. The influence of the cracks between the calorimeter modules amounts to ≅ 1.7% on average for the ZEUS geometry, if a 2 mm thick Pb-sheet is introduced between the modules. We conclude that we are able to keep σ cal below 2%. (orig.)

  20. Performance of CREAM Calorimeter Results of Beam Tests

    CERN Document Server

    Ahn, H S; Beatty, J J; Bigongiari, G; Castellina, A; Childers, J T; Conklin, N B; Coutu, S; Duvernois, M A; Ganel, O; Han, J H; Hyun, H J; Kang, T G; Kim, H J; Kim, K C; Kim, M Y; Kim, T; Kim, Y J; Lee, J K; Lee, M H; Lutz, L; Maestro, P; Malinine, A; Marrocchesi, P S; Mognet, S I; Nam, S W; Nutter, S; Park, N H; Park, H; Seo, E S; Sina, R; Syed, S; Song, C; Swordy, S; Wu, J; Yang, J; Zhang, H Q; Zei, R; Zinn, S Y

    2005-01-01

    The Cosmic Ray Energetics And Mass (CREAM), a balloon-borne experiment, is under preparation for a flight in Antarctica at the end of 2004. CREAM is planned to measure the energy spectrum and composition of cosmic rays directly at energies between 1 TeV and 1000 TeV. Incident particle energies will be measured by a transition radiation detector and a sampling calorimeter. The calorimeter was constructed at the University of Maryland and tested at CERN in 2003. Performance of the calorimeter during the beam tests is reported.

  1. First Report of a Chinese Family Carrying a Double Heterozygosity for Hb Q-Thailand and Hb J-Bangkok.

    Science.gov (United States)

    Jiang, Fan; Zhou, Jian-Ying; Yan, Jin-Mei; Lu, Yue-Cheng; Li, Dong-Zhi

    2016-11-01

    The double heterozygosity for α and β chain variants leads to the formation of abnormal heterodimer hybrids, which could render laboratory diagnostics in a routine setting difficult. The following is the first report of a double heterozygosity for Hb Q-Thailand [α74(EF3)Asp→His; HBA1: c.223G>C] with α + -thalassemia (α + -thal) and Hb J-Bangkok [β56(D7)Gly→Asp; HBB: c.170G>A] found in a Chinese family. Both subjects were healthy with normal or borderline hematological parameters. Hemoglobin (Hb) analyses showed a novel variant, Hb Q-Thailand and Hb J-Bangkok. Family studies helped in the initial recognition and in making presumptive diagnoses, but definitive diagnoses of these cases with complex α and β chain variants could only be obtained after DNA analysis.

  2. An overview of CMS central hadron calorimeter

    CERN Document Server

    Katta, S

    2002-01-01

    The central hadron calorimeter for CMS detector is a sampling calorimeter with active medium as scintillator plates interleaved with brass absorber plates. It covers the central pseudorapidity region (¿ eta ¿<3.0). The design and construction aspects are reported. The status of construction and assembly of various subdetectors of HCAL are presented. (5 refs).

  3. CsI Calorimeter for a Compton-Pair Telescope

    Science.gov (United States)

    Grove, Eric J.

    We propose to build and test a hodoscopic CsI(Tl) scintillating-crystal calorimeter for a medium-energy γ-ray Compton and pair telescope. The design and technical approach for this calorimeter relies deeply on heritage from the Fermi LAT CsI Calorimeter, but it dramatically improves the low-energy performance of that design by reading out the scintillation light with silicon photomultipliers (SiPMs), making the technology developed for Fermi applicable in the Compton regime. While such a hodoscopic calorimeter is useful for an entire class of medium-energy γ-ray telescope designs, we propose to build it explicitly to support beam tests and balloon flight of the Proto-ComPair telescope, the development and construction of which was funded in a four-year APRA program beginning in 2015 ("ComPair: Steps to a Medium Energy γ-ray Mission" with PI J. McEnery of GSFC). That award did not include funding for its CsI calorimeter subsystem, and this proposal is intended to cover that gap. ComPair is a MIDEX-class instrument concept to perform a high-sensitivity survey of the γ-ray sky from 0.5 MeV to 500 MeV. ComPair is designed to provide a dramatic increase in sensitivity relative to previous instruments in this energy range (predominantly INTEGRAL/SPI and Compton COMPTEL), with the same transformative sensitivity increase - and corresponding scientific return- that the Fermi Large Area Telescope provided relative to Compton EGRET. To enable transformative science over a broad range of MeV energies and with a wide field of view, ComPair is a combined Compton telescope and pair telescope employing a silicon-strip tracker (for Compton scattering and pair conversion and tracking) and a solid-state CdZnTe calorimeter (for Compton absorption) and CsI calorimeter (for pair calorimetry), surrounded by a plastic scintillator anti-coincidence detector. Under the current proposal, we will complete the detailed design, assembly, and test of the CsI calorimeter for the risk

  4. A level-1 track trigger for CMS with double stack detectors and long barrel approach

    International Nuclear Information System (INIS)

    Salvati, E

    2012-01-01

    The upgrade of the LHC machine is planned to deliver luminosities 5 to 10 times larger than the design one of 1 × 10 34 cm −2 s −1 . A novel tracking system for the CMS experiment must be designed and built. One main aspect of the current activities consists in understanding the capabilities that different designs such a tracker would have to provide for the Level 1 hardware trigger to complement the muon and calorimeter information. Data rate reduction at hardware level consists in both reducing multiple hits from a single track and rejection of low p t tracks. Pattern-based hit correlation of properly built clusters of hits would provide quality Level 1 primitives to the hardware trigger. These can be combined together in a projective geometry to perform a rough tracking to be implemented online, returning rough p t , direction, and vertex information for a candidate track. The benchmark results from simulations within the official CMS framework are presented for one particular layout based on barrel trigger layers, emphasizing the flexibility of this tool for the design and test of different tracking strategies at level 1 to be compared with the developments in trigger architectures implementation.

  5. Alignment of the MSGC barrel support structure

    International Nuclear Information System (INIS)

    Kari, Tammi; Miikka, Kotamaki; Tommi, Vanhala; Antti, Onnela

    1999-01-01

    The MSGC barrel is a sub-part of the tracking system of the CMS experiment at the LHC. The mechanical support structure of the MSGC barrel consists of ladder-like support beams carrying the detector modules and of four disks supporting the ladders. The required alignment precision of the modules, a few tens of micrometers, is designed to be obtained by precise part manufacture and by careful measurement of the alignment during the assembly of the structure. In the paper the use of digital photogrammetry for the measurement of the alignment of the disks and for the structural verification is presented. Digital photogrammetry was chosen from a number of potential methods after a careful evaluation. The use of photogrammetry for the structural verification of a prototype is presented. The displacements were measured both of unloaded and loaded disk by using photogrammetry and linear displacement transducers for verification. The displacements obtained from the two measurement methods corresponded well, not only to each other, but also to the results given by finite element analysis. The structural verification will be done and the alignment procedure will be tested with a full-sized prototype of a half of the MSGC barrel. Preparations for the photogrammetry measurements are presented and the design of the required supplementary equipment is shown. (authors)

  6. Alignment of the MSGC barrel support structure

    Energy Technology Data Exchange (ETDEWEB)

    Kari, Tammi; Miikka, Kotamaki; Tommi, Vanhala [HIP, Helsinki Institute of Physics, CERN/EP, Geneva (Switzerland); Antti, Onnela [CERN, Conseil Europeen pour la recherche nucleaire, Laboratoire europeen pour la physique des particules, Geneve (Switzerland)

    1999-07-01

    The MSGC barrel is a sub-part of the tracking system of the CMS experiment at the LHC. The mechanical support structure of the MSGC barrel consists of ladder-like support beams carrying the detector modules and of four disks supporting the ladders. The required alignment precision of the modules, a few tens of micrometers, is designed to be obtained by precise part manufacture and by careful measurement of the alignment during the assembly of the structure. In the paper the use of digital photogrammetry for the measurement of the alignment of the disks and for the structural verification is presented. Digital photogrammetry was chosen from a number of potential methods after a careful evaluation. The use of photogrammetry for the structural verification of a prototype is presented. The displacements were measured both of unloaded and loaded disk by using photogrammetry and linear displacement transducers for verification. The displacements obtained from the two measurement methods corresponded well, not only to each other, but also to the results given by finite element analysis. The structural verification will be done and the alignment procedure will be tested with a full-sized prototype of a half of the MSGC barrel. Preparations for the photogrammetry measurements are presented and the design of the required supplementary equipment is shown. (authors)

  7. Harwell Graphite Calorimeter

    International Nuclear Information System (INIS)

    Linacre, J.K.

    1970-01-01

    The calorimeter is of the steady state temperature difference type. It contains a graphite sample supported axially in a graphite outer jacket, the assembly being contained in a thin stainless steel outer can. The temperature of the jacket and the temperature difference between sample and jacket are measured by chromel-alumel thermocouples. The instrument is calibrated by means of an electric heater of low mass positioned on the axis of the sample. The resistance of the heater is known and both current through the heater and the potential across it may be measured. The instrument is filled with nitrogen at a pressure of one half atmosphere at room temperature. The calorimeter has been designed for prolonged operation at temperatures up to 600°C, and dose rates up to 1 Wg -1 , and instruments have been in use for periods in excess of one year

  8. Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex

    Science.gov (United States)

    Benedetti, B; Matyash, V; Kettenmann, H

    2011-01-01

    Astrocytes in the barrel cortex respond with a transient Ca2+ increase to neuronal stimulation and this response is restricted to the stimulated barrel field. In the present study we suppressed the astrocyte response by dialysing these cells with the Ca2+ chelator BAPTA. Electrical stimulation triggered a depolarization in stellate or pyramidal ‘regular spiking’ neurons from cortex layer 4 and 2/3 and this response was augmented in amplitude and duration after astrocytes were dialysed with BAPTA. Combined blockade of GABAA and GABAB receptors mimicked the effect of BAPTA dialysis, while glutamate receptor blockers had no effect. Moreover, the frequency of spontaneous postsynaptic currents was increased after BAPTA dialysis. Outside the range of BAPTA dialysis astrocytes responded with a Ca2+ increase, but in contrast to control, the response was no longer restricted to one barrel field. Our findings indicate that astrocytes control neuronal inhibition in the barrel cortex. PMID:21224221

  9. Correcting the Chromatic Aberration in Barrel Distortion of Endoscopic Images

    Directory of Open Access Journals (Sweden)

    Y. M. Harry Ng

    2003-04-01

    Full Text Available Modern endoscopes offer physicians a wide-angle field of view (FOV for minimally invasive therapies. However, the high level of barrel distortion may prevent accurate perception of image. Fortunately, this kind of distortion may be corrected by digital image processing. In this paper we investigate the chromatic aberrations in the barrel distortion of endoscopic images. In the past, chromatic aberration in endoscopes is corrected by achromatic lenses or active lens control. In contrast, we take a computational approach by modifying the concept of image warping and the existing barrel distortion correction algorithm to tackle the chromatic aberration problem. In addition, an error function for the determination of the level of centroid coincidence is proposed. Simulation and experimental results confirm the effectiveness of our method.

