WorldWideScience

Sample records for hazards

  1. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  2. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  3. Transportation of hazardous materials emergency preparedness hazards assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  4. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  5. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  6. Hazards assessment for the Hazardous Waste Storage Facility

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency

  7. Hazard interactions and interaction networks (cascades) within multi-hazard methodologies

    Science.gov (United States)

    Gill, Joel C.; Malamud, Bruce D.

    2016-08-01

    This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability

  8. Hazards and hazard combinations relevant for the safety of nuclear power plants

    Science.gov (United States)

    Decker, Kurt; Brinkman, Hans; Raimond, Emmanuel

    2017-04-01

    The potential of the contemporaneous impact of different, yet causally related, hazardous events and event cascades on nuclear power plants is a major contributor to the overall risk of nuclear installations. In the aftermath of the Fukushima accident, which was caused by a combination of severe ground shaking by an earthquake, an earthquake-triggered tsunami and the disruption of the plants from the electrical grid by a seismically induced landslide, hazard combinations and hazard cascades moved into the focus of nuclear safety research. We therefore developed an exhaustive list of external hazards and hazard combinations which pose potential threats to nuclear installations in the framework of the European project ASAMPSAE (Advanced Safety Assessment: Extended PSA). The project gathers 31 partners from Europe, North Amerika and Japan. The list comprises of exhaustive lists of natural hazards, external man-made hazards, and a cross-correlation matrix of these hazards. The hazard list is regarded comprehensive by including all types of hazards that were previously cited in documents by IAEA, the Western European Nuclear Regulators Association (WENRA), and others. 73 natural hazards and 24 man-made external hazards are included. Natural hazards are grouped into seismotectonic hazards, flooding and hydrological hazards, extreme values of meteorological phenomena, rare meteorological phenomena, biological hazards / infestation, geological hazards, and forest fire / wild fire. The list of external man-made hazards includes industry accidents, military accidents, transportation accidents, pipeline accidents and other man-made external events. The large number of different hazards results in the extremely large number of 5.151 theoretically possible hazard combinations (not considering hazard cascades). In principle all of these combinations are possible to occur by random coincidence except for 82 hazard combinations that - depending on the time scale - are mutually

  9. Hazardous Waste

    Science.gov (United States)

    ... chemicals can still harm human health and the environment. When you throw these substances away, they become hazardous waste. Some hazardous wastes come from products in our homes. Our garbage can include such hazardous wastes as old batteries, bug spray cans and paint thinner. U.S. residents ...

  10. Hazard perception in traffic. [previously knows as: Hazard perception.

    NARCIS (Netherlands)

    2008-01-01

    Hazard perception is an essential part of the driving task. There are clear indications that insufficient skills in perceiving hazards play an important role in the occurrence of crashes, especially those involving novice drivers. Proper hazard perception not only consists of scanning and perceiving

  11. Identification of Potential Hazard using Hazard Identification and Risk Assessment

    Science.gov (United States)

    Sari, R. M.; Syahputri, K.; Rizkya, I.; Siregar, I.

    2017-03-01

    This research was conducted in the paper production’s company. These Paper products will be used as a cigarette paper. Along in the production’s process, Company provides the machines and equipment that operated by workers. During the operations, all workers may potentially injured. It known as a potential hazard. Hazard identification and risk assessment is one part of a safety and health program in the stage of risk management. This is very important as part of efforts to prevent occupational injuries and diseases resulting from work. This research is experiencing a problem that is not the identification of potential hazards and risks that would be faced by workers during the running production process. The purpose of this study was to identify the potential hazards by using hazard identification and risk assessment methods. Risk assessment is done using severity criteria and the probability of an accident. According to the research there are 23 potential hazard that occurs with varying severity and probability. Then made the determination Risk Assessment Code (RAC) for each potential hazard, and gained 3 extreme risks, 10 high risks, 6 medium risks and 3 low risks. We have successfully identified potential hazard using RAC.

  12. Working towards a clearer and more helpful hazard map: investigating the influence of hazard map design on hazard communication

    Science.gov (United States)

    Thompson, M. A.; Lindsay, J. M.; Gaillard, J.

    2015-12-01

    Globally, geological hazards are communicated using maps. In traditional hazard mapping practice, scientists analyse data about a hazard, and then display the results on a map for stakeholder and public use. However, this one-way, top-down approach to hazard communication is not necessarily effective or reliable. The messages which people take away will be dependent on the way in which they read, interpret, and understand the map, a facet of hazard communication which has been relatively unexplored. Decades of cartographic studies suggest that variables in the visual representation of data on maps, such as colour and symbology, can have a powerful effect on how people understand map content. In practice, however, there is little guidance or consistency in how hazard information is expressed and represented on maps. Accordingly, decisions are often made based on subjective preference, rather than research-backed principles. Here we present the results of a study in which we explore how hazard map design features can influence hazard map interpretation, and we propose a number of considerations for hazard map design. A series of hazard maps were generated, with each one showing the same probabilistic volcanic ashfall dataset, but using different verbal and visual variables (e.g., different colour schemes, data classifications, probabilistic formats). Following a short pilot study, these maps were used in an online survey of 110 stakeholders and scientists in New Zealand. Participants answered 30 open-ended and multiple choice questions about ashfall hazard based on the different maps. Results suggest that hazard map design can have a significant influence on the messages readers take away. For example, diverging colour schemes were associated with concepts of "risk" and decision-making more than sequential schemes, and participants made more precise estimates of hazard with isarithmic data classifications compared to binned or gradational shading. Based on such

  13. Hazard Analysis Database Report

    Energy Technology Data Exchange (ETDEWEB)

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  14. Handbook of hazardous waste management

    International Nuclear Information System (INIS)

    Metry, A.A.

    1980-01-01

    The contents of this work are arranged so as to give the reader a detailed understanding of the elements of hazardous waste management. Generalized management concepts are covered in Chapters 1 through 5 which are entitled: Introduction, Regulations Affecting Hazardous Waste Management, Comprehensive Hazardous Waste Management, Control of Hazardous Waste Transportation, and Emergency Hazardous Waste Management. Chapters 6 through 11 deal with treatment concepts and are entitled: General Considerations for Hazardous Waste Management Facilities, Physical Treatment of Hazardous Wastes, Chemical Treatment of Hazardous Wastes, Biological Treatment of Hazardous Wastes, Incineration of Hazardous Wastes, and Hazardous Waste Management of Selected Industries. Chapters 12 through 15 are devoted to ultimate disposal concepts and are entitled: Land Disposal Facilities, Ocean Dumping of Hazardous Wastes, Disposal of Extremely Hazardous Wastes, and Generalized Criteria for Hazardous Waste Management Facilities

  15. Egyptian Environmental Activities and Regulations for Management of Hazardous Substances and Hazardous Wastes

    International Nuclear Information System (INIS)

    El Zarka, M.

    1999-01-01

    A substantial use of hazardous substances is essential to meet the social and economic goals of the community in Egypt. Agrochemicals are being used extensively to increase crop yield. The outdated agrochemicals and their empty containers represent a serious environmental problem. Industrial development in different sectors in Egypt obligates handling of huge amounts of hazardous substances and hazardous wastes. The inappropriate handling of such hazardous substances creates several health and environmental problems. Egypt faces many challenges to control safe handling of such substances and wastes. Several regulations are governing handling of hazardous substances in Egypt. The unified Environmental Law 4 for the year 1994 includes a full chapter on the Management of Hazardous Substances and Hazardous Wastes. National and international activities have been taken to manage hazardous substances and hazardous wastes in an environmental sound manner

  16. Hazard classification methodology

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1996-01-01

    This document outlines the hazard classification methodology used to determine the hazard classification of the NIF LTAB, OAB, and the support facilities on the basis of radionuclides and chemicals. The hazard classification determines the safety analysis requirements for a facility

  17. ''Hazardous'' terminology

    International Nuclear Information System (INIS)

    Powers, J.

    1991-01-01

    A number of terms (e.g., ''hazardous chemicals,'' ''hazardous materials,'' ''hazardous waste,'' and similar nomenclature) refer to substances that are subject to regulation under one or more federal environmental laws. State laws and regulations also provide additional, similar, or identical terminology that may be confused with the federally defined terms. Many of these terms appear synonymous, and it easy to use them interchangeably. However, in a regulatory context, inappropriate use of narrowly defined terms can lead to confusion about the substances referred to, the statutory provisions that apply, and the regulatory requirements for compliance under the applicable federal statutes. This information Brief provides regulatory definitions, a brief discussion of compliance requirements, and references for the precise terminology that should be used when referring to ''hazardous'' substances regulated under federal environmental laws. A companion CERCLA Information Brief (EH-231-004/0191) addresses ''toxic'' nomenclature

  18. Hazard Analysis Database Report

    CERN Document Server

    Grams, W H

    2000-01-01

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from t...

  19. ThinkHazard!: an open-source, global tool for understanding hazard information

    Science.gov (United States)

    Fraser, Stuart; Jongman, Brenden; Simpson, Alanna; Nunez, Ariel; Deparday, Vivien; Saito, Keiko; Murnane, Richard; Balog, Simone

    2016-04-01

    Rapid and simple access to added-value natural hazard and disaster risk information is a key issue for various stakeholders of the development and disaster risk management (DRM) domains. Accessing available data often requires specialist knowledge of heterogeneous data, which are often highly technical and can be difficult for non-specialists in DRM to find and exploit. Thus, availability, accessibility and processing of these information sources are crucial issues, and an important reason why many development projects suffer significant impacts from natural hazards. The World Bank's Global Facility for Disaster Reduction and Recovery (GFDRR) is currently developing a new open-source tool to address this knowledge gap: ThinkHazard! The main aim of the ThinkHazard! project is to develop an analytical tool dedicated to facilitating improvements in knowledge and understanding of natural hazards among non-specialists in DRM. It also aims at providing users with relevant guidance and information on handling the threats posed by the natural hazards present in a chosen location. Furthermore, all aspects of this tool will be open and transparent, in order to give users enough information to understand its operational principles. In this presentation, we will explain the technical approach behind the tool, which translates state-of-the-art probabilistic natural hazard data into understandable hazard classifications and practical recommendations. We will also demonstrate the functionality of the tool, and discuss limitations from a scientific as well as an operational perspective.

  20. Multi-Hazard Interactions in Guatemala

    Science.gov (United States)

    Gill, Joel; Malamud, Bruce D.

    2017-04-01

    In this paper, we combine physical and social science approaches to develop a multi-scale regional framework for natural hazard interactions in Guatemala. The identification and characterisation of natural hazard interactions is an important input for comprehensive multi-hazard approaches to disaster risk reduction at a regional level. We use five transdisciplinary evidence sources to organise and populate our framework: (i) internationally-accessible literature; (ii) civil protection bulletins; (iii) field observations; (iv) stakeholder interviews (hazard and civil protection professionals); and (v) stakeholder workshop results. These five evidence sources are synthesised to determine an appropriate natural hazard classification scheme for Guatemala (6 hazard groups, 19 hazard types, and 37 hazard sub-types). For a national spatial extent (Guatemala), we construct and populate a "21×21" hazard interaction matrix, identifying 49 possible interactions between 21 hazard types. For a sub-national spatial extent (Southern Highlands, Guatemala), we construct and populate a "33×33" hazard interaction matrix, identifying 112 possible interactions between 33 hazard sub-types. Evidence sources are also used to constrain anthropogenic processes that could trigger natural hazards in Guatemala, and characterise possible networks of natural hazard interactions (cascades). The outcomes of this approach are among the most comprehensive interaction frameworks for national and sub-national spatial scales in the published literature. These can be used to support disaster risk reduction and civil protection professionals in better understanding natural hazards and potential disasters at a regional scale.

  1. Hazard management at the workplace

    International Nuclear Information System (INIS)

    Hasfazilah Hassan; Azimawati Ahmad; Syed Asraf Fahlawi Wafa S M Ghazi; Hairul Nizam Idris

    2005-01-01

    Failure to ensure health and safety environment at workplace will cause an accident involving loss to the time, human resource, finance and for the worse case effect the moral value of an organization. If we go through to the cause of the accident, it is impossible to have a totally safety workplace. It is because every process in work activities has it own hazard elements. The purpose of this paper is to discuss the best action to prevent from the hazard with a comprehensive and effectiveness hazard management. Hazard management is the one of the pro-active hazard control. With this we manage to identify and evaluate the hazard and control the hazard risk. Therefore, hazard management should be screened constantly and continuously to make sure work hazard always in control. (Author)

  2. DOE Hazardous Waste Program

    International Nuclear Information System (INIS)

    Eyman, L.D.; Craig, R.B.

    1985-01-01

    The goal of the DOE Hazardous Waste Program is to support the implementation and improvement of hazardous-chemical and mixed-radioactive-waste management such that public health, safety, and the environment are protected and DOE missions are effectively accomplished. The strategy for accomplishing this goal is to define the character and magnitude of hazardous wastes emanating from DOE facilities, determine what DOE resources are available to address these problems, define the regulatory and operational constraints, and develop programs and plans to resolve hazardous waste issues. Over the longer term the program will support the adaptation and application of technologies to meet hazardous waste management needs and to implement an integrated, DOE-wide hazardous waste management strategy. 1 reference, 1 figure

  3. Relative Hazard Calculation Methodology

    International Nuclear Information System (INIS)

    DL Strenge; MK White; RD Stenner; WB Andrews

    1999-01-01

    The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation)

  4. Natural hazards science strategy

    Science.gov (United States)

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2012-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events.To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science.In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10-year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical statutory

  5. Radiation hazards

    International Nuclear Information System (INIS)

    Rausch, L.

    1979-01-01

    On a scientific basis and with the aid of realistic examples, the author gives a popular introduction to an understanding and judgment of the public discussion over radiation hazards: Uses and hazards of X-ray examinations, biological radiation effects, civilisation risks in comparison, origins and explanation of radiation protection regulations. (orig.) [de

  6. Hazard screening application guide

    International Nuclear Information System (INIS)

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information

  7. Software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper

  8. Job Hazard Analysis

    National Research Council Canada - National Science Library

    1998-01-01

    .... Establishing proper job procedures is one of the benefits of conducting a job hazard analysis carefully studying and recording each step of a job, identifying existing or potential job hazards...

  9. Introduction: Hazard mapping

    Science.gov (United States)

    Baum, Rex L.; Miyagi, Toyohiko; Lee, Saro; Trofymchuk, Oleksandr M

    2014-01-01

    Twenty papers were accepted into the session on landslide hazard mapping for oral presentation. The papers presented susceptibility and hazard analysis based on approaches ranging from field-based assessments to statistically based models to assessments that combined hydromechanical and probabilistic components. Many of the studies have taken advantage of increasing availability of remotely sensed data and nearly all relied on Geographic Information Systems to organize and analyze spatial data. The studies used a range of methods for assessing performance and validating hazard and susceptibility models. A few of the studies presented in this session also included some element of landslide risk assessment. This collection of papers clearly demonstrates that a wide range of approaches can lead to useful assessments of landslide susceptibility and hazard.

  10. Barrow hazards survey

    International Nuclear Information System (INIS)

    1980-06-01

    Following a series of public meetings at which PERG presented the results of a literature review and site specific accident study of the hazards of the maritime transport of spent nuclear reactor fuel to Barrow (en route to the Windscale reprocessing works), PERG was requested by the Planning Committee of Barrow Town Council to prepare an assessment of the interaction of the hazards arising from the concentration of nuclear activities in the area with those of a proposed gas-terminal. This report presents a preliminary review of the Environmental Impact Assessments prepared by the Borough Surveyor and a critical appraisal of the hazard analyses undertaken by the Health and Safety Executive, and the consultants to Cumbria County Council on this matter, the Safety and Reliability Directorate of the United Kingdom Atomic Energy Authority. After a general and historical introduction, the document continues under the following headings: a description of the hazards (BNFL spent fuel shipments; the gas terminal; gas condensate storage; the Vickers shipyard (involving nuclear powered submarines)); the interaction of hazards; planning implications and democratic decisions; recommendations. (U.K.)

  11. 76 FR 4823 - Hazardous Waste Management System; Identifying and Listing Hazardous Waste Exclusion

    Science.gov (United States)

    2011-01-27

    ... Waste Management System; Identifying and Listing Hazardous Waste Exclusion AGENCY: Environmental... hazardous wastes. The Agency has decided to grant the petition based on an evaluation of waste-specific... excludes the petitioned waste from the requirements of hazardous waste regulations under the Resource...

  12. Structural comparison of hazardous and non-hazardous coals based on gas sorption experiments

    Energy Technology Data Exchange (ETDEWEB)

    Lakatos, J.; Toth, J. [Research Lab. for Mining Chemistry, Hungarian Academy of Sciences, Miskolc-Egyetemvaros (Hungary); Radnai-Gyoengyoes, Z. [Geopard Ltd., Pecs (Hungary); Bokanyi, L. [Miskolc Univ., Miskolc-Egyetemvaros (Hungary). Dept. of Process Engineering

    1997-12-31

    Comparison of carbon-dioxide and propane sorption at ambient temperature was used for characterising the difference of the structure of hazardous and non hazardous coals. However, hazardous coals were found more microporous or contain more closed pores than non hazardous ones, this difference couldn`t have been enlarged and attributed to one petrographic component by producing the density fractions. Gas sorption isobars (nitrogen, methane, ethane) are proposed to make a distinction between fine pore structure of coals. (orig.)

  13. Informing Workers of Chemical Hazards: The OSHA Hazard Communication Standard.

    Science.gov (United States)

    American Chemical Society, Washington, DC.

    Practical information on how to implement a chemical-related safety program is outlined in this publication. Highlights of the federal Occupational Safety and Health Administrations (OSHA) Hazard Communication Standard are presented and explained. These include: (1) hazard communication requirements (consisting of warning labels, material safety…

  14. Transport of hazardous goods

    International Nuclear Information System (INIS)

    1989-01-01

    The course 'Transport of hazardous goods' was held in Berlin in November 1988 in cooperation with the Bundesanstalt fuer Materialforschung und -pruefung. From all lecturs, two are recorded separately: 'Safety of tank trucks - requirements on the tank, development possibiities of active and passive safety' and 'Requirements on the transport of radioactive materials - possible derivations for other hazardous goods'. The other lectures deal with hazardous goods law, requirements on packinging, risk assessment, railroad transport, hazardous goods road network, insurance matters, EC regulations, and waste tourism. (HSCH) [de

  15. Seismic hazard maps for Haiti

    Science.gov (United States)

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2011-01-01

    We have produced probabilistic seismic hazard maps of Haiti for peak ground acceleration and response spectral accelerations that include the hazard from the major crustal faults, subduction zones, and background earthquakes. The hazard from the Enriquillo-Plantain Garden, Septentrional, and Matheux-Neiba fault zones was estimated using fault slip rates determined from GPS measurements. The hazard from the subduction zones along the northern and southeastern coasts of Hispaniola was calculated from slip rates derived from GPS data and the overall plate motion. Hazard maps were made for a firm-rock site condition and for a grid of shallow shear-wave velocities estimated from topographic slope. The maps show substantial hazard throughout Haiti, with the highest hazard in Haiti along the Enriquillo-Plantain Garden and Septentrional fault zones. The Matheux-Neiba Fault exhibits high hazard in the maps for 2% probability of exceedance in 50 years, although its slip rate is poorly constrained.

  16. INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2005-02-17

    The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology for this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.

  17. INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION

    International Nuclear Information System (INIS)

    Garrett, R.J.

    2005-01-01

    The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology for this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified

  18. 76 FR 55846 - Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon Dioxide...

    Science.gov (United States)

    2011-09-09

    ... carbon dioxide (CO 2 ) streams that are hazardous from the definition of hazardous waste, provided these... management under the Resource Conservation and Recovery Act (RCRA) to conditionally exclude carbon dioxide... 2050-AG60 Hazardous Waste Management System: Identification and Listing of Hazardous Waste: Carbon...

  19. HAZARD ANALYSIS SOFTWARE

    International Nuclear Information System (INIS)

    Sommer, S; Tinh Tran, T.

    2008-01-01

    Washington Safety Management Solutions, LLC developed web-based software to improve the efficiency and consistency of hazard identification and analysis, control selection and classification, and to standardize analysis reporting at Savannah River Site. In the new nuclear age, information technology provides methods to improve the efficiency of the documented safety analysis development process which includes hazard analysis activities. This software provides a web interface that interacts with a relational database to support analysis, record data, and to ensure reporting consistency. A team of subject matter experts participated in a series of meetings to review the associated processes and procedures for requirements and standard practices. Through these meetings, a set of software requirements were developed and compiled into a requirements traceability matrix from which software could be developed. The software was tested to ensure compliance with the requirements. Training was provided to the hazard analysis leads. Hazard analysis teams using the software have verified its operability. The software has been classified as NQA-1, Level D, as it supports the analysis team but does not perform the analysis. The software can be transported to other sites with alternate risk schemes. The software is being used to support the development of 14 hazard analyses. User responses have been positive with a number of suggestions for improvement which are being incorporated as time permits. The software has enforced a uniform implementation of the site procedures. The software has significantly improved the efficiency and standardization of the hazard analysis process

  20. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.

  1. Technical Guidance for Hazardous Analysis, Emergency Planning for Extremely Hazardous Substances

    Science.gov (United States)

    This current guide supplements NRT-1 by providing technical assistance to LEPCs to assess the lethal hazards related to potential airborne releases of extremely hazardous substances (EHSs) as designated under Section 302 of Title Ill of SARA.

  2. The Coastal Hazard Wheel system for coastal multi-hazard assessment & management in a changing climate

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Halsnæs, Kirsten

    2015-01-01

    This paper presents the complete Coastal Hazard Wheel (CHW) system, developed for multi-hazard-assessment and multi-hazard-management of coastal areas worldwide under a changing climate. The system is designed as a low-tech tool that can be used in areas with limited data availability...... screening and management. The system is developed to assess the main coastal hazards in a single process and covers the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding. The system was initially presented in 2012 and based on a range of test......-applications and feedback from coastal experts, the system has been further refined and developed into a complete hazard management tool. This paper therefore covers the coastal classification system used by the CHW, a standardized assessment procedure for implementation of multi-hazard-assessments, technical guidance...

  3. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  4. Offsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1997-01-01

    This report documents the emergency preparedness Hazards Assessment for the offsite transportation of hazardous material from the Hanford Site. The assessment is required by the US Department of Energy (DOE) Order 151.1. Offsite transportation accidents are categorized using the DOE system to assist communication within the DOE and assure that appropriate assistance is provided to the people in charge at the scene. The assistance will initially include information about the load and the potential hazards. Local authorities will use the information to protect the public following a transportation accident. This Hazards Assessment will focus on the material being transported from the Hanford Site. Shipments coming to Hanford are the responsibility of the shipper and the carrier and, therefore, are not included in this Hazards Assessment, unless the DOE elects to be the shipper of record

  5. Radiological hazards of alpha-contaminated waste

    International Nuclear Information System (INIS)

    Rodgers, J.C.

    1982-01-01

    The radiological hazards of alpha-contaminated wastes are discussed in this overview in terms of two components of hazard: radiobiological hazard, and radioecological hazard. Radiobiological hazard refers to human uptake of alpha-emitters by inhalation and ingestion, and the resultant dose to critical organs of the body. Radioecological hazard refers to the processes of release from buried wastes, transport in the environment, and translocation to man through the food chain. Besides detailing the sources and magnitude of hazards, this brief review identifies the uncertainties in their estimation, and implications for the regulatory process

  6. Hazards from aircraft

    International Nuclear Information System (INIS)

    Grund, J.E.; Hornyik, K.

    1975-01-01

    The siting of nuclear power plants has created innumerable environmental concerns. Among the effects of the ''man-made environment'' one of increasing importance in recent nuclear plant siting hazards analysis has been the concern about aircraft hazards to the nuclear plant. These hazards are of concern because of the possibility that an aircraft may have a malfunction and crash either near the plant or directly into it. Such a crash could be postulated to result, because of missile and/or fire effects, in radioactive releases which would endanger the public health and safety. The majority of studies related to hazards from air traffic have been concerned with the determination of the probability associated with an aircraft striking vulnerable portions of a given plant. Other studies have focused on the structural response to such a strike. This work focuses on the problem of strike probability. 13 references

  7. Exploring the effects of driving experience on hazard awareness and risk perception via real-time hazard identification, hazard classification, and rating tasks.

    Science.gov (United States)

    Borowsky, Avinoam; Oron-Gilad, Tal

    2013-10-01

    This study investigated the effects of driving experience on hazard awareness and risk perception skills. These topics have previously been investigated separately, yet a novel approach is suggested where hazard awareness and risk perception are examined concurrently. Young, newly qualified drivers, experienced drivers, and a group of commercial drivers, namely, taxi drivers performed three consecutive tasks: (1) observed 10 short movies of real-world driving situations and were asked to press a button each time they identified a hazardous situation; (2) observed one of three possible sub-sets of 8 movies (out of the 10 they have seen earlier) for the second time, and were asked to categorize them into an arbitrary number of clusters according to the similarity in their hazardous situation; and (3) observed the same sub-set for a third time and following each movie were asked to rate its level of hazardousness. The first task is considered a real-time identification task while the other two are performed using hindsight. During it participants' eye movements were recorded. Results showed that taxi drivers were more sensitive to hidden hazards than the other driver groups and that young-novices were the least sensitive. Young-novice drivers also relied heavily on materialized hazards in their categorization structure. In addition, it emerged that risk perception was derived from two major components: the likelihood of a crash and the severity of its outcome. Yet, the outcome was rarely considered under time pressure (i.e., in real-time hazard identification tasks). Using hindsight, when drivers were provided with the opportunity to rate the movies' hazardousness more freely (rating task) they considered both components. Otherwise, in the categorization task, they usually chose the severity of the crash outcome as their dominant criterion. Theoretical and practical implications are discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Probabilistic Tsunami Hazard Analysis

    Science.gov (United States)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  9. Flood hazards for nuclear power plants

    International Nuclear Information System (INIS)

    Yen, B.C.

    1988-01-01

    Flooding hazards for nuclear power plants may be caused by various external geophysical events. In this paper the hydrologic hazards from flash floods, river floods and heavy rain at the plant site are considered. Depending on the mode of analysis, two types of hazard evaluation are identified: 1) design hazard which is the probability of flooding over an expected service period, and 2) operational hazard which deals with real-time forecasting of the probability of flooding of an incoming event. Hazard evaluation techniques using flood frequency analysis can only be used for type 1) design hazard. Evaluation techniques using rainfall-runoff simulation or multi-station correlation can be used for both types of hazard prediction. (orig.)

  10. Geomorphological hazards in Swat valley, Pakistan

    International Nuclear Information System (INIS)

    Usman, A.

    1999-01-01

    This study attempts to describe, interpret and analyze, in depth, the varied geomorphological hazards and their impacts prevailing in the swat valley locate in the northern hilly and mountainous regions of Pakistan. The hills and mountains re zones of high geomorphological activity with rapid rates of weathering, active tectonic activities, abundant precipitation, rapid runoff and heavy sediment transport. Due to the varied topography, lithology, steep slope, erodible soil, heavy winter snowfall and intensive rainfall in the spring and summer seasons, several kinds of geomorphological hazards, such as geomorphic gravitational hazards, Fluvial hazards, Glacial hazards, Geo tectonic hazards, are occurring frequently in swat valley. Amongst them, geomorphic gravitational hazards, such as rock fall rock slide, debris slide mud flow avalanches, are major hazards in mountains and hills while fluvial hazards and sedimentation are mainly confined to the alluvial plain and lowlands of the valley. The Getechtonic hazards, on the other hand, have wide spread distribution in the valley the magnitude and occurrence of each king of hazard is thus, varied according to intensity of process and physical geographic environment. This paper discusses the type distribution and damage due to the various geomorphological hazards and their reduction treatments. The study would to be of particular importance and interest to both natural and social scientists, as well as planner, environmentalists and decision-makers for successful developmental interventions in the region. (author)

  11. Welding hazards

    International Nuclear Information System (INIS)

    Khan, M.A.

    1992-01-01

    Welding technology is advancing rapidly in the developed countries and has converted into a science. Welding involving the use of electricity include resistance welding. Welding shops are opened in residential area, which was causing safety hazards, particularly the teenagers and children who eagerly see the welding arc with their naked eyes. There are radiation hazards from ultra violet rays which irritate the skin, eye irritation. Welding arc light of such intensity could damage the eyes. (Orig./A.B.)

  12. Relative consequences of transporting hazardous materials

    International Nuclear Information System (INIS)

    Fullwood, R.R.; Rhyne, W.R.; Simmons, J.A.; Reese, R.T.

    1980-01-01

    The objective of this paper is to discuss methods under study at Transportation Technology Center to develop a perspective on how technical measures of hazard and risk relate to perception of hazards, harm, and risks associated with transporting hazardous materials. This paper is concerned with two major aspects of the relative hazards problem. The first aspect is the analyses of the possible effects associated with exposure to hazardous materials as contained in the following two parts: outlines of possible problems and controversies that could be encountered in the evaluation and comparisons of hazards and risks; and description of the various measures of harm (hazards or dangers) and subsequent comparisons thereof. The second aspect of this paper leads into a presentation of the results of a study which had the following purposes: to develop analytical techniques for a consistent treatment of the phenomenology of the consequences of a release of hazardous materials; to reduce the number of variables in the consequence analyses by development of transportation accident scenarios which have the same meteorological conditions, demography, traffic and population densities, geographical features and other appropriate conditions and to develop consistent methods for presenting the results of studies and analyses that describe the phenomenology and compare hazards. The results of the study are intended to provide a bridge between analytical certainty and perception of the hazards involved. Understanding the differences in perception of hazards resulting from transport of various hazardous materials is fraught with difficulties in isolating the qualitative and quantitative features of the problem. By relating the quantitative impacts of material hazards under identical conditions, it is hoped that the perceived differences in material hazards can be delineated and evaluated

  13. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  14. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Science.gov (United States)

    2010-04-01

    ... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Provisions § 123.6 Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan. (a) Hazard... fish or fishery product being processed in the absence of those controls. (b) The HACCP plan. Every...

  15. Resilience to Interacting multi-natural hazards

    Science.gov (United States)

    Zhuo, Lu; Han, Dawei

    2016-04-01

    Conventional analyses of hazard assessment tend to focus on individual hazards in isolation. However, many parts of the world are usually affected by multiple natural hazards with the potential for interacting relationships. The understanding of such interactions, their impacts and the related uncertainties, are an important and topical area of research. Interacting multi-hazards may appear in different forms, including 1) CASCADING HAZARDS (a primary hazard triggering one or more secondary hazards such as an earthquake triggering landslides which may block river channels with dammed lakes and ensued floods), 2) CONCURRING HAZARDS (two or more primary hazards coinciding to trigger or exacerbate secondary hazards such as an earthquake and a rainfall event simultaneously creating landslides), and 3) ALTERING HAZARDS (a primary hazard increasing the probability of a secondary hazard occurring such as major earthquakes disturbing soil/rock materials by violent ground shaking which alter the regional patterns of landslides and debris flows in the subsequent years to come). All three types of interacting multi-hazards may occur in natural hazard prone regions, so it is important that research on hazard resilience should cover all of them. In the past decades, great progresses have been made in tackling disaster risk around the world. However, there are still many challenging issues to be solved, and the disasters over recent years have clearly demonstrated the inadequate resilience in our highly interconnected and interdependent systems. We have identified the following weaknesses and knowledge gaps in the current disaster risk management: 1) although our understanding in individual hazards has been greatly improved, there is a lack of sound knowledge about mechanisms and processes of interacting multi-hazards. Therefore, the resultant multi-hazard risk is often significantly underestimated with severe consequences. It is also poorly understood about the spatial and

  16. Hazardous materials and waste management a guide for the professional hazards manager

    CERN Document Server

    Cheremisinoff, Nicholas P

    1995-01-01

    The management of hazardous materials and industrial wastes is complex, requiring a high degree of knowledge over very broad technical and legal subject areas. Hazardous wastes and materials are diverse, with compositions and properties that not only vary significantly between industries, but within industries, and indeed within the complexity of single facilities. Proper management not only requires an understanding of the numerous and complex regulations governing hazardous materials and waste streams, but an understanding and knowledge of the treatment, post-treatment, and waste minimizatio

  17. Hazards in the chemical laboratory

    International Nuclear Information System (INIS)

    Bretherick, L.

    1987-01-01

    The contents of this book are: Preface; Introduction; Health and Safety at Work Act 1974; Safety Planning and Management; Fire Protection; Reactive Chemical Hazards; Chemical Hazards and Toxicology; Health Care and First Aid; Hazardous Chemicals; Precautions against Radiations; and An American View

  18. St. Louis area earthquake hazards mapping project; seismic and liquefaction hazard maps

    Science.gov (United States)

    Cramer, Chris H.; Bauer, Robert A.; Chung, Jae-won; Rogers, David; Pierce, Larry; Voigt, Vicki; Mitchell, Brad; Gaunt, David; Williams, Robert; Hoffman, David; Hempen, Gregory L.; Steckel, Phyllis; Boyd, Oliver; Watkins, Connor M.; Tucker, Kathleen; McCallister, Natasha

    2016-01-01

    We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near‐surface shear‐wave velocity model in a 1D equivalent‐linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses a uniform firm‐rock‐site condition, the new probabilistic seismic‐hazard estimates document much more variability. Hazard levels for upland sites (consisting of bedrock and weathered bedrock overlain by loess‐covered till and drift deposits), show up to twice the ground‐motion values for peak ground acceleration (PGA), and similar ground‐motion values for 1.0 s spectral acceleration (SA). Probabilistic ground‐motion levels for lowland alluvial floodplain sites (generally the 20–40‐m‐thick modern Mississippi and Missouri River floodplain deposits overlying bedrock) exhibit up to twice the ground‐motion levels for PGA, and up to three times the ground‐motion levels for 1.0 s SA. Liquefaction probability curves were developed from available standard penetration test data assuming typical lowland and upland water table levels. A simplified liquefaction hazard map was created from the 5%‐in‐50‐year probabilistic ground‐shaking model. The liquefaction hazard ranges from low (60% of area expected to liquefy) in the lowlands. Because many transportation routes, power and gas transmission lines, and population centers exist in or on the highly susceptible lowland alluvium, these areas in the St. Louis region are at significant potential risk from seismically induced liquefaction and associated

  19. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    This article is an overview of efforts at INEL to reduce the generation of hazardous wastes through the elimination of hazardous solvents. To aid in their efforts, a number of databases have been developed and will become a part of an Integrated Solvent Substitution Data System. This latter data system will be accessible through Internet

  20. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual

    International Nuclear Information System (INIS)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs

  1. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

  2. Hazardous solvent substitution

    International Nuclear Information System (INIS)

    Twitchell, K.E.

    1995-01-01

    Eliminating hazardous solvents is good for the environment, worker safety, and the bottom line. However, even though we are motivated to find replacements, the big question is 'What can we use as replacements for hazardous solvents?'You, too, can find replacements for your hazardous solvents. All you have to do is search for them. Search through the vendor literature of hundreds of companies with thousands of products. Ponder the associated material safety data sheets, assuming of course that you can obtain them and, having obtained them, that you can read them. You will want to search the trade magazines and other sources for product reviews. You will want to talk to users about how well the product actually works. You may also want to check US Environmental Protection Agency (EPA) and other government reports for toxicity and other safety information. And, of course, you will want to compare the product's constituent chemicals with the many hazardous constituency lists to ensure the safe and legal use of the product in your workplace

  3. Radon and its hazards

    International Nuclear Information System (INIS)

    Chang Guilan

    2002-01-01

    The author describes basic physical and chemical properties of radon and the emanation, introduces methods of radon measurement, expounds the hazards of non-mine radon accumulation to the health of human being and the protection, as well as the history how the human being recognizes the hazards of radon through the specific data and examples, and finally proposes protecting measures to avoid the hazards of radon to the health of human being, and to do ecologic evaluation of environments

  4. Industrial hazard and safety handbook

    CERN Document Server

    King, Ralph W

    1979-01-01

    Industrial Hazard and Safety Handbook (Revised Impression) describes and exposes the main hazards found in industry, with emphasis on how these hazards arise, are ignored, are identified, are eliminated, or are controlled. These hazard conditions can be due to human stresses (for example, insomnia), unsatisfactory working environments, as well as secret industrial processes. The book reviews the cost of accidents, human factors, inspections, insurance, legal aspects, planning for major emergencies, organization, and safety measures. The text discusses regulations, codes of practice, site layou

  5. Global Landslide Hazard Distribution

    Data.gov (United States)

    National Aeronautics and Space Administration — Global Landslide Hazard Distribution is a 2.5 minute grid of global landslide and snow avalanche hazards based upon work of the Norwegian Geotechnical Institute...

  6. Natural Hazards, Second Edition

    Science.gov (United States)

    Rouhban, Badaoui

    Natural disaster loss is on the rise, and the vulnerability of the human and physical environment to the violent forces of nature is increasing. In many parts of the world, disasters caused by natural hazards such as earthquakes, floods, landslides, drought, wildfires, intense windstorms, tsunami, and volcanic eruptions have caused the loss of human lives, injury, homelessness, and the destruction of economic and social infrastructure. Over the last few years, there has been an increase in the occurrence, severity, and intensity of disasters, culminating with the devastating tsunami of 26 December 2004 in South East Asia.Natural hazards are often unexpected or uncontrollable natural events of varying magnitude. Understanding their mechanisms and assessing their distribution in time and space are necessary for refining risk mitigation measures. This second edition of Natural Hazards, (following a first edition published in 1991 by Cambridge University Press), written by Edward Bryant, associate dean of science at Wollongong University, Australia, grapples with this crucial issue, aspects of hazard prediction, and other issues. The book presents a comprehensive analysis of different categories of hazards of climatic and geological origin.

  7. Carbon Structure Hazard Control

    Science.gov (United States)

    Yoder, Tommy; Greene, Ben; Porter, Alan

    2015-01-01

    Carbon composite structures are widely used in virtually all advanced technology industries for a multitude of applications. The high strength-to-weight ratio and resistance to aggressive service environments make them highly desirable. Automotive, aerospace, and petroleum industries extensively use, and will continue to use, this enabling technology. As a result of this broad range of use, field and test personnel are increasingly exposed to hazards associated with these structures. No single published document exists to address the hazards and make recommendations for the hazard controls required for the different exposure possibilities from damaged structures including airborne fibers, fly, and dust. The potential for personnel exposure varies depending on the application or manipulation of the structure. The effect of exposure to carbon hazards is not limited to personnel, protection of electronics and mechanical equipment must be considered as well. The various exposure opportunities defined in this document include pre-manufacturing fly and dust, the cured structure, manufacturing/machining, post-event cleanup, and post-event test and/or evaluation. Hazard control is defined as it is applicable or applied for the specific exposure opportunity. The carbon exposure hazard includes fly, dust, fiber (cured/uncured), and matrix vapor/thermal decomposition products. By using the recommendations in this document, a high level of confidence can be assured for the protection of personnel and equipment.

  8. 75 FR 73972 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-11-30

    ... Waste Management System; Identification and Listing of Hazardous Waste; Removal of Direct Final.... Lists of Subjects in 40 CFR Part 261 Environmental Protection, Hazardous waste, Recycling, Reporting and... follows: PART 261--IDENTIFICATION AND LISTING OF HAZARDOUS WASTE 0 1. The authority citation for part 261...

  9. Hazardous waste: cleanup and prevention

    Science.gov (United States)

    Vandas, Stephen; Cronin, Nancy L.; Farrar, Frank; Serrano, Guillermo Eliezer Ávila; Yajimovich, Oscar Efraín González; Muñoz, Aurora R.; Rivera, María del C.

    1996-01-01

    Our lifestyles are supported by complex Industrial activities that produce many different chemicals and chemical wastes. The Industries that produce our clothing, cars, medicines, paper, food, fuels, steel, plastics, and electric components use and discard thousands of chemicals every year. At home we may use lawn chemicals, solvents, disinfectants, cleaners, and auto products to Improve our quality of life. A chemical that presents a threat or unreasonable risk to people or the environment Is a hazardous material. When a hazardous material can no longer be used, It becomes a hazardous waste. Hazardous wastes come from a variety of sources, from both present and past activities. Impacts to human health and the environment can result from Improper handling and disposal of hazardous waste.

  10. SRL process hazards review manual

    International Nuclear Information System (INIS)

    1980-08-01

    The principal objective of the Process Hazards Management Program is to provide a regular, systematic review of each process at the Savannah River Laboratory (SRL) to eliminate injuries and to minimize property damage resulting from process hazards of catastrophic potential. Management effort is directed, through the Du Pont Safety Program, toward those controls and practices that ensure this objective. The Process Hazards Management Program provides an additional dimension to further ensure the health and safety of employees and the public. Du Pont has concluded that an organized approach is essential to obtain an effective and efficient process hazards review. The intent of this manual is to provide guidance in creating such an organized approach to performing process hazards reviews on a continuing basis

  11. Hydrothermal Liquefaction Treatment Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-12

    Hazard analyses were performed to evaluate the modular hydrothermal liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios received increased attention: •Scenarios involving a release of hazardous material or energy, controls were identified in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were identified for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.

  12. Hazardous Chemicals

    Centers for Disease Control (CDC) Podcasts

    2007-04-10

    Chemicals are a part of our daily lives, providing many products and modern conveniences. With more than three decades of experience, The Centers for Disease Control and Prevention (CDC) has been in the forefront of efforts to protect and assess people's exposure to environmental and hazardous chemicals. This report provides information about hazardous chemicals and useful tips on how to protect you and your family from harmful exposure.  Created: 4/10/2007 by CDC National Center for Environmental Health.   Date Released: 4/13/2007.

  13. Transportation of Hazardous Evidentiary Material.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being

  14. Comparative Distributions of Hazard Modeling Analysis

    Directory of Open Access Journals (Sweden)

    Rana Abdul Wajid

    2006-07-01

    Full Text Available In this paper we present the comparison among the distributions used in hazard analysis. Simulation technique has been used to study the behavior of hazard distribution modules. The fundamentals of Hazard issues are discussed using failure criteria. We present the flexibility of the hazard modeling distribution that approaches to different distributions.

  15. 30 CFR 47.21 - Identifying hazardous chemicals.

    Science.gov (United States)

    2010-07-01

    ..., subpart Z, Toxic and Hazardous Substances. (4) American Conference of Governmental Industrial Hygienists... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Identifying hazardous chemicals. 47.21 Section... TRAINING HAZARD COMMUNICATION (HazCom) Hazard Determination § 47.21 Identifying hazardous chemicals. The...

  16. 76 FR 74709 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-12-01

    ..., including any sludge, spill residue, ash, emission control dust, or leachate, remains a hazardous waste... water for use as a cleaning agent. The slop oil waste is thereby diluted and hazardous constituents are... separation sludges that are listed as hazardous wastes due to benzene, benzo(a)pyrene, chrysene, lead and...

  17. 75 FR 78918 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Removal of...

    Science.gov (United States)

    2010-12-17

    ... and Community Right-to-Know Act FDA Food and Drug Administration HSWA Hazardous and Solid Waste...(f)), and hazardous substances (40 CFR 302.4) based solely upon the evidence that it is a potential... subsequently identified as hazardous wastes in Sec. 261.33(f) based solely on their potential for carcinogenic...

  18. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

  19. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    International Nuclear Information System (INIS)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included

  20. 14 CFR 437.29 - Hazard analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard analysis...

  1. The California Hazards Institute

    Science.gov (United States)

    Rundle, J. B.; Kellogg, L. H.; Turcotte, D. L.

    2006-12-01

    California's abundant resources are linked with its natural hazards. Earthquakes, landslides, wildfires, floods, tsunamis, volcanic eruptions, severe storms, fires, and droughts afflict the state regularly. These events have the potential to become great disasters, like the San Francisco earthquake and fire of 1906, that overwhelm the capacity of society to respond. At such times, the fabric of civic life is frayed, political leadership is tested, economic losses can dwarf available resources, and full recovery can take decades. A patchwork of Federal, state and local programs are in place to address individual hazards, but California lacks effective coordination to forecast, prevent, prepare for, mitigate, respond to, and recover from, the harmful effects of natural disasters. Moreover, we do not know enough about the frequency, size, time, or locations where they may strike, nor about how the natural environment and man-made structures would respond. As California's population grows and becomes more interdependent, even moderate events have the potential to trigger catastrophes. Natural hazards need not become natural disasters if they are addressed proactively and effectively, rather than reactively. The University of California, with 10 campuses distributed across the state, has world-class faculty and students engaged in research and education in all fields of direct relevance to hazards. For that reason, the UC can become a world leader in anticipating and managing natural hazards in order to prevent loss of life and property and degradation of environmental quality. The University of California, Office of the President, has therefore established a new system-wide Multicampus Research Project, the California Hazards Institute (CHI), as a mechanism to research innovative, effective solutions for California. The CHI will build on the rich intellectual capital and expertise of the Golden State to provide the best available science, knowledge and tools for

  2. Uncertainty on shallow landslide hazard assessment: from field data to hazard mapping

    Science.gov (United States)

    Trefolini, Emanuele; Tolo, Silvia; Patelli, Eduardo; Broggi, Matteo; Disperati, Leonardo; Le Tuan, Hai

    2015-04-01

    Shallow landsliding that involve Hillslope Deposits (HD), the surficial soil that cover the bedrock, is an important process of erosion, transport and deposition of sediment along hillslopes. Despite Shallow landslides generally mobilize relatively small volume of material, they represent the most hazardous factor in mountain regions due to their high velocity and the common absence of warning signs. Moreover, increasing urbanization and likely climate change make shallow landslides a source of widespread risk, therefore the interest of scientific community about this process grown in the last three decades. One of the main aims of research projects involved on this topic, is to perform robust shallow landslides hazard assessment for wide areas (regional assessment), in order to support sustainable spatial planning. Currently, three main methodologies may be implemented to assess regional shallow landslides hazard: expert evaluation, probabilistic (or data mining) methods and physical models based methods. The aim of this work is evaluate the uncertainty of shallow landslides hazard assessment based on physical models taking into account spatial variables such as: geotechnical and hydrogeologic parameters as well as hillslope morphometry. To achieve this goal a wide dataset of geotechnical properties (shear strength, permeability, depth and unit weight) of HD was gathered by integrating field survey, in situ and laboratory tests. This spatial database was collected from a study area of about 350 km2 including different bedrock lithotypes and geomorphological features. The uncertainty associated to each step of the hazard assessment process (e.g. field data collection, regionalization of site specific information and numerical modelling of hillslope stability) was carefully characterized. The most appropriate probability density function (PDF) was chosen for each numerical variable and we assessed the uncertainty propagation on HD strength parameters obtained by

  3. Occupational, social, and relationship hazards and psychological distress among low-income workers: implications of the 'inverse hazard law'.

