WorldWideScience

Sample records for hazards analysis documentation

  1. Technical basis document for natural event hazards

    International Nuclear Information System (INIS)

    CARSON, D.M.

    2003-01-01

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process and the technical basis for assigning risk bins for natural event hazards (NEH)-initiated representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report

  2. TECHNICAL BASIS DOCUMENT FOR NATURAL EVENT HAZARDS

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2006-01-01

    This technical basis document was developed to support the documented safety analysis (DSA) and describes the risk binning process and the technical basis for assigning risk bins for natural event hazard (NEH)-initiated accidents. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the frequency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR-level controls

  3. Hazard Analysis Database Report

    Energy Technology Data Exchange (ETDEWEB)

    GAULT, G.W.

    1999-10-13

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for the Tank Waste Remediation System (TWRS) Final Safety Analysis Report (FSAR). The FSAR is part of the approved TWRS Authorization Basis (AB). This document describes, identifies, and defines the contents and structure of the TWRS FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The TWRS Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The database supports the preparation of Chapters 3,4, and 5 of the TWRS FSAR and the USQ process and consists of two major, interrelated data sets: (1) Hazard Evaluation Database--Data from the results of the hazard evaluations; and (2) Hazard Topography Database--Data from the system familiarization and hazard identification.

  4. Hazard Analysis Database Report

    CERN Document Server

    Grams, W H

    2000-01-01

    The Hazard Analysis Database was developed in conjunction with the hazard analysis activities conducted in accordance with DOE-STD-3009-94, Preparation Guide for U S . Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, for HNF-SD-WM-SAR-067, Tank Farms Final Safety Analysis Report (FSAR). The FSAR is part of the approved Authorization Basis (AB) for the River Protection Project (RPP). This document describes, identifies, and defines the contents and structure of the Tank Farms FSAR Hazard Analysis Database and documents the configuration control changes made to the database. The Hazard Analysis Database contains the collection of information generated during the initial hazard evaluations and the subsequent hazard and accident analysis activities. The Hazard Analysis Database supports the preparation of Chapters 3 ,4 , and 5 of the Tank Farms FSAR and the Unreviewed Safety Question (USQ) process and consists of two major, interrelated data sets: (1) Hazard Analysis Database: Data from t...

  5. The practical implementation of integrated safety management for nuclear safety analysis and fire hazards analysis documentation

    International Nuclear Information System (INIS)

    COLLOPY, M.T.

    1999-01-01

    the integrated safety management system approach for having a uniform and consistent process: a method has been suggested by the U S . Department of Energy at Richland and the Project Hanford Procedures when fire hazard analyses and safety analyses are required. This process provides for a common basis approach in the development of the fire hazard analysis and the safety analysis. This process permits the preparers of both documents to jointly participate in the development of the hazard analysis process. This paper presents this method to implement the integrated safety management approach in the development of the fire hazard analysis and safety analysis that provides consistency of assumptions. consequences, design considerations, and other controls necessarily to protect workers, the public. and the environment

  6. 14 CFR 437.29 - Hazard analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Hazard analysis. 437.29 Section 437.29... Documentation § 437.29 Hazard analysis. (a) An applicant must perform a hazard analysis that complies with § 437.55(a). (b) An applicant must provide to the FAA all the results of each step of the hazard analysis...

  7. INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION

    Energy Technology Data Exchange (ETDEWEB)

    R.J. Garrett

    2005-02-17

    The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology for this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified.

  8. INTERNAL HAZARDS ANALYSIS FOR LICENSE APPLICATION

    International Nuclear Information System (INIS)

    Garrett, R.J.

    2005-01-01

    The purpose of this internal hazards analysis is to identify and document the internal hazards and potential initiating events associated with preclosure operations of the repository at Yucca Mountain. Internal hazards are those hazards presented by the operation of the facility and by its associated processes that can potentially lead to a radioactive release or cause a radiological hazard. In contrast to external hazards, internal hazards do not involve natural phenomena and external man-made hazards. This internal hazards analysis was performed in support of the preclosure safety analysis and the License Application for the Yucca Mountain Project. The methodology for this analysis provides a systematic means to identify internal hazards and potential initiating events that may result in a radiological hazard or radiological release during the repository preclosure period. These hazards are documented in tables of potential internal hazards and potential initiating events (Section 6.6) for input to the repository event sequence categorization process. The results of this analysis will undergo further screening and analysis based on the criteria that apply to the performance of event sequence analyses for the repository preclosure period. The evolving design of the repository will be re-evaluated periodically to ensure that internal hazards that have not been previously evaluated are identified

  9. Canister storage building hazard analysis report

    International Nuclear Information System (INIS)

    POWERS, T.B.

    1999-01-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the CSB final safety analysis report (FSAR) and documents the results. The hazard analysis was performed in accordance with the DOE-STD-3009-94, ''Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports'', and meets the intent of HNF-PRO-704, ''Hazard and Accident Analysis Process''. This hazard analysis implements the requirements of DOE Order 5480.23, ''Nuclear Safety Analysis Reports''

  10. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories` operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment.

  11. Advanced Manufacturing Processes Laboratory Building 878 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.; Thornton, W.; Swihart, A.; Gilman, T.

    1994-07-01

    The introduction of the hazards assessment process is to document the impact of the release of hazards at the Advanced Manufacturing Processes Laboratory (AMPL) that are significant enough to warrant consideration in Sandia National Laboratories' operational emergency management program. This hazards assessment is prepared in accordance with the Department of Energy Order 5500.3A requirement that facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment provides an analysis of the potential airborne release of chemicals associated with the operations and processes at the AMPL. This research and development laboratory develops advanced manufacturing technologies, practices, and unique equipment and provides the fabrication of prototype hardware to meet the needs of Sandia National Laboratories, Albuquerque, New Mexico (SNL/NM). The focus of the hazards assessment is the airborne release of materials because this requires the most rapid, coordinated emergency response on the part of the AMPL, SNL/NM, collocated facilities, and surrounding jurisdiction to protect workers, the public, and the environment

  12. Hanford surplus facilities hazards identification document

    International Nuclear Information System (INIS)

    Egge, R.G.

    1997-01-01

    This document provides general safety information needed by personnel who enter and work in surplus facilities managed by Bechtel Hanford, Inc. The purpose of the document is to enhance access control of surplus facilities, educate personnel on the potential hazards associated with these facilities prior to entry, and ensure that safety precautions are taken while in the facility

  13. HAZARD ANALYSIS SOFTWARE

    International Nuclear Information System (INIS)

    Sommer, S; Tinh Tran, T.

    2008-01-01

    Washington Safety Management Solutions, LLC developed web-based software to improve the efficiency and consistency of hazard identification and analysis, control selection and classification, and to standardize analysis reporting at Savannah River Site. In the new nuclear age, information technology provides methods to improve the efficiency of the documented safety analysis development process which includes hazard analysis activities. This software provides a web interface that interacts with a relational database to support analysis, record data, and to ensure reporting consistency. A team of subject matter experts participated in a series of meetings to review the associated processes and procedures for requirements and standard practices. Through these meetings, a set of software requirements were developed and compiled into a requirements traceability matrix from which software could be developed. The software was tested to ensure compliance with the requirements. Training was provided to the hazard analysis leads. Hazard analysis teams using the software have verified its operability. The software has been classified as NQA-1, Level D, as it supports the analysis team but does not perform the analysis. The software can be transported to other sites with alternate risk schemes. The software is being used to support the development of 14 hazard analyses. User responses have been positive with a number of suggestions for improvement which are being incorporated as time permits. The software has enforced a uniform implementation of the site procedures. The software has significantly improved the efficiency and standardization of the hazard analysis process

  14. Canister storage building hazard analysis report

    International Nuclear Information System (INIS)

    Krahn, D.E.; Garvin, L.J.

    1997-01-01

    This report describes the methodology used in conducting the Canister Storage Building (CSB) hazard analysis to support the final CSB safety analysis report (SAR) and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Report, and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  15. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    International Nuclear Information System (INIS)

    Fatell, L.B.; Woolsey, G.B.

    1993-01-01

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility's response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences

  16. Hazardous Waste/Mixed Waste Treatment Building Safety Information Document (SID)

    Energy Technology Data Exchange (ETDEWEB)

    Fatell, L.B.; Woolsey, G.B.

    1993-04-15

    This Safety Information Document (SID) provides a description and analysis of operations for the Hazardous Waste/Mixed Waste Disposal Facility Treatment Building (the Treatment Building). The Treatment Building has been classified as a moderate hazard facility, and the level of analysis performed and the methodology used are based on that classification. Preliminary design of the Treatment Building has identified the need for two separate buildings for waste treatment processes. The term Treatment Building applies to all these facilities. The evaluation of safety for the Treatment Building is accomplished in part by the identification of hazards associated with the facility and the analysis of the facility`s response to postulated events involving those hazards. The events are analyzed in terms of the facility features that minimize the causes of such events, the quantitative determination of the consequences, and the ability of the facility to cope with each event should it occur. The SID presents the methodology, assumptions, and results of the systematic evaluation of hazards associated with operation of the Treatment Building. The SID also addresses the spectrum of postulated credible events, involving those hazards, that could occur. Facility features important to safety are identified and discussed in the SID. The SID identifies hazards and reports the analysis of the spectrum of credible postulated events that can result in the following consequences: Personnel exposure to radiation; Radioactive material release to the environment; Personnel exposure to hazardous chemicals; Hazardous chemical release to the environment; Events leading to an onsite/offsite fatality; and Significant damage to government property. The SID addresses the consequences to the onsite and offsite populations resulting from postulated credible events and the safety features in place to control and mitigate the consequences.

  17. Assessment of LANL hazardous waste management documentation

    International Nuclear Information System (INIS)

    Davis, K.D.; Hoevemeyer, S.S.; Stirrup, T.S.; Jennrich, E.A.; Lund, D.M.

    1991-04-01

    The objective of this report is to present findings from evaluating the Los Alamos National Laboratory (LANL) ''Hazardous Waste Acceptance Criteria Receipt at TA-54, Area L'' to determine if it meets applicable DOE requirements. The guidelines and requirements for the establishment of a Hazardous Waste Acceptance Criteria (HW-WAC) are found in 40 CFR 260 to 270 and DOE Order 5820.2A. Neither set of requirements specifically require a WAC for the management of hazardous waste; however, the use of such documentation is logical and is consistent with the approach required for the management of radioactive waste. The primary purpose of a HW-WAC is to provide generators and waste management with established criteria that must be met before hazardous waste can be acceptable for treatment, storage and/or disposal. An annotated outline for a generic waste acceptance criteria was developed based on the requirements of 40 CFR 260 to 270 and DOE Order 5820.2A. The outline contains only requirements for hazardous waste, it does not address the radiological components of low-level mixed waste. The outline generated from the regulations was used for comparison to the LANL WAC For Chemical and Low-level Mixed Waste Receipt at TA-54, Area L. The major elements that should be addressed by a hazardous waste WAC were determined to be as follows: Waste Package/Container Requirements, Waste Forms, Land Disposal Restrictions, and Data Package-Certification ampersand Documentation

  18. Building 894 hazards assessment document

    International Nuclear Information System (INIS)

    Banda, Z.; Williams, M.

    1996-07-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with Building 894. The entire inventory was subjected to the screening criteria for potential airborne impact to onsite and offsite individuals out of which 9 chemicals were kept for further evaluation. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 130 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal 130 meter area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets

  19. Building 6630 hazards assessment document

    International Nuclear Information System (INIS)

    Williams, M.; Banda, Z.

    1996-10-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with Building 6630. The entire inventory was subjected to the screening criteria for potential airborne impact to onsite and offsite individuals out of which one chemical was kept for further evaluation. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the chemical release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 76 meters. The highest emergency classification is an Alert. The Emergency Planning Zone is a nominal 100 meter area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets

  20. Preliminary hazards analysis of thermal scrap stabilization system. Revision 1

    International Nuclear Information System (INIS)

    Lewis, W.S.

    1994-01-01

    This preliminary analysis examined the HA-21I glovebox and its supporting systems for potential process hazards. Upon further analysis, the thermal stabilization system has been installed in gloveboxes HC-21A and HC-21C. The use of HC-21C and HC-21A simplified the initial safety analysis. In addition, these gloveboxes were cleaner and required less modification for operation than glovebox HA-21I. While this document refers to glovebox HA-21I for the hazards analysis performed, glovebox HC-21C is sufficiently similar that the following analysis is also valid for HC-21C. This hazards analysis document is being re-released as revision 1 to include the updated flowsheet document (Appendix C) and the updated design basis (Appendix D). The revised Process Flow Schematic has also been included (Appendix E). This Current revision incorporates the recommendations provided from the original hazards analysis as well. The System Design Description (SDD) has also been appended (Appendix H) to document the bases for Safety Classification of thermal stabilization equipment

  1. Advanced Materials Laboratory hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Barnett, B.; Banda, Z.

    1995-10-01

    The Department of Energy Order 55OO.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the AML. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 23 meters. The highest emergency classification is a General Emergency. The Emergency Planning Zone is a nominal area that conforms to DOE boundaries and physical/jurisdictional boundaries such as fence lines and streets.

  2. Cold Vacuum Drying Facility hazard analysis report

    Energy Technology Data Exchange (ETDEWEB)

    Krahn, D.E.

    1998-02-23

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports.

  3. Cold Vacuum Drying Facility hazard analysis report

    International Nuclear Information System (INIS)

    Krahn, D.E.

    1998-01-01

    This report describes the methodology used in conducting the Cold Vacuum Drying Facility (CVDF) hazard analysis to support the CVDF phase 2 safety analysis report (SAR), and documents the results. The hazard analysis was performed in accordance with DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, and implements the requirements of US Department of Energy (DOE) Order 5480.23, Nuclear Safety Analysis Reports

  4. Kauai Test Facility hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Swihart, A

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility`s chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the {open_quotes}Main Complex{close_quotes} and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the {open_quotes}Main Complex{close_quotes} is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility`s site boundary.

  5. Kauai Test Facility hazards assessment document

    International Nuclear Information System (INIS)

    Swihart, A.

    1995-05-01

    The Department of Energy Order 55003A requires facility-specific hazards assessment be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Kauai Test Facility, Barking Sands, Kauai, Hawaii. The Kauai Test Facility's chemical and radiological inventories were screened according to potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance to the Early Severe Health Effects threshold is 4.2 kilometers. The highest emergency classification is a General Emergency at the open-quotes Main Complexclose quotes and a Site Area Emergency at the Kokole Point Launch Site. The Emergency Planning Zone for the open-quotes Main Complexclose quotes is 5 kilometers. The Emergency Planning Zone for the Kokole Point Launch Site is the Pacific Missile Range Facility's site boundary

  6. Supplemental Hazard Analysis and Risk Assessment - Hydrotreater

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-04-01

    A supplemental hazard analysis was conducted and quantitative risk assessment performed in response to an independent review comment received by the Pacific Northwest National Laboratory (PNNL) from the U.S. Department of Energy Pacific Northwest Field Office (PNSO) against the Hydrotreater/Distillation Column Hazard Analysis Report issued in April 2013. The supplemental analysis used the hazardous conditions documented by the previous April 2013 report as a basis. The conditions were screened and grouped for the purpose of identifying whether additional prudent, practical hazard controls could be identified, using a quantitative risk evaluation to assess the adequacy of the controls and establish a lower level of concern for the likelihood of potential serious accidents. Calculations were performed to support conclusions where necessary.

  7. Fire hazards analysis for solid waste burial grounds

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This document comprises the fire hazards analysis for the solid waste burial grounds, including TRU trenches, low-level burial grounds, radioactive mixed waste trenches, etc. It analyzes fire potential, and fire damage potential for these facilities. Fire scenarios may be utilized in future safety analysis work, or for increasing the understanding of where hazards may exist in the present operation

  8. Repository Subsurface Preliminary Fire Hazard Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2001-01-01

    This fire hazard analysis identifies preliminary design and operations features, fire, and explosion hazards, and provides a reasonable basis to establish the design requirements of fire protection systems during development and emplacement phases of the subsurface repository. This document follows the Technical Work Plan (TWP) (CRWMS M and O 2001c) which was prepared in accordance with AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities''; Attachment 4 of AP-ESH-008, ''Hazards Analysis System''; and AP-3.11Q, ''Technical Reports''. The objective of this report is to establish the requirements that provide for facility nuclear safety and a proper level of personnel safety and property protection from the effects of fire and the adverse effects of fire-extinguishing agents

  9. Hazard classification and auditable safety analysis for the 1300-N Emergency Dump Basin

    International Nuclear Information System (INIS)

    Kretzschmar, S.P.; Larson, A.R.

    1996-06-01

    This document combines the following four analytical functions: (1) hazards baseline of the Emergency Dump Basin (EDB) in the quiescent state; (2) preliminary hazard classification for intrusive activities (i.e., basin stabilization); (3) final hazard classification for intrusive activities; and (4) an auditable safety analysis. This document describes the potential hazards contained within the EDB at the N Reactor complex and the vulnerabilities of those hazards during the quiescent state (when only surveillance and maintenance activities take place) and during basin stabilization activities. This document also identifies the inventory of both radioactive and hazardous material in the EDB. Result is that the final hazard classification for the EDB segment intrusive activities is radiological

  10. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included.

  11. Modified Hazard Ranking System/Hazard Ranking System for sites with mixed radioactive and hazardous wastes: Software documentation

    International Nuclear Information System (INIS)

    Stenner, R.D.; Peloquin, R.A.; Hawley, K.A.

    1986-11-01

    The mHRS/HRS software package was developed by the Pacific Northwest Laboratory (PNL) under contract with the Department of Energy (DOE) to provide a uniform method for DOE facilities to use in performing their Conservation Environmental Response Compensation and Liability Act (CERCLA) Phase I Modified Hazard Ranking System or Hazard Ranking System evaluations. The program is designed to remove the tedium and potential for error associated with the performing of hand calculations and the interpreting of information on tables and in reference books when performing an evaluation. The software package is designed to operate on a microcomputer (IBM PC, PC/XT, or PC/AT, or a compatible system) using either a dual floppy disk drive or a hard disk storage system. It is written in the dBASE III language and operates using the dBASE III system. Although the mHRS/HRS software package was developed for use at DOE facilities, it has direct applicability to the performing of CERCLA Phase I evaluations for any facility contaminated by hazardous waste. The software can perform evaluations using either the modified hazard ranking system methodology developed by DOE/PNL, the hazard ranking system methodology developed by EPA/MITRE Corp., or a combination of the two. This document is a companion manual to the mHRS/HRS user manual. It is intended for the programmer who must maintain the software package and for those interested in the computer implementation. This manual documents the system logic, computer programs, and data files that comprise the package. Hardware and software implementation requirements are discussed. In addition, hand calculations of three sample situations (problems) with associated computer runs used for the verification of program calculations are included

  12. Hanford surplus facilities hazards identification document. Revision 2

    International Nuclear Information System (INIS)

    Egge, R.G.

    1996-02-01

    This document provides general safety information needed by personnel who enter and work in surplus facilities managed by Bechtel Hanford, Inc. (BHI). The purpose of the document is to enhance access control of surplus facilities, educate personnel on the potential hazards associated with these facilities prior to entry, and ensure that safety precautions are taken while in the facility. Questions concerning the currency of this information should be directed to the building administrator (as listed in BHI-FS-01, Field Support Administration, Section 1.1, ''Access Control for ERC Surplus Facilities'')

  13. Simulation Technology Laboratory Building 970 hazards assessment document

    International Nuclear Information System (INIS)

    Wood, C.L.; Starr, M.D.

    1994-11-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Simulation Technology Laboratory, Building 970. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 and Early Severe Health Effects thresholds are 78 and 46 meters, respectively. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters

  14. WIPP fire hazards and risk analysis

    International Nuclear Information System (INIS)

    1991-05-01

    The purpose of this analysis was to conduct a fire hazards risk analysis of the Transuranic (TRU) contact-handled waste receipt, emplacement, and disposal activities at the Waste Isolation Pilot Plant (WIPP). The technical bases and safety envelope for these operations are defined in the approved WIPP Final Safety Analysis Report (FSAR). Although the safety documentation for the initial phase of the Test Program, the dry bin scale tests, has not yet been approved by the Department of Energy (DOE), reviews of the draft to date, including those by the Advisory Committee on Nuclear Facility Safety (ACNFS), have concluded that the dry bin scale tests present no significant risks in excess of those estimated in the approved WIPP FSAR. It is the opinion of the authors and reviewers of this analysis, based on sound engineering judgment and knowledge of the WIPP operations, that a Fire Hazards and Risk Analysis specific to the dry bin scale test program is not warranted prior to first waste receipt. This conclusion is further supported by the risk analysis presented in this document which demonstrates the level of risk to WIPP operations posed by fire to be extremely low. 15 refs., 41 figs., 48 tabs

  15. SNF fuel retrieval sub project safety analysis document

    International Nuclear Information System (INIS)

    BERGMANN, D.W.

    1999-01-01

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed

  16. SNF fuel retrieval sub project safety analysis document

    Energy Technology Data Exchange (ETDEWEB)

    BERGMANN, D.W.

    1999-02-24

    This safety analysis is for the SNF Fuel Retrieval (FRS) Sub Project. The FRS equipment will be added to K West and K East Basins to facilitate retrieval, cleaning and repackaging the spent nuclear fuel into Multi-Canister Overpack baskets. The document includes a hazard evaluation, identifies bounding accidents, documents analyses of the accidents and establishes safety class or safety significant equipment to mitigate accidents as needed.

  17. Hazard Analysis for Pneumatic Flipper Suitport/Z-1 Manned Evaluation, Chamber B, Building 32. Revision: Basic

    Science.gov (United States)

    2012-01-01

    One of the characteristics of an effective safety program is the recognition and control of hazards before mishaps or failures occur. Conducting potentially hazardous tests necessitates a thorough hazard analysis in order to protect our personnel from injury and our equipment from damage. The purpose of this hazard analysis is to define and address the potential hazards and controls associated with the Z1 Suit Port Test in Chamber B located in building 32, and to provide the applicable team of personnel with the documented results. It is imperative that each member of the team be familiar with the hazards and controls associated with his/her particular tasks, assignments, and activities while interfacing with facility test systems, equipment, and hardware. The goal of this hazard analysis is to identify all hazards that have the potential to harm personnel and/or damage facility equipment, flight hardware, property, or harm the environment. This analysis may also assess the significance and risk, when applicable, of lost test objectives when substantial monetary value is involved. The hazards, causes, controls, verifications, and risk assessment codes have been documented on the hazard analysis work sheets in appendix A of this document. The preparation and development of this report is in accordance with JPR 1700.1, JSC Safety and Health Handbook.

  18. Sandia Administrative Micrographics Facility, Building 802: Hazards assessment document

    International Nuclear Information System (INIS)

    Swihart, A.

    1994-12-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Sandia Administrative Micrographics Facility, Building 802. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distance at which a postulated facility event will produce consequences exceeding the Early Severe Health Effects threshold is 33 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 75 meters

  19. Hazard Classification and Auditable Safety Analysis for the 1300-N Emergency Dump Basin

    International Nuclear Information System (INIS)

    Kloster, G.L.

    1998-01-01

    This document combines three analytical functions consisting of (1) the hazards baseline of the Emergency Dump Basin (EDB) for surveillance and maintenance, (2) the final hazard classification for the facility, and (3) and auditable safety analysis. This document also describes the potential hazards contained within the EDB at the N Reactor complex and the vulnerabilities of those hazards. The EDB segment is defined and confirmed its independence from other segments at the site by demonstrating that no potential adverse interactions exist between the segments. No EDB hazards vulnerabilities were identified that require reliance on either active, mitigative, or protective measures; adequate facility structural integrity exists to safely control the hazards

  20. 340 Waste handling Facility Hazard Categorization and Safety Analysis

    International Nuclear Information System (INIS)

    Rodovsky, T.J.

    2010-01-01

    The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category 3. The final hazard categorization for the deactivated 340 Waste Handling Facility (340 Facility) is presented in this document. This hazard categorization was prepared in accordance with DOE-STD-1 027-92, Change Notice 1, Hazard Categorization and Accident Analysis Techniques for Compliance with Doe Order 5480.23, Nuclear Safety Analysis Reports. The analysis presented in this document provides the basis for categorizing the facility as less than Hazard Category (HC) 3. Routine nuclear waste receiving, storage, handling, and shipping operations at the 340 Facility have been deactivated, however, the facility contains a small amount of radioactive liquid and/or dry saltcake in two underground vault tanks. A seismic event and hydrogen deflagration were selected as bounding accidents. The generation of hydrogen in the vault tanks without active ventilation was determined to achieve a steady state volume of 0.33%, which is significantly less than the lower flammability limit of 4%. Therefore, a hydrogen deflagration is not possible in these tanks. The unmitigated release from a seismic event was used to categorize the facility consistent with the process defined in Nuclear Safety Technical Position (NSTP) 2002-2. The final sum-of-fractions calculation concluded that the facility is less than HC 3. The analysis did not identify any required engineered controls or design features. The Administrative Controls that were derived from the analysis are: (1) radiological inventory control, (2) facility change control, and (3) Safety Management Programs (SMPs). The facility configuration and radiological inventory shall be controlled to ensure that the assumptions in the analysis remain valid. The facility commitment to SMPs protects the integrity of the facility and environment by ensuring training, emergency response, and radiation protection. The full scale

  1. Hazard categorization and baseline documentation for the Sodium Storage Facility. Revision 1

    International Nuclear Information System (INIS)

    Bowman, B.R.

    1995-01-01

    Hazard Categorization evaluation has been performed in accordance with DOE-STD-1027 for the Sodium Storage Facility at FFTF and a determination of less than Category 3 or non-nuclear has been made. Hazard Baseline Documentation has been performed in accordance with DOE-EM-STD-5502 and a determination of ''Radiological Facility'' has been made

  2. 77 FR 38297 - Revised Document Posted: NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare...

    Science.gov (United States)

    2012-06-27

    ... removed 15 drugs from the 2012 list because they did not meet the NIOSH definition, were no longer... NIOSH-033-A] Revised Document Posted: NIOSH List of Antineoplastic and Other Hazardous Drugs in... of the following document entitled ``NIOSH List of Antineoplastic and Other Hazardous Drugs in...

  3. Using Addenda in Documented Safety Analysis Reports

    International Nuclear Information System (INIS)

    Swanson, D.S.; Thieme, M.A.

    2003-01-01

    This paper discusses the use of addenda to the Radioactive Waste Management Complex (RWMC) Documented Safety Analysis (DSA) located at the Idaho National Engineering and Environmental Laboratory (INEEL). Addenda were prepared for several systems and processes at the facility that lacked adequate descriptive information and hazard analysis in the DSA. They were also prepared for several new activities involving unreviewed safety questions (USQs). Ten addenda to the RWMC DSA have been prepared since the last annual update

  4. Performance Analysis: Control of Hazardous Energy

    Energy Technology Data Exchange (ETDEWEB)

    De Grange, Connie E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Freeman, Jeff W. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Kerr, Christine E. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2010-10-06

    LLNL experienced 26 occurrences related to the control of hazardous energy from January 1, 2008 through August 2010. These occurrences were 17% of the total number of reported occurrences during this 32-month period. The Performance Analysis and Reporting Section of the Contractor Assurance Office (CAO) routinely analyzes reported occurrences and issues looking for patterns that may indicate changes in LLNL’s performance and early indications of performance trends. It became apparent through these analyses that LLNL might have experienced a change in the control of hazardous energy and that these occurrences should be analyzed in more detail to determine if the perceived change in performance was real, whether that change is significant and if the causes of the occurrences are similar. This report documents the results of this more detailed analysis.

  5. The use of hazards analysis in the development of training

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, F.K.

    1998-12-01

    A hazards analysis identifies the operation hazards and the positive measures that aid in the mitigation or prevention of the hazard. If the tasks are human intensive, the hazard analysis often credits the personnel training as contributing to the mitigation of the accident`s consequence or prevention of an accident sequence. To be able to credit worker training, it is important to understand the role of the training in the hazard analysis. Systematic training, known as systematic training design (STD), performance-based training (PBT), or instructional system design (ISD), uses a five-phase (analysis, design, development, implementation, and evaluation) model for the development and implementation of the training. Both a hazards analysis and a training program begin with a task analysis that documents the roles and actions of the workers. Though the tasks analyses are different in nature, there is common ground and both the hazard analysis and the training program can benefit from a cooperative effort. However, the cooperation should not end with the task analysis phase of either program. The information gained from the hazards analysis should be used in all five phases of the training development. The training evaluation, both of the individual worker and institutional training program, can provide valuable information to the hazards analysis effort. This paper will discuss the integration of the information from the hazards analysis into a training program. The paper will use the installation and removal of a piece of tooling that is used in a high-explosive operation. This example will be used to follow the systematic development of a training program and demonstrate the interaction and cooperation between the hazards analysis and training program.

  6. Glass Formulation and Fabrication Laboratory, Building 864, Hazards assessment document

    Energy Technology Data Exchange (ETDEWEB)

    Banda, Z.; Wood, C.L.

    1995-08-01

    The Department of Energy Order 5500.3A requires facility-specific hazards assessments be prepared, maintained, and used for emergency planning purposes. This hazards assessment document describes the chemical and radiological hazards associated with the Glass Formulation and Fabrication Laboratory, Building 864. The entire inventory was screened according to the potential airborne impact to onsite and offsite individuals. The air dispersion model, ALOHA, estimated pollutant concentrations downwind from the source of a release, taking into consideration the toxicological and physical characteristics of the release site, the atmospheric conditions, and the circumstances of the release. The greatest distances at which a postulated facility event will produce consequences exceeding the ERPG-2 threshold is 96 meters. The highest emergency classification is a Site Area Emergency. The Emergency Planning Zone is 100 meters.

  7. Auditable safety analysis and final hazard classification for Buildings 1310-N and 1314-N

    International Nuclear Information System (INIS)

    Kloster, G.L.

    1997-05-01

    This document is a graded auditable safety analysis (ASA) of the deactivation activities planned for the 100-N facility segment comprised of the Building 1310-N pump silo (part of the Liquid Radioactive Waste Treatment Facility) and 1314-N Building (Liquid Waste Disposal Building).The ASA describes the hazards within the facility and evaluates the adequacy of the measures taken to reduce, control, or mitigate the identified hazards. This document also serves as the Final Hazard Classification (FHC) for the 1310-N pump silo and 1314-N Building segment. The FHC is radiological based on the Preliminary Hazard Classification and the total inventory of radioactive and hazardous materials in the segment

  8. Preliminary Hazards Analysis of K-Basin Fuel Encapsulation and Storage

    International Nuclear Information System (INIS)

    Strickland, G.C.

    1994-01-01

    This Preliminary Hazards Analysis (PHA) systematically examines the K-Basin facilities and their supporting systems for hazards created by abnormal operating conditions and external events (e.g., earthquakes) which have the potential for causing undesirable consequences to the facility worker, the onsite individual, or the public. The operational activities examined are fuel encapsulation, fuel storage and cooling. Encapsulation of sludges in the basins is not examined. A team of individuals from Westinghouse produced a set of Hazards and Operability (HAZOP) tables documenting their examination of abnormal process conditions in the systems and activities examined in K-Basins. The purpose of this report is to reevaluate and update the HAZOP in the original Preliminary Hazard Analysis of K-Basin Fuel Encapsulation and Storage originally developed in 1991

  9. Hazard classification methodology

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1996-01-01

    This document outlines the hazard classification methodology used to determine the hazard classification of the NIF LTAB, OAB, and the support facilities on the basis of radionuclides and chemicals. The hazard classification determines the safety analysis requirements for a facility

  10. Fire hazards analysis for the uranium oxide (UO3) facility

    International Nuclear Information System (INIS)

    Wyatt, D.M.

    1994-01-01

    The Fire Hazards Analysis (FHA) documents the deactivation end-point status of the UO 3 complex fire hazards, fire protection and life safety systems. This FHA has been prepared for the Uranium Oxide Facility by Westinghouse Hanford Company in accordance with the criteria established in DOE 5480.7A, Fire Protection and RLID 5480.7, Fire Protection. The purpose of the Fire Hazards Analysis is to comprehensively and quantitatively assess the risk from a fire within individual fire areas in a Department of Energy facility so as to ascertain whether the objectives stated in DOE Order 5480.7, paragraph 4 are met. Particular attention has been paid to RLID 5480.7, Section 8.3, which specifies the criteria for deactivating fire protection in decommission and demolition facilities

  11. Seafood safety: economics of hazard analysis and Critical Control Point (HACCP) programmes

    National Research Council Canada - National Science Library

    Cato, James C

    1998-01-01

    .... This document on economic issues associated with seafood safety was prepared to complement the work of the Service in seafood technology, plant sanitation and Hazard Analysis Critical Control Point (HACCP) implementation...

  12. Hazard screening application guide. Safety Analysis Report Update Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information.

  13. Documented Safety Analysis for the Waste Storage Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-06-16

    This documented safety analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements', and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  14. Fire Hazards Analysis for the 200 Area Interim Storage Area

    International Nuclear Information System (INIS)

    JOHNSON, D.M.

    2000-01-01

    This documents the Fire Hazards Analysis (FHA) for the 200 Area Interim Storage Area. The Interim Storage Cask, Rad-Vault, and NAC-1 Cask are analyzed for fire hazards and the 200 Area Interim Storage Area is assessed according to HNF-PRO-350 and the objectives of DOE Order 5480 7A. This FHA addresses the potential fire hazards associated with the Interim Storage Area (ISA) facility in accordance with the requirements of DOE Order 5480 7A. It is intended to assess the risk from fire to ensure there are no undue fire hazards to site personnel and the public and to ensure property damage potential from fire is within acceptable limits. This FHA will be in the form of a graded approach commensurate with the complexity of the structure or area and the associated fire hazards

  15. Software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.

    1996-02-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably well understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper

  16. Standard Compliant Hazard and Threat Analysis for the Automotive Domain

    Directory of Open Access Journals (Sweden)

    Kristian Beckers

    2016-06-01

    Full Text Available The automotive industry has successfully collaborated to release the ISO 26262 standard for developing safe software for cars. The standard describes in detail how to conduct hazard analysis and risk assessments to determine the necessary safety measures for each feature. However, the standard does not concern threat analysis for malicious attackers or how to select appropriate security countermeasures. We propose the application of ISO 27001 for this purpose and show how it can be applied together with ISO 26262. We show how ISO 26262 documentation can be re-used and enhanced to satisfy the analysis and documentation demands of the ISO 27001 standard. We illustrate our approach based on an electronic steering column lock system.

  17. Documented Safety Analysis for the B695 Segment

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D

    2008-09-11

    This Documented Safety Analysis (DSA) was prepared for the Lawrence Livermore National Laboratory (LLNL) Building 695 (B695) Segment of the Decontamination and Waste Treatment Facility (DWTF). The report provides comprehensive information on design and operations, including safety programs and safety structures, systems and components to address the potential process-related hazards, natural phenomena, and external hazards that can affect the public, facility workers, and the environment. Consideration is given to all modes of operation, including the potential for both equipment failure and human error. The facilities known collectively as the DWTF are used by LLNL's Radioactive and Hazardous Waste Management (RHWM) Division to store and treat regulated wastes generated at LLNL. RHWM generally processes low-level radioactive waste with no, or extremely low, concentrations of transuranics (e.g., much less than 100 nCi/g). Wastes processed often contain only depleted uranium and beta- and gamma-emitting nuclides, e.g., {sup 90}Sr, {sup 137}Cs, or {sup 3}H. The mission of the B695 Segment centers on container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. The B695 Segment is used for storage of radioactive waste (including transuranic and low-level), hazardous, nonhazardous, mixed, and other waste. Storage of hazardous and mixed waste in B695 Segment facilities is in compliance with the Resource Conservation and Recovery Act (RCRA). LLNL is operated by the Lawrence Livermore National Security, LLC, for the Department of Energy (DOE). The B695 Segment is operated by the RHWM Division of LLNL. Many operations in the B695 Segment are performed under a Resource Conservation and Recovery Act (RCRA) operation plan, similar to commercial treatment operations with best demonstrated available technologies. The buildings of the B695 Segment were designed and built considering such operations, using proven building

  18. Documented Safety Analysis for the B695 Segment

    International Nuclear Information System (INIS)

    Laycak, D.

    2008-01-01

    This Documented Safety Analysis (DSA) was prepared for the Lawrence Livermore National Laboratory (LLNL) Building 695 (B695) Segment of the Decontamination and Waste Treatment Facility (DWTF). The report provides comprehensive information on design and operations, including safety programs and safety structures, systems and components to address the potential process-related hazards, natural phenomena, and external hazards that can affect the public, facility workers, and the environment. Consideration is given to all modes of operation, including the potential for both equipment failure and human error. The facilities known collectively as the DWTF are used by LLNL's Radioactive and Hazardous Waste Management (RHWM) Division to store and treat regulated wastes generated at LLNL. RHWM generally processes low-level radioactive waste with no, or extremely low, concentrations of transuranics (e.g., much less than 100 nCi/g). Wastes processed often contain only depleted uranium and beta- and gamma-emitting nuclides, e.g., 90 Sr, 137 Cs, or 3 H. The mission of the B695 Segment centers on container storage, lab-packing, repacking, overpacking, bulking, sampling, waste transfer, and waste treatment. The B695 Segment is used for storage of radioactive waste (including transuranic and low-level), hazardous, nonhazardous, mixed, and other waste. Storage of hazardous and mixed waste in B695 Segment facilities is in compliance with the Resource Conservation and Recovery Act (RCRA). LLNL is operated by the Lawrence Livermore National Security, LLC, for the Department of Energy (DOE). The B695 Segment is operated by the RHWM Division of LLNL. Many operations in the B695 Segment are performed under a Resource Conservation and Recovery Act (RCRA) operation plan, similar to commercial treatment operations with best demonstrated available technologies. The buildings of the B695 Segment were designed and built considering such operations, using proven building systems, and keeping

  19. Job Hazard Analysis

    National Research Council Canada - National Science Library

    1998-01-01

    .... Establishing proper job procedures is one of the benefits of conducting a job hazard analysis carefully studying and recording each step of a job, identifying existing or potential job hazards...

  20. Preliminary Hazard Classification for the 105-B Reactor

    International Nuclear Information System (INIS)

    Kerr, N.R.

    1997-08-01

    This document summarizes the inventories of radioactive and hazardous materials present within the 105-B Reactor and uses the inventory information to determine the preliminary hazard classification for the surveillance and maintenance activities of the facility. The result of this effort was the preliminary hazard classification for the 105-B Building surveillance and maintenance activities. The preliminary hazard classification was determined to be Nuclear Category 3. Additional hazard and accident analysis will be documented in a separate report to define the hazard controls and final hazard classification

  1. Evaluation of a Parchment Document, the 13th Century Incorporation Charter for the City of Krakow, Poland, for Microbial Hazards.

    Science.gov (United States)

    Lech, Tomasz

    2016-05-01

    The literature of environmental microbiology broadly discusses issues associated with microbial hazards in archives, but these publications are mainly devoted to paper documents. There are few articles on historical parchment documents, which used to be very important for the development of literature and the art of writing. These studies present a broad spectrum of methods for the assessment of biodeterioration hazards of the parchment document in question. They are based on both conventional microbiological methods and advanced techniques of molecular biology. Here, a qualitative analysis was conducted, based on genetic identification of bacteria and fungi present on the document as well as denaturing gradient gel electrophoresis profiling and examining the destructive potential of isolated microbes. Moreover, the study involved a quantitative and qualitative microbiological assessment of the indoor air in the room where the parchment was kept. The microbes with the highest destructive potential that were isolated from the investigated item were Bacillus cereus and Acinetobacter lwoffii bacteria and Penicillium chrysogenum,Chaetomium globosum, and Trichoderma longibrachiatum fungi. The presence of the B. cereuss train was particularly interesting since, under appropriate conditions, it leads to complete parchment degradation within several days. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  2. Preliminary fire hazard analysis for the PUTDR and TRU trenches in the Solid Waste Burial Ground

    International Nuclear Information System (INIS)

    Gaschott, L.J.

    1995-01-01

    This document represents the Preliminary Fire Hazards Analysis for the Pilot Unvented TRU Drum Retrieval effort and for the Transuranic drum trenches in the low level burial grounds. The FHA was developed in accordance with DOE Order 5480.7A to address major hazards inherent in the facility

  3. 21 CFR 123.6 - Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan.

    Science.gov (United States)

    2010-04-01

    ... Control Point (HACCP) plan. 123.6 Section 123.6 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF... Provisions § 123.6 Hazard analysis and Hazard Analysis Critical Control Point (HACCP) plan. (a) Hazard... fish or fishery product being processed in the absence of those controls. (b) The HACCP plan. Every...

  4. K Basin Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    PECH, S.H.

    2000-08-23

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report.

  5. K Basin Hazard Analysis

    International Nuclear Information System (INIS)

    PECH, S.H.

    2000-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Final Safety Analysis Report. This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  6. Advanced Photon Source experimental beamline Safety Assessment Document: Addendum to the Advanced Photon Source Accelerator Systems Safety Assessment Document (APS-3.2.2.1.0)

    International Nuclear Information System (INIS)

    1995-01-01

    This Safety Assessment Document (SAD) addresses commissioning and operation of the experimental beamlines at the Advanced Photon Source (APS). Purpose of this document is to identify and describe the hazards associated with commissioning and operation of these beamlines and to document the measures taken to minimize these hazards and mitigate the hazard consequences. The potential hazards associated with the commissioning and operation of the APS facility have been identified and analyzed. Physical and administrative controls mitigate identified hazards. No hazard exists in this facility that has not been previously encountered and successfully mitigated in other accelerator and synchrotron radiation research facilities. This document is an updated version of the APS Preliminary Safety Analysis Report (PSAR). During the review of the PSAR in February 1990, the APS was determined to be a Low Hazard Facility. On June 14, 1993, the Acting Director of the Office of Energy Research endorsed the designation of the APS as a Low Hazard Facility, and this Safety Assessment Document supports that designation

  7. On-site transportation and handling of uranium-233 special nuclear material: Preliminary hazards and accident analysis. Final

    International Nuclear Information System (INIS)

    Solack, T.; West, D.; Ullman, D.; Coppock, G.; Cox, C.

    1995-01-01

    U-233 Special Nuclear Material (SNM) currently stored at the T-Building Storage Areas A and B must be transported to the SW/R Tritium Complex for repackaging. This SNM is in the form of oxide powder contained in glass jars which in turn are contained in heat sealed double polyethylene bags. These doubled-bagged glass jars have been primarily stored in structural steel casks and birdcages for approximately 20 years. The three casks, eight birdcages, and one pail/pressure vessel will be loaded onto a transport truck and moved over an eight day period. The Preliminary Hazards and Accident Analysis for the on-site transportation and handling of Uranium-233 Special Nuclear Material, documented herein, was performed in accordance with the format and content guidance of DOE-STD-3009-94, Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports, dated July 1994, specifically Chapter Three, Hazard and Accident Analysis. The Preliminary Hazards Analysis involved detailed walkdowns of all areas of the U-233 SNM movement route, including the T-Building Storage Area A and B, T-Building truck tunnel, and the roadway route. Extensive discussions were held with operations personnel from the Nuclear Material Control Group, Nuclear Materials Accountability Group, EG and G Mound Security and the Material Handling Systems Transportation Group. Existing documentation related to the on-site transportation of hazardous materials, T-Building and SW/R Tritium Complex SARs, and emergency preparedness/response documentation were also reviewed and analyzed to identify and develop the complete spectrum of energy source hazards

  8. [Critical aspects of the management of "hazardous" health care workers. Consensus document].

    Science.gov (United States)

    Magnavita, N; Cicerone, Marina; Cirese, Vania; De Lorenzo, G; Di Giannantonios, M; Fileni, A; Goggiamani, Angela; Magnavita, Giulia; Marchi, Edda; Mazzullo, D; Monami, F; Monami, S; Puro, V; Ranalletta, Dalila; Ricciardi, G; Sacco, A; Spagnolo, A; Spagnolo, A G; Squarcione, S; Zavota, Giovanna

    2006-01-01

    A worker is considered to be hazardous to others when, in the course of performing a specific work task, his/her health problems (e.g., substance dependence, emotional disorders, physical disability, transmissible diseases) pose a risk for other workers' or the public's health and safety, or begins to interfere with ability to function in profession life. The presence of certain illnesses or the fact that a health care worker is impaired because of them do not necessarily imply that he, or she, is hazardous for others. Working in health care increases the probability that an impaired worker being hazardous for others. Management of hazardous workers requires new techniques and procedures, and specific policies. An interdisciplinary group of experts from medical, bioethical, legal and administrative disciplines, together with trade union and employers' representatives, is currently attempting to define a way to put prevention measures into practice in accordance with state laws and individual rights. A consensus document is presented, covering critical aspects such as: social responsibility of the employer, risk management, informed consent, non compliance, confidentiality, responsibility of workers, disclosure of risk to patients, non-discrimination, counselling and recovery of impaired workers, effectiveness of international guidelines. Occupational health professionals are obliged to adhere to ethical principles in the management of "hazardous" workers; the assessment of ethical costs and benefits for the stakeholders is the basis for appropriate decisions.

  9. K Basins Hazard Analysis

    International Nuclear Information System (INIS)

    WEBB, R.H.

    1999-01-01

    This report describes the methodology used in conducting the K Basins Hazard Analysis, which provides the foundation for the K Basins Safety Analysis Report (HNF-SD-WM-SAR-062/Rev.4). This hazard analysis was performed in accordance with guidance provided by DOE-STD-3009-94, Preparation Guide for U. S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports and implements the requirements of DOE Order 5480.23, Nuclear Safety Analysis Report

  10. Hydrothermal Liquefaction Treatment Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-09-12

    Hazard analyses were performed to evaluate the modular hydrothermal liquefaction treatment system. The hazard assessment process was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. The analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public. The following selected hazardous scenarios received increased attention: •Scenarios involving a release of hazardous material or energy, controls were identified in the What-If analysis table that prevent the occurrence or mitigate the effects of the release. •Scenarios with significant consequences that could impact personnel outside the immediate operations area, quantitative analyses were performed to determine the potential magnitude of the scenario. The set of “critical controls” were identified for these scenarios (see Section 4) which prevent the occurrence or mitigate the effects of the release of events with significant consequences.

  11. Report 6: Guidance document. Man-made hazards and Accidental Aircraft Crash hazards modelling and implementation in extended PSA

    International Nuclear Information System (INIS)

    Kahia, S.; Brinkman, H.; Bareith, A.; Siklossy, T.; Vinot, T.; Mateescu, T.; Espargilliere, J.; Burgazzi, L.; Ivanov, I.; Bogdanov, D.; Groudev, P.; Ostapchuk, S.; Zhabin, O.; Stojka, T.; Alzbutas, R.; Kumar, M.; Nitoi, M.; Farcasiu, M.; Borysiewicz, M.; Kowal, K.; Potempski, S.

    2016-01-01

    The goal of this report is to provide guidance on practices to model man-made hazards (mainly external fires and explosions) and accidental aircraft crash hazards and implement them in extended Level 1 PSA. This report is a joint deliverable of work package 21 (WP21) and work package 22 (WP22). The general objective of WP21 is to provide guidance on all of the individual hazards selected at the first ASAMPSA-E End Users Workshop (May 2014, Uppsala, Sweden). The objective of WP22 is to provide the solutions for purposes of different parts of man-made hazards Level 1 PSA fulfilment. This guidance is focusing on man-made hazards, namely: external fires and explosions, and accidental aircraft crash hazards. Guidance developed refers to existing guidance whenever possible. The initial part of guidance (WP21 part) reflects current practices to assess the frequencies for each type of hazards or combination of hazards (including correlated hazards) as initiating event for PSAs. The sources and quality of hazard data, the elements of hazard assessment methodologies and relevant examples are discussed. Classification and criteria to properly assess hazard combinations as well as examples and methods for assessment of these combinations are included in this guidance. In appendixes additional material is presented with the examples of practical approaches to aircraft crash and man-made hazard. The following issues are addressed: 1) Hazard assessment methodologies, including issues related to hazard combinations. 2) Modelling equipment of safety related SSC, 3) HRA, 4) Emergency response, 5) Multi-unit issues. Recommendations and also limitations, gaps identified in the existing methodologies and a list of open issues are included. At all stages of this guidance and especially from an industrial end-user perspective, one must keep in mind that the development of man-made hazards probabilistic analysis must be conditioned to the ability to ultimately obtain a representative risk

  12. Documented Safety Analysis for the Waste Storage Facilities March 2010

    Energy Technology Data Exchange (ETDEWEB)

    Laycak, D T

    2010-03-05

    This Documented Safety Analysis (DSA) for the Waste Storage Facilities was developed in accordance with 10 CFR 830, Subpart B, 'Safety Basis Requirements,' and utilizes the methodology outlined in DOE-STD-3009-94, Change Notice 3. The Waste Storage Facilities consist of Area 625 (A625) and the Decontamination and Waste Treatment Facility (DWTF) Storage Area portion of the DWTF complex. These two areas are combined into a single DSA, as their functions as storage for radioactive and hazardous waste are essentially identical. The B695 Segment of DWTF is addressed under a separate DSA. This DSA provides a description of the Waste Storage Facilities and the operations conducted therein; identification of hazards; analyses of the hazards, including inventories, bounding releases, consequences, and conclusions; and programmatic elements that describe the current capacity for safe operations. The mission of the Waste Storage Facilities is to safely handle, store, and treat hazardous waste, transuranic (TRU) waste, low-level waste (LLW), mixed waste, combined waste, nonhazardous industrial waste, and conditionally accepted waste generated at LLNL (as well as small amounts from other DOE facilities).

  13. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRIPPS, L.J.

    2005-02-18

    This document describes the qualitative evaluation of frequency and consequences for double shell tank (DST) and single shell tank (SST) representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant SSCs and/or TSRS were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support of the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  14. FLAMMABLE GAS TECHNICAL BASIS DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    KRIPPS, L.J.

    2005-03-03

    This document describes the qualitative evaluation of frequency and consequences for DST and SST representative flammable gas accidents and associated hazardous conditions without controls. The evaluation indicated that safety-significant structures, systems and components (SSCs) and/or technical safety requirements (TSRs) were required to prevent or mitigate flammable gas accidents. Discussion on the resulting control decisions is included. This technical basis document was developed to support WP-13033, Tank Farms Documented Safety Analysis (DSA), and describes the risk binning process for the flammable gas representative accidents and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous condition based on an evaluation of the event frequency and consequence.

  15. Hydrothermal Liquefaction Treatment Preliminary Hazard Analysis Report

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P.; Wagner, Katie A.

    2015-08-31

    A preliminary hazard assessment was completed during February 2015 to evaluate the conceptual design of the modular hydrothermal liquefaction treatment system. The hazard assessment was performed in 2 stages. An initial assessment utilizing Hazard Identification and Preliminary Hazards Analysis (PHA) techniques identified areas with significant or unique hazards (process safety-related hazards) that fall outside of the normal operating envelope of PNNL and warranted additional analysis. The subsequent assessment was based on a qualitative What-If analysis. This analysis was augmented, as necessary, by additional quantitative analysis for scenarios involving a release of hazardous material or energy with the potential for affecting the public.

  16. Analysis of a risk prevention document using dependability techniques: a first step towards an effectiveness model

    Directory of Open Access Journals (Sweden)

    L. Ferrer

    2018-04-01

    Full Text Available Major hazard prevention is a main challenge given that it is specifically based on information communicated to the public. In France, preventive information is notably provided by way of local regulatory documents. Unfortunately, the law requires only few specifications concerning their content; therefore one can question the impact on the general population relative to the way the document is concretely created. Ergo, the purpose of our work is to propose an analytical methodology to evaluate preventive risk communication document effectiveness. The methodology is based on dependability approaches and is applied in this paper to the Document d'Information Communal sur les Risques Majeurs (DICRIM; in English, Municipal Information Document on Major Risks. DICRIM has to be made by mayors and addressed to the public to provide information on major hazards affecting their municipalities. An analysis of law compliance of the document is carried out thanks to the identification of regulatory detection elements. These are applied to a database of 30 DICRIMs. This analysis leads to a discussion on points such as usefulness of the missing elements. External and internal function analysis permits the identification of the form and content requirements and service and technical functions of the document and its components (here its sections. Their results are used to carry out an FMEA (failure modes and effects analysis, which allows us to define the failure and to identify detection elements. This permits the evaluation of the effectiveness of form and content of each components of the document. The outputs are validated by experts from the different fields investigated. Those results are obtained to build, in future works, a decision support model for the municipality (or specialised consulting firms in charge of drawing up documents.

  17. Analysis of a risk prevention document using dependability techniques: a first step towards an effectiveness model

    Science.gov (United States)

    Ferrer, Laetitia; Curt, Corinne; Tacnet, Jean-Marc

    2018-04-01

    Major hazard prevention is a main challenge given that it is specifically based on information communicated to the public. In France, preventive information is notably provided by way of local regulatory documents. Unfortunately, the law requires only few specifications concerning their content; therefore one can question the impact on the general population relative to the way the document is concretely created. Ergo, the purpose of our work is to propose an analytical methodology to evaluate preventive risk communication document effectiveness. The methodology is based on dependability approaches and is applied in this paper to the Document d'Information Communal sur les Risques Majeurs (DICRIM; in English, Municipal Information Document on Major Risks). DICRIM has to be made by mayors and addressed to the public to provide information on major hazards affecting their municipalities. An analysis of law compliance of the document is carried out thanks to the identification of regulatory detection elements. These are applied to a database of 30 DICRIMs. This analysis leads to a discussion on points such as usefulness of the missing elements. External and internal function analysis permits the identification of the form and content requirements and service and technical functions of the document and its components (here its sections). Their results are used to carry out an FMEA (failure modes and effects analysis), which allows us to define the failure and to identify detection elements. This permits the evaluation of the effectiveness of form and content of each components of the document. The outputs are validated by experts from the different fields investigated. Those results are obtained to build, in future works, a decision support model for the municipality (or specialised consulting firms) in charge of drawing up documents.

  18. 14 CFR 437.55 - Hazard analysis.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Hazard analysis. 437.55 Section 437.55... TRANSPORTATION LICENSING EXPERIMENTAL PERMITS Safety Requirements § 437.55 Hazard analysis. (a) A permittee must... safety of property resulting from each permitted flight. This hazard analysis must— (1) Identify and...

  19. MGR External Events Hazards Analysis

    International Nuclear Information System (INIS)

    Booth, L.

    1999-01-01

    The purpose and objective of this analysis is to apply an external events Hazards Analysis (HA) to the License Application Design Selection Enhanced Design Alternative 11 [(LADS EDA II design (Reference 8.32))]. The output of the HA is called a Hazards List (HL). This analysis supersedes the external hazards portion of Rev. 00 of the PHA (Reference 8.1). The PHA for internal events will also be updated to the LADS EDA II design but under a separate analysis. Like the PHA methodology, the HA methodology provides a systematic method to identify potential hazards during the 100-year Monitored Geologic Repository (MGR) operating period updated to reflect the EDA II design. The resulting events on the HL are candidates that may have potential radiological consequences as determined during Design Basis Events (DBEs) analyses. Therefore, the HL that results from this analysis will undergo further screening and analysis based on the criteria that apply during the performance of DBE analyses

  20. Preliminary hazards analysis -- vitrification process

    International Nuclear Information System (INIS)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P.