  10. Study of a novel electromagnetic liquid argon calorimeter — the TGT

    Science.gov (United States)

    Berger, C.; Braunschweig, W.; Geulig, E.; Schöntag, M.; Siedling, R.; Wlochal, M.; Putzer, A.; Wotschack, J.; Cheplakov, A.; Feshchenko, A.; Kazarinov, M.; Kukhtin, V.; Ladygin, E.; Obudovskij, V.; Geweniger, C.; Hanke, P.; Kluge, E.-E.; Krause, J.; Schmidt, M.; Stenzel, H.; Tittel, K.; Wunsch, M.; Zerwas, D.; Bruncko, D.; Jusko, A.; Kocper, B.; Lupták, M.; Aderholz, M.; Bán, J.; Brettel, H.; Dydak, F.; Fent, J.; Frey, H.; Huber, J.; Jakobs, K.; Kiesling, C.; Kiryunin, A. E.; Oberlack, H.; Ribarics, P.; Schacht, P.; Stiegler, U.; Bogolyubsky, M. Y.; Buyanov, O. V.; Chekulaev, S. V.; Kurchaninov, L. L.; Levitsky, M. S.; Maximov, V. V.; Minaenko, A. A.; Moiseev, A. M.; Semenov, P. A.; Tikhonov, V. V.; Straumann, U.

    1995-02-01

    The concept and the basic design of a fast, highly granular and compact electromagnetic liquid argon calorimeter are described. This novel calorimeter offers uniform energy response and constant energy resolution independent of the production angle of an impinging particle and of its impact position at the calorimeter. An example of a calorimeter with full rapidity coverage in an application in a collider detector is given. An important aspect of the concept is the electronics for fast signal processing matched to the short charge collection time. We report on the experience with the realization of a prototype calorimeter module and on its performance in a testbeam exposure.

  11. Stress analysis of the HFIR HB-2 and HB-3 beam tube nozzles

    International Nuclear Information System (INIS)

    Williams, P.T.

    1998-08-01

    The results of three-dimensional linear elastic stress analyses of the HFIR HB-2 and HB-3 nozzles are presented in this report. Finite element models were developed using the PATRAN pre-processing code and translated into ABAQUS input file format. A scoping analysis using simple geometries with internal pressure loading was carried out to assess the capabilities of the ABAQUS/Standard code to calculate maximum principal stress distributions within cylinders with and without holes. These scoping calculations were also used to provide estimates for the variation in tangential stress around the rim of a nozzle using the superposition of published closed-form solutions for the stress around a hole in an infinite flat plate under uniaxial tension. From the results of the detailed finite element models, peak stress concentration factors (based on the maximum principal stresses in tension) were calculated to be 3.0 for the HB-2 nozzle and 2.8 for the HB-3 nozzle. Submodels for each nozzle were built to calculate the maximum principal stress distribution in the weldment region around the nozzle, where displacement boundary conditions for the submodels were automatically calculated by ABAQUS using the results of the global nozzle models. Maximum principal stresses are plotted and tabulated for eight positions around each nozzle and nozzle weldment

  12. Members of the Forum Engelberg visit CERN

    CERN Multimedia

    Patrice Loïez

    2002-01-01

    The Forum Engelberg is an annual interdisciplinary conference held in Engelberg, Switzerland intended to act as an international platform for debate and exchange of views on key issues affecting scientific research, technology, economics and philosophy. Its President, Hubert Curien - former French Minister of Research and Space Research, and President of the CERN Council from 1994 to 1996 - is pictured here. Photo 01: Hubert Curien in front of the first half of the CMS detector's barrel hadronic calorimeter (HCAL). The barrel HCAL is a cylindrical structure which will surround the collision region and measure the energy of quarks and jets emerging at large angles relative to the beam direction. Photo 02: Hubert Curien (left) with Bernard Ecoffey, Founder of the Forum Engelberg, in front of the first half of the CMS detector's barrel hadronic calorimeter.

  13. TRT and SCT barrels merge

    CERN Multimedia

    Wells, P S

    2006-01-01

    The SCT barrel was inserted in the TRT on 17 February, just missing Valentine's day. This was a change of emphasis for the two detectors. In the preceeding months there had been a lot of focus on testing their performance. The TRT had been observing cosmic rays through several sectors of the barrel, and all the modules on each of the four layers of the SCT had been characterised prior to integration. In parallel, the engineering teams, lead by Marco Olcese, Andrea Catinaccio, Eric Perrin, Neil Dixon, Iourii Gusakov, Gerard Barbier and Takashi Kohriki, had been preparing for this critical operation. Figure 1: Neil Dixon and Marco Olcese verifying the final alignment The two detectors had to be painstakingly aligned to be concentric to within a millimetre. The SCT was held on a temporary cantilever stand, and the TRT in the ID trolley had to inch over it. Finally the weight of the SCT was transferred to the rails on the inside of the TRT itself. The SCT services actually protruded a little outside the oute...

  14. Coinheritance of High Oxygen Affinity Hb Helsinki [HBB: c.248A>T; β82(EF6)Lys→Met] with Hb H Disease.

    Science.gov (United States)

    Lee, Shir-Ying; Goh, Jia-Hui; Tan, Karen M L; Liu, Te-Chih

    2017-05-01

    Hb Helsinki [HBB: c.248A>T; β82(EF6)Lys→Met] is a high oxygen affinity hemoglobin (Hb) causing polycythemia, whereas Hb H (β4) disease causes mild to severe chronic hemolytic anemia. The clinical characteristics, gel electrophoresis, capillary electrophoresis (CE) and molecular genotyping of a case of Hb Helsinki coinherited with Hb H disease in an ethnic Malay is described, illustrating the interaction between the β-globin variant and coinheritance of three α gene deletions. The proband was asymptomatic, exhibited microcytosis and a normal with Hb value.

  15. The NA48 liquid krypton calorimeter

    CERN Document Server

    Gorini, B

    1997-01-01

    The NA48 collaboration goal is to measure the CP violation parameter Re(ɛl/ɛ) at the level of 2 × 10−4. The neutral Kaon decays will be reconstructed by an electromagnetic liquid Krypton calorimeter with fine granularity and a volume almost totally sensible, to obtain excellent position and energy resolution, as well as time resolution. A description of the detector, results from tests of a prototype and the status of the final calorimeter are reported.

  16. The performance of the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Crittenden, J.A.

    1994-12-01

    The ZEUS experiment has now completed its third year of operation at the electron-proton collider HERA. The uranium/scintillator sampling calorimeter surrounding the inner tracking detectors has proven an essential component for the online triggering algorithms, for offline event-type identification, for kinematic variable reconstruction, and for a ariety of physics analyses. This paper summarizes the experimental context, the operating characteristics, the calibration techniques, and the performance of the calorimeter during its first three years of operation. (orig.)

  17. Characterization of a Novel Anti-Human HB-EGF Monoclonal Antibody Applicable for Paraffin-Embedded Tissues and Diagnosis of HB-EGF-Related Cancers.

    Science.gov (United States)

    Iwamoto, Ryo; Takagi, Mika; Akatsuka, Jun-Ichi; Ono, Ken-Ichiro; Kishi, Yoshiro; Mekada, Eisuke

    2016-04-01

    Heparin-binding EGF-like growth factor (HB-EGF) is a member of the EGF family of growth factors that bind to and activate the EGF receptor (EGFR/ErbB1) and ErbB4. HB-EGF plays pivotal roles in pathophysiological processes, including cancer. Thus, monoclonal antibodies (mAbs) for HB-EGF detection could be an important tool in the therapeutic diagnosis of HB-EGF-related cancers and other diseases. However, few mAbs, especially those applicable for immunohistochemistry (IHC), have been established to date. In this study, we generated a clone of hybridoma-derived mAb 2-108 by immunizing mice with recombinant human HB-EGF protein expressed by human cells. The mAb 2-108 specifically bound to human HB-EGF but not to mouse HB-EGF and was successful in immunoblotting, even under reducing conditions, immunoprecipitation, and immunofluorescence for unfixed as well as paraformaldehyde-fixed cells. Notably, this mAb was effective in IHC of paraffin-embedded tumor specimens. Epitope mapping analysis showed that mAb 2-108 recognized the N-terminal prodomain in HB-EGF. These results indicate that this new anti-HB-EGF mAb 2-108 would be useful in the diagnosis of HB-EGF-related cancers and would be a strong tool in both basic and clinical research on HB-EGF.

  18. The optical instrumentation of the ATLAS Tile Calorimeter

    Czech Academy of Sciences Publication Activity Database

    Abdallah, J.; Adragna, P.; Alexa, C.; Lokajíček, Miloš; Němeček, Stanislav; Přibyl, Lukáš

    2013-01-01

    Roč. 8, Jan (2013), P01005 ISSN 1748-0221 Institutional support: RVO:68378271 Keywords : calorimeters * calorimeter methods * scintillators * scintillation and light emission processes * solid, gas and liquid scintillators Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.526, year: 2013

  19. ATLAS starts moving in

    CERN Multimedia

    2004-01-01

    The first large active detector component was lowered into the ATLAS cavern on 1 March. It consisted of the 8 modules forming the lower part of the central barrel of the tile hadronic calorimeter. The work of assembling the barrel, which comprises 64 modules, started the following day.

  20. Development of real-time low energy electron calorimeter

    International Nuclear Information System (INIS)

    Noriah Mod Ali; Smith, F.A.