    Science.gov (United States)

    Krieger, Nancy; Kaddour, Afamia; Koenen, Karestan; Kosheleva, Anna; Chen, Jarvis T; Waterman, Pamela D; Barbeau, Elizabeth M

    2011-03-01

    Few studies have simultaneously included exposure information on occupational hazards, relationship hazards (eg, intimate partner violence) and social hazards (eg, poverty and racial discrimination), especially among low-income multiracial/ethnic populations. A cross-sectional study (2003-2004) of 1202 workers employed at 14 worksites in the greater Boston area of Massachusetts investigated the independent and joint association of occupational, social and relationship hazards with psychological distress (K6 scale). Among this low-income cohort (45% were below the US poverty line), exposure to occupational, social and relationship hazards, per the 'inverse hazard law,' was high: 82% exposed to at least one occupational hazard, 79% to at least one social hazard, and 32% of men and 34% of women, respectively, stated they had been the perpetrator or target of intimate partner violence (IPV). Fully 15.4% had clinically significant psychological distress scores (K6 score ≥ 13). All three types of hazards, and also poverty, were independently associated with increased risk of psychological distress. In models including all three hazards, however, significant associations with psychological distress occurred among men and women for workplace abuse and high exposure to racial discrimination only; among men, for IPV; and among women, for high exposure to occupational hazards, poverty and smoking. Reckoning with the joint and embodied reality of diverse types of hazards involving how people live and work is necessary for understanding determinants of health status.

  4. Occupational health hazards in veterinary medicine: Zoonoses and other biological hazards

    Science.gov (United States)

    Epp, Tasha; Waldner, Cheryl

    2012-01-01

    This study describes biological hazards reported by veterinarians working in western Canada obtained through a self-administered mailed questionnaire. The potential occupational hazards included as biological hazards were zoonotic disease events, exposure to rabies, injuries due to bites and scratches, and allergies. Only 16.7% (136/812) of responding veterinarians reported the occurrence of a zoonosis or exposure to rabies in the past 5 years; the most commonly reported event was ringworm. Most bites and scratches (86%) described by 586 veterinarians involved encounters with cats; 81% of the resulting 163 infections were due to cat bites or scratches. Approximately 38% of participants reported developing an allergy during their career, with 41% of the affected individuals altering the way they practiced in response to their allergy. PMID:22851775

  5. There's Life in Hazard Trees

    Science.gov (United States)

    Mary Torsello; Toni McLellan

    The goals of hazard tree management programs are to maximize public safety and maintain a healthy sustainable tree resource. Although hazard tree management frequently targets removal of trees or parts of trees that attract wildlife, it can take into account a diversity of tree values. With just a little extra planning, hazard tree management can be highly beneficial...

  6. Staff technical position on investigations to identify fault displacement hazards and seismic hazards at a geologic repository

    International Nuclear Information System (INIS)

    McConnell, K.I.; Blackford, M.E.; Ibrahim, A.K.

    1992-07-01

    The purpose of this Staff Technical Position (STP) is to provide guidance to the US Department of Energy (DOE) on acceptable geologic repository investigations that can be used to identify fault displacement hazards and seismic hazards. ne staff considers that the approach this STP takes to investigations of fault displacement and seismic phenomena is appropriate for the collection of sufficient data for input to analyses of fault displacement hazards and seismic hazards, both for the preclosure and postclosure performance periods. However, detailed analyses of fault displacement and seismic data, such as those required for comprehensive assessments of repository performance, may identify the need for additional investigations. Section 2.0 of this STP describes the 10 CFR Part 60 requirements that form the basis for investigations to describe fault displacement hazards and seismic hazards at a geologic repository. Technical position statements and corresponding discussions are presented in Sections 3.0 and 4.0, respectively. Technical position topics in this STP are categorized thusly: (1) investigation considerations, (2) investigations for fault-displacement hazards, and (3) investigations for seismic hazards

  7. The Impact Hazard in the Context of Other Natural Hazards and Predictive Science

    Science.gov (United States)

    Chapman, C. R.

    1998-09-01

    The hazard due to impact of asteroids and comets has been recognized as analogous, in some ways, to other infrequent but consequential natural hazards (e.g. floods and earthquakes). Yet, until recently, astronomers and space agencies have felt no need to do what their colleagues and analogous agencies must do in order the assess, quantify, and communicate predictions to those with a practical interest in the predictions (e.g. public officials who must assess the threats, prepare for mitigation, etc.). Recent heightened public interest in the impact hazard, combined with increasing numbers of "near misses" (certain to increase as Spaceguard is implemented) requires that astronomers accept the responsibility to place their predictions and assessments in terms that may be appropriately considered. I will report on preliminary results of a multi-year GSA/NCAR study of "Prediction in the Earth Sciences: Use and Misuse in Policy Making" in which I have represented the impact hazard, while others have treated earthquakes, floods, weather, global climate change, nuclear waste disposal, acid rain, etc. The impact hazard presents an end-member example of a natural hazard, helping those dealing with more prosaic issues to learn from an extreme. On the other hand, I bring to the astronomical community some lessons long adopted in other cases: the need to understand the policy purposes of impact predictions, the need to assess potential societal impacts, the requirements to very carefully assess prediction uncertainties, considerations of potential public uses of the predictions, awareness of ethical considerations (e.g. conflicts of interest) that affect predictions and acceptance of predictions, awareness of appropriate means for publicly communicating predictions, and considerations of the international context (especially for a hazard that knows no national boundaries).

  8. 29 CFR 1917.25 - Fumigants, pesticides, insecticides and hazardous preservatives (see also § 1917.2 Hazardous...

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 7 2010-07-01 2010-07-01 false Fumigants, pesticides, insecticides and hazardous..., DEPARTMENT OF LABOR (CONTINUED) MARINE TERMINALS Marine Terminal Operations § 1917.25 Fumigants, pesticides... fumigants, pesticides or hazardous preservatives have created a hazardous atmosphere. These signs shall note...

  9. Hazardous Waste Manifest System

    Science.gov (United States)

    EPA’s hazardous waste manifest system is designed to track hazardous waste from the time it leaves the generator facility where it was produced, until it reaches the off-site waste management facility that will store, treat, or dispose of the waste.

  10. LAV@HAZARD: a web-GIS interface for volcanic hazard assessment

    Directory of Open Access Journals (Sweden)

    Giovanni Gallo

    2011-12-01

    Full Text Available Satellite data, radiative power of hot spots as measured with remote sensing, historical records, on site geological surveys, digital elevation model data, and simulation results together provide a massive data source to investigate the behavior of active volcanoes like Mount Etna (Sicily, Italy over recent times. The integration of these heterogeneous data into a coherent visualization framework is important for their practical exploitation. It is crucial to fill in the gap between experimental and numerical data, and the direct human perception of their meaning. Indeed, the people in charge of safety planning of an area need to be able to quickly assess hazards and other relevant issues even during critical situations. With this in mind, we developed LAV@HAZARD, a web-based geographic information system that provides an interface for the collection of all of the products coming from the LAVA project research activities. LAV@HAZARD is based on Google Maps application programming interface, a choice motivated by its ease of use and the user-friendly interactive environment it provides. In particular, the web structure consists of four modules for satellite applications (time-space evolution of hot spots, radiant flux and effusion rate, hazard map visualization, a database of ca. 30,000 lava-flow simulations, and real-time scenario forecasting by MAGFLOW on Compute Unified Device Architecture.

  11. Hazard Detection Software for Lunar Landing

    Science.gov (United States)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.

    2011-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of

  12. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  13. Preliminary hazards analysis -- vitrification process

    International Nuclear Information System (INIS)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility's construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment

  14. Preliminary hazards analysis -- vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  15. French people addressing environmental hazards (Eser 2013)

    International Nuclear Information System (INIS)

    Pautard, Eric; Moreau, Sylvain; Bottin, Anne; Kraszewski, Marlene; Fretin, David; Carriere, Celine; Bird, Geoffrey

    2015-07-01

    This publication presents the results of a survey, conducted towards the end of 2013, of 4,700 people resident in metropolitan France and its 'departements d'outre-mer' (DOM - overseas departments). The aim of the survey was to ascertain how French people perceive natural hazards (flooding, earthquakes, climate events, cyclones, etc.) and technological hazards (industrial and nuclear) to which they may be exposed. Questioned as to whether or not they felt exposed to one or several environmental hazards in their place of residence, French people's answers varied somewhat depending on the hazard invoked and place of residence. A strong feeling of exposure was expressed most frequently in the DOM. Respondents in both metropolitan France and DOM think that atmospheric pollution is a significant hazard (56%) but their opinions diverge partially where other hazards are concerned. Natural hazards (earthquakes and flooding) are cited most frequently overseas, whereas technological hazards (industrial and nuclear) are primarily metropolitan concerns. Climate change related hazards are seen as a threat by 56% of overseas respondents and by 42% in the mother country. In general, one-third of French people think that they are exposed to more than two environmental hazards. Unlike the younger members of the population, only one-quarter of respondents of 65 years of age or over felt exposed to three or more hazards. From municipal level databases providing information on exposure to flooding and technological and climate-related hazards, the survey indicates that a large majority of respondents living in these municipalities either do not feel at risk from existing hazards or feel that the risk is low (see figure below). It is in the area of climate-related hazards that awareness of threat seems to be highest in France, and more particularly in the DOM. In the face of the flooding that could affect them, overseas populations are more aware of this natural

  16. Seismic hazard assessment of Iran

    Directory of Open Access Journals (Sweden)

    M. Ghafory-Ashtiany

    1999-06-01

    Full Text Available The development of the new seismic hazard map of Iran is based on probabilistic seismic hazard computation using the historical earthquakes data, geology, tectonics, fault activity and seismic source models in Iran. These maps have been prepared to indicate the earthquake hazard of Iran in the form of iso-acceleration contour lines, and seismic hazard zoning, by using current probabilistic procedures. They display the probabilistic estimates of Peak Ground Acceleration (PGA for the return periods of 75 and 475 years. The maps have been divided into intervals of 0.25 degrees in both latitudinal and longitudinal directions to calculate the peak ground acceleration values at each grid point and draw the seismic hazard curves. The results presented in this study will provide the basis for the preparation of seismic risk maps, the estimation of earthquake insurance premiums, and the preliminary site evaluation of critical facilities.

  17. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  18. 75 FR 58346 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste

    Science.gov (United States)

    2010-09-24

    ... Waste Management System; Identification and Listing of Hazardous Waste AGENCY: Environmental Protection... Chemical Company-Texas Operations (Eastman) to exclude (or delist) certain solid wastes generated by its Longview, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment...

  19. Integrating Volcanic Hazard Data in a Systematic Approach to Develop Volcanic Hazard Maps in the Lesser Antilles

    Directory of Open Access Journals (Sweden)

    Jan M. Lindsay

    2018-04-01

    Full Text Available We report on the process of generating the first suite of integrated volcanic hazard zonation maps for the islands of Dominica, Grenada (including Kick ‘em Jenny and Ronde/Caille, Nevis, Saba, St. Eustatius, St. Kitts, Saint Lucia, and St Vincent in the Lesser Antilles. We developed a systematic approach that accommodated the range in prior knowledge of the volcanoes in the region. A first-order hazard assessment for each island was used to develop one or more scenario(s of likely future activity, for which scenario-based hazard maps were generated. For the most-likely scenario on each island we also produced a poster-sized integrated volcanic hazard zonation map, which combined the individual hazardous phenomena depicted in the scenario-based hazard maps into integrated hazard zones. We document the philosophy behind the generation of this suite of maps, and the method by which hazard information was combined to create integrated hazard zonation maps, and illustrate our approach through a case study of St. Vincent. We also outline some of the challenges we faced using this approach, and the lessons we have learned by observing how stakeholders have interacted with the maps over the past ~10 years. Based on our experience, we recommend that future map makers involve stakeholders in the entire map generation process, especially when making design choices such as type of base map, use of colour and gradational boundaries, and indeed what to depict on the map. We also recommend careful consideration of how to evaluate and depict offshore hazard of island volcanoes, and recommend computer-assisted modelling of all phenomena to generate more realistic hazard footprints. Finally, although our systematic approach to integrating individual hazard data into zones generally worked well, we suggest that a better approach might be to treat the integration of hazards on a case-by-case basis to ensure the final product meets map users' needs. We hope that

  20. Using hazard maps to identify and eliminate workplace hazards: a union-led health and safety training program.

    Science.gov (United States)

    Anderson, Joe; Collins, Michele; Devlin, John; Renner, Paul

    2012-01-01

    The Institute for Sustainable Work and Environment and the Utility Workers Union of America worked with a professional evaluator to design, implement, and evaluate the results of a union-led system of safety-based hazard identification program that trained workers to use hazard maps to identify workplace hazards and target them for elimination. The evaluation documented program implementation and impact using data collected from both qualitative interviews and an on-line survey from worker trainers, plant managers, and health and safety staff. Managers and workers reported that not only were many dangerous hazards eliminated as a result of hazard mapping, some of which were long-standing, difficult-to-resolve issues, but the evaluation also documented improved communication between union members and management that both workers and managers agreed resulted in better, more sustainable hazard elimination.

  1. 16 CFR 1500.5 - Hazardous mixtures.

    Science.gov (United States)

    2010-01-01

    ..., flammable, sensitizing, or pressure-generating properties of a substance from what is known about its... Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION FEDERAL HAZARDOUS SUBSTANCES ACT REGULATIONS HAZARDOUS SUBSTANCES AND ARTICLES; ADMINISTRATION AND ENFORCEMENT REGULATIONS § 1500.5 Hazardous mixtures...

  2. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  3. A situational analysis of priority disaster hazards in Uganda: findings from a hazard and vulnerability analysis.

    Science.gov (United States)

    Mayega, R W; Wafula, M R; Musenero, M; Omale, A; Kiguli, J; Orach, G C; Kabagambe, G; Bazeyo, W

    2013-06-01

    Most countries in sub-Saharan Africa have not conducted a disaster risk analysis. Hazards and vulnerability analyses provide vital information that can be used for development of risk reduction and disaster response plans. The purpose of this study was to rank disaster hazards for Uganda, as a basis for identifying the priority hazards to guide disaster management planning. The study as conducted in Uganda, as part of a multi-country assessment. A hazard, vulnerability and capacity analysis was conducted in a focus group discussion of 7 experts representing key stakeholder agencies in disaster management in Uganda. A simple ranking method was used to rank the probability of occurance of 11 top hazards, their potential impact and the level vulnerability of people and infrastructure. In-terms of likelihood of occurance and potential impact, the top ranked disaster hazards in Uganda are: 1) Epidemics of infectious diseases, 2) Drought/famine, 3) Conflict and environmental degradation in that order. In terms of vulnerability, the top priority hazards to which people and infrastructure were vulnerable were: 1) Conflicts, 2) Epidemics, 3) Drought/famine and, 4) Environmental degradation in that order. Poverty, gender, lack of information, and lack of resilience measures were some of the factors promoting vulnerability to disasters. As Uganda develops a disaster risk reduction and response plan, it ought to prioritize epidemics of infectious diseases, drought/famine, conflics and environmental degradation as the priority disaster hazards.

  4. An identification procedure for foodborne microbial hazards.

    NARCIS (Netherlands)

    Gerwen, van S.J.C.; Wit, de J.C.; Notermans, S.; Zwietering, M.H.

    1997-01-01

    A stepwise and interactive identification procedure for foodborne microbial hazards has been developed in which use is made of several levels of detail ranging from rough hazard identification to comprehensive hazard identification. This approach allows one to tackle the most obvious hazards first,

  5. Avoiding the Hazards of Hazardous Waste.

    Science.gov (United States)

    Hiller, Richard

    1996-01-01

    Under a 1980 law, colleges and universities can be liable for cleanup of hazardous waste on properties, in companies, and related to stocks they invest in or are given. College planners should establish clear policy concerning gifts, investigate gifts, distance university from business purposes, sell real estate gifts quickly, consult a risk…

  6. Toxic hazards of underground excavation

    International Nuclear Information System (INIS)

    Smith, R.; Chitnis, V.; Damasian, M.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards

  7. Toxic hazards of underground excavation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  8. Incidents with hazardous radiation sources

    International Nuclear Information System (INIS)

    Schoenhacker, Stefan

    2016-01-01

    Incidents with hazardous radiation sources can occur in any country, even those without nuclear facilities. Preparedness for such incidents is supposed to fulfill globally agreed minimum standards. Incidents are categorized in incidents with licensed handling of radiation sources as for material testing, transport accidents of hazardous radiation sources, incidents with radionuclide batteries, incidents with satellites containing radioactive inventory, incidents wit not licensed handling of illegally acquired hazardous radiation sources. The emergency planning in Austria includes a differentiation according to the consequences: incidents with release of radioactive materials resulting in restricted contamination, incidents with release of radioactive materials resulting in local contamination, and incidents with the hazard of e@nhanced exposure due to the radiation source.

  9. Success in transmitting hazard science

    Science.gov (United States)

    Price, J. G.; Garside, T.

    2010-12-01

    Money motivates mitigation. An example of success in communicating scientific information about hazards, coupled with information about available money, is the follow-up action by local governments to actually mitigate. The Nevada Hazard Mitigation Planning Committee helps local governments prepare competitive proposals for federal funds to reduce risks from natural hazards. Composed of volunteers with expertise in emergency management, building standards, and earthquake, flood, and wildfire hazards, the committee advises the Nevada Division of Emergency Management on (1) the content of the State’s hazard mitigation plan and (2) projects that have been proposed by local governments and state agencies for funding from various post- and pre-disaster hazard mitigation programs of the Federal Emergency Management Agency. Local governments must have FEMA-approved hazard mitigation plans in place before they can receive this funding. The committee has been meeting quarterly with elected and appointed county officials, at their offices, to encourage them to update their mitigation plans and apply for this funding. We have settled on a format that includes the county’s giving the committee an overview of its infrastructure, hazards, and preparedness. The committee explains the process for applying for mitigation grants and presents the latest information that we have about earthquake hazards, including locations of nearby active faults, historical seismicity, geodetic strain, loss-estimation modeling, scenarios, and documents about what to do before, during, and after an earthquake. Much of the county-specific information is available on the web. The presentations have been well received, in part because the committee makes the effort to go to their communities, and in part because the committee is helping them attract federal funds for local mitigation of not only earthquake hazards but also floods (including canal breaches) and wildfires, the other major concerns in

  10. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    K.L. Ashley

    2005-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  11. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  12. A Model for Generating Multi-hazard Scenarios

    Science.gov (United States)

    Lo Jacomo, A.; Han, D.; Champneys, A.

    2017-12-01

    Communities in mountain areas are often subject to risk from multiple hazards, such as earthquakes, landslides, and floods. Each hazard has its own different rate of onset, duration, and return period. Multiple hazards tend to complicate the combined risk due to their interactions. Prioritising interventions for minimising risk in this context is challenging. We developed a probabilistic multi-hazard model to help inform decision making in multi-hazard areas. The model is applied to a case study region in the Sichuan province in China, using information from satellite imagery and in-situ data. The model is not intended as a predictive model, but rather as a tool which takes stakeholder input and can be used to explore plausible hazard scenarios over time. By using a Monte Carlo framework and varrying uncertain parameters for each of the hazards, the model can be used to explore the effect of different mitigation interventions aimed at reducing the disaster risk within an uncertain hazard context.

  13. Reviewing and visualizing the interactions of natural hazards

    Science.gov (United States)

    Gill, Joel C.; Malamud, Bruce D.

    2014-12-01

    This paper presents a broad overview, characterization, and visualization of the interaction relationships between 21 natural hazards, drawn from six hazard groups (geophysical, hydrological, shallow Earth, atmospheric, biophysical, and space hazards). A synthesis is presented of the identified interaction relationships between these hazards, using an accessible visual format particularly suited to end users. Interactions considered are primarily those where a primary hazard triggers or increases the probability of secondary hazards occurring. In this paper we do the following: (i) identify, through a wide-ranging review of grey- and peer-review literature, 90 interactions; (ii) subdivide the interactions into three levels, based on how well we can characterize secondary hazards, given information about the primary hazard; (iii) determine the spatial overlap and temporal likelihood of the triggering relationships occurring; and (iv) examine the relationship between primary and secondary hazard intensities for each identified hazard interaction and group these into five possible categories. In this study we have synthesized, using accessible visualization techniques, large amounts of information drawn from many scientific disciplines. We outline the importance of constraining hazard interactions and reinforce the importance of a holistic (or multihazard) approach to natural hazard assessment. This approach allows those undertaking research into single hazards to place their work within the context of other hazards. It also communicates important aspects of hazard interactions, facilitating an effective analysis by those working on reducing and managing disaster risk within both the policy and practitioner communities.

  14. The Nature of Natural Hazards Communication (Invited)

    Science.gov (United States)

    Kontar, Y. Y.

    2013-12-01

    Some of the many issues of interest to natural hazards professionals include the analysis of proactive approaches to the governance of risk from natural hazards and approaches to broaden the scope of public policies related to the management of risks from natural hazards, as well as including emergency and environmental management, community development and spatial planning related to natural hazards. During the talk we will present results of scientific review, analysis and synthesis, which emphasize same new trends in communication of the natural hazards theories and practices within an up-to-the-minute context of new environmental and climate change issues, new technologies, and a new focus on resiliency. The presentation is divided into five sections that focus on natural hazards communication in terms of education, risk management, public discourse, engaging the public, theoretical perspectives, and new media. It includes results of case studies and best practices. It delves into natural hazards communication theories, including diffusion, argumentation, and constructivism, to name a few. The presentation will provide information about: (1) A manual of natural hazards communication for scientists, policymakers, and media; (2) An up-to-the-minute context of environmental hazards, new technologies & political landscape; (3) A work by natural hazards scientists for geoscientists working with social scientists and communication principles; (4) A work underpinned by key natural hazards communication theories and interspersed with pragmatic solutions; (5) A work that crosses traditional natural hazards boundaries: international, interdisciplinary, theoretical/applied. We will further explore how spatial planning can contribute to risk governance by influencing the occupation of natural hazard-prone areas, and review the central role of emergency management in risk policy. The goal of this presentation is to contribute to the augmentation of the conceptual framework

  15. Probabilistic seismic hazard assessment. Gentilly 2

    International Nuclear Information System (INIS)

    1996-03-01

    Results of this probabilistic seismic hazard assessment were determined using a suite of conservative assumptions. The intent of this study was to perform a limited hazard assessment that incorporated a range of technically defensible input parameters. To best achieve this goal, input selected for the hazard assessment tended to be conservative with respect to selection of attenuation modes, and seismicity parameters. Seismic hazard estimates at Gentilly 2 were most affected by selection of the attenuation model. Alternative definitions of seismic source zones had a relatively small impact on seismic hazard. A St. Lawrence Rift model including a maximum magnitude of 7.2 m b in the zone containing the site had little effect on the hazard estimate relative to other seismic source zonation models. Mean annual probabilities of exceeding the design peak ground acceleration, and the design response spectrum for the Gentilly 2 site were computed to lie in the range of 0.001 to 0.0001. This hazard result falls well within the range determined to be acceptable for nuclear reactor sites located throughout the eastern United States. (author) 34 refs., 6 tabs., 28 figs

  16. Report 6: Guidance document. Man-made hazards and Accidental Aircraft Crash hazards modelling and implementation in extended PSA

    International Nuclear Information System (INIS)

    Kahia, S.; Brinkman, H.; Bareith, A.; Siklossy, T.; Vinot, T.; Mateescu, T.; Espargilliere, J.; Burgazzi, L.; Ivanov, I.; Bogdanov, D.; Groudev, P.; Ostapchuk, S.; Zhabin, O.; Stojka, T.; Alzbutas, R.; Kumar, M.; Nitoi, M.; Farcasiu, M.; Borysiewicz, M.; Kowal, K.; Potempski, S.

    2016-01-01

    The goal of this report is to provide guidance on practices to model man-made hazards (mainly external fires and explosions) and accidental aircraft crash hazards and implement them in extended Level 1 PSA. This report is a joint deliverable of work package 21 (WP21) and work package 22 (WP22). The general objective of WP21 is to provide guidance on all of the individual hazards selected at the first ASAMPSA-E End Users Workshop (May 2014, Uppsala, Sweden). The objective of WP22 is to provide the solutions for purposes of different parts of man-made hazards Level 1 PSA fulfilment. This guidance is focusing on man-made hazards, namely: external fires and explosions, and accidental aircraft crash hazards. Guidance developed refers to existing guidance whenever possible. The initial part of guidance (WP21 part) reflects current practices to assess the frequencies for each type of hazards or combination of hazards (including correlated hazards) as initiating event for PSAs. The sources and quality of hazard data, the elements of hazard assessment methodologies and relevant examples are discussed. Classification and criteria to properly assess hazard combinations as well as examples and methods for assessment of these combinations are included in this guidance. In appendixes additional material is presented with the examples of practical approaches to aircraft crash and man-made hazard. The following issues are addressed: 1) Hazard assessment methodologies, including issues related to hazard combinations. 2) Modelling equipment of safety related SSC, 3) HRA, 4) Emergency response, 5) Multi-unit issues. Recommendations and also limitations, gaps identified in the existing methodologies and a list of open issues are included. At all stages of this guidance and especially from an industrial end-user perspective, one must keep in mind that the development of man-made hazards probabilistic analysis must be conditioned to the ability to ultimately obtain a representative risk

  17. Canister storage building hazard analysis report

    International Nuclear Information System (INIS)

    POWERS, T.B.

    1999-01-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''

  18. LAV@HAZARD: a Web-GIS Framework for Real-Time Forecasting of Lava Flow Hazards

    Science.gov (United States)

    Del Negro, C.; Bilotta, G.; Cappello, A.; Ganci, G.; Herault, A.

    2014-12-01

    Crucial to lava flow hazard assessment is the development of tools for real-time prediction of flow paths, flow advance rates, and final flow lengths. Accurate prediction of flow paths and advance rates requires not only rapid assessment of eruption conditions (especially effusion rate) but also improved models of lava flow emplacement. Here we present the LAV@HAZARD web-GIS framework, which combines spaceborne remote sensing techniques and numerical simulations for real-time forecasting of lava flow hazards. By using satellite-derived discharge rates to drive a lava flow emplacement model, LAV@HAZARD allows timely definition of parameters and maps essential for hazard assessment, including the propagation time of lava flows and the maximum run-out distance. We take advantage of the flexibility of the HOTSAT thermal monitoring system to process satellite images coming from sensors with different spatial, temporal and spectral resolutions. HOTSAT was designed to ingest infrared satellite data acquired by the MODIS and SEVIRI sensors to output hot spot location, lava thermal flux and discharge rate. We use LAV@HAZARD to merge this output with the MAGFLOW physics-based model to simulate lava flow paths and to update, in a timely manner, flow simulations. Thus, any significant changes in lava discharge rate are included in the predictions. A significant benefit in terms of computational speed was obtained thanks to the parallel implementation of MAGFLOW on graphic processing units (GPUs). All this useful information has been gathered into the LAV@HAZARD platform which, due to the high degree of interactivity, allows generation of easily readable maps and a fast way to explore alternative scenarios. We will describe and demonstrate the operation of this framework using a variety of case studies pertaining to Mt Etna, Sicily. Although this study was conducted on Mt Etna, the approach used is designed to be applicable to other volcanic areas around the world.

  19. Portable sensor for hazardous waste

    International Nuclear Information System (INIS)

    Piper, L.G.

    1994-01-01

    Objective was to develop a field-portable monitor for sensitive hazardous waste detection using active nitrogen energy transfer (ANET) excitation of atomic and molecular fluorescence (active nitrogen is made in a dielectric-barrier discharge in nitrogen). It should provide rapid field screening of hazardous waste sites to map areas of greatest contamination. Results indicate that ANET is very sensitive for monitoring heavy metals (Hg, Se) and hydrocarbons; furthermore, chlorinated hydrocarbons can be distinguished from nonchlorinated ones. Sensitivity is at ppB levels for sampling in air. ANET appears ideal for on-line monitoring of toxic heavy metal levels at building sites, hazardous waste land fills, in combustor flues, and of chlorinated hydrocarbon levels at building sites and hazardous waste dumps

  20. Portable sensor for hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Piper, L.G.; Fraser, M.E.; Davis, S.J. [Physical Sciences Inc., Andover, MA (United States)

    1995-10-01

    We are beginning the second phase of a three and a half year program designed to develop a portable monitor for sensitive hazardous waste detection. The ultimate goal of the program is to develop our concept to the prototype instrument level. Our monitor will be a compact, portable instrument that will allow real-time, in situ, monitoring of hazardous wastes. This instrument will be able to provide the means for rapid field screening of hazardous waste sites to map the areas of greatest contamination. Remediation efforts can then focus on these areas. Further, our instrument can show whether cleanup technologies are successful at reducing hazardous materials concentrations below regulated levels, and will provide feedback to allow changes in remediation operations, if necessary, to enhance their efficacy.

  1. 46 CFR 151.03-30 - Hazardous material.

    Science.gov (United States)

    2010-10-01

    ... hazardous material means a liquid material or substance that is— (a) Flammable or combustible; (b) Designated a hazardous substance under section 311(b) of the Federal Water Pollution Control Act (33 U.S.C... Agency designates hazardous substances in 40 CFR Table 116.4A. The Coast Guard designates hazardous...

  2. FEMA DFIRM Flood Hazard Areas

    Data.gov (United States)

    Minnesota Department of Natural Resources — FEMA flood hazard delineations are used by the Federal Emergency Management Agency (FEMA) to designate the Special Flood Hazard Area (SFHA) and for insurance rating...

  3. Hazardous Waste: Learn the Basics of Hazardous Waste

    Science.gov (United States)

    ... Need More Information on Hazardous Waste? The RCRA Orientation Manual provides introductory information on the solid and ... and Security Notice Connect. Data.gov Inspector General Jobs Newsroom Open Government Regulations.gov Subscribe USA.gov ...

  4. 14 CFR 437.55 - Hazard analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must... safety of property resulting from each permitted flight. This hazard analysis must— (1) Identify and...

  5. Preliminary Hazard Classification for the 105-B Reactor

    International Nuclear Information System (INIS)

    Kerr, N.R.

    1997-08-01

    This document summarizes the inventories of radioactive and hazardous materials present within the 105-B Reactor and uses the inventory information to determine the preliminary hazard classification for the surveillance and maintenance activities of the facility. The result of this effort was the preliminary hazard classification for the 105-B Building surveillance and maintenance activities. The preliminary hazard classification was determined to be Nuclear Category 3. Additional hazard and accident analysis will be documented in a separate report to define the hazard controls and final hazard classification

  6. Hazardous waste management in research laboratories

    International Nuclear Information System (INIS)

    Sundstrom, G.

    1989-01-01

    Hazardous waste management in research laboratories benefits from a fundamentally different approach to the hazardous waste determination from industry's. This paper introduces new, statue-based criteria for identifying hazardous wastes (such as radiological mixed wastes and waste oils) and links them to a forward-looking compliance of laboratories, the overall system integrates hazardous waste management activities with other environmental and hazard communication initiatives. It is generalizable to other waste generators, including industry. Although only the waste identification and classification aspects of the system are outlined in detail here, four other components are defined or supported, namely: routine and contingency practices; waste treatment/disposal option definition and selection; waste minimization, recycling, reuse, and substitution opportunities; and key interfaces with other systems, including pollution prevention

  7. BEHAVIORAL HAZARD IN HEALTH INSURANCE*

    Science.gov (United States)

    Baicker, Katherine; Mullainathan, Sendhil; Schwartzstein, Joshua

    2015-01-01

    A fundamental implication of standard moral hazard models is overuse of low-value medical care because copays are lower than costs. In these models, the demand curve alone can be used to make welfare statements, a fact relied on by much empirical work. There is ample evidence, though, that people misuse care for a different reason: mistakes, or “behavioral hazard.” Much high-value care is underused even when patient costs are low, and some useless care is bought even when patients face the full cost. In the presence of behavioral hazard, welfare calculations using only the demand curve can be off by orders of magnitude or even be the wrong sign. We derive optimal copay formulas that incorporate both moral and behavioral hazard, providing a theoretical foundation for value-based insurance design and a way to interpret behavioral “nudges.” Once behavioral hazard is taken into account, health insurance can do more than just provide financial protection—it can also improve health care efficiency. PMID:23930294

  8. Hazard avoidance via descent images for safe landing

    Science.gov (United States)

    Yan, Ruicheng; Cao, Zhiguo; Zhu, Lei; Fang, Zhiwen

    2013-10-01

    In planetary or lunar landing missions, hazard avoidance is critical for landing safety. Therefore, it is very important to correctly detect hazards and effectively find a safe landing area during the last stage of descent. In this paper, we propose a passive sensing based HDA (hazard detection and avoidance) approach via descent images to lower the landing risk. In hazard detection stage, a statistical probability model on the basis of the hazard similarity is adopted to evaluate the image and detect hazardous areas, so that a binary hazard image can be generated. Afterwards, a safety coefficient, which jointly utilized the proportion of hazards in the local region and the inside hazard distribution, is proposed to find potential regions with less hazards in the binary hazard image. By using the safety coefficient in a coarse-to-fine procedure and combining it with the local ISD (intensity standard deviation) measure, the safe landing area is determined. The algorithm is evaluated and verified with many simulated descent downward looking images rendered from lunar orbital satellite images.

  9. Hazardous waste management in the Pacific basin

    Energy Technology Data Exchange (ETDEWEB)

    Cirillo, R.R.; Chiu, S.; Chun, K.C.; Conzelmann, G. [Argonne National Lab., IL (United States); Carpenter, R.A.; Indriyanto, S.H. [East-West Center, Honolulu, HI (United States)

    1994-11-01

    Hazardous waste control activities in Asia and the Pacific have been reviewed. The review includes China (mainland, Hong Kong, and Taiwan), Indonesia, Korea, Malaysia, Papua New Guinea, the Philippines, Singapore, and Thailand. It covers the sources of hazardous waste, the government structure for dealing with hazardous waste, and current hazardous waste control activities in each country. In addition, the hazardous waste program activities of US government agencies, US private-sector organizations, and international organizations are reviewed. The objective of these reviews is to provide a comprehensive picture of the current hazardous waste problems and the waste management approaches being used to address them so that new program activities can be designed more efficiently.

  10. Travelers' Health: Animal-Associated Hazards

    Science.gov (United States)

    ... Chapter 2 - Safety & Security Chapter 2 - Environmental Hazards Animal-Associated Hazards Heather Bair-Brake, Ryan M. Wallace, G. Gale Galland, Nina Marano HUMAN INTERACTION WITH ANIMALS: A RISK FACTOR FOR INJURY AND ILLNESS Animals, ...

  11. 21 CFR 120.7 - Hazard analysis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard analysis. 120.7 Section 120.7 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... hazards. The written hazard analysis shall consist of at least the following: (1) Identification of food...

  12. Sustainable System for Residual Hazards Management

    International Nuclear Information System (INIS)

    Kevin M. Kostelnik; James H. Clarke; Jerry L. Harbour

    2004-01-01

    Hazardous, radioactive and other toxic substances have routinely been generated and subsequently disposed of in the shallow subsurface throughout the world. Many of today's waste management techniques do not eliminate the problem, but rather only concentrate or contain the hazardous contaminants. Residual hazards result from the presence of hazardous and/or contaminated material that remains on-site following active operations or the completion of remedial actions. Residual hazards pose continued risk to humans and the environment and represent a significant and chronic problem that require continuous long-term management (i.e. >1000 years). To protect human health and safeguard the natural environment, a sustainable system is required for the proper management of residual hazards. A sustainable system for the management of residual hazards will require the integration of engineered, institutional and land-use controls to isolate residual contaminants and thus minimize the associated hazards. Engineered controls are physical modifications to the natural setting and ecosystem, including the site, facility, and/or the residual materials themselves, in order to reduce or eliminate the potential for exposure to contaminants of concern (COCs). Institutional controls are processes, instruments, and mechanisms designed to influence human behavior and activity. System failure can involve hazardous material escaping from the confinement because of system degradation (i.e., chronic or acute degradation) or by external intrusion of the biosphere into the contaminated material because of the loss of institutional control. An ongoing analysis of contemporary and historic sites suggests that the significance of the loss of institutional controls is a critical pathway because decisions made during the operations/remedial action phase, as well as decisions made throughout the residual hazards management period, are key to the long-term success of the prescribed system. In fact

  13. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  14. A new relative hazard index

    International Nuclear Information System (INIS)

    Smith, C.F.; Burnett, T.W.T; Kastenberg, W.E.

    1976-01-01

    Several indexes for the evaluation of relative radionuclide hazards have been previously developed. In this paper, a new relative hazard index is derived for use in the assessment of the future burden to mankind from the presence of radionuclides in the environment. Important features of this hazard index are that it takes into account multiple decay schemes, non-equilibrium conditions, and finite time periods. As an application of this hazard index, a comparison is made between thermal reactor radioactive waste and the uranium required as fuel with the following conclusions: (1) For short time intervals (d 234 U breaking the uranium decay chain. (3) For long time intervals of concern (d >= 500 000 years), the reactor waste and consumed uranium indexes are equal after a much shorter decay time (approximately 10 years.) (author)

  15. Application of the Coastal Hazard Wheel methodology for coastal multi-hazard assessment and management in the state of Djibouti

    Directory of Open Access Journals (Sweden)

    Lars Rosendahl Appelquist

    2014-01-01

    Full Text Available This paper presents the application of a new methodology for coastal multi-hazard assessment and management in a changing global climate on the state of Djibouti. The methodology termed the Coastal Hazard Wheel (CHW is developed for worldwide application and is based on a specially designed coastal classification system that incorporates the main static and dynamic parameters determining the characteristics of a coastal environment. The methodology provides information on the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding and can be used to support management decisions at local, regional and national level, in areas with limited access to geophysical data. The assessment for Djibouti applies a geographic information system (GIS to develop a range of national hazard maps along with relevant hazard statistics and is showcasing the procedure for applying the CHW methodology for national hazard assessments. The assessment shows that the coastline of Djibouti is characterized by extensive stretches with high or very high hazards of ecosystem disruption, mainly related to coral reefs and mangrove forests, while large sections along the coastlines of especially northern and southern Djibouti have high hazard levels for gradual inundation. The hazard of salt water intrusion is moderate along most of Djibouti’s coastline, although groundwater availability is considered to be very sensitive to human ground water extraction. High or very high erosion hazards are associated with Djibouti’s sedimentary plains, estuaries and river mouths, while very high flooding hazards are associated with the dry river mouths.

  16. Hazard Communication Guidelines for Compliance

    National Research Council Canada - National Science Library

    2000-01-01

    OSHA's Hazard Communication Standard (HCS) is based on a simple concept that employees have both a need and a right to know the hazards and identities of the chemicals they are exposed to when working...

  17. Hazards assessment for the INEL Landfill Complex

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment

  18. Hazards assessment for the INEL Landfill Complex

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment.

  19. New Developments in Natural Hazard Management

    Science.gov (United States)

    Stötter, J.; Meißl, G.; Weck-Hannemann, H.; Veulliet, E.

    2003-04-01

    Natural hazard processes such as avalanches, debris flows, rockfalls, slides, slow mass movements and floods inherently threaten areas used for settlements, economic activities or transport in mountain regions like the Alps. In the recent past an increasing demand for new settlement, traffic and other land use areas has arisen, resulting in intensified utilization of land known to be threatened by natural hazard processes. In the same time a decrease of individual responsibility can be observed, leading to a growing call for protection by public authorities. As public financial resources become more limited in these days and the outsourcing of areas of traditional government responsibility increases, there is an urgent need for new, more effective and efficient strategies in natural hazard management, involving all relevant actors. To meet these new demands in dealing with natural hazards, the "alpS - Centre of Natural Hazard Management" was founded in October 2002 in Innsbruck/Austria, supported by the Austrian Government. Central goal of the alpS - Centre is to elaborate the basis for future sustainable safety of the alpine lebensraum. The following objectives will be addressed by an interdisciplinary team: - Systematic compilation and evaluation of the present situation. - Developing a more efficient and effective way of natural hazard management. - Implementation of a paradigm change. - Development of strategies for natural hazard management under changed frame conditions in the future (global change). Strong emphasis is laid on research on the socio-economic aspects of Natural Hazard Management, which have been more or less neglected up to now.

  20. The perception of hazards

    International Nuclear Information System (INIS)

    Fritzsche, A.F.

    1986-01-01

    The fourth chapter deals with the profusion of factors determining the differing assessment of hazards by our society. Subjective factors influencing risk perception comprise, among others, general knowledge and recognition of a hazard; the degree of voluntariness when taking the risk and its influencibility; the problem of large scale accidents; immediate and delayed results. Next to the objective and the subjective risks, the individual and the social or collective risks are assessed differently. The author dicusses in detail recent investigations into and study methods for the determination of risk perception, while eliminating systematic trends from subjective perception since common assessments are shared by whole groups of individuals time and again which allow a better understanding of today's handling of hazards. (HSCH) [de

  1. Urban Heat Wave Hazard Assessment

    Science.gov (United States)

    Quattrochi, D. A.; Jedlovec, G.; Crane, D. L.; Meyer, P. J.; LaFontaine, F.

    2016-12-01

    Heat waves are one of the largest causes of environmentally-related deaths globally and are likely to become more numerous as a result of climate change. The intensification of heat waves by the urban heat island effect and elevated humidity, combined with urban demographics, are key elements leading to these disasters. Better warning of the potential hazards may help lower risks associated with heat waves. Moderate resolution thermal data from NASA satellites is used to derive high spatial resolution estimates of apparent temperature (heat index) over urban regions. These data, combined with demographic data, are used to produce a daily heat hazard/risk map for selected cities. MODIS data are used to derive daily composite maximum and minimum land surface temperature (LST) fields to represent the amplitude of the diurnal temperature cycle and identify extreme heat days. Compositing routines are used to generate representative daily maximum and minimum LSTs for the urban environment. The limited effect of relative humidity on the apparent temperature (typically 10-15%) allows for the use of modeled moisture fields to convert LST to apparent temperature without loss of spatial variability. The daily max/min apparent temperature fields are used to identify abnormally extreme heat days relative to climatological values in order to produce a heat wave hazard map. Reference to climatological values normalizes the hazard for a particular region (e.g., the impact of an extreme heat day). A heat wave hazard map has been produced for several case study periods and then computed on a quasi-operational basis during the summer of 2016 for Atlanta, GA, Chicago, IL, St. Louis, MO, and Huntsville, AL. A hazard does not become a risk until someone or something is exposed to that hazard at a level that might do harm. Demographic information is used to assess the urban risk associated with the heat wave hazard. Collectively, the heat wave hazard product can warn people in urban

  2. 76 FR 16534 - Hazardous Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion

    Science.gov (United States)

    2011-03-24

    ... Waste Management System Identification and Listing of Hazardous Waste; Final Exclusion AGENCY...) on a one-time basis from the lists of hazardous waste, a certain solid waste generated at its Mt... waste is [[Page 16535

  3. 75 FR 57686 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste Amendment

    Science.gov (United States)

    2010-09-22

    ... Waste Management System; Identification and Listing of Hazardous Waste Amendment AGENCY: Environmental...) 260.20 and 260.22 allows facilities to demonstrate that a specific waste from a particular generating facility should not be regulated as a hazardous waste. Based on waste-specific information provided by the...

  4. 76 FR 51324 - Hazardous Materials: Incorporating Rail Special Permits Into the Hazardous Materials Regulations

    Science.gov (United States)

    2011-08-18

    ... through use of electronic data interchange (EDI). The IVOHMA states ``differences in hazard communication... and on the possible effects EDI may have on distributing hazardous materials shipping paper... consider the use of EDI in other modes of transport in a future rulemaking. Petition No. P-1567 PHMSA...