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility's construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment

  1. Preliminary hazards analysis -- vitrification process

    Energy Technology Data Exchange (ETDEWEB)

    Coordes, D.; Ruggieri, M.; Russell, J.; TenBrook, W.; Yimbo, P. [Science Applications International Corp., Pleasanton, CA (United States)

    1994-06-01

    This paper presents a Preliminary Hazards Analysis (PHA) for mixed waste vitrification by joule heating. The purpose of performing a PHA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PHA is then followed by a Preliminary Safety Analysis Report (PSAR) performed during Title 1 and 2 design. The PSAR then leads to performance of the Final Safety Analysis Report performed during the facility`s construction and testing. It should be completed before routine operation of the facility commences. This PHA addresses the first four chapters of the safety analysis process, in accordance with the requirements of DOE Safety Guidelines in SG 830.110. The hazards associated with vitrification processes are evaluated using standard safety analysis methods which include: identification of credible potential hazardous energy sources; identification of preventative features of the facility or system; identification of mitigative features; and analyses of credible hazards. Maximal facility inventories of radioactive and hazardous materials are postulated to evaluate worst case accident consequences. These inventories were based on DOE-STD-1027-92 guidance and the surrogate waste streams defined by Mayberry, et al. Radiological assessments indicate that a facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous materials assessment indicates that a Mixed Waste Vitrification facility will be a Low Hazard facility having minimal impacts to offsite personnel and the environment.

  2. External hazards analysis approach to level 1 PSA of Mochovce NPP - Slovakia

    International Nuclear Information System (INIS)

    Stojka, Tibor

    2000-01-01

    Analyses of external events had been first time performed at the design stage of the Mochovce NPP showing sufficiently low contribution of external hazards to core damage frequency. But, based on IAEA document 'Safety problems of WWER-440/213 NPPs and the categorization' (IAEA-EBP-WWER-03, 1996), the need of new reassessment arose due to discrepancy of some origin recommendations in compare with present IAEA ones. Mochovce NPP Nuclear Safety Improvements Program elaborated at the same time included the IAEA recommendations and following improvements were proposed to perform in context of external events. 1. Seismic project and new locality seismic evaluation This safety improvement includes also some 'on site' technical improvements in seismic stability of structures and equipment. 2. Unit specific analyses of extreme meteorologic conditions. This safety improvement focuses on impact of feasible extreme conditions on NPP systems caused by rain, snow and hail storms, frost, winds, low and high temperatures. 3. Analyses of external hazards caused by humans. In this safety improvement were specified: feasible sources of explosions; analyses of hydrogen, gas and propane-calor gas depots; air crash risk. The results of these implemented safety improvements were considered in the PSA study. The External hazards analysis is also part of Level 1 PSA Mochovce NPP performed by PSA Department of VUJE Trnava Inc., Engineering, Design and Research Organization, Slovakia. Some partial analyses are performed in cooperation with following companies DS and S - SAIC, USA and Geophysical Institute Academy of Science, Slovakia Relko, Slovakia. Basic documents are: NUREG/CR-2300 'PRA Procedures Guide - A Guide to the Performance of Probabilistic Risk Assessments for Nuclear Power Plants' and IAEA SS No. 50-P-7 'Treatment of External Hazards in PSA for NPPs. The external hazards analysis consists of following parts: 1. Geography and plant locality; 2. Nearby industry; 3. Extreme

  3. Modeling and Hazard Analysis Using STPA

    Science.gov (United States)

    Ishimatsu, Takuto; Leveson, Nancy; Thomas, John; Katahira, Masa; Miyamoto, Yuko; Nakao, Haruka

    2010-09-01

    A joint research project between MIT and JAXA/JAMSS is investigating the application of a new hazard analysis to the system and software in the HTV. Traditional hazard analysis focuses on component failures but software does not fail in this way. Software most often contributes to accidents by commanding the spacecraft into an unsafe state(e.g., turning off the descent engines prematurely) or by not issuing required commands. That makes the standard hazard analysis techniques of limited usefulness on software-intensive systems, which describes most spacecraft built today. STPA is a new hazard analysis technique based on systems theory rather than reliability theory. It treats safety as a control problem rather than a failure problem. The goal of STPA, which is to create a set of scenarios that can lead to a hazard, is the same as FTA but STPA includes a broader set of potential scenarios including those in which no failures occur but the problems arise due to unsafe and unintended interactions among the system components. STPA also provides more guidance to the analysts that traditional fault tree analysis. Functional control diagrams are used to guide the analysis. In addition, JAXA uses a model-based system engineering development environment(created originally by Leveson and called SpecTRM) which also assists in the hazard analysis. One of the advantages of STPA is that it can be applied early in the system engineering and development process in a safety-driven design process where hazard analysis drives the design decisions rather than waiting until reviews identify problems that are then costly or difficult to fix. It can also be applied in an after-the-fact analysis and hazard assessment, which is what we did in this case study. This paper describes the experimental application of STPA to the JAXA HTV in order to determine the feasibility and usefulness of the new hazard analysis technique. Because the HTV was originally developed using fault tree analysis

  4. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    International Nuclear Information System (INIS)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards

  5. Grand Junction projects office mixed-waste treatment program, VAC*TRAX mobile treatment unit process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    Bloom, R.R.

    1996-04-01

    The objective of this report is to demonstrate that a thorough assessment of the risks associated with the operation of the Rust Geotech patented VAC*TRAX mobile treatment unit (MTU) has been performed and documented. The MTU was developed to treat mixed wastes at the US Department of Energy (DOE) Albuquerque Operations Office sites. The MTU uses an indirectly heated, batch vacuum dryer to thermally desorb organic compounds from mixed wastes. This process hazards analysis evaluated 102 potential hazards. The three significant hazards identified involved the inclusion of oxygen in a process that also included an ignition source and fuel. Changes to the design of the MTU were made concurrent with the hazard identification and analysis; all hazards with initial risk rankings of 1 or 2 were reduced to acceptable risk rankings of 3 or 4. The overall risk to any population group from operation of the MTU was determined to be very low; the MTU is classified as a Radiological Facility with low hazards.

  6. 21 CFR 120.7 - Hazard analysis.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard analysis. 120.7 Section 120.7 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... hazards. The written hazard analysis shall consist of at least the following: (1) Identification of food...

  7. Process hazards analysis (PrHA) program, bridging accident analyses and operational safety

    International Nuclear Information System (INIS)

    Richardson, J.A.; McKernan, S.A.; Vigil, M.J.

    2003-01-01

    Recently the Final Safety Analysis Report (FSAR) for the Plutonium Facility at Los Alamos National Laboratory, Technical Area 55 (TA-55) was revised and submitted to the US. Department of Energy (DOE). As a part of this effort, over seventy Process Hazards Analyses (PrHAs) were written and/or revised over the six years prior to the FSAR revision. TA-55 is a research, development, and production nuclear facility that primarily supports US. defense and space programs. Nuclear fuels and material research; material recovery, refining and analyses; and the casting, machining and fabrication of plutonium components are some of the activities conducted at TA-35. These operations involve a wide variety of industrial, chemical and nuclear hazards. Operational personnel along with safety analysts work as a team to prepare the PrHA. PrHAs describe the process; identi fy the hazards; and analyze hazards including determining hazard scenarios, their likelihood, and consequences. In addition, the interaction of the process to facility systems, structures and operational specific protective features are part of the PrHA. This information is rolled-up to determine bounding accidents and mitigating systems and structures. Further detailed accident analysis is performed for the bounding accidents and included in the FSAR. The FSAR is part of the Documented Safety Analysis (DSA) that defines the safety envelope for all facility operations in order to protect the worker, the public, and the environment. The DSA is in compliance with the US. Code of Federal Regulations, 10 CFR 830, Nuclear Safety Management and is approved by DOE. The DSA sets forth the bounding conditions necessary for the safe operation for the facility and is essentially a 'license to operate.' Safely of day-to-day operations is based on Hazard Control Plans (HCPs). Hazards are initially identified in the PrI-IA for the specific operation and act as input to the HCP. Specific protective features important to worker

  8. Report 5: Guidance document. Implementation of biological infestation hazards in extended PSA

    International Nuclear Information System (INIS)

    Hasnaoui, C.; Georgescu, G.; Joel, P.; Sperbeck, S.; Kollasko, H.; Kumar, M.

    2016-01-01

    This report covers the assessment of biological hazards with PSA. It provides an overview of the available data and available practices in modelling this type of hazard. First researches in the national and international literature regarding PSA for external and internal hazards shows that probabilistic analyses were very rarely carried out in order to quantify the risk induced by biological hazards. Nevertheless, Section 3 provides some data from some countries. History has shown that this hazard can happened and can be highly safety significant. Screening out this event must be done with great care. The overall analysis approach for Level 1 PSA for internal events can be used for the biological hazards with some care to take into impact the nature of the hazard as it impacts many systems at different times and duration. A proposed detailed methodology is described in Section 4. Still some open issues remain: the methodology must also consider event combination of biological infestation with other external hazards wind or flooding or rainfall and multi-units impact. These aspects present still a lot of challenges to PSA developers. The ASAMPSA-E report recommends that further emphasis shall be put on these two aspects of PSA modelling: multi-units site impact and hazards combinations. (authors)

  9. 77 FR 41190 - Revised Document Posted: NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare...

    Science.gov (United States)

    2012-07-12

    ... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention [Docket Number NIOSH-190] Revised Document Posted: NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings 2012, Correction AGENCY: National Institute for Occupational Safety and Health (NIOSH) of the...

  10. Auditable Safety Analysis and Final Hazard Classification for the 105-N Reactor Zone and 109-N Steam Generator Zone Facility

    International Nuclear Information System (INIS)

    Kloster, G.L.

    1998-07-01

    This document is a graded auditable safety analysis (ASA) and final hazard classification (FHC) for the Reactor/Steam Generator Zone Segment. The Reactor/Steam Generator Zone Segment, part of the N Reactor Complex, that is also known as the Reactor Building and Steam Generator Cells. The installation of the modifications described within to support surveillance and maintenance activities are to be completed by July 1, 1999. The surveillance and maintenance activities addressed within are assumed to continue for the next 15- 20 years, until the initiation of facility D ampersand D (i.e., Interim Safe Storage). The graded ASA in this document is in accordance with EDPI-4.30-01, Rev. 1, Safety Analysis Documentation, (BHI-DE-1) and is consistent with guidance provided by the U.S. Department of Energy. This ASA describes the hazards within the facility and evaluates the adequacy of the measures taken to reduce, control, or mitigate the identified hazards. This document also serves as the FHC for the Reactor/Steam Generator Zone Segment. This FHC is developed through the use of bounding accident analyses that envelope the potential exposures to personnel

  11. Hazard and consequence analysis for waste emplacement at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Gerstner, D.M.; Clayton, S.G.; Farrell, R.F.; McCormick, J.A.; Ortiz, C.; Standiford, D.L.

    1996-01-01

    The Carlsbad Area Office established and analyzed the safety bases for the design and operations as documented in the WIPP Safety Analysis Report (SAR). Additional independent efforts are currently underway to assess the hazards associated with the long-term (10,000 year) isolation period as required by 40 CFR 191. The structure of the WIPP SAR is unique due to the hazards involved, and the agreement between the State of New Mexico and the DOE regarding SAR content and format. However, the hazards and accident analysis philosophy as contained in DOE-STD-3009-94 was followed as closely as possible, while adhering to state agreements. Hazards associated with WIPP waste receipt, emplacement, and disposal operations were systematically identified using a modified Hazard and Operability Study (HAZOP) technique. The WIPP HAZOP assessed the potential internal, external, and natural phenomena events that can cause the identified hazards to develop into accidents. The hazard assessment identified deviations from the intended design and operation of the waste handling system, analyzed potential accident consequences to the public and workers, estimated likelihood of occurrence, and evaluated associated preventative and mitigative features. It was concluded from the assessment that the proposed WIPP waste emplacement operations and design are sufficient to ensure safety of the public, workers, and environment, over the 35 year disposal phase

  12. Tank farms hazards assessment

    International Nuclear Information System (INIS)

    Broz, R.E.

    1994-01-01

    Hanford contractors are writing new facility specific emergency procedures in response to new and revised US Department of Energy (DOE) Orders on emergency preparedness. Emergency procedures are required for each Hanford facility that has the potential to exceed the criteria for the lowest level emergency, an Alert. The set includes: (1) a facility specific procedure on Recognition and Classification of Emergencies, (2) area procedures on Initial Emergency Response and, (3) an area procedure on Protective Action Guidance. The first steps in developing these procedures are to identify the hazards at each facility, identify the conditions that could release the hazardous material, and calculate the consequences of the releases. These steps are called a Hazards Assessment. The final product is a document that is similar in some respects to a Safety Analysis Report (SAR). The document could br produced in a month for a simple facility but could take much longer for a complex facility. Hanford has both types of facilities. A strategy has been adopted to permit completion of the first version of the new emergency procedures before all the facility hazards Assessments are complete. The procedures will initially be based on input from a task group for each facility. This strategy will but improved emergency procedures in place sooner and therefore enhance Hanford emergency preparedness. The purpose of this document is to summarize the applicable information contained within the Waste Tank Facility ''Interim Safety Basis Document, WHC-SD-WM-ISB-001'' as a resource, since the SARs covering Waste Tank Operations are not current in all cases. This hazards assessment serves to collect, organize, document and present the information utilized during the determination process

  13. Princeton Plasma Physics Laboratory (PPPL) seismic hazard analysis

    International Nuclear Information System (INIS)

    Savy, J.

    1989-01-01

    New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the ''guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the results of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs

  14. Princeton Plasma Physics Laboratory (PPPL) seismic hazard analysis

    Energy Technology Data Exchange (ETDEWEB)

    Savy, J.

    1989-10-01

    New design and evaluation guidelines for department of energy facilities subjected to natural phenomena hazard, are being finalized. Although still in draft form at this time, the document describing those guidelines should be considered to be an update of previously available guidelines. The recommendations in the guidelines document mentioned above, and simply referred to as the guidelines'' thereafter, are based on the best information at the time of its development. In particular, the seismic hazard model for the Princeton site was based on a study performed in 1981 for Lawrence Livermore National Laboratory (LLNL), which relied heavily on the results of the NRC's Systematic Evaluation Program and was based on a methodology and data sets developed in 1977 and 1978. Considerable advances have been made in the last ten years in the domain of seismic hazard modeling. Thus, it is recommended to update the estimate of the seismic hazard at the DOE sites whenever possible. The major differences between previous estimates and the ones proposed in this study for the PPPL are in the modeling of the strong ground motion at the site, and the treatment of the total uncertainty in the estimates to include knowledge uncertainty, random uncertainty, and expert opinion diversity as well. 28 refs.

  15. Final Hazard Classification and Auditable Safety Analysis for the N Basin Segment

    International Nuclear Information System (INIS)

    Kloster, G.L.

    1998-08-01

    The purposes of this report are to serve as the auditable safety analysis (ASA) for the N Basin Segment, during surveillance and maintenance preceding decontamination and decommissioning; to determine and document the final hazard classification (FHC) for the N Basin Segment. The result of the ASA evaluation are: based on hazard analyses and the evaluation of accidents, no activity could credibly result in an unacceptable exposure to an individual; controls are identified that serve to protect worker health and safety. The results of the FHC evaluation are: potential exposure is much below 10 rem (0.46 rem), and the FHC for the N Basin Segment is Radiological

  16. Comparative Distributions of Hazard Modeling Analysis

    Directory of Open Access Journals (Sweden)

    Rana Abdul Wajid

    2006-07-01

    Full Text Available In this paper we present the comparison among the distributions used in hazard analysis. Simulation technique has been used to study the behavior of hazard distribution modules. The fundamentals of Hazard issues are discussed using failure criteria. We present the flexibility of the hazard modeling distribution that approaches to different distributions.

  17. Hydrotreater/Distillation Column Hazard Analysis Report Rev. 2

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Peter P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wagner, Katie A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-04-15

    This project Hazard and Risk Analysis Report contains the results of several hazard analyses and risk assessments. An initial assessment was conducted in 2012, which included a multi-step approach ranging from design reviews to a formal What-If hazard analysis. A second What-If hazard analysis was completed during February 2013 to evaluate the operation of the hydrotreater/distillation column processes to be installed in a process enclosure within the Process Development Laboratory West (PDL-West) facility located on the PNNL campus. The qualitative analysis included participation of project and operations personnel and applicable subject matter experts. The analysis identified potential hazardous scenarios, each based on an initiating event coupled with a postulated upset condition. The unmitigated consequences of each hazardous scenario were generally characterized as a process upset; the exposure of personnel to steam, vapors or hazardous material; a spray or spill of hazardous material; the creation of a flammable atmosphere; or an energetic release from a pressure boundary.

  18. Criteria and Processes for the Certification of Non-Radioactive Hazardous and Non-Hazardous Wastes

    International Nuclear Information System (INIS)

    Dominick, J.

    2008-01-01

    Hazardous Waste Management (RHWM) organization is responsible for the review and maintenance of this document. It should be noted that the DOE metal recycling moratorium is still in effect and is implemented as outlined in reference 17 when metals are being dispositioned for disposal/re-use/recycling off-site. This document follows the same methodology as described in the previously approved 1992 Moratorium document. Generator knowledge and certification are the primary means of characterization. Sampling and analysis are used when there is insufficient knowledge of a waste to determine if it contains added radioactivity. Table 1 (page 12) presents a list of LLNL's analytical methods for evaluating volumetrically contaminated waste and updates the reasonably achievable analytical-method-specific Minimum Detectable Concentrations (MDCs) for various matrices. Results from sampling and analysis are compared against the maximum MDCs for the given analytical method and the sample specific MDC to determine if the sample contains DOE added volumetric radioactivity. The evaluation of an item that has a physical form, and history of use, such that accessible surfaces may be potentially contaminated, is based on DOE Order 5400.5 (Reference 3), and its associated implementation guidance document DOE G 441.1-XX, Control and Release of Property with Residual Radioactive Material (Reference 4). The guidance document was made available for use via DOE Memorandum (Reference 5). Waste and materials containing residual radioactivity transferred off-site must meet the receiving facilities Waste Acceptance Criteria (if applicable) and be in compliance with other applicable federal or state requirements

  19. Probabilistic Tsunami Hazard Analysis

    Science.gov (United States)

    Thio, H. K.; Ichinose, G. A.; Somerville, P. G.; Polet, J.

    2006-12-01

    The recent tsunami disaster caused by the 2004 Sumatra-Andaman earthquake has focused our attention to the hazard posed by large earthquakes that occur under water, in particular subduction zone earthquakes, and the tsunamis that they generate. Even though these kinds of events are rare, the very large loss of life and material destruction caused by this earthquake warrant a significant effort towards the mitigation of the tsunami hazard. For ground motion hazard, Probabilistic Seismic Hazard Analysis (PSHA) has become a standard practice in the evaluation and mitigation of seismic hazard to populations in particular with respect to structures, infrastructure and lifelines. Its ability to condense the complexities and variability of seismic activity into a manageable set of parameters greatly facilitates the design of effective seismic resistant buildings but also the planning of infrastructure projects. Probabilistic Tsunami Hazard Analysis (PTHA) achieves the same goal for hazards posed by tsunami. There are great advantages of implementing such a method to evaluate the total risk (seismic and tsunami) to coastal communities. The method that we have developed is based on the traditional PSHA and therefore completely consistent with standard seismic practice. Because of the strong dependence of tsunami wave heights on bathymetry, we use a full waveform tsunami waveform computation in lieu of attenuation relations that are common in PSHA. By pre-computing and storing the tsunami waveforms at points along the coast generated for sets of subfaults that comprise larger earthquake faults, we can efficiently synthesize tsunami waveforms for any slip distribution on those faults by summing the individual subfault tsunami waveforms (weighted by their slip). This efficiency make it feasible to use Green's function summation in lieu of attenuation relations to provide very accurate estimates of tsunami height for probabilistic calculations, where one typically computes

  20. Hazards assessment for the Hazardous Waste Storage Facility

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-04-01

    This report documents the hazards assessment for the Hazardous Waste Storage Facility (HWSF) located at the Idaho National Engineering Laboratory. The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding HWSF, the buildings and structures at HWSF, and the processes used at HWSF are described in this report. All nonradiological hazardous materials at the HWSF were identified (radiological hazardous materials are not stored at HWSF) and screened against threshold quantities according to DOE Order 5500.3A guidance. Two of the identified hazardous materials exceeded their specified threshold quantity. This report discusses the potential release scenarios and consequences associated with an accidental release for each of the two identified hazardous materials, lead and mercury. Emergency considerations, such as emergency planning zones, emergency classes, protective actions, and emergency action levels, are also discussed based on the analysis of potential consequences. Evaluation of the potential consequences indicated that the highest emergency class for operational emergencies at the HWSF would be a Site Area Emergency

  1. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, A.

    2000-02-28

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program.

  2. Transportation of Hazardous Materials Emergency Preparedness Hazards Assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  3. Transportation of hazardous materials emergency preparedness hazards assessment

    International Nuclear Information System (INIS)

    Blanchard, A.

    2000-01-01

    This report documents the Emergency Preparedness Hazards Assessment (EPHA) for the Transportation of Hazardous Materials (THM) at the Department of Energy (DOE) Savannah River Site (SRS). This hazards assessment is intended to identify and analyze those transportation hazards significant enough to warrant consideration in the SRS Emergency Management Program

  4. SHEAT: a computer code for probabilistic seismic hazard analysis, user's manual

    International Nuclear Information System (INIS)

    Ebisawa, Katsumi; Kondo, Masaaki; Abe, Kiyoharu; Tanaka, Toshiaki; Takani, Michio.

    1994-08-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. Seismic hazard is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site. With the SHEAT code, seismic hazard is calculated by the following two steps: (1) Modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquakes) is modelled based on the historical earthquake records, active fault data and expert judgement. (2) Calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT code. It includes: (1) Outlines of the code, which include overall concept, logical process, code structure, data file used and special characteristics of the code, (2) Functions of subprograms and analytical models in them, (3) Guidance of input and output data, and (4) Sample run results. The code has widely been used at JAERI to analyze seismic hazard at various nuclear power plant sites in japan. (author)

  5. Natural phenomena risk analysis - an approach for the tritium facilities 5480.23 SAR natural phenomena hazards accident analysis

    International Nuclear Information System (INIS)

    Cappucci, A.J. Jr.; Joshi, J.R.; Long, T.A.; Taylor, R.P.

    1997-01-01

    A Tritium Facilities (TF) Safety Analysis Report (SAR) has been developed which is compliant with DOE Order 5480.23. The 5480.23 SAR upgrades and integrates the safety documentation for the TF into a single SAR for all of the tritium processing buildings. As part of the TF SAR effort, natural phenomena hazards (NPH) were analyzed. A cost effective strategy was developed using a team approach to take advantage of limited resources and budgets. During development of the Hazard and Accident Analysis for the 5480.23 SAR, a strategy was required to allow maximum use of existing analysis and to develop a cost effective graded approach for any new analysis in identifying and analyzing the bounding accidents for the TF. This approach was used to effectively identify and analyze NPH for the TF. The first part of the strategy consisted of evaluating the current SAR for the RTF to determine what NPH analysis could be used in the new combined 5480.23 SAR. The second part was to develop a method for identifying and analyzing NPH events for the older facilities which took advantage of engineering judgment, was cost effective, and followed a graded approach. The second part was especially challenging because of the lack of documented existing analysis considered adequate for the 5480.23 SAR and a limited budget for SAR development and preparation. This paper addresses the strategy for the older facilities

  6. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    Energy Technology Data Exchange (ETDEWEB)

    SINGH, G.

    2000-09-06

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the

  7. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    International Nuclear Information System (INIS)

    SINGH, G.

    2000-01-01

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cited, as applicable. This FHA comprehensively assesses the risk of fire at the CVDF to ascertain whether the specific objectives of DOE 5480.7A are met. These specific fire protection objectives are: (1) Minimize the potential for the occurrence of a fire. (2) Ensure that fire does not cause an onsite or offsite release of radiological and other hazardous material that will threaten the public health and safety or the environment. (3) Establish requirements that will provide an acceptable degree of life safety to DOE and contractor personnel and ensure that there are no undue hazards to the public from fire and its effects in DOE facilities. (4) Ensure that vital DOE programs will not suffer unacceptable delays as a result of fire and related perils. (5) Ensure that property damage from fire and related perils does not exceed an acceptable level. (6) Ensure that process control and safety systems are not damaged by fire or related perils. This FHA is based on the

  8. DOE underground storage tank waste remediation chemical processing hazards. Part I: Technology dictionary

    International Nuclear Information System (INIS)

    DeMuth, S.F.

    1996-10-01

    This document has been prepared to aid in the development of Regulating guidelines for the Privatization of Hanford underground storage tank waste remediation. The document has been prepared it two parts to facilitate their preparation. Part II is the primary focus of this effort in that it describes the technical basis for established and potential chemical processing hazards associated with Underground Storage Tank (UST) nuclear waste remediation across the DOE complex. The established hazards involve those at Sites for which Safety Analysis Reviews (SARs) have already been prepared. Potential hazards are those involving technologies currently being developed for future applications. Part I of this document outlines the scope of Part II by briefly describing the established and potential technologies. In addition to providing the scope, Part I can be used as a technical introduction and bibliography for Regulatory personnel new to the UST waste remediation, and in particular Privatization effort. Part II of this document is not intended to provide examples of a SAR Hazards Analysis, but rather provide an intelligence gathering source for Regulatory personnel who must eventually evaluate the Privatization SAR Hazards Analysis

  9. Documentation for Initial Seismic Hazard Maps for Haiti

    Science.gov (United States)

    Frankel, Arthur; Harmsen, Stephen; Mueller, Charles; Calais, Eric; Haase, Jennifer

    2010-01-01

    In response to the urgent need for earthquake-hazard information after the tragic disaster caused by the moment magnitude (M) 7.0 January 12, 2010, earthquake, we have constructed initial probabilistic seismic hazard maps for Haiti. These maps are based on the current information we have on fault slip rates and historical and instrumental seismicity. These initial maps will be revised and improved as more data become available. In the short term, more extensive logic trees will be developed to better capture the uncertainty in key parameters. In the longer term, we will incorporate new information on fault parameters and previous large earthquakes obtained from geologic fieldwork. These seismic hazard maps are important for the management of the current crisis and the development of building codes and standards for the rebuilding effort. The boundary between the Caribbean and North American Plates in the Hispaniola region is a complex zone of deformation. The highly oblique ~20 mm/yr convergence between the two plates (DeMets and others, 2000) is partitioned between subduction zones off of the northern and southeastern coasts of Hispaniola and strike-slip faults that transect the northern and southern portions of the island. There are also thrust faults within the island that reflect the compressional component of motion caused by the geometry of the plate boundary. We follow the general methodology developed for the 1996 U.S. national seismic hazard maps and also as implemented in the 2002 and 2008 updates. This procedure consists of adding the seismic hazard calculated from crustal faults, subduction zones, and spatially smoothed seismicity for shallow earthquakes and Wadati-Benioff-zone earthquakes. Each one of these source classes will be described below. The lack of information on faults in Haiti requires many assumptions to be made. These assumptions will need to be revisited and reevaluated as more fieldwork and research are accomplished. We made two sets of

  10. RELEASE OF DRIED RADIOACTIVE WASTE MATERIALS TECHNICAL BASIS DOCUMENT

    International Nuclear Information System (INIS)

    KOZLOWSKI, S.D.

    2007-01-01

    This technical basis document was developed to support RPP-23429, Preliminary Documented Safety Analysis for the Demonstration Bulk Vitrification System (PDSA) and RPP-23479, Preliminary Documented Safety Analysis for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Facility. The main document describes the risk binning process and the technical basis for assigning risk bins to the representative accidents involving the release of dried radioactive waste materials from the Demonstration Bulk Vitrification System (DBVS) and to the associated represented hazardous conditions. Appendices D through F provide the technical basis for assigning risk bins to the representative dried waste release accident and associated represented hazardous conditions for the Contact-Handled Transuranic Mixed (CH-TRUM) Waste Packaging Unit (WPU). The risk binning process uses an evaluation of the frequency and consequence of a given representative accident or represented hazardous condition to determine the need for safety structures, systems, and components (SSC) and technical safety requirement (TSR)-level controls. A representative accident or a represented hazardous condition is assigned to a risk bin based on the potential radiological and toxicological consequences to the public and the collocated worker. Note that the risk binning process is not applied to facility workers because credible hazardous conditions with the potential for significant facility worker consequences are considered for safety-significant SSCs and/or TSR-level controls regardless of their estimated frequency. The controls for protection of the facility workers are described in RPP-23429 and RPP-23479. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, Preparation Guide for US. Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses, as described below

  11. 327 Building fire hazards analysis implementation plan

    International Nuclear Information System (INIS)

    BARILO, N.F.

    1999-01-01

    In March 1998, the 327 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U.S. Department of Energy, Richland Operations Office (DOE-E) for implementation by B and W Hanford Company (BWC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in five areas and provided nine recommendations (11 items) to bring the 327 Building into compliance. A status is provided for each recommendation in this document. BWHC will use this Implementation Plan to bring the 327 Building and its operation into compliance with DOE Order 5480.7A and IUD 5480.7

  12. Hazard classification of environmental restoration activities at the INEL

    International Nuclear Information System (INIS)

    Peatross, R.G.

    1996-04-01

    The following documents require that a hazard classification be prepared for all activities for which US Department of Energy (DOE) has assumed environmental, safety, and health responsibility: the DOE Order 5481.1B, Safety Analysis and Review System and DOE Order 5480.23, Nuclear Safety Analysis Reports. A hazard classification defines the level of hazard posed by an operation or activity, assuming an unmitigated release of radioactive and nonradioactive hazardous material. For environmental restoration activities, the release threshold criteria presented in Hazard Baseline Documentation (DOE-EM-STD-5502-94) are used to determine classifications, such as Radiological, Nonnuclear, and Other Industrial facilities. Based upon DOE-EM-STD-5502-94, environmental restoration activities in all but one of the sites addressed by the scope of this classification (see Section 2) can be classified as ''Other Industrial Facility''. DOE-EM-STD-5502-94 states that a Health and Safety Plan and compliance with the applicable Occupational Safety and Health Administration (OSHA) standards are sufficient safety controls for this classification

  13. Chemical process hazards analysis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    The Office of Worker Health and Safety (EH-5) under the Assistant Secretary for the Environment, Safety and Health of the US Department (DOE) has published two handbooks for use by DOE contractors managing facilities and processes covered by the Occupational Safety and Health Administration (OSHA) Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119), herein referred to as the PSM Rule. The PSM Rule contains an integrated set of chemical process safety management elements designed to prevent chemical releases that can lead to catastrophic fires, explosions, or toxic exposures. The purpose of the two handbooks, ``Process Safety Management for Highly Hazardous Chemicals`` and ``Chemical Process Hazards Analysis,`` is to facilitate implementation of the provisions of the PSM Rule within the DOE. The purpose of this handbook ``Chemical Process Hazards Analysis,`` is to facilitate, within the DOE, the performance of chemical process hazards analyses (PrHAs) as required under the PSM Rule. It provides basic information for the performance of PrHAs, and should not be considered a complete resource on PrHA methods. Likewise, to determine if a facility is covered by the PSM rule, the reader should refer to the handbook, ``Process Safety Management for Highly Hazardous Chemicals`` (DOE- HDBK-1101-96). Promulgation of the PSM Rule has heightened the awareness of chemical safety management issues within the DOE. This handbook is intended for use by DOE facilities and processes covered by the PSM rule to facilitate contractor implementation of the PrHA element of the PSM Rule. However, contractors whose facilities and processes not covered by the PSM Rule may also use this handbook as a basis for conducting process hazards analyses as part of their good management practices. This handbook explains the minimum requirements for PrHAs outlined in the PSM Rule. Nowhere have requirements been added beyond what is specifically required by the rule.

  14. Final hazard classification and auditable safety analysis for the N basin segment

    International Nuclear Information System (INIS)

    Kloster, G.; Smith, R.I.; Larson, A.R.; Duncan, G.M.

    1996-12-01

    The purpose of this report is to provide the following: To serve as the auditable safety analysis (ASA) for the N Basin Segment, including both the quiescent state and planned intrusive activities. The ASA is developed through the realistic evaluation of potential hazards that envelope the threat to personnel. The ASA also includes the specification of the programmatic, baseline, and activity- specific controls that are necessary for the protection of workers. To determine and document the final hazard classification (FHC) for the N Basin Segment. The FHC is developed through the use of bounding accident analyses that envelope the potential exposures to personnel. The FHC also includes the specification of the special controls that are necessary to remain within the envelope of those accident analyses

  15. A situational analysis of priority disaster hazards in Uganda: findings from a hazard and vulnerability analysis.

    Science.gov (United States)

    Mayega, R W; Wafula, M R; Musenero, M; Omale, A; Kiguli, J; Orach, G C; Kabagambe, G; Bazeyo, W

    2013-06-01

    Most countries in sub-Saharan Africa have not conducted a disaster risk analysis. Hazards and vulnerability analyses provide vital information that can be used for development of risk reduction and disaster response plans. The purpose of this study was to rank disaster hazards for Uganda, as a basis for identifying the priority hazards to guide disaster management planning. The study as conducted in Uganda, as part of a multi-country assessment. A hazard, vulnerability and capacity analysis was conducted in a focus group discussion of 7 experts representing key stakeholder agencies in disaster management in Uganda. A simple ranking method was used to rank the probability of occurance of 11 top hazards, their potential impact and the level vulnerability of people and infrastructure. In-terms of likelihood of occurance and potential impact, the top ranked disaster hazards in Uganda are: 1) Epidemics of infectious diseases, 2) Drought/famine, 3) Conflict and environmental degradation in that order. In terms of vulnerability, the top priority hazards to which people and infrastructure were vulnerable were: 1) Conflicts, 2) Epidemics, 3) Drought/famine and, 4) Environmental degradation in that order. Poverty, gender, lack of information, and lack of resilience measures were some of the factors promoting vulnerability to disasters. As Uganda develops a disaster risk reduction and response plan, it ought to prioritize epidemics of infectious diseases, drought/famine, conflics and environmental degradation as the priority disaster hazards.

  16. A proposal for performing software safety hazard analysis

    International Nuclear Information System (INIS)

    Lawrence, J.D.; Gallagher, J.M.

    1997-01-01

    Techniques for analyzing the safety and reliability of analog-based electronic protection systems that serve to mitigate hazards in process control systems have been developed over many years, and are reasonably understood. An example is the protection system in a nuclear power plant. The extension of these techniques to systems which include digital computers is not well developed, and there is little consensus among software engineering experts and safety experts on how to analyze such systems. One possible technique is to extend hazard analysis to include digital computer-based systems. Software is frequently overlooked during system hazard analyses, but this is unacceptable when the software is in control of a potentially hazardous operation. In such cases, hazard analysis should be extended to fully cover the software. A method for performing software hazard analysis is proposed in this paper. The method concentrates on finding hazards during the early stages of the software life cycle, using an extension of HAZOP

  17. Fire Hazard Analysis for the Cold Vacuum Drying facility (CVD) Facility

    CERN Document Server

    Singh, G

    2000-01-01

    The CVDF is a nonreactor nuclear facility that will process the Spent Nuclear Fuels (SNF) presently stored in the 105-KE and 105-KW SNF storage basins. Multi-canister overpacks (MCOs) will be loaded (filled) with K Basin fuel transported to the CVDF. The MCOs will be processed at the CVDF to remove free water from the fuel cells (packages). Following processing at the CVDF, the MCOs will be transported to the CSB for interim storage until a long-term storage solution can be implemented. This operation is expected to start in November 2000. A Fire Hazard Analysis (FHA) is required for all new facilities and all nonreactor nuclear facilities, in accordance with U.S. Department of Energy (DOE) Order 5480.7A, Fire Protection. This FHA has been prepared in accordance with DOE 5480.7A and HNF-PRO-350, Fire Hazard Analysis Requirements. Additionally, requirements or criteria contained in DOE, Richland Operations Office (RL) RL Implementing Directive (RLID) 5480.7, Fire Protection, or other DOE documentation are cite...

  18. Documentation for the Southeast Asia seismic hazard maps

    Science.gov (United States)

    Petersen, Mark; Harmsen, Stephen; Mueller, Charles; Haller, Kathleen; Dewey, James; Luco, Nicolas; Crone, Anthony; Lidke, David; Rukstales, Kenneth

    2007-01-01

    The U.S. Geological Survey (USGS) Southeast Asia Seismic Hazard Project originated in response to the 26 December 2004 Sumatra earthquake (M9.2) and the resulting tsunami that caused significant casualties and economic losses in Indonesia, Thailand, Malaysia, India, Sri Lanka, and the Maldives. During the course of this project, several great earthquakes ruptured subduction zones along the southern coast of Indonesia (fig. 1) causing additional structural damage and casualties in nearby communities. Future structural damage and societal losses from large earthquakes can be mitigated by providing an advance warning of tsunamis and introducing seismic hazard provisions in building codes that allow buildings and structures to withstand strong ground shaking associated with anticipated earthquakes. The Southeast Asia Seismic Hazard Project was funded through a United States Agency for International Development (USAID)—Indian Ocean Tsunami Warning System to develop seismic hazard maps that would assist engineers in designing buildings that will resist earthquake strong ground shaking. An important objective of this project was to discuss regional hazard issues with building code officials, scientists, and engineers in Thailand, Malaysia, and Indonesia. The code communities have been receptive to these discussions and are considering updating the Thailand and Indonesia building codes to incorporate new information (for example, see notes from Professor Panitan Lukkunaprasit, Chulalongkorn University in Appendix A).

  19. Hanford Site radioactive hazardous materials packaging directory

    International Nuclear Information System (INIS)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations ampersand Development (PO ampersand D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage

  20. Hanford Site radioactive hazardous materials packaging directory

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, T.L.

    1995-12-01

    The Hanford Site Radioactive Hazardous Materials Packaging Directory (RHMPD) provides information concerning packagings owned or routinely leased by Westinghouse Hanford Company (WHC) for offsite shipments or onsite transfers of hazardous materials. Specific information is provided for selected packagings including the following: general description; approval documents/specifications (Certificates of Compliance and Safety Analysis Reports for Packaging); technical information (drawing numbers and dimensions); approved contents; areas of operation; and general information. Packaging Operations & Development (PO&D) maintains the RHMPD and may be contacted for additional information or assistance in obtaining referenced documentation or assistance concerning packaging selection, availability, and usage.

  1. Document reconstruction by layout analysis of snippets

    Science.gov (United States)

    Kleber, Florian; Diem, Markus; Sablatnig, Robert

    2010-02-01

    Document analysis is done to analyze entire forms (e.g. intelligent form analysis, table detection) or to describe the layout/structure of a document. Also skew detection of scanned documents is performed to support OCR algorithms that are sensitive to skew. In this paper document analysis is applied to snippets of torn documents to calculate features for the reconstruction. Documents can either be destroyed by the intention to make the printed content unavailable (e.g. tax fraud investigation, business crime) or due to time induced degeneration of ancient documents (e.g. bad storage conditions). Current reconstruction methods for manually torn documents deal with the shape, inpainting and texture synthesis techniques. In this paper the possibility of document analysis techniques of snippets to support the matching algorithm by considering additional features are shown. This implies a rotational analysis, a color analysis and a line detection. As a future work it is planned to extend the feature set with the paper type (blank, checked, lined), the type of the writing (handwritten vs. machine printed) and the text layout of a snippet (text size, line spacing). Preliminary results show that these pre-processing steps can be performed reliably on a real dataset consisting of 690 snippets.

  2. Technical basis for the aboveground structure failure and associated represented hazardous conditions

    International Nuclear Information System (INIS)

    GOETZ, T.G.

    2003-01-01

    This technical basis document describes the risk binning process and the technical basis for assigning risk bins for the aboveground structure failure representative accident and associated represented hazardous conditions. This document was developed to support the documented safety analysis

  3. Hazard screening application guide

    International Nuclear Information System (INIS)

    1992-06-01

    The basic purpose of hazard screening is to group precesses, facilities, and proposed modifications according to the magnitude of their hazards so as to determine the need for and extent of follow on safety analysis. A hazard is defined as a material, energy source, or operation that has the potential to cause injury or illness in human beings. The purpose of this document is to give guidance and provide standard methods for performing hazard screening. Hazard screening is applied to new and existing facilities and processes as well as to proposed modifications to existing facilities and processes. The hazard screening process evaluates an identified hazards in terms of the effects on people, both on-site and off-site. The process uses bounding analyses with no credit given for mitigation of an accident with the exception of certain containers meeting DOT specifications. The process is restricted to human safety issues only. Environmental effects are addressed by the environmental program. Interfaces with environmental organizations will be established in order to share information

  4. 40 CFR 68.67 - Process hazard analysis.

    Science.gov (United States)

    2010-07-01

    ...) Hazard and Operability Study (HAZOP); (5) Failure Mode and Effects Analysis (FMEA); (6) Fault Tree...) The hazards of the process; (2) The identification of any previous incident which had a likely...

  5. Microbiological quality of food in relation to hazard analysis systems and food hygiene training in UK catering and retail premises.

    Science.gov (United States)

    Little, C L; Lock, D; Barnes, J; Mitchell, R T

    2003-09-01

    A meta-analysis of eight UK food studies was carried out to determine the microbiological quality of food and its relationship with the presence in food businesses of hazard analysis systems and food hygiene training. Of the 19,022 premises visited to collect food samples in these studies between 1997 and 2002, two thirds (66%) were catering premises and one third (34%) were retail premises. Comparison with PHLS Microbiological Guidelines revealed that significantly more ready-to-eat food samples from catering premises (20%; 2,511/12,703) were of unsatisfactory or unacceptable microbiological quality compared to samples from retail premises (12%; 1,039/8,462) (p catering premises (p catering premises (p catering) compared with premises where the manager had received food hygiene training (11% retail, 19% catering) (p catering) were from premises where there was no hazard analysis system in place compared to premises that had a documented hazard analysis system in place (10% retail, 18% catering) (p catering premises compared with those collected from retail premises may reflect differences in management food hygiene training and the presence of a hazard analysis system. The importance of adequate training for food handlers and their managers as a pre-requisite for effective hazard analysis and critical control point (HACCP) based controls is therefore emphasised.

  6. Document image analysis: A primer

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    (1) Typical documents in today's office are computer-generated, but even so, inevitably by different computers and ... different sizes, from a business card to a large engineering drawing. Document analysis ... Whether global or adaptive ...

  7. The application of quality risk management to the bacterial endotoxins test: use of hazard analysis and critical control points.

    Science.gov (United States)

    Annalaura, Carducci; Giulia, Davini; Stefano, Ceccanti

    2013-01-01

    Risk analysis is widely used in the pharmaceutical industry to manage production processes, validation activities, training, and other activities. Several methods of risk analysis are available (for example, failure mode and effects analysis, fault tree analysis), and one or more should be chosen and adapted to the specific field where they will be applied. Among the methods available, hazard analysis and critical control points (HACCP) is a methodology that has been applied since the 1960s, and whose areas of application have expanded over time from food to the pharmaceutical industry. It can be easily and successfully applied to several processes because its main feature is the identification, assessment, and control of hazards. It can be also integrated with other tools, such as fishbone diagram and flowcharting. The aim of this article is to show how HACCP can be used to manage an analytical process, propose how to conduct the necessary steps, and provide data templates necessary to document and useful to follow current good manufacturing practices. In the quality control process, risk analysis is a useful tool for enhancing the uniformity of technical choices and their documented rationale. Accordingly, it allows for more effective and economical laboratory management, is capable of increasing the reliability of analytical results, and enables auditors and authorities to better understand choices that have been made. The aim of this article is to show how hazard analysis and critical control points can be used to manage bacterial endotoxins testing and other analytical processes in a formal, clear, and detailed manner.

  8. FIRE HAZARDS ANALYSIS - BUSTED BUTTE

    International Nuclear Information System (INIS)

    Longwell, R.; Keifer, J.; Goodin, S.

    2001-01-01

    The purpose of this fire hazards analysis (FHA) is to assess the risk from fire within individual fire areas at the Busted Butte Test Facility and to ascertain whether the DOE fire safety objectives are met. The objective, identified in DOE Order 420.1, Section 4.2, is to establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: (1) The occurrence of a fire related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees. (3) Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. Critical process controls and safety class systems being damaged as a result of a fire and related events

  9. Final Hazard Classification and Auditable Safety Analysis for the 105-F Building Interim Safe Storage Project

    International Nuclear Information System (INIS)

    Rodovsky, T.J.; Bond, S.L.

    1998-07-01

    The auditable safety analysis (ASA) documents the authorization basis for the partial decommissioning and facility modifications to place the 105-F Building into interim safe storage (ISS). Placement into the ISS is consistent with the preferred alternative identified in the Record of Decision (58 FR). Modifications will reduce the potential for release and worker exposure to hazardous and radioactive materials, as well as lower surveillance and maintenance (S ampersand M) costs. This analysis includes the following: A description of the activities to be performed in the course of the 105-F Building ISS Project. An assessment of the inventory of radioactive and other hazardous materials within the 105-F Building. Identification of the hazards associated with the activities of the 105-F Building ISS Project. Identification of internally and externally initiated accident scenarios with the potential to produce significant local or offsite consequences during the 105-F Building ISS Project. Bounding evaluation of the consequences of the potentially significant accident scenarios. Hazard classification based on the bounding consequence evaluation. Associated safety function and controls, including commitments. Radiological and other employee safety and health considerations

  10. Development of a Probabilistic Tsunami Hazard Analysis in Japan

    International Nuclear Information System (INIS)

    Toshiaki Sakai; Tomoyoshi Takeda; Hiroshi Soraoka; Ken Yanagisawa; Tadashi Annaka

    2006-01-01

    It is meaningful for tsunami assessment to evaluate phenomena beyond the design basis as well as seismic design. Because once we set the design basis tsunami height, we still have possibilities tsunami height may exceeds the determined design tsunami height due to uncertainties regarding the tsunami phenomena. Probabilistic tsunami risk assessment consists of estimating for tsunami hazard and fragility of structures and executing system analysis. In this report, we apply a method for probabilistic tsunami hazard analysis (PTHA). We introduce a logic tree approach to estimate tsunami hazard curves (relationships between tsunami height and probability of excess) and present an example for Japan. Examples of tsunami hazard curves are illustrated, and uncertainty in the tsunami hazard is displayed by 5-, 16-, 50-, 84- and 95-percentile and mean hazard curves. The result of PTHA will be used for quantitative assessment of the tsunami risk for important facilities located on coastal area. Tsunami hazard curves are the reasonable input data for structures and system analysis. However the evaluation method for estimating fragility of structures and the procedure of system analysis is now being developed. (authors)

  11. Risk-based consequences of extreme natural hazard processes in mountain regions - Multi-hazard analysis in Tyrol (Austria)

    Science.gov (United States)

    Huttenlau, Matthias; Stötter, Johann

    2010-05-01

    Reinsurance companies are stating a high increase in natural hazard related losses, both insured and economic losses, within the last decades on a global scale. This ongoing trend can be described as a product of the dynamic in the natural and in the anthroposphere. To analyze the potential impact of natural hazard process to a certain insurance portfolio or to the society in general, reinsurance companies or risk management consultants have developed loss models. However, those models are generally not fitting the scale dependent demand on regional scales like it is appropriate (i) for analyses on the scale of a specific province or (ii) for portfolio analyses of regional insurance companies. Moreover, the scientific basis of most of the models is not transparent documented and therefore scientific evaluations concerning the methodology concepts are not possible (black box). This is contrary to the scientific principles of transparency and traceability. Especially in mountain regions like the European Alps with their inherent (i) specific characteristic on small scales, (ii) the relative high process dynamics in general, (iii) the occurrence of gravitative mass movements which are related to high relief energy and thus only exists in mountain regions, (iv) the small proportion of the area of permanent settlement on the overall area, (v) the high value concentration in the valley floors, (vi) the exposition of important infrastructures and lifelines, and others, analyses must consider these circumstances adequately. Therefore, risk-based analyses are methodically estimating the potential consequences of hazard process on the built environment standardized with the risk components (i) hazard, (ii) elements at risk, and (iii) vulnerability. However, most research and progress have been made in the field of hazard analyses, whereas the other both components are not developed accordingly. Since these three general components are influencing factors without any

  12. Applications of UAV Photogrammetric Surveys to Natural Hazard Detection and Cultural Heritage Documentation

    Science.gov (United States)

    Trizzino, Rosamaria; Caprioli, Mauro; Mazzone, Francesco; Scarano, Mario

    2017-04-01

    Unmanned Aerial Vehicle (UAV) systems are increasingly seen as an attractive low-cost alternative or supplement to aerial and terrestrial photogrammetry due to their low cost, flexibility, availability and readiness for duty. In addition, UAVs can be operated in hazardous or temporarily inaccessible locations. The combination of photogrammetric aerial and terrestrial recording methods using a mini UAV (also known as "drone") opens a broad range of applications, such as surveillance and monitoring of the environment and infrastructural assets. In particular, these methods and techniques are of paramount interest for the documentation of cultural heritage sites and areas of natural importance, facing threats from natural deterioration and hazards. In order to verify the reliability of these technologies an UAV survey and a LIDAR survey have been carried out along about 1 km of coast in the Salento peninsula, near the towns of San Foca, Torre dell' Orso and SantAndrea ( Lecce, Southern Italy). This area is affected by serious environmental hazards due to the presence of dangerous rocky cliffs named "falesie". The UAV platform was equipped with a photogrammetric measurement system that allowed us to obtain a mobile mapping of the fractured fronts of dangerous rocky cliffs. UAV-images data have been processed using dedicated software (Agisoft Photoscan). The point clouds obtained from both the UAV and LIDAR surveys have been processed using Cloud Compare software, with the aim of testing the UAV results with respect to the LIDAR ones. The analysis were done using the C2C algorithm which provides good results in terms of Euclidian distances, highlighting differences between the 3D models obtained from both the survey techiques. The total error obtained was of centimeter-order that is a very satisfactory result. In the the 2nd study area, the opportunities of obtaining more detailed documentation of cultural goods throughout UAV survey have been investigated. The study

  13. IMPLEMENTING CHANGES TO AN APPROVED AND IN-USE DOCUMENTED SAFETY ANALYSIS

    International Nuclear Information System (INIS)

    KING JP

    2008-01-01

    The Plutonium Finishing Plant (PFP) has refined a process to ensure a comprehensive and complete DSA/TSR change implementation. Successful Nuclear Facility Safety Basis implementation is essential to avoid creating a Potential Inadequacy in Safety Analysis (PISA) situation, or implementing a facility into a non-compliance that can result in a TSR violation. Once past initial implementation, additional changes to Documented Safety Analysis (DSA) and Technical Safety Requirements (TSRs) are often needed due to needed requirement clarifications, operating experience indicating that Conditions/Required Actions/Surveillance Requirements could be improved, changes in facility conditions, or changes in facility mission etc. An effective change implementation process is essential to ensuring compliance with 10 CFR 830.202(a), 'The contractor responsible for a hazard category 1,2, or 3 DOE nuclear facility must establish and maintain the safety basis for the facility'

  14. Uncertainty Analysis and Expert Judgment in Seismic Hazard Analysis

    Science.gov (United States)

    Klügel, Jens-Uwe

    2011-01-01

    The large uncertainty associated with the prediction of future earthquakes is usually regarded as the main reason for increased hazard estimates which have resulted from some recent large scale probabilistic seismic hazard analysis studies (e.g. the PEGASOS study in Switzerland and the Yucca Mountain study in the USA). It is frequently overlooked that such increased hazard estimates are characteristic for a single specific method of probabilistic seismic hazard analysis (PSHA): the traditional (Cornell-McGuire) PSHA method which has found its highest level of sophistication in the SSHAC probability method. Based on a review of the SSHAC probability model and its application in the PEGASOS project, it is shown that the surprising results of recent PSHA studies can be explained to a large extent by the uncertainty model used in traditional PSHA, which deviates from the state of the art in mathematics and risk analysis. This uncertainty model, the Ang-Tang uncertainty model, mixes concepts of decision theory with probabilistic hazard assessment methods leading to an overestimation of uncertainty in comparison to empirical evidence. Although expert knowledge can be a valuable source of scientific information, its incorporation into the SSHAC probability method does not resolve the issue of inflating uncertainties in PSHA results. Other, more data driven, PSHA approaches in use in some European countries are less vulnerable to this effect. The most valuable alternative to traditional PSHA is the direct probabilistic scenario-based approach, which is closely linked with emerging neo-deterministic methods based on waveform modelling.

  15. Earthquake Hazard Analysis Methods: A Review

    Science.gov (United States)

    Sari, A. M.; Fakhrurrozi, A.

    2018-02-01

    One of natural disasters that have significantly impacted on risks and damage is an earthquake. World countries such as China, Japan, and Indonesia are countries located on the active movement of continental plates with more frequent earthquake occurrence compared to other countries. Several methods of earthquake hazard analysis have been done, for example by analyzing seismic zone and earthquake hazard micro-zonation, by using Neo-Deterministic Seismic Hazard Analysis (N-DSHA) method, and by using Remote Sensing. In its application, it is necessary to review the effectiveness of each technique in advance. Considering the efficiency of time and the accuracy of data, remote sensing is used as a reference to the assess earthquake hazard accurately and quickly as it only takes a limited time required in the right decision-making shortly after the disaster. Exposed areas and possibly vulnerable areas due to earthquake hazards can be easily analyzed using remote sensing. Technological developments in remote sensing such as GeoEye-1 provide added value and excellence in the use of remote sensing as one of the methods in the assessment of earthquake risk and damage. Furthermore, the use of this technique is expected to be considered in designing policies for disaster management in particular and can reduce the risk of natural disasters such as earthquakes in Indonesia.

  16. Implementing DOE guidance for hazards assessments at Rocky Flats Plant

    International Nuclear Information System (INIS)

    Zimmerman, G.A.

    1993-01-01

    Hazards Assessments are performed for a variety of activities and facilities at Rocky Flats Plant. Prior to 1991, there was no guidance for performing Hazards Assessments. Each organization that performed Hazards Assessments used its own methodology with no attempt at standardization. In 1991, DOE published guidelines for the performance of Hazards Assessments for Emergency Planning (DOE-EPG-5500.1, ''Guidance for a Hazards Assessment Methodology''). Subsequently, in 1992, DOE published a standard for the performance of Hazards Assessments (DOE-STD-1027-92, ''Hazard Categorization and Accident Analysis, Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports''). Although these documents are a step in the direction of standardization, there remains a great deal of interpretation and subjective implementation in the performance of Hazards Assessments. Rocky Flats Plant has initiated efforts to develop a uniform and standard process to be used for Hazards Assessments

  17. Preliminary Hazard Classification of the 1714-N, Lead Storage

    International Nuclear Information System (INIS)

    Kerr, N. R.

    1999-01-01

    The 1714-N, -NA and -NB is a building segment that was deactivated under the N Area Deactivation Project. During the deactivation the building was designated as an area to store recycled or reused lead products. This document presents the Preliminary Hazard Classification (PHC) for the continued storage of lead products by Bechtel Hanford, Inc. (BHI). Two types of hazardous substances are the focus of this PHC: lead and residual radiological contamination. An evaluation contained in this PHC concludes that there is little risk from the remaining hazardous substances. It was further concluded that standard institutional controls that are implemented under the BHI contract provide adequate protection to people and the environment. No further safety analysis documentation is required for the continued lead storage

  18. Mixing of incompatible materials in waste tanks technical basis document

    International Nuclear Information System (INIS)

    SANDGREN, K.R.

    2003-01-01

    This technical basis document was developed to support the Tank Farms Documented Safety Analysis (DSA) and describes the risk binning process, the technical basis for assigning risk bins, and the controls selected for the mixing of incompatible materials representative accident and associated represented hazardous conditions. The purpose of the risk binning process is to determine the need for safety-significant structures, systems, and components (SSCs) and/or technical safety requirement (TSR)-level controls for a given representative accident or represented hazardous conditions based on an evaluation of the FR-equency and consequence. Note that the risk binning process is not applied to facility workers, because all facility worker hazardous conditions are considered for safety-significant SSCs and/or TSR level controls. Determination of the need for safety-class SSCs was performed in accordance with DOE-STD-3009-94, ''Preparation Guide for US Department of Energy Nonreactor Nuclear Facility Documented Safety Analyses'', as described in this report

  19. Job Hazards Analysis Among A Group Of Surgeons At Zagazig ...

    African Journals Online (AJOL)

    ... 75% respectively. Conclusion: Job hazards analysis model was effective in assessment, evaluation and management of occupational hazards concerning surgeons and should considered as part of hospital wide quality and safety program. Key Words: Job Hazard Analysis, Risk Management, occupational Health Safety.