    1999-01-01

    A low energy electron beam calorimeter with a thin film window has been fabricated to facilitate a reliable method of dose assessment for electron beam energies down to 200 keV. The system was designed to incorporate a data-logger in order that it could be used on the self-shielded 200 keV facility at MINT. In use, the calorimeter started logging temperature a short time before it passed under the beam and it continued taking data until well after the end of the irradiation. Data could be retrieved at any time after the calorimeter had emerged from the irradiator

  1. Design, Construction and Testing of the Digital Hadron Calorimeter (DHCAL) Electronics

    CERN Document Server

    Adams, C; Bilki, B; Butler, J; Corriveau, F; Cundiff, T; Drake, G; Francis, K; Guarino, V; Haberichter, B; Hazen, E; Hoff, J; Holm, S; Kreps, A; DeLurgio, P; Monte, L Dal; Mucia, N; Norbeck, E; Northacker, D; Onel, Y; Pollack, B; Repond, J; Schlereth, J; Smith, J R; Trojand, D; Underwood, D; Velasco, M; Walendziak, J; Wood, K; Wu, S; Xia, L; Zhang, Q; Zhao, A

    2016-01-01

    A novel hadron calorimeter is being developed for future lepton colliding beam detectors. The calorimeter is optimized for the application of Particle Flow Algorithms (PFAs) to the measurement of hadronic jets and features a very finely segmented readout with 1 x 1 cm2 cells. The active media of the calorimeter are Resistive Plate Chambers (RPCs) with a digital, i.e. one-bit, readout. To first order the energy of incident particles in this calorimeter is reconstructed as being proportional to the number of pads with a signal over a given threshold. A large-scale prototype calorimeter with approximately 500,000 readout channels has been built and underwent extensive testing in the Fermilab and CERN test beams. This paper reports on the design, construction, and commissioning of the electronic readout system of this prototype calorimeter. The system is based on the DCAL front-end chip and a VME-based back-end.

  2. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Philippe Bloch

    ECAL Barrel (EB) Great progress has been achieved during the last few months on Barrel commissioning. All 36 supermodules have been run concurrently during the CRUZET in early May. The EB readout has reached the expected performance and is included regularly with central DAQ.  ECAL has been used as a source of triggers during cosmic runs. ECAL Endcaps (EE) Important milestones have been recently achieved: The Endcaps crystal production was completed in mid March. The gluing of the VPTs (Vacuum Photo Triodes) on the crystals, the assembly of Supercrystals (a set of 25 crystals) and their mounting on the Dee backplates (including the connection of the laser monitoring fibers) were finished during May. The mechanical assembly of the four endcap Dees is therefore completed. The assembly of the services and electronics on the backside of the Dees’ back-plates is also proceeding at a fast speed. The laying of the high voltage cables, the inner moderator, the optical fibers for the LED stabilit...

  3. Closing LHCb's calorimeter around the beam-pipe

    CERN Multimedia

    Kristic, R

    2008-01-01

    Photos 1 and 2 show the pre-shower, lead absorber and the scintillating pad detector layers moving in towards the beam-pipe. Photos 3,4 and 5 show the hadron calorimeter with both halves closed around the beam-pipe, to the left of the picture and, in the centre, half of the electromagnetic calorimeter closed in towards the beam-pipe.

  4. Beyond HbA1c.

    Science.gov (United States)

    Bloomgarden, Zachary

    2017-12-01

    It can scarcely be denied that the supreme goal of all theory is to make the irreducible basic elements as simple and as few as possible without having to surrender the adequate representation of a single datum of experience. The diaTribe Foundation convened a meeting on the topic of glycemic outcomes beyond HbA1c on 21 July 2017, in Bethesda (MD, USA), focusing on potential uses of continuous glucose monitoring (CGM). Understanding patterns of glycemia in people with diabetes has long been a focus of approaches to improving treatment, and over the past few years this has become an available modality for clinical practice. Glucose levels are not the only biologic parameters affecting HbA1c levels; HbA1c changes with anemia or, more subtly, with changes in rates of erythrocyte turnover not reflected in hemoglobin levels outside the normal range. Renal disease often is associated with lower HbA1c than would be predicted based on an individual's glycemic levels. Furthermore, HbA1c levels tend to increase with age and are higher in some ethnic groups; for example, people of African ethnicity have higher HbA1c levels than people of Northern European descent. Indeed, we have argued that even as a measure of mean glycemia HbA1c is inherently imprecise. Overall, for some 20% of people with diabetes, HbA1c levels are substantially higher, or substantially lower, than those that would be predicted from mean blood glucose levels. If one recognizes that HbA1c is, at best, a partial measure of mean glycemic exposure, one must surely accept that HbA1c does not reflect variability within a day, from day to day, and from period to period. Many glucose-lowering medicines, particularly the sulfonylureas and insulin, cause hypoglycemia, with consequent negative effects on quality of life and patient-reported outcomes, as well as association with weight gain and adverse macrovascular outcome; hypoglycemia will, of course, not be captured by HbA1c measurement. Based on these

  5. Early stages in the biogenesis of eukaryotic β-barrel proteins.

    Science.gov (United States)

    Jores, Tobias; Rapaport, Doron

    2017-09-01

    The endosymbiotic organelles mitochondria and chloroplasts harbour, similarly to their prokaryotic progenitors, β-barrel proteins in their outer membrane. These proteins are encoded on nuclear DNA, translated on cytosolic ribosomes and imported into their target organelles by a dedicated machinery. Recent studies have provided insights into the import into the organelles and the membrane insertion of these proteins. Although the cytosolic stages of their biogenesis are less well defined, it is speculated that upon their synthesis, chaperones prevent β-barrel proteins from aggregation and keep them in an import-competent conformation. In this Review, we summarize the current knowledge about the biogenesis of β-barrel proteins, focusing on the early stages from the translation on cytosolic ribosomes to the recognition on the surface of the organelle. © 2017 Federation of European Biochemical Societies.

  6. Hb Tianshui (HBB: C.119A > G) in Compound Heterozygosity with Hb S (HBB: C.20A > T) from Odisha, India.

    Science.gov (United States)

    Meher, Satyabrata; Dehury, Snehadhini; Mohanty, Pradeep Kumar; Patel, Siris; Pattanayak, Chinmayee; Bhattacharya, Subhra; Das, Kishalaya; Sarkar, Biswanath

    2016-08-01

    We describe here a rare β-globin gene variant, Hb Tianshui [β39(C5)Glu→Arg; HBB: c.119A > G], detected during routine screening in Odisha, India. This is the second report of Hb Tianshui and the first to describe the cation exchange high performance liquid chromatography (HPLC) and DNA studies of two cases of this variant. Both cases had coinherited Hb S (HBB: c.20A > T) but none presented with typical symptoms of sickle cell disease. One of the cases was heterozygous for a common α-thalassemia (α-thal) allele (-α(3.7)) (rightward) (NG_000006.1: g.34164_37967del3804) and marginally raised Hb F percentage, while the other Hb S/Hb Tianshui case was completely benign and healthy. An atypical Asian Indian haplotype [+ - + - +] could be assigned to the Hb Tianshui variant. Hb Tianshui seems to mimic a few other Hb variants in cation exchange HPLC. However, we report two specific patterns in the chromatograms that are characteristic to Hb Tianshui. Combining an alkaline electrophoresis result with cation exchange HPLC at screening would be preferred to detect this rare variant, especially in regions with considerable frequency of Hb E [β26(B8)Glu→Lys; HBB: c.79G > A] or Hb S.

  7. High-resolution 2-deoxyglucose mapping of functional cortical columns in mouse barrel cortex.

    Science.gov (United States)

    McCasland, J S; Woolsey, T A

    1988-12-22

    Cortical columns associated with barrels in layer IV of the somatosensory cortex were characterized by high-resolution 2-deoxy-D-glucose (2DG) autoradiography in freely behaving mice. The method demonstrates a more exact match between columnar labeling and cytoarchitectonic barrel boundaries than previously reported. The pattern of cortical activation seen with stimulation of a single whisker (third whisker in the middle row of large hairs--C3) was compared with the patterns from two control conditions--normal animals with all whiskers present ("positive control")--and with all large whiskers clipped ("negative control"). Two types of measurements were made from 2DG autoradiograms of tangential cortical sections: 1) labeled cells were identified by eye and tabulated with a computer, and 2) grain densities were obtained automatically with a computer-controlled microscope and image processor. We studied the fine-grained patterns of 2DG labeling in a nine-barrel grid with the C3 barrel in the center. From the analysis we draw five major conclusions. 1. Approximately 30-40% of the total number of neurons in the C3 barrel column are activated when only the C3 whisker is stimulated. This is about twice the number of neurons labeled in the C3 column when all whiskers are stimulated and about ten times the number of neurons labeled when all large whiskers are clipped. 2. There is evidence for a vertical functional organization within a barrel-related whisker column which has smaller dimensions in the tangential direction than a barrel. There are densely labeled patches within a barrel which are unique to an individual cortex. The same patchy pattern is found in the appropriate regions of sections above and below the barrels through the full thickness of the cortex. This functional arrangement could be considered to be a "minicolumn" or more likely a group of "minicolumns" (Mountcastle: In G.M. Edelman and U.B. Mountcastle (eds): The Material Brain: Cortical Organization

  8. Last fibre for the CMS's forward hadronic calorimeter

    CERN Multimedia

    2004-01-01

    In February an important milestone was passed by the CMS's forward hadronic calorimeter project: the last of 450000 quartz fibres was inserted and the wedge preparation phase has now been completed. Ten thousand working hours were spent on inserting 450 000 quartz fibres into the CMS's forward hadronic calorimeter! Patience and meticulous attention to detail were the two qualities required by the five people who undertook this special job at CERN. On 6 February their task was completed. "The CMS's forward hadronic calorimeter (HF) covers the region immediately close to the LHC beam, 0.6 degrees to 6 degrees from the beam line," explains project coordinator Tiziano Camporesi. The detection of high energy jets in this angular region will be very important in helping to identify the signature of the Higgs boson or possibly any new boson produced in proton-proton collision in the LHC. Rita Fodor, 19, is working on one wedge of the CMS's forward hadronic calorimeter in building 186. She and her...

  9. Jet energy measurements with the ZEUS prototype calorimeter

    International Nuclear Information System (INIS)

    Kroeger, W.