  5. Occupational hazards to health of port workers.

    Science.gov (United States)

    Wang, Yukun; Zhan, Shuifen; Liu, Yan; Li, Yan

    2017-12-01

    The aim of this article is to reduce the risk of occupational hazards and improve safety conditions by enhancing hazard knowledge and identification as well as improving safety behavior for freight port enterprises. In the article, occupational hazards to health and their prevention measures of freight port enterprises have been summarized through a lot of occupational health evaluation work, experience and understanding. Workers of freight port enterprises confront an equally wide variety of chemical, physical and psychological hazards in production technology, production environment and the course of labor. Such health hazards have been identified, the risks evaluated, the dangers to health notified and effective prevention measures which should be put in place to ensure the health of the port workers summarized. There is still a long way to go for the freight port enterprises to prevent and control the occupational hazards. Except for occupational hazards and their prevention measures, other factors that influence the health of port workers should also be paid attention to, such as age, work history, gender, contraindication and even the occurrence and development rules of occupational hazards in current production conditions.

  6. Hazardous industrial waste management

    International Nuclear Information System (INIS)

    Quesada, Hilda; Salas, Juan Carlos; Romero, Luis Guillermo

    2007-01-01

    The appropriate managing of hazardous wastes is a problem little dealed in the wastes management in the country. A search of available information was made about the generation and handling to internal and external level of the hazardous wastes by national industries. It was worked with eleven companies of different types of industrial activities for, by means of a questionnaire, interviews and visits, to determine the degree of integral and suitable handling of the wastes that they generate. It was concluded that exist only some isolated reports on the generation of hazardous industrial wastes and handling. The total quantity of wastes generated in the country was impossible to establish. The companies consulted were deficient in all stages of the handling of their wastes: generation, accumulation and storage, transport, treatment and final disposition. The lack of knowledge of the legislation and of the appropriate managing of the wastes is showed as the principal cause of the poor management of the residues. The lack of state or private entities entrusted to give services of storage, transport, treatment and final disposition of hazardous wastes in the country was evident. (author) [es

  7. Plutonium Finishing Plant (PFP) hazards assessment

    International Nuclear Information System (INIS)

    Campbell, L.R.

    1998-01-01

    This report documents the hazards assessment for the Plutonium Finishing Plant (PFP) located on the US Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for the PFP. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  8. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  9. K Basin Hazard Analysis

    International Nuclear Information System (INIS)

    PECH, S.H.

    2000-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  10. Hazards assessment for the Waste Experimental Reduction Facility

    International Nuclear Information System (INIS)

    Calley, M.B.; Jones, J.L. Jr.

    1994-01-01

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high

  11. Hazards assessment for the Waste Experimental Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  12. Hazardous materials and toxic substances - Status report

    International Nuclear Information System (INIS)

    Sommerlad, R.E.

    1991-01-01

    The paper first forecasts what the status of hazardous wastes should be in the year 2028. The author believes all the problems will be solved: no new hazardous wastes will be being generated and the current hazardous waste problems will have been cleared up by common sense engineering. He then describes the current status of waste management of hazardous wastes, the regulatory situation, as well as combustion test programs

  13. Hazardous materials

    Science.gov (United States)

    ... substances that could harm human health or the environment. Hazardous means dangerous, so these materials must be ... M. is also a founding member of Hi-Ethics and subscribes to the principles of the Health ...

  14. Geological hazard monitoring system in Georgia

    Science.gov (United States)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  15. Hazardous drugs: new challenges, new opportunities

    Directory of Open Access Journals (Sweden)

    Silvia Valero García

    2016-03-01

    Full Text Available Occupational exposure to hazardous drugs can cause harmful effects on health professionals and several protective measures must be taken. Nevertheless, classification of hazardous drugs is not the same in all the published repertoires and the terminology is still confusing: hazardous drugs, biohazardous drugs or risky drugs are terms improperly described and can define very different drugs with a very different hazard profiles. In Spain, there is not an updated official list of hazardous drugs, and healthcare professionals must consider and follow other published lists. In our opinion, it is mandatory to do a consensus among these professionals, administration and labor union organizations in order to clarify some conflictive questions not only in healthcare settings but in investigational and academic scenarios too. These multidisciplinary groups should be involved also in teaching new and non-experienced personnel and in the knowledge reinforcement for the experienced ones

  16. Technologies to remediate hazardous waste sites

    International Nuclear Information System (INIS)

    Falco, J.W.

    1990-03-01

    Technologies to remediate hazardous wastes must be matched with the properties of the hazardous materials to be treated, the environment in which the wastes are imbedded, and the desired extent of remediation. Many promising technologies are being developed, including biological treatment, immobilization techniques, and in situ methods. Many of these new technologies are being applied to remediate sites. The management and disposal of hazardous wastes is changing because of federal and state legislation as well as public concern. Future waste management systems will emphasize the substitution of alternatives for the use of hazardous materials and process waste recycling. Onsite treatment will also become more frequently adopted. 5 refs., 7 figs

  17. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    International Nuclear Information System (INIS)

    Longwell, R.; Keifer, J.; Goodin, S.

    2001-01-01

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events

  18. Relative Hazard and Risk Measure Calculation Methodology

    International Nuclear Information System (INIS)

    Stenner, Robert D.; Strenge, Dennis L.; Elder, Matthew S.; Andrews, William B.; Walton, Terry L.

    2003-01-01

    The RHRM equations, as represented in methodology and code presented in this report, are primarily a collection of key factors normally used in risk assessment that are relevant to understanding the hazards and risks associated with projected mitigation, cleanup, and risk management activities. The RHRM code has broad application potential. For example, it can be used to compare one mitigation, cleanup, or risk management activity with another, instead of just comparing it to just the fixed baseline. If the appropriate source term data are available, it can be used in its non-ratio form to estimate absolute values of the associated controlling hazards and risks. These estimated values of controlling hazards and risks can then be examined to help understand which mitigation, cleanup, or risk management activities are addressing the higher hazard conditions and risk reduction potential at a site. Graphics can be generated from these absolute controlling hazard and risk values to graphically compare these high hazard and risk reduction potential conditions. If the RHRM code is used in this manner, care must be taken to specifically define and qualify (e.g., identify which factors were considered and which ones tended to drive the hazard and risk estimates) the resultant absolute controlling hazard and risk values

  19. Storage of hazardous substances in bonded warehouses

    International Nuclear Information System (INIS)

    Villalobos Artavia, Beatriz

    2008-01-01

    A variety of special regulations exist in Costa Rica for registration and transport of hazardous substances; these set the requirements for entry into the country and the security of transport units. However, the regulations mentioned no specific rules for storing hazardous substances. Tax deposits have been the initial place where are stored the substances that enter the country.The creation of basic rules that would be regulating the storage of hazardous substances has taken place through the analysis of regulations and national and international laws governing hazardous substances. The regulatory domain that currently exists will be established with a field research in fiscal deposits in the metropolitan area. The storage and security measures that have been used by the personnel handling the substances will be identified to be putting the reality with that the hazardous substances have been handled in tax deposits. A rule base for the storage of hazardous substances in tax deposits can be made, protecting the safety of the environment in which are manipulated and avoiding a possible accident causing a mess around. The rule will have the characteristics of the storage warehouses hazardous substances, such as safety standards, labeling standards, infrastructure features, common storage and transitional measures that must possess and meet all bonded warehouses to store hazardous substances. (author) [es

  20. Hazardous waste sites and housing appreciation rates

    OpenAIRE

    McCluskey, Jill Jennifer; Rausser, Gordon C

    2000-01-01

    The dynamic effect of a hazardous waste site is analyzed by investigating the causal relationship between housing appreciation rates and house location in relation to a hazardous waste site using resale data from individual sales transactions in Dallas County, Texas. The results indicate that in the period in which the hazardous waste site was identified and cleanup occurred, residential property owners in close proximity to the hazardous waste site experienced lower housing appreciation rate...

  1. Hazard Communication Standard

    International Nuclear Information System (INIS)

    Sichak, S.

    1991-01-01

    The current rate of technological advances has brought with it an overwhelming increase in the usage of chemicals in the workplace and in the home. Coupled to this increase has been a heightened awareness in the potential for acute and chronic injuries attributable to chemical insults. The Hazard Communication Standard has been introduced with the desired goal of reducing workplace exposures to hazardous substances and thereby achieving a corresponding reduction in adverse health effects. It was created and proclaimed by the US Department of Labor and regulated by the Occupational Safety and Health Administration. 1 tab

  2. Tsunami hazard map in eastern Bali

    International Nuclear Information System (INIS)

    Afif, Haunan; Cipta, Athanasius

    2015-01-01

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography

  3. Tsunami hazard map in eastern Bali

    Energy Technology Data Exchange (ETDEWEB)

    Afif, Haunan, E-mail: afif@vsi.esdm.go.id [Geological Agency, Bandung (Indonesia); Cipta, Athanasius [Geological Agency, Bandung (Indonesia); Australian National University, Canberra (Australia)

    2015-04-24

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  4. Tsunami hazard map in eastern Bali

    Science.gov (United States)

    Afif, Haunan; Cipta, Athanasius

    2015-04-01

    Bali is a popular tourist destination both for Indonesian and foreign visitors. However, Bali is located close to the collision zone between the Indo-Australian Plate and Eurasian Plate in the south and back-arc thrust off the northern coast of Bali resulted Bali prone to earthquake and tsunami. Tsunami hazard map is needed for better understanding of hazard level in a particular area and tsunami modeling is one of the most reliable techniques to produce hazard map. Tsunami modeling conducted using TUNAMI N2 and set for two tsunami sources scenarios which are subduction zone in the south of Bali and back thrust in the north of Bali. Tsunami hazard zone is divided into 3 zones, the first is a high hazard zones with inundation height of more than 3m. The second is a moderate hazard zone with inundation height 1 to 3m and the third is a low tsunami hazard zones with tsunami inundation heights less than 1m. Those 2 scenarios showed southern region has a greater potential of tsunami impact than the northern areas. This is obviously shown in the distribution of the inundated area in the south of Bali including the island of Nusa Penida, Nusa Lembongan and Nusa Ceningan is wider than in the northern coast of Bali although the northern region of the Nusa Penida Island more inundated due to the coastal topography.

  5. Hazardous constituent source term. Revision 2

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport

  6. Nitrous Oxide Explosive Hazards

    Science.gov (United States)

    2008-05-01

    concentrations of N2O. A test program is suggested that could answer questions about decomposition propagation control in large N2O systems and hazards...accident. OSHA fined Scaled Composites for not training their workers informing them about N2O hazards, instructing them on safe procedures, and...seemed present that could produce temperatures in excess of the autogeneous ignition temperature (AIT) for the polymers? Autogeneous ignition

  7. 75 FR 71559 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of...

    Science.gov (United States)

    2010-11-24

    ... ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 261 [EPA-R06-RCRA-2010-0066; SW FRL-9231-4] Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Withdrawal of Direct Final Exclusion AGENCY: Environmental Protection Agency (EPA). ACTION: Withdrawal of direct final exclusion...

  8. A methodology for physically based rockfall hazard assessment

    Directory of Open Access Journals (Sweden)

    G. B. Crosta

    2003-01-01

    Full Text Available Rockfall hazard assessment is not simple to achieve in practice and sound, physically based assessment methodologies are still missing. The mobility of rockfalls implies a more difficult hazard definition with respect to other slope instabilities with minimal runout. Rockfall hazard assessment involves complex definitions for "occurrence probability" and "intensity". This paper is an attempt to evaluate rockfall hazard using the results of 3-D numerical modelling on a topography described by a DEM. Maps portraying the maximum frequency of passages, velocity and height of blocks at each model cell, are easily combined in a GIS in order to produce physically based rockfall hazard maps. Different methods are suggested and discussed for rockfall hazard mapping at a regional and local scale both along linear features or within exposed areas. An objective approach based on three-dimensional matrixes providing both a positional "Rockfall Hazard Index" and a "Rockfall Hazard Vector" is presented. The opportunity of combining different parameters in the 3-D matrixes has been evaluated to better express the relative increase in hazard. Furthermore, the sensitivity of the hazard index with respect to the included variables and their combinations is preliminarily discussed in order to constrain as objective as possible assessment criteria.

  9. Transportation of hazardous and nuclear materials

    International Nuclear Information System (INIS)

    Boryczka, M.; Shaver, D.

    1989-01-01

    Transportation of hazardous and radioactive materials is a vital part of the nation's economy. In recent years public concern over the relative safety of transporting hazardous materials has risen sharply. The United States has a long history of transporting hazardous and radioactive material; rocket propellants, commercial spent fuel, low-level and high-level radioactive waste has been shipped for years. While the track record for shipping these materials is excellent, the knowledge that hazardous materials are passing through communities raises the ire of citizens and local governments. Public outcry over shipments containing hazardous cargo has been especially prominent when shippers have attempted to transport rocket propellants or spent nuclear fuel. Studies of recent shipments have provided insight into the difficulties of shipping in a politically charged environment, the major issues of concern to citizens, and some of the more successful methods of dealing with public concerns. This paper focuses on lessons learned from these studies which include interviews with shippers, carriers, and regulators

  10. Seismic hazard in the Intermountain West

    Science.gov (United States)

    Haller, Kathleen; Moschetti, Morgan P.; Mueller, Charles; Rezaeian, Sanaz; Petersen, Mark D.; Zeng, Yuehua

    2015-01-01

    The 2014 national seismic-hazard model for the conterminous United States incorporates new scientific results and important model adjustments. The current model includes updates to the historical catalog, which is spatially smoothed using both fixed-length and adaptive-length smoothing kernels. Fault-source characterization improved by adding faults, revising rates of activity, and incorporating new results from combined inversions of geologic and geodetic data. The update also includes a new suite of published ground motion models. Changes in probabilistic ground motion are generally less than 10% in most of the Intermountain West compared to the prior assessment, and ground-motion hazard in four Intermountain West cities illustrates the range and magnitude of change in the region. Seismic hazard at reference sites in Boise and Reno increased as much as 10%, whereas hazard in Salt Lake City decreased 5–6%. The largest change was in Las Vegas, where hazard increased 32–35%.

  11. 75 FR 61356 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Correction

    Science.gov (United States)

    2010-10-05

    ... Waste Management System; Identification and Listing of Hazardous Waste; Correction AGENCY: Environmental... thermal desorber residual solids with Hazardous Waste Numbers: F037, F038, K048, K049, K050, and K051. In... and correcting it in Table 1 of appendix IX to part 261--Waste Excluded Under Sec. Sec. 260.20 and 260...

  12. Waste minimization via destruction of hazardous organics

    International Nuclear Information System (INIS)

    Austin, L.R.

    1991-01-01

    Los Alamos National Laboratory is developing technologies that are capable of destroying hazardous organics, that is, converting them basically to water and carbon dioxide. If these technologies were incorporated into the main processing operation where the waste is produced, then the volume and toxicity of the hazardous or mix hazardous waste generated would be significantly reduced. This presentation will briefly discuss some of the waste treatment technologies under development at Los Alamos National Laboratory focused on destroying hazardous organics

  13. Global Polynomial Kernel Hazard Estimation

    DEFF Research Database (Denmark)

    Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch

    2015-01-01

    This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically redu...

  14. NOAA Weather Radio - All Hazards

    Science.gov (United States)

    Non-Zero All Hazards Logo Emergency Alert Description Event Codes Fact Sheet FAQ Organization Search -event information for all types of hazards: weather (e.g., tornadoes, floods), natural (e.g Management or Preparedness, civil defense, police or mayor/commissioner sets up linkages to send messages on

  15. 40 CFR 270.62 - Hazardous waste incinerator permits.

    Science.gov (United States)

    2010-07-01

    ... WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM Special Forms of Permits § 270.62 Hazardous waste incinerator permits. When an owner or operator of a hazardous waste... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Hazardous waste incinerator permits...

  16. Tank farms hazards assessment

    International Nuclear Information System (INIS)

    Broz, R.E.

    1994-01-01

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ''Interim Safety Basis Document, WHC-SD-WM-ISB-001'' as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process

  17. Hydrotreater/Distillation Column Hazard Analysis Report Rev. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-15

    This project Hazard and Risk Analysis Report contains the results of several hazard analyses and risk assessments. An initial assessment was conducted in 2012, which included a multi-step approach ranging from design reviews to a formal What-If hazard analysis. A second What-If hazard analysis was completed during February 2013 to evaluate the operation of the hydrotreater/distillation column processes to be installed in a process enclosure within the Process Development Laboratory West (PDL-West) facility located on the PNNL campus. The qualitative analysis included participation of project and operations personnel and applicable subject matter experts. The analysis identified potential hazardous scenarios, each based on an initiating event coupled with a postulated upset condition. The unmitigated consequences of each hazardous scenario were generally characterized as a process upset; the exposure of personnel to steam, vapors or hazardous material; a spray or spill of hazardous material; the creation of a flammable atmosphere; or an energetic release from a pressure boundary.

  18. Major hazards onshore and offshore

    International Nuclear Information System (INIS)

    1992-01-01

    This symposium continues the tradition of bringing together papers on a topic of current interest and importance in terms of process safety - in this case, Major Hazards Onshore and Offshore. Lord Cullen in his report on the Piper Alpha disaster has, in effect, suggested that the experience gained in the control of major hazards onshore during the 1980s should be applied to improve safety offshore during the 1990s. This major three-day symposium reviews what has been learned so far with regard to major hazards and considers its present and future applications both onshore and offshore. The topics covered in the programme are wide ranging and deal with all aspects of legislation, the application of regulations, techniques for evaluating hazards and prescribing safety measures in design, construction and operation, the importance of the human factors, and recent technical developments in protective measures, relief venting and predicting the consequences of fires and explosions. (author)

  19. MGR External Events Hazards Analysis

    International Nuclear Information System (INIS)

    Booth, L.

    1999-01-01

    The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses

  20. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  1. List of external hazards to be considered in ASAMPSA-E

    International Nuclear Information System (INIS)

    Decker, Kurt; Brinkman, Hans

    2016-01-01

    The current report includes an exhaustive list of external hazards posing potential threats to nuclear installations. The list comprises of both, natural and man-made external hazards. Also, a cross correlation matrix of the hazards is presented. The list is the starting point for the hazard analysis process in Level 1 PSA as outlined by IAEA (2010; SSG-3) and the definition of design basis as required by WENRA (2014; Reference Levels for Existing Reactors). The list is regarded comprehensive by including all types of hazards that were previously cited in documents by IAEA and WENRA-RHWG. 73 natural hazards (N1 to N73) and 24 man-made external hazards (M1 to M24) are included. Natural hazards are grouped into seismo-tectonic hazards, flooding and hydrological hazards, extreme values of meteorological phenomena, rare meteorological phenomena, biological hazards / infestation, geological hazards, and forest fire. The list of external man-made hazards includes industry accidents, military accidents, transportation accidents, pipeline accidents and other man-made external events. The dataset further contains information on hazard correlations. 577 correlations between individual hazards are identified and shown in a cross-correlation chart. Correlations discriminate between: (1) Causally connected hazards (cause-effect relation) where one hazard (e.g., liquefaction) may be caused by another hazard (e.g., earthquake); or where one hazard (e.g., high wind) is a prerequisite for a correlated hazard (e.g., storm surge). (authors)

  2. K Basins Hazard Analysis

    International Nuclear Information System (INIS)

    WEBB, R.H.

    1999-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062/Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  3. Hazard Map for Autonomous Navigation

    DEFF Research Database (Denmark)

    Riis, Troels

    This dissertation describes the work performed in the area of using image analysis in the process of landing a spacecraft autonomously and safely on the surface of the Moon. This is suggested to be done using a Hazard Map. The correspondence problem between several Hazard Maps are investigated...

  4. Hazard classification or risk assessment

    DEFF Research Database (Denmark)

    Hass, Ulla

    2013-01-01

    The EU classification of substances for e.g. reproductive toxicants is hazard based and does not to address the risk suchsubstances may pose through normal, or extreme, use. Such hazard classification complies with the consumer's right to know. It is also an incentive to careful use and storage...

  5. Hazardous waste. Annual report, 1984

    International Nuclear Information System (INIS)

    1985-01-01

    Activities in the Hazardous Waste Program area in 1984 ranged from preparing management and long-range plans to arranging training seminars. Past and present generation of hazardous wastes were the key concerns. This report provides a summary of the significant events which took place in 1984. 6 tabs

  6. Occupational health hazards in mining: an overview

    Energy Technology Data Exchange (ETDEWEB)

    Donoghue, A.M. [Alcoa World Alumina Australia, Perth, WA (Australia)

    2004-08-01

    This review article outlines the physical, chemical, biological, ergonomic and psychosocial occupational health hazards of mining and associated metallurgical processes. Mining remains an important industrial sector in many parts of the world and although substantial progress has been made in the control of occupational health hazards, there remains room for further risk reduction. This applies particularly to traumatic injury hazards, ergonomic hazards and noise. Vigilance is also required to ensure exposures to coal dust and crystalline silica remain effectively controlled.

  7. Washington Tsunami Hazard Mitigation Program

    Science.gov (United States)

    Walsh, T. J.; Schelling, J.

    2012-12-01

    Washington State has participated in the National Tsunami Hazard Mitigation Program (NTHMP) since its inception in 1995. We have participated in the tsunami inundation hazard mapping, evacuation planning, education, and outreach efforts that generally characterize the NTHMP efforts. We have also investigated hazards of significant interest to the Pacific Northwest. The hazard from locally generated earthquakes on the Cascadia subduction zone, which threatens tsunami inundation in less than hour following a magnitude 9 earthquake, creates special problems for low-lying accretionary shoreforms in Washington, such as the spits of Long Beach and Ocean Shores, where high ground is not accessible within the limited time available for evacuation. To ameliorate this problem, we convened a panel of the Applied Technology Council to develop guidelines for construction of facilities for vertical evacuation from tsunamis, published as FEMA 646, now incorporated in the International Building Code as Appendix M. We followed this with a program called Project Safe Haven (http://www.facebook.com/ProjectSafeHaven) to site such facilities along the Washington coast in appropriate locations and appropriate designs to blend with the local communities, as chosen by the citizens. This has now been completed for the entire outer coast of Washington. In conjunction with this effort, we have evaluated the potential for earthquake-induced ground failures in and near tsunami hazard zones to help develop cost estimates for these structures and to establish appropriate tsunami evacuation routes and evacuation assembly areas that are likely to to be available after a major subduction zone earthquake. We intend to continue these geotechnical evaluations for all tsunami hazard zones in Washington.

  8. Hazardous waste minimization tracking system

    International Nuclear Information System (INIS)

    Railan, R.

    1994-01-01

    Under RCRA section 3002 9(b) and 3005f(h), hazardous waste generators and owners/operators of treatment, storage, and disposal facilities (TSDFs) are required to certify that they have a program in place to reduce the volume or quantity and toxicity of hazardous waste to the degree determined to be economically practicable. In many cases, there are environmental, as well as, economic benefits, for agencies that pursue pollution prevention options. Several state governments have already enacted waste minimization legislation (e.g., Massachusetts Toxic Use Reduction Act of 1989, and Oregon Toxic Use Reduction Act and Hazardous Waste Reduction Act, July 2, 1989). About twenty six other states have established legislation that will mandate some type of waste minimization program and/or facility planning. The need to address the HAZMIN (Hazardous Waste Minimization) Program at government agencies and private industries has prompted us to identify the importance of managing The HAZMIN Program, and tracking various aspects of the program, as well as the progress made in this area. The open-quotes WASTEclose quotes is a tracking system, which can be used and modified in maintaining the information related to Hazardous Waste Minimization Program, in a manageable fashion. This program maintains, modifies, and retrieves information related to hazardous waste minimization and recycling, and provides automated report generating capabilities. It has a built-in menu, which can be printed either in part or in full. There are instructions on preparing The Annual Waste Report, and The Annual Recycling Report. The program is very user friendly. This program is available in 3.5 inch or 5 1/4 inch floppy disks. A computer with 640K memory is required

  9. 75 FR 60689 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule

    Science.gov (United States)

    2010-10-01

    ... Waste Management System; Identification and Listing of Hazardous Waste; Proposed Rule AGENCY... exclude (or delist) a certain solid waste generated by its Beaumont, Texas, facility from the lists of hazardous wastes. EPA used the Delisting Risk Assessment Software (DRAS) Version 3.0 in the evaluation of...

  10. FEMA Hazard Mitigation Grants Program Summary

    Data.gov (United States)

    Department of Homeland Security — The Hazard Mitigation Grant Program (HMGP, CFDA Number: 97.039) provides grants to States and local governments to implement long-term hazard mitigation measures...

  11. Energy and solid/hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included. (PSB)

  12. Energy and solid/hazardous waste

    International Nuclear Information System (INIS)

    1981-12-01

    This report addresses the past and potential future solid and hazardous waste impacts from energy development, and summarizes the major environmental, legislation applicable to solid and hazardous waste generation and disposal. A glossary of terms and acronyms used to describe and measure solid waste impacts of energy development is included

  13. 14 CFR 139.337 - Wildlife hazard management.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Wildlife hazard management. 139.337 Section... AIRPORTS Operations § 139.337 Wildlife hazard management. (a) In accordance with its Airport Certification... alleviate wildlife hazards whenever they are detected. (b) In a manner authorized by the Administrator, each...

  14. Transport of hazardous goods. Befoerderung gefaehrlicher Gueter

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The course 'Transport of hazardous goods' was held in Berlin in November 1988 in cooperation with the Bundesanstalt fuer Materialforschung und -pruefung. From all lecturs, two are recorded separately: 'Safety of tank trucks - requirements on the tank, development possibiities of active and passive safety' and 'Requirements on the transport of radioactive materials - possible derivations for other hazardous goods'. The other lectures deal with hazardous goods law, requirements on packinging, risk assessment, railroad transport, hazardous goods road network, insurance matters, EC regulations, and waste tourism. (HSCH).

  15. Hazard index for underground toxic material

    International Nuclear Information System (INIS)

    Smith, C.F.; Cohen, J.J.; McKone, T.E.

    1980-06-01

    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity

  16. Hazard index for underground toxic material

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C.F.; Cohen, J.J.; McKone, T.E.

    1980-06-01

    To adequately define the problem of waste management, quantitative measures of hazard must be used. This study reviews past work in the area of hazard indices and proposes a geotoxicity hazard index for use in characterizing the hazard of toxic material buried underground. Factors included in this index are: an intrinsic toxicity factor, formulated as the volume of water required for dilution to public drinking-water levels; a persistence factor to characterize the longevity of the material, ranging from unity for stable materials to smaller values for shorter-lived materials; an availability factor that relates the transport potential for the particular material to a reference value for its naturally occurring analog; and a correction factor to accommodate the buildup of decay progeny, resulting in increased toxicity.

  17. Modeling and Hazard Analysis Using STPA

    Science.gov (United States)

    Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka

    2010-09-01

    A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis

  18. Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard

    Science.gov (United States)

    García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.

    2007-10-01

    A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.

  19. Robots, systems, and methods for hazard evaluation and visualization

    Science.gov (United States)

    Nielsen, Curtis W.; Bruemmer, David J.; Walton, Miles C.; Hartley, Robert S.; Gertman, David I.; Kinoshita, Robert A.; Whetten, Jonathan

    2013-01-15

    A robot includes a hazard sensor, a locomotor, and a system controller. The robot senses a hazard intensity at a location of the robot, moves to a new location in response to the hazard intensity, and autonomously repeats the sensing and moving to determine multiple hazard levels at multiple locations. The robot may also include a communicator to communicate the multiple hazard levels to a remote controller. The remote controller includes a communicator for sending user commands to the robot and receiving the hazard levels from the robot. A graphical user interface displays an environment map of the environment proximate the robot and a scale for indicating a hazard intensity. A hazard indicator corresponds to a robot position in the environment map and graphically indicates the hazard intensity at the robot position relative to the scale.

  20. Volcanic Hazards in Site Evaluation for Nuclear Installations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-10-15

    This publication provides comprehensive and updated guidance for site evaluation in relation to volcanic hazards. It includes recommendations on assessing the volcanic hazards at a nuclear installation site, in order to identify and characterize, in a comprehensive manner, all potentially hazardous phenomena that may be associated with future volcanic events. It describes how some of these volcanic phenomena may affect the acceptability of the selected site, resulting in exclusion of a site or determining the corresponding design basis parameters for the installation. This Safety Guide is applicable to both existing and new sites, and a graded approach is recommended to cater for all types of nuclear installations. Contents: 1. Introduction; 2. Overview of volcanic hazard assessment; 3. General recommendations; 4. Necessary information and investigations (database); 5. Screening of volcanic hazards; 6. Site specific volcanic hazard assessment; 7. Nuclear installations other than nuclear power plants; 8. Monitoring and preparation for response; 9. Management system for volcanic hazard assessment; Annex I: Volcanic hazard scenarios; Annex II: Worldwide sources of information.

  1. Overview of hazardous-waste regulation at federal facilities

    International Nuclear Information System (INIS)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require

  2. Overview of hazardous-waste regulation at federal facilities

    Energy Technology Data Exchange (ETDEWEB)

    Tanzman, E.; LaBrie, B.; Lerner, K.

    1982-05-01

    This report is organized in a fashion that is intended to explain the legal duties imposed on officials responsible for hazardous waste at each stage of its existence. Section 2 describes federal hazardous waste laws, explaining the legal meaning of hazardous waste and the protective measures that are required to be taken by its generators, transporters, and storers. In addition, penalties for violation of the standards are summarized, and a special discussion is presented of so-called imminent hazard provisions for handling hazardous waste that immediately threatens public health and safety. Although the focus of Sec. 2 is on RCRA, which is the principal federal law regulating hazardous waste, other federal statutes are discussed as appropriate. Section 3 covers state regulation of hazardous waste. First, Sec. 3 explains the system of state enforcement of the federal RCRA requirements on hazardous waste within their borders. Second, Sec. 3 discusses two peculiar provisions of RCRA that appear to permit states to regulate federal facilities more strictly than RCRA otherwise would require.

  3. 222 S Laboratory complex hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1998-01-01

    This report documents the hazards assessment for the 222-S Analytical Laboratory located on the US Department of Energy (DOE) Hanford Site. Operation of the laboratory is the responsibility of Waste Management Federal Services, Inc. (WMFS). This hazards assessment was conducted to provide the emergency planning technical basis for the 222-S Facility. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  4. Hazardous fluid leak detector

    Science.gov (United States)

    Gray, Harold E.; McLaurin, Felder M.; Ortiz, Monico; Huth, William A.

    1996-01-01

    A device or system for monitoring for the presence of leaks from a hazardous fluid is disclosed which uses two electrodes immersed in deionized water. A gas is passed through an enclosed space in which a hazardous fluid is contained. Any fumes, vapors, etc. escaping from the containment of the hazardous fluid in the enclosed space are entrained in the gas passing through the enclosed space and transported to a closed vessel containing deionized water and two electrodes partially immersed in the deionized water. The electrodes are connected in series with a power source and a signal, whereby when a sufficient number of ions enter the water from the gas being bubbled through it (indicative of a leak), the water will begin to conduct, thereby allowing current to flow through the water from one electrode to the other electrode to complete the circuit and activate the signal.

  5. Moral Hazard in Pediatrics.

    Science.gov (United States)

    Brunnquell, Donald; Michaelson, Christopher M

    2016-07-01

    "Moral hazard" is a term familiar in economics and business ethics that illuminates why rational parties sometimes choose decisions with bad moral outcomes without necessarily intending to behave selfishly or immorally. The term is not generally used in medical ethics. Decision makers such as parents and physicians generally do not use the concept or the word in evaluating ethical dilemmas. They may not even be aware of the precise nature of the moral hazard problem they are experiencing, beyond a general concern for the patient's seemingly excessive burden. This article brings the language and logic of moral hazard to pediatrics. The concept reminds us that decision makers in this context are often not the primary party affected by their decisions. It appraises the full scope of risk at issue when decision makers decide on behalf of others and leads us to separate, respect, and prioritize the interests of affected parties.

  6. Hazardous material reduction initiative

    International Nuclear Information System (INIS)

    Nichols, D.H.

    1995-02-01

    The Hazardous Material Reduction Initiative (HMRI) explores using the review of purchase requisitions to reduce both the use of hazardous materials and the generation of regulated and nonregulated wastes. Based on an 11-month program implemented at the Hanford Site, hazardous material use and waste generation was effectively reduced by using a centralized procurement control program known as HMRI. As expected, several changes to the original proposal were needed during the development/testing phase of the program to accommodate changing and actual conditions found at the Hanford Site. The current method requires a central receiving point within the Procurement Organization to review all purchase requisitions for potentially Occupational Safety and Health Administration (OSHA) hazardous products. Those requisitions (approximately 4% to 6% of the total) are then forwarded to Pollution Prevention personnel for evaluation under HMRI. The first step is to determine if the requested item can be filled by existing or surplus material. The requisitions that cannot filled by existing or surplus material are then sorted into two groups based on applicability to the HMRI project. For example, laboratory requests for analytical reagents or standards are excluded and the purchase requisitions are returned to Procurement for normal processing because, although regulated, there is little opportunity for source reduction due to the strict protocols followed. Each item is then checked to determine if it is regulated or not. Regulated items are prioritized based on hazardous contents, quantity requested, and end use. Copies of these requisitions are made and the originals are returned to Procurement within 1-hr. Since changes to the requisition can be made at later stages during procurement, the HMRI fulfills one of its original premises in that it does not slow the procurement process

  7. 49 CFR 659.31 - Hazard management process.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Hazard management process. 659.31 Section 659.31... Agency § 659.31 Hazard management process. (a) The oversight agency must require the rail transit agency..., operational changes, or other changes within the rail transit environment. (b) The hazard management process...

  8. 75 FR 67919 - Hazardous Waste Management System; Proposed Exclusion for Identifying and Listing Hazardous Waste

    Science.gov (United States)

    2010-11-04

    ... treatment sludge from the lists of hazardous waste set forth in Title 40 of the Code of Federal Regulations... treatment sludges generated at its facility located in Owosso, Michigan from the list of hazardous wastes... disposed in a Subtitle D landfill and we considered transport of waste constituents through ground water...

  9. Hazard sign comprehension among illiterate adults

    African Journals Online (AJOL)

    KATEVG

    Hazard signs have been considered an effective mode of transferring safety .... United Kingdom and the United States of America, indicating that hazard ..... primary providers of these programmes (Occupational Health and Safety Act 1993).

  10. Hazards associated with stage one-mining

    International Nuclear Information System (INIS)

    Anon.

    1975-01-01

    Radiation hazards in uranium mining arise from the presence of radon-222, a gas which can escape from exposed rock surfaces into the air. Radon daughter products have been associated with an increased incidence of respiratory lung cancer. Other hazards include the tailings which arise from the extraction of uranium ores. The tailings still contain most of the original radium and emit gamma rays and radon gas. The hazards associated with uranium enrichment and fuel manufacture are also discussed. (R.L.)

  11. Hazard evaluation and risk management

    International Nuclear Information System (INIS)

    Fritzsche, A.F.

    1986-01-01

    The eigth chapter deals with the actual handling of hazards. The principal issue concerns man's behaviour towards hazards as an individual formerly and today; the evaluation of expected results of both a positive and a negative kind as determined by the individual's values which may differ and vary greatly from one individual to the next. The evaluation of benefit and hazard as well as the risk management resulting from decision-taking are political processes in the democratic state. Formal decision-taking tools play a major role in this process which concerns such central issues like who will participate; how the decision is arrived at; the participation of citizens; specialist knowledge and participation of the general public. (HSCH) [de

  12. A probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-11-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence-based decision-making regarding risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean tsunami, but this has been largely concentrated on the Sunda Arc with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent probabilistic tsunami hazard assessment (PTHA) for Indonesia. This assessment produces time-independent forecasts of tsunami hazards at the coast using data from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting the larger maximum magnitudes. The annual probability of experiencing a tsunami with a height of > 0.5 m at the coast is greater than 10% for Sumatra, Java, the Sunda islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of > 3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national-scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  13. A~probabilistic tsunami hazard assessment for Indonesia

    Science.gov (United States)

    Horspool, N.; Pranantyo, I.; Griffin, J.; Latief, H.; Natawidjaja, D. H.; Kongko, W.; Cipta, A.; Bustaman, B.; Anugrah, S. D.; Thio, H. K.

    2014-05-01

    Probabilistic hazard assessments are a fundamental tool for assessing the threats posed by hazards to communities and are important for underpinning evidence based decision making on risk mitigation activities. Indonesia has been the focus of intense tsunami risk mitigation efforts following the 2004 Indian Ocean Tsunami, but this has been largely concentrated on the Sunda Arc, with little attention to other tsunami prone areas of the country such as eastern Indonesia. We present the first nationally consistent Probabilistic Tsunami Hazard Assessment (PTHA) for Indonesia. This assessment produces time independent forecasts of tsunami hazard at the coast from tsunami generated by local, regional and distant earthquake sources. The methodology is based on the established monte-carlo approach to probabilistic seismic hazard assessment (PSHA) and has been adapted to tsunami. We account for sources of epistemic and aleatory uncertainty in the analysis through the use of logic trees and through sampling probability density functions. For short return periods (100 years) the highest tsunami hazard is the west coast of Sumatra, south coast of Java and the north coast of Papua. For longer return periods (500-2500 years), the tsunami hazard is highest along the Sunda Arc, reflecting larger maximum magnitudes along the Sunda Arc. The annual probability of experiencing a tsunami with a height at the coast of > 0.5 m is greater than 10% for Sumatra, Java, the Sunda Islands (Bali, Lombok, Flores, Sumba) and north Papua. The annual probability of experiencing a tsunami with a height of >3.0 m, which would cause significant inundation and fatalities, is 1-10% in Sumatra, Java, Bali, Lombok and north Papua, and 0.1-1% for north Sulawesi, Seram and Flores. The results of this national scale hazard assessment provide evidence for disaster managers to prioritise regions for risk mitigation activities and/or more detailed hazard or risk assessment.

  14. A proposal for performing software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.; Gallagher, J.M.

    1997-01-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper. The method concentrates on finding hazards during the early stages of the software life cycle, using an extension of HAZOP

  15. Agent-based simulation for human-induced hazard analysis.

    Science.gov (United States)

    Bulleit, William M; Drewek, Matthew W

    2011-02-01

    Terrorism could be treated as a hazard for design purposes. For instance, the terrorist hazard could be analyzed in a manner similar to the way that seismic hazard is handled. No matter how terrorism is dealt with in the design of systems, the need for predictions of the frequency and magnitude of the hazard will be required. And, if the human-induced hazard is to be designed for in a manner analogous to natural hazards, then the predictions should be probabilistic in nature. The model described in this article is a prototype model that used agent-based modeling (ABM) to analyze terrorist attacks. The basic approach in this article of using ABM to model human-induced hazards has been preliminarily validated in the sense that the attack magnitudes seem to be power-law distributed and attacks occur mostly in regions where high levels of wealth pass through, such as transit routes and markets. The model developed in this study indicates that ABM is a viable approach to modeling socioeconomic-based infrastructure systems for engineering design to deal with human-induced hazards. © 2010 Society for Risk Analysis.

  16. Environmentally sound management of hazardous waste and hazardous recyclable materials

    International Nuclear Information System (INIS)

    Smyth, T.

    2002-01-01

    Environmentally sound management or ESM has been defined under the Basel Convention as 'taking all practicable steps to ensure that hazardous wastes and other wastes are managed in a manner which will protect human health and the environment against the adverse effects which may result from such wastes'. An initiative is underway to develop and implement a Canadian Environmentally Sound Management (ESM) regime for both hazardous wastes and hazardous recyclable materials. This ESM regime aims to assure equivalent minimum environmental protection across Canada while respecting regional differences. Cooperation and coordination between the federal government, provinces and territories is essential to the development and implementation of ESM systems since waste management is a shared jurisdiction in Canada. Federally, CEPA 1999 provides an opportunity to improve Environment Canada's ability to ensure that all exports and imports are managed in an environmentally sound manner. CEPA 1999 enabled Environment Canada to establish criteria for environmentally sound management (ESM) that can be applied by importers and exporters in seeking to ensure that wastes and recyclable materials they import or export will be treated in an environmentally sound manner. The ESM regime would include the development of ESM principles, criteria and guidelines relevant to Canada and a procedure for evaluating ESM. It would be developed in full consultation with stakeholders. The timeline for the development and implementation of the ESM regime is anticipated by about 2006. (author)

  17. Hazardous factories: Nigerian evidence.

    Science.gov (United States)

    Oloyede, Olajide

    2005-06-01

    The past 15 years have seen an increasing governmental and corporate concern for the environment worldwide. For governments, information about the environmental performance of the industrial sector is required to inform macro-level decisions about environmental targets such as those required to meet UN directives. However, in many African, Asian, and Latin American countries, researching and reporting company environmental performance is limited. This article serves as a contribution to filling the gap by presenting evidence of physical and chemical risk in Nigerian factories. One hundred and three factories with a total of 5,021 workers were studied. One hundred and twenty physical and chemical hazards were identified and the result shows a high number of workers exposed to such hazards. The study also reveals that workers' awareness level of chemical hazards was high. Yet the danger was perceived in behavioral terms, especially by manufacturing firms, which tend to see environmental investment in an increasingly global economy as detrimental to profitability.

  18. Multi scenario seismic hazard assessment for Egypt

    Science.gov (United States)

    Mostafa, Shaimaa Ismail; Abd el-aal, Abd el-aziz Khairy; El-Eraki, Mohamed Ahmed

    2018-05-01

    Egypt is located in the northeastern corner of Africa within a sensitive seismotectonic location. Earthquakes are concentrated along the active tectonic boundaries of African, Eurasian, and Arabian plates. The study area is characterized by northward increasing sediment thickness leading to more damage to structures in the north due to multiple reflections of seismic waves. Unfortunately, man-made constructions in Egypt were not designed to resist earthquake ground motions. So, it is important to evaluate the seismic hazard to reduce social and economic losses and preserve lives. The probabilistic seismic hazard assessment is used to evaluate the hazard using alternative seismotectonic models within a logic tree framework. Alternate seismotectonic models, magnitude-frequency relations, and various indigenous attenuation relationships were amended within a logic tree formulation to compute and develop the regional exposure on a set of hazard maps. Hazard contour maps are constructed for peak ground acceleration as well as 0.1-, 0.2-, 0.5-, 1-, and 2-s spectral periods for 100 and 475 years return periods for ground motion on rock. The results illustrate that Egypt is characterized by very low to high seismic activity grading from the west to the eastern part of the country. The uniform hazard spectra are estimated at some important cities distributed allover Egypt. The deaggregation of seismic hazard is estimated at some cities to identify the scenario events that contribute to a selected seismic hazard level. The results of this study can be used in seismic microzonation, risk mitigation, and earthquake engineering purposes.

  19. Application of the Coastal Hazard Wheel methodology for coastal multi-hazard assessment and management in the state of Djibouti

    DEFF Research Database (Denmark)

    Appelquist, Lars Rosendahl; Balstrøm, Thomas

    2014-01-01

    coastal classification system that incorporates the main static and dynamic parameters determining the characteristics of a coastal environment. The methodology provides information on the hazards of ecosystem disruption, gradual inundation, salt water intrusion, erosion and flooding and can be used...... to support management decisions at local, regional and national level, in areas with limited access to geophysical data. The assessment for Djibouti applies a geographic information system (GIS) to develop a range of national hazard maps along with relevant hazard statistics and is showcasing the procedure......This paper presents the application of a new methodology for coastal multi-hazard assessment and management in a changing global climate on the state of Djibouti. The methodology termed the Coastal Hazard Wheel (CHW) is developed for worldwide application and is based on a specially designed...

  20. Rockfall Hazard Process Assessment : [Project Summary

    Science.gov (United States)

    2017-10-01

    The Montana Department of Transportation (MDT) implemented its Rockfall Hazard Rating System (RHRS) between 2003 and 2005, obtaining information on the state's rock slopes and their associated hazards. The RHRS data facilitated decision-making in an ...

  1. Hazardous metals in yellow items used in RCAs

    International Nuclear Information System (INIS)

    Brown, K.F.; Rankin, W.N.

    1992-01-01

    Yellow items used in Radiologically Controlled Areas (RCAs) that could contain hazardous metals were identified. X-ray fluorescence analyses indicated that thirty of the fifty-two items do contain hazardous metals. It is important to minimize the hazardous metals put into the wastes. The authors recommend that the specifications for all yellow items stocked in Stores be changed to specify that they contain no hazardous metals

  2. Collateral benefits and hidden hazards of soil arsenic during abatement assessment of residential lead hazards

    International Nuclear Information System (INIS)

    Elless, M.P.; Ferguson, B.W.; Bray, C.A.; Patch, S.; Mielke, H.; Blaylock, M.J.