  20. Final hazard classification and auditable safety analysis for the 105-C Reactor Interim Safe Storage Project

    International Nuclear Information System (INIS)

    Rodovsky, T.J.; Larson, A.R.; Dexheimer, D.

    1996-12-01

    This document summarizes the inventories of radioactive and hazardous materials present in the 105-C Reactor Facility and the operations associated with the Interim Safe Storage Project which includes decontamination and demolition and interim safe storage of the remaining facility. This document also establishes a final hazard classification and verifies that appropriate and adequate safety functions and controls are in place to reduce or mitigate the risk associated with those operations

  1. Frequency Analysis of Aircraft hazards for License Application

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards

  2. Frequency Analysis of Aircraft hazards for License Application

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-10-24

    The preclosure safety analysis for the monitored geologic repository at Yucca Mountain must consider the hazard that aircraft may pose to surface structures. Relevant surface structures are located beneath the restricted airspace of the Nevada Test Site (NTS) on the eastern slope of Yucca Mountain, near the North Portal of the Exploratory Studies Facility Tunnel (Figure 1). The North Portal is located several miles from the Nevada Test and Training Range (NTTR), which is used extensively by the U.S. Air Force (USAF) for training and test flights (Figure 1). The NTS airspace, which is controlled by the U.S. Department of Energy (DOE) for NTS activities, is not part of the NTTR. Agreements with the DOE allow USAF aircraft specific use of the airspace above the NTS (Reference 2.1.1 [DIRS 103472], Section 3.1.1 and Appendix A, Section 2.1; and Reference 2.1.2 [DIRS 157987], Sections 1.26 through 1.29). Commercial, military, and general aviation aircraft fly within several miles to the southwest of the repository site in the Beatty Corridor, which is a broad air corridor that runs approximately parallel to U.S. Highway 95 and the Nevada-California border (Figure 2). These aircraft and other aircraft operations are identified and described in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Sections 6 and 8). The purpose of this analysis is to estimate crash frequencies for aircraft hazards identified for detailed analysis in ''Identification of Aircraft Hazards'' (Reference 2.1.3, Section 8). Reference 2.1.3, Section 8, also identifies a potential hazard associated with electronic jamming, which will be addressed in this analysis. This analysis will address only the repository and not the transportation routes to the site. The analysis is intended to provide the basis for: (1) Categorizing event sequences related to aircraft hazards; (2) Identifying design or operational requirements related to aircraft hazards.

  3. The use of hazards analysis in the development of training

    Energy Technology Data Exchange (ETDEWEB)

    Houghton, F.K.

    1998-03-01

    When training for a job in which human error has the potential of producing catastrophic results, an understanding of the hazards that may be encountered is of paramount importance. In high consequence activities, it is important that the training program be conducted in a safe environment and yet emphasize the potential hazards. Because of the high consequence of a human error the use of a high-fidelity simulation is of great importance to provide the safe environment the worker needs to learn and hone required skills. A hazards analysis identifies the operation hazards, potential human error, and associated positive measures that aid in the mitigation or prevention of the hazard. The information gained from the hazards analysis should be used in the development of training. This paper will discuss the integration of information from the hazards analysis into the development of simulation components of a training program.

  4. Development of seismic hazard analysis in Japan

    International Nuclear Information System (INIS)

    Itoh, T.; Ishii, K.; Ishikawa, Y.; Okumura, T.

    1987-01-01

    In recent years, seismic risk assessment of the nuclear power plant have been conducted increasingly in various countries, particularly in the United States to evaluate probabilistically the safety of existing plants under earthquake loading. The first step of the seismic risk assessment is the seismic hazard analysis, in which the relationship between the maximum earthquake ground motions at the plant site and their annual probability of exceedance, i.e. the seismic hazard curve, is estimated. In this paper, seismic hazard curves are evaluated and examined based on historical earthquake records model, in which seismic sources are modeled with area-sources, for several different sites in Japan. A new evaluation method is also proposed to compute the response spectra of the earthquake ground motions in connection with estimating the probabilistic structural response. Finally the numerical result of probabilistic risk assessment for a base-isolated three story RC structure, in which the frequency of seismic induced structural failure is evaluated combining the seismic hazard analysis, is described briefly

  5. Preliminary Hazards Analysis Plasma Hearth Process

    International Nuclear Information System (INIS)

    Aycock, M.; Coordes, D.; Russell, J.; TenBrook, W.; Yimbo, P.

    1993-11-01

    This Preliminary Hazards Analysis (PHA) for the Plasma Hearth Process (PHP) follows the requirements of United States Department of Energy (DOE) Order 5480.23 (DOE, 1992a), DOE Order 5480.21 (DOE, 1991d), DOE Order 5480.22 (DOE, 1992c), DOE Order 5481.1B (DOE, 1986), and the guidance provided in DOE Standards DOE-STD-1027-92 (DOE, 1992b). Consideration is given to ft proposed regulations published as 10 CFR 830 (DOE, 1993) and DOE Safety Guide SG 830.110 (DOE, 1992b). The purpose of performing a PRA is to establish an initial hazard categorization for a DOE nuclear facility and to identify those processes and structures which may have an impact on or be important to safety. The PHA is typically performed during and provides input to project conceptual design. The PRA then is followed by a Preliminary Safety Analysis Report (PSAR) performed during Title I and II design. This PSAR then leads to performance of the Final Safety Analysis Report performed during construction, testing, and acceptance and completed before routine operation. Radiological assessments indicate that a PHP facility, depending on the radioactive material inventory, may be an exempt, Category 3, or Category 2 facility. The calculated impacts would result in no significant impact to offsite personnel or the environment. Hazardous material assessments indicate that a PHP facility will be a Low Hazard facility having no significant impacts either onsite or offsite to personnel and the environment

  6. Hazard analysis in uranium hexafluoride production facility

    International Nuclear Information System (INIS)

    Marin, Maristhela Passoni de Araujo

    1999-01-01

    The present work provides a method for preliminary hazard analysis of nuclear fuel cycle facilities. The proposed method identify both chemical and radiological hazards, as well as the consequences associated with accident scenarios. To illustrate the application of the method, a uranium hexafluoride production facility was selected. The main hazards are identified and the potential consequences are quantified. It was found that, although the facility handles radioactive material, the main hazards as associated with releases of toxic chemical substances such as hydrogen fluoride, anhydrous ammonia and nitric acid. It was shown that a contention bung can effectively reduce the consequences of atmospheric release of toxic materials. (author)

  7. Multi-hazard risk analysis for management strategies

    Science.gov (United States)

    Kappes, M.; Keiler, M.; Bell, R.; Glade, T.

    2009-04-01

    Risk management is very often operating in a reactive way, responding to an event, instead of proactive starting with risk analysis and building up the whole process of risk evaluation, prevention, event management and regeneration. Since damage and losses from natural hazards raise continuously more and more studies, concepts (e.g. Switzerland or South Tyrol-Bolozano) and software packages (e.g. ARMAGEDOM, HAZUS or RiskScape) are developed to guide, standardize and facilitate the risk analysis. But these approaches focus on different aspects and are mostly closely adapted to the situation (legislation, organization of the administration, specific processes etc.) of the specific country or region. We propose in this study the development of a flexible methodology for multi-hazard risk analysis, identifying the stakeholders and their needs, processes and their characteristics, modeling approaches as well as incoherencies occurring by combining all these different aspects. Based on this concept a flexible software package will be established consisting of ArcGIS as central base and being complemented by various modules for hazard modeling, vulnerability assessment and risk calculation. Not all modules will be developed newly but taken from the current state-of-the-art and connected or integrated into ArcGIS. For this purpose two study sites, Valtellina in Italy and Bacelonnette in France, were chosen and the hazards types debris flows, rockfalls, landslides, avalanches and floods are planned to be included in the tool for a regional multi-hazard risk analysis. Since the central idea of this tool is its flexibility this will only be a first step, in the future further processes and scales can be included and the instrument thus adapted to any study site.

  8. Simplifying documentation while approaching site closure: integrated health and safety plans as documented safety analysis

    International Nuclear Information System (INIS)

    Brown, Tulanda

    2003-01-01

    At the Fernald Closure Project (FCP) near Cincinnati, Ohio, environmental restoration activities are supported by Documented Safety Analyses (DSAs) that combine the required project-specific Health and Safety Plans, Safety Basis Requirements (SBRs), and Process Requirements (PRs) into single Integrated Health and Safety Plans (I-HASPs). By isolating any remediation activities that deal with Enriched Restricted Materials, the SBRs and PRs assure that the hazard categories of former nuclear facilities undergoing remediation remain less than Nuclear. These integrated DSAs employ Integrated Safety Management methodology in support of simplified restoration and remediation activities that, so far, have resulted in the decontamination and demolition (D and D) of over 150 structures, including six major nuclear production plants. This paper presents the FCP method for maintaining safety basis documentation, using the D and D I-HASP as an example

  9. Final hazard classification and auditable safety analysis for the 308 Building Complex during post-deactivation surveillance and maintenance mode

    International Nuclear Information System (INIS)

    Dexheimer, D.

    1996-11-01

    This document summarizes the inventories of radioactive and hazardous materials present within the 308 Building Complex, and presents the hazard evaluation methodology used to prepare the hazard classification for the Complex. The complex includes the 308 Building (process area and office facilities) and the 308 Building Annex, which includes the former Neutron Radiography Facility containing a shutdown (and partially decommissioned) reactor. This document applies to the post-deactivation surveillance and maintenance mode only, and provides an authorization basis limited to surveillance and maintenance activities. This document does not authorize decommissioning and decontamination activities, movement of fissile materials, modification to facility confinement structures, nor the introduction or storage of additional radionuclides in the 308 Building Complex. This document established a final hazard classification and identifies appropriate and adequate safety functions and controls to reduce or mitigate the risk associated with the surveillance and maintenance mode. The most consequential hazard event scenario is a postulated unmitigated release from an earthquake event involving the entire complex. That release is equivalent to 30% of the Nuclear Category 3 threshold adjusted as allowed by DOE-STD-1027-92 (DOE 1992). The dominant isotopes are 239 Pu, 240 Pu, and 241 Am in the gloveboxes

  10. 324 Building fire hazards analysis implementation plan

    International Nuclear Information System (INIS)

    BARILO, N.F.

    1999-01-01

    In March 1998, the 324 Building Fire Hazards Analysis (FHA) (Reference 1) was approved by the U S. Department of Energy, Richland Operations Office (DOE-RL) for implementation by B and W Hanford Company (BWHC). The purpose of the FHA was to identify gaps in compliance with DOE Order 5480.7A (Reference 2) and Richland Operations Office Implementation Directive (RLID) 5480.7 (Reference 3), especially in regard to loss limitation. The FHA identified compliance gaps in six areas and provided 20 recommendations to bring the 324 Building into compliance with DOE Order 5480 7A. Additionally, one observation was provided. A status is provided for each recommendation in this document. The actions for recommendations associated with the safety related part of the 324 Building and operation of the cells and support areas were evaluated using the Unreviewed Safety Question (USQ) process BWHC will use this Implementation Plan to bring the 324 Building and its operation into compliance with DOE Order 5480 7A and RLID 5480.7

  11. Probabilistic Seismic Hazards Update for LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Menchawi, O. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Fernandez, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-30

    Fugro Consultants, Inc. (FCL) completed the Probabilistic Seismic Hazard Analysis (PSHA) performed for Building 332 at the Lawrence Livermore National Laboratory (LLNL), near Livermore, CA. The study performed for the LLNL site includes a comprehensive review of recent information relevant to the LLNL regional tectonic setting and regional seismic sources in the vicinity of the site and development of seismic wave transmission characteristics. The Seismic Source Characterization (SSC), documented in Project Report No. 2259-PR-02 (FCL, 2015b), and Ground Motion Characterization (GMC), documented in Project Report No. 2259-PR-06 (FCL, 2015a) were developed in accordance with ANS/ANSI 2.29- 2008 Level 2 PSHA guidelines. The ANS/ANSI 2.29-2008 Level 2 PSHA framework is documented in Project Report No. 2259-PR-05 (FCL, 2016a). The Hazard Input Document (HID) for input into the PSHA developed from the SSC and GMC is presented in Project Report No. 2259-PR-04 (FCL, 2016b). The site characterization used as input for development of the idealized site profiles including epistemic uncertainty and aleatory variability is presented in Project Report No. 2259-PR-03 (FCL, 2015c). The PSHA results are documented in Project Report No. 2259-PR-07 (FCL, 2016c).

  12. Neo-Deterministic and Probabilistic Seismic Hazard Assessments: a Comparative Analysis

    Science.gov (United States)

    Peresan, Antonella; Magrin, Andrea; Nekrasova, Anastasia; Kossobokov, Vladimir; Panza, Giuliano F.

    2016-04-01

    Objective testing is the key issue towards any reliable seismic hazard assessment (SHA). Different earthquake hazard maps must demonstrate their capability in anticipating ground shaking from future strong earthquakes before an appropriate use for different purposes - such as engineering design, insurance, and emergency management. Quantitative assessment of maps performances is an essential step also in scientific process of their revision and possible improvement. Cross-checking of probabilistic models with available observations and independent physics based models is recognized as major validation procedure. The existing maps from the classical probabilistic seismic hazard analysis (PSHA), as well as those from the neo-deterministic analysis (NDSHA), which have been already developed for several regions worldwide (including Italy, India and North Africa), are considered to exemplify the possibilities of the cross-comparative analysis in spotting out limits and advantages of different methods. Where the data permit, a comparative analysis versus the documented seismic activity observed in reality is carried out, showing how available observations about past earthquakes can contribute to assess performances of the different methods. Neo-deterministic refers to a scenario-based approach, which allows for consideration of a wide range of possible earthquake sources as the starting point for scenarios constructed via full waveforms modeling. The method does not make use of empirical attenuation models (i.e. Ground Motion Prediction Equations, GMPE) and naturally supplies realistic time series of ground shaking (i.e. complete synthetic seismograms), readily applicable to complete engineering analysis and other mitigation actions. The standard NDSHA maps provide reliable envelope estimates of maximum seismic ground motion from a wide set of possible scenario earthquakes, including the largest deterministically or historically defined credible earthquake. In addition

  13. A critical analysis of hazard resilience measures within sustainability assessment frameworks

    International Nuclear Information System (INIS)

    Matthews, Elizabeth C.; Sattler, Meredith; Friedland, Carol J.

    2014-01-01

    Today, numerous sustainability assessment frameworks (SAFs) exist to guide designers in achieving sustainable performance in the design of structures and communities. SAFs are beneficial in educating users and are useful tools for incorporating sustainability strategies into planning, design, and construction; however, there is currently a substantial gap in the ability of existing SAFs to incorporate hazard resistance and hazard mitigation in the broader context of sustainable design. This paper analyzes the incorporation of hazard resistant design and hazard mitigation strategies within SAFs via a multi-level analysis of eleven SAFs. The SAFs analyzed range in scale of application (i.e. building, site, community). Three levels of analysis are presented: (1) macro-level analysis comparing the number of measures strictly addressing resilience versus sustainability, (2) meso-level analysis of the coverage of types of hazards within SAFs (e.g. flood, fire), and (3) micro-level analysis of SAF measures connected to flood-related hazard resilience. The results demonstrate that hazard resistance and hazard mitigation do not figure prominently in the intent of SAFs and that weaknesses in resilience coverage exist that have the potential to lead to the design of structures and communities that are still highly vulnerable to the impacts of extreme events. - Highlights: • Sustainability assessment frameworks (SAFs) were analyzed for resilience coverage • Hazard resistance and mitigation do not figure prominently in the intent of SAFs • Approximately 75% of SAFs analyzed address three or fewer hazards • Lack of economic measures within SAFs could impact resilience and sustainability • Resilience measures for flood hazards are not consistently included in SAFs

  14. A critical analysis of hazard resilience measures within sustainability assessment frameworks

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Elizabeth C., E-mail: echiso1@lsu.edu [Louisiana State University, Baton Rouge, LA (United States); Sattler, Meredith, E-mail: msattler@lsu.edu [School of Architecture, Louisiana State University, Baton Rouge, LA (United States); Friedland, Carol J., E-mail: friedland@lsu.edu [Bert S. Turner Department of Construction Management, Louisiana State University, Baton Rouge, LA (United States)

    2014-11-15

    Today, numerous sustainability assessment frameworks (SAFs) exist to guide designers in achieving sustainable performance in the design of structures and communities. SAFs are beneficial in educating users and are useful tools for incorporating sustainability strategies into planning, design, and construction; however, there is currently a substantial gap in the ability of existing SAFs to incorporate hazard resistance and hazard mitigation in the broader context of sustainable design. This paper analyzes the incorporation of hazard resistant design and hazard mitigation strategies within SAFs via a multi-level analysis of eleven SAFs. The SAFs analyzed range in scale of application (i.e. building, site, community). Three levels of analysis are presented: (1) macro-level analysis comparing the number of measures strictly addressing resilience versus sustainability, (2) meso-level analysis of the coverage of types of hazards within SAFs (e.g. flood, fire), and (3) micro-level analysis of SAF measures connected to flood-related hazard resilience. The results demonstrate that hazard resistance and hazard mitigation do not figure prominently in the intent of SAFs and that weaknesses in resilience coverage exist that have the potential to lead to the design of structures and communities that are still highly vulnerable to the impacts of extreme events. - Highlights: • Sustainability assessment frameworks (SAFs) were analyzed for resilience coverage • Hazard resistance and mitigation do not figure prominently in the intent of SAFs • Approximately 75% of SAFs analyzed address three or fewer hazards • Lack of economic measures within SAFs could impact resilience and sustainability • Resilience measures for flood hazards are not consistently included in SAFs.

  15. Carbon Structure Hazard Control

    Science.gov (United States)

    Yoder, Tommy; Greene, Ben; Porter, Alan

    2015-01-01

    Carbon composite structures are widely used in virtually all advanced technology industries for a multitude of applications. The high strength-to-weight ratio and resistance to aggressive service environments make them highly desirable. Automotive, aerospace, and petroleum industries extensively use, and will continue to use, this enabling technology. As a result of this broad range of use, field and test personnel are increasingly exposed to hazards associated with these structures. No single published document exists to address the hazards and make recommendations for the hazard controls required for the different exposure possibilities from damaged structures including airborne fibers, fly, and dust. The potential for personnel exposure varies depending on the application or manipulation of the structure. The effect of exposure to carbon hazards is not limited to personnel, protection of electronics and mechanical equipment must be considered as well. The various exposure opportunities defined in this document include pre-manufacturing fly and dust, the cured structure, manufacturing/machining, post-event cleanup, and post-event test and/or evaluation. Hazard control is defined as it is applicable or applied for the specific exposure opportunity. The carbon exposure hazard includes fly, dust, fiber (cured/uncured), and matrix vapor/thermal decomposition products. By using the recommendations in this document, a high level of confidence can be assured for the protection of personnel and equipment.

  16. Systematic analysis of natural hazards along infrastructure networks using a GIS-tool for risk assessment

    Science.gov (United States)

    Baruffini, Mirko

    2010-05-01

    system which integrates the procedures for a complete risk analysis in a Geographic Information System (GIS) toolbox, in order to be applied to our testbed, the Alps-crossing corridor of St. Gotthard. The simulation environment is developed within ArcObjects, the development platform for ArcGIS. The topic of ArcObjects usually emerges when users realize that programming ArcObjects can actually reduce the amount of repetitive work, streamline the workflow, and even produce functionalities that are not easily available in ArcGIS. We have adopted Visual Basic for Applications (VBA) for programming ArcObjects. Because VBA is already embedded within ArcMap and ArcCatalog, it is convenient for ArcGIS users to program ArcObjects in VBA. Our tool visualises the obtained data by an analysis of historical data (aerial photo imagery, field surveys, documentation of past events) or an environmental modeling (estimations of the area affected by a given event), and event such as route number and route position and thematic maps. As a result of this step the record appears in WebGIS. The user can select a specific area to overview previous hazards in the region. After performing the analysis, a double click on the visualised infrastructures opens the corresponding results. The constantly updated risk maps show all sites that require more protection against natural hazards. The final goal of our work is to offer a versatile tool for risk analysis which can be applied to different situations. Today our GIS application mainly centralises the documentation of natural hazards. Additionally the system offers information about natural hazard at the Gotthard line. It is very flexible and can be used as a simple program to model the expansion of natural hazards, as a program of quantitatively estimate risks or as a detailed analysis at a municipality level. The tool is extensible and can be expanded with additional modules. The initial results of the experimental case study show how useful a

  17. Calculation of Hazard Category 2/3 Threshold Quantities Using Contemporary Dosimetric Data

    Energy Technology Data Exchange (ETDEWEB)

    Walker, William C. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-11-01

    The purpose of this report is to describe the methodology and selection of input data utilized to calculate updated Hazard Category 2 and Hazard Category 3 Threshold Quantities (TQs) using contemporary dosimetric information. The calculation of the updated TQs will be considered for use in the revision to the Department of Energy (DOE) Technical Standard (STD-) 1027-92 Change Notice (CN)-1, “Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports.” The updated TQs documented in this report complement an effort previously undertaken by the National Nuclear Security Administration (NNSA), which in 2014 issued revised Supplemental Guidance documenting the calculation of updated TQs for approximately 100 radionuclides listed in DOE-STD-1027-92, CN-1. The calculations documented in this report complement the NNSA effort by expanding the set of radionuclides to more than 1,250 radionuclides with a published TQ. The development of this report was sponsored by the Department of Energy’s Office of Nuclear Safety (AU-30) within the Associate Under Secretary for Environment, Health, Safety, and Security organization.

  18. A fire hazard analysis at the Ignalina nuclear power plant

    International Nuclear Information System (INIS)

    Joerud, F.; Magnusson, T.

    1998-01-01

    The fire hazard analysis (FHA) of the Ignalina Nuclear Power Plant (INPP) Unit no.1 was initiated during 1997 and is estimated to finalise in summer 1998. The reason for starting a FHA was a recommendation in the Safety Analysis Report and its review to prioritise a systematic FHA. Fire protection improvements had earlier been based on engineering assessments, but further improvements required a systematic FHA. It is also required by the regulator for licensing of unit no.1. In preparation of the analysis it was decided to perform a deterministic FHA to fulfil the requirements in the IAEA draft of a Safety Practice ''Preparation of Fire Hazard Analyses for Nuclear Power Plants''. As a supporting document the United States Department of Energy Reactor Core Protection Evaluation Methodology for Fires at RBMK and WWER Nuclear Power Plants (RCPEM) was agreed to be used. The assistance of the project is performed as a bilateral activity between Sweden and UK. The project management is the responsibility of the INPP. In order to transfer knowledge to the INPP project group, training activities are arranged by the western team. The project will be documented as a safety case. The project consists of parties from INPP, Sweden, UK and Russia which makes the project very dependent of good communication procedures. The most difficult problems is except from the problems with translation, the problems with different standards and lack of testing protocols of the fire protection installations and problems to set the right level of screening criteria. There is also the new dimension of making it possible to take credit for the fire brigade in the safety case, which can bring the project into difficulties. The most interesting challenges for the project are to set the most sensible safety levels in the screening phase, to handle the huge volume of rooms for survey and screening, to maintain the good exchange of fire- and nuclear safety information between all the parties involved

  19. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    Logan, Richard C.

    2002-01-01

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment; Vital U.S. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  20. Fire hazard analysis for the fuel supply shutdown storage buildings

    International Nuclear Information System (INIS)

    REMAIZE, J.A.

    2000-01-01

    The purpose of a fire hazards analysis (FHA) is to comprehensively assess the risk from fire and other perils within individual fire areas in a DOE facility in relation to proposed fire protection so as to ascertain whether the objectives of DOE 5480.7A, Fire Protection, are met. This Fire Hazards Analysis was prepared as required by HNF-PRO-350, Fire Hazards Analysis Requirements, (Reference 7) for a portion of the 300 Area N Reactor Fuel Fabrication and Storage Facility

  1. 76 FR 23823 - Guidance for Industry on Fish and Fishery Products Hazards and Controls, Fourth Edition...

    Science.gov (United States)

    2011-04-28

    ... analysis and critical control point (HACCP) methods. DATES: Submit either electronic or written comments on... conducting a hazard analysis and implementing a HACCP plan. Although this guidance document is immediately in... appropriate HACCP plans for those hazards that are reasonably likely to occur. A summary of the changes from...

  2. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2006-12-01

    The development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface(GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within limits of the possibility

  3. Hazard Evaluation for a Salt Well Centrifugal Pump Design Using Service Water for Lubrication and Cooling

    International Nuclear Information System (INIS)

    GRAMS, W.H.

    2000-01-01

    This report documents the results of a preliminary hazard analysis (PHA) covering the new salt well pump design. The PHA identified ten hazardous conditions mapped to four analyzed accidents: flammable gas deflagrations, fire in contaminated area, tank failure due to excessive loads, and waste transfer leaks. This document also presents the results of the control decision/allocation process. A backflow preventer and associated limiting condition were assigned

  4. [Hazard function and life table: an introduction to the failure time analysis].

    Science.gov (United States)

    Matsushita, K; Inaba, H

    1987-04-01

    Failure time analysis has become popular in demographic studies. It can be viewed as a part of regression analysis with limited dependent variables as well as a special case of event history analysis and multistate demography. The idea of hazard function and failure time analysis, however, has not been properly introduced to nor commonly discussed by demographers in Japan. The concept of hazard function in comparison with life tables is briefly described, where the force of mortality is interchangeable with the hazard rate. The basic idea of failure time analysis is summarized for the cases of exponential distribution, normal distribution, and proportional hazard models. The multiple decrement life table is also introduced as an example of lifetime data analysis with cause-specific hazard rates.

  5. Canister storage building design basis accident analysis documentation

    International Nuclear Information System (INIS)

    KOPELIC, S.D.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  6. Hazardous-waste analysis plan for LLNL operations

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, R.S.

    1982-02-12

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste.

  7. Hazardous-waste analysis plan for LLNL operations

    International Nuclear Information System (INIS)

    Roberts, R.S.

    1982-01-01

    The Lawrence Livermore National Laboratory is involved in many facets of research ranging from nuclear weapons research to advanced Biomedical studies. Approximately 80% of all programs at LLNL generate hazardous waste in one form or another. Aside from producing waste from industrial type operations (oils, solvents, bottom sludges, etc.) many unique and toxic wastes are generated such as phosgene, dioxin (TCDD), radioactive wastes and high explosives. One key to any successful waste management program must address the following: proper identification of the waste, safe handling procedures and proper storage containers and areas. This section of the Waste Management Plan will address methodologies used for the Analysis of Hazardous Waste. In addition to the wastes defined in 40 CFR 261, LLNL and Site 300 also generate radioactive waste not specifically covered by RCRA. However, for completeness, the Waste Analysis Plan will address all hazardous waste

  8. Exploratory Studies Facility Subsurface Fire Hazards Analysis

    International Nuclear Information System (INIS)

    Kubicek, J. L.

    2001-01-01

    The primary objective of this Fire Hazard Analysis (FHA) is to confirm the requirements for a comprehensive fire and related hazards protection program for the Exploratory Studies Facility (ESF) are sufficient to minimize the potential for: (1) The occurrence of a fire or related event. (2) A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public or the environment. (3) Vital US. Department of Energy (DOE) programs suffering unacceptable interruptions as a result of fire and related hazards. (4) Property losses from a fire and related events exceeding limits established by DOE. (5) Critical process controls and safety class systems being damaged as a result of a fire and related events

  9. Developing emergency exercises for hazardous material transportation: process, documents and templates.

    Science.gov (United States)

    Crichton, Margaret; Kelly, Terence

    2012-01-01

    Multi-agency emergency exercises establish and reinforce relationships, and bring people from different areas together to work as a team, realise clear goals, understand roles and responsibilities, and get to know and respect each agency's strengths and weaknesses. However, despite the long-held belief in and respect for exercises in their provision of benefits to the individual and the organisation, there is little evidence of a consistent and clear process for exercise design, especially identifying the documents that may need to be completed to ensure efficient exercise preparation and performance. This paper reports the results of a project undertaken on behalf of the organisations that form the radioactive material transportation mutual-aid agreement, RADSAFE, to develop a standardised process to design emergency exercises. Three stages, from identifying the requirement for an exercise (Stage I), through to obtaining approval for operational orders (Stage II), then conducting a management review as part of the continuous improvement cycle (Stage III), were developed. Although designed for radioactive material transportation events, it is suggested that many of the factors within these three stages can be generalised for the design of exercises in other high-hazard industries.

  10. A graded approach to safety documentation at processing facilities

    International Nuclear Information System (INIS)

    Cowen, M.L.

    1992-01-01

    Westinghouse Savannah River Company (WSRC) has over 40 major Safety Analysis Reports (SARs) in preparation for non-reactor facilities. These facilities include nuclear material production facilities, waste management facilities, support laboratories and environmental remediation facilities. The SARs for these various projects encompass hazard levels from High to Low, and mission times from startup, through operation, to shutdown. All of these efforts are competing for scarce resources, and therefore some mechanism is required for balancing the documentation requirements. Three of the key variables useful for the decision making process are Depth of Safety Analysis, Urgency of Safety Analysis, and Resource Availability. This report discusses safety documentation at processing facilities

  11. Canister storage building design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    KOPELIC, S.D.

    1999-02-25

    This document provides the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  12. The implementation of a Hazard Analysis and Critical Control Point management system in a peanut butter ice cream plant

    Directory of Open Access Journals (Sweden)

    Yu-Ting Hung

    2015-09-01

    Full Text Available To ensure the safety of the peanut butter ice cream manufacture, a Hazard Analysis and Critical Control Point (HACCP plan has been designed and applied to the production process. Potential biological, chemical, and physical hazards in each manufacturing procedure were identified. Critical control points for the peanut butter ice cream were then determined as the pasteurization and freezing process. The establishment of a monitoring system, corrective actions, verification procedures, and documentation and record keeping were followed to complete the HACCP program. The results of this study indicate that implementing the HACCP system in food industries can effectively enhance food safety and quality while improving the production management.

  13. Cultural diversity: blind spot in medical curriculum documents, a document analysis.

    Science.gov (United States)

    Paternotte, Emma; Fokkema, Joanne P I; van Loon, Karsten A; van Dulmen, Sandra; Scheele, Fedde

    2014-08-22

    Cultural diversity among patients presents specific challenges to physicians. Therefore, cultural diversity training is needed in medical education. In cases where strategic curriculum documents form the basis of medical training it is expected that the topic of cultural diversity is included in these documents, especially if these have been recently updated. The aim of this study was to assess the current formal status of cultural diversity training in the Netherlands, which is a multi-ethnic country with recently updated medical curriculum documents. In February and March 2013, a document analysis was performed of strategic curriculum documents for undergraduate and postgraduate medical education in the Netherlands. All text phrases that referred to cultural diversity were extracted from these documents. Subsequently, these phrases were sorted into objectives, training methods or evaluation tools to assess how they contributed to adequate curriculum design. Of a total of 52 documents, 33 documents contained phrases with information about cultural diversity training. Cultural diversity aspects were more prominently described in the curriculum documents for undergraduate education than in those for postgraduate education. The most specific information about cultural diversity was found in the blueprint for undergraduate medical education. In the postgraduate curriculum documents, attention to cultural diversity differed among specialties and was mainly superficial. Cultural diversity is an underrepresented topic in the Dutch documents that form the basis for actual medical training, although the documents have been updated recently. Attention to the topic is thus unwarranted. This situation does not fit the demand of a multi-ethnic society for doctors with cultural diversity competences. Multi-ethnic countries should be critical on the content of the bases for their medical educational curricula.

  14. Technical approach document

    International Nuclear Information System (INIS)

    1989-12-01

    The Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978, Public Law 95-604 (PL95-604), grants the Secretary of Energy the authority and responsibility to perform such actions as are necessary to minimize radiation health hazards and other environmental hazards caused by inactive uranium mill sites. This Technical Approach Document (TAD) describes the general technical approaches and design criteria adopted by the US Department of Energy (DOE) in order to implement remedial action plans (RAPS) and final designs that comply with EPA standards. It does not address the technical approaches necessary for aquifer restoration at processing sites; a guidance document, currently in preparation, will describe aquifer restoration concerns and technical protocols. This document is a second revision to the original document issued in May 1986; the revision has been made in response to changes to the groundwater standards of 40 CFR 192, Subparts A--C, proposed by EPA as draft standards. New sections were added to define the design approaches and designs necessary to comply with the groundwater standards. These new sections are in addition to changes made throughout the document to reflect current procedures, especially in cover design, water resources protection, and alternate site selection; only minor revisions were made to some of the sections. Sections 3.0 is a new section defining the approach taken in the design of disposal cells; Section 4.0 has been revised to include design of vegetated covers; Section 8.0 discusses design approaches necessary for compliance with the groundwater standards; and Section 9.0 is a new section dealing with nonradiological hazardous constituents. 203 refs., 18 figs., 26 tabs

  15. Using hazard maps to identify and eliminate workplace hazards: a union-led health and safety training program.

    Science.gov (United States)

    Anderson, Joe; Collins, Michele; Devlin, John; Renner, Paul

    2012-01-01

    The Institute for Sustainable Work and Environment and the Utility Workers Union of America worked with a professional evaluator to design, implement, and evaluate the results of a union-led system of safety-based hazard identification program that trained workers to use hazard maps to identify workplace hazards and target them for elimination. The evaluation documented program implementation and impact using data collected from both qualitative interviews and an on-line survey from worker trainers, plant managers, and health and safety staff. Managers and workers reported that not only were many dangerous hazards eliminated as a result of hazard mapping, some of which were long-standing, difficult-to-resolve issues, but the evaluation also documented improved communication between union members and management that both workers and managers agreed resulted in better, more sustainable hazard elimination.

  16. 283-E and 283-W hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This report documents the hazards assessment for the 200 area water treatment plants 283-E and 283-W located on the US DOE Hanford Site. Operation of the water treatment plants is the responsibility of ICF Kaiser Hanford Company (ICF KH). This hazards assessment was conducted to provide emergency planning technical basis for the water treatment plants. This document represents an acceptable interpretation of the implementing guidance document for DOE ORDER 5500.3A which requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  17. 21 CFR 120.8 - Hazard Analysis and Critical Control Point (HACCP) plan.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Hazard Analysis and Critical Control Point (HACCP... SERVICES (CONTINUED) FOOD FOR HUMAN CONSUMPTION HAZARD ANALYSIS AND CRITICAL CONTROL POINT (HACCP) SYSTEMS General Provisions § 120.8 Hazard Analysis and Critical Control Point (HACCP) plan. (a) HACCP plan. Each...

  18. Review of Exploration Systems Development (ESD) Integrated Hazard Development Process. Appendices; Volume 2

    Science.gov (United States)

    Smiles, Michael D.; Blythe, Michael P.; Bejmuk, Bohdan; Currie, Nancy J.; Doremus, Robert C.; Franzo, Jennifer C.; Gordon, Mark W.; Johnson, Tracy D.; Kowaleski, Mark M.; Laube, Jeffrey R.

    2015-01-01

    The Chief Engineer of the Exploration Systems Development (ESD) Office requested that the NASA Engineering and Safety Center (NESC) perform an independent assessment of the ESD's integrated hazard development process. The focus of the assessment was to review the integrated hazard analysis (IHA) process and identify any gaps/improvements in the process (e.g. missed causes, cause tree completeness, missed hazards). This document contains the outcome of the NESC assessment.

  19. Review of Exploration Systems Development (ESD) Integrated Hazard Development Process. Volume 1; Appendices

    Science.gov (United States)

    Smiles, Michael D.; Blythe, Michael P.; Bejmuk, Bohdan; Currie, Nancy J.; Doremus, Robert C.; Franzo, Jennifer C.; Gordon, Mark W.; Johnson, Tracy D.; Kowaleski, Mark M.; Laube, Jeffrey R.

    2015-01-01

    The Chief Engineer of the Exploration Systems Development (ESD) Office requested that the NASA Engineering and Safety Center (NESC) perform an independent assessment of the ESD's integrated hazard development process. The focus of the assessment was to review the integrated hazard analysis (IHA) process and identify any gaps/improvements in the process (e.g., missed causes, cause tree completeness, missed hazards). This document contains the outcome of the NESC assessment.

  20. Agent-based simulation for human-induced hazard analysis.

    Science.gov (United States)

    Bulleit, William M; Drewek, Matthew W

    2011-02-01

    Terrorism could be treated as a hazard for design purposes. For instance, the terrorist hazard could be analyzed in a manner similar to the way that seismic hazard is handled. No matter how terrorism is dealt with in the design of systems, the need for predictions of the frequency and magnitude of the hazard will be required. And, if the human-induced hazard is to be designed for in a manner analogous to natural hazards, then the predictions should be probabilistic in nature. The model described in this article is a prototype model that used agent-based modeling (ABM) to analyze terrorist attacks. The basic approach in this article of using ABM to model human-induced hazards has been preliminarily validated in the sense that the attack magnitudes seem to be power-law distributed and attacks occur mostly in regions where high levels of wealth pass through, such as transit routes and markets. The model developed in this study indicates that ABM is a viable approach to modeling socioeconomic-based infrastructure systems for engineering design to deal with human-induced hazards. © 2010 Society for Risk Analysis.

  1. A structured hazard analysis and risk assessment method for automotive systems—A descriptive study

    International Nuclear Information System (INIS)

    Beckers, Kristian; Holling, Dominik; Côté, Isabelle; Hatebur, Denis

    2017-01-01

    The 2011 release of the first version of the ISO 26262 standard for automotive systems demand the elicitation of safety goals following a rigorous method for hazard and risk analysis. Companies are struggling with the adoption of the standard due to ambiguities, documentation demands and the alignment of the standards demands to existing processes. We previously proposed a structured engineering method to deal with these problems developed in applying action research together with an OEM. In this work, we evaluate how applicable the method is for junior automotive software engineers by a descriptive study. We provided the method to 8 members of the master course Automotive Software Engineering (ASE) at the Technical University Munich. The participants have each been working in the automotive industry for 1–4 years in parallel to their studies. We investigated their application of our method to an electronic steering column lock system. The participants applied our method in a first round alone and afterwards discussed their results in groups. Our data analysis revealed that the participants could apply the method successfully and the hazard analysis and risk assessment achieved a high precision and productivity. Moreover, the precision could be improved significantly during group discussions.

  2. Seismic hazard analysis of Sinop province, Turkey using ...

    Indian Academy of Sciences (India)

    1997-01-11

    Jan 11, 1997 ... 2008 in the Sinop province of Turkey this study presents a seismic hazard analysis based on ... Considering the development and improvement ... It is one of the most populated cities in the coun- ... done as reliably as the seismic hazard of region per- .... Seismic safety work of underground networks was.

  3. Hazard function analysis for flood planning under nonstationarity

    Science.gov (United States)

    Read, Laura K.; Vogel, Richard M.

    2016-05-01

    The field of hazard function analysis (HFA) involves a probabilistic assessment of the "time to failure" or "return period," T, of an event of interest. HFA is used in epidemiology, manufacturing, medicine, actuarial statistics, reliability engineering, economics, and elsewhere. For a stationary process, the probability distribution function (pdf) of the return period always follows an exponential distribution, the same is not true for nonstationary processes. When the process of interest, X, exhibits nonstationary behavior, HFA can provide a complementary approach to risk analysis with analytical tools particularly useful for hydrological applications. After a general introduction to HFA, we describe a new mathematical linkage between the magnitude of the flood event, X, and its return period, T, for nonstationary processes. We derive the probabilistic properties of T for a nonstationary one-parameter exponential model of X, and then use both Monte-Carlo simulation and HFA to generalize the behavior of T when X arises from a nonstationary two-parameter lognormal distribution. For this case, our findings suggest that a two-parameter Weibull distribution provides a reasonable approximation for the pdf of T. We document how HFA can provide an alternative approach to characterize the probabilistic properties of both nonstationary flood series and the resulting pdf of T.

  4. AN ENHANCED HAZARD ANALYSIS PROCESS FOR THE HANFORD TANK FARMS

    International Nuclear Information System (INIS)

    SHULTZ MV

    2008-01-01

    CH2M HILL Hanford Group, Inc., has expanded the scope and increased the formality of process hazards analyses performed on new or modified Tank Farm facilities, designs, and processes. The CH2M HILL process hazard analysis emphasis has been altered to reflect its use as a fundamental part of the engineering and change control process instead of simply being a nuclear safety analysis tool. The scope has been expanded to include identification of accidents/events that impact the environment, or require emergency response, in addition to those with significant impact to the facility worker, the offsite, and the 100-meter receptor. Also, there is now an expectation that controls will be identified to address all types of consequences. To ensure that the process has an appropriate level of rigor and formality, a new engineering standard for process hazards analysis was created. This paper discusses the role of process hazards analysis as an information source for not only nuclear safety, but also for the worker-safety management programs, emergency management, environmental programs. This paper also discusses the role of process hazards analysis in the change control process, including identifying when and how it should be applied to changes in design or process

  5. Goal-oriented failure analysis - a systems analysis approach to hazard identification

    International Nuclear Information System (INIS)

    Reeves, A.B.; Davies, J.; Foster, J.; Wells, G.L.

    1990-01-01

    Goal-Oriented Failure Analysis, GOFA, is a methodology which is being developed to identify and analyse the potential failure modes of a hazardous plant or process. The technique will adopt a structured top-down approach, with a particular failure goal being systematically analysed. A systems analysis approach is used, with the analysis being organised around a systems diagram of the plant or process under study. GOFA will also use checklists to supplement the analysis -these checklists will be prepared in advance of a group session and will help to guide the analysis and avoid unnecessary time being spent on identifying obvious failure modes or failing to identify certain hazards or failures. GOFA is being developed with the aim of providing a hazard identification methodology which is more efficient and stimulating than the conventional approach to HAZOP. The top-down approach should ensure that the analysis is more focused and the use of a systems diagram will help to pull the analysis together at an early stage whilst also helping to structure the sessions in a more stimulating way than the conventional techniques. GOFA will be, essentially, an extension of the HAZOP methodology. GOFA is currently being computerised using a knowledge-based systems approach for implementation. The Goldworks II expert systems development tool is being used. (author)

  6. GUI program to compute probabilistic seismic hazard analysis

    International Nuclear Information System (INIS)

    Shin, Jin Soo; Chi, H. C.; Cho, J. C.; Park, J. H.; Kim, K. G.; Im, I. S.

    2005-12-01

    The first stage of development of program to compute probabilistic seismic hazard is completed based on Graphic User Interface (GUI). The main program consists of three part - the data input processes, probabilistic seismic hazard analysis and result output processes. The first part has developed and others are developing now in this term. The probabilistic seismic hazard analysis needs various input data which represent attenuation formulae, seismic zoning map, and earthquake event catalog. The input procedure of previous programs based on text interface take a much time to prepare the data. The data cannot be checked directly on screen to prevent input erroneously in existing methods. The new program simplifies the input process and enable to check the data graphically in order to minimize the artificial error within the limits of the possibility

  7. Risk D and D Rapid Prototype: Scenario Documentation and Analysis Tool

    International Nuclear Information System (INIS)

    Unwin, Stephen D.; Seiple, Timothy E.

    2009-01-01

    Report describes process and methodology associated with a rapid prototype tool for integrating project risk analysis and health and safety risk analysis for decontamination and decommissioning projects. The objective of the Decontamination and Decommissioning (D and D) Risk Management Evaluation and Work Sequencing Standardization Project under DOE EM-23 is to recommend or develop practical risk-management tools for decommissioning of nuclear facilities. PNNL has responsibility under this project for recommending or developing computer-based tools that facilitate the evaluation of risks in order to optimize the sequencing of D and D work. PNNL's approach is to adapt, augment, and integrate existing resources rather than to develop a new suite of tools. Methods for the evaluation of H and S risks associated with work in potentially hazardous environments are well-established. Several approaches exist which, collectively, are referred to as process hazard analysis (PHA). A PHA generally involves the systematic identification of accidents, exposures, and other adverse events associated with a given process or work flow. This identification process is usually achieved in a brainstorming environment or by other means of eliciting informed opinion. The likelihoods of adverse events (scenarios) and their associated consequence severities are estimated against pre-defined scales, based on which risk indices are then calculated. A similar process is encoded in various project risk software products that facilitate the quantification of schedule and cost risks associated with adverse scenarios. However, risk models do not generally capture both project risk and H and S risk. The intent of the project reported here is to produce a tool that facilitates the elicitation, characterization, and documentation of both project risk and H and S risk based on defined sequences of D and D activities. By considering alternative D and D sequences, comparison of the predicted risks can

  8. Automated economic analysis model for hazardous waste minimization

    International Nuclear Information System (INIS)

    Dharmavaram, S.; Mount, J.B.; Donahue, B.A.

    1990-01-01

    The US Army has established a policy of achieving a 50 percent reduction in hazardous waste generation by the end of 1992. To assist the Army in reaching this goal, the Environmental Division of the US Army Construction Engineering Research Laboratory (USACERL) designed the Economic Analysis Model for Hazardous Waste Minimization (EAHWM). The EAHWM was designed to allow the user to evaluate the life cycle costs for various techniques used in hazardous waste minimization and to compare them to the life cycle costs of current operating practices. The program was developed in C language on an IBM compatible PC and is consistent with other pertinent models for performing economic analyses. The potential hierarchical minimization categories used in EAHWM include source reduction, recovery and/or reuse, and treatment. Although treatment is no longer an acceptable minimization option, its use is widespread and has therefore been addressed in the model. The model allows for economic analysis for minimization of the Army's six most important hazardous waste streams. These include, solvents, paint stripping wastes, metal plating wastes, industrial waste-sludges, used oils, and batteries and battery electrolytes. The EAHWM also includes a general application which can be used to calculate and compare the life cycle costs for minimization alternatives of any waste stream, hazardous or non-hazardous. The EAHWM has been fully tested and implemented in more than 60 Army installations in the United States

  9. Fire hazards evaluation for light duty utility arm system

    International Nuclear Information System (INIS)

    HUCKFELDT, R.A.

    1999-01-01

    In accordance with DOE Order 5480.7A, Fire Protection, a Fire Hazards Analysis must be performed for all new facilities. LMHC Fire Protection has reviewed and approved the significant documentation leading up to the LDUA operation. This includes, but is not limited to, development criteria and drawings, Engineering Task Plan, Quality Assurance Program Plan, and Safety Program Plan. LMHC has provided an appropriate level of fire protection for this activity as documented

  10. SHEAT for PC. A computer code for probabilistic seismic hazard analysis for personal computer, user's manual

    International Nuclear Information System (INIS)

    Yamada, Hiroyuki; Tsutsumi, Hideaki; Ebisawa, Katsumi; Suzuki, Masahide

    2002-03-01

    The SHEAT code developed at Japan Atomic Energy Research Institute is for probabilistic seismic hazard analysis which is one of the tasks needed for seismic Probabilistic Safety Assessment (PSA) of a nuclear power plant. At first, SHEAT was developed as the large sized computer version. In addition, a personal computer version was provided to improve operation efficiency and generality of this code in 2001. It is possible to perform the earthquake hazard analysis, display and the print functions with the Graphical User Interface. With the SHEAT for PC code, seismic hazard which is defined as an annual exceedance frequency of occurrence of earthquake ground motions at various levels of intensity at a given site is calculated by the following two steps as is done with the large sized computer. One is the modeling of earthquake generation around a site. Future earthquake generation (locations, magnitudes and frequencies of postulated earthquake) is modeled based on the historical earthquake records, active fault data and expert judgment. Another is the calculation of probabilistic seismic hazard at the site. An earthquake ground motion is calculated for each postulated earthquake using an attenuation model taking into account its standard deviation. Then the seismic hazard at the site is calculated by summing the frequencies of ground motions by all the earthquakes. This document is the user's manual of the SHEAT for PC code. It includes: (1) Outline of the code, which include overall concept, logical process, code structure, data file used and special characteristics of code, (2) Functions of subprogram and analytical models in them, (3) Guidance of input and output data, (4) Sample run result, and (5) Operational manual. (author)

  11. Hazards Analysis for the Spent Nuclear Fuel L-Experimental Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    1999-01-01

    The purpose of this Hazard Analysis (HA) is to identify and assess potential hazards associated with the operations of the Spent Nuclear Fuels (SNF) Treatment and Storage Facility LEF. Additionally, this HA will be used for identifying and assessing potential hazards and specifying functional attributes of SSCs for the LEF project

  12. The implementation of a Hazard Analysis and Critical Control Point management system in a peanut butter ice cream plant.

    Science.gov (United States)

    Hung, Yu-Ting; Liu, Chi-Te; Peng, I-Chen; Hsu, Chin; Yu, Roch-Chui; Cheng, Kuan-Chen

    2015-09-01

    To ensure the safety of the peanut butter ice cream manufacture, a Hazard Analysis and Critical Control Point (HACCP) plan has been designed and applied to the production process. Potential biological, chemical, and physical hazards in each manufacturing procedure were identified. Critical control points for the peanut butter ice cream were then determined as the pasteurization and freezing process. The establishment of a monitoring system, corrective actions, verification procedures, and documentation and record keeping were followed to complete the HACCP program. The results of this study indicate that implementing the HACCP system in food industries can effectively enhance food safety and quality while improving the production management. Copyright © 2015. Published by Elsevier B.V.

  13. Development of a systematic methodology to select hazard analysis techniques for nuclear facilities

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcelos, Vanderley de; Reis, Sergio Carneiro dos; Costa, Antonio Carlos Lopes da [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)]. E-mails: vasconv@cdtn.br; reissc@cdtn.br; aclc@cdtn.br; Jordao, Elizabete [Universidade Estadual de Campinas (UNICAMP), SP (Brazil). Faculdade de Engenharia Quimica]. E-mail: bete@feq.unicamp.br

    2008-07-01

    In order to comply with licensing requirements of regulatory bodies risk assessments of nuclear facilities should be carried out. In Brazil, such assessments are part of the Safety Analysis Reports, required by CNEN (Brazilian Nuclear Energy Commission), and of the Risk Analysis Studies, required by the competent environmental bodies. A risk assessment generally includes the identification of the hazards and accident sequences that can occur, as well as the estimation of the frequencies and effects of these unwanted events on the plant, people, and environment. The hazard identification and analysis are also particularly important when implementing an Integrated Safety, Health, and Environment Management System following ISO 14001, BS 8800 and OHSAS 18001 standards. Among the myriad of tools that help the process of hazard analysis can be highlighted: CCA (Cause- Consequence Analysis); CL (Checklist Analysis); ETA (Event Tree Analysis); FMEA (Failure Mode and Effects Analysis); FMECA (Failure Mode, Effects and Criticality Analysis); FTA (Fault Tree Analysis); HAZOP (Hazard and Operability Study); HRA (Human Reliability Analysis); Pareto Analysis; PHA (Preliminary Hazard Analysis); RR (Relative Ranking); SR (Safety Review); WI (What-If); and WI/CL (What-If/Checklist Analysis). The choice of a particular technique or a combination of techniques depends on many factors like motivation of the analysis, available data, complexity of the process being analyzed, expertise available on hazard analysis, and initial perception of the involved risks. This paper presents a systematic methodology to select the most suitable set of tools to conduct the hazard analysis, taking into account the mentioned involved factors. Considering that non-reactor nuclear facilities are, to a large extent, chemical processing plants, the developed approach can also be applied to analysis of chemical and petrochemical plants. The selected hazard analysis techniques can support cost

  14. Development of a systematic methodology to select hazard analysis techniques for nuclear facilities

    International Nuclear Information System (INIS)

    Vasconcelos, Vanderley de; Reis, Sergio Carneiro dos; Costa, Antonio Carlos Lopes da; Jordao, Elizabete

    2008-01-01

    In order to comply with licensing requirements of regulatory bodies risk assessments of nuclear facilities should be carried out. In Brazil, such assessments are part of the Safety Analysis Reports, required by CNEN (Brazilian Nuclear Energy Commission), and of the Risk Analysis Studies, required by the competent environmental bodies. A risk assessment generally includes the identification of the hazards and accident sequences that can occur, as well as the estimation of the frequencies and effects of these unwanted events on the plant, people, and environment. The hazard identification and analysis are also particularly important when implementing an Integrated Safety, Health, and Environment Management System following ISO 14001, BS 8800 and OHSAS 18001 standards. Among the myriad of tools that help the process of hazard analysis can be highlighted: CCA (Cause- Consequence Analysis); CL (Checklist Analysis); ETA (Event Tree Analysis); FMEA (Failure Mode and Effects Analysis); FMECA (Failure Mode, Effects and Criticality Analysis); FTA (Fault Tree Analysis); HAZOP (Hazard and Operability Study); HRA (Human Reliability Analysis); Pareto Analysis; PHA (Preliminary Hazard Analysis); RR (Relative Ranking); SR (Safety Review); WI (What-If); and WI/CL (What-If/Checklist Analysis). The choice of a particular technique or a combination of techniques depends on many factors like motivation of the analysis, available data, complexity of the process being analyzed, expertise available on hazard analysis, and initial perception of the involved risks. This paper presents a systematic methodology to select the most suitable set of tools to conduct the hazard analysis, taking into account the mentioned involved factors. Considering that non-reactor nuclear facilities are, to a large extent, chemical processing plants, the developed approach can also be applied to analysis of chemical and petrochemical plants. The selected hazard analysis techniques can support cost

  15. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    International Nuclear Information System (INIS)

    Shultz, M.V.

    1999-01-01

    Tank 241-SY-101 waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from Tank 241-SY-101 to Tank 241-SY-102. The results of the hazards evaluation were compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. Revision 1 of this document deletes hazardous conditions no longer applicable to the current waste transfer design and incorporates hazardous conditions related to the use of an above ground pump pit and overground transfer line. This document is not part of the AB and is not a vehicle for requesting authorization of the activity; it is only intended to provide information about the hazardous conditions associated with this activity. The AB Control Decision process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis

  16. Causal Mediation Analysis for the Cox Proportional Hazards Model with a Smooth Baseline Hazard Estimator.

    Science.gov (United States)

    Wang, Wei; Albert, Jeffrey M

    2017-08-01

    An important problem within the social, behavioral, and health sciences is how to partition an exposure effect (e.g. treatment or risk factor) among specific pathway effects and to quantify the importance of each pathway. Mediation analysis based on the potential outcomes framework is an important tool to address this problem and we consider the estimation of mediation effects for the proportional hazards model in this paper. We give precise definitions of the total effect, natural indirect effect, and natural direct effect in terms of the survival probability, hazard function, and restricted mean survival time within the standard two-stage mediation framework. To estimate the mediation effects on different scales, we propose a mediation formula approach in which simple parametric models (fractional polynomials or restricted cubic splines) are utilized to approximate the baseline log cumulative hazard function. Simulation study results demonstrate low bias of the mediation effect estimators and close-to-nominal coverage probability of the confidence intervals for a wide range of complex hazard shapes. We apply this method to the Jackson Heart Study data and conduct sensitivity analysis to assess the impact on the mediation effects inference when the no unmeasured mediator-outcome confounding assumption is violated.

  17. K Basins fuel encapsulation and storage hazard categorization

    International Nuclear Information System (INIS)

    Porten, D.R.