    1993-01-01

    The uranium scintillator calorimeter of the ZEUS detector is designed to achieve an excellent energy calibration and the best possible energy resolution for jets. Therefore the response of the prototype calorimeter to jets has been measured using an interaction trigger. The mean response and energy resolution was measured for jets of 50 GeV - 100 GeV and compared to the one for pions. Within the ZEUS detector dead material is placed in front of the calorimeter. The influence of 4 cm and 10 cm thick aluminium absorbers in front of the calorimeter was measured. The charged multiplicity was measured in front and behind the aluminium absorber. With these multiplicities the energy loss in the absorber is corrected. The correction has been done so that the mean response with absorber is equal to the mean response without absorber. The improvement of the energy resolution is investigated. The measured results are compared with Monte Carlo simulations. (orig.) [de

  10. Assembly of 5.5-Meter Diameter Developmental Barrel Segments for the Ares I Upper Stage

    Science.gov (United States)

    Carter, Robert W.

    2011-01-01

    Full scale assembly welding of Ares I Upper Stage 5.5-Meter diameter cryogenic tank barrel segments has been performed at the Marshall Space Flight Center (MSFC). One full-scale developmental article produced under the Ares 1 Upper Stage project is the Manufacturing Demonstration Article (MDA) Barrel. This presentation will focus on the welded assembly of this barrel section, and associated lessons learned. Among the MDA articles planned on the Ares 1 Program, the Barrel was the first to be completed, primarily because the process of manufacture from piece parts (barrel panels) utilized the most mature friction stir process planned for use on the Ares US program: Conventional fixed pin Friction Stir Welding (FSW). This process is in use on other space launch systems, including the Shuttle s External Tank, the Delta IV common booster core, the Delta II, and the Atlas V rockets. The goals for the MDA Barrel development were several fold: 1) to prove out Marshall Space Flight Center s new Vertical Weld Tool for use in manufacture of cylindrical barrel sections, 2) to serve as a first run for weld qualification to a new weld specification, and 3) to provide a full size cylindrical section for downstream use in precision cleaning and Spray-on Foam Insulation development. The progression leading into the welding of the full size barrel included sub scale panel welding, subscale cylinder welding, a full length confidence weld, and finally, the 3 seamed MDA barrel processing. Lessons learned on this MDA program have been carried forward into the production tooling for the Ares 1 US Program, and in the use of the MSFC VWT in processing other large scale hardware, including two 8.4 meter diameter Shuttle External Tank barrel sections that are currently being used in structural analysis to validate shell buckling models.

  11. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Roger Rusack

    Occupancy of the trigger primitives during a global run: the observed pattern is consistent with the polar angle dependence of the transverse energy equivalent of the electronic noise in the endcaps.   Progress on ECAL since the last CMS week has been mostly on three major fronts: we have continued with the installation and commissioning of the preshower detectors; the endcap calorimeter trigger has been installed and tested; and there have been many changes to the calorimeter detector control and safety systems. Both Preshower (ES) endcaps were installed in CMS on schedule, just before Easter. There followed a campaign of "first commissioning" to ensure that all services were correctly connected (electrical, optical, cooling, etc.). Apart from some optical ribbons that had to be replaced the process went rather smoothly, finishing on 23rd April. All power supplies are installed and operational. The cooling system (two branches of the joint Tracker-Preshower system) is fully fun...

  12. The high resolution spaghetti hadron calorimeter

    International Nuclear Information System (INIS)

    Jenni, P.; Sonderegger, P.; Paar, H.P.; Wigmans, R.

    1987-01-01

    It is proposed to build a prototype for a hadron calorimeter with scintillating plastic fibres as active material. The absorber material is lead. Provided that these components are used in the appropriate volume ratio, excellent performance may be expected, e.g. an energy resolution of 30%/√E for jet detection. The proposed design offers additional advantages compared to the classical sandwich calorimeter structures in terms of granularity, hermiticity, uniformity, compactness, readout, radiation resistivity, stability and calibration. 22 refs.; 7 figs

  13. The data-acquisition and second level trigger system for the ZEUS calorimeter

    International Nuclear Information System (INIS)

    Lugt, H.J. van der.

    1993-01-01

    ZEUS and HERA are introduced in chapter 1 with emphasis on the ZEUS Calorimeter and the ZEUS trigger system. The analog and digital electronics developed for the readout of the Calorimeter signals, and the hardware for the Calorimeter Second Level Trigger and data-acquisition system, is described in chapter 2. Emphasis is put on the hardware developed at NIKHEF, which is based on the transputer as the main processing element. The ZEUS trigger and data-acquisition environment as well as the calibration procedures needed for the Calorimeter impose several requirements on the design of the data-acquisition system. The requirements, their implications for the design of the transputer network architecture and the design itself, are described in detail in chapter 3. The software developed for the Calorimeter data-acquisition is described in chapter 4. It includes both the software for the Calorimeter data-acquisition as that required for the calibration of the Calorimeter. First experiences with the CAL-SLT algorithms, obtained during the 1992 HERA running periods, are presented in chapter 5. Chapter 6 discusses the performance of the Calorimeter data-acquisition system. (orig.)

  14. Building CMS Pixel Barrel Detectur Modules

    CERN Document Server

    König, S; Horisberger, R.; Meier, B.; Rohe, T.; Streuli, S.; Weber, R.; Kastli, H.Chr.; Erdmann, W.

    2007-01-01

    For the barrel part of the CMS pixel tracker about 800 silicon pixel detector modules are required. The modules are bump bonded, assembled and tested at the Paul Scherrer Institute. This article describes the experience acquired during the assembly of the first ~200 modules.

  15. Secondary Emission Calorimeter Sensor Development

    Science.gov (United States)

    Winn, David R.; Onel, Yasar

    2012-12-01

    In a Secondary Emission electron(SEe) detector module, Secondary Emission electrons (SEe) are generated from an SE surface/cathode, when charged hadronic or electromagnetic particles, particularly shower particles, penetrate an SE sampling module placed between absorber materials (Fe, Cu, Pb, W etc) in calorimeters. The SE cathode is a thin (10-50 nm thick) film (simple metal-oxides, or other higher yield materials) on the surface of a metal plate, which serves as the entrance “window” to a compact vacuum vessel (metal or metal-ceramic); this SE film cathode is analogous to a photocathode, and the SEe are similar to p.e., which are then amplified by dynodes, also is in a PMT. SE sensor modules can make use of electrochemically etched/machined or laser-cut metal mesh dynode sheets, as large as ~30 cm square, to amplify the Secondary Emission Electrons (SEe), much like those that compact metal mesh or mesh dynode PMT's use to amplify p.e.'s. The construction requirements easier than a PMT, since the entire final assembly can be done in air; there are no critical controlled thin film depositions, cesiation or other oxygen-excluded processes or other required vacuum activation, and consequently bake-out can be a refractory temperatures; the module is sealed by normal vacuum techniques (welding or brazing or other high temperature joinings), with a simple final heated vacuum pump-out and tip-off. The modules envisioned are compact, high gain, high speed, exceptionally radiation damage resistant, rugged, and cost effective, and can be fabricated in arbitrary tileable shapes. The SE sensor module anodes can be segmented transversely to sizes appropriate to reconstruct electromagnetic cores with high precision. The GEANT4 and existing calorimeter data estimated calorimeter response performance is between 35-50 Secondary Emission electrons per GeV, in a 1 cm thick Cu absorber calorimeter, with a gain per SEe > 105 per SEe, and an e/pi<1.2. The calorimeter pulse width is

  16. The new ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Hasib, Ahmed; The ATLAS collaboration

    2017-01-01

    Producing the very large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing CPU requirements when detailed detector simulations are not needed. During the LHC Run-1, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitization and reconstruction software, and it can be tuned to data more easily than GEANT4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim makes use of statistical techniques such as principal component analysis, and a neural n...

  17. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Oreglia, M; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. The main upgrade will occur for the High Luminosity LHC phase (phase 2) which is scheduled around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to use will be decided after extensive test beam studies. High speed optical links are used to read out all digitized data to the counting room. For the off-detector electronics a new back-end architecture is being developed, including the initial trigger processing and pipeline memories. A demonstrator prototype read-out for a slice of the ...

  18. Upgrading the ATLAS Tile Calorimeter electronics

    CERN Document Server

    Carrio, F; The ATLAS collaboration

    2013-01-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter covering the most central region of the ATLAS experiment at LHC. The TileCal readout consists of about 10000 channels. Its main upgrade will occur for the High Luminosity LHC phase (phase 2) where the luminosity will have increased 5-fold compared to the design luminosity (1034 cm−2s−1) but with maintained energy (i.e. 7+7 TeV). An additional luminosity increase by a factor of 2 can be achieved by luminosity leveling. This upgrade will probably happen around 2022. The upgrade aims at replacing the majority of the on- and off- detector electronics so that all calorimeter signals are directly digitized and sent to the off-detector electronics in the counting room. To achieve the required reliability, redundancy has been introduced at different levels. An ambitious upgrade development program is pursued studying different electronics options. Three different options are presently being investigated for the front-end electronic upgrade. Which one to u...

  19. The New ATLAS Fast Calorimeter Simulation

    CERN Document Server

    Heath, Matthew Peter; The ATLAS collaboration

    2017-01-01

    Producing the large samples of simulated events required by many physics and performance studies with the ATLAS detector using the full GEANT4 detector simulation is highly CPU intensive. Fast simulation tools are a useful way of reducing the CPU requirements when detailed detector simulations are not needed. During Run-1 of the LHC, a fast calorimeter simulation (FastCaloSim) was successfully used in ATLAS. FastCaloSim provides a simulation of the particle energy response at the calorimeter read-out cell level, taking into account the detailed particle shower shapes and the correlations between the energy depositions in the various calorimeter layers. It is interfaced to the standard ATLAS digitisation and reconstruction software, and it can be tuned to data more easily than Geant4. Now an improved version of FastCaloSim is in development, incorporating the experience with the version used during Run-1. The new FastCaloSim aims to overcome some limitations of the first version by improving the description of...

  20. Performance of the ATLAS Tile calorimeter

    CERN Document Server

    Bertoli, Gabriele; The ATLAS collaboration

    2015-01-01

    The Tile Calorimeter (TileCal) of the ATLAS experiment at the LHC is the central hadronic calorimeter designed for energy reconstruction of hadrons, jets, tau­particles and missing transverse energy. TileCal is a scintillator­steel sampling calorimeter and it covers the region of pseudorapidity < 1.7. The scintillation light produced in the tiles is transmitted by wavelength shifting fibers to photomultiplier tubes (PMTs). The analog signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The TileCal front­end electronics read out the signals produced by about 10000 channels measuring energies ranging from ~30 MeV to ~2 TeV. The read­out system is responsible for reconstructing the data in real­time. The digitized signals are reconstructed with the Optimal Filtering algorithm, which computes for each channel the signal amplitude, time and quality factor at the required high rate. Each stage of the signal production from scintillation light to the signal reconstruc...