    2008-01-01

    Abatement of soil-lead hazards may also reduce human exposure to other soil toxins, thereby achieving significant collateral benefits that are not accounted for today. This proposition was tested with the specific case of soil-arsenic, where 1726 residential soil samples were collected and analyzed for lead and arsenic. The study found that these two toxins coexisted in most samples, but their concentrations were weakly correlated, reflecting the differing sources for each toxin. Collateral benefits of 9% would be achieved during abatement of the lead-contaminated soils having elevated arsenic concentrations. However, a hidden hazard of 16% was observed by overlooking elevated arsenic concentrations in soils having lead concentrations not requiring abatement. This study recommends that soil samples collected under HUD programs should be collected from areas of lead and arsenic deposition and tested for arsenic as well as lead, and that soil abatement decisions consider soil-arsenic as well as soil-lead guidelines. - Coexistence of arsenic at elevated concentrations with lead in residential soils undergoing lead hazard assessment is often overlooked, providing either collateral benefits or hidden hazards

  3. Flood Hazard Mapping by Applying Fuzzy TOPSIS Method

    Science.gov (United States)

    Han, K. Y.; Lee, J. Y.; Keum, H.; Kim, B. J.; Kim, T. H.

    2017-12-01

    There are lots of technical methods to integrate various factors for flood hazard mapping. The purpose of this study is to suggest the methodology of integrated flood hazard mapping using MCDM(Multi Criteria Decision Making). MCDM problems involve a set of alternatives that are evaluated on the basis of conflicting and incommensurate criteria. In this study, to apply MCDM to assessing flood risk, maximum flood depth, maximum velocity, and maximum travel time are considered as criterion, and each applied elements are considered as alternatives. The scheme to find the efficient alternative closest to a ideal value is appropriate way to assess flood risk of a lot of element units(alternatives) based on various flood indices. Therefore, TOPSIS which is most commonly used MCDM scheme is adopted to create flood hazard map. The indices for flood hazard mapping(maximum flood depth, maximum velocity, and maximum travel time) have uncertainty concerning simulation results due to various values according to flood scenario and topographical condition. These kind of ambiguity of indices can cause uncertainty of flood hazard map. To consider ambiguity and uncertainty of criterion, fuzzy logic is introduced which is able to handle ambiguous expression. In this paper, we made Flood Hazard Map according to levee breach overflow using the Fuzzy TOPSIS Technique. We confirmed the areas where the highest grade of hazard was recorded through the drawn-up integrated flood hazard map, and then produced flood hazard map can be compared them with those indicated in the existing flood risk maps. Also, we expect that if we can apply the flood hazard map methodology suggested in this paper even to manufacturing the current flood risk maps, we will be able to make a new flood hazard map to even consider the priorities for hazard areas, including more varied and important information than ever before. Keywords : Flood hazard map; levee break analysis; 2D analysis; MCDM; Fuzzy TOPSIS

  4. The Volcanic Hazards Assessment Support System for the Online Hazard Assessment and Risk Mitigation of Quaternary Volcanoes in the World

    Directory of Open Access Journals (Sweden)

    Shinji Takarada

    2017-12-01

    Full Text Available Volcanic hazards assessment tools are essential for risk mitigation of volcanic activities. A number of offline volcanic hazard assessment tools have been provided, but in most cases, they require relatively complex installation procedure and usage. This situation causes limited usage of volcanic hazard assessment tools among volcanologists and volcanic hazards communities. In addition, volcanic eruption chronology and detailed database of each volcano in the world are essential key information for volcanic hazard assessment, but most of them are isolated and not connected to and with each other. The Volcanic Hazard Assessment Support System aims to implement a user-friendly, WebGIS-based, open-access online system for potential hazards assessment and risk-mitigation of Quaternary volcanoes in the world. The users can get up-to-date information such as eruption chronology and geophysical monitoring data of a specific volcano using the direct link system to major volcano databases on the system. Currently, the system provides 3 simple, powerful and notable deterministic modeling simulation codes of volcanic processes, such as Energy Cone, Titan2D and Tephra2. The system provides deterministic tools because probabilistic assessment tools are normally much more computationally demanding. By using the volcano hazard assessment system, the area that would be affected by volcanic eruptions in any location near the volcano can be estimated using numerical simulations. The system is being implemented using the ASTER Global DEM covering 2790 Quaternary volcanoes in the world. The system can be used to evaluate volcanic hazards and move this toward risk-potential by overlaying the estimated distribution of volcanic gravity flows or tephra falls on major roads, houses and evacuation areas using the GIS-enabled systems. The system is developed for all users in the world who need volcanic hazards assessment tools.

  5. Final Report: Seismic Hazard Assessment at the PGDP

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhinmeng [KY Geological Survey, Univ of KY

    2007-06-01

    Selecting a level of seismic hazard at the Paducah Gaseous Diffusion Plant for policy considerations and engineering design is not an easy task because it not only depends on seismic hazard, but also on seismic risk and other related environmental, social, and economic issues. Seismic hazard is the main focus. There is no question that there are seismic hazards at the Paducah Gaseous Diffusion Plant because of its proximity to several known seismic zones, particularly the New Madrid Seismic Zone. The issues in estimating seismic hazard are (1) the methods being used and (2) difficulty in characterizing the uncertainties of seismic sources, earthquake occurrence frequencies, and ground-motion attenuation relationships. This report summarizes how input data were derived, which methodologies were used, and what the hazard estimates at the Paducah Gaseous Diffusion Plant are.

  6. Increasing resiliency to natural hazards - A strategic plan for the Multi-Hazards Demonstration Project in Southern California

    Science.gov (United States)

    Jones, Lucy; Bernknopf, Richard; Cannon, Susan; Cox, Dale A.; Gaydos, Len; Keeley, Jon; Kohler, Monica; Lee, Homa; Ponti, Daniel; Ross, Stephanie L.; Schwarzbach, Steven; Shulters, Michael; Ward, A. Wesley; Wein, Anne

    2007-01-01

    The U.S. Geological Survey (USGS) is initiating a new project designed to improve resiliency to natural hazards in southern California through the application of science to community decision making and emergency response. The Multi-Hazards Demonstration Project will assist the region’s communities to reduce their risk from natural hazards by directing new and existing research towards the community’s needs, improving monitoring technology, producing innovative products, and improving dissemination of the results. The natural hazards to be investigated in this project include coastal erosion, earthquakes, floods, landslides, tsunamis, and wildfires.Americans are more at risk from natural hazards now than at any other time in our Nation’s history. Southern California, in particular, has one of the Nation’s highest potentials for extreme catastrophic losses due to natural hazards, with estimates of expected losses exceeding $3 billion per year. These losses can only be reduced through the decisions of the southern California community itself. To be effective, these decisions must be guided by the best information about hazards, risk, and the cost-effectiveness of mitigation technologies. The USGS will work with collaborators to set the direction of the research and to create multi-hazard risk frameworks where communities can apply the results of scientific research to their decision-making processes. Partners include state, county, city, and public-lands government agencies, public and private utilities, companies with a significant impact and presence in southern California, academic researchers, the Federal Emergency Management Agency (FEMA), National Oceanic and Atmospheric Administration (NOAA), and local emergency response agencies.Prior to the writing of this strategic plan document, three strategic planning workshops were held in February and March 2006 at the USGS office in Pasadena to explore potential relationships. The goal of these planning

  7. Hazardous materials management and compliance training

    International Nuclear Information System (INIS)

    Dalton, T.F.

    1991-01-01

    OSHA training for hazardous waste site workers is required by the Superfund Amendments and Reauthorization Act of 1986 (SARA). In December 1986, a series of regulations was promulgated by OSHA on an interim basis calling for the training of workers engaged in hazardous waste operations. Subsequent to these interim regulations, final rules were promulgated and these final rules on hazardous waste operations and emergency response became effective on March 6, 1990. OSHA has conducted hearings on the accreditation of training programs. OSHA would like to follow the accreditation process under the AHERA regulations for asbestos, in which the model plan for accreditation of asbestos abatement training was included in Section 206 of Title 11 of the Toxic Substance Control Act (TSCA). OSHA proposed on January 26, 1990, to perform the accreditation of training programs for hazardous waste operations and that proposal suggested that they follow the model plan similar to the one used for AHERA. They did not propose to accredited training programs for workers engaged in emergency response. These new regulations pose a significant problem to the various contractors and emergency responders who deal with hazardous materials spill response, cleanup and site remediation since these programs have expanded so quickly that many people are not familiar with what particular segment of the training they are required to have and whether or not programs that have yet to be accredited are satisfactory for this type of training. Title III of SARA stipulates a training program for first responders which includes local emergency response organizations such as firemen and policemen. The purpose of this paper is to discuss the needs of workers at hazardous waste site remediation projects and workers who are dealing with hazardous substances, spill response and cleanup

  8. Tsunami hazard

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  9. Landslides Hazard Assessment Using Different Approaches

    Directory of Open Access Journals (Sweden)

    Coman Cristina

    2017-06-01

    Full Text Available Romania represents one of Europe’s countries with high landslides occurrence frequency. Landslide hazard maps are designed by considering the interaction of several factors which, by their joint action may affect the equilibrium state of the natural slopes. The aim of this paper is landslides hazard assessment using the methodology provided by the Romanian national legislation and a very largely used statistical method. The final results of these two analyses are quantitative or semi-quantitative landslides hazard maps, created in geographic information system environment. The data base used for this purpose includes: geological and hydrogeological data, digital terrain model, hydrological data, land use, seismic action, anthropic action and an inventory of active landslides. The GIS landslides hazard models were built for the geographical area of the Iasi city, located in the north-east side of Romania.

  10. Risk - hazardous incident - communication 2

    International Nuclear Information System (INIS)

    Gerling, R.; Obermeier, O.P.

    1995-01-01

    It is difficult to develop an objective approach to risks and effects of a hazardous incident that would be acceptable to the community at large. It is a matter of fact that there is great dissimilarity in the way various social groups perceive and define the risks of a particular technology, or the effects of hazardous incidents, sometimes they have even contrary opinions. Hence, open communication is seriously hampered, which in turn aggravates the problems encountered in this context. This second volume of the publication dealing with the problem area of 'risk - hazardous incident - communication' is intended to reveal patterns of the recurrent process which impedes communication, and to bridge the gaps between the various 'styles' of risk perception and definition. (orig./CB) [de

  11. Neuropsychological Correlates of Hazard Perception in Older Adults.

    Science.gov (United States)

    McInerney, Katalina; Suhr, Julie

    2016-03-01

    Hazard perception, the ability to identify and react to hazards while driving, is of growing importance in driving research, given its strong relationship to real word driving variables. Furthermore, although poor hazard perception is associated with novice drivers, recent research suggests that it declines with advanced age. In the present study, we examined the neuropsychological correlates of hazard perception in a healthy older adult sample. A total of 68 adults age 60 and older who showed no signs of dementia and were active drivers completed a battery of neuropsychological tests as well as a hazard perception task. Tests included the Repeatable Battery for the Assessment of Neuropsychological Status, Wechsler Test of Adult Reading, Trail Making Test, Block Design, Useful Field of View, and the Delis-Kaplan Executive Function System Color Word Interference Test. Hazard perception errors were related to visuospatial/constructional skills, processing speed, memory, and executive functioning skills, with a battery of tests across these domains accounting for 36.7% of the variance in hazard perception errors. Executive functioning, particularly Trail Making Test part B, emerged as a strong predictor of hazard perception ability. Consistent with prior work showing the relationship of neuropsychological performance to other measures of driving ability, neuropsychological performance was associated with hazard perception skill. Future studies should examine the relationship of neuropsychological changes in adults who are showing driving impairment and/or cognitive changes associated with Mild Cognitive Impairment or dementia.

  12. Hazardous waste status of discarded electronic cigarettes

    Energy Technology Data Exchange (ETDEWEB)

    Krause, Max J.; Townsend, Timothy G., E-mail: ttown@ufl.edu

    2015-05-15

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers.

  13. Hazardous waste status of discarded electronic cigarettes

    International Nuclear Information System (INIS)

    Krause, Max J.; Townsend, Timothy G.

    2015-01-01

    Highlights: • Electronic cigarettes were tested using TCLP and WET. • Several electronic cigarette products leached lead at hazardous waste levels. • Lead was the only element that exceeded hazardous waste concentration thresholds. • Nicotine solution may cause hazardous waste classification when discarded unused. - Abstract: The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50 mg/L by WET and 40 mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers

  14. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  15. Review of occupational hazards associated with aquaculture.

    Science.gov (United States)

    Myers, Melvin L

    2010-10-01

    Aquaculture is an emerging sector that is associated with most of the same hazards that are present in agriculture generally, but many fish farming tasks entail added danger, including working around water and working at night. Comprehensive studies of these hazards have not been conducted, and substantial uncertainty exists as to the extent of these hazards. The question addressed in this investigation was, "What is known about potential hazardous occupational exposures to aquatic plant and animal farmers?" In this review, causes of death included drowning, electrocution, crushing-related injury, hydrogen sulfide poisoning, and fatal head injury. Nonfatal injuries were associated with slips, trips, and falls; machines; strains and sprains; chemicals; and fires. Risk factors included cranes (tip over and power line contact), tractors and sprayer-equipped all-terrain vehicles (overturn), heavy loads (lifting), high-pressure sprayers, slippery surfaces, rotting waste (hydrogen sulfide production), eroding levees (overturn hazard), storm-related rushing water, diving conditions (bends and drowning), nighttime conditions, working alone, lack of training, lack of or failure to use personal flotation devices, and all-terrain vehicle speeding. Other hazards included punctures or cuts from fish teeth or spines, needlesticks, exposure to low temperatures, and bacterial and parasitic infections .

  16. Hazard classification criteria for non-nuclear facilities

    International Nuclear Information System (INIS)

    Mahn, J.A.; Walker, S.A.

    1997-01-01

    Sandia National Laboratories' Integrated Risk Management Department has developed a process for establishing the appropriate hazard classification of a new facility or operation, and thus the level of rigor required for the associated authorization basis safety documentation. This process is referred to as the Preliminary Hazard Screen. DOE Order 5481.1B contains the following hazard classification for non-nuclear facilities: high--having the potential for onsite or offsite impacts to large numbers of persons or for major impacts to the environment; moderate--having the potential for considerable onsite impacts but only minor offsite impacts to people or the environment; low--having the potential for only minor onsite and negligible offsite impacts to people or the environment. It is apparent that the application of such generic criteria is more than likely to be fraught with subjective judgment. One way to remove the subjectivity is to define health and safety classification thresholds for specific hazards that are based on the magnitude of the hazard, rather than on a qualitative assessment of possible accident consequences. This paper presents the results of such an approach to establishing a readily usable set of non-nuclear facility hazard classifications

  17. Communicating Volcanic Hazards in the North Pacific

    Science.gov (United States)

    Dehn, J.; Webley, P.; Cunningham, K. W.

    2014-12-01

    For over 25 years, effective hazard communication has been key to effective mitigation of volcanic hazards in the North Pacific. These hazards are omnipresent, with a large event happening in Alaska every few years to a decade, though in many cases can happen with little or no warning (e.g. Kasatochi and Okmok in 2008). Here a useful hazard mitigation strategy has been built on (1) a large database of historic activity from many datasets, (2) an operational alert system with graduated levels of concern, (3) scenario planning, and (4) routine checks and communication with emergency managers and the public. These baseline efforts are then enhanced in the time of crisis with coordinated talking points, targeted studies and public outreach. Scientists naturally tend to target other scientists as their audience, whereas in effective monitoring of hazards that may only occur on year to decadal timescales, details can distract from the essentially important information. Creating talking points and practice in public communications can help make hazard response a part of the culture. Promoting situational awareness and familiarity can relieve indecision and concerns at the time of a crisis.

  18. Industrial ecology: Environmental chemistry and hazardous waste

    Energy Technology Data Exchange (ETDEWEB)

    Manahan, S.E. [Univ. of Missouri, Columbia, MO (United States). Dept. of Chemistry

    1999-01-01

    Industrial ecology may be a relatively new concept -- yet it`s already proven instrumental for solving a wide variety of problems involving pollution and hazardous waste, especially where available material resources have been limited. By treating industrial systems in a manner that parallels ecological systems in nature, industrial ecology provides a substantial addition to the technologies of environmental chemistry. Stanley E. Manahan, bestselling author of many environmental chemistry books for Lewis Publishers, now examines Industrial Ecology: Environmental Chemistry and Hazardous Waste. His study of this innovative technology uses an overall framework of industrial ecology to cover hazardous wastes from an environmental chemistry perspective. Chapters one to seven focus on how industrial ecology relates to environmental science and technology, with consideration of the anthrosphere as one of five major environmental spheres. Subsequent chapters deal specifically with hazardous substances and hazardous waste, as they relate to industrial ecology and environmental chemistry.

  19. Social and political amplification of technological hazards

    International Nuclear Information System (INIS)

    Ibitayo, Olurominiyi O.; Mushkatel, Alvin; Pijawka, K. David

    2004-01-01

    Using an industrial explosion in Henderson, Nevada, as a case study, this paper examines three main issues: the efficacy of a technological hazard event in amplifying otherwise latent issues, the extent to which the hazard event can serve as a focusing event for substantive local and state policy initiatives, and the effect of fragmentation of political authority in managing technological hazards. The findings indicate that the explosion amplified several public safety issues and galvanized the public into pressing for major policy initiatives. However, notwithstanding the amplification of several otherwise latent issues, and the flurry of activities by the state and local governments, the hazard event did not seem to be an effective focusing event or trigger mechanism for substantive state and local policy initiatives. In addition, the study provides evidence of the need for a stronger nexus between political authority, land-use planning and technological hazard management

  20. Hazard analysis in uranium hexafluoride production facility

    International Nuclear Information System (INIS)

    Marin, Maristhela Passoni de Araujo

    1999-01-01

    The present work provides a method for preliminary hazard analysis of nuclear fuel cycle facilities. The proposed method identify both chemical and radiological hazards, as well as the consequences associated with accident scenarios. To illustrate the application of the method, a uranium hexafluoride production facility was selected. The main hazards are identified and the potential consequences are quantified. It was found that, although the facility handles radioactive material, the main hazards as associated with releases of toxic chemical substances such as hydrogen fluoride, anhydrous ammonia and nitric acid. It was shown that a contention bung can effectively reduce the consequences of atmospheric release of toxic materials. (author)

  1. Modeling lahar behavior and hazards

    Science.gov (United States)

    Manville, Vernon; Major, Jon J.; Fagents, Sarah A.

    2013-01-01

    Lahars are highly mobile mixtures of water and sediment of volcanic origin that are capable of traveling tens to > 100 km at speeds exceeding tens of km hr-1. Such flows are among the most serious ground-based hazards at many volcanoes because of their sudden onset, rapid advance rates, long runout distances, high energy, ability to transport large volumes of material, and tendency to flow along existing river channels where populations and infrastructure are commonly concentrated. They can grow in volume and peak discharge through erosion and incorporation of external sediment and/or water, inundate broad areas, and leave deposits many meters thick. Furthermore, lahars can recur for many years to decades after an initial volcanic eruption, as fresh pyroclastic material is eroded and redeposited during rainfall events, resulting in a spatially and temporally evolving hazard. Improving understanding of the behavior of these complex, gravitationally driven, multi-phase flows is key to mitigating the threat to communities at lahar-prone volcanoes. However, their complexity and evolving nature pose significant challenges to developing the models of flow behavior required for delineating their hazards and hazard zones.

  2. The transport of hazardous materials

    International Nuclear Information System (INIS)

    Goemmel, F.

    1987-01-01

    The rapid development of all kinds of transports has been leading to a continuously increasing number of accidents involving the release and escape of hazardous materials. The risks involved for men and the environment have to be realized and reduced to a minimum. Efforts in this field have meanwhile been accumulating an enormous quantity of rules, recommendations and regulations. They comprise, among others, both national and international rail transport, maritime transport, inland shipping, air and road transport regulations adding up to a total of about 5000 pages. The publication discusses the necessity and justification of the existing quantity of regulations, it deals with their possible simplification and modified user-oriented arrangement as well as with a possible international harmonization of regulations. Apart from giving a general survey of the transport of hazardous materials the author reviews the intensive efforts which are going into the safety of the transport of hazardous materials and points out technical and legal problems which have remained unsolved so far. The publication essentially contributes to clearing up the background, perspectives and prospects of the complex regulations controlling the transport of hazardous materials. (orig./HP) [de

  3. 75 FR 13066 - Hazardous Waste Technical Corrections and Clarifications Rule

    Science.gov (United States)

    2010-03-18

    ... hazardous waste and specific types of hazardous waste management facilities, the land disposal restrictions... requirements, the standards for owners and operators of hazardous waste treatment, storage and disposal... hazardous waste management facilities, the land disposal restrictions program, and the hazardous waste...

  4. Health Hazard Evaluations

    Science.gov (United States)

    ... May 1, 2018 Content source: National Institute for Occupational Safety and Health Division of Surveillance, Hazard Evaluation, and Field Studies ... Fear Act OIG 1600 Clifton Road Atlanta , GA 30329-4027 ...

  5. Chemical incidents resulted in hazardous substances releases in the context of human health hazards.

    OpenAIRE

    Palaszewska-Tkacz, Anna; Czerczak, Sławomir; Konieczko, Katarzyna

    2017-01-01

    Objectives: The research purpose was to analyze data concerning chemical incidents in Poland collected in 1999–2009 in terms of health hazards. Material and Methods: The data was obtained, using multimodal information technology (IT) system, from chemical incidents reports prepared by rescuers at the scene. The final analysis covered sudden events associated with uncontrolled release of hazardous chemical substances or mixtures, which may potentially lead to human exposure. Releases of uniden...

  6. 40 CFR 68.50 - Hazard review.

    Science.gov (United States)

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CHEMICAL ACCIDENT PREVENTION PROVISIONS Program 2 Prevention Program § 68.50 Hazard review. (a) The owner or operator shall conduct a review of the hazards associated with the regulated substances, process, and...

  7. Seismic hazard studies in Egypt

    Directory of Open Access Journals (Sweden)

    Abuo El-Ela A. Mohamed

    2012-12-01

    Full Text Available The study of earthquake activity and seismic hazard assessment of Egypt is very important due to the great and rapid spreading of large investments in national projects, especially the nuclear power plant that will be held in the northern part of Egypt. Although Egypt is characterized by low seismicity, it has experienced occurring of damaging earthquake effect through its history. The seismotectonic sitting of Egypt suggests that large earthquakes are possible particularly along the Gulf of Aqaba–Dead Sea transform, the Subduction zone along the Hellenic and Cyprean Arcs, and the Northern Red Sea triple junction point. In addition some inland significant sources at Aswan, Dahshour, and Cairo-Suez District should be considered. The seismic hazard for Egypt is calculated utilizing a probabilistic approach (for a grid of 0.5° × 0.5° within a logic-tree framework. Alternative seismogenic models and ground motion scaling relationships are selected to account for the epistemic uncertainty. Seismic hazard values on rock were calculated to create contour maps for four ground motion spectral periods and for different return periods. In addition, the uniform hazard spectra for rock sites for different 25 periods, and the probabilistic hazard curves for Cairo, and Alexandria cities are graphed. The peak ground acceleration (PGA values were found close to the Gulf of Aqaba and it was about 220 gal for 475 year return period. While the lowest (PGA values were detected in the western part of the western desert and it is less than 25 gal.

  8. Earthquake hazard evaluation for Switzerland

    International Nuclear Information System (INIS)

    Ruettener, E.

    1995-01-01

    Earthquake hazard analysis is of considerable importance for Switzerland, a country with moderate seismic activity but high economic values at risk. The evaluation of earthquake hazard, i.e. the determination of return periods versus ground motion parameters, requires a description of earthquake occurrences in space and time. In this study the seismic hazard for major cities in Switzerland is determined. The seismic hazard analysis is based on historic earthquake records as well as instrumental data. The historic earthquake data show considerable uncertainties concerning epicenter location and epicentral intensity. A specific concept is required, therefore, which permits the description of the uncertainties of each individual earthquake. This is achieved by probability distributions for earthquake size and location. Historical considerations, which indicate changes in public earthquake awareness at various times (mainly due to large historical earthquakes), as well as statistical tests have been used to identify time periods of complete earthquake reporting as a function of intensity. As a result, the catalog is judged to be complete since 1878 for all earthquakes with epicentral intensities greater than IV, since 1750 for intensities greater than VI, since 1600 for intensities greater than VIII, and since 1300 for intensities greater than IX. Instrumental data provide accurate information about the depth distribution of earthquakes in Switzerland. In the Alps, focal depths are restricted to the uppermost 15 km of the crust, whereas below the northern Alpine foreland earthquakes are distributed throughout the entire crust (30 km). This depth distribution is considered in the final hazard analysis by probability distributions. (author) figs., tabs., refs

  9. Potential hazards in smoke-flavored fish

    Science.gov (United States)

    Lin, Hong; Jiang, Jie; Li, Donghua

    2008-08-01

    Smoking is widely used in fish processing for the color and flavor. Smoke flavorings have evolved as a successful alternative to traditional smoking. The hazards of the fish products treated by liquid-smoking process are discussed in this review. The smoke flavoring is one important ingredient in the smoke-flavored fish. This paper gives the definition of smoke flavorings and the hazard of polycyclic aromatic hydrocarbons (PAHs) residue in the smoke flavorings on the market. It gives also an assessment of chemical hazards such as carcinogenic PAHs, especially Benzo-[ a]pyrene, as well as biological hazards such as Listeria monocytogenes, Clostridium botulinum, histamine and parasites in smoke-flavored fish. The limitations in regulations or standards are discussed. Smoke flavored fish have lower content of PAHs as compared with the traditional smoking techniques if the PAHs residue in smoke flavorings is controlled by regulations or standards.

  10. Evaluation of an active learning module to teach hazard and risk in Hazard Analysis and Critical Control Points (HACCP) classes.

    Science.gov (United States)

    Oyarzabal, Omar A; Rowe, Ellen

    2017-04-01

    The terms hazard and risk are significant building blocks for the organization of risk-based food safety plans. Unfortunately, these terms are not clear for some personnel working in food manufacturing facilities. In addition, there are few examples of active learning modules for teaching adult participants the principles of hazard analysis and critical control points (HACCP). In this study, we evaluated the effectiveness of an active learning module to teach hazard and risk to participants of HACCP classes provided by the University of Vermont Extension in 2015 and 2016. This interactive module is comprised of a questionnaire; group playing of a dice game that we have previously introduced in the teaching of HACCP; the discussion of the terms hazard and risk; and a self-assessment questionnaire to evaluate the teaching of hazard and risk. From 71 adult participants that completed this module, 40 participants (56%) provided the most appropriate definition of hazard, 19 participants (27%) provided the most appropriate definition of risk, 14 participants (20%) provided the most appropriate definitions of both hazard and risk, and 23 participants (32%) did not provide an appropriate definition for hazard or risk. Self-assessment data showed an improvement in the understanding of these terms (P active learning modules to teach food safety classes. This study suggests that active learning helps food personnel better understand important food safety terms that serve as building blocks for the understanding of more complex food safety topics.

  11. 75 FR 17111 - Hazardous Materials Regulations: Combustible Liquids

    Science.gov (United States)

    2010-04-05

    ... the probability and quantity of a hazardous material release. Under the HMR, hazardous materials are... present during transportation. The HMR specify appropriate packaging and handling requirements for... hazardous materials in commerce. During our regulatory review process, we look for opportunities that may...

  12. Earthquake hazard assessment and small earthquakes

    International Nuclear Information System (INIS)

    Reiter, L.

    1987-01-01

    The significance of small earthquakes and their treatment in nuclear power plant seismic hazard assessment is an issue which has received increased attention over the past few years. In probabilistic studies, sensitivity studies showed that the choice of the lower bound magnitude used in hazard calculations can have a larger than expected effect on the calculated hazard. Of particular interest is the fact that some of the difference in seismic hazard calculations between the Lawrence Livermore National Laboratory (LLNL) and Electric Power Research Institute (EPRI) studies can be attributed to this choice. The LLNL study assumed a lower bound magnitude of 3.75 while the EPRI study assumed a lower bound magnitude of 5.0. The magnitudes used were assumed to be body wave magnitudes or their equivalents. In deterministic studies recent ground motion recordings of small to moderate earthquakes at or near nuclear power plants have shown that the high frequencies of design response spectra may be exceeded. These exceedances became important issues in the licensing of the Summer and Perry nuclear power plants. At various times in the past particular concerns have been raised with respect to the hazard and damage potential of small to moderate earthquakes occurring at very shallow depths. In this paper a closer look is taken at these issues. Emphasis is given to the impact of lower bound magnitude on probabilistic hazard calculations and the historical record of damage from small to moderate earthquakes. Limited recommendations are made as to how these issues should be viewed

  13. Treatment of hazardous metals by in situ vitrification

    International Nuclear Information System (INIS)

    Koegler, S.S.; Buelt, J.L.

    1989-02-01

    Soils contaminated with hazardous metals are a significant problem to many Defense Program sites. Contaminated soils have ranked high in assessments of research and development needs conducted by the Hazardous Waste Remedial Action Program (HAZWRAP) in FY 1988 and FY 1989. In situ vitrification (ISV) is an innovative technology suitable for stabilizing soils contaminated with radionuclides and hazardous materials. Since ISV treats the material in place, it avoids costly and hazardous preprocessing exhumation of waste. In situ vitrification was originally developed for immobilizing radioactive (primarily transuranic) soil constituents. Tests indicate that it is highly useful also for treating other soil contaminants, including hazardous metals. The ISV process produces an environmentally acceptable, highly durable glasslike product. In addition, ISV includes an efficient off-gas treatment system that eliminates noxious gaseous emissions and generates minimal hazardous byproducts. This document reviews the Technical Basis of this technology. 5 refs., 7 figs., 2 tabs

  14. Causal Mediation Analysis for the Cox Proportional Hazards Model with a Smooth Baseline Hazard Estimator.

    Science.gov (United States)

    Wang, Wei; Albert, Jeffrey M

    2017-08-01

    An important problem within the social, behavioral, and health sciences is how to partition an exposure effect (e.g. treatment or risk factor) among specific pathway effects and to quantify the importance of each pathway. Mediation analysis based on the potential outcomes framework is an important tool to address this problem and we consider the estimation of mediation effects for the proportional hazards model in this paper. We give precise definitions of the total effect, natural indirect effect, and natural direct effect in terms of the survival probability, hazard function, and restricted mean survival time within the standard two-stage mediation framework. To estimate the mediation effects on different scales, we propose a mediation formula approach in which simple parametric models (fractional polynomials or restricted cubic splines) are utilized to approximate the baseline log cumulative hazard function. Simulation study results demonstrate low bias of the mediation effect estimators and close-to-nominal coverage probability of the confidence intervals for a wide range of complex hazard shapes. We apply this method to the Jackson Heart Study data and conduct sensitivity analysis to assess the impact on the mediation effects inference when the no unmeasured mediator-outcome confounding assumption is violated.

  15. Occupational Health Hazards in ICU Nursing Staff

    Directory of Open Access Journals (Sweden)

    Helena Eri Shimizu

    2010-01-01

    Full Text Available This study analyzed occupational health hazards for Intensive Care Unit (ICU nurses and nursing technicians, comparing differences in the number and types of hazards which occur at the beginning and end of their careers. A descriptive cross-sectional study was carried out with 26 nurses and 96 nursing technicians from a public hospital in the Federal District, Brazil. A Likert-type work-related symptom scale (WRSS was used to evaluate the presence of physical, psychological, and social risks. Data were analyzed with the use of the SPSS, version 12.0, and the Kruskal-Wallis test for statistical significance and differences in occupational health hazards at the beginning and at the end of the workers' careers. As a workplace, ICUs can cause work health hazards, mostly physical, to nurses and nursing technicians due to the frequent use of physical energy and strength to provide care, while psychological and social hazards occur to a lesser degree.

  16. Estimating hurricane hazards using a GIS system

    Directory of Open Access Journals (Sweden)

    A. Taramelli

    2008-08-01

    Full Text Available This paper develops a GIS-based integrated approach to the Multi-Hazard model method, with reference to hurricanes. This approach has three components: data integration, hazard assessment and score calculation to estimate elements at risk such as affected area and affected population. First, spatial data integration issues within a GIS environment, such as geographical scales and data models, are addressed. Particularly, the integration of physical parameters and population data is achieved linking remotely sensed data with a high resolution population distribution in GIS. In order to assess the number of affected people, involving heterogeneous data sources, the selection of spatial analysis units is basic. Second, specific multi-hazard tasks, such as hazard behaviour simulation and elements at risk assessment, are composed in order to understand complex hazard and provide support for decision making. Finally, the paper concludes that the integrated approach herein presented can be used to assist emergency management of hurricane consequences, in theory and in practice.

  17. Seismic hazard in the eastern United States

    Science.gov (United States)

    Mueller, Charles; Boyd, Oliver; Petersen, Mark D.; Moschetti, Morgan P.; Rezaeian, Sanaz; Shumway, Allison

    2015-01-01

    The U.S. Geological Survey seismic hazard maps for the central and eastern United States were updated in 2014. We analyze results and changes for the eastern part of the region. Ratio maps are presented, along with tables of ground motions and deaggregations for selected cities. The Charleston fault model was revised, and a new fault source for Charlevoix was added. Background seismicity sources utilized an updated catalog, revised completeness and recurrence models, and a new adaptive smoothing procedure. Maximum-magnitude models and ground motion models were also updated. Broad, regional hazard reductions of 5%–20% are mostly attributed to new ground motion models with stronger near-source attenuation. The revised Charleston fault geometry redistributes local hazard, and the new Charlevoix source increases hazard in northern New England. Strong increases in mid- to high-frequency hazard at some locations—for example, southern New Hampshire, central Virginia, and eastern Tennessee—are attributed to updated catalogs and/or smoothing.

  18. OVERVIEW OF HAZARDOUS/TOXIC WASTE INCINERATION

    Science.gov (United States)

    Effective hazardous/toxic waste disposal and safe dumpsite cleanup are two of EPA's major missions in the 1980s. Incineration has been recognized as a very efficient process to destroy the hazardous wastes generated by industry or by the dumpsite remediations. The paper provides ...

  19. Evaluation of an active learning module to teach hazard and risk in Hazard Analysis and Critical Control Points (HACCP classes

    Directory of Open Access Journals (Sweden)

    Omar A. Oyarzabal

    2017-04-01

    Full Text Available The terms hazard and risk are significant building blocks for the organization of risk-based food safety plans. Unfortunately, these terms are not clear for some personnel working in food manufacturing facilities. In addition, there are few examples of active learning modules for teaching adult participants the principles of hazard analysis and critical control points (HACCP. In this study, we evaluated the effectiveness of an active learning module to teach hazard and risk to participants of HACCP classes provided by the University of Vermont Extension in 2015 and 2016. This interactive module is comprised of a questionnaire; group playing of a dice game that we have previously introduced in the teaching of HACCP; the discussion of the terms hazard and risk; and a self-assessment questionnaire to evaluate the teaching of hazard and risk. From 71 adult participants that completed this module, 40 participants (56% provided the most appropriate definition of hazard, 19 participants (27% provided the most appropriate definition of risk, 14 participants (20% provided the most appropriate definitions of both hazard and risk, and 23 participants (32% did not provide an appropriate definition for hazard or risk. Self-assessment data showed an improvement in the understanding of these terms (P < 0.05. Thirty participants (42% stated that the most valuable thing they learned with this interactive module was the difference between hazard and risk, and 40 participants (65% responded that they did not attend similar presentations in the past. The fact that less than one third of the participants answered properly to the definitions of hazard and risk at baseline is not surprising. However, these results highlight the need for the incorporation of modules to discuss these important food safety terms and include more active learning modules to teach food safety classes. This study suggests that active learning helps food personnel better understand important

  20. Radiation hazard control report

    International Nuclear Information System (INIS)

    Morishima, Hiroshige; Koga, Taeko; Hisanaga, Saemi; Miki, Ryota; Kawai, Hiroshi; Aoki, Yutaka; Sone, Koji; Okada, Hirokazu

    1990-01-01

    The report describes the radiation hazard control activities performed at the Atomic Energy Research Institute of Kinki University, Japan, during the one-year period from April 1989 to March 1990. Personal radiation hazard control is outlined first focusing on results of physical examination and data of personal exposure dose equivalent. Radiation control in laboratory is then described. Dose equivalent at various places is discussed on the basis of monthly total dose equivalent measured on film badges, measurements made by TLD, and observations made through a continuous radiations monitoring system. The concentration of radiations in air and water is discussed focusing on their measured concentrations in air at the air outlets of tracer/accelerator facilities, and radioactivity in waste water sampled in the reactor facilities and tracer/accelerator facilities. Another discussion is made on the surface contamination density over the floors, draft systems, sink surface, etc. Concerning outdoor radiation hazard control, furthermore, TLD measurements of environmental gamma-rays, data on total gamma-ray radioactivity in environmental samples, and analysis of gamma-ray emitting nuclides in environmental samples are described and discussed. (N.K.)

  1. 78 FR 52955 - Changes in Flood Hazard Determinations

    Science.gov (United States)

    2013-08-27

    ... community that the Deputy Associate Administrator for Mitigation reconsider the changes. The flood hazard...; Internal Agency Docket No. FEMA-B-1349] Changes in Flood Hazard Determinations AGENCY: Federal Emergency... modification of Base Flood Elevations (BFEs), base flood depths, Special Flood Hazard Area (SFHA) boundaries or...

  2. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  3. New York hazardous substances emergency events surveillance: learning from hazardous substances releases to improve safety

    International Nuclear Information System (INIS)

    Welles, Wanda Lizak; Wilburn, Rebecca E.; Ehrlich, Jenny K.; Floridia, Christina M.

    2004-01-01

    Since 1993, the New York State Department of Health, funded by the Agency for Toxic Substances and Disease Registry, has collected data about non-petroleum hazardous substances releases through the Hazardous Substances Emergency Events Surveillance (NYHSEES) project. This study investigates risk factors for hazardous substances releases that may result in public health consequences such as injury or reported health effects. The 6428 qualifying events that occurred during the 10-year-period of 1993-2002 involved 8838 hazardous substances, 842 evacuations, more than 75,419 people evacuated, and more than 3120 people decontaminated. These events occurred both at fixed facilities (79%) and during transport (21%). The causative factors most frequently contributing to reported events were equipment failure (39%) and human error (33%). Five of the 10 chemicals most frequently associated with injuries were also among the 10 chemicals most frequently involved in reported events: sulfuric acid, hydrochloric acid, ammonia, sodium hypochlorite, and carbon monoxide. The chemical categories most frequently associated with events, and with events with adverse health effects were volatile organic compounds (VOCs) and solvents, and acids. Events with releases of hazardous substances were associated with injuries to 3089 people including employees (37%), responders (12%), the general public (29%) and students (22%). The most frequently reported adverse health effects were respiratory irritation, headache, and nausea or vomiting. Most of the injured were transported to the hospital, treated, and released (55%) or treated at the scene (29%). These data have been used for emergency response training, planning, and prevention activities to reduce morbidity and mortality from future events

  4. Hazardous materials routing - risk management of mismanagement

    International Nuclear Information System (INIS)

    Glickman, T.S.

    1988-01-01

    Along with emergency planning and preparedness, the placement of restrictions on routing has become an increasingly popular device for managing the highway and rail risks of hazardous materials transportation. Federal studies conducted in 1985 indicate that at that time there were 513 different state and local restrictions on the routing of hazardous materials for these two modes of transportation, and that there were 136 state and local notification requirements, that is, restrictions that take the form of a statute or ordinance requiring advance warning or periodic reporting about hazardous materials shipments. Routing restrictions also take the form of prohibiting the use of road, a tunnel, or a bridge for a specified set of hazardous materials

  5. 13 CFR 120.174 - Earthquake hazards.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Earthquake hazards. 120.174... Applying to All Business Loans Requirements Imposed Under Other Laws and Orders § 120.174 Earthquake..., the construction must conform with the “National Earthquake Hazards Reduction Program (“NEHRP...

  6. A comprehensive approach to managing hazardous materials

    International Nuclear Information System (INIS)

    Donovan, A.

    1990-01-01

    An increased emphasis on the need for environmental protection indicates that engineers must now consider the disposition of unused hazardous materials as waste. Before specifying and ordering materials, the engineer must consider the impact of the Resource Conservation and Recovery Act (RCRA) and the Occupational Safety and Health Administration's (OSHA's) Hazard Communication Standard. Many commonly used materials such as paint, solvents, glues, and sealants fall under the requirements of these regulations. This paper presents a plant to manage hazardous materials at the US Department of Energy's (DOE's) Waste Isolation Pilot Plant (WIPP), which is managed and operated by Westinghouse Electric Corporation. The basic elements of the plan are training, hazard communication, storage and handling, tracking, and disposal. Steps to be taken to develop the plan are outlined, problems and successes are addressed, and interactions among all affected departments are identified. The benefits of an organized and comprehensive approach to managing hazardous materials are decreased worker injuries, reduction of accidental releases, minimization of waste, and compliance with federal, state, and local safety and environmental laws. In summary, the benefits of an organized program for the management of hazardous materials include compliance with the Environmental Protection Agency's (EPA's) requirements, demonstration of Westinghouse's role as a responsible corporate entity, and reduction of waste management costs

  7. 30 CFR 56.16004 - Containers for hazardous materials.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Containers for hazardous materials. 56.16004 Section 56.16004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 56.16004 Containers for hazardous materials. Containers holding hazardous materials...

  8. 30 CFR 57.16004 - Containers for hazardous materials.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Containers for hazardous materials. 57.16004 Section 57.16004 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR METAL AND... Storage and Handling § 57.16004 Containers for hazardous materials. Containers holding hazardous materials...

  9. 40 CFR 262.60 - Imports of hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Imports of hazardous waste. 262.60 Section 262.60 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS APPLICABLE TO GENERATORS OF HAZARDOUS WASTE Imports of Hazardous Waste § 262.60 Imports...

  10. 30 CFR 47.53 - Alternative for hazardous waste.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Alternative for hazardous waste. 47.53 Section... waste. If the mine produces or uses hazardous waste, the operator must provide potentially exposed miners and designated representatives access to available information for the hazardous waste that— (a...

  11. Hazards to nuclear plants from surface traffic accidents

    International Nuclear Information System (INIS)

    Hornyik, K.

    1975-01-01

    Analytic models have been developed for evaluating hazards to nuclear plants from hazardous-materials accidents in the vicinity of the plant. In particular, these models permit the evaluation of hazards from such accidents occurring on surface traffic routes near the plant. The analysis uses statistical information on accident rates, traffic frequency, and cargo-size distribution along with parameters describing properties of the hazardous cargo, plant design, and atmospheric conditions, to arrive at a conservative estimate of the annual probability of a catastrophic event. Two of the major effects associated with hazardous-materials accidents, explosion and release of toxic vapors, are treated by a common formalism which can be readily applied to any given case by means of a graphic procedure. As an example, for a typical case it is found that railroad shipments of chlorine in 55-ton tank cars constitute a greater hazard to a nearby nuclear plant than equally frequent rail shipments of explosives in amounts of 10 tons. 11 references. (U.S.)

  12. Playing against nature: improving earthquake hazard mitigation

    Science.gov (United States)

    Stein, S. A.; Stein, J.

    2012-12-01

    The great 2011 Tohoku earthquake dramatically demonstrated the need to improve earthquake and tsunami hazard assessment and mitigation policies. The earthquake was much larger than predicted by hazard models, and the resulting tsunami overtopped coastal defenses, causing more than 15,000 deaths and $210 billion damage. Hence if and how such defenses should be rebuilt is a challenging question, because the defences fared poorly and building ones to withstand tsunamis as large as March's is too expensive,. A similar issue arises along the Nankai Trough to the south, where new estimates warning of tsunamis 2-5 times higher than in previous models raise the question of what to do, given that the timescale on which such events may occur is unknown. Thus in the words of economist H. Hori, "What should we do in face of uncertainty? Some say we should spend our resources on present problems instead of wasting them on things whose results are uncertain. Others say we should prepare for future unknown disasters precisely because they are uncertain". Thus society needs strategies to mitigate earthquake and tsunami hazards that make economic and societal sense, given that our ability to assess these hazards is poor, as illustrated by highly destructive earthquakes that often occur in areas predicted by hazard maps to be relatively safe. Conceptually, we are playing a game against nature "of which we still don't know all the rules" (Lomnitz, 1989). Nature chooses tsunami heights or ground shaking, and society selects the strategy to minimize the total costs of damage plus mitigation costs. As in any game of chance, we maximize our expectation value by selecting the best strategy, given our limited ability to estimate the occurrence and effects of future events. We thus outline a framework to find the optimal level of mitigation by balancing its cost against the expected damages, recognizing the uncertainties in the hazard estimates. This framework illustrates the role of the

  13. Eastern US seismic hazard characterization update

    International Nuclear Information System (INIS)

    Savy, J.B.; Boissonnade, A.C.; Mensing, R.W.; Short, C.M.