    1994-12-01

    This document establishes the initial hazard categorization for K-Basin fuel encapsulation and storage in the 100 K Area of the Hanford site. The Hazard Categorization for K-Basins addresses the potential for release of radioactive and non-radioactive hazardous material located in the K-Basins and their supporting facilities. The Hazard Categorization covers the hazards associated with normal K-Basin fuel storage and handling operations, fuel encapsulation, sludge encapsulation, and canister clean-up and disposal. The criteria categorizes a facility based on total curies per radionuclide located in the facility. Tables 5-3 and 5-4 display the results in section 5.0. In accordance with DOE-STD-1027 and the analysis provided in section 5.0, the K East Basin fuel encapsulation and storage activity and the K West Basin storage are classified as a open-quotes Category 2close quotes Facility

  18. Decision analysis for INEL hazardous waste storage

    Energy Technology Data Exchange (ETDEWEB)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft{sup 2} of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies.

  19. Decision analysis for INEL hazardous waste storage

    International Nuclear Information System (INIS)

    Page, L.A.; Roach, J.A.

    1994-01-01

    In mid-November 1993, the Idaho National Engineering Laboratory (INEL) Waste Reduction Operations Complex (WROC) Manager requested that the INEL Hazardous Waste Type Manager perform a decision analysis to determine whether or not a new Hazardous Waste Storage Facility (HWSF) was needed to store INEL hazardous waste (HW). In response to this request, a team was formed to perform a decision analysis for recommending the best configuration for storage of INEL HW. Personnel who participated in the decision analysis are listed in Appendix B. The results of the analysis indicate that the existing HWSF is not the best configuration for storage of INEL HW. The analysis detailed in Appendix C concludes that the best HW storage configuration would be to modify and use a portion of the Waste Experimental Reduction Facility (WERF) Waste Storage Building (WWSB), PBF-623 (Alternative 3). This facility was constructed in 1991 to serve as a waste staging facility for WERF incineration. The modifications include an extension of the current Room 105 across the south end of the WWSB and installing heating, ventilation, and bay curbing, which would provide approximately 1,600 ft 2 of isolated HW storage area. Negotiations with the State to discuss aisle space requirements along with modifications to WWSB operating procedures are also necessary. The process to begin utilizing the WWSB for HW storage includes planned closure of the HWSF, modification to the WWSB, and relocation of the HW inventory. The cost to modify the WWSB can be funded by a reallocation of funding currently identified to correct HWSF deficiencies

  20. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.; PIEPHO, M.G.

    2000-01-01

    This document provided the detailed accident analysis to support HNF-3553, Spent Nuclear Fuel Project Final Safety Analysis Report, Annex A, ''Canister Storage Building Final Safety Analysis Report''. All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  1. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    1999-01-01

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report

  2. Environmental risk analysis of hazardous material rail transportation

    Energy Technology Data Exchange (ETDEWEB)

    Saat, Mohd Rapik, E-mail: mohdsaat@illinois.edu [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Werth, Charles J.; Schaeffer, David [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States); Yoon, Hongkyu [Sandia National Laboratories, Albuquerque, NM 87123 (United States); Barkan, Christopher P.L. [Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, 1243 Newmark Civil Engineering Laboratory, 205 North Mathews Avenue, Urbana, IL 61801 (United States)

    2014-01-15

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials.

  3. Environmental risk analysis of hazardous material rail transportation

    International Nuclear Information System (INIS)

    Saat, Mohd Rapik; Werth, Charles J.; Schaeffer, David; Yoon, Hongkyu; Barkan, Christopher P.L.

    2014-01-01

    Highlights: • Comprehensive, nationwide risk assessment of hazardous material rail transportation. • Application of a novel environmental (i.e. soil and groundwater) consequence model. • Cleanup cost and total shipment distance are the most significant risk factors. • Annual risk varies from $20,000 to $560,000 for different products. • Provides information on the risk cost associated with specific product shipments. -- Abstract: An important aspect of railroad environmental risk management involves tank car transportation of hazardous materials. This paper describes a quantitative, environmental risk analysis of rail transportation of a group of light, non-aqueous-phase liquid (LNAPL) chemicals commonly transported by rail in North America. The Hazardous Materials Transportation Environmental Consequence Model (HMTECM) was used in conjunction with a geographic information system (GIS) analysis of environmental characteristics to develop probabilistic estimates of exposure to different spill scenarios along the North American rail network. The risk analysis incorporated the estimated clean-up cost developed using the HMTECM, route-specific probability distributions of soil type and depth to groundwater, annual traffic volume, railcar accident rate, and tank car safety features, to estimate the nationwide annual risk of transporting each product. The annual risk per car-mile (car-km) and per ton-mile (ton-km) was also calculated to enable comparison between chemicals and to provide information on the risk cost associated with shipments of these products. The analysis and the methodology provide a quantitative approach that will enable more effective management of the environmental risk of transporting hazardous materials

  4. Standarized radiological hazard analysis for a broad based operational safety program

    International Nuclear Information System (INIS)

    Wadman, W.W. III; Andrews, L.L.

    1992-01-01

    The Radiological hazard Analysis (RHA) Manual provides a methodology and detailed guidance for systematic analysis of radiological hazards over a broad spectrum of program functions, housed in a wide variety of facilities. Radiological programs at LANL include: research and experimentation; routine materials operations; production; non-destructive examination or testing; isotope and machine produced radiations; chemistry; and metallurgy. The RHA permits uniform evaluation of hazard types over a range of several orders of magnitude of hazard severity. The results are used to estimate risk, evaluate types and level or resource allocations, identify deficiencies, and plan corrective actions for safe working environments. 2 refs

  5. Standardized radiological hazard analysis for a broad based operational safety program

    International Nuclear Information System (INIS)

    Wadman, W. III; Andrews, L.

    1992-01-01

    The Radiological Hazard Analysis (RHA) Manual provides a methodology and detailed guidance for systematic analysis of radiological hazards over a broad spectrum of program functions, housed in a wide variety of facilities. Radiological programs at LANL include: research and experimentation routine materials operations; production; non-destructive examination or testing; isotope and machine produced radiations; chemistry; and metallurgy. The RHA permits uniform evaluation of hazard types over a range of several orders of magnitude of hazard severity. The results are used to estimate risk, evaluate types and level of resource allocations, identify deficiencies, and plan corrective actions for safe working environments. (author)

  6. Hazards analysis of TNX Large Melter-Off-Gas System

    International Nuclear Information System (INIS)

    Randall, C.T.

    1982-03-01

    Analysis of the potential safety hazards and an evaluation of the engineered safety features and administrative controls indicate that the LMOG System can be operated without undue hazard to employees or the public, or damage to equipment. The safety features provided in the facility design coupled with the planned procedural and administrative controls make the occurrence of serious accidents very improbable. A set of recommendations evolved during this analysis that was judged potentially capable of further reducing the probability of personnel injury or further mitigating the consequences of potential accidents. These recommendations concerned areas such as formic acid vapor hazards, hazard of feeding water to the melter at an uncontrolled rate, prevention of uncontrolled glass pours due to melter pressure excursions and additional interlocks. These specific suggestions were reviewed with operational and technical personnel and are being incorporated into the process. The safeguards provided by these recommendations are discussed in this report

  7. Statistical analysis of the uncertainty related to flood hazard appraisal

    Science.gov (United States)

    Notaro, Vincenza; Freni, Gabriele

    2015-12-01

    The estimation of flood hazard frequency statistics for an urban catchment is of great interest in practice. It provides the evaluation of potential flood risk and related damage and supports decision making for flood risk management. Flood risk is usually defined as function of the probability, that a system deficiency can cause flooding (hazard), and the expected damage, due to the flooding magnitude (damage), taking into account both the exposure and the vulnerability of the goods at risk. The expected flood damage can be evaluated by an a priori estimation of potential damage caused by flooding or by interpolating real damage data. With regard to flood hazard appraisal several procedures propose to identify some hazard indicator (HI) such as flood depth or the combination of flood depth and velocity and to assess the flood hazard corresponding to the analyzed area comparing the HI variables with user-defined threshold values or curves (penalty curves or matrixes). However, flooding data are usually unavailable or piecemeal allowing for carrying out a reliable flood hazard analysis, therefore hazard analysis is often performed by means of mathematical simulations aimed at evaluating water levels and flow velocities over catchment surface. As results a great part of the uncertainties intrinsic to flood risk appraisal can be related to the hazard evaluation due to the uncertainty inherent to modeling results and to the subjectivity of the user defined hazard thresholds applied to link flood depth to a hazard level. In the present work, a statistical methodology was proposed for evaluating and reducing the uncertainties connected with hazard level estimation. The methodology has been applied to a real urban watershed as case study.

  8. Cold Vacuum Drying Facility Design Basis Accident Analysis Documentation

    International Nuclear Information System (INIS)

    PIEPHO, M.G.

    1999-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR

  9. The application of hazard analysis and critical control points and risk management in the preparation of anti-cancer drugs.

    Science.gov (United States)

    Bonan, Brigitte; Martelli, Nicolas; Berhoune, Malik; Maestroni, Marie-Laure; Havard, Laurent; Prognon, Patrice

    2009-02-01

    To apply the Hazard analysis and Critical Control Points method to the preparation of anti-cancer drugs. To identify critical control points in our cancer chemotherapy process and to propose control measures and corrective actions to manage these processes. The Hazard Analysis and Critical Control Points application began in January 2004 in our centralized chemotherapy compounding unit. From October 2004 to August 2005, monitoring of the process nonconformities was performed to assess the method. According to the Hazard Analysis and Critical Control Points method, a multidisciplinary team was formed to describe and assess the cancer chemotherapy process. This team listed all of the critical points and calculated their risk indexes according to their frequency of occurrence, their severity and their detectability. The team defined monitoring, control measures and corrective actions for each identified risk. Finally, over a 10-month period, pharmacists reported each non-conformity of the process in a follow-up document. Our team described 11 steps in the cancer chemotherapy process. The team identified 39 critical control points, including 11 of higher importance with a high-risk index. Over 10 months, 16,647 preparations were performed; 1225 nonconformities were reported during this same period. The Hazard Analysis and Critical Control Points method is relevant when it is used to target a specific process such as the preparation of anti-cancer drugs. This method helped us to focus on the production steps, which can have a critical influence on product quality, and led us to improve our process.

  10. Development of probabilistic seismic hazard analysis for international sites, challenges and guidelines

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez Ares, Antonio, E-mail: antonio.fernandez@rizzoassoc.com [Paul C. Rizzo Associates, Inc., 500 Penn Center Boulevard, Penn Center East, Suite 100, Pittsburgh, PA 15235 (United States); Fatehi, Ali, E-mail: ali.fatehi@rizzoassoc.com [Paul C. Rizzo Associates, Inc., 500 Penn Center Boulevard, Penn Center East, Suite 100, Pittsburgh, PA 15235 (United States)

    2013-06-15

    Research highlights: ► Site-specific seismic hazard study and suggestions for overcoming those challenges that are inherent to the significant amounts of epistemic uncertainty for sites at remote locations. ► Main aspects of probabilistic seismic hazard analysis (PSHA). ► Regional and site geology in the context of a probabilistic seismic hazard analysis (PSHA), including state-of-the-art ground motion estimation methods, and geophysical conditions. ► Senior seismic hazard analysis (SSHAC) as a mean to incorporate the opinions and contributions of the informed scientific community. -- Abstract: This article provides guidance to conduct a site-specific seismic hazard study, giving suggestions for overcoming those challenges that are inherent to the significant amounts of epistemic uncertainty for sites at remote locations. The text follows the general process of a seismic hazard study, describing both the deterministic and probabilistic approaches. Key and controversial items are identified in the areas of recorded seismicity, seismic sources, magnitude, ground motion models, and local site effects. A case history corresponding to a seismic hazard study in the Middle East for a Greenfield site in a remote location is incorporated along the development of the recommendations. Other examples of analysis case histories throughout the World are presented as well.

  11. Canister Storage Building (CSB) Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    1999-09-09

    This document provides the detailed accident analysis to support ''HNF-3553, Spent Nuclear Fuel Project Final Safety, Analysis Report, Annex A,'' ''Canister Storage Building Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the Canister Storage Building Final Safety Analysis Report.

  12. Controlling organic chemical hazards in food manufacturing: a hazard analysis critical control points (HACCP) approach.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-08-01

    Hazard analysis by critical control points (HACCP) is a systematic approach to the identification, assessment and control of hazards. Effective HACCP requires the consideration of all hazards, i.e., chemical, microbiological and physical. However, to-date most 'in-place' HACCP procedures have tended to focus on the control of microbiological and physical food hazards. In general, the chemical component of HACCP procedures is either ignored or limited to applied chemicals, e.g., food additives and pesticides. In this paper we discuss the application of HACCP to a broader range of chemical hazards, using organic chemical contaminants as examples, and the problems that are likely to arise in the food manufacturing sector. Chemical HACCP procedures are likely to result in many of the advantages previously identified for microbiological HACCP procedures: more effective, efficient and economical than conventional end-point-testing methods. However, the high costs of analytical monitoring of chemical contaminants and a limited understanding of formulation and process optimisation as means of controlling chemical contamination of foods are likely to prevent chemical HACCP becoming as effective as microbiological HACCP.

  13. A Bimodal Hybrid Model for Time-Dependent Probabilistic Seismic Hazard Analysis

    Science.gov (United States)

    Yaghmaei-Sabegh, Saman; Shoaeifar, Nasser; Shoaeifar, Parva

    2018-03-01

    The evaluation of evidence provided by geological studies and historical catalogs indicates that in some seismic regions and faults, multiple large earthquakes occur in cluster. Then, the occurrences of large earthquakes confront with quiescence and only the small-to-moderate earthquakes take place. Clustering of large earthquakes is the most distinguishable departure from the assumption of constant hazard of random occurrence of earthquakes in conventional seismic hazard analysis. In the present study, a time-dependent recurrence model is proposed to consider a series of large earthquakes that occurs in clusters. The model is flexible enough to better reflect the quasi-periodic behavior of large earthquakes with long-term clustering, which can be used in time-dependent probabilistic seismic hazard analysis with engineering purposes. In this model, the time-dependent hazard results are estimated by a hazard function which comprises three parts. A decreasing hazard of last large earthquake cluster and an increasing hazard of the next large earthquake cluster, along with a constant hazard of random occurrence of small-to-moderate earthquakes. In the final part of the paper, the time-dependent seismic hazard of the New Madrid Seismic Zone at different time intervals has been calculated for illustrative purpose.

  14. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues

  15. Hazardous waste landfill research

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1983-05-01

    The hazardous waste land disposal research program is collecting data necessary to support implementation of disposal guidelines mandated by the 'Resource Conservation and Recovery Act of 1976' (RCRA) PL 94-580. This program relating to the categorical area of landfills, surface impoundments, and underground mines encompasses state-of-the-art documents, laboratory analysis, economic assessment, bench and pilot studies, and full scale field verification studies. Over the next five years the research will be reported as Technical Resource Documents in support of the Permit Writers Guidance Manuals. These manuals will be used to provide guidance for conducting the review and evaluation of land disposal permit applications. This paper will present an overview of this program and will report the current status of work in the various categorical areas.

  16. Seismic hazard assessment of the Province of Murcia (SE Spain): analysis of source contribution to hazard

    Science.gov (United States)

    García-Mayordomo, J.; Gaspar-Escribano, J. M.; Benito, B.

    2007-10-01

    A probabilistic seismic hazard assessment of the Province of Murcia in terms of peak ground acceleration (PGA) and spectral accelerations [SA( T)] is presented in this paper. In contrast to most of the previous studies in the region, which were performed for PGA making use of intensity-to-PGA relationships, hazard is here calculated in terms of magnitude and using European spectral ground-motion models. Moreover, we have considered the most important faults in the region as specific seismic sources, and also comprehensively reviewed the earthquake catalogue. Hazard calculations are performed following the Probabilistic Seismic Hazard Assessment (PSHA) methodology using a logic tree, which accounts for three different seismic source zonings and three different ground-motion models. Hazard maps in terms of PGA and SA(0.1, 0.2, 0.5, 1.0 and 2.0 s) and coefficient of variation (COV) for the 475-year return period are shown. Subsequent analysis is focused on three sites of the province, namely, the cities of Murcia, Lorca and Cartagena, which are important industrial and tourism centres. Results at these sites have been analysed to evaluate the influence of the different input options. The most important factor affecting the results is the choice of the attenuation relationship, whereas the influence of the selected seismic source zonings appears strongly site dependant. Finally, we have performed an analysis of source contribution to hazard at each of these cities to provide preliminary guidance in devising specific risk scenarios. We have found that local source zones control the hazard for PGA and SA( T ≤ 1.0 s), although contribution from specific fault sources and long-distance north Algerian sources becomes significant from SA(0.5 s) onwards.

  17. A Conceptual Model for Multidimensional Analysis of Documents

    Science.gov (United States)

    Ravat, Franck; Teste, Olivier; Tournier, Ronan; Zurlfluh, Gilles

    Data warehousing and OLAP are mainly used for the analysis of transactional data. Nowadays, with the evolution of Internet, and the development of semi-structured data exchange format (such as XML), it is possible to consider entire fragments of data such as documents as analysis sources. As a consequence, an adapted multidimensional analysis framework needs to be provided. In this paper, we introduce an OLAP multidimensional conceptual model without facts. This model is based on the unique concept of dimensions and is adapted for multidimensional document analysis. We also provide a set of manipulation operations.

  18. Probabilistic Seismic Hazard Analysis for Yemen

    Directory of Open Access Journals (Sweden)

    Rakesh Mohindra

    2012-01-01

    Full Text Available A stochastic-event probabilistic seismic hazard model, which can be used further for estimates of seismic loss and seismic risk analysis, has been developed for the territory of Yemen. An updated composite earthquake catalogue has been compiled using the databases from two basic sources and several research publications. The spatial distribution of earthquakes from the catalogue was used to define and characterize the regional earthquake source zones for Yemen. To capture all possible scenarios in the seismic hazard model, a stochastic event set has been created consisting of 15,986 events generated from 1,583 fault segments in the delineated seismic source zones. Distribution of horizontal peak ground acceleration (PGA was calculated for all stochastic events considering epistemic uncertainty in ground-motion modeling using three suitable ground motion-prediction relationships, which were applied with equal weight. The probabilistic seismic hazard maps were created showing PGA and MSK seismic intensity at 10% and 50% probability of exceedance in 50 years, considering local soil site conditions. The resulting PGA for 10% probability of exceedance in 50 years (return period 475 years ranges from 0.2 g to 0.3 g in western Yemen and generally is less than 0.05 g across central and eastern Yemen. The largest contributors to Yemen’s seismic hazard are the events from the West Arabian Shield seismic zone.

  19. SRS BEDROCK PROBABILISTIC SEISMIC HAZARD ANALYSIS (PSHA) DESIGN BASIS JUSTIFICATION (U)

    Energy Technology Data Exchange (ETDEWEB)

    (NOEMAIL), R

    2005-12-14

    This represents an assessment of the available Savannah River Site (SRS) hard-rock probabilistic seismic hazard assessments (PSHAs), including PSHAs recently completed, for incorporation in the SRS seismic hazard update. The prior assessment of the SRS seismic design basis (WSRC, 1997) incorporated the results from two PSHAs that were published in 1988 and 1993. Because of the vintage of these studies, an assessment is necessary to establish the value of these PSHAs considering more recently collected data affecting seismic hazards and the availability of more recent PSHAs. This task is consistent with the Department of Energy (DOE) order, DOE O 420.1B and DOE guidance document DOE G 420.1-2. Following DOE guidance, the National Map Hazard was reviewed and incorporated in this assessment. In addition to the National Map hazard, alternative ground motion attenuation models (GMAMs) are used with the National Map source model to produce alternate hazard assessments for the SRS. These hazard assessments are the basis for the updated hard-rock hazard recommendation made in this report. The development and comparison of hazard based on the National Map models and PSHAs completed using alternate GMAMs provides increased confidence in this hazard recommendation. The alternate GMAMs are the EPRI (2004), USGS (2002) and a regional specific model (Silva et al., 2004). Weights of 0.6, 0.3 and 0.1 are recommended for EPRI (2004), USGS (2002) and Silva et al. (2004) respectively. This weighting gives cluster weights of .39, .29, .15, .17 for the 1-corner, 2-corner, hybrid, and Greens-function models, respectively. This assessment is judged to be conservative as compared to WSRC (1997) and incorporates the range of prevailing expert opinion pertinent to the development of seismic hazard at the SRS. The corresponding SRS hard-rock uniform hazard spectra are greater than the design spectra developed in WSRC (1997) that were based on the LLNL (1993) and EPRI (1988) PSHAs. The

  20. Critical asset and portfolio risk analysis: an all-hazards framework.

    Science.gov (United States)

    Ayyub, Bilal M; McGill, William L; Kaminskiy, Mark

    2007-08-01

    This article develops a quantitative all-hazards framework for critical asset and portfolio risk analysis (CAPRA) that considers both natural and human-caused hazards. Following a discussion on the nature of security threats, the need for actionable risk assessments, and the distinction between asset and portfolio-level analysis, a general formula for all-hazards risk analysis is obtained that resembles the traditional model based on the notional product of consequence, vulnerability, and threat, though with clear meanings assigned to each parameter. Furthermore, a simple portfolio consequence model is presented that yields first-order estimates of interdependency effects following a successful attack on an asset. Moreover, depending on the needs of the decisions being made and available analytical resources, values for the parameters in this model can be obtained at a high level or through detailed systems analysis. Several illustrative examples of the CAPRA methodology are provided.

  1. Safety Analysis (SA) of the Hazardous Waste Disposal Facilities (Buildings 514, 612, and 614) at the Lawrence Livermore Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Odell, B.N.; Toy, A.J.

    1979-12-13

    This safety analysis was performed for the Manager of Plant Operations at LLL and fulfills the requirements of DOE Order 5481.1. The analysis was based on field inspections, document review, computer calculations, and extensive input from Waste Management personnel. It was concluded that the quantities of materials handled do not pose undue risks on- or off-site, even in postulated severe accidents. Risks from the various hazards at these facilities vary from low to moderate as specified in DOE Order 5481.1. Recommendations are made for additional management and technical support of waste disposal operations.

  2. Safety Analysis (SA) of the Hazardous Waste Disposal Facilities (Buildings 514, 612, and 614) at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Odell, B.N.; Toy, A.J.

    1979-01-01

    This safety analysis was performed for the Manager of Plant Operations at LLL and fulfills the requirements of DOE Order 5481.1. The analysis was based on field inspections, document review, computer calculations, and extensive input from Waste Management personnel. It was concluded that the quantities of materials handled do not pose undue risks on- or off-site, even in postulated severe accidents. Risks from the various hazards at these facilities vary from low to moderate as specified in DOE Order 5481.1. Recommendations are made for additional management and technical support of waste disposal operations

  3. Hazard Evaluation for Storage of Spent Nuclear Fuel (SNF) Sludge at the Solid Waste Treatment Facility

    International Nuclear Information System (INIS)

    SCHULTZ, M.V.

    2000-01-01

    As part of the Spent Nuclear Fuel (SNF) storage basin clean-up project, sludge that has accumulated in the K Basins due to corrosion of damaged irradiated N Reactor will be loaded into containers and placed in interim storage. The Hanford Site Treatment Complex (T Plant) has been identified as the location where the sludge will be stored until final disposition of the material occurs. Long term storage of sludge from the K Basin fuel storage facilities requires identification and analysis of potential accidents involving sludge storage in T Plant. This report is prepared as the initial step in the safety assurance process described in DOE Order 5480.23, Nuclear Safety Analysis Reports and HNF-PRO-704, Hazards and Accident Analysis Process. This report documents the evaluation of potential hazards and off-normal events associated with sludge storage activities. This information will be used in subsequent safety analyses, design, and operations procedure development to ensure safe storage. The hazards evaluation for the storage of SNF sludge in T-Plant used the Hazards and Operability Analysis (HazOp) method. The hazard evaluation identified 42 potential hazardous conditions. No hazardous conditions involving hazardous/toxic chemical concerns were identified. Of the 42 items identified in the HazOp study, eight were determined to have potential for onsite worker consequences. No items with potential offsite consequences were identified in the HazOp study. Hazardous conditions with potential onsite worker or offsite consequences are candidates for quantitative consequence analysis. The hazardous conditions with potential onsite worker consequences were grouped into two event categories, Container failure due to overpressure - internal to T Plant, and Spill of multiple containers. The two event categories will be developed into accident scenarios that will be quantitatively analyzed to determine release consequences. A third category, Container failure due to

  4. Hazard Analysis of Software Requirements Specification for Process Module of FPGA-based Controllers in NPP

    Energy Technology Data Exchange (ETDEWEB)

    Jung; Sejin; Kim, Eui-Sub; Yoo, Junbeom [Konkuk University, Seoul (Korea, Republic of); Keum, Jong Yong; Lee, Jang-Soo [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Software in PLC, FPGA which are used to develop I and C system also should be analyzed to hazards and risks before used. NUREG/CR-6430 proposes the method for performing software hazard analysis. It suggests analysis technique for software affected hazards and it reveals that software hazard analysis should be performed with the aspects of software life cycle such as requirements analysis, design, detailed design, implements. It also provides the guide phrases for applying software hazard analysis. HAZOP (Hazard and operability analysis) is one of the analysis technique which is introduced in NUREG/CR-6430 and it is useful technique to use guide phrases. HAZOP is sometimes used to analyze the safety of software. Analysis method of NUREG/CR-6430 had been used in Korea nuclear power plant software for PLC development. Appropriate guide phrases and analysis process are selected to apply efficiently and NUREG/CR-6430 provides applicable methods for software hazard analysis is identified in these researches. We perform software hazard analysis of FPGA software requirements specification with two approaches which are NUREG/CR-6430 and HAZOP with using general GW. We also perform the comparative analysis with them. NUREG/CR-6430 approach has several pros and cons comparing with the HAZOP with general guide words and approach. It is enough applicable to analyze the software requirements specification of FPGA.

  5. Historical analysis of US pipeline accidents triggered by natural hazards

    Science.gov (United States)

    Girgin, Serkan; Krausmann, Elisabeth

    2015-04-01

    Natural hazards, such as earthquakes, floods, landslides, or lightning, can initiate accidents in oil and gas pipelines with potentially major consequences on the population or the environment due to toxic releases, fires and explosions. Accidents of this type are also referred to as Natech events. Many major accidents highlight the risk associated with natural-hazard impact on pipelines transporting dangerous substances. For instance, in the USA in 1994, flooding of the San Jacinto River caused the rupture of 8 and the undermining of 29 pipelines by the floodwaters. About 5.5 million litres of petroleum and related products were spilled into the river and ignited. As a results, 547 people were injured and significant environmental damage occurred. Post-incident analysis is a valuable tool for better understanding the causes, dynamics and impacts of pipeline Natech accidents in support of future accident prevention and mitigation. Therefore, data on onshore hazardous-liquid pipeline accidents collected by the US Pipeline and Hazardous Materials Safety Administration (PHMSA) was analysed. For this purpose, a database-driven incident data analysis system was developed to aid the rapid review and categorization of PHMSA incident reports. Using an automated data-mining process followed by a peer review of the incident records and supported by natural hazard databases and external information sources, the pipeline Natechs were identified. As a by-product of the data-collection process, the database now includes over 800,000 incidents from all causes in industrial and transportation activities, which are automatically classified in the same way as the PHMSA record. This presentation describes the data collection and reviewing steps conducted during the study, provides information on the developed database and data analysis tools, and reports the findings of a statistical analysis of the identified hazardous liquid pipeline incidents in terms of accident dynamics and

  6. Report 5: Guidance document Implementation of lightning hazards in extended PSA

    International Nuclear Information System (INIS)

    Ivanov, I.; Simurka, P.; Prochaska, J.; Brac, P.; Vasseur, D.; Duquerroy, P.; Trouilloud, C.; Kumar, M.; Potempski, S.; Vinot, T.

    2016-01-01

    The lightning (including the electromagnetic interference) is indicated with no. 39 in the exhaustive list of external hazards posing potential threats to nuclear installations, in particular in the list of the Meteorological events considered in ASAMPSA-E. The survey performed in the framework of ASAMPSA-E (WP10) to collect interests of the PSA the end users showed that the lightning is amongst the ten external hazards most often considered by the respondents. Thence the attention to the lightning hazard is within the scope of the extended PSA and its role in the safety of the nuclear power plant is underlined in this report. This report is a joint deliverable of ASAMPSA-E WP21 (Initiating events modelling) and WP22 (How to introduce hazards in L1 PSA and all possibilities of events combinations), which are intended: - to examine characteristics and modelling of lightning in PSA, - to identify and promote exchanges of some good practices on the implementation of lightning in L1 PSA. This report includes the End-Users recommendations given in WP10 and results from discussions at the first End- Users Workshop, Uppsala, Sweden, May 2014, questionnaire survey and discussions at the Final End-Users Workshop, Vienna, Austria- September 2016. (authors)

  7. Hazard evaluation for transfer of waste from tank 241-SY-101 to tank 241-SY-102

    International Nuclear Information System (INIS)

    SHULTZ, M.V.

    1999-01-01

    Tank 241-SY-101 (SY-101) waste level growth is an emergent, high priority issue. The purpose of this document is to record the hazards evaluation process and document potential hazardous conditions that could lead to the release of radiological and toxicological material from the proposed transfer of a limited quantity (approximately 100,000 gallons) of waste from SY-101 to 241-SY-102 (SY-102). The results of the hazards evaluation will be compared to the current Tank Waste Remediation System (TWRS) Basis for Interim Operation (HNF-SD-WM-BIO-001, 1998, Revision 1) to identify any hazardous conditions where Authorization Basis (AB) controls may not be sufficient or may not exist. Comparison to LA-UR-92-3196, A Safety Assessment for Proposed Pump Mixing Operations to Mitigate Episodic Gas Releases in Tank 241-SY-101, was also made in the case of transfer pump removal activities. This document is not intended to authorize the activity or determine the adequacy of controls; it is only intended to provide information about the hazardous conditions associated with this activity. The Unreviewed Safety Question (USQ) process will be used to determine the adequacy of controls and whether the proposed activity is within the AB. This hazard evaluation does not constitute an accident analysis

  8. Flood Hazard and Risk Analysis in Urban Area

    Science.gov (United States)

    Huang, Chen-Jia; Hsu, Ming-hsi; Teng, Wei-Hsien; Lin, Tsung-Hsien

    2017-04-01

    Typhoons always induce heavy rainfall during summer and autumn seasons in Taiwan. Extreme weather in recent years often causes severe flooding which result in serious losses of life and property. With the rapid industrial and commercial development, people care about not only the quality of life, but also the safety of life and property. So the impact of life and property due to disaster is the most serious problem concerned by the residents. For the mitigation of the disaster impact, the flood hazard and risk analysis play an important role for the disaster prevention and mitigation. In this study, the vulnerability of Kaohsiung city was evaluated by statistics of social development factor. The hazard factors of Kaohsiung city was calculated by simulated flood depth of six different return periods and four typhoon events which result in serious flooding in Kaohsiung city. The flood risk can be obtained by means of the flood hazard and social vulnerability. The analysis results provide authority to strengthen disaster preparedness and to set up more resources in high risk areas.

  9. Surface Fire Hazards Analysis Technical Report-Constructor Facilities

    International Nuclear Information System (INIS)

    Flye, R.E.

    2000-01-01

    The purpose of this Fire Hazards Analysis Technical Report (hereinafter referred to as Technical Report) is to assess the risk from fire within individual fire areas to ascertain whether the U.S. Department of Energy (DOE) fire safety objectives are met. The objectives identified in DOE Order 420.1, Change 2, Facility Safety, Section 4.2, establish requirements for a comprehensive fire and related hazards protection program for facilities sufficient to minimize the potential for: The occurrence of a fire or related event; A fire that causes an unacceptable on-site or off-site release of hazardous or radiological material that will threaten the health and safety of employees, the public, or the environment; Vital DOE programs suffering unacceptable interruptions as a result of fire and related hazards; Property losses from a fire and related events exceeding defined limits established by DOE; and Critical process controls and safety class systems being damaged as a result of a fire and related events

  10. HANDBOOK: HAZARDOUS WASTE INCINERATION MEASUREMENT GUIDANCE

    Science.gov (United States)

    This publication, Volume III of the Hazardous Waste Incineration Guidance Series, contains general guidance to permit writers in reviewing hazardous waste incineration permit applications and trial burn plans. he handbook is a how-to document dealing with how incineration measure...

  11. Hazards assessment for the INEL Landfill Complex

    International Nuclear Information System (INIS)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility's operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment

  12. Hazards assessment for the INEL Landfill Complex

    Energy Technology Data Exchange (ETDEWEB)

    Knudsen, J.K.; Calley, M.B.

    1994-02-01

    This report documents the hazards assessment for the INEL Landfill Complex (LC) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and the DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes the hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. The area surrounding the LC, the buildings and structures at the LC, and the processes that are used at the LC are described in this report. All hazardous materials, both radiological and nonradiological, at the LC were identified and screened against threshold quantities according to DOE Order 5500.3A guidance. Asbestos at the Asbestos Pit was the only hazardous material that exceeded its specified threshold quantity. However, the type of asbestos received and the packaging practices used are believed to limit the potential for an airborne release of asbestos fibers. Therefore, in accordance with DOE Order 5500.3A guidance, no further hazardous material characterization or analysis was required for this hazards assessment.

  13. St. Louis area earthquake hazards mapping project; seismic and liquefaction hazard maps

    Science.gov (United States)

    Cramer, Chris H.; Bauer, Robert A.; Chung, Jae-won; Rogers, David; Pierce, Larry; Voigt, Vicki; Mitchell, Brad; Gaunt, David; Williams, Robert; Hoffman, David; Hempen, Gregory L.; Steckel, Phyllis; Boyd, Oliver; Watkins, Connor M.; Tucker, Kathleen; McCallister, Natasha

    2016-01-01

    We present probabilistic and deterministic seismic and liquefaction hazard maps for the densely populated St. Louis metropolitan area that account for the expected effects of surficial geology on earthquake ground shaking. Hazard calculations were based on a map grid of 0.005°, or about every 500 m, and are thus higher in resolution than any earlier studies. To estimate ground motions at the surface of the model (e.g., site amplification), we used a new detailed near‐surface shear‐wave velocity model in a 1D equivalent‐linear response analysis. When compared with the 2014 U.S. Geological Survey (USGS) National Seismic Hazard Model, which uses a uniform firm‐rock‐site condition, the new probabilistic seismic‐hazard estimates document much more variability. Hazard levels for upland sites (consisting of bedrock and weathered bedrock overlain by loess‐covered till and drift deposits), show up to twice the ground‐motion values for peak ground acceleration (PGA), and similar ground‐motion values for 1.0 s spectral acceleration (SA). Probabilistic ground‐motion levels for lowland alluvial floodplain sites (generally the 20–40‐m‐thick modern Mississippi and Missouri River floodplain deposits overlying bedrock) exhibit up to twice the ground‐motion levels for PGA, and up to three times the ground‐motion levels for 1.0 s SA. Liquefaction probability curves were developed from available standard penetration test data assuming typical lowland and upland water table levels. A simplified liquefaction hazard map was created from the 5%‐in‐50‐year probabilistic ground‐shaking model. The liquefaction hazard ranges from low (60% of area expected to liquefy) in the lowlands. Because many transportation routes, power and gas transmission lines, and population centers exist in or on the highly susceptible lowland alluvium, these areas in the St. Louis region are at significant potential risk from seismically induced liquefaction and associated

  14. Plutonium Finishing Plant (PFP) hazards assessment

    International Nuclear Information System (INIS)

    Campbell, L.R.

    1998-01-01

    This report documents the hazards assessment for the Plutonium Finishing Plant (PFP) located on the US Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for the PFP. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  15. A SURVEY ON DOCUMENT CLUSTERING APPROACH FOR COMPUTER FORENSIC ANALYSIS

    OpenAIRE

    Monika Raghuvanshi*, Rahul Patel

    2016-01-01

    In a forensic analysis, large numbers of files are examined. Much of the information comprises of in unstructured format, so it’s quite difficult task for computer forensic to perform such analysis. That’s why to do the forensic analysis of document within a limited period of time require a special approach such as document clustering. This paper review different document clustering algorithms methodologies for example K-mean, K-medoid, single link, complete link, average link in accorandance...

  16. Planning, Conducting, and Documenting Data Analysis for Program Improvement

    Science.gov (United States)

    Winer, Abby; Taylor, Cornelia; Derrington, Taletha; Lucas, Anne

    2015-01-01

    This 2015 document was developed to help technical assistance (TA) providers and state staff define and limit the scope of data analysis for program improvement efforts, including the State Systemic Improvement Plan (SSIP); develop a plan for data analysis; document alternative hypotheses and additional analyses as they are generated; and…

  17. Probabilistic earthquake hazard analysis for Cairo, Egypt

    Science.gov (United States)

    Badawy, Ahmed; Korrat, Ibrahim; El-Hadidy, Mahmoud; Gaber, Hanan

    2016-04-01

    Cairo is the capital of Egypt and the largest city in the Arab world and Africa, and the sixteenth largest metropolitan area in the world. It was founded in the tenth century (969 ad) and is 1046 years old. It has long been a center of the region's political and cultural life. Therefore, the earthquake risk assessment for Cairo has a great importance. The present work aims to analysis the earthquake hazard of Cairo as a key input's element for the risk assessment. The regional seismotectonics setting shows that Cairo could be affected by both far- and near-field seismic sources. The seismic hazard of Cairo has been estimated using the probabilistic seismic hazard approach. The logic tree frame work was used during the calculations. Epistemic uncertainties were considered into account by using alternative seismotectonics models and alternative ground motion prediction equations. Seismic hazard values have been estimated within a grid of 0.1° × 0.1 ° spacing for all of Cairo's districts at different spectral periods and four return periods (224, 615, 1230, and 4745 years). Moreover, the uniform hazard spectra have been calculated at the same return periods. The pattern of the contour maps show that the highest values of the peak ground acceleration is concentrated in the eastern zone's districts (e.g., El Nozha) and the lowest values at the northern and western zone's districts (e.g., El Sharabiya and El Khalifa).

  18. The need for the geologic hazard analysis

    International Nuclear Information System (INIS)

    Mingarro, E.

    1984-01-01

    The parameters which are considered in the hazard analysis associated with the movements of the Earth Crust are considered. These movements are classified as: fast movements or seismic movements, which are produced in a certain geologic moment at a speed measured in cm/sg, and slow movements or secular movements, which take place within a long span of time at a speed measured by cm/year. The relations space/time are established after Poisson and Gumbel's probabilistic models. Their application is analyzed according to the structural gradient fields, which fall within Matteron's geostatistics studies. These statistic criteria should be analyzed or checked up in each geo-tectonic environment. This allows the definition of neotectonic and seismogenetic zones, because it is only in these zones where the probabilistic or deterministic criteria can be applied to evaluate the hazard and vulnerability, that is, to know the geologic hazard of every ''Uniform'' piece of the Earth Crust. (author)

  19. Natural phenomena hazards, Hanford Site, south central Washington

    International Nuclear Information System (INIS)

    Tallman, A.M.

    1996-01-01

    This document presents the natural phenomena hazard (NPH) loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, at the Hanford Site in south-central Washington State. The purpose of this document is twofold: (1) summarize the NPH that are important to the design and evaluation of structures, systems, and components at the Hanford Site; (2) develop the appropriate natural phenomena loads for use in the implementation of DOE Order 5480.28. The supporting standards, DOE-STD-1020-94, Natural Phenomena Hazards Design and Evaluation Criteria for Department of Energy Facilities (DOE 1994a); DOE-STD-1022-94, Natural Phenomena Hazards Site Characteristics Criteria (DOE 1994b); and DOE-STD-1023-95, Natural Phenomena Hazards Assessment Criteria (DOE 1995) are the basis for developing the NPH loads

  20. Seismic hazard analysis for the NTS spent reactor fuel test site

    International Nuclear Information System (INIS)

    Campbell, K.W.

    1980-01-01

    An experiment is being directed at the Nevada Test Site to test the feasibility for storage of spent fuel from nuclear reactors in geologic media. As part of this project, an analysis of the earthquake hazard was prepared. This report presents the results of this seismic hazard assessment. Two distinct components of the seismic hazard were addressed: vibratory ground motion and surface displacement

  1. Practicality for Software Hazard Analysis for Nuclear Safety I and C System

    International Nuclear Information System (INIS)

    Kim, Yong-Ho; Moon, Kwon-Ki; Chang, Young-Woo; Jeong, Soo-Hyun

    2016-01-01

    We are using the concept of system safety in engineering. It is difficult to make any system perfectly safe and probably a complete system may not easily be achieved. The standard definition of a system from MIL-STD- 882E is: “The organization of hardware, software, material, facilities, personnel, data, and services needed to perform a designated function within a stated environment with specified results.” From the perspective of the system safety engineer and the hazard analysis process, software is considered as a subsystem. Regarding hazard analysis, to date, methods for identifying software failures and determining their effects is still a research problem. Since the success of software development is based on rigorous test of hardware and software, it is necessary to check the balance between software test and hardware test, and in terms of efficiency. Lessons learned and experience from similar systems are important for the work of hazard analysis. No major hazard has been issued for the software developed and verified in Korean NPPs. In addition to hazard analysis, software development, and verification and validation were thoroughly performed. It is reasonable that the test implementation including the development of the test case, stress and abnormal conditions, error recovery situations, and high risk hazardous situations play a key role in detecting and preventing software faults

  2. Practicality for Software Hazard Analysis for Nuclear Safety I and C System

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yong-Ho; Moon, Kwon-Ki; Chang, Young-Woo; Jeong, Soo-Hyun [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)

    2016-10-15

    We are using the concept of system safety in engineering. It is difficult to make any system perfectly safe and probably a complete system may not easily be achieved. The standard definition of a system from MIL-STD- 882E is: “The organization of hardware, software, material, facilities, personnel, data, and services needed to perform a designated function within a stated environment with specified results.” From the perspective of the system safety engineer and the hazard analysis process, software is considered as a subsystem. Regarding hazard analysis, to date, methods for identifying software failures and determining their effects is still a research problem. Since the success of software development is based on rigorous test of hardware and software, it is necessary to check the balance between software test and hardware test, and in terms of efficiency. Lessons learned and experience from similar systems are important for the work of hazard analysis. No major hazard has been issued for the software developed and verified in Korean NPPs. In addition to hazard analysis, software development, and verification and validation were thoroughly performed. It is reasonable that the test implementation including the development of the test case, stress and abnormal conditions, error recovery situations, and high risk hazardous situations play a key role in detecting and preventing software faults.

  3. Hazards assessment for the Waste Experimental Reduction Facility

    International Nuclear Information System (INIS)

    Calley, M.B.; Jones, J.L. Jr.

    1994-01-01

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG ampersand G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility's operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high

  4. Hazards assessment for the Waste Experimental Reduction Facility

    Energy Technology Data Exchange (ETDEWEB)

    Calley, M.B.; Jones, J.L. Jr.

    1994-09-19

    This report documents the hazards assessment for the Waste Experimental Reduction Facility (WERF) located at the Idaho National Engineering Laboratory, which is operated by EG&G Idaho, Inc., for the US Department of Energy (DOE). The hazards assessment was performed to ensure that this facility complies with DOE and company requirements pertaining to emergency planning and preparedness for operational emergencies. DOE Order 5500.3A requires that a facility-specific hazards assessment be performed to provide the technical basis for facility emergency planning efforts. This hazards assessment was conducted in accordance with DOE Headquarters and DOE Idaho Operations Office (DOE-ID) guidance to comply with DOE Order 5500.3A. The hazards assessment identifies and analyzes hazards that are significant enough to warrant consideration in a facility`s operational emergency management program. This hazards assessment describes the WERF, the area surrounding WERF, associated buildings and structures at WERF, and the processes performed at WERF. All radiological and nonradiological hazardous materials stored, used, or produced at WERF were identified and screened. Even though the screening process indicated that the hazardous materials could be screened from further analysis because the inventory of radiological and nonradiological hazardous materials were below the screening thresholds specified by DOE and DOE-ID guidance for DOE Order 5500.3A, the nonradiological hazardous materials were analyzed further because it was felt that the nonradiological hazardous material screening thresholds were too high.

  5. Cold Vacuum Drying (CVD) Facility Design Basis Accident Analysis Documentation

    Energy Technology Data Exchange (ETDEWEB)

    PIEPHO, M.G.

    1999-10-20

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report, ''Cold Vacuum Drying Facility Final Safety Analysis Report (FSAR).'' All assumptions, parameters and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR.

  6. Research on the spatial analysis method of seismic hazard for island

    International Nuclear Information System (INIS)

    Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying

    2017-01-01

    Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform. (paper)

  7. Research on the spatial analysis method of seismic hazard for island

    Science.gov (United States)

    Jia, Jing; Jiang, Jitong; Zheng, Qiuhong; Gao, Huiying

    2017-05-01

    Seismic hazard analysis(SHA) is a key component of earthquake disaster prevention field for island engineering, whose result could provide parameters for seismic design microscopically and also is the requisite work for the island conservation planning’s earthquake and comprehensive disaster prevention planning macroscopically, in the exploitation and construction process of both inhabited and uninhabited islands. The existing seismic hazard analysis methods are compared in their application, and their application and limitation for island is analysed. Then a specialized spatial analysis method of seismic hazard for island (SAMSHI) is given to support the further related work of earthquake disaster prevention planning, based on spatial analysis tools in GIS and fuzzy comprehensive evaluation model. The basic spatial database of SAMSHI includes faults data, historical earthquake record data, geological data and Bouguer gravity anomalies data, which are the data sources for the 11 indices of the fuzzy comprehensive evaluation model, and these indices are calculated by the spatial analysis model constructed in ArcGIS’s Model Builder platform.

  8. Application of systems and control theory-based hazard analysis to radiation oncology.

    Science.gov (United States)

    Pawlicki, Todd; Samost, Aubrey; Brown, Derek W; Manger, Ryan P; Kim, Gwe-Ya; Leveson, Nancy G

    2016-03-01

    Both humans and software are notoriously challenging to account for in traditional hazard analysis models. The purpose of this work is to investigate and demonstrate the application of a new, extended accident causality model, called systems theoretic accident model and processes (STAMP), to radiation oncology. Specifically, a hazard analysis technique based on STAMP, system-theoretic process analysis (STPA), is used to perform a hazard analysis. The STPA procedure starts with the definition of high-level accidents for radiation oncology at the medical center and the hazards leading to those accidents. From there, the hierarchical safety control structure of the radiation oncology clinic is modeled, i.e., the controls that are used to prevent accidents and provide effective treatment. Using STPA, unsafe control actions (behaviors) are identified that can lead to the hazards as well as causal scenarios that can lead to the identified unsafe control. This information can be used to eliminate or mitigate potential hazards. The STPA procedure is demonstrated on a new online adaptive cranial radiosurgery procedure that omits the CT simulation step and uses CBCT for localization, planning, and surface imaging system during treatment. The STPA procedure generated a comprehensive set of causal scenarios that are traced back to system hazards and accidents. Ten control loops were created for the new SRS procedure, which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Eighty three unsafe control actions were identified as well as 472 causal scenarios that could lead to those unsafe control actions. STPA provides a method for understanding the role of management decisions and hospital operations on system safety and generating process design requirements to prevent hazards and accidents. The interaction of people, hardware, and software is highlighted. The method of STPA produces results that can be used to improve

  9. Probabilistic Seismic Hazards Update for LLNL: PSHA Results Report

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Alfredo [Fugro Consultants, Inc., Houston, TX (United States); Altekruse, Jason [Fugro Consultants, Inc., Houston, TX (United States); Menchawi, Osman El [Fugro Consultants, Inc., Houston, TX (United States)

    2016-03-11

    This report presents the Probabilistic Seismic Hazard Analysis (PSHA) performed for Building 332 at the Lawrence Livermore National Laboratory (LLNL), near Livermore, CA by Fugro Consultants, Inc. (FCL). This report is specific to Building 332 only and not to other portions of the Laboratory. The study performed for the LLNL site includes a comprehensive review of recent information relevant to the LLNL regional tectonic setting and regional seismic sources in the vicinity of the site and development of seismic wave transmission characteristics. The Seismic Source Characterization (SSC), documented in Project Report No. 2259-PR-02 (FCL, 2015a), and Ground Motion Characterization (GMC), documented in Project Report No. 2259-PR-06 (FCL, 2015c) were developed in accordance with ANS/ANSI 2.29-2008 Level 2 PSHA guidelines. The ANS/ANSI 2.29-2008 Level 2 PSHA framework is documented in Project Report No. 2259-PR-05 (FCL, 2016a). The Hazard Input Document (HID) for input into the PSHA developed from the SSC is presented in Project Report No. 2259-PR-04 (FCL, 2016b). The site characterization used as input for development of the idealized site profiles including epistemic uncertainty and aleatory variability is presented in Project Report No. 2259-PR-03 (FCL, 2015b).

  10. Landslide hazards and systems analysis: A Central European perspective

    Science.gov (United States)

    Klose, Martin; Damm, Bodo; Kreuzer, Thomas

    2016-04-01

    Part of the problem with assessing landslide hazards is to understand the variable settings in which they occur. There is growing consensus that hazard assessments require integrated approaches that take account of the coupled human-environment system. Here we provide a synthesis of societal exposure and vulnerability to landslide hazards, review innovative approaches to hazard identification, and lay a focus on hazard assessment, while presenting the results of historical case studies and a landslide time series for Germany. The findings add to a growing body of literature that recognizes societal exposure and vulnerability as a complex system of hazard interactions that evolves over time as a function of social change and development. We therefore propose to expand hazard assessments by the framework and concepts of systems analysis (e.g., Liu et al., 2007) Results so far have been promising in ways that illustrate the importance of feedbacks, thresholds, surprises, and time lags in the evolution of landslide hazard and risk. In densely populated areas of Central Europe, landslides often occur in urbanized landscapes or on engineered slopes that had been transformed or created intentionally by human activity, sometimes even centuries ago. The example of Germany enables to correlate the causes and effects of recent landslides with the historical transition of urbanization to urban sprawl, ongoing demographic change, and some chronic problems of industrialized countries today, including ageing infrastructures or rising government debts. In large parts of rural Germany, the combination of ageing infrastructures, population loss, and increasing budget deficits starts to erode historical resilience gains, which brings especially small communities to a tipping point in their efforts to risk reduction. While struggling with budget deficits and demographic change, these communities are required to maintain ageing infrastructures that are particularly vulnerable to

  11. An Independent Evaluation of the FMEA/CIL Hazard Analysis Alternative Study

    Science.gov (United States)

    Ray, Paul S.

    1996-01-01

    The present instruments of safety and reliability risk control for a majority of the National Aeronautics and Space Administration (NASA) programs/projects consist of Failure Mode and Effects Analysis (FMEA), Hazard Analysis (HA), Critical Items List (CIL), and Hazard Report (HR). This extensive analytical approach was introduced in the early 1970's and was implemented for the Space Shuttle Program by NHB 5300.4 (1D-2. Since the Challenger accident in 1986, the process has been expanded considerably and resulted in introduction of similar and/or duplicated activities in the safety/reliability risk analysis. A study initiated in 1995, to search for an alternative to the current FMEA/CIL Hazard Analysis methodology generated a proposed method on April 30, 1996. The objective of this Summer Faculty Study was to participate in and conduct an independent evaluation of the proposed alternative to simplify the present safety and reliability risk control procedure.

  12. List of external hazards to be considered in ASAMPSA-E

    International Nuclear Information System (INIS)

    Decker, Kurt; Brinkman, Hans

    2016-01-01

    The current report includes an exhaustive list of external hazards posing potential threats to nuclear installations. The list comprises of both, natural and man-made external hazards. Also, a cross correlation matrix of the hazards is presented. The list is the starting point for the hazard analysis process in Level 1 PSA as outlined by IAEA (2010; SSG-3) and the definition of design basis as required by WENRA (2014; Reference Levels for Existing Reactors). The list is regarded comprehensive by including all types of hazards that were previously cited in documents by IAEA and WENRA-RHWG. 73 natural hazards (N1 to N73) and 24 man-made external hazards (M1 to M24) are included. Natural hazards are grouped into seismo-tectonic hazards, flooding and hydrological hazards, extreme values of meteorological phenomena, rare meteorological phenomena, biological hazards / infestation, geological hazards, and forest fire. The list of external man-made hazards includes industry accidents, military accidents, transportation accidents, pipeline accidents and other man-made external events. The dataset further contains information on hazard correlations. 577 correlations between individual hazards are identified and shown in a cross-correlation chart. Correlations discriminate between: (1) Causally connected hazards (cause-effect relation) where one hazard (e.g., liquefaction) may be caused by another hazard (e.g., earthquake); or where one hazard (e.g., high wind) is a prerequisite for a correlated hazard (e.g., storm surge). (authors)

  13. Cold Vacuum Drying facility design basis accident analysis documentation

    International Nuclear Information System (INIS)

    CROWE, R.D.

    2000-01-01

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls

  14. Cold Vacuum Drying facility design basis accident analysis documentation

    Energy Technology Data Exchange (ETDEWEB)

    CROWE, R.D.

    2000-08-08

    This document provides the detailed accident analysis to support HNF-3553, Annex B, Spent Nuclear Fuel Project Final Safety Analysis Report (FSAR), ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' All assumptions, parameters, and models used to provide the analysis of the design basis accidents are documented to support the conclusions in the FSAR. The calculations in this document address the design basis accidents (DBAs) selected for analysis in HNF-3553, ''Spent Nuclear Fuel Project Final Safety Analysis Report'', Annex B, ''Cold Vacuum Drying Facility Final Safety Analysis Report.'' The objective is to determine the quantity of radioactive particulate available for release at any point during processing at the Cold Vacuum Drying Facility (CVDF) and to use that quantity to determine the amount of radioactive material released during the DBAs. The radioactive material released is used to determine dose consequences to receptors at four locations, and the dose consequences are compared with the appropriate evaluation guidelines and release limits to ascertain the need for preventive and mitigative controls.

  15. GIS risk analysis of hazardous materials transport

    International Nuclear Information System (INIS)

    Anders, C.; Olsten, J.

    1991-01-01

    The Geographic Information System (GIS) was used to assess the risks and vulnerability of transporting hazardous materials and wastes (such as gasoline, explosives, poisons, etc) on the Arizona highway system. This paper discusses the methodology that was utilized, and the application of GIS systems to risk analysis problems

  16. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, L.; Vogel, R. M.

    2015-12-01

    Studies from the natural hazards literature indicate that many natural processes, including wind speeds, landslides, wildfires, precipitation, streamflow and earthquakes, show evidence of nonstationary behavior such as trends in magnitudes through time. Traditional probabilistic analysis of natural hazards based on partial duration series (PDS) generally assumes stationarity in the magnitudes and arrivals of events, i.e. that the probability of exceedance is constant through time. Given evidence of trends and the consequent expected growth in devastating impacts from natural hazards across the world, new methods are needed to characterize their probabilistic behavior. The field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (x) with its failure time series (t), enabling computation of corresponding average return periods and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose PDS magnitudes are assumed to follow the widely applied Poisson-GP model. We derive a 2-parameter Generalized Pareto hazard model and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard event series x, with corresponding failure time series t, should have application to a wide class of natural hazards.

  17. Hazard function theory for nonstationary natural hazards

    Science.gov (United States)

    Read, Laura K.; Vogel, Richard M.