  1. Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P(3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing

    International Nuclear Information System (INIS)

    Vigneswari, S.; Murugaiyah, V.; Kaur, G.; Abdul Khalil, H.P.S.; Amirul, A.A.

    2016-01-01

    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20 mol% 4HB [53.2°], P(3HB-co-35 mol%4HB)[48.9°], P(3HB-co-50 mol%4HB)[44.5°] and P(3HB-co-82 mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique. - Highlights: • Nano-fiber construct to enhance surface wettability and cell growth, harbouring desired properties as biodegradable wound dressing. • Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen construct using dual syringe system. • Nanofibrous construct accelerated wound healing with efficient cellular organization.

  2. Simultaneous dual syringe electrospinning system using benign solvent to fabricate nanofibrous P(3HB-co-4HB)/collagen peptides construct as potential leave-on wound dressing

    Energy Technology Data Exchange (ETDEWEB)

    Vigneswari, S. [Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, MOSTI, 11700 Penang (Malaysia); Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Terengganu (Malaysia); Murugaiyah, V. [School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11700 Penang (Malaysia); Kaur, G. [Institute of Research in Molecular Medicine, Universiti Sains Malaysia, 11700 Penang (Malaysia); Abdul Khalil, H.P.S. [School of Industrial Technology, Universiti Sains Malaysia, 11700 Penang (Malaysia); Amirul, A.A., E-mail: amirul@usm.my [Malaysian Institute of Pharmaceuticals and Nutraceuticals, NIBM, MOSTI, 11700 Penang (Malaysia); School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang (Malaysia); Centre of Chemical Biology, Universiti Sains Malaysia, 11900 Penang (Malaysia)

    2016-09-01

    The main focus of this study is the incorporation of collagen peptides to fabricate P(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-4HB)] nano-fiber construct to further enhance surface wettability and support cell growth while harbouring desired properties for biodegradable wound dressing. Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen peptides construct was carried out using dual syringe system. The wettability of the constructs increased with the increase in 4HB molar fraction from 20 mol% 4HB [53.2°], P(3HB-co-35 mol%4HB)[48.9°], P(3HB-co-50 mol%4HB)[44.5°] and P(3HB-co-82 mol%4HB) [37.7°]. In vitro study carried out using mouse fibroblast cells (L929) grown on nanofiber P(3HB-co-4HB)/collagen peptides construct showed an increase in cell proliferation. In vivo study using animal model (Sprague Dawley rats) showed that nanofibrous P(3HB-co-4HB)/collagen peptides construct had a significant effect on wound contractions with the highest percentage of wound closure of 79%. Hence, P(3HB-co-4HB)/collagen peptides construct suitable for wound dressing have been developed using nano-fabrication technique. - Highlights: • Nano-fiber construct to enhance surface wettability and cell growth, harbouring desired properties as biodegradable wound dressing. • Simultaneous electrospinning of nanofiber P(3HB-co-4HB)/collagen construct using dual syringe system. • Nanofibrous construct accelerated wound healing with efficient cellular organization.

  3. Construction and Performance of the ATLAS SCT Barrels and Cosmic Tests

    CERN Document Server

    Demirkoz, Bilge Melahat

    2007-01-01

    ATLAS is a multi-purpose detector for the LHC and will detect proton-proton collisions with center of mass energy of $14$TeV. Part of the central inner detector, the Semi-Conductor Tracker (SCT) barrels, were assembled and tested at Oxford University and later integrated at CERN with the TRT (Transition Radiation Tracker) barrel. The barrel SCT is composed of 4 layers of silicon strip modules with two sensor layers with $80 \\mu$m channel width. The design of the modules and the barrels has been optimized for low radiation length while maintaining mechanical stability, bringing services to the detector, and ensuring a cold and dry environment. The high granularity, high detector efficiency and low noise occupancy ($ < 5 \\times 10^{-4}$) of the SCT will enable ATLAS to have an efficient pattern recognition capability. Due to the binary nature of the SCT read-out, a stable read-out system and the calibration system is of critical importance. SctRodDaq is the online software framework for the calibration and a...

  4. Electromagnetic shower detector-calorimeters

    International Nuclear Information System (INIS)

    Appel, J.A.

    1975-01-01

    A brief review of the state-of-the-art of electromagnetic calorimeters is presented. The choice of detector based on the experimental requirements in cost, spatial resolution, energy resolution, and hadron rejection is discussed

  5. Measurements of red cell deformability and hydration reflect HbF and HbA2 in blood from patients with sickle cell anemia.

    Science.gov (United States)

    Parrow, Nermi L; Tu, Hongbin; Nichols, James; Violet, Pierre-Christian; Pittman, Corinne A; Fitzhugh, Courtney; Fleming, Robert E; Mohandas, Narla; Tisdale, John F; Levine, Mark

    2017-06-01

    Decreased erythrocyte deformability, as measured by ektacytometry, may be associated with disease severity in sickle cell anemia (SCA). Heterogeneous populations of rigid and deformable cells in SCA blood result in distortions of diffraction pattern measurements that correlate with the concentration of hemoglobin S (HbS) and the percentage of irreversibly sickled cells. We hypothesize that red cell heterogeneity, as well as deformability, will also be influenced by the concentration of alternative hemoglobins such as fetal hemoglobin (HbF) and the adult variant, HbA 2 . To test this hypothesis, we investigate the relationship between diffraction pattern distortion, osmotic gradient ektacytometry parameters, and the hemoglobin composition of SCA blood. We observe a correlation between the extent of diffraction pattern distortions and percentage of HbF and HbA 2 . Osmotic gradient ektacytometry data indicate that minimum elongation in the hypotonic region is positively correlated with HbF, as is the osmolality at which it occurs. The osmolality at both minimum and maximum elongation is inversely correlated with HbS and HbA 2 . These data suggest that HbF may effectively improve surface-to-volume ratio and osmotic fragility in SCA erythrocytes. HbA 2 may be relatively ineffective in improving these characteristics or cellular hydration at the levels found in this patient cohort. Copyright © 2017. Published by Elsevier Inc.

  6. Vinten exposure measurements of the Salem Unit 1 lower core barrel

    International Nuclear Information System (INIS)

    Glennon, P.T.

    1988-01-01

    On November 6, 1987, the lower core barrel of Salem Unit I was removed from the reactor vessel and placed in the refueling pool as part of the unit's ten year inspection program. This paper deals with the supporting actions of the dosimetry group of PSE ampersand G. Prior to the move of the lower core barrel, Westinghouse predicted dose rates at one foot in water as a function of axial distance along the core barrel. This prediction was used in planning the health physics requirements associated with the move. It was agreed that a measurement of the axial dose rates would either lend confidence to the predictions or identify weaknesses in them

  7. The Small angle TIle Calorimeter project in DELPHI

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.; Maeland, O.A.; Klovning, A.

    1995-01-01

    The new Small Angle TIle Calorimeter (STIC) covers the forward regions in DELPHI. The main motivation for its construction was to achieve a systematic error of 0.1% on the luminosity determination. This detector consists of a ''shashlik'' type calorimeter, equipped with two planes of silicon pad detectors placed respectively after 4 and 7.4 radiation lengths. A veto counter, composed of two scintillator planes, covers the front of the calorimeter to allow e-γ separation and to provide a neutral energy trigger.The physics motivations for this project, results from extensive testbeam measurements and the performance during the 1994 LEP run are reported here. (orig.)

  8. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    International Nuclear Information System (INIS)

    Adragna, P.; Alexa, C.; Anderson, K.; Antonaki, A.; Arabidze, A.; Batkova, L.; Batusov, V.; Beck, H.P.; Bednar, P.; Bergeaas Kuutmann, E.; Biscarat, C.; Blanchot, G.; Bogush, A.; Bohm, C.; Boldea, V.; Bosman, M.; Bromberg, C.; Budagov, J.; Burckhart-Chromek, D.; Caprini, M.

    2009-01-01

    We report test beam studies of 11% of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3 to 350 GeV. Two independent studies showed that the light yield of the calorimeter was ∼70pe/GeV, exceeding the design goal by 40%. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200 calorimeter cells the variation of the response was 2.4%. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5% for 91 measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of 1.4% for the modules and projective angles studied. The response to hadrons normalized to incident beam energy showed an 8% increase between 10 and 350 GeV, fully consistent with expectations for a noncompensating calorimeter. The measured energy resolution for hadrons of σ/E=52.9%/√(E)+5.7% was also consistent with expectations. Other auxiliary studies were made of saturation recovery of the readout system, the time resolution of the calorimeter and the performance of the trigger signals from the calorimeter.

  9. Testbeam studies of production modules of the ATLAS Tile Calorimeter

    Energy Technology Data Exchange (ETDEWEB)

    Adragna, P [Pisa University and INFN, Pisa (Italy); Alexa, C [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Anderson, K [University of Chicago, Chicago, Illinois (United States); Antonaki, A; Arabidze, A [University of Athens, Athens (Greece); Batkova, L [Comenius University, Bratislava (Slovakia); Batusov, V [JINR, Dubna (Russian Federation); Beck, H P [Laboratory for High Energy Physics, University of Bern (Switzerland); Bednar, P [Comenius University, Bratislava (Slovakia); Bergeaas Kuutmann, E [Stockholm University, Stockholm (Sweden); Biscarat, C [LPC Clermont-Ferrand, Universite Blaise Pascal, Clermont-Ferrand (France); Blanchot, G [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bogush, A [Institute of Physics, National Academy of Sciences, Minsk (Belarus); Bohm, C [Stockholm University, Stockholm (Sweden); Boldea, V [National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Bosman, M [Institut de Fisica d' Altes Energies, Universitat Autonoma de Barcelona, Barcelona (Spain); Bromberg, C [Michigan State University, East Lansing, Michigan (United States); Budagov, J [JINR, Dubna (Russian Federation); Burckhart-Chromek, D [CERN, Geneva (Switzerland); Caprini, M [National Institute for Physics and Nuclear Engineering, Bucharest (Romania)

    2009-07-21

    We report test beam studies of 11% of the production ATLAS Tile Calorimeter modules. The modules were equipped with production front-end electronics and all the calibration systems planned for the final detector. The studies used muon, electron and hadron beams ranging in energy from 3 to 350 GeV. Two independent studies showed that the light yield of the calorimeter was {approx}70pe/GeV, exceeding the design goal by 40%. Electron beams provided a calibration of the modules at the electromagnetic energy scale. Over 200 calorimeter cells the variation of the response was 2.4%. The linearity with energy was also measured. Muon beams provided an intercalibration of the response of all calorimeter cells. The response to muons entering in the ATLAS projective geometry showed an RMS variation of 2.5% for 91 measurements over a range of rapidities and modules. The mean response to hadrons of fixed energy had an RMS variation of 1.4% for the modules and projective angles studied. The response to hadrons normalized to incident beam energy showed an 8% increase between 10 and 350 GeV, fully consistent with expectations for a noncompensating calorimeter. The measured energy resolution for hadrons of {sigma}/E=52.9%/{radical}(E)+5.7% was also consistent with expectations. Other auxiliary studies were made of saturation recovery of the readout system, the time resolution of the calorimeter and the performance of the trigger signals from the calorimeter.