    1993-06-01

    In January 1989, LLNL published the results of a multi-year project, funded by NRC, on estimating seismic hazard at nuclear plant sites east of the Rockies. The goal of this study was twofold: to develop a good central estimate (median) of the seismic hazard and to characterize the uncertainty in the estimates of this hazard. In 1989, LLNL was asked by DOE to develop site specific estimates of the seismic hazard at the Savannah River Site (SRS) in South Carolina as part of the New Production Reactor (NPR) project. For the purpose of the NPR, a complete review of the methodology and of the data acquisition process was performed. Work done under the NPR project has shown that first order improvement in the estimates of the uncertainty (i.e., lower mean hazard values) could be easily achieved by updating the modeling of the seismicity and ground motion attenuation uncertainty. To this effect, NRC sponsored LLNL to perform a reelicitation to update the seismicity and ground motion experts' inputs and to revise methods to combine seismicity and ground motion inputs in the seismic hazard analysis for nuclear power plant sites east of the Rocky Mountains. The objective of the recent study was to include the first order improvements that reflect the latest knowledge in seismicity and ground motion modeling and produce an update of all the hazard results produced in the 1989 study. In particular, it had been demonstrated that eliciting seismicity information in terms of rates of earthquakes rather than a- and b-values, and changing the elicitation format to a one-on-one interview, improved our ability to express the uncertainty of earthquake rates of occurrence at large magnitudes. Thus, NRC sponsored this update study to refine the model of uncertainty, and to re-elicitate of the experts' interpretations of the zonation and seismicity, as well as to reelicitate the ground motion models, based on current state of knowledge

  14. Occupational Health Hazards among Healthcare Workers in Kampala, Uganda

    Directory of Open Access Journals (Sweden)

    Rawlance Ndejjo

    2015-01-01

    Full Text Available Objective. To assess the occupational health hazards faced by healthcare workers and the mitigation measures. Methods. We conducted a cross-sectional study utilizing quantitative data collection methods among 200 respondents who worked in 8 major health facilities in Kampala. Results. Overall, 50.0% of respondents reported experiencing an occupational health hazard. Among these, 39.5% experienced biological hazards while 31.5% experienced nonbiological hazards. Predictors for experiencing hazards included not wearing the necessary personal protective equipment (PPE, working overtime, job related pressures, and working in multiple health facilities. Control measures to mitigate hazards were availing separate areas and containers to store medical waste and provision of safety tools and equipment. Conclusion. Healthcare workers in this setting experience several hazards in their workplaces. Associated factors include not wearing all necessary protective equipment, working overtime, experiencing work related pressures, and working in multiple facilities. Interventions should be instituted to mitigate the hazards. Specifically PPE supply gaps, job related pressures, and complacence in adhering to mitigation measures should be addressed.

  15. Flood Hazard Area

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  16. Flood Hazard Boundaries

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — The National Flood Hazard Layer (NFHL) data incorporates all Digital Flood Insurance Rate Map(DFIRM) databases published by FEMA, and any Letters Of Map Revision...

  17. Hazards evaluation of plutonium metal opening and stabilization

    International Nuclear Information System (INIS)

    JOHNSON, L.E.

    1999-01-01

    Hazards evaluation is the analysis of the significance of hazardous situations associated with an activity OK process. The HE used qualitative techniques of Hazard and Operability (HazOp) analysis and What-If analysis to identify those elements of handling and thermal stabilization processing that could lead to accidents

  18. Seismic hazard assessment in the Ibero-Maghreb region

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, M.J.; Garcia fernandez, M. [Consejo Superior de Investigaciones Cientifcas, Barcelona (Spain). Inst. of Earth Sciences; GSAHP Ibero-Maghreb Working Group

    1999-12-01

    The paper illustrates the contribution of the Ibero-Maghreb region to the global GSHAP (Global Seismic Hazard Assessment Program) map: for the first time, a map of regional hazard source zones is presented and agreement on a common procedure for hazard computation in the region has been achieved.

  19. Ultra-violet radiation - hazard in workplaces? (part I)

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali

    2003-01-01

    Not many workers are aware that apart from chemicals, physical agents, noise and machines which are known to be hazardous in workplaces, there exist another source of hazard which is equally important to be recognised and respected, that is hazard due to ultrviolet radiation (UV). This article presents some basics information on UV hazard and various protective measures that could be taken so that any workplace where UV source are present can be ensured safe for general public to enter and for workers to work in. (Author)

  20. FEMA Hazard Mitigation Grants Program Summary - API

    Data.gov (United States)

    Department of Homeland Security — The Hazard Mitigation Grant Program (HMGP, CFDA Number: 97.039) provides grants to States and local governments to implement long-term hazard mitigation measures...

  1. Implementing DOE guidance for hazards assessments at Rocky Flats Plant

    International Nuclear Information System (INIS)

    Zimmerman, G.A.

    1993-01-01

    Hazards Assessments are performed for a variety of activities and facilities at Rocky Flats Plant. Prior to 1991, there was no guidance for performing Hazards Assessments. Each organization that performed Hazards Assessments used its own methodology with no attempt at standardization. In 1991, DOE published guidelines for the performance of Hazards Assessments for Emergency Planning (DOE-EPG-5500.1, ''Guidance for a Hazards Assessment Methodology''). Subsequently, in 1992, DOE published a standard for the performance of Hazards Assessments (DOE-STD-1027-92, ''Hazard Categorization and Accident Analysis, Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports''). Although these documents are a step in the direction of standardization, there remains a great deal of interpretation and subjective implementation in the performance of Hazards Assessments. Rocky Flats Plant has initiated efforts to develop a uniform and standard process to be used for Hazards Assessments

  2. Afghanistan Multi-Risk Assessment to Natural Hazards

    Science.gov (United States)

    Diermanse, Ferdinand; Daniell, James; Pollino, Maurizio; Glover, James; Bouwer, Laurens; de Bel, Mark; Schaefer, Andreas; Puglisi, Claudio; Winsemius, Hessel; Burzel, Andreas; Ammann, Walter; Aliparast, Mojtaba; Jongman, Brenden; Ranghieri, Federica; Fallesen, Ditte

    2017-04-01

    The geographical location of Afghanistan and years of environmental degradation in the country make Afghanistan highly prone to intense and recurring natural hazards such as flooding, earthquakes, snow avalanches, landslides, and droughts. These occur in addition to man-made disasters resulting in the frequent loss of live, livelihoods, and property. Since 1980, disasters caused by natural hazards have affected 9 million people and caused over 20,000 fatalities in Afghanistan. The creation, understanding and accessibility of hazard, exposure, vulnerability and risk information is key for effective management of disaster risk. This is especially true in Afghanistan, where reconstruction after recent natural disasters and military conflicts is on-going and will continue over the coming years. So far, there has been limited disaster risk information produced in Afghanistan, and information that does exist typically lacks standard methodology and does not have uniform geo-spatial coverage. There are currently no available risk assessment studies that cover all major natural hazards in Afghanistan, which can be used to assess the costs and benefits of different resilient reconstruction and disaster risk reduction strategies. As a result, the Government of Afghanistan has limited information regarding current and future disaster risk and the effectiveness of policy options on which to base their reconstruction and risk reduction decisions. To better understand natural hazard and disaster risk, the World Bank and Global Facility for Disaster Reduction and Recovery (GFDRR) are supporting the development of new fluvial flood, flash flood, drought, landslide, avalanche and seismic risk information in Afghanistan, as well as a first-order analysis of the costs and benefits of resilient reconstruction and risk reduction strategies undertaken by the authors. The hazard component is the combination of probability and magnitude of natural hazards. Hazard analyses were carried out

  3. Tsunami hazard

    International Nuclear Information System (INIS)

    2013-01-01

    Tohoku Earthquake Tsunami on 11 March, 2011 has led the Fukushima Daiichi nuclear power plant to a serious accident, which highlighted a variety of technical issues such as a very low design tsunami height and insufficient preparations in case a tsunami exceeding the design tsunami height. Lessons such as to take measures to be able to maintain the important safety features of the facility for tsunamis exceeding design height and to implement risk management utilizing Probabilistic Safety Assessment are shown. In order to implement the safety assessment on nuclear power plants across Japan accordingly to the back-fit rule, Nuclear Regulatory Commission will promulgate/execute the New Safety Design Criteria in July 2013. JNES has positioned the 'enhancement of probabilistic tsunami hazard assessment' as highest priority issue and implemented in order to support technically the Nuclear Regulatory Authority in formulating the new Safety Design Criteria. Findings of the research had reflected in the 'Technical Review Guidelines for Assessing Design Tsunami Height based on tsunami hazards'. (author)

  4. A complete electrical hazard classification system and its application

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Lloyd B [Los Alamos National Laboratory; Cartelli, Laura [Los Alamos National Laboratory

    2009-01-01

    The Standard for Electrical Safety in the Workplace, NFPA 70E, and relevant OSHA electrical safety standards evolved to address the hazards of 60-Hz power that are faced primarily by electricians, linemen, and others performing facility and utility work. This leaves a substantial gap in the management of electrical hazards in Research and Development (R&D) and specialized high voltage and high power equipment. Examples include lasers, accelerators, capacitor banks, electroplating systems, induction and dielectric heating systems, etc. Although all such systems are fed by 50/60 Hz alternating current (ac) power, we find substantial use of direct current (dc) electrical energy, and the use of capacitors, inductors, batteries, and radiofrequency (RF) power. The electrical hazards of these forms of electricity and their systems are different than for 50160 Hz power. Over the past 10 years there has been an effort to develop a method of classifying all of the electrical hazards found in all types of R&D and utilization equipment. Examples of the variation of these hazards from NFPA 70E include (a) high voltage can be harmless, if the available current is sufficiently low, (b) low voltage can be harmful if the available current/power is high, (c) high voltage capacitor hazards are unique and include severe reflex action, affects on the heart, and tissue damage, and (d) arc flash hazard analysis for dc and capacitor systems are not provided in existing standards. This work has led to a comprehensive electrical hazard classification system that is based on various research conducted over the past 100 years, on analysis of such systems in R&D, and on decades of experience. Initially, national electrical safety codes required the qualified worker only to know the source voltage to determine the shock hazard. Later, as arc flash hazards were understood, the fault current and clearing time were needed. These items are still insufficient to fully characterize all types of

  5. Coastal Hazards Impacts And Interventions

    Directory of Open Access Journals (Sweden)

    Rosanna D. Gonzales

    2017-10-01

    Full Text Available Communitys participation in the activities like the preparation and creation of historical timeline. resource and hazard mapping as well as vulnerability assessment matrix VAM are effective tools in determining hazards impacts and interventions of a certain locality. The most common hazards are typhoons saltwater intrusion floods and drought. Data were collected through focus group discussions FGDs from respondents along coastal areas. Findings revealed that natural calamities had great impact to livelihood properties and health. The damaged business operations fishing and agricultural livelihood led to loss of income likewise the sources of water were also contaminated. Planned interventions include launching of periodic education and awareness program creation of evacuation centers and relocation sites rescue centers installation of deep well water pumps and irrigation systems solid waste management drainage and sea walls construction canal rehabilitationdredging tree planting and alternative livelihood programs.

  6. Fire and explosion hazards of refractory compound powders

    International Nuclear Information System (INIS)

    Krivtsov, V.A.; Kostina, E.S.

    1978-01-01

    Data on fire and explosion hazards of refractory compound powders (HfC, ZrC,LaB 6 , ZrN, etc.) are presented. It is shown that refractory compounds can be fire- and exposion hazardous in various degrees. Qualitative and quantitative estimations of one of fire-hazard characteristics - smoldering temperature - are presented

  7. Supplemental Hazard Analysis and Risk Assessment - Hydrotreater

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-01

    A supplemental hazard analysis was conducted and quantitative risk assessment performed in response to an independent review comment received by the Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy Pacific Northwest Field Office (PNSO) against the Hydrotreater/Distillation Column Hazard Analysis Report issued in April 2013. The supplemental analysis used the hazardous conditions documented by the previous April 2013 report as a basis. The conditions were screened and grouped for the purpose of identifying whether additional prudent, practical hazard controls could be identified, using a quantitative risk evaluation to assess the adequacy of the controls and establish a lower level of concern for the likelihood of potential serious accidents. Calculations were performed to support conclusions where necessary.

  8. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2002-01-01

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  9. Ultra-violet radiation: hazard in workplaces? (part II)

    International Nuclear Information System (INIS)

    Mohd Yusof Mohd Ali

    2003-01-01

    Not many workers are aware that apart from chemicals, physical agents, noise and machines which are known to be hazardous in workplaces, there exist another source of hazard which is equally important to be recognised and respected, that is hazard due to ultrviolet radiation (UV). This is the continuation of part I, which was discussed in the later issue. In this part, hazard of ultraviolet radiation were briefly discused i.e. effects on the skin and the eyes. Other subjects discussed are exposure limits, how to assess the radiation, protection against ultraviolet radiation

  10. 40 CFR 68.67 - Process hazard analysis.

    Science.gov (United States)

    2010-07-01

    ...) Hazard and Operability Study (HAZOP); (5) Failure Mode and Effects Analysis (FMEA); (6) Fault Tree...) The hazards of the process; (2) The identification of any previous incident which had a likely...

  11. The use of animals as a surveillance tool for monitoring environmental health hazards, human health hazards and bioterrorism.

    Science.gov (United States)

    Neo, Jacqueline Pei Shan; Tan, Boon Huan

    2017-05-01

    This review discusses the utilization of wild or domestic animals as surveillance tools for monitoring naturally occurring environmental and human health hazards. Besides providing early warning to natural hazards, animals can also provide early warning to societal hazards like bioterrorism. Animals are ideal surveillance tools to humans because they share the same environment as humans and spend more time outdoors than humans, increasing their exposure risk. Furthermore, the biologically compressed lifespans of some animals may allow them to develop clinical signs more rapidly after exposure to specific pathogens. Animals are an excellent channel for monitoring novel and known pathogens with outbreak potential given that more than 60 % of emerging infectious diseases in humans originate as zoonoses. This review attempts to highlight animal illnesses, deaths, biomarkers or sentinel events, to remind human and veterinary public health programs that animal health can be used to discover, monitor or predict environmental health hazards, human health hazards, or bioterrorism. Lastly, we hope that this review will encourage the implementation of animals as a surveillance tool by clinicians, veterinarians, ecosystem health professionals, researchers and governments. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. More About Hazard-Response Robot For Combustible Atmospheres

    Science.gov (United States)

    Stone, Henry W.; Ohm, Timothy R.

    1995-01-01

    Report presents additional information about design and capabilities of mobile hazard-response robot called "Hazbot III." Designed to operate safely in combustible and/or toxic atmosphere. Includes cameras and chemical sensors helping human technicians determine location and nature of hazard so human emergency team can decide how to eliminate hazard without approaching themselves.

  13. 49 CFR 172.555 - POISON INHALATION HAZARD placard.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false POISON INHALATION HAZARD placard. 172.555 Section... REQUIREMENTS, AND SECURITY PLANS Placarding § 172.555 POISON INHALATION HAZARD placard. (a) Except for size and color, the POISON INHALATION HAZARD placard must be as follows: ER22JY97.025 (b) In addition to...

  14. DOUBLE ORAL AUCTIONS AND TENDENCIES TOWARD MORAL HAZARD

    Directory of Open Access Journals (Sweden)

    Kubák Matúš

    2012-12-01

    Full Text Available Moral hazard can be found almost in all fields of human activities. Moral hazard is a change of economic agent´s behaviour when circumstances change. Theoretical background of moral hazard issue in economics dates back to 1970s. Recognition of moral hazard started by published studies of Pauly (Pauly 1968, Zeckhauser (Zeckhauser 1970, Arrow (Arrow 1971 and Mirrlees (Mirrlees 1999. Current situation of the global economy (fall 2011 was caused largely by moral hazard executed by authorities such as governments, institutions, ranking agencies, banks, chief executive officers, politicians etc. Efforts to stabilise Eurozone, governments bail-outs to banks, governments purchases of toxic assets, rescue packages given to the bank sector and big companies, which are “too big to fail”, rescue packages given to debtor nations, golden parachutes given to employees which are leaving companies are nothing but the manifestations of moral hazard in economic and politic reality. This paper uses an economic experiment with 96 subjects to examine the tendencies of economic agents towards moral hazard. Design of the experiment allowed simulating third party’s intervention on a market (e.g. state funding accelerating purchase, health care insurance function on the market with health care. Obtained data are statistically evaluated and it is shown, that economic agents incline to moral hazard in case, when it is possible. Study shows how rational agents became less rational in terms of average market price, after intervention of a third party on the market. Third party intervention raises the average market prices presenting a manifestation of moral hazard. It is shown, that under given assumptions, even rational economic agents diverge from rational and market efficient strategies and behave irresponsibly. Despite generally negative attitude towards moral hazard, it is shown that economic agents have tendencies to behave in such a manner

  15. Earthquake Hazard Analysis Methods: A Review

    Science.gov (United States)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  16. A ¤flexible additive multiplicative hazard model

    DEFF Research Database (Denmark)

    Martinussen, T.; Scheike, T. H.

    2002-01-01

    Aalen's additive model; Counting process; Cox regression; Hazard model; Proportional excess harzard model; Time-varying effect......Aalen's additive model; Counting process; Cox regression; Hazard model; Proportional excess harzard model; Time-varying effect...

  17. Natural phenomena hazards, Hanford Site, south central Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1996-01-01

    This document presents the natural phenomena hazard (NPH) loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, at the Hanford Site in south-central Washington State. The purpose of this document is twofold: (1) summarize the NPH that are important to the design and evaluation of structures, systems, and components at the Hanford Site; (2) develop the appropriate natural phenomena loads for use in the implementation of DOE Order 5480.28. The supporting standards, DOE-STD-1020-94, Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities (DOE 1994a); DOE-STD-1022-94, Natural Phenomena Hazards Site Characteristics Criteria (DOE 1994b); and DOE-STD-1023-95, Natural Phenomena Hazards Assessment Criteria (DOE 1995) are the basis for developing the NPH loads

  18. Prevalence of hazardous exposures in veterinary practice

    Energy Technology Data Exchange (ETDEWEB)

    Wiggins, P.; Schenker, M.B.; Green, R.; Samuels, S.

    1989-01-01

    All female graduates of a major U.S. veterinary school were surveyed by mailed questionnaire to obtain details of work practice and hazard exposure during the most recent year worked and during all pregnancies. Exposure questions were based on previously implicated occupational hazards which included anesthetic gases, radiation, zoonoses, prostaglandins, vaccines, physical trauma, and pesticides. The response rate was 86% (462/537). We found that practice type and pregnancy status were major determinants of hazard exposure within the veterinary profession. Small-animal practitioners reported the highest rates of exposure to anesthetic gas (94%), X-ray (90%), and pesticides (57%). Large-animal practitioners reported greater rates of trauma (64%) and potential exposure to prostaglandins (92%), Brucella abortus vaccine (23%), and carbon monoxide (18%). Potentially hazardous workplace practices or equipment were common. Forty-one percent of respondents who reported taking X-rays did not wear film badges, and 76% reported physically restraining animals for X-ray procedures. Twenty-seven percent of the respondents exposed to anesthetic gases worked at facilities which did not have waste anesthetic gas scavenging systems. Women who worked as veterinarians during a pregnancy attempted to reduce exposures to X-rays, insecticides, and other potentially hazardous exposures. Some potentially hazardous workplace exposures are common in veterinary practice, and measures to educate workers and to reduce these exposures should not await demonstration of adverse health effects.

  19. Prevalence of hazardous exposures in veterinary practice

    International Nuclear Information System (INIS)

    Wiggins, P.; Schenker, M.B.; Green, R.; Samuels, S.

    1989-01-01

    All female graduates of a major U.S. veterinary school were surveyed by mailed questionnaire to obtain details of work practice and hazard exposure during the most recent year worked and during all pregnancies. Exposure questions were based on previously implicated occupational hazards which included anesthetic gases, radiation, zoonoses, prostaglandins, vaccines, physical trauma, and pesticides. The response rate was 86% (462/537). We found that practice type and pregnancy status were major determinants of hazard exposure within the veterinary profession. Small-animal practitioners reported the highest rates of exposure to anesthetic gas (94%), X-ray (90%), and pesticides (57%). Large-animal practitioners reported greater rates of trauma (64%) and potential exposure to prostaglandins (92%), Brucella abortus vaccine (23%), and carbon monoxide (18%). Potentially hazardous workplace practices or equipment were common. Forty-one percent of respondents who reported taking X-rays did not wear film badges, and 76% reported physically restraining animals for X-ray procedures. Twenty-seven percent of the respondents exposed to anesthetic gases worked at facilities which did not have waste anesthetic gas scavenging systems. Women who worked as veterinarians during a pregnancy attempted to reduce exposures to X-rays, insecticides, and other potentially hazardous exposures. Some potentially hazardous workplace exposures are common in veterinary practice, and measures to educate workers and to reduce these exposures should not await demonstration of adverse health effects

  20. Can hazard risk be communicated through a virtual experience?

    Science.gov (United States)

    Mitchell, J T

    1997-09-01

    Cyberspace, defined by William Gibson as a consensual hallucination, now refers to all computer-generated interactive environments. Virtual reality, one of a class of interactive cyberspaces, allows us to create and interact directly with objects not available in the everyday world. Despite successes in the entertainment and aviation industries, this technology has been called a 'solution in search of a problem'. The purpose of this commentary is to suggest such a problem: the inability to acquire experience with a hazard to motivate mitigation. Direct experience with a hazard has been demonstrated as a powerful incentive to adopt mitigation measures. While we lack the ability to summon hazard events at will in order to gain access to that experience, a virtual environment can provide an arena where potential victims are exposed to a hazard's effects. Immersion as an active participant within the hazard event through virtual reality may stimulate users to undertake mitigation steps that might otherwise remain undone. This paper details the possible direction in which virtual reality may be applied to hazards mitigation through a discussion of the technology, the role of hazard experience, the creation of a hazard stimulation and the issues constraining implementation.

  1. 49 CFR 172.429 - POISON INHALATION HAZARD label.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false POISON INHALATION HAZARD label. 172.429 Section... REQUIREMENTS, AND SECURITY PLANS Labeling § 172.429 POISON INHALATION HAZARD label. (a) Except for size and color, the POISON INHALATION HAZARD label must be as follows: ER22JY97.023 (b) In addition to complying...

  2. PHAZE, Parametric Hazard Function Estimation

    International Nuclear Information System (INIS)

    2002-01-01

    1 - Description of program or function: Phaze performs statistical inference calculations on a hazard function (also called a failure rate or intensity function) based on reported failure times of components that are repaired and restored to service. Three parametric models are allowed: the exponential, linear, and Weibull hazard models. The inference includes estimation (maximum likelihood estimators and confidence regions) of the parameters and of the hazard function itself, testing of hypotheses such as increasing failure rate, and checking of the model assumptions. 2 - Methods: PHAZE assumes that the failures of a component follow a time-dependent (or non-homogenous) Poisson process and that the failure counts in non-overlapping time intervals are independent. Implicit in the independence property is the assumption that the component is restored to service immediately after any failure, with negligible repair time. The failures of one component are assumed to be independent of those of another component; a proportional hazards model is used. Data for a component are called time censored if the component is observed for a fixed time-period, or plant records covering a fixed time-period are examined, and the failure times are recorded. The number of these failures is random. Data are called failure censored if the component is kept in service until a predetermined number of failures has occurred, at which time the component is removed from service. In this case, the number of failures is fixed, but the end of the observation period equals the final failure time and is random. A typical PHAZE session consists of reading failure data from a file prepared previously, selecting one of the three models, and performing data analysis (i.e., performing the usual statistical inference about the parameters of the model, with special emphasis on the parameter(s) that determine whether the hazard function is increasing). The final goals of the inference are a point estimate

  3. PUREX facility hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities

  4. Risk - hazardous incident - communication 1

    International Nuclear Information System (INIS)

    Gerling, R.; Obermeier, O.P.

    1994-01-01

    Terms such as 'risk', 'hazardous incident', and 'communication' have become major catchwords in discussions about present-day problems, and may be reduced to a common denominator: disaster. Such an association, however, is inappropriate, as the concept indicated by the term 'risk' for instance covers a wide scale of possible danger. Even the term 'hazardous incident' describes events or conditions that are very different in terms of possible danger, let alone disastrous effects. The discrepancy to be observed between the facts and the public perception usually is due to the fact that people have little insight into the complex of problems involved, and to insufficient communication between the world of experts and the general public. The contributions to this publication present information and discuss a variety of solution sets to improve the communication problems in the context of the problem area of 'risk - hazardous incident - communication'. (orig./CB) [de

  5. Lessons learned from external hazards

    Energy Technology Data Exchange (ETDEWEB)

    Peinador, Miguel; Zerger, Benoit [European Commisison Joint Research Centre, Petten (Netherlands). Inst. for Energy and Transport; Ramos, Manuel Martin [European Commission Joint Research Centre, Brussels (Belgium). Nuclear Safety and Security Coordination; Wattrelos, Didier [Institut de Radioprotection et de Surete Nucleaire (IRSN), Fontenay-aux-Roses (France); Maqua, Michael [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Koeln (Germany)

    2014-01-15

    This paper presents a study performed by the European Clearinghouse of the Joint Research Centre on Operational Experience for nuclear power plants in cooperation with IRSN and GRS covering events reported by nuclear power plants in relation to external hazards. It summarizes the review of 235 event reports from 3 different databases. The events were grouped in 9 categories according to the nature of the external hazard involved, and the specific lessons learned and recommendations that can be derived from each of these categories are presented. Additional 'cross-cutting' recommendations covering several or all the external hazards considered are also discussed. These recommendations can be useful in preventing this type of events from happening again or in limiting their consequences. The study was launched in 2010 and therefore it does not cover the Fukushima event. This paper presents the main findings and recommendations raised by this study. (orig.)

  6. How to control chemical hazards

    CERN Multimedia

    2012-01-01

    Improving protection against chemical hazards is one of the 2012 CERN safety objectives identified by the Director General. Identifying and drawing up a complete inventory of chemicals, and assessing the associated risks are important steps in this direction.   The HSE Unit has drawn up safety rules, guidelines and forms to help you to meet this objective. We would like to draw your attention to: • safety guidelines C-0-0-1 and C-1-0-2 (now also available in French), which deal with the identification of hazardous chemicals and the assessment of chemical risk; • safety guideline C-1-0-1, which deals with the storage of hazardous chemicals. All safety documents can be consulted at: cern.ch/regles-securite The HSE Unit will be happy to answer any questions you may have. Write to us at: safety-general@cern.ch The HSE Unit

  7. Migration, environmental hazards, and health outcomes in China.

    Science.gov (United States)

    Chen, Juan; Chen, Shuo; Landry, Pierre F

    2013-03-01

    China's rapid economic growth has had a serious impact on the environment. Environmental hazards are major sources of health risk factors. The migration of over 200 million people to heavily polluted urban areas is likely to be significantly detrimental to health. Based on data from the 2009 national household survey "Chinese Attitudes toward Inequality and Distributive Injustice" (N = 2866) and various county-level and municipal indicators, we investigate the disparities in subjective exposure to environmental hazards and associated health outcomes in China. This study focuses particularly on migration-residency status and county-level socio-economic development. We employ multiple regressions that account for the complex multi-stage survey design to assess the associations between perceived environmental hazards and individual and county-level indicators and between perceived environmental hazards and health outcomes, controlling for physical and social environments at multiple levels. We find that perceived environmental hazards are associated with county-level industrialization and economic development: respondents living in more industrialized counties report greater exposure to environmental hazards. Rural-to-urban migrants are exposed to more water pollution and a higher measure of overall environmental hazard. Perceived environmental risk factors severely affect the physical and mental health of the respondents. The negative effects of perceived overall environmental hazard on physical health are more detrimental for rural-to-urban migrants than for urban residents. The research findings call for restructuring the household registration system in order to equalize access to public services and mitigate adverse environmental health effects, particularly among the migrant population. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    Kubicek, J. L.

    2001-01-01

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events

  9. 49 CFR 171.3 - Hazardous waste.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Hazardous waste. 171.3 Section 171.3... waste. (a) No person may offer for transportation or transport a hazardous waste (as defined in § 171.8... waste for which a manifest is required unless that person: (1) Has marked each motor vehicle used to...

  10. Onsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1998-01-01

    This report documents the emergency preparedness Hazards Assessment for the onsite transportation of hazardous material at the Hanford Site. The assessment is required by US Department of Energy (DOE) Order 5500.3A and provides the technical basis for the emergency classification and response procedures. A distinction is made between onsite for the purpose of emergency preparedness and onsite for the purpose of applying US Department of Transportation (DOT) regulations. Onsite for the purpose of emergency preparedness is considered to be within the physical boundary of the entire Hanford Site. Onsite for the purpose of applying DOT regulations is north of the Wye Barricade

  11. Transportation of hazardous goods

    CERN Multimedia

    TS Department

    2008-01-01

    A general reminder: any transportation of hazardous goods by road is subject to the European ADR rules. The goods concerned are essentially the following: Explosive substances and objects; Gases (including aerosols and non-flammable gases such as helium and nitrogen); Flammable substances and liquids (inks, paints, resins, petroleum products, alcohols, acetone, thinners); Toxic substances (acids, thinners); Radioactive substances; Corrosive substances (paints, acids, caustic products, disinfectants, electrical batteries). Any requests for the transport of hazardous goods must be executed in compliance with the instructions given at this URL: http://ts-dep.web.cern.ch/ts-dep/groups/he/HH/adr.pdf Heavy Handling Section TS-HE-HH 73793 - 160364

  12. Hazardous and mixed waste transportation program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1993-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas. (J.P.N.)

  13. Hazardous and Mixed Waste Transportation Program

    International Nuclear Information System (INIS)

    Hohnstreiter, G.F.; Glass, R.E.; McAllaster, M.E.; Nigrey, P.J.; Trennel, A.J.; Yoshimura, H.R.

    1991-01-01

    Sandia National Laboratories (SNL) has developed a program to address the packaging needs associated with the transport of hazardous and mixed waste during the United States' Department of Energy (DOE) remediation efforts. The program addresses the technology needs associated with the transport of materials which have components that are radioactive and chemically hazardous. The mixed waste transportation activities focus on on-site specific applications of technology to the transport of hazardous and mixed wastes. These activities were identified at a series of DOE-sponsored workshops. These activities will be composed of the following: (1) packaging concepts, (2) chemical compatibility studies, and (3) systems studies. This paper will address activities in each of these areas

  14. Hazardous substances in Europe's fresh and marine waters

    DEFF Research Database (Denmark)

    Collins, Robert; Brack, Werner; Lützhøft, Hans-Christian Holten

    Chemicals are an essential part of our daily lives. They are used to produce consumer goods, to protect or restore our health and to boost food production, to name but a few examples — and they are also involved in a growing range of environmental technologies. Europe's chemical and associated...... on their pattern of use and the potential for exposure. Certain types of naturally occurring chemicals, such as metals, can also be hazardous. Emissions of hazardous substances to the environment can occur at every stage of their life cycle, from production, processing, manufacturing and use in downstream...... regarding chemical contamination arising from the exploitation of shale gas has grown recently. Hazardous substances in water affect aquatic life… Hazardous substances are emitted to water bodies both directly and indirectly through a range of diffuse and point source pathways. The presence of hazardous...

  15. External hazards at Kozloduy and Belene NPP sites

    International Nuclear Information System (INIS)

    Kostov, Marin; Varbanov, Georgy; Andonov, Anton

    2011-01-01

    Conclusions 1. KNPP and BNPP have adequate seismic design base that corresponds to the current standards 2. There is available seismic margin and cliff-edge effects are not probable 3. The external flooding hazard is properly assessed and there is available design margin 4. Anthropogenic hazards are properly assessed and there is available margin. The BNPP is designed also for the largest available aircraft impact (malevolent) 5. The tornado hazard in Bulgaria is negligible. The extreme combination of EQ, flooding, extreme wind, extreme cold and hot weather have to be studied 7. The risk of failure of all surrounding infrastructure due to earthquake, flooding or anthropogenic actions have to be studied 8. The preparedness for extreme hazards have to be improved and trained 9. The extreme hazard mitigation measures have to be constant and continuous effort

  16. 78 FR 24309 - Pipeline and Hazardous Materials Safety Administration

    Science.gov (United States)

    2013-04-24

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration List of Special Permit Applications Delayed AGENCY: Pipeline and Hazardous Materials Safety Administration (PHMSA..., Pipeline and Hazardous Materials Safety Administration, U.S. Department of Transportation, East Building...

  17. Third DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1991-01-01

    This conference on Natural Phenomena Hazards Mitigation has been organized into 15 presentation, panel, and poster sessions. The sessions included an overview of activities at DOE Headquarters; natural phenomena hazards tasks underway for DOE; two sessions on codes, standards, orders, criteria, and guidelines; two sessions on seismic hazards; equipment qualification; wind; PRA and margin assessments; modifications, retrofit, and restart; underground structures with a panel discussion; seismic analysis; seismic evaluation and design; and a poster session. Individual projects are processed separately for the data bases

  18. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  19. Hazardous Air Pollutants

    Science.gov (United States)

    ... Search Main menu Environmental Topics Air Bed Bugs Chemicals and Toxics Environmental Information by Location Greener Living Health Land, ... regulate toxic air pollutants, also known as air toxics, from categories of industrial facilities in two phases . About Hazardous Air Pollutants ...

  20. 76 FR 45332 - Pipeline and Hazardous Materials Safety Administration

    Science.gov (United States)

    2011-07-28

    ... DEPARTMENT OF TRANSPORTATION Pipeline and Hazardous Materials Safety Administration Office of... Hazardous Materials Safety Administration (PHMSA), DOT. ACTION: List of Applications for Modification of..., 2011. ADDRESSES: Record Center, Pipeline and Hazardous Materials Safety Administration, U.S. Department...

  1. Chemical incidents resulted in hazardous substances releases in the context of human health hazards

    Directory of Open Access Journals (Sweden)

    Anna Pałaszewska-Tkacz

    2017-02-01

    Full Text Available Objectives: The research purpose was to analyze data concerning chemical incidents in Poland collected in 1999–2009 in terms of health hazards. Material and Methods: The data was obtained, using multimodal information technology (IT system, from chemical incidents reports prepared by rescuers at the scene. The final analysis covered sudden events associated with uncontrolled release of hazardous chemical substances or mixtures, which may potentially lead to human exposure. Releases of unidentified substances where emergency services took action to protect human health or environment were also included. Results: The number of analyzed chemical incidents in 1999–2009 was 2930 with more than 200 different substances released. The substances were classified into 13 groups of substances and mixtures posing analogous risks. Most common releases were connected with non-flammable corrosive liquids, including: hydrochloric acid (199 cases, sulfuric(VI acid (131 cases, sodium and potassium hydroxides (69 cases, ammonia solution (52 cases and butyric acid (32 cases. The next group were gases hazardous only due to physico-chemical properties, including: extremely flammable propane-butane (249 cases and methane (79 cases. There was no statistically significant trend associated with the total number of incidents. Only with the number of incidents with flammable corrosive, toxic and/or harmful liquids, the regression analysis revealed a statistically significant downward trend. The number of victims reported was 1997, including 1092 children and 18 fatalities. Conclusions: The number of people injured, number of incidents and the high 9th place of Poland in terms of the number of Seveso establishments, and 4 times higher number of hazardous industrial establishments not covered by the Seveso Directive justify the need for systematic analysis of hazards and their proper identification. It is advisable enhance health risk assessment, both qualitative and

  2. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  3. Environmental resources of selected areas of Hawaii: Geological hazards

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.; Reed, R.M.

    1995-03-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The US Department of Energy (DOE) published a notice withdrawing its Notice of Intent to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated. This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent US Geological Survey (USGS) publications and USGS open-file reports related to this project. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis).

  4. 78 FR 9311 - Hazard Communication; Corrections and Technical Amendment

    Science.gov (United States)

    2013-02-08

    ....1044, Appendix Reference to ``Class IIIA combustible B. liquid'' is corrected to ``Category 4 flammable..., Fire prevention, Hazard communication, Hazardous substances, Occupational safety and health. 29 CFR... Asbestos, Construction industry, Fire prevention, Hazardous substances, Occupational safety and health...

  5. Volcanic hazards in Central America

    Science.gov (United States)

    Rose, William I.; Bluth, Gregg J.S.; Carr, Michael J.; Ewert, John W.; Patino, Lina C.; Vallance, James W.

    2006-01-01

    This volume is a sampling of current scientific work about volcanoes in Central America with specific application to hazards. The papers reflect a variety of international and interdisciplinary collaborations and employ new methods. The book will be of interest to a broad cross section of scientists, especially volcanologists. The volume also will interest students who aspire to work in the field of volcano hazards mitigation or who may want to work in one of Earth’s most volcanically active areas.

  6. Integrated Geo Hazard Management System in Cloud Computing Technology

    Science.gov (United States)

    Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.

    2016-11-01

    Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.

  7. Hazard screening application guide. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  8. Seismic hazard map of the western hemisphere

    Science.gov (United States)

    Shedlock, K.M.; Tanner, J.G.

    1999-01-01

    Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.). Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($6 billion), 1994 Northridge, CA ($ 25 billion), and 1995 Kobe, Japan (> $ 100 billion) earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes), emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions specify the

  9. Seismic hazard map of the western hemisphere

    Directory of Open Access Journals (Sweden)

    J. G. Tanner

    1999-06-01

    Full Text Available Vulnerability to natural disasters increases with urbanization and development of associated support systems (reservoirs, power plants, etc.. Catastrophic earthquakes account for 60% of worldwide casualties associated with natural disasters. Economic damage from earthquakes is increasing, even in technologically advanced countries with some level of seismic zonation, as shown by the 1989 Loma Prieta, CA ($ 6 billion, 1994 Northridge, CA ($ 25 billion, and 1995 Kobe, Japan (> $ 100 billion earthquakes. The growth of megacities in seismically active regions around the world often includes the construction of seismically unsafe buildings and infrastructures, due to an insufficient knowledge of existing seismic hazard. Minimization of the loss of life, property damage, and social and economic disruption due to earthquakes depends on reliable estimates of seismic hazard. National, state, and local governments, decision makers, engineers, planners, emergency response organizations, builders, universities, and the general public require seismic hazard estimates for land use planning, improved building design and construction (including adoption of building construction codes, emergency response preparedness plans, economic forecasts, housing and employment decisions, and many more types of risk mitigation. The seismic hazard map of the Americas is the concatenation of various national and regional maps, involving a suite of approaches. The combined maps and documentation provide a useful global seismic hazard framework and serve as a resource for any national or regional agency for further detailed studies applicable to their needs. This seismic hazard map depicts Peak Ground Acceleration (PGA with a 10% chance of exceedance in 50 years for the western hemisphere. PGA, a short-period ground motion parameter that is proportional to force, is the most commonly mapped ground motion parameter because current building codes that include seismic provisions

  10. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  11. Probabilistic tsunami hazard assessment for Point Lepreau Generating Station

    Energy Technology Data Exchange (ETDEWEB)

    Mullin, D., E-mail: dmullin@nbpower.com [New Brunswick Power Corporation, Point Lepreau Generating Station, Point Lepreau (Canada); Alcinov, T.; Roussel, P.; Lavine, A.; Arcos, M.E.M.; Hanson, K.; Youngs, R., E-mail: trajce.alcinov@amecfw.com, E-mail: patrick.roussel@amecfw.com [AMEC Foster Wheeler Environment & Infrastructure, Dartmouth, NS (Canada)

    2015-07-01

    In 2012 the Geological Survey of Canada published a preliminary probabilistic tsunami hazard assessment in Open File 7201 that presents the most up-to-date information on all potential tsunami sources in a probabilistic framework on a national level, thus providing the underlying basis for conducting site-specific tsunami hazard assessments. However, the assessment identified a poorly constrained hazard for the Atlantic Coastline and recommended further evaluation. As a result, NB Power has embarked on performing a Probabilistic Tsunami Hazard Assessment (PTHA) for Point Lepreau Generating Station. This paper provides the methodology and progress or hazard evaluation results for Point Lepreau G.S. (author)

  12. Introduction to Plate Boundaries and Natural Hazards

    NARCIS (Netherlands)

    Duarte, João C.; Schellart, Wouter P.

    2016-01-01

    A great variety of natural hazards occur on Earth, including earthquakes, volcanic eruptions, tsunamis, landslides, floods, fires, tornadoes, hurricanes, and avalanches. The most destructive of these hazards, earthquakes, tsunamis, and volcanic eruptions, are mostly associated with tectonic plate

  13. In situ vitrification applications to hazardous wastes

    International Nuclear Information System (INIS)

    Liikala, S.

    1989-01-01

    In Situ Vitrification is a new hazardous waste remediation alternative that should be considered for contaminated soil matrices. According to the authors the advantages of using ISV include: technology demonstrated at field scale; applicable to a wide variety of soils and contaminants; pyrolyzer organics and encapsulates inorganics; product durable over geologic time period; no threat of harm to the public from exposure; and applications available for barrier walls and structural support. The use of ISV on a large scale basis has thus far been limited to the nuclear industry but has tremendous potential for widespread applications to the hazardous waste field. With the ever changing regulations for the disposal of hazardous waste in landfills, and the increasing positive analytical data of ISV, the process will become a powerful source for on-site treatment and hazardous waste management needs in the very near future

  14. Seismic hazard analysis. A methodology for the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D L

    1980-08-01

    This report presents a probabilistic approach for estimating the seismic hazard in the Central and Eastern United States. The probabilistic model (Uniform Hazard Methodology) systematically incorporates the subjective opinion of several experts in the evaluation of seismic hazard. Subjective input, assumptions and associated hazard are kept separate for each expert so as to allow review and preserve diversity of opinion. The report is organized into five sections: Introduction, Methodology Comparison, Subjective Input, Uniform Hazard Methodology (UHM), and Uniform Hazard Spectrum. Section 2 Methodology Comparison, briefly describes the present approach and compares it with other available procedures. The remainder of the report focuses on the UHM. Specifically, Section 3 describes the elicitation of subjective input; Section 4 gives details of various mathematical models (earthquake source geometry, magnitude distribution, attenuation relationship) and how these models re combined to calculate seismic hazard. The lost section, Uniform Hazard Spectrum, highlights the main features of typical results. Specific results and sensitivity analyses are not presented in this report. (author)

  15. Building 894 hazards assessment document

    International Nuclear Information System (INIS)

    Banda, Z.; Williams, M.

    1996-07-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with Building 894. The entire inventory was subjected to the screening criteria for potential airborne impact to onsite and offsite individuals out of which 9 chemicals were kept for further evaluation. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 130 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal 130 meter area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets

  16. Building 6630 hazards assessment document

    International Nuclear Information System (INIS)

    Williams, M.; Banda, Z.

    1996-10-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with Building 6630. The entire inventory was subjected to the screening criteria for potential airborne impact to onsite and offsite individuals out of which one chemical was kept for further evaluation. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the chemical release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 76 meters. The highest emergency classification is an Alert. The Emergency Planning Zone is a nominal 100 meter area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets

  17. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. A method was developed to determine the probabilistic flood hazard curves for SRS facilities. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  18. Health and safety information program for hazardous materials

    International Nuclear Information System (INIS)

    O'Brien, M.P.; Fallon, N.J.; Kuehner, A.V.

    1979-01-01

    The system is used as a management tool in several safety and health programs. It is used to: trace the use of hazardous materials and to determine monitoring needs; inform the occupational physician of the potential health problems associated with materials ordered by a given individual; inform the fire and rescue group of hazardous materials in a given building; provide waste disposal recommendations to the hazardous waste management group; assist the hazardous materials shipping coordinator in identifying materials which are regulated by the Department of Transportation; and guide management decisions in the area of recognizing and rectifying unsafe conditions. The information system has been expanded from a manual effort to provide a brief description of health hazards of chemicals used at the lab to a computerized health and safety information system which serves the needs of all personnel who may encounter the material in the course of their work. The system has been designed to provide information needed to control the potential problems associated with a hazardous material up to the time that it is consumed in a given operation or is sent to the waste disposal facility

  19. Study on hazardous substances contained in radioactive waste

    International Nuclear Information System (INIS)

    Kuroki, Ryoichiro; Takahashi, Kuniaki

    2008-01-01

    It is necessary that the technical criteria is established concerning waste package for disposal of the TRU waste generated in Japan Atomic Energy Agency. And it is important to consider the criteria not only in terms of radioactivity but also in terms of chemical hazard and criticality. Therefore the environmental impact of hazardous materials and possibility of criticality were investigated to decide on technical specification of radioactive waste packages. The contents and results are as following. (1) Concerning hazardous materials included in TRU waste, regulations on disposal of industrial wastes and on environmental preservation were investigated. (2) The assessment methods for environmental impact of hazardous materials included in radioactive waste in U.K, U.S.A. and France were investigated. (3) The parameters for mass transport assessment about migration of hazardous materials in waste packages around disposal facilities were compiled. And the upper limits of amounts of hazardous materials in waste packages to satisfy the environmental standard were calculated with mass transport assessment for some disposal concepts. (4) It was suggested from criticality analysis for waste packages in disposal facility that the occurrence of criticality was almost impossible under the realistic conditions. (author)

  20. Hazards Control Department annual technology review, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, R.V.; Anderson, K.J. (eds.)

    1988-07-01

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  1. Prevention and control of hazards in seafood

    DEFF Research Database (Denmark)

    Huss, Hans Henrik; Reilly, A.; Embarek, Peter Karim Ben

    2000-01-01

    -harvest and are difficult or impossible to control by applying presently available preventive measures. In contrast, the hazards related to contamination, recontamination or survival of biological hazards during processing are well-defined and can be controlled by applying Good Manufacturing Practice (GMP), Good Hygiene......Seafood is high on the list of foods transmitting disease. However, the food safety issues are highly focussed and more than 80% of all seafood-borne outbreaks are related to biotoxins (ciguatoxin), scombrotoxin or the consumption of raw molluscan shellfish. The safety hazards in seafood production...