    2016-04-01

    Impact from natural hazards is a shared global problem that causes tremendous loss of life and property, economic cost, and damage to the environment. Increasingly, many natural processes show evidence of nonstationary behavior including wind speeds, landslides, wildfires, precipitation, streamflow, sea levels, and earthquakes. Traditional probabilistic analysis of natural hazards based on peaks over threshold (POT) generally assumes stationarity in the magnitudes and arrivals of events, i.e., that the probability of exceedance of some critical event is constant through time. Given increasing evidence of trends in natural hazards, new methods are needed to characterize their probabilistic behavior. The well-developed field of hazard function analysis (HFA) is ideally suited to this problem because its primary goal is to describe changes in the exceedance probability of an event over time. HFA is widely used in medicine, manufacturing, actuarial statistics, reliability engineering, economics, and elsewhere. HFA provides a rich theory to relate the natural hazard event series (X) with its failure time series (T), enabling computation of corresponding average return periods, risk, and reliabilities associated with nonstationary event series. This work investigates the suitability of HFA to characterize nonstationary natural hazards whose POT magnitudes are assumed to follow the widely applied generalized Pareto model. We derive the hazard function for this case and demonstrate how metrics such as reliability and average return period are impacted by nonstationarity and discuss the implications for planning and design. Our theoretical analysis linking hazard random variable X with corresponding failure time series T should have application to a wide class of natural hazards with opportunities for future extensions.

  18. Extending and automating a Systems-Theoretic hazard analysis for requirements generation and analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John (Massachusetts Institute of Technology)

    2012-05-01

    Systems Theoretic Process Analysis (STPA) is a powerful new hazard analysis method designed to go beyond traditional safety techniques - such as Fault Tree Analysis (FTA) - that overlook important causes of accidents like flawed requirements, dysfunctional component interactions, and software errors. While proving to be very effective on real systems, no formal structure has been defined for STPA and its application has been ad-hoc with no rigorous procedures or model-based design tools. This report defines a formal mathematical structure underlying STPA and describes a procedure for systematically performing an STPA analysis based on that structure. A method for using the results of the hazard analysis to generate formal safety-critical, model-based system and software requirements is also presented. Techniques to automate both the analysis and the requirements generation are introduced, as well as a method to detect conflicts between the safety and other functional model-based requirements during early development of the system.

  19. PRO-ELICERE: A Hazard Analysis Automation Process Applied to Space Systems

    Directory of Open Access Journals (Sweden)

    Tharcius Augusto Pivetta

    2016-07-01

    Full Text Available In the last decades, critical systems have increasingly been developed using computers and software even in space area, where the project approach is usually very conservative. In the projects of rockets, satellites and its facilities, like ground support systems, simulators, among other critical operations for the space mission, it must be applied a hazard analysis. The ELICERE process was created to perform a hazard analysis mainly over computer critical systems, in order to define or evaluate its safety and dependability requirements, strongly based on Hazards and Operability Study and Failure Mode and Effect Analysis techniques. It aims to improve the project design or understand the potential hazards of existing systems improving their functions related to functional or non-functional requirements. Then, the main goal of the ELICERE process is to ensure the safety and dependability goals of a space mission. The process, at the beginning, was created to operate manually in a gradual way. Nowadays, a software tool called PRO-ELICERE was developed, in such a way to facilitate the analysis process and store the results for reuse in another system analysis. To understand how ELICERE works and its tool, a small example of space study case was applied, based on a hypothetical rocket of the Cruzeiro do Sul family, developed by the Instituto de Aeronáutica e Espaço in Brazil.

  20. Software hazard analysis for nuclear digital protection system by Colored Petri Net

    International Nuclear Information System (INIS)

    Bai, Tao; Chen, Wei-Hua; Liu, Zhen; Gao, Feng

    2017-01-01

    Highlights: •A dynamic hazard analysis method is proposed for the safety-critical software. •The mechanism relies on Colored Petri Net. •Complex interactions between software and hardware are captured properly. •Common failure mode in software are identified effectively. -- Abstract: The software safety of a nuclear digital protection system is critical for the safety of nuclear power plants as any software defect may result in severe damage. In order to ensure the safety and reliability of safety-critical digital system products and their applications, software hazard analysis is required to be performed during the lifecycle of software development. The dynamic software hazard modeling and analysis method based on Colored Petri Net is proposed and applied to the safety-critical control software of the nuclear digital protection system in this paper. The analysis results show that the proposed method can explain the complex interactions between software and hardware and identify the potential common cause failure in software properly and effectively. Moreover, the method can find the dominant software induced hazard to safety control actions, which aids in increasing software quality.

  1. Hazard analysis of typhoon-related external events using extreme value theory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yo Chan; Jang, Seung Cheol [Integrated Safety Assessment Division, Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lim, Tae Jin [Dept. of Industrial Information Systems Engineering, Soongsil University, Seoul (Korea, Republic of)

    2015-02-15

    After the Fukushima accident, the importance of hazard analysis for extreme external events was raised. To analyze typhoon-induced hazards, which are one of the significant disasters of East Asian countries, a statistical analysis using the extreme value theory, which is a method for estimating the annual exceedance frequency of a rare event, was conducted for an estimation of the occurrence intervals or hazard levels. For the four meteorological variables, maximum wind speed, instantaneous wind speed, hourly precipitation, and daily precipitation, the parameters of the predictive extreme value theory models were estimated. The 100-year return levels for each variable were predicted using the developed models and compared with previously reported values. It was also found that there exist significant long-term climate changes of wind speed and precipitation. A fragility analysis should be conducted to ensure the safety levels of a nuclear power plant for high levels of wind speed and precipitation, which exceed the results of a previous analysis.

  2. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    International Nuclear Information System (INIS)

    Ludowise, J.D.

    2006-01-01

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project

  3. Final Hazard Categorization for the Remediation of Six 300-FF-2 Operable Unit Solid Waste Burial Grounds

    Energy Technology Data Exchange (ETDEWEB)

    J. D. Ludowise

    2006-12-12

    This report provides the final hazard categorization (FHC) for the remediation of six solid waste disposal sites (referred to as burial grounds) located in the 300-FF-2 Operable Unit (OU) on the Hanford Site. These six sites (618-1, 618-2, 618-3, 618-7, 618-8, and 618-13 Burial Grounds) were determined to have a total radionuclide inventory (WCH 2005a, WCH 2005d, WCH 2005e and WCH 2006b) that exceeds the DOE-STD-1027 Category 3 threshold quantity (DOE 1997) and are the subject of this analysis. This FHC document examines the hazards, identifies appropriate controls to manage the hazards, and documents the FHC and commitments for the 300-FF-2 Burial Grounds Remediation Project.

  4. Offsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1997-01-01

    This report documents the emergency preparedness Hazards Assessment for the offsite transportation of hazardous material from the Hanford Site. The assessment is required by the US Department of Energy (DOE) Order 151.1. Offsite transportation accidents are categorized using the DOE system to assist communication within the DOE and assure that appropriate assistance is provided to the people in charge at the scene. The assistance will initially include information about the load and the potential hazards. Local authorities will use the information to protect the public following a transportation accident. This Hazards Assessment will focus on the material being transported from the Hanford Site. Shipments coming to Hanford are the responsibility of the shipper and the carrier and, therefore, are not included in this Hazards Assessment, unless the DOE elects to be the shipper of record

  5. Technical requirements document for the waste flow analysis

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    1996-05-01

    Purpose of this Technical Requirements Document is to define the top level customer requirements for the Waste Flow Analysis task. These requirements, once agreed upon with DOE, will be used to flow down subsequent development requirements to the model specifications. This document is intended to be a ''living document'' which will be modified over the course of the execution of this work element. Initial concurrence with the technical functional requirements from Environmental Management (EM)-50 is needed before the work plan can be developed

  6. Preliminary Hazard Analysis applied to Uranium Hexafluoride - UF6 production plant

    International Nuclear Information System (INIS)

    Tomzhinsky, David; Bichmacher, Ricardo; Braganca Junior, Alvaro; Peixoto, Orpet Jose

    1996-01-01

    The purpose of this paper is to present the results of the Preliminary hazard Analysis applied to the UF 6 Production Process, which is part of the UF 6 Conversion Plant. The Conversion Plant has designed to produce a high purified UF 6 in accordance with the nuclear grade standards. This Preliminary Hazard Analysis is the first step in the Risk Management Studies, which are under current development. The analysis evaluated the impact originated from the production process in the plant operators, members of public, equipment, systems and installations as well as the environment. (author)

  7. Seismic hazard maps for earthquake-resistant construction designs

    International Nuclear Information System (INIS)

    Ohkawa, Izuru

    2004-01-01

    Based on the idea that seismic phenomena in Japan varying in different localities are to be reflected in designing specific nuclear facilities in specific site, the present research program started to make seismic hazard maps representing geographical distribution of seismic load factors. First, recent research data on historical earthquakes and materials on active faults in Japan have been documented. Differences in character due to different localities are expressed by dynamic load in consideration of specific building properties. Next, hazard evaluation corresponding to seismic-resistance factor is given as response index (spectrum) of an adequately selected building, for example a nuclear power station, with the help of investigation results of statistical analysis. (S. Ohno)

  8. Technical document characterization by data analysis

    International Nuclear Information System (INIS)

    Mauget, A.

    1993-05-01

    Nuclear power plants possess documents analyzing all the plant systems, which represents a vast quantity of paper. Analysis of textual data can enable a document to be classified by grouping the texts containing the same words. These methods are used on system manuals for feasibility studies. The system manual is then analyzed by LEXTER and the terms it has selected are examined. We first classify according to style (sentences containing general words, technical sentences, etc.), and then according to terms. However, it will not be possible to continue in this fashion for the 100 system manuals existing, because of lack of sufficient storage capacity. Another solution is being developed. (author)

  9. Hazard Evaluation for the Salt Well Chempump and a Salt Well Centrifugal Pump Design using Service Water for Lubrication and Cooling

    International Nuclear Information System (INIS)

    GRAMS, W.H.

    2000-01-01

    This report documents results of a preliminary hazard analysis (PHA) covering the existing Crane Chempump and the new salt well pumping design. Three hazardous conditions were identified for the Chempump and ten hazardous conditions were identified for the new salt well pump design. This report also presents the results of the control decision/allocation process. A backflow preventer and associated limiting condition for operation were assigned to one hazardous condition with the new design

  10. Hazard assessment for small torrent catchments - lessons learned

    Science.gov (United States)

    Eisl, Julia; Huebl, Johannes

    2013-04-01

    The documentation of extreme events as a part of the integral risk management cycle is an important basis for the analysis and assessment of natural hazards. In July 2011 a flood event occurred in the Wölzer-valley in the province of Styria, Austria. For this event at the "Wölzerbach" a detailed event documentation was carried out, gathering data about rainfall, runoff and sediment transport as well as information on damaged objects, infrastructure or crops using various sources. The flood was triggered by heavy rainfalls in two tributaries of the Wölzer-river. Though a rain as well as a discharge gaging station exists for the Wölzer-river, the torrents affected by the high intensity rainfalls are ungaged. For these ungaged torrent catchments the common methods for hazard assessment were evaluated. The back-calculation of the rainfall event was done using a new approach for precipitation analysis. In torrent catchments especially small-scale and high-intensity rainfall events are mainly responsible for extreme events. Austria's weather surveillance radar is operated by the air traffic service "AustroControl". The usually available dataset is interpreted and shows divergences especially when it comes to high intensity rainfalls. For this study the raw data of the radar were requested and analysed. Further on the event was back-calculated with different rainfall-runoff models, hydraulic models and sediment transport models to obtain calibration parameters for future use in hazard assessment for this region. Since there are often problems with woody debris different scenarios were simulated. The calibrated and plausible results from the runoff models were used for the comparison with empirical approaches used in the practical sector. For the planning of mitigation measures of the Schöttl-torrent, which is one of the affected tributaries of the Wölzer-river, a physical scale model was used in addition to the insights of the event analysis to design a check dam

  11. Risk analysis for roadways subjected to multiple landslide-related hazards

    Science.gov (United States)

    Corominas, Jordi; Mavrouli, Olga

    2014-05-01

    Roadways through mountainous terrain often involve cuts and landslide areas whose stability is precarious and require protection and stabilization works. To optimize the allocation of resources, government and technical offices are increasingly interested in both the risk analysis and assessment. Risk analysis has to consider the hazard occurrence and the consequences. The consequences can be both direct and indirect. The former include the costs regarding the repair of the roadway, the damage of vehicles and the potential fatalities, while the latter refer to the costs related to the diversion of vehicles, the excess of distance travelled, the time differences, and tolls. The type of slope instabilities that may affect a roadway may vary and its effects as well. Most current approaches either consider a single hazardous phenomenon each time, or if applied at small (for example national) scale, they do not take into account local conditions at each section of the roadway. The objective of this work is the development of a simple and comprehensive methodology for the assessment of the risk due to multiple hazards along roadways, integrating different landslide types that include rockfalls, debris flows and considering as well the potential failure of retaining walls. To quantify risk, all hazards are expressed with a common term: their probability of occurrence. The methodology takes into consideration the specific local conditions along the roadway. For rockfalls and debris flow a variety of methods for assessing the probability of occurrence exists. To assess the annual probability of failure of retaining walls we use an indicator-based model that provides a hazard index. The model parameters consist in the design safety factor, and further anchorage design and construction parameters. The probability of failure is evaluated in function of the hazard index and next corrected (in terms of order of magnitude) according to in situ observations for increase of two

  12. Y-12 National Security Complex Emergency Management Hazards Assessment (EMHA) Process; FINAL

    International Nuclear Information System (INIS)

    Bailiff, E.F.; Bolling, J.D.

    2001-01-01

    This document establishes requirements and standard methods for the development and maintenance of the Emergency Management Hazards Assessment (EMHA) process used by the lead and all event contractors at the Y-12 Complex for emergency planning and preparedness. The EMHA process provides the technical basis for the Y-12 emergency management program. The instructions provided in this document include methods and requirements for performing the following emergency management activities at Y-12: (1) hazards identification; (2) hazards survey, and (3) hazards assessment

  13. Hazard analysis and critical control point (HACCP) history and conceptual overview.

    Science.gov (United States)

    Hulebak, Karen L; Schlosser, Wayne

    2002-06-01

    The concept of Hazard Analysis and Critical Control Point (HACCP) is a system that enables the production of safe meat and poultry products through the thorough analysis of production processes, identification of all hazards that are likely to occur in the production establishment, the identification of critical points in the process at which these hazards may be introduced into product and therefore should be controlled, the establishment of critical limits for control at those points, the verification of these prescribed steps, and the methods by which the processing establishment and the regulatory authority can monitor how well process control through the HACCP plan is working. The history of the development of HACCP is reviewed, and examples of practical applications of HACCP are described.

  14. Analysis and Assessment of Parameters Shaping Methane Hazard in Longwall Areas

    Directory of Open Access Journals (Sweden)

    Eugeniusz Krause

    2013-01-01

    Full Text Available Increasing coal production concentration and mining in coal seams of high methane content contribute to its growing emission to longwall areas. In this paper, analysis of survey data concerning the assessment of parameters that influence the level of methane hazard in mining areas is presented. The survey was conducted with experts on ventilation and methane hazard in coal mines. The parameters which influence methane hazard in longwall areas were assigned specific weights (numerical values. The summary will show which of the assessed parameters have a strong, or weak, influence on methane hazard in longwall areas close to coal seams of high methane content.

  15. Technical documentation challenges in aviation maintenance : a proceedings report.

    Science.gov (United States)

    2012-11-01

    The 2012 Technical Documentation workshop addressed both problems and solutions associated with technical : documentation for maintenance. These issues are known to cause errors, rework, maintenance delays, other : safety hazards, and FAA administrat...

  16. 222 S Laboratory complex hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1998-01-01

    This report documents the hazards assessment for the 222-S Analytical Laboratory located on the US Department of Energy (DOE) Hanford Site. Operation of the laboratory is the responsibility of Waste Management Federal Services, Inc. (WMFS). This hazards assessment was conducted to provide the emergency planning technical basis for the 222-S Facility. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  17. Relative Hazard Calculation Methodology

    International Nuclear Information System (INIS)

    DL Strenge; MK White; RD Stenner; WB Andrews

    1999-01-01

    The methodology presented in this document was developed to provide a means of calculating the RH ratios to use in developing useful graphic illustrations. The RH equation, as presented in this methodology, is primarily a collection of key factors relevant to understanding the hazards and risks associated with projected risk management activities. The RH equation has the potential for much broader application than generating risk profiles. For example, it can be used to compare one risk management activity with another, instead of just comparing it to a fixed baseline as was done for the risk profiles. If the appropriate source term data are available, it could be used in its non-ratio form to estimate absolute values of the associated hazards. These estimated values of hazard could then be examined to help understand which risk management activities are addressing the higher hazard conditions at a site. Graphics could be generated from these absolute hazard values to compare high-hazard conditions. If the RH equation is used in this manner, care must be taken to specifically define and qualify the estimated absolute hazard values (e.g., identify which factors were considered and which ones tended to drive the hazard estimation)

  18. Barrow hazards survey

    International Nuclear Information System (INIS)

    1980-06-01

    Following a series of public meetings at which PERG presented the results of a literature review and site specific accident study of the hazards of the maritime transport of spent nuclear reactor fuel to Barrow (en route to the Windscale reprocessing works), PERG was requested by the Planning Committee of Barrow Town Council to prepare an assessment of the interaction of the hazards arising from the concentration of nuclear activities in the area with those of a proposed gas-terminal. This report presents a preliminary review of the Environmental Impact Assessments prepared by the Borough Surveyor and a critical appraisal of the hazard analyses undertaken by the Health and Safety Executive, and the consultants to Cumbria County Council on this matter, the Safety and Reliability Directorate of the United Kingdom Atomic Energy Authority. After a general and historical introduction, the document continues under the following headings: a description of the hazards (BNFL spent fuel shipments; the gas terminal; gas condensate storage; the Vickers shipyard (involving nuclear powered submarines)); the interaction of hazards; planning implications and democratic decisions; recommendations. (U.K.)

  19. Delve: A Data Set Retrieval and Document Analysis System

    KAUST Repository

    Akujuobi, Uchenna Thankgod

    2017-12-29

    Academic search engines (e.g., Google scholar or Microsoft academic) provide a medium for retrieving various information on scholarly documents. However, most of these popular scholarly search engines overlook the area of data set retrieval, which should provide information on relevant data sets used for academic research. Due to the increasing volume of publications, it has become a challenging task to locate suitable data sets on a particular research area for benchmarking or evaluations. We propose Delve, a web-based system for data set retrieval and document analysis. This system is different from other scholarly search engines as it provides a medium for both data set retrieval and real time visual exploration and analysis of data sets and documents.

  20. Long term volcanic hazard analysis in the Canary Islands

    Science.gov (United States)

    Becerril, L.; Galindo, I.; Laín, L.; Llorente, M.; Mancebo, M. J.

    2009-04-01

    Historic volcanism in Spain is restricted to the Canary Islands, a volcanic archipelago formed by seven volcanic islands. Several historic eruptions have been registered in the last five hundred years. However, and despite the huge amount of citizens and tourist in the archipelago, only a few volcanic hazard studies have been carried out. These studies are mainly focused in the developing of hazard maps in Lanzarote and Tenerife islands, especially for land use planning. The main handicap for these studies in the Canary Islands is the lack of well reported historical eruptions, but also the lack of data such as geochronological, geochemical or structural. In recent years, the use of Geographical Information Systems (GIS) and the improvement in the volcanic processes modelling has provided an important tool for volcanic hazard assessment. Although this sophisticated programs are really useful they need to be fed by a huge amount of data that sometimes, such in the case of the Canary Islands, are not available. For this reason, the Spanish Geological Survey (IGME) is developing a complete geo-referenced database for long term volcanic analysis in the Canary Islands. The Canarian Volcanic Hazard Database (HADA) is based on a GIS helping to organize and manage volcanic information efficiently. HADA includes the following groups of information: (1) 1:25.000 scale geologic maps, (2) 1:25.000 topographic maps, (3) geochronologic data, (4) geochemical data, (5) structural information, (6) climatic data. Data must pass a quality control before they are included in the database. New data are easily integrated in the database. With the HADA database the IGME has started a systematic organization of the existing data. In the near future, the IGME will generate new information to be included in HADA, such as volcanological maps of the islands, structural information, geochronological data and other information to assess long term volcanic hazard analysis. HADA will permit

  1. Toxic hazards of underground excavation

    International Nuclear Information System (INIS)

    Smith, R.; Chitnis, V.; Damasian, M.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards

  2. Toxic hazards of underground excavation

    Energy Technology Data Exchange (ETDEWEB)

    Smith, R.; Chitnis, V.; Damasian, M.; Lemm, M.; Popplesdorf, N.; Ryan, T.; Saban, C.; Cohen, J.; Smith, C.; Ciminesi, F.

    1982-09-01

    Inadvertent intrusion into natural or man-made toxic or hazardous material deposits as a consequence of activities such as mining, excavation or tunnelling has resulted in numerous deaths and injuries in this country. This study is a preliminary investigation to identify and document instances of such fatal or injurious intrusion. An objective is to provide useful insights and information related to potential hazards due to future intrusion into underground radioactive-waste-disposal facilities. The methodology used in this study includes literature review and correspondence with appropriate government agencies and organizations. Key categories of intrusion hazards are asphyxiation, methane, hydrogen sulfide, silica and asbestos, naturally occurring radionuclides, and various mine or waste dump related hazards.

  3. Natural phenomena hazards, Hanford Site, Washington

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    This document presents the natural phenomena hazard loads for use in implementing DOE Order 5480.28, Natural Phenomena Hazards Mitigation, and supports development of double-shell tank systems specifications at the Hanford Site in south-central Washington State. The natural phenomena covered are seismic, flood, wind, volcanic ash, lightning, snow, temperature, solar radiation, suspended sediment, and relative humidity

  4. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    Energy Technology Data Exchange (ETDEWEB)

    MULKEY, C.H.

    1999-07-06

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants.

  5. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants

  6. Development of an auditable safety analysis in support of a radiological facility classification

    International Nuclear Information System (INIS)

    Kinney, M.D.; Young, B.

    1995-01-01

    In recent years, U.S. Department of Energy (DOE) facilities commonly have been classified as reactor, non-reactor nuclear, or nuclear facilities. Safety analysis documentation was prepared for these facilities, with few exceptions, using the requirements in either DOE Order 5481.1B, Safety Analysis and Review System; or DOE Order 5480.23, Nuclear Safety Analysis Reports. Traditionally, this has been accomplished by development of an extensive Safety Analysis Report (SAR), which identifies hazards, assesses risks of facility operation, describes and analyzes adequacy of measures taken to control hazards, and evaluates potential accidents and their associated risks. This process is complicated by analysis of secondary hazards and adequacy of backup (redundant) systems. The traditional SAR process is advantageous for DOE facilities with appreciable hazards or operational risks. SAR preparation for a low-risk facility or process can be cost-prohibitive and quite challenging because conventional safety analysis protocols may not readily be applied to a low-risk facility. The DOE Office of Environmental Restoration and Waste Management recognized this potential disadvantage and issued an EM limited technical standard, No. 5502-94, Hazard Baseline Documentation. This standard can be used for developing documentation for a facility classified as radiological, including preparation of an auditable (defensible) safety analysis. In support of the radiological facility classification process, the Uranium Mill Tailings Remedial Action (UMTRA) Project has developed an auditable safety analysis document based upon the postulation criteria and hazards analysis techniques defined in DOE Order 5480.23

  7. Hazard analysis and critical control point (HACCP) for an ultrasound food processing operation.

    Science.gov (United States)

    Chemat, Farid; Hoarau, Nicolas

    2004-05-01

    Emerging technologies, such as ultrasound (US), used for food and drink production often cause hazards for product safety. Classical quality control methods are inadequate to control these hazards. Hazard analysis of critical control points (HACCP) is the most secure and cost-effective method for controlling possible product contamination or cross-contamination, due to physical or chemical hazard during production. The following case study on the application of HACCP to an US food-processing operation demonstrates how the hazards at the critical control points of the process are effectively controlled through the implementation of HACCP.

  8. Current issues and related activities in seismic hazard analysis in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Jeong-Moon [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Lee, Jong-Rim; Chang, Chun-Joong

    1997-03-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  9. Current issues and related activities in seismic hazard analysis in Korea

    International Nuclear Information System (INIS)

    Seo, Jeong-Moon; Lee, Jong-Rim; Chang, Chun-Joong.

    1997-01-01

    This paper discusses some technical issues identified from the seismic hazard analyses for probabilistic safety assessment on the operating Korean nuclear power plants and the related activities to resolve the issues. Since there are no strong instrumental earthquake records in Korea, the seismic hazard analysis is mainly dependent on the historical earthquake records. Results of the past seismic hazard analyses show that there are many uncertainties in attenuation function and intensity level and that there is a need to improve statistical method. The identification of the activity of the Yangsan Fault, which is close to nuclear power plant sites, has been an important issue. But the issue has not been resolved yet in spite of much research works done. Recently, some capable faults were found in the offshore area of Gulupdo Island in the Yellow Sea. It is anticipated that the results of research on both the Yangsan Fault and reduction of uncertainty in seismic hazard analysis will have an significant influence on seismic design and safety assessment of nuclear power plants in the future. (author)

  10. Hanford B Reactor Building Hazard Assessment Report

    International Nuclear Information System (INIS)

    Griffin, P. W.

    1999-01-01

    The 105-B Reactor (hereinafter referred to as B Reactor) is located in the 100 Area of the Hanford Site near Richland, Washington. The B Reactor is one of nine plutonium production reactors that were constructed in the 1940s during the Cold War Era. Construction of the B Reactor began June 7, 1943, and operation began on September 26, 1944. The Environmental Restoration Contractor was requested by RL to provide an assessment/characterization of the B Reactor building to determine and document the hazards that are present and could pose a threat to the environment and/or to individuals touring the building. This report documents the potential hazards, determines the feasibility of mitigating the hazards, and makes recommendations regarding areas where public tour access should not be permitted

  11. Multi-hazard risk analysis using the FP7 RASOR Platform

    Science.gov (United States)

    Koudogbo, Fifamè N.; Duro, Javier; Rossi, Lauro; Rudari, Roberto; Eddy, Andrew

    2014-10-01

    Climate change challenges our understanding of risk by modifying hazards and their interactions. Sudden increases in population and rapid urbanization are changing exposure to risk around the globe, making impacts harder to predict. Despite the availability of operational mapping products, there is no single tool to integrate diverse data and products across hazards, update exposure data quickly and make scenario-based predictions to support both short and long-term risk-related decisions. RASOR (Rapid Analysis and Spatialization Of Risk) will develop a platform to perform multi-hazard risk analysis for the full cycle of disaster management, including targeted support to critical infrastructure monitoring and climate change impact assessment. A scenario-driven query system simulates future scenarios based on existing or assumed conditions and compares them with historical scenarios. RASOR will thus offer a single work environment that generates new risk information across hazards, across data types (satellite EO, in-situ), across user communities (global, local, climate, civil protection, insurance, etc.) and across the world. Five case study areas are considered within the project, located in Haiti, Indonesia, Netherlands, Italy and Greece. Initially available over those demonstration areas, RASOR will ultimately offer global services to support in-depth risk assessment and full-cycle risk management.

  12. Debris flow hazard modelling on medium scale: Valtellina di Tirano, Italy

    Directory of Open Access Journals (Sweden)

    J. Blahut

    2010-11-01

    Full Text Available Debris flow hazard modelling at medium (regional scale has been subject of various studies in recent years. In this study, hazard zonation was carried out, incorporating information about debris flow initiation probability (spatial and temporal, and the delimitation of the potential runout areas. Debris flow hazard zonation was carried out in the area of the Consortium of Mountain Municipalities of Valtellina di Tirano (Central Alps, Italy. The complexity of the phenomenon, the scale of the study, the variability of local conditioning factors, and the lacking data limited the use of process-based models for the runout zone delimitation. Firstly, a map of hazard initiation probabilities was prepared for the study area, based on the available susceptibility zoning information, and the analysis of two sets of aerial photographs for the temporal probability estimation. Afterwards, the hazard initiation map was used as one of the inputs for an empirical GIS-based model (Flow-R, developed at the University of Lausanne (Switzerland. An estimation of the debris flow magnitude was neglected as the main aim of the analysis was to prepare a debris flow hazard map at medium scale. A digital elevation model, with a 10 m resolution, was used together with landuse, geology and debris flow hazard initiation maps as inputs of the Flow-R model to restrict potential areas within each hazard initiation probability class to locations where debris flows are most likely to initiate. Afterwards, runout areas were calculated using multiple flow direction and energy based algorithms. Maximum probable runout zones were calibrated using documented past events and aerial photographs. Finally, two debris flow hazard maps were prepared. The first simply delimits five hazard zones, while the second incorporates the information about debris flow spreading direction probabilities, showing areas more likely to be affected by future debris flows. Limitations of the modelling arise

  13. Hazardous Waste Remedial Actions Program requirements for quality control of analytical data

    International Nuclear Information System (INIS)

    Miller, M.S.; Zolyniak, J.W.

    1988-08-01

    The Hazardous Waste Remedial Action Program (HAZWRAP) is involved in performing field investigations and sample analysis pursuant to the NCP for the Department of Energy and other federal agencies. The purpose of this document is to specify the requirements for the control of the accuracy, precision and completeness of the samples, and data from the point of collection through analysis. The requirements include data reduction and reporting of the resulting environmentally related data. Because every instance and concern may not be addressed in this document, HAZWRAP subcontractors are encouraged to discuss any questions with the HAZWRAP Project Manager hereafter identified as the Project Manager

  14. Waste Encapsulation and Storage Facility (WESF) Hazards Assessment

    International Nuclear Information System (INIS)

    COVEY, L.I.

    2000-01-01

    This report documents the hazards assessment for the Waste Encapsulation and Storage Facility (WESF) located on the U.S. Department of Energy (DOE) Hanford Site. This hazards assessment was conducted to provide the emergency planning technical basis for WESF. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  15. Hazards and hazard combinations relevant for the safety of nuclear power plants

    Science.gov (United States)

    Decker, Kurt; Brinkman, Hans; Raimond, Emmanuel

    2017-04-01

    The potential of the contemporaneous impact of different, yet causally related, hazardous events and event cascades on nuclear power plants is a major contributor to the overall risk of nuclear installations. In the aftermath of the Fukushima accident, which was caused by a combination of severe ground shaking by an earthquake, an earthquake-triggered tsunami and the disruption of the plants from the electrical grid by a seismically induced landslide, hazard combinations and hazard cascades moved into the focus of nuclear safety research. We therefore developed an exhaustive list of external hazards and hazard combinations which pose potential threats to nuclear installations in the framework of the European project ASAMPSAE (Advanced Safety Assessment: Extended PSA). The project gathers 31 partners from Europe, North Amerika and Japan. The list comprises of exhaustive lists of natural hazards, external man-made hazards, and a cross-correlation matrix of these hazards. The hazard list is regarded comprehensive by including all types of hazards that were previously cited in documents by IAEA, the Western European Nuclear Regulators Association (WENRA), and others. 73 natural hazards and 24 man-made external hazards are included. Natural hazards are grouped into seismotectonic hazards, flooding and hydrological hazards, extreme values of meteorological phenomena, rare meteorological phenomena, biological hazards / infestation, geological hazards, and forest fire / wild fire. The list of external man-made hazards includes industry accidents, military accidents, transportation accidents, pipeline accidents and other man-made external events. The large number of different hazards results in the extremely large number of 5.151 theoretically possible hazard combinations (not considering hazard cascades). In principle all of these combinations are possible to occur by random coincidence except for 82 hazard combinations that - depending on the time scale - are mutually

  16. Final Safety Analysis Document for Building 693 Chemical Waste Storage Building at Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Salazar, R.J.; Lane, S.

    1992-02-01

    This Safety Analysis Document (SAD) for the Lawrence Livermore National Laboratory (LLNL) Building 693, Chemical Waste Storage Building (desipated as Building 693 Container Storage Unit in the Laboratory's RCRA Part B permit application), provides the necessary information and analyses to conclude that Building 693 can be operated at low risk without unduly endangering the safety of the building operating personnel or adversely affecting the public or the environment. This Building 693 SAD consists of eight sections and supporting appendices. Section 1 presents a summary of the facility designs and operations and Section 2 summarizes the safety analysis method and results. Section 3 describes the site, the facility desip, operations and management structure. Sections 4 and 5 present the safety analysis and operational safety requirements (OSRs). Section 6 reviews Hazardous Waste Management's (HWM) Quality Assurance (QA) program. Section 7 lists the references and background material used in the preparation of this report Section 8 lists acronyms, abbreviations and symbols. Appendices contain supporting analyses, definitions, and descriptions that are referenced in the body of this report

  17. Oak Ridge National Laboratory program plan for certification of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    1996-05-01

    This document describes Oak Ridge National Laboratory's (ORNL) Program for Certification of Nonradioactive Hazardous Waste (Program). The Program establishes the criteria that will be used by all ORNL divisions, offices, and programs for unrestricted release of hazardous waste to off-site commercial facilities. The certification process meets the requirements given in the Performance Objective for Certification of Non-Radioactive Hazardous Waste. The Program Plan has two main elements: (A) Establishing Radioactive Materials Management Areas (RMMAs). At ORNL, RMMAs are (1) Contamination Areas, High Contamination Areas, and Airborne Radioactivity Areas, (2) Radiological Buffer Areas established for contamination control, and (3) areas posted to prevent loss of control of activated items. (B) Certifying that hazardous waste originating in an RMMA is suitable for commercial treatment, storage, or disposal by process knowledge, surface contamination surveys, sampling and analysis, or a combination of these techniques. If process knowledge is insufficient, the hazardous waste must undergo sampling and analysis in addition to surface contamination surveys. This Program will reduce the impact to current ORNL operations by using current radiological area boundaries and existing plans and procedures to the greatest extent possible. New or revised procedures will be developed as necessary to implement this Program

  18. Example process hazard analysis of a Department of Energy water chlorination process

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    On February 24, 1992, the Occupational Safety and Health Administration (OSHA) released a revised version of Section 29 Code of Federal Regulations CFR Part 1910 that added Section 1910.119, entitled ``Process Safety Management of Highly Hazardous Chemicals`` (the PSM Rule). Because US Department of Energy (DOE) Orders 5480.4 and 5483.1A prescribe OSHA 29 CFR 1910 as a standard in DOE, the PSM Rule is mandatory in the DOE complex. A major element in the PSM Rule is the process hazard analysis (PrHA), which is required for all chemical processes covered by the PSM Rule. The PrHA element of the PSM Rule requires the selection and application of appropriate hazard analysis methods to systematically identify hazards and potential accident scenarios associated with processes involving highly hazardous chemicals (HHCs). The analysis in this report is an example PrHA performed to meet the requirements of the PSM Rule. The PrHA method used in this example is the hazard and operability (HAZOP) study, and the process studied is the new Hanford 300-Area Water Treatment Facility chlorination process, which is currently in the design stage. The HAZOP study was conducted on May 18--21, 1993, by a team from the Westinghouse Hanford Company (WHC), Battelle-Columbus, the DOE, and Pacific Northwest Laboratory (PNL). The chlorination process was chosen as the example process because it is common to many DOE sites, and because quantities of chlorine at those sites generally exceed the OSHA threshold quantities (TQs).

  19. PERMITTING HAZARDOUS WASTE INCINERATORS

    Science.gov (United States)

    This publication is a compilation of information presented at a seminar series designed to address the issues that affect the issuance of hazardous waste incineration permits and to improve the overall understanding of trial burn testing. pecifically, the document provides guidan...

  20. Hazardous Waste Code Determination for First/Second-Stage Sludge Waste Stream (IDCs 001, 002, 800)

    International Nuclear Information System (INIS)

    Arbon, R.E.

    2001-01-01

    This document, Hazardous Waste Code Determination for the First/Second-Stage Sludge Waste Stream, summarizes the efforts performed at the Idaho National Engineering and Environmental Laboratory (INEEL) to make a hazardous waste code determination on Item Description Codes (IDCs) 001, 002, and 800 drums. This characterization effort included a thorough review of acceptable knowledge (AK), physical characterization, waste form sampling, chemical analyses, and headspace gas data. This effort included an assessment of pre-Waste Analysis Plan (WAP) solidified sampling and analysis data (referred to as preliminary data). Seventy-five First/Second-Stage Sludge Drums, provided in Table 1-1, have been subjected to core sampling and analysis using the requirements defined in the Quality Assurance Program Plan (QAPP). Based on WAP defined statistical reduction, of preliminary data, a sample size of five was calculated. That is, five additional drums should be core sampled and analyzed. A total of seven drums were sampled, analyzed, and validated in compliance with the WAP criteria. The pre-WAP data (taken under the QAPP) correlated very well with the WAP compliant drum data. As a result, no additional sampling is required. Based upon the information summarized in this document, an accurate hazardous waste determination has been made for the First/Second-Stage Sludge Waste Stream

  1. Multi-hazard risk analysis related to hurricanes

    Science.gov (United States)

    Lin, Ning

    Hurricanes present major hazards to the United States. Associated with extreme winds, heavy rainfall, and storm surge, landfalling hurricanes often cause enormous structural damage to coastal regions. Hurricane damage risk assessment provides the basis for loss mitigation and related policy-making. Current hurricane risk models, however, often oversimplify the complex processes of hurricane damage. This dissertation aims to improve existing hurricane risk assessment methodology by coherently modeling the spatial-temporal processes of storm landfall, hazards, and damage. Numerical modeling technologies are used to investigate the multiplicity of hazards associated with landfalling hurricanes. The application and effectiveness of current weather forecasting technologies to predict hurricane hazards is investigated. In particular, the Weather Research and Forecasting model (WRF), with Geophysical Fluid Dynamics Laboratory (GFDL)'s hurricane initialization scheme, is applied to the simulation of the wind and rainfall environment during hurricane landfall. The WRF model is further coupled with the Advanced Circulation (AD-CIRC) model to simulate storm surge in coastal regions. A case study examines the multiple hazards associated with Hurricane Isabel (2003). Also, a risk assessment methodology is developed to estimate the probability distribution of hurricane storm surge heights along the coast, particularly for data-scarce regions, such as New York City. This methodology makes use of relatively simple models, specifically a statistical/deterministic hurricane model and the Sea, Lake and Overland Surges from Hurricanes (SLOSH) model, to simulate large numbers of synthetic surge events, and conducts statistical analysis. The estimation of hurricane landfall probability and hazards are combined with structural vulnerability models to estimate hurricane damage risk. Wind-induced damage mechanisms are extensively studied. An innovative windborne debris risk model is

  2. Lithium-thionyl chloride cell system safety hazard analysis

    Science.gov (United States)

    Dampier, F. W.

    1985-03-01

    This system safety analysis for the lithium thionyl chloride cell is a critical review of the technical literature pertaining to cell safety and draws conclusions and makes recommendations based on this data. The thermodynamics and kinetics of the electrochemical reactions occurring during discharge are discussed with particular attention given to unstable SOCl2 reduction intermediates. Potentially hazardous reactions between the various cell components and discharge products or impurities that could occur during electrical or thermal abuse are described and the most hazardous conditions and reactions identified. Design factors influencing the safety of Li/SOCl2 cells, shipping and disposal methods and the toxicity of Li/SOCl2 battery components are additional safety issues that are also addressed.

  3. Spectrum analysis on quality requirements consideration in software design documents.

    Science.gov (United States)

    Kaiya, Haruhiko; Umemura, Masahiro; Ogata, Shinpei; Kaijiri, Kenji

    2013-12-01

    Software quality requirements defined in the requirements analysis stage should be implemented in the final products, such as source codes and system deployment. To guarantee this meta-requirement, quality requirements should be considered in the intermediate stages, such as the design stage or the architectural definition stage. We propose a novel method for checking whether quality requirements are considered in the design stage. In this method, a technique called "spectrum analysis for quality requirements" is applied not only to requirements specifications but also to design documents. The technique enables us to derive the spectrum of a document, and quality requirements considerations in the document are numerically represented in the spectrum. We can thus objectively identify whether the considerations of quality requirements in a requirements document are adapted to its design document. To validate the method, we applied it to commercial software systems with the help of a supporting tool, and we confirmed that the method worked well.

  4. Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts

    International Nuclear Information System (INIS)

    Budnitz, R.J.; Apostolakis, G.; Boore, D.M.

    1997-04-01

    Probabilistic Seismic Hazard Analysis (PSHA) is a methodology that estimates the likelihood that various levels of earthquake-caused ground motion will be exceeded at a given location in a given future time period. Due to large uncertainties in all the geosciences data and in their modeling, multiple model interpretations are often possible. This leads to disagreement among experts, which in the past has led to disagreement on the selection of ground motion for design at a given site. In order to review the present state-of-the-art and improve on the overall stability of the PSHA process, the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), and the Electric Power Research Institute (EPRI) co-sponsored a project to provide methodological guidance on how to perform a PSHA. The project has been carried out by a seven-member Senior Seismic Hazard Analysis Committee (SSHAC) supported by a large number other experts. The SSHAC reviewed past studies, including the Lawrence Livermore National Laboratory and the EPRI landmark PSHA studies of the 1980's and examined ways to improve on the present state-of-the-art. The Committee's most important conclusion is that differences in PSHA results are due to procedural rather than technical differences. Thus, in addition to providing a detailed documentation on state-of-the-art elements of a PSHA, this report provides a series of procedural recommendations. The role of experts is analyzed in detail. Two entities are formally defined-the Technical Integrator (TI) and the Technical Facilitator Integrator (TFI)--to account for the various levels of complexity in the technical issues and different levels of efforts needed in a given study

  5. Recommendations for probabilistic seismic hazard analysis: Guidance on uncertainty and use of experts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-04-01

    Probabilistic Seismic Hazard Analysis (PSHA) is a methodology that estimates the likelihood that various levels of earthquake-caused ground motion will be exceeded at a given location in a given future time period. Due to large uncertainties in all the geosciences data and in their modeling, multiple model interpretations are often possible. This leads to disagreement among experts, which in the past has led to disagreement on the selection of ground motion for design at a given site. In order to review the present state-of-the-art and improve on the overall stability of the PSHA process, the U.S. Nuclear Regulatory Commission (NRC), the U.S. Department of Energy (DOE), and the Electric Power Research Institute (EPRI) co-sponsored a project to provide methodological guidance on how to perform a PSHA. The project has been carried out by a seven-member Senior Seismic Hazard Analysis Committee (SSHAC) supported by a large number other experts. The SSHAC reviewed past studies, including the Lawrence Livermore National Laboratory and the EPRI landmark PSHA studies of the 1980`s and examined ways to improve on the present state-of-the-art. The Committee`s most important conclusion is that differences in PSHA results are due to procedural rather than technical differences. Thus, in addition to providing a detailed documentation on state-of-the-art elements of a PSHA, this report provides a series of procedural recommendations. The role of experts is analyzed in detail. Two entities are formally defined-the Technical Integrator (TI) and the Technical Facilitator Integrator (TFI)--to account for the various levels of complexity in the technical issues and different levels of efforts needed in a given study.

  6. A Flocking Based algorithm for Document Clustering Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL

    2006-01-01

    Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.

  7. Seismic hazard analysis of the NPP Kozloduy site

    International Nuclear Information System (INIS)

    Petrovski, D.; Stamatovska, S.; Arsovski, M.; Hadzievski, D.; Sokerova, D.; Solakov, D.; Vaptzarov, I.; Satchanski, S.

    1993-01-01

    The principal objective of this study is to define the seismic hazard for the NPP Kozloduy site. Seismic hazard is by rule defined by the probability distribution function of the peak value of the chosen ground motion parameter in a defined time interval. The overall study methodology consists of reviewing the existing geological, seismological and tectonic information to formulate this information into a mathematical model of seismic activity of the region and using this assess earthquake ground motion in terms of probability. Detailed regional and local seismological investigations have been performed. Regional investigations encompass the area within a radius of 320 km from the NPP Kozloduy site. The results of these investigations include all seismological parameters that are necessary for determination of the mathematical model of the seismicity of the region needed for the seismic hazard analysis. Regional geological and neotectonic investigations were also performed for the wider area including almost the whole territory of Bulgaria, a large part of Serbia, part of Macedonia and almost the whole south part of Romania

  8. Technical Guidance for Hazardous Analysis, Emergency Planning for Extremely Hazardous Substances

    Science.gov (United States)

    This current guide supplements NRT-1 by providing technical assistance to LEPCs to assess the lethal hazards related to potential airborne releases of extremely hazardous substances (EHSs) as designated under Section 302 of Title Ill of SARA.

  9. Hazard Detection Software for Lunar Landing

    Science.gov (United States)

    Huertas, Andres; Johnson, Andrew E.; Werner, Robert A.; Montgomery, James F.

    2011-01-01

    The Autonomous Landing and Hazard Avoidance Technology (ALHAT) Project is developing a system for safe and precise manned lunar landing that involves novel sensors, but also specific algorithms. ALHAT has selected imaging LIDAR (light detection and ranging) as the sensing modality for onboard hazard detection because imaging LIDARs can rapidly generate direct measurements of the lunar surface elevation from high altitude. Then, starting with the LIDAR-based Hazard Detection and Avoidance (HDA) algorithm developed for Mars Landing, JPL has developed a mature set of HDA software for the manned lunar landing problem. Landing hazards exist everywhere on the Moon, and many of the more desirable landing sites are near the most hazardous terrain, so HDA is needed to autonomously and safely land payloads over much of the lunar surface. The HDA requirements used in the ALHAT project are to detect hazards that are 0.3 m tall or higher and slopes that are 5 or greater. Steep slopes, rocks, cliffs, and gullies are all hazards for landing and, by computing the local slope and roughness in an elevation map, all of these hazards can be detected. The algorithm in this innovation is used to measure slope and roughness hazards. In addition to detecting these hazards, the HDA capability also is able to find a safe landing site free of these hazards for a lunar lander with diameter .15 m over most of the lunar surface. This software includes an implementation of the HDA algorithm, software for generating simulated lunar terrain maps for testing, hazard detection performance analysis tools, and associated documentation. The HDA software has been deployed to Langley Research Center and integrated into the POST II Monte Carlo simulation environment. The high-fidelity Monte Carlo simulations determine the required ground spacing between LIDAR samples (ground sample distances) and the noise on the LIDAR range measurement. This simulation has also been used to determine the effect of

  10. Use of cartography in historical seismicity analysis: a reliable tool to better apprehend the contextualization of the historical documents

    Science.gov (United States)

    Thibault, Fradet; Grégory, Quenet; Kevin, Manchuel

    2014-05-01

    Historical studies, including historical seismicity analysis, deal with historical documents. Numerous factors, such as culture, social condition, demography, political situations and opinions or religious ones influence the way the events are transcribed in the archives. As a consequence, it is crucial to contextualize and compare the historical documents reporting on a given event in order to reduce the uncertainties affecting their analysis and interpretation. When studying historical seismic events it is often tricky to have a global view of all the information provided by the historical documents. It is also difficult to extract cross-correlated information from the documents and draw a precise historical context. Use of cartographic and geographic tools in GIS software is the best tool for the synthesis, interpretation and contextualization of the historical material. The main goal is to produce the most complete dataset of available information, in order to take into account all the components of the historical context and consequently improve the macroseismic analysis. The Entre-Deux-Mers earthquake (1759, Iepc= VII-VIII) [SISFRANCE 2013 - EDF-IRSN-BRGM] is well documented but has never benefited from a cross-analysis of historical documents and historical context elements. The map of available intensity data from SISFRANCE highlights a gap in macroseismic information within the estimated epicentral area. The aim of this study is to understand the origin of this gap by making a cartographic compilation of both, archive information and historical context elements. The results support the hypothesis that the lack of documents and macroseismic data in the epicentral area is related to a low human activity rather than low seismic effects in this zone. Topographic features, geographical position, flood hazard, roads and pathways locations, vineyards distribution and the forester coverage, mentioned in the archives and reported on the Cassini's map confirm this

  11. 18 CFR 1316.9 - Nuclear energy hazards and nuclear incidents.

    Science.gov (United States)

    2010-04-01

    ... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Nuclear energy hazards... Text of Conditions and Certifications § 1316.9 Nuclear energy hazards and nuclear incidents. When so... documents or actions: Nuclear Energy Hazards and Nuclear Incidents (Applicable only to contracts for goods...

  12. Fire hazard analysis of the radioactive mixed waste trenchs

    International Nuclear Information System (INIS)

    McDonald, K.M.

    1995-01-01

    This Fire Hazards Analysis (FHA) is intended to assess comprehensively the risk from fire associated with the disposal of low level radioactive mixed waste in trenches within the lined landfills, provided by Project W-025, designated Trench 31 and 34 of the Burial Ground 218-W-5. Elements within the FHA make recommendations for minimizing risk to workers, the public, and the environment from fire during the course of the operation's activity. Transient flammables and combustibles present that support the operation's activity are considered and included in the analysis. The graded FHA contains the following elements: description of construction, protection of essential safety class equipment, fire protection features, description of fire hazards, life safety considerations, critical process equipment, high value property, damage potential--maximum credible fire loss (MCFL) and maximum possible fire loss (MPFL), fire department/brigade response, recovery potential, potential for a toxic, biological and/or radiation incident due to a fire, emergency planning, security considerations related to fire protection, natural hazards (earthquake, flood, wind) impact on fire safety, and exposure fire potential, including the potential for fire spread between fire areas. Recommendations for limiting risk are made in the text of this report and printed in bold type. All recommendations are repeated in a list in Section 18.0

  13. Feasibility Study of Low-Cost Image-Based Heritage Documentation in Nepal

    Science.gov (United States)

    Dhonju, H. K.; Xiao, W.; Sarhosis, V.; Mills, J. P.; Wilkinson, S.; Wang, Z.; Thapa, L.; Panday, U. S.

    2017-02-01

    Cultural heritage structural documentation is of great importance in terms of historical preservation, tourism, educational and spiritual values. Cultural heritage across the world, and in Nepal in particular, is at risk from various natural hazards (e.g. earthquakes, flooding, rainfall etc), poor maintenance and preservation, and even human destruction. This paper evaluates the feasibility of low-cost photogrammetric modelling cultural heritage sites, and explores the practicality of using photogrammetry in Nepal. The full pipeline of 3D modelling for heritage documentation and conservation, including visualisation, reconstruction, and structure analysis, is proposed. In addition, crowdsourcing is discussed as a method of data collection of growing prominence.

  14. Mixed waste characterization reference document

    International Nuclear Information System (INIS)

    1997-09-01

    Waste characterization and monitoring are major activities in the management of waste from generation through storage and treatment to disposal. Adequate waste characterization is necessary to ensure safe storage, selection of appropriate and effective treatment, and adherence to disposal standards. For some wastes characterization objectives can be difficult and costly to achieve. The purpose of this document is to evaluate costs of characterizing one such waste type, mixed (hazardous and radioactive) waste. For the purpose of this document, waste characterization includes treatment system monitoring, where monitoring is a supplement or substitute for waste characterization. This document establishes a cost baseline for mixed waste characterization and treatment system monitoring requirements from which to evaluate alternatives. The cost baseline established as part of this work includes costs for a thermal treatment technology (i.e., a rotary kiln incinerator), a nonthermal treatment process (i.e., waste sorting, macronencapsulation, and catalytic wet oxidation), and no treatment (i.e., disposal of waste at the Waste Isolation Pilot Plant (WIPP)). The analysis of improvement over the baseline includes assessment of promising areas for technology development in front-end waste characterization, process equipment, off gas controls, and monitoring. Based on this assessment, an ideal characterization and monitoring configuration is described that minimizes costs and optimizes resources required for waste characterization

  15. Data Quality Objectives for Regulatory Requirements for Hazardous and Radioactive Air Emissions Sampling and Analysis; FINAL

    International Nuclear Information System (INIS)

    MULKEY, C.H.

    1999-01-01

    This document describes the results of the data quality objective (DQO) process undertaken to define data needs for state and federal requirements associated with toxic, hazardous, and/or radiological air emissions under the jurisdiction of the River Protection Project (RPP). Hereafter, this document is referred to as the Air DQO. The primary drivers for characterization under this DQO are the regulatory requirements pursuant to Washington State regulations, that may require sampling and analysis. The federal regulations concerning air emissions are incorporated into the Washington State regulations. Data needs exist for nonradioactive and radioactive waste constituents and characteristics as identified through the DQO process described in this document. The purpose is to identify current data needs for complying with regulatory drivers for the measurement of air emissions from RPP facilities in support of air permitting. These drivers include best management practices; similar analyses may have more than one regulatory driver. This document should not be used for determining overall compliance with regulations because the regulations are in constant change, and this document may not reflect the latest regulatory requirements. Regulatory requirements are also expected to change as various permits are issued. Data needs require samples for both radionuclides and nonradionuclide analytes of air emissions from tanks and stored waste containers. The collection of data is to support environmental permitting and compliance, not for health and safety issues. This document does not address health or safety regulations or requirements (those of the Occupational Safety and Health Administration or the National Institute of Occupational Safety and Health) or continuous emission monitoring systems. This DQO is applicable to all equipment, facilities, and operations under the jurisdiction of RPP that emit or have the potential to emit regulated air pollutants

  16. Fire Hazard Analysis for the Cold Neutron Source System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-15

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area.

  17. Fire Hazard Analysis for the Cold Neutron Source System

    International Nuclear Information System (INIS)

    Choi, Jung Won; Kim, Young Ki; Wu, Sang Ik; Park, Young Cheol; Kim, Bong Soo; Kang, Mee Jin; Oh, Sung Wook

    2006-04-01

    As the Cold Neutron Source System for its installation in HANARO has been designing, the fire hazard analysis upon the CNS system becomes required under No. 2003-20 of the MOST notice, Technical Standard about the Fire Hazard Analysis. As a moderator, the strongly flammable hydrogen is filled in the hydrogen system of CNS. Against the fire or explosion in the reactor hall, accordingly, the physical damage on the reactor safety system should be evaluated in order to reflect the safety protection precaution in the design of CNS system. For the purpose of fire hazard analysis, the accident scenarios were divided into three: hydrogen leak during the hydrogen charging in the system, hydrogen leak during the normal operation of CNS, explosion of hydrogen buffer tank by the external fire. The analysis results can be summarized as follows. First, there is no physical damage threatening the reactor safety system although all hydrogen gas came out of the system then ignited as a jet fire. Second, since the CNS equipment island (CEI) is located enough away from the reactor, no physical damage caused by the buffer tank explosion is on the reactor in terms of the overpressure except the flying debris so that the light two-hour fireproof panel is installed in an one side of hydrogen buffer tank. Third, there are a few combustibles on the second floor of CEI so that the fire cannot be propagated to other areas in the reactor hall; however, the light two-hour fireproof panel will be built on the second floor against the external or internal fire so as to play the role of a fire protection area

  18. Advancing the citizen scientist's contributions to documenting and understanding natural hazards: a proof of concept for linking crowdsourced and remotely sensed data on landslide hazards in El Salvador

    Science.gov (United States)

    Anderson, E. R.; Griffin, R.; Markert, K. N.

    2017-12-01

    Scientists, practitioners, policymakers, and citizen groups, share a role in ensuring "that all sectors have access to, understand and can use scientific information for better informed decision-making" (Sendai Framework 2015-2030). When it comes to understanding hazards and exposure, inventories on disaster events are often limited. Thus, there are many opportunities for citizen scientists to engage in improving the collective understanding—and ultimately reduction—of disaster risk. Landslides are very difficult to forecast on spatial and temporal scales meaningful for early warning and evacuation. Heuristic hazard mapping methods are very common in regional hazard zonation and rely on expert knowledge of previous events and local conditions, but they often lack a temporal component. As new data analysis packages are becoming more open and accessible, probabilistic approaches that consider high resolution spatial and temporal dimensions are becoming more common, but this is only possible when rich inventories of landslide events exist. The work presented offers a proof of concept on incorporating crowd-sourced data to improve landslide hazard model performance. Starting with a national inventory of 90 catalogued landslides in El Salvador for a study period of 1998 to 2011, we simulate the addition of over 600 additional crowd-sourced landslide events that would have been identified through human interpretation of high resolution imagery in the Google Earth time slider feature. There is a noticeable improvement in performance statistics between static heuristic hazard models and probabilistic models that incorporate the events identified by the "crowd." Such a dynamic incorporation of crowd-sourced data on hazard events is not so far-fetched. Given the engagement of "local observers" in El Salvador who augment in situ hydro-meteorological measurements, the growing access to Earth observation data to the lay person, and immense interest behind connecting citizen

  19. Investigating the presence of hazardous materials in buildings

    International Nuclear Information System (INIS)

    Gustitus, D.A.; Blaisdell, P.M.