  10. New tools for the simulation and design of calorimeters

    International Nuclear Information System (INIS)

    Womersley, W.J.

    1989-01-01

    Two new approaches to the simulation and design of large hermetic calorimeters are presented. Firstly, the Shower Library scheme used in the fast generation of showers in the Monte Carlo of the calorimeter for the D-Zero experiment at the Fermilab Tevatron is described. Secondly, a tool for the design future calorimeters is described, which can be integrated with a computer aided design system to give engineering designers an immediate idea of the relative physics capabilities of different geometries. 9 refs., 6 figs., 1 tab

  11. Discussion on the electromagnetic calorimeters of ATLAS and CMS

    Energy Technology Data Exchange (ETDEWEB)

    Aleksa, Martin, E-mail: martin.aleksa@cern.ch [CERN, Geneva 23, 1211 Geneva (Switzerland); Diemoz, Marcella [INFN Roma, Piazzale Aldo Moro 2, 00185 Rome (Italy)

    2013-12-21

    This document summarizes a discussion on the electromagnetic calorimeters of ATLAS and CMS, two experiments at the CERN Large Hadron Collider (LHC), that took place at the 13th Vienna Conference on Instrumentation in February 2013. During the discussion each electromagnetic calorimeter and its performance was described in response to ten questions chosen to cover a wide range from the design and construction of the calorimeters over the calibration and performance to their role in the discovery of the Higgs boson and upgrade plans.

  12. Contribution to the study of the readout of the electromagnetic calorimeter crystals in the CMS experiment at LHC; Contribution a l`etude de la lecture des cristaux du calorimetre electromagnetique de l`experience CMS au LHC

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Franck [Universite Claude Bernard Lyon-1, 69 - Lyon (France)

    1998-07-03

    The search for neutral Higgs boson through its decay into two photons provides a very promising signal for a mass between 90 and 150 GeV. It requires an electromagnetic calorimeter of very high resolution. The CMS (Compact Muon Solenoid) electromagnetic calorimeter must be made up of more than 80,000 lead tungstate crystals. In the central part (the barrel), the scintillation light readout is performed by means of avalanche photodiodes, a silicon photo-sensor with internal gain which is a relative novelty in high energy physics. Concerning the readout electronics, the energy available in the centre-of-mass (14 TeV) as well as the collision frequency (40 MHz) of LHC impose constraints with respect to the signal treatment up to the acquisition. The retained solution consists in pairing two avalanche photodiodes, the parameters of which (gain, temperature dependence, dark current, etc) must be controlled, and coupling them to a low noise preamplifier of high dynamical range (5 MeV - 2 TeV) followed by a four-slopes linear compressor and a analog-digital sampling converter of 12 bits, 40 MHz. The thesis presents the prototypes of different electromagnetic calorimeters tested in the high energy beam. An energy resolution of 0.6% at 100 GeV was obtained with a conventional readout circuitry, while the integrated associated circuits were radiation resistant 73 refs., 100 figs., 19 tabs.

  13. CMS : the first barrel ring completed !

    CERN Multimedia

    Laurent Guiraud

    2000-01-01

    On 14 November, the CMS collaboration and the German firm DWE celebrated the successful construction of the detector's first yoke barrel ring. To mark the occasion, those in charge of the construction at CERN and DWE posed for the camera in the middle of the giant component.

  14. Results of 3D photogrammetry on the CMS barrel yoke

    International Nuclear Information System (INIS)

    Goudard, R.; Humbertclaude, C.; Nummiaro, K.

    1999-01-01

    The CMS (Compact Muon Solenoid) detector of the new LHC will be built till 2005 at CERN in Geneva. The Barrel Yoke survey has been decided to be done mostly by photogrammetry. After this first measurement, it has been proved that a practical simulation and a study of adapted tools and procedures were helpful for measurement on such a large object. Using only conventional surveying methods would have been impossible with such constraints. The most important points were the high required accuracy compared to the size of the object, the connection of the two planes, the time intervention, the restricted factory environment and the impossibility for having any outside network. The photogrammetric method was considered to be the best way to survey the Barrel Yoke ring. Since the required precision has been reached at all levels with the first full Barrel measurements, the procedure is validated for the four remaining Barrels in the factory and afterwards again at CERN. This project was challenging due to the size of the object, the required accuracy and the lack of practical references in the field of digital industrial photogrammetry. This method is a new step for using the three dimensional photogrammetric measurements on large objects. (authors)

  15. Research on calorimeter for high-power microwave measurements

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi’an, Shaanxi 710024 (China)

    2015-12-15

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an “inline” calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an “offline” calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a “cold test” on a 9.3 GHz klystron show that the “inline” calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device’s power capacity is approximately 0.9 GW. The same experiments were also carried out for the “offline” calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the “cold tests,” and the experiments show good agreement.

  16. Research on calorimeter for high-power microwave measurements.

    Science.gov (United States)

    Ye, Hu; Ning, Hui; Yang, Wensen; Tian, Yanmin; Xiong, Zhengfeng; Yang, Meng; Yan, Feng; Cui, Xinhong

    2015-12-01

    Based on measurement of the volume increment of polar liquid that is a result of heating by absorbed microwave energy, two types of calorimeters with coaxial capacitive probes for measurement of high-power microwave energy are designed in this paper. The first is an "inline" calorimeter, which is placed as an absorbing load at the end of the output waveguide, and the second is an "offline" calorimeter that is placed 20 cm away from the radiation horn of the high-power microwave generator. Ethanol and high density polyethylene are used as the absorbing and housing materials, respectively. Results from both simulations and a "cold test" on a 9.3 GHz klystron show that the "inline" calorimeter has a measurement range of more than 100 J and an energy absorption coefficient of 93%, while the experimental results on a 9.3 GHz relativistic backward-wave oscillator show that the device's power capacity is approximately 0.9 GW. The same experiments were also carried out for the "offline" calorimeter, and the results indicate that it can be used to eliminate the effects of the shock of the solenoid on the measurement curves and that the device has a higher power capacity of 2.5 GW. The results of the numerical simulations, the "cold tests," and the experiments show good agreement.

  17. The CMS Barrel Muon Trigger Upgrade

    CERN Document Server

    Triossi, Andrea

    2017-01-01

    ABSTRACT: The increase of luminosity expected by LHC during Phase 1 will impose several constrains for rate reduction while maintaining high efficiency in the CMS Level 1 trigger system. The TwinMux system is the early layer of the muon barrel region that concentrates the information from different subdetectors DT, RPC and HO. It arranges and fan-out the slow optical trigger links from the detector chambers into faster links (10 Gbps) that are sent to the track finders. Results, from collision runs, that confirm the satisfactory operation of the trigger system up to the output of the barrel track finder, will be shown. SUMMARY: In view of the increase of luminosity during phase 1 upgrade of LHC, the muon trigger chain of the Compact Muon Solenoid (CMS) experiment underwent considerable improvements. The muon detector was designed for preserving the complementarity and redundancy of three separate muon detection systems, Cathode Strip Chambers (CSC), Drift Tubes (DT) and Resistive Plate Chambers (RPC), until ...

  18. Tri-Service Green Gun Barrel (PP 1074)

    National Research Council Canada - National Science Library

    Rusch, Lawrence F

    2003-01-01

    ...) PP 1074 Tri-Service Green Gun Barrel. The program's goal was to develop an environmentally friendly process for depositing wear and erosion resistant materials onto gun bores replacing the current hazardous aqueous electro-deposition...

  19. Design and performance of a vacuum-bottle solid-state calorimeter

    International Nuclear Information System (INIS)

    Bracken, D.S.; Biddle, R.; Cech, R.

    1997-01-01

    EG and G Mound Applied Technologies calorimetry personnel have developed a small, thermos-bottle solid-state calorimeter, which is now undergoing performance testing at Los Alamos National Laboratory. The thermos-bottle solid-state calorimeter is an evaluation prototype for characterizing the heat output of small heat standards and other homogeneous heat sources. The current maximum sample size is 3.5 in. long with a diameter of 0.8 in. The overall size of the thermos bottle and thermoelectric cooling device is 9.25 in. high by 3.75 in. diameter and less than 3 lb. Coupling this unit with compact electronics and a laptop computer makes this calorimeter easily hand carried by a single individual. This compactness was achieved by servo controlling the reference temperature below room temperature and replacing the water bath used in conventional calorimeter design with the thermos-bottle insulator. Other design features will also be discussed. The performance of the calorimeter will be presented

  20. Prototype tests for a highly granular scintillator-based hadronic calorimeter

    OpenAIRE

    Liu, Yong; Collaboration, for the CALICE

    2017-01-01

    Within the CALICE collaboration, several concepts for the hadronic calorimeter of a future lepton collider detector are studied. After having demonstrated the capabilities of the measurement methods in "physics prototypes", the focus now lies on improving their implementation in "technological prototypes", that are scalable to the full linear collider detector. The Analogue Hadronic Calorimeter (AHCAL) concept is a sampling calorimeter of tungsten or steel absorber plates and plastic scintill...