  2. Rockfall Hazard Process Assessment : Final Project Report

    Science.gov (United States)

    2017-10-01

    After a decade of using the Rockfall Hazard Rating System (RHRS), the Montana Department of Transportation (MDT) sought a reassessment of their rockfall hazard evaluation process. Their prior system was a slightly modified version of the RHRS and was...

  3. K Basins fuel encapsulation and storage hazard categorization

    International Nuclear Information System (INIS)

    Porten, D.R.

    1994-12-01

    This document establishes the initial hazard categorization for K-Basin fuel encapsulation and storage in the 100 K Area of the Hanford site. The Hazard Categorization for K-Basins addresses the potential for release of radioactive and non-radioactive hazardous material located in the K-Basins and their supporting facilities. The Hazard Categorization covers the hazards associated with normal K-Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. The criteria categorizes a facility based on total curies per radionuclide located in the facility. Tables 5-3 and 5-4 display the results in section 5.0. In accordance with DOE-STD-1027 and the analysis provided in section 5.0, the K East Basin fuel encapsulation and storage activity and the K West Basin storage are classified as a open-quotes Category 2close quotes Facility

  4. Wind hazard assessment for Point Lepreau Generating Station

    International Nuclear Information System (INIS)

    Mullin, D.; Moland, M.; Sciaudone, J.C.; Twisdale, L.A.; Vickery, P.J.; Mizzen, D.R.

    2015-01-01

    In response to the CNSC Fukushima Action Plan, NB Power has embarked on a wind hazard assessment for the Point Lepreau Generating Station site that incorporates the latest up to date wind information and modeling. The objective was to provide characterization of the wind hazard from all potential sources and estimate wind-driven missile fragilities and wind pressure fragilities for various structures, systems and components that would provide input to a possible high wind Probabilistic Safety Assessment. The paper will discuss the overall methodology used to assess hazards related to tornadoes, hurricanes and straight-line winds, and site walk-down and hazard/fragility results. (author)

  5. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This paper contains the proceedings of emergin technologies for hazardous waste management. Topics covered include: advanced transuranic waste managements; remediation of soil/water systems contaminated with nonaqueous pollutants; advances in molten salt oxidation; air treatment and protection; advanced waste minimization strategies; removal of hazardous materials from soils or groundwater; bioremediation of soils and sediment; innovation, monitoring, and asbestos; high-level liquid waste chemistry in the Hanford tanks; biological contributions to soil and groundwater remediation; soil treatment technologies; pollution prevention; incineration and vitrification; current technology; systematic design approaches to hazardous waste management; waste management and environmental restoration at Savannah River; soil washing and flushing for remediation of hazardous wastes

  6. Risk factors for hazardous events in olfactory-impaired patients.

    Science.gov (United States)

    Pence, Taylor S; Reiter, Evan R; DiNardo, Laurence J; Costanzo, Richard M

    2014-10-01

    Normal olfaction provides essential cues to allow early detection and avoidance of potentially hazardous situations. Thus, patients with impaired olfaction may be at increased risk of experiencing certain hazardous events such as cooking or house fires, delayed detection of gas leaks, and exposure to or ingestion of toxic substances. To identify risk factors and potential trends over time in olfactory-related hazardous events in patients with impaired olfactory function. Retrospective cohort study of 1047 patients presenting to a university smell and taste clinic between 1983 and 2013. A total of 704 patients had both clinical olfactory testing and a hazard interview and were studied. On the basis of olfactory function testing results, patients were categorized as normosmic (n = 161), mildly hyposmic (n = 99), moderately hyposmic (n = 93), severely hyposmic (n = 142), and anosmic (n = 209). Patient evaluation including interview, examination, and olfactory testing. Incidence of specific olfaction-related hazardous events (ie, burning pots and/or pans, starting a fire while cooking, inability to detect gas leaks, inability to detect smoke, and ingestion of toxic substances or spoiled foods) by degree of olfactory impairment. The incidence of having experienced any hazardous event progressively increased with degree of impairment: normosmic (18.0%), mildly hyposmic (22.2%), moderately hyposmic (31.2%), severely hyposmic (32.4%), and anosmic (39.2%). Over 3 decades there was no significant change in the overall incidence of hazardous events. Analysis of demographic data (age, sex, race, smoking status, and etiology) revealed significant differences in the incidence of hazardous events based on age (among 397 patients hazardous event, vs 31 of 146 patients ≥65 years [21.3%]; P hazardous event, vs 73 of 265 men [27.6%]; P = .009), and race (among 98 African Americans, 41 [41.8%] with hazardous event, vs 134 of 434 whites [30.9%]; P = .04

  7. Hazards from radioactive waste in perspective

    International Nuclear Information System (INIS)

    Cohen, B.L.

    1979-01-01

    This paper compares the hazards from wastes from a 1000-MW(e) nuclear power plant to these from wastes from a 1000-MW(e) coal fueled power plant. The latter hazard is much greater than the former. The toxicity and carcinogenity of the chemicals prodcued in coal burning is emphasized. Comparisions are also made with other toxic chemicals and with natural radioactivity

  8. Benefits and hazards of nuclear power

    International Nuclear Information System (INIS)

    Barnert, H.; Borsch, P.; Feldmann, A.; Merz, E.; Muench, E.; Oesterwind, D.; Voss, A.; Wolters, J.

    1979-09-01

    Compilation of a seminar at the KFA Juelich on topical problems of nuclear power. Subjects: Energy demand, its expected development and possibilities of coverage; physical fundamentals and technical realisation of power generation by nuclear fission; fuel cycle problems and solutions; effects of radioactive radiation; safety of nuclear power plants and the nuclear hazard as compared with other hazards. (orig./RW) [de

  9. Repository Subsurface Preliminary Fire Hazard Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2001-01-01

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M and O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents

  10. The role of new technologies in risks from natural hazards

    International Nuclear Information System (INIS)

    Gardner, J.S.

    1982-01-01

    The author places some prior natural hazards research into the context of risk from new technologies to show that some beneficial technologies increase the risk from natural hazards. He examines the role of new technologies in risks from natural hazards in a historical perspective, using examples from research on mountain hazards

  11. Subsurface Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    Logan, R.C.

    1999-01-01

    The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated

  12. Prevention of Major Accident Hazards (MAHs) in major Hazard Installation (MHI) premises via land use planning (LUP): a review

    Science.gov (United States)

    Khudbiddin, M. Q.; Rashid, Z. A.; Yeong, A. F. M. S.; Alias, A. B.; Irfan, M. F.; Fuad, M.; Hayati, H.

    2018-03-01

    For a number of years, there is a concern about the causes of major hazards, their identification, risk assessment and the process of its management from the global perspective on the activities of the industries due to the protection of the environment, human and property. Though, industries cannot take pleasure in their business by harming the nature of the land, there are a number of measures that need to be put into consideration by the industries. Such measures are in terms of management and safety for the businesses, lives, properties, as well as the environment. The lack of consideration in the selected appropriate criteria can result in major accidental hazards (MAHs). This paper will review the land use planning (LUP) methods used in the past and present to prevent major accident hazards at major hazard installation (MHI).

  13. Radiation Hazard Detector

    Science.gov (United States)

    1978-01-01

    NASA technology has made commercially available a new, inexpensive, conveniently-carried device for protection, of people exposed to potentially dangerous levels of microwave radiation. Microwaves are radio emissions of extremely high frequency. They can be hazardous but the degree of hazard is not yet well understood. Generally, it is believed that low intensity radiation of short duration is not harmful but that exposure to high levels can induce deep internal burns, affecting the circulatory and nervous systems, and particularly the eyes. The Department of Labor's Occupational Safety and Health Administration (OSHA) has established an allowable safe threshold of exposure. However, people working near high intensity sources of microwave energy-for example, radar antennas and television transmitters-may be unknowingly exposed to radiation levels beyond the safe limit. This poses not only a personal safety problem but also a problem for employers in terms of productivity loss, workman's compensation claims and possible liability litigation. Earlier-developed monitoring devices which warn personnel of dangerous radiation levels have their shortcomings. They can be cumbersome and awkward to use while working. They also require continual visual monitoring to determine if a person is in a dangerous area of radiation, and they are relatively expensive, another deterrent to their widespread adoption. In response to the need for a cheaper and more effective warning system, Jet Propulsion Laboratory developed, under NASA auspices, a new, battery-powered Microwave Radiation Hazard Detector. To bring the product to the commercial market, California Institute Research Foundation, the patent holder, granted an exclusive license to Cicoil Corporation, Chatsworth, California, an electronic components manufacturer.

  14. Hazardous waste management: Reducing the risk

    International Nuclear Information System (INIS)

    Goldman, B.A.; Hulme, J.A.; Johnson, C.

    1986-01-01

    Congress has strengthened the laws under which active hazardous waste facilities are regulated. Nevertheless, after visiting a number of active treatment, storage, and disposal facilities, the Council on Economic Priorities (CEP) found that not only do generators not know which facilities are the best, but that the EPA has not always selected the best facilities to receive wastes removed from Superfund sites. Other facilities were better managed, better located, and better at using more advanced technologies than the facilities the EPA selected. In fact, of the ten facilities CEP evaluated in detail the EPA chose the one that performed worst - CECOS International, Inc. in Williamsburg, Ohio - to receive Superfund wastes in more instances than any of the other nine facilities. Data from a house subcommittee survey indicate that almost half of the operating hazardous waste facilities the EPA chose to receive wastes removed from Superfund sites may have contaminated groundwater. Some of the chosen facilities may even be partially responsible for a share of the wastes they are being paid to clean up. Hazardous waste management strategies and technology, how to evaluate facilities, and case studies of various corporations and hazardous waste management facilities are discussed

  15. Regulatory Activities to the Natural Hazard

    International Nuclear Information System (INIS)

    Choi, Kangryong; Jung, Raeyoung

    2008-01-01

    The safety of the Nuclear Power Plants(NPPs) against the natural hazards has been investigated focused on earthquake and tsunami. Since the mass media and general people have high interests on nuclear safety whenever the natural hazards occur, earthquake and tsunami are not only technical safety concern, but also psychological issues in terms of public acceptance of nuclear energy. The Korean peninsula has been considered as a safe zone compared to neighboring countries against natural hazard, but the historical documents which state severely damaged events due to the strong earthquake make US paying careful attention to assure the safety against natural phenomenon. The potential and characteristics of earthquake and tsunami have been examined, and the status of seismic and tsunami safety of the NPPs in Korea is described. the follow-up action after disastrous huge earthquake and tsunami occurred in neighboring countries is summarized as well. The assessment results show that the NPPs in Korea are well designed, constructed and maintained with certain amount of safety margin against natural hazards, and the utility and the regulatory body are continuously doing an effort to enhance the safety with consideration of lessons learned from big events in other countries

  16. Flood Hazard Management: British and International Perspectives

    Science.gov (United States)

    James, L. Douglas

    This proceedings of an international workshop at the Flood Hazard Research Centre (Queensway, Enfield, Middlesex, U.K.) begins by noting how past British research on flood problems concentrated on refining techniques to implement established policy. In contrast, research covered in North American and Australian publications involved normative issues on policy alternatives and administrative implementation. The workshop's participants included 16 widely recognized scientists, whose origins were about equally divided between Britain and overseas; from this group the workshop's organizers expertly drew ideas for refining British urban riverine flood hazard management and for cultivating links among researchers everywhere. Such intellectual exchange should be of keen interest to flood hazard program managers around the world, to students of comparative institutional performance, to those who make policy on protecting people from hazards, and to hydrologists and other geophysicists who must communicate descriptive information for bureaucratic, political, and public decision- making.

  17. High-level waste description, inventory and hazard

    International Nuclear Information System (INIS)

    Crandall, J.; Hennelly, E.J.; McElroy, J.L.

    1983-01-01

    High-level nuclear waste (HLW), including its origin, is described and the current differences in definitions discussed. Quantities of defense and commercial radioactive HLW, both volume and curie content, are given. Current waste handling, which is interimin nature, is described for the several sites. The HLW hazard is defined by the times during which various radionuclides are the dominant contributors. The hazard is also compared to that of the ore. Using ICRP-2, which is the legal reference in the US, the hazard of the waste reduces to a level equal to the ore in about 300 years. The disposal plans are summarized and it is shown that regulatory requirements will probably govern disposal operations in such a conservative manner that the risk (product of hazard times probability of release) may well be lower than for any other wastes in existence or perhaps lower than those for any other human endeavor

  18. Technical basis document for natural event hazards

    International Nuclear Information System (INIS)

    CARSON, D.M.

    2003-01-01

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for natural event hazards (NEH)-initiated representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report

  19. RFID technology for hazardous waste management and tracking.

    Science.gov (United States)

    Namen, Anderson Amendoeira; Brasil, Felipe da Costa; Abrunhosa, Jorge José Gouveia; Abrunhosa, Glaucia Gomes Silva; Tarré, Ricardo Martinez; Marques, Flávio José Garcia

    2014-09-01

    The illegal dumping of hazardous waste is one of the most concerning occurrences related to illegal waste activities. The waste management process is quite vulnerable, especially when it comes to assuring the right destination for the delivery of the hazardous waste. The purpose of this paper is to present a new system design and prototype for applying the RFID technology so as to guarantee the correct destination for the hazardous waste delivery. The aim of this innovative approach, compared with other studies that employ the same technology to the waste disposal process, is to focus on the certification that the hazardous waste will be delivered to the right destination site and that no inappropriate disposal will occur in the transportation stage. These studies were carried out based on data collected during visits to two hazardous waste producer companies in Brazil, where the material transportation and delivery to a company in charge of the waste disposal were closely monitored. © The Author(s) 2014.

  20. Geotechnical hazards from large earthquakes and heavy rainfalls

    CERN Document Server

    Kazama, Motoki; Lee, Wei

    2017-01-01

    This book is a collection of papers presented at the International Workshop on Geotechnical Natural Hazards held July 12–15, 2014, in Kitakyushu, Japan. The workshop was the sixth in the series of Japan–Taiwan Joint Workshops on Geotechnical Hazards from Large Earthquakes and Heavy Rainfalls, held under the auspices of the Asian Technical Committee No. 3 on Geotechnology for Natural Hazards of the International Society for Soil Mechanics and Geotechnical Engineering. It was co-organized by the Japanese Geotechnical Society and the Taiwanese Geotechnical Society. The contents of this book focus on geotechnical and natural hazard-related issues in Asia such as earthquakes, tsunami, rainfall-induced debris flows, slope failures, and landslides. The book contains the latest information and mitigation technology on earthquake- and rainfall-induced geotechnical natural hazards. By dissemination of the latest state-of-the-art research in the area, the information contained in this book will help researchers, des...

  1. Baltic Sea hazardous substances management: results and challenges.

    Science.gov (United States)

    Selin, Henrik; VanDeveer, Stacy D

    2004-05-01

    The introduction into the Baltic Sea of hazardous substances that are persistent, bioaccumulate, and are toxic is an important environmental and human health problem. Multilateral efforts to address this problem have primarily been taken under the Helsinki Commission (HELCOM). This article examines past HELCOM efforts on hazardous substances, and discusses future challenges regarding their management. The article finds that past actions on hazardous substances have had a positive effect on improving Baltic environmental quality and reducing human health risks, although there are remaining issues and difficulties that need to be addressed. In particular, four related future challenges for HELCOM management of hazardous substances are identified and discussed: i) the need to engender further implementation and building public and private sector capacities; ii) the need to improve data availability, quality and comparability across the region and international fora; iii) the need to strengthen existing regulations and incorporate new issues; and iv) the need to effectively coordinate HELCOM activities with efforts on hazardous substances in other international fora.

  2. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    International Nuclear Information System (INIS)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka; Ken Yanagisawa; Tadashi Annaka

    2006-01-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present an example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)

  3. Transportation of hazardous materials (hazmat) a literature survey

    OpenAIRE

    Zafer YILMAZ; Serpil EROL; Hakan Soner APLAK

    2016-01-01

    ransportation has a great role in logistics. Many researchers have studied on transportation and vehicle routing problems. Transportation of hazardous materials (hazmat) is a special subject for logistics. Causalities due to the accidents caused by trucks carrying hazardous materials will be intolerable. Many researchers have studied on risk assessment of hazmat transportation to find ways for reducing hazardous material transportation risks. Some researchers have studied routing of hazmat tr...

  4. Hazardous and toxic waste management in Botswana: practices and challenges.

    Science.gov (United States)

    Mmereki, Daniel; Li, Baizhan; Meng, Liu

    2014-12-01

    Hazardous and toxic waste is a complex waste category because of its inherent chemical and physical characteristics. It demands for environmentally sound technologies and know-how as well as clean technologies that simultaneously manage and dispose it in an environmentally friendly way. Nevertheless, Botswana lacks a system covering all the critical steps from importation to final disposal or processing of hazardous and toxic waste owing to limited follow-up of the sources and types of hazardous and toxic waste, lack of modern and specialised treatment/disposal facilities, technical know-how, technically skilled manpower, funds and capabilities of local institutions to take lead in waste management. Therefore, because of a lack of an integrated system, there are challenges such as lack of cooperation among all the stakeholders about the safe management of hazardous and toxic waste. Furthermore, Botswana does not have a systematic regulatory framework regarding monitoring and hazardous and toxic waste management. In addition to the absence of a systematic regulatory framework, inadequate public awareness and dissemination of information about hazardous and toxic waste management, slower progress to phase-out persistent and bio-accumulative waste, and lack of reliable and accurate information on hazardous and toxic waste generation, sources and composition have caused critical challenges to effective hazardous and toxic waste management. It is, therefore, important to examine the status of hazardous and toxic waste as a waste stream in Botswana. By default; this mini-review article presents an overview of the current status of hazardous and toxic waste management and introduces the main challenges in hazardous and toxic waste management. Moreover, the article proposes the best applicable strategies to achieve effective hazardous and toxic waste management in the future. © The Author(s) 2014.

  5. A high-resolution global flood hazard model

    Science.gov (United States)

    Sampson, Christopher C.; Smith, Andrew M.; Bates, Paul B.; Neal, Jeffrey C.; Alfieri, Lorenzo; Freer, Jim E.

    2015-09-01

    Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ˜90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ˜1 km, mean absolute error in flooded fraction falls to ˜5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.

  6. The radiological hazard of plutonium isotopes and specific plutonium mixtures

    International Nuclear Information System (INIS)

    Heindel, G.; Clow, J.; Inkret, W.; Miller, G.

    1995-11-01

    The US Department of Energy defines the hazard categories of its nuclear facilities based upon the potential for accidents to have significant effects on specific populations and the environment. In this report, the authors consider the time dependence of hazard category 2 (significant on-site effects) for facilities with inventories of plutonium isotopes and specific weapons-grade and heat-source mixtures of plutonium isotopes. The authors also define relative hazard as the reciprocal of the hazard category 2 threshold value and determine its time dependence. The time dependence of both hazard category 2 thresholds and relative hazards are determined and plotted for 10,000 years to provide useful information for planning long-term storage or disposal facilities

  7. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  8. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  9. Hazard Map of the Poás Volcano

    Directory of Open Access Journals (Sweden)

    Gustavo Barrantes Castillo

    2015-07-01

    Full Text Available The Poás volcano presents a series of hazards to the lives and activities of the communities in its surroundings; these hazards include ash fall, volcanic gases, ballistic projection, pyroclastic flows, lahars and lava flows. In the study described in this article, risks were zoned and integrated to form combined hazard maps for later use in territorial planning processes. With respect to methodology, the study was based on a heuristic approximation, which was supported with cartographic, geomorphological, and historical impact criteria to achieve a suitable product in terms of scale and ease of interpretation. These maps present greater detail and integration than other works and cartographies of volcanic hazards in Costa Rica.

  10. Radiotoxic hazard measure for buried solid radioactive waste

    International Nuclear Information System (INIS)

    Hamstra, J.

    1975-01-01

    The radiotoxic hazards resulting from the disposal of highlevel reprocessing wastes into a deep geological formation are reviewed. The term radiotoxic hazard measure (RHM), used to measure the hazard from buried radioactive wastes, is based on the maximum radionuclide concentration permissible in water. Calculations are made of the RHM levels for the high-level reprocessing wastes of both light-water-reactor and fast breeder reactor fuels. In comparing these RHM levels with that for the natural activity of an equivalent amount of uranium ore and its mill tailings, it is concluded that an actual additional radiotoxic hazard for buried high-level reprocessing waste only exists for the first 300 to 500 years after burial. (U.S.)

  11. Hazardous waste shipment data collection from DOE sites

    International Nuclear Information System (INIS)

    Page, L.A.; Kirkpatrick, T.D.; Stevens, L.

    1992-01-01

    Past practices at the US Department of Energy (DOE) sites for offsite release of hazardous waste are being reviewed to determine if radioactively contaminated hazardous wastes were released to commercial treatment, storage, and disposal facilities. Records indicating the presence of radioactivity in waste shipped to and treated at a commercial incineration facility led to a ban on offsite hazardous waste shipments and investigation of past practices for offsite release of hazardous waste from the DOE sites. A House of Representatives Interior and Insular Affairs Committee oversight hearing on potentially contaminated waste shipments to commercial facilities concluded that the main issue was the lack of a uniform national standard to govern disposal of mixed waste

  12. Canister storage building hazard analysis report

    International Nuclear Information System (INIS)

    Krahn, D.E.; Garvin, L.J.

    1997-01-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  13. 42 CFR 84.52 - Respiratory hazards; classification.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Respiratory hazards; classification. 84.52 Section... SAFETY AND HEALTH RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Classification of Approved Respirators; Scope of Approval; Atmospheric Hazards; Service Time § 84.52 Respiratory...

  14. 283-E and 283-W hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This report documents the hazards assessment for the 200 area water treatment plants 283-E and 283-W located on the US DOE Hanford Site. Operation of the water treatment plants is the responsibility of ICF Kaiser Hanford Company (ICF KH). This hazards assessment was conducted to provide emergency planning technical basis for the water treatment plants. This document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A which requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  15. Detailed debris flow hazard assessment in Andorra: A multidisciplinary approach

    Science.gov (United States)

    Hürlimann, Marcel; Copons, Ramon; Altimir, Joan

    2006-08-01

    In many mountainous areas, the rapid development of urbanisation and the limited space in the valley floors have created a need to construct buildings in zones potentially exposed to debris flow hazard. In these zones, a detailed and coherent hazard assessment is necessary to provide an adequate urban planning. This article presents a multidisciplinary procedure to evaluate the debris flow hazard at a local scale. Our four-step approach was successfully applied to five torrent catchments in the Principality of Andorra, located in the Pyrenees. The first step consisted of a comprehensive geomorphologic and geologic analysis providing an inventory map of the past debris flows, a magnitude-frequency relationship, and a geomorphologic-geologic map. These data were necessary to determine the potential initiation zones and volumes of future debris flows for each catchment. A susceptibility map and different scenarios were the principal outcome of the first step, as well as essential input data for the second step, the runout analysis. A one-dimensional numerical code was applied to analyse the scenarios previously defined. First, the critical channel sections in the fan area were evaluated, then the maximum runout of the debris flows on the fan was studied, and finally simplified intensity maps for each defined scenario were established. The third step of our hazard assessment was the hazard zonation and the compilation of all the results from the two previous steps in a final hazard map. The base of this hazard map was the hazard matrix, which combined the intensity of the debris flow with its probability of occurrence and determined a certain hazard degree. The fourth step referred to the hazard mitigation and included some recommendations for hazard reduction. In Andorra, this four-step approach is actually being applied to assess the debris flow hazard. The final hazard maps, at 1 : 2000 scale, provide an obligatory tool for local land use planning. Experience

  16. A study of risk evaluation methodology selection for the external hazards

    International Nuclear Information System (INIS)

    Kuramoto, Takahiro; Yamaguchi, Akira; Narumiya, Yosiyuki

    2014-01-01

    Since the accident at Fukushima Daiichi Nuclear Power Plant caused by the Great East Japan Earthquake in March 2011, there has been growing demands for assessing the effects of external hazards, including natural events, such as earthquake and tsunami, and external human behaviors, and taking actions to address those external hazards. The newly established Japanese regulatory requirements claim design considerations associated with external hazards. The primary objective of the risk assessment for external hazards is to establish countermeasures against such hazards rather than grasping the risk figures. Therefore, applying detailed risk assessment methods, such as probabilistic risk assessment (PRA), to all the external hazards is not always the most appropriate. Risk assessment methods can vary in types including qualitative evaluation, hazard analysis (analyzing hazard frequencies or their influence), and margin assessment. To resolve these issues, a process has been established that enables us to identify the external hazards in a comprehensive and systematic manner, which have potential risks leading to core damage and to select an appropriate evaluation method according to the risks associated with each of the external hazards. This paper discusses the comprehensive and systematic identification process for the external hazards which have potential risks leading to core damage, and the approaches of selecting an appropriate evaluation method for each external hazard. This paper also describes some applications of specific risk evaluation methods. (author)

  17. The use of hazards analysis in the development of training

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, F.K.

    1998-03-01

    When training for a job in which human error has the potential of producing catastrophic results, an understanding of the hazards that may be encountered is of paramount importance. In high consequence activities, it is important that the training program be conducted in a safe environment and yet emphasize the potential hazards. Because of the high consequence of a human error the use of a high-fidelity simulation is of great importance to provide the safe environment the worker needs to learn and hone required skills. A hazards analysis identifies the operation hazards, potential human error, and associated positive measures that aid in the mitigation or prevention of the hazard. The information gained from the hazards analysis should be used in the development of training. This paper will discuss the integration of information from the hazards analysis into the development of simulation components of a training program.

  18. Natural Hazards Science at the U.S. Geological Survey

    Science.gov (United States)

    Perry, Suzanne C.; Jones, Lucile M.; Holmes, Robert R.

    2013-01-01

    The mission of the USGS in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. The USGS conducts hazard research and works closely with stakeholders and cooperators to inform a broad range of planning and response activities at individual, local, State, national, and international levels. It has critical statutory and nonstatutory roles regarding floods, earthquakes, tsunamis, landslides, coastal erosion, volcanic eruptions, wildfires, and magnetic storms. USGS science can help to understand and reduce risks from natural hazards by providing the information that decisionmakers need to determine which risk management activities are worth­while.

  19. Hazardous waste research and development in the Pacific Basin

    International Nuclear Information System (INIS)

    Cirillo, R.R.; Carpenter, R.A.

    1989-01-01

    The effective management of hazardous waste is an issue that all countries of the Pacific Basin must address. By very rough estimates, almost 272 million metric tons of hazardous wastes are being generated every year in the region. While the data are not consistently defined and reported, they do indicate the extent of the problem. Increasing development brings along an increase in the rate of hazardous waste generation. On this basis, the developing countries of the region can be expected to experience some of the same problems of the developed countries as their economies become more industrialized. Fundamental problems are involved in the compilation of consistent hazardous-waste generation statistics in the Pacific Basin. One involves the definition of what constitutes hazardous waste

  20. UV radiation hazards

    International Nuclear Information System (INIS)

    Henderson, A.R.

    1987-01-01

    Exposure to ultraviolet radiation (UVR) is, for most people, a daily occurrence. Significant quantities of ultraviolet are present in sunlight, and this environmental exposure usually greatly exceeds that necessary for vitamin D production, the only certain benefit of UVR. In addition, occupational exposure to artificial sources of UVR is commonly encountered in commerce, industry and medicine. Exposure to UVR can present a hazard, principally to the eyes and exposed areas of the skin. The potential for any given source of UVR to cause photobiological damage depends on the spectral composition of the incident radiation, the geometry of optical coupling into the tissues at risk, the spectral sensitivity to damage of the irradiated tissue, the total accumulated exposure, and the action of any biological repair processes. In the ultraviolet region the photobiological interactions of concern are mainly photochemical. Hazard analysis and radiation protection require an appropriate framework of radiation measurement for the quantitative assessment of exposure and for the specification of safe exposure limits

  1. Assessing Natural Hazard Vulnerability Through Marmara Region Using GIS

    Science.gov (United States)

    Sabuncu, A.; Garagon Dogru, A.; Ozener, H.

    2013-12-01

    Natural hazards are natural phenomenon occured in the Earth's system that include geological and meteorological events such as earthquakes, floods, landslides, droughts, fires and tsunamis. The metropolitan cities are vulnerable to natural hazards due to their population densities, industrial facilities and proporties. The urban layout of the megacities are complex since industrial facilities are interference with residential area. The Marmara region is placed in North-western Turkey suffered from natural hazards (earthquakes, floods etc.) for years. After 1999 Kocaeli and Duzce earthquakes and 2009 Istanbul flash floods, dramatic number of casualities and economic losses were reported by the authorities. Geographic information systems (GIS) have substantial capacity in order to develop natural disaster management. As these systems provide more efficient and reliable analysis and evaluation of the data in the management, and also convenient and better solutions for the decision making before during and after the natural hazards. The Earth science data and socio-economic data can be integrated into a GIS as different layers. Additionally, satellite data are used to understand the changes pre and post the natural hazards. GIS is a powerful software for the combination of different type of digital data. A natural hazard database for the Marmara region provides all different types of digital data to the users. All proper data collection processing and analysing are critical to evaluate and identify hazards. The natural hazard database allows users to monitor, analyze and query past and recent disasters in the Marmara Region. The long term aim of this study is to develop geodatabase and identify the natural hazard vulnerabilities of the metropolitan cities.

  2. Assessment of Occupational Hazards, Health Problems and Safety ...

    African Journals Online (AJOL)

    UNIBEN

    Background: Petrol station attendants encounter several hazards and health problems while working. This study was conducted to determine the occupational hazards, health ..... engineering conference on sustainable ... Industrial Health.

  3. The use of hazards analysis in the development of training

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, F.K.

    1998-12-01

    A hazards analysis identifies the operation hazards and the positive measures that aid in the mitigation or prevention of the hazard. If the tasks are human intensive, the hazard analysis often credits the personnel training as contributing to the mitigation of the accident`s consequence or prevention of an accident sequence. To be able to credit worker training, it is important to understand the role of the training in the hazard analysis. Systematic training, known as systematic training design (STD), performance-based training (PBT), or instructional system design (ISD), uses a five-phase (analysis, design, development, implementation, and evaluation) model for the development and implementation of the training. Both a hazards analysis and a training program begin with a task analysis that documents the roles and actions of the workers. Though the tasks analyses are different in nature, there is common ground and both the hazard analysis and the training program can benefit from a cooperative effort. However, the cooperation should not end with the task analysis phase of either program. The information gained from the hazards analysis should be used in all five phases of the training development. The training evaluation, both of the individual worker and institutional training program, can provide valuable information to the hazards analysis effort. This paper will discuss the integration of the information from the hazards analysis into a training program. The paper will use the installation and removal of a piece of tooling that is used in a high-explosive operation. This example will be used to follow the systematic development of a training program and demonstrate the interaction and cooperation between the hazards analysis and training program.

  4. Statistical analysis of the uncertainty related to flood hazard appraisal

    Science.gov (United States)

    Notaro, Vincenza; Freni, Gabriele

    2015-12-01

    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  5. Defense against terroristic hazards and risk by building planning law

    International Nuclear Information System (INIS)

    Hopkins, Richard

    2012-01-01

    The book on defense against terroristic hazards and risk by building planning law includes the following issues: Introduction: civil engineering and safety. Risk, hazards and urban planning: historical and actual examples for the constructional danger prevention, terroristic threat and urban planning. Risk, hazards and terrorism: sociology and risk, law and risk, terrorism - risk or hazard? Answer to uncertainty - risk prevention, catastrophe law as link. Risk, hazard, terrorism and the public building and regional planning law: regional planning law as point of origin, building law and terrorism, possibility of control by the legal building regulations.

  6. Probabilistic Seismic Hazard Assessment Method for Nonlinear Soil Sites based on the Hazard Spectrum of Bedrock Sites

    International Nuclear Information System (INIS)

    Hahm, Dae Gi; Seo, Jeong Moon; Choi, In Kil

    2011-01-01

    For the probabilistic safety assessment of the nuclear power plants (NPP) under seismic events, the rational probabilistic seismic hazard estimation should be performed. Generally, the probabilistic seismic hazard of NPP site is represented by the uniform hazard spectrum (UHS) for the specific annual frequency. In most case, since that the attenuation equations were defined for the bedrock sites, the standard attenuation laws cannot be applied to the general soft soil sites. Hence, for the probabilistic estimation of the seismic hazard of soft soil sites, a methodology of probabilistic seismic hazard analysis (PSHA) coupled with nonlinear dynamic analyses of the soil column are required. Two methods are commonly used for the site response analysis considering the nonlinearity of sites. The one is the deterministic method and another is the probabilistic method. In the analysis of site response, there exist many uncertainty factors such as the variation of the magnitude and frequency contents of input ground motion, and material properties of soil deposits. Hence, nowadays, it is recommended that the adoption of the probabilistic method for the PSHA of soft soil deposits considering such uncertainty factors. In this study, we estimated the amplification factor of the surface of the soft soil deposits with considering the uncertainties of the input ground motions and the soil material properties. Then, we proposed the probabilistic methodology to evaluate the UHS of the soft soil site by multiplying the amplification factor to that of the bedrock site. The proposed method was applied to four typical target sites of KNGR and APR1400 NPP site categories

  7. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  8. Probabilistic seismic hazard assessment of southern part of Ghana

    Science.gov (United States)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2018-05-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  9. Probabilistic seismic hazard assessment of southern part of Ghana

    Science.gov (United States)

    Ahulu, Sylvanus T.; Danuor, Sylvester Kojo; Asiedu, Daniel K.

    2017-12-01

    This paper presents a seismic hazard map for the southern part of Ghana prepared using the probabilistic approach, and seismic hazard assessment results for six cities. The seismic hazard map was prepared for 10% probability of exceedance for peak ground acceleration in 50 years. The input parameters used for the computations of hazard were obtained using data from a catalogue that was compiled and homogenised to moment magnitude (Mw). The catalogue covered a period of over a century (1615-2009). The hazard assessment is based on the Poisson model for earthquake occurrence, and hence, dependent events were identified and removed from the catalogue. The following attenuation relations were adopted and used in this study—Allen (for south and eastern Australia), Silva et al. (for Central and eastern North America), Campbell and Bozorgnia (for worldwide active-shallow-crust regions) and Chiou and Youngs (for worldwide active-shallow-crust regions). Logic-tree formalism was used to account for possible uncertainties associated with the attenuation relationships. OpenQuake software package was used for the hazard calculation. The highest level of seismic hazard is found in the Accra and Tema seismic zones, with estimated peak ground acceleration close to 0.2 g. The level of the seismic hazard in the southern part of Ghana diminishes with distance away from the Accra/Tema region to a value of 0.05 g at a distance of about 140 km.

  10. Loss experience from natural phenomena hazards in the Department of Energy (50 years of natural phenomena hazard losses)

    International Nuclear Information System (INIS)

    Hill, J.R.

    1993-01-01

    This paper presents a historical prespective on losses due to natural hazard incidents (1943-1993) at Department of Energy (DOE) and predecessor agencies including the Atomic Energy Commission (AEC) and the Energy Research and Development Agency (ERDA). This paper also demonstrates how an existing DOE resource can be used to gain valuable insight into injury or property damage incidents. That resource is the Computerized Accident/Incident Reporting System (CAIRS) module of DOE's Safety Performance Measurement System. CAIRS data selected the 1981-1991 DOE injury/illness reports, from all the accident reports of the AEC that cited a natural phenomena hazard as either the direct or indirect cause of the injury/property damage. Specifically, injury or property damage reports were selected for analysis if they had a causal factor link to severe weather or natural phenomena hazard categories. Natural phenomena hazard categories are injury/property damage caused by hurricane/tornado, earthquake, lightning, or flood. Severe weather categories are injury/property damage associated with other than normal weather conditions. The lessons learned, as a result of reviewing case histories, are presented, as are suggestions on how to reduce the likelihood of future injuries/property damage as a result of similar events. A significant finding, is that most injuries and property damage were the result of an indirect causal link to a natural phenomena hazard and thus, may be more preventable than previously thought possible. The primary message, however, is that CAIRS and other incident data bases are valuable resources and should be considered for use by those interested in identifying new ways of protecting the health and safety of the worker and for reducing building losses due to the effects of natural phenomena hazards

  11. Hazard Baseline Downgrade Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility

  12. Regulation and Control of Hazardous Wastes

    OpenAIRE

    Hans W. Gottinger

    1994-01-01

    Hazardous waste regulations require disposal in approved dumpsites, where environmental consequences are minimal but entry may be privately very costly. Imperfect policing of regulations makes the socially more costly option illicit disposal preferable form the perspective of the private decision maker. The existence of the waste disposal decision, its economic nature, production independence, and the control over environmental damage are key issues in the economics of hazardous waste managem...

  13. Hazardous Waste Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The U.S. Army Engineer Waterways Experiment Station (WES) is playing a major role in development of technologies for cleanup of toxic and hazardous waste in military...

  14. Hazardous Waste Management by healthcare Institutions, Addis ...

    African Journals Online (AJOL)

    The finding of the study shows that except Zewditu hospital, the rest use proper management to the hazardous waste. Lack of awareness about health hazards of healthcare waste, inadequate training, absence of waste management and disposal systems, insufficient financial and human resources, low priority given to the ...

  15. 40 CFR 262.11 - Hazardous waste determination.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Hazardous waste determination. 262.11 Section 262.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES... Administrator under 40 CFR 260.21; or (2) Applying knowledge of the hazard characteristic of the waste in light...

  16. Hazardous Waste Cerification Plan: Hazardous Waste Handling Facility, Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    1992-02-01

    The purpose of this plan is to describe the organization and methodology for the certification of hazardous waste (HW) handled in the Lawrence Berkeley Laboratory (LBL) Hazardous Waste Handling Facility (HWHF). The plan also incorporates the applicable elements of waste reduction, which include both up-front minimization and end- product treatment to reduce the volume and toxicity of the waste; segregation of the waste as it applies to certification; and executive summary of the Quality Assurance Program Plan (QAPP) for the HWHF and a list of the current and planned implementing procedures used in waste certification. The plan provides guidance from the HWHF to waste generators, waste handlers, and the Systems Group Manager to enable them to conduct their activities and carry out their responsibilities in a manner that complies with several requirements of the Federal Resource Conservation and Resource Recovery Act (RCRA), the Federal Department of Transportation (DOT), and the State of California, Code of Regulations (CCR), Title 22

  17. HMPT: Hazardous Waste Transportation Live 27928, Test 27929

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Lewis Edward [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-17

    HMPT: Hazardous Waste Transportation (Live 27928, suggested one time and associated Test 27929, required initially and every 36 months) addresses the Department of Transportation (DOT) function-specific training requirements of the hazardous materials packagings and transportation (HMPT) Los Alamos National Laboratory (LANL) lab-wide training. This course addresses the requirements of the DOT that are unique to hazardous waste shipments. Appendix B provides the Title 40 Code of Federal Regulations (CFR) reference material needed for this course.

  18. Flood Hazard Recurrence Frequencies for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2001-01-01

    Department of Energy (DOE) regulations outline the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this report is flooding. The facility-specific probabilistic flood hazard curve defines, as a function of water elevation, the annual probability of occurrence or the return period in years. The facility-specific probabilistic flood hazard curves provide basis to avoid unnecessary facility upgrades, to establish appropriate design criteria for new facilities, and to develop emergency preparedness plans to mitigate the consequences of floods. A method based on precipitation, basin runoff and open channel hydraulics was developed to determine probabilistic flood hazard curves for the Savannah River Site. The calculated flood hazard curves show that the probabilities of flooding existing SRS major facilities are significantly less than 1.E-05 per year

  19. Landslide hazards and systems analysis: A Central European perspective

    Science.gov (United States)

    Klose, Martin; Damm, Bodo; Kreuzer, Thomas

    2016-04-01

    Part of the problem with assessing landslide hazards is to understand the variable settings in which they occur. There is growing consensus that hazard assessments require integrated approaches that take account of the coupled human-environment system. Here we provide a synthesis of societal exposure and vulnerability to landslide hazards, review innovative approaches to hazard identification, and lay a focus on hazard assessment, while presenting the results of historical case studies and a landslide time series for Germany. The findings add to a growing body of literature that recognizes societal exposure and vulnerability as a complex system of hazard interactions that evolves over time as a function of social change and development. We therefore propose to expand hazard assessments by the framework and concepts of systems analysis (e.g., Liu et al., 2007) Results so far have been promising in ways that illustrate the importance of feedbacks, thresholds, surprises, and time lags in the evolution of landslide hazard and risk. In densely populated areas of Central Europe, landslides often occur in urbanized landscapes or on engineered slopes that had been transformed or created intentionally by human activity, sometimes even centuries ago. The example of Germany enables to correlate the causes and effects of recent landslides with the historical transition of urbanization to urban sprawl, ongoing demographic change, and some chronic problems of industrialized countries today, including ageing infrastructures or rising government debts. In large parts of rural Germany, the combination of ageing infrastructures, population loss, and increasing budget deficits starts to erode historical resilience gains, which brings especially small communities to a tipping point in their efforts to risk reduction. While struggling with budget deficits and demographic change, these communities are required to maintain ageing infrastructures that are particularly vulnerable to

  20. Environmental Resources of Selected Areas of Hawaii: Geological Hazards (DRAFT)

    Energy Technology Data Exchange (ETDEWEB)

    Staub, W.P.

    1994-06-01

    This report has been prepared to make available and archive the background scientific data and related information collected on geologic hazards during the preparation of the environmental impact statement (EIS) for Phases 3 and 4 of the Hawaii Geothermal Project (HGP) as defined by the state of Hawaii in its April 1989 proposal to Congress. The U.S. Department of Energy (DOE) published a notice in the Federal Register on May 17, 1994 (Fed Regis. 5925638) withdrawing its Notice of Intent (Fed Regis. 575433) of February 14, 1992, to prepare the HGP-EIS. Since the state of Hawaii is no longer pursuing or planning to pursue the HGP, DOE considers the project to be terminated This report presents a review of current information on geologic hazards in the Hawaiian Islands. Interrelationships among these hazards are discussed. Probabilities of occurrence of given geologic hazards are provided in various regions where sufficient geologic or historical data are available. Most of the information contained herein is compiled from recent U.S. Geological Survey (USGS) publications and open-file reports. This report describes the natural geologic hazards present in the area and does not represent an assessment of environmental impacts. Geologic hazards originate both onshore and offshore. Onshore geologic hazards such as volcanic eruptions, earthquakes, surface rupture, landslides, uplift, and subsidence occur mainly on the southern third of the island of Hawaii (hereinafter referred to as Hawaii). Offshore geologic hazards are more widely distributed throughout the Hawaiian Islands. Examples of offshore geologic hazards are submarine landslides, turbidity currents, and seismic sea waves (tsunamis). First, overviews of volcanic and earthquake activity, and details of offshore geologic hazards is provided for the Hawaiian Islands. Then, a more detailed discussion of onshore geologic hazards is presented with special emphasis on the southern third of Hawaii and the east rift

  1. Documentation for Initial Seismic Hazard Maps for Haiti

    Science.gov (United States)

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2010-01-01

    In response to the urgent need for earthquake-hazard information after the tragic disaster caused by the moment magnitude (M) 7.0 January 12, 2010, earthquake, we have constructed initial probabilistic seismic hazard maps for Haiti. These maps are based on the current information we have on fault slip rates and historical and instrumental seismicity. These initial maps will be revised and improved as more data become available. In the short term, more extensive logic trees will be developed to better capture the uncertainty in key parameters. In the longer term, we will incorporate new information on fault parameters and previous large earthquakes obtained from geologic fieldwork. These seismic hazard maps are important for the management of the current crisis and the development of building codes and standards for the rebuilding effort. The boundary between the Caribbean and North American Plates in the Hispaniola region is a complex zone of deformation. The highly oblique ~20 mm/yr convergence between the two plates (DeMets and others, 2000) is partitioned between subduction zones off of the northern and southeastern coasts of Hispaniola and strike-slip faults that transect the northern and southern portions of the island. There are also thrust faults within the island that reflect the compressional component of motion caused by the geometry of the plate boundary. We follow the general methodology developed for the 1996 U.S. national seismic hazard maps and also as implemented in the 2002 and 2008 updates. This procedure consists of adding the seismic hazard calculated from crustal faults, subduction zones, and spatially smoothed seismicity for shallow earthquakes and Wadati-Benioff-zone earthquakes. Each one of these source classes will be described below. The lack of information on faults in Haiti requires many assumptions to be made. These assumptions will need to be revisited and reevaluated as more fieldwork and research are accomplished. We made two sets of

  2. Flood hazard assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    2000-01-01

    A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods. The flood hazard curves for the SRS F-Area due to flooding in the Upper Three Runs basin are presented in this paper

  3. The costs of hazardous alcohol consumption in Germany.

    Science.gov (United States)

    Effertz, Tobias; Verheyen, Frank; Linder, Roland

    2017-07-01

    Hazardous alcohol consumption in Germany is a main threat to health. By using insurance claim data from the German Statutory Health Insurance and a classification strategy based on ICD10 diagnoses-codes we analyzed a sample of 146,000 subjects with more than 19,000 hazardous alcohol consumers. Employing different regression models with a control function approach, we calculate life years lost due to alcohol consumption, annual direct and indirect health costs, and the burden of pain and suffering measured by the Charlson-Index and assessed pain diagnoses. Additionally, we simulate the net accumulated premium payments over expenses in the German Statutory Health Insurance and the Statutory Pension Fund for hazardous alcohol consumers from a lifecycle perspective. In total, €39.3 billion each year result from hazardous alcohol consumption with an average loss of 7 years in life expectancy. Hazardous alcohol consumers clearly do not "pay their way" in the two main German social security systems and also display a higher intangible burden according to our definitions of pain and suffering.