    1996-01-01

    Environmental hazards in buildings can be found in the air, on exposed surfaces, or hidden in roofs, walls, and systems. They can exist in buildings in solid, liquid, and gaseous states. A sound methodology for investigating the presence of environmental hazards in buildings should include several components. The first step in planning an investigation of environmental hazards in buildings is to ascertain why the investigation is to be performed. Research should be performed to review available documentation on the building. Next, a visual inspection of the building should be performed to identify and document existing conditions, and all suspect materials containing environmental hazards. Lastly, samples of suspect materials should be collected for testing. It is important to sample appropriate materials, based on the information obtained during the previous steps of the investigation. It is also important to collect the samples using standard procedures. Pollutants of concern include asbestos, lead, PCBs, and radon

  20. Navy Shipboard Hazardous Material Minimization Program

    Energy Technology Data Exchange (ETDEWEB)

    Bieberich, M.J. [Naval Surface Warfare Center, Annapolis, MD (United States). Carderock Div.; Robinson, P. [Life Cycle Engineering, Inc., Charleston, SC (United States); Chastain, B.

    1994-12-31

    The use of hazardous (and potentially hazardous) materials in shipboard cleaning applications has proliferated as new systems and equipments have entered the fleet to reside alongside existing equipments. With the growing environmental awareness (and additional, more restrictive regulations) at all levels/echelon commands of the DoD, the Navy has initiated a proactive program to undertake the minimization/elimination of these hazardous materials in order to eliminate HMs at the source. This paper will focus on the current Shipboard Hazardous Materials Minimization Program initiatives including the identification of authorized HM currently used onboard, identification of potential substitute materials for HM replacement, identification of new cleaning technologies and processes/procedures, and identification of technical documents which will require revision to eliminate the procurement of HMs into the federal supply system. Also discussed will be the anticipated path required to implement the changes into the fleet and automated decision processes (substitution algorithm) currently employed. The paper will also present the most recent technologies identified for approval or additional testing and analysis including: supercritical CO{sub 2} cleaning, high pressure blasting (H{sub 2}O + baking soda), aqueous and semi-aqueous cleaning materials and processes, solvent replacements and dedicated parts washing systems with internal filtering capabilities, automated software for solvent/cleaning process substitute selection. Along with these technological advances, data availability (from on-line databases and CDROM Database libraries) will be identified and discussed.

  1. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual

    International Nuclear Information System (INIS)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs

  2. Modified hazard ranking system for sites with mixed radioactive and hazardous wastes. User manual.

    Energy Technology Data Exchange (ETDEWEB)

    Hawley, K.A.; Peloquin, R.A.; Stenner, R.D.

    1986-04-01

    This document describes both the original Hazard Ranking System and the modified Hazard Ranking System as they are to be used in evaluating the relative potential for uncontrolled hazardous substance facilities to cause human health or safety problems or ecological or environmental damage. Detailed instructions for using the mHRS/HRS computer code are provided, along with instructions for performing the calculations by hand. Uniform application of the ranking system will permit the DOE to identify those releases of hazardous substances that pose the greatest hazard to humans or the environment. However, the mHRS/HRS by itself cannot establish priorities for the allocation of funds for remedial action. The mHRS/HRS is a means for applying uniform technical judgment regarding the potential hazards presented by a facility relative to other facilities. It does not address the feasibility, desirability, or degree of cleanup required. Neither does it deal with the readiness or ability of a state to carry out such remedial action, as may be indicated, or to meet other conditions prescribed in CERCLA. 13 refs., 13 figs., 27 tabs.

  3. Guidance document on practices to model and implement Earthquake hazards in extended PSA (final version). Volume 1

    International Nuclear Information System (INIS)

    Decker, K.; Hirata, K.; Groudev, P.

    2016-01-01

    The current report provides guidance for the assessment of seismo-tectonic hazards in level 1 and 2 PSA. The objective is to review existing guidance, identify methodological challenges, and to propose novel guidance on key issues. Guidance for the assessment of vibratory ground motion and fault capability comprises the following: - listings of data required for the hazard assessment and methods to estimate data quality and completeness; - in-depth discussion of key input parameters required for hazard models; - discussions on commonly applied hazard assessment methodologies; - references to recent advances of science and technology. Guidance on the assessment of correlated or coincident hazards comprises of chapters on: - screening of correlated hazards; - assessment of correlated hazards (natural and man-made); - assessment of coincident hazards. (authors)

  4. Integrating Volcanic Hazard Data in a Systematic Approach to Develop Volcanic Hazard Maps in the Lesser Antilles

    Directory of Open Access Journals (Sweden)

    Jan M. Lindsay

    2018-04-01

    Full Text Available We report on the process of generating the first suite of integrated volcanic hazard zonation maps for the islands of Dominica, Grenada (including Kick ‘em Jenny and Ronde/Caille, Nevis, Saba, St. Eustatius, St. Kitts, Saint Lucia, and St Vincent in the Lesser Antilles. We developed a systematic approach that accommodated the range in prior knowledge of the volcanoes in the region. A first-order hazard assessment for each island was used to develop one or more scenario(s of likely future activity, for which scenario-based hazard maps were generated. For the most-likely scenario on each island we also produced a poster-sized integrated volcanic hazard zonation map, which combined the individual hazardous phenomena depicted in the scenario-based hazard maps into integrated hazard zones. We document the philosophy behind the generation of this suite of maps, and the method by which hazard information was combined to create integrated hazard zonation maps, and illustrate our approach through a case study of St. Vincent. We also outline some of the challenges we faced using this approach, and the lessons we have learned by observing how stakeholders have interacted with the maps over the past ~10 years. Based on our experience, we recommend that future map makers involve stakeholders in the entire map generation process, especially when making design choices such as type of base map, use of colour and gradational boundaries, and indeed what to depict on the map. We also recommend careful consideration of how to evaluate and depict offshore hazard of island volcanoes, and recommend computer-assisted modelling of all phenomena to generate more realistic hazard footprints. Finally, although our systematic approach to integrating individual hazard data into zones generally worked well, we suggest that a better approach might be to treat the integration of hazards on a case-by-case basis to ensure the final product meets map users' needs. We hope that

  5. Employing high resolution satellite imagery to document a rapid glacier surge in the Karakoram - risks and opportunities for hazard assessment

    Science.gov (United States)

    Steiner, J. F.; Kraaijenbrink, P. D. A.; Jiduc, S. G.; Immerzeel, W. W.

    2017-12-01

    Glacier surges occur regularly in the Karakoram but their driving mechanisms, recurrence and its relation to climatic change remain unclear. Since many glacier tongues in the region reach to very low elevations, local populations are often exposed to glacial hazards. While the scientific interpretation of hazard is one challenge, adequately communicating results to possibly affected stakeholders poses a different set of hurdles. Using DEMs as well as Landsat imagery in combination with high-resolution Planet imagery we quantify surface elevation changes and flow velocities to document a glacier surge of the Khurdopin glacier, located in a remote valley in Pakistan, in the first half of 2017. Results reveal that an accumulation of ice mass leads to a rapid surge in peaking with velocities above 5000 m a-1 or 0.5 m h-1 during a few days. Velocities increase steadily during a four-year build-up phase prior to the actual surge, while the remaining 15 years of the recurring cycle the glacier is quiescent. It is hypothesized that the surge is mainly initiated as a result of increased pressure melting caused by ice accumulation. However, surface observations show increased crevassing and disappearance of supra glacial ponds, which could have led to increased lubrication of the glacier bed. As a consequence of the surging tongue blocking the main valley a lake has formed and grown continuously in size over two months at a rate of up to 3000 m2 per day. Using satellite imagery with a frequent overpass rate we are able to (a) characterize the nature of glacier surges in the region with greater detail and (b) monitor the surge as well as the formation of the lake as it develops. Having developed a connection to local stakeholders we were able to provide rapid hazard assessments to affected communities, which can be employed to define possible actions. We show the potential of satellite imagery - freely available Landsat in combination with commercial Planet imagery -, which

  6. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  7. Proposed Risk-Informed Seismic Hazard Periodic Reevaluation Methodology for Complying with DOE Order 420.1C

    Energy Technology Data Exchange (ETDEWEB)

    Kammerer, Annie [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-10-01

    Department of Energy (DOE) nuclear facilities must comply with DOE Order 420.1C Facility Safety, which requires that all such facilities review their natural phenomena hazards (NPH) assessments no less frequently than every ten years. The Order points the reader to Standard DOE-STD-1020-2012. In addition to providing a discussion of the applicable evaluation criteria, the Standard references other documents, including ANSI/ANS-2.29-2008 and NUREG-2117. These documents provide supporting criteria and approaches for evaluating the need to update an existing probabilistic seismic hazard analysis (PSHA). All of the documents are consistent at a high level regarding the general conceptual criteria that should be considered. However, none of the documents provides step-by-step detailed guidance on the required or recommended approach for evaluating the significance of new information and determining whether or not an existing PSHA should be updated. Further, all of the conceptual approaches and criteria given in these documents deal with changes that may have occurred in the knowledge base that might impact the inputs to the PSHA, the calculated hazard itself, or the technical basis for the hazard inputs. Given that the DOE Order is aimed at achieving and assuring the safety of nuclear facilities—which is a function not only of the level of the seismic hazard but also the capacity of the facility to withstand vibratory ground motions—the inclusion of risk information in the evaluation process would appear to be both prudent and in line with the objectives of the Order. The purpose of this white paper is to describe a risk-informed methodology for evaluating the need for an update of an existing PSHA consistent with the DOE Order. While the development of the proposed methodology was undertaken as a result of assessments for specific SDC-3 facilities at Idaho National Laboratory (INL), and it is expected that the application at INL will provide a demonstration of the

  8. Final Hazard Categorization for the Remediation of the 116-C-3 Chemical Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    T. M. Blakley; W. D. Schofield

    2007-09-10

    This final hazard categorization (FHC) document examines the hazards, identifies appropriate controls to manage the hazards, and documents the commitments for the 116-C-3 Chemical Waste Tanks Remediation Project. The remediation activities analyzed in this FHC are based on recommended treatment and disposal alternatives described in the Engineering Evaluation for the Remediation to the 116-C-3 Chemical Waste Tanks (BHI 2005e).

  9. Evaluation of an active learning module to teach hazard and risk in Hazard Analysis and Critical Control Points (HACCP) classes.

    Science.gov (United States)

    Oyarzabal, Omar A; Rowe, Ellen

    2017-04-01

    The terms hazard and risk are significant building blocks for the organization of risk-based food safety plans. Unfortunately, these terms are not clear for some personnel working in food manufacturing facilities. In addition, there are few examples of active learning modules for teaching adult participants the principles of hazard analysis and critical control points (HACCP). In this study, we evaluated the effectiveness of an active learning module to teach hazard and risk to participants of HACCP classes provided by the University of Vermont Extension in 2015 and 2016. This interactive module is comprised of a questionnaire; group playing of a dice game that we have previously introduced in the teaching of HACCP; the discussion of the terms hazard and risk; and a self-assessment questionnaire to evaluate the teaching of hazard and risk. From 71 adult participants that completed this module, 40 participants (56%) provided the most appropriate definition of hazard, 19 participants (27%) provided the most appropriate definition of risk, 14 participants (20%) provided the most appropriate definitions of both hazard and risk, and 23 participants (32%) did not provide an appropriate definition for hazard or risk. Self-assessment data showed an improvement in the understanding of these terms (P active learning modules to teach food safety classes. This study suggests that active learning helps food personnel better understand important food safety terms that serve as building blocks for the understanding of more complex food safety topics.

  10. Hazard Baseline Downgrade Effluent Treatment Facility

    International Nuclear Information System (INIS)

    Blanchard, A.

    1998-01-01

    This Hazard Baseline Downgrade reviews the Effluent Treatment Facility, in accordance with Department of Energy Order 5480.23, WSRC11Q Facility Safety Document Manual, DOE-STD-1027-92, and DOE-EM-STD-5502-94. It provides a baseline grouping based on the chemical and radiological hazards associated with the facility. The Determination of the baseline grouping for ETF will aid in establishing the appropriate set of standards for the facility

  11. Fire hazard analysis for fusion energy experiments

    International Nuclear Information System (INIS)

    Alvares, N.J.; Hasegawa, H.K.

    1979-01-01

    The 2XIIB mirror fusion facility at Lawrence Livermore Laboratory (LLL) was used to evaluate the fire safety of state-of-the-art fusion energy experiments. The primary objective of this evaluation was to ensure the parallel development of fire safety and fusion energy technology. Through fault-tree analysis, we obtained a detailed engineering description of the 2XIIB fire protection system. This information helped us establish an optimum level of fire protection for experimental fusion energy facilities as well as evaluate the level of protection provided by various systems. Concurrently, we analyzed the fire hazard inherent to the facility using techniques that relate the probability of ignition to the flame spread and heat-release potential of construction materials, electrical and thermal insulations, and dielectric fluids. A comparison of the results of both analyses revealed that the existing fire protection system should be modified to accommodate the range of fire hazards inherent to the 2XIIB facility

  12. Preliminary fire hazards analysis for W-211, Initial Tank Retrieval Systems

    International Nuclear Information System (INIS)

    Huckfeldt, R.A.

    1995-01-01

    A fire hazards analysis (FHA) was performed for Project W-211, Initial Tank Retrieval System (ITRS), at the Department of Energy (DOE) Hanford site. The objectives of this FHA was to determine (1) the fire hazards that expose the Initial Tank Retrieval System or are inherent in the process, (2) the adequacy of the fire-safety features planned, and (3) the degree of compliance of the project with specific fire safety provisions in DOE orders and related engineering codes and standards. The scope included the construction, the process hazards, building fire protection, and site wide fire protection. The results are presented in terms of the fire hazards present, the potential extent of fire damage, and the impact on employees and public safety. This study evaluated the ITRS with respect to its use at Tank 241-SY-101 only

  13. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory's hazardous waste management facility

    International Nuclear Information System (INIS)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W.

    1998-01-01

    The Department of Energy's (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory's Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an open-quotes As Low as Reasonably Achievableclose quotes (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report

  14. Probabilistic seismic hazard analysis - lessons learned: A regulator's perspective

    International Nuclear Information System (INIS)

    Reiter, L.

    1990-01-01

    Probabilistic seismic hazard analysis is a powerful, rational and attractive tool for decision-making. It is capable of absorbing and integrating a wide range of information and judgement and their associated uncertainties into a flexible framework that permits the application of societal goals and priorities. Unfortunately, its highly integrative nature can obscure those elements which drive the results, its highly quantitative nature can lead to false impressions of accuracy, and its open embrace of uncertainty can make decision-making difficult. Addressing these problems can only help to increase its use and make it more palatable to those who need to assess seismic hazard and utilize the results. (orig.)

  15. Market mechanisms for compensating hazardous work: a critical analysis

    International Nuclear Information System (INIS)

    Shakow, D.

    1984-01-01

    Adam Smith's theory that the marketplace can compensate workers for social inequities (i.e., hazards, boredom, etc.) in the work place is applied to the nuclear industry. The author argues that market mechanisms are unlikely to ensure adequate compensation for work-related hazards. He summarizes and critiques the neoclassical compensating-wage hypothesis, then reviews empirical evidence in support of the hypothesis in light of an alternative hypothesis derived from the literature on labor market segmentation. He challenges the assumption of perfect labor mobility and perfect information. A promising direction for further research would be a structural analysis of the emerging market for temporary workers. 13 references, 2 figures

  16. Automation for System Safety Analysis

    Science.gov (United States)

    Malin, Jane T.; Fleming, Land; Throop, David; Thronesbery, Carroll; Flores, Joshua; Bennett, Ted; Wennberg, Paul

    2009-01-01

    This presentation describes work to integrate a set of tools to support early model-based analysis of failures and hazards due to system-software interactions. The tools perform and assist analysts in the following tasks: 1) extract model parts from text for architecture and safety/hazard models; 2) combine the parts with library information to develop the models for visualization and analysis; 3) perform graph analysis and simulation to identify and evaluate possible paths from hazard sources to vulnerable entities and functions, in nominal and anomalous system-software configurations and scenarios; and 4) identify resulting candidate scenarios for software integration testing. There has been significant technical progress in model extraction from Orion program text sources, architecture model derivation (components and connections) and documentation of extraction sources. Models have been derived from Internal Interface Requirements Documents (IIRDs) and FMEA documents. Linguistic text processing is used to extract model parts and relationships, and the Aerospace Ontology also aids automated model development from the extracted information. Visualizations of these models assist analysts in requirements overview and in checking consistency and completeness.

  17. Final hazard classification for the 183-C D ampersand D project

    International Nuclear Information System (INIS)

    Zimmer, J.J.

    1995-01-01

    The intent of this document is to provide a final Hazard Classification for the Decontamination and Decommissioning (D ampersand D) activities associated with the 183-C Filter Plant/Pump Room facility. The Hazard Classification was determined based upon DOE-EM-STD-5502-94, ''DOE Limited Standard, Hazard Baseline Documentation,'' issued by the US Department of Energy. The 183-C Filter Plant/Pump Room facility was constructed to support operations of the 105-B and 105-C Reactors at the Hanford Site. Since shutdown of the 105-C Reactor in April 1969, the 183-C facility has been kept in a safe storage condition

  18. Transportation of Hazardous Evidentiary Material.

    Energy Technology Data Exchange (ETDEWEB)

    Osborn, Douglas.

    2005-06-01

    This document describes the specimen and transportation containers currently available for use with hazardous and infectious materials. A detailed comparison of advantages, disadvantages, and costs of the different technologies is included. Short- and long-term recommendations are also provided.3 DraftDraftDraftExecutive SummaryThe Federal Bureau of Investigation's Hazardous Materials Response Unit currently has hazardous material transport containers for shipping 1-quart paint cans and small amounts of contaminated forensic evidence, but the containers may not be able to maintain their integrity under accident conditions or for some types of hazardous materials. This report provides guidance and recommendations on the availability of packages for the safe and secure transport of evidence consisting of or contaminated with hazardous chemicals or infectious materials. Only non-bulk containers were considered because these are appropriate for transport on small aircraft. This report will addresses packaging and transportation concerns for Hazardous Classes 3, 4, 5, 6, 8, and 9 materials. If the evidence is known or suspected of belonging to one of these Hazardous Classes, it must be packaged in accordance with the provisions of 49 CFR Part 173. The anthrax scare of several years ago, and less well publicized incidents involving unknown and uncharacterized substances, has required that suspicious substances be sent to appropriate analytical laboratories for analysis and characterization. Transportation of potentially hazardous or infectious material to an appropriate analytical laboratory requires transport containers that maintain both the biological and chemical integrity of the substance in question. As a rule, only relatively small quantities will be available for analysis. Appropriate transportation packaging is needed that will maintain the integrity of the substance, will not allow biological alteration, will not react chemically with the substance being

  19. Hazard categorization of K Basin water filtration upgrade project

    International Nuclear Information System (INIS)

    Conn, K.R.

    1995-01-01

    This supporting document provides the hazards categorization for the K Basin Water Filtration Upgrade Project at K East. All activities associated with the project are less than Hazard Category 3, except for the handling of the ECO-ROK liners containing spent filter cartridges. All activities involving the handling of liners, containing spent cartridges, by monorail, forklift or mobile crane are classified as Hazard Category 3

  20. Report 3: Guidance document on practices to model and implement Extreme Weather hazards in extended PSA

    International Nuclear Information System (INIS)

    Alzbutas, R.; Ostapchuk, S.; Borysiewicz, M.; Decker, K.; Kumar, Manorma; Haeggstroem, A.; Nitoi, M.; Groudev, P.; Parey, S.; Potempski, S.; Raimond, E.; Siklossy, T.

    2016-01-01

    The goal of this report is to provide guidance on practices to model Extreme Weather hazards and implement them in extended level 1 PSA. This report is a joint deliverable of work package 21 (WP21) and work package 22 (WP22). The general objective of WP21 is to provide guidance on all of the individual hazards selected at the End Users Workshop. This guidance is focusing on extreme weather hazards, namely: extreme wind, extreme temperature and snow pack. Other hazards, however, are considered in cases where they are correlated/ associated with the hazard under discussion. Guidance developed refers to existing guidance whenever possible. As it was recommended by end users this guidance covers questions of developing integrated and/or separated extreme weathers PSA models. (authors)

  1. A Similarity-Based Approach for Audiovisual Document Classification Using Temporal Relation Analysis

    Directory of Open Access Journals (Sweden)

    Ferrane Isabelle

    2011-01-01

    Full Text Available Abstract We propose a novel approach for video classification that bases on the analysis of the temporal relationships between the basic events in audiovisual documents. Starting from basic segmentation results, we define a new representation method that is called Temporal Relation Matrix (TRM. Each document is then described by a set of TRMs, the analysis of which makes events of a higher level stand out. This representation has been first designed to analyze any audiovisual document in order to find events that may well characterize its content and its structure. The aim of this work is to use this representation to compute a similarity measure between two documents. Approaches for audiovisual documents classification are presented and discussed. Experimentations are done on a set of 242 video documents and the results show the efficiency of our proposals.

  2. Preliminary hazard analysis using sequence tree method

    International Nuclear Information System (INIS)

    Huang Huiwen; Shih Chunkuan; Hung Hungchih; Chen Minghuei; Yih Swu; Lin Jiinming

    2007-01-01

    A system level PHA using sequence tree method was developed to perform Safety Related digital I and C system SSA. The conventional PHA is a brainstorming session among experts on various portions of the system to identify hazards through discussions. However, this conventional PHA is not a systematic technique, the analysis results strongly depend on the experts' subjective opinions. The analysis quality cannot be appropriately controlled. Thereby, this research developed a system level sequence tree based PHA, which can clarify the relationship among the major digital I and C systems. Two major phases are included in this sequence tree based technique. The first phase uses a table to analyze each event in SAR Chapter 15 for a specific safety related I and C system, such as RPS. The second phase uses sequence tree to recognize what I and C systems are involved in the event, how the safety related systems work, and how the backup systems can be activated to mitigate the consequence if the primary safety systems fail. In the sequence tree, the defense-in-depth echelons, including Control echelon, Reactor trip echelon, ESFAS echelon, and Indication and display echelon, are arranged to construct the sequence tree structure. All the related I and C systems, include digital system and the analog back-up systems are allocated in their specific echelon. By this system centric sequence tree based analysis, not only preliminary hazard can be identified systematically, the vulnerability of the nuclear power plant can also be recognized. Therefore, an effective simplified D3 evaluation can be performed as well. (author)

  3. ELECTRICAL POWER SYSTEM DESCRIPTION DOCUMENT

    Energy Technology Data Exchange (ETDEWEB)

    M. Maniyar

    2004-06-22

    The purpose of this revision of the System Description Document (SDD) is to establish requirements that drive the design of the electrical power system and their bases to allow the design effort to proceed to License Application. This SDD is a living document that will be revised at strategic points as the design matures over time. This SDD identifies the requirements and describes the system design as they exist at this time, with emphasis on those attributes of the design provided to meet the requirements. This SDD has been developed to be an engineering tool for design control. Accordingly, the primary audience are design engineers. This type of SDD leads and follows the design process. It leads the design process with regard to the flow down of upper tier requirements onto the system. Knowledge of these requirements is essential to performing the design process. This SDD follows the design with regard to the description of the system. The description provided in the SDD is a reflection of the results of the design process to date. Functional and operational requirements applicable to this system are obtained from ''Project Functional and Operational Requirements'' (F&OR) (Siddoway, 2003). Other requirements to support the design process have been taken from higher level requirements documents such as ''Project Design Criteria Document'' (PDC) (Doraswamy 2004), the fire hazards analyses, and the preclosure safety analysis. The above mentioned low-level documents address ''Project Requirements Document'' (PRD) (Canori and Leitner 2003) requirements. This SDD includes several appendices with supporting information. Appendix B lists key system charts, diagrams, drawings, and lists; and Appendix C is a list of system procedures.

  4. Development of hazard analysis by critical control points (HACCP) procedures to control organic chemical hazards in the agricultural production of raw food commodities.

    Science.gov (United States)

    Ropkins, Karl; Ferguson, Andrew; Beck, Angus J

    2003-01-01

    Hazard Analysis by Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards in the food chain. Effective HACCP requires the consideration of all chemical microbiological, and physical hazards. However, current procedures focus primarily on microbiological and physical hazards, while chemical aspects of HACCP have received relatively little attention. In this article we discuss the application of HACCP to organic chemical contaminants and the problems that are likely to be encountered in agriculture. We also present generic templates for the development of organic chemical contaminant HACCP procedures for selected raw food commodities, that is, cereal crops,raw meats, and milk.

  5. Subsurface Fire Hazards Technical Report

    International Nuclear Information System (INIS)

    Logan, R.C.

    1999-01-01

    The results from this report are preliminary and cannot be used as input into documents supporting procurement, fabrication, or construction. This technical report identifies fire hazards and proposes their mitigation for the subsurface repository fire protection system. The proposed mitigation establishes the minimum level of fire protection to meet NRC regulations, DOE fire protection orders, that ensure fire containment, adequate life safety provisions, and minimize property loss. Equipment requiring automatic fire suppression systems is identified. The subsurface fire hazards that are identified can be adequately mitigated

  6. Hazard analysis of Clostridium perfringens in the Skylab Food System

    Science.gov (United States)

    Bourland, C. T.; Huber, C. S.; Kiser, P. R.; Heidelbaugh, N. D.; Rowley, D. B.

    1974-01-01

    The Skylab Food System presented unique microbiological problems because food was warmed in null-gravity and because the heat source was limited to 69.4 C (to prevent boiling in null-gravity). For these reasons, the foods were manufactured using critical control point techniques of quality control coupled with appropriate hazard analyses. One of these hazard analyses evaluated the threat from Clostridium perfringens. Samples of food were inoculated with C. perfringens and incubated for 2 h at temperatures ranging from 25 to 55 C. Generation times were determined for the foods at various temperatures. Results of these tests were evaluated taking into consideration: food-borne disease epidemiology, the Skylab food manufacturing procedures, and the performance requirements of the Skylab Food System. Based on this hazard analysis, a limit for C. perfringens of 100/g was established for Skylab foods.

  7. Success in transmitting hazard science

    Science.gov (United States)

    Price, J. G.; Garside, T.

    2010-12-01

    Money motivates mitigation. An example of success in communicating scientific information about hazards, coupled with information about available money, is the follow-up action by local governments to actually mitigate. The Nevada Hazard Mitigation Planning Committee helps local governments prepare competitive proposals for federal funds to reduce risks from natural hazards. Composed of volunteers with expertise in emergency management, building standards, and earthquake, flood, and wildfire hazards, the committee advises the Nevada Division of Emergency Management on (1) the content of the State’s hazard mitigation plan and (2) projects that have been proposed by local governments and state agencies for funding from various post- and pre-disaster hazard mitigation programs of the Federal Emergency Management Agency. Local governments must have FEMA-approved hazard mitigation plans in place before they can receive this funding. The committee has been meeting quarterly with elected and appointed county officials, at their offices, to encourage them to update their mitigation plans and apply for this funding. We have settled on a format that includes the county’s giving the committee an overview of its infrastructure, hazards, and preparedness. The committee explains the process for applying for mitigation grants and presents the latest information that we have about earthquake hazards, including locations of nearby active faults, historical seismicity, geodetic strain, loss-estimation modeling, scenarios, and documents about what to do before, during, and after an earthquake. Much of the county-specific information is available on the web. The presentations have been well received, in part because the committee makes the effort to go to their communities, and in part because the committee is helping them attract federal funds for local mitigation of not only earthquake hazards but also floods (including canal breaches) and wildfires, the other major concerns in

  8. Expert systems for assisting the analysis of hazards

    International Nuclear Information System (INIS)

    Evrard, J.M.; Martinez, J.M.; Souchet, Y.

    1990-01-01

    The advantage of applying expert systems in the analysis of safety in the operation of nuclear power plants is discussed. Expert systems apply a method based on a common representation of nuclear power plants. The main steps of the method are summarized. The applications given concern in the following fields: the analysis of hazards in the electric power supplies of a gas-graphite power plant; the evaluation of the availability of safety procedures in a PWR power plant; the search for the sources of leakage in a PWR power plant. The analysis shows that expert systems are a powerful tool in the study of safety of nuclear power plants [fr

  9. Hazards Control Department annual technology review, 1987

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, R.V.; Anderson, K.J. (eds.)

    1988-07-01

    This document describes some of the research performed in the LLNL Hazards Control Department from October 1986 to September 1987. The sections in the Annual report cover scientific concerns in the areas of Health Physics, Industrial Hygiene, Industrial Safety, Aerosol Science, Resource Management, Dosimetry and Radiation Physics, Criticality Safety, and Fire Science. For a broader overview of the types of work performed in the Hazards Control Department, we have also compiled a selection of abstracts of recent publications by Hazards Control employees. Individual reports are processed separately for the data base.

  10. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    International Nuclear Information System (INIS)

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: sm-bullet Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) sm-bullet Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as open-quotes lowclose quotes hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with open-quotes moderateclose quotes or open-quotes highclose quotes hazard classifications

  11. Idaho National Engineering Laboratory (INEL) Environmental Restoration (ER) Program Baseline Safety Analysis File (BSAF)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Baseline Safety Analysis File (BSAF) is a facility safety reference document for the Idaho National Engineering Laboratory (INEL) environmental restoration activities. The BSAF contains information and guidance for safety analysis documentation required by the U.S. Department of Energy (DOE) for environmental restoration (ER) activities, including: Characterization of potentially contaminated sites. Remedial investigations to identify and remedial actions to clean up existing and potential releases from inactive waste sites Decontamination and dismantlement of surplus facilities. The information is INEL-specific and is in the format required by DOE-EM-STD-3009-94, Preparation Guide for U.S. Department of Energy Nonreactor Nuclear Facility Safety Analysis Reports. An author of safety analysis documentation need only write information concerning that activity and refer to BSAF for further information or copy applicable chapters and sections. The information and guidance provided are suitable for: {sm_bullet} Nuclear facilities (DOE Order 5480-23, Nuclear Safety Analysis Reports) with hazards that meet the Category 3 threshold (DOE-STD-1027-92, Hazard Categorization and Accident Analysis Techniques for Compliance with DOE Order 5480.23, Nuclear Safety Analysis Reports) {sm_bullet} Radiological facilities (DOE-EM-STD-5502-94, Hazard Baseline Documentation) Nonnuclear facilities (DOE-EM-STD-5502-94) that are classified as {open_quotes}low{close_quotes} hazard facilities (DOE Order 5481.1B, Safety Analysis and Review System). Additionally, the BSAF could be used as an information source for Health and Safety Plans and for Safety Analysis Reports (SARs) for nuclear facilities with hazards equal to or greater than the Category 2 thresholds, or for nonnuclear facilities with {open_quotes}moderate{close_quotes} or {open_quotes}high{close_quotes} hazard classifications.

  12. Fire hazard analysis for Plutonium Finishing Plant complex

    International Nuclear Information System (INIS)

    MCKINNIS, D.L.

    1999-01-01

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards

  13. Hazardous Solvent Substitution Data System reference manual

    International Nuclear Information System (INIS)

    Branham-Haar, K.A.; Twitchell, K.E.

    1993-07-01

    Concern for the environment, in addition to Federal regulation, mandate the replacement of hazardous solvents with safer cleaning agents. Manufacturers are working to produce these replacement solvents. As these products are developed, potential users need to be informed of their availability. To promote the use of these new products instead of traditional solvents, the Idaho National Engineering Laboratory (INEL) has developed the Hazardous Solvent Substitution Data System (HSSDS). The HSSDS provides a comprehensive system of information on alternatives to hazardous solvents and related subjects, and it makes that information available to solvent users, industrial hygienists, and process engineers. The HSSDS uses TOPIC reg-sign, a text retrieval system produced by Verity, Inc., to allow a user to search for information on a particular subject. TOPIC reg-sign produces a listing of the retrieved documents and allows the use to examine the documents individually and to use the information contained in them. This reference manual does not replace the comprehensive TOPIC reg-sign user documentation (available from Verity, Inc.), or the HSSDS Tutorial (available from the INEL). The purpose of this reference manual is to provide enough instruction on TOPIC reg-sign so the user may begin accessing the data contained in the HSSDS

  14. Preliminary proposed seismic design and evaluation criteria for new and existing underground hazardous materials storage tanks

    International Nuclear Information System (INIS)

    Kennedy, R.P.

    1991-01-01

    The document provides a recommended set of deterministic seismic design and evaluation criteria for either new or existing underground hazardous materials storage tanks placed in either the high hazard or moderate hazard usage catagories of UCRL-15910. The criteria given herein are consistent with and follow the same philosophy as those given in UCRL-15910 for the US Department of Energy facilities. This document is intended to supplement and amplify upon Reference 1 for underground hazardous materials storage tanks

  15. Investigating scientific literacy documents with linguistic network analysis

    DEFF Research Database (Denmark)

    Bruun, Jesper; Evans, Robert Harry; Dolin, Jens

    2009-01-01

    International discussions of scientific literacy (SL) are extensive and numerous sizeable documents on SL exist. Thus, comparing different conceptions of SL is methodologically challenging. We developed an analytical tool which couples the theory of complex networks with text analysis in order...

  16. New approaches to wipe sampling methods for antineoplastic and other hazardous drugs in healthcare settings.

    Science.gov (United States)

    Connor, Thomas H; Smith, Jerome P

    2016-09-01

    At the present time, the method of choice to determine surface contamination of the workplace with antineoplastic and other hazardous drugs is surface wipe sampling and subsequent sample analysis with a variety of analytical techniques. The purpose of this article is to review current methodology for determining the level of surface contamination with hazardous drugs in healthcare settings and to discuss recent advances in this area. In addition it will provide some guidance for conducting surface wipe sampling and sample analysis for these drugs in healthcare settings. Published studies on the use of wipe sampling to measure hazardous drugs on surfaces in healthcare settings drugs were reviewed. These studies include the use of well-documented chromatographic techniques for sample analysis in addition to newly evolving technology that provides rapid analysis of specific antineoplastic. Methodology for the analysis of surface wipe samples for hazardous drugs are reviewed, including the purposes, technical factors, sampling strategy, materials required, and limitations. The use of lateral flow immunoassay (LFIA) and fluorescence covalent microbead immunosorbent assay (FCMIA) for surface wipe sample evaluation is also discussed. Current recommendations are that all healthc a re settings where antineoplastic and other hazardous drugs are handled include surface wipe sampling as part of a comprehensive hazardous drug-safe handling program. Surface wipe sampling may be used as a method to characterize potential occupational dermal exposure risk and to evaluate the effectiveness of implemented controls and the overall safety program. New technology, although currently limited in scope, may make wipe sampling for hazardous drugs more routine, less costly, and provide a shorter response time than classical analytical techniques now in use.

  17. Department of Energy Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    Franco, P.J.

    1989-01-01

    This paper discusses the hazardous waste remedial actions program (HAZWRAP) which manages approximately 200 hazardous waste projects. These projects include preliminary assessments, site inspections, and remedial investigation/feasibility studies. The author describes the procedures HAZWRAP follows to ensure quality. The discussion covers the quality assurance aspects of project management, project planning, site characterization, document control and technical teamwork

  18. French people addressing environmental hazards (Eser 2013)

    International Nuclear Information System (INIS)

    Pautard, Eric; Moreau, Sylvain; Bottin, Anne; Kraszewski, Marlene; Fretin, David; Carriere, Celine; Bird, Geoffrey

    2015-07-01

    hazard (37% awareness) than metropolitan respondents (28%). Conversely, the latter seem to be better informed as to industrial hazards close to where they live. In addition to the results described here, the document gives a detailed analysis of the main factors determining the responses to each of the survey questions. By also featuring comparison between different territorial situations and investigating the specific aspects of each hazard studied, the publication gives a broad view of the way in which the French perceive environmental hazards (part 1), notably in accordance with their own experience of hazards (part 2), and of the way in which they view hazard prevention policies (part 3)

  19. Information System Hazard Analysis: A Method for Identifying Technology-induced Latent Errors for Safety.

    Science.gov (United States)

    Weber, Jens H; Mason-Blakley, Fieran; Price, Morgan

    2015-01-01

    Many health information and communication technologies (ICT) are safety-critical; moreover, reports of technology-induced adverse events related to them are plentiful in the literature. Despite repeated criticism and calls to action, recent data collected by the Institute of Medicine (IOM) and other organization do not indicate significant improvements with respect to the safety of health ICT systems. A large part of the industry still operates on a reactive "break & patch" model; the application of pro-active, systematic hazard analysis methods for engineering ICT that produce "safe by design" products is sparse. This paper applies one such method: Information System Hazard Analysis (ISHA). ISHA adapts and combines hazard analysis techniques from other safety-critical domains and customizes them for ICT. We provide an overview of the steps involved in ISHA and describe.

  20. Every document and picture tells a story: using internal corporate document reviews, semiotics, and content analysis to assess tobacco advertising.

    Science.gov (United States)

    Anderson, S J; Dewhirst, T; Ling, P M

    2006-06-01

    In this article we present communication theory as a conceptual framework for conducting documents research on tobacco advertising strategies, and we discuss two methods for analysing advertisements: semiotics and content analysis. We provide concrete examples of how we have used tobacco industry documents archives and tobacco advertisement collections iteratively in our research to yield a synergistic analysis of these two complementary data sources. Tobacco promotion researchers should consider adopting these theoretical and methodological approaches.

  1. Hazardous waste policies and strategies

    International Nuclear Information System (INIS)

    1991-01-01

    This manual has been compiled as a resource document for trainers to help in the design of training workshops of hazardous waste management. Although principally oriented at groupwork, some part of this manual are also suitable for individual study, and as a resource book

  2. EG and G long-range hazardous waste program plan

    International Nuclear Information System (INIS)

    1985-02-01

    The purpose of this document is to develop and implement a program for safe, economic management of hazardous and radioactive mixed waste generated, transported, treated, stored, or disposed of by EG and G Idaho operated facilities. The initial part of this program involves identification and characterization of EG and G-generated hazardous and radioactive mixed waste, and activities for corrective action, including handling, packaging, and shipping of these wastes off site for treatment, storage, and/or disposal, or for interim remedial action. The documentation necessary for all areas of the plan is carefully defined, so as to ensure compliance, at every step, with the requisite orders and guidelines. A second part of this program calls for assessment, and possible development and implementation of a treatment, storage, and disposal (T/S/D) program for special hazardous and radioactive mixed wastes which cannot practically, economically, and safely be disposed of at off-site facilities. This segment of the plan addresses obtaining permits for the existing Waste Experimental Reduction Facility (WERF) incinerator and for the construction of an adjacent hazardous waste solidification facility and a storage area. The permitting and construction of a special hazardous waste treatment and storage facility is also explored. The report investigates permitting the Hazardous Waste Storage Facility (HWSF) as a permanent storage facility

  3. Evaluation of an active learning module to teach hazard and risk in Hazard Analysis and Critical Control Points (HACCP classes

    Directory of Open Access Journals (Sweden)

    Omar A. Oyarzabal

    2017-04-01

    Full Text Available The terms hazard and risk are significant building blocks for the organization of risk-based food safety plans. Unfortunately, these terms are not clear for some personnel working in food manufacturing facilities. In addition, there are few examples of active learning modules for teaching adult participants the principles of hazard analysis and critical control points (HACCP. In this study, we evaluated the effectiveness of an active learning module to teach hazard and risk to participants of HACCP classes provided by the University of Vermont Extension in 2015 and 2016. This interactive module is comprised of a questionnaire; group playing of a dice game that we have previously introduced in the teaching of HACCP; the discussion of the terms hazard and risk; and a self-assessment questionnaire to evaluate the teaching of hazard and risk. From 71 adult participants that completed this module, 40 participants (56% provided the most appropriate definition of hazard, 19 participants (27% provided the most appropriate definition of risk, 14 participants (20% provided the most appropriate definitions of both hazard and risk, and 23 participants (32% did not provide an appropriate definition for hazard or risk. Self-assessment data showed an improvement in the understanding of these terms (P < 0.05. Thirty participants (42% stated that the most valuable thing they learned with this interactive module was the difference between hazard and risk, and 40 participants (65% responded that they did not attend similar presentations in the past. The fact that less than one third of the participants answered properly to the definitions of hazard and risk at baseline is not surprising. However, these results highlight the need for the incorporation of modules to discuss these important food safety terms and include more active learning modules to teach food safety classes. This study suggests that active learning helps food personnel better understand important

  4. Forensic document analysis using scanning microscopy

    Science.gov (United States)

    Shaffer, Douglas K.

    2009-05-01

    The authentication and identification of the source of a printed document(s) can be important in forensic investigations involving a wide range of fraudulent materials, including counterfeit currency, travel and identity documents, business and personal checks, money orders, prescription labels, travelers checks, medical records, financial documents and threatening correspondence. The physical and chemical characterization of document materials - including paper, writing inks and printed media - is becoming increasingly relevant for law enforcement agencies, with the availability of a wide variety of sophisticated commercial printers and copiers which are capable of producing fraudulent documents of extremely high print quality, rendering these difficult to distinguish from genuine documents. This paper describes various applications and analytical methodologies using scanning electron miscoscopy/energy dispersive (x-ray) spectroscopy (SEM/EDS) and related technologies for the characterization of fraudulent documents, and illustrates how their morphological and chemical profiles can be compared to (1) authenticate and (2) link forensic documents with a common source(s) in their production history.

  5. Technical resource documents and technical handbooks for hazardous-wastes management

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.; Bliss, T.M.

    1986-07-01

    The Environmental Protection Agency is preparing a series of Technical Resource Documents (TRD's) and Technical Handbooks to provide best engineering control technology to meet the needs of the Resource Conservation and Recovery Act (RCRA) and the Comprehensive Environmental Response Compensation and Liability Act (CERCLA) respectively. These documents and handbooks are basically compilation of research efforts of the Land Pollution Control Division (LPCD) to date. The specific areas of research being conducted under the RCRA land disposal program relate to laboratory, pilot and field validation studies in cover systems, waste leaching and solidification, liner systems and disposal facility evaluation. The technical handbooks provide the EPA Program Offices and Regions, as well as the states and other interested parties, with the latest information relevant to remedial actions.

  6. Onsite transportation hazards assessment

    International Nuclear Information System (INIS)

    Burnside, M.E.

    1998-01-01

    This report documents the emergency preparedness Hazards Assessment for the onsite transportation of hazardous material at the Hanford Site. The assessment is required by US Department of Energy (DOE) Order 5500.3A and provides the technical basis for the emergency classification and response procedures. A distinction is made between onsite for the purpose of emergency preparedness and onsite for the purpose of applying US Department of Transportation (DOT) regulations. Onsite for the purpose of emergency preparedness is considered to be within the physical boundary of the entire Hanford Site. Onsite for the purpose of applying DOT regulations is north of the Wye Barricade

  7. Communications data delivery system analysis : public workshop read-ahead document.

    Science.gov (United States)

    2012-04-09

    This document presents an overview of work conducted to date around development and analysis of communications data delivery systems for : supporting transactions in the connected vehicle environment. It presents the results of technical analysis of ...

  8. Process safety management for highly hazardous chemicals

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-02-01

    Purpose of this document is to assist US DOE contractors who work with threshold quantities of highly hazardous chemicals (HHCs), flammable liquids or gases, or explosives in successfully implementing the requirements of OSHA Rule for Process Safety Management of Highly Hazardous Chemicals (29 CFR 1910.119). Purpose of this rule is to prevent releases of HHCs that have the potential to cause catastrophic fires, explosions, or toxic exposures.

  9. 78 FR 48636 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-08-09

    ... collection related to the proposed rule, ``Current Good Manufacturing Practice and Hazard Analysis and Risk... period. These two proposals are related to the proposed rule ``Current Good Manufacturing Practice and... final extension of the comment period for the ``Current Good Manufacturing Practice and Hazard Analysis...

  10. Procedure for Prioritization of Natural Phenomena Hazards Evaluations for Existing DOE Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Conrads, T.J., Westinghouse Hanford

    1996-05-07

    This document describes the procedure to be used for the prioritization for natural phenomena hazards evaluations of existing DOE facilities in conformance with DOE Order 5480.28, `Natural Phenomena Hazards Mitigation.`

  11. Superfund Hazard Ranking System Training Course

    Science.gov (United States)

    The Hazard Ranking System (HRS) training course is a four and ½ day, intermediate-level course designed for personnel who are required to compile, draft, and review preliminary assessments (PAs), site inspections (SIs), and HRS documentation records/packag

  12. A Sensitivity Study for an Evaluation of Input Parameters Effect on a Preliminary Probabilistic Tsunami Hazard Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rhee, Hyun-Me; Kim, Min Kyu; Choi, In-Kil [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Sheen, Dong-Hoon [Chonnam National University, Gwangju (Korea, Republic of)

    2014-10-15

    The tsunami hazard analysis has been based on the seismic hazard analysis. The seismic hazard analysis has been performed by using the deterministic method and the probabilistic method. To consider the uncertainties in hazard analysis, the probabilistic method has been regarded as attractive approach. The various parameters and their weight are considered by using the logic tree approach in the probabilistic method. The uncertainties of parameters should be suggested by analyzing the sensitivity because the various parameters are used in the hazard analysis. To apply the probabilistic tsunami hazard analysis, the preliminary study for the Ulchin NPP site had been performed. The information on the fault sources which was published by the Atomic Energy Society of Japan (AESJ) had been used in the preliminary study. The tsunami propagation was simulated by using the TSUNAMI{sub 1}.0 which was developed by Japan Nuclear Energy Safety Organization (JNES). The wave parameters have been estimated from the result of tsunami simulation. In this study, the sensitivity analysis for the fault sources which were selected in the previous studies has been performed. To analyze the effect of the parameters, the sensitivity analysis for the E3 fault source which was published by AESJ was performed. The effect of the recurrence interval, the potential maximum magnitude, and the beta were suggested by the sensitivity analysis results. Level of annual exceedance probability has been affected by the recurrence interval.. Wave heights have been influenced by the potential maximum magnitude and the beta. In the future, the sensitivity analysis for the all fault sources in the western part of Japan which were published AESJ would be performed.

  13. 76 FR 56362 - National Oil and Hazardous Substances Pollution Contingency Plan National Priorities List

    Science.gov (United States)

    2011-09-13

    ... and Hazardous Substances Pollution Contingency Plan National Priorities List AGENCY: Environmental... protection, Air pollution control, Chemicals, Hazardous Waste, Hazardous substances, Intergovernmental... processing the deletion notice. The online Federal Document Management System (FDMS) did not include required...

  14. Definitions of solid and hazardous wastes

    International Nuclear Information System (INIS)

    1992-08-01

    This guidance document explains the definitions of solid and hazardous waste under the Resource Conservation and Recovery Act (RCRA). The definitions are presented in flowchart form to provide the reader with a method of utilizing applicable regulations to determine whether or not a material meets the definition of a solid or hazardous waste. A narrative adjacent to each step of the flowchart elaborates on the specific subject and clarifies the role of the step. The text also contains cross references to other parts of this document for further clarification. The information is provided in terms of a decision-making process. The flowcharts and accompanying text include all major information from the RCRA regulations found in Title 40 of the Code of Federal Regulations, Part 261 (40 CFR Part 261). In some cases, regulatory language has been supplemented with language from EPA rulemaking preambles

  15. Regulatory impact analysis of national emissions standards for hazardous air pollutants for by-product coke oven charging, door leaks, and topside leaks. Draft report

    International Nuclear Information System (INIS)

    1992-11-01

    Under the authority of the 1990 Clean Air Act Amendments, a Natioal Emissions Standard for Hazardous Air Pollutants is proposed to control emissions from By-product Coke Oven Charging, door leaks, and topside leaks. Because the EPA considers the regulation for By-product Coke Oven batteries to be a major rule, the attached Regulatory Impact Analysis was prepared to fulfill the requirements of E012291. The document reviews the need for regulation, control techniques, regulatory options, costs of control, economic impacts, benefits of the regulation, and compares benefits and costs associated with the regulation

  16. Environmental restoration and decontamination and decommissioning safety documentation

    International Nuclear Information System (INIS)

    Hansen, J.L.; Frauenholz, L.H.; Kerr, N.R.

    1993-01-01

    This document presents recommendations of a working group designated by the Environmental Restoration and Remediation (ER) and Decontamination and Decommissioning (D ampersand D) subcommittees of the Westinghouse M ampersand O (Management and Operation) Nuclear Facility Safety Committee. A commonalty of approach to safety documentation specific to ER and D ampersand D activities was developed and is summarized below. Allowance for interpretative tolerance and documentation flexibility appropriate to the activity, graded for hazard category, duration, and complexity, was a primary consideration in development of this guidance

  17. Fire hazard analysis for Plutonium Finishing Plant complex

    Energy Technology Data Exchange (ETDEWEB)

    MCKINNIS, D.L.

    1999-02-23

    A fire hazards analysis (FHA) was performed for the Plutonium Finishing Plant (PFP) Complex at the Department of Energy (DOE) Hanford site. The scope of the FHA focuses on the nuclear facilities/structures in the Complex. The analysis was conducted in accordance with RLID 5480.7, [DOE Directive RLID 5480.7, 1/17/94] and DOE Order 5480.7A, ''Fire Protection'' [DOE Order 5480.7A, 2/17/93] and addresses each of the sixteen principle elements outlined in paragraph 9.a(3) of the Order. The elements are addressed in terms of the fire protection objectives stated in paragraph 4 of DOE 5480.7A. In addition, the FHA also complies with WHC-CM-4-41, Fire Protection Program Manual, Section 3.4 [1994] and WHC-SD-GN-FHA-30001, Rev. 0 [WHC, 1994]. Objectives of the FHA are to determine: (1) the fire hazards that expose the PFP facilities, or that are inherent in the building operations, (2) the adequacy of the fire safety features currently located in the PFP Complex, and (3) the degree of compliance of the facility with specific fire safety provisions in DOE orders, related engineering codes, and standards.

  18. 76 FR 56294 - National Oil and Hazardous Substances Pollution Contingency Plan National Priorities List

    Science.gov (United States)

    2011-09-13

    ... and Hazardous Substances Pollution Contingency Plan National Priorities List AGENCY: Environmental... pollution control, Chemicals, Hazardous Waste, Hazardous substances, Intergovernmental relations, Penalties... error in processing the direct- final rule. The online Federal Document Management System (FDMS) did not...

  19. 78 FR 64425 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-10-29

    ..., 507, and 579 [Docket No. FDA-2011-N-0922] Current Good Manufacturing Practice and Hazard Analysis and... requirements for current good manufacturing practice and hazard analysis and risk-based preventive controls for..., packing, or holding of animal food in two ways. First, it would create new current good manufacturing...

  20. Seismic Hazard characterization study using an earthquake source with Probabilistic Seismic Hazard Analysis (PSHA) method in the Northern of Sumatra

    International Nuclear Information System (INIS)

    Yahya, A.; Palupi, M. I. R.; Suharsono

    2016-01-01

    Sumatra region is one of the earthquake-prone areas in Indonesia because it is lie on an active tectonic zone. In 2004 there is earthquake with a moment magnitude of 9.2 located on the coast with the distance 160 km in the west of Nanggroe Aceh Darussalam and triggering a tsunami. These events take a lot of casualties and material losses, especially in the Province of Nanggroe Aceh Darussalam and North Sumatra. To minimize the impact of the earthquake disaster, a fundamental assessment of the earthquake hazard in the region is needed. Stages of research include the study of literature, collection and processing of seismic data, seismic source characterization and analysis of earthquake hazard by probabilistic methods (PSHA) used earthquake catalog from 1907 through 2014. The earthquake hazard represented by the value of Peak Ground Acceleration (PGA) and Spectral Acceleration (SA) in the period of 0.2 and 1 second on bedrock that is presented in the form of a map with a return period of 2475 years and the earthquake hazard curves for the city of Medan and Banda Aceh. (paper)

  1. A Document Analysis of Teacher Evaluation Systems Specific to Physical Education

    Science.gov (United States)

    Norris, Jason M.; van der Mars, Hans; Kulinna, Pamela; Kwon, Jayoun; Amrein-Beardsley, Audrey

    2017-01-01

    Purpose: The purpose of this document analysis study was to examine current teacher evaluation systems, understand current practices, and determine whether the instrumentation is a valid measure of teaching quality as reflected in teacher behavior and effectiveness specific to physical education (PE). Method: An interpretive document analysis…

  2. Implementation of hazard analysis and critical control point (HACCP) in dried anchovy production process

    Science.gov (United States)

    Citraresmi, A. D. P.; Wahyuni, E. E.

    2018-03-01

    The aim of this study was to inspect the implementation of Hazard Analysis and Critical Control Point (HACCP) for identification and prevention of potential hazards in the production process of dried anchovy at PT. Kelola Mina Laut (KML), Lobuk unit, Sumenep. Cold storage process is needed in each anchovy processing step in order to maintain its physical and chemical condition. In addition, the implementation of quality assurance system should be undertaken to maintain product quality. The research was conducted using a survey method, by following the whole process of making anchovy from the receiving raw materials to the packaging of final product. The method of data analysis used was descriptive analysis method. Implementation of HACCP at PT. KML, Lobuk unit, Sumenep was conducted by applying Pre Requisite Programs (PRP) and preparation stage consisting of 5 initial stages and 7 principles of HACCP. The results showed that CCP was found in boiling process flow with significant hazard of Listeria monocytogenesis bacteria and final sorting process with significant hazard of foreign material contamination in the product. Actions taken were controlling boiling temperature of 100 – 105°C for 3 - 5 minutes and training for sorting process employees.

  3. A hazard and probabilistic safety analysis of a high-level waste transfer process

    International Nuclear Information System (INIS)

    Bott, T.F.; Sasser, M.K.

    1996-01-01

    This paper describes a safety analysis of a transfer process for high-level radioactive and toxic waste. The analysis began with a hazard assessment that used elements of What If, Checklist, Failure Modes and Effects Analysis, and Hazards and Operability Study (HAZOP) techniques to identify and rough-in accident sequences. Based on this preliminary analysis, the most significant accident sequences were developed further using event trees. Quantitative frequency estimates for the accident sequences were based on operational data taken from the historical record of the site where the process is performed. Several modeling challenges were encountered in the course of the study. These included linked initiating and accident progression events, fire propagation modeling, accounting for administrative control violations, and handling mission-phase effects

  4. Hazardous waste landfill research: U. S. E. P. A. (United States Environmental Protection Agency) Program

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1984-06-01

    The hazardous waste land disposal research program is collecting data necessary to support implementation of disposal guidelines mandated by the 'Resource Conservation and Recovery Act of 1976' (RCRA) PL 94-580. This program relating to the categorical areas of landfills, surface impoundments, and underground mines encompasses state-of-the-art documents, laboratory analysis, economic assessment, bench and pilot studies, and full-scale field verification studies. Over the next five years the research will be reported as Technical Resource Documents in support of the RCRA Guidance Documents. These documents will be used to provide guidance for conducting the review and evaluation of land disposal permit applications. This paper will present an overview of this program and will report the current status of the work.

  5. Hydrology Analysis and Modelling for Klang River Basin Flood Hazard Map

    Science.gov (United States)

    Sidek, L. M.; Rostam, N. E.; Hidayah, B.; Roseli, ZA; Majid, W. H. A. W. A.; Zahari, N. Z.; Salleh, S. H. M.; Ahmad, R. D. R.; Ahmad, M. N.

    2016-03-01

    Flooding, a common environmental hazard worldwide has in recent times, increased as a result of climate change and urbanization with the effects felt more in developing countries. As a result, the explosive of flooding to Tenaga Nasional Berhad (TNB) substation is increased rapidly due to existing substations are located in flood prone area. By understanding the impact of flood to their substation, TNB has provided the non-structure mitigation with the integration of Flood Hazard Map with their substation. Hydrology analysis is the important part in providing runoff as the input for the hydraulic part.