  1. Drugs affecting HbA1c levels

    Directory of Open Access Journals (Sweden)

    Ranjit Unnikrishnan

    2012-01-01

    Full Text Available Glycated hemoglobin (HbA1c is an important indicator of glycemic control in diabetes mellitus, based on which important diagnostic and therapeutic decisions are routinely made. However, there are several situations in which the level of HbA1c may not faithfully reflect the glycemic control in a given patient. Important among these is the use of certain non-diabetic medications, which can affect the HbA1c levels in different ways. This review focuses on the non-diabetic medications which can inappropriately raise or lower the HbA1c levels, and the postulated mechanisms for the same.

  2. [About the HbA1c in the elderly].

    Science.gov (United States)

    Farcet, Anaïs; Delalande, Géraldine; Oliver, Charles; Retornaz, Frédérique

    2016-03-01

    HbA1c product of non enzymatic glycation of HbA increases in relation with the mean blood glucose level during the former 2-3 months. HbA1c levels are correlated with the development of diabetic complications and HbA1c assessment is now the gold standard for evaluation of diabetes control. HbA1c level should not be higher than 7% to avoid these complications. However, in aged peoples, the objectives of diabetes control vary according to their health status. It must be good with HbA1c lower than 7-7.5% in healthy subjects and more relax in subjects with symptoms of frailty and risks of non perceived and self corrected hypoglycemia. Under these conditions, HbA1c values lower than 8 to 9% are advised. Nevertheless, hypoglycemia episodes may occur in patients with high HbA1c and capillary glucose follow-up is necessary for detection of such complications.

  3. The electromagnetic calorimeter of the NOMAD experiment

    Energy Technology Data Exchange (ETDEWEB)

    Autiero, D; Baldo-Ceolin, M; Barichello, G; Bianchi-Bonaiti, V; Bobisut, F; Cardini, A; Cattaneo, P W; Cavasinni, V; Conta, C; Del Prete, T; De Santo, A; Di Lella, L; Ferrari, R; Flaminio, V; Fraternali, M; Gibin, D; Gninenko, S N; Guglielmi, A; Iacopini, E; Kovzelev, A V; La Rotonda, L; Lanza, A; Laveder, M; Lazzeroni, C; Livan, M; Mezzetto, M; Orestano, D; Pastore, F; Pennacchio, E; Petti, R; Polesello, G; Renzoni, G; Rimoldi, A; Roda, C; Sconza, A; Sobczynski, C; Valdata-Nappi, M; Vascon, M; Vercesi, V; Visentin, L; Volkov, S A [Pisa Univ. (Italy). Dipt. di Fisica; [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); [Dipartimento di Fisica, Universita di Padova and INFN, Sezione di Padova, Padova (Italy); [Dipartimento di Fisica Nucleare e Teorica, Universita di Pavia and INFN, Sezione di Pavia, Pavia (Italy); [CERN, Geneva (Switzerland); [Dipartimento di Fisica, Universita di Firenze and INFN, Sezione di Firenze, Firenze (Italy); [Institute of Nuclear Research, INR, Moscow (Russian Federation); [Dipartimento di Fisica, Universita della Calabria and INFN, Gruppo Collegato di Cosenza, Cosenza (Italy)

    1996-05-01

    A description is given of the NOMAD electromagnetic calorimeter, consisting of 875 lead-glass counters read out by two-stage photomultipliers and a low noise electronic chain. The detector operates in a 0.4 T magnetic field transverse to the counter axis. The paper discusses the design criteria, the lead-glass characteristics, the properties of the read out chain and provides a summary of the calorimeter performance. (orig.).

  4. The electromagnetic calorimeter of the NOMAD experiment

    International Nuclear Information System (INIS)

    Autiero, D.; Baldo-Ceolin, M.; Barichello, G.; Bianchi-Bonaiti, V.; Bobisut, F.; Cardini, A.; Cattaneo, P.W.; Cavasinni, V.; Conta, C.; Del Prete, T.; De Santo, A.; Di Lella, L.; Ferrari, R.; Flaminio, V.; Fraternali, M.; Gibin, D.; Gninenko, S.N.; Guglielmi, A.; Iacopini, E.; Kovzelev, A.V.; La Rotonda, L.; Lanza, A.; Laveder, M.; Lazzeroni, C.; Livan, M.; Mezzetto, M.; Orestano, D.; Pastore, F.; Pennacchio, E.; Petti, R.; Polesello, G.; Renzoni, G.; Rimoldi, A.; Roda, C.; Sconza, A.; Sobczynski, C.; Valdata-Nappi, M.; Vascon, M.; Vercesi, V.; Visentin, L.; Volkov, S.A.

    1996-01-01

    A description is given of the NOMAD electromagnetic calorimeter, consisting of 875 lead-glass counters read out by two-stage photomultipliers and a low noise electronic chain. The detector operates in a 0.4 T magnetic field transverse to the counter axis. The paper discusses the design criteria, the lead-glass characteristics, the properties of the read out chain and provides a summary of the calorimeter performance. (orig.)

  5. Performance of a highly segmented scintillating fibres electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Asmone, A.; Bertino, M.; Bini, C.; De Zorzi, G.; Diambrini Palazzi, G.; Di Cosimo, G.; Di Domenico, A.; Garufi, F.; Gauzzi, P.; Zanello, D.

    1993-01-01

    A prototype of scintillating fibres electromagnetic calorimeter has been constructed and tested with 2, 4 and 8 GeV electron beams at the CERN PS. The calorimeter modules consist of a Bi-Pb-Sn alloy and scintillating fibres. The fibres are parallel to the modules longer axis, and nearly parallel to the incident electrons direction. The calorimeter has two different segmentation regions of 24x24 mm 2 and 8x24 mm 2 cross area respectively. Results on energy and impact point space resolution are obtained and compared for the two different granularities. (orig.)

  6. To the calculation of energy resolution of ionization calorimeter

    International Nuclear Information System (INIS)

    Uchajkin, V.V.; Lagutin, A.A.

    1976-01-01

    The question of energy resolution of the ionization calorimeter is considered analytically. A method is discussed for calculating the probability characteristics (mean value and dispersion) of energy losses of an electron-photon shower by ionization in the calorimeter volume

  7. CONSTRUCTION OF A DIFFERENTIAL ISOTHERMAL CALORIMETER OF HIGH SENSITIVITY AND LOW COST.

    OpenAIRE

    Trinca, RB; Perles, CE; Volpe, PLO

    2009-01-01

    CONSTRUCTION OF A DIFFERENTIAL ISOTHERMAL CALORIMETER OF HIGH SENSITIVITY AND LOW COST The high cost of sensitivity commercial calorimeters may represent an obstacle for many calorimetric research groups. This work describes (fie construction and calibration of a batch differential heat conduction calorimeter with sample cells volumes of about 400 mu L. The calorimeter was built using two small high sensibility square Peltier thermoelectric sensors and the total cost was estimated to be about...

  8. Moving one of the ATLAS end-cap calorimeters

    CERN Multimedia

    Claudia Marcelloni

    2007-01-01

    One of the end-cap calorimeters for the ATLAS experiment is moved using a set of rails. This calorimeter will measure the energy of particles that are produced close to the axis of the beam when two protons collide. It is kept cool inside a cryostat to allow the detector to work at maximum efficiency.

  9. Radiation damage effects on calorimeter compensation

    International Nuclear Information System (INIS)

    Gabriel, T.A.; Handler, T.

    1990-01-01

    An important consideration in the design of a detector that is to be used at the Superconducting Super Collider (SSC) is the response of the calorimeter to electromagnetic and hadronic particles and the equality of those responses for different types of particles at equal incident energies, i.e. compensation. However, as the simulations that are reported show, the compensation characteristics of a calorimeter can be seriously compromised over a relatively short period of time due to the large radiation levels that are expected in the SSC environment. 6 refs., 3 figs

  10. Comparison between calorimeter and HLNC errors

    International Nuclear Information System (INIS)

    Goldman, A.S.; De Ridder, P.; Laszlo, G.

    1991-01-01

    This paper summarizes an error analysis that compares systematic and random errors of total plutonium mass estimated for high-level neutron coincidence counter (HLNC) and calorimeter measurements. This task was part of an International Atomic Energy Agency (IAEA) study on the comparison of the two instruments to determine if HLNC measurement errors met IAEA standards and if the calorimeter gave ''significantly'' better precision. Our analysis was based on propagation of error models that contained all known sources of errors including uncertainties associated with plutonium isotopic measurements. 5 refs., 2 tabs

  11. Detection of Hb Constant Spring (HBA2: c.427T>C) Heterozygotes in Combination with β-Thalassemia or Hb E Trait by Capillary Electrophoresis.

    Science.gov (United States)

    Pornprasert, Sakorn; Saoboontan, Supansa; Punyamung, Manoo

    2015-01-01

    Hb Constant Spring (Hb CS; HBA2: c.427T>C) is often missed by routine laboratory testing as its mRNA as well as gene product are unstable and presented at a low level in peripheral blood. This study aimed to analyze the efficacy of capillary electrophoresis (CE) for detecting and quantifying of Hb CS in β-thalassemia (β-thal) trait or Hb E (HBB: c.79G>A) trait samples with reduced β-globin chain expression. Thalassemia diagnostic data were reviewed in 2524 blood samples that were submitted to the laboratory of the Associated Medical Sciences Clinical Service Center, Chiang Mai, Thailand for hemoglobinopathy and thalassemia diagnosis. DNA analysis for Hb CS was performed in 322 β-thal trait and 397 Hb E trait samples using the amplification refractory mutation system (ARMS). The CE electropherogram of Hb CS at zone 2 was observed in all five samples with β-thal trait and nine samples with Hb E trait with levels varying from 0.1-2.8 and 0.1-2.3%, respectively. Thus, the CE method proved useful for screening of Hb CS in samples with β-thal trait or Hb E trait, which is essential for providing accurate diagnosis, genetic counseling, prevention and control programs of Hb H-CS disease.