  4. Hazard assessment for Romania–Bulgaria crossborder region

    International Nuclear Information System (INIS)

    Solakov, Dimcho; Simeonova, Stela; Alexandrova, Irena; Trifonova, Petya; Ardeleanu, Luminita; Cioflan, Carmen

    2014-01-01

    Among the many kinds of natural and man-made disasters, earthquakes dominate with regard to their social and economical impact on the urban environment. Global seismic hazard and vulnerability to earthquakes are steadily increasing as urbanisation and development occupy more areas that are prone to effects of strong earthquakes. The assessment of the seismic hazard is particularly important, because it provides valuable information for seismic safety and disaster mitigation, and it supports decision making for the benefit of society. The main objective of this study is to assess the seismic hazard for Romania-Bulgaria cross-border region on the basis of integrated basic geo-datasets

  5. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2006-01-01

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls

  6. Hazardous waste operational plan for site 300

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    This plan outlines the procedures and operations used at LLNL's Site 300 for the management of the hazardous waste generated. This waste consists primarily of depleted uranium (a by-product of U-235 enrichment), beryllium, small quantities of analytical chemicals, industrial type waste such as solvents, cleaning acids, photographic chemicals, etc., and explosives. This plan details the operations generating this waste, the proper handling of this material and the procedures used to treat or dispose of the hazardous waste. A considerable amount of information found in this plan was extracted from the Site 300 Safety and Operational Manual written by Site 300 Facility personnel and the Hazards Control Department

  7. Managing risks and hazardous in industrial operations

    Energy Technology Data Exchange (ETDEWEB)

    Almaula, S.C. [Woodward-Clyde International, Oakland, CA (United States)

    1996-12-31

    The main objective of this paper is to demonstrate that it makes good business sense to identify risks and hazards of an operation and take appropriate steps to manage them effectively. Developing and implementing an effective risk and hazard management plan also contibutes to other industry requirements and standards. Development of a risk management system, key elements of a risk management plan, and hazards and risk analysis methods are outlined. Comparing potential risk to the cost of prevention is also discussed. It is estimated that the cost of developing and preparing the first risk management plan varies between $50,000 to $200,000. 3 refs., 2 figs., 1 tab.

  8. Exploration of resilience assessments for natural hazards

    Science.gov (United States)

    Lo Jacomo, Anna; Han, Dawei; Champneys, Alan

    2017-04-01

    The occurrence of extreme events due to natural hazards is difficult to predict. Extreme events are stochastic in nature, there is a lack of long term data on their occurrence, and there are still gaps in our understanding of their physical processes. This difficulty in prediction will be exacerbated by climate change and human activities. Yet traditional risk assessments measure risk as the probability of occurrence of a hazard, multiplied by the consequences of the hazard occurring, which ignores the recovery process. In light of the increasing concerns on disaster risks and the related system recovery, resilience assessments are being used as an approach which complements and builds on traditional risk assessments and management. In mechanical terms, resilience refers to the amount of energy per unit volume that a material can absorb while maintaining its ability to return to its original shape. Resilience was first applied in the fields of psychology and ecology, and more recently has been used in areas such as social sciences, economics, and engineering. A common metaphor for understanding resilience is the stability landscape. The landscape consists of a surface of interconnected basins, where each basin represents different states of a system, which is a point on the stability landscape. The resilience of the system is its capacity and tendency to remain within a particular basin. This depends on the topology of the landscape, on the system's current position, and on its reaction to different shocks and stresses. In practical terms, resilience assessments have been conducted for various purposes in different sectors. These assessments vary in their required inputs, the methodologies applied, and the output they produce. Some measures used for resilience assessments are hazard independent. These focus on the intrinsic capabilities of a system, for example the insurance coverage of a community, or the buffer capacity of a water storage reservoir. Other

  9. 1992 Tier Two emergency and hazardous chemical inventory

    International Nuclear Information System (INIS)

    1993-03-01

    This report is a compilation of data on emergency and hazardous chemicals stored at the Hanford Reservation. The report lists name or chemical description, physical and health hazards, inventories and storage location

  10. Climate Prediction Center (CPC) U.S. Hazards Outlook

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Prediction Center releases a US Hazards Outlook daily, Monday through Friday. The product highlights regions of anticipated hazardous weather during the...

  11. 75 FR 12718 - Hazard Communication; Meetings Notice

    Science.gov (United States)

    2010-03-17

    ... 1926 [Docket No. OSHA-H022K-2006-0062, (formerly OSHA Docket No. H022K] RIN 1218-AC20 Hazard Communication; Meetings Notice AGENCY: Occupational Safety and Health Administration (OSHA), Department of Labor..., 2009, OSHA announced that it would hold informal public hearings on its proposal to revise the Hazard...

  12. Assessment of volcanic hazards, vulnerability, risk and uncertainty (Invited)

    Science.gov (United States)

    Sparks, R. S.

    2009-12-01

    A volcanic hazard is any phenomenon that threatens communities . These hazards include volcanic events like pyroclastic flows, explosions, ash fall and lavas, and secondary effects such as lahars and landslides. Volcanic hazards are described by the physical characteristics of the phenomena, by the assessment of the areas that they are likely to affect and by the magnitude-dependent return period of events. Volcanic hazard maps are generated by mapping past volcanic events and by modelling the hazardous processes. Both these methods have their strengths and limitations and a robust map should use both approaches in combination. Past records, studied through stratigraphy, the distribution of deposits and age dating, are typically incomplete and may be biased. Very significant volcanic hazards, such as surge clouds and volcanic blasts, are not well-preserved in the geological record for example. Models of volcanic processes are very useful to help identify hazardous areas that do not have any geological evidence. They are, however, limited by simplifications and incomplete understanding of the physics. Many practical volcanic hazards mapping tools are also very empirical. Hazards maps are typically abstracted into hazards zones maps, which are some times called threat or risk maps. Their aim is to identify areas at high levels of threat and the boundaries between zones may take account of other factors such as roads, escape routes during evacuation, infrastructure. These boundaries may change with time due to new knowledge on the hazards or changes in volcanic activity levels. Alternatively they may remain static but implications of the zones may change as volcanic activity changes. Zone maps are used for planning purposes and for management of volcanic crises. Volcanic hazards maps are depictions of the likelihood of future volcanic phenomena affecting places and people. Volcanic phenomena are naturally variable, often complex and not fully understood. There are

  13. Advanced Materials Laboratory hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, B.; Banda, Z.

    1995-10-01

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  14. Conceptual geoinformation model of natural hazards risk assessment

    Science.gov (United States)

    Kulygin, Valerii

    2016-04-01

    Natural hazards are the major threat to safe interactions between nature and society. The assessment of the natural hazards impacts and their consequences is important in spatial planning and resource management. Today there is a challenge to advance our understanding of how socio-economical and climate changes will affect the frequency and magnitude of hydro-meteorological hazards and associated risks. However, the impacts from different types of natural hazards on various marine and coastal economic activities are not of the same type. In this study, the conceptual geomodel of risk assessment is presented to highlight the differentiation by the type of economic activities in extreme events risk assessment. The marine and coastal ecosystems are considered as the objects of management, on the one hand, and as the place of natural hazards' origin, on the other hand. One of the key elements in describing of such systems is the spatial characterization of their components. Assessment of ecosystem state is based on ecosystem indicators (indexes). They are used to identify the changes in time. The scenario approach is utilized to account for the spatio-temporal dynamics and uncertainty factors. Two types of scenarios are considered: scenarios of using ecosystem services by economic activities and scenarios of extreme events and related hazards. The reported study was funded by RFBR, according to the research project No. 16-35-60043 mol_a_dk.

  15. Screening criteria of volcanic hazards aspect in the NPP site evaluation

    International Nuclear Information System (INIS)

    Nur Siwhan

    2013-01-01

    Studies have been conducted on the completeness of regulation in Indonesia particularly on volcanic hazards aspects in the evaluation of nuclear power plant site. Volcanic hazard aspect needed to identify potential external hazards that may endanger the safety of the operation of nuclear power plants. There are four stages for evaluating volcanic hazards, which are initial assessment, characterization sources of volcanic activity in the future, screening volcanic hazards and assessment of capable volcanic hazards. This paper discuss the third stage of the general evaluation which is the screening procedure of volcanic hazards. BAPETEN Chairman Regulation No. 2 Year of 2008 has only one screening criteria for missile volcanic phenomena, so it required screening criteria for other hazard phenomena that are pyroclastic flow density; lava flows; avalanche debris materials; lava; opening hole new eruptions, volcano missile; tsunamis; ground deformation; and hydrothermal system and ground water anomaly. (author)

  16. The «Natural Hazard WIKISAURUS»: explanation and understanding of natural hazards to build disaster resilience

    Science.gov (United States)

    Rapisardi, Elena; Di Franco, Sabina; Giardino, Marco

    2013-04-01

    In the Internet and Web 2.0 era, the need of information is increased. Moreover, recent major and minor disasters highlighted that information is a crucial element also in emergency management. Informing the population is now the focal point of any civil protection activity and program. Risk perception and social vulnerability become widely discussed issues "when a disaster occurs": a "day-after" approach that should be replaced by a "day-before" one. Is that a cultural problem? Is it a communication issue? As a matter of fact, nowadays academics, experts, institutions are called to be more effective in transferring natural hazards knowledge (technical, operational, historical, social) to the public, for switching from «protection/passivity» (focused on disaster event) to «resilience» (focused on vulnerability). However, this change includes to abandon the "Elites Knowledge" approach and to support "Open Knowledge" and "Open Data" perspectives. Validated scientific information on natural hazards is not yet a common heritage: there are several cases of misleading or inaccurate information published by media. During recent Italian national emergencies [Flash Floods Liguria-Toscana 2011, Earthquake Emilia-Romagna 2012], social media registered people not only asking for news on the disaster event, but also talking trivially about scientific contents on natural hazards. By considering these facts, in the framework of a phD program in Earth Science, a joint team UNITO-NatRisk and CNR-IIA conceived the web project "Natural Hazards Wikisaurus" [NHW], combining two previous experiences: "HyperIspro" - a wiki on civil protection set up by Giuseppe Zamberletti, former Italian minister of Civil Protection - and "Earth Thesaurus", developed by CNR-IIA. The team decided to start from the «words» using both the collaboration of the wiki concept (open and participatory knowledge) and the power of explanation of a thesaurus. Why? Because a word is not enough, as a term has

  17. Natural Hazards Image Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photographs and other visual media provide valuable pre- and post-event data for natural hazards. Research, mitigation, and forecasting rely on visual data for...

  18. Further Results on Dynamic Additive Hazard Rate Model

    Directory of Open Access Journals (Sweden)

    Zhengcheng Zhang

    2014-01-01

    Full Text Available In the past, the proportional and additive hazard rate models have been investigated in the works. Nanda and Das (2011 introduced and studied the dynamic proportional (reversed hazard rate model. In this paper we study the dynamic additive hazard rate model, and investigate its aging properties for different aging classes. The closure of the model under some stochastic orders has also been investigated. Some examples are also given to illustrate different aging properties and stochastic comparisons of the model.

  19. Indicators of hazard, vulnerability and risk in urban drainage

    DEFF Research Database (Denmark)

    Hauger, Mikkel Boye; Mouchel, J.-M.; Mikkelsen, Peter Steen

    2006-01-01

    An alternative definition of risk is proposed as risk being a function of the hazard, which is related to the risk source and the vulnerability, which is related to the risk object. The same hazard will not cause the same effect on all risk objects, Therefore, vulnerability is introduced...... as a system-dependent property to be the link between the hazard and the effect so that the combination of the occurrence of a hazard and the vulnerability of an object results in the effect. In risk communication indicators are helpful since they help to simplify the message that has to be communicated...

  20. SOLID-STATE CONTROLLED FIRE HAZARD DETECTION AND ...

    African Journals Online (AJOL)

    Microcontrol/er based fire hazard detection and quenching .system is developed, tested and found working satisfactory. Its response is very fast to quench thefire hazard before it spreads out. It is smart to ffiJoid any false alarming in case of momentary fire occurrence. ,Special emphasis has been laid down in choosing.

  1. EFSA BIOHAZ Panel (EFSA Panel on Biological Hazards), 2013. Scientific Opinion on the public health hazards to be covered by inspection of meat (bovine animals)

    DEFF Research Database (Denmark)

    Hald, Tine; Baggesen, Dorte Lau

    for the farm-to-chilled carcass continuum using a risk-based approach was proposed. Key elements of the system are risk-categorisation of slaughter animals for high-priority biological hazards based on improved food chain information, as well as risk-categorisation of slaughterhouses according......A risk ranking process identified Salmonella spp. and pathogenic verocytotoxin-producing Escherichia coli (VTEC) as current high-priority biological hazards for meat inspection of bovine animals. As these hazards are not detected by traditional meat inspection, a meat safety assurance system...... to their capability to control those hazards. Omission of palpation and incision during post-mortem inspection for animals subjected to routine slaughter may decrease spreading and cross-contamination with the high-priority biological hazards. For chemical hazards, dioxins and dioxin-like polychlorinated biphenyls...

  2. What Are Volcano Hazards?

    Science.gov (United States)

    ... Sheet 002-97 Revised March 2008 What Are Volcano Hazards? Volcanoes give rise to numerous geologic and ... as far as 15 miles from the volcano. Volcano Landslides A landslide or debris avalanche is a ...

  3. Physically and psychologically hazardous jobs and mental health in Thailand.

    Science.gov (United States)

    Yiengprugsawan, Vasoontara; Strazdins, Lyndall; Lim, Lynette L-Y; Kelly, Matthew; Seubsman, Sam-ang; Sleigh, Adrian C

    2015-09-01

    This paper investigates associations between hazardous jobs, mental health and wellbeing among Thai adults. In 2005, 87 134 distance-learning students from Sukhothai Thammathirat Open University completed a self-administered questionnaire; at the 2009 follow-up 60 569 again participated. Job characteristics were reported in 2005, psychological distress and life satisfaction were reported in both 2005 and 2009. We derived two composite variables grading psychologically and physically hazardous jobs and reported adjusted odds ratios (AOR) from multivariate logistic regressions. Analyses focused on cohort members in paid work: the total was 62 332 at 2005 baseline and 41 671 at 2009 follow-up. Cross-sectional AORs linking psychologically hazardous jobs to psychological distress ranged from 1.52 (one hazard) to 4.48 (four hazards) for males and a corresponding 1.34-3.76 for females. Similarly AORs for physically hazardous jobs were 1.75 (one hazard) to 2.76 (four or more hazards) for males and 1.70-3.19 for females. A similar magnitude of associations was found between psychologically adverse jobs and low life satisfaction (AORs of 1.34-4.34 among males and 1.18-3.63 among females). Longitudinal analyses confirm these cross-sectional relationships. Thus, significant dose-response associations were found linking hazardous job exposures in 2005 to mental health and wellbeing in 2009. The health impacts of psychologically and physically hazardous jobs in developed, Western countries are equally evident in transitioning Southeast Asian countries such as Thailand. Regulation and monitoring of work conditions will become increasingly important to the health and wellbeing of the Thai workforce. © The Author 2013. Published by Oxford University Press.

  4. Physically and psychologically hazardous jobs and mental health in Thailand

    Science.gov (United States)

    Yiengprugsawan, Vasoontara; Strazdins, Lyndall; Lim, Lynette L.-Y.; Kelly, Matthew; Seubsman, Sam-ang; Sleigh, Adrian C.

    2015-01-01

    This paper investigates associations between hazardous jobs, mental health and wellbeing among Thai adults. In 2005, 87 134 distance-learning students from Sukhothai Thammathirat Open University completed a self-administered questionnaire; at the 2009 follow-up 60 569 again participated. Job characteristics were reported in 2005, psychological distress and life satisfaction were reported in both 2005 and 2009. We derived two composite variables grading psychologically and physically hazardous jobs and reported adjusted odds ratios (AOR) from multivariate logistic regressions. Analyses focused on cohort members in paid work: the total was 62 332 at 2005 baseline and 41 671 at 2009 follow-up. Cross-sectional AORs linking psychologically hazardous jobs to psychological distress ranged from 1.52 (one hazard) to 4.48 (four hazards) for males and a corresponding 1.34–3.76 for females. Similarly AORs for physically hazardous jobs were 1.75 (one hazard) to 2.76 (four or more hazards) for males and 1.70–3.19 for females. A similar magnitude of associations was found between psychologically adverse jobs and low life satisfaction (AORs of 1.34–4.34 among males and 1.18–3.63 among females). Longitudinal analyses confirm these cross-sectional relationships. Thus, significant dose–response associations were found linking hazardous job exposures in 2005 to mental health and wellbeing in 2009. The health impacts of psychologically and physically hazardous jobs in developed, Western countries are equally evident in transitioning Southeast Asian countries such as Thailand. Regulation and monitoring of work conditions will become increasingly important to the health and wellbeing of the Thai workforce. PMID:24218225

  5. Sustainability-Based Flood Hazard Mapping of the Swannanoa River Watershed

    Directory of Open Access Journals (Sweden)

    Ebrahim Ahmadisharaf

    2017-09-01

    Full Text Available An integrated framework is presented for sustainability-based flood hazard mapping of the Swannanoa River watershed in the state of North Carolina, U.S. The framework uses a hydrologic model for rainfall–runoff transformation, a two-dimensional unsteady hydraulic model flood simulation and a GIS-based multi-criteria decision-making technique for flood hazard mapping. Economic, social, and environmental flood hazards are taken into account. The importance of each hazard is quantified through a survey to the experts. Utilizing the proposed framework, sustainability-based flood hazard mapping is performed for the 100-year design event. As a result, the overall flood hazard is provided in each geographic location. The sensitivity of the overall hazard with respect to the weights of the three hazard components were also investigated. While the conventional flood management approach is to assess the environmental impacts of mitigation measures after a set of feasible options are selected, the presented framework incorporates the environmental impacts into the analysis concurrently with the economic and social influences. Thereby, it provides a more sustainable perspective of flood management and can greatly help the decision makers to make better-informed decisions by clearly understanding the impacts of flooding on economy, society and environment.

  6. Plasma destruction of North Carolina's hazardous waste based of hazardous waste generated between the years of 1989 and 1992

    International Nuclear Information System (INIS)

    Williams, D.L.

    1994-01-01

    The purpose of this research is to analyze the applicability of the plasma waste destruction technology to North Carolina hazardous waste streams. This study outlines the current regulations, existing technologies, and innovative technologies being considered as hazardous waste treatment alternatives. From this foundation, the study proceeds to identify the superiority of the plasma waste destruction technology. Specific areas of discussion include: temperature capabilities, waste residence time requirements, destruction removal efficiencies, operational efficiencies, economic issues, safety, and maintenance. This study finds the plasma destruction technology to be fully effective and superior to conventional facilities. The technology completely destroys hydrocarbons and can reduce the volume of many other hazardous wastes on the order of one part per million. The required residence time of waste in a plasma facility for effective destruction is a fraction of a second, while the rotary kiln incinerator maintains an average residence time of approximately 5 seconds. Also mass and heat balance calculations are performed to quantify the effectiveness and efficiency of this technology. It is found that one day's average amount of hazardous waste generated in the state of North Carolina can be destroyed in approximately thirty seconds using a standard one megawatt power source. Yet, before this technology is adopted as North Carolina's primary hazardous waste destruction technology, further study is needed so that all issues considered in this research can be conducted in great detail

  7. Risk-based consequences of extreme natural hazard processes in mountain regions - Multi-hazard analysis in Tyrol (Austria)

    Science.gov (United States)

    Huttenlau, Matthias; Stötter, Johann

    2010-05-01

    Reinsurance companies are stating a high increase in natural hazard related losses, both insured and economic losses, within the last decades on a global scale. This ongoing trend can be described as a product of the dynamic in the natural and in the anthroposphere. To analyze the potential impact of natural hazard process to a certain insurance portfolio or to the society in general, reinsurance companies or risk management consultants have developed loss models. However, those models are generally not fitting the scale dependent demand on regional scales like it is appropriate (i) for analyses on the scale of a specific province or (ii) for portfolio analyses of regional insurance companies. Moreover, the scientific basis of most of the models is not transparent documented and therefore scientific evaluations concerning the methodology concepts are not possible (black box). This is contrary to the scientific principles of transparency and traceability. Especially in mountain regions like the European Alps with their inherent (i) specific characteristic on small scales, (ii) the relative high process dynamics in general, (iii) the occurrence of gravitative mass movements which are related to high relief energy and thus only exists in mountain regions, (iv) the small proportion of the area of permanent settlement on the overall area, (v) the high value concentration in the valley floors, (vi) the exposition of important infrastructures and lifelines, and others, analyses must consider these circumstances adequately. Therefore, risk-based analyses are methodically estimating the potential consequences of hazard process on the built environment standardized with the risk components (i) hazard, (ii) elements at risk, and (iii) vulnerability. However, most research and progress have been made in the field of hazard analyses, whereas the other both components are not developed accordingly. Since these three general components are influencing factors without any

  8. Periurbanisation and natural hazards

    Directory of Open Access Journals (Sweden)

    Delphine Loison

    2009-03-01

    Full Text Available In mountainous areas in recent decades urbanisation has expanded to areas where low ground adjoins mountainsides that are unstable in a number of respects. Periurbanisation in mountain basins with unstable sides poses specific problems that local players have to address. The Lavanchon basin (southeast of Grenoble, which is subject to very rapid urban growth combined with particularly dynamic mountainsides, is representative of the way activity is being brought into closer contact with potential hazards. A diachronic study of changes in land use between 1956 and 2001 shows how valley infrastructures at the bottom of mountainsides have become increasingly dense. In this context, a survey was carried out among a number of residents in the Lavanchon basin in an attempt to evaluate the degree of awareness that the population has of the natural hazards to which it is exposed. The results show that slightly more than half of the population surveyed was aware of the problem of natural hazards being present in the area, with most inhabitants being more concerned about industrial and pollution hazards. New residents were unaware of or were unwilling to accept the reality of hazards. The low incidence of significant natural events, the effectiveness of the protective structures built, the absence of information provided by the public authorities and the division of the basin between several management bodies appear to have engendered a feeling of safety from natural phenomena. The geographical distribution of appreciation of the hazard clearly shows a distinction between those inhabitants living on the low ground and those at the bottom of the mountainsides, and this corresponds fairly closely with the historical and current location of the main potentially hazardous events that have occurred.Dans les territoires de montagne, les dernières décennies ont vu l’expansion de l’urbanisation vers les zones de contact entre la plaine et les versants, lieux

  9. Coalbed methane: from hazard to resource

    Science.gov (United States)

    Flores, R.M.

    1998-01-01

    Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 yr. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (eg, tunnels, vertical and horizontal drillholes, shsfts) and by drainage boreholes. The 1970s 'energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been pursued vigorously during the past two decades. Since the 1970s research investigations on the causes and effects of coal mine outbursts and gas emissions have led to major advances towards the recovery and development of coalbed methane for commercial use. Thus, coalbed methane as a mining hazard was harnessed as a conventional gas resource.Coalbed gas, which mainly consists of methane, has remained a major hazard affecting safety and productivity in underground coal mines for more than 100 years. Coalbed gas emissions have resulted in outbursts and explosions where ignited by open lights, smoking or improper use of black blasting powder, and machinery operations. Investigations of coal gas outbursts and explosions during the past century were aimed at predicting and preventing this mine hazard. During this time, gas emissions were diluted with ventilation by airways (e.g., tunnels, vertical and horizontal drillholes, shafts) and by drainage boreholes. The 1970's `energy crisis' led to studies of the feasibility of producing the gas for commercial use. Subsequent research on the origin, accumulation, distribution, availability, and recoverability has been

  10. Robotics and artificial intelligence for hazardous environments

    International Nuclear Information System (INIS)

    Spelt, P.F.

    1993-01-01

    In our technological society, hazardous materials including toxic chemicals, flammable, explosive, and radioactive substances, and biological agents, are used and handled routinely. Each year, many workers who handle these substances are accidently contaminated, in some cases resulting in injury, death, or chronic disabilities. If these hazardous materials could be handled remotely, either with a teleoperated robot (operated by a worker in a safe location) or by an autonomous robot, then human suffering and economic costs of accidental exposures could be dramatically reduced. At present, it is still difficult for commercial robotic technology to completely replace humans involved in performing complex work tasks in hazardous environments. The robotics efforts at the Center for Engineering Systems Advanced Research represent a significant effort at contributing to the advancement of robotics for use in hazardous environments. While this effort is very broad-based, ranging from dextrous manipulation to mobility and integrated sensing, the technical portion of this paper will focus on machine learning and the high-level decision making needed for autonomous robotics

  11. Light resin curing devices - a hazard evaluation

    International Nuclear Information System (INIS)

    Glansholm, A.

    1985-09-01

    An evaluation has been made of optical hazards to the eye from 18 specified lamps designed for curing dental composite plastic fillings. Radiation source in all of the investigated units were incandescent lamps of the tungsten metal halide type. Ultraviolet and visible radiation was measured with a calibrated EGandG 585 spectroradiometer system. Tables and diagrams of spectral radiance (Wm -2 nm -1 sr -1 ) are given. Hazard evaluation based on the ACGIH Threshold Limit Values of ultraviolet and visible radiation gave the following results: 1. Ultraviolet radiation is of no concern ( -2 UVA at 10 cm). 2. Reflexes from teeth are harmless. 3. Retinal thermal injury hazard (permanent burn damage) is diminnutive and non-existent if the equipment is handled with sense (irradiation of an unprotected eye at a distance less than 10 cm should be avoided). 4. Retinal photochemical (blue-light) injury may appear after direct viewing of the end of the fiber-optics cable. A table with safe exposure time for each apparatus is given. Proper protective goggles can eliminate the blue-light hazard. (Author)

  12. Automated hazard analysis of digital control systems

    International Nuclear Information System (INIS)

    Garrett, Chris J.; Apostolakis, George E.

    2002-01-01

    Digital instrumentation and control (I and C) systems can provide important benefits in many safety-critical applications, but they can also introduce potential new failure modes that can affect safety. Unlike electro-mechanical systems, whose failure modes are fairly well understood and which can often be built to fail in a particular way, software errors are very unpredictable. There is virtually no nontrivial software that will function as expected under all conditions. Consequently, there is a great deal of concern about whether there is a sufficient basis on which to resolve questions about safety. In this paper, an approach for validating the safety requirements of digital I and C systems is developed which uses the Dynamic Flowgraph Methodology to conduct automated hazard analyses. The prime implicants of these analyses can be used to identify unknown system hazards, prioritize the disposition of known system hazards, and guide lower-level design decisions to either eliminate or mitigate known hazards. In a case study involving a space-based reactor control system, the method succeeded in identifying an unknown failure mechanism

  13. Job Hazards Analysis Among A Group Of Surgeons At Zagazig ...

    African Journals Online (AJOL)

    ... 75% respectively. Conclusion: Job hazards analysis model was effective in assessment, evaluation and management of occupational hazards concerning surgeons and should considered as part of hospital wide quality and safety program. Key Words: Job Hazard Analysis, Risk Management, occupational Health Safety.

  14. Integrate urban‐scale seismic hazard analyses with the U.S. National Seismic Hazard Model

    Science.gov (United States)

    Moschetti, Morgan P.; Luco, Nicolas; Frankel, Arthur; Petersen, Mark D.; Aagaard, Brad T.; Baltay, Annemarie S.; Blanpied, Michael; Boyd, Oliver; Briggs, Richard; Gold, Ryan D.; Graves, Robert; Hartzell, Stephen; Rezaeian, Sanaz; Stephenson, William J.; Wald, David J.; Williams, Robert A.; Withers, Kyle

    2018-01-01

    For more than 20 yrs, damage patterns and instrumental recordings have highlighted the influence of the local 3D geologic structure on earthquake ground motions (e.g., M">M 6.7 Northridge, California, Gao et al., 1996; M">M 6.9 Kobe, Japan, Kawase, 1996; M">M 6.8 Nisqually, Washington, Frankel, Carver, and Williams, 2002). Although this and other local‐scale features are critical to improving seismic hazard forecasts, historically they have not been explicitly incorporated into the U.S. National Seismic Hazard Model (NSHM, national model and maps), primarily because the necessary basin maps and methodologies were not available at the national scale. Instead,...

  15. Flood hazard assessment in areas prone to flash flooding

    Science.gov (United States)

    Kvočka, Davor; Falconer, Roger A.; Bray, Michaela

    2016-04-01

    Contemporary climate projections suggest that there will be an increase in the occurrence of high-intensity rainfall events in the future. These precipitation extremes are usually the main cause for the emergence of extreme flooding, such as flash flooding. Flash floods are among the most unpredictable, violent and fatal natural hazards in the world. Furthermore, it is expected that flash flooding will occur even more frequently in the future due to more frequent development of extreme weather events, which will greatly increase the danger to people caused by flash flooding. This being the case, there will be a need for high resolution flood hazard maps in areas susceptible to flash flooding. This study investigates what type of flood hazard assessment methods should be used for assessing the flood hazard to people caused by flash flooding. Two different types of flood hazard assessment methods were tested: (i) a widely used method based on an empirical analysis, and (ii) a new, physically based and experimentally calibrated method. Two flash flood events were considered herein, namely: the 2004 Boscastle flash flood and the 2007 Železniki flash flood. The results obtained in this study suggest that in the areas susceptible to extreme flooding, the flood hazard assessment should be conducted using methods based on a mechanics-based analysis. In comparison to standard flood hazard assessment methods, these physically based methods: (i) take into account all of the physical forces, which act on a human body in floodwater, (ii) successfully adapt to abrupt changes in the flow regime, which often occur for flash flood events, and (iii) rapidly assess a flood hazard index in a relatively short period of time.

  16. Treatment of hazardous organic wastes using silent discharge plasmas

    International Nuclear Information System (INIS)

    Rosocha, L.A.; Anderson, G.K.; Bechtold, L.A.; Coogan, J.J.; Heck, H.G.; Kang, M.; McCulla, W.H.; Tennant, R.A.; Wantuck, P.J.

    1992-01-01

    During the past two decades, interest in applying non-equilibrium plasmas to the removal of hazardous chemicals from gaseous media has been growing, in particular from heightened concerns over the pollution of our environment and a growing body of environmental regulations. At the Los Alamos National Laboratory, we are currently engaged in a project to develop non-equilibrium plasma technology for hazardous waste treatment. Our present focus is on dielectric-barrier discharges, which are historically called silent electrical discharges. This type of plasma is also named a silent discharge plasma (SDP). We have chosen this method due to its potential for high energy efficiency, its scientific and technological maturity, and its scalability. The SDP process has been demonstrated to be reliable and economical for the industrial-scale synthesis of ozone, where municipal water treatment plants frequently require the on-site generation of thousands of kilograins per day (Eliasson ampersand Kogelschatz). The related methods of corona processing are presently the focus of work at other institutions, particularly for flue gas processing. Both SDP and corona processes are characterized by the production of large quantities of highly reactive free radicals, especially atomic oxygen O(3P) and the hydroxyl OH, in the gaseous medium and their subsequent reaction with contaminants. Our primary objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more amenable to treatment. In the ideal case, the hazardous wastes are destructively oxidized to simpler, non-hazardous compounds plus CO2 and H2O. Sometimes the reaction products are still potentially hazardous, but are easily treated by conventional methods to yield non-hazardous products

  17. Seismic hazard, risk, and design for South America

    Science.gov (United States)

    Petersen, Mark D.; Harmsen, Stephen; Jaiswal, Kishor; Rukstales, Kenneth S.; Luco, Nicolas; Haller, Kathleen; Mueller, Charles; Shumway, Allison

    2018-01-01

    We calculate seismic hazard, risk, and design criteria across South America using the latest data, models, and methods to support public officials, scientists, and engineers in earthquake risk mitigation efforts. Updated continental scale seismic hazard models are based on a new seismicity catalog, seismicity rate models, evaluation of earthquake sizes, fault geometry and rate parameters, and ground‐motion models. Resulting probabilistic seismic hazard maps show peak ground acceleration, modified Mercalli intensity, and spectral accelerations at 0.2 and 1 s periods for 2%, 10%, and 50% probabilities of exceedance in 50 yrs. Ground shaking soil amplification at each site is calculated by considering uniform soil that is applied in modern building codes or by applying site‐specific factors based on VS30">VS30 shear‐wave velocities determined through a simple topographic proxy technique. We use these hazard models in conjunction with the Prompt Assessment of Global Earthquakes for Response (PAGER) model to calculate economic and casualty risk. Risk is computed by incorporating the new hazard values amplified by soil, PAGER fragility/vulnerability equations, and LandScan 2012 estimates of population exposure. We also calculate building design values using the guidelines established in the building code provisions. Resulting hazard and associated risk is high along the northern and western coasts of South America, reaching damaging levels of ground shaking in Chile, western Argentina, western Bolivia, Peru, Ecuador, Colombia, Venezuela, and in localized areas distributed across the rest of the continent where historical earthquakes have occurred. Constructing buildings and other structures to account for strong shaking in these regions of high hazard and risk should mitigate losses and reduce casualties from effects of future earthquake strong ground shaking. National models should be developed by scientists and engineers in each country using the best

  18. Technological hazards in the understanding of society

    International Nuclear Information System (INIS)

    Diepold, W.

    1977-01-01

    This is a discussion of how employees of industry, an important part of society, and how the consumers and hence the whole volume of society express their attitude with respect to technological hazards in their practical activities and how the conclusions can be drawn from this that the population is thoroughly familiar in dealing with potential hazards. (orig.) [de

  19. Automated economic analysis model for hazardous waste minimization

    International Nuclear Information System (INIS)

    Dharmavaram, S.; Mount, J.B.; Donahue, B.A.

    1990-01-01

    The US Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the US Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army's six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States

  20. Natural phenomena hazards project for Department of Energy sites

    International Nuclear Information System (INIS)

    Coats, D.W.

    1985-01-01

    Lawrence Livermore National Laboratory (LLNL) has developed seismic and wind hazard models for the Office of Nuclear Safety (ONS), Department of Energy (DOE). The work is part of a three-phase effort aimed at establishing uniform building design criteria for seismic and wind hazards at DOE sites throughout the United States. In Phase 1, LLNL gathered information on the sites and their critical facilities, including nuclear reactors, fuel-reprocessing plants, high-level waste storage and treatment facilities, and special nuclear material facilities. In Phase 2, development of seismic and wind hazard models, was initiated. These hazard models express the annual probability that the site will experience an earthquake or wind speed greater than some specified magnitude. In the final phase, it is anticipated that the DOE will use the hazard models to establish uniform criteria for the design and evaluation of critical facilities. 13 references, 2 figures, 1 table

  1. An OSHA based approach to safety analysis for nonradiological hazardous materials

    International Nuclear Information System (INIS)

    Yurconic, M.

    1992-08-01

    The PNL method for chemical hazard classification defines major hazards by means of a list of hazardous substances (or chemical groups) with associated trigger quantities. In addition, the functional characteristics of the facility being classified is also be factored into the classification. In this way, installations defined as major hazard will only be those which have the potential for causing very serious incidents both on and off site. Because of the diversity of operations involving chemicals, it may not be possible to restrict major hazard facilities to certain types of operations. However, this hazard classification method recognizes that in the industrial sector major hazards are most commonly associated with activities involving very large quantities of chemicals and inherently energetic processes. These include operations like petrochemical plants, chemical production, LPG storage, explosives manufacturing, and facilities which use chlorine, ammonia, or other highly toxic gases in bulk quantities. The basis for this methodology is derived from concepts used by OSHA in its proposed chemical process safety standard, the Dow Fire and Explosion Index Hazard Classification Guide, and the International Labor Office's program on chemical safety. For the purpose of identifying major hazard facilities, this method uses two sorting criteria, (1) facility function and processes and (2) quantity of substances to identify facilities requiringclassification. Then, a measure of chemical energy potential (material factor) is used to identify high hazard class facilities

  2. Risk assessment on hazards for decommissioning safety of a nuclear facility

    International Nuclear Information System (INIS)

    Jeong, Kwan-Seong; Lee, Kune-Woo; Lim, Hyeon-Kyo

    2010-01-01

    A decommissioning plan should be followed by a qualitative and quantitative safety assessment of it. The safety assessment of a decommissioning plan is applied to identify the potential (radiological and non-radiological) hazards and risks. Radiological and non-radiological hazards arise during decommissioning activities. The non-radiological or industrial hazards to which workers are subjected during a decommissioning and dismantling process may be greater than those experienced during an operational lifetime of a facility. Workers need to be protected by eliminating or reducing the radiological and non-radiological hazards that may arise during routine decommissioning activities and as well as during accidents. The risk assessment method was developed by using risk matrix and fuzzy inference logic, on the basis of the radiological and non-radiological hazards for a decommissioning safety of a nuclear facility. Fuzzy inference of radiological and non-radiological hazards performs a mapping from radiological and non-radiological hazards to risk matrix. Defuzzification of radiological and non-radiological hazards is the conversion of risk matrix and priorities to the maximum criterion method and the mean criterion method. In the end, a composite risk assessment methodology, to rank the risk level on radiological and non-radiological hazards of the decommissioning tasks and to prioritize on the risk level of the decommissioning tasks, by simultaneously combining radiological and non-radiological hazards, was developed.

  3. 77 FR 59675 - Compliance With Information Request, Flooding Hazard Reevaluation

    Science.gov (United States)

    2012-09-28

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0222] Compliance With Information Request, Flooding Hazard... was needed in the areas of seismic and flooding design, and emergency preparedness. In addition to... licensees reevaluate flooding hazards at nuclear power plant sites using updated flooding hazard information...

  4. Plasma Hazards and Acceptance for International Space Station Extravehicular Activities

    Science.gov (United States)

    Patton, Thomas

    2010-09-01

    Extravehicular activity(EVA) is accepted by NASA and other space faring agencies as a necessary risk in order to build and maintain a safe and efficient laboratory in space. EVAs are used for standard construction and as contingency operations to repair critical equipment for vehicle sustainability and safety of the entire crew in the habitable volume. There are many hazards that are assessed for even the most mundane EVA for astronauts, and the vast majority of these are adequately controlled per the rules of the International Space Station Program. The need for EVA repair and construction has driven acceptance of a possible catastrophic hazard to the EVA crewmember which cannot currently be controlled adequately. That hazard is electrical shock from the very environment in which they work. This paper describes the environment, causes and contributors to the shock of EVA crewmembers attributed to the ionospheric plasma environment in low Earth orbit. It will detail the hazard history, and acceptance process for the risk associated with these hazards that give assurance to a safe EVA. In addition to the hazard acceptance process this paper will explore other factors that go into the decision to accept a risk including criticality of task, hardware design and capability, and the probability of hazard occurrence. Also included will be the required interaction between organizations at NASA(EVA Office, Environments, Engineering, Mission Operations, Safety) in order to build and eventually gain adequate acceptance rationale for a hazard of this kind. During the course of the discussion, all current methods of mitigating the hazard will be identified. This paper will capture the history of the plasma hazard analysis and processes used by the International Space Station Program to formally assess and qualify the risk. The paper will discuss steps that have been taken to identify and perform required analysis of the floating potential shock hazard from the ISS environment

  5. Management, treatment and final disposal of solid hazardous hospital wastes

    International Nuclear Information System (INIS)

    Sebiani Serrano, T.

    2000-01-01

    Medical Waste is characterized by its high risk to human health and the environment. The main risk is biological, due to the large amount of biologically contaminated materials present in such waste. However, this does not mean that the chemical and radioactive wastes are less harmful just because they represent a smaller part of the total waste. Hazardous wastes from hospitals can be divided in 3 main categories: Solid Hazardous Hospital Wastes (S.H.H.W.), Liquid Hazardous Hospital Wastes (L.H.H.W.) and Gaseous Hazardous Hospital Wastes (G.H.H.W.) Most gaseous and liquid hazardous wastes are discharged to the environment without treatment. Since this inappropriate disposal practice, however, is not visible to society, there is no societal reaction to such problem. On the contrary, hazardous solid wastes (S.H.H.W.) are visible to society and create worries in the population. As a result, social and political pressures arise, asking for solutions to the disposal problems of such wastes. In response to such pressures and legislation approved by Costa Rica on waste handling and disposal, the Caja Costarricense de Seguro Social developed a plan for the handling, treatment, and disposal of hazardous solid wastes at the hospitals and clinics of its system. The objective of the program is to reduce the risk to society of such wastes. In this thesis a cost-effectiveness analysis was conducted to determine the minimum cost at which it is possible to reach a maximum level of reduction in hazardous wastes, transferring to the environment the least possible volume of solid hazardous wastes, and therefore, reducing risk to a minimum. It was found that at the National Children's Hospital the internal handling of hazard solid wastes is conducted with a high level of effectiveness. However, once out of the hospital area, the handling is not effective, because hazardous and common wastes are all mixed together creating a larger amount of S.H.H.W. and reducing the final efficiency

  6. Radiation hazards and their effects

    International Nuclear Information System (INIS)

    Lunu, Shyam; Kumar, Hemant; Joshi, Pankaj Kumar; Songara, Venkteshwer

    2012-01-01

    Radiation can be classified into ionizing radiation and non-ionizing radiation, based on whether it is capable of ionizing atoms and breaking chemical bonds. Ultraviolet and higher frequency such as X-rays, gamma rays are ionizing. These pose their own special hazards. Non ionizing radiation is associated with two major potential hazards. i.e. electrical and biological. Additionally includes electric current caused by radiation can generate sparks and create a fire or explosive hazards. Strong radiation can induce current capable of delivering an electric shock. Extremely high power electromagnetic radiation can cause electric currents strong enough to create sparks when an induced voltage exceeds the breakdown voltage of surrounding mediums. A 2009 study at the University of Basal in Switzerland found that intermitted exposure of human cells to a 50 Hz electromagnetic field at a flux density of 10 Gy induced a slight but significant increase of DNA fragmentation in the comet assay. Mobile phones radiation and health concerns have been raised, especially following the enormous increase in the use of wireless mobile telephony throughout the world. Mobile phones use electromagnetic radiation in the microwaves range and some believes this may be harmful to human health. (author)

  7. Probabilistic Seismic Hazard Analysis for Yemen

    Directory of Open Access Journals (Sweden)

    Rakesh Mohindra

    2012-01-01

    Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.

  8. Navy Shipboard Hazardous Material Minimization Program

    Energy Technology Data Exchange (ETDEWEB)

    Bieberich, M.J. [Naval Surface Warfare Center, Annapolis, MD (United States). Carderock Div.; Robinson, P. [Life Cycle Engineering, Inc., Charleston, SC (United States); Chastain, B.

    1994-12-31

    The use of hazardous (and potentially hazardous) materials in shipboard cleaning applications has proliferated as new systems and equipments have entered the fleet to reside alongside existing equipments. With the growing environmental awareness (and additional, more restrictive regulations) at all levels/echelon commands of the DoD, the Navy has initiated a proactive program to undertake the minimization/elimination of these hazardous materials in order to eliminate HMs at the source. This paper will focus on the current Shipboard Hazardous Materials Minimization Program initiatives including the identification of authorized HM currently used onboard, identification of potential substitute materials for HM replacement, identification of new cleaning technologies and processes/procedures, and identification of technical documents which will require revision to eliminate the procurement of HMs into the federal supply system. Also discussed will be the anticipated path required to implement the changes into the fleet and automated decision processes (substitution algorithm) currently employed. The paper will also present the most recent technologies identified for approval or additional testing and analysis including: supercritical CO{sub 2} cleaning, high pressure blasting (H{sub 2}O + baking soda), aqueous and semi-aqueous cleaning materials and processes, solvent replacements and dedicated parts washing systems with internal filtering capabilities, automated software for solvent/cleaning process substitute selection. Along with these technological advances, data availability (from on-line databases and CDROM Database libraries) will be identified and discussed.

  9. Hazard categorization of K Basin water filtration upgrade project

    International Nuclear Information System (INIS)

    Conn, K.R.

    1995-01-01

    This supporting document provides the hazards categorization for the K Basin Water Filtration Upgrade Project at K East. All activities associated with the project are less than Hazard Category 3, except for the handling of the ECO-ROK liners containing spent filter cartridges. All activities involving the handling of liners, containing spent cartridges, by monorail, forklift or mobile crane are classified as Hazard Category 3

  10. Confidence intervals for the first crossing point of two hazard functions.

    Science.gov (United States)

    Cheng, Ming-Yen; Qiu, Peihua; Tan, Xianming; Tu, Dongsheng

    2009-12-01

    The phenomenon of crossing hazard rates is common in clinical trials with time to event endpoints. Many methods have been proposed for testing equality of hazard functions against a crossing hazards alternative. However, there has been relatively few approaches available in the literature for point or interval estimation of the crossing time point. The problem of constructing confidence intervals for the first crossing time point of two hazard functions is considered in this paper. After reviewing a recent procedure based on Cox proportional hazard modeling with Box-Cox transformation of the time to event, a nonparametric procedure using the kernel smoothing estimate of the hazard ratio is proposed. The proposed procedure and the one based on Cox proportional hazard modeling with Box-Cox transformation of the time to event are both evaluated by Monte-Carlo simulations and applied to two clinical trial datasets.