  6. Documentation and analysis for packaging limited quantity ice chests

    International Nuclear Information System (INIS)

    Nguyen, P.M.

    1995-01-01

    The purpose of this Documentation and Analysis for Packaging (DAP) is to document that ice chests meet the intent of the International Air Transport Association (IATA) and the U.S. Department of Transportation (DOT) Code of Federal Regulations as strong, tight containers for the packaging of limited quantities for transport. This DAP also outlines the packaging method used to protect the sample bottles from breakage. Because the ice chests meet the DOT requirements, they can be used to ship LTD QTY on the Hanford Site

  7. Document understanding for a broad class of documents

    NARCIS (Netherlands)

    Aiello, Marco; Monz, Christof; Todoran, Leon; Worring, Marcel

    2002-01-01

    We present a document analysis system able to assign logical labels and extract the reading order in a broad set of documents. All information sources, from geometric features and spatial relations to the textual features and content are employed in the analysis. To deal effectively with these

  8. Deep Borehole Emplacement Mode Hazard Analysis Revision 0

    Energy Technology Data Exchange (ETDEWEB)

    Sevougian, S. David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-08-07

    This letter report outlines a methodology and provides resource information for the Deep Borehole Emplacement Mode Hazard Analysis (DBEMHA). The main purpose is identify the accident hazards and accident event sequences associated with the two emplacement mode options (wireline or drillstring), to outline a methodology for computing accident probabilities and frequencies, and to point to available databases on the nature and frequency of accidents typically associated with standard borehole drilling and nuclear handling operations. Risk mitigation and prevention measures, which have been incorporated into the two emplacement designs (see Cochran and Hardin 2015), are also discussed. A key intent of this report is to provide background information to brief subject matter experts involved in the Emplacement Mode Design Study. [Note: Revision 0 of this report is concentrated more on the wireline emplacement mode. It is expected that Revision 1 will contain further development of the preliminary fault and event trees for the drill string emplacement mode.

  9. 78 FR 24691 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-04-26

    ... comments should be identified with the title ``Current Good Manufacturing Practice and Hazard Analysis and..., 114, 117, 120, 123, 129, 179, and 211 [Docket No. FDA-2011-N-0920] RIN 0910-AG36 Current Good Manufacturing Practice and Hazard Analysis and Risk- Based Preventive Controls for Human Food; Extension of...

  10. Quality assurance when documenting chemical hazards to health and environment

    International Nuclear Information System (INIS)

    Guttormsen, R.; Modahl, S.I.; Tufto, P.A.; Buset, H.

    1991-01-01

    In a joint project between The Norwegian Petroleum Directorate (NPD), the State Pollution Control Agency (SFT) and Conoco Norway Inc. (CNI) we have evaluated the use of quality assurance principles in connection with development and distribution of information about chemicals. Assuring quality of the documentation is first of all depending on: the work in international organizations; the content of national and international guidelines and criteria documents; the use of product registers; activities in manufacturers' organizations; the role of importers and agents. These are aspects which have been evaluated. Recommendations are given in this paper concerning: definition of responsibilities in regulations, standards and guidelines; feedback of experience and coordination through international work; application of quality assurance principles in the use of information technology in international organizations and in manufacturers' organizations; use of quality assurance principles in validation of data

  11. WCATS: Waste Documentation, Course No. 8504

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, Sandy [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-04-14

    This course was developed for individuals at Los Alamos National Laboratory (LANL) who characterize and document waste streams in the Waste Compliance and Tracking System (WCATS) according to Environmental Protection Agency (EPA) Department of Transportation (DOT) regulations, Department of Energy Orders, and other applicable criteria. When you have completed this course, you will be able to recognize how waste documentation enables LANL to characterize and classify hazardous waste for compliant treatment, storage, and disposal, identify the purpose of the waste stream profile (WSP), identify the agencies that provide guidance for waste management, and more.

  12. 75 FR 24718 - Guidance for Industry on Documenting Statistical Analysis Programs and Data Files; Availability

    Science.gov (United States)

    2010-05-05

    ...] Guidance for Industry on Documenting Statistical Analysis Programs and Data Files; Availability AGENCY... documenting statistical analyses and data files submitted to the Center for Veterinary Medicine (CVM) for the... on Documenting Statistical Analysis Programs and Data Files; Availability'' giving interested persons...

  13. Sludge Treatment Project Engineered Container Retrieval And Transfer System Preliminary Design Hazard Analysis Supplement 1

    International Nuclear Information System (INIS)

    Franz, G.R.; Meichle, R.H.

    2011-01-01

    This 'What/If' Hazards Analysis addresses hazards affecting the Sludge Treatment Project Engineered Container Retrieval and Transfer System (ECRTS) NPH and external events at the preliminary design stage. In addition, the hazards of the operation sequence steps for the mechanical handling operations in preparation of Sludge Transport and Storage Container (STSC), disconnect STSC and prepare STSC and Sludge Transport System (STS) for shipping are addressed.

  14. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    Energy Technology Data Exchange (ETDEWEB)

    JOHNSON, B.H.

    1999-08-19

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met.

  15. Fire Hazard Analysis for the Cold Vacuum Drying (CVD) Facility

    International Nuclear Information System (INIS)

    JOHNSON, B.H.

    1999-01-01

    This Fire Hazard Analysis assesses the risk from fire within individual fire areas in the Cold Vacuum Drying Facility at the Hanford Site in relation to existing or proposed fire protection features to ascertain whether the objectives of DOE Order 5480.7A Fire Protection are met

  16. An alternative approach to probabilistic seismic hazard analysis in the Aegean region using Monte Carlo simulation

    Science.gov (United States)

    Weatherill, Graeme; Burton, Paul W.

    2010-09-01

    The Aegean is the most seismically active and tectonically complex region in Europe. Damaging earthquakes have occurred here throughout recorded history, often resulting in considerable loss of life. The Monte Carlo method of probabilistic seismic hazard analysis (PSHA) is used to determine the level of ground motion likely to be exceeded in a given time period. Multiple random simulations of seismicity are generated to calculate, directly, the ground motion for a given site. Within the seismic hazard analysis we explore the impact of different seismic source models, incorporating both uniform zones and distributed seismicity. A new, simplified, seismic source model, derived from seismotectonic interpretation, is presented for the Aegean region. This is combined into the epistemic uncertainty analysis alongside existing source models for the region, and models derived by a K-means cluster analysis approach. Seismic source models derived using the K-means approach offer a degree of objectivity and reproducibility into the otherwise subjective approach of delineating seismic sources using expert judgment. Similar review and analysis is undertaken for the selection of peak ground acceleration (PGA) attenuation models, incorporating into the epistemic analysis Greek-specific models, European models and a Next Generation Attenuation model. Hazard maps for PGA on a "rock" site with a 10% probability of being exceeded in 50 years are produced and different source and attenuation models are compared. These indicate that Greek-specific attenuation models, with their smaller aleatory variability terms, produce lower PGA hazard, whilst recent European models and Next Generation Attenuation (NGA) model produce similar results. The Monte Carlo method is extended further to assimilate epistemic uncertainty into the hazard calculation, thus integrating across several appropriate source and PGA attenuation models. Site condition and fault-type are also integrated into the hazard

  17. Mitigation of the most hazardous tank at the Hanford Site

    International Nuclear Information System (INIS)

    Reynolds, D.A.

    1994-09-01

    Various tanks at the Hanford Site have been declared to be unresolved safety problems. This means that the tank has the potential to be beyond the limits covered by the current safety documentation. Tank 241-SY-101 poses the greatest hazard. The waste stored in this tank has periodically released hydrogen gas which exceeds the lower flammable limits. A mixer pump was installed in this tank to stir the waste. Stirring the waste would allow the hydrogen to be released slowly in a controlled manner and mitigate the hazard associated with this tank. The testing of this mixer pump is reported in this document. The mixer pump has been successful in controlling the hydrogen concentration in the tank dome to below the flammable limit which has mitigated the hazardous gas releases

  18. Performance-oriented packagings for hazardous materials: Resource guide

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-01

    This document provides recommendations to US Department of Energy (DOE) shippers regarding packaging that meet performance-oriented packaging requirements implemented by US Department of Transportation (DOT) in rulemaking HM-181 (December 21, 1990) and subsequent actions. The packaging described in this document are certified by their vendor to comply with requirements for Packing Group I, II, or III hazardous materials packaging. The intent of this document is to share information between DOE and contractors and at all DOE facilities.

  19. Performance-oriented packagings for hazardous materials: Resource guide

    International Nuclear Information System (INIS)

    1993-09-01

    This document provides recommendations to US Department of Energy (DOE) shippers regarding packaging that meet performance-oriented packaging requirements implemented by US Department of Transportation (DOT) in rulemaking HM-181 (December 21, 1990) and subsequent actions. The packaging described in this document are certified by their vendor to comply with requirements for Packing Group I, II, or III hazardous materials packaging. The intent of this document is to share information between DOE and contractors and at all DOE facilities

  20. Risk assessment and optimization (ALARA) analysis for the environmental remediation of Brookhaven National Laboratory`s hazardous waste management facility

    Energy Technology Data Exchange (ETDEWEB)

    Dionne, B.J.; Morris, S.C. III; Baum, J.W. [and others

    1998-01-01

    The Department of Energy`s (DOE) Office of Environment, Safety, and Health (EH) sought examples of risk-based approaches to environmental restoration to include in their guidance for DOE nuclear facilities. Extensive measurements of radiological contamination in soil and ground water have been made at Brookhaven National Laboratory`s Hazardous Waste Management Facility (HWMF) as part of a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) remediation process. This provided an ideal opportunity for a case study. This report provides a risk assessment and an {open_quotes}As Low as Reasonably Achievable{close_quotes} (ALARA) analysis for use at other DOE nuclear facilities as an example of a risk-based decision technique. This document contains the Appendices for the report.

  1. Risk analysis of environmental hazards at the High Flux Beam Reactor

    International Nuclear Information System (INIS)

    Boccio, J.L.; Ho, V.S.; Johnson, D.H.

    1994-01-01

    In the late 1980s, a Level 1 internal event probabilistic risk assessment (PRA) was performed for the High-Flux Beam Reactor (HFBR), a US Department of Energy research reactor located at Brookhaven National Laboratory. Prior to the completion of that study, a level 1 PRA for external events was initiated, including environmental hazards such as fire, internal flooding, etc. Although this paper provides a brief summary of the risks from environmental hazards, emphasis will be placed on the methodology employed in utilizing industrial event databases for event frequency determination for the HFBR complex. Since the equipment in the HFBR is different from that of, say, a commercial nuclear power plant, the current approach is to categorize the industrial events according to the hazard initiators instead of categorizing by initiator location. But first a general overview of the analysis

  2. Security and health protection during the transport of hazardous substances

    International Nuclear Information System (INIS)

    Benkovic, Z.; Bobic, V.

    2009-01-01

    The introduction of this work describes the legal regulations which regulate the conditions and method of the transport of hazardous substances, necessary documentation for storage, forwarding and transport. Hazardous substances are defined and classified according to the ADR. The necessary security measures which are taken for the transport of particular types of hazardous substances are mentioned. Marking and labeling of vehicles for the transport of hazardous substances (plates and lists of hazards), packing and marking of packaging is important. The safety measures which are taken at the filling stations of combustible liquids as well as places specially organized for filling, prohibitions and limitations and necessary transport documentation are mentioned. It is visible from the above mentioned that the activity of the whole security chain is necessary and depends on the good knowledge of basic characteristics and features of substances. All the participants in the security chain have to be familiar with and consistently obey the legal regulations. The manufacturer must know the features of the hazardous substance, supervisory services must be acquainted with the threat and potential danger. The hauler and intervention forces must, in case of accidents and damage, be familiar with the emergency procedures in case of accidents and act properly regarding the threatening dangerous substance.(author)

  3. The probabilistic risk analysis of external hazards of an interim storage for spent nuclear fuel in Olkiluoto

    International Nuclear Information System (INIS)

    Puukka, Tiia

    2014-01-01

    Due to natural disasters occurred in the world and the experiences perceived of the Fukushima nuclear accident, the particular knowledge of the role and influence of external hazards in the safety of interim storage of spent nuclear fuel has been emphasized. For that reason it is substantial that they are included in the probabilistic risk assessment (PRA) of the interim storage facility. This is also required by the Regulatory Guides issued by The Finnish Radiation and Nuclear Safety Authority STUK. To enhance safety culture and nuclear safety in Olkiluoto, The Finnish utility Teollisuuden Voima Oyj has recently completed an analysis of external natural (seismic events are studied as a separate analysis) and unintentional human-induced risks associated with the spent fuel pool cooling and decay heat removal systems as part of the full-scope PRA study for the interim storage of spent fuel (KPA store). The analysis had four goals to achieve: (1) to determine the definition of an initiating event in the context of the KPA store, (2) to identify all potential external hazards and hazard combinations, (3) to perform a qualitative screening analysis based on frequency-strength analysis and detailed plant responses analysis and (4) to model the hazards passed the screening analysis so that model can be used as a risk analysis tool in the risk informed decision making and operating procedures. The assessment carried out included the analysis of operation procedures of decay heat removal, the study of external hazards related initiating events included in the PRA of the OL1 and OL2 nuclear power plants and their dependencies on the initiating events of the KPA store. All external hazards related initiating events were modeled using fault tree linking method. The main result and conclusion of this study was that using the screening analysis, initiating events caused by external hazards that could lead to leakage of the spent fuel pools or that could pose a threat to the

  4. Indian Language Document Analysis and Understanding

    Indian Academy of Sciences (India)

    documents would contain text of more than one script (for example, English, Hindi and the ... O'Gorman and Govindaraju provides a good overview on document image ... word level in bilingual documents containing Roman and Tamil scripts.

  5. Probabilistic and Scenario Seismic and Liquefaction Hazard Analysis of the Mississippi Embayment Incorporating Nonlinear Site Effects

    Science.gov (United States)

    Cramer, C. H.; Dhar, M. S.

    2017-12-01

    The influence of deep sediment deposits of the Mississippi Embayment (ME) on the propagation of seismic waves is poorly understood and remains a major source of uncertainty for site response analysis. Many researchers have studied the effects of these deposits on seismic hazard of the area using available information at the time. In this study, we have used updated and newly available resources for seismic and liquefaction hazard analyses of the ME. We have developed an improved 3D geological model. Additionally, we used surface geological maps from Cupples and Van Arsdale (2013) to prepare liquefaction hazard maps. Both equivalent linear and nonlinear site response codes were used to develop site amplification distributions for use in generating hazard maps. The site amplification distributions are created using the Monte Carlo approach of Cramer et al. (2004, 2006) on a 0.1-degree grid. The 2014 National Seismic Hazard model and attenuation relations (Petersen et al., 2014) are used to prepare seismic hazard maps. Then liquefaction hazard maps are generated using liquefaction probability curves from Holzer (2011) and Cramer et al. (2015). Equivalent linear response (w/ increased precision, restricted nonlinear behavior with depth) shows similar hazard for the ME compared to nonlinear analysis (w/o pore pressure) results. At short periods nonlinear deamplification dominates the hazard, but at long periods resonance amplification dominates. The liquefaction hazard tends to be high in Holocene and late Pleistocene lowland sediments, even with lowered ground water levels, and low in Pleistocene loess of the uplands. Considering pore pressure effects in nonlinear site response analysis at a test site on the lowlands shows amplification of ground motion at short periods. PGA estimates from ME liquefaction and MMI observations are in the 0.25 to 0.4 g range. Our estimated M7.5 PGA hazard within 10 km of the fault can exceed this. Ground motion observations from

  6. A LiDAR based analysis of hydraulic hazard mapping

    Science.gov (United States)

    Cazorzi, F.; De Luca, A.; Checchinato, A.; Segna, F.; Dalla Fontana, G.

    2012-04-01

    Mapping hydraulic hazard is a ticklish procedure as it involves technical and socio-economic aspects. On the one hand no dangerous areas should be excluded, on the other hand it is important not to exceed, beyond the necessary, with the surface assigned to some use limitations. The availability of a high resolution topographic survey allows nowadays to face this task with innovative procedures, both in the planning (mapping) and in the map validation phases. The latter is the object of the present work. It should be stressed that the described procedure is proposed purely as a preliminary analysis based on topography only, and therefore does not intend in any way to replace more sophisticated analysis methods requiring based on hydraulic modelling. The reference elevation model is a combination of the digital terrain model and the digital building model (DTM+DBM). The option of using the standard surface model (DSM) is not viable, as the DSM represents the vegetation canopy as a solid volume. This has the consequence of unrealistically considering the vegetation as a geometric obstacle to water flow. In some cases the topographic model construction requires the identification and digitization of the principal breaklines, such as river banks, ditches and similar natural or artificial structures. The geometrical and topological procedure for the validation of the hydraulic hazard maps is made of two steps. In the first step the whole area is subdivided into fluvial segments, with length chosen as a reasonable trade-off between the need to keep the hydrographical unit as complete as possible, and the need to separate sections of the river bed with significantly different morphology. Each of these segments is made of a single elongated polygon, whose shape can be quite complex, especially for meandering river sections, where the flow direction (i.e. the potential energy gradient associated to the talweg) is often inverted. In the second step the segments are analysed

  7. Natural hazards science strategy

    Science.gov (United States)

    Holmes, Robert R.; Jones, Lucile M.; Eidenshink, Jeffery C.; Godt, Jonathan W.; Kirby, Stephen H.; Love, Jeffrey J.; Neal, Christina A.; Plant, Nathaniel G.; Plunkett, Michael L.; Weaver, Craig S.; Wein, Anne; Perry, Suzanne C.

    2012-01-01

    The mission of the U.S. Geological Survey (USGS) in natural hazards is to develop and apply hazard science to help protect the safety, security, and economic well-being of the Nation. The costs and consequences of natural hazards can be enormous, and each year more people and infrastructure are at risk. USGS scientific research—founded on detailed observations and improved understanding of the responsible physical processes—can help to understand and reduce natural hazard risks and to make and effectively communicate reliable statements about hazard characteristics, such as frequency, magnitude, extent, onset, consequences, and where possible, the time of future events.To accomplish its broad hazard mission, the USGS maintains an expert workforce of scientists and technicians in the earth sciences, hydrology, biology, geography, social and behavioral sciences, and other fields, and engages cooperatively with numerous agencies, research institutions, and organizations in the public and private sectors, across the Nation and around the world. The scientific expertise required to accomplish the USGS mission in natural hazards includes a wide range of disciplines that this report refers to, in aggregate, as hazard science.In October 2010, the Natural Hazards Science Strategy Planning Team (H–SSPT) was charged with developing a long-term (10-year) Science Strategy for the USGS mission in natural hazards. This report fulfills that charge, with a document hereinafter referred to as the Strategy, to provide scientific observations, analyses, and research that are critical for the Nation to become more resilient to natural hazards. Science provides the information that decisionmakers need to determine whether risk management activities are worthwhile. Moreover, as the agency with the perspective of geologic time, the USGS is uniquely positioned to extend the collective experience of society to prepare for events outside current memory. The USGS has critical statutory

  8. Flood hazards for nuclear power plants

    International Nuclear Information System (INIS)

    Yen, B.C.

    1988-01-01

    Flooding hazards for nuclear power plants may be caused by various external geophysical events. In this paper the hydrologic hazards from flash floods, river floods and heavy rain at the plant site are considered. Depending on the mode of analysis, two types of hazard evaluation are identified: 1) design hazard which is the probability of flooding over an expected service period, and 2) operational hazard which deals with real-time forecasting of the probability of flooding of an incoming event. Hazard evaluation techniques using flood frequency analysis can only be used for type 1) design hazard. Evaluation techniques using rainfall-runoff simulation or multi-station correlation can be used for both types of hazard prediction. (orig.)

  9. Treatment of hazardous metals by in situ vitrification

    International Nuclear Information System (INIS)

    Koegler, S.S.; Buelt, J.L.

    1989-02-01

    Soils contaminated with hazardous metals are a significant problem to many Defense Program sites. Contaminated soils have ranked high in assessments of research and development needs conducted by the Hazardous Waste Remedial Action Program (HAZWRAP) in FY 1988 and FY 1989. In situ vitrification (ISV) is an innovative technology suitable for stabilizing soils contaminated with radionuclides and hazardous materials. Since ISV treats the material in place, it avoids costly and hazardous preprocessing exhumation of waste. In situ vitrification was originally developed for immobilizing radioactive (primarily transuranic) soil constituents. Tests indicate that it is highly useful also for treating other soil contaminants, including hazardous metals. The ISV process produces an environmentally acceptable, highly durable glasslike product. In addition, ISV includes an efficient off-gas treatment system that eliminates noxious gaseous emissions and generates minimal hazardous byproducts. This document reviews the Technical Basis of this technology. 5 refs., 7 figs., 2 tabs

  10. Modeling of seismic hazards for dynamic reliability analysis

    International Nuclear Information System (INIS)

    Mizutani, M.; Fukushima, S.; Akao, Y.; Katukura, H.

    1993-01-01

    This paper investigates the appropriate indices of seismic hazard curves (SHCs) for seismic reliability analysis. In the most seismic reliability analyses of structures, the seismic hazards are defined in the form of the SHCs of peak ground accelerations (PGAs). Usually PGAs play a significant role in characterizing ground motions. However, PGA is not always a suitable index of seismic motions. When random vibration theory developed in the frequency domain is employed to obtain statistics of responses, it is more convenient for the implementation of dynamic reliability analysis (DRA) to utilize an index which can be determined in the frequency domain. In this paper, we summarize relationships among the indices which characterize ground motions. The relationships between the indices and the magnitude M are arranged as well. In this consideration, duration time plays an important role in relating two distinct class, i.e. energy class and power class. Fourier and energy spectra are involved in the energy class, and power and response spectra and PGAs are involved in the power class. These relationships are also investigated by using ground motion records. Through these investigations, we have shown the efficiency of employing the total energy as an index of SHCs, which can be determined in the time and frequency domains and has less variance than the other indices. In addition, we have proposed the procedure of DRA based on total energy. (author)

  11. Fire Hazards Analysis for the Inactive Equipment Storage Sprung Structure

    International Nuclear Information System (INIS)

    MYOTT, C.F.

    2000-01-01

    The purpose of the analysis is to comprehensively assess the risk from fire within individual fire areas in relation to proposed fire protection so as to ascertain whether the fire protection objective of DOE Order 5480.1A are met. The order acknowledges a graded approach commensurate with the hazards involved

  12. WE-G-BRA-06: Application of Systems and Control Theory-Based Hazard Analysis to Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Pawlicki, T [UC San Diego, La Jolla, CA (United States); Samost, A; Leveson, N [Massachusetts Institute of Technology, Cambridge, MA (United States)

    2015-06-15

    Purpose: The process of delivering radiation occurs in a complex socio-technical system heavily reliant on human operators. Furthermore, both humans and software are notoriously challenging to account for in traditional hazard analysis models. High reliability industries such as aviation have approached this problem through using hazard analysis techniques grounded in systems and control theory. The purpose of this work is to apply the Systems Theoretic Accident Model Processes (STAMP) hazard model to radiotherapy. In particular, the System-Theoretic Process Analysis (STPA) approach is used to perform a hazard analysis of a proposed on-line adaptive cranial radiosurgery procedure that omits the CT Simulation step and uses only CBCT for planning, localization, and treatment. Methods: The STPA procedure first requires the definition of high-level accidents and hazards leading to those accidents. From there, hierarchical control structures were created followed by the identification and description of control actions for each control structure. Utilizing these control structures, unsafe states of each control action were created. Scenarios contributing to unsafe control action states were then identified and translated into system requirements to constrain process behavior within safe boundaries. Results: Ten control structures were created for this new CBCT-only process which covered the areas of hospital and department management, treatment design and delivery, and vendor service. Twenty three control actions were identified that contributed to over 80 unsafe states of those control actions resulting in over 220 failure scenarios. Conclusion: The interaction of people, hardware, and software are highlighted through the STPA approach. STPA provides a hierarchical model for understanding the role of management decisions in impacting system safety so that a process design requirement can be traced back to the hazard and accident that it is intended to mitigate. Varian

  13. Use of fire hazard analysis to cost effectively manage facility modifications

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, K., E-mail: kkruger@plcfire.com [PLC Fire Safety Solutions, Fredericton, NB (Canada); Cronk, R., E-mail: rcronk@plcfire.com [PLC Fire Safety Solutions, Mississauga, ON (Canada)

    2014-07-01

    In Canada, licenced Nuclear power facilities, or facilities that process, handle or store nuclear material are required by the Canadian Nuclear Safety Commission to have a change control process in place. These processes are in place to avoid facility modifications that could result in an increase in fire hazards, or degradation of fire protection systems. Change control processes can have a significant impact on budgets associated with plant modifications. A Fire Hazard Analysis (FHA) is also a regulatory requirement for licenced facilities in Canada. An FHA is an extensive evaluation of a facility's construction, nuclear safety systems, fire hazards, and fire protection features. This paper is being presented to outline how computer based data management software can help organize facilities' fire safety information, manage this information, and reduce the costs associated with preparation of FHAs as well as facilities' change control processes. (author)

  14. Closure of hazardous and mixed radioactive waste management units at DOE facilities

    International Nuclear Information System (INIS)

    1990-06-01

    This is document addresses the Federal regulations governing the closure of hazardous and mixed waste units subject to Resource Conservation and Recovery Act (RCRA) requirements. It provides a brief overview of the RCRA permitting program and the extensive RCRA facility design and operating standards. It provides detailed guidance on the procedural requirements for closure and post-closure care of hazardous and mixed waste management units, including guidance on the preparation of closure and post-closure plans that must be submitted with facility permit applications. This document also provides guidance on technical activities that must be conducted both during and after closure of each of the following hazardous waste management units regulated under RCRA

  15. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    International Nuclear Information System (INIS)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean

  16. Savannah River Site offsite hazardous waste shipment data validation report. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Casey, C.; Kudera, D.E.; Page, L.A.; Rohe, M.J.

    1995-05-01

    The objective of this data validation is to verify that waste shipments reported in response to the US Department of Energy Headquarters data request are properly categorized according to DOE-HQ definitions. This report documents all findings and actions resulting from the independent review of the Savannah River Site data submittal, and provides a summary of the SRS data submittal and data validation strategy. The overall hazardous waste management and offsite release process from 1987--1991 is documented, along with an identification and description of the hazardous waste generation facilities. SRS did not ship any hazardous waste offsite before 1987. Sampling and analysis and surface surveying procedures and techniques used in determining offsite releasability of the shipments are also described in this report. SRS reported 150 manifested waste shipments from 1984 to 1991 that included 4,755 drums or lab packs and 13 tankers. Of these waste items, this report categorizes 4,251 as clean (including 12 tankers), 326 as likely clean, 138 as likely radioactive, and 55 as radioactive (including one tanker). Although outside the original scope of this report, 14 manifests from 1992 and 1993 are included, covering 393 drums or lab packs and seven tankers. From the 1992--1993 shipments, 58 drums or lab packs are categorized as radioactive and 16 drums are categorized as likely radioactive. The remainder are categorized as clean.

  17. Risk analysis of radioactive waste repository based on the time dependent hazard rate

    International Nuclear Information System (INIS)

    Chang, S.H.; Cho, W.J.

    1984-01-01

    For the probabilistic risk analysis of the radioactive high level waste repository, the simplified method based on the time dependent hazard rate is proposed. The obtained results are compared with those from the time independent hazard rate. The estimation of the failure probability of the waste repository through this method gives more conservative results, especially when the half-life of nuclide is larger and retardation factors of nuclide is smaller. (Auth.)

  18. PENERAPAN SISTEM HAZARD ANALYSIS CRITICAL CONTROL POINT (HACCP PADA PROSES PEMBUATAN KERIPIK TEMPE

    Directory of Open Access Journals (Sweden)

    Rahmi Yuniarti

    2015-06-01

    Full Text Available Malang is one of the industrial centers of tempe chips. To maintain the quality and food safety, analysis is required to identify the hazards during the production process. This study was conducted to identify the hazards during the production process of tempe chips and provide recommendations for developing a HACCP system. The phases of production process of tempe chips are started from slice the tempe, move it to the kitchen, coat it with flour dough, fry it in the pan, drain it, package it, and then storage it. There are 3 types of potential hazards in terms of biological, physical, and chemical during the production process. With the CCP identification, there are three processes that have Critical Control Point. There are the process of slicing tempe, immersion of tempe into the flour mixture and draining. Recommendations for the development of HACCP systems include recommendations related to employee hygiene, supporting equipment, 5-S analysis, and the production layout.

  19. Safety analysis and hazard classification for the 100-B/C Site Remediation Project, Phase 1. Revision 1

    International Nuclear Information System (INIS)

    Adam, W.J.; Lehrschall, R.R.; Oestreich, D.K.

    1996-07-01

    The purpose of this report is to document the preliminary hazard classification (PHC) for the initial group of sites to be remediated by the 100-B/C Site Remediation Project. The project is targeted at excavation of contaminated solid from seven waste sites, and the transportation and disposal of these wastes at the Environmental Restoration Disposal Facility. The PHC for these remediation activities is rated as radiological

  20. Detecting sea-level hazards: Simple regression-based methods for calculating the acceleration of sea level

    Science.gov (United States)

    Doran, Kara S.; Howd, Peter A.; Sallenger,, Asbury H.

    2016-01-04

    This report documents the development of statistical tools used to quantify the hazard presented by the response of sea-level elevation to natural or anthropogenic changes in climate and ocean circulation. A hazard is a physical process (or processes) that, when combined with vulnerability (or susceptibility to the hazard), results in risk. This study presents the development and comparison of new and existing sea-level analysis methods, exploration of the strengths and weaknesses of the methods using synthetic time series, and when appropriate, synthesis of the application of the method to observed sea-level time series. These reports are intended to enhance material presented in peer-reviewed journal articles where it is not always possible to provide the level of detail that might be necessary to fully support or recreate published results.

  1. Site-specific seismic probabilistic tsunami hazard analysis: performances and potential applications

    Science.gov (United States)

    Tonini, Roberto; Volpe, Manuela; Lorito, Stefano; Selva, Jacopo; Orefice, Simone; Graziani, Laura; Brizuela, Beatriz; Smedile, Alessandra; Romano, Fabrizio; De Martini, Paolo Marco; Maramai, Alessandra; Piatanesi, Alessio; Pantosti, Daniela

    2017-04-01

    Seismic Probabilistic Tsunami Hazard Analysis (SPTHA) provides probabilities to exceed different thresholds of tsunami hazard intensity, at a specific site or region and in a given time span, for tsunamis caused by seismic sources. Results obtained by SPTHA (i.e., probabilistic hazard curves and inundation maps) represent a very important input to risk analyses and land use planning. However, the large variability of source parameters implies the definition of a huge number of potential tsunami scenarios, whose omission could lead to a biased analysis. Moreover, tsunami propagation from source to target requires the use of very expensive numerical simulations. At regional scale, the computational cost can be reduced using assumptions on the tsunami modeling (i.e., neglecting non-linear effects, using coarse topo-bathymetric meshes, empirically extrapolating maximum wave heights on the coast). On the other hand, moving to local scale, a much higher resolution is required and such assumptions drop out, since detailed inundation maps require significantly greater computational resources. In this work we apply a multi-step method to perform a site-specific SPTHA which can be summarized in the following steps: i) to perform a regional hazard assessment to account for both the aleatory and epistemic uncertainties of the seismic source, by combining the use of an event tree and an ensemble modeling technique; ii) to apply a filtering procedure which use a cluster analysis to define a significantly reduced number of representative scenarios contributing to the hazard of a specific target site; iii) to perform high resolution numerical simulations only for these representative scenarios and for a subset of near field sources placed in very shallow waters and/or whose coseismic displacements induce ground uplift or subsidence at the target. The method is applied to three target areas in the Mediterranean located around the cities of Milazzo (Italy), Thessaloniki (Greece) and

  2. Taxonomic analysis of perceived risk: modeling individual and group perceptions within homogeneous hazard domains

    International Nuclear Information System (INIS)

    Kraus, N.N.; Slovic, P.

    1988-01-01

    Previous studies of risk perception have typically focused on the mean judgments of a group of people regarding the riskiness (or safety) of a diverse set of hazardous activities, substances, and technologies. This paper reports the results of two studies that take a different path. Study 1 investigated whether models within a single technological domain were similar to previous models based on group means and diverse hazards. Study 2 created a group taxonomy of perceived risk for only one technological domain, railroads, and examined whether the structure of that taxonomy corresponded with taxonomies derived from prior studies of diverse hazards. Results from Study 1 indicated that the importance of various risk characteristics in determining perceived risk differed across individuals and across hazards, but not so much as to invalidate the results of earlier studies based on group means and diverse hazards. In Study 2, the detailed analysis of railroad hazards produced a structure that had both important similarities to, and dissimilarities from, the structure obtained in prior research with diverse hazard domains. The data also indicated that railroad hazards are really quite diverse, with some approaching nuclear reactors in their perceived seriousness. These results suggest that information about the diversity of perceptions within a single domain of hazards could provide valuable input to risk-management decisions

  3. Assessing the long-term probabilistic volcanic hazard for tephra fallout in Reykjavik, Iceland: a preliminary multi-source analysis

    Science.gov (United States)

    Tonini, Roberto; Barsotti, Sara; Sandri, Laura; Tumi Guðmundsson, Magnús

    2015-04-01

    Icelandic volcanism is largely dominated by basaltic magma. Nevertheless the presence of glaciers over many Icelandic volcanic systems results in frequent phreatomagmatic eruptions and associated tephra production, making explosive eruptions the most common type of volcanic activity. Jökulhlaups are commonly considered as major volcanic hazard in Iceland for their high frequency and potentially very devastating local impact. Tephra fallout is also frequent and can impact larger areas. It is driven by the wind direction that can change with both altitude and season, making impossible to predict a priori where the tephra will be deposited during the next eruptions. Most of the volcanic activity in Iceland occurs in the central eastern part, over 100 km to the east of the main population centre around the capital Reykjavík. Therefore, the hazard from tephra fallout in Reykjavík is expected to be smaller than for communities settled near the main volcanic systems. However, within the framework of quantitative hazard and risk analyses, less frequent and/or less intense phenomena should not be neglected, since their risk evaluation depends on the effects suffered by the selected target. This is particularly true if the target is highly vulnerable, as large urban areas or important infrastructures. In this work we present the preliminary analysis aiming to perform a Probabilistic Volcanic Hazard Assessment (PVHA) for tephra fallout focused on the target area which includes the municipality of Reykjavík and the Keflavík international airport. This approach reverts the more common perspective where the hazard analysis is focused on the source (the volcanic system) and it follows a multi-source approach: indeed, the idea is to quantify, homogeneously, the hazard due to the main hazardous volcanoes that could pose a tephra fallout threat for the municipality of Reykjavík and the Keflavík airport. PVHA for each volcanic system is calculated independently and the results

  4. [Psychoanalysis and Psychiatrie-Enquete: expert interviews and document analysis].

    Science.gov (United States)

    Söhner, Felicitas Petra; Fangerau, Heiner; Becker, Thomas

    2017-12-01

    Background The purpose of this paper is to analyse the perception of the role of psychoanalysis and psychoanalysts in the coming about of the Psychiatrie-Enquete in the Federal Republic of Germany (West Germany). Methods We performed a qualitative content analysis of expert interviews with persons involved in the Enquete (or witnessing the events as mental health professionals active at the time), a selective literature review and an analysis of documents on the Enquete process. Results Expert interviews, relevant literature and documents point to a role of psychoanalysis in the Enquete process. Psychoanalysts were considered to have been effective in the run-up to the Enquete and the work of the commission. Conclusion Psychoanalysis and a small number of psychoanalysts were perceived as being relevant in the overall process of the Psychiatrie-Enquete in West Germany. Georg Thieme Verlag KG Stuttgart · New York.

  5. Final hazard classification for the 116-F-4 (Terra Stor) soil retrieval activities

    International Nuclear Information System (INIS)

    Adam, W.J.

    1996-07-01

    The purpose of this document is to provide the final hazard classification for the remediation activities described in the Work Plan for the Retrieval of Contaminated Soil from the 116-F-4 Storage Unit. Based upon total inventories calculated from the characterization data, a preliminary hazard categorization of less than Hazard Category 3 was assigned. Based upon the material-at-risk, a final hazard classification of radiological was assigned

  6. [Hazard evaluation modeling of particulate matters emitted by coal-fired boilers and case analysis].

    Science.gov (United States)

    Shi, Yan-Ting; Du, Qian; Gao, Jian-Min; Bian, Xin; Wang, Zhi-Pu; Dong, He-Ming; Han, Qiang; Cao, Yang

    2014-02-01

    In order to evaluate the hazard of PM2.5 emitted by various boilers, in this paper, segmentation of particulate matters with sizes of below 2. 5 microm was performed based on their formation mechanisms and hazard level to human beings and environment. Meanwhile, taking into account the mass concentration, number concentration, enrichment factor of Hg, and content of Hg element in different coal ashes, a comprehensive model aimed at evaluating hazard of PM2.5 emitted by coal-fired boilers was established in this paper. Finally, through utilizing filed experimental data of previous literatures, a case analysis of the evaluation model was conducted, and the concept of hazard reduction coefficient was proposed, which can be used to evaluate the performance of dust removers.

  7. Remote Methodology used at B Plant Hanford to Map High Radiation and Contamination Fields and Document Remaining Hazards

    Energy Technology Data Exchange (ETDEWEB)

    SIMMONS, F.M.

    2000-01-01

    A remote radiation mapping system using the Gammacam{trademark} (AIL Systems Inc. Trademark) with real-time response was used in deactivating the B Plant at Hanford to produce digitized images showing actual radiation fields and dose rates. Deployment of this technology has significantly reduced labor requirements, decreased personnel exposure, and increased the accuracy of the measurements. Personnel entries into the high radiation/contamination areas was minimized for a dose savings of 30 Rem (.3 Seivert) and a cost savings of $640K. In addition, the data gathered was utilized along with historical information to estimate the amount of remaining hazardous waste in the process cells. The B Plant facility is a canyon facility containing 40 process cells which were used to separate cesium and strontium from high level waste. The cells and vessels are contaminated with chemicals used in the separation and purification processes. Most of the contaminants have been removed but the residual contamination from spills in the cells and heels in the tanks contribute to the localized high radioactivity. The Gammacam{trademark} system consists of a high density terbium-activated scintillating glass detector coupled with a digitized video camera. Composite images generated by the system are presented in pseudo color over a black and white image. Exposure times can be set from 10 milliseconds to 1 hour depending on the field intensity. This information coupled with process knowledge is then used to document the hazardous waste remaining in each cell. Additional uses for this radiation mapping system would be in support of facilities stabilization and deactivation activities at Hanford or other DOE sites. The system is currently scheduled for installation and mapping of the U Plant in 1999. This system is unique due to its portability and its suitability for use in high dose rate areas.

  8. Remote Methodology used at B Plant Hanford to Map High Radiation and Contamination Fields and Document Remaining Hazards

    International Nuclear Information System (INIS)

    SIMMONS, F.M.

    2000-01-01

    A remote radiation mapping system using the Gammacam(trademark) (AIL Systems Inc. Trademark) with real-time response was used in deactivating the B Plant at Hanford to produce digitized images showing actual radiation fields and dose rates. Deployment of this technology has significantly reduced labor requirements, decreased personnel exposure, and increased the accuracy of the measurements. Personnel entries into the high radiation/contamination areas was minimized for a dose savings of 30 Rem (.3 Seivert) and a cost savings of $640K. In addition, the data gathered was utilized along with historical information to estimate the amount of remaining hazardous waste in the process cells. The B Plant facility is a canyon facility containing 40 process cells which were used to separate cesium and strontium from high level waste. The cells and vessels are contaminated with chemicals used in the separation and purification processes. Most of the contaminants have been removed but the residual contamination from spills in the cells and heels in the tanks contribute to the localized high radioactivity. The Gammacam(trademark) system consists of a high density terbium-activated scintillating glass detector coupled with a digitized video camera. Composite images generated by the system are presented in pseudo color over a black and white image. Exposure times can be set from 10 milliseconds to 1 hour depending on the field intensity. This information coupled with process knowledge is then used to document the hazardous waste remaining in each cell. Additional uses for this radiation mapping system would be in support of facilities stabilization and deactivation activities at Hanford or other DOE sites. The system is currently scheduled for installation and mapping of the U Plant in 1999. This system is unique due to its portability and its suitability for use in high dose rate areas

  9. How to control chemical hazards

    CERN Multimedia

    2012-01-01

    Improving protection against chemical hazards is one of the 2012 CERN safety objectives identified by the Director General. Identifying and drawing up a complete inventory of chemicals, and assessing the associated risks are important steps in this direction.   The HSE Unit has drawn up safety rules, guidelines and forms to help you to meet this objective. We would like to draw your attention to: • safety guidelines C-0-0-1 and C-1-0-2 (now also available in French), which deal with the identification of hazardous chemicals and the assessment of chemical risk; • safety guideline C-1-0-1, which deals with the storage of hazardous chemicals. All safety documents can be consulted at: cern.ch/regles-securite The HSE Unit will be happy to answer any questions you may have. Write to us at: safety-general@cern.ch The HSE Unit

  10. Hanford Site Wide Transportation Safety Document [SEC 1 Thru 3

    Energy Technology Data Exchange (ETDEWEB)

    MCCALL, D L

    2002-06-01

    This safety evaluation report (SER) documents the basis for the US Department of Energy (DOE), Richland Operations Office (RL) to approve the Hanford Sitewide Transportation Safety Document (TSD) for onsite Transportation and Packaging (T&P) at Hanford. Hanford contractors, on behalf of DOE-RL, prepared and submitted the Hanford Sitewide Transportation Safety Document, DOE/RL-2001-0036, Revision 0, (DOE/RL 2001), dated October 4, 2001, which is referred to throughout this report as the TSD. In the context of the TSD, Hanford onsite shipments are the activities of moving hazardous materials, substances, and wastes between DOE facilities and over roadways where public access is controlled or restricted and includes intra-area and inter-area movements. The TSD sets forth requirements and standards for onsite shipment of radioactive and hazardous materials and wastes within the confines of the Hanford Site on roadways where public access is restricted by signs, barricades, fences, or other means including road closures and moving convoys controlled by Hanford Site security forces.

  11. Integrating human factors into process hazard analysis

    International Nuclear Information System (INIS)

    Kariuki, S.G.; Loewe, K.

    2007-01-01

    A comprehensive process hazard analysis (PHA) needs to address human factors. This paper describes an approach that systematically identifies human error in process design and the human factors that influence its production and propagation. It is deductive in nature and therefore considers human error as a top event. The combinations of different factors that may lead to this top event are analysed. It is qualitative in nature and is used in combination with other PHA methods. The method has an advantage because it does not look at the operator error as the sole contributor to the human failure within a system but a combination of all underlying factors

  12. Continuous Release-Emergency Response Notification System and Priority Assessment Model: Model documentation

    International Nuclear Information System (INIS)

    1991-01-01

    The purpose of the model documentation is to provide a detailed description of the modeling and risk analysis procedures used in CR-ERNS/PAM to assist OSCs and other Superfund decision-makers in interpreting the system results. PAM is a screening-level model; to properly interpret PAM's outputs, the user must understand the limitations and uncertainties in the equations and data used to generate these results. Chapter 2 presents the system's fate and transport models and describes the assumptions associated with these equations. Chapter 3 describes PAM's auxiliary data bases and provides the source(s) of each parameter and the methods by which values were selected. Chapter 4 explains the methods and exposure assumptions used to estimate exposures to hazardous substances and to evaluate the risks and hazards associated with these exposures. Chapter 5 presents examples of reports generated by PAM and explains the meaning of the 'flags' assigned to hazardous substances, media, and facilities. Appendix A contains versions of the fate and transport equations used for radionuclides. Appendix B contains copies of PAM's reports

  13. Development of Onsite Transportation Safety Documents for Nevada Test Site

    International Nuclear Information System (INIS)

    Frank Hand; Willard Thomas; Frank Sciacca; Manny Negrete; Susan Kelley

    2008-01-01

    Department of Energy (DOE) Orders require each DOE site to develop onsite transportation safety documents (OTSDs). The Nevada Test Site approach divided all onsite transfers into two groups with each group covered by a standalone OTSD identified as Non-Nuclear and Nuclear. The Non-Nuclear transfers involve all radioactive hazardous material in less than Hazard Category (HC)-3 quantities and all chemically hazardous materials. The Nuclear transfers involve all radioactive material equal to or greater than HC-3 quantities and radioactive material mated with high explosives regardless of quantity. Both OTSDs comply with DOE O 460.1B requirements. The Nuclear OTSD also complies with DOE O 461.1A requirements and includes a DOE-STD-3009 approach to hazard analysis (HA) and accident analysis as needed. All Nuclear OTSD proposed transfers were determined to be non-equivalent and a methodology was developed to determine if 'equivalent safety' to a fully compliant Department of Transportation (DOT) transfer was achieved. For each HA scenario, three hypothetical transfers were evaluated: a DOT-compliant, uncontrolled, and controlled transfer. Equivalent safety is demonstrated when the risk level for each controlled transfer is equal to or less than the corresponding DOT-compliant transfer risk level. In this comparison the typical DOE-STD-3009 risk matrix was modified to reflect transportation requirements. Design basis conditions (DBCs) were developed for each non-equivalent transfer. Initial DBCs were based solely upon the amount of material present. Route-, transfer-, and site-specific conditions were evaluated and the initial DBCs revised as needed. Final DBCs were evaluated for each transfer's packaging and its contents

  14. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    International Nuclear Information System (INIS)

    Payne, Suzette; Coppersmith, Ryan; Coppersmith, Kevin; Rodriguez-Marek, Adrian; Falero, Valentina Montaldo; Youngs, Robert

    2016-01-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  15. SSHAC Level 1 Probabilistic Seismic Hazard Analysis for the Idaho National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Payne, Suzette [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Ryan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coppersmith, Kevin [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rodriguez-Marek, Adrian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Falero, Valentina Montaldo [Idaho National Lab. (INL), Idaho Falls, ID (United States); Youngs, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    A Probabilistic Seismic Hazard Analysis (PSHA) was completed for the Materials and Fuels Complex (MFC), Naval Reactors Facility (NRF), and the Advanced Test Reactor (ATR) at Idaho National Laboratory (INL) (Figure 1-1). The PSHA followed the approaches and procedures appropriate for a Study Level 1 provided in the guidance advanced by the Senior Seismic Hazard Analysis Committee (SSHAC) in U.S. Nuclear Regulatory Commission (NRC) NUREG/CR-6372 and NUREG-2117 (NRC, 1997; 2012a). The SSHAC Level 1 PSHAs for MFC and ATR were conducted as part of the Seismic Risk Assessment (SRA) project (INL Project number 31287) to develop and apply a new-risk informed methodology, respectively. The SSHAC Level 1 PSHA was conducted for NRF to provide guidance on the potential use of a design margin above rock hazard levels. The SRA project is developing a new risk-informed methodology that will provide a systematic approach for evaluating the need for an update of an existing PSHA. The new methodology proposes criteria to be employed at specific analysis, decision, or comparison points in its evaluation process. The first four of seven criteria address changes in inputs and results of the PSHA and are given in U.S. Department of Energy (DOE) Standard, DOE-STD-1020-2012 (DOE, 2012a) and American National Standards Institute/American Nuclear Society (ANSI/ANS) 2.29 (ANS, 2008a). The last three criteria address evaluation of quantitative hazard and risk-focused information of an existing nuclear facility. The seven criteria and decision points are applied to Seismic Design Category (SDC) 3, 4, and 5, which are defined in American Society of Civil Engineers/Structural Engineers Institute (ASCE/SEI) 43-05 (ASCE, 2005). The application of the criteria and decision points could lead to an update or could determine that such update is not necessary.

  16. Final safety and hazards analysis for the Battelle LOCA simulation tests in the NRU reactor

    International Nuclear Information System (INIS)

    Axford, D.J.; Martin, I.C.; McAuley, S.J.

    1981-04-01

    This is the final safety and hazards report for the proposed Battelle LOCA simulation tests in NRU. A brief description of equipment test design and operating procedure precedes a safety analysis and hazards review of the project. The hazards review addresses potential equipment failures as well as potential for a metal/water reaction and evaluates the consequences. The operation of the tests as proposed does not present an unacceptable risk to the NRU Reactor, CRNL personnel or members of the public. (author)

  17. Environmental Risk Assessment: Spatial Analysis of Chemical Hazards and Risks in South Korea

    Science.gov (United States)

    Yu, H.; Heo, S.; Kim, M.; Lee, W. K.; Jong-Ryeul, S.

    2017-12-01

    This study identified chemical hazard and risk levels in Korea by analyzing the spatial distribution of chemical factories and accidents. The number of chemical factories and accidents in 5-km2 grids were used as the attribute value for spatial analysis. First, semi-variograms were conducted to examine spatial distribution patterns and to identify spatial autocorrelation of chemical factories and accidents. Semi-variograms explained that the spatial distribution of chemical factories and accidents were spatially autocorrelated. Second, the results of the semi-variograms were used in Ordinary Kriging to estimate chemical hazard and risk level. The level values were extracted from the Ordinary Kriging result and their spatial similarity was examined by juxtaposing the two values with respect to their location. Six peaks were identified in both the hazard and risk estimation result, and the peaks correlated with major cities in Korea. Third, the estimated hazard and risk levels were classified with geometrical interval and could be classified into four quadrants: Low Hazard and Low Risk (LHLR), Low Hazard and High Risk (LHHR), High Hazard and Low Risk (HHLR), and High Hazard and High Risk (HHHR). The 4 groups identified different chemical safety management issues in Korea; relatively safe LHLR group, many chemical reseller factories were found in HHLR group, chemical transportation accidents were in the LHHR group, and an abundance of factories and accidents were in the HHHR group. Each quadrant represented different safety management obstacles in Korea, and studying spatial differences can support the establishment of an efficient risk management plan.

  18. 1993 Tier Two emergency and hazardous chemical inventory

    International Nuclear Information System (INIS)

    1994-03-01

    This document comprises the following (January 1 to December 31, 1993) data for chemicals at Hanford Site, for Washington community right-to-know purposes: Chemical name, physical and health hazards, inventory, and storage code/locations

  19. Application of hazard analysis critical control points (HACCP) to organic chemical contaminants in food.

    Science.gov (United States)

    Ropkins, K; Beck, A J

    2002-03-01

    Hazard Analysis Critical Control Points (HACCP) is a systematic approach to the identification, assessment, and control of hazards that was developed as an effective alternative to conventional end-point analysis to control food safety. It has been described as the most effective means of controlling foodborne diseases, and its application to the control of microbiological hazards has been accepted internationally. By contrast, relatively little has been reported relating to the potential use of HACCP, or HACCP-like procedures, to control chemical contaminants of food. This article presents an overview of the implementation of HACCP and discusses its application to the control of organic chemical contaminants in the food chain. Although this is likely to result in many of the advantages previously identified for microbiological HACCP, that is, more effective, efficient, and economical hazard management, a number of areas are identified that require further research and development. These include: (1) a need to refine the methods of chemical contaminant identification and risk assessment employed, (2) develop more cost-effective monitoring and control methods for routine chemical contaminant surveillance of food, and (3) improve the effectiveness of process optimization for the control of chemical contaminants in food.

  20. [Design of a Hazard Analysis and Critical Control Points (HACCP) plan to assure the safety of a bologna product produced by a meat processing plant].

    Science.gov (United States)

    Bou Rached, Lizet; Ascanio, Norelis; Hernández, Pilar

    2004-03-01

    The Hazard Analysis and Critical Control Point (HACCP) is a systematic integral program used to identify and estimate the hazards (microbiological, chemical and physical) and the risks generated during the primary production, processing, storage, distribution, expense and consumption of foods. To establish a program of HACCP has advantages, being some of them: to emphasize more in the prevention than in the detection, to diminish the costs, to minimize the risk of manufacturing faulty products, to allow bigger trust to the management, to strengthen the national and international competitiveness, among others. The present work is a proposal based on the design of an HACCP program to guarantee the safety of the Bologna Special Type elaborated by a meat products industry, through the determination of hazards (microbiological, chemical or physical), the identification of critical control points (CCP), the establishment of critical limits, plan corrective actions and the establishment of documentation and verification procedures. The used methodology was based in the application of the seven basic principles settled down by the Codex Alimentarius, obtaining the design of this program. In view of the fact that recently the meat products are linked with pathogens like E. coli O157:H7 and Listeria monocytogenes, these were contemplated as microbiological hazard for the establishment of the HACCP plan whose application will guarantee the obtaining of a safe product.

  1. 1990 Tier Two emergency and hazardous chemical inventory

    International Nuclear Information System (INIS)

    1991-03-01

    This document contains the 1990 Two Tier Emergency and Hazardous Chemical Inventory. Submission of this Tier Two form (when requested) is required by Title 3 of the Superfund Amendments and Reauthorization Act of 1986, Section 312, Public Law 99--499, codified at 42 U.S.C. Section 11022. The purpose of this Tier Two form is to provide State and local officials and the public with specific information on hazardous chemicals present at your facility during the past year

  2. AVIS: analysis method for document coherence

    International Nuclear Information System (INIS)

    Henry, J.Y.; Elsensohn, O.

    1994-06-01

    The present document intends to give a short insight into AVIS, a method which permits to verify the quality of technical documents. The paper includes the presentation of the applied approach based on the K.O.D. method, the definition of quality criteria of a technical document, as well as a description of the means of valuating these criteria. (authors). 9 refs., 2 figs

  3. Seismic hazard assessment: Issues and alternatives

    Science.gov (United States)

    Wang, Z.

    2011-01-01

    Seismic hazard and risk are two very important concepts in engineering design and other policy considerations. Although seismic hazard and risk have often been used inter-changeably, they are fundamentally different. Furthermore, seismic risk is more important in engineering design and other policy considerations. Seismic hazard assessment is an effort by earth scientists to quantify seismic hazard and its associated uncertainty in time and space and to provide seismic hazard estimates for seismic risk assessment and other applications. Although seismic hazard assessment is more a scientific issue, it deserves special attention because of its significant implication to society. Two approaches, probabilistic seismic hazard analysis (PSHA) and deterministic seismic hazard analysis (DSHA), are commonly used for seismic hazard assessment. Although PSHA has been pro-claimed as the best approach for seismic hazard assessment, it is scientifically flawed (i.e., the physics and mathematics that PSHA is based on are not valid). Use of PSHA could lead to either unsafe or overly conservative engineering design or public policy, each of which has dire consequences to society. On the other hand, DSHA is a viable approach for seismic hazard assessment even though it has been labeled as unreliable. The biggest drawback of DSHA is that the temporal characteristics (i.e., earthquake frequency of occurrence and the associated uncertainty) are often neglected. An alternative, seismic hazard analysis (SHA), utilizes earthquake science and statistics directly and provides a seismic hazard estimate that can be readily used for seismic risk assessment and other applications. ?? 2010 Springer Basel AG.

  4. Planning document for the Advanced Landfill Cover Demonstration

    International Nuclear Information System (INIS)

    Hakonson, T.E.; Bostick, K.V.

    1994-01-01

    The Department of Energy and Department of Defense are faced with the closure of thousands of decommissioned radioactive, hazardous, and mixed waste landfills as a part of ongoing Environmental Restoration activities. Regulations on the closure of hazardous and radioactive waste landfills require the construction of a ''low-permeability'' cover over the unit to limit the migration of liquids into the underlying waste. These landfills must be maintained and monitored for 30 years to ensure that hazardous materials are not migrating from the landfill. This test plan is intended as an initial road map for planning, designing, constructing, evaluating, and documenting the Advanced Landfill Cover Demonstration (ALCD). It describes the goals/ objectives, scope, tasks, responsibilities, technical approach, and deliverables for the demonstration

  5. HEALTH AND ENVIRONMENTAL EFFECTS DOCUMENT ...

    Science.gov (United States)

    Health and Environmental Effects Documents (HEEDS) are prepared for the Office of Solid Waste and Emergency Response (OSWER). This document series is intended to support listings under the Resource Conservation and Recovery Act (RCRA) as well as to provide health-related limits and goals for emergency and remedial actions under the Comprehensive Environmental Response, Compensation and Liability Act (CERCLA). Both published literature and information obtained from Agency Program Office files are evaluated as they pertain to potential human health, aquatic life and environmental effects of hazardous waste constituents. Several quantitative estimates are presented provided sufficient data are available. For systemic toxicants, these include Reference Doses (RfDs) for chronic and subchronic exposures for both the inhalation and oral exposures. In the case of suspected carcinogens, RfDs may not be estimated. Instead, a carcinogenic potency factor, or q1*, is provided. These potency estimates are derived for both oral and inhalation exposures where possible. In addition, unit risk estimates for air and drinking water are presented based on inhalation and oral data, respectively. Reportable quantities (RQs) based on both chronic toxicity and carcinogenicity are derived. The RQ is used to determine the quantity of a hazardous substance for which notification is required in the event of a release as specified under CERCLA.

  6. 75 FR 57044 - NIOSH List of Antineoplastic and Other Hazardous Drugs in Healthcare Settings 2010

    Science.gov (United States)

    2010-09-17

    ... identified 24 drugs that fit the NIOSH definition of hazardous drugs. The second draft list also proposed... Antineoplastic and Other Hazardous Drugs in Healthcare Settings 2010 AGENCY: National Institute for Occupational... publication of the following document entitled ``NIOSH List of Antineoplastic and Other Hazardous Drugs in...

  7. 78 FR 11611 - Current Good Manufacturing Practice and Hazard Analysis and Risk-Based Preventive Controls for...

    Science.gov (United States)

    2013-02-19

    ... related to the proposed rule on ``Current Good Manufacturing Practice and Hazard Analysis and Risk-Based... . All comments should be identified with the title ``Current Good Manufacturing Practice and Hazard... rulemaking to modernize the regulation for ``Current Good Manufacturing Practice In Manufacturing, Packing...

  8. Automated hazard analysis of digital control systems

    International Nuclear Information System (INIS)

    Garrett, Chris J.; Apostolakis, George E.

    2002-01-01

    Digital instrumentation and control (I and C) systems can provide important benefits in many safety-critical applications, but they can also introduce potential new failure modes that can affect safety. Unlike electro-mechanical systems, whose failure modes are fairly well understood and which can often be built to fail in a particular way, software errors are very unpredictable. There is virtually no nontrivial software that will function as expected under all conditions. Consequently, there is a great deal of concern about whether there is a sufficient basis on which to resolve questions about safety. In this paper, an approach for validating the safety requirements of digital I and C systems is developed which uses the Dynamic Flowgraph Methodology to conduct automated hazard analyses. The prime implicants of these analyses can be used to identify unknown system hazards, prioritize the disposition of known system hazards, and guide lower-level design decisions to either eliminate or mitigate known hazards. In a case study involving a space-based reactor control system, the method succeeded in identifying an unknown failure mechanism

  9. Lessons learnt from recent citizen science initiatives to document floods in France, Argentina and New Zealand

    Directory of Open Access Journals (Sweden)

    Le Coz Jérôme

    2016-01-01

    Full Text Available New communication and digital image technologies have enabled the public to produce and share large quantities of flood observations. Valuable hydraulic data such as water levels, flow rates, inundated areas, etc., can be extracted from photos and movies taken by citizens and help improve the analysis and modelling of flood hazard. We introduce recent citizen science initiatives which have been launched independently by research organisations to document floods in some catchments and urban areas of France, Argentina and New Zealand. Key drivers for success appear to be: a clear and simple procedure, suitable tools for data collecting and processing, an efficient communication plan, the support of local stakeholders, and the public awareness of natural hazards.

  10. External hazards considered for Paks NPP

    International Nuclear Information System (INIS)

    Kiss, Tibor

    2000-01-01

    PAKS NPP was built according to Soviet construction standards which took into account meteorological aspects but no documents for other external hazards were available. Main activities concerning earthquakes cover reevaluation of the plant site, seismic safety technological concept, improving the seismic resistance, installation of seismic monitoring and protection system, and seismic PSA

  11. Hazard classification criteria for non-nuclear facilities

    International Nuclear Information System (INIS)

    Mahn, J.A.; Walker, S.A.

    1997-01-01

    Sandia National Laboratories' Integrated Risk Management Department has developed a process for establishing the appropriate hazard classification of a new facility or operation, and thus the level of rigor required for the associated authorization basis safety documentation. This process is referred to as the Preliminary Hazard Screen. DOE Order 5481.1B contains the following hazard classification for non-nuclear facilities: high--having the potential for onsite or offsite impacts to large numbers of persons or for major impacts to the environment; moderate--having the potential for considerable onsite impacts but only minor offsite impacts to people or the environment; low--having the potential for only minor onsite and negligible offsite impacts to people or the environment. It is apparent that the application of such generic criteria is more than likely to be fraught with subjective judgment. One way to remove the subjectivity is to define health and safety classification thresholds for specific hazards that are based on the magnitude of the hazard, rather than on a qualitative assessment of possible accident consequences. This paper presents the results of such an approach to establishing a readily usable set of non-nuclear facility hazard classifications

  12. Revision of the 1844 Palestrina earthquake following the recovery of an unpublished document

    Directory of Open Access Journals (Sweden)

    R. Di Giovambattista

    1998-06-01

    Full Text Available The paper presented originates from the recovery of an unpublished document that reports estimated damage in the city of Palestrina (Central Italy following the 1844 earthquake. This document is not quoted in the sources and repertoires concerning earthquakes in the Palestrina area, and it has probably never before been used in studies for seismic hazard evaluation. Analysis of the document has allowed us to state the distribution and severity of damage due to the seismic event, assessing an intensity of VII MCS for Palestrina. Comparison with other coeval documents evidenced a possible lack of information with respect to the dwellings of the less well-to-do population, granting the hypothesis of a more serious damage level. The distribution of effects within the town centre of Palestrina has been compared with the surficial geology, evidencing a strong dependence of the seismic response on the local geomorphology. Such results are also confirmed by a similar damage pattern following the 1876 earthquake, and allow us to outline a realistic view of Palestrina's seismic vulnerability.

  13. Safety analysis reports - new strategies

    International Nuclear Information System (INIS)

    Booth, J.A.

    1994-01-01

    Within the past year there have been many external changes in the requirements of safety analysis reports. Now there is emphasis on open-quotes graded approachesclose quotes depending on the Hazard Classification of the project. The Energy Facility Contractors Group (EFCOG) has a Safety Analysis Working Group. The results of this group for the past year are discussed as well as the implications for EG ampersand G. New strategies include ideas for incorporating the graded approach, auditable safety documents, additional guidance for Hazard Classification per DOE-STD-1027-92. The emphasis in the paper is on those projects whose hazard classification is category three or less

  14. ASCHFLOW - A dynamic landslide run-out model for medium scale hazard analysis

    Czech Academy of Sciences Publication Activity Database

    Quan Luna, B.; Blahůt, Jan; van Asch, T.W.J.; van Westen, C.J.; Kappes, M.

    2016-01-01

    Roč. 3, 12 December (2016), č. článku 29. E-ISSN 2197-8670 Institutional support: RVO:67985891 Keywords : landslides * run-out models * medium scale hazard analysis * quantitative risk assessment Subject RIV: DE - Earth Magnetism, Geodesy, Geography

  15. Pasteurised milk and implementation of HACCP (Hazard Analysis Critical Control Point

    Directory of Open Access Journals (Sweden)

    T.B Murdiati

    2004-10-01

    Full Text Available The purpose of pasteurisation is to destroy pathogen bacteria without affecting the taste, flavor, and nutritional value. A study on the implementation of HACCP (Hazard Analysis Critical Control Point in producing pasteurized milk was carried out in four processing unit of pasteurised milk, one in Jakarta, two in Bandung and one in Bogor. The critical control points in the production line were identified. Milk samples were collected from the critical points and were analysed for the total number of microbes. Antibiotic residues were detected on raw milks. The study indicated that one unit in Bandung dan one unit in Jakarta produced pasteurized milk with lower number of microbes than the other units, due to better management and control applied along the chain of production. Penisilin residues was detected in raw milk used by unit in Bogor. Six critical points and the hazard might arise in those points were identified, as well as how to prevent the hazards. Quality assurance system such as HACCP would be able to produce high quality and safety of pasteurised milk, and should be implemented gradually.

  16. Guidance Index for Shallow Landslide Hazard Analysis

    Directory of Open Access Journals (Sweden)

    Cheila Avalon Cullen

    2016-10-01

    Full Text Available Rainfall-induced shallow landslides are one of the most frequent hazards on slanted terrains. Intense storms with high-intensity and long-duration rainfall have high potential to trigger rapidly moving soil masses due to changes in pore water pressure and seepage forces. Nevertheless, regardless of the intensity and/or duration of the rainfall, shallow landslides are influenced by antecedent soil moisture conditions. As of this day, no system exists that dynamically interrelates these two factors on large scales. This work introduces a Shallow Landslide Index (SLI as the first implementation of antecedent soil moisture conditions for the hazard analysis of shallow rainfall-induced landslides. The proposed mathematical algorithm is built using a logistic regression method that systematically learns from a comprehensive landslide inventory. Initially, root-soil moisture and rainfall measurements modeled from AMSR-E and TRMM respectively, are used as proxies to develop the index. The input dataset is randomly divided into training and verification sets using the Hold-Out method. Validation results indicate that the best-fit model predicts the highest number of cases correctly at 93.2% accuracy. Consecutively, as AMSR-E and TRMM stopped working in October 2011 and April 2015 respectively, root-soil moisture and rainfall measurements modeled by SMAP and GPM are used to develop models that calculate the SLI for 10, 7, and 3 days. The resulting models indicate a strong relationship (78.7%, 79.6%, and 76.8% respectively between the predictors and the predicted value. The results also highlight important remaining challenges such as adequate information for algorithm functionality and satellite based data reliability. Nevertheless, the experimental system can potentially be used as a dynamic indicator of the total amount of antecedent moisture and rainfall (for a given duration of time needed to trigger a shallow landslide in a susceptible area. It is

  17. System-level hazard analysis using the sequence-tree method

    International Nuclear Information System (INIS)

    Huang, H.-W.; Shih Chunkuan; Yih Swu; Chen, M.-H.

    2008-01-01

    A system-level PHA using the sequence-tree method is presented to perform safety-related digital I and C system SSA. The conventional PHA involves brainstorming among experts on various portions of the system to identify hazards through discussions. However, since the conventional PHA is not a systematic technique, the analysis results depend strongly on the experts' subjective opinions. The quality of analysis cannot be appropriately controlled. Therefore, this study presents a system-level sequence tree based PHA, which can clarify the relationship among the major digital I and C systems. This sequence-tree-based technique has two major phases. The first phase adopts a table to analyze each event in SAR Chapter 15 for a specific safety-related I and C system, such as RPS. The second phase adopts a sequence tree to recognize the I and C systems involved in the event, the working of the safety-related systems and how the backup systems can be activated to mitigate the consequence if the primary safety systems fail. The defense-in-depth echelons, namely the Control echelon, Reactor trip echelon, ESFAS echelon and Monitoring and indicator echelon, are arranged to build the sequence-tree structure. All the related I and C systems, including the digital systems and the analog back-up systems, are allocated in their specific echelons. This system-centric sequence-tree analysis not only systematically identifies preliminary hazards, but also vulnerabilities in a nuclear power plant. Hence, an effective simplified D3 evaluation can also be conducted

  18. Hazardous healthcare waste management in the Kingdom of Bahrain

    International Nuclear Information System (INIS)

    Mohamed, L.F.; Ebrahim, S.A.; Al-Thukair, A.A.

    2009-01-01

    Hazardous healthcare waste has become an environmental concern for many developing countries including the Kingdom of Bahrain. There have been several significant obstacles facing the Kingdom in dealing with this issue including; limited documentation regarding generation, handling, management, and disposal of waste. This in turn hinders efforts to plan better healthcare waste management. In this paper, hazardous waste management status in the Kingdom has been investigated through an extensive survey carried out on selected public and private healthcare premises. Hazardous waste management practices including: waste generation, segregation, storage, collection, transportation, treatment, and disposal were determined. The results of this study along with key findings are discussed and summarized. In addition; several effective recommendations and improvements of hazardous waste management are suggested.

  19. Community Documentation Centre on Industrial Risk. Bulletin no. 8

    International Nuclear Information System (INIS)

    Masera, M.; Rasmussen, K.

    1993-01-01

    The Directorate-General for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities is responsible for the effective and harmonized implementation of the Directive 82/501/EEC on the major-accident hazards of certain industrial activities. To this end, the Commission, in collaboration with the Committee of Competent Authorities responsible for the implementation of this Directive in the twelve Member States, carries out a whole range of activities. One of the most essential areas for action identified was the need for a systematic diffusion of information concerning the practical implementation of the Directive in the Member States, including the technical rules and guidelines applied, the safety practices and the lessons learnt from major accidents. Therefore, the Commission decided to set up a Community Documentation Centre on Industrial Risks (CDCIR). This Documentation Centre is run by the European Commission, Joint Research Centre, Institute for Systems Engineering and Informatics (ISEI), at Ispra, Italy, among its support activities on the implementation of the Directive. The Documentation Centre will collect, classify and review technical rules, guidelines and documents concerning the requirements of the Directive, as well as the safety of industrial installations produced by governments, administrative, scientific or technical bodies, national or international organizations and industrial or professional associations. Documents on major accidents in the form of reports, videotapes will also be collected and reviewed. The Centre is accessible to interested visitors, documents which are not covered by copyright and are not restricted can be obtained from the Documentation Centre on request. Periodical volumes which will feature the inventory, including abstracts, of the collected material will be published and made available to all interested parties. The Centre will also publish documents devoted to compare existing

  20. Community Documentation Centre on Industrial Risk. Bulletin no. 4

    International Nuclear Information System (INIS)

    Gow, H.B.F.

    1991-01-01

    The Directorate-General for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities is responsible for the effective and harmonized implementation of the Directive 82/501/EEC on the major-accident hazards of certain industrial activities. To this end, the Commission, in collaboration with the Committee of Competent Authorities responsible for the implementation of this Directive in the twelve Member States, carries out a whole range of activities. One of the most essential areas for action identified was the need for a systematic diffusion of information concerning the practical implementation of the Directive in the Member States, including the technical rules and guidelines applied, the safety practices and the lessons learnt from major accidents. Therefore, the Commission decided to set up a Community Documentation Centre on Industrial Risks (CDCIR). This Documentation Centre is run by the European Commission, Joint Research Centre, Institute for Systems Engineering and Informatics (ISEI), at Ispra, Italy, among its support activities on the implementation of the Directive. The Documentation Centre will collect, classify and review technical rules, guidelines and documents concerning the requirements of the Directive, as well as the safety of industrial installations produced by governments, administrative, scientific or technical bodies, national or international organizations and industrial or professional associations. Documents on major accidents in the form of reports, videotapes will also be collected and reviewed. The Centre is accessible to interested visitors, documents which are not covered by copyright and are not restricted can be obtained from the Documentation Centre on request. Periodical volumes which will feature the inventory, including abstracts, of the collected material will be published and made available to all interested parties. The Centre will also publish documents devoted to compare existing

  1. Community Documentation Centre on Industrial Risk. Bulletin no. 10

    International Nuclear Information System (INIS)

    Perschke, A.; Kirchsteiger, C.

    1996-01-01

    The Directorate-General for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities is responsible for the effective and harmonized implementation of the Directive 82/501/EEC on the major-accident hazards of certain industrial activities. To this end, the Commission, in collaboration with the Committee of Competent Authorities responsible for the implementation of this Directive in the twelve Member States, carries out a whole range of activities. One of the most essential areas for action identified was the need for a systematic diffusion of information concerning the practical implementation of the Directive in the Member States, including the technical rules and guidelines applied, the safety practices and the lessons learnt from major accidents. Therefore, the Commission decided to set up a Community Documentation Centre on Industrial Risks (CDCIR). This Documentation Centre is run by the European Commission, Joint Research Centre, Institute for Systems Engineering and Informatics (ISEI), at Ispra, Italy, among its support activities on the implementation of the Directive. The Documentation Centre will collect, classify and review technical rules, guidelines and documents concerning the requirements of the Directive, as well as the safety of industrial installations produced by governments, administrative, scientific or technical bodies, national or international organizations and industrial or professional associations. Documents on major accidents in the form of reports, videotapes will also be collected and reviewed. The Centre is accessible to interested visitors, documents which are not covered by copyright and are not restricted can be obtained from the Documentation Centre on request. Periodical volumes which will feature the inventory, including abstracts, of the collected material will be published and made available to all interested parties. The Centre will also publish documents devoted to compare existing

  2. Community Documentation Centre on Industrial Risk. Bulletin no. 5

    International Nuclear Information System (INIS)

    Gow, H.B.F.

    1991-11-01

    The Directorate-General for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities is responsible for the effective and harmonized implementation of the Directive 82/501/EEC on the major-accident hazards of certain industrial activities. To this end, the Commission, in collaboration with the Committee of Competent Authorities responsible for the implementation of this Directive in the twelve Member States, carries out a whole range of activities. One of the most essential areas for action identified was the need for a systematic diffusion of information concerning the practical implementation of the Directive in the Member States, including the technical rules and guidelines applied, the safety practices and the lessons learnt from major accidents. Therefore, the Commission decided to set up a Community Documentation Centre on Industrial Risks (CDCIR). This Documentation Centre is run by the European Commission, Joint Research Centre, Institute for Systems Engineering and Informatics (ISEI), at Ispra, Italy, among its support activities on the implementation of the Directive. The Documentation Centre will collect, classify and review technical rules, guidelines and documents concerning the requirements of the Directive, as well as the safety of industrial installations produced by governments, administrative, scientific or technical bodies, national or international organizations and industrial or professional associations. Documents on major accidents in the form of reports, videotapes will also be collected and reviewed. The Centre is accessible to interested visitors, documents which are not covered by copyright and are not restricted can be obtained from the Documentation Centre on request. Periodical volumes which will feature the inventory, including abstracts, of the collected material will be published and made available to all interested parties. The Centre will also publish documents devoted to compare existing

  3. Community Documentation Centre on Industrial Risk. Bulletin no. 7

    International Nuclear Information System (INIS)

    Gow, H.B.F.; Carditello, I.

    1993-04-01

    The Directorate-General for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities is responsible for the effective and harmonized implementation of the Directive 82/501/EEC on the major-accident hazards of certain industrial activities. To this end, the Commission, in collaboration with the Committee of Competent Authorities responsible for the implementation of this Directive in the twelve Member States, carries out a whole range of activities. One of the most essential areas for action identified was the need for a systematic diffusion of information concerning the practical implementation of the Directive in the Member States, including the technical rules and guidelines applied, the safety practices and the lessons learnt from major accidents. Therefore, the Commission decided to set up a Community Documentation Centre on Industrial Risks (CDCIR). This Documentation Centre is run by the European Commission, Joint Research Centre, Institute for Systems Engineering and Informatics (ISEI), at Ispra, Italy, among its support activities on the implementation of the Directive. The Documentation Centre will collect, classify and review technical rules, guidelines and documents concerning the requirements of the Directive, as well as the safety of industrial installations produced by governments, administrative, scientific or technical bodies, national or international organizations and industrial or professional associations. Documents on major accidents in the form of reports, videotapes will also be collected and reviewed. The Centre is accessible to interested visitors, documents which are not covered by copyright and are not restricted can be obtained from the Documentation Centre on request. Periodical volumes which will feature the inventory, including abstracts, of the collected material will be published and made available to all interested parties. The Centre will also publish documents devoted to compare existing

  4. Community Documentation Centre on Industrial Risk. Bulletin no. 9

    International Nuclear Information System (INIS)

    Perschke, A.

    1995-01-01

    The Directorate-General for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities is responsible for the effective and harmonized implementation of the Directive 82/501/EEC on the major-accident hazards of certain industrial activities. To this end, the Commission, in collaboration with the Committee of Competent Authorities responsible for the implementation of this Directive in the twelve Member States, carries out a whole range of activities. One of the most essential areas for action identified was the need for a systematic diffusion of information concerning the practical implementation of the Directive in the Member States, including the technical rules and guidelines applied, the safety practices and the lessons learnt from major accidents. Therefore, the Commission decided to set up a Community Documentation Centre on Industrial Risks (CDCIR). This Documentation Centre is run by the European Commission, Joint Research Centre, Institute for Systems Engineering and Informatics (ISEI), at Ispra, Italy, among its support activities on the implementation of the Directive. The Documentation Centre will collect, classify and review technical rules, guidelines and documents concerning the requirements of the Directive, as well as the safety of industrial installations produced by governments, administrative, scientific or technical bodies, national or international organizations and industrial or professional associations. Documents on major accidents in the form of reports, videotapes will also be collected and reviewed. The Centre is accessible to interested visitors, documents which are not covered by copyright and are not restricted can be obtained from the Documentation Centre on request. Periodical volumes which will feature the inventory, including abstracts, of the collected material will be published and made available to all interested parties. The Centre will also publish documents devoted to compare existing

  5. Community Documentation Centre on Industrial Risk. Bulletin no. 6

    International Nuclear Information System (INIS)

    Gow, H.B.F.

    1992-06-01

    The Directorate-General for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities is responsible for the effective and harmonized implementation of the Directive 82/501/EEC on the major-accident hazards of certain industrial activities. To this end, the Commission, in collaboration with the Committee of Competent Authorities responsible for the implementation of this Directive in the twelve Member States, carries out a whole range of activities. One of the most essential areas for action identified was the need for a systematic diffusion of information concerning the practical implementation of the Directive in the Member States, including the technical rules and guidelines applied, the safety practices and the lessons learnt from major accidents. Therefore, the Commission decided to set up a Community Documentation Centre on Industrial Risks (CDCIR). This Documentation Centre is run by the European Commission, Joint Research Centre, Institute for Systems Engineering and Informatics (ISEI), at Ispra, Italy, among its support activities on the implementation of the Directive. The Documentation Centre will collect, classify and review technical rules, guidelines and documents concerning the requirements of the Directive, as well as the safety of industrial installations produced by governments, administrative, scientific or technical bodies, national or international organizations and industrial or professional associations. Documents on major accidents in the form of reports, videotapes will also be collected and reviewed. The Centre is accessible to interested visitors, documents which are not covered by copyright and are not restricted can be obtained from the Documentation Centre on request. Periodical volumes which will feature the inventory, including abstracts, of the collected material will be published and made available to all interested parties. The Centre will also publish documents devoted to compare existing

  6. Community Documentation Centre on Industrial Risk. Bulletin no. 11

    International Nuclear Information System (INIS)

    Perschke, A.; Kirchsteiger, C.; Carnevali, C.

    1997-01-01

    The Directorate-General for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities is responsible for the effective and harmonized implementation of the Directive 82/501/EEC on the major-accident hazards of certain industrial activities. To this end, the Commission, in collaboration with the Committee of Competent Authorities responsible for the implementation of this Directive in the twelve Member States, carries out a whole range of activities. One of the most essential areas for action identified was the need for a systematic diffusion of information concerning the practical implementation of the Directive in the Member States, including the technical rules and guidelines applied, the safety practices and the lessons learnt from major accidents. Therefore, the Commission decided to set up a Community Documentation Centre on Industrial Risks (CDCIR). This Documentation Centre is run by the European Commission, Joint Research Centre, Institute for Systems Engineering and Informatics (ISEI), at Ispra, Italy, among its support activities on the implementation of the Directive. The Documentation Centre will collect, classify and review technical rules, guidelines and documents concerning the requirements of the Directive, as well as the safety of industrial installations produced by governments, administrative, scientific or technical bodies, national or international organizations and industrial or professional associations. Documents on major accidents in the form of reports, videotapes will also be collected and reviewed. The Centre is accessible to interested visitors, documents which are not covered by copyright and are not restricted can be obtained from the Documentation Centre on request. Periodical volumes which will feature the inventory, including abstracts, of the collected material will be published and made available to all interested parties. The Centre will also publish documents devoted to compare existing

  7. Waste receiving and processing (WRAP) module 1 hazards assessment. Revision 1

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1997-01-01

    This report documents the hazards assessment for the Waste Receiving and Processing Module I (WRAP 1) located on the U.S. Department of Energy (DOE) Hanford Site. Operation of the WRAP 1 is the responsibility of Rust Federal Services Hanford (RFSH). This hazards assessment was conducted to provide the emergency planning technical basis for the WRAP 1. DOE Orders require an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification

  8. Identification of Aircraft Hazards

    International Nuclear Information System (INIS)

    K. Ashley

    2006-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7)

  9. Content analysis to detect high stress in oral interviews and text documents

    Science.gov (United States)

    Thirumalainambi, Rajkumar (Inventor); Jorgensen, Charles C. (Inventor)

    2012-01-01

    A system of interrogation to estimate whether a subject of interrogation is likely experiencing high stress, emotional volatility and/or internal conflict in the subject's responses to an interviewer's questions. The system applies one or more of four procedures, a first statistical analysis, a second statistical analysis, a third analysis and a heat map analysis, to identify one or more documents containing the subject's responses for which further examination is recommended. Words in the documents are characterized in terms of dimensions representing different classes of emotions and states of mind, in which the subject's responses that manifest high stress, emotional volatility and/or internal conflict are identified. A heat map visually displays the dimensions manifested by the subject's responses in different colors, textures, geometric shapes or other visually distinguishable indicia.

  10. Site specific probabilistic seismic hazard analysis at Dubai Creek on the west coast of UAE

    Science.gov (United States)

    Shama, Ayman A.

    2011-03-01

    A probabilistic seismic hazard analysis (PSHA) was conducted to establish the hazard spectra for a site located at Dubai Creek on the west coast of the United Arab Emirates (UAE). The PSHA considered all the seismogenic sources that affect the site, including plate boundaries such as the Makran subduction zone, the Zagros fold-thrust region and the transition fault system between them; and local crustal faults in UAE. PSHA indicated that local faults dominate the hazard. The peak ground acceleration (PGA) for the 475-year return period spectrum is 0.17 g and 0.33 g for the 2,475-year return period spectrum. The hazard spectra are then employed to establish rock ground motions using the spectral matching technique.

  11. Training for hazardous waste workers

    Energy Technology Data Exchange (ETDEWEB)

    Favel, K.

    1990-10-26

    This implementation plan describes the system and provides the information and schedules that are necessary to comply with the Department of Energy (DOE) Albuquerque Operations Office (AL) Memorandum, Reference EPD dated September 11, 1990, Training for Hazardous Waste Workers. The memo establishes the need for identifying employees requiring environmental training, ensuring that the training is received, and meeting documentation and recordkeeping requirements for the training.

  12. Regional Analysis of the Hazard Level of Glacial Lakes in the Cordillera Blanca, Peru

    Science.gov (United States)

    Chisolm, Rachel E.; Jhon Sanchez Leon, Walter; McKinney, Daene C.; Cochachin Rapre, Alejo

    2016-04-01

    The Cordillera Blanca mountain range is the highest in Peru and contains many of the world's tropical glaciers. This region is severely impacted by climate change causing accelerated glacier retreat. Secondary impacts of climate change on glacier retreat include stress on water resources and the risk of glacial lake outburst floods (GLOFs) from the many lakes that are forming and growing at the base of glaciers. A number of GLOFs originating from lakes in the Cordillera Blanca have occurred over the last century, several of which have had catastrophic impacts on cities and communities downstream. Glaciologists and engineers in Peru have been studying the lakes of the Cordillera Blanca for many years and have identified several lakes that are considered dangerous. However, a systematic analysis of all the lakes in the Cordillera Blanca has never before been attempted. Some methodologies for this type of systematic analysis have been proposed (eg. Emmer and Vilimek 2014; Wang, et al. 2011), but as yet they have only been applied to a few select lakes in the Cordillera Blanca. This study uses remotely sensed data to study all of the lakes of the Glacial Lake Inventory published by the Glaciology and Water Resources Unit of Peru's National Water Authority (UGRH 2011). The objective of this study is to assign a level of potential hazard to each glacial lake in the Cordillera Blanca and to ascertain if any of the lakes beyond those that have already been studied might pose a danger to nearby populations. A number of parameters of analysis, both quantitative and qualitative, have been selected to assess the hazard level of each glacial lake in the Cordillera Blanca using digital elevation models, satellite imagery, and glacier outlines. These parameters are then combined to come up with a preliminary assessment of the hazard level of each lake; the equation weighting each parameter draws on previously published methodologies but is tailored to the regional characteristics

  13. 41 CFR 102-75.340 - Where hazardous substance activity has been identified on property proposed for disposal, what...

    Science.gov (United States)

    2010-07-01

    ... 41 Public Contracts and Property Management 3 2010-07-01 2010-07-01 false Where hazardous... Provisions Relating to Hazardous Substance Activity § 102-75.340 Where hazardous substance activity has been... offer to purchase and the conveyance document? Where the existence of hazardous substance activity has...

  14. Hazardous constituent source term. Revision 2

    International Nuclear Information System (INIS)

    1994-01-01

    The Department of Energy (DOE) has several facilities that either generate and/or store transuranic (TRU)-waste from weapons program research and production. Much of this waste also contains hazardous waste constituents as regulated under Subtitle C of the Resource Conservation and Recovery Act (RCRA). Toxicity characteristic metals in the waste principally include lead, occurring in leaded rubber gloves and shielding. Other RCRA metals may occur as contaminants in pyrochemical salt, soil, debris, and sludge and solidified liquids, as well as in equipment resulting from decontamination and decommissioning activities. Volatile organic compounds (VOCS) contaminate many waste forms as a residue adsorbed on surfaces or occur in sludge and solidified liquids. Due to the presence of these hazardous constituents, applicable disposal regulations include land disposal restrictions established by Hazardous and Solid Waste Amendments (HSWA). The DOE plans to dispose of TRU-mixed waste from the weapons program in the Waste Isolation Pilot Plant (WIPP) by demonstrating no-migration of hazardous constituents. This paper documents the current technical basis for methodologies proposed to develop a post-closure RCRA hazardous constituent source term. For the purposes of demonstrating no-migration, the hazardous constituent source term is defined as the quantities of hazardous constituents that are available for transport after repository closure. Development of the source term is only one of several activities that will be involved in the no-migration demonstration. The demonstration will also include uncertainty and sensitivity analyses of contaminant transport

  15. Underground Test Area Subproject Phase I Data Analysis Task. Volume VIII - Risk Assessment Documentation Package

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-12-01

    Volume VIII of the documentation for the Phase I Data Analysis Task performed in support of the current Regional Flow Model, Transport Model, and Risk Assessment for the Nevada Test Site Underground Test Area Subproject contains the risk assessment documentation. Because of the size and complexity of the model area, a considerable quantity of data was collected and analyzed in support of the modeling efforts. The data analysis task was consequently broken into eight subtasks, and descriptions of each subtask's activities are contained in one of the eight volumes that comprise the Phase I Data Analysis Documentation.

  16. Seismic fragility analysis of a nuclear building based on probabilistic seismic hazard assessment and soil-structure interaction analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez, R.; Ni, S.; Chen, R.; Han, X.M. [CANDU Energy Inc, Mississauga, Ontario (Canada); Mullin, D. [New Brunswick Power, Point Lepreau, New Brunswick (Canada)

    2016-09-15

    Seismic fragility analyses are conducted as part of seismic probabilistic safety assessment (SPSA) for nuclear facilities. Probabilistic seismic hazard assessment (PSHA) has been undertaken for a nuclear power plant in eastern Canada. Uniform Hazard Spectra (UHS), obtained from the PSHA, is characterized by high frequency content which differs from the original plant design basis earthquake spectral shape. Seismic fragility calculations for the service building of a CANDU 6 nuclear power plant suggests that the high frequency effects of the UHS can be mitigated through site response analysis with site specific geological conditions and state-of-the-art soil-structure interaction analysis. In this paper, it is shown that by performing a detailed seismic analysis using the latest technology, the conservatism embedded in the original seismic design can be quantified and the seismic capacity of the building in terms of High Confidence of Low Probability of Failure (HCLPF) can be improved. (author)

  17. Integrated Geo Hazard Management System in Cloud Computing Technology

    Science.gov (United States)

    Hanifah, M. I. M.; Omar, R. C.; Khalid, N. H. N.; Ismail, A.; Mustapha, I. S.; Baharuddin, I. N. Z.; Roslan, R.; Zalam, W. M. Z.

    2016-11-01

    Geo hazard can result in reducing of environmental health and huge economic losses especially in mountainous area. In order to mitigate geo-hazard effectively, cloud computer technology are introduce for managing geo hazard database. Cloud computing technology and it services capable to provide stakeholder's with geo hazards information in near to real time for an effective environmental management and decision-making. UNITEN Integrated Geo Hazard Management System consist of the network management and operation to monitor geo-hazard disaster especially landslide in our study area at Kelantan River Basin and boundary between Hulu Kelantan and Hulu Terengganu. The system will provide easily manage flexible measuring system with data management operates autonomously and can be controlled by commands to collects and controls remotely by using “cloud” system computing. This paper aims to document the above relationship by identifying the special features and needs associated with effective geohazard database management using “cloud system”. This system later will use as part of the development activities and result in minimizing the frequency of the geo-hazard and risk at that research area.

  18. Advances in oriental document analysis and recognition techniques

    CERN Document Server

    Lee, Seong-Whan

    1999-01-01

    In recent years, rapid progress has been made in computer processing of oriental languages, and the research developments in this area have resulted in tremendous changes in handwriting processing, printed oriental character recognition, document analysis and recognition, automatic input methodologies for oriental languages, etc. Advances in computer processing of oriental languages can also be seen in multimedia computing and the World Wide Web. Many of the results in those domains are presented in this book.

  19. Comparison of approaches for mobile document image analysis using server supported smartphones

    Science.gov (United States)

    Ozarslan, Suleyman; Eren, P. Erhan

    2014-03-01

    With the recent advances in mobile technologies, new capabilities are emerging, such as mobile document image analysis. However, mobile phones are still less powerful than servers, and they have some resource limitations. One approach to overcome these limitations is performing resource-intensive processes of the application on remote servers. In mobile document image analysis, the most resource consuming process is the Optical Character Recognition (OCR) process, which is used to extract text in mobile phone captured images. In this study, our goal is to compare the in-phone and the remote server processing approaches for mobile document image analysis in order to explore their trade-offs. For the inphone approach, all processes required for mobile document image analysis run on the mobile phone. On the other hand, in the remote-server approach, core OCR process runs on the remote server and other processes run on the mobile phone. Results of the experiments show that the remote server approach is considerably faster than the in-phone approach in terms of OCR time, but adds extra delays such as network delay. Since compression and downscaling of images significantly reduce file sizes and extra delays, the remote server approach overall outperforms the in-phone approach in terms of selected speed and correct recognition metrics, if the gain in OCR time compensates for the extra delays. According to the results of the experiments, using the most preferable settings, the remote server approach performs better than the in-phone approach in terms of speed and acceptable correct recognition metrics.

  20. Mission hazard assessment for STARS Mission 1 (M1) in the Marshall Islands area

    Energy Technology Data Exchange (ETDEWEB)

    Outka, D.E.; LaFarge, R.A.

    1993-07-01

    A mission hazard assessment has been performed for the Strategic Target System Mission 1 (known as STARS M1) for hazards due to potential debris impact in the Marshall Islands area. The work was performed at Sandia National Laboratories as a result of discussion with Kwajalein Missile Range (KMR) safety officers. The STARS M1 rocket will be launched from the Kauai Test Facility (KTF), Hawaii, and deliver two payloads to within the viewing range of sensors located on the Kwajalein Atoll. The purpose of this work has been to estimate upper bounds for expected casualty rates and impact probability or the Marshall Islands areas which adjoin the STARS M1 instantaneous impact point (IIP) trace. This report documents the methodology and results of the analysis.

  1. Seismic hazard analysis. A methodology for the Eastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Bernreuter, D L

    1980-08-01

    This report presents a probabilistic approach for estimating the seismic hazard in the Central and Eastern United States. The probabilistic model (Uniform Hazard Methodology) systematically incorporates the subjective opinion of several experts in the evaluation of seismic hazard. Subjective input, assumptions and associated hazard are kept separate for each expert so as to allow review and preserve diversity of opinion. The report is organized into five sections: Introduction, Methodology Comparison, Subjective Input, Uniform Hazard Methodology (UHM), and Uniform Hazard Spectrum. Section 2 Methodology Comparison, briefly describes the present approach and compares it with other available procedures. The remainder of the report focuses on the UHM. Specifically, Section 3 describes the elicitation of subjective input; Section 4 gives details of various mathematical models (earthquake source geometry, magnitude distribution, attenuation relationship) and how these models re combined to calculate seismic hazard. The lost section, Uniform Hazard Spectrum, highlights the main features of typical results. Specific results and sensitivity analyses are not presented in this report. (author)

  2. Final hazard classification for N basin water filtration and sediment relocation operations

    International Nuclear Information System (INIS)

    Pisarcik, D.J.; Kretzschmar, S.P.

    1996-02-01

    This document provides an auditable safety analysis and hazard classification for the filtration of basin water and the relocation of 105-N basin solids to the North Cask Pit within the basin complex. This report assesses the operation of the Water Filtration System and the Remotely Operated Sediment Extraction Equipment (ROSEE). These activities have an activity hazard classification of radiological. Inventories of potentially releasable nonradioactive hazardous materials are far below the reportable quantities of 40 CFR 302. No controls are required to maintain the releasable inventories of these materials below the reportable quantities. Descriptive material is included to provide a general understanding of the water filtration and sediment relocation processes. All equipment will be operated as described in work instructions and/or applicable procedures. Special controls associated with these activities are as follows: (1) A leak inspection of the ROSEE system shall be performed at least once every 5-hour period of sediment relocation operation. (2) A berm must be in place around the North Cask Pit to redirect a potential abovewater ROSEE system leak back to the basin

  3. Preliminary hazard analysis for the Brayton Isotope Ground Demonstration System (including vacuum test chamber)

    International Nuclear Information System (INIS)

    Miller, L.G.

    1975-01-01

    The Preliminary Hazard Analysis (PHA) of the BIPS-GDS is a tabular summary of hazards and undesired events which may lead to system damage or failure and/or hazard to personnel. The PHA reviews the GDS as it is envisioned to operate in the Vacuum Test Chamber (VTC) of the GDS Test Facility. The VTC and other equipment which will comprise the test facility are presently in an early stage of preliminary design and will undoubtedly undergo numerous changes before the design is frozen. The PHA and the FMECA to follow are intended to aid the design effort by identifying areas of concern which are critical to the safety and reliability of the BIPS-GDS and test facility

  4. Analysis on the Industrial Design of Food Package and the Component of Hazardous Substance in the Packaging Material

    OpenAIRE

    Wei-Wen Huang

    2015-01-01

    Transferring the hazardous chemicals contained in food packaging materials into food would threaten the health of consumers, therefore, the related laws and regulations and the detection method of hazardous substance have been established at home and abroad to ensure the safety to use the food packaging material. According to the analysis on the hazardous component in the food packaging, a set of detection methods for hazardous substance in the food packaging was established in the paper and ...

  5. Hazards evaluation of plutonium metal opening and stabilization

    International Nuclear Information System (INIS)

    JOHNSON, L.E.

    1999-01-01

    Hazards evaluation is the analysis of the significance of hazardous situations associated with an activity OK process. The HE used qualitative techniques of Hazard and Operability (HazOp) analysis and What-If analysis to identify those elements of handling and thermal stabilization processing that could lead to accidents

  6. In situ analysis of historical documents through a portable system of X RF

    International Nuclear Information System (INIS)

    Ruvalcaba S, J.L.; Gonzalez T, C.

    2005-01-01

    From the analysis of the documents and ancient books, the chronology of documents, the use of materials (paper, parchment, inks, pigments) and deterioration, among others aspects may be determined. Usually it is difficult to bring the object to the laboratory for analysis and it is not possible to sample (even small portions). Due to the importance of the documents characterization, it is necessary to carry out a diagnostic analysis at the library in order to establish the general nature of the materials (organic or inorganic), the main composition of inks and pigments, actual and possible deterioration. From this point of view, X-ray fluorescence analysis (X RF) with a portable system, may be used for quick non-destructive elemental composition determinations. A X RF system was specially developed at the Physics Institute (UNAM) for these purposes and it may be used out of the laboratory in libraries and museums. In this work, our X RF methodology is described and the study of inks of manuscripts from 15 Th and 16 Th centuries belonging to the National Anthropology and History Library is presented. (Author)

  7. Seismic hazards: New trends in analysis using geologic data

    International Nuclear Information System (INIS)

    Schwartz, D.P.; Coppersmith, K.J.

    1986-01-01

    In the late 1960s and early 1970s, largely in response to expansion of nuclear power plant siting and issuance of a code of federal regullations by the Nuclear Regulatory Commission referred to as Appendix A-10CFR100, the need to characterize the earthquake potential of individual faults for seismic design took on greater importance. Appendix A established deterministic procedures for assessing the seismic hazard at nuclear power plant sites. Bonilla and Buchanan, using data from historical suface-faulting earthquakes, developed a set of statistical correlations relating earthquake magnitude to surface rupture length and to surface displacement. These relationships have been refined and updated along with the relationship between fault area and magnitude and seismic moment and moment magnitude have served as the basis for selecting maximum earthquakes in a wide variety of design situations. In the paper presented, the authors discuss new trends in seismic hazard analysis using geologic data, with special emphasis on fault-zone segmentation and recurrence models and the way in which they provide a basis for evaluating long-term earthquake potential

  8. Public health human resources: a comparative analysis of policy documents in two Canadian provinces

    Science.gov (United States)

    2014-01-01

    Background Amidst concerns regarding the capacity of the public health system to respond rapidly and appropriately to threats such as pandemics and terrorism, along with changing population health needs, governments have focused on strengthening public health systems. A key factor in a robust public health system is its workforce. As part of a nationally funded study of public health renewal in Canada, a policy analysis was conducted to compare public health human resources-relevant documents in two Canadian provinces, British Columbia (BC) and Ontario (ON), as they each implement public health renewal activities. Methods A content analysis of policy and planning documents from government and public health-related organizations was conducted by a research team comprised of academics and government decision-makers. Documents published between 2003 and 2011 were accessed (BC = 27; ON = 20); documents were either publicly available or internal to government and excerpted with permission. Documentary texts were deductively coded using a coding template developed by the researchers based on key health human resources concepts derived from two national policy documents. Results Documents in both provinces highlighted the importance of public health human resources planning and policies; this was particularly evident in early post-SARS documents. Key thematic areas of public health human resources identified were: education, training, and competencies; capacity; supply; intersectoral collaboration; leadership; public health planning context; and priority populations. Policy documents in both provinces discussed the importance of an educated, competent public health workforce with the appropriate skills and competencies for the effective and efficient delivery of public health services. Conclusion This policy analysis identified progressive work on public health human resources policy and planning with early documents providing an inventory of issues to be

  9. Public health human resources: a comparative analysis of policy documents in two Canadian provinces.

    Science.gov (United States)

    Regan, Sandra; MacDonald, Marjorie; Allan, Diane E; Martin, Cheryl; Peroff-Johnston, Nancy

    2014-02-24

    Amidst concerns regarding the capacity of the public health system to respond rapidly and appropriately to threats such as pandemics and terrorism, along with changing population health needs, governments have focused on strengthening public health systems. A key factor in a robust public health system is its workforce. As part of a nationally funded study of public health renewal in Canada, a policy analysis was conducted to compare public health human resources-relevant documents in two Canadian provinces, British Columbia (BC) and Ontario (ON), as they each implement public health renewal activities. A content analysis of policy and planning documents from government and public health-related organizations was conducted by a research team comprised of academics and government decision-makers. Documents published between 2003 and 2011 were accessed (BC = 27; ON = 20); documents were either publicly available or internal to government and excerpted with permission. Documentary texts were deductively coded using a coding template developed by the researchers based on key health human resources concepts derived from two national policy documents. Documents in both provinces highlighted the importance of public health human resources planning and policies; this was particularly evident in early post-SARS documents. Key thematic areas of public health human resources identified were: education, training, and competencies; capacity; supply; intersectoral collaboration; leadership; public health planning context; and priority populations. Policy documents in both provinces discussed the importance of an educated, competent public health workforce with the appropriate skills and competencies for the effective and efficient delivery of public health services. This policy analysis identified progressive work on public health human resources policy and planning with early documents providing an inventory of issues to be addressed and later documents providing

  10. Environmental hazard analysis - contamination of nutrients, mercury and cesium-137 in natural waters

    International Nuclear Information System (INIS)

    Hakanson, L.

    1990-01-01

    Results from some ongoing Swedish research projects on different types of contamination of limnic as well as marine areas are summarized. A brief theoretical outline on the central concepts of the 'meso-scale-type' of environmental hazard analysis, utilizing examples on eutrophication of coastal waters is given. The concepts are further substantiated in two subsequent parts dealing with radioactive cesium and mercury. The idea is to illustrate that the basic concepts for ('real' world/'meso scale') environmental hazard analysis can be used for different substances and different aquatic environments. It is important to give clear, quantifiable definitions of the effect, dose and environmental sensitivity parameters, which should be valid for a defined area and for a defined span of time. All other parameters should be compatible and have the same area and time resolution. (author)

  11. PUREX facility hazards assessment

    International Nuclear Information System (INIS)

    Sutton, L.N.

    1994-01-01

    This report documents the hazards assessment for the Plutonium Uranium Extraction Plant (PUREX) located on the US Department of Energy (DOE) Hanford Site. Operation of PUREX is the responsibility of Westinghouse Hanford Company (WHC). This hazards assessment was conducted to provide the emergency planning technical basis for PUREX. DOE Order 5500.3A requires an emergency planning hazards assessment for each facility that has the potential to reach or exceed the lowest level emergency classification. In October of 1990, WHC was directed to place PUREX in standby. In December of 1992 the DOE Assistant Secretary for Environmental Restoration and Waste Management authorized the termination of PUREX and directed DOE-RL to proceed with shutdown planning and terminal clean out activities. Prior to this action, its mission was to reprocess irradiated fuels for the recovery of uranium and plutonium. The present mission is to establish a passively safe and environmentally secure configuration at the PUREX facility and to preserve that condition for 10 years. The ten year time frame represents the typical duration expended to define, authorize and initiate follow-on decommissioning and decontamination activities

  12. Introduction: Hazard mapping

    Science.gov (United States)

    Baum, Rex L.; Miyagi, Toyohiko; Lee, Saro; Trofymchuk, Oleksandr M

    2014-01-01

    Twenty papers were accepted into the session on landslide hazard mapping for oral presentation. The papers presented susceptibility and hazard analysis based on approaches ranging from field-based assessments to statistically based models to assessments that combined hydromechanical and probabilistic components. Many of the studies have taken advantage of increasing availability of remotely sensed data and nearly all relied on Geographic Information Systems to organize and analyze spatial data. The studies used a range of methods for assessing performance and validating hazard and susceptibility models. A few of the studies presented in this session also included some element of landslide risk assessment. This collection of papers clearly demonstrates that a wide range of approaches can lead to useful assessments of landslide susceptibility and hazard.

  13. Hazard Analysis and Disaster Preparedness in the Fairbanks North Star Borough, Alaska using Hazard Simulations, GIS, and Network Analysis

    Science.gov (United States)

    Schaefer, K.; Prakash, A.; Witte, W.

    2011-12-01

    The Fairbanks North Star Borough (FNSB) lies in interior Alaska, an area that is dominated by semiarid, boreal forest climate. FNSB frequently witnesses flooding events, wild land fires, earthquakes, extreme winter storms and other natural and man-made hazards. Being a large 19,065 km2 area, with a population of approximately 97,000 residents, providing emergency services to residents in a timely manner is a challenge. With only four highways going in and out of the borough, and only two of those leading to another city, most residents do not have quick access to a main road. Should a major disaster occur and block one of the two highways, options for evacuating or getting supplies to the area quickly dwindle. We present the design of a Geographic Information System (GIS) and network analysis based decision support tool that we have created for planning and emergency response. This tool will be used by Emergency Service (Fire/EMS), Emergency Management, Hazardous Materials Team, and Law Enforcement Agencies within FNSB to prepare and respond to a variety of potential disasters. The GIS combines available road and address networks from different FNSB agencies with the 2010 census data. We used ESRI's ArcGIS and FEMA's HAZUS-MH software to run multiple disaster scenarios and create several evacuation and response plans. Network analysis resulted in determining response time and classifying the borough by response times to facilitate allocation of emergency resources. The resulting GIS database can be used by any responding agency in FNSB to determine possible evacuation routes, where to open evacuation centers, placement of resources, and emergency response times. We developed a specific emergency response plan for three common scenarios: (i) major wildfire threatening Fairbanks, (ii) a major earthquake, (iii) loss of power during flooding in a flood-prone area. We also combined the network analysis results with high resolution imagery and elevation data to determine

  14. Hazardous-waste landfill research, US EPA (United States Environmental Protection Agency) program

    Energy Technology Data Exchange (ETDEWEB)

    Schomaker, N.B.

    1988-08-01

    The Land Pollution Control Division (LPCD), Hazardous Waste Engineering Research Lab. (HWERL), U.S. Environmental Protection Agency, in Cincinnati, Ohio, has responsibility for research in solid- and hazardous-waste management with respect to land disposal of wastes. To fulfill the responsibility, the LPCD is developing concepts and is documenting the environmental effects of various waste-disposal practices; and is collecting data necessary to support implementation of disposal guidelines mandated by the Hazardous and Solid Waste Amendments of 1984 (HSWA). This paper presents an overview of the land-disposal research associated with the LPCD hazardous waste program plan and will report the current status of work in the following categorical areas: Hazardous-waste facilities - landfills and surface impoundments; Non-Hazardous waste facilities; and Technology transfer.

  15. Category 3 threshold quantities for hazard categorization of nonreactor facilities

    International Nuclear Information System (INIS)

    Mandigo, R.L.

    1996-01-01

    This document provides the information necessary to determine Hazard Category 3 threshold quantities for those isotopes of interest not listed in WHC-CM-4-46, Section 4, Table 1.''Threshold Quantities.''

  16. IDENTIFICATION OF AIRCRAFT HAZARDS

    International Nuclear Information System (INIS)

    K.L. Ashley

    2005-01-01

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in the ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2004, Section 6.4.1). That determination was conservatively based on limited knowledge of flight data in the area of concern and on crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a Monitored Geologic Repository (MGR) at Yucca Mountain using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987, Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. NUREG-0800 is being used here as a reference because some of the same considerations apply. The intended use of this report is to provide inputs for further screening and analysis of the identified aircraft hazards based on the criteria that apply to Category 1 and 2 event sequence analyses as defined in 10 CFR 63.2 (see Section 4). The scope of this technical report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the MGR at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (see Section 7)

  17. Identification of Aircraft Hazards

    Energy Technology Data Exchange (ETDEWEB)

    K. Ashley

    2006-12-08

    Aircraft hazards were determined to be potentially applicable to a repository at Yucca Mountain in ''Monitored Geological Repository External Events Hazards Screening Analysis'' (BSC 2005 [DIRS 174235], Section 6.4.1). That determination was conservatively based upon limited knowledge of flight data in the area of concern and upon crash data for aircraft of the type flying near Yucca Mountain. The purpose of this report is to identify specific aircraft hazards that may be applicable to a monitored geologic repository (MGR) at Yucca Mountain, using NUREG-0800, ''Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants'' (NRC 1987 [DIRS 103124], Section 3.5.1.6), as guidance for the inclusion or exclusion of identified aircraft hazards. The intended use of this report is to provide inputs for further screening and analysis of identified aircraft hazards based upon the criteria that apply to Category 1 and Category 2 event sequence analyses as defined in 10 CFR 63.2 [DIRS 176544] (Section 4). The scope of this report includes the evaluation of military, private, and commercial use of airspace in the 100-mile regional setting of the repository at Yucca Mountain with the potential for reducing the regional setting to a more manageable size after consideration of applicable screening criteria (Section 7).

  18. Critical issues in an electronic documentation system.

    Science.gov (United States)

    Weir, Charlene R; Nebeker, Jonathan R

    2007-10-11

    The Veterans Health Administration (VHA), of the U.S. Department of Veteran Affairs has instituted a medical record (EMR) that includes electronic documentation of all narrative components of the medical record. To support clinicians using the system, multiple efforts have been instituted to ease the creation of narrative reports. Although electronic documentation is easier to read and improves access to information, it also may create new and additional hazards for users. This study is the first step in a series of studies to evaluate the issues surrounding the creation and use of electronic documentation. Eighty-eight providers across multiple clinical roles were interviewed in 10 primary care sites in the VA system. Interviews were tape-recorded, transcribed and qualitatively analyzed for themes. In addition, specific questions were asked about perceived harm due to electronic documentation practices. Five themes relating to difficulties with electronic documentation were identified: 1) information overload; 2) hidden information; 3) lack of trust; 4) communication; 5) decision-making. Three providers reported that they knew of an incident where current documentation practices had caused patient harm and over 75% of respondents reported significant mis-trust of the system.

  19. Global Nursing Issues and Development: Analysis of World Health Organization Documents.

    Science.gov (United States)

    Wong, Frances Kam Yuet; Liu, Huaping; Wang, Hui; Anderson, Debra; Seib, Charrlotte; Molasiotis, Alex

    2015-11-01

    To analyze World Health Organization (WHO) documents to identify global nursing issues and development. Qualitative content analysis. Documents published by the six WHO regions between 2007 and 2012 and with key words related to nurse/midwife or nursing/midwifery were included. Themes, categories, and subcategories were derived. The final coding reached 80% agreement among three independent coders, and the final coding for the discrepant coding was reached by consensus. Thirty-two documents from the regions of Europe (n = 19), the Americas (n = 6), the Western Pacific (n = 4), Africa (n = 1), the Eastern Mediterranean (n = 1), and Southeast Asia (n = 1) were examined. A total of 385 units of analysis dispersed in 31 subcategories under four themes were derived. The four themes derived (number of unit of analysis, %) were Management & Leadership (206, 53.5), Practice (75, 19.5), Education (70, 18.2), and Research (34, 8.8). The key nursing issues of concern at the global level are workforce, the impacts of nursing in health care, professional status, and education of nurses. International alliances can help advance nursing, but the visibility of nursing in the WHO needs to be strengthened. Organizational leadership is important in order to optimize the use of nursing competence in practice and inform policy makers regarding the value of nursing to promote people's health. © 2015 Sigma Theta Tau International.

  20. AECB workshop on seismic hazard assessment in Southern Ontario. Recorded proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    A workshop on seismic hazard assessment in southern Ontario was conducted on June 19-21, 1995. The purpose of the workshop was to review available geological and seismological data which could affect earthquake occurrence in southern Ontario and to develop a consensus on approaches that should be adopted for characterization of seismic hazard. The workshop was structured in technical sessions to focus presentations and discussions on four technical issues relevant to seismic hazard in southern Ontario, as follows: The importance of geological and geophysical observations for the determination of seismic sources; Methods and approaches which may be adopted for determining seismic sources based on integrated interpretations of geological and seismological information. Methods and data which should be used for characterizing the seismicity parameters of seismic sources. Methods for assessment of vibratory ground motion hazard. This document presents transcripts from recordings made of the presentations and discussion from the workshop. It will be noted, in some sections of the document, that the record is incomplete. This is due in part to recording equipment malfunction and in part due to the poor quality of recording obtained for certain periods.