  12. Hadronic vector boson decay and the art of calorimeter calibration

    Energy Technology Data Exchange (ETDEWEB)

    Lobban, Olga Barbara [Texas Tech Univ., Lubbock, TX (United States)

    2002-12-01

    Presented here are several studies involving the energy measurement of particles using calorimeters. The first study involves the effects of radiation damage on the response of a prototype calorimeter for the Compact Muon Solenoid experiment. We found that the effects of radiation damage on the calorimeter·s response arc dose dependent and that most of the damage will occur in the first year of running at the Large Hadron Collider. Another study involved the assessment of the Energy Flow Method an algorithm which combines the information from the calorimeter system is combined with that from the tracking system in an attmpt to improve the energy resolution for jet measurements. Using the Energy Flow method an improvement of $\\sim30\\%$ is found but this impovement decreases at high energies when the hadronic calorimeter resolution dominates the quality of the jet energy measurements. Finally, we developed a new method to calibrate a longitudinally segnmented calorimeter. This method eliminates problems with the traditional method used for the calorimeters at the Collider Detector at Fermilab. We applied this new method in the search for hadrunic decays of the $W$ and $Z$ bosons in a sample of dijet data taken during Tevatron Run IC. A signal of 9873±3950(sys) ±1130 events was found when the new calibration method was used. This corresponds to a cross section $\\sigma(p\\bar{p} \\to W,Z) \\cdot B(W,Z \\to jets) = 35.6 \\pm 14.2 ({\\rm sys}) \\pm 4.1 (\\rm{stat})$ nb.

  13. Fractal dimension analysis in a highly granular calorimeter

    CERN Document Server

    Ruan, M; Brient, J.C; Jeans, D; Videau, H

    2015-01-01

    The concept of “particle flow” has been developed to optimise the jet energy resolution by distinguishing the different jet components. A highly granular calorimeter designed for the particle flow algorithm provides an unprecedented level of detail for the reconstruction of calorimeter showers and enables new approaches to shower analysis. In this paper the measurement and use of the fractal dimension of showers is described. The fractal dimension is a characteristic number that measures the global compactness of the shower. It is highly dependent on the primary particle type and energy. Its application in identifying particles and estimating their energy is described in the context of a calorimeter designed for the International Linear Collider.

  14. Inhibition of Hb Binding to GP1bα Abrogates Hb-Mediated Thrombus Formation on Immobilized VWF and Collagen under Physiological Shear Stress.

    Science.gov (United States)

    Annarapu, Gowtham K; Singhal, Rashi; Peng, Yuandong; Guchhait, Prasenjit

    2016-01-01

    Reports including our own describe that intravascular hemolysis increases the risk of thrombosis in hemolytic disorders. Our recent study shows that plasma Hb concentrations correlate directly with platelet activation in patients with paroxysmal nocturnal hemoglobinuria (PNH). The binding of Hb to glycoprotein1bα (GP1bα) increases platelet activation. A peptide AA1-50, designed from N-terminal amino acid sequence of GP1bα significantly inhibits the Hb binding to GP1bα as well as Hb-induced platelet activation. This study further examined if the Hb-mediated platelet activation plays any significant role in thrombus formation on subendothelium matrix under physiological flow shear stresses and the inhibition of Hb-platelet interaction can abrogate the above effects of Hb. Study performed thrombus formation assay in vitro by perfusing whole blood over immobilized VWF or collagen type I in presence of Hb under shear stresses simulating arterial or venous flow. The Hb concentrations ranging from 5 to 10 μM, commonly observed level in plasma of the hemolytic patients including PNH, dose-dependently increased thrombus formation on immobilized VWF under higher shear stress of 25 dyne/cm2, but not at 5 dyne/cm2. The above Hb concentrations also increased thrombus formation on immobilized collagen under both shear stresses of 5 and 25 dyne/cm2. The peptide AA1-50 abrogated invariably the above effects of Hb on thrombus formation. This study therefore indicates that the Hb-induced platelet activation plays a crucial role in thrombus formation on immobilized VWF or collagen under physiological flow shear stresses. Thus suggesting a probable role of this mechanism in facilitating thrombosis under hemolytic conditions.

  15. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    Philippe Bloch

    ECAL Barrel (EB) As already mentioned in June, the Barrel ECAL is fully commissioned and routinely used during CRUZET runs.  Good progress has been made in the last months to ensure a stable and fully reliable operation, in particular for the Trigger path. More details can be found in the DPG report in this bulletin.     ECAL Endcaps (EE) In the June CMS bulletin, it had been announced that the Dee’s mechanical assembly had been finished end of May. However the electronics integration was still going on for the first Dee. The Summer has seen a spectacular breakthrough of the Endcap project. The electronics integration of Dee1 was completed early July, and this first Dee was transported to point 5 on July 8th. The completion of the three other Dees followed at a pace of one per week. In all cases the quality of the detector as measured in the assembly center was excellent, with all channels active and  the expected noise performance (see for example the reports pr...

  16. ELECTROMAGNETIC CALORIMETER (ECAL)

    CERN Multimedia

    P. Bloch

    ECAL Barrel (EB) The main task during this fall was the connection of services of the ECAL Barrel Supermodules installed in the vacuum-tank. This work has been completed. The team is now commissioning the Supermodules using the final services (cables and optical fibers, HV and LV power supplies, cooling plant) and final electronics in the service cavern. The pace of commissioning has been limited by the availability of the cooling plant. At the time of writing, about 2/3 of the Supermodules had been signed off. ECAL Endcaps (EE) The Endcaps crystal production is proceeding fast. At the end of October, more than 10000 crystals (two thirds of the total quantity) had beem delivered. The Endcaps crystal production will be completed at the end of March 2008, as planned. The crystals testing and the gluing of the VPTs (Vacuum Photo Triodes) on the crystals follow the plan. The assembly of Supercrystals (a set of 25 crystals) is now a routine operation. All the Supercrystals for Dee1 and two thirds of those ne...

  17. Evolutions of volatile sulfur compounds of Cabernet Sauvignon wines during aging in different oak barrels.

    Science.gov (United States)

    Ye, Dong-Qing; Zheng, Xiao-Tian; Xu, Xiao-Qing; Wang, Yun-He; Duan, Chang-Qing; Liu, Yan-Lin

    2016-07-01

    The evolution of volatile sulfur compounds (VSCs) in Cabernet Sauvignon wines from seven regions of China during maturation in oak barrels was investigated. The barrels were made of different wood grains (fine and medium) and toasting levels (light and medium). Twelve VSCs were quantified by GC/FPD, with dimethyl sulfide (DMS) and methionol exceeding their sensory thresholds. Most VSCs tended to decline during the aging, while DMS was found to increase. After one year aging, the levels of DMS, 2-methyltetrahy-drothiophen-3-one and sulfur-containing esters were lower in the wines aged in oak barrels than in stainless steel tanks. The wood grain and toasting level of oak barrels significantly influenced the concentration of S-methyl thioacetate and 2-methyltetrahy-drothiophen-3-one. This study reported the evolution of VSCs in wines during oak barrel aging for the first time and evaluated the influence of barrel types, which would provide wine-makers with references in making proposals about wine aging. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. NA48 prototype calorimeter

    CERN Multimedia

    1990-01-01

    This is a calorimeter, a detector which measures the energy of particles. When in use, it is filled with liquid krypton at -152°C. Electrons and photons passing through interact with the krypton, creating a shower of charged particles which are collected on the copper ribbons. The ribbons are aligned to an accuracy of a tenth of a millimetre. The folding at each end allows them to be kept absolutely flat. Each shower of particles also creates a signal in scintillating material embedded in the support disks. These flashes of light are transmitted to electronics by the optical fibres along the side of the detector. They give the time at which the interaction occurred. The photo shows the calorimeter at NA48, a CERN experiment which is trying to understand the lack of anti-matter in the Universe today.

  19. Application of polystyrene - water calorimeter in determination of absorbed dose. Vol. 4.

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, F A [Nuclear Materials Authority, Maadi, Cairo (Egypt); Ashry, H A; El-Behay, A Z; Abdou, S [National Center, for Radiation Research and Technology, Atomic Energy Authority, Cairo (Egypt)

    1996-03-01

    The polystyrene-water calorimeter was investigated as a modification of the water calorimeter, where the polystyrene has a low specific heat and negligible known heat defect. This calorimeter was designed, constructed and calibrated for measurement of radiation absorbed dose. The system utilizes a thermistor to detect the radiation-induced temperature rise in the polystyrene absorber at certain point from the radiation source. A temperature stability of as low as 0.0018 degree C/min in a 42.0 degree C environment, and a gamma-radiation sensitivity of as high as 1.9720 ohm/Gy were obtained. Comparisons of the results obtained by using the polystyrene-water calorimeter with those obtained by applying other types of calorimeters i.e., water and graphite calorimeters were also done to aid in the possible realization of an accurate and efficient instrument for use under widely different irradiation conditions. 4 figs., 1 tab.

  20. A 3000 element lead-glass electromagnetic calorimeter

    International Nuclear Information System (INIS)

    Crittenden, R.R.; Dzierba, A.R.; Gunter, J.; Lindenbusch, R.; Rust, D.R.; Scott, E.; Smith, P.T.; Sulanke, T.; Teige, S.; Brabson, B.B.; Adams, T.; Bishop, J.M.; Cason, N.M.; LoSecco, J.M.; Manak, J.J.; Sanjari, A.H.; Shephard, W.D.; Steinike, D.L.; Taegar, S.A.; Thompson, D.R.; Chung, S.U.; Hackenburg, R.W.; Olchanski, C.; Weygand, D.P.; Willutzki, H.J.; Denisov, S.; Dushkin, A.; Kochetkov, V.; Lipaev, V.; Popov, A.; Shein, I.; Soldatov, A.; Bar-Yam, Z.; Cummings, J.P.; Dowd, J.P.; Eugenio, P.; Hayek, M.; Kern, W.; King, E.; Anoshina, E.V.; Bodyagin, V.A.; Demianov, A.I.; Gribushin, A.M.; Kodolova, O.L.; Korotkikh, V.L.; Kostin, M.A.; Ostrovidov, A.I.; Sarycheva, L.I.; Sinev, N.B.; Vardanyan, I.N.; Yershov, A.A.; Brown, D.S.; Pedlar, T.K.; Seth, K.K.; Wise, J.; Zhao, D.; Adams, G.S.; Napolitano, J.; Nozar, M.; Smith, J.A.; Witkowski, M.

    1997-01-01

    A 3045 element lead glass calorimeter and an associated fast trigger processor have been constructed, tested and implemented in BNL experiment E852 in conjunction with the multi-particle spectrometer (MPS). Approximately, 10 9 all-neutral and neutral plus charged triggers were recorded with this apparatus during data runs in 1994 and 1995. This paper reports on the construction, testing and performance of this lead glass calorimeter and the associated trigger processor. (orig.)