  11. Hazard identification: A proposal for a new development

    International Nuclear Information System (INIS)

    Contini, S.; Labath, N.

    1989-01-01

    Risk assessment is a complex task performed to quantify and minimise the hazards associated with potentially dangerous installations. The hazards identification represents the first step and can be performed by means of different methodologies. Some of these methodologies allow the collection of information on the possible plant behaviours in a structured way. However, this information cannot be easily used for further investigations (i.e. accident quantification). The paper suggests the application of a simple technique for hazard identification and fault tree construction, that can easily be implemented in a computer program. (orig.)

  12. Hazardous waste status of discarded electronic cigarettes.

    Science.gov (United States)

    Krause, Max J; Townsend, Timothy G

    2015-05-01

    The potential for disposable electronic cigarettes (e-cigarettes) to be classified as hazardous waste was investigated. The Toxicity Characteristic Leaching Procedure (TCLP) was performed on 23 disposable e-cigarettes in a preliminary survey of metal leaching. Based on these results, four e-cigarette products were selected for replicate analysis by TCLP and the California Waste Extraction Test (WET). Lead was measured in leachate as high as 50mg/L by WET and 40mg/L by TCLP. Regulatory thresholds were exceeded by two of 15 products tested in total. Therefore, some e-cigarettes would be toxicity characteristic (TC) hazardous waste but a majority would not. When disposed in the unused form, e-cigarettes containing nicotine juice would be commercial chemical products (CCP) and would, in the United States (US), be considered a listed hazardous waste (P075). While household waste is exempt from hazardous waste regulation, there are many instances in which such waste would be subject to regulation. Manufactures and retailers with unused or expired e-cigarettes or nicotine juice solution would be required to manage these as hazardous waste upon disposal. Current regulations and policies regarding the availability of nicotine-containing e-cigarettes worldwide were reviewed. Despite their small size, disposable e-cigarettes are consumed and discarded much more quickly than typical electronics, which may become a growing concern for waste managers. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Probabilistic earthquake hazard analysis for Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2016-04-01

    Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region's political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input's element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1° × 0.1 ° spacing for all of Cairo's districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone's districts (e.g., El Nozha) and the lowest values at the northern and western zone's districts (e.g., El Sharabiya and El Khalifa).

  14. A critical analysis of hazard resilience measures within sustainability assessment frameworks

    International Nuclear Information System (INIS)

    Matthews, Elizabeth C.; Sattler, Meredith; Friedland, Carol J.

    2014-01-01

    Today, numerous sustainability assessment frameworks (SAFs) exist to guide designers in achieving sustainable performance in the design of structures and communities. SAFs are beneficial in educating users and are useful tools for incorporating sustainability strategies into planning, design, and construction; however, there is currently a substantial gap in the ability of existing SAFs to incorporate hazard resistance and hazard mitigation in the broader context of sustainable design. This paper analyzes the incorporation of hazard resistant design and hazard mitigation strategies within SAFs via a multi-level analysis of eleven SAFs. The SAFs analyzed range in scale of application (i.e. building, site, community). Three levels of analysis are presented: (1) macro-level analysis comparing the number of measures strictly addressing resilience versus sustainability, (2) meso-level analysis of the coverage of types of hazards within SAFs (e.g. flood, fire), and (3) micro-level analysis of SAF measures connected to flood-related hazard resilience. The results demonstrate that hazard resistance and hazard mitigation do not figure prominently in the intent of SAFs and that weaknesses in resilience coverage exist that have the potential to lead to the design of structures and communities that are still highly vulnerable to the impacts of extreme events. - Highlights: • Sustainability assessment frameworks (SAFs) were analyzed for resilience coverage • Hazard resistance and mitigation do not figure prominently in the intent of SAFs • Approximately 75% of SAFs analyzed address three or fewer hazards • Lack of economic measures within SAFs could impact resilience and sustainability • Resilience measures for flood hazards are not consistently included in SAFs

  15. A critical analysis of hazard resilience measures within sustainability assessment frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Elizabeth C., E-mail: echiso1@lsu.edu [Louisiana State University, Baton Rouge, LA (United States); Sattler, Meredith, E-mail: msattler@lsu.edu [School of Architecture, Louisiana State University, Baton Rouge, LA (United States); Friedland, Carol J., E-mail: friedland@lsu.edu [Bert S. Turner Department of Construction Management, Louisiana State University, Baton Rouge, LA (United States)

    2014-11-15

    Today, numerous sustainability assessment frameworks (SAFs) exist to guide designers in achieving sustainable performance in the design of structures and communities. SAFs are beneficial in educating users and are useful tools for incorporating sustainability strategies into planning, design, and construction; however, there is currently a substantial gap in the ability of existing SAFs to incorporate hazard resistance and hazard mitigation in the broader context of sustainable design. This paper analyzes the incorporation of hazard resistant design and hazard mitigation strategies within SAFs via a multi-level analysis of eleven SAFs. The SAFs analyzed range in scale of application (i.e. building, site, community). Three levels of analysis are presented: (1) macro-level analysis comparing the number of measures strictly addressing resilience versus sustainability, (2) meso-level analysis of the coverage of types of hazards within SAFs (e.g. flood, fire), and (3) micro-level analysis of SAF measures connected to flood-related hazard resilience. The results demonstrate that hazard resistance and hazard mitigation do not figure prominently in the intent of SAFs and that weaknesses in resilience coverage exist that have the potential to lead to the design of structures and communities that are still highly vulnerable to the impacts of extreme events. - Highlights: • Sustainability assessment frameworks (SAFs) were analyzed for resilience coverage • Hazard resistance and mitigation do not figure prominently in the intent of SAFs • Approximately 75% of SAFs analyzed address three or fewer hazards • Lack of economic measures within SAFs could impact resilience and sustainability • Resilience measures for flood hazards are not consistently included in SAFs.

  16. KSC VAB Aeroacoustic Hazard Assessment

    Science.gov (United States)

    Oliveira, Justin M.; Yedo, Sabrina; Campbell, Michael D.; Atkinson, Joseph P.

    2010-01-01

    NASA Kennedy Space Center (KSC) carried out an analysis of the effects of aeroacoustics produced by stationary solid rocket motors in processing areas at KSC. In the current paper, attention is directed toward the acoustic effects of a motor burning within the Vehicle Assembly Building (VAB). The analysis was carried out with support from ASRC Aerospace who modeled transmission effects into surrounding facilities. Calculations were done using semi-analytical models for both aeroacoustics and transmission. From the results it was concluded that acoustic hazards in proximity to the source of ignition and plume can be severe; acoustic hazards in the far-field are significantly lower.

  17. Emergency preparedness hazards assessment for selected 100 Area Bechtel Hanford, Inc. facilities

    International Nuclear Information System (INIS)

    1997-07-01

    The emergency preparedness hazards assessment for Bechtel Hanford Inc. (BHI) facilities in the 100 Areas of the Hanford Site. The purpose of a hazards assessment is to identify the hazardous material at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. The hazards assessment is the technical basis for the facility emergency plans and procedures. There are many other buildings and past- practice burial grounds, trenches, cribs, etc., in the 100 Areas that may contain hazardous materials. Undisturbed buried waste sites that are not near the Columbia River are outside the scope of emergency preparedness hazards assessments because there is no mechanism for acute release to the air or ground water. The sites near the Columbia River are considered in a separate flood hazards assessment. This hazards assessment includes only the near-term soil remediation projects that involve intrusive activities

  18. Evaluation of seismic hazard at the northwestern part of Egypt

    Science.gov (United States)

    Ezzelarab, M.; Shokry, M. M. F.; Mohamed, A. M. E.; Helal, A. M. A.; Mohamed, Abuoelela A.; El-Hadidy, M. S.

    2016-01-01

    The objective of this study is to evaluate the seismic hazard at the northwestern Egypt using the probabilistic seismic hazard assessment approach. The Probabilistic approach was carried out based on a recent data set to take into account the historic seismicity and updated instrumental seismicity. A homogenous earthquake catalogue was compiled and a proposed seismic sources model was presented. The doubly-truncated exponential model was adopted for calculations of the recurrence parameters. Ground-motion prediction equations that recently recommended by experts and developed based upon earthquake data obtained from tectonic environments similar to those in and around the studied area were weighted and used for assessment of seismic hazard in the frame of logic tree approach. Considering a grid of 0.2° × 0.2° covering the study area, seismic hazard curves for every node were calculated. Hazard maps at bedrock conditions were produced for peak ground acceleration, in addition to six spectral periods (0.1, 0.2, 0.3, 1.0, 2.0 and 3.0 s) for return periods of 72, 475 and 2475 years. The unified hazard spectra of two selected rock sites at Alexandria and Mersa Matruh Cities were provided. Finally, the hazard curves were de-aggregated to determine the sources that contribute most of hazard level of 10% probability of exceedance in 50 years for the mentioned selected sites.

  19. Volcanic Hazard Assessments for Nuclear Installations: Methods and Examples in Site Evaluation

    International Nuclear Information System (INIS)

    2016-07-01

    To provide guidance on the protection of nuclear installations against the effects of volcanoes, the IAEA published in 2012 IAEA Safety Standards Series No. SSG-21, Volcanic Hazards in Site Evaluation for Nuclear Installations. SSG-21 addresses hazards relating to volcanic phenomena, and provides recommendations and general guidance for evaluation of these hazards. Unlike seismic hazard assessments, models for volcanic hazard assessment have not undergone decades of review, evaluation and testing for suitability in evaluating hazards at proposed nuclear installations. Currently in volcanology, scientific developments and detailed methodologies to model volcanic phenomena are evolving rapidly.This publication provides information on detailed methodologies and examples in the application of volcanic hazard assessment to site evaluation for nuclear installations, thereby addressing the recommendations in SSG-21. Although SSG-21 develops a logical framework for conducting a volcanic hazard assessment, this publication demonstrates the practicability of evaluating the recommendations in SSG-21 through a systematic volcanic hazard assessment and examples from Member States. The results of this hazard assessment can be used to derive the appropriate design bases and operational considerations for specific nuclear installations

  20. US Hazardous Materials Routes, Geographic WGS84, BTS (2006) [hazardous_material_routes_BTS_2006

    Data.gov (United States)

    Louisiana Geographic Information Center — The Federal Motor Carrier Safety Administration (FMCSA) Hazardous Material Routes were developed using the 2004 First Edition TIGER/Line files. The routes are...

  1. Stop radiation hazards

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    Brief general advice is presented for the employer unused to handling radioactive materials or using x-ray techniques. Topics mentioned are the definition of radiation and its hazards, measuring and monitoring the working environment, how to decide on and obtain equipment, standards and regulations, codes of practice, records, training, and useful sources of information. (U.K.)

  2. Hazard waste risk assessment

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1986-01-01

    Pacific Northwest Laboratory continued to provide technical assistance to the Department of Energy (DOE) Office of Operational Safety (OOS) in the area of risk assessment for hazardous and radioactive-mixed waste management. The overall objective is to provide technical assistance to OOS in developing cost-effective risk assessment tools and strategies for bringing DOE facilities into compliance with the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA or Superfund) and the Resource Conservation and Recovery Act (RCRA). Major efforts during FY 1985 included (1) completing the modification of the Environmental Protection Agency (EPA) Hazard Ranking System (HRS) and developing training manuals and courses to assist in field office implementation of the modified Hazard Ranking System (mHRS); (2) initiating the development of a system for reviewing field office HRS/mHRS evaluations for appropriate use of data and appropriate application of the methodology; (3) initiating the development of a data base management system to maintain all field office HRS/mHRS scoring sheets and to support the master OOS environmental data base system; (4) developing implementation guidance for Phase I of the DOE CERCLA Program, Installation Assessment; (5) continuing to develop an objective, scientifically based methodology for DOE management to use in establishing priorities for conducting site assessments under Phase II of the DOE CERCLA Program, Confirmation; and (6) participating in developing the DOE response to EPA on the proposed listing of three sites on the National Priorities List

  3. Up-to-date Probabilistic Earthquake Hazard Maps for Egypt

    Science.gov (United States)

    Gaber, Hanan; El-Hadidy, Mahmoud; Badawy, Ahmed

    2018-04-01

    An up-to-date earthquake hazard analysis has been performed in Egypt using a probabilistic seismic hazard approach. Through the current study, we use a complete and homogenous earthquake catalog covering the time period between 2200 BC and 2015 AD. Three seismotectonic models representing the seismic activity in and around Egypt are used. A logic-tree framework is applied to allow for the epistemic uncertainty in the declustering parameters, minimum magnitude, seismotectonic setting and ground-motion prediction equations. The hazard analysis is performed for a grid of 0.5° × 0.5° in terms of types of rock site for the peak ground acceleration (PGA) and spectral acceleration at 0.2-, 0.5-, 1.0- and 2.0-s periods. The hazard is estimated for three return periods (72, 475 and 2475 years) corresponding to 50, 10 and 2% probability of exceedance in 50 years. The uniform hazard spectra for the cities of Cairo, Alexandria, Aswan and Nuwbia are constructed. The hazard maps show that the highest ground acceleration values are expected in the northeastern part of Egypt around the Gulf of Aqaba (PGA up to 0.4 g for return period 475 years) and in south Egypt around the city of Aswan (PGA up to 0.2 g for return period 475 years). The Western Desert of Egypt is characterized by the lowest level of hazard (PGA lower than 0.1 g for return period 475 years).

  4. Development of hazard analysis by critical control points (HACCP) procedures to control organic chemical hazards in the agricultural production of raw food commodities.

    Science.gov (United States)

    Ropkins, Karl; Ferguson, Andrew; Beck, Angus J

    2003-01-01

    Hazard Analysis by Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards in the food chain. Effective HACCP requires the consideration of all chemical microbiological, and physical hazards. However, current procedures focus primarily on microbiological and physical hazards, while chemical aspects of HACCP have received relatively little attention. In this article we discuss the application of HACCP to organic chemical contaminants and the problems that are likely to be encountered in agriculture. We also present generic templates for the development of organic chemical contaminant HACCP procedures for selected raw food commodities, that is, cereal crops,raw meats, and milk.

  5. A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis

    Science.gov (United States)

    Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva

    2018-03-01

    The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.

  6. 40 CFR 271.12 - Requirements for hazardous waste management facilities.

    Science.gov (United States)

    2010-07-01

    ... Requirements for Final Authorization § 271.12 Requirements for hazardous waste management facilities. The State shall have standards for hazardous waste management facilities which are equivalent to 40 CFR parts 264... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Requirements for hazardous waste...

  7. 78 FR 24439 - Compliance With Information Request, Flooding Hazard Reevaluation

    Science.gov (United States)

    2013-04-25

    ... NUCLEAR REGULATORY COMMISSION [NRC-2013-0073] Compliance With Information Request, Flooding Hazard... Estimating Flooding Hazards due to Dam Failure.'' This draft JLD-ISG provides guidance acceptable to the NRC staff for reevaluating flooding hazards due to dam failure for the purpose of responding to enclosure 2...

  8. Hazard classification of environmental restoration activities at the INEL

    International Nuclear Information System (INIS)

    Peatross, R.G.

    1996-04-01

    The following documents require that a hazard classification be prepared for all activities for which US Department of Energy (DOE) has assumed environmental, safety, and health responsibility: the DOE Order 5481.1B, Safety Analysis and Review System and DOE Order 5480.23, Nuclear Safety Analysis Reports. A hazard classification defines the level of hazard posed by an operation or activity, assuming an unmitigated release of radioactive and nonradioactive hazardous material. For environmental restoration activities, the release threshold criteria presented in Hazard Baseline Documentation (DOE-EM-STD-5502-94) are used to determine classifications, such as Radiological, Nonnuclear, and Other Industrial facilities. Based upon DOE-EM-STD-5502-94, environmental restoration activities in all but one of the sites addressed by the scope of this classification (see Section 2) can be classified as ''Other Industrial Facility''. DOE-EM-STD-5502-94 states that a Health and Safety Plan and compliance with the applicable Occupational Safety and Health Administration (OSHA) standards are sufficient safety controls for this classification

  9. Radioactive hazards

    International Nuclear Information System (INIS)

    Gill, J.R.

    1980-01-01

    The use of radioactive substances in hospital laboratories is discussed and the attendant hazards and necessary precautions examined. The new legislation under the Health and Safety at Work Act which, it is proposed, will replace existing legal requirements in the field of health and safety at work by a system of regulations and approved codes of practice designed to maintain or improve the standards of health, safety and welfare already established, is considered with particular reference to protection against ionising radiations. (UK)

  10. Innovative technologies for the treatment of hazardous and mixed wastes

    International Nuclear Information System (INIS)

    Eyman, L.D.; Anderson, T.D.

    1988-01-01

    The treatment, storage, and disposal of hazardous and mixed wastes incur significant costs for Department of Energy (DOE) installations. These wastes must be managed under strict environmental controls and regulations to prevent the possibility of migration of hazardous materials to the biosphere. Through the Hazardous Waste Remedial Actions Program, the DOE is seeking to develop innovative ways of improving current treatment technologies to eliminate the hazardous components of wastes, reduce waste management costs, and minimize the volume requiring disposal as hazardous or mixed waste. Sponsored projects progress from research and development to field demonstration. Among the innovative technologies under development are supercritical water oxidation of hazardous chemicals, microwave-assisted destruction of chlorinated hydrocarbons, paramagnetic separation of metals from waste, detoxification and reclamation of waste acid, nitrate destruction through calcination, treatment/disposal of reactive metals, and methodologies for encapsulation. Technologies at a demonstration phase include detoxification of mixed waste sludge, microbial degradation of polychlorinated biphenyls in soil, and the remediation process for a hydrocarbon spill. 14 refs

  11. Toxicology primer: understanding workplace hazards and protecting worker health.

    Science.gov (United States)

    Arble, Janice

    2004-06-01

    Hazardous substances are ubiquitous in the environment and common in industrialized societies. Serious harm can occur with sufficient exposures under certain conditions. However, much harm can be avoided if hazardous substances are handled with respect and appreciation for their use and potential. Occupational health nurses must be aware of potential hazards to employees in the work environment and apply scientific principles to their practice of promoting worker safety and health.

  12. 78 FR 43263 - Paperless Hazard Communications Pilot Program

    Science.gov (United States)

    2013-07-19

    .... PHMSA-2013-0124, Notice No. 13-7] Paperless Hazard Communications Pilot Program AGENCY: Pipeline and...: PHMSA invites volunteers for a pilot program to evaluate the effectiveness of paperless hazard communications systems and comments on an information collection activity associated with the pilot program...

  13. Flood Hazard Assessment for the Savannah River Site

    International Nuclear Information System (INIS)

    Chen, K.F.

    1999-01-01

    'A method was developed to determine the probabilistic flood elevation curves for certain Savannah River Site (SRS) facilities. This paper presents the method used to determine the probabilistic flood elevation curve for F-Area due to runoff from the Upper Three Runs basin. Department of Energy (DOE) Order 420.1, Facility Safety, outlines the requirements for Natural Phenomena Hazard (NPH) mitigation for new and existing DOE facilities. The NPH considered in this paper is flooding. The facility-specific probabilistic flood hazard curve defines as a function of water elevation the annual probability of occurrence or the return period in years. Based on facility-specific probabilistic flood hazard curves and the nature of facility operations (e.g., involving hazardous or radioactive materials), facility managers can design permanent or temporary devices to prevent the propagation of flood on site, and develop emergency preparedness plans to mitigate the consequences of floods.'

  14. Incidents with hazardous radiation sources; Zwischenfaelle mit gefaehrlichen Strahlenquellen

    Energy Technology Data Exchange (ETDEWEB)

    Schoenhacker, Stefan [Bundesministerium fuer Inneres, Traiskirchen (Austria). Abt. 1/9 - Zivilschutzschule

    2016-07-01

    Incidents with hazardous radiation sources can occur in any country, even those without nuclear facilities. Preparedness for such incidents is supposed to fulfill globally agreed minimum standards. Incidents are categorized in incidents with licensed handling of radiation sources as for material testing, transport accidents of hazardous radiation sources, incidents with radionuclide batteries, incidents with satellites containing radioactive inventory, incidents wit not licensed handling of illegally acquired hazardous radiation sources. The emergency planning in Austria includes a differentiation according to the consequences: incidents with release of radioactive materials resulting in restricted contamination, incidents with release of radioactive materials resulting in local contamination, and incidents with the hazard of e@nhanced exposure due to the radiation source.

  15. Chemical hazards from decontamination solutions in low level waste

    International Nuclear Information System (INIS)

    Leventhal, L.; Miller, A.; Turney, J.; Naughton, M.; IMPELL Corp., Walnut Creek, CA; Electric Power Research Inst., Palo Alto, CA)

    1985-01-01

    Recent regulations are focussing more attention on the non-radioactive matrix materials associated with radioactive wastes. Decontamination of operating facilities is becoming a more significant source of low-level waste. This study reviewed the chemical and biological hazards of over 50 decontamination processes. Seventeen of the most prominent hard and soft decontamination processes were examined in detail. The chemical and biological hazards of these seventeen are presented in this paper. These hazards influence the choice of radwaste processing and packaging operations and methods. Federal, state and local regulations further impact on operations and waste disposal. Hazards to personnel, in plant and off-site, resulting from the decontamination cycle are evaluated. 1 fig., 5 tabs

  16. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  17. Overconfidence and Moral Hazard

    DEFF Research Database (Denmark)

    de la Rosa, Leonidas Enrique

    2011-01-01

    In this paper, I study the effects of overconfidence on incentive contracts in a moral-hazard framework. Agent overconfidence can have conflicting effects on the equilibrium contract. On the one hand, an optimistic or overconfident agent disproportionately values success-contingent payments...

  18. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  19. Augmented Reality Cues and Elderly Driver Hazard Perception

    Science.gov (United States)

    Schall, Mark C.; Rusch, Michelle L.; Lee, John D.; Dawson, Jeffrey D.; Thomas, Geb; Aksan, Nazan; Rizzo, Matthew

    2013-01-01

    Objective Evaluate the effectiveness of augmented reality (AR) cues in improving driving safety in elderly drivers who are at increased crash risk due to cognitive impairments. Background Cognitively challenging driving environments pose a particular crash risk for elderly drivers. AR cueing is a promising technology to mitigate risk by directing driver attention to roadway hazards. This study investigates whether AR cues improve or interfere with hazard perception in elderly drivers with age-related cognitive decline. Methods Twenty elderly (Mean= 73 years, SD= 5 years), licensed drivers with a range of cognitive abilities measured by a speed of processing (SOP) composite participated in a one-hour drive in an interactive, fixed-base driving simulator. Each participant drove through six, straight, six-mile-long rural roadway scenarios following a lead vehicle. AR cues directed attention to potential roadside hazards in three of the scenarios, and the other three were uncued (baseline) drives. Effects of AR cueing were evaluated with respect to: 1) detection of hazardous target objects, 2) interference with detecting nonhazardous secondary objects, and 3) impairment in maintaining safe distance behind a lead vehicle. Results AR cueing improved the detection of hazardous target objects of low visibility. AR cues did not interfere with detection of nonhazardous secondary objects and did not impair ability to maintain safe distance behind a lead vehicle. SOP capacity did not moderate those effects. Conclusion AR cues show promise for improving elderly driver safety by increasing hazard detection likelihood without interfering with other driving tasks such as maintaining safe headway. PMID:23829037

  20. Assessing natural hazard risk using images and data

    Science.gov (United States)

    Mccullough, H. L.; Dunbar, P. K.; Varner, J. D.; Mungov, G.

    2012-12-01

    Photographs and other visual media provide valuable pre- and post-event data for natural hazard assessment. Scientific research, mitigation, and forecasting rely on visual data for risk analysis, inundation mapping and historic records. Instrumental data only reveal a portion of the whole story; photographs explicitly illustrate the physical and societal impacts from the event. Visual data is rapidly increasing as the availability of portable high resolution cameras and video recorders becomes more attainable. Incorporating these data into archives ensures a more complete historical account of events. Integrating natural hazards data, such as tsunami, earthquake and volcanic eruption events, socio-economic information, and tsunami deposits and runups along with images and photographs enhances event comprehension. Global historic databases at NOAA's National Geophysical Data Center (NGDC) consolidate these data, providing the user with easy access to a network of information. NGDC's Natural Hazards Image Database (ngdc.noaa.gov/hazardimages) was recently improved to provide a more efficient and dynamic user interface. It uses the Google Maps API and Keyhole Markup Language (KML) to provide geographic context to the images and events. Descriptive tags, or keywords, have been applied to each image, enabling easier navigation and discovery. In addition, the Natural Hazards Map Viewer (maps.ngdc.noaa.gov/viewers/hazards) provides the ability to search and browse data layers on a Mercator-projection globe with a variety of map backgrounds. This combination of features creates a simple and effective way to enhance our understanding of hazard events and risks using imagery.

  1. EG and G long-range hazardous waste program plan

    International Nuclear Information System (INIS)

    1985-02-01

    The purpose of this document is to develop and implement a program for safe, economic management of hazardous and radioactive mixed waste generated, transported, treated, stored, or disposed of by EG and G Idaho operated facilities. The initial part of this program involves identification and characterization of EG and G-generated hazardous and radioactive mixed waste, and activities for corrective action, including handling, packaging, and shipping of these wastes off site for treatment, storage, and/or disposal, or for interim remedial action. The documentation necessary for all areas of the plan is carefully defined, so as to ensure compliance, at every step, with the requisite orders and guidelines. A second part of this program calls for assessment, and possible development and implementation of a treatment, storage, and disposal (T/S/D) program for special hazardous and radioactive mixed wastes which cannot practically, economically, and safely be disposed of at off-site facilities. This segment of the plan addresses obtaining permits for the existing Waste Experimental Reduction Facility (WERF) incinerator and for the construction of an adjacent hazardous waste solidification facility and a storage area. The permitting and construction of a special hazardous waste treatment and storage facility is also explored. The report investigates permitting the Hazardous Waste Storage Facility (HWSF) as a permanent storage facility

  2. Influence of behavioral biases on the assessment of multi-hazard risks and the implementation of multi-hazard risks mitigation measures: case study of multi-hazard cyclone shelters in Tamil Nadu, India

    Science.gov (United States)

    Komendantova, Nadejda; Patt, Anthony

    2013-04-01

    In December 2004, a multiple hazards event devastated the Tamil Nadu province of India. The Sumatra -Andaman earthquake with a magnitude of Mw=9.1-9.3 caused the Indian Ocean tsunami with wave heights up to 30 m, and flooding that reached up to two kilometers inland in some locations. More than 7,790 persons were killed in the province of Tamil Nadu, with 206 in its capital Chennai. The time lag between the earthquake and the tsunami's arrival in India was over an hour, therefore, if a suitable early warning system existed, a proper means of communicating the warning and shelters existing for people would exist, than while this would not have prevented the destruction of infrastructure, several thousands of human lives would have been saved. India has over forty years of experience in the construction of cyclone shelters. With additional efforts and investment, these shelters could be adapted to other types of hazards such as tsunamis and flooding, as well as the construction of new multi-hazard cyclone shelters (MPCS). It would therefore be possible to mitigate one hazard such as cyclones by the construction of a network of shelters while at the same time adapting these shelters to also deal with, for example, tsunamis, with some additional investment. In this historical case, the failure to consider multiple hazards caused significant human losses. The current paper investigates the patterns of the national decision-making process with regards to multiple hazards mitigation measures and how the presence of behavioral and cognitive biases influenced the perceptions of the probabilities of multiple hazards and the choices made for their mitigation by the national decision-makers. Our methodology was based on the analysis of existing reports from national and international organizations as well as available scientific literature on behavioral economics and natural hazards. The results identified several biases in the national decision-making process when the

  3. Regulatory barriers to hazardous waste technology innovation

    International Nuclear Information System (INIS)

    Kuusinen, T.L.; Siegel, M.R.

    1991-02-01

    The primary federal regulatory programs that influence the development of new technology for hazardous waste are the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA, also commonly known as Superfund). Two important aspects of RCRA that can create barriers to hazardous waste technology innovation are technology-based waste pre-treatment standards and a cumbersome permitting program. By choosing a technology-based approach to the RCRA land disposal restrictions program, the US Environmental Protection Agency (EPA) has simultaneously created tremendous demand for the technologies specified in its regulations, while at the same time significantly reduced incentives for technology innovation that might have otherwise existed. Also, the RCRA hazardous waste permitting process can take years and cost hundreds of thousands of dollars. The natural tendency of permit writers to be cautious of unproven (i.e., innovative) technology also can create a barrier to deployment of new technologies. EPA has created several permitting innovations, however, to attempt to mitigate this latter barrier. Understanding the constraints of these permitting innovations can be important to the success of hazardous waste technology development programs. 3 refs

  4. A generic hazardous waste management training program

    International Nuclear Information System (INIS)

    Carter, R.J.; Karnofsky, B.

    1988-01-01

    The main purpose of this training program element is to familiarize personnel involved in hazardous waste management with the goals of RCRA and how they are to be achieved. These goals include: to protect health and the environment; to conserve valuable material and energy resources; to prohibit future open dumping on the land; to assure that hazardous waste management practices are conducted in a manner which protects human health and the environment; to insure that hazardous waste is properly managed thereby reducing the need for corrective actions in the future; to establish a national policy to reduce or eliminate the generation of hazardous waste, wherever feasible. Another objective of this progam element is to present a brief overview of the RCRA regulations and how they are implemented/enforced by the Environmental Protection Agency (EPA) and each of the fifty states. This element also discusses where the RCRA regulations are published and how they are updated. In addition it details who is responsible for compliance with the regulations. Finally, this part of the training program provides an overview of the activities and materials that are regulated. 1 ref

  5. Assessment of occupational hazards, health problems and safety ...

    African Journals Online (AJOL)

    Background: Petrol station attendants encounter several hazards and health problems while working. This study was conducted to determine the ... Hazards reported included inhalation of petrol fumes 145 (67.4%), confrontation from customers 112 (52.1%) and noise 98 (45.6%). Health problems reported included ...

  6. Hazards Analysis for the Spent Nuclear Fuel L-Experimental Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    The purpose of this Hazard Analysis (HA) is to identify and assess potential hazards associated with the operations of the Spent Nuclear Fuels (SNF) Treatment and Storage Facility LEF. Additionally, this HA will be used for identifying and assessing potential hazards and specifying functional attributes of SSCs for the LEF project

  7. Hazardous waste and environmental trade: China`s issues

    Energy Technology Data Exchange (ETDEWEB)

    Ma Jiang [National Research Center for Science and Technology for Development, Beijing (China)

    1996-12-31

    By presenting some case studies, this paper analyzes China`s situation with regard to hazardous waste: its environmental trade, treatment, and management. The paper describes China`s experiences with the environmental trade of hazardous waste in both the internal and international market. Regulations for managing the import of waste are discussed, as are China`s major approaches to the trading of hazardous waste both at home and overseas. The major reasons for setting up the Asian-Pacific Regional Training Center for Technology Transfer and Environmental Sound Management of Wastes in China and the activities involved in this effort are also described. 1 tab.

  8. Proceedings of emerging technologies for hazardous waste management

    International Nuclear Information System (INIS)

    Tedder, D.W.

    1992-01-01

    This book contains proceedings of emerging technologies for hazardous waste management. Topics covered include: Low-temperature oxidation of organic chemical wastes; Advanced waste minimization strategies; Treatment of manufactured gas plant (MGP) and similar wastes; Bioremediation of soils and sediments; Advances in radioactive waste treatment; Computer aides approaches to hazardous waste management; Advances in soil remediation; Low-temperature oxidation of organic chemical waste; Boremediation: Micro, meso, and macro-scale processes; In situ remediation techniques; Treatment of hazardous organics with radiation or solar energy; Technologies for management of municipal waste combustion residues; Environmental restoration and waste management; and Advanced separation and stabilization technologies

  9. Processing LiDAR Data to Predict Natural Hazards

    Science.gov (United States)

    Fairweather, Ian; Crabtree, Robert; Hager, Stacey

    2008-01-01

    ELF-Base and ELF-Hazards (wherein 'ELF' signifies 'Extract LiDAR Features' and 'LiDAR' signifies 'light detection and ranging') are developmental software modules for processing remote-sensing LiDAR data to identify past natural hazards (principally, landslides) and predict future ones. ELF-Base processes raw LiDAR data, including LiDAR intensity data that are often ignored in other software, to create digital terrain models (DTMs) and digital feature models (DFMs) with sub-meter accuracy. ELF-Hazards fuses raw LiDAR data, data from multispectral and hyperspectral optical images, and DTMs and DFMs generated by ELF-Base to generate hazard risk maps. Advanced algorithms in these software modules include line-enhancement and edge-detection algorithms, surface-characterization algorithms, and algorithms that implement innovative data-fusion techniques. The line-extraction and edge-detection algorithms enable users to locate such features as faults and landslide headwall scarps. Also implemented in this software are improved methodologies for identification and mapping of past landslide events by use of (1) accurate, ELF-derived surface characterizations and (2) three LiDAR/optical-data-fusion techniques: post-classification data fusion, maximum-likelihood estimation modeling, and hierarchical within-class discrimination. This software is expected to enable faster, more accurate forecasting of natural hazards than has previously been possible.

  10. 2013 Los Alamos National Laboratory Hazardous Waste Minimization Report

    Energy Technology Data Exchange (ETDEWEB)

    Salzman, Sonja L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); English, Charles J. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-08-24

    Waste minimization and pollution prevention are inherent goals within the operating procedures of Los Alamos National Security, LLC (LANS). The US Department of Energy (DOE) and LANS are required to submit an annual hazardous waste minimization report to the New Mexico Environment Department (NMED) in accordance with the Los Alamos National Laboratory (LANL or the Laboratory) Hazardous Waste Facility Permit. The report was prepared pursuant to the requirements of Section 2.9 of the LANL Hazardous Waste Facility Permit. This report describes the hazardous waste minimization program (a component of the overall Waste Minimization/Pollution Prevention [WMin/PP] Program) administered by the Environmental Stewardship Group (ENV-ES). This report also supports the waste minimization and pollution prevention goals of the Environmental Programs Directorate (EP) organizations that are responsible for implementing remediation activities and describes its programs to incorporate waste reduction practices into remediation activities and procedures. LANS was very successful in fiscal year (FY) 2013 (October 1-September 30) in WMin/PP efforts. Staff funded four projects specifically related to reduction of waste with hazardous constituents, and LANS won four national awards for pollution prevention efforts from the National Nuclear Security Administration (NNSA). In FY13, there was no hazardous, mixedtransuranic (MTRU), or mixed low-level (MLLW) remediation waste generated at the Laboratory. More hazardous waste, MTRU waste, and MLLW was generated in FY13 than in FY12, and the majority of the increase was related to MTRU processing or lab cleanouts. These accomplishments and analysis of the waste streams are discussed in much more detail within this report.

  11. Perceptions of hazard and risk on Santorini

    Science.gov (United States)

    Dominey-Howes, Dale; Minos-Minopoulos, Despina

    2004-10-01

    Santorini, Greece is a major explosive volcano. The Santorini volcanic complex is composed of two active volcanoes—Nea Kameni and Mt. Columbo. Holocene eruptions have generated a variety of processes and deposits and eruption mechanisms pose significant hazards of various types. It has been recognized that, for major European volcanoes, few studies have focused on the social aspects of volcanic activity and little work has been conducted on public perceptions of hazard, risk and vulnerability. Such assessments are an important element of establishing public education programmes and developing volcano disaster management plans. We investigate perceptions of volcanic hazards on Santorini. We find that most residents know that Nea Kameni is active, but only 60% know that Mt. Columbo is active. Forty percent of residents fear that negative impacts on tourism will have the greatest effect on their community. In the event of an eruption, 43% of residents would try to evacuate the island by plane/ferry. Residents aged >50 have retained a memory of the effects of the last eruption at the island, whereas younger residents have no such knowledge. We find that dignitaries and municipal officers (those responsible for planning and managing disaster response) are informed about the history, hazards and effects of the volcanoes. However, there is no "emergency plan" for the island and there is confusion between various departments (Civil Defense, Fire, Police, etc.) about the emergency decision-making process. The resident population of Santorini is at high risk from the hazards associated with a future eruption.

  12. Second DOE natural phenomena hazards mitigation conference

    International Nuclear Information System (INIS)

    1989-01-01

    This conference has been organized into ten presentation sessions which include an overview of the DOE Natural Phenomena Guidelines, Seismic Analysis, Seismic Design, Modifying Existing Facilities, DOE Orders, Codes, and Standards (2 sessions), Seismic Hazard (2 sessions), and Probabilistic Risk Assessment (2 sessions). Two poster sessions were also included in the program to provide a different forum for communication of ideas. Over the past fourteen years, Lawrence Livermore National Laboratory, Nuclear Systems Safety Program, has been working with the US Department of Energy, Office of Safety Appraisals and their predecessors in the area of natural phenomena hazards. During this time we have developed seismic, extreme wind/tornado, and flood hazard models for DOE sites in the United States. Guidelines for designing and evaluating DOE facilities for natural phenomena have been developed and are in interim use throughout the DOE community. A series of state-of-the practice manuals have also been developed to aid the designers. All of this material is listed in the Natural Phenomena Hazards Bibliography included in these proceedings. This conference provides a mechanism to disseminate current information on natural phenomena hazards and their mitigation. It provides an opportunity to bring together members of the DOE community to discuss current projects, to share information, and to hear practicing members of the structural engineering community discuss their experiences from past natural phenomena, future trends, and any changes to building codes. Each paper or poster presented is included in these proceedings. We have also included material related to the luncheon and dinner talks

  13. Hazard identification based on plant functional modelling

    International Nuclear Information System (INIS)

    Rasmussen, B.; Whetton, C.

    1993-10-01

    A major objective of the present work is to provide means for representing a process plant as a socio-technical system, so as to allow hazard identification at a high level. The method includes technical, human and organisational aspects and is intended to be used for plant level hazard identification so as to identify critical areas and the need for further analysis using existing methods. The first part of the method is the preparation of a plant functional model where a set of plant functions link together hardware, software, operations, work organisation and other safety related aspects of the plant. The basic principle of the functional modelling is that any aspect of the plant can be represented by an object (in the sense that this term is used in computer science) based upon an Intent (or goal); associated with each Intent are Methods, by which the Intent is realized, and Constraints, which limit the Intent. The Methods and Constraints can themselves be treated as objects and decomposed into lower-level Intents (hence the procedure is known as functional decomposition) so giving rise to a hierarchical, object-oriented structure. The plant level hazard identification is carried out on the plant functional model using the Concept Hazard Analysis method. In this, the user will be supported by checklists and keywords and the analysis is structured by pre-defined worksheets. The preparation of the plant functional model and the performance of the hazard identification can be carried out manually or with computer support. (au) (4 tabs., 10 ills., 7 refs.)

  14. Nuclear hazard/fire hazard: an elusive and important linkage

    International Nuclear Information System (INIS)

    Mariani, L.P.

    1977-01-01

    The Brown's Ferry Fire signaled a yellow alert for nuclear safety related fire protection and showed that fire protection engineering must be regarded as a bona fide nuclear discipline. A single-failure design criteria violation resulted in fire damage to plant systems and plant instrumentation. Localized damage lead to significant consequences. Although the linkage between fire and nuclear hazard is termed subtle, effective standards and criteria development must be aimed to future plants. Combined fire protection and nuclear engineering inspections are planned

  15. Earthquake Hazard and Risk in Alaska

    Science.gov (United States)

    Black Porto, N.; Nyst, M.

    2014-12-01

    Alaska is one of the most seismically active and tectonically diverse regions in the United States. To examine risk, we have updated the seismic hazard model in Alaska. The current RMS Alaska hazard model is based on the 2007 probabilistic seismic hazard maps for Alaska (Wesson et al., 2007; Boyd et al., 2007). The 2015 RMS model will update several key source parameters, including: extending the earthquake catalog, implementing a new set of crustal faults, updating the subduction zone geometry and reoccurrence rate. First, we extend the earthquake catalog to 2013; decluster the catalog, and compute new background rates. We then create a crustal fault model, based on the Alaska 2012 fault and fold database. This new model increased the number of crustal faults from ten in 2007, to 91 faults in the 2015 model. This includes the addition of: the western Denali, Cook Inlet folds near Anchorage, and thrust faults near Fairbanks. Previously the subduction zone was modeled at a uniform depth. In this update, we model the intraslab as a series of deep stepping events. We also use the best available data, such as Slab 1.0, to update the geometry of the subduction zone. The city of Anchorage represents 80% of the risk exposure in Alaska. In the 2007 model, the hazard in Alaska was dominated by the frequent rate of magnitude 7 to 8 events (Gutenberg-Richter distribution), and large magnitude 8+ events had a low reoccurrence rate (Characteristic) and therefore didn't contribute as highly to the overall risk. We will review these reoccurrence rates, and will present the results and impact to Anchorage. We will compare our hazard update to the 2007 USGS hazard map, and discuss the changes and drivers for these changes. Finally, we will examine the impact model changes have on Alaska earthquake risk. Consider risk metrics include average annual loss, an annualized expected loss level used by insurers to determine the costs of earthquake insurance (and premium levels), and the

  16. Hazard maps of Colima volcano, Mexico

    Science.gov (United States)

    Suarez-Plascencia, C.; Nunez-Cornu, F. J.; Escudero Ayala, C. R.

    2011-12-01

    Colima volcano, also known as Volcan de Fuego (19° 30.696 N, 103° 37.026 W), is located on the border between the states of Jalisco and Colima and is the most active volcano in Mexico. Began its current eruptive process in February 1991, in February 10, 1999 the biggest explosion since 1913 occurred at the summit dome. The activity during the 2001-2005 period was the most intense, but did not exceed VEI 3. The activity resulted in the formation of domes and their destruction after explosive events. The explosions originated eruptive columns, reaching attitudes between 4,500 and 9,000 m.a.s.l., further pyroclastic flows reaching distances up to 3.5 km from the crater. During the explosive events ash emissions were generated in all directions reaching distances up to 100 km, slightly affected nearby villages as Tuxpan, Tonila, Zapotlán, Cuauhtemoc, Comala, Zapotitlan de Vadillo and Toliman. During the 2005 this volcano has had an intense effusive-explosive activity, similar to the one that took place during the period of 1890 through 1900. Intense pre-plinian eruption in January 20, 1913, generated little economic losses in the lower parts of the volcano due to low population density and low socio-economic activities at the time. Shows the updating of the volcanic hazard maps published in 2001, where we identify whit SPOT satellite imagery and Google Earth, change in the land use on the slope of volcano, the expansion of the agricultural frontier on the east and southeast sides of the Colima volcano, the population inhabiting the area is approximately 517,000 people, and growing at an annual rate of 4.77%, also the region that has shown an increased in the vulnerability for the development of economic activities, supported by the construction of highways, natural gas pipelines and electrical infrastructure that connect to the Port of Manzanillo to Guadalajara city. The update the hazard maps are: a) Exclusion areas and moderate hazard for explosive events

  17. Combustible dusts: a serious industrial hazard.

    Science.gov (United States)

    Joseph, Giby

    2007-04-11

    After investigating three fatal explosions in manufacturing plants, the U.S. Chemical Safety and Hazard Investigation Board (CSB) has concluded: The explosive hazard of combustible dust is not well known, and helping industry to understand this hazard is a priority. Prompted by these three incidents in North Carolina, Kentucky and Indiana and the need to increase the hazard awareness, CSB is conducting a study to examine the nature and scope of dust explosion risks in industry and to identify initiatives that may be necessary to more effectively prevent combustible dust fires and explosions. Such initiatives may include regulatory action, voluntary consensus standards, or other measures that could be taken by industry, labor, government, and other parties. A critical task of the dust study is analyzing past incidents to determine the severity of the problem within industry. The analysis is focusing on the number of incidents, injuries and fatalities, industrial sectors affected, and regulatory oversight. This paper presents the preliminary findings from CSBs analysis of combustible dust incidents over the past 25 years. This paper has not been approved by the Board and is published for general informational purposes only. Every effort has been made to accurately present the contents of any Board-approved report mentioned in this paper. Any material in the paper that did not originate in a Board-approved report is solely the responsibility of the authors and does not represent an official finding, conclusion, or position of the Board.

  18. Preliminary Hazards Analysis Plasma Hearth Process

    International Nuclear Information System (INIS)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P.

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment

  19. Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy

    Directory of Open Access Journals (Sweden)

    J. Blahut

    2010-11-01

    Full Text Available Debris flow hazard modelling at medium (regional scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal, and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy. The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R, developed at the University of Lausanne (Switzerland. An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise

  20. Surface Fire Hazards Analysis Technical Report-Constructor Facilities

    International Nuclear Information System (INIS)

    Flye, R.E.

    2000-01-01

